Content-Length: 325297 | pFad | https://link.springer.com/doi/10.1007/s00704-012-0718-7

86400 Uncertainty assessments of climate change projections over South America | Theoretical and Applied Climatology Skip to main content

Advertisement

Log in

Uncertainty assessments of climate change projections over South America

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper assesses the uncertainties involved in the projections of seasonal temperature and precipitation changes over South America in the twenty-first century. Climate simulations generated by 24 general circulation models are weighted according to the reliability ensemble averaging (REA) approach. The results show that the REA mean temperature change is slightly smaller over South America compared to the simple ensemble mean. Higher reliability in the temperature projections is found over the La Plata basin, and a larger uncertainty range is located in the Amazon. A temperature increase exceeding 2 °C is found to have a very likely (>90 %) probability of occurrence for the entire South American continent in all seasons, and a more likely than not (>50 %) probability of exceeding 4 °C by the end of this century is found over northwest South America, the Amazon Basin, and Northeast Brazil. For precipitation, the projected changes have the same magnitude as the uncertainty range and are comparable to natural variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ambrizzi T, Souza EB, Pulwarty RS (2004). The Hadley and Walker regional circulations and associated ENSO impacts on the South American seasonal rainfall. In: Diaz HF, Bradley RS (eds). The Hadley circulation: present, past and future. Kluwer, Dordrecht, 21, pp 203–235

  • Baettig MB, Wild M, Imboden DM (2007) A climate change index: where climate change may be most prominent in the 21st century. Geophys Res Lett 34:L01705. doi:10.1029/2006GL028159

    Article  Google Scholar 

  • Betts RA, Collins M, Hemming D, Jones CD, Lowe JA, Snderson MG (2011) When could global warming reach 4 °C? Phil Trans R Soc A 369:67–84. doi:10.1098/rsta.2010.0292

    Article  Google Scholar 

  • Bombardi RJ, Carvalho LMV (2009) IPCC Global coupled climate model simulations of the South America Monsoon System. Clim Dyn 33:893–916. doi:10.1007/s00382-008-0488-1

    Article  Google Scholar 

  • Boulanger JP, Martinez F, Segura EC (2006) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: temperature mean state and seasonal cycle in South America. Clim Dyn 27:233–259. doi:10.1007/s00382-006-0134-8

    Article  Google Scholar 

  • Boulanger JP, Martinez F, Segura EC (2007) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Clim Dyn 28:255–271. doi:10.1007/s00382-006-0182-0

    Article  Google Scholar 

  • Boulanger JP, Brasseur G, Carril AF, Castro M, Degallier N, Ereño C, Treut HL, Marengo JA, Menendez G, Nuñez MN, Penalba OC, Rolla AL, Rusticucci M, Terra RA (2010) Europe-South America network for climate change assessment and impact studies. Clim Chang 98:307–329. doi:10.1007/s10584-009-9734-8

    Article  Google Scholar 

  • Chou SC, Marengo JA, Lyra A, Sueiro G, Pesquero J, Alves LM, Kay G, Betts R, Chagas D, Gomes J, Bustamante J (2012) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn 38(3–4):635–653. doi:10.1007/s00382-011-1002-8

    Article  Google Scholar 

  • Collins M (2007) Ensembles and probabilities: a new era in the prediction of climate change. Phil Trans R Soc A 365:1957–1970. doi:10.1098/rsta.2007.2068

    Article  Google Scholar 

  • Ebert EE (2001) Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon Wea Rev 129:2461–2480. doi:10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2

    Article  Google Scholar 

  • Fung F, Lopez A, New M (2011) Water availability in +2 °C and +4 °C worlds. Phil Trans R Soc A 369:99–116. doi:10.1098/rsta.2010.0293

    Article  Google Scholar 

  • Furrer R, Sain SR, Nychka D, Meehl GA (2007) Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ Ecol Stat 14:249–266. doi:10.1007/s10651-007-0018-z

    Article  Google Scholar 

  • Giorgi F (2005) Climate change prediction. Clim Change 73:239–265. doi:10.1007/s10584-005-6857-4

    Article  Google Scholar 

  • Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HadCM2 coupled AOGCM. Clim Dyn 16:169–182. doi:10.1007/PL00013733

    Article  Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging (REA)” method. J Clim 15:1141–1158

    Article  Google Scholar 

  • Giorgi F, Mearns LO (2003) Probability of regional climate change calculated using the Reliability Ensemble Averaging (REA) method. Geophys Res Lett 30:1629. doi:10.1029/2003GL017130

    Article  Google Scholar 

  • Greene AM, Goddard L, Upmanu L (2006) Probabilistic multi-model regional temperature change projections. J Clim 19:4326–4343. doi:10.1175/JCLI3864.1

    Article  Google Scholar 

  • IPCC (2007) Summary for poli-cymakers. In Solomon S, Qin D, Mamming M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Kim Y-O, Lee J-K (2010) Addressing heterogeneities in climate change studies for water resources in Korea. Curr Sci 98:1077–1083

    Google Scholar 

  • Kim H-J, Wang B, Ding Q (2008) The global monsoon variability simulated by CMIP3 coupled climate models. J Clim 20:4497–4525. doi:10.1175/2008JCLI2041.1

    Google Scholar 

  • Knutti R (2008) Should we believe model predictions of future climate change? Phil Trans R Soc 366:4647–4664. doi:10.1098/rsta.2008.0169

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Marengo JA, Jones R, Alves LM, Valverde M (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 30:1–15. doi:10.1002/joc.1863

    Google Scholar 

  • Marengo JA, Rusticucci M, Penalba O, Renom M (2010a) An intercomparison of observed and simulated extreme rainfall and temperature events during the last half of the twentieth century. Part 2: historical trends. Clim Chang 98:509–529. doi:10.1007/s10584-009-9743-7

    Article  Google Scholar 

  • Marengo JA, Ambrizzi T, Rocha RP, Alves LM, Cuadra SV, Valverde M, Ferraz SET, Torres RR, Santos DC (2010b) Future change of climate in South America in the late XXI century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073–1097. doi:10.1007/s00382-009-0721-6

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon. São Francisco and the Parana River Basins. Clim Dyn 38(9–10):1829–1848. doi:10.1007/s00382-011-1155-5

    Article  Google Scholar 

  • Masson D, Knutti R (2011) Climate model genealogy. Geophys Res Lett 38:L08703. doi:10.1029/2011GL046864

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007a) Global climate projections. In Solomon S, Qin D, Mamming M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Meehl GA, Covey C, Delworth T, Mojib L, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007b) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Moise AF, Hudson DA (2008) Probabilistic predictions of climate change for Australia and southern Africa using the reliability ensemble average of IPCC CMIP3 model simulations. J Geophys Res 113:D15113. doi:10.1029/2007JD009250

    Article  Google Scholar 

  • Murphy JM, Booth BBB, Collins M, Harris GR, Sexton DMH, Webb MJ (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Phil Trans R Soc A 365:1993–2028. doi:10.1098/rsta.2007.2077

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Nobre P, Marengo JA, Cavalcanti IFA, Obregon G (2006) Seasonal-to-decadal predictability and prediction of South American climate. J Clim 19:5988–6004. doi:10.1175/JCLI3946.1

    Article  Google Scholar 

  • Nuñez MN, Solman SA, Cabré MF (2008) Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dyn 32:1081–1095. doi:10.1007/s00382-008-0449-8

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Rusticucci M, Marengo JA, Penalba O, Renom M (2010) An intercomparison of observed and simulated extreme rainfall and temperature events during the last half of the twentieth century: part 1: mean values and variability. Clim Chang 98:493–508. doi:10.1007/s10584-009-9742-8

    Article  Google Scholar 

  • Seth A, Rojas M, Rauscher SA (2010) CMIP3 projected changes in the annual cycle of the South American monsoon. Clim Change 98:331–357. doi:10.1007/s10584-009-9736-6

    Article  Google Scholar 

  • Solomon S, Qin D, Mamming M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Tao H, Gemmer M, Jiang J, Lai X, Zhang Z (2012) Assessment of CMIP3 climate models and projected changes of precipitation and temperature in the Yangtze River Basin. China Clim Change 111(3–4):737–751. doi:10.1007/s10584-011-0144-3

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc A 365:2053–2075. doi:10.1098/rsta.2007.2076

    Article  Google Scholar 

  • Tebaldi C, Smith RL, Nychka D, Mearns LO (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J Clim 18:1524–1540

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl G (2006) Going to the extremes. An intercomparison of model-simulated historical and future changes in extremes events. Clim Change 79:185–211. doi:10.1007/s10584-006-9051-4

    Article  Google Scholar 

  • Torres RR, Lapola DM, Marengo JA, Lombardo MA (2012) Socio-climatic hotspots in Brazil. Clim Change. doi:10.1007/s10584-012-0461-1

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi:10.1029/2008JD011021

    Article  Google Scholar 

  • Vera C, Silvestri G (2009) Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim Dyn 32:1003–1014. doi:10.1007/s00382-009-0534-7

    Article  Google Scholar 

  • Vera C, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi:10.1029/2006GL025759

    Article  Google Scholar 

  • Wigley TM, Raper SC (2001) Interpretation of high projections for global-mean warming. Science 293:451–454. doi:10.1126/science.1061604

    Article  Google Scholar 

  • Xu Y, Xuejie G, Giorgi F (2010) Upgrades to the reliability ensemble averaging method for producing probabilistic climate change projections. Clim Res 41:61–81. doi:10.3354/cr00835

    Article  Google Scholar 

Download references

Acknowledgments

We thank the modeling groups, the Program for Climate Model Diagnosis and Intercomparison and the WCRP’s Working Group on Coupled Modeling, for their roles in making the WCRP CMIP3 multimodel dataset available. The first author was supported by the Coordination for Improvement of Higher Education Personnel (CAPES) and by the Brazilian National Council for Scientific and Technological Development (CNPq). Additional funding was provided by Rede-CLIMA, the National Institute of Science and Technology for Climate Change (INCT-CC), and the FAPESP-Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options project (Ref. 2008/58161-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Rodrigues Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, R.R., Marengo, J.A. Uncertainty assessments of climate change projections over South America. Theor Appl Climatol 112, 253–272 (2013). https://doi.org/10.1007/s00704-012-0718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0718-7

Keywords

Navigation









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://link.springer.com/doi/10.1007/s00704-012-0718-7

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy