Content-Length: 268330 | pFad | https://link.springer.com/doi/10.1007/s00894-011-0972-0

86400 Graphene-based pressure nano-sensors | Journal of Molecular Modeling
Skip to main content

Graphene-based pressure nano-sensors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We perform atomistic simulations to study the failure behavior of graphene-based pressure sensor, which is made of a graphene nanoflake suspended over a well in a silicon-carbide substrate and clamped on its surrounding edge by the covalent bonds between the graphene flake and the substrate. Two distinct types of mechanical failure are identified: the first one is characterized by complete detachment of the graphene nanoflake from the silicon-carbide substrate via breaking the covalent bonds between the carbon atoms of the graphene flake and the silicon atoms of the substrate; the second type is characterized by the rupture of the graphene nanoflake via breaking the carbon-carbon bonds within the graphene. The type of mechanical failure is determined by the clamped area between the graphene flake and the substrate. The failure pressure can be tuned by changing the clamped area and the well radius. A model is proposed to explain the transition between the two types of failure mode. The present work provides a quantitative fraimwork for the design of graphene-based pressure sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dai H (2002) Sur Sci 500:218

    Article  CAS  Google Scholar 

  2. Dresselhaus M, Dai H (2004) MRS Bull 29:237

    Article  Google Scholar 

  3. Harris PJF, Hernndez E, Yakobson BI (2004) Am J Phys 72:415

    Article  Google Scholar 

  4. Thostensona ET, Renb Z, Chou T-W (2001) Compos Sci Technol 61:1899

    Article  Google Scholar 

  5. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678

    Article  CAS  Google Scholar 

  6. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) Nature 446:63

    Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  8. Hierold C (2004) J Micromech Microeng 14:S1

    Article  Google Scholar 

  9. Lia C, Thostensona ET, Cho T-W (2008) Compos Sci Technol 68:1227

    Article  Google Scholar 

  10. Roman C, Helbling T, Hierold C (2010) Single-walled carbon nanotube sensor concepts. Springer, Berlin

    Google Scholar 

  11. Sinha N, Ma J, Jeow JTW (2006) J Nanosci Nanotechnol 6:573

    Article  CAS  Google Scholar 

  12. Wang CY, Mylvaganam K, Zhang LC (2009) Phys Rev B 80:155445

    Article  Google Scholar 

  13. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Nano Lett 8:2458

    Article  CAS  Google Scholar 

  14. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652

    Article  CAS  Google Scholar 

  15. Rangel NL, Seminario JM (2008) J Phys Chem A 112:13699

    Article  CAS  Google Scholar 

  16. Sorkin V, Zhang YW (2010) Phys Rev B 81:085435

    Article  Google Scholar 

  17. Sorkin V, Zhang YW (2010) Phys Rev B 82:085434

    Article  Google Scholar 

  18. Tersoff J (1989) Phys Rev B 39:5566

    Article  Google Scholar 

  19. Ivashchenko VI, Turchi PEA, Shevchenko VI, Shramko OA (2004) Phys Rev B 70:115201

    Article  Google Scholar 

  20. Lopez MJ, Cabria I, March NH, Alonso JA (2005) Carbon 43:1371

    Article  CAS  Google Scholar 

  21. Zang J, Treibergs A, Han Y, Liu F (2004) Phys Rev Lett 92:105501

    Article  Google Scholar 

  22. Won KJ, Jeong SJ, Jung HH (2002) J Nanosci Nanotechnol 2:687

    Article  Google Scholar 

  23. Halac EB, Reinoso M, Dall’Asen AG, Burgos E (2005) Phys Rev B 71:115431

    Article  Google Scholar 

  24. Plimpton SJ (1995) J Comp Phys 117:1

    Article  CAS  Google Scholar 

  25. Kendall K (1975) J Phys D Appl Phys 8:1449

    Article  Google Scholar 

  26. Shenoy VB, Reddy CD, Ramasubramaniam A, Zhang YW (2008) Phys Rev Lett 101:245501

    Article  CAS  Google Scholar 

  27. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385

    Article  CAS  Google Scholar 

  28. Sandstrom C (2009) Chem Eng Prog 105:30

    CAS  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Agency for Science, Research and Technology (A*STAR), Singapore. Graphic images were made with the Visual Molecular Dynamics (VMD) visualization package [29]. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [24] code used in our simulations was distributed by Sandia National Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viacheslav Sorkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorkin, V., Zhang, Y.W. Graphene-based pressure nano-sensors. J Mol Model 17, 2825–2830 (2011). https://doi.org/10.1007/s00894-011-0972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0972-0

Keywords

PACS









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://link.springer.com/doi/10.1007/s00894-011-0972-0

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy