
Spawning processes faster and easier with io uring

Josh Triplett
josh@joshtriplett.org

@josh_triplett

Linux Plumbers Conference 2022

https://twitter.com/josh_triplett


Build systems



Launching a process on UNIX



Redirection / file descriptors
Priority
Affinity

Signal masks
UID/GID
chroot

namespaces
seccomp filters

...



Need to do setup before launching



Need code to do setup before launching



Where does that code come from?

The current process!



Where does that code come from?

The current process!



fork/exec



fork

Create a copy-on-write copy
of the current process



Copy-on-write (CoW)

Doesn’t copy all the memory

Does copy all the page metadata



Copy-on-write (CoW)

Doesn’t copy all the memory

Does copy all the page metadata



exec

Throw away the current process
and replace it with a new program



How expensive is fork?



Test and benchmarking setup

Create a pipe

Read the start time

Spawn child (using PATH) via method to test

Child writes end time to pipe, then exits

Print the fastest (minimum) time from 2000 runs



Test and benchmarking setup

Create a pipe

Read the start time

Spawn child (using PATH) via method to test

Child writes end time to pipe, then exits

Print the fastest (minimum) time from 2000 runs



Test and benchmarking setup

Create a pipe

Read the start time

Spawn child (using PATH) via method to test

Child writes end time to pipe, then exits

Print the fastest (minimum) time from 2000 runs



Test and benchmarking setup

Create a pipe

Read the start time

Spawn child (using PATH) via method to test

Child writes end time to pipe, then exits

Print the fastest (minimum) time from 2000 runs



Test and benchmarking setup

Create a pipe

Read the start time

Spawn child (using PATH) via method to test

Child writes end time to pipe, then exits

Print the fastest (minimum) time from 2000 runs



Test and benchmarking setup

Create a pipe

Read the start time

Spawn child (using PATH) via method to test

Child writes end time to pipe, then exits

Print the fastest (minimum) time from 2000 runs



method base
fork 52.0µs



method base 1G
fork 52.0µs 56.4µs



Linux has clever optimizations



Most programs allocate memory
they don’t use



“Allocated” memory doesn’t really get
allocated until used



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs



Performance isn’t the only problem with
fork



multithreading



locks held by other threads
will remain held (forever) in the child



Calling a library function could deadlock



”async-signal-safe”
man 7 signal-safety



chroot

setpriority



chroot

setpriority



vfork



vfork

Create a child that borrows
the current process

Wait until child finishes



vfork

Create a child that borrows
the current process

Wait until child finishes



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork

31.5µs 31.4µs 31.9µs



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork 31.5µs

31.4µs 31.9µs



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork 31.5µs 31.4µs

31.9µs



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork 31.5µs 31.4µs 31.9µs



What can you do after vfork?



exec

. . . and _exit

Also, don’t write to any memory
Including local stack (except a PID)
And don’t return or call anything



exec

. . . and _exit

Also, don’t write to any memory
Including local stack (except a PID)
And don’t return or call anything



exec

. . . and _exit

Also, don’t write to any memory

Including local stack (except a PID)
And don’t return or call anything



exec

. . . and _exit

Also, don’t write to any memory
Including local stack (except a PID)

And don’t return or call anything



exec

. . . and _exit

Also, don’t write to any memory
Including local stack (except a PID)
And don’t return or call anything



borrows the current process?



vfork

Effectively a thread

with no synchronization
running with the same stack as the parent



vfork

Effectively a thread
with no synchronization

running with the same stack as the parent



vfork

Effectively a thread
with no synchronization

running with the same stack as the parent





Hope you didn’t actually need setup code. . .

How sure are you that your compiled code
didn’t use the stack?

What if your child process receives a signal?



Hope you didn’t actually need setup code. . .

How sure are you that your compiled code
didn’t use the stack?

What if your child process receives a signal?



Hope you didn’t actually need setup code. . .

How sure are you that your compiled code
didn’t use the stack?

What if your child process receives a signal?



posix_spawn



One call to spawn a process



Created for systems that couldn’t fork



Hand the problem to the C library



No setup code, many configuration options



posix_spawn_file_actions_t

posix_spawnattr_t



posix_spawn_file_actions_t

posix_spawnattr_t



glibc uses a safer version of vfork

Separate stack
Blocking all signals



glibc uses a safer version of vfork

Separate stack
Blocking all signals



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork 31.5µs 31.4µs 31.9µs
posix_spawn

44.5µs 44.0µs 44.9µs



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork 31.5µs 31.4µs 31.9µs
posix_spawn 44.5µs

44.0µs 44.9µs



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork 31.5µs 31.4µs 31.9µs
posix_spawn 44.5µs 44.0µs

44.9µs



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork 31.5µs 31.4µs 31.9µs
posix_spawn 44.5µs 44.0µs 44.9µs



Why do we need a copy of the process?



Need setup code for a new process

fork lets setup be in the existing process’s code

vfork doesn’t support setup code

posix_spawn provides specific setup operations



Need setup code for a new process

fork lets setup be in the existing process’s code

vfork doesn’t support setup code

posix_spawn provides specific setup operations



Need setup code for a new process

fork lets setup be in the existing process’s code

vfork doesn’t support setup code

posix_spawn provides specific setup operations



Need setup code for a new process

fork lets setup be in the existing process’s code

vfork doesn’t support setup code

posix_spawn provides specific setup operations



io_uring



io_uring

Shared-memory communication with the kernel

Submission Queue (SQ) and Completion Queue
(CQ) ringbuffers

Similar to NVMe and virtio protocols

Avoids kernel entry/exit overhead

Supports linked operations



io_uring

Shared-memory communication with the kernel

Submission Queue (SQ) and Completion Queue
(CQ) ringbuffers

Similar to NVMe and virtio protocols

Avoids kernel entry/exit overhead

Supports linked operations



io_uring

Shared-memory communication with the kernel

Submission Queue (SQ) and Completion Queue
(CQ) ringbuffers

Similar to NVMe and virtio protocols

Avoids kernel entry/exit overhead

Supports linked operations



io_uring

Shared-memory communication with the kernel

Submission Queue (SQ) and Completion Queue
(CQ) ringbuffers

Similar to NVMe and virtio protocols

Avoids kernel entry/exit overhead

Supports linked operations



io_uring

Shared-memory communication with the kernel

Submission Queue (SQ) and Completion Queue
(CQ) ringbuffers

Similar to NVMe and virtio protocols

Avoids kernel entry/exit overhead

Supports linked operations



What if we specified process setup and
launch using a ring of linked operations?



A kernel task doesn’t need userspace



New io uring operations

IORING_OP_CLONE — Capture linked operations
and run them in a new task

IORING_OP_EXEC — Exec a new program in the
task, skipping remaining operations if successful



New io uring operations

IORING_OP_CLONE — Capture linked operations
and run them in a new task

IORING_OP_EXEC — Exec a new program in the
task, skipping remaining operations if successful



If a IORING_OP_CLONE task runs out of
linked operations, it gets SIGKILLed
without returning to (non-existent)

userspace.



A successful IORING_OP_EXEC skips further
ring operations.

A failed IORING_OP_EXEC allows more ring
operations if not HARDLINKed.



A successful IORING_OP_EXEC skips further
ring operations.

A failed IORING_OP_EXEC allows more ring
operations if not HARDLINKed.



Path search



Bypassing libc wrappers



Works in multithreaded programs



struct io_uring_sqe *sqe;

sqe = io_uring_get_sqe(&ring);

io_uring_prep_clone(sqe);

io_uring_sqe_set_flags(sqe, IOSQE_IO_LINK);

sqe = io_uring_get_sqe(&ring);

io_uring_prep_exec(sqe, "./t", argv, envp);

io_uring_submit(&ring);



Useful for reasons other than
performance. . .



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork 31.5µs 31.4µs 31.9µs
posix_spawn 44.5µs 44.0µs 44.9µs
io_uring_spawn

29.5µs 30.2µs 28.6µs



method base 1G 1G init
fork 52.0µs 56.4µs 7581.8µs
vfork 31.5µs 31.4µs 31.9µs
posix_spawn 44.5µs 44.0µs 44.9µs
io_uring_spawn 29.5µs 30.2µs 28.6µs



6-10% faster than vfork

safer and more flexible than vfork

31-36% faster than posix_spawn



6-10% faster than vfork

safer and more flexible than vfork

31-36% faster than posix_spawn



Just getting started



Next steps

Implement posix_spawn

Support pre-spawned process pool

Optimize clone further

Set up process ”from scratch”

Use pre-registered file descriptors



Next steps

Implement posix_spawn

Support pre-spawned process pool

Optimize clone further

Set up process ”from scratch”

Use pre-registered file descriptors



Next steps

Implement posix_spawn

Support pre-spawned process pool

Optimize clone further

Set up process ”from scratch”

Use pre-registered file descriptors



Next steps

Implement posix_spawn

Support pre-spawned process pool

Optimize clone further

Set up process ”from scratch”

Use pre-registered file descriptors



Next steps

Implement posix_spawn

Support pre-spawned process pool

Optimize clone further

Set up process ”from scratch”

Use pre-registered file descriptors



Next steps

Implement posix_spawn

Support pre-spawned process pool

Optimize clone further

Set up process ”from scratch”

Use pre-registered file descriptors



Aside: CLONE_VM



Acknowledgements

Jens Axboe



@josh_triplett

https://github.com/sponsors/joshtriplett

https://buildit.dev

Questions?

https://twitter.com/josh_triplett
https://github.com/sponsors/joshtriplett
https://buildit.dev


@josh_triplett

https://github.com/sponsors/joshtriplett

https://buildit.dev

Questions?

https://twitter.com/josh_triplett
https://github.com/sponsors/joshtriplett
https://buildit.dev


Image credits:
Seismograph: By Yamaguchi, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1089235

https://commons.wikimedia.org/w/index.php?curid=1089235

