

Recent BGS activities: digitising and modelling with historical data and telluric measurements and analysis

Ellen Clarke, Gemma Kelly & Ciaran Beggan

Digital Capture of Magnetograms

Total of 472 years and >350000 magnetograms

Digital Capture of Magnetograms Selection of Extreme Storms

Total of 472 years and >350000 magnetograms

Greenwich Magnetograms (Carrington Storm)

Above: $31 - 1^{st}$ Sep 1859 Right: $1^{st} - 2^{nd}$ Sep 1859

Horizontal Intensity (top trace) Declination (bottom trace)

Carrington Storm dB_H/dt at GRW and KEW

- Results are still provisional
- Good agreement between KEW and
 GRW
- Estimate |d**B**_h/dt| reached at least 500
 nT/min
- Compare this to the maximum for the
 March 1989 storm of 327 nT/min in South
 England
- Study on worst case scenarios
 (Thomson *et al*) estimates the 100 and 200
 year return level for |dH/dt| at this location to
 be ~600 and ~800 nT/min respectively

Modelling the Carrington event

- UK time-series at one location (London)
 - has peak dB_H/dt > 550 nT/min (c.f. Ellen's slide earlier)
- How do we infer B and E across the UK?
- Model tests:
 - Auroral electrojet shape [TopHat, Tapered Cos, Cauchy]
 - Auroral electrojet width [10°, 20°, > 20° latitude]
 - moves down the UK over time
 - also test 700 nT/min (Stewart, 1859) and 1000 nT/min
 - has a period of 2 and 10 minutes
- Compute Electric field using BGS2012 Conductivity model
- Compute GIC using NG2012 network model (v7)

Electrojet shape & position

Inputs

Scaling of electrojets: $H_0 = (dB_H/dt) * Period/(\sqrt{2} \pi)$)

dB _H /dt nT/min	Period (min)	H _o (nT)
550	2	250
550	10	1250
700	2	320
700	10	1575
1000	2	450
1000	10	2275

72 GIC scenarios :

- 2 x periods, 3 x electrojet shapes,
- 3 x scale factors [= 18]) x 3X
- + 1Y orientation

Resulting E-fields & GIC

Electrojet centred over London, Tapered Cosine shape, 20° wide; 700 nT/min @ 10 mins, X & Y

Resulting E-fields & GIC

Electrojet centred over London, Tapered Cosine shape, 20° wide; 700 nT/min @ 10 mins, X & Y

© NERC All rights reserved

Largest peak GIC in London e-jet

dH/dt (nT/min)	Period (min)	H _o (nT)	X orient (Amps)	Y orient (Amps)
550	2	250	16	29
550	10	1250	50	67
700	2	320	21	37
700	10	1575	63	85
1000	2	450	30	53
1000	10	2275	91	122

Electrojet Tapered Cosine shape; All three phases summed; Absolute value of GIC shown

Largest GIC – NE England + NE Scotland regions

N Scotland/N England

dH/dt (nT/min)	Period (min)	H ₀ (nT)	N Scotland X (Amps)	N England X (Amps)
550	2	250	25	21
550	10	1250	33	27
700	2	320	46	39
700	10	1575	60	63
1000	2	450	75	79
1000	10	2275	109	114

Largest GIC: Wales for NScotland; Newcastle for NEngland

GIC calculation

- a) Ground conductivity (geology)
- b) Anomalous magnetic field which induces electric field
 - Measured in real time and interpolated across the UK and Ireland
 - 'Thin Sheet' modelling used to convert magnetic field changes to electric field induced in the ground
- c) Grid topology & characteristics

Geo-electric field monitoring

- Installations:
 - Eskdalemuir in Nov 2012
 - Lerwick in March 2013
 - Hartland in May 2013
- Instrumentation:
 - Two pairs of probes at each site, aligned EW and NS ~100m apart
 - Delivers 1Hz measurements

How do the models compare?

- Example: Storm on 2nd October 2013
 - Kp \geq 5+ for first 9 hours of day
 - Kp reached 8- between 3.00-6.00 UT

2nd October 2013

Eskdalemuir

Problems

To be able to verify our models in a more comprehensive way we need to understand the other signals in the data e.g.:

- Baseline shifts and spikes
- Signal due to induction from magnetic field is largest during storms – at quiet times local signals dominate
- Weather and tides....

Rainfall & tides

Data in blue smoothed using a moving average (length = 1 day) Green is hourly rainfall in mm Rainfall [mm] 18 20 12 14 16 22 (8[°] 10 Particular problem at Hartland – but some tidal signal in all 3 locations

Had NS June 2013

Ex

Hartland – 2nd October

• The tidal signal in the measurements and the Sq signal in the model make it very difficult to compare

Hartland – 2nd October

Subtracted hourly mean curve to remove tidal and Sq signals

