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Abstract 

 

The Meridional Heat Transport (MHT) of the South Atlantic plays a key role in the global heat budget: it is the only 

equatorward basin-scale ocean heat transport and it sets the northward direction of the global cross-equatorial transport. Its 15 

strength and variability however are not well known. The South Atlantic transports are evaluated for four state-of-the-art global 

Ocean Reanalyses (ORAs) and two Free-Running Models (FRMs) in the period 1997-2010. All products employ the Nucleus 

for European Modelling of the Oceans model, and the ORAs share very similar configurations. Very few previous works have 

looked at ocean circulation patterns in reanalysis products, but here we show that the ORA basin interior transports are 

consistently improved by the assimilated in situ and satellite observations, relative to the FRMs, especially in the Argo period. 20 

The ORAs also exhibit systematically higher meridional transports than the FRMs, in closer agreement with observational 

estimates at 35˚S and 11˚S. However, the data assimilation impact on the meridional transports still greatly varies between the 

ORAs, leading to differences up to ~8 Sv and 0.4 PW in the South Atlantic Meridional Overturning Circulation and the MHTs, 

respectively. We narrow this down to large inter-product discrepancies in the Western Boundary Currents (WBCs) at both 

upper and deep levels explaining up to ~85% of the inter-product differences in MHT. We show that meridional velocity 25 

differences, rather than temperatures differences, in the WBCs drive ~83% of this MHT spread. These findings show that the 

present ocean observation network and data assimilation schemes can be used to consistently constrain the South Atlantic 

interior circulation, but not the overturning component which is dominated by the narrow western boundary currents. This will 

likely limit the effectiveness of ORA products for climate or decadal prediction studies.  

 30 
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1.  Introduction  

An important feature of present-day climate is that the heat transport in the Atlantic Ocean is northward in both hemispheres, 

rather than poleward as in the Indo-Pacific Ocean (Ganachaud and Wunsch, 2003) and in the atmosphere (Trenberth and 

Caron, 2001). The South Atlantic acts as a communicator between the southern and northern oceans (Garzoli and Matano, 35 

2011), through the Meridional Overturning Circulation (MOC) transporting warm water northward across the equator to 

compensate for the southward export of colder North Atlantic Deep Water (NADW).  

The northward upper limb of the South Atlantic MOC (hereafter SAMOC) is a complex mixture of water masses originating 

from the Indian, Pacific and Southern oceans, which are blended together in the South Atlantic gyre circulations. The water 

mass redistribution in the South Atlantic and the interocean exchanges can significantly influence the long-term Atlantic MOC 40 

(hereafter AMOC) variability (Garzoli and Matano, 2011), particularly on decadal time scales through the heat and salt export 

by the Agulhas leakage (Weijer et al., 2002; Sebille et al., 2011). The SAMOC salt fluxes at 35˚S have also been suggested to 

reflect the MOC stability in climate models (Drijfhout et al., 2011; Hawkins et al., 2011). In the case where the SAMOC 

imports salt into the Atlantic basin, a weakening of the AMOC would be followed by a further freshening of the basin, a 

positive feedback possibly leading to the collapse of the AMOC.  45 

Marshall et al. (2013) argue that the northward ocean heat transport across the equator sets the mean position of the Inter-

tropical Convergence Zone in the northern hemisphere. Since the South Atlantic is the only major ocean basin that transports 

heat equatorward, quantifying and understanding the SAMOC should help to explain the inter-hemispheric heat exchanges 

and improve interannual-to-decadal climate simulations, as also recently reinforced by Lopez et al. (2016). For this reason, a 

SAMOC observing system has already been initiated in 2002 with quarterly high-density eXpendable BathyTermograph 50 

(XBT) lines at 35˚S (Garzoli and Baringer, 2007), and recently with the development of the South Atlantic MOC Basin-wide 

Array (SAMBA; Ansorge et al., 2014), analogous to the RAPID array in the North Atlantic (Cunningham et al., 2007). 

However, the lack of long term measurements in the area still limits our understanding of the South Atlantic state and its 

variability, reflecting the large disagreement between observational and model studies (Garzoli et al., 2013; Dong et al., 2014; 

Dong et al., 2015; Majumder et al., 2016; Stepanov et al., 2016). In this context, Ocean Reanalyses (ORAs; Balmaseda et al., 55 

2015) could be useful tools to monitor the ocean circulation and change indicators (Masina et al., 2015; Palmer et al., 2015). 
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The ORAs employ Ocean General Circulation Models (OGCM) and Data Assimilation (DA) schemes to synthetize a diverse 

network of available ocean observations in order to arrive at a consistent estimate of the historical ocean state. In such products, 

atmospheric forcing combined with DA are used to dynamically extrapolate the observational information to regions without 

observations, which gives the ORAs the potential to provide complete, time-evolving descriptions of the ocean state and its 60 

circulation.  

In the South Atlantic, ORA diagnostics have been put together with three-dimensional velocity fields constructed from Argo 

and Sea Surface Height (SSH) observations to study the SAMOC variability and its relation with the Meridional Heat 

Transports (MHT) between 35˚S and 20˚S (Majumder et al., 2016). Although both observations and ORAs show strong 

correlations between the SAMOC and MHT, Majumder et al. (2016) also found significant discrepancies in the transport 65 

magnitudes between the ORAs as well as between the ORAs and the observations. Their result reveals the need for further 

assessment of the skills and uncertainties of the ORAs in the South Atlantic, such as comparing them with Free-Running 

Models (FRMs) and evaluating their SAMOC contributions across the eastern, interior, and western boundary regions shown 

in Fig. 1.  

The next generation of operational climate prediction systems will implement eddy-permitting ocean models, and it is expected 70 

that ORAs will provide improved initial conditions for such climate prediction models. The comparison between ORAs and 

FRMs is a critical step in assessing the feasibility of initialising the ocean transports which are not directly observed. Such 

intercomparisons therefore can give valuable insights about how the transports are affected by DA (e.g. Zuo et al., 2011; 

Karspeck et al., 2015). To address these issues, we use state-of-the-art ORAs at eddy-permitting resolution with two FRMs at 

eddy-permitting and eddy-resolving resolutions to study the meridional transports in the South Atlantic between 35˚S and the 75 

equator. Focusing on the meridional volume and heat transports, we first identify similarities and differences between products. 

Going further than Majumder et al. (2016), we also narrow down these transport differences in an attempt to understand the 

potential impact (and limitations) of the DA schemes in improving the ORA states in the South Atlantic.  

The paper is organised as follows. In Section 2 a brief overview of the dataset configurations is presented. Sections 3.1 and 

3.2 show the results of the time mean transports and the contributions of the temperature (T) and meridional velocities (𝑣) to 80 

the spread in the heat transports, respectively. Section 3.3 evaluates the western boundary role in the South Atlantic large-scale 
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transport discrepancies between the products. Section 3.4 ends the results section with the time variability of the transports. 

Section 4 contains the discussion and conclusions.   

 

2. The dataset  85 

In this study, we use outputs from two FRMs and four ORAs, each with a global domain. All the products are configured with 

the Nucleus for European Modelling of the Oceans (NEMO; Madec, 2008) model, coupled to the Louvain la Neuve sea-ice 

model version 2 (LIM2; Timmermann et al., 2005). The former is a state-of-the-art primitive equation z-level model employing 

both hydrostatic and Boussinesq approximations, whereas the latter is a dynamic-thermodynamic sea-ice model specifically 

designed for climate studies. For this dataset, NEMO is configured with a partial cell topography (Adcroft et al., 1997), and a 90 

quasi-isotropic tripolar ORCA grid (Madec and Imbard, 1996). Sub-sections listing the main characteristics of the FRMs and 

ORAs are presented below. Tab.1 compares the main configurations of each product.  

 

2.1 Free-running models  

The standard configurations of the FRMs at 1/4˚ and 1/12˚ horizontal resolution used in this study have been setup within the 95 

DRAKKAR consortium (e.g. Barnier et al., 2006; Penduff et al., 2007, 2010; Treguier et al., 2014;  Marzocchi et al., 2015). 

The FRM at 1/4˚ horizontal resolution is referred to here as ORCA025 and has 46 z-levels, with thickness ranging from 6 m 

at the surface to 250 m at the ocean bottom. ORCA025 is forced by the ERA-Interim atmospheric reanalysis product (Simmons 

et al., 2007) from the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim reanalysis 

provides Winds (W) at 10 m, Surface Air Temperature (SAT) and Surface Air Humidity (SAH) at 2 m, daily Radiative Fluxes 100 

(RF) and Precipitation (P) fields, which are used to compute 6-hourly turbulent air/sea fluxes using the Large and Yeager 

(2004, 2009) bulk formulae. The integration of this ORCA025 setup was conducted at the University of Reading and is 

described in Haines et al. (2012) and Stepanov and Haines (2014) as the free control run associated with reanalysis UR025.3, 

and its initial condition is derived from a previous 1/4˚ run with hydrographic data assimilation (Smith and Haines, 2009). A 

moderate relaxation of Sea Surface Salinity (SSS) is applied towards Levitus (1998) with a time scale of approximately 180 105 

days.  
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The FRM at 1/12˚ horizontal resolution (ORCA0083) has 75 z-levels. Its vertical grid is refined at the surface (1 m for the first 

level), smoothly increasing to a maximum thickness of 200 m at the bottom. The integration of ORCA0083 was performed by 

the Marine Systems Modelling group at the National Oceanography Centre, Southampton, and is described in Marzocchi et al. 

(2015). The DRAKKAR Surface Forcing Set 4.1 (DFS4.1) or Set 5.1 (DFS5.1) is employed depending on the time period as 110 

shown by Tab.1. As detailed in Brodeau et al. (2010), DFS combines elements from two sources: (i) the Coordinated Ocean 

Research Experiments (CORE) forcing dataset, from which daily RF and monthly P are extracted; and (ii) ECMWF products 

from which W, SAT and SAH fields are taken. As in ORCA025, 6-hourly momentum and heat turbulent fluxes are computed 

in ORCA0083 following Large and Yeager (2004, 2009). ORCA0083 is initialised from Levitus (1998) climatology and 

applies the same SSS restoring term as in ORCA025. Both ORCA0083 and ORCA025 employ a free-slip (no-stress) 115 

configuration for the lateral momentum boundary conditions.  

 

2.2 Ocean Reanalyses 

The MyOcean global ocean reanalysis activity provided a series of global ORAs at eddy-permitting resolution (1/4˚) 

constrained by assimilation of observations and covering the “altimetric era” (i.e. period starting with the launch of TOPEX 120 

POSEIDON and ERS-1 satellites at the end of 1992). Four of these ORAs are considered in this work, namely: (i) The Ocean 

Reanalysis Pilot 5 (ORAP5; Zuo et al., 2015) from ECMWF; (ii) The Global Ocean Reanalysis System version 5 

(CGLORSV5; Storto and Masina, 2016) from the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC); (iii) The 

University of Reading Reanalysis Version 4 (UR025.4, Valdivieso et al., 2014); and (iv) The Global Ocean Reanalysis and 

Simulation Version 4 (GLORYS2V4; CMEMS, 2017) from Mercator Ocean. These ORAs employ different state-of-the-art 125 

ocean DA systems, which assimilate, in distinct ways, reprocessed observations of Sea Level Anomaly (SLA), Sea Surface 

Temperature (SST), in situ T and Salinity (S) profiles, and Sea Ice Concentration (SIC). The main references of the ORA DA 

schemes and their assimilated observations can be found in Tab.1 The vertical discretisation of GLORYS2V4, ORAP5 and 

UR025.4 follows exactly the same configuration as in ORCA0083 with 75 z-levels. CGLORSV5 has 50 z-levels in a similar 

configuration to ORCA025.  130 
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All the ORAs are forced with the ERA-Interim atmospheric reanalysis product from ECMWF. The turbulent air-sea fluxes 

were calculated using the same methodology as in the FRMs, but their input into NEMO varies between 3 and 6-hour sampling 

depending on the product (see Tab. 1). In GLORYS2V4, large-scale corrections of the atmospheric forcings are also applied 

(Garric and Verbprugge, 2010), whereas in ORAP5 the impact of surface wave forcing on the ocean mixing and circulation is 

included (Janssen et al., 2013).  135 

The relaxation strategies differ between the ORAs. In ORAP5 and CGLORSV5, the SST data in Tab. 1 are used to correct the 

turbulent heat fluxes, with a restoring term of -200 W m-2 K-1. Their SSSs are also relaxed towards the World Ocean Atlas 

2009 (WOA09; Locarnini et al., 2010) for ORAP5, and towards the UK Met Office ENhAnced ocean data assimilation and 

ClimaTe prediction (ENACT/ENSEMBLES) EN4 dataset (Good et al., 2013) for CGLORSV5, with time scales of 

approximately 300 days. No global SST and SSS restoring strategies have been implemented in UR025.4 and GLORYS2V4, 140 

and the only surface restoring mechanism is through the increments introduced by data assimilation itself. As also seen in 

Tab.1, the initialisation and spin-up differ between the ORAs. On lateral boundaries, UR025.4 and ORAP5 adopt a free-slip 

configuration whereas CGLORSV5 and GLORYS2V4 employ a partial-slip condition. In the latter, the constant of 

proportionality (α) between the tangential stress and the tangential velocity is defined as 0.5 for both products. More specific 

details comparing these NEMO-based ORAs can be found in Masina et al. (2015).  145 

In this work, monthly averages of each product are used. The use of monthly means mitigates possible jumps introduced by 

incremental assimilation over a time window of several days. In order to avoid any dynamical spin-up in the early years of the 

simulation for products starting in the late eighties or early nineties (e.g. UR025.4 and GLORYS2V4), and because UR025.4 

ends in 2010, a common time period from 1997 to 2010 is chosen. Despite the fact that subsurface ocean observations are 

scarcer before the 2000s (i.e. prior to the full deployment of Argo floats), the total meridional transports for the periods 1997-150 

2010 and 2000-2010 do not differ significantly.  

 

2.3 Observational estimates and surface heat flux products  

The large-scale transports are compared to the 34 high-density XBT-based estimates (XBT-AX18) in the Southern Atlantic 

from 2002 to 2013, with transport estimates at 35˚S and 30˚S given by Majumder et al. (2016). Recent observational studies 155 
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are also used for comparison, which employ different methodologies to calculate the SAMOC and MHT between 35˚S and 

20˚S, as follows: (i) an Argo climatology (Dong et al., 2014), (ii) altimetry synthetic profiles based on the correlation of the 

AVISO SLA and isotherm depths (Dong et al., 2015), and (iii) dynamic height fields from Argo and AVISO SSH (Majumder 

et al., 2016) are used together with wind fields to estimate the total transports. The MHT based on integrating the Liu et al. 

(2015) surface heat flux product southward of 80˚N is also computed for the 1997-2010 period. This product uses top of 160 

atmosphere net radiation flux from CERES modified by the ERA-Interim atmospheric transports. The North Brazil Current 

(NBC) transports from 2000 to 2004 (Schott et al., 2005) and from 2013 to 2014 (Hummels et al., 2015) are also included for 

comparison. These NBC estimates are based on high-frequency velocity measurements from a moored western boundary array 

section located at 11˚S. Finally, WOA13 temperatures (Locarnini et al., 2013) from 1995 to 2012 are also compared with the 

temperatures from the ORAs and FRMs.   165 

Of the observational estimates above, the XBT-AX18 line is not independent as it is included in the EN3 and EN4 datasets 

which are assimilated by the ORAs (see Tab.1). Although WOA13 is not directly assimilated by the ORAs, it uses the same 

observational information as EN3 and EN4, and so it also cannot be treated as completely independent. 

 

3. Results  170 

3.1 Time-mean transports   

Figure 2a shows the time mean AMOC strength for each product, defined as the maximum (𝜓𝑚𝑎𝑥) of the AMOC stream 

function at each latitude in the Atlantic basin. The ensemble spreads of 𝜓𝑚𝑎𝑥   for all products (ENS-ALL hereafter) and for 

only the ORAs (ENS-ORA hereafter) are shown in Fig. 2b. The discrepancies in AMOC strength between the ORAs are largest 

in the South Atlantic, reaching the maximum spread of 3.5 Sv (ENS-ALL) and 3 Sv (ENS-ORA) in the area between 20˚S and 175 

the equator. The two FRMs are similar to each other, both with relatively low AMOC across the basin. The assimilation of 

observations in the reanalyses appears to increase the AMOC strength at all latitudes. In the North Atlantic, especially in the 

subpolar gyre north of ~35˚N, the ORA AMOCs are consistently 3-4 Sv higher than in the FRMs. However, the increase of 

the ORA AMOCs is less consistent south of 35˚N, especially in the South Atlantic where the differences in the SAMOC 
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transports can reach up to ~8 Sv between GLORYS2V4 and ORAP5. The latter is the ORA that has the lowest transports in 180 

the South Atlantic, closest to the FRMs.  

Comparison with observational estimates at 35˚S (Figs. 3a-b) suggests that both the SAMOC strength and MHT of the ORAs 

are more realistic than those of the FRMs. However, even the highest MHTs of UR025.4 and GLORYS2V4 are almost 0.1 

PW lower than the lowest observational estimate from Dong et al. (2015). The MHT underestimation of the FRMs and ORAs 

relative to the observations at 35˚S has already been reported by several authors (e.g. Dong et al., 2011a; Dong et al., 2011b;  185 

Perez et al., 2011; Sitz et al., 2015; Majumder et al., 2016; Stepanov et al., 2016). The black bars in Figs. 3a-b show monthly 

variability in the ORAs, but quarterly (XBT-AX18), monthly (Dong et al., 2014), weekly (Dong et al., 2015) or daily 

(Majumder et al., 2016) time scale variability in the observations. These clearly overlap each other although they cannot be 

regarded as uncertainties in the means. Despite their lower mean transports, the temporal variability of the FRMs is similar to 

that of the ORAs at 35˚S, around ± 0.3 PW and 3.0 Sv.  190 

As in the SAMOC strength (Fig. 2), the inter-product spread in MHT gets larger towards the equator, with differences up to 

0.4 PW between GLORYS2V4 and ORAP5 (Fig. 3c). The Liu et al. (2015) surface flux based product suggests higher heat 

transports in good agreement with UR025.4 and GLORYS2V4 across the South Atlantic basin, although the surface integration 

method accumulates errors from all higher latitudes. Liu et al. (2015) estimates also reasonably agree with the XBT-AX18 and 

other South Atlantic observational studies at 35˚S and 30˚S. However, the observational estimates diverge north of 30˚S, with 195 

the transports from Dong et al. (2015) and Majumder et al. (2016) differing by ~0.7 PW at 20˚S. These discrepancies 

underscore the uncertainties in observed transports through the South Atlantic.  

Figures 4a-f show maps of the east-west accumulated volume transports from the surface down to the depth of 𝜓𝑚𝑎𝑥  (typically 

~1000 m) for each latitude, defined hereafter as 𝑧𝑚𝑎𝑥. These contours can be regarded as streamlines of the upper ocean gyre 

circulations. The northern boundary of the subtropical gyre (dashed contour of zero transport), near 20˚S and 15˚S, agrees well 200 

between products, with only GLORYS2V4 extending slightly further north. The subtropical gyre to the south is only partially 

shown but the strength of this gyre is quite consistent between the ORAs and ORCA0083, and significantly stronger than in 

ORCA025. The large-scale circulation equatorward of 15˚S is dominated by a southward flow increasing westwards until the 

strong northward NBC flow is reached in a very narrow western boundary area. The ORA southward flow in the basin interior 
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ranges between -14 and -18 Sv. For consistency with the overturning strength 𝜓𝑚𝑎𝑥  (represented in Figs. 4a-f by the 205 

westernmost accumulated transports), the NBC region typically reaches ~36 Sv of northward flow. This agrees with other 

studies of the role of the NBC in the AMOC upper branch crossing the equatorial Atlantic (e.g. Rabe et al., 2008; Sebille et 

al., 2011; Rühs et al., 2015).  

Figure 4g shows the southward maximum of the east-west accumulated transports between 15˚S and the equator. The generally 

good agreement of this interior component of the circulation between the ORAs is in striking contrast with their 𝜓𝑚𝑎𝑥  (Fig. 210 

2). Indeed the ENS-ORA spread of the interior flow (~1 Sv) is about three time less than the spread in 𝜓𝑚𝑎𝑥  for the same 

latitude range. The ORA southward transports differ from the FRMs, with two peaks of southward transport between 10˚S and 

the equator where the FRMs only have one. The zonal currents, which can be inferred in Fig. 4, reveal consistent changes in 

the equatorial current system between the ORAs and the FRMs. The central branch of the South Equatorial Current (cSEC), 

described in the top 500 m tropical circulation schematics of Stramma and Schott (1999) and Talley (2011), is absent in the 215 

FRMs, but evident in the ORAs, also leading to stronger southward transports in Fig. 4g. Thus there is both qualitative and 

quantitative evidence that the DA in the ORAs is doing a good job in reproducing a consistent interior circulation for the 

tropical South Atlantic basin. 

Despite evidence of the ORAs consistency in the interior circulation in the tropical South Atlantic as well as in the subtropical 

gyre further south, the overturning transport component 𝜓𝑚𝑎𝑥, associated with the very narrow NBC, is not as well constrained. 220 

Figure 5 shows transports of the NBC at 11˚S, calculated between neutral density interfaces as in Hummels et al. (2015). 

Although DA brings the ORA NBC transports closer to the observations when compared to the FRMs, the spread is still large. 

The UR025.4 and GLORYS2V4 NBC transports have 23.9 ± 1.1 Sv and 25.0 ± 1.3 Sv, quite close to the Schott et al. (2005) 

and Hummels et al. (2015) observed NBC values of 25.8 ± 1.2 Sv and 26.8 ± 1.8 Sv, respectively. However, the weaker 

transports in ORAP5 and CGLORSV5 mean that the ENS-ORA spread in the NBC transports is ~3 Sv, which is consistent 225 

with the ENS-ORA spread in the SAMOC strength (Fig. 2b).  This suggests that, at least in this latitude range, the NBC 

strength alone can explain the large-scale transport discrepancies between the ORAs, which will be discussed in more detail 

in Sect. 3.3.     
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  3.2 T and 𝒗 contributions 230 

In this section, the contributions from T and 𝑣 variability for the heat transports are analysed, as well as the relationship 

between the MHT and the SAMOC upper limb. Figure 6 shows a meridional section of the zonal-mean temperatures from 

WOA13, together with zonal-time mean anomaly T from each product. Large anomalies in the FRMs can be seen, particularly 

in the tropics where the models may have limitations representing sharp vertical gradients in the tropical thermocline. In 

ORCA025, there is a large warm anomaly of up to 3˚C in the upper 200 m of the tropical South Atlantic, whereas ORCA0083 235 

has a weaker warm anomaly in the top 200 m, but a much more extensive cold anomaly of ~2˚C in the ocean interior down to 

~500 m. All the ORAs show much weaker anomalies (mostly <0.5˚C), presumably due to the assimilation of SST and T/S 

profiles which are able to better constrain the T vertical structure. Below 1200 m the differences between the products and 

WOA13 are much smaller.   

Figure 7 evaluates the relative T and 𝑣 contributions to the ENS-ALL MHT spread. We compare the original MHTs (Fig. 7a) 240 

with the MHTs based only on circulation differences (𝑣𝑇̅; Fig. 7c), and only on temperature differences (𝑣̅𝑇; Fig. 7e), where 

the overbar denotes the ENS-ALL mean. In order to identify locations where T and 𝑣 contribute to different transports in ENS-

ALL, ocean temperature transports per 0.25˚ of longitude (p-OTTs) from top to bottom are also calculated across the basin 

(Fig. 7b), with their p-𝑣𝑇̅ (Fig. 7d) and p-𝑣̅𝑇 (Fig. 7f) contributions. Note that the units in the maps of Figs. 7b,d,f are PWT 

(PetaWatt Temperature Transport; Talley, 2003; Macdonald and Baringer, 2013) per 0.25˚. The spatial discretisation of the 245 

MHT on a longitudinal 0.25˚ grid allows to present ORCA0083 on a comparable scale to that of the other models.  

The strong similarity between Figs. 7a,b and Figs. 7c,d reveals that 𝑣 rather than T differences drive the inter-product spread 

in the MHTs, both regionally and in the zonal integrals. The 𝑣𝑇̅ component captures variations from ~0.2 PW to 1 PW (Fig. 

7c), explaining ~83% of the total MHT spread which is mainly concentrated in the areas with largest mean transports, i.e. the 

narrow western boundary region (Fig. 7d). Even with relatively large T anomalies found in the FRMs (Fig. 6), the 𝑣̅𝑇 250 

component only differs by ~0.13 PW between the products across the basin (Fig. 7e), mainly due to temperature differences 

in ORCA025 and ORCA0083. However, a very narrow maximum of p-𝑣̅𝑇 (Fig. 7f) can also be seen right against the western 

boundary, especially in the NBC region around 11˚S and near the Brazil-Malvinas Confluence at 35˚S. This is interpreted as 

due to variations in boundary temperatures needed to geostrophically support the large differences in western boundary current 
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velocities between the products. However, these temperature differences make little transport contribution. The detailed role 255 

of the western boundary for the inter-product transport discrepancies will be discussed again in Sect. 3.3.  

The dominance of the circulation determining heat transports also extends to the time variability. The monthly correlation 

between 𝜓𝑚𝑎𝑥 and MHT within all products is above 0.8 for most of the South Atlantic (Fig. 8). Dong et al. (2009) and Garzoli 

et al. (2013) estimated quarterly correlation values around 0.75 between circulation and heat transports at 35˚S from the XBT-

AX18 observations. Majumder et al. (2016) found that a 1 Sv change in the SAMOC strength corresponds to a change of 0.046 260 

PW at 35˚S and 0.056 PW at 20˚S in the MHT. This agrees relatively well with the ENS-ORA which show a 1 Sv change in 

SAMOC strength corresponds to ~0.052 PW change between 35˚S and 20˚S. It is interesting to note that correlations abruptly 

fall from 0.85 to ~0.45 near the equator. The interior southward flow gradually increases in the tropical South Atlantic reaching 

similar magnitudes to 𝜓𝑚𝑎𝑥  between 5˚S and the equator (Fig. 4g). In this region, the temperature differences between the 

NBC core and the southward basin interior circulation reach up to 5.5˚C in the top 400 m, similar to the ∆𝑇 of ~6.5˚C between 265 

the SAMOC upper and lower limbs (not shown). Therefore it is likely that these large upper level tropical circulations explain 

why 𝜓𝑚𝑎𝑥  does not dominate the MHT variability close to the equator, as also noted by Valdivieso et al. (2014).  

 

  3.3 Western boundary contribution 

Figure 9 shows the linear regression coefficient between the inter-product p-OTTs and their MHTs across the whole basin. 270 

The western boundary grid points in the tropical South Atlantic reach up to ~0.4 PWT per 0.25˚, out of 1 PW across the whole 

basin, so that ~40% of the differences in the MHT can be explained by transports in a 0.25˚-wide band (a single grid point in 

all models except ORCA0083), with values elsewhere in the basin interior very close to zero. This is consistent with Fig. 4 

showing that the large-scale southward flow at upper levels does not differ much between products, while 𝜓𝑚𝑎𝑥 varies 

considerably, mainly due to the narrow NBC. Weaker negative linear regression coefficients are found eastward of the NBC 275 

in Fig. 9, representing the influence of the southward Deep Western Boundary Current (DWBC), reflecting the sloping 

bathymetry and the broader current scale than the NBC. South of 25˚S the p-OTT contributions to the total MHT are more 

distributed, with a noticeable contribution from the Agulhas leakage caused by the different intensity and positioning of the 

Agulhas rings between the products as they travel westward across the Cape basin. Figure 9 also shows a continuous and 
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dominant narrow band of positive regression coefficients all down the western boundary, including latitudes where the p-OTTs 280 

have a southward transport associated with the Brazil Current (BC), e.g. between 35˚S and 25˚S (see schematic of Fig. 1). This 

reveals that products with larger northward MHTs (e.g. CGLORSV5, UR025.4 and GLORYS2V4) must have weaker 

southward p-OTTs near the western boundary, i.e. a weaker BC, resulting in the positive MHT linear regressions. In the case 

of CGLORSV5, UR025.4 and GLORYS2V4, this is reinforced by a stronger northward subsurface transport of the 

Intermediate Western Boundary Current (IWBC) and North Brazil Undercurrent (NBUC), which feeds the NBC in the tropical 285 

South Atlantic (Fig. 10a and Fig. 10b). Based on Fig. 9, a region within 6˚ of the coast is selected to calculate the Tropical 

Water (TW), South Atlantic Central Water (SACW) and Antarctic Intermediate Water (AAIW) transports of the upper western 

boundary circulation, with their isopycnal limits defined as in Mémery et al. (2000) and Donners et al. (2005). For each latitude, 

any southward water mass transport is accounted for as the BC (Fig. 10a), whereas any northward transport contributes to the 

IWBC-NBUC-NBC system (Fig. 10b), allowing to represent the deepening of the poleward BC and the shallowing of the 290 

equatorward IWBC-NBUC-NBC flows, as shown by Fig. 1 (Soutelino et al., 2013).  

In GLORYS2V4 and UR025.4, the IWBC and NBUC transports are at least 5 Sv larger than in ORAP5 and the FRMs (Fig. 

10b), and the former products then produce a stronger NBC in the tropical South Atlantic, consistent with the observational 

estimates at 11˚S (Fig. 5). At each latitude the ORAs usually modify the upper western boundary circulation in the same 

direction, increasing (decreasing) the transports of the northward (southward) currents compared to the FRMs, which leads to 295 

higher MHTs across the entire basin. However, the western boundary transport magnitudes are not properly constrained in the 

ORAs, as reinforced by Fig. 10c, with the ENS-ORA spread increasing as current strengths increase. The IWBC-NBUC-NBC 

spread particularly growths from ~1 to 3.5 Sv towards the north which is comparable to the SAMOC spread seen in Fig. 2b. 

There is much better agreement for the BC near 35˚S between the ORAs (ORAP5 excepted), with spreads smaller compared 

to the NBC.  300 

In Fig. 11, the transports are schematically broken down into four boxes, the upper and lower western boundary region (within 

6° of the coast), and the upper and lower ocean interior (𝑧𝑚𝑎𝑥 separates the upper and lower layers). Figure 11 summarises 

how the inter-product changes in the upper western boundary circulation correlate with the other three boxes (for the current 

systems involved see Fig. 1). In the tropical South Atlantic (Fig. 11a), the northward flows in the upper western boundary box 
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in GLORYS2V4 and UR025.4 are ~10 Sv and 8.5 Sv larger than in ORCA025, respectively. These are mainly compensated 305 

by larger flows in the DWBC, by ~9 Sv and 8 Sv in GLORYS2V4 and UR025.4, respectively, relative to ORCA025. These 

large inter-product compensations confined to the western boundary extend to the subtropical region (Fig. 11b), where the 

ORAs with highest southward DWBC transports show highest northward transports in the western boundary upper limb. 

Similarly, Sitz et al. (2015) found that the strengthening in the SAMOC upper limb with increasing model resolution is mainly 

compensated by strengthening of the poleward transport in the deeper layers, mostly in the western part of the basin. This large 310 

compensation between the upper and lower western boundary circulation is evident within all products in Fig. 11a, with the 

deep western boundary typically compensating ~75% of its upper limb transports, which was also noted in observations (Schott 

et al. 2005; Hummels et al. 2015).  

In contrast to their western boundary circulations, the ORAs show very similar upper interior flows across the South Atlantic, 

consistently stronger than in the FRMs, regardless of direction (southward in Fig. 11a and northward in Fig. 11b). This 315 

consistency is retained even in the subtropical gyre (Fig. 11b), where the northward basin interior circulation can have larger 

magnitude than the upper western boundary currents to balance the DWBC. The deep interior box has negligible transports in 

the tropical South Atlantic, but significant southward transports further south, especially in the ORAs, suggesting that some 

portion of the NADW flows towards the interior of the basin in the subtropical South Atlantic (Garzoli et al., 2015).  

 320 

  3.4 Temporal variability  

Figures 12a-f show that the interannual variability in p-OTTs is larger in the ORAs and in the high resolution ORCA0083 than 

in ORCA025. The assimilation of observations in eddy-permitting models introduces variability that would otherwise only 

appear with higher resolution, as in ORCA0083. According to Masina et al. (2015), this higher variability in the ORAs is in 

better agreement with the Eddy Kinetic Energy estimates from the ocean surface current velocities (OSCAR) product than that 325 

of the FRMs. Although some of the ORAs have more transport variability than others throughout the basin, the western 

boundary variability remains a dominant feature, particularly northward of 25˚S. In Fig. 12g, the interannual p-OTTs variances 

for each product are summed within 6˚ of the western boundary coast as a function of latitude and displayed as a percentage 
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of the total MHT variance. It shows that the western boundary controls ~70% of the interannual MHT variability in the tropical 

South Atlantic for almost all the products (UR025.4 excepted), but it is less dominant further south.  330 

South of 25˚S, the interannual variability of the transports is more spread, with contributions from the western boundary (near 

the Brazil-Malvinas confluence), and near the eastern boundary (due to the Agulhas leakage) with the largest values around 

0.06 PWT per 0.25˚ in ORCA0083, UR025.4 and GLORYS2V4. The different levels of variability in the Agulhas leakage 

between ORCA025 and ORAs may be attributed to the impacts of the SLA assimilation (Backeberg et al., 2014). However, 

even between ORAs these Agulhas patterns differ, e.g. the weaker contributions in ORAP5 may be due to smoothing from the 335 

super-observation method applied to the altimeter data (Mogensen et al., 2012), as also noted by Masina et al. (2015).  

Figure 13a shows the monthly time series of both  𝜓𝑚𝑎𝑥  and the maximum southward flow in the basin interior (as in Fig. 4g), 

as a spatial average from 15˚S to the equator. There appears to be greater consistency in the ORA southward transports in the 

second half of the time series, which is not seen in 𝜓𝑚𝑎𝑥 . In Fig. 13b, the time series of the ENS-ORA spread for both 

components are also displayed. A running mean of 6 months was applied to smooth the ENS-ORA monthly variability. Even 340 

with large variations, particularly in the first years of the time series, the ENS-ORA spread for the upper southward flow is 

seen to reduce from ~3 Sv to 1 Sv in the later years. This may be explained by the initiation of the Argo program and the 

increased number of observations to constrain the southward interior flow in the ORAs. The southward interior transports in 

the ORA maps of Fig.4 from 2008 to 2010 are also more consistent than before 2002, as are their northward interior transports 

between 30˚S and 15˚S in the later years (not shown). However, the ENS-ORA spread in 𝜓𝑚𝑎𝑥  remains nearly steady over 345 

this period, although the assimilation does increase the NBC transports in the ORAs relative to the FRMs (Fig. 5).  

 

4. Discussion and conclusions  

In this work, the South Atlantic meridional transports between 35˚S and the equator were evaluated for a global NEMO-based 

dataset of four ORAs and two FRMs with distinct spatial resolutions. The ORAs mainly differ by their initial conditions, their 350 

DA schemes and to some small extent by the observations assimilated, as they share very similar ocean model configurations 

and are all forced with the ERA-Interim atmospheric product (Tab. 1).  
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Some aspects of the circulation are well constrained by data assimilation. The ORA transports in the basin interior are 

consistently modified across the basin relative to the FRMs (Fig. 4 and Fig. 11), with improvements in the south equatorial 

currents, and with interior meridional transports converging as Argo data are introduced (Fig. 13). Zonally integrated 355 

temperature sections for the ORAs are also very similar to WOA13 (Fig. 6), whereas the FRMs have large anomalies. The 

relationship between the magnitudes of SAMOC and MHT in the ORAs is in good agreement with that inferred in observations 

(e.g. Garzoli et al., 2013; Majumder et al., 2016), and the SAMOC upper limb and MHT are also strongly correlated in time 

at most latitudes (Fig. 8). 

The DA does appear to systematically increase the ORA SAMOCs and MHTs with respect to the FRMs, bringing them closer 360 

to observational estimates at 35˚S and western boundary measurements at 11˚S (Fig. 3 and Fig. 5). The assimilation of Argo 

data, for example, leads to a significant intensification of the boundary currents relative to the pre-Argo period and to an 

improvement in the SAMOC structure at 35˚S in comparison with XBT-AX18 estimates (see also Dong et al. (2011a)). Here, 

although the DA consistently changes the upper western boundary transports in the same direction (e.g. increasing the 

northward IWBC-NBUC-NBC and decreasing the southward BC), they do not consistently constrain the boundary current 365 

transport magnitudes. Large SAMOC and MHT discrepancies still remain between the ORAs. These discrepancies are mainly 

attributed to differences in the narrow South Atlantic western boundary currents found within a few degrees of the coast. For 

example, the NBC (15˚S-equator) explains ~85% of the inter-product differences in the total MHTs, with compensating 

variations in the return flow (DWBC) also close to the coast. Since the overturning stream function 𝜓𝑚𝑎𝑥  is mainly associated 

with these boundary flows, it is not well constrained by the ORAs, particularly in the tropical South Atlantic.  370 

Analysis of the heat transports also reveals that differences in transport rather than differences in temperature dominate the 

inter-product spread, even within the western boundary region. The temperature contribution to the inter-product spread in 

heat transport, 𝑣̅𝑇, is only ~17% of the total spread, but its signature is evident right against the western boundary where 

temperature differences are required to geostrophically support the velocity differences between products. The local response 

to small density changes on the western boundary slope was also found to largely determine the meridional transport variability 375 

in ocean models in the North Atlantic, as noted by Bingham and Hughes (2009), emphasising the large sensitivity of the 

currents with respect to local density gradients against the boundary.  
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It is noteworthy that the lateral boundary conditions in the ORAs and FRMs vary between free-slip (α=0) and partial-slip 

(α=0.5). However, there is no clear correspondence between the choice of lateral boundary conditions and the strength of the 

western boundary transports, with free-slip products (e.g. UR025.4) having similar transports to partial-slip products (e.g. 380 

GLORYS2V4).  

Two possible reasons for the ORA differences in the western boundary currents are: (i) the lack of near boundary observations, 

and/or (ii) the differences in DA error covariances when assimilating interior basin measurements lying near to the western 

boundary. Observation system simulation experiments (OSSEs) with AMOC trans-basin arrays have shown that the meridional 

flow strength can be sensitive to the number of hydrographic profiles near the boundaries in both North (e.g. Hirschi et al., 385 

2003; Baehr et al., 2004) and South Atlantic (e.g. Perez et al., 2011). The combined assimilation of open ocean hydrographic 

observations and the continuous RAPID array western boundary measurements have also been shown to locally improve the 

AMOC strength at 26.5˚N (Stepanov et al., 2012). This emphasises the role that more systematic observations located at the 

eastern and western boundaries at several latitudes may play in monitoring the AMOC (Marotzke et al., 1999). In the future, 

the SAMOC observing system (Ansorge et al., 2014; Hummels et al., 2015), which will provide time series of NBC 390 

measurements at the western boundary at 11˚S, could be assimilated into the ORAs to constrain the regions of largest spread 

in the tropical South Atlantic. 

Differences in data assimilation methods near the boundaries may also be influencing the overturning in the different ORAs. 

For example, Balmaseda et al. (2013) noted that the AMOC at 26˚N in the ECMWF reanalyses is very sensitive to the treatment 

of observations and the parametrization of their errors near to the boundaries, although similar changes are not documented 395 

for other ORAs. Stepanov et al. (2012) also showed that the assimilation impacts of the RAPID western boundary 

measurements on the AMOC can vary according to the prescribed horizontal scales of the DA error covariances, e.g. with 

boundary-focused covariances producing larger positive impacts on the AMOC than isotropic covariances. In order to better 

understand the large SAMOC sensitivity found between the ORAs, future work will focus on the response of the western 

boundary and SAMOC transports to changes in the ORA configurations, such as sensitivity experiments to the assimilated 400 

datasets and to the DA schemes near to the western boundary. 
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Tables 

 590 

Table 1. List of the NEMO-based products used in this study and their central characteristics. Abbreviations: OSTIA stands for Operational Sea Surface Temperature and Sea Ice Analysis, 

AVISO for Archiving, Validation and Interpretation of Satellites Oceanography, AVHRR for Advanced Very High Resolution Radiometer, AMSR-E for Advanced Microwave Scanning 

Radiometer for Earth Observing System, NSIDC for National Snow and Ice Data Center, ICOADS for International Comprehensive Ocean-Atmosphere Data Set, NODC for National 

Oceanographic Data Center, EUMETSAT for European Organisation for the Exploitation of Meteorological Satellites, OSISAF for Ocean and Sea Ice Satellite Application Facility, CORA 

for Coriolis Dataset for Re-Analysis, and CERSAT for Centre ERS d’Archivage et de Traitement. 595 

Product Model / 

Resolution 

Atmospheric 

Forcing 

Data assimilation Assimilated observations Initial conditions 

ORCA025 

NEMO3.2 – 

LIM2, 1/4˚, 46 

z-levels 

6-hourly 

ERA-Interim 

 

None None 
1/4˚ run with hydrographic data 

assimilation  

ORCA0083 

NEMO3.2 – 

LIM2, 1/12˚, 

75 z-levels 

6-hourly DFS4.1 

(1978 -2007) and 

5.1 (2008-2010) 

None None Levitus (1998) T/S climatology 

ORAP5 

NEMO3.4.1 – 

LIM2, 1/4˚, 75 

z-levels 

6-hourly ERA-

Interim with wave 

forcing 

 NEMOVAR (3D-Var)  

(Mogensen et al., 2012) 

OSTIA SST, AVISO SLA, in situ T/S profiles 

from EN3_v2 with bias correction for XBT, 

OSTIA sea-ice concentration 

12-year spin-up initialised from 

WOA09 T/S climatology and 

followed by 5-year assimilation run  

CGLORSV5 

NEMO3.2.1 – 

LIM2, 1/4˚, 50 

z-levels 

3-hourly ERA-

Interim 

 

Global OceanVar (3D-Var) 

(Storto et al., 2011) 

