
IBMr

z/Architecture

Principles of Operation

SA22-7832-12

IBMr

z/Architecture

Principles of Operation

SA22-7832-12

Thirteenth Edition (September, 2019)

This edition obsoletes and replaces z/Architecture Principles of Operation, SA22-7832-11.

This publication is provided for use in conjunction with other relevant IBM publications, and IBM makes no warranty, express or
implied, about its completeness or accuracy. The information in this publication is current as of its publication date but is subject to
change without notice.

Additional copies of this and other IBM publications may be ordered or downloaded from the IBM publications web site at
http://www.ibm.com/support/documentation.

Please direct any comments on the contents of this publication to:

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2019. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xvii.

The reader should be aware of the fact that this publication contains many symbols, such as superscripts, that may not display
correctly with any given hardware or software. The definitive version of this publication is the hardcopy version.

Note:

Softcopy Note:

iii© Copyright IBM Corp. 2000, 2019

Contents

Notices . xxv
Trademarks . xxv

Preface . xxvii
Size and Number Notation. xxviii
Bytes, Characters, and Codes. xxix
Other Publications . xxix

Summary of Changes in Thirteenth Edition. xxxi
Summary of Changes in Twelfth Editionxxxii
Summary of Changes in Eleventh Edition xxxvi
Summary of Changes in Tenth Edition xxxix
Summary of Changes in Ninth Edition. xli
Summary of Changes in Eighth Edition.xliii
Summary of Changes in Seventh Editionxliii
Summary of Changes in Sixth Edition xlv
Summary of Changes in Fifth Edition xlvii
Summary of Changes in Fourth Edition. xlix
Summary of Changes in Third Edition. l
Summary of Changes in Second Edition. lii

Chapter 1, Introduction 1-1
Highlights of Original z/Architecture 1-2

General Instructions for 64-Bit Integers 1-3
Other New General Instructions 1-3
Floating-Point Instructions 1-5
Control Instructions . 1-5
Trimodal Addressing . 1-5

Modal Instructions . 1-5
Effects on Bits 0-31 of a General Register . 1-6

Input/Output . 1-6
Additions to z/Architecture. 1-7

ASN-and-LX-Reuse Facility. 1-7
CMPSC-Enhancement Facility 1-7
Compare-and-Swap-and-Store Facility 1-8
Compare-and-Swap-and-Store Facility 2 1-8
Conditional-SSKE Facility 1-8
Configuration-Topology Facility 1-8
Configuration-z/Architecture-Architectural-Mode

Facility . 1-8
Constrained-Transactional-Execution Facility . 1-8
DAT-Enhancement Facility 1 1-8
DAT-Enhancement Facility 2 1-9
Decimal-Floating-Point Facility 1-9
Decimal-Floating-Point Packed-Conversion

Facility . 1-9
Decimal-Floating-Point-Rounding Facility 1-9
Decimal-Floating-Point Zoned-Conversion

Facility . 1-9
DEFLATE-Conversion Facility 1-9

Distinct-Operands Facility 1-9
Enhanced-DAT Facility 1 1-10
Enhanced-DAT Facility 2 1-10
Enhanced-Monitor Facility 1-11
Entropy Encoding Compression Facility 1-11
ESA/390-Compatibility-Mode Facility 1-11
ETF2-Enhancement Facility 1-11
ETF3-Enhancement Facility 1-11
Execute-Extensions Facility 1-12
Execution-Hint Facility 1-12
Extended-Immediate Facility. 1-12
Extended-I/O-Measurement-Block Facility . . . 1-12
Extended-I/O-Measurement-Word Facility . . . 1-12
Extended-Translation Facility 2. 1-13
Extended-Translation Facility 3. 1-13
Extract-CPU-Time Facility. 1-13
Fast-BCR-Serialization Facility 1-13
Fibre-Channel Extensions (FCX) 1-13
FCX-Bidirectional-Data-Transfer Facility 1-14
Floating-Point Extension Facility. 1-14
Floating-Point-Support-Sign- Handling Facility1-15
FPR-GR-Transfer Facility 1-15
General-Instructions-Extension Facility 1-15
Guarded-Storage Facility 1-16
HFP Multiply-and-Add/Subtract Facility 1-16
HFP-Unnormalized-Extensions Facility 1-16
High-Word Facility. 1-16
IEEE-Exception-Simulation Facility. 1-17
Insert-Reference-Bits-Multiple Facility 1-17
Instruction-Execution-Protection Facility. 1-17
Interlocked-Access Facility 1 1-17
Interlocked-Access Facility 2 1-17
IPTE-Range Facility . 1-17
List-Directed Initial Program Load. 1-17
Load-and-Trap Facility 1-18
Load-and-Zero-Rightmost-Byte Facility 1-18
Load/Store-on-Condition Facility 1 1-18
Load/Store-on-Condition Facility 2 1-18
Local-TLB-Clearing Facility. 1-18
Long-Displacement Facility. 1-18
Message-Security Assist. 1-19
Message-Security-Assist Extension 1. 1-19
Message-Security-Assist Extension 2. 1-19
Message-Security-Assist Extension 3. 1-19
Message-Security-Assist Extension 4. 1-20
Message-Security-Assist Extension 5. 1-21
Message-Security-Assist Extension 6. 1-21
Message-Security-Assist Extension 7. 1-22
Message-Security-Assist Extension 8. 1-22
Message-Security-Assist Extension 9. 1-22
Miscellaneous-Instruction-Extensions

Facility 1 . 1-23
Miscellaneous-Instruction-Extensions

Facility 2 . 1-23

iv The z/Architecture CPU Architecture

Miscellaneous-Instruction-Extensions
Facility 3 . 1-23

Modified CCW Indirect Data Addressing
Facility . 1-23

Move-Page-and-Set-Key Facility 1-24
Move-With-Optional-Specifications Facility . . 1-24
Multiple-Epoch Facility 1-24
Multiple-Subchannel-Set Facility 1-24
Multithreading Facility 1-25
Nonquiescing Key-Setting Facility 1-25
Parsing-Enhancement Facility 1-25
PER-3 Facility . 1-25
PER-Storage-Key-Alteration Facility 1-26
PER Zero-Address-Detection Facility 1-26
PFPO Facility . 1-26
Population-Count Facility 1-26
Processor-Assist Facility 1-26
Reset-Reference-Bits-Multiple Facility 1-26
Restore-Subchannel Facility 1-26
Server-Time-Protocol Facility. 1-26
Side-Effect-Access Facility. 1-27
Store-Clock-Fast Facility 1-27
Store-Facility-List-Extended Facility. 1-27
Test-Pending-External-Interruption Facility . . 1-27
TOD-Clock-Steering Facility. 1-27
Transactional-Execution Facility 1-27
Vector-Enhancements Facility 1 1-27
Vector-Enhancements Facility 2 1-28
Vector Facility for z/Architecture 1-28
Vector Packed-Decimal Facility 1-28
Vector-Packed-Decimal-Enhancement

Facility . 1-29
Warning-Track Interruption Facility 1-29

The ESA/390 Base . 1-29
The ESA/370 and 370-XA Base. 1-34

System Program . 1-36
Compatibility . 1-36

Compatibility among z/Architecture Systems. 1-36
Compatibility between z/Architecture and

ESA/390. 1-37
Control-Program Compatibility 1-37
Problem-State Compatibility. 1-37

Availability . 1-37

Chapter 2, Organization2-1
Main Storage . 2-2
Expanded Storage . 2-2
CPU . 2-2

CPU Types. 2-3
Multithreading. 2-3

PSW . 2-4
General Registers . 2-4
Floating-Point Registers. 2-4

Floating-Point-Control Register2-5
Vector Registers .2-5
Control Registers. .2-6
Access Registers. .2-6
Cryptographic Facility .2-7

External Time Reference.2-7
I/O .2-7

Channel Subsystem .2-7
Channel Paths. .2-7
I/O Devices and Control Units2-8

Operator Facilities .2-8

Chapter 3, Storage. 3-1
Storage Addressing. .3-2

Information Formats .3-3
Integral Boundaries .3-3

Address Types and Formats3-4
Address Types .3-4

Absolute Address .3-4
Real Address .3-4
Virtual Address .3-5
Primary Virtual Address.3-5
Secondary Virtual Address 3-5
AR-Specified Virtual Address 3-5
Home Virtual Address3-5
Logical Address .3-5
Instruction Address .3-5
Effective Address. .3-5

Address Size and Wraparound3-6
Address Wraparound.3-7

Storage Key. .3-9
Protection .3-10

Key-Controlled Protection3-11
Storage-Protection-Override Control3-12
 Fetch-Protection-Override Control3-13

Access-List-Controlled Protection3-13
DAT Protection .3-13
Low-Address Protection 3-14
Instruction-Execution Protection3-14
Suppression on Protection 3-15

Reference Recording .3-19
Change Recording .3-20
Prefixing .3-21

Prefixing in the z/Architecture Architectural
Mode .3-22

Prefixing in the ESA/390-Compatibility Mode .3-22
Common Prefixing Attributes.3-22

Address Spaces .3-23
Changing to Different Address Spaces3-23
Address-Space Number 3-23

ASN-Second-Table-Entry Sequence Number .3-24
ASN-Second-Table-Entry Instance Number

and ASN Reuse. .3-25

v

ASN Translation . 3-30
ASN-Translation Controls 3-30

Control Register 14 3-30
ASN-Translation Tables. 3-31

ASN-First-Table Entries. 3-31
ASN-Second-Table Entries 3-31

ASN-Translation Process 3-33
ASN-First-Table Lookup 3-33
ASN-Second-Table Lookup 3-34
Recognition of Exceptions during ASN

Translation . 3-35
ASN Authorization . 3-35

ASN-Authorization Controls. 3-35
Control Register 4 3-35
ASN-Second-Table Entry 3-35

Authority-Table Entries 3-36
ASN-Authorization Process 3-36

Authority-Table Lookup 3-36
Recognition of Exceptions during ASN

Authorization . 3-38
Dynamic Address Translation 3-38

Translation Control . 3-40
Translation Modes 3-40
Control Register 0 3-41
Control Register 1 3-42
Control Register 7 3-44
Control Register 13 3-45

Translation Tables . 3-45
Region-Table Entries 3-46
Segment-Table Entries 3-49
Page-Table Entries 3-51

Translation Process . 3-52
Inspection of Real-Space Control 3-54
Inspection of Designation-Type Control. . . 3-54
Lookup in a Table Designated by an

Address-Space-Control Element 3-57
Lookup in a Table Designated by a

Region-Table Entry 3-59
Page-Table Lookup 3-61
Formation of the Real and Absolute

Addresses . 3-62
Recognition of Exceptions during

Translation . 3-62
Translation-Lookaside Buffer. 3-62

TLB Structure. 3-63
Formation of TLB Entries. 3-63
Use of TLB Entries. 3-65
Modification of Translation Tables 3-67

Address Summary . 3-70
Addresses Translated 3-70
Handling of Addresses. 3-71

Assigned Storage Locations 3-73
Assigned Storage Locations in the

z/Architecture Architectural Mode 3-73

Assigned Storage Locations in the
ESA/390-Compatibility Mode 3-83

Chapter 4, Control 4-1
CPU States . 4-2

Stopped State . 4-2
Operating State. 4-3
Load State. 4-3
Check-Stop State . 4-3

Program-Status Word . 4-4
Program-Status-Word Format 4-5

Short PSW Format . 4-8
Control Registers . 4-8
Tracing . 4-12

Implicit Tracing . 4-12
Branch Tracing . 4-12
ASN Tracing . 4-13
Mode Tracing . 4-13

Explicit Tracing . 4-14
Control-Register Allocation 4-15
Trace Entries. 4-15
Trace Operation . 4-25

Program-Event Recording 4-26
PER Instruction-Fetching Nullification. 4-26
Control-Register Allocation and

Address-Space-Control Element 4-26
PER Operation . 4-29

Identification of Cause. 4-30
Priority of Indication. 4-33

Storage-Area Designation. 4-35
PER Events. 4-36

Successful Branching 4-36
Instruction Fetching. 4-37
Storage Alteration . 4-37
Store Using Real Address. 4-38
Zero-Address Detection 4-38
Transaction End . 4-39
Storage-Key Alteration 4-40

Indication of PER Events Concurrently with
Other Interruption Conditions 4-40
Indication of PER Events and

Guarded-Storage Events 4-44
Breaking-Event-Address Recording 4-45

Breaking-Event-Address Register. 4-46
Execution-Break Instructions 4-46

Timing . 4-47
Time-of-Day Clock and Epoch Index 4-47

Format. 4-47
 States . 4-48
Changes in Clock State. 4-49
Setting and Inspecting the Clock. 4-50
TOD Programmable Register 4-52

TOD-Clock Synchronization 4-54

vi The z/Architecture CPU Architecture

Timing Mode. 4-54
Timing State . 4-54
STP Clock Source State. 4-55

TOD-Clock Steering . 4-55
 Offset-Based TOD-Clock Steering

Overview . 4-56
Hardware-Based TOD-Clock-Steering

Overview . 4-56
TOD-Offset-Update Events 4-57
Episodes . 4-57
TOD-Clock-Steering Registers. 4-57
UTC Information Block (UIB) 4-58

Clock Comparator . 4-60
CPU Timer . 4-63

 Guarded-Storage Facility 4-65
Guarded-Storage-Facility Registers. 4-65

Control Register 2 4-65
Guarded-Storage-Designation (GSD)

Register . 4-66
Guarded-Storage-Section-Mask (GSSM)

Register . 4-66
Guarded-Storage-Event Parameter-

List-Address (GSEPLA) Register 4-67
Guarded-Storage Control Block (GSCB) 4-67
Guarded-Storage-Event Parameter List

(GSEPL) . 4-67
Guarded-Storage Facility Operation 4-70

Guarded-Storage-Event Detection 4-70
Guarded-Storage-Event Processing 4-71

Externally Initiated Functions 4-74
Resets . 4-74

. CPU Reset . 4-78
Initial CPU Reset . 4-79
Subsystem Reset . 4-80
Clear Reset . 4-80
Power-On Reset. 4-81

Initial Program Loading 4-81
CCW-Type IPL . 4-82

Store Status . 4-82
Multiprocessing . 4-83

Shared Main Storage 4-84
CPU-Address Identification 4-84

CPU-Address Expansion 4-84
CPU-Address Contraction 4-85

CPU Signaling and Response 4-85
Signal-Processor Orders 4-85

Sense . 4-85
External Call . 4-85
Emergency Signal 4-86
Start . 4-86
Stop . 4-86
Restart . 4-86
Stop and Store Status 4-86
Initial CPU Reset . 4-86

CPU Reset. .4-86
Set Prefix .4-86
Store Status at Address.4-87
Store Extended Status at Address 4-88
Set Architecture .4-89
Conditional Emergency Signal 4-91
Sense Running Status.4-92
Set Multithreading .4-92
Store Additional Status at Address4-93

Conditions Determining Response4-95
Conditions Precluding Interpretation of the

Order Code .4-95
Status Bits .4-96

Facility Indications .4-99

Chapter 5, Program Execution 5-1
Instructions .5-3

Operands. .5-3
Instruction Formats .5-3

Register Operands .5-7
Immediate Operands5-8
Storage Operands .5-9

Address Generation .5-10
Trimodal Addressing .5-10
Sequential Instruction-Address Generation. . .5-10
Operand-Address Generation5-11

Formation of the Intermediate Value5-11
Formation of the Operand Address5-12

Branch-Address Generation5-12
Formation of the Intermediate Value5-12
Formation of the Branch Address5-13

Instruction Execution and Sequencing 5-14
Decision Making .5-14
Loop Control .5-14
Subroutine Linkage without the Linkage Stack5-14

Simple Branch Instructions5-14
Other Linkage Instructions.5-17

Interruptions .5-22
Types of Instruction Ending.5-22

Completion .5-22
Suppression. .5-22
Nullification .5-23
Termination .5-23

Interruptible Instructions 5-24
Point of Interruption5-24
Unit of Operation .5-24
Execution of Interruptible Instructions5-24
Condition-Code Alternative to

Interruptibility .5-25
Exceptions to Nullification and Suppression . .5-26

Modification of DAT-Table Entries.5-27
Trial Execution for Editing Instructions and

Translate Instruction 5-27

vii

Authorization Mechanisms 5-27
Mode Requirements 5-28
Extraction-Authority Control 5-28
PSW-Key Mask . 5-28
Secondary-Space Control 5-29
Subsystem-Linkage Control. 5-29
ASN-Translation Control 5-29
Authorization Index 5-29
Instructions and Controls Related to

ASN-and-LX Reuse 5-30
PC-Number Translation. 5-33

PC-Number Translation Control 5-34
Control Register 0 5-35
Control Register 5 5-35

PC-Number Translation Tables 5-36
Linkage-Table Entries 5-36
Linkage-First-Table Entries 5-36
Linkage-Second-Table Entries 5-37
Entry-Table Entries 5-37
Table Summary . 5-38

PC-Number-Translation Process. 5-39
Obtaining the Linkage-Table or Linkage-

First-Table Designation 5-42
Linkage-Table Lookup 5-42
Linkage-First-Table Lookup 5-42
Linkage-Second-Table Lookup 5-43
Linkage-Second-Table-Entry-Sequence-

Number Comparison 5-43
Entry-Table Lookup 5-43
Recognition of Exceptions during

PC-Number Translation 5-44
Home Address Space . 5-44
Access-Register Introduction. 5-45

Summary . 5-45
Access-Register Functions 5-46

Access-Register-Specified Address
Spaces. 5-46

Access-Register Instructions 5-52
Access-Register Translation 5-53

Access-Register-Translation Control 5-53
Control Register 2 5-53
Control Register 5 5-54
Control Register 8 5-54

Access Registers . 5-54
Access-Register-Translation Tables 5-55

Dispatchable-Unit Control Table and
Access-List Designations. 5-55

Access-List Entries 5-56
ASN-Second-Table Entries 5-57

Access-Register-Translation Process 5-59
Selecting the Access-List-Entry Token . . . 5-62
Obtaining the Primary or Secondary

Address-Space-Control Element 5-62
Checking the First Byte of the ALET 5-62

Obtaining the Effective Access-List
Designation . 5-62

Access-List Lookup. 5-62
Locating the ASN-Second-Table Entry 5-63
Authorizing the Use of the Access-List

Entry . 5-63
Checking for Access-List-Controlled

Protection . 5-64
Obtaining the Address-Space-Control

Element from the ASN-Second-Table
Entry . 5-64

Recognition of Exceptions during
Access-Register Translation 5-64

ART-Lookaside Buffer. 5-64
ALB Structure . 5-64
Formation of ALB Entries 5-64
Use of ALB Entries 5-65
Modification of ART Tables 5-66

Subspace Groups . 5-66
Subspace-Group Tables 5-66

Subspace-Group Dispatchable-Unit Control
Table . 5-66

Subspace-Group ASN-Second-Table
Entries. 5-68

Subspace-Replacement Operations 5-70
Linkage-Stack Introduction 5-70

Summary. 5-71
Linkage-Stack Functions. 5-71

Transferring Program Control 5-71
Branching Using the Linkage Stack 5-73
Adding and Retrieving Information 5-74
Testing Authorization 5-74
Program-Problem Analysis 5-75

Linkage-Stack Entry-Table Entries 5-75
Linkage-Stack Operations. 5-76

Linkage-Stack-Operations Control 5-78
Control Register 0 5-78
Control Register 15 5-78

Linkage Stack . 5-79
Entry Descriptors. 5-79
Header Entries . 5-80
Trailer Entries . 5-81
State Entries . 5-81

Stacking Process . 5-84
Locating Space for a New Entry 5-84
Forming the New Entry 5-85
Updating the Current Entry 5-86
Updating Control Register 15 5-86
Recognition of Exceptions during the

Stacking Process 5-86
Unstacking Process . 5-86

Locating the Current Entry and Processing
a Header Entry . 5-87

Checking for a State Entry 5-88

viii The z/Architecture CPU Architecture

Restoring Information. 5-88
Updating the Preceding Entry 5-89
Updating Control Register 15 5-89
Recognition of Exceptions during the

Unstacking Process 5-89
Transactional-Execution Facility 5-89

Transactional-Execution Terminology 5-89
Transactional-Execution Facility Controls . . . 5-92

Control Register Bits 5-92
Transaction-Diagnostic-Block Address

(TDBA) . 5-93
Transaction-Abort PSW (TAPSW) 5-93
Transaction Nesting Depth (TND) 5-93

Transaction Diagnostic Block (TDB) 5-93
Transactional-Execution Facility Instructions . 5-97

Restricted Instructions 5-97
 Transactional-Execution Facility Operation. . 5-99

Transaction Initiation 5-99
Execution in the Transactional-Execution

Mode . 5-99
Normal Transaction Ending 5-99
Transaction Abort Conditions 5-100
Transaction Abort Processing 5-102
Program-Interruption Filtering on a

Transaction Abort. 5-104
Priority of Abort Conditions. 5-107
Constrained Transaction 5-107

 Monitor-Event Counting 5-109
ESA/390-Compatibility-Mode Facility. 5-111
Sequence of Storage References 5-113

Conceptual Sequence 5-113
Overlapped Operation of Instruction

Execution . 5-114
Divisible Instruction Execution 5-115

Interlocks for Virtual-Storage References . . 5-115
Interlocks between Instructions 5-116
Interlocks within a Single Instruction 5-116

Instruction Fetching 5-118
ART-Table and DAT-Table Fetches. 5-119
Storage-Key Accesses. 5-120
Storage-Operand References 5-123

Storage-Operand Fetch References 5-123
Storage-Operand Store References. 5-123
Storage-Operand Update References . . . 5-124

Storage-Operand Consistency. 5-125
Single-Access References 5-125
Multiple-Access References. 5-125
Block-Concurrent References 5-127

Relation between Operand Accesses 5-129
Storage Operand References in the

Transactional-Execution Mode. 5-129
Other Storage References 5-130
Relation between Storage-Key Accesses . . 5-130

Serialization . 5-130

CPU Serialization .5-130
Specific-Operand Serialization 5-132

Channel-Program Serialization5-133
Quiescing .5-133

Chapter 6, Interruptions 6-1
Interruption Action .6-2

Interruption Code. .6-5
Enabling and Disabling6-6
Handling of Floating Interruption Conditions . . .6-6
Instruction-Length Code 6-7

Zero ILC. .6-7
ILC on Instruction-Fetching Exceptions.6-8

Exceptions Associated with the PSW6-9
Early Exception Recognition6-9
Late Exception Recognition.6-10

External Interruption .6-11
Clock Comparator .6-12
CPU Timer. .6-12
Emergency Signal .6-13
External Call .6-13
Interrupt Key .6-13
Malfunction Alert .6-13
Measurement Alert .6-14
Service Signal .6-14
Timing Alert .6-14

ETR-Timing-Alert Condition.6-14
STP-Timing-Alert Condition.6-14

Warning Track .6-15
I/O Interruption .6-15
Machine-Check Interruption 6-16
Program Interruption .6-16

Data-Exception Code (DXC)6-17
Priority of Program Interruptions for Data

Exceptions .6-17
Vector-Exception Code6-20
Program-Interruption Conditions6-20

Addressing Exception6-20
AFX-Translation Exception6-22
ALEN-Translation Exception6-22
ALE-Sequence Exception6-22
ALET-Specification Exception6-22
ASCE-Type Exception.6-22
ASTE-Instance Exception6-23
ASTE-Sequence Exception6-23
ASTE-Validity Exception6-24
ASX-Translation Exception6-24
Crypto-Operation Exception 6-24
Data Exception .6-25
Decimal-Divide Exception6-26
Decimal-Overflow Exception6-26
Execute Exception.6-26
EX-Translation Exception 6-26

ix

Extended-Authority Exception 6-27
Fixed-Point-Divide Exception. 6-27
Fixed-Point-Overflow Exception 6-27
HFP-Divide Exception 6-28
HFP-Exponent-Overflow Exception 6-28
HFP-Exponent-Underflow Exception 6-28
HFP-Significance Exception 6-28
HFP-Square-Root Exception 6-29
LFX-Translation Exception 6-29
LSTE-Sequence Exception 6-29
LSX-Translation Exception 6-29
LX-Translation Exception. 6-30
Monitor Event. 6-30
Operand Exception 6-31
Operation Exception 6-31
Page-Translation Exception. 6-32
PC-Translation-Specification Exception . . 6-32
PER Event . 6-32
Primary-Authority Exception 6-33
Privileged-Operation Exception 6-33
Protection Exception 6-34
Region-First-Translation Exception 6-35
Region-Second-Translation Exception . . . 6-36
Region-Third-Translation Exception 6-36
Secondary-Authority Exception 6-37
Segment-Translation Exception. 6-37
Space-Switch Event. 6-37
Special-Operation Exception 6-38
Specification Exception 6-40
Stack-Empty Exception 6-44
Stack-Full Exception 6-45
Stack-Operation Exception 6-45
Stack-Specification Exception 6-45
Stack-Type Exception 6-45
Trace-Table Exception. 6-45
Transaction-Constraint Exception 6-46
Transactional-Execution-Aborted Event . . 6-46
Translation-Specification Exception. 6-46
Vector Processing Exception. 6-47

Collective Program-Interruption Names. 6-47
Recognition of Access Exceptions. 6-47
Multiple Program-Interruption Conditions . . . 6-51

Access Exceptions. 6-53
ASN-Translation Exceptions 6-55
Subspace-Replacement Exceptions 6-56
Trace Exceptions . 6-56

Restart Interruption . 6-56
Supervisor-Call Interruption. 6-57
Priority of Interruptions 6-57

Chapter 7, General Instructions 7-1
Data Format. 7-4
Binary-Integer Representation. 7-4

Binary Arithmetic. 7-5
Signed Binary Arithmetic. 7-5

Addition and Subtraction 7-5
Fixed-Point Overflow. 7-5

Unsigned Binary Arithmetic. 7-6
Signed and Logical Comparison. 7-7
Instructions . 7-7

ADD . 7-25
ADD IMMEDIATE . 7-26
ADD HALFWORD. 7-27
ADD HALFWORD IMMEDIATE 7-28
ADD HIGH . 7-28
ADD IMMEDIATE HIGH 7-29
ADD LOGICAL . 7-29
ADD LOGICAL IMMEDIATE. 7-29
ADD LOGICAL HIGH 7-30
ADD LOGICAL WITH CARRY 7-30
ADD LOGICAL WITH SIGNED IMMEDIATE . 7-31
ADD LOGICAL WITH SIGNED IMMEDIATE

HIGH. 7-32
AND . 7-32
AND IMMEDIATE . 7-34
AND WITH COMPLEMENT 7-34
BRANCH AND LINK . 7-35
BRANCH AND SAVE 7-36
BRANCH AND SAVE AND SET MODE 7-36
BRANCH AND SET MODE 7-37
BRANCH INDIRECT ON CONDITION 7-38
BRANCH ON CONDITION 7-39
 BRANCH ON COUNT 7-40
BRANCH ON INDEX HIGH 7-41
BRANCH ON INDEX LOW OR EQUAL 7-41
BRANCH PREDICTION PRELOAD 7-42
BRANCH PREDICTION RELATIVE

PRELOAD. 7-42
BRANCH RELATIVE AND SAVE 7-45
BRANCH RELATIVE AND SAVE LONG 7-45
BRANCH RELATIVE ON CONDITION. 7-46
BRANCH RELATIVE ON CONDITION LONG 7-46
BRANCH RELATIVE ON COUNT 7-47
BRANCH RELATIVE ON COUNT HIGH 7-47
BRANCH RELATIVE ON INDEX HIGH 7-47
BRANCH RELATIVE ON INDEX LOW OR

EQUAL . 7-47
CHECKSUM . 7-49
CIPHER MESSAGE . 7-52
CIPHER MESSAGE WITH CHAINING. 7-52
CIPHER MESSAGE WITH

AUTHENTICATION 7-77
CIPHER MESSAGE WITH CIPHER

FEEDBACK. 7-91
CIPHER MESSAGE WITH COUNTER. 7-106
CIPHER MESSAGE WITH OUTPUT

FEEDBACK. 7-119

x The z/Architecture CPU Architecture

COMPARE . 7-133
COMPARE IMMEDIATE 7-133
COMPARE RELATIVE LONG 7-134
COMPARE AND BRANCH 7-134
COMPARE AND BRANCH RELATIVE 7-134
COMPARE IMMEDIATE AND BRANCH . . . 7-135
COMPARE IMMEDIATE AND BRANCH

RELATIVE . 7-135
COMPARE AND FORM CODEWORD 7-136
COMPARE AND SWAP. 7-143
COMPARE DOUBLE AND SWAP 7-143
COMPARE AND SWAP AND STORE. 7-145
COMPARE AND TRAP 7-148
COMPARE IMMEDIATE AND TRAP. 7-148
COMPARE HALFWORD 7-149
COMPARE HALFWORD IMMEDIATE 7-149
COMPARE HALFWORD RELATIVE LONG 7-149
COMPARE HIGH . 7-150
COMPARE IMMEDIATE HIGH 7-150
COMPARE LOGICAL 7-151
COMPARE LOGICAL IMMEDIATE 7-151
COMPARE LOGICAL RELATIVE LONG. . . 7-152
COMPARE LOGICAL AND BRANCH 7-153
COMPARE LOGICAL AND BRANCH

RELATIVE . 7-153
COMPARE LOGICAL IMMEDIATE AND

BRANCH . 7-153
COMPARE LOGICAL IMMEDIATE AND

BRANCH RELATIVE 7-153
COMPARE LOGICAL AND TRAP 7-154
COMPARE LOGICAL IMMEDIATE AND

TRAP . 7-155
COMPARE LOGICAL CHARACTERS

UNDER MASK . 7-156
COMPARE LOGICAL HIGH 7-156
COMPARE LOGICAL IMMEDIATE HIGH . . 7-157
COMPARE LOGICAL LONG 7-157
COMPARE LOGICAL LONG EXTENDED. . 7-159
COMPARE LOGICAL LONG UNICODE . . . 7-162
COMPARE LOGICAL STRING 7-165
COMPARE UNTIL SUBSTRING EQUAL . . 7-166
COMPRESSION CALL 7-169
COMPUTE INTERMEDIATE MESSAGE

DIGEST . 7-187
COMPUTE LAST MESSAGE DIGEST 7-200
COMPUTE MESSAGE AUTHENTICATION

CODE. 7-218
CONVERT TO BINARY 7-229
CONVERT TO DECIMAL. 7-230
CONVERT UTF-16 TO UTF-32 7-230
CONVERT UTF-16 TO UTF-8 7-233
CONVERT UNICODE TO UTF-8. 7-233
CONVERT UTF-32 TO UTF-16 7-237
CONVERT UTF-32 TO UTF-8 7-240

CONVERT UTF-8 TO UTF-16.7-243
CONVERT UTF-8 TO UNICODE 7-243
CONVERT UTF-8 TO UTF-32.7-247
COPY ACCESS .7-251
DIVIDE .7-251
DIVIDE LOGICAL .7-252
DIVIDE SINGLE .7-253
EXCLUSIVE OR .7-253
EXCLUSIVE OR IMMEDIATE.7-255
EXECUTE .7-255
EXECUTE RELATIVE LONG7-255
EXTRACT ACCESS7-256
EXTRACT CPU ATTRIBUTE 7-256
EXTRACT CPU TIME7-259
EXTRACT PSW .7-260
EXTRACT TRANSACTION NESTING

DEPTH .7-260
FIND LEFTMOST ONE7-261
INSERT CHARACTER7-261
INSERT CHARACTERS UNDER MASK. . . .7-261
INSERT IMMEDIATE 7-262
INSERT PROGRAM MASK.7-263
LOAD. .7-263
LOAD IMMEDIATE .7-263
LOAD RELATIVE LONG7-263
LOAD ACCESS MULTIPLE 7-264
LOAD ADDRESS .7-265
LOAD ADDRESS EXTENDED7-265
LOAD ADDRESS RELATIVE LONG.7-266
LOAD AND ADD .7-267
LOAD AND ADD LOGICAL.7-267
LOAD AND AND .7-268
LOAD AND EXCLUSIVE OR.7-268
LOAD AND OR .7-269
LOAD AND TEST .7-269
LOAD AND TRAP .7-270
LOAD AND ZERO RIGHTMOST BYTE 7-270
LOAD BYTE .7-271
LOAD BYTE HIGH .7-271
LOAD COMPLEMENT 7-271
LOAD COUNT TO BLOCK BOUNDARY . . .7-272
LOAD GUARDED .7-273
LOAD LOGICAL AND SHIFT GUARDED . .7-273
LOAD GUARDED STORAGE CONTROLS .7-274
LOAD HALFWORD .7-275
LOAD HALFWORD IMMEDIATE 7-275
LOAD HALFWORD RELATIVE LONG7-275
LOAD HALFWORD HIGH7-276
LOAD HALFWORD IMMEDIATE ON

CONDITION .7-276
LOAD HALFWORD HIGH IMMEDIATE ON

CONDITION .7-276
LOAD HIGH. .7-277
LOAD HIGH AND TRAP7-277

xi

LOAD LOGICAL . 7-277
LOAD LOGICAL RELATIVE LONG. 7-277
LOAD LOGICAL AND TRAP 7-278
LOAD LOGICAL AND ZERO RIGHTMOST

BYTE . 7-278
LOAD LOGICAL CHARACTER. 7-278
LOAD LOGICAL CHARACTER HIGH. 7-279
LOAD LOGICAL HALFWORD. 7-279
LOAD LOGICAL HALFWORD RELATIVE

LONG . 7-279
LOAD LOGICAL HALFWORD HIGH. 7-280
LOAD LOGICAL IMMEDIATE 7-280
LOAD LOGICAL THIRTY ONE BITS. 7-280
LOAD LOGICAL THIRTY ONE BITS AND

TRAP . 7-281
LOAD MULTIPLE . 7-281
LOAD MULTIPLE DISJOINT. 7-282
LOAD MULTIPLE HIGH 7-282
LOAD NEGATIVE . 7-282
LOAD ON CONDITION 7-283
LOAD HIGH ON CONDITION 7-283
LOAD PAIR DISJOINT 7-284
LOAD PAIR FROM QUADWORD 7-285
LOAD POSITIVE . 7-286
LOAD REVERSED 7-286
MONITOR CALL . 7-287
MOVE . 7-288
MOVE INVERSE . 7-289
MOVE LONG. 7-289
MOVE LONG EXTENDED 7-293
MOVE LONG UNICODE 7-296
MOVE NUMERICS 7-300
MOVE RIGHT TO LEFT 7-300
MOVE STRING . 7-301
MOVE WITH OFFSET. 7-302
MOVE ZONES. 7-303
MULTIPLY . 7-304
MULTIPLY HALFWORD 7-305
MULTIPLY HALFWORD IMMEDIATE. 7-305
MULTIPLY LOGICAL. 7-306
MULTIPLY SINGLE. 7-307
MULTIPLY SINGLE IMMEDIATE 7-307
NAND. 7-308
NEXT INSTRUCTION ACCESS INTENT . . 7-309
NONTRANSACTIONAL STORE 7-310
NOR. 7-311
NOT EXCLUSIVE OR 7-311
OR . 7-312
OR IMMEDIATE . 7-313
OR WITH COMPLEMENT. 7-314
PACK. 7-314
PACK ASCII. 7-315
PACK UNICODE . 7-316

PERFORM CRYPTOGRAPHIC
COMPUTATION . 7-316

PERFORM LOCKED OPERATION 7-337
PERFORM PROCESSOR ASSIST 7-351
PERFORM RANDOM NUMBER

OPERATION. 7-352
 POPULATION COUNT 7-365
PREFETCH DATA . 7-365
PREFETCH DATA RELATIVE LONG 7-366
ROTATE LEFT SINGLE LOGICAL. 7-367
ROTATE THEN AND SELECTED BITS 7-368
ROTATE THEN EXCLUSIVE OR

SELECTED BITS . 7-368
ROTATE THEN OR SELECTED BITS 7-368
ROTATE THEN INSERT SELECTED BITS . 7-369
 ROTATE THEN INSERT SELECTED BITS

HIGH. 7-371
ROTATE THEN INSERT SELECTED BITS

LOW . 7-371
SEARCH STRING . 7-372
SEARCH STRING UNICODE. 7-374
SELECT . 7-376
SELECT HIGH . 7-376
SET ACCESS . 7-377
SET ADDRESSING MODE 7-377
SET PROGRAM MASK 7-378
SHIFT LEFT DOUBLE 7-378
SHIFT LEFT DOUBLE LOGICAL 7-379
SHIFT LEFT SINGLE 7-379
SHIFT LEFT SINGLE LOGICAL 7-380
SHIFT RIGHT DOUBLE 7-381
SHIFT RIGHT DOUBLE LOGICAL 7-381
SHIFT RIGHT SINGLE 7-382
SHIFT RIGHT SINGLE LOGICAL. 7-383
STORE . 7-383
STORE RELATIVE LONG 7-384
STORE ACCESS MULTIPLE 7-384
STORE CHARACTER 7-385
STORE CHARACTER HIGH 7-385
STORE CHARACTERS UNDER MASK. . . . 7-385
STORE CLOCK . 7-386
STORE CLOCK FAST 7-386
STORE CLOCK EXTENDED 7-387
STORE FACILITY LIST EXTENDED 7-389
STORE GUARDED STORAGE CONTROLS7-390
STORE HALFWORD 7-390
STORE HALFWORD RELATIVE LONG . . . 7-391
STORE HALFWORD HIGH 7-391
STORE HIGH . 7-391
STORE MULTIPLE . 7-392
STORE MULTIPLE HIGH 7-392
STORE ON CONDITION 7-392
STORE HIGH ON CONDITION 7-393
STORE PAIR TO QUADWORD 7-393

xii The z/Architecture CPU Architecture

STORE REVERSED 7-394
SUBTRACT . 7-394
SUBTRACT HALFWORD 7-395
SUBTRACT HIGH . 7-396
SUBTRACT LOGICAL 7-396
SUBTRACT LOGICAL IMMEDIATE 7-397
SUBTRACT LOGICAL HIGH 7-397
SUBTRACT LOGICAL WITH BORROW . . . 7-398
SUPERVISOR CALL 7-398
TEST ADDRESSING MODE 7-399
TEST AND SET . 7-399
TEST UNDER MASK (TEST UNDER MASK

HIGH, TEST UNDER MASK LOW) 7-400
TRANSACTION ABORT 7-401
TRANSACTION BEGIN (TBEGIN) 7-401
TRANSACTION BEGIN (TBEGINC) 7-406
TRANSACTION END. 7-408
TRANSLATE . 7-408
TRANSLATE AND TEST 7-409
TRANSLATE AND TEST EXTENDED. 7-410
TRANSLATE AND TEST REVERSE

EXTENDED . 7-410
TRANSLATE AND TEST REVERSE 7-415
TRANSLATE EXTENDED 7-415
TRANSLATE ONE TO ONE 7-418
TRANSLATE ONE TO TWO 7-418
TRANSLATE TWO TO ONE 7-418
TRANSLATE TWO TO TWO 7-418
UNPACK . 7-423
UNPACK ASCII . 7-423
UNPACK UNICODE. 7-424
UPDATE TREE . 7-425

Protection of Cryptographic Keys 7-431
Protection of DES Keys 7-432
Protection of AES Keys 7-434
Protection of ECC Keys 7-436

Chapter 8, Decimal Instructions 8-1
Decimal-Number Formats 8-1

Zoned Format . 8-1
Packed-Decimal Formats. 8-1

Signed-Packed-Decimal Format 8-2
Unsigned-Packed-Decimal Format 8-2

Decimal Codes. 8-2
Decimal Operations . 8-3

Decimal-Arithmetic Instructions 8-3
Editing Instructions. 8-4
Execution of Decimal Instructions 8-4
Other Instructions for Decimal Operands. 8-4
General-Operand Data Exception 8-5

Instructions. 8-5
ADD DECIMAL. 8-6
COMPARE DECIMAL 8-7

DIVIDE DECIMAL .8-7
EDIT .8-8
EDIT AND MARK .8-11
MULTIPLY DECIMAL8-12
SHIFT AND ROUND DECIMAL 8-12
SUBTRACT DECIMAL 8-13
TEST DECIMAL .8-14
ZERO AND ADD .8-14

Chapter 9, Floating-Point Overview
and Support Instructions 9-1

Sign Bit .9-2
Finite Floating-Point Numbers9-2
Infinities .9-2

Not-A-Number (NaN). .9-2
Signaling and Quiet NaNs9-2
Payload .9-2
Propagation of NaNs9-3
Default QNaN .9-3

Floating-Point Number Representations9-3
Hexadecimal-Floating-Point (HFP)9-3
Binary Floating-Point (BFP).9-4
Decimal Floating-Point (DFP)9-4

Canonical DFP Data9-4
Comparison of Floating-Point Number

Representations .9-4
Floating-Point Number Ranges9-4
Equivalent Floating-Point Number

Representations .9-5
Effective Width. .9-7

Floating-Point Data in Storage 9-8
Registers And Controls .9-8

Floating-Point Registers 9-8
Additional Floating-Point (AFP) Registers . . .9-9
Valid Floating-Point-Register Designations . .9-9

Floating-Point-Control (FPC) Register.9-9
IEEE Masks and Flags 9-10
FPC DXC Byte. .9-10
Operations on the FPC Register9-10

AFP-Register-Control Bit9-11
IEEE Computational Operations9-11

Intermediate Values .9-12
Precise Intermediate Value9-12
Precision-Rounded Value9-12
Denormalized Value 9-12
Functionally-Rounded Value9-12
Rounded Intermediate Value.9-12
Scaled Value .9-12
Scale Factor () .9-12
Unsigned Scaling Exponent ().9-12
Signed Scaling Exponent () 9-13

IEEE Rounding .9-13
Permissible Set .9-13

xiii

Selection of Candidates. 9-13
Ties . 9-13
Voting Digit and Common-Rounding- Point

View. 9-13
Rounding Methods. 9-14
Explicit Rounding Methods 9-17
Summary of Rounding Action 9-17

IEEE Exceptions . 9-18
Concurrent IEEE Exceptions 9-18
IEEE Invalid Operation 9-19
IEEE Division-By-Zero 9-19
IEEE Overflow . 9-19
IEEE Underflow . 9-20
IEEE Inexact . 9-20
Quantum Exception 9-21

Suppression of Certain IEEE Exceptions . . . 9-23
IEEE Same-Radix Format Conversion 9-23
IEEE Comparison . 9-24
Condition Codes for IEEE Instructions 9-24

Instructions . 9-24
CONVERT BFP TO HFP. 9-27
CONVERT HFP TO BFP. 9-28
COPY SIGN. 9-30
EXTRACT FPC . 9-30
LOAD. 9-31
LOAD COMPLEMENT. 9-31
LOAD FPC. 9-31
LOAD FPC AND SIGNAL 9-32
LOAD FPR FROM GR. 9-34
LOAD GR FROM FPR. 9-34
LOAD NEGATIVE . 9-34
LOAD POSITIVE . 9-34
LOAD ZERO . 9-35
PERFORM FLOATING-POINT OPERATION 9-35
SET BFP ROUNDING MODE 9-47
SET DFP ROUNDING MODE 9-47
SET FPC . 9-47
SET FPC AND SIGNAL. 9-48
STORE . 9-48
STORE FPC . 9-49

Summary of All Floating-Point Instructions 9-49
Impacts on ESA/390 and ESA/390-Compatibility

Mode . 9-52
Impacts of the Decimal-Floating-Point Facility 9-52
Impacts of the Floating-Point Extension

Facility . 9-53

Chapter 10, Control Instructions . . . 10-1
BRANCH AND SET AUTHORITY 10-7
BRANCH AND STACK 10-11
BRANCH IN SUBSPACE GROUP 10-13
COMPARE AND REPLACE DAT TABLE

ENTRY . 10-17

COMPARE AND SWAP AND PURGE 10-21
DIAGNOSE . 10-23
EXTRACT AND SET EXTENDED

AUTHORITY . 10-24
 EXTRACT PRIMARY ASN 10-24
EXTRACT PRIMARY ASN AND INSTANCE 10-24
EXTRACT SECONDARY ASN 10-24
EXTRACT SECONDARY ASN AND

INSTANCE . 10-25
EXTRACT STACKED REGISTERS 10-25
EXTRACT STACKED STATE. 10-26
INSERT ADDRESS SPACE CONTROL. . . . 10-29
INSERT PSW KEY . 10-30
INSERT REFERENCE BITS MULTIPLE . . . 10-30
INSERT STORAGE KEY EXTENDED 10-30
INSERT VIRTUAL STORAGE KEY 10-31
INVALIDATE DAT TABLE ENTRY 10-32
INVALIDATE PAGE TABLE ENTRY 10-37
LOAD ADDRESS SPACE PARAMETERS. . 10-41
LOAD CONTROL . 10-50
LOAD PAGE TABLE ENTRY ADDRESS . . . 10-50
LOAD PSW . 10-54
LOAD PSW EXTENDED 10-55
LOAD REAL ADDRESS 10-56
LOAD USING REAL ADDRESS 10-60
MODIFY STACKED STATE 10-61
MOVE PAGE . 10-62
MOVE TO PRIMARY 10-65
MOVE TO SECONDARY 10-65
MOVE WITH DESTINATION KEY 10-67
MOVE WITH KEY . 10-67
MOVE WITH OPTIONAL SPECIFICATIONS10-69
MOVE WITH SOURCE KEY. 10-72
PAGE IN . 10-73
PAGE OUT . 10-74
PERFORM CRYPTOGRAPHIC KEY

MANAGEMENT OPERATION 10-75
PERFORM FRAME MANAGEMENT

FUNCTION . 10-80
PERFORM TIMING FACILITY FUNCTION . 10-83
PERFORM TOPOLOGY FUNCTION 10-92
PROGRAM CALL . 10-93
PROGRAM RETURN 10-106
PROGRAM TRANSFER 10-110
PROGRAM TRANSFER WITH INSTANCE 10-110
PURGE ALB . 10-119
PURGE TLB . 10-119
RESET REFERENCE BIT EXTENDED . . . 10-119
RESET REFERENCE BITS MULTIPLE . . . 10-120
RESUME PROGRAM 10-120
SET ADDRESS SPACE CONTROL. 10-123
SET ADDRESS SPACE CONTROL FAST. 10-123
SET CLOCK . 10-124
SET CLOCK COMPARATOR. 10-125

xiv The z/Architecture CPU Architecture

SET CLOCK PROGRAMMABLE FIELD . . 10-126
SET CPU TIMER . 10-126
SET PREFIX . 10-126
SET PSW KEY FROM ADDRESS. 10-127
SET SECONDARY ASN 10-128
SET SECONDARY ASN WITH INSTANCE 10-128
SET STORAGE KEY EXTENDED. 10-133
SET SYSTEM MASK 10-136
SIGNAL PROCESSOR 10-136
STORE CLOCK COMPARATOR. 10-138
STORE CONTROL 10-138
STORE CPU ADDRESS 10-139
STORE CPU ID . 10-139
STORE CPU TIMER 10-141
STORE FACILITY LIST 10-141
STORE PREFIX. 10-142
STORE REAL ADDRESS 10-142
STORE SYSTEM INFORMATION. 10-143
STORE THEN AND SYSTEM MASK 10-167
STORE THEN OR SYSTEM MASK. 10-167
STORE USING REAL ADDRESS 10-168
TEST ACCESS . 10-168
TEST BLOCK. 10-170
TEST PENDING EXTERNAL

INTERRUPTION 10-172
TEST PROTECTION 10-173
TRACE . 10-176
TRAP . 10-177

Chapter 11, Machine-Check
Handling. .11-1

Machine-Check Detection 11-2
Correction of Machine Malfunctions. 11-2

Error Checking and Correction. 11-2
CPU Retry . 11-2

Effects of CPU Retry 11-3
Checkpoint Synchronization. 11-3
Handling of Machine Checks during

Checkpoint Synchronization. 11-4
Checkpoint-Synchronization Operations . . 11-4
Checkpoint-Synchronization Action 11-4

Channel-Subsystem Recovery. 11-5
Unit Deletion. 11-5

Handling of Machine Checks 11-5
Validation . 11-6
Invalid CBC in Storage. 11-7

Programmed Validation of Storage 11-7
Invalid CBC in Storage Keys 11-7
Invalid CBC in Registers 11-9

Check-Stop State. 11-9
System Check Stop 11-10

Machine-Check Interruption. 11-10
Exigent Conditions . 11-10

Repressible Conditions11-10
Interruption Action .11-11

Interruption Action in the z/Architecture
Architectural Mode.11-11

Interruption Action in the
ESA/390-Compatibility Mode.11-12

Interruption Action: Common Actions 11-13
Point of Interruption .11-14

Machine-Check-Interruption Code 11-14
Subclass .11-15

System Damage .11-15
Instruction-Processing Damage 11-15
System Recovery 11-15
Timing-Facility Damage.11-16
External Damage.11-16
Degradation .11-16
Warning .11-17
Channel Report Pending11-17
Service-Processor Damage.11-17
Channel-Subsystem Damage11-17

Subclass Modifiers .11-17
Backed Up .11-17
Delayed Access Exception 11-17
Ancillary Report .11-18

Synchronous Machine-Check-Interruption
Conditions .11-18
Processing Backup11-18
Processing Damage 11-19

Storage Errors .11-19
Storage Error Uncorrected 11-19
Storage Error Corrected 11-19
Storage-Key Error Uncorrected11-19
Storage Degradation11-19
Indirect Storage Error 11-20

Machine-Check Interruption-Code Validity
Bits .11-20
PSW-MWP Validity11-20
PSW Mask and Key Validity 11-20
PSW Program-Mask and Condition-Code

Validity .11-21
PSW-Instruction-Address Validity11-21
Failing-Storage-Address Validity11-21
Vector Register Validity11-21
External-Damage-Code Validity 11-21
Floating-Point-Register Validity11-21
General-Register Validity.11-21
Control-Register Validity11-21
Storage Logical Validity11-21
Access-Register Validity11-21
Guarded-Storage-Registers Validity11-22
TOD-Programmable-Register Validity11-22
Floating-Point-Control-Register Validity . .11-22
CPU-Timer Validity 11-22
Clock-Comparator Validity.11-22

xv

Machine-Check Extended Interruption
Information. 11-22
Register-Save Areas 11-23
External-Damage Code 11-23
Failing-Storage Address 11-24
Machine-Check Extended Save Area

(MCESA) . 11-24
Machine-Check Extended Save Area in the

z/Architecture Architectural Mode 11-24
Machine-Check Extended Save Area in the

ESA/390 Compatibility Mode 11-25
Handling of Machine-Check Conditions 11-25

Floating Interruption Conditions. 11-25
Floating Machine-Check-Interruption

Conditions . 11-26
Floating I/O Interruptions 11-26

Machine-Check Masking 11-26
Channel-Report-Pending Subclass Mask 11-26
Recovery Subclass Mask 11-26
Degradation Subclass Mask 11-27
External-Damage Subclass Mask 11-27
Warning Subclass Mask 11-27

Machine-Check Logout 11-27
Summary of Machine-Check Masking. 11-27

Chapter 12, Operator Facilities. 12-1
Manual Operation . 12-1
Basic Operator Facilities 12-1

Address-Compare Controls 12-1
Alter-and-Display Controls. 12-2
Architectural-Mode Indicator 12-2
Architectural-Mode-Selection Controls 12-3
Check-Stop Indicator 12-3
CPUs-per-Core Indicator 12-3
IML Controls . 12-3
Interrupt Key . 12-3
Load Indicator . 12-3
Load-Clear Key . 12-4
Load-Clear-List-Directed Key 12-4
Load-Normal Key. 12-4
Load-with-Dump Key 12-4
Load-Unit-Address Controls 12-4
Manual Indicator . 12-4
Power Controls . 12-4
Rate Control. 12-5
Restart Key . 12-5
Start Key . 12-5
Stop Key . 12-5
Store-Status Key . 12-5
System-Reset-Clear Key 12-6
System-Reset-Normal Key 12-6
Test Indicator . 12-6
TOD-Clock Control . 12-6

Wait Indicator . 12-6
Multiprocessing Configurations. 12-6

Multithreading Considerations 12-7

Chapter 13, I/O Overview. 13-1
Input/Output (I/O) . 13-1
The Channel Subsystem. 13-1

Subchannel Sets. 13-2
Subchannels . 13-2

Attachment of Input/Output Devices 13-3
Channel Paths . 13-3
Control Units . 13-4
I/O Devices . 13-5

I/O Addressing . 13-5
 Subchannel-Set Identifier. 13-5
Channel-Path Identifier 13-5
Subchannel Number 13-5
Device Number . 13-6
Device Identifier . 13-6

Fibre-Channel Extensions. 13-6
I/O-Command Words . 13-7

Transport Command Word (TCW) 13-7
Channel Program Organization 13-7

CCW Channel Program 13-7
TCW Channel Program. 13-7

Execution of I/O Operations 13-8
Start-Function Initiation 13-8

Subchannel Operation Modes. 13-9
Path Management. 13-9
Channel-Program Execution. 13-9
Conclusion of I/O Operations 13-10

Chaining When Using a CCW Channel
Program . 13-11

Chaining When Using a TCW Channel
Program . 13-11

Premature Conclusion of I/O Operations . 13-12
I/O Interruptions . 13-12

Chapter 14, I/O Instructions 14-1
I/O-Instruction Formats . 14-1
I/O-Instruction Execution. 14-2

Serialization . 14-2
Operand Access . 14-2
Condition Code . 14-2
Program Exceptions . 14-2

Instructions . 14-2
CANCEL SUBCHANNEL 14-3
CLEAR SUBCHANNEL 14-5
HALT SUBCHANNEL 14-6
MODIFY SUBCHANNEL 14-7
RESET CHANNEL PATH 14-9
RESUME SUBCHANNEL 14-10
SET ADDRESS LIMIT 14-12

xvi The z/Architecture CPU Architecture

SET CHANNEL MONITOR 14-13
START SUBCHANNEL 14-15
STORE CHANNEL PATH STATUS. 14-16
STORE CHANNEL REPORT WORD 14-17
STORE SUBCHANNEL 14-18
TEST PENDING INTERRUPTION. 14-19

I/O-Interruption Code 14-20
TEST SUBCHANNEL 14-21

Chapter 15, Basic I/O Functions 15-1
Control of Basic I/O Functions 15-1

Subchannel-Information Block 15-2
Path-Management-Control Word 15-2
Subchannel-Status Word 15-9
Model-Dependent Area/Measurement

Block Address . 15-9
Summary of Modifiable Fields 15-10

Channel-Path Allegiance 15-12
Working Allegiance 15-12

Working Allegiance for Subchannels
Operating in Command Mode 15-12

Working Allegiance for Subchannels
Operating in Transport Mode 15-12

Active Allegiance . 15-13
Dedicated Allegiance 15-13
Channel-Path Availability 15-13
Control-Unit Type . 15-14

Clear Function . 15-14
Clear-Function Path Management 15-14
Clear-Function Subchannel Modification . . . 15-15
Clear-Function Signaling and Completion . . 15-15

Halt Function . 15-16
Halt-Function Path Management 15-16
Halt-Function Signaling and Completion . . . 15-17

Start Function and Resume Function 15-20
Start-Function and Resume-Function Path

Management . 15-20
Interrogate Function. 15-22

Interrogate-Function Path Management . . . 15-22
Interrogate TCCB Transportation and

Completion . 15-22
Execution of I/O Operations. 15-23

Blocking of Data . 15-24
Operation-Request Block 15-24

Command-Mode ORB 15-25
Transport-Mode ORB. 15-30

Channel-Command Word 15-31
Transport Control Word 15-33
Transport-Command-Control Block 15-36

Transport-Command-Area Header. 15-37
Transport-Command Area 15-37
Device-Command Word. 15-38
Transport-Command-Area Trailer 15-40

Transport-Command DCW15-42
Transfer-CBC-Offset-Block DCW 15-43
CBC-Offset Block 15-44
Transfer-TCA-Extension DCW 15-44
Transport-Command-Area Extension15-45
Interrogate TCCB 15-46
Interrogate DCW .15-46
Interrogate Data. .15-46

Transport Status Block 15-48
Transport-Status Header (TSH) 15-48
I/O-Status TSA .15-49
Device-Detected-Program-Check TSA . . .15-50
Interrogate TSA .15-56

Command Code .15-57
Designation of Storage Area15-58
CCW Channel Program Chaining15-60

Data Chaining .15-61
Command Chaining.15-63

TCW Channel Program Chaining 15-63
Skipping. .15-64
Program-Controlled Interruption 15-64

Indirect-Storage Designator (ISD)15-66
CCW Indirect Data Addressing15-66
Modified CCW Indirect Data Addressing . . .15-68
Transport Indirect Data Addressing.15-70
Suspension of CCW Channel-Program

Execution. .15-73
Commands and Flags for CCWs.15-75
Branching in CCW Channel Programs15-76

Transfer in Channel 15-77
Command Retry .15-77

Concluding I/O Operations before Initiation . . .15-77
Concluding I/O Operations during Initiation. . . .15-78
Immediate Conclusion of Command-Mode I/O

Operations. .15-78
Concluding I/O Operations During Data

Transfer .15-79
Channel-Path-Reset Function15-80

Channel-Path-Reset-Function Signaling15-81
Channel-Path-Reset-Function-Completion

Signaling .15-81

Chapter 16, I/O Interruptions 16-1
Interruption Conditions .16-2

Intermediate Interruption Condition16-4
Primary Interruption Condition.16-4
Secondary Interruption Condition 16-5
Alert Interruption Condition16-5

Priority of Interruptions .16-5
Interruption Action .16-6
 Interruption-Response Block 16-6

IRB Format .16-6
Subchannel-Status Word 16-7

xvii

Command-Mode SCSW 16-8
Subchannel Key. 16-9
Suspend Control (S) 16-9
Extended-Status-Word Format (L). 16-9
Deferred Condition Code (CC) 16-9
CCW Format (F) 16-11
Prefetch (P) . 16-11
Initial-Status-Interruption Control (I). 16-12
Address-Limit-Checking Control (A) 16-12
IRB-Format Control (X) 16-12
Suppress-Suspended Interruption (U) . . . 16-12

Subchannel-Control Field 16-12
Zero Condition Code (Z) 16-12
Extended Control (E) 16-12
Path Not Operational (N) 16-13
Function Control (FC) 16-13
Activity Control (AC) 16-14
Status Control (SC) 16-17

CCW-Address Field 16-19
Device-Status Field 16-24
Subchannel-Status Field 16-24

Program-Controlled Interruption 16-24
Incorrect Length. 16-24
Program Check . 16-25
Protection Check 16-28
Channel-Data Check 16-28
Channel-Control Check 16-29
Interface-Control Check. 16-29
Chaining Check . 16-30

Count Field . 16-31
Transport-Mode SCSW 16-34

Subchannel Key. 16-35
Reserved . 16-35
Extended-Status-Word Format (L). 16-35
Deferred Condition Code (CC) 16-35
Format (FMT). 16-35
IRB-Format Control (X) 16-35
Interrogate Complete (Q). 16-35

Subchannel-Control Field 16-35
Extended Control (E) 16-35
Path Not Operational (N) 16-35
Function Control (FC) 16-35
Activity Control (AC) 16-36
Status Control (SC) 16-36

TCW Address Field 16-36
Device-Status Field 16-39
Subchannel-Status Field 16-39

Incorrect Length. 16-39
Program Check . 16-40
Protection Check 16-42
Channel-Data Check 16-42
Channel-Control Check 16-43
Interface-Control Check. 16-43
Channel-Subsystem Retry Failed 16-44

FCX-Status Field. 16-44
Subchannel-Extended-Status Field 16-44

Extended-Status Word 16-47
Extended-Status Format 0 16-47

Subchannel Logout 16-47
Extended-Report Word 16-51
Failing-Storage Address 16-53
Extended-Subchannel-Logout Descriptor

(ESLD) . 16-53
Secondary-CCW Address 16-53

Extended-Status Format 1 16-53
Extended-Status Format 2 16-54
Extended-Status Format 3 16-55

Extended-Control Word 16-56
Extended-Measurement Word 16-56

Chapter 17, I/O Support Functions . . 17-1
Channel-Subsystem Monitoring 17-1

Channel-Subsystem Timing 17-2
Channel-Subsystem Timer 17-2

Measurement-Block Update 17-2
Measurement Block 17-3
Measurement-Block Format 17-7
Measurement-Block Origin 17-7
Measurement-Block Address 17-7
Measurement-Block Key 17-8
Measurement-Block Index 17-8
Measurement-Block-Update Mode 17-8
Measurement-Block-Format Control 17-8
Measurement-Block-Update Enable 17-9
Control-Unit-Queuing Measurement 17-9
Control-Unit-Defer Time 17-9
Device-Active-Only Measurement. 17-9
Initial-Command-Response Measurement . 17-9
Time-Interval-Measurement Accuracy 17-9

Device-Connect-Time Measurement 17-10
Device-Connect-Time-Measurement

Mode . 17-10
Device-Connect-Time-Measurement

Enable. 17-10
Extended Measurement Word 17-11

Extended-Measurement-Word Enable . . . 17-11
Signals and Resets . 17-11

Signals . 17-11
Halt Signal. 17-12
Clear Signal. 17-12
Reset Signal . 17-12

Resets. 17-13
Channel-Path Reset 17-13
I/O-System Reset 17-13

Externally Initiated Functions 17-16
Initial Program Loading 17-16

CCW-type IPL . 17-17

xviii The z/Architecture CPU Architecture

List-Directed IPL. 17-19
IPL Information Report Block 17-21

IPL Signature Certificate List 17-22
IPL Signature Certificate Entry 17-22

Reconfiguration of the I/O System 17-25
Status Verification . 17-26
Address-Limit Checking 17-26
Configuration Alert . 17-27
Incorrect-Length-Indication Suppression 17-27
Concurrent Sense . 17-27
Channel-Subsystem Recovery 17-27

Channel Report . 17-28
Channel-Report Word 17-29
Restore-Subchannel Facility 17-31
Extended-Subchannel-Logout Facility 17-32

Channel-Subsystem-I/O-Priority Facility 17-32
Number of Channel-Subsystem-Priority

Levels. 17-33
Multiple-Subchannel-Set Facility 17-33

Chapter 18, Hexadecimal-Floating-
Point Instructions18-1

HFP Arithmetic . 18-1
HFP Number Representation. 18-1
Normalization . 18-2
HFP Data Formats . 18-2

HFP Short Format 18-4
HFP Long Format 18-4
HFP Extended Format 18-4

Instructions. 18-5
ADD NORMALIZED . 18-8
ADD UNNORMALIZED 18-9
COMPARE . 18-10
CONVERT FROM FIXED 18-11
CONVERT TO FIXED 18-11
DIVIDE . 18-12
HALVE . 18-13
LOAD AND TEST. 18-13
LOAD COMPLEMENT 18-14
LOAD FP INTEGER. 18-15
LOAD LENGTHENED 18-15
LOAD NEGATIVE . 18-16
LOAD POSITIVE . 18-16
LOAD ROUNDED . 18-17
MULTIPLY . 18-17
MULTIPLY AND ADD 18-19
MULTIPLY AND SUBTRACT. 18-19
MULTIPLY AND ADD UNNORMALIZED. . . 18-20
MULTIPLY UNNORMALIZED 18-22
SQUARE ROOT. 18-23
SUBTRACT NORMALIZED 18-24
SUBTRACT UNNORMALIZED 18-25

Chapter 19, Binary-Floating-Point
Instructions 19-1

Binary-Floating-Point Facility.19-1
Floating-Point-Control (FPC) Register 19-2

BFP Arithmetic .19-2
BFP Data Formats. .19-2

BFP Short Format .19-2
BFP Long Format .19-2
BFP Extended Format 19-2
Biased Exponent .19-2
Significand .19-3
Values of Nonzero Numbers19-3

