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Abstract Cost-volume filtering (CVF) is one of the most widely used techniques for solv-
ing general multi-labeling problems based on a Markov random field (MRF). However it is
inefficient when the label space size (i.e., the number of labels) is large. This paper presents
a coarse-to-fine strategy for cost-volume filtering that efficiently and accurately addresses
multi-labeling problems with a large label space size. Based on the observation that true
labels at the same coordinates in images of different scales are highly correlated, we trun-
cate unimportant labels for cost-volume filtering by leveraging the labeling output of lower
scales. Experimental results show that our algorithm achieves much higher efficiency than
the original CVF method while maintaining a comparable level of accuracy. Although we
performed experiments that deal with only stereo matching and optical flow estimation, the
proposed method can be employed in many other applications because of the applicability
of CVF to general discrete pixel-labeling problems based on an MRF.
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1 Introduction

Many low-level computer-vision problems (e.g., stereo matching and optical flow estima-
tion) are formulated as multi-labeling problems, where discrete labels (e.g., disparity and
motion vector) are assigned to pixels. In general, there are two approaches to solve these
problems: global and local. The former models a labeling problem as a Markov random
field (MRF), where global optimization techniques [7, 8, 14, 19, 30, 32, 35, 37] are used
to minimize the energy function. Although such an approach is effective, using it to solve
a large optimization problem makes the inference intractable when the image size or label
space is large. Rhemann et al. [28] presented a local approach called cost-volume filtering
(CVF), which efficiently solves general multi-labeling problems by performing MRF opti-
mization via fast local filtering of label costs instead of global smoothing. CVF is easy to
implement and provides high-quality results; therefore, it has been widely used to solve var-
ious multi-labeling problems [10, 12, 18, 20, 40]. However, a limitation of CVF is that it
does not scale to extremely large label sets (e.g., sub-pixel stereo matching and up-sampling
of 16-bit depth maps captured by a Kinect sensor).

To overcome this limitation, Lu et al. [22] proposed the PatchMatch filter (PMF), which
performs CVF iteratively on local superpixels with compact label subsets instead of per-
forming it on the entire image coordinate space. In general, the average size of local label
subsets is much smaller than the size of the entire label space; therefore, although PMF and
CVF provide similar levels of accuracy, the efficiency of PMF is considerably higher. Nev-
ertheless, PMF relies on global optimization based on the complex PatchMatch approach [3,
6] to estimate a label subset for each superpixel. Thus, the computational complexity of
PMF increases with the number of superpixels, and therefore, PMF becomes less effective
when an image is divided into many superpixels.

This paper presents an alternative coarse-to-fine strategy for efficiently estimating com-
pact label subsets to solve the label space problem in cost-volume filtering. Based on the
observation that true labels at the same coordinates in an image of different scales are
highly correlated, we propose that lower-scale labeling outputs be leveraged for estimating
higher-scale local label subsets. Starting with an image of very low-resolution, we itera-
tively truncate unimportant labels at each higher scale, and finally, we assign compact and
approximately optimal label subsets to local regions of the original scale. The advantage
of the proposed framework is a simple and efficient coarse-to-fine strategy, which does
not require any global optimization as in [22]; moreover, its computational complexity is
not significantly affected by the number of local regions. Extensive experiments described
in Section 4 show that our algorithm achieves higher efficiency than PMF and CVF while
providing a comparable or often superior level of accuracy.

The fundamental algorithm of our method and the experimental results of stereo match-
ing have already been presented in our preliminary study [15]. In this paper, we provide
detailed explanations and present the results of additional experiments for optical flow esti-
mation. Note that we are not proposing a better algorithm for stereo matching and optical
flow estimation, but proposing a coarse-to-fine method to drastically reduce the computa-
tional time of CVF while preserving its accuracy. As presented in [10, 12, 18, 20, 28], the
CVF can be used for wide range of applications and the stereo matching and the optical
flow estimation presented in this paper is just an example.

Our proposed algorithm can be directly applied to not only original CVF [28] but also
several of its variants picked up in Section 2. In addition, our proposed algorithm can be
implemented on GPU similar to the original CVFE. However, in this paper, we did not per-
form those implementations, and compared with only the original CVF because we focus
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on “how to deal with the large label space efficiently”, not to improve the accuracy and not
the real-time application.

The reminder of this paper is organized as follows. Section 2 reviews related studies.
Section 3 briefly reviews CVF [28] and describes the details of the proposed coarse-to-fine
strategy. Section 4 presents the experimental results and describes their evaluation using the
Middlebury benchmark [24, 25]. Finally, Section 5 summarizes our findings and concludes
the paper.

2 Related work

In this section, we mainly focus on related works about stereo matching and optical flow
estimation, because they are main problems among multi-labeling problems and a lot of
methods using cost-volume filtering techniques have been proposed in stereo matching and
optical flow estimation. However, as mentioned in Section 1, the cost-volume filtering tech-
nique is not only used for them but also applied to wide range of multi-labeling problems
such as image segmentation [20], and depth-map up-sampling [12].

2.1 Cost aggregation methods for labeling problems

First, we review cost aggregation methods for correspondence field estimation. Yoon and
Kweon [44, 45] proposed a cost aggregation method using an adaptive weighted win-
dow such as an edge-preserving bilateral filter [36]. This method is slow because it needs
to perform naive bilateral filtering iteratively, where the number of iterations is equal to
the number of disparity candidates. To address this problem, Richard et al. [29] proposed
an approximate bilateral filtering technique that reduces the computational complexity of
adaptive support weight calculation. However, this approach provides low-quality results,
as compared to state-of-the-art stereo matching methods. On the other hand, Yang [40,
41] proposed a tree-based non-local cost aggregation method using a minimum spanning
tree. This method aggregates the cost values based on a tree structure constructed using
input images, and the final disparity refinement process is also performed on the basis of
the tree structure. Bai et al. [2] proposed an algorithm based on loop-erased random walk
to improve the support weighted window of [40] near depth discontinuities. As stated in
Section 1, Rhemann et al. [28] proposed CVF for general multi-labeling problems. By using
an O(1) edge-preserving filter called a guided filter (GF) [16] for cost aggregation, CVF
can efficiently solve general multi-labeling problems and achieve high-quality results. Lu
et al. [21] proposed a new edge-preserving filter called a cross-based local multipoint filter
(CLMF), which is an extension of the GF. Although the shape of the local support region of
the GF is a square, that of the CLMF can be an adaptively derived from a reference image.
Further, Lu et al. [21] showed that higher-quality stereo matching results can be achieved
by applying the CLMF instead of the GF for cost aggregation. Zhang et al. [49] proposed a
cross-scale cost aggregation algorithm based on CVF [28] for stereo matching. They showed
that higher-quality disparity maps can be obtained by adding a regularization term between
the cost values of different scales, and that the computational time of cross-scale aggregation
is not significantly greater than that of the original CVF [28]. This method [49] is similar to
ours in terms of multi-scale cost-volume utilization, but its purpose is to improve the qual-
ity of the disparity maps, not to reduce the computational complexity. Recently, Zhan et al.
[48] proposed some techniques for local stereo matching methods to improve the accu-
racy: mask filtering as a pre-processing, an improved matching cost function, and multi-step

@ Springer



12472 Multimed Tools Appl (2018) 77:12469-12491

disparity refinement as a post-processing. Inspired by the great success of convolutional
neural networks (CNNs) in image recognition task, CNNs are recently used for computing
the label costs (matching costs in stereo matching and optical flow estimation) instead of
hand-crafted cost functions [11, 13, 23, 46, 47], which has led to significant improvement
in terms of accuracy. In MC-CNN [46, 47], the CNN directly outputs the matching cost of
two input patches. Cross-based cost aggregation and semi-global matching are preformed
for the obtained cost-volume to produce accurate disparity map. To speed up computing the
matching cost, Chen et al. [11] and Luo et al. [23] proposed similar ideas, where the match-
ing cost is defined as the inner product of two features from CNN. In FlowNet [13], the
matching costs are defined as the correlation between two patches of feature maps, and the
final flow map is obtained by upconvolution operation. The computation of the correlations
is implemented as correlation layer, which is incorporated into CNN.

Most of local methods perform cost aggregation for all the labels (disparities) at every
pixel. Therefore, those methods are limited in that they do not scale to extremely large label
sets. To overcome this problem, with regard to stereo matching, Min et al. [26, 27] pro-
posed a technique to estimate a compact disparity subset for every pixel by considering
disparities with the local minima of the pre-filtered cost values. Although this method effi-
ciently achieves high-quality results with the Middlebury stereo benchmark [25], it cannot
be applied to general multi-labeling problems directly. Wang et al. [38] adapted the sequen-
tial probability ratio test to reduce the disparity search range with the sufficient confidence
in stereo matching problem. Helala and Qureshi [17] proposed the Accelerated CVF using
an occulusion handling technique for stereo matching problem. For general multi-labeling
problems, Lu et al. [22] proposed PMF, which is based on CVF [28]. As mentioned in
Section 1, PMF estimates a compact label subset for every superpixel using the Patch-
Match [3, 6] strategy; therefore, it is usually much more efficient than CVF while maintain-
ing a similar level of accuracy. However, because PMF relies on complex PatchMatch-based
global optimization to estimate a label subset for each superpixel, it becomes less effective
when an image is divided into many superpixels.

2.2 Coarse-to-fine strategy

Coarse-to-fine strategies have been employed in a variety of methods for labeling prob-
lems such as stereo matching and optical flow estimation. We can classify them into two
types: the coarse-to-fine strategies where the cost aggregation results from all resolution are
merged in order to obtain more accurate results such as [33, 42, 49], and ones where the
results of lower resolution are propagated to higher resolution in order to reduce the search
range of labels such as [43, 50]. We focus on the latter because our method is classified into
latter group.

Brox et al. [9] employed a coarse-to-fine strategy in their global optimization framework
to estimate a optical flow field. They obtain an output flow field as the solution of their
energy minimization formulation by solving Euler-Lagrange equations. They supplied a the-
oretical explanation that justifies their coarse-to-fine strategy by regarding it as a part of the
two nested iterations for non-convex optimization, and argued that their coarse-to-fine strat-
egy helps the convergence to the global minimum by setting the solution of coarser scale to
the initialization of the next finer scale. Similar to [9], Wedal et al. [39] employed a coarse-
to-fine strategy in their optical flow estimation framework, where the flow field is obtained
by solving the total variation (L1 norm) minimization problem using linear approximation
and alternating optimization scheme. They argued that their coarse-to-fine strategy has the
advantage of avoiding poor local minimum by propagating the solution of coarser scale to
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the finer scale. Those coarse-to-fine strategies such as [9, 39] are tailored for global opti-
mization techniques. These method iteratively update one solution for the entire image and
propagate it to the next scale after the predetermined number of iterations. Therefore, their
coarse-to-fine approaches cannot be used for CVF which needs pixel-wise cost computa-
tion for all possible labels and obtains pixel-wise solutions by winner-take-all strategy. Yang
et al. [43] proposed a coarse-to-fine technique for belief propagation (BP), which reduces
the computational complexity in both spatial and depth domain. This method is tailored for
BP and cannot be directly applied to CVF. Different from these approaches, we propose
a coarse-to-fine strategy for the cost-volume filtering technique that is categorized in local
methods.

Next, we discuss the coarse-to-fine strategies employed in local cost aggregation meth-
ods which are close to our method. Zhao et al. [SO] employed a coarse-to-fine strategy in
their elegant implementation on GPGPU for real-time stereo. They limit the search range
within +2 pixels of the disparity value obtained in lower resolution. The main difference
between their method and ours is that the reduction of the search range is performed per
pixel in their method, while it is done in each local region in our method. In addition, the
comparison with their method has little meaning because their objective is the efficient dis-
parity estimation in only foreground region and their algorithm is optimized for it. Their
experimental results on Middlebury stereo datasets with the assumption that whole image
area is foreground show the poor accuracy especially around the object boundaries (Disc. in
Table 1 [50]). Tao et al. [34] proposed a multiscale local cost aggregation method for optical
flow estimation called SimpleFlow. They upsampled the flow field obtained at the coarser
scale and skipped the cost computation by interpolating the flow using simple bilinear inter-
polation in the regions where the flow was smooth. Therefore, their method can obtain a
flow field with sublinear time with respect to the size of input images. Thier coarse-to-fine
strategy is different from ours because our method estimates a compact label set in each
local region to handle the large label space. In addition, without the refinement using the
global optimization [31], the accuracy of the flow fields obtained by SimpleFlow [34] is
much lower than that of CVF [28]. Although the SimpleFlow with the refinement can obtain
the comparable accuracy to the CVF, the running time drastically increases because the
global optimization in the refinement process is computationally expensive (Table 4 in [4]).
On the other hand, our method can obtain comparable accuracy to the CVF [28] and is sev-
eral times faster than CVFE. Bao et al. [4, 5] proposed a fast edge-preserving PatchMatch
for optical flow estimation. Their method estimates an approximate nearest neighbor field
(NNF) using PatchMatch search at the coarsest scale, and repeats upsampling the NNF and
the refinement of it within a small search range (3 x 3 pixels) until the original resolution.
Their method is very fast and can achieve high-quality results for large displacement optical
flow. However, for the datasets with small displacement optical flow, their coarse-to-fine
strategy obtains the less accurate results than when without it (Table 4 [4]) because their
method is tailored for large displacement optical flow. In contrast, our coarse-to-fine strat-
egy for general multi-labeling problems obtains the comparable or more accurate results
than the original CVF both when the label space is small and large.

3 Coarse-to-fine strategy for efficient CVF
In this section, we present a coarse-to-fine strategy for CVF [28] in order to address

multi-labeling problems with a large label space. Given a label set £ = {lg, -+ ,lp—1},
the objective of a multi-labeling problem is to assign a label /; € £ to each pixel
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i 2 [x, vi] @ =0,..., M — 1) in the image coordinate space I such that it minimizes the
label costs encoded in the energy function [28]. Here, L and M denote the number of labels
and the number of pixels, respectively.

3.1 CVF

The outline of CVF [28] is shown in Fig. 1. CVF solves a multi-labeling problem in three
steps. First, a 3-D cost volume C is constructed as a collection of costs C (i, /) for selecting
label / at each pixel i on the basis of the data term in the energy function. Then, each slice
of the cost volume is independently filtered by an edge-preserving filter [16, 21], which is
substituted for the smoothness term in the energy function:

CG.l) < Y WirCG'. D, ()

i’ew,-

where wj; is the squared window centered at the pixel i. Finally, the label at pixel i is simply
selected by the winner-takes-all (WTA) strategy:

I; = argminC(i, [). 2)
lel

When an O(1) edge-preserving filter (e.g., guided filter [16]) is used, the computational
complexity of filtering an entire cost volume is O (M L); thus, it is difficult to handle an
extremely large label space.

One possible strategy for handling a large label space is to locally change the label space
in order to reduce its size. Because the true label configuration is generally smooth in space
(e.g., disparities are smooth except for object boundaries), the label space required for per-
forming CVF on a local region should be smaller than the entire label space. As an example,
we present a colored true disparity map of cones (see Fig. 2) that is divided into local regions
by regular rectangular grids. In addition, we show a histogram of the true disparities / in the
entire image and the ones in the local regions S? and S?. We observe that the types of true
labels in a local region are fewer than those in the entire label space.

However, the problem is of course that we do not know a priori which labels are impor-
tant for each local region, and thus, the estimation of local label subsets is required [22].

3.2 Problem statement
Here, we present a simple but efficient label subset estimation algorithm. Unlike Lu et al.

[22], we do not rely on global optimization for estimating local label subsets; instead,

Candidate labels: £L = {l,, ..., l;_1}

Input  Cost computation Filteriﬁ:g WTA label selection  Output

Fig. 1 Framework of CVF [28]
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Fig. 2 Colored true disparity map of cones, and a histogram of the true disparities / in the entire image and
the ones in local regions Slo and S?. The disparities / are rounded off to integer values

we leverage the coarse-to-fine framework. An overview of the proposed method is shown
in Fig. 3. Our algorithm mainly involves two steps (i) in-scale cost-volume filtering and (ii)
across-scale label propagation. The latter is an essential feature of our approach, whereby a
local label subset is estimated from the CVF output at a low-resolution. Because the compu-
tational cost of CVF for a low-resolution image is negligibly small, we perform CVF using
a large label space with a low-resolution and truncate unimportant labels using the output.
Let I¥(k =0,...,n — 1) denote a cascade of images of decreasing resolution ranging
from the original scale (i.e., I¥t! =1 fx’ where | is a down-scaling operator with a scale

Ji C scale opaga

Fig. 3 Framework of proposed method
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factor s € (1, 0)),! and let £ denote the set of all possible labels at the k-th scale. Then,
we divide 1° (= I) into m non-overlapping local regions S? and partition I*(k > 1) into

local regions S;? (j=0,...,m— 1) such that S;TH = S;f i In addition, we represent a label

subset for Sf as ,C]; and its size as L’]“. . The total computational complexity of CVF from the
lowest scale (k = n — 1) to the original scale (k = 0) is expressed as

n—1m—1

o> Y miLh], 3)

k=0 j=0
where M;? is the number of pixels in Sj? (e, M ;‘ =g % M]Q). Therefore, our objective is to

estimate compact label subsets L"; such that ZZ;& ;’7:_01 M f L’; <« M L while maintaining
the accuracy of CVF. The optimal m and n values will be discussed in Section 4.

3.3 Across-scale label propagation

In this section, we present an algorithm for estimating compact label subsets (,C’;) that
sufficiently reduce the computational cost in (3) without truncating important labels.
Our algorithm begins with the coarsest scale (i.e., k =n — 1). At this scale, we set
Vj L; ~1 « £~ and simply perform CVF [28] to acquire the filtered cost volume C"~! at
the (n — 1)-th scale. Note that although we use a complete label set, the computational com-
plexity of CVF at this scale is O (s 2"~V M L), which is generally negligible (e.g., if we set
sto2andnto4, O(s—>""DML)~0(107>x ML)). Then, we initialize the label subset at
the higher resolution (E’Jlfz) by merging labels having the smallest cost values in C"~! at

the corresponding local regions S;’fl. Strictly speaking, the initialization is expressed as

2= ra. l,»:arg[minc"*‘(i,z), 4)

s oqn—1
zeSj

where C"~!(p, q) is the value of the cost volume at the (n — 1)-th scale with regard to
the position p and the label ¢, and f is a projection function that normalizes the label
space if required. In general, the projection function is represented as a constant scale factor
giving f = s. For instance, a disparity [ at the k-th scale corresponds to s/ at the (k — 1)-th
scale in the stereo matching problem.” The initialization method based on across-scale label
propagation is motivated by a reasonable observation that true labels at the same coordinates
in images of different scales are highly correlated; in particular, they are very close when
the difference in scales is small.

Although the initial estimation E;’fz is a good approximation of the optimal label subset

E;f =2 the problem is that [:'}._2 does not consist of labels that are not included in f (E;’._l),

which results in aliasing artifacts when the intermediate labels of E;?_l should be included

"'We used the “buildPyramid” function in OpenCV to down-sample images.

2In some cases, the label space does not need to be normalized because the scale of a label does not depend
on the image coordinate space. Examples include depth-map up-sampling [12] and image segmentation [20].
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in E'}_z (artifacts become more problematic as the scale difference increases). In addition,

the filtered cost volume C”"~! often contains numerical errors due to occlusion boundaries
or insufficient energy modeling. We adopt two strategies to overcome these difficulties.
First, we down-sample images with a relatively small scale factor (e.g., s < 2), such that
the scale difference between two layers becomes sufficiently small. Second, we complete
the initial label subset by adding the supporting labels within £s/2. Note that our algo-
rithm supports floating labels (e.g., sub-pixel disparity values). For instance, if the scale
factor is 2 and the disparity unit is 0.5, the initial estimation E;?_z = {2, 5} is extended as

L'J’._z ={1,1.5,2,2.5,3,4,4.5,5,5.5, 6}. Once a compact label subset 5?—2 has been con-
structed, the target layer is shifted to the higher scale (i.e., k<—n — 2). Similarly to the case
of the coarsest scale, CVF is performed on S;.’ ~2 with regard to E;?_z. Cost-volume filtering

with respect to E’I‘. and the estimation of E’J‘._l from C* are iterated n — 1 times until ﬂ} is

obtained. Then, the final label at each pixel in S? is selected by a simple WTA strategy, as
in the case of CVF [28].

For the entirety of the coarse-to-fine process, we fix the radius of the edge-preserving
filter to smooth the cost-volumes; in other words, the radius is not changed when the tar-
get scale is shifted to a higher scale. Therefore, the lower the scale, the more strongly is
the cost-volume smoothed. Thus, incorrect labels that accidentally have low costs are trun-
cated during our coarse-to-fine process. In the original CVF [28], especially near object
boundaries, the low costs of such incorrect labels are sometimes not sufficiently smoothed,
and these incorrect labels are selected by the WTA strategy. Therefore, in such cases, our
coarse-to-fine strategy sometimes increases the accuracy of the output at the finest scale, as
compared to the original CVF. The results will be presented in Section 4.1.2.

It is possible to generate SU in various ways, e.g., using regular rectangular grids or
superpixels [1], as shown in Fig. 4. The former is simple and suitable for edge-preserving
filters using integral images, e.g., a guided filter [16]. In contrast, when 59 are generated by
superpixels, some additional computational time is required because we need to apply the
edge-preserving filter to the bounding-box containing each region, as in the case of [22].
However, in such cases, it is easier to estimate the local label subsets because the local
regions based on the superpixels are less likely to cross object boundaries than regular grids.

(a) Rectangular regular (b) SLIC super-pixels [3]
grids

Fig. 4 Examples of local regions S?
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For these reasons, we use both regular rectangular grids and superpixels for generating local
regions S;), as described in Section 4.1.2.
The proposed algorithm is summarized as Algorithm 1.

Algorithm 1 The proposed coarse-to-fine strategy

INPUT: image pyramid I¥ (k =0, --- ,n — 1)
OUTPUT: labeling at the original scale (k = 0).
setk <—n — land £7~! « £"=! # start from the coarsest scale.
while scales k > 0 do
divide the image 7* into m local regions Sf
for regions j =0tom — 1 do
foralli € Sf and!/ € E'/‘. do
compute the cost value C ki, D).
end for
foralli e Sf and/ € E’; do

CK(i, 1) < Yy, WirCX (', 1) # filter the cost volume.

end for
C’;_l = Uies’; fi), l; =arg min C*(i, 1) # across scale label propagation.
leck
111;71 = /3];71 + supporting labels
end for
k < k — 1 #move to the next higher scale.
end while

# at the original scale (k = 0)
for regions j =0tom — 1 do
foralli e Sj? do
I; = argminCP(i, 1) # get the final labeling.
1Lt
end for
end for

4 Results

In this paper, we demonstrate the validity of our coarse-to-fine approach for CVF by apply-
ing it to stereo matching and optical flow estimation. Important to note that our technical
contribution is the computational efficiency as compared to the original CVF algorithm, not
the accuracy improvement. Besides, the application of CVF is not limited to stereo matching
and optical flow estimation.

4.1 Middlebury stereo

Experiments were conducted to evaluate the performance of our proposed method using the
Middlebury stereo matching benchmark [25]. In stereo matching, the label / corresponds to

@ Springer



Multimed Tools Appl (2018) 77:12469-12491 12479

800
600 [---Qurs
400 --Original CVF [2§]

200 ‘/——c

0 PN °
1/16 1/8 1/4 1/2 1/1 Post
Scale

Accumulated Time [s]

Fig. 5 Evaluation of the computational time. The results of eight Middlebury stereo datasets are aver-
aged. Post indicates the total computational time after weighted median filtering for the final disparity-map
refinement

the integer disparity between a pixel i in the target image I and its equivalent in the reference
image I’ shifted by the disparity. In the same manner, the cost function is selected as [28]:

CGi,l) = (1 —a)ymin[||I/,; — L, 7]
+oamin[||Vel,, — Vilil, 2], &)

where V, is the gradient in the x direction. The model parameters «, 71, and 7, are set to
0.89, 0.0027, and 0.0078, respectively.> We divide eight test image pairs of the Middlebury
stereo datasets [25] into two categories according to their size: small and large. The small
category includes cones (450 x 375), teddy (450 x 375), tsukuba (384 x 288), and venus
(434 x 383). Further, the large category includes art (1390 x 1110), books (1390 x 1110),
moebius (1390 x 1110), and reindeer (1342 x 1110). The label space size L is set to 60
for small datasets and 240 for large datasets. All the experiments were performed using an
Intel Core i7-2600 (3.4GHz, single thread) machine with 16 GB of RAM, and they were
implemented in C++. As in the original study of CVF [28], we use the guided filter [16] to
smooth the cost volume (the radius of the filter is fixed at 9).

4.1.1 Evaluation of label selection

We begin by evaluating the efficiency of our coarse-to-fine strategy, as compared to that of
CVF [28]. Here, we apply our method (n = 5, s = 2, m = 30) and CVF [28] to both small
and large datasets; the results are averaged as shown in Fig. 5. We observe that overall,
our coarse-to-fine strategy takes much less time than CVF [28]. As expected, the computa-
tional time for small scales (e.g., 1/16, 1/8, 1/4x) is negligible as compared to that for the
original resolution (1/1x).

Further, we present the average size of local label subsets estimated in our coarse-to-
fine process, as compared to the size of the entire label space (see Fig. 6). We observe that
although the latter increases exponentially with the scale, there is no significant increase
in the former, which is much smaller than the latter in the original scale. As a result, our
method is much more efficient than CVF [28].

3Parameters have been provided by the authors of [28].

@ Springer



12480 Multimed Tools Appl (2018) 77:12469-12491

160
w140 .
S 120 m Ave. size of local label subsets
'cf:1 100 .| ™ Entire label space size
“= 80 5
5 60
_g 40 375
2 20 19 12 22
Z, o 95 95 ] | 72

1/16 1/8 1/4 12 1/1
Scale

Fig. 6 Evaluation of label set size at each scale. The results of eight Middlebury stereo datasets are averaged

However, an important question arises, which directly addresses the accuracy of the final
label selection: “Are the estimated label subsets of the original scale really correct?” To
answer this question, we define two metrics for measuring the correctness of the final label
subset:

1LY N Ll 1£9N Ll
—— R(U)=—F7—,

1£5] L)1
where L is the subset of ground truth labels at the original scale (i.e., a collection of ground
truth disparity values that emerge in the j-th region), and we recall that £ is the subset
of estimated labels at the original scale. These two metrics evaluate the estimated label
subset in two different aspects: P(j) € [0, 1] measures the precision of E(}, which implies

P(j) = (6)

how correctly unimportant labels are removed, and R(j) € [0, 1] measures the recall of L(;-,
which implies how correctly important labels are maintained. Note that the ideal situation
of course occurs when Vj £ = £ ;. For L, we used the ground truth of the disparity maps
precomposed in the Middlebury stereo datasets [25].

Using these metrics, we evaluate our method with a varying scale factor s and number of
layers n using only small datasets, as shown in Tables 1 and 2. Here, the results are averaged
over all the datasets in this category.

Table 1 shows the evaluation of the label subset estimation with a fixed lowest scale and
varying scale differences. We observe that when the scale difference between two layers
is small (down-scale factor s = 2), our algorithm successfully maintains around 90% of
ground truth labels and truncates more than 50% of unnecessary labels, on average, whereas
the original label subset contains 90% of unnecessary labels. When the scale difference is
large (s = 16), our method maintains more than 70% of unnecessary labels, on average.
Therefore, we select a small down-scale factor (s = 2) in the following.

Next, Table 2 shows the case of a fixed scale difference and varying number of layers.
We observe that when the number of layers 7 is set to 4, the performance of our method is
optimal, considering both the precision and the recall. In such cases, our algorithm maintains

Table 1 Evaluation of label

subset estimation with fixed Transition of scale Ave. Precision Ave. Recall

lowest scale and varying scale

differences 1/16—1/8— 1/4—1/2—1/1 (s=2,n=5) 0.58 0.89
1/16—1/4—1/1 (s=4, n=3) 0.48 0.89
1/16—1/1 (s=16, n=2) 0.23 0.93
1/1 (CVF[28]) 0.13 1.00
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Table 2 Evaluation of label

subset estimation with fixed scale  Transition of scale Ave. Precision Ave. Recall
difference and varying number of
layers 1/16—1/8—1/4—1/2—1/1 (s=2,n=5) 0.58 0.89
1/8—1/4—1/2—1/1 (s=2, n=4) 0.58 0.91
1/4—1/2—1/1 (s=2, n=3) 0.57 0.90
12— 1/1 (s=2,n=2) 0.49 0.92
1/1 (CVF[28]) 0.13 1.00

more than 90% of ground truth labels and truncates more than 50% of unnecessary labels, on
average. Further, we observe that when the number of layers is small (n = 2), the precision
is low (less than 50%).

In summary, our observations are in good agreement with our experiments: the improve-
ment in precision is generally limited when the number of layers is too small or the scale
difference between two layers is too large. When setting the appropriate number of lay-
ers (n = 4) and scale difference (s = 2), our method successfully maintains important
labels and removes unimportant labels using the coarse-to-fine strategy. Therefore, in the
experiments described below, we fix n to 4 and s to 2.

4.1.2 Comparison with patchmatch filter

Here, we evaluate the performance of our method by comparing it with PatchMatch filter
(PMF) [22] using both small and large datasets of the Middlebury stereo benchmark [25].
We did not compare the performance of our method with other algorithms dedicated for
stereo matching because the stereo matching is merely one of the applications of our
method for general multi-labeling problems. For a fair comparison, our method and PMF
are performed using the same superpixels clustered by SLIC [1], the cost function, and
post-processing based on left-right cross-checking and median-filtering (for further details,
see [28]).* Further, we evaluate the performance of our method on the basis of a regu-
lar image grid with varying block size. Note that the number of local regions is inversely
proportional to the block size. The results are presented in Tables 3 and 4. Here, the per-
centage disparity errors (threshold is set as one for small datasets, and one and four for
large datasets) are averaged over all images within the same category. We observe that
although our method, PMF [22], and CVF [28] provide nearly the same level of accuracy,
our method is the most efficient method for both categories. In particular, for large datasets,
our method achieves 6 x faster performance than CVF [28], while providing a similar (or
higher level) accuracy. We also observe that our method outperforms PMF when the num-
ber of local regions is large (e.g., superpixels with K = 200, 500) or when the image is
divided into local regions on the basis of a simple image grid. This is because unlike the
case of PMF [22], we do not consider any spatial smoothness of label subsets within the
scale; instead, we consider the cross-scale smoothness of the local label subset, which is
independent of the spatial coherence.

The estimated disparity maps of the teddy and art datasets are shown in Figs. 7 and 8,
respectively. These are compared with those obtained by PMF [22] and CVF [28]. We
observe that our method succeeds in estimating smoother and more reasonable disparity
maps than CVF and PMF, especially in the case of the feddy dataset. Near object boundaries,

4Post-processing is performed on our method only in the original resolution.
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Table 3 Comparison with PMF
using small datasets

Bold emphasis means the best
performance in each column,
which helps readers find the best
method in each evaluation metric

Method Time[s] Err. %: thre.=1.0

nonocc all disc
CVEF[28] 35.38 3.30 6.17 9.74
PMF[22] (K=50) 2343 3.19 5.97 9.56
PMF[22] (K=100) 28.97 3.23 6.03 9.32
PMF[22] (K=200) 43.14 3.27 6.04 9.36
PMF[22] (K=500) 73.21 3.30 6.08 9.31
Ours (Superpixels, K=50) 15.98 3.51 6.31 10.8
Ours (Superpixels, K=100) 16.56 3.46 6.23 10.7
Ours (Superpixels, K=200) 18.48 3.69 6.48 11.3
Ours (Superpixels, K=500) 23.55 4.15 7.03 12.2
Ours (Grid, 150x 150) 17.67 3.11 5.98 10.1
Ours (Grid, 75x75) 1247 322 6.02 104

CVF and PMF assign many incorrect labels, whereas our method does not. The reason is
that our coarse-to-fine strategy successfully truncates incorrect labels that accidentally have
low costs, as mentioned in Section 3.3.

Finally, we present the estimated disparity maps of small and large datasets in Figs. 9

and 10, respectively.

4.2 KITTI stereo 2015

We also conducted experiments on the KITTI stereo 2015 benchmark, which is more diffi-
cult than the Middlebury stereo dataset in Section 4.1 in terms of disparity range and image
resolution. All the parameters and the cost function are exactly same as those in Section

Table 4 Comparison with PMF
using large datasets

Bold emphasis means the best
performance in each column,
which helps readers find the best
method in each evaluation metric

@ Springer

Method Time[s]  Err. % (all)
Err. thre.=1  Err. thre.=4

CVEF[28] 1413 21.5 14.8
PMF[22] (K=50) 266 22.7 15.6
PMF[22] (K=100) 322 225 15.5
PMF[22] (K=200) 484 225 15.6
PMF[22] (K=500) 802 233 16.2
Ours (Superpixels, K=50) 269 22.5 15.3
Ours (Superpixels, K=100) 249 23.0 15.7
Ours (Superpixels, K=200) 262 23.6 16.0
Ours (Superpixels, K=500) 304 24.5 17.2
Ours (Grid, 600x600) 1186 21.1 14.4
Ours (Grid, 300x300) 796 20.5 134
Ours (Grid, 150x150) 371 21.6 14.4
Ours (Grid, 75x75) 246 25.2 17.6




Multimed Tools Appl (2018) 77:12469-12491 12483

(a) Left image (b) Ground truth (c¢) Ours (d) CVF [28] (e) PMF
(Grid, 150x150) (K=500) [24]

Fig. 7 Qualitative comparison with regard to estimated disparity maps of Teddy dataset

4.1. We used 200 training images with ground truth disparity maps. The resolutions of all
images are 1241 x 376. In this dataset, we did not perform the post-processing (weighted
median filtering) in order to compare the pure performance of each method. The search
range of disparity was set to 256 in all methods.

We show the comparison of computational time and accuracy in Table 5. Following the
official evaluation rule of KITTI stereo 2015, we computed the percentage of error pixels.
We regarded the pixel to be correctly estimated if the disparity error is less than 3 pixel or
5% at each pixel. The results of 200 images are averaged in Table 5. We observe that the
accuracy of PMF [22] (K = 50) is worse than the original CVF [28] although PMF [22] is
the fastest. In this dataset, our method with superpixel division is 5 or 6 times faster than
the original CVF [28], and our method (K = 500) is much more accurate in both non-
occluded and all regions. We observe that the patchmatch search did not work effectively in
this dataset as opposed to our coarse-to-fine strategy. However, our method with regular grid
division is worse than that with superpixel division in terms of both efficiency and accuracy.

The estimated disparity maps are shown in Fig. 11. Compared with CVF [28] and
PMF [22], our method achieved smoother and more reasonable results by truncating unnec-
essary labels with the coarse-to-fine strategy. We observe that our method is better especially
in less or repeated texture regions (e.g., on the road and in the sky).

4.3 Middlebury optical flow

We also carried out experiments using the Middlebury optical flow benchmark [24]. In
optical flow estimation, the label / corresponds to the 2-D motion vector (u, v) between the
target image and the reference image. Further, # and v denote the displacements along the x

(a) Left image (b) Ground truth

(c) Ours (d) CVF 28] (e) PMF
(Grid, 300x300) (K=500) [24]

Fig. 8 Qualitative comparison with regard to estimated disparity maps of Arr dataset
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(a) Left image (b) Ground truth (c) Ours
(Grid, 150x150)

)

3 L 4
(d) Left image (e) Ground truth (f) Ours
(Grid, 150x150)

Fig. 9 Qualitative results on the small datasets

and y directions, respectively, and they take floating values. We use the same cost function
as that in the original CVF [28]:

