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Abstract. A temporally and spatially resolved estimate of
the global surface-ocean CO2 partial pressure field and the
sea–air CO2 flux is presented, obtained by fitting a simple
data-driven diagnostic model of ocean mixed-layer biogeo-
chemistry to surface-ocean CO2 partial pressure data from
the SOCAT v1.5 database. Results include seasonal, interan-
nual, and short-term (daily) variations. In most regions, es-
timated seasonality is well constrained from the data, and
compares well to the widely used monthly climatology by
Takahashi et al.(2009). Comparison to independent data ten-
tatively supports the slightly higher seasonal variations in our
estimates in some areas. We also fitted the diagnostic model
to atmospheric CO2 data. The results of this are less robust,
but in those areas where atmospheric signals are not strongly
influenced by land flux variability, their seasonality is nev-
ertheless consistent with the results based on surface-ocean
data. From a comparison with an independent seasonal cli-
matology of surface-ocean nutrient concentration, the diag-
nostic model is shown to capture relevant surface-ocean bio-
geochemical processes reasonably well. Estimated interan-
nual variations will be presented and discussed in a compan-
ion paper.

1 Introduction

The oceans are considered the dominant player in the
global carbon cycle on long timescales, e.g. in the glacial–
interglacial cycles (e.g.Sigman and Boyle, 2000). On a
multi-millennial timescale, the oceans will be the sink for
80–95 % of the anthropogenic CO2 emissions, and 70–80 %
on a timescale of several hundred years (Archer et al., 1997).
Currently, the oceans take up about 25 % of the emissions
(Sarmiento et al., 2010). Concerns exist, however, that the
sink efficiency may decrease in the coming decades as a
consequence of anthropogenic climate change, as suggested
by model projections (e.g.Sarmiento and Le Qúeŕe, 1996;
Matear and Hirst, 1999; Joos et al., 1999) and tentatively con-
firmed by data analysis (e.g. Le Quéŕe et al., 2007, 2010). As
a prerequisite to understanding the involved processes, one
needs to quantify sea–air CO2 fluxes, their variability, and
their response to forcing.

Currently, two data streams are used to estimate the vari-
ability of sea–air CO2 fluxes:

– Based on measurements of the CO2 partial pressure
(pCO2) of surface water, the sea–air CO2 flux is cal-
culated through a gas exchange parameterization. As
pCO2 measurements only exist at discrete locations
and ship tracks, spatial and temporal interpolation is
needed. The following interpolation methods have been
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194 C. R̈odenbeck et al.: Global surface-oceanpCO2 and sea–air CO2 flux variability

proposed: (1) statistical interpolation combined with an
advection–diffusion equation (Takahashi et al., 2009);
(2) purely statistical interpolation with error quantifica-
tion (Jones et al., 2012b); (3) multi-linear regressions
betweenpCO2 and ocean state variables (e.g.Park et al.,
2010; Chen et al., 2011); (4) neural networks learn-
ing the relationship betweenpCO2 and oceanic state
variables available from remote sensing platforms and
ocean reanalysis projects (e.g.Lefèvre et al., 2005; Tel-
szewski et al., 2009); (5) assimilation of thepCO2 data
into a process model of ocean biogeochemistry (Valsala
and Maksyutov, 2010; While et al., 2012). These meth-
ods are complementary in certain aspects: the more sta-
tistical methods are dominated by the data themselves
but are strongly affected by spatial and temporal gaps,
while the more complex methods more easily spread
the information but are dependent on driver data sets
or even on model formulations.

– The CO2 exchange between the Earth surface and the at-
mosphere can be quantified based on atmospheric CO2
mixing ratio measurements (e.g.Conway et al., 1994)
by the atmospheric transport inversion (e.g.Newsam
and Enting, 1988; Rayner et al., 1999; Bousquet et al.,
2000; Rödenbeck et al., 2003; Baker et al., 2006) (see
Sect.2.1). This estimation does not involve any param-
eterization of gas exchange. However, ocean fluxes are
difficult to detect by this method in most parts of the
globe, because their imprint on the atmospheric mixing
ratio records is small compared to that of the much more
variable land fluxes: Even if ocean-internal processes
(biology, transport) cause mixed-layer carbon sources
and sinks of comparable variability as the land bio-
sphere, the resulting sea–air CO2 exchange is much less
variable and smoothed out in time because the carbon-
ate chemistry of seawater slows the equilibration rate of
dissolved CO2 with the atmosphere. In addition, the re-
sponses to warming/cooling partially counteract the ef-
fects of ocean-internal sources/sinks. A further problem
of atmospheric inversions based on data from a discrete
set of measurement sites is that information is only pro-
vided on scales comparable to or larger than the distance
between the sites or the sampling frequency, while vari-
ability exists also on smaller scales.

A further data-based method to estimate sea–air CO2 fluxes
uses ocean-interior carbon data in inverse calculations of
oceanic transport (Gloor et al., 2003; Mikaloff Fletcher et al.,
2006). This method is independent of parameterizations of
gas exchange as well. However, it only yields long-term sea–
air CO2 fluxes over large spatial regions, not its temporal or
high-resolution spatial variability. The long-term global sea–
air CO2 flux has also been estimated from observed trends
in atmospheric oxygen (Keeling and Shertz, 1992) as well
as from13C isotopic ratios in atmospheric CO2 (Ciais et al.,
1995).

In view of the above-mentioned problem of the atmospheric
CO2 inversions, most of these studies use the sea–air flux cli-
matology byTakahashi et al.(2009) (or earlier versions) as
a Bayesian prior (in some cases, the long-term fluxes from
ocean-interior inversions are used in the prior as well, e.g.
Rödenbeck et al.(2003), or formalized as joint inversion
by Jacobson et al.(2007)). Out of this context, the data-
based sea–air CO2 fluxes presented here have been devel-
oped aiming to (1) provide not only a monthly seasonal cy-
cle but variability also on short-term (daily) and interannual
timescales, (2) use an assimilation scheme that can easily and
self-consistently compare or even combine the observational
information of atmospheric and surface-ocean data, and (3)
use a framework that can be extended to also incorporate con-
straints from other tracers, such as oxygen.

The presented results are based on the newly available Sur-
face Ocean CO2 Atlas (SOCAT) database (version 1.5) of
CO2 fugacity measurements (Pfeil et al., 2012, http://www.
socat.info/). We describe the estimation method and test its
performance, also using independent data. As a first step of
analysis, this study mainly focuses on the mean seasonal cy-
cle, because on this timescale (1) we can compare to the
widely used monthlypCO2 climatology byTakahashi et al.
(2009), (2) we can investigate mutual consistency between
the surface-oceanpCO2 constraint and that by atmospheric
CO2 data as the signal/noise ratio is large, and (3) we can
test the plausibility of our process representations invoking
a seasonal surface-ocean phosphate (PO4) climatology. Esti-
mated interannual variations of the sea–air CO2 flux are pre-
sented and discussed in a companion paper (Rödenbeck et
al., 2013).

2 Method

2.1 Concept – overview

In a classical atmospheric inversion, a spatio-temporal field
of surface-to-atmosphere carbon fluxes is estimated such that
its corresponding mixing ratio field – as simulated by an at-
mospheric tracer transport model – matches as closely as
possible a set of mixing ratio observations. The match is
gauged by a quadratic cost function to be minimized (Ap-
pendixA2).

Here we extend the inversion framework by not only con-
sidering the process of atmospheric transport but also pro-
cesses in the oceanic mixed layer: The atmospheric trans-
port model is supplemented by a chain of parameterizations
of gas exchange, carbonate chemistry, and a carbon bud-
get equation, which determine the sea-to-air CO2 exchange
(f CO2

ma ) as a function of ocean-internal carbon sources and
sinks (Fig.1). Then the inversion is not directly adjusting the
sea-to-air fluxes any more, but only indirectly through adjust-
ing the ocean-internal fluxes instead (Fig.2, from left to mid-
dle). This offers two advantages: (1) the equations describing
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Fig. 1. Summary of the main quantities and process parameteriza-
tions involved in the diagnostic ocean mixed-layer model. Thick
boxes denote the process parameterizations given in Sect. 2.2, each
expressing the quantity right above as a function of the quantity
right below. Quantities at the arrows on the left represent driver
data entering the parameterizations. See Table 2 for mathematical
symbols, and Appendix A1 for the equations and further explana-
tion.
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Fig. 2. Illustration of the inverse procedure (three modi). Boxes de-
note the process parameterizations from Figure 1, causallylinking
quantities from bottom to top. Double arrows symbolize the match-
ing between observed and modelled quantities, as gauged by acost
function J (Appendix A2). Thin arrows indicate the adjustments
of the respective unknowns done to minimize the model-data mis-
match. Left: Pure atmospheric transport inversion not usedhere but
given for reference: The sea-air fluxesfCO2

ma are adjusted to match
atmospheric mixing ratios (terrestrial Net Ecosystem Exchange is
adjusted as well but omitted from this schematic for clarity). Mid-
dle: In caseATM , ocean-internal sources/sinksfDIC

int are adjusted
instead of sea-air fluxes to match atmosphericCO2 mixing ratios
(again Net Ecosystem Exchange is further adjusted). Right:In
caseSFC, ocean-internal sources/sinks are adjusted to match the
surface-oceanCO2 partial pressure observations. Sea-air fluxes are
then calculated from the estimated partial pressure field.

Fig. 1. Summary of the main quantities and process parameteriza-
tions involved in the diagnostic ocean mixed-layer model. Thick
boxes denote the process parameterizations given in Sect.2.2, each
expressing the quantity right above as a function of the quantity
right below. Quantities at the arrows on the left represent driver data
entering the parameterizations. See Table2 for mathematical sym-
bols, and AppendixA1 for the equations and further explanation.

the individual processes impose spatial and temporal struc-
ture to the sea–air fluxes, based on the spatio-temporal infor-
mation from the driver data (sea-surface temperature (SST),
wind speed, etc., Fig.1). (2) The explicit representation of
oceanic processes involves further quantities, notably sea-
surface CO2 partial pressure. Through cost function contri-
butions gauging the match of modelled and measuredpCO2,
these data can be used as an observational constraint replac-
ing the atmospheric data (Fig.2, right). In this mode of op-
eration, atmospheric transport models and atmospheric data
are actually no longer used in the inverse calculation, but the
Bayesian framework, including a-priori spatial and temporal
correlations, is still applied in the same way as in the atmo-
spheric mode.

The calculation is global over the time period 1985–2011,
with a temporal resolution of 1 day and a horizontal resolu-
tion of approximately 4◦ latitude× 5◦ longitude (TM3 model
grid).

2.2 Process parameterizations

All processes considered explicitly are given in Fig.1 and
summarized in the following. Details, including the equa-
tions used, are found in AppendixA.

Atmospheric transport. Atmospheric CO2 mixing ratio
fields in response to surface-to-atmosphere fluxes are simu-
lated by the global off-line atmospheric transport model TM3
(Heimann and K̈orner, 2003) with a spatial resolution of≈ 4◦

lat.× 5◦ long.× 19 vertical levels. The model is driven by
6-h interannual meteorological fields derived from the Na-
tional Centers for Environmental Prediction (NCEP) reanal-
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Fig. 2. Illustration of the inverse procedure (three modi). Boxes
denote the process parameterizations from Fig.1, causally linking
quantities from bottom to top. Double arrows symbolize the match-
ing between observed and modelled quantities, as gauged by a cost
function J (Appendix A2). Thin arrows indicate the adjustments
of the respective unknowns done to minimize the model–data mis-
match. Left: pure atmospheric transport inversion not used here but

given for reference: the sea–air fluxesf
CO2
ma are adjusted to match

atmospheric mixing ratios (terrestrial net ecosystem exchange is ad-
justed as well but omitted from this schematic for clarity). Middle:
in the case ofATM , ocean-internal sources/sinksf DIC

int are adjusted
instead of sea–air fluxes to match atmospheric CO2 mixing ratios
(again net ecosystem exchange is further adjusted). Right: in the
case ofSFC, ocean-internal sources/sinks are adjusted to match the
surface-ocean CO2 partial pressure observations. Sea–air fluxes are
then calculated from the estimated partial pressure field.

ysis (Kalnay et al., 1996). The model fields are sampled at
the location and time of the individual mixing ratio measure-
ments used. TM3 has performed well in intercomparisons of
state-of-the-art global tracer transport models (e.g.Stephens
et al., 2007; Law et al., 2008).

Solubility and gas exchange. Diffusive sea-to-air gas ex-
change is proportional to the over-/undersaturation of CO2 in
the surface ocean and to the piston velocity with the quadratic
wind speed dependence byWanninkhof (1992), scaled to
match the global average piston velocity ofNaegler(2009)
(AppendixA1.1).

Carbonate chemistry. The carbon species relevant for gas
exchange (CO2) only account for a small part of the car-
bon relevant in the ocean-internal budget (dissolved inor-
ganic carbon, DIC). The link between CO2 abundance (ex-
pressed in terms of partial pressurep

CO2
m ) and DIC abun-

dance (in terms of its concentrationCDIC
m ) is determined

by chemical equilibria, which we assume to be attained in-
stantaneously. The non-linear dependence ofp

CO2
m on CDIC

m
has been linearized in standard ways (Sarmiento and Gru-
ber, 2006). The chemistry parameterization also contains a
temperature-dependent factor, and contributions from sea-
sonal variations in alkalinity and salinity (AppendixA1.2).

www.ocean-sci.net/9/193/2013/ Ocean Sci., 9, 193–216, 2013
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Mixed-layer carbon budget. Changes in the spatio-
temporal field of dissolved inorganic carbon in the ocean
mixed layer need to be balanced by the sum of fluxes (Ap-
pendixA1.3). As the sea–air flux itself depends on carbon
concentration, this balance can be expressed as a linear first-
order differential equation. Its solution gives DIC concen-
tration CDIC

m as a function of the ocean-internal sinksf DIC
int

(representing the total effect of biological conversion and
vertical/horizontal advection/diffusion on mixed-layer car-
bon concentration). An additional important item in the bud-
get is the re-entrainment during mixed-layer deepening of
carbon left behind previously during mixed-layer shoaling,
which we represent as a “history flux”fhist. We further con-
sider the influence of freshwater fluxes.

2.3 Main adjustable degrees of freedoms

The ocean-internal carbon sources and sinks (f DIC
int ) at the

end of the described chain of process parameterizations is
the basic unknown to be adjusted to match the surface-ocean
pCO2 or atmospheric CO2 data (next section). It is treated
similarly to the unknown sea–air flux in the pure atmospheric
transport inversion (Fig.2), including Bayesian a-priori spa-
tial and temporal correlations. The detailed specification and
further explanations are found in AppendixA2.2.

2.4 Data constraints – base runs

We will present results of two cases that differ in the data set
used as main constraint (Fig.2):

SFC. In the main case used to create the primary prod-
uct of this study, the ocean part of the diagnostic scheme
is fit to surfacepCO2 data points from the SOCAT v1.5
database (Pfeil et al., 2012, http://www.socat.info/). Data
pre-treatment and further details are given in Table1. SOCAT
data cover about 6 million pixels/time steps globally within
the calculation period (until 2007, see Supplement Figs. S7.3
and S7.4 for data distribution).

ATM . As a comparison case used to assess the consistency
between surface-ocean and atmospheric data, the diagnostic
scheme is fit to atmospheric CO2 mixing ratios measured ap-
proximately weekly or hourly at a set of sites by various in-
stitutions. Details are given in Table1.

3 Results and discussion

The main product of this study is a data-based estimate of
the global spatio-temporal CO2 partial pressure field and ul-
timately the sea–air CO2 fluxes. Here we characterize and
evaluate its robustness, errors, and information content. In
addition, we compare these results with independent data and
previous estimates. The consideration of interannual vari-
ations is done in the companion paper (Rödenbeck et al.,
2013).

3.1 Overview

To illustrate the characteristics of the quantities and the tem-
poral scales involved in the scheme, Fig.3 shows time se-
ries of key quantities (as of runSFC, blue) at the exam-
ple pixel around Station M in the Norwegian Sea (66◦ N,
2◦ E). The ocean-internal sources/sinks (bottom panel) are
relatively smooth, as the a-priori temporal correlations (Ap-
pendixA2.2) suppress fast variations. The mixed-layer DIC
concentration (panel above) responds to these ocean-internal
fluxes and the emerging sea–air exchange. Being their tem-
poral integral, the DIC concentration is slightly shifted in
phase with respect to the ocean-internal fluxes. In addition,
the DIC concentration is rising in response to the atmo-
spheric CO2 increase. The surface-ocean CO2 partial pres-
sure (3rd panel from bottom) shares the rise and the varia-
tions with the DIC concentration, but the seasonality is again
slightly shifted because of the temperature and alkalinity ef-
fects. Finally, the sea–air CO2 flux (top panel) is dominated
by thepCO2 variability; in addition, it shows high-frequency
(daily) variability due to wind speed and solubility changes.
Figure3 also illustrates the dampening effect of the carbon-
ate chemistry on sea–air exchange, as the seasonal amplitude
of the sea–air flux (top) is much lower than that of the ocean-
interior flux (bottom).

The spatial resolution and domain of the calculation is il-
lustrated by Fig.4, showing the amplitude of the mean sea-
sonal cycle ofpCO2 for each pixel.

3.2 Data and model constraints

The estimatedpCO2 and sea–air CO2 flux fields combine in-
formation from the partial pressure data and from the pro-
cess parameterizations. To illustrate this, Fig.3 also shows
the a-priori state (thin dashed grey) defined byf DIC

int, pri = 0

(AppendixA2.2, see bottom panel). The choicef DIC
int, pri = 0

means that, without data knowledge, it is equally likely to
have an internal source or an internal sink at any given lo-
cation and time, and thus corresponds to a state of no infor-
mation onf DIC

int . The variations in the prior values ofCDIC
m ,

pCO2, and the sea–air fluxesf CO2
ma , which then follow from

the process parameterizations, only comprise responses to
variations in sea surface temperature and the other driving
variables (including rising atmospheric CO2), but miss vari-
ations in the ocean-internal sources/sinks. As this a-priori
pCO2 field contradicts the data (black dots), the estimation
procedure now adjusts the internal fluxf DIC

int in such a way
that the data are matched as closely as possible (blue). Most
prominently, this reduces or – as at the example pixel of
Fig. 3 – even reverses the seasonal variations ofpCO2 (re-
flecting that thermal, biological, and physical effects partially
oppose each other). The fit at further locations is given below
(Sect.3.4).

For most pixels, the SOCAT data set only sporadi-
cally contains data points (in particular, periods of dense

Ocean Sci., 9, 193–216, 2013 www.ocean-sci.net/9/193/2013/
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black dots in thepCO2
m panel. The Bayesian prior (f DIC

int = 0 and correspondingCDIC
m , p

CO2
m , andf

CO2
ma , AppendixA2.2, Sect.3.2) is also

given (thin dashed grey lines).
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Fig. 3. Example time series (full daily resolution) at the model pixel at around Station M (66◦ N, 2◦ E) of the main quantities of the diagnostic
model (Figure 1): Sea-airCO2 fluxes (fCO2

ma ), surface-oceanCO2 partial pressure (pCO2
m ), mixed-layerDIC concentration (CDIC

m ), as well as
ocean-internal carbon addition to (removal from) the mixedlayer (fDIC

int ). Estimates have been obtained by fitting the diagnostic scheme to
SOCAT surface-oceanCO2 partial pressure data (SFC, blue). The SOCAT data points that happen to fall in the example pixel are shown as
black dots in thepCO2

m panel. The Bayesian prior (fDIC

int =0 and correspondingCDIC
m , pCO2

m , andfCO2
ma , Appendix A2.2, Sect. 3.2) is also given

(thin dashed gray).

Fig. 4. Amplitude of the seasonal cycle of surface-oceanCO2 par-
tial pressure (µatm) estimated by fitting the diagnostic scheme to
the SOCAT data (runSFC). The amplitude is given as temporal
standard deviation of the 1997-2009 monthly meanpCO2

m at each
pixel.

Fig. 4. Amplitude of the seasonal cycle of surface-ocean CO2 partial pressure (µatm) estimated by fitting the diagnostic scheme to the

SOCAT data (runSFC). The amplitude is given as temporal standard deviation of the 1997–2009 monthly meanp
CO2
m at each pixel.
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Fig. 5. Illustration of the information flow in the spatio-temporal
extrapolation through a-priori correlations. Where data values ex-
ist, pixels are directly constrained (left column, which isidentical to
Figure 2). Due to the a-priori spatial correlations (Appendix A2.2),
adjustments tofDIC

int at the constrained pixel also changefDIC

int at
neighbouring unconstrained pixels.pCO2 is then calculated pas-
sively from the extrapolatedfDIC

int by the process parameterizations,
using the local values of the driving fields (right column).
In data-dense areas, local adjustments tofDIC

int (both for constrained
and for extrapolated pixels) will need to compromise between sev-
eral data constraints within the correlation radius (de-weighted with
distance due to the decay of the correlation, Figure 13). As with
any smoothing, this may be beneficial in suppressing outliers, but
also adverse in partly suppressing small-scale signals (the structures
from the driving data of the parameterizations are never smoothed
however, as the smoothing only acts onfDIC

int ). In data-poor areas,
there may exist pixels that do not have any constrained pixelwithin
the correlation radius; thenfDIC

int will stay close to the prior.
In time, extrapolation happens not only due to the a-priori correla-
tions, but additionally due to the memory effect resulting from the
relaxation time of the budget equation Eq. (A21).

Fig. 5. Illustration of the information flow in the spatio-temporal
extrapolation through a-priori correlations. Where data values ex-
ist, pixels are directly constrained (left column, which is identical
to Fig.2). Due to the a-priori spatial correlations (AppendixA2.2),
adjustments tof DIC

int at the constrained pixel also changef DIC
int at

neighbouring unconstrained pixels.pCO2 is then calculated pas-
sively from the extrapolatedf DIC

int by the process parameterizations,
using the local values of the driving fields (right column).
In data-dense areas, local adjustments tof DIC

int (both for constrained
and for extrapolated pixels) will need to compromise between sev-
eral data constraints within the correlation radius (de-weighted with
distance due to the decay of the correlation, Fig.A1). As with
any smoothing, this may be beneficial in suppressing outliers, but
also adverse in partly suppressing small-scale signals (the structures
from the driving data of the parameterizations are never smoothed
however, as the smoothing only acts onf DIC

int ). In data-poor areas,
there may exist pixels that do not have any constrained pixel within
the correlation radius; thenf DIC

int will stay close to the prior.
In time, extrapolation happens not only due to the a-priori correla-
tions, but additionally due to the memory effect resulting from the
relaxation time of the budget equation Eq. (A21).

regular sampling, as at Station M since 2006, are a rare ex-
ception). Thus, only a small fraction of pixels/time steps is
constrained directly in the described way. However, most
parts of the space–time domain are still constrained indi-
rectly through extrapolation via the spatial and temporal a-
priori correlations defined in AppendixA2.2. The mecha-
nism is illustrated in Fig.5. In particular, as seasonal vari-
ations inf DIC

int are allowed to be adjusted much more freely
than non-seasonal variations (equivalent to a-priori correla-
tions between adjustments tof DIC

int at any given day of year
in each year, AppendixA2.2), the mean seasonal cycle is ex-
trapolated throughout the time period of the calculation. This
also means that data points in any year can contribute to con-
strain this mean seasonality. Thus, though there are regions
or periods too far away from data points for extrapolation,
larger-scale seasonal variations are constrained almost every-
where in the ocean. This has been confirmed by assessing
how well a givenpCO2 field can be retrieved by the scheme

from pseudo data sampled from this field at the times and lo-
cations of the SOCAT data (AppendixB). Constraining inter-
annual variations requires more even data distribution in time
than constraining seasonal variability; this density of data is
only available is some areas of the ocean (Rödenbeck et al.,
2013).

The spatio-temporal a-priori correlations also act to
smoothf DIC

int on small scales (Fig.3, bottom), as they damp
small-scale and short-term variations. This has been done
because the available data do not have the spatial or tem-
poral density required to constrain these fine-scale features
adequately. Nevertheless, despite the smoothf DIC

int the corre-
spondingpCO2 and sea–air CO2 flux fields (Fig.3, top) do
comprise fast variations as represented in the process param-
eterizations, including responses to variations in temperature
(changes in solubility and chemical equilibrium) or in wind
speed (e.g. accelerated depletion of an oversaturated mixed
layer in a high wind speed event,Bates et al., 1997). These
effects already account for a considerable part of short-term
variations (see Sect.3.4 below). Only variations related to
fast ocean-internal processes, such as the sub-weekly varia-
tions of upwelling events or algal blooms, will be missing. In
any case, the pseudo-data tests (AppendixB) confirm that the
degrees of freedom in the diagnostic scheme provide suffi-
cient flexibility to follow variability as contained in thepCO2

fields from a biogeochemical process model simulation (as
the model has less day-to-day variability than the realpCO2

field, however, this test may underestimate errors from alias-
ing such high-frequency variations into variations on the re-
solved timescales).

3.3 Robustness

Figures6 and 7 show the seasonality of the sea–air CO2
flux and the surface-ocean CO2 partial pressure as estimated
from SOCAT data by runSFC. The fields have been inte-
grated/averaged over a set of regions splitting the ocean into
basins and latitude bands.

To test how robustly the results are determined from the
data and to assess the impact of errors in the parameteri-
zations and their driving fields, individual important model
elements have been changed in sensitivity runs: (i) increase
and decrease of the a-priori uncertainty by a factor 2, leav-
ing more/less freedom for inverse adjustments, (ii) decrease
of the a-priori uncertainty of non-seasonal variations inf DIC

int
by a factor of 2, (iii) increase in the spatial correlation lengths
by a factor of 3, (iv) increase and decrease of the global mean
piston velocity by 3.2 cm (range given byNaegler, 2009), and
(v) increase and decrease mixed-layer depthh by a factor of
2. The resulting range of results (grey bands in Figs.6 and
7) is generally very narrow compared to the seasonal ampli-
tude, in particular forpCO2. In most regions, the sensitivity of
the sea–air flux is slightly larger than that ofpCO2, almost en-
tirely due to the uncertainty of gas exchange (variation in pis-
ton velocity). Larger spread inpCO2 than in the sea–air flux
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Fig. 6. Monthly mean seasonal cycle of sea–air CO2 fluxes, esti-
mated by fitting the diagnostic scheme to SOCAT data (runSFC,
blue). The grey shading around the standard result comprises sen-
sitivity cases listed in Sect.3.3. Fluxes have been integrated over
latitude bands split into ocean basins (including open ocean, coastal
areas and marginal seas; panels in geographical arrangement). Sea-
sonal cycles have been calculated over the period 1997–2009; the
first half year is repeated for clarity.

is found mostly in the North Pacific and the temperate North
Atlantic, entirely due to a few marginal areas (including pix-
els in the far north of the Pacific, or the Black Sea and the
Caspian Sea added to the Atlantic region, see Fig.4) where
thepCO2 seasonality is exceptionally high due to high SST
seasonality, but where gas exchange is low such that their
contribution to regional sea–air flux is nevertheless small. If
pCO2 is averaged only over the open ocean, thepCO2 spread
becomes narrow in all regions (see Supplement Fig. S7.8).

3.4 Fit to the data

The match of the estimatedpCO2 field and measured data
points somewhat depends on the considered location (Fig.8).
At the North Pacific example pixel (i.e. within the region of
largest spread among the sensitivity cases in Fig.7), the sea-
sonality is underestimated by some µatm. This may result

Fig. 7. Analogously to Fig.6, monthly mean seasonal cycle of

surface-ocean carbon dioxide partial pressurep
CO2
m , estimated by

fitting the diagnostic scheme to SOCAT data (runSFC, blue). The
grey shading comprises the same sensitivity cases. For comparison,

the p
CO2
m climatology byTakahashi et al.(2009) is given (violet,

with a small additive adjustment to transfer the nominal year 2000
average into a 1997–2009 average according to the rising atmo-

spheric CO2 partial pressure fieldpCO2
a , Eq.A3).

from scale mismatch between the model pixel (≈ 4◦ lat.× 5◦

long.) and the point measurement, but likely also from the
need to compromise between the signals of neighbouring lo-
cations in the fit: the statistics of the misfit in the surrounding
area (Pacific 45◦–90◦ N) reveal very small seasonal biases
(well below 1 µatm, Fig.9). The distribution of residuals de-
viates somewhat from the Gaussian assumed mathematically
in the Bayesian inference by having wider tails, but is sym-
metric. Example locations STM and – to a lesser degree –
BTM show close seasonal fit (Fig.8), and agreement also in
some high-frequency features (see below). A less successful
fit is found at Stratus (South Pacific) in an area of low data
density (note that the independent data at this location are
mainly from after the end of the SOCAT v1.5 data period;
thus the agreement relies on the extrapolating effect of the
dominating seasonal degrees of freedom (AppendixA2.2)
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200 C. R̈odenbeck et al.: Global surface-oceanpCO2 and sea–air CO2 flux variability
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Fig. 8. Comparison between the estimatedpCO2 field (runSFC, blue) and measurements (black dots) at test locations. Left: Data contained
in SOCAT v1.5 (larger dots) at a pixel in the North Pacific, andthe pixel around Station M in the North Atlantic. Right: Two mooring
sites in the North Atlantic (BTM, (64◦ W,32◦ N)) and South Pacific (Stratus (85.62◦ W,19.70◦ S)) by Sabine et al. (2010) that are not part
of SOCAT v1.5 (smaller dots). ThepCO2 field has been picked at the times where the measurements exist (connected by straight lines for
clarity); the time axes have been limited to respective years with data. The monthly climatology by Takahashi et al. (2009) (regridded and
with added trend parallel to the atmosphericCO2 increase, violet) is also given. See Supplementary material for comparisons to SOCAT data
(Figure S7.5) and independent data (Figure S7.6) at furtherlocations.
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Fig. 9. Histograms of the residuals of the fit to SOCAT data (i.e.,
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Figure S5.2 for global maps of seasonal residuals.

Fig. 8. Comparison between the estimatedpCO2 field (runSFC, blue) and measurements (black dots) at test locations. Left: data contained in
SOCAT v1.5 (larger dots) at a pixel in the North Pacific, and the pixel around Station M in the North Atlantic. Right: two mooring sites in the
North Atlantic (BTM, 32◦ N, 64◦ W) and South Pacific (Stratus, 19.70◦ S, 85.62◦ W) by Sabine et al.(2010) that are not part of SOCAT v1.5
(smaller dots). ThepCO2 field has been picked at the times where the measurements exist (connected by straight lines for clarity); the time
axes have been limited to respective years with data. The monthly climatology byTakahashi et al.(2009) (regridded and with added trend
parallel to the atmospheric CO2 increase, violet) is also given. See Supplement for comparisons to SOCAT data (Fig. S7.5) and independent
data (Fig. S7.6) at further locations.
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Fig. 8. Comparison between the estimatedpCO2 field (runSFC, blue) and measurements (black dots) at test locations. Left: Data contained
in SOCAT v1.5 (larger dots) at a pixel in the North Pacific, andthe pixel around Station M in the North Atlantic. Right: Two mooring
sites in the North Atlantic (BTM, (64◦ W,32◦ N)) and South Pacific (Stratus (85.62◦ W,19.70◦ S)) by Sabine et al. (2010) that are not part
of SOCAT v1.5 (smaller dots). ThepCO2 field has been picked at the times where the measurements exist (connected by straight lines for
clarity); the time axes have been limited to respective years with data. The monthly climatology by Takahashi et al. (2009) (regridded and
with added trend parallel to the atmosphericCO2 increase, violet) is also given. See Supplementary material for comparisons to SOCAT data
(Figure S7.5) and independent data (Figure S7.6) at furtherlocations.
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Thin lines show the relative abundance (within bins of5µatm) of
residuals over all pixels from the North Pacific (North of 45◦ N) and
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same mean and standard deviation. See Supplementary material,
Figure S5.2 for global maps of seasonal residuals.

Fig. 9. Histograms of the residuals of the fit to SOCAT data (i.e.
pCO2 estimated by runSFC minus data, µatm, horizontal axis).
Thin lines show the relative abundance (within bins of 5 µatm) of
residuals over all pixels from the North Pacific (north of 45◦ N) and
all time steps with data in winter (January–February–March, blue)
or in summer (July–August–September, red). Respective thick lines
give a Gaussian of the same mean and standard deviation. See Sup-
plement Fig. S5.2 for global maps of seasonal residuals.

but misses any interannual anomalies). See the Supplement
(Sect. S5, Figs. S7.5 and S7.6) for more comparisons and
statistics.

In order to validate the high-frequency variations, we com-
pare them to mooring observations independent of the SO-

CAT v1.5 data set (Fig.10, upper panels). In the extra-tropics
(example sites BSO or MOSEAN+WHOTS), many short-
term features are reproduced in runSFC, though mostly with
reduced amplitude. Discrepancies (e.g. beginning of 2007 at
BSO) can largely be explained by the deviation of sea surface
temperature in our driving field – regridded to the≈ 4◦

× 5◦

pixels around the stations – from the local temperature (lower
panels). Note that this discrepancy does not preclude that the
pixel average ofpCO2 is actually reproduced more accurately
than the local value, to the extent that our SST field repre-
sents the pixel’s average temperature; however, this cannot
be validated or falsified based on the point data.

In contrast to the extra-tropics, the high-frequency varia-
tions in our estimate are unrelated or even opposite to those
of the measurements in the tropics (example site TAO170W),
even though the SST field performs similarly as at the
extra-tropical sites. While in the extra-tropics warmer SST
leads to higherpCO2

m as reproduced by the solubility and
chemistry parameterizations, tropicalp

CO2
m increases during

cold events, as in the upwelling of cold and carbon-rich
deep water. Such events would have to be reproduced as
high-frequency variations in the ocean-internal sources/sinks
f DIC

int , which however cannot be constrained from the SO-
CAT data set (potentially except at very few locations in pe-
riods of high-frequency sampling).

As similar conditions are found at other extra-tropical and
tropical sites (Supplement Figs. S7.6, S7.7), we conclude
that our results reproduce at least part of the real short-term
variations in the extra-tropics dominated by solubility and
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Table 1.Data sets used as constraints or as driver data in the process parameterizations (Sect.A1).

Quantity Data set Reference Pre-treatment/resolution/remarks Used for

Surface-ocean data:

p
CO2
m SOCATv1.5 Pfeil et al.(2012), Data are used having WOCE-flag = 2 and valid fields for SFC

http://www.socat.info/ fugacity, temperature, and salinity. Values below
200 µatm or above 600 µatm have been excluded as
being local compared to the grid cells. Values have been
transferred from fugacity to partial pressure by
dividing by 0.996.

Atmospheric data:

cCO2 Various Conway et al.(1994) CO2 mixing ratioscCO2. Data points are individual ATM
measurement and many others flask pair averages (approximately weekly) or hourly averages,
programs taken at 57 sites globally.

Driver data:

T OAFlux Yu and Weller(2007) Gridded, daily All
ε OAFlux Yu and Weller(2007) Gridded, daily All
S WOA 2001 Conkright et al.(2002) Gridded monthly climatology (interpolated, All

values taken fromA data set)
A Lee et al.(2006) Gridded monthly climatology (interpolated) All
γ DIC Egleston et al.(2010) Mean spatial pattern All

C
DIC,Ref
m GLODAP Key et al.(2004) Mean spatial pattern All

h LOCEAN de Boyer Mont́egut et al.(2004) Temperature criterion; All
monthly climatology (interpolated)

u NCEP reanalysis Kalnay et al.(1996) All
Meteo. NCEP reanalysis Kalnay et al.(1996) Driver for TM3 atmospheric transport model All

Comparison data:

p
CO2
m Takahashi et al.(2009) Gridded monthly climatology Sect.3.5

C
PO4
m WOA 2005 Garcia et al.(2006) Gridded monthly climatology Sect.3.7

Glossary: GLODAP = Global Ocean Data Analysis Project; LOCEAN = Laboratoire d’océanographie et du climat: expérimentations et approches numériques; Meteo. =
Meteorological variables as listed inHeimann and K̈orner(2003); NCEP = National Centers for Environmental Prediction; OAFlux = Objectively Analysed air–sea
Fluxes; SOCAT = Surface Ocean CO2 Atlas; WOCE = World Ocean Circulation Experiment; WOA = World Ocean Atlas; Math symbols see Table2.

chemistry. In the tropics, more realistic short-term variations
could potentially be obtained by parameterization of fast pro-
cesses (upwelling events) inf DIC

int .

3.5 Comparison to the Takahashi climatology

The monthly mean seasonal cycle calculated from our spatio-
temporal pCO2 field has been compared to the widely
used observation-based climatology byTakahashi et al.
(2009), which differs from our method in thepCO2 data set
used (Lamont-Doherty Earth Observatory (LDEO) database,
Takahashi et al., 2010) and in the way of spatio-temporal ex-
trapolation of the point data into pixels without data: while
the diagnostic scheme extrapolates the internal flux field
f DIC

int and then inferspCO2 from it via the process represen-
tations (Fig.5), Takahashi et al.(2009) extrapolates thepCO2

field itself, using a 2-dimensional advection–diffusion equa-

tion1. In data-dense areas, results should not depend much on
the extrapolation method.

In most regions, the seasonal cycle estimated from SO-
CAT by the diagnostic scheme is similar in phase to the
pCO2 climatology byTakahashi et al.(2009) (Fig. 7), though
the seasonal amplitude is somewhat larger in many regions.
Even better agreement is found when only considering the
open ocean: the open-ocean seasonalities in the temperate
North Pacific and Atlantic almost fully coincide (Supplement
Fig. S7.8). Open-ocean agreement is also confirmed at sev-
eral of our test locations (Fig.8).
Differences between our seasonalities and theTakahashi
et al.(2009) climatology are somewhat bigger in areas of low
data density (e.g. the Southern Ocean), as expected. Com-
parison to data at typical test locations tends to confirm the
slightly larger seasonal amplitudes in our estimate (Fig.8

1 As a further methodological difference, the diagnostic scheme
uses each data point at its original sampling time; thus no transfer to
a nominal year as inTakahashi et al.(2009) is needed and interan-
nual variations in atmospheric CO2 above the ocean are fully taken
into account.
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Table 2. Mathematical symbols (also see Table3). Some quantities are indexed by species or other distinctions explained in the text.

Quantity Unita Meaning

A ppm (µmol m−2 s−1)−1 Atmospheric transport matrix, Eq. (A25)
CDIC

m µmol kg−1 Mixed-layer DIC concentration
CDIC

a µmol kg−1 DIC concentration in equilibrium with atmosphere
cobs ppm Set of observed atmospheric mixing ratios
cmod ppm Modelled mixing ratios, Eq. (A25)
c0 ppm Initial mixing ratio
fma µmol m−2 s−1 Sea-to-air tracer flux, Eq. (A17)
fhist µmol m−2 s−1 History (re-entrainment) flux, Eq. (A20)
fint µmol m−2 s−1 Ocean-internal tracer sources/sinks, Eq. (A18)
F µmol m−2 s−1 Flux model matrix, Eq. (A26)
f µmol m−2 s−1 Vector of flux discretized at pixels/time steps
h m Mixed layer depth
J 1 Cost function, Eq. (A27)
Jc 1 Cost function, atmospheric data part, Eq. (A24)
Jp 1 Cost function, surface-ocean data part, Eq. (A30)
k m s−1 Piston velocity, Eq. (A2)
L mol kg−1 atm−1 Solubility (including fugacity correction), Eqs. (A1) and (S1.1)
pm µatm Partial pressure in mixed layer, Sect.A1
pa µatm Atmospheric partial pressure, Eq. (A3)
pbaro atm Barometric pressure at ocean surface
pdry atm Dry-air pressure at ocean surface
pH2O µatm Saturation water vapor pressure above ocean, Eq. (S1.3)
S ‰ Mixed-layer salinityb

Sc 1 Schmidt number, Appendix S1.1
T ◦C Mixed-layer temperature (sea surface temperature, SST)
t s Time coordinate
ti , te s Start time, end time of inversion period
u m s−1 Wind speed at 10 m above surface
x 1 Vector of adjustable parameters, Eq. (A26)
X ppm Dry-air molar mixing ratio in the atmosphere above the ocean
z m Vertical coordinate
β 1 Temperature factor of CO2 partial pressure, Eqs. (A5) and (A6)
0 1 Scaling of piston velocities, Eq. (A2)
γ DIC µmol kg−1 Buffer factor (response factor), Eq. (A11)
ε 1 Ice-free fraction of ocean surface (0= ice-covered, 1= ice-free)

a ppm = µmol mol−1; b for the present purposes, salinity in ‰ or on the Practical Salinity Scale are considered interchangeable.

and Supplement Figs. S7.5 and S7.6). In particular, in the
North Pacific where differences between the two methods
are biggest, larger seasonalities are confirmed both at the in-
dividual pixels (see Fig.8 for a typical example) and in the
larger seasonal bias of about 8.5 µatm in the differences be-
tweenTakahashi et al.(2009) and SOCAT data points in that
area (however, the largest contribution to the difference in the
pCO2 average of Fig.7 comes from the northernmost pixels
where data are too sparse for a conclusive validation). Data
at Station M (Fig.8) also confirm larger seasonality in the
North Atlantic.

Differences between the two estimates are also bigger to-
wards the coast. Note that part of these coastal differences
come from the fact that, in order to cover the entire ocean
surface, we extrapolated theTakahashi et al.(2009) clima-

tology using its open-ocean values. For example, this con-
tributes to the differences in the temperate North Atlantic due
to the Mediterranean (see Supplement, Fig. S7.5).

Partly, the differences in Fig.7 can be traced to the fact
that the two estimates are based on differentpCO2 data sets,
though there is considerable overlap between the SOCAT and
LDEO databases (this influence has explicitly been tested in
the Supplement Sect. S6). Sensitivity to data selection par-
tially arises from interannual variations; in particular, differ-
ences in the tropics may be related to the exclusion of El Niño
data inTakahashi et al.(2009). Moreover, the synthetic data
test (AppendixB) reveals slightly too high seasonality in our
results, though most of this mismatch is confined to certain
marginal areas (that do not contribute much to the sea–air
flux due to low gas exchange).
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Fig. 10. Top: Time series of surface-oceanpCO2 (µatm) at independent mooring sites (not part of SOCATv1.5): Barents Sea Opening
(72.5◦ N,19.5◦ E, Arthun et al. (2012)), combined MOSEAN and WHOTS moorings(22.77◦ N,157.92◦ W, Sabine et al. (2010)), and from
the TAO array (2◦ S,170◦ W, Sabine et al. (2010)). Comparison between the measurements (black dots) and thepCO2 field estimated by
fitting to the SOCAT data (blue). The estimated field has been picked at the times where measurements exist; one year as beenselected for
each site.Bottom:Sea surface temperature measured simultaneously withpCO2 (black dots) compared to our SST driving field at this pixel
(light grey).

Fig. 10.Top: time series of surface-oceanpCO2 (µatm) at independent mooring sites (not part of SOCATv1.5): Barents Sea Opening (72.5◦ N,
19.5◦ E, Arthun et al., 2012), combined MOSEAN and WHOTS moorings (22.77◦ N, 157.92◦ W, Sabine et al., 2010), and from the TAO
array (2◦ S, 170◦ W, Sabine et al., 2010). Comparison between the measurements (black dots) and thepCO2 field estimated by fitting to
the SOCAT data (blue). The estimated field has been picked at the times where measurements exist; one year has been selected for each
site. Bottom: sea surface temperature measured simultaneously withpCO2 (black dots) compared to our SST driving field at this pixel (light
grey).

Beyond seasonality, agreement is also found in the im-
plied long-term average global sea–air flux. The 1990–2009
average from runSFC is −1.2 PgC yr−1 (range between
−0.95 PgC yr−1 and−1.45 PgC yr−1 due to sensitivity cases
with lower/higher gas exchange rate, Sect.3.3). Within un-
certainties, this agrees well with the value of(−1.36±

0.6) PgC yr−1 recomputed fromTakahashi et al.(2009) by
Wanninkhof et al.(2012, Table 2, “Net flux” and “Coastal
area”) using CCMP winds (Atlas et al., 2011).

In summary, we take the similarity between the seasonali-
ties from the two methods based on similar data as an indica-
tion that the estimatedpCO2 field in most regions is informed
by the data and not primarily method-dependent.

3.6 Comparison ofpCO2-based and atmospheric
results

Figure 11 compares the SOCAT-based fit from Fig.6 (run
SFC) with the fit of the diagnostic scheme to atmospheric
CO2 data (runATM ). In the Southern Hemisphere, there is
broad agreement in the phasing and amplitude of the sea-
sonal cycle. In particular, the difference between the two runs
is much smaller than their differences from the (common)
prior, i.e. than the adjustments due to the respective data con-
straints. Less agreement is found in the tropics and the North-
ern Hemisphere, in particular in the temperate latitudes.

The ocean fluxes estimated from the atmospheric data
are much less robust (more sensitive to changes in uncer-
tain model details, not shown) than those estimated from the
pCO2 data. As investigated by synthetic data testing (Supple-

ment Sect. S4), this is largely related to the additional degrees
of freedom in adjusting land-to-atmosphere fluxes: signals in
the atmospheric data are partially wrongly attributed to land
or ocean. Consistently, best agreement betweenATM and
SFC occurs in the southern regions away from land influ-
ence, while the large disagreement in the temperate North
Pacific is due to the short but strong sink period during sum-
mer, more typical for terrestrial boreal ecosystems.

The results establish that oceanic and atmospheric data
are consistent in regions away from land influences, but that
estimates based onpCO2 data provide much stronger con-
straints on internal ocean processes, in particular in ocean ar-
eas closer to land. Combining the oceanic and atmospheric
constraints is therefore both possible and beneficial (com-
pareJacobson et al., 2007). It can be implemented by adding
together the cost function contributions ofpCO2 data (from
SFC) and of atmospheric CO2 (from ATM ). The estimated
fields in this combined case (not shown) are almost identi-
cal to theSFC run, as expected from the weakness of the
atmospheric constraint on oceanic fluxes. However, as the at-
mospheric data constrain the sum of ocean and land fluxes,
improvements of the estimated land fluxes can be expected.
Of course, the combined run is essentially equivalent to us-
ing the sea–air fluxes of theSFCrun as priors in a subsequent
“classical” atmospheric inversion (similar as in the joint in-
version byJacobson et al., 2007). Details will be discussed
further in the context of interannual variations in the com-
panion paper (R̈odenbeck et al., 2013).

www.ocean-sci.net/9/193/2013/ Ocean Sci., 9, 193–216, 2013
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Fig. 11. Monthly mean seasonal cycle of sea-airCO2 fluxes as Fig-
ure 6. Estimates by fitting the diagnostic scheme to SOCAT data
(runSFC, blue) are compared to the fit of the scheme to atmospheric
CO2 mixing ratio data (runATM , magenta), as well as to the prior
(no data constraint, thin dashed gray).

Pacific 45N-90N

       
 

-0.5-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5

       
 
 
 
 
 
 
 
 
 
 
 

Pacific 15N-45N

       
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Pacific 15S-15N

       
 

-0.2

-0.1

0.0

0.1

0.2

P
O

4 
co

nc
en

tr
at

io
n 

(u
m

ol
/k

g)

       
 

 

 

 

 

Pacific 45S-15S

       
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Pacific 90S-45S

Jan  Jul  Jan  Jul
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Atlantic 45N-90N

       
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Atlantic 15N-45N

       
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Atlantic 15S-15N

       
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Atlantic 45S-15S

       
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Atlantic 90S-45S

Jan  Jul  Jan  Jul
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

       
 

 

 

PO4 climatology

Fit to SOCAT

       
 

 

Indian 15S-30N

       
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Indian 45S-15S

       
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Indian 90S-45S

Jan  Jul  Jan  Jul
 

-0.2

-0.1

0.0

0.1

0.2

       
 

 

 

 

 

Fig. 12. Mixed-layer phosphate concentration (monthly climatol-
ogy, mean subtracted). Seasonality inferred from the SOCATfit
(blue) assumes all ocean-internal carbon sources and sinksare re-
lated to phosphate sources and sinks in Redfield proportions. For
comparison, thePO4 climatology from the World Ocean Atlas
(WOA, Garcia et al., 2006) is given (green). The grey uncertainty
band around the SOCAT-based estimates again gives the rangeof
sensitivity cases as in Figure 7; note however that calculatedPO4 is
also sensitive to several further model elements not included in this
range.

Fig. 11. Monthly mean seasonal cycle of sea–air CO2 fluxes as
Fig. 6. Estimates by fitting the diagnostic scheme to SOCAT data
(runSFC, blue) are compared to the fit of the scheme to atmospheric
CO2 mixing ratio data (runATM , magenta), as well as to the prior
(no data constraint, thin dashed grey)

3.7 Plausibility of the ocean-internal carbon
sources and sinks

As the diagnostic scheme (in runSFC) is constructed to
match the CO2 partial pressure data, any errors in the pa-
rameterizations linkingpCO2 and f DIC

int (namely carbonate
chemistry (including temperature or alkalinity dependence),
or mixed-layer carbon budget (including freshwater and his-
tory fluxes), see Fig.1) will be compensated by spurious ad-
ditional adjustments to the ocean-internal carbon sources and
sinks. On the one hand, this means that the estimatedpCO2

(and sea–air flux) fields will be only little affected by im-
perfections in these parameterizations. Even at pixels not di-
rectly constrained by apCO2 data value but only indirectly
via extrapolation of thef DIC

int field through its a-priori spatio-
temporal correlations (Fig.5), any such bias will largely can-
cel out (to the extent that it is the same at the directly con-
strained and the extrapolated pixels). This leads to the robust-
ness of thepCO2 estimate shown in Sect.3.3. Therefore, as
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Fig. 11. Monthly mean seasonal cycle of sea-airCO2 fluxes as Fig-
ure 6. Estimates by fitting the diagnostic scheme to SOCAT data
(runSFC, blue) are compared to the fit of the scheme to atmospheric
CO2 mixing ratio data (runATM , magenta), as well as to the prior
(no data constraint, thin dashed gray).
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Fig. 12. Mixed-layer phosphate concentration (monthly climatol-
ogy, mean subtracted). Seasonality inferred from the SOCATfit
(blue) assumes all ocean-internal carbon sources and sinksare re-
lated to phosphate sources and sinks in Redfield proportions. For
comparison, thePO4 climatology from the World Ocean Atlas
(WOA, Garcia et al., 2006) is given (green). The grey uncertainty
band around the SOCAT-based estimates again gives the rangeof
sensitivity cases as in Figure 7; note however that calculatedPO4 is
also sensitive to several further model elements not included in this
range.

Fig. 12. Mixed-layer phosphate concentration (monthly climatol-
ogy, mean subtracted). Seasonality inferred from the SOCAT fit
(blue) assumes all ocean-internal carbon sources and sinks are re-
lated to phosphate sources and sinks in Redfield proportions. For
comparison, the PO4 climatology from the World Ocean Atlas
(WOA, Garcia et al., 2006) is given (green). The grey uncertainty
band around the SOCAT-based estimates again gives the range of
sensitivity cases as in Fig.7; note however that calculated PO4 is
also sensitive to several further model elements not included in this
range.

long as we are only interested in thepCO2 (and sea–air flux)
fields,f DIC

int could be just considered a mathematical device
in the mapping ofpCO2.

On the other hand, if the ocean-internal fluxes are of inter-
est themselves (or in the envisaged extensions of the scheme
using further data streams like oxygen coupled to carbon via
f DIC

int ), correctness of the parameterizations is needed. On
the seasonal timescale considered here, the plausibility of
the estimatedf DIC

int field can be tested in the light of mixed-
layer phosphate concentrations. As explained in AppendixC,
a modelled mixed-layer phosphate field can approximately
be calculated from ourf DIC

int estimate, and can be compared
to an observation-based monthly climatology (World Ocean
Atlas, Garcia et al., 2006). The inferred PO4 concentration
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seasonality is broadly similar in phase and amplitude to
the observations (Fig.12), including characteristic region-to-
region differences, though overestimation is seen especially
in the temperate latitudes. Given that part of the mismatch
arises because the modelled PO4 concentration neglects non-
Redfieldian sources/sinks (as justified in AppendixC) and
because of errors in the observed PO4 climatology which are
likely significant (and amplified by the Redfield ratio), we
take this agreement as broad confirmation of the employed
parameterizations.

The carbonate chemistry parameterization (including its
driving fields, in particular alkalinity) can specifically be
checked using DIC data. This is done in the companion paper
(Rödenbeck et al., 2013).

3.8 The diagnostic mixed-layer scheme in the context
of other p

CO2
m mapping methods

The suitability of individualpCO2
m mapping methods (Sect.1)

depends on the intended application. The primary motivation
of the diagnostic mixed-layer scheme presented here was to
be able to process different data streams (so farpCO2 and
atmospheric CO2 mixing ratio) in a consistent way, and to
combine them. The intention was to achieve this in a data-
dominated way, with the least complex model possible.

Statistical methods like the referencep
CO2
m climatology by

Takahashi et al.(2009) or the interpolation byJones et al.
(2012b) have the advantage of being data-dominated, quite
independent of driver data sets and process parameteriza-
tions. Regression methods (multi-linear regression, neural
networks) use driver data sets to bring in information about
modes of variability not resolved by the data, thus addressing
the problem of data sparsity; still, they leave flexibility in the
way of howp

CO2
m and these driving fields are related. Finally,

data assimilation into process models then also prescribes
this relation analytically, which brings in process knowledge
as a further constraint, with the risk of suppressing real vari-
ability not captured in the chosen parameterizations.

The diagnostic scheme is similar to the regression meth-
ods, thereby also reproducing some of the short-term vari-
ability (Sect.3.4). It is more rigid, like data assimilation, for
some processes that may be considered relatively well known
(sea–air gas exchange, carbonate chemistry, and mixed-layer
mass conservation). It is more free, on the other hand, for the
ocean-internal sources and sinks (it is independent of any as-
sumptions except for smoothness as needed to regularize the
mathematics), i.e. it is purely statistical here. The smoothness
assumption represents the mechanism of spatio-temporal in-
terpolation2.

2 This results in different notions of output resolution: Formally,
the resolution is daily and≈ 4◦

× 5◦ pixels, but part of this fine-
scale variability is only coming from the driving data, while only
the larger scales (> monthly and> 1500 km areas) are actually in-
formed by the SOCAT data.

An advantage of explicit parameterizations, as in the pro-
posed mixed-layer scheme, is that the unknowns (here: in-
ternal sources/sinks) are physical quantities which are poten-
tially open for interpretation (compare Sect.3.7). They also
enable us to use measurements of further quantities of the
scheme (such as mixed-layer DIC concentration, nutrients,
etc.) as data constraints as well. These further data streams
can either be used instead of the present ones (p

CO2
m or at-

mospheric data) to create alternative estimates for compari-
son, or in conjunction with the present ones to potentially in-
troduce further unknowns and so distinguish more processes
(e.g. carbonate chemistry).

All carbon sources/sinks in the ocean and on land are
linked to oxygen sinks/sources, most of them in rather well-
defined stoichiometric ratios. The diagnostic scheme can
therefore be extended to also make use of atmospheric or
oceanic measurements of oxygen (Rödenbeck et al., 2013).

Beyond the scheme as presented here, multi-linear re-
gression could be brought in by expressing the unknown
ocean-internal fluxes as a linear combination of (further)
driving variables and then match the data by adjusting time-
independent weights. This would make the estimation more
similar to data assimilation, with the benefits and risks men-
tioned above. Further, instead of linear combinations, pa-
rameterizations of the ocean-internal processes involving ad-
justable parameters could be used if available. This would
also open up the way to use even further data streams, such
as ocean color from satellite observation.

4 Summary and conclusions

We presented a temporally and spatially resolved estimate
of the global surface-ocean CO2 partial pressure field and
the sea–air CO2 flux, obtained on the basis of CO2 partial
pressure data from the SOCAT database. In order to inter-
polate the point data into a spatio-temporal field and to add
short-term variations not constrained from the data, a simple
model of surface-ocean biogeochemistry, including represen-
tations of sea–air gas exchange, solubility, carbonate chem-
istry, mixed-layer DIC budget, and seasonal re-entrainment
(“history”), was fitted to the observations. The inverse proce-
dure was similar to atmospheric inversion calculations, using
spatial and temporal a-priori correlations to extrapolate the
data information.

Focusing first on seasonal variations, the following con-
clusions were drawn:

– The diagnostic scheme can be robustly fit to SOCAT
pCO2 data, to estimate the spatio-temporalpCO2 field
and sea–air CO2 flux (runSFC).

– In terms of seasonality, the resultingpCO2 field agrees
well with the climatology byTakahashi et al.(2009),
confirming that the estimates are informed by the data.

www.ocean-sci.net/9/193/2013/ Ocean Sci., 9, 193–216, 2013
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Differences mainly occur in coastal areas and marginal
seas, as well as in regions where data density is low.

– The atmospheric CO2 constraint on surface-ocean bio-
geochemistry (runATM ) is not robust in general, but
consistent with the oceanic constraint (runSFC) in ar-
eas away from land influences. This confirms that it is
appropriate and advisable to use the oceanic constraint
as oceanic prior in an atmospheric inversion, to improve
the inferred land fluxes.

– The diagnostic scheme involves interpretable quanti-
ties, as indicated by the comparison of predicted and
observed seasonal phosphate variations. The scheme
can be extended by parameterizations of ocean-internal
sources and sinks, that allow us to use further data
streams to constrain individual biogeochemical pro-
cesses.

– Using synthetic data tests (as in Appendix B), the diag-
nostic mixed-layer model can also be applied to B as-
sess possible impacts of additional data on constraining
ocean biogeochemistry, helping to design future obser-
vation strategies.

The results also include interannual variations, which will
be considered in a companion paper (Rödenbeck et al.,
2013).

The griddedpCO2 and sea–air CO2 flux estimates will be
made available for download in digital form from the Jena in-
version website,www.bgc-jena.mpg.de. Regular updates are
planned.

Appendix A

Model documentation

For reference, all mathematical symbols are listed in Tables2
and3.

A1 Ocean process parameterizations

This section details the equations used to express sea–air flux
as a function of partial pressure (Sect.A1.1), partial pres-
sure as a function of mixed-layer concentration (Sect.A1.2),
and mixed-layer concentration as a function of ocean-interior
source/sinks (Sect.A1.3), going down the chain of parame-
terizations in Fig.1.

The variables of the following parameterizations are
spatio-temporal fields, with a temporal resolution of 1 day
and a horizontal resolution of≈ 4◦

× 5◦, i.e. the equations
are applied to every pixel of the atmospheric transport model.
Vertically, we consider an oceanic mixed layer assumed to be
perfectly homogeneous in temperature and chemical compo-
sition, exchanging inorganic carbon with the overlying atmo-
sphere, the underlying ocean interior, neighbouring pixels,
and the organic carbon pool.

A1.1 Solubility and gas exchange

Sea–air flux is expressed in the usual way in terms of a partial
pressure difference,

f CO2
ma = kCO2%LCO2

(
pCO2

m − pCO2
a

)
(A1)

(atmospheric sign convention: positive = source to atmo-
sphere), wherepCO2

a is the CO2 partial pressure in the at-
mosphere, andpCO2

m the CO2 partial pressure in the ho-
mogeneous mixed layer3. The temperature-dependent solu-
bility LCO2 relates the partial pressure difference to a dis-
solved CO2 concentration difference. The seawater density%

is needed to relate volume-based and mass-based quantities.
The diffusive resistance to sea–air gas exchange is described
by the piston velocitykCO2. We use the formulation accord-
ing toWanninkhof(1992):

kCO2 = 0u2
(
ScCO2/ScRef

)−0.5
, (A2)

calculated from 6-hourly NCEP wind speedu (Kalnay et al.,
1996) and Schmidt numberSc given in the Supplement
Sect. S1.1. The global scaling factor0 is chosen such that
the global mean CO2 piston velocitykCO2

Glob matches the value
from Table3 given byNaegler(2009) (average of values by
Naegler and Levin(2006), Krakauer et al.(2006), Sweeney
et al.(2007), andMüller et al.(2008) inferred from radiocar-
bon data).

The atmospheric partial pressure

pCO2
a = XCO2pdry (A3)

inherits variability not only from atmospheric dry-air pres-
surepdry (Supplement Sect. S1.1) but also from the atmo-
spheric CO2 molar mixing ratioXCO2 just above the ocean
surface, which has considerable increasing trend, seasonality,
and – even over the ocean – synoptic variability. It is taken
from the atmospheric CO2 mixing ratio fields provided by the
Jena inversion s81v3.4 (seehttp://www.bgc-jena.mpg.de/
∼christian.roedenbeck/download-CO2/). ThisXCO2 field has
been obtained from a forward run of the atmospheric trans-
port model (TM3, resolution≈ 4◦

× 5◦
× 19 layers), with

surface fluxes from a classical atmospheric transport inver-
sion based on atmospheric CO2 measurements. TheXCO2

field constructed that way is compatible with measured CO2
mixing ratios at the sites used, and therefore realistic at least
in the rising trend and large-scale seasonality; the sensitivity
of the results presented here to theXCO2 field is small (see
Supplement Sect. S2).4

3 More precisely, it is the CO2 partial pressure in air in equilib-
rium with sea water of the present chemical composition.

4 Of course, the use of inversion-basedXCO2 already creates
some dependence of our prior from atmospheric data. In runATM ,
this formally violates assumptions of Bayesian inference, which
however could only affect calculations of a-posteriori covariances.
Even there, we would not expect problems due to the small sensi-
tivity on XCO2.
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Table 3. Physical constants, and geophysical quantities assumed constant.

Quantity Value Meaning

cp 3993 J kg−1 K−1 Specific heat capacity of sea water (value at 20◦C)

k
CO2
Glob 16.5 cm h−1 (= 4.58· 10−5 m s−1) Global mean piston

velocity of CO2 (Naegler, 2009)
Rgas 8.3144 J mol−1 K−1 Gas constant
T0 273.15 K Absolute temperature at 0◦C
Videal 0.0224136 m3 mol−1 Molar volume of an ideal gas
% 1025 kg m−3 Density of sea water

Table 4.Adjustable degrees of freedom.

Quantity A-priori Spatial Temporal
value resolution resolution

Carbon cycle components:

f DIC
int Ocean-internal DIC sources/sinks Zero corr. pix. lt+ seas

f
CO2
nee Land NEE (runATM only) corr. pix. lt, seas, var

Technical degrees of freedom:

1C
DIC, ini
m Initial condition of budget equation Zero corr. pix. –

f
CO2
ini Flux pulse for atmospheric initial condition (runATM only) Zero 3 lat. bands –

Glossary: lt, – = constant (long-term); seas = seasonal; var = interannual and short-term variability; corr. pix. = correlated pixels; math symbols see
Table2.

A1.2 Carbonate chemistry

The CO2 partial pressure in the mixed layer is a function of
mixed-layer DIC concentrationCDIC

m , alkalinity A, tempera-
tureT , and salinityS:

pCO2
m = pCO2

m

(
CDIC

m , A, T , S
)
. (A4)

In the diagnostic scheme, the relevant dependence is that on
CDIC

m , while the influences ofA, T , andS are calculated a-
priori from driver data (Table1). While the exact function is
a 5th order polynomial (Zeebe and Wolf-Gladrow, 2001), we
use existing approximations, as described in the following.

At first, we single out the temperature dependence into a
temperature-dependent factor andp

CO2
m at a reference tem-

peratureT Ref:

pCO2
m = β

(
T , T Ref

)
· pCO2

m (CDIC
m , A, T Ref, S). (A5)

For iso-chemical sea water (i.e. constantCDIC
m , A, andS),

Takahashi et al.(2009) experimentally determined the ratio
of p

CO2
m of samples at different temperatures to be

β(T1, T2) = exp
{
0.0433K−1 (T1 − T2) (A6)

−4.35× 10−5K−2
(
T 2

1 − T 2
2

)}
.

Even though this relation has been fitted to data in the tem-
perature range of about 2 to 25◦C, it is used here for all tem-
peratures.

The remaining dependences ofp
CO2
m are non-linear, but

monotonic and can be linearized to good approximation
(Sarmiento and Gruber, 2006). Linearization of the depen-
dence onCDIC

m is important here in order to be able to
use the fast minimization algorithm ofRödenbeck(2005)
(Sect.A2.1). We consider deviations (1) of the driver vari-
ables from temporally constant reference values (superscript
“Ref”, see Sect.A1.4 below):

CDIC
m = 1CDIC

m +CDIC,Ref
m (A7)

A = 1A +ARef (A8)

S = 1S +SRef (A9)

Linearization of Eq. (A5) around these references gives

pCO2
m = β

(
T , T Ref

)
× (A10)[

pCO2,Ref
m +

∂p
CO2
m

∂CDIC
m

1CDIC
m +

∂p
CO2
m

∂A
1A +

∂p
CO2
m

∂S
1S

]
.

The DIC sensitivity has been calculated from the response
factorsγ DIC by Egleston et al.(2010):

∂p
CO2
m

∂CDIC
m

=
p

CO2,Ref
m

γ DIC
. (A11)
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The alkalinity sensitivity has been calculated using the ap-
proximation

∂p
CO2
m

∂A
=

∂p
CO2,Ref
m

ARef
× (A12)

−(ARef)2(
2C

DIC,Ref
m − ARef

)(
ARef− C

DIC,Ref
m

)
(Eq. (8.3.17) ofSarmiento and Gruber, 2006, note missing
minus sign). The salinity sensitivity (direct effect on chemi-
cal equilibrium only) has been set to

p
CO2,Ref
m

∂S
=

p
CO2,Ref
m

SRef
(A13)

(Eq. (8.3.5) of Sarmiento and Gruber, 2006). Any sea-
sonal and interannual variations in the proportionalities
∂p

CO2
m /∂CDIC

m , etc., are neglected. The variations in alkalin-
ity, A, and salinity,S, are fixed according to input data sets
(Table1). Their effect onpCO2

m is illustrated in the Supple-
ment Fig. S7.2. Note that the effect of the alkalinity vari-
ations, which are strongly related to freshwater fluxes, is
mainly offset by the freshwater effects on DIC considered
below (Eq.A19).

Equation (A10) provides the desired linear link between
changes inpCO2

m andCDIC
m according to carbonate chemistry.

For simplification in the further use, we combine the gas ex-
change and chemistry formulas: we first define an apparent
DIC concentration in equilibrium with the atmosphere,

1CDIC
a =

(
∂p

CO2
m

∂CDIC
m

)−1[
p

CO2
a

β
(
T , T Ref

) − pCO2,Ref
m (A14)

−
∂p

CO2
m

∂A
1A −

∂p
CO2
m

∂S
1S

]
.

Using this definition, Eq. (A10) becomes

pCO2
m = pCO2

a + β
(
T , T Ref

) ∂p
CO2
m

∂CDIC
m

(
1CDIC

m − 1Ca

)
. (A15)

Now also defining an “apparent piston velocity” of DIC as

kDIC
= kCO2 · LCO2β

(
T , T Ref

) ∂p
CO2
m

∂CDIC
m

, (A16)

Eqs. (A1) and (A15) can be combined and simplified into

f CO2
ma = kDIC%

(
1CDIC

m − 1Ca

)
, (A17)

expressing the sea–air CO2 flux as a linear function of the
surface DIC concentration.

A1.3 Mixed-layer DIC budget

To finally establish the link between the mixed-layer DIC
concentration and the ocean-interior sources and sinks, we

consider that changes in the spatio-temporal field of dis-
solved carbon in the mixed layer need to be balanced by the
sum of fluxes:

d

dt
CDIC

m =
1

h%

(
−f CO2

ma + f DIC
hist + f DIC

frw + f DIC
int

)
. (A18)

Fluxes (carbon exchange per unit horizontal area and unit
time) comprise loss through sea–air exchangef

CO2
ma , seasonal

re-entrainmentf DIC
hist and freshwater effectsf DIC

frw explained
below, and fluxesf DIC

int due to all other ocean-internal pro-
cesses (biological conversion, vertical advection/diffusion,
or horizontal advection/diffusion). This formulation assumes
that fluxes are immediately diluted vertically throughout the
mixed layer. Mixed-layer depthh is prescribed as a climatol-
ogy by de Boyer Mont́egut et al.(2004) (downloaded from
http://www.locean-ipsl.upmc.fr/∼cdblod/mld.htmlusing the
MLD climatology mldT02sk.nc according to a temperature
criterion; chosen because the MLD climatology based on a
density criterion has incomplete coverage, and there is no
MLD product directly based on data that also represents in-
terannual variations). The density% of surface water (as-
sumed constant, Table3) is needed asCDIC

m is mass based
(given in µmol kg−1), while fluxes are volume/area based.

Two specific ocean-internal processes are not considered
part off DIC

int but are parameterized explicitly5 in the budget
(Eq.A18):

– The freshwater effectf DIC
frw describes the dilution or

enhancement of the mixed-layer DIC concentration by
precipitation, evaporation, river freshwater input, or sea-
ice formation/melting. Analogously to the often used
salinity normalization (Sarmiento and Gruber, 2006),
we assume that freshwater does not contain either car-
bon or salt (and that all salinity variations are related
to freshwater fluxes), and calculate the freshwater effect
on DIC from salinity changes:

f DIC
frw = h%

C
DIC,Ref
m

SRef

dS

dt
. (A19)

This will tend to overestimate the effect to the extent
that freshwater input does carry carbon.

– The “history” flux f DIC
hist is part of the carbon exchange

between the mixed layer and the underlying ocean. Con-
sider the hypothetical case that no sources or sinks are
acting below the mixed layer. Then, as soon as the
mixed layer is deepening, it re-entrains water that was
left behind previously during mixed-layer shoaling. As
mixed-layer concentrations will generally have changed

5 The explicit treatment of these processes is not strictly needed
if the only purpose of the scheme was mapping ofpCO2, because
they would otherwise be absorbed intof DIC

int during the fit to the
data. However, splitting them off allows easier interpretation of
f DIC

int (Sect.3.7), and also prepares for the envisaged link to oxygen.
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meanwhile, this re-entrainment is equivalent to a car-
bon flux which is proportional to the difference between
the current concentrationCDIC

m (t) and that at timetprev
when the mixed layer was as deep for the last time. We
call this the “history” flux. It can be written as

f DIC
hist (t) = % ·

(
CDIC

m

(
tprev

)
− CDIC

m (t)
)

· 2

(
dh

dt

)
(A20)

The Heaviside step function2 ensures thatfhist only
acts during mixed-layer deepening (dh/dt > 0). The
history flux is non-zero in the long-term mean: The
deeper waters that get disconnected from the shoaling
mixed layer will preserve the high DIC concentrations
of the winter season. A budget equation that does not in-
clude the re-entrainment of this amount of DIC during
mixed-layer deepening would imply a systematic down-
ward “leak” of DIC. The history flux is thus essential to
balance the long-term mean internal sources/sinksf DIC

int

with the mean sea–air exchangef
CO2
ma (plus the mean

DIC accumulation in the mixed layer itself). This has
been verified numerically, and Sect. S3 proves this bal-
ance analytically.

Any changes of the DIC concentration below the mixed
layer will lead to additional entrainment fluxes, forming
an important part off DIC

int .

Substituting Eq. (A17) into Eq. (A18) gives

d

dt
1CDIC

m = −
kDIC

h
1CDIC

m +
kDIC

h
1CDIC

a (A21)

+
1

h%
f DIC

hist {1CDIC
m } +

1

h%
f DIC

frw +
1

h%
f DIC

int ,

where we further exploited that the temporally constant ref-
erenceCDIC,Ref

m disappears from the left-hand side. The ref-
erence also cancels out in the history flux (Eq.A20), which
is thus a linear functional of1CDIC

m (t). Equation (A21) thus
represents a 1st order differential equation in1CDIC

m that can
be solved (numerically) for given “forcing”f DIC

int . At the be-
ginningti of the time period, we use the initial condition

1CDIC
m (ti) = 1Ca(ti) + 1CDIC, ini

m . (A22)

Up to a constant offset (determined byCDIC,Ref
m ) and an

initial transient (determined by1C
DIC, ini
m , see Supplement

Sect. S1.2), Eq. (A21) thus provides a linear dependence of
CDIC

m onf DIC
int for every pixel.

A1.4 Reference values

For the reference valuesCDIC,Ref
m , ARef, T Ref, andSRef, we

use the long-term averages of the respective driver data sets
(Table1) for each pixel. The partial pressure reference value
p

CO2,Ref
m in Eq. (A10) formally follows from the functional

relation

pCO2,Ref
m = pCO2

m

(
CDIC,Ref

m , ARef, T Ref, SRef
)
. (A23)

Solving this equation would be numerically involved but for-
tunately is not needed in practice: Firstly,C

DIC,Ref
m only de-

termines the absolute levels of DIC (Eq.A7) not considered
here, but does not directly affect our target quantitiesp

CO2
m or

sea–air fluxes (as it cancels out both from Eqs. (A15), (A17),
and (A21); we nevertheless use a data-based field because
a minor influence ofCDIC,Ref

m arises through Eq. (A12) (al-
kalinity sensitivity) and Eq. (A19) (freshwater effect)). Sec-
ondly, the partial pressure reference valuep

CO2,Ref
m has no

effect either: Though changes inpCO2,Ref
m shift the long-term

mean of1Ca through Eq. (A14), the same shift then happens
to 1CDIC

m through Eq. (A21) with Eq. (A22), such that it
again cancels out from Eqs. (A15) and (A17). The choice of
p

CO2,Ref
m is thus arbitrary (we usepCO2

a (ti) as for numerical
reasons a value on the order of the actualp

CO2
m is desirable).

A2 Inversion

The estimation procedure of this paper is derived from the
linear Bayesian atmospheric inversion (Newsam and Enting,
1988). The implementation is based specifically on the atmo-
spheric transport inversion (“Jena CO2 inversion”) described
in Rödenbeck(2005) and reviewed in Sect.A2.1. This atmo-
spheric transport inversion is extended by representing sea–
air fluxes by the ocean parameterizations (Sect.A2.2) and
by using thepCO2 constraint instead of or in addition to the
atmospheric constraint (Sect.A2.3).

A2.1 The classical atmospheric transport inversion

The atmospheric inversion is based on a set of observed mix-
ing ratioscobs (time series at observation sites, see Table1).
The inversion calculation seeks fluxesf that lead to the best
match betweencobs and corresponding modelled mixing ra-
tios cmod(f ), in the sense that the value of the cost function

Jc =
1

2
(cobs− cmod)

T Q−1
c (cobs− cmod) (A24)

is minimal (superscript T means vector transpose). The (di-
agonal) matrixQc introduces a weighting among the con-
centration values, involving assumed measurement uncer-
tainty, location-dependent model uncertainty, and a data den-
sity weighting, as described inRödenbeck(2005). The mod-
elled mixing ratios, taken at the same time and location as the
observations, are simulated by a numerical transport model
(here, the TM3 model,Heimann and K̈orner, 2003), which
can formally be written as

cmod = Af + c0 (A25)

with the transport matrixA and the initial concentrationc0.
Since the atmospheric data at the discrete set of sites can-

not fully constrain the flux field at all pixels and time steps,
Bayesian a-priori constraints are introduced to regularize the
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estimation. They are implemented here by writing the fluxes
as a function of a set of parametersx:

f (x) = f pri + Fx. (A26)

In this linear flux model (Rödenbeck, 2005), each parameter
in x acts as a multiplier for one of the columns of the ma-
trix F to be explained below. A-priori, the parametersx are
assumed to have zero mean and unit variance and to be un-
correlated, expressed by adding the Bayesian cost function
contribution

J = Jc +
1

2
xTx. (A27)

This is equivalent to assuming fluxes with a-priori meanf pri

and a-priori covariance matrixQf ,pri = FFT.
The specification of the flux model elementsf pri andF is

detailed inRödenbeck(2005). The flux is first written as a
sum of contributions from several components:

f = f ma+ f nee+ f fos+ f ini (A28)

(f ma = sea–air flux,f nee = terrestrial net ecosystem ex-
change (NEE),f fos = fossil fuel burning emissions,f ini =
flux pulse at beginning of inversion period to adjust initial
atmospheric mixing ratio field). Each componenti is repre-
sented by a structure as Eq. (A26), i.e.

f (x) =

∑
i

(
f pri, i + Fixi

)
, (A29)

where the vectorsxi denote subsets of parameters inx, and
the matricesFi denote the corresponding groups of columns
of F. The columns ofFi represent spatio-temporal base func-
tions out of which the spatially and temporally varying ad-
justments to the flux fieldf i are composed. In space, the base
functions represent flux elements localized at each of the grid
cells of the transport model. These elements overlap each
other by exponential tails, acting to smooth the flux field. In
time, the base functions represent Fourier modes. Smoothing
is achieved by down-weighting the higher-frequency modes.
In addition to the a-priori correlations implemented that
way, all columns ofFi are proportional to a spatio-temporal
weighting allowing flux adjustments in areas of activity of
the component (e.g. over the ocean forf ma) while suppress-
ing flux adjustments elsewhere.

The detailed flux model settings for the componentsf i of
the surface-to-atmosphere CO2 flux in the “Jena inversion”
are

– f ma: sea–air flux, being of central interest here. In the
pure transport inversion as inRödenbeck(2005), this
component is estimated directly by decomposition into
flux elements as just described.

– f nee, lt+ f nee, seas+ f nee, var: terrestrial net ecosystem
exchange (NEE), further split into long-term flux

(superscript “lt”), mean seasonality (“seas”), and
non-seasonal variations (“var”, interannual and high-
frequency variations). The specification of the priors,
a-priori sigmas, and correlation structure is taken from
the Jena inversion v3.2 (as documented inRödenbeck
(2005) except for a-priori uncertainties tightened by the
factor

√
8, and length scales of a-priori spatial correla-

tions increased by a factor 3 in longitude direction and
by 1.5 in latitude direction).

– f fos: fossil fuel burning. Only a fixed (prior) term,
as in the Jena inversion v3.2 (yearly emissions from
the EDGAR v4.0 database, update ofOlivier and
Berdowski, 2001).

– f ini : purely technical component. Flux pulse at begin-
ning of inversion period to adjust initial atmospheric
mixing ratio field (seeRödenbeck, 2005).

The numerical minimization of the cost function is done
by Conjugate Gradient descent with re-orthonormalization
(Rödenbeck, 2005).

A2.2 Extension: using ocean parameterization

The inversion set-up used in this study is identical to the Jena
inversion system as of Sect.A2.1 in most respects, except
that the sea–air fluxf ma is not estimated directly but im-
plemented as a function of the ocean-internal fluxf int using
the parameterizations of Sect.A1. Then, instead off ma, the
ocean-internal fluxf int is adjusted to match the data con-
straint. The detailed flux-model specifications forf int are
similar to those for the sea–air flux in the atmospheric in-
version:

– The a-priori state has been defined byf DIC
int,pri = 0 (no in-

ternal sources or sinks). The “error” of this prior model
f DIC

int,pri = 0 is then identical with the process fluxes
themselves. Therefore, the a-priori uncertainty around
this prior should reflect the expected amplitude of vari-
ations. In the standard set-up, we make no assump-
tions about spatial structure of the amplitude, and take a
constant per-ocean-area uncertainty over all the ocean.
No adjustments are allowed in ice-covered regions (see
Supplement S1.3). The a-priori uncertainties are scaled
such that the implied a-priori uncertainty of the globally
integrated sea–air flux is 1200 Tmol yr−1 (with respect
to 3-monthly anomalies).

– Bayesian a-priori spatial and temporal correlations have
been implemented that dampen variability inf DIC

int on
scales smaller than around 640 km (longitude), 320 km
(latitude), and about 2 weeks (time), Fig.A1. The cho-
sen e-folding lengths are one-third of the ocean flux cor-
relations in the standard Jena Inversion v3.4 (update of
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Fig. 13. Top: Map of a-priori correlation coefficients with respect
to an example pixel at (70◦ E,49◦ S), illustrating how inverse adjust-
ments tofDIC

int de-correlate with distance.Bottom:A-priori correla-
tion coefficients with respect to an example time step in the middle
of the inversion period; in addition to the de-correlation away from
the example time step, correlations rise again each year dueto the
dominance of the seasonal cycle.
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Fig. 14. Testing the capacity to retrieve thepCO2 field from the
SOCAT data set: Fit of the diagnostic scheme to thepCO2 field
simulated by the PlankTOM5 biogeochemical model (Buitenhuis
et al., 2010) (combined with Takahashi et al. (2009)’s seasonality)
sub-sampled at locations/times of the SOCAT measurements (blue),
compared to the simulatedpCO2 field itself (“known truth”, violet).
For further comparison, a fit of the scheme to the simulation at ev-
ery grid cell and time step (“complete information”, green)and the
Bayesian prior (“no data information”, thin dashed gray, partially
off-scale) is given. ThepCO2 fields have been averaged over the
regions as in Figure 7.

Fig. A1. Top: map of a-priori correlation coefficients with respect to an example pixel at (70◦ E, 49◦ S), illustrating how inverse adjustments
to f DIC

int de-correlate with distance. Bottom: a-priori correlation coefficients with respect to an example time step in the middle of the
inversion period; in addition to the de-correlation away from the example time step, correlations rise again each year due to the dominance
of the seasonal cycle.

Rödenbeck, 2005)6, and similar to those ofpCO2 found
from correlation analysis along cruise tracks byJones
et al. (2012a). The correlations are seen as a mathe-
matical device to stabilize the estimation by suppress-
ing noise which results, for example, from unequal sam-
pling (they represent the main mechanism by which the
information from the discrete atmospheric or oceanic
data points is extrapolated into space and time, see
Fig. 5 for illustration). The correlation scales need to
be large enough to accomplish this extrapolation, but
small enough not to unduly dampen actual signals. Cor-
relations shorter than in the standard atmospheric in-
version have been chosen to reflect the higher spatial
detail in thepCO2 data. For example, this is impor-
tant in the North Atlantic where shorter correlations are
needed to prevent a large influence of coastal data on

6 As an additional minor technical change, the basic spatial grid
of the adjustable degrees of freedom is every pixel of the TM3 trans-
port model grid, rather than aggregates of 4 neighbouring pixels,
reflecting the higher spatial resolution of the data.

the regional average (test not shown). Shorter correla-
tions also prevent implausible leakage of interannual
variability of the tropical Pacific northward and south-
ward (see R̈odenbeck et al., 2013). On the other hand,
longer correlations may have been beneficial in the data-
sparse Southern Ocean as they lead to slightly better
performance in synthetic-data tests (analogously to Ap-
pendixB, test not shown). In any case, simple distance-
based de-correlation necessarily represents a crude ap-
proximation to the unknown real correlation structure
of the ocean-internal sources/sinks determined by com-
plex processes. To ensure that this approximation does
not critically determine the result, runs with different
de-correlation lengths are included in the set of sensi-
tivity cases in our robustness test (Sect.3.3).

In the time domain, we additionally dampen all non-
seasonal variability by a factor 16 with respect to the
seasonal variability (this is accomplished by implement-
ing the time dependence off DIC

int as a Fourier series and
reducing the a-priori uncertainty of the non-seasonal
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modes, seeRödenbeck, 2005). Such tighter a-priori un-
certainties for the interannual variations are consistent
with the expectation that their amplitudes are smaller
than those of the seasonal variations. Moreover, they
dampen spurious interannual variations that may other-
wise arise from the very different coverage of the SO-
CAT data in the individual years, and extrapolate the
mean seasonal cycle off DIC

int throughout the inversion
period. As the chosen dampening factor is largely arbi-
trary, it has also been varied in sensitivity tests.

A further degree of freedom is1C
DIC, ini
m , needed only for

technical reasons: Through adjusting1C
DIC, ini
m , the initial

conditions of the carbon budget equation can become consis-
tent with the data (see Supplement Sect. S1.2). Adjustments
to 1C

DIC, ini
m are spatially resolved with the same spatial cor-

relations asfint, but constant in time; the a-priori value is
zero.

In run ATM , there are further degrees of freedom not
needed in runSFC: as in the atmospheric inversion, land
fluxes are adjustable as specified in Sect.A2.1, as well as
the adjustable atmospheric initial condition.

Table4 summarizes the variables that are adjusted in the
cost function minimization.

A2.3 Extension: thepCO2 constraint

Analogously to the observed atmospheric mixing ratioscobs,
all selected partial pressure values from the SOCAT database
(Table1) are collected into a vectorpobs. A corresponding
vectorpmod of modelled partial pressures is formed by sam-
pling the griddedpCO2

m field of the model at the locations
and times of the measurements (i.e. the modelled value is
that found in the gridcell/timestep which encloses the loca-
tion/time of the corresponding observation). If several SO-
CAT data points fall into the same gridcell and timestep, they
are averaged together and only form a single element inpobs
andpmod.

The vectorpmod is a function of the adjustable variable
f int, as ispmod (except thatpmod is also a function of fur-
ther adjustable variables,f neeandf ini , which are irrelevant
now). We can define an analogous cost function contribution:

Jp =
1

2

(
pobs− pmod

)T Q−1
p

(
pobs− pmod

)
. (A30)

The covariance matrixQp is chosen diagonal as well; the un-
certainty for every individual pixel with two or more SOCAT
data points is set to 10 µatm (for pixels with a single data
point to

√
2× 10 µatm). The fit to the SOCAT data is then

done in the same way as to the atmospheric data, just with
Jc replaced byJp (those degrees of freedom that do not de-

pend onpCO2
m – land fluxes and atmospheric initial condition

– are unconstrained in this inversion and just remain at their
a-priori values).

For the case combining atmospheric and oceanic con-
straints (Sect.3.6), both cost function contributions are added
(J = Jc + Jp +

1
2xTx).

Appendix B

Test of retrieval capability

As a prerequisite to interpreting the results of fitting the
scheme to surface-oceanpCO2 data, we need to test whether
(1) the scheme contains sufficient degrees of freedom to re-
produce the spatial and temporal variability of thepCO2 field,
and (2) the information available in the SOCAT data set is
sufficient to constrain it. This test is done by a synthetic run:
(1) We create a spatio-temporalpCO2 field to be used as syn-
thetic “truth” on the basis of a biogeochemical process model
simulation (NEMOv2.3 with PlankTOM5,Buitenhuis et al.,
2010), mapped to the grid of our scheme. The seasonal cy-
cle of this field is similar to the observations at most loca-
tions except for the high latitudes, which is why we subtract
a mean seasonal cycle and replace it by that ofTakahashi
et al. (2009). This combined field then contains variations
similar to reality on all relevant timescales (though variations
on the fastest (weekly to daily) timescales are smaller than
observed). (2) This syntheticpCO2 field is sampled at the lo-
cations and times of the SOCAT measurements, in the same
way as the modelledpCO2 field (Sect.A2.3). This gives a set
of pseudo data representing the same amount of information
(in terms of data density available to the scheme) as the actual
data (note that SOCAT also contains along-track variability
on scales much shorter than the size of our grid cells, which
the scheme cannot make use of in any case). (3) We then fit
the diagnostic scheme to the pseudo data, and compare the
result with the synthetic truth as the known correct answer.

In terms of mean seasonality considered here, the retrieval
(blue) fits the “known truth” (violet) closely (Fig.B1). Most
region-to-region differences are reproduced. The largest dif-
ferences are found in the North Pacific, and in parts of the
temperate Southern Hemisphere. IfpCO2 is averaged over
open ocean only (not shown), Northern Hemisphere and trop-
ical mismatches further reduce, in particular with the essen-
tially perfect match in the temperate North Atlantic.

To be able to judge the match, we set it into perspective
with two further cases representing situations with less or
with more available information, respectively:

– The black line shows the Bayesian prior, which does not
yet use any SOCAT or atmospheric data (Sect.2.3). The
pCO2 seasonality thus just represents a-priori knowl-
edge on the response to temperature-induced changes
in the chemistry (and to lesser extend in solubility,
Sect.A2.2). It is opposite in phase compared to the syn-
thetic truth in high latitudes. The pseudo data are able
to correct this large difference almost completely.

Ocean Sci., 9, 193–216, 2013 www.ocean-sci.net/9/193/2013/
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Fig. 13. Top: Map of a-priori correlation coefficients with respect
to an example pixel at (70◦ E,49◦ S), illustrating how inverse adjust-
ments tofDIC

int de-correlate with distance.Bottom:A-priori correla-
tion coefficients with respect to an example time step in the middle
of the inversion period; in addition to the de-correlation away from
the example time step, correlations rise again each year dueto the
dominance of the seasonal cycle.

Pacific 45N-90N

       
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Pacific 15N-45N

       
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Pacific 15S-15N

       
 

300

325

350

375

400

425

pC
O

2 
(u

at
m

)

       
 

 

 

 

 

 

Pacific 45S-15S

       
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Pacific 90S-45S

Jan  Jul  Jan  Jul
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Atlantic 45N-90N

       
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Atlantic 15N-45N

       
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Atlantic 15S-15N

       
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Atlantic 45S-15S

       
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Atlantic 90S-45S

Jan  Jul  Jan  Jul
 

300

325

350

375

400

425

       
 

 

 

 

 

 

       
 

 

 
Prior

Fit to SOCAT-sampled PlankTOM5

Fit to PlankTOM5 (all pixels)

PlankTOM5  ("Known truth")

       
 

 

Indian 15S-30N

       
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Indian 45S-15S

       
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Indian 90S-45S

Jan  Jul  Jan  Jul
 

300

325

350

375

400

425

       
 

 

 

 

 

 

Fig. 14. Testing the capacity to retrieve thepCO2 field from the
SOCAT data set: Fit of the diagnostic scheme to thepCO2 field
simulated by the PlankTOM5 biogeochemical model (Buitenhuis
et al., 2010) (combined with Takahashi et al. (2009)’s seasonality)
sub-sampled at locations/times of the SOCAT measurements (blue),
compared to the simulatedpCO2 field itself (“known truth”, violet).
For further comparison, a fit of the scheme to the simulation at ev-
ery grid cell and time step (“complete information”, green)and the
Bayesian prior (“no data information”, thin dashed gray, partially
off-scale) is given. ThepCO2 fields have been averaged over the
regions as in Figure 7.

Fig. B1. Testing the capacity to retrieve thepCO2 field from the
SOCAT data set: fit of the diagnostic scheme to thepCO2 field sim-
ulated by the PlankTOM5 biogeochemical model (Buitenhuis et al.,
2010) (combined with seasonality fromTakahashi et al.(2009))
sub-sampled at locations/times of the SOCAT measurements (blue),
compared to the simulatedpCO2 field itself (“known truth”, violet).
For further comparison, a fit of the scheme to the simulation at ev-
ery grid cell and time step (“complete information”, green) and the
Bayesian prior (“no data information”, thin dashed grey, partially
off-scale) is given. ThepCO2 fields have been averaged over the
regions as in Fig.7.

– We also did the retrieval based on maximum informa-
tion about thepCO2 field available, by constraining the
scheme at every grid point and time step, not only where
actual SOCAT data exist. The result (green) fits the
known truth almost perfectly, showing that there are suf-
ficient degrees of freedom in the scheme to reproduce
the mean seasonality. However, as the performance of
the SOCAT-sampled pseudo data is only slightly worse,
we conclude that the SOCAT data density is essentially
sufficient to constrain the seasonality of surface-ocean
biogeochemistry on the scale of the considered regions
(note that strong modes of variability existing in real-

ity but not contained in our synthetic “truth” potentially
deteriorate the performance of our fit to real data).

The test confirms that the differences between our results
andTakahashi et al.(2009) in the northernmost part of the
North Pacific are due to the lack of data (see Supplement
Fig. S7.4) in conjunction with spatial variability: InTaka-
hashi et al.(2009), seasonal amplitudes are large in a region
at around 50–60◦N and strongly drop going northward (see
Supplement Fig. S7.1). Though the diagnostic model would
be able follow the spatial pattern in the climatology if data
would say so (green line), in the absence of data it extra-
polates the field northward keeping the high seasonal cycle
from the pixels south of this area.

Seasonal data coverage is also limiting in the tropi-
cal Indian, the other problematic region (see Supplement
Fig. S7.4).

Appendix C

Calculating phosphate concentrations fromf DIC
int

Considering the ocean-internal processes affecting mixed-
layer concentrations of biogeochemical tracers, carbon
addition/removal occurs both through biological respira-
tion/photosynthesis in the mixed layer and through mixing-in
of water masses with higher/lower carbon concentration. In
the second case, in turn, there is a contribution from the pre-
formed carbon concentration originating from the last con-
tact of the arriving water parcel with the atmosphere, and a
contribution from carbon added to the water parcel along its
way through the ocean interior by remineralization.

The biological contribution to the sources and sinks of car-
bon (both in the mixed layer and the ocean interior) is directly
linked to sources and sinks of phosphate, and assumed to pro-
ceed in Redfield proportionsrC:P = 106. The remainder is
proportional to the differences between the pre-formed car-
bon (or nutrient) concentrations of arriving water parcels and
those of the destination mixed-layer. Considering only their
variability as relevant here, these differences are assumed to
be either small or close to Redfield proportions as well (this is
equivalent to assuming that the internal sources/sinks of the
tracerCDIC*

m = CDIC
m −rC:PC

PO4
m (Gloor et al., 2003) have no

variability). Then the variations of ocean-internal phosphate
sources and sinks (f

PO4
int ) are proportional to the variations of

f DIC
int . We thus calculated the potential seasonal changes in

the mixed-layer PO4 concentration using a PO4 budget equa-
tion as Eq. (A18) (including history and freshwater fluxes),
except that (1) the ocean-internal flux was reduced by the
Redfield ratio (f PO4

int = f DIC
int /rC:P), (2) the long-term mean

was subtracted fromf PO4
int , and (3) there was no sea–air flux

of phosphate (f PO4
ma = 0). As the initial condition for the bud-

get equation is unknown and phosphate does not relax to-
wards an atmospheric value, calculatedC

PO4
m contains an ar-
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bitrary offset, such that we only compare the deviation from
the temporal mean.

Supplementary material related to this article is
available online at:
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Rödenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: CO2
flux history 1982–2001 inferred from atmospheric data using a

www.ocean-sci.net/9/193/2013/ Ocean Sci., 9, 193–216, 2013

http://dx.doi.org/10.1029/2004GB002247
http://dx.doi.org/10.1029/2007GB003050
http://dx.doi.org/10.1029/2009GB003599
http://dx.doi.org/10.1029/2006GL027207
http://dx.doi.org/10.1029/2011GL049614
http://dx.doi.org/10.1029/2009GB003658
http://dx.doi.org/10.1029/2005GB002530
http://dx.doi.org/10.1029/2007GB003065
http://dx.doi.org/10.1029/2005JD006758
http://dx.doi.org/10.5194/essdd-5-735-2012


216 C. R̈odenbeck et al.: Global surface-oceanpCO2 and sea–air CO2 flux variability

global inversion of atmospheric transport, Atmos. Chem. Phys.,
3, 1919–1964,doi:10.5194/acp-3-1919-2003, 2003.

Sabine, C., Maenner, S. and Sutton, A.: High-resolution ocean
and atmosphere pCO2 time-series measurements from moor-
ing TAO140W. http://cdiac.esd.ornl.gov/ftp/oceans/Moorings/
TAO140W/. Carbon Dioxide Information Analysis Center, Oak
Ridge National Laboratory, US Department of Energy, Oak
Ridge, Tennessee, 2010.

Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics,
Princeton Univ. Press, Princeton, USA, 2006.
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