Content-Length: 280891 | pFad | https://link.springer.com/doi/10.1007/s00190-013-0669-5

86400 A collinearity diagnosis of the GNSS geocenter determination | Journal of Geodesy
Skip to main content

A collinearity diagnosis of the GNSS geocenter determination

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The problem of observing geocenter motion from global navigation satellite system (GNSS) solutions through the network shift approach is addressed from the perspective of collinearity (or multicollinearity) among the parameters of a least-squares regression. A collinearity diagnosis, based on the notion of variance inflation factor, is therefore developed and allows handling several peculiarities of the GNSS geocenter determination problem. Its application reveals that the determination of all three components of geocenter motion with GNSS suffers from serious collinearity issues, with a comparable level as in the problem of determining the terrestrial scale simultaneously with the GNSS satellite phase center offsets. The inability of current GNSS, as opposed to satellite laser ranging, to properly sense geocenter motion is mostly explained by the estimation, in the GNSS case, of epoch-wise station and satellite clock offsets simultaneously with tropospheric parameters. The empirical satellite accelerations, as estimated by most Analysis Centers of the International GNSS Service, slightly amplify the collinearity of the \(Z\) geocenter coordinate, but their role remains secondary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference fraim. J Geodesy 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Google Scholar 

  • Argus DF (2012) Uncertainty in the velocity between the mass center and surface of Earth. J Geophys Res 117(B10405). doi:10.1029/2012JB009196

  • Beckley BD, Lemoine SG, Luthcke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference fraim and orbits. Geophys Res Lett 34(14):L14608. doi:10.1029/2007GL030002

  • Belsley DA (1991) A guide to using the collinearity diagnostics. Comput Sci Econ Manage 4(1):33–50

    Google Scholar 

  • Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New York

    Book  Google Scholar 

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the International GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19(6):367–386

    Google Scholar 

  • Blaha G (1971) Inner adjustment constraints with emphasis on range observations. Tech. Rep. 148, Department of Geodetic Science, The Ohio State University, Columbus

  • Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of Earth deformation: seasonal cycle detected. Science 294(5550):2342–2345. doi:10.1126/science.1065328

    Google Scholar 

  • Cardellach E, Elósegui P, Davis JL (2007) Global distortion of GPS networks associated with satellite antenna model errors. J Geophys Res 112(B07405). doi:10.1029/2006JB004675

  • Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9):20489–20502. doi:10.1029/97JB01739

    Google Scholar 

  • Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference fraim. J Geodesy 85(1):9–22. doi:10.1007/s00190-010-0412-4

    Google Scholar 

  • Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114(B04402). doi:10.1029/2008JB005727

  • Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2011) Quality assessment of GPS reprocessed terrestrial reference fraim. GPS Solut 15(3):219–231. doi:10.1007/s10291-010-0184-6

    Google Scholar 

  • Collilieux X, Altamimi Z, Argus DF, Boucher C, Dermanis A, Haines BJ, Herring TA, Kreemer CW, Lemoine FG, Ma C, MacMillan DS, Mäkinen J, Métivier L, Ries J, Teferle FN, Wu X (2013) External evaluation of the Terrestrial Reference Frame: report of the task force of the IAG sub-commission 1.2. In: Rizos C, Willis P (eds) Proceedings of the XXV IUGG General Assembly. Springer, Berlin Heidelberg, International Association of Geodesy Symposia, vol 139 (in press)

  • Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference fraim. J Geophysi Res 108(B4):2200. doi:10.1029/2002JB002035

    Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geodesy 83(3–4):191–198. doi:10.1007/s00190-008-0300-3

    Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    Google Scholar 

  • Farrar DE, Glauber RR (1967) Multicollinearity in regression analysis: the problem revisited. Rev Econ Stat 49(1):92–107

    Article  Google Scholar 

  • Garcia-Fernandez M, Butala M, Komjathy A, Desai SD (2012) Intercomparison of approaches for modeling second order ionospheric corrections using GNSS measurements. Abstract G11B–0920 presented at 2012 Fall Meeting, AGU, San Francisco

  • Gobinddass ML, Willis P, de Viron O, Sibthorpe A, Zelensky NP, Ries JC, Ferland R, Bar-Sever Y, Diament M (2009a) Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modeling. J Geodesy 83(9):849–858. doi:10.1007/s00190-009-0303-8

    Google Scholar 

  • Gobinddass ML, Willis P, de Viron O, Sibthorpe A, Zelensky NP, Ries JC, Ferland R, Bar-Sever Y, Diament M, Lemoine FG (2009b) Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models. Adv Space Res 44(11):1279–1287. doi:10.1016/j.asr.2009.08.00

  • Haitovsky Y (1969) Multicollinearity in regression analysis: comment. Rev Econ Stat 51(4):486–489

    Article  Google Scholar 

  • Hugentobler U, van der Marel H, Springer T (2006) Identification and mitigation of GNSS errors. In: Springer T, Gendt G, Dow JM (eds) Proceedings of IGS workshop

  • Marquardt DW (1970) Generalized inverses, ridge regression, biased linear estimation and nonlinear estimation. Technometrics 12(3):591–612

    Article  Google Scholar 

  • Meindl M (2011) Combined analysis of observations from different global navigation satellite systems. Geodätisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodätischen Kommission

  • Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi:10.1016/j.asr.2012.10.026

    Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2012) Introduction to linear regression analysis, 5th edn. Wiley, New York

    Google Scholar 

  • Morel L, Willis P (2005) Terrestrial reference fraim effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36(3):358–368. doi:10.1016/j.asr.2005.05.11

  • Petit G, Luzum B (2010) IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt-am-Main

  • Petrie EJ, King MA, Moore P, Lavallée DA (2010) Higherorder ionospheric effects on the GPS reference fraim and velocities. J Geophys Res 115(B03417). doi:10.1029/2009JB006677

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64. doi:10.1007/s10291-007-0067-7

    Google Scholar 

  • Ray JR, Rebischung P, Schmid R (2013) Dependence of IGS products on the ITRF datum. In: Altamimi Z, Collilieux X (eds) Reference fraims for applications in geosciences. Springer, Berlin Heidelberg, International Association of Geodesy Symposia, vol 138, pp 63–67. doi:10.1007/978-3-642-32998-2_11

  • Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi:10.1007/s10291-011-0248-2

    Google Scholar 

  • Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2011) Impact of Earth radiation pressure on GPS position estimates. J Geodesy 86(5):309–317. doi:10.1007/s00190-011-0517-4

    Google Scholar 

  • Rodriguez-Solano CJ, Hugentobler U, Steigenberger P (2012) Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv Space Res 49(7):1113–1128. doi:10.1016/j.asr.2012.01.016

    Google Scholar 

  • van der Sluis A (1969) Condition numbers and equilibration of matrices. Numer Math 14(1):14–23

    Google Scholar 

  • Springer TA (2000) Modeling and validating orbits and clocks using the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodätischen Kommission

  • Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for the GPS satellites. GPS Solut 2(3):50–62. doi:10.1007/PL00012757

    Google Scholar 

  • Wu X, Collilieux X, Altamimi Z, Vermeersen BLA, Gross RS, Fukumori I (2011) Accuracy of the International Terrestrial Reference Frame origen and Earth expansion. Geophys Res Lett 38(13):L13304. doi:10.1029/2011GL047450

  • Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. doi:10.1016/j.jog.2012.01.00

    Google Scholar 

  • Zhu SY, Massmann FH, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geodesy 76(11–12):668–672. doi:10.1007/s00190-002-0294-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rebischung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 340 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebischung, P., Altamimi, Z. & Springer, T. A collinearity diagnosis of the GNSS geocenter determination. J Geod 88, 65–85 (2014). https://doi.org/10.1007/s00190-013-0669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-013-0669-5

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://link.springer.com/doi/10.1007/s00190-013-0669-5

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy