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Abstract
Timely and accurate information about ongoing events are crucial for relief organizations seeking to effectively respond to
disasters. Recently, social media platforms, especially Twitter, have gained traction as a novel source of information on disaster
events. Unfortunately, geographical information is rarely attached to tweets, which hinders the use of Twitter for geographical
applications. As a solution, geoparsing algorithms extract and can locate geographical locations referenced in a tweet’s text. This
paper describes TAGGS, a new algorithm that enhances location disambiguation by employing both metadata and the contextual
spatial information of groups of tweets referencing the same location regarding a specific disaster type. Validation demonstrated
that TAGGS approximately attains a recall of 0.82 and precision of 0.91. Without lowering precision, this roughly doubles the
number of correctly found administrative subdivisions and cities, towns, and villages as compared to individual geoparsing. We
applied TAGGS to 55.1 million flood-related tweets in 12 languages, collected over 3 years. We found 19.2 million tweets
mentioning one or more flood locations, which can be towns (11.2 million), administrative subdivisions (5.1 million), or
countries (4.6 million). In the future, TAGGS could form the basis for a global event detection system.
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Introduction

Each year, natural disasters affect roughly one million people,
causing thousands of deaths and tens of billions of US dollars
in damages (UNISDR 2015). The availability of timely and
accurate information about the impacts of an ongoing event
can assist relief organizations in enhancing their disaster re-
sponse activities, and thus mitigate the consequences of disas-
ters (de Perez et al. 2014; Messner and Meyer 2006; Penning-
rowsell et al. 2005). Information about an ongoing event is,
however, often difficult to obtain. Such data is generally col-
lected using measurement instruments such as remote sensors
(e.g., Sun et al. 2000), from local relief and response profes-
sionals, and analyses of media reports (Jongman et al. 2015;

Kordopatis-Zilos et al. 2015). Recently, social media, and in
particular Twitter, has gained traction as a novel source of
information on disaster events. The Twitter posts (Btweets^)
that are sent out by millions of users around the globe hold
great potential in disaster management (Carley et al. 2016;
Jongman et al. 2015; Sakaki et al. 2010). When correctly
analyzed, they can improve the detection of disasters
(Ghahremanlou et al. 2014) and provide valuable information
about the societal impacts of ongoing disaster events
(Fohringer et al. 2015; Gao et al. 2011; Jongman et al.
2015). In computer science, social media has been studied
extensively. Researchers have also developed several applica-
tions for applied geographic research. Examples of such ap-
plications include detection of flood events (Jongman et al.
2015) and earthquake disasters (Crooks et al. 2013; Sakaki
et al. 2010).

One of the key issues in using Twitter information to assess
the impacts of natural disasters entails accurately localizing indi-
vidual tweets. Twitter allows users to automatically attach their
current GPS location to a tweet, specifying their position at the
moment a tweet is posted (Sakaki et al. 2010). However, because
this feature is turned off by default, only 0.9% of the tweets have
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coordinate information attached (Lee et al. 2013). Several ap-
proaches exist for the localization of social media posts.
Languagemodels typically use a collection of training posts with
corresponding geotagged images (i.e., the location where the
image was taken is known) to determine the most likely location
of a new post (Kordopatis-Zilos et al. 2015). However, a very
large training corpus is required to apply language models to
temporally volatile events, such as floods. Otherwise, new posts
are unlikely to be geotagged to a location where no event oc-
curred in the training data (Kordopatis-Zilos et al. 2015). Other
approaches employ text and/or metadata matching to a gazetteer
to detect a user’s residence, the location from which the tweet
was sent, or the location to which a tweet refers (e.g., Schulz
et al. 2013). Geoparsing (also referred to as geotagging or geo-
localization) algorithms extract and locate these referenced geo-
graphical locations (also known as toponyms) from a text.
Research has demonstrated that geoparsing algorithms can dra-
matically increase the number of geoparsed posts (e.g., Gelernter
and Balaji 2013; Karimzadeh et al. 2013; Paradesi 2011).

Geoparsing has been discussed in numerous studies
(Amitay et al. 2004; Ghahremanlou et al. 2014; Lieberman
et al. 2010). This literature domain has identified two distinct
steps: (1) toponym recognition, which entails identifying geo-
graphical names. and (2) toponym resolution which entails
disambiguation of a toponym to assign it to a specific location
(Leidner 2007; Lieberman et al. 2010).

For toponym recognition, the simplest approach is to ex-
tract single and consecutive words from a text and then match
them to a comprehensive set of toponyms (i.e., geographical
locations; Schulz et al. 2013). Such a pre-existing list of top-
onyms is known as a Bgazetteer.^ This approach yields a list of
candidate locations independent of the language used in the
tweet. The use of a comprehensive gazetteer makes it likely
that the algorithm will find locations mentioned in a tweet.
Unfortunately, since many location names also have other
meanings in normal language usage (e.g., BDarwin^ is both
a place name and a family name), the results also include
many erroneous matches. In contrast, named-entity recogni-
tion (NER) analyzes (through natural language processing)
the structure and grammar of the tweet’s language (Al-Rfou
et al. 2015; Van Erp et al. 2013). Employing NER can help to
distinguish, for example, among similarly named places and
persons (Amitay et al. 2004). These tools have mostly been
developed and trained using more formal texts, such as news-
papers (Sultanik and Fink 2012). Nonetheless, researchers
have developed several NER approaches for Twitter
(Dittrich 2016; Li et al. 2012; Van Erp et al. 2013), most of
which are designed for English-language tweets. However,
the short, error-prone, multi-lingual nature of tweets, along
with that medium’s frequent use of slang and abbreviations,
has limited the applicability of NER (Li et al. 2012).
Middleton et al. (2014) show that named entity matching
(NEM) performs better than NER on tweets. This approach

tokenizes tweets and matches these tokens first to places, then
streets, and finally regions, while discarding matched tokens
to avoid double matches.

The toponym resolution step is required, because many
place names have multiple occurrences worldwide (e.g.,
Leidner 2007). Most studies have restricted their gazetteers to
only include unambiguous place names with a relatively high
population or assigned tweets to the candidate location with the
highest population (Amitay et al. 2004). Unfortunately, both
approaches introduce errors when an event occurs in a town
with both a low population and a name shared with another
location. These errors arise because either the town is not in-
cluded in the limited gazetteer or a city with larger population
takes precedence. For Twitter in particular, challenges persist
regarding the automated geoparsing analysis of text and other
metadata. For example, users rarely post an unambiguous name
or a combination of a place and country name, mainly because
of the limited length of a tweet (Sultanik and Fink 2012).
Several studies have addressed this issue by using the tweet’s
metadata as additional spatial information, with examples in-
cluding the user’s hometown (Hecht et al. 2011), the relation-
ships between users (Takhteyev et al. 2012), and mentions of
super regions or nearby locations (Middleton and Krivcovs
2016). Unfortunately, in many cases, these additional spatial
indicators are unavailable or unreliable. Therefore, Schulz
et al. (2013) and Zhang and Gelernter (2014) analyzed several
spatial indicators, such as the time zone, the user location field,
and other textual clues, to obtain a more reliable estimate of a
particular tweet’s location. Their results revealed that tweet
geoparsing outcomes can be improved using these methods,
but only for those tweets with available spatial indicators. As
additional spatial information is not always available, this ap-
proach cannot be easily applied to all tweets. Moreover, even
when this data is available, it does not always match the loca-
tion mentioned by the user.

The aim of this study is to develop a global geoparsing
algorithm for tweets without assuming a priori knowledge
about an event so that the algorithm can be employed for event
detection. To geoparse tweets on a global scale without a local
focus, additional spatial information from the tweets is re-
quired for disambiguation. Therefore, we develop a new top-
onym disambiguation system which builds upon the approach
by Schulz et al. (2013). This new toponym-based algorithm
for grouped geoparsing of social media (TAGGS) uses
grouped geoparsing to reliably find a much larger percentage
of locations compared to the standard approach of individual
geoparsing. The TAGGS approach permits spatial information
from related tweets to be incorporated in the analysis,
allowing users to geoparse tweets with few or no spatial indi-
cators of their own. TAGGS could form the basis for a global
flood detection algorithm in future research.

In the remainder of this paper, we outline the development
of the TAGGS and show its applications using approximately
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3 years of globally sourced tweets with flood-related key-
words, collected between July 29, 2014 and July 18, 2017,
and validate the algorithm using a set of manually labeled
tweets.

Methodology

The TAGGS algorithm uses geoparsing to match a tweet’s
location references to one or more geographic locations at a
country, administrative subdivision or city, town and village-
level. To that end, a database containing known geo-locations
(a gazetteer) was used to match a tweet’s text to one or more
candidate locations (toponym recognition). Thereafter, addi-
tional spatial information obtained from both the tweet itself
and related tweets was employed to determine the actual lo-
cation(s) that the user mentioned in the tweet (toponym
resolution). The collection of the input dataset is described
in the BInput Data^ section. Afterwards, the process of
geoparsing via toponym recognition and resolution is outlined
in the BGeoparsing^ section.

Input Data

The TAGGS algorithm uses three types of input data: a
gazetteer, tweets collected using the Twitter API, and addi-
tional GIS-based geographical information. To build our
gazetteer, we used the GeoNames database,1 a geographical
database containing over 4 million cities, towns, villages,
and administrative divisions. The main dataset in
GeoNames contains towns and villages, including their ad-
ministrative parent area, geographical location, and

population. Another dataset lists alternative names, like
translations, slang terms, and abbreviations (e.g., for
BNew York,^ it includes, for example, New York, The Big
Apple, NY, Nueva York), and the language of each alterna-
tive name. For an analysis of the accuracy of the GeoNames
database, we refer to Ahlers (2013).

The tweets and their associated metadata (e.g., the user’s
hometown, the user’s time zone, and the GPS coordinates of
the device from which the tweet was sent) were collected in
real time via the Twitter streaming API using a series of key-
words in 12 major languages, covering a considerable part of
the globe (see Fig. 1 and Table 1). We note that the languages

1 GeoNames. Retrieved August 1, 2017, from http://www.geonames.org

Fig. 1 Countries of which we included keywords in the first official language. University of Groningen Open Data. Retrieved Nov, 2017, from http://
opendata.rug.nl/

Table 1 Keywords related to floods and percentage of tweets per
language over the period 2014–2017

Language Keywords Number of tweets
per language (%)

English Flood, floods, flooding, flooded,
inundation, inundations, inundated

63.31

Indonesian Banjir, banjirjkt, bantubanjir 24.71

Filipino Baha, bumabaha, pagbaha 1.76

French Inonder, inondation 0.53

German Flut, hochwasser, Überflutung 0.28

Italian Inondazione, inondacioni,alluvione 0.18

Dutch Overstroming 0.03

Polish Powódź, powodzie 0.01

Serbian Poplava, poplave, поплава, поплаве 0.03

Portuguese Inundação, inundacão, inundaçao,
inundacaoinundações

0.45

Spanish Inundación, inundacion,
inundarinundaciones

8.65

Turkish Su taşkın, su baskını, sel bastı,
sel suyu, sel yüzünden,
taşkın oldu, sel suyunun

0.06
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used are space-separated, because in a later step, we perform
tokenization of the sentence utilizing the spaces in the
sentences. To apply the model for non-space-separated lan-
guages, such as Mandarin and Japanese, other types of
tokenization should be employed. We collected 55.1 million
tweets, posted between July 29, 2014 and July 18, 2017. We
used GIS shapefiles of the global time zones to match loca-
tions and country and administrative boundaries to time
zones.2 Finally, we analyzed a large corpus of Wikipedia arti-
cles to obtain lists of the 1000most commonly used words per
language. To avoid discarding commonly used toponyms,
such as New York, from these lists, we omitted words that
are used to refer to a location with a population greater than
100,000.

Geoparsing

Figure 2 describes the procedure followed by the new
TAGGS algorithm. First, we collected tweets over a 24-h
period. Each tweet from this timeframe was analyzed on an

individual basis (the BToponym Recognition^ section) by
matching its text to our gazetteer (toponym recognition).
Next, each of the tweets’ candidate locations was assigned
a score indicating how well it matched the tweet’s addition-
al spatial information (the BScoring^ section). While previ-
ous approaches have relied on the spatial information of the
individual tweet in question, we grouped all tweets accord-
ing to the toponym (the BGrouping^ section) identified dur-
ing the toponym recognition step. Then, we computed the
total score for each candidate location by summing the
scores of the individual tweets and using a voting process
to assign the best location (toponym resolution) to all tweets
in the group (the BVoting and Assigning Locations^ section;
Fig. 3). In addition, a toponym resolution table was made to
store the toponyms and their resolved geographic locations
of the last time step. This table is later used to geoparse
tweets in real time. Once locations had been assigned to
the tweets, the same procedure was applied to a later scan-
ning window (the BIteration^ section; Fig. 4), which includ-
ed new incoming tweets. At that stage, tweets that are out-
side the scanning window were no longer considered.
Meanwhile, new incoming tweets were immediately
geoparsed using the toponym resolution table.

2 Natural Earth. Retrieved March 1, 2017, from http://www.naturalearthdata.
com/

Fig. 2 Overview of the TAGGS
geoparsing process
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A higher score indicates a higher confidence that a specific
candidate location is correct. The bulleted list below describes
the matching process for each of the spatial indicators (meta-
data and textual).

& UTC offset (metadata): Twitter’s time zone field, available
on the user’s profile page, signifies an area with a uniform
time standard. Twitter initially sets users’ time zones, but
users can manually adjust this setting. If this field was set,
the Coordinated Universal Time (UTC) offset was avail-
able for each of the user’s tweets and was converted to a
list of time zones matching the UTC offset. Our gazetteer
contained a list of time zones for each location, used to
match these to the found time zones.

& Coordinate-based indicators (metadata): We extracted
geographical coordinates for two spatial indicators (see
below). We considered the coordinates extracted from
these indicators a match for a candidate location if they
were located within 200 km of each other or, for admin-
istrative areas, if the coordinates were within the same
country as the candidate location.

– User hometown: Users can specify their hometowns in
their user profile. In doing so, users receive assistance
from a dynamic menu of location options that appears
when they start typing in the Twitter text field.
Although the box can be ignored, most users do make
use of it. This means that in most cases, the location field
is either (1) a town and country name separated by a
comma or (2) a country name. However, many variations
are possible, including fantasy places (Schulz et al. 2013),
multiple locations, and incomplete data entries (e.g., a
user who lives in Washington, D.C. might simply enter
BWashington^ in the location field). We searched for both
the town and country in the gazetteer to create a list of
candidate towns within the specified country. If no com-
ma was present, we looked up the entire field in the
gazetteer.

– Location: When a tweet is sent from a GPS-enabled de-
vice, and when the user’s privacy settings or manual ad-
justments assign a location to the tweet, that user’s loca-
tion at the time of posting is attached to the tweet.
Additionally, the user can attach a geographic entity to a
tweet, by manually selecting it from a dynamic list.

& Mentions of related places (textual): We matched user
mentions of other locations higher (geographical parent)
or lower (geographical child) in the hierarchy (e.g., BLos
Angeles^ is the geographical child of BCalifornia,^ which
is the geographical child of Bthe USA^), other towns with-
in 200 km of a candidate place name, and other adminis-
trative areas within the same geographical parent (e.g.,
Serdyukov et al. 2009; Amitay et al. 2004).

Next, we used a scoring system to indicate the likelihood of
a match between the location referenced in the tweet and each
candidate location. An overview of the scores for each of the
five spatial indicators is provided in Table 2. These scores
were summed to obtain the total score (maximum of 7), which
indicated the likelihood of a match.

Grouping

We assumed that multiple tweets that mentioned the same
toponym within a given timeframe referred to the same loca-
tion. For example, if a flood occurred in Boston, UK, we
expected that all users mentioning Bflood^ and BBoston^ were
referencing Boston, UK, rather than Boston, Massachusetts,
USA. All tweets mentioning the same toponym were then
grouped together. Thus, the greater the number of tweets men-
tioning a location, the larger was the associated group—and
therefore, the higher the probability of metadata being avail-
able for that group. Since tweets could contain multiple topo-
nyms, individual tweets could belong to more than one group.

Voting and Assigning Locations

In this step, for each group, the total score of each candidate
location was computed by averaging the scores for the candi-
date locations of the individual tweets (Fig. 3). Hence, if only
few tweets (a small group) mention a location, the score is
more likely to fluctuate compared to a larger group of tweets.
If multiple tweets originated from the same user and thus had
the samemetadata, only the most recent tweet was considered.
In addition, because the mentions of related places rely on
textual clues, and since users frequently copy each other’s
tweets, we only considered the oldest tweet for clusters of
similar tweets. To that end, we created word vectors for the
tweets within a group and then compared those vectors. If the
vectors were similar, we eliminated the newest tweet. For
further details on this approach, refer to Hürriyetoǧlu et al.
2016.

Finally, we assigned the location with the highest score to
all tweets in the group if that tweet’s referenced toponym was
the official name of the location or if the tweet’s language
matched the toponym language. If multiple locations had an

Table 2 Score for each of the spatial indicators assigned to individual
tweets

Indicator Score

UTC offset 0.5

User home town 1

Coordinates 2

Mentions of related places 3

The scores are in the order of magnitude found by Schulz et al. (2013)
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equally high score, we assumed that the correct location was
the candidate with the highest population.

Moreover, it was also possible to discard potential locations
for which the average score was below a certain threshold. We
do this only for countries, because a country name is often
used by people outside a country and thus spatial indicators of
the post are less likely to match the mentioned country. In
contrast, local information (i.e., administrative subdivisions,
cities, towns, and villages) was more likely to be provided by
locals and thus the post’s spatial indicators are more likely to
match the geographical entity. When no minimum score (i.e.,
a minimum score of 0) was set, a large number of tweets was
assigned to incorrect locations, due to a lack of matching
metadata (e.g., numerous tweets were assigned to the city of
BMobile^ in Alabama, USA). By increasing the threshold to,
for example, 0.2, groups with little to no metadata matching
any of the candidate locations were discarded. This meant that
the recall decreased (i.e., fewer tweets were assigned loca-
tions), while the precision of the algorithm increased.
Introducing a higher threshold, such as 1.0, could improve
precision even further, but would have also meant discarding
a much higher percentage of tweets. Therefore, we decided to
initially set a 0.2 threshold and to perform a sensitivity analy-
sis (the BValidation of TAGGS^ section).

In addition, the toponyms and their respective resolved
locations were saved in a toponym resolution table. That table
indicated the location with the highest score per toponym, and
therefore, the location most likely for a future tweet to refer-
ence. This toponym resolution table was continuously up-
dated and used to geoparse new incoming tweets.

Iteration

To continuously geoparse tweets, we used an iterative process
(Fig. 4). After the geoparsing of all tweets within the scanning
window was finished, the window was shifted by 6 h. All new
tweets were retrieved from the tweet database and separately
analyzed for toponyms and respective spatial indicators (the
BToponym Recognition^ and BScoring^ sections), while
tweets that fall outside of the scanning window were
discarded. The locations mentioned in the tweets within the
scanning window were, again, grouped (the BGrouping^ sec-
tion) and resolved (the BVoting and Assigning Locations^
section) and used to update the toponym resolution table. As
the tweet geoparsing process included information from other
tweets (including locations referred to in future tweets), it was
possible for a tweet’s location and respective score to change.
In such cases, we updated the database accordingly. Such
alterations only occurred when in a subsequent iteration we
found a higher score for a specific location or identified an-
other location with a higher score (but the same toponym).

In addition, when the first iteration was completed, another
process analyzing incoming tweets in real time was initiated.

Using the procedure described in the BInput Data^ section, the
text of the tweets was processed, and its uni- and bi-grams are
matched with the toponym resolution table. This resulted in an
initial guess regarding the locations mentioned in each tweet.

Results

Application of TAGGS

First, we applied TAGGS on the 55.1 million tweets in a
historical dataset, applying the algorithm as if the data were
available in real time, shifting the scanning window by 6 h in
each step. We first discuss the results obtained using baseline
settings. For this, a 24-h scanning window and a threshold of
0.2 were used, which causes all locations found in tweets that
scored below the threshold (the BVoting and Assigning
Locations^ section) to be discarded. The results for the base-
line settings are summarized in Table 3. Next, we discuss the
results of a sensitivity analysis for the threshold value and the
size of the scanning window (the BSensitivity Analysis^
section).

Of the 55.1 million tweets, we found that 19.2 million
mentioned at least one location, and 3.4 million tweets refer-
enced multiple locations. In addition, when distinguishing be-
tween administrative levels, roughly half of the locations men-
tioned refer to a city, town, or village, while country and the
lower administrative level locations each account for a quarter
of the mentions.

To gain insight into the geoparsed tweets, those countries
covered by the algorithm (Fig. 1) with a population of at least
10 million people were grouped according to economic devel-
opment. For that purpose, we employed the income groups
defined by the World Bank.3 For each group, the number of
geoparsed tweets between August 2014 and December 2016
was plotted (Fig. 5) against the total flood losses over this
period, as described in the Munich Re’s NatCatSERVICE on
a purchasing power parity (PPP) basis.4 This gives an impres-
sion of how Twitter reporting relates to flood impacts. The
data made clear that in high-income (green) countries, there
were about one to two orders of magnitude more tweets than
in low-income (red) countries. The number of tweets in
middle-income (blue and orange) countries fell between the
other two groups, with a particularly large spread in the lower-
middle-income (orange) countries. Notably, these numbers
likely reflect a size effect, as Indonesia (IDN) and Pakistan
(PAK), which had the highest number of tweets within the
lower-middle-income group, also have large populations.