Reynolds 1/4˚ AVHRR + AMSR-E SST, 

AVISO SLA, in situ T/S profiles from EN3_v2 

with bias correction for XBT, NSIDC (“NASA 

Team” algorithm) sea ice concentration 

Mean January condition of a 4-year 

spin-up initialised from EN4 T/S 

analysis 

UR025.4 

NEMO3.2 – 

LIM2, 1/4˚, 75 

z-levels 

6-hourly ERA-

Interim  

Met Office FOAM – NEMO 

assimilation system (Optimal 

Interpolation) 

(Storkey et al., 2010) 

ICOADS in situ SST and NODC satellite SST, 

AVISO SLA, in situ T/S profiles from EN3_v2 

with bias correction for XBT, EUMETSAT 

OSISAF sea ice concentration 

EN3 T/S analysis  

GLORYS2V4 

NEMO3.1 – 

LIM2, 1/4˚, 75 

z-levels 

3-hourly ERA-

Interim with 

RF and P 

corrections   

SAM2 (Singular Evolutive 

Extended Kalman Filter) 

(Pham et al., 1998) 

Reynolds 1/4˚ AVHRR-only SST, AVISO SLA, 

in situ T/S profiles from Coriolis CORA4.1 

database, CERSAT sea ice concentration  

EN4 T/S analysis  
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Figures  

 

Figure 1. 3D schematic of the South Atlantic western boundary circulation and water masses from Soutelino et al. (2013). The 

water masses associated with the SAMOC upper limb are represented by the Tropical Water (TW), South Atlantic Central 

Water (SACW) and Antarctic Intermediate Water (AAIW). The circulation is represented by the Brazil Current (BC), 600 
Intermediate Western Boundary Current (IWBC), North Brazil Undercurrent (NBUC), North Brazil Current (NBC) and South 

Equatorial Current (SEC). The Deep Western Boundary Current (DWBC) is also shown flowing poleward along the NADW 

path. 
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Figure 2. (a) The AMOC strength 𝜓𝑚𝑎𝑥  (Sv) averaged over 1997-2010 as a function of latitude, and (b) its spread (Sv) defined 605 
as the standard deviation of the ENS-ALL and ENS-ORA. The black box represents the study area between 35˚S and the 

equator. 
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Figure 3.  (a) SAMOC strength (Sv) at 35˚S, (b) MHT (PW) at 35˚S, and (c) MHT (PW) as a function of latitude averaged 

over 1997-2010. The black bars in (a) and (b) represent monthly standard deviations, except for the XBT-AX18, Dong et al. 610 
(2015) and Majumder et al. (2016) estimates which correspond to quarterly, weekly and daily standard deviations, respectively. 

In (c), Liu et al. (2015)’s MHTs and their annual standard deviation are represented by the shaded grey area. The products are 

also compared to hydrographic and inverse modelling estimates from the literature at several latitudes.  
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Figure 4. East-west accumulated volume transports (1997-2010) for each product (a to f) calculated from the surface down to 615 
𝑧𝑚𝑎𝑥  at each latitude. The upper southward flow in (g) is defined by the southward maximum of the east-west accumulated 

volume transports. Units are in Sv and the black dashed contour corresponds to 0 Sv.  

 

 

 620 
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Figure 5. The NBC transports (1997-2010) at 11˚S calculated between the surface and the neutral density interface of 27.7 kg 

m-3, using the same section near the western boundary and methodology as in Hummels et al. (2015). The black bars represent 

the standard errors where the size of the sample is defined as the length of the monthly time series. Units are in Sv.  

 625 
 



31 

 

 
 

Figure 6. The zonal averaged temperature (˚C) as a function of latitude for WOA13 from 1995 to 2012 (top panel), followed 

by the zonal averaged temperature of each product from 1997-2010 minus WOA13. The thick solid line represents the 0˚C 630 
contour.  
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Figure 7. (Left) The original MHTs (a), the MHTs based on the 𝑣𝑇̅ component (c), and the MHTs based on the 𝑣̅𝑇 component 635 
(e) in PW. (Right) The ENS-ALL spread of the p-OTTs (b), p-𝑣𝑇̅ (d) and p-𝑣̅𝑇 (f) in PWT per 0.25˚. Overbar represents the 

mean of the ENS-ALL.  
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 640 
 

Figure 8. The monthly Pearson correlation between the SAMOC strength and the MHT as a function of latitude for 1997-

2010, calculated with significance level of 95%. The quarterly XBT-AX18 correlation between the SAMOC strength and 

MHT at 35˚S is also included for comparisons.  
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Figure 9. The linear regression coefficient between the inter-product p-OTTs and their MHTs for each latitude. Units are in 

PWT per 0.25˚ per 1 PW across each latitude.  655 
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 660 
Figure 10. The transports (Sv) within 6˚ of the west coast for the (a) BC and (b) IWBC-NBUC-NBC system, following the 

isopycnal limits of the South Atlantic western boundary water masses as in Mémery et al. (2000) and Donners et al. (2005).  

The TW, SACW and AAIW limits are defined in kg m-3 with σ < 25.5, 25.5 ≤ σ < 27.1, and 27.1 ≤ σ < 27.3, respectively. The 

ENS-ORA spread (Sv) of the western boundary current transports are displayed in (c).  
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Figure 11. 4-box model of the averaged transports (1997-2010, in Sv) from (a) 15˚S to the equator, and from (b) 30˚S to 15˚S. 670 
6˚ off the coast is chosen to separate the western boundary from the basin interior. The depth of maximum SAMOC 𝑧𝑚𝑎𝑥  for 

each product is used to separate the upper and deep circulations. The circles with “x” and dots represent flow going into and 

out of the page, respectively. The empty circle means that there is no agreement about the direction of the flow. ± corresponds 

to the interannual variability of each product. 
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 675 
 

 
Figure 12. (a-f) Interannual p-OTT spread for the period 1997-2010. Units are in PWT per 0.25˚. In (g) the interannual p-

OTTs variances for each product are summed within 6˚ of the west coast across each latitude and displayed as a percentage of 

the total MHT variance.   680 
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 685 
Figure 13. (a) Monthly time series of 𝜓𝑚𝑎𝑥 (Sv) and the maximum upper southward flow (Sv) for each product calculated as 

an average from 15˚S to the equator, and (b) their ENS-ORA spreads (Sv). A running mean of 6 months was applied to smooth 

the ENS-ORA spread time series. The upper southward flow is calculated using the same approach as in Fig. 4g.  