Ci, D) = (I —aymin[|I1/y; — L, 1]
+oamin[|Velly — Vili | + IVy Iy = Vy kil w2, (N

where V, and Vy are the gradients in x and y direction, respectively. The parameters are
set to the same values as those in the experiments for stereo matching; only 17 is changed

(a) Left image (b) Ground truth  (c) Ours
(Grid, 300x300)

i

(d) Left image (e) Ground truth  (f) Ours
(Grid, 300x300)

Fig. 10 Qualitative results on the large datasets
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Table 5 Comparison of ]
computational time and accuracy ~ Method Timef[s] Err. %
using KITTI stereo 2015 datasets

Err. Nonocc. Err. All

CVF[28] 244 32.0 332
PMF[22] (K=50) 28.5 359 36.6
PMF[22] (K=100) 30.7 355 36.2
PMF[22] (K=200) 37.7 35.1 35.8
PMF[22] (K=500) 535 352 35.9
Ours (Superpixels, K=50) 58.2 24.2 25.5
Ours (Superpixels, K=100) 50.9 23.5 24.8
Ours (Superpixels, K=200) 45.2 22.6 23.8
Ours (Superpixels, K=500) 44.5 22.3 23.6
Bold emphasis means the best Ours (Grid, 300x300) 89.4 26.3 27.5
performance in each column, Ours (Grid, 150x 150) 67.3 27.2 28.4
which helps readers find the best Ours (Grid, 75x75) 393 243 25.6

method in each evaluation metric

Left image

CVF [28]

PMF [24]
K=500

Ours
Superpixels
K=500

Ours
Grid
75x75

Fig. 11 Qualitative comparison with regard to estimated disparity maps of KITTI stereo 2015 dataset.
Disparity maps (upper rows) and error maps (lower rows)
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Table 6 Comparison in optical flow estimation

Method RubberWhale Grove2 Venus

Time[s] AAE AEE Time[s] AAE AEE Time[s] AAE AEE

CVF[28] 6978 520 0.165 10792 3.65 0.258 5353 6.60 0.432
Ours (Superpixels, K=50) 537 426 0.139 768 259  0.191 493 4.21 0318
Ours (Superpixels, K=100) 523 436 0.143 748 2.63  0.194 485 413 0315
Ours (Superpixels, K=200) 588 445 0.145 786 2.63 0.194 524 424 0317
Ours (Superpixels, K=500) 769 444  0.145 1009 2.67 0.197 752 4.07  0.306
Ours (Grid, 150x150) 574 432 0.140 739 2.62  0.193 902 418 0312
Ours (Grid, 75%x75) 376 429 0139 555 2.61 0.193 448 4.10  0.308

Bold emphasis means the best performance in each column, which helps readers find the best method in each
evaluation metric

to 0.0156 in the same manner as in [28]. In all the datasets, the search ranges of both u and
v are set to the interval of —10 to 10 pixels. To achieve sub-pixel accuracy, the units are set
to 0.25 pixel (i.e., each space of u and v is {—10, —9.75, —=9.5,...,0,...,9.5,9.75, 10}).
Therefore, the size of the entire label space is 81 x 81 = 6561.

The results are listed in Table 6. Here, the average angle error (AAE) and average end-
point error (AEE) are used for evaluation. They are defined, respectively, as

1.04u X ugr +v x vgr

VIO +uZ+ 02 /1.0 + u, + 0%,

AE = cos™! ®)

in ] hg
(a) First frame (b) Ground truth (c) Ours (Grid, (d) CVF [28]
150x150)

Fig. 12 Qualitative comparison with regard to estimated flow maps of Middlebury optical flow dataset
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EE = (u —ugr)* + (v — vor)?, )

where (u, v) is the estimated flow and (ugr, vgr) is the ground truth flow. We did not
compare the performance of our method with other algorithms dedicated for optical flow
estimation for the same reason as stereo matching. From Table 6, we observe that our
method is superior to and much faster than the original CVF [28] in all cases. In particular,
by using superpixel division (K = 50), our method achieves the most accurate results and
much faster performance than CVF (10x or more). Further by using regular grid division,
our method achieves a higher level of accuracy than CVF, and it is the most efficient.

The estimated flow maps of the Middlebury optical flow dataset are shown in Fig. 12. We
observe that our method estimates the flow around boundaries more accurately than CVF.
As in the case of our stereo matching results, this is because erroneous flow vectors, which
yield minimum costs even though they are the wrong choices, are efficiently removed by
our hierarchical approach.

5 Conclusion

In this paper, we proposed a coarse-to-fine strategy to reduce the large label space for effi-
cient cost-volume filtering. The proposed method truncates redundant labels in each local
region by using the labeling output of lower scales. Our method demonstrated higher effi-
ciency than CVF while maintaining a comparable level of accuracy in stereo matching
and optical flow estimation. Compared with PMF, our method showed comparable perfor-
mance. Although PMF estimates compact label sets to reduce the computational cost by
complex patchmatch search, our method does by simple coarse-to-fine strategy. Therefore,
our method is yet another approach to optimize the label sets for efficient cost-volume fil-
tering, which is much easier to implement than PMF. Moreover, we will make our source
code publicly available.

In future work, as the performance of our method depends on the shape and number of
local regions, we intend to explore the optimal division of local regions. In addition, we plan
to investigate the GPU implementation of our method for real-time applications.
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