Classes of BFP Data .19-4
Zeros .19-4
Subnormal Numbers19-4
Normal Numbers .19-4
Infinities .19-4
Signaling and Quiet NaNs 19-4

BFP-Format Conversion19-5
BFP Rounding .19-5
BFP Comparison .19-5
Remainder .19-5
IEEE Exceptions .19-7
Summary of Rounding And Range Actions. . .19-8

Result Figures .19-9
Data-Exception Codes (DXC) and

Abbreviations. .19-10
Instructions .19-11

ADD. .19-15
COMPARE .19-17
COMPARE AND SIGNAL19-18
CONVERT FROM FIXED19-19
CONVERT FROM LOGICAL.19-21
CONVERT TO FIXED19-22
CONVERT TO LOGICAL 19-25
DIVIDE .19-27
DIVIDE TO INTEGER19-28
LOAD AND TEST .19-31
LOAD COMPLEMENT 19-31
LOAD FP INTEGER 19-32
LOAD LENGTHENED19-33
LOAD NEGATIVE .19-34
LOAD POSITIVE .19-35
LOAD ROUNDED .19-35
MULTIPLY. .19-37
MULTIPLY AND ADD19-38
MULTIPLY AND SUBTRACT19-38
SQUARE ROOT .19-40
SUBTRACT .19-40
TEST DATA CLASS19-41

xix

Chapter 20, Decimal-Floating-Point
Instructions 20-1

Decimal-Floating-Point Facility 20-1
DFP Arithmetic . 20-2

Finite Floating-Point Number 20-2
Cohort . 20-2
Quantum . 20-2
Preferred Quantum 20-2
Scaled Preferred Quantum 20-3
Delivered Quantum 20-3
Special Quantum-Handling Operations . . . 20-3

DFP Data Formats. 20-3
DFP Short Format 20-3
DFP Long Format 20-3
DFP Extended Format 20-4
Sign . 20-4
Combination. 20-4
Encoded Trailing Significand 20-5
Values of Finite Numbers 20-5

Significand . 20-5
DFP Significant Digits 20-5

Canonical Declets . 20-6
DFP Canonical Data 20-6
Classes of DFP Data 20-6

Zeros . 20-6
Subnormal Numbers 20-6
Normal Numbers . 20-7
Infinities . 20-7
Signaling and Quiet NaNs 20-7
Canonicalization . 20-7

DFP-Format Conversion 20-7
DFP Rounding . 20-7
DFP Comparison . 20-7
DFP Formatting Instructions 20-8

Signed-Packed-Decimal Format 20-8
Unsigned-Packed-Decimal Format 20-8
Zoned-Decimal Format 20-9

IEEE Exceptions . 20-9
Summary of Preferred Quantum 20-10
Summary of Rounding And Range Actions . 20-10
Result Figures . 20-15
Data-Exception Codes (DXC) and

Abbreviations. 20-15
Instructions . 20-16

ADD . 20-19
COMPARE. 20-22
COMPARE AND SIGNAL 20-23
COMPARE BIASED EXPONENT 20-23
CONVERT FROM FIXED 20-24
CONVERT FROM LOGICAL. 20-25
CONVERT FROM PACKED 20-26
CONVERT FROM SIGNED PACKED. 20-28
CONVERT FROM UNSIGNED PACKED . . 20-28

CONVERT FROM ZONED 20-29
CONVERT TO FIXED. 20-29
CONVERT TO LOGICAL 20-32
CONVERT TO PACKED. 20-33
CONVERT TO SIGNED PACKED 20-35
CONVERT TO UNSIGNED PACKED. 20-35
CONVERT TO ZONED. 20-36
DIVIDE . 20-37
EXTRACT BIASED EXPONENT 20-39
EXTRACT SIGNIFICANCE. 20-39
INSERT BIASED EXPONENT 20-40
LOAD AND TEST . 20-41
LOAD FP INTEGER 20-42
LOAD LENGTHENED. 20-45
LOAD ROUNDED . 20-46
MULTIPLY . 20-47
QUANTIZE . 20-49
REROUND . 20-52
SHIFT SIGNIFICAND LEFT 20-54
SHIFT SIGNIFICAND RIGHT 20-54
SUBTRACT. 20-55
TEST DATA CLASS 20-56
TEST DATA GROUP 20-57

Densely Packed Decimal (DPD) 20-58
Decimal-to-DPD Mapping 20-58
DPD-to-Decimal Mapping 20-58

Chapter 21, Vector Overview and
Support Instructions 21-1

Overview. 21-1
Vector Registers and Controls 21-1

Vector Enablement Control. 21-2
Vector Storage Accesses 21-2
Saturating Arithmetic. 21-2
Instructions . 21-2

VECTOR BIT PERMUTE 21-4
VECTOR GATHER ELEMENT 21-5
VECTOR GENERATE BYTE MASK. 21-5
VECTOR GENERATE MASK 21-6
VECTOR LOAD . 21-6
VECTOR LOAD AND REPLICATE. 21-7
VECTOR LOAD BYTE REVERSED

ELEMENT. 21-7
VECTOR LOAD BYTE REVERSED

ELEMENT AND REPLICATE 21-8
VECTOR LOAD BYTE REVERSED

ELEMENT AND ZERO 21-8
VECTOR LOAD BYTE REVERSED

ELEMENTS. 21-9
VECTOR LOAD ELEMENT 21-9
VECTOR LOAD ELEMENT IMMEDIATE . . . 21-10
VECTOR LOAD ELEMENTS REVERSED . . 21-10
VECTOR LOAD GR FROM VR ELEMENT . 21-11

xx The z/Architecture CPU Architecture

VECTOR LOAD LOGICAL ELEMENT AND
ZERO . 21-12

VECTOR LOAD MULTIPLE. 21-12
VECTOR LOAD RIGHTMOST WITH

LENGTH. 21-13
VECTOR LOAD TO BLOCK BOUNDARY. . 21-14
VECTOR LOAD VR ELEMENT FROM GR . 21-14
VECTOR LOAD VR FROM GRS DISJOINT 21-15
VECTOR LOAD WITH LENGTH 21-15
VECTOR MERGE HIGH 21-15
VECTOR MERGE LOW. 21-16
VECTOR PACK . 21-16
VECTOR PACK SATURATE 21-17
VECTOR PACK LOGICAL SATURATE. . . . 21-18
VECTOR PERMUTE 21-18
VECTOR PERMUTE DOUBLEWORD

IMMEDIATE . 21-19
VECTOR REPLICATE 21-19
VECTOR REPLICATE IMMEDIATE 21-20
VECTOR SCATTER ELEMENT 21-20
VECTOR SELECT . 21-21
VECTOR SIGN EXTEND TO

DOUBLEWORD. 21-21
VECTOR STORE. 21-21
VECTOR STORE BYTE REVERSED

ELEMENT . 21-22
VECTOR STORE BYTE REVERSED

ELEMENTS . 21-22
VECTOR STORE ELEMENT. 21-23
VECTOR STORE ELEMENTS REVERSED 21-24
VECTOR STORE MULTIPLE 21-24
VECTOR STORE RIGHTMOST WITH

LENGTH . 21-25
VECTOR STORE WITH LENGTH 21-26
VECTOR UNPACK HIGH 21-26
VECTOR UNPACK LOGICAL HIGH 21-26
VECTOR UNPACK LOW 21-27
VECTOR UNPACK LOGICAL LOW 21-27

Chapter 22, Vector Integer
Instructions .22-1

Instructions. 22-1
VECTOR ADD . 22-3
VECTOR ADD COMPUTE CARRY 22-4
VECTOR ADD WITH CARRY 22-4
VECTOR ADD WITH CARRY COMPUTE

CARRY. 22-5
VECTOR AND . 22-5
VECTOR AND WITH COMPLEMENT 22-5
VECTOR AVERAGE 22-6
VECTOR AVERAGE LOGICAL 22-6
VECTOR CHECKSUM. 22-6
VECTOR ELEMENT COMPARE 22-7

VECTOR ELEMENT COMPARE LOGICAL . .22-7
VECTOR COMPARE EQUAL22-7
VECTOR COMPARE HIGH 22-8
VECTOR COMPARE HIGH LOGICAL22-9
VECTOR COUNT LEADING ZEROS22-10
VECTOR COUNT TRAILING ZEROS.22-10
VECTOR EXCLUSIVE OR22-11
VECTOR GALOIS FIELD MULTIPLY SUM .22-11
VECTOR GALOIS FIELD MULTIPLY SUM

AND ACCUMULATE22-12
VECTOR LOAD COMPLEMENT 22-12
VECTOR LOAD POSITIVE22-12
VECTOR MAXIMUM22-13
VECTOR MAXIMUM LOGICAL.22-13
VECTOR MINIMUM 22-13
VECTOR MINIMUM LOGICAL22-14
VECTOR MULTIPLY AND ADD LOW.22-14
VECTOR MULTIPLY AND ADD HIGH22-15
VECTOR MULTIPLY AND ADD LOGICAL

HIGH .22-15
VECTOR MULTIPLY AND ADD EVEN.22-15
VECTOR MULTIPLY AND ADD LOGICAL

EVEN. .22-15
VECTOR MULTIPLY AND ADD ODD.22-16
VECTOR MULTIPLY AND ADD LOGICAL

ODD .22-16
VECTOR MULTIPLY HIGH.22-16
VECTOR MULTIPLY LOGICAL HIGH 22-17
VECTOR MULTIPLY LOW22-17
VECTOR MULTIPLY EVEN 22-18
VECTOR MULTIPLY LOGICAL EVEN22-18
VECTOR MULTIPLY ODD22-18
VECTOR MULTIPLY LOGICAL ODD22-18
VECTOR MULTIPLY SUM LOGICAL 22-19
VECTOR NAND .22-20
VECTOR NOR .22-20
VECTOR NOT EXCLUSIVE OR 22-20
VECTOR OR .22-20
VECTOR OR WITH COMPLEMENT 22-21
VECTOR POPULATION COUNT22-21
VECTOR ELEMENT ROTATE LEFT