3 World Bank Knowledge base. Retrieved May 1, 2017, from https://
datahelpdesk.worldbank.org/knowledgebase
4 World Bank Open Data. RetrievedMay 1, 2017, from http://data.worldbank.
org/
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However, the results underscored that relatively small coun-
tries, such as the Philippines (PHL) and Venezuela (VEN),
generated a significant number of (geoparsed) flood tweets
within their respective groups. These findings suggest that
flood events, and not just the size of the population or the

Twitter user base, are responsible for the high number of
tweets during the investigated time period.

The plots also illustrate that in general, more flood tweets
seemed to be linked to higher levels of flood damage over the
study period, as the points roughly go from the bottom left-
hand corner to the top right-hand corner of the diagrams. This
relation is influenced bymany other factors, including (but not
limited to) variations in the extent of Twitter usage per coun-
try, language use per country, and keyword selection, and is
therefore by no means strong enough to have any predictive
power after regression analysis. That said, the existence of this
relationship was in line with expectations. Namely, in coun-
tries that suffered from disastrous flood events that caused
significant damage, a substantial number of tweets about
flooding were generated. This illustrates that the algorithm
seemed to be successful in capturing flood events around the
globe.

Table 3 Results of the automated geoparsing of 58.9 million tweets
(using the base settings; see the BApplication of TAGGS^ section)

Number of tweets

Total 55.1 million

One or more location 19.2 million

Multiple locations 3.4 million

Country level 4.6 million

Lower administrative level 5.1 million

City, town, village, etc. 11.2 million

Fig. 5 The number of geoparsed tweets relative to losses due to flood events between July 29, 2014 and December 31, 2016 for four country income
groups
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Validation of TAGGS

To properly validate TAGGS, we defined a golden standard
with manually tagged tweets. To the best of our knowledge,
no other study provides a global dataset focusing on a specific
event type. Therefore, we compile a random dataset using
2785 flood-related tweets from two separate days and manu-
ally assign locations to the tweets.

& Dec 12, 2015: To check if our model properly for small
flood events in multiple languages, we selected a day dur-
ing which multiple such events occurred across the globe,
including in Indonesia, India, Kenya, Congo, Norway, the
UK, Canada, and Paraguay (1282 tweets).

& Dec 27, 2015: When the number of tweets that mentioned
a specific location is higher, the probability of sufficient
metadata being available is also higher. Therefore, we val-
idated our algorithm on a date with multiple large events.
On the date in question, several major floods received
global news coverage, including floods in the USA, the
UK, and Argentina (1503 tweets).

Each tweet can be labeled with one, multiple, or no locations
at all. We recognized all mentions of locations on the different
administrative levels that we apply the algorithm to (i.e., coun-
try, administrative subdivisions and cities, towns, and villages),
including abbreviations, shorter versions, and slang, but exclud-
ed possessive pronouns (e.g., the Irish weather) andmentions of
geographical features within towns and other geographical fea-
tures, such as valleys and rivers. We do include location men-
tions when they are combined with other words (e.g.,
#leedsfloods) but exclude any information in the Twitter han-
dles (e.g., @PakistanToday) because these locations are not
necessarily related to the location of a possible event.

Using the manual approach, of the 2785 total tweets in our
validation set, we found 2079 references to countries, admin-
istrative subdivisions and cities, towns, and villages in 1497
tweets. Then, we compared the manually labeled tweets to
both the automated individual and automated grouped
geoparsing (TAGGS) approaches. For individual geoparsing,
we use the location metadata but did not consider other tweets
mentioning the same geographical entities, similar to Schulz
et al. (2013).

Trade-Off between Recall and Precision

With geoparsing algorithms, there is a trade-off between the
number of tweets that are parsed (recall) and the number of
correctly parsed tweets (precision; Leidner 2007). Precision
measures the number of correctly geoparsed tweets relative
to the total number of geoparsed tweets. Hence, precision
markers do not provide an indication of the total number of
tweets within a location. Recall measures reflect the number

of correctly geoparsed tweets relative to the total number of
tweets with a spatial reference. In essence, the greater the level
of precision (i.e., the smaller the number of incorrect tags), the
smaller the total number of geoparsed tweets. Inversely, if one
wants to geoparse more tweets (higher recall), the number of
errors within the geoparsed tweets (in terms of incorrect loca-
tion assignments) will also increase (lower precision).

Sensitivity Analysis

In the following sensitivity analysis, we show two series of
plots (Figs. 6 and 7) delineating both individual (red) and
grouped (blue) geoparsing for various model settings, namely,
a varying threshold and a varying size of the scanning win-
dow. In these figures, we show three plots: (1) a plot that
shows recall and precision measures for all locations that the
model accounts for (i.e., countries, administrative subdivision
and cities, towns, and villages), using all 2785 tweets; (2) a
plot that shows these measures for administrative subdivi-
sions, using only those tweets that mention such a location
according to our validation set; and (3) a plot that shows pre-
cision and recall measures for all cities, towns, and villages,
using only those tweets that mention such a location.

Figure 6 shows the recall and precision scores for individual
and grouped geoparsing with a varying threshold. The trade-off
between precision and recall is visible in the first window:
When a higher threshold is chosen, more location matches are
discarded, while the likelihood of a correct match is higher for
the residual locations. For individual geoparsing, as only the
spatial indicators of the post itself are considered, the scores
behave discreet. In contrast, for grouped geoparsing, the scores
are averaged between tweets within the same group, and there-
fore the decrease is more gradual. At very high thresholds, the
precision for grouped geoparsing starts to drop (for administra-
tive subdivisions and cities/town/villages). This is likely be-
cause the scores assigned to tweets in small groups fluctuate
more than for large groups (the BVoting and Assigning
Locations^ section) and hence there is more uncertainty in the
location being assigned correctly. Therefore, when the thresh-
old increases, small groups have a larger share in the response
set (as large groups will always have averaged medium scores)
which causes the precision to drop. Approximately between a
threshold of 0.1 and 0.25, precision and recall measures for
grouped geoparsing are optimal and higher than using any other
threshold for individual geoparsing.

Figure 7 shows the recall and precision measures for a vary-
ing scanning window size, ranging between 6 min and 48 h. In
theory, when using an infinitesimally small scanning window
for grouped geoparsing, the results would be identical to the
individual geoparsing. It is clearly visible that, in general, both
precision and recall increase when the size of the scanning
window is larger. This is expected, because a larger number
of tweets are grouped, and therefore, the likelihood that spatial
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information is available increases. Although an increase of re-
call and precision is still visible for a larger scanning window,
the increase is not substantial, which indicates that spatial in-
formation is available for most toponyms. When new floods
occur, it is not feasible to take location mentions of previous
floods into account. Therefore, we hypothesize that when the
scanning window becomes too large, the performance of the
model will be lower. Unfortunately, because ofmemory (RAM)
constraints in our current setup, we cannot test this. Ideally, the
size of the scanning window depends on the volatility of the
event type, where events with a longer average duration (people
will likely refer to the same event over a longer time span), such
as droughts, could benefit from a larger scanning window and
vice versa for shorter events.

Effect of the Event Size

Figure 8 highlights differences in performance due to dif-
ferent flooding circumstances using a varying threshold.

On December 12, 2015, there were various smaller flood
events, while on December 27, 2015, a couple of very
large flood events took place (the BValidation of
TAGGS^ section). These two cases make clear that using
optimal model settings, TAGGS was slightly more accu-
rate for larger-scale flood events than smaller-scale flood
events. Such a finding is to be expected, because during
the large flood events in the USA and UK, a larger per-
centage of tweets mentioned the same toponym, due to a
high level of Twitter usage in both countries. The group-
ing approach meant that most of these tweets were scored,
even though not all of them had spatial information avail-
able. In contrast, when a location is mentioned in a single
or small group of tweets without location metadata, this
tweet was not geoparsed. This latter situation is more
common when a higher number of smaller events occur,
as was the case on Dec 12, 2015. Similar to the large
groups of tweets’ drop-in precision at a lower threshold
compared to small groups’ drop-in precision (the

Fig. 7 Recall and precision scores for individual and grouped geoparsing with a varying scanning window size

Fig. 6 Recall and precision scores for individual and grouped geoparsing with a varying threshold
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BSensitivity Analysis^ section), the precision of Dec 27,
2015 also declines at a lower threshold compared to the
precision of Dec 12, 2015. We argue that the more drastic
drop in precision for the tweets posted on Dec 27, 2015 is
because most groups of tweets are larger and therefore all

tweets have a relatively low score, which are then
discarded at a higher threshold. Nevertheless, the grouped
algorithm still correctly geotagged about two thirds of the
tweets with a location, even on days with predominantly
smaller flood events.

Fig. 8 Recall and precision scores for grouped geoparsing on Dec. 12, 2015 and Dec. 27, 2015

Fig. 9 Comparison of the number of geo-located tweets in the validation set in the middle of the UK for various geo-location methods. The green dots
represent correctly identified locations, and the red dots represent incorrectly identified locations
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Comparison to Other Spatial Indicators

Figure 9 illustrates the number of locations identified using the
different approaches and the number of erroneous matches for
the base settings. Using individual geoparsing, we found ap-
proximately 55% of these locations—of which roughly 86%
were correct. The grouped geoparsing technique, developed
for this research, increased the number of found locations to
approximately 82%—of which about 91% are correct. In con-
trast, of the 2785 tweets, only 33 (~ 1.2%) have coordinate
information attached. This suggests that the TAGGS approach
makes significantly more spatial information available than
does a strategy relying on either individual geoparsing or co-
ordinates alone.

Comparison to Other Work

Several other studies have addressed similar problems as this
paper. For example, Middleton et al. (2014) and Gelernter and
Balaji (2013) investigated geoparsing for crisis mapping in a
local setting, assuming a priori knowledge about an event.
This allowed the authors to collect detailed information from
the focus area of the event, which is unfortunately not possible
for our approach. Zhang and Gelernter (2014) developed the
Carnegie Mellon geolocator 2 algorithm. We analyzed the
performance of these algorithms using the English tweets in
our validation set. As shown in Table 4, TAGGS performs
considerably better for both precision and recall.

Concluding Remarks and Outlook

In this paper, we presented TAGGS, a multi-lingual algorithm
that groups topologically related tweets based on their refer-
enced toponyms and then geoparses those tweets using the
mutual spatial information of the entire group. In addition,
the algorithm successfully differentiates between various ad-
ministrative levels.

Studies on event detection often work with geo-located
tweets by using the coordinates attached to them. In our
validation set, however, only 2% of all tweets had coordi-
nates attached. By geoparsing tweets using the tweet

content, this study roughly doubles the number of correctly
geoparsed administrative subdivisions and cities, towns,
and villages (using 0.2 threshold) compared to individual
geoparsing. Moreover, using the grouping approach devel-
oped in TAGGS also boosted the precision level without
lowering the number of geoparsed tweets (i.e., lowering
recall) to an unacceptable degree. As a result, applying op-
timal model settings, recall is approximately 0.82 and pre-
cision 0.91 (F1-score 0.865), which means that approxi-
mately 74.6% of mentioned locations are both found and
correct, while only ~ 10% of locations are incorrect. We
note that these scores could vary for different event types,
especially depending on the total number of location men-
tions relative to the total number of tweets.

Unfortunately, our algorithm also introduced several minor
problems: (1) Using the individual geoparsing approach, a
tweet is only parsed in a location if the metadata matches that
location. When a tweet mentions a location with a toponym
that is also frequently used in normal speech, all tweets men-
tioning this word can be localized to that location, rather than
only those tweets that used the word as a toponym. An exam-
ple of this is Bturkey,^ a term that can refer to both the country
of Turkey and the bird of the same name. (2) In rare cases,
when a flood occurs in two different places with identical
place names, all tweets are put into one group and hence
tagged in only one of these locations. (3) Tweets often men-
tioned areas (e.g., the East Coast), rivers, and airports.
Although the algorithm can resolve such locations usingmeta-
data, many such areas have not been included in this study’s
gazetteer. Including these entities in the gazetteer could im-
prove the recall of the algorithm.

The TAGGS algorithm can form the basis for a flood
detection algorithm to detect sudden changes in the number
of flood tweets. Moreover, while this paper focused on
geoparsing tweets, the approach outlined within this paper
can be further developed and, for example, be combined
with other types of mass data, such as newspapers and other
social media platforms, to yield even more geoparsed
information.

In future work, we aim to continue improving our algo-
rithm. Currently, using the approach described in this paper,
we only parse each tweet using the spatial information from
that tweet itself and from other tweets mentioning the same
toponym. In future research, we plan to expand on this
approach by detecting sudden changes in the number of
mentioned locations in an area. This technique would allow
us to improve the geoparsing algorithm by considering sud-
den increases in mentions of nearby locations, using such a
peak as an additional spatial indicator. Other improvements
could be made by taking into account additional context,
such as entity co-occurrence (Hu et al. 2014; Ju et al. 2016)
or the geography of Twitter networks (Takhteyev et al.
2012).

Table 4 Comparison of precision and recall scores for the TAGGS and
Carnegie Mellon geolocator 2 algorithms

TAGGS
(precision/recall)

Carnegie Mellon
geolocator 2
(precision/recall)

All 92/84 42/47

First-order administrative
subdivision

92/86 51/48

Towns 92/83 44/41
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