Content-Length: 12624 | pFad | https://mclust-org.github.io/mclustAddons/

Addons for the mclust Package • mclustAddons Skip to contents

CRAN_Status_Badge CRAN_MonthlyDownloads

An R package extending the functionality of the mclust package (Scrucca et al. 2016) by including:

  • density estimation for data with bounded support using a transform-based approach to Gaussian mixture density estimation (Scrucca, 2019);

  • modal clustering using modal EM algorithm for Gaussian mixtures (Scrucca, 2021);

  • entropy estimation via Gaussian mixture modeling (Robin & Scrucca, 2023).

Installation

You can install the released version of mclustAddons from CRAN using:

install.packages("mclustAddons")

Usage

For an introduction to the main functions and several examples see the vignette A quick tour of mclustAddons, which is available as

vignette("mclustAddons")

The vignette is also available in the Vignette section on the navigation bar on top of the package’s web page.

References

Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8/1, 205-233. https://doi.org/10.32614/RJ-2016-021

Scrucca L. (2019) A transformation-based approach to Gaussian mixture density estimation for bounded data, Biometrical Journal, 61:4, 873–888. https://doi.org/10.1002/bimj.201800174

Scrucca L. (2021) A fast and efficient Modal EM algorithm for Gaussian mixtures. Statistical Analysis and Data Mining, 14:4, 305–314. https://doi.org/10.1002/sam.11527

Robin S. and Scrucca L. (2023) Mixture-based estimation of entropy. Computational Statistics & Data Analysis, 177, 107582. https://doi.org/10.1016/j.csda.2022.107582









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://mclust-org.github.io/mclustAddons/

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy