Content-Length: 281294 | pFad | https://link.springer.com/doi/10.1007/978-3-319-18032-8_3

86400 Sentiment Analysis in Transcribed Utterances | SpringerLink
Skip to main content

Sentiment Analysis in Transcribed Utterances

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9078))

Included in the following conference series:

Abstract

A single phone call can make or break a valuable customer-organization relationship. Maintaining good quality of service can lead to customer loyalty, which affects profitability. Traditionally, customer feedback is mainly collected by interviews, questionnaires, and surveys; the major drawback of these data collection methods is in their limited scale. The growing amount of research conducted in the field of sentiment analysis, combined with advances in text processing and Artificial Intelligence, has led us be the first to present an intelligent system for mining sentiment from transcribed utterances—wherein the noisiness property and short length poses extra challenges to sentiment analysis. Our aim is to detect and process affective factors from multiple layers of information, and study the effectiveness and robustness of each factor type independently, by proposing a tailored machine learning paradigm. Three types of factors are related to the textual content while two overlook it. Experiments are carried out on two datasets of transcribed phone conversations, obtained from real-world telecommunication companies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdel-Hamid, O., et al.: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2012)

    Google Scholar 

  2. Anderson, E.W., Fornell, C., Rust, R.T.: Customer satisfaction, productivity, and profitability: differences between goods and services. Marketing science 16(2), 129–145 (1997)

    Article  Google Scholar 

  3. Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Association for Computational Linguistics (2010)

    Google Scholar 

  4. Chan, K.T., King, I.: Let’s tango – finding the right couple for feature-opinion association in sentiment analysis. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 741–748. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter 6(1), 1–6 (2004)

    Article  Google Scholar 

  6. De Bock, K.W., Poel, D.V.D.: An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction. Expert Systems with Applications 38(10), 12293–12301 (2011)

    Article  Google Scholar 

  7. Galar, M., et al.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 42(4), 463–484 (2012)

    Article  Google Scholar 

  8. Hallowell, R.: The relationships of customer satisfaction, customer loyalty, and profitability: an empirical study. International journal of service industry management 7(4), 27–42 (1996)

    Article  Google Scholar 

  9. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD (2004)

    Google Scholar 

  10. Katz, G., Elovici, Y., Shapira, B.: CoBAn: A context based model for data leakage prevention. Information Sciences 262, 137–158 (2014)

    Article  MathSciNet  Google Scholar 

  11. Liu, K., et al.: Opinion target extraction using partially-supervised word alignment model. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. AAAI Press (2013)

    Google Scholar 

  12. Mairesse, F., Polifroni, J., Di Fabbrizio, G.: Can prosody inform sentiment analysis? experiments on short spoken reviews. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2012)

    Google Scholar 

  13. Matsumoto, S., Takamura, H., Okumura, M.: Sentiment classification using word sub-sequences and dependency sub-trees. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 301–311. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Mikolov, T., et al.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  15. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based approach: a case study in intensive care monitoring. Technical Report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund (1999)

    Google Scholar 

  16. Ofek, N., Rokach, L., Mitra, P.: Methodology for connecting nouns to their modifying adjectives. In: Gelbukh, A. (ed.) CICLing 2014, Part I. LNCS, vol. 8403, pp. 271–284. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Oommen, T., Baise, L.G., Vogel, R.M.: Sampling bias and class imbalance in maximum-likelihood logistic regression. Mathematical Geosciences 43(1), 99–120 (2011)

    Article  MATH  Google Scholar 

  18. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10. Association for Computational Linguistics (2002)

    Google Scholar 

  19. Park, Y., Gates, S.C.: Towards real-time measurement of customer satisfaction using automatically generated call transcripts. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. ACM (2009)

    Google Scholar 

  20. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM (1998)

    Google Scholar 

  21. Portier, K., et al.: Understanding topics and sentiment in an online cancer survivor community. JNCI Monographs 2013(47), 195–198 (2013)

    Article  MathSciNet  Google Scholar 

  22. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  23. Roy, S., Subramaniam, L.V.: Automatic generation of domain models for call centers from noisy transcriptions. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (2006)

    Google Scholar 

  24. Thelwall, M., et al.: Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology 61(12), 2544–2558 (2010)

    Article  Google Scholar 

  25. Vapnik, V.: The nature of statistical learning theory. Springer (2000)

    Google Scholar 

  26. Vinciarelli, A.: Noisy text categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), 1882–1895 (2005)

    Article  Google Scholar 

  27. Xia, R., Zong, C.: Exploring the use of word relation features for sentiment classification. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Association for Computational Linguistics (2010)

    Google Scholar 

  28. Zhang, C.-X., Zhang, J.-S.: RotBoost: A technique for combining Rotation Forest and AdaBoost. Pattern Recognition Letters 29(10), 1524–1536 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Ofek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ofek, N., Katz, G., Shapira, B., Bar-Zev, Y. (2015). Sentiment Analysis in Transcribed Utterances. In: Cao, T., Lim, EP., Zhou, ZH., Ho, TB., Cheung, D., Motoda, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2015. Lecture Notes in Computer Science(), vol 9078. Springer, Cham. https://doi.org/10.1007/978-3-319-18032-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18032-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18031-1

  • Online ISBN: 978-3-319-18032-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://link.springer.com/doi/10.1007/978-3-319-18032-8_3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy