
Vol.:(0123456789)1 3

Metabolomics (2018) 14:64
https://doi.org/10.1007/s11306-018-1356-6

SOFT WARE/DATABASE

A Python library for FAIRer access and deposition to the Metabolomics
Workbench Data Repository

Andrey Smelter3  · Hunter N. B. Moseley1,2,3,4 

Received: 19 October 2017 / Accepted: 26 March 2018 / Published online: 20 April 2018
© The Author(s) 2018

Abstract
Introduction  The Metabolomics Workbench Data Repository is a public repository of mass spectrometry and nuclear mag-
netic resonance data and metadata derived from a wide variety of metabolomics studies. The data and metadata for each
study is deposited, stored, and accessed via files in the domain-specific ‘mwTab’ flat file format.
Objectives  In order to improve the accessibility, reusability, and interoperability of the data and metadata stored in ‘mwTab’
formatted files, we implemented a Python library and package. This Python package, named ‘mwtab’, is a parser for the
domain-specific ‘mwTab’ flat file format, which provides facilities for reading, accessing, and writing ‘mwTab’ formatted
files. Furthermore, the package provides facilities to validate both the format and required metadata elements of a given
‘mwTab’ formatted file.
Methods  In order to develop the ‘mwtab’ package we used the official ‘mwTab’ format specification. We used Git version
control along with Python unit-testing framework as well as continuous integration service to run those tests on multiple
versions of Python. Package documentation was developed using sphinx documentation generator.
Results  The ‘mwtab’ package provides both Python programmatic library interfaces and command-line interfaces for reading,
writing, and validating ‘mwTab’ formatted files. Data and associated metadata are stored within Python dictionary- and list-
based data structures, enabling straightforward, ‘pythonic’ access and manipulation of data and metadata. Also, the package
provides facilities to convert ‘mwTab’ files into a JSON formatted equivalent, enabling easy reusability of the data by all
modern programming languages that implement JSON parsers. The ‘mwtab’ package implements its metadata validation
functionality based on a pre-defined JSON schema that can be easily specialized for specific types of metabolomics studies.
The library also provides a command-line interface for interconversion between ‘mwTab’ and JSONized formats in raw text
and a variety of compressed binary file formats.
Conclusions  The ‘mwtab’ package is an easy-to-use Python package that provides FAIRer utilization of the Metabolomics
Workbench Data Repository. The source code is freely available on GitHub and via the Python Package Index. Documentation
includes a ‘User Guide’, ‘Tutorial’, and ‘API Reference’. The GitHub repository also provides ‘mwtab’ package unit-tests
via a continuous integration service.

Keywords  mwTab · Metabolomics Workbench · mwtab Python package · Data validation · FAIR

1  Introduction

The Metabolomics Workbench Data Repository is a pub-
licly available resource for metabolomics experimental data
collected from mass spectrometry (MS) and nuclear mag-
netic resonance (NMR) analytical platforms and associated
metadata describing sample and analytical details as well as
experimental design (Sud et al. 2016). Study-specific experi-
mental data and metadata can be accessed via metabolomics
workbench in the form of ‘mwTab’ formatted files as well as
through a representational state transfer (REST) interface.

Software available at: http://softw​are.cesb.uky.edu, https​://githu​
b.com/Mosel​eyBio​infor​matic​sLab/mwtab​, https​://pypi.org/proje​ct/
mwtab​, http://mwtab​.readt​hedoc​s.io.

Electronic supplementary material  The online version of this
article (https​://doi.org/10.1007/s1130​6-018-1356-6) contains
supplementary material, which is available to authorized users.

 *	 Andrey Smelter
	 andrey.smelter@uky.edu

 *	 Hunter N. B. Moseley
	 hunter.moseley@uky.edu

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3056-9225
http://orcid.org/0000-0003-3995-5368
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-018-1356-6&domain=pdf
http://software.cesb.uky.edu
https://github.com/MoseleyBioinformaticsLab/mwtab
https://github.com/MoseleyBioinformaticsLab/mwtab
https://pypi.org/project/mwtab
https://pypi.org/project/mwtab
http://mwtab.readthedocs.io
https://doi.org/10.1007/s11306-018-1356-6

	 A. Smelter, H. N. B. Moseley

1 3

64  Page 2 of 8

The repository currently makes available over 630 individual
‘mwTab’ files from MS- and NMR-based studies, each file
having an associated study id (non-unique identifier) and
analysis id (unique identifier). The metabolomics workbench
provides an official data format specification (“mwTab for-
mat specification.”—Available at: http://www.metab​olomi​
cswor​kbenc​h.org/data/tutor​ials.php) for the ‘mwTab’ format,
which consists of sequentially ordered blocks (sections) of
text data. Some of the blocks consist of data represented by
‘single key to single value’ relationships that store single
pieces of information. Other blocks consist of multiple ‘tab’-
separated values via ‘single key to multiple values’ or ‘mul-
tiple keys to multiple values’ relationships that store multiple
pieces of information in an organized manner analogous to
a relational table.

Using the Python programming language, we imple-
mented a software package and library called ‘mwtab’ in
order to improve the accessibility, interoperability, and reus-
ability (FAIR data principles) (Wilkinson et al. 2016) of
the experimental data and metadata stored in the ‘mwTab’
formatted files. The FAIR data principles, “To be findable,
accessible, interoperable, and reusable”, are guiding princi-
ples for good data management and stewardship of reposi-
tories (Wilkinson et al. 2016). Python was chosen because
it is an open-source programming language that runs on all
major operating systems (Python Software Foundation 2013;
Van Rossum and Drake 2010) and has become very popular
for scientific programming (Oliphant 2007). The ‘mwtab’
package parses ‘mwTab’ formatted files into Python dic-
tionary- and list-based data structures in order to provide
‘pythonic’ data access and manipulation interfaces within
Python programs (scripts, packages, etc.). Moreover, these
data structures are written in such a way that they are easily
serializable into Javascript object notation (JSON) formatted
files, a language-independent open-standard format used for
data interchange on the web. The advantage of this Python
dictionary/list/JSON data structures representation is that
it simultaneously facilitates data access and manipulation
of ‘mwTab’ formatted files using Python or any other pro-
gramming language that implements JSON parsers (i.e. all
modern programming languages). In addition to improving
data accessibility, the ‘mwtab’ package provides data valida-
tion facilities, i.e. data and metadata can be validated using
constraints in the form of a pre-defined schema. Validation
can test a variety of conditions like specifying what types
of values are possible, which keys and associated values are
required, which keys and associated values are optional, the
order that specific data blocks must follow, and checking for
consistencies within and between files.

2 � Methods

2.1 � Overview of the mwTab format

The ‘mwTab’ formatted files consists of multiple blocks
of text data. Each new text block of the ‘mwTab’ file starts
with the ‘#’. There are several types of formatting possible
within text blocks: “single key to single value”-like pairs
to represent single piece of information, e.g. ‘VERSION’
is the key and ‘1’ is the value (see Fig. 1a). In cases where
value is long, it gets formatted as a multiline string with
repeated use of the same key, e.g. ‘PR:PROJECT_SUM-
MARY’ is the key and associated multiline project sum-
mary is the value (see Fig. 1a). There is also a ‘SUB-
JECT_SAMPLE_FACTORS’ block that contains header
specifying column names and corresponding ‘tab’-sepa-
rated rows of data (see Fig. 1b). Results from MS- and
NMR-based experiments are deposited as large matrices of
values with corresponding units for each of the assignable
metabolites (see Fig. 1c, d respectively).

The full ‘mwTab’ format specification is available
on official Metabolomics Workbench Data Repository
(mwTab format specification. [Online]. Available: http://
www.metab​olomi​cswor​kbenc​h.org/data/tutor​ials.php).

2.2 � Package implementation

The ‘mwtab’ Python package consists of several mod-
ules: ‘mwtab.py’, ‘tokenizer.py’, ‘fileio.py’, ‘converter.
py’, ‘mwschema.py’, ‘validator.py’ and ‘cli.py’ (see
Fig. 2). The ‘mwtab.py’ module (Fig. 2b) implements
the ‘MWTabFile’ class which can construct itself into a
Python nested dictionary- and list-based data structures
representation from a provided file in ‘mwTab’ format.
The ‘MWTabFile’ class is the main class that provides the
interfaces for data and metadata access and manipulation.
The dictionary-based data structures provide key-based
bracket accessors (i.e., ‘[]’) and the list-based data struc-
tures provide index-based bracket accessors (i.e., 0, 1, 2,
etc.). This makes the ‘mwtab’ package a useful general-
purpose library with intuitive (‘pythonic’) data access
and manipulation functionality that can be integrated
into higher level Python software used for downstream
data analysis. The ‘tokenizer.py’ module is responsible
for tokenization (lexical analysis) of the text in ‘mwTab’
format, i.e. it splits the raw text into tokens and passes
them to the ‘mwtab.py’ module. Next, the ‘mwtab.py’ ana-
lyzes the tokens (syntactic analysis) and reformats them
into a ‘MWTabFile’ instance with Python dictionary- and
list-based instances (objects). The ‘fileio.py’ module (see
Fig. 2c) is responsible for input/output operations with

http://www.metabolomicsworkbench.org/data/tutorials.php
http://www.metabolomicsworkbench.org/data/tutorials.php
http://www.metabolomicsworkbench.org/data/tutorials.php
http://www.metabolomicsworkbench.org/data/tutorials.php

A Python library for FAIRer access and deposition to the Metabolomics Workbench Data Repository﻿	

1 3

Page 3 of 8  64

files from different sources. Specifically, it provides the
‘GenericFilePath’ class and memory-efficient generator
(function) that can return (yield) ‘MWTabFile’ instances
from different sources, e.g. single file, directory of files,
archive of files on a local machine, URL address of the
‘mwTab’ formatted file, etc. Function (method) call dia-
gram (see Fig. S1) shows how three modules ‘mwtab.
py’, ‘tokenizer.py’, and ‘fileio.py’ work together dur-
ing the ‘MWTabFile’ instance construction: the ‘fileio.
read_files()’ method uses ‘fileio.GenericFilePath’ in order
to determine what sources the ‘mwTab’ formatted file is
coming from and then calls appropriate methods on the
‘mwtab.MWTabFile’ class in order to construct itself, i.e.
top-level ‘mwtab.MWTabFile._build_mwtabfile’ and then
‘mwtab.MWTabFile._build_block’ in order to build each
individual text block of the ‘mwTab’ formatted file into a
usable ‘MWTabFile’ instance.

Since the ‘MWTabFile’ class is constructed using
Python’s standard dictionary- and list-based data structures,
the entire ‘MWTabFile’ instance can easily be serialized

into an equivalent JSON representation. The ‘converter.py’
module (see Fig. 2d) is responsible for conversion between
the JSONized representation of the ‘mwTab’ format and the
regular ‘mwTab’ format. The ‘mwschema.py’ and ‘valida-
tor.py’ are two package modules designed to perform the
validation of the ‘mwTab’ formatted files. The ‘mwschema.
py’ provides the current schema definitions for the ‘mwTab’
format and the ‘validator.py’ module provide functions to
validate individual text blocks as well as the entire ‘mwTab’
formatted file using those schema definitions. The schema
definitions are implemented using the ‘schema’ Python
library (“schema—validation just got Pythonic.”—Avail-
able at: https​://githu​b.com/keles​hev/schem​a/). The ‘cli.py’
module provides a simple command-line interface that can
be used to convert ‘mwTab’ formatted files to their JSON
representation and back as well as validate files on the com-
mand-line. The command-line interface is implemented with
the help of the ‘docopt’ Python library (“docopt—creates

a #METABOLOMICS WORKBENCH STUDY_ID:ST000001 ANALYSIS_ID:AN000001
VERSION 1
CREATED_ON 2016-09-17
#PROJECT
PR:PROJECT_TITLE FatB Gene Project
PR:PROJECT_TYPE Genotype treatment
PR:PROJECT_SUMMARY Experiment to test the consequence of
PR:PROJECT_SUMMARY a mutation at the FatB gene (At1g08510)
PR:PROJECT_SUMMARY the wound-response of Arabidopsis

b #SUBJECT_SAMPLE_FACTORS: SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE
pairs separated by |)[tab]Additional sample data
SUBJECT_SAMPLE_FACTORS - B212A02 Hours:0.5 | Compactin:0 | KLA:0
SUBJECT_SAMPLE_FACTORS - B219A02 Hours:0.5 | Compactin:0 | KLA:0
SUBJECT_SAMPLE_FACTORS - B226A02 Hours:0.5 | Compactin:0 | KLA:0
SUBJECT_SAMPLE_FACTORS - B212A03 Hours:0.5 | Compactin:50uM | KLA:0
SUBJECT_SAMPLE_FACTORS - B219A03 Hours:0.5 | Compactin:50uM | KLA:0
SUBJECT_SAMPLE_FACTORS - B226A03 Hours:0.5 | Compactin:50uM | KLA:0

c #MS_METABOLITE_DATA
MS_METABOLITE_DATA:UNITS pmol/ug DNA
MS_METABOLITE_DATA_START
Samples...
Factors...
10Z-heptadecenoic acid 1.1200 0.4900 0.4400 0.4100 0.5400 0.5800
11_14_17-eicosatrienoic acid 4.4200 6.0000 3.2500 3.6100 7.7600 4.1900
11_14-eicosadienoic acid 0.1800 0.3600 0.1600 0.3100 0.4600 0.2500
...
MS_METABOLITE_DATA_END

d #NMR_BINNED_DATA
NMR_BINNED_DATA_START
Bin range(ppm) CDC029 CDC030 CDC032 CPL101 CPL102 CPL103
0.82...0.84 2.8253 3.1284 1.1065 1.5676 1.7775 1.7097
0.84...0.90 34.974 30.485 14.352 15.274 17.848 16.936
0.90...0.92 11.828 10.11 5.4776 7.1873 7.2929 8.0632
0.92...0.98 68.285 67.389 33.7 59.048 62.212 65.748
...
NMR_BINNED_DATA_END

Fig. 1   Overview of the ‘mwTab’ format: a Text blocks containing “single key-single value” and multiline summary blocks; b subject sample
factors text block; c text block with MS metabolite data; d text block with NMR data

https://github.com/keleshev/schema/

	 A. Smelter, H. N. B. Moseley

1 3

64  Page 4 of 8

beautiful command-line interfaces.”—Available at: https​://
githu​b.com/docop​t/docop​t).

The ‘__init__.py’ and ‘__main__.py’ (see Fig. 2a) are
special Python specific modules (‘__init__.py’ marks
‘mwtab’ top-level directory as a Python package and
‘__main__.py’ specifies the top-level environment for the
‘mwtab’ package).

2.3 � Evaluation data

To evaluate the ‘mwtab’ package functionality and perfor-
mance, we used all ‘mwTab’ formatted files available from
Metabolomics Workbench Data Repository on August 30,
2017. Due to the fact that there was no easy way to down-
load all ‘mwTab’ formatted files from the repository, we

Fig. 2   Organization of the ‘mwtab’ Python package represented with
unified modeling language (UML) diagrams: a UML package dia-
gram of the ‘mwtab’ Python library; b UML class diagram of the

‘fileio.py’ module; c UML class diagram of the ‘mwtab.py’ module;
d UML class diagram of the ‘converter.py’ module

https://github.com/docopt/docopt
https://github.com/docopt/docopt

A Python library for FAIRer access and deposition to the Metabolomics Workbench Data Repository﻿	

1 3

Page 5 of 8  64

created a specialized Python script that downloads every
single ‘mwTab’ formatted file using ‘STUDY_ID’.

2.4 � Evaluation of mwtab package

The ‘mwtab’ Python package is available within a version-
controlled GitHub repository under a Berkeley Software
Distribution 3-clause clear open source license (BSD
3-Clause Clear License). As a part of our development pro-
cess, we implemented several unit tests for each module of
the ‘mwtab’ package (see Fig. 2a) in order to validate func-
tionality using the popular Python unit testing framework
‘pytest’ (“pytest unit testing framework.”—Available at:
https​://docs.pytes​t.org). We used the continuous integration
service ‘Travis CI’ to build and test our ‘mwtab’ package
against Python versions 2.7, and 3.4+, build information is
available under the ‘mwtab’ package GitHub repo. In addi-
tion, we generated code test coverage reports that are also
available under the GitHub repo (currently, tests cover 90%
of the code base).

2.5 � The mwtab package documentation

Each function, class, and class method was documented
using sphinx python documentation style, which allowed us
to generate package API documentation directly from the
source code. In addition, we wrote ‘User Guide’, ‘Tutorial’,
and ‘API Reference’ documentation which is available under
http://mwtab​.readt​hedoc​s.io.

3 � Results

3.1 � JSON representation of the mwTab format

JavaScript object notation is an open standard file format
commonly used for data-interchange on the web. Its advan-
tages include human readability, widespread support for
reading and writing by different programming languages
(“JSON: JavaScript Object Notation.”—Available at: http://
www.json.org/). It is built upon two main data structures:
a collection of key-value pairs (i.e. equivalent to Python
dictionary data structure) and an ordered collection of val-
ues (i.e. equivalent to Python list and array data structures).
Because the main ‘mwtab’ package data representation layer
(i.e. ‘MWTabFile’ class) is built upon standard Python dic-
tionary and list data structures, ‘mwTab’ formatted files are
easily serializable into their equivalent JSON representation.
In other words, ‘MWTabFile’ class creates an interface for
one-to-one mapping between Python nested dictionary- and
list-based data structures and a JSONized representation of
the ‘mwTab’ format. In addition, this design provides a very
intuitive programming interface for access and manipulation

of data and metadata stored in original ‘mwTab’ formatted
files.

Figure S2 compares different text blocks in ‘mwTab’
format with their corresponding JSONized representation:
text blocks containing “single key-single value” and multi-
line summary text blocks (Fig. S2a, b), specially formatted
subject sample factors text blocks (Fig. S2c, d), text blocks
containing MS experimental data on metabolites (Fig. S2e,
f), and text block containing NMR experimental data on
metabolites (Fig. S2g, h).

In comparison to the standard ‘mwTab’ format, the main
advantages of the JSON representation are: (i) it enables
easy access to data from other programming languages with-
out implementing specific ‘mwTab’ parser for that language;
and (ii) it enables faster reading/processing of the data stored
in ‘mwTab’ formatted files due to highly optimized and effi-
cient JSON parsers. Figures S5 and S6 show code examples
for data access from JSONized ‘mwTab’ files using R with
‘jsonlite’ R library (Ooms 2014) and C++ with ‘JSON for
Modern C++’ library (“JSON for Modern C++.”—Avail-
able at: https​://githu​b.com/nlohm​ann/json), respectively.

3.2 � The mwtab package interface

The ‘mwtab’ package can be used in several ways: (i) as a
library within Python scripts for accessing and manipulating
data and metadata stored in ‘mwTab’ formatted files; and
(ii) as a command-line tool to convert between the ‘mwTab’
format and its equivalent JSONized representation as well as
for data validation using predefined schema definitions for
each of the text blocks and consistency checking.

To use ‘mwtab’ package as a library within Python
scripts, first it is necessary to import it within a Python
program or an interactive interpreter interface. Next, the
‘MWTabFile’ instance(s) can be created using the genera-
tor function ‘read_files’. This generator function instantiates
‘MWTabFile’ object(s) from many different file sources: a
local file, a URL address of a file, ‘ANALYSIS ID’ of a
file, directory and/or archive of multiple files. The genera-
tor function can be processed in several ways: for example,
to process files one at a time by calling the Python ‘next()’
built-in function, to process every file in a for-loop, or to
convert the generator into list of ‘MWTabFile’ instances.
Once the ‘MWTabFile’ object is created, it can be utilized
like any Python built-in dictionary- and list-based data struc-
tures, the data can be accessed and/or manipulated using
keys (in case of dictionary) or indexes (in case of list).
Table 1 summarizes common patterns for using ‘mwtab’ as
a library, but more detailed examples are available under the
‘mwtab’ package tutorial.

The ‘mwtab’ package also provides a simple command-
line interface that can be used to validate and convert files

https://docs.pytest.org
http://mwtab.readthedocs.io
http://www.json.org/
http://www.json.org/
https://github.com/nlohmann/json

	 A. Smelter, H. N. B. Moseley

1 3

64  Page 6 of 8

from ‘mwTab’ format to its JSON representation and back.
Figure S3 shows the current command-line interface.

Table 2 summarizes common patterns for using ‘mwtab’
as a command- line tool, but the ‘mwtab’ package tutorial
documentation provides more detailed examples.

3.3 � Data validation functionality of the mwtab
package

The ‘mwtab’ Python package provides two modules
designed to perform data validation: ‘validator.py’ and
‘mwschema.py’. Once the ‘mwTab’ formatted file is parsed
into a ‘MWTabFile’ instance (object), the data can be vali-
dated against a predefined schema. The ‘mwschema.py’
module provides schema definitions based on the official
‘mwTab’ format specification for each text block of the
‘mwTab’ file. For example, Figure S4a shows an example
for ‘#PROJECT’ text block from the ‘mwTab’ specification:
it specifies that the ‘PROJECT_TITLE’, ‘PROJECT_SUM-
MARY’, ‘INSTITUTE’, ‘LAST_NAME’, ‘FIRST_NAME’,
‘ADDRESS’, ‘EMAIL’, and ‘PHONE’ fields are required,
and ‘PROJECT_TYPE’, ‘DEPARTMENT’, ‘LABORA-
TORY’, ‘FUNDING_SOURCE’, ‘PROJECT_COM-
MENTS’, ‘PUBLICATIONS’, ‘CONTRIBUTIONS’, and
‘DOI’ fields are optional. If a text block is missing a required
filed, a descriptive error message will be raised during the
validation process. Figure S4b shows an example of an error
message that is generated due to missing the ‘PROJECT_
TITLE’ required field. The type of value that is expected by
the schema definition can also be provided. In addition to

Python standard built-in types (e.g., ‘str’, ‘int’, ‘float’, etc.),
regular expressions can be provided where appropriate to
validate data, e.g. a regular expression can be passed as a
value for ‘EMAIL’ and ‘PHONE’ fields to verify that they
correspond to valid e-mail and phone formats. All schema
definitions are provided within the ‘mwschema.py’ mod-
ule in the GitHub repository and can be easily modified to
strengthen the data validation functionality.

3.4 � The mwtab package performance

In order to test the performance of our ‘mwtab’ Python pack-
age, we downloaded every ‘mwTab’ formatted file and cre-
ated simple Python script that imports the library, instanti-
ates the ‘MWTabFile’ objects from directory of files one file
at a time and reports how much time it took. Table 3 shows
that that it took under 30 s to process files in both ‘mwTab’
and its JSON representation. Table 3 also shows that the
JSON representation is more verbose and therefore occupies
more disk space; however, its main benefit is in providing

Table 1   Common patterns for
using the ‘mwtab’ as a library

Usage Example

Reading mwt_generator = mwtab.read_files(‘path_to_file’)
mwtfile = next(mw_generator)

Access mwtfile[‘PROJECT’][‘PROJECT_SUMMARY’]

Modification mwtfile[‘PROJECT’][‘PROJECT_SUMMARY’] = ‘new
project summary’

Printing mwtfile.print_file(file_format=‘mwtab’)

mwtfile.print_file(file_format=‘json’)

Writing mwtfile.write(file_handle, file_format=‘mwtab’)

mwtfile.write(file_handle, file_format=‘json’)

Table 2   Common patterns
for using the ‘mwtab’ as a
command-line tool

Command Description Example

convert Convert between ‘mwTab’
and its JSON representa-
tion

$ python3 -m mwtab convert AN000001.txt
AN000001.json \

 --from_format=mwtab --to_format=json
$ python3 -m mwtab convert AN000001.json
AN000001.txt \

 --from_format=json --to_format=mwtab

validate Validate file(s) $ python3 -m mwtab validate AN000001.txt
$ python3 -m mwtab validate AN000001.json

Table 3   The ‘mwtab’ package performance against ‘mwTab’ and its
JSON representation formats

Format ‘mwTab’ JSON repre-
sentation of
‘mwTab’

Number of files 634 634
Total size of files (MB) 290.1 2000
Time (s) 28 24

A Python library for FAIRer access and deposition to the Metabolomics Workbench Data Repository﻿	

1 3

Page 7 of 8  64

easy access to the data and metadata for other programming
languages with JSON parsers but no ‘mwTab’ parser.

In order to reduce disk space usage, the entire directory
can be converted and compressed into a single archive file.
The ‘mwtab’ package provides facilities to read directly
from zip, tar.gz, and tar.bz2 archives without requirement
to decompress those files manually.

3.5 � Evaluating format and metadata in mwTab
formatted files

During the development of ‘mwtab’ Python package, we
were able to identify several inconsistencies between the
official specification and the actual ‘mwTab’ formatted
files provided by the Metabolomics Workbench at that
time. For example, the ‘mwTab’ format specification
says that each file has to start with ‘#METABOLOMICS
WORKBENCH’ header string, but multiple files had
single or multiple empty lines at the beginning of a file.
Also, we were able to identify optional fields that were
present within actual ‘mwTab’ formatted files but missing
in the official specification. To demonstrate the type of

exploratory analysis that can be performed using ‘mwtab’
package, we analyzed every ‘mwTab’ file in order to verify
that mandatory data units fields are present and provide
an actual units value. Figure 3 shows that 243 entries had
missing value (the first bar on Fig. 3) for the required
units field and some of the bars represent the same type
units but split due to slight difference in their names (e.g.
‘Peak height’ vs. ‘peak height’, ‘Peak Intensity’ vs. ‘peak
intensity’).

Additionally, we found that 302 were missing ‘#END’
statement that signals the end of the file, seven files had
issues in their ‘#SUBJECT_SAMPLE_FACTORS’ text
block, 20 files had issues in their ‘single key-single value’
pairs, and four files had some other minor formatting
issues.

All of the ‘mwTab’ file format issues discovered with
the help of ‘mwtab’ Python package were reported to
Metabolomics Workbench and were promptly fixed within
1 week. The original files can be downloaded from a fig-
share repository along with the validation reports gener-
ated for each file. Current cleaned up files are available on
the Metabolomics Workbench Data Repository.

Fig. 3   Analysis of required units field across ‘mwTab’ formatted files

	 A. Smelter, H. N. B. Moseley

1 3

64  Page 8 of 8

4 � Conclusions

The ‘mwtab’ package is a useful Python library designed to
provide facilities for parsing, accessing, and manipulating data
stored in ‘mwTab’ and its JSONized equivalent representation.
The JSONized representation provides several advantages to
standard ‘mwTab’ format including improved reading speeds
and enabling easy data access for other programming lan-
guages implementing JSON parser. Using internal Python
and JSON data structures, ‘mwTab’ files can be validated
with respect to consistency and completeness using specified
schema definitions based on the official ‘mwTab’ format speci-
fication. The library has already proven useful in improving the
quality of all ‘mwTab’ formatted files provided by the Metabo-
lomics Workbench Data Repository, with respect to the offi-
cial ‘mwTab’ format specification. The ‘mwtab’ package also
provides an easy-to-use command-line interface designed to
perform file conversion and file validation tasks. The ‘mwtab’
package provides extensive documentation, which includes a
‘User Guide’, ‘Tutorial’, and ‘API reference’ generated auto-
matically from the source code and available on http://mwtab​
.readt​hedoc​s.io. The ‘mwtab’ package also includes automated
unit-tests that perform testing of every module of the package
as well as generates test coverage reports. We believe that the
‘mwtab’ package will help to improve metadata quality and
data reusability of metabolomics data from Metabolomics
Workbench Data Repository by downstream investigators
through providing Python interfaces for data access and manip-
ulation and through providing a JSONized representation of
the ‘mwTab’ format for use in other programming languages.

Acknowledgements  The authors wish to thank Eoin Fahy, Dawn Cot-
ter, and other Metabolomics Workbench staff for providing the official
‘mwTab’ format files specification as well as for the opportunity to
provide feedback on ‘mwTab’ files via the MW usability meeting and
helpful discussions.

Funding  This work was supported in part by the National Science Foun-
dation grant NSF 1252893 (Hunter N.B. Moseley) and the National Insti-
tutes of Health grant NIH 1U24DK097215-01A1 (Richard M. Higashi,
Teresa W.-M. Fan, Andrew N. Lane, and Hunter N.B. Moseley).

Data availability  Original data available at: https​://figsh​are.com/
s/8d5a8​37cdc​3f500​fbcaa​.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

Research involving human participants and/or animals  This article
does not contain any studies with human participants or animals per-
formed by any of the authors.

Informed consent  This article does not contain any studies with human
participants performed by any of the authors.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Oliphant, T. E. (2007). Python for scientific computing. Computer Sci-
ence & Engineering: An International Journal, 9(3), 10–20.

Ooms, J. (2014). The jsonlite package: A practical and consistent map-
ping between JSON data and R objects. arXiv​:1403.2805.

Python Software Foundation. (2013). Python language reference, ver-
sion 2.7. Wilmington: Python Software Foundation.

Sud, M., Fahy, E., Cotter, D., Azam, K., Vadivelu, I., Burant, C., Edi-
son, A., Fiehn, O., Higashi, R., Nair, K. S., Sumner, S., & Subra-
maniam, S. (2016). Metabolomics workbench: An international
repository for metabolomics data and metadata, metabolite stand-
ards, protocols, tutorials and training, and analysis tools. Nucleic
Acids Research, 44(D1), D463–D470.

Van Rossum, G., & Drake, F. L. (2010). The Python library reference
(pp. 1–1144). Wilmington: Python Software Foundation.

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G.,
Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos,
L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Cro-
sas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers,
R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C.,
Grethe, J. S., Heringa, J.,’t Hoen, P. a., Hooft, R., Kuhn, T., Kok,
R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L.,
Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone,
S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei J., van Mulligen, E., Velterop,
J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J.,
Mons, B. (2016). The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data, 3, 160018.

Affiliations

Andrey Smelter3  · Hunter N. B. Moseley1,2,3,4 

1	 Department of Molecular and Cellular Biochemistry,
University of Kentucky, Lexington, KY 40356, USA

2	 Markey Cancer Center, University of Kentucky, Lexington,
KY 40356, USA

3	 Center for Environmental and Systems Biochemistry,
University of Kentucky, Lexington, KY 40356, USA

4	 Institute for Biomedical Informatics, University of Kentucky,
Lexington, KY 40356, USA

http://mwtab.readthedocs.io
http://mwtab.readthedocs.io
https://figshare.com/s/8d5a837cdc3f500fbcaa
https://figshare.com/s/8d5a837cdc3f500fbcaa
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1403.2805
http://orcid.org/0000-0003-3056-9225
http://orcid.org/0000-0003-3995-5368

	A Python library for FAIRer access and deposition to the Metabolomics Workbench Data Repository
	Abstract
	Introduction
	Objectives
	Methods
	Results
	Conclusions

	1 Introduction
	2 Methods
	2.1 Overview of the mwTab format
	2.2 Package implementation
	2.3 Evaluation data
	2.4 Evaluation of mwtab package
	2.5 The mwtab package documentation

	3 Results
	3.1 JSON representation of the mwTab format
	3.2 The mwtab package interface
	3.3 Data validation functionality of the mwtab package
	3.4 The mwtab package performance
	3.5 Evaluating format and metadata in mwTab formatted files

	4 Conclusions
	Acknowledgements
	References