LOGICAL .22-21
VECTOR ELEMENT ROTATE AND INSERT

UNDER MASK .22-22
VECTOR ELEMENT SHIFT LEFT 22-23
VECTOR ELEMENT SHIFT RIGHT

ARITHMETIC .22-23
VECTOR ELEMENT SHIFT RIGHT

LOGICAL. .22-24
VECTOR SHIFT LEFT 22-25
VECTOR SHIFT LEFT BY BYTE 22-25
VECTOR SHIFT LEFT DOUBLE BY BIT . . .22-25
VECTOR SHIFT LEFT DOUBLE BY BYTE .22-26
VECTOR SHIFT RIGHT ARITHMETIC.22-26

xxi

VECTOR SHIFT RIGHT ARITHMETIC BY
BYTE . 22-26

VECTOR SHIFT RIGHT DOUBLE BY BIT . 22-26
VECTOR SHIFT RIGHT LOGICAL 22-27
VECTOR SHIFT RIGHT LOGICAL BY

BYTE . 22-27
VECTOR SUBTRACT 22-27
VECTOR SUBTRACT COMPUTE BORROW

INDICATION . 22-28
VECTOR SUBTRACT WITH BORROW

INDICATION . 22-28
VECTOR SUBTRACT WITH BORROW

COMPUTE BORROW INDICATION 22-29
VECTOR SUM ACROSS DOUBLEWORD . 22-29
VECTOR SUM ACROSS QUADWORD . . . 22-30
VECTOR SUM ACROSS WORD 22-30
VECTOR TEST UNDER MASK. 22-31

Chapter 23, Vector String
Instructions 23-1

Vector String Facility . 23-1
Instructions . 23-1

VECTOR FIND ANY ELEMENT EQUAL. . . . 23-2
VECTOR FIND ELEMENT EQUAL 23-3
VECTOR FIND ELEMENT NOT EQUAL. . . . 23-4
VECTOR ISOLATE STRING. 23-5
VECTOR STRING RANGE COMPARE 23-6
VECTOR STRING SEARCH 23-8

Chapter 24, Vector Floating-Point
Instructions 24-1

IEEE Exception Handling 24-1
Result Figures . 24-1
Instructions . 24-2

VECTOR FP ADD . 24-4
VECTOR FP COMPARE SCALAR 24-7
VECTOR FP COMPARE AND SIGNAL

SCALAR . 24-8
VECTOR FP COMPARE EQUAL 24-9
VECTOR FP COMPARE HIGH. 24-11
VECTOR FP COMPARE HIGH OR EQUAL 24-13
VECTOR FP CONVERT FROM FIXED . . . 24-15
VECTOR FP CONVERT FROM LOGICAL . 24-17
VECTOR FP CONVERT TO FIXED 24-18
VECTOR FP CONVERT TO LOGICAL. . . . 24-20
VECTOR FP DIVIDE 24-22
VECTOR LOAD FP INTEGER 24-24
VECTOR FP LOAD LENGTHENED 24-26
VECTOR FP LOAD ROUNDED 24-27
VECTOR FP MAXIMUM 24-28
VECTOR FP MINIMUM 24-34
VECTOR FP MULTIPLY 24-40
VECTOR FP MULTIPLY AND ADD 24-42

VECTOR FP MULTIPLY AND SUBTRACT . 24-42
VECTOR FP NEGATIVE MULTIPLY AND

ADD . 24-42
VECTOR FP NEGATIVE MULTIPLY AND

SUBTRACT . 24-42
VECTOR FP PERFORM SIGN

OPERATION. 24-44
VECTOR FP SQUARE ROOT 24-45
VECTOR FP SUBTRACT 24-46
VECTOR FP TEST DATA CLASS

IMMEDIATE . 24-47

Chapter 25, Vector Decimal
Instructions. 25-1

Vector-Packed-Decimal Facility 25-1
Vector Decimal Control . 25-1
Vector Decimal Registers 25-1
Decimal Digits and Signs 25-2
Instructions . 25-2

VECTOR ADD DECIMAL 25-3
VECTOR COMPARE DECIMAL 25-5
VECTOR CONVERT TO BINARY 25-5
VECTOR CONVERT TO DECIMAL 25-7
VECTOR DIVIDE DECIMAL 25-8
VECTOR LOAD IMMEDIATE DECIMAL . . . 25-10
VECTOR MULTIPLY DECIMAL 25-10
VECTOR MULTIPLY AND SHIFT DECIMAL 25-12
VECTOR PACK ZONED 25-13
VECTOR PERFORM SIGN OPERATION

DECIMAL . 25-14
VECTOR REMAINDER DECIMAL 25-16
VECTOR SHIFT AND DIVIDE DECIMAL . . 25-18
VECTOR SHIFT AND ROUND DECIMAL . . 25-19
VECTOR SUBTRACT DECIMAL 25-21
VECTOR TEST DECIMAL 25-22
VECTOR UNPACK ZONED 25-22

Chapter 26, Specialized-Function-
Assist Instructions. 26-1

Instructions . 26-1
COMPUTE DIGITAL SIGNATURE

AUTHENTICATION 26-2
DEFLATE CONVERSION CALL. 26-16

Appendix A, Number Representation
and Instruction-Use Examples A-1

Number Representation .A-2
Binary Integers .A-2

Signed Binary IntegersA-2
Unsigned Binary IntegersA-3

Decimal Integers .A-4
Hexadecimal-Floating-Point Numbers A-5

xxii The z/Architecture CPU Architecture

Conversion Example . A-6
Instruction-Use Examples A-7

Machine Format . A-7
Assembler-Language Format. A-7

Addressing Mode in Examples. A-7
General Instructions. A-7

ADD HALFWORD (AH) A-8
AND (N, NC, NI, NR) . A-8

NI Example. A-8
Linkage Instructions (BAL, BALR, BAS, BASR,

BASSM, BSM) . A-8
Other BALR and BASR Examples A-10

BRANCH AND STACK (BAKR) A-10
BAKR Example 1 . A-11
BAKR Example 2 . A-11
BAKR Example 3 . A-11

BRANCH ON CONDITION (BC, BCR) A-12
BRANCH ON COUNT (BCT, BCTR) A-12
BRANCH ON INDEX HIGH (BXH). A-12

BXH Example 1 . A-12
BXH Example 2 . A-13

BRANCH ON INDEX LOW OR EQUAL
(BXLE) . A-13
BXLE Example 1 . A-14
BXLE Example 2 . A-14

COMPARE AND FORM CODEWORD (CFC) A-14
COMPARE HALFWORD (CH). A-14
COMPARE LOGICAL (CL, CLC, CLI, CLR) . A-15

CLC Example . A-15
CLI Example. A-15
CLR Example . A-16

COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM) A-16

COMPARE LOGICAL LONG (CLCL). A-16
COMPARE LOGICAL STRING (CLST) A-18
CONVERT TO BINARY (CVB) A-18
CONVERT TO DECIMAL (CVD) A-19
DIVIDE (D, DR) . A-19
EXCLUSIVE OR (X, XC, XI, XR) A-20

XC Example . A-20
XI Example. A-21

EXECUTE (EX) . A-21
FIND LEFTMOST ONE (FLOGR) A-22
INSERT CHARACTERS UNDER MASK

(ICM) . A-23
LOAD (L, LR) . A-23
LOAD ADDRESS (LA) A-23
LOAD HALFWORD (LH) A-24
MOVE (MVC, MVI). A-24

MVC Example . A-24
MVI Example . A-25

MOVE INVERSE (MVCIN). A-25
MOVE LONG (MVCL) A-26
MOVE NUMERICS (MVN) A-26

MOVE STRING (MVST) A-27
MOVE WITH OFFSET (MVO). A-27
MOVE ZONES (MVZ) A-28
MULTIPLY (M, MR). A-28
MULTIPLY HALFWORD (MH) A-29
OR (O, OC, OI, OR) A-29

OI Example . A-29
PACK (PACK) . A-29
ROTATE THEN EXCLUSIVE OR SELECTED

BITS . A-30
ROTATE THEN INSERT SELECTED BITS . A-30
ROTATE THEN OR SELECTED BITS A-30
SEARCH STRING (SRST) A-31

SRST Example 1 . A-31
SRST Example 2 . A-31

SHIFT LEFT DOUBLE (SLDA) A-31
SHIFT LEFT SINGLE (SLA) A-32
STORE CHARACTERS UNDER MASK

(STCM) . A-32
STORE MULTIPLE (STM). A-32
TEST UNDER MASK (TM) A-33
TRANSLATE (TR) . A-33
TRANSLATE AND TEST (TRT) A-34
UNPACK (UNPK) . A-35
UPDATE TREE (UPT). A-36

Decimal Instructions . A-36
ADD DECIMAL (AP) A-36
COMPARE DECIMAL (CP) A-36
DIVIDE DECIMAL (DP) A-37
EDIT (ED) . A-37
EDIT AND MARK (EDMK). A-38
MULTIPLY DECIMAL (MP) A-39
SHIFT AND ROUND DECIMAL (SRP) A-39

Decimal Left Shift A-39
Decimal Right Shift A-39
Decimal Right Shift and Round A-40
Multiplying by a Variable Power of 10 A-40

ZERO AND ADD (ZAP) A-41
Hexadecimal-Floating-Point Instructions. A-41

ADD NORMALIZED (AD, ADR, AE, AER,
AXR) . A-41

ADD UNNORMALIZED (AU, AUR, AW,
AWR). A-42

COMPARE (CD, CDR, CE, CER) A-42
DIVIDE (DD, DDR, DE, DER) A-42
HALVE (HDR, HER) A-43
MULTIPLY (MD, MDR, MDE, MDER, MXD,

MXDR, MXR). A-43
Hexadecimal-Floating-Point-Number

Conversion . A-44
Fixed Point to Hexadecimal Floating Point A-44
Hexadecimal Floating Point to Fixed Point A-44

Multiprogramming and Multiprocessing
Examples. A-45

xxiii

Example of a Program Failure Using OR
Immediate . A-45

Conditional Swapping Instructions (CS, CDS) A-46
Setting a Single Bit A-46
Updating Counters. A-47

Bypassing Post and Wait. A-47
Lock/Unlock . A-47

Lock/Unlock with LIFO Queuing for
Contentions . A-48

Lock/Unlock with FIFO Queuing for
Contentions . A-49

Free-Pool Manipulation A-50
PERFORM LOCKED OPERATION (PLO) . . A-51

Sorting Instructions . A-53
Tree Format . A-53
Example of Use of Sort Instructions A-55

Appendix B, Lists of Instructions. . . . B-1
Instructions Arranged by Name B-5
Instructions Arranged by Mnemonic B-29
Instructions Arranged by Operation Code B-53

Appendix C, Condition-Code SettingsC-1

Appendix D, Compression Call
Facility . D-1

Introduction to Compression Call Facility D-1
Compression and Expansion Dictionaries D-1
Compression-Dictionary Entries D-1
Compression Process D-2
Child and Sibling Characters D-2

Child and Extension-Character Combinations .D-3
Restriction on Identical Child and Sibling

Characters .D-3
Expansion-Dictionary EntriesD-6

Expansion Process .D-6
Compressed-Data Symbol SizeD-7
Symbol Translation .D-8
Order Preservation .D-8
Entropy Encoding .D-9
Results of Dictionary Errors D-10

Dictionary Formats .D-10
Notation. .D-10
Compression DictionaryD-11
Format-0 Sibling DescriptorD-11
Format-1 Sibling DescriptorD-12
Expansion Dictionary D-12

Character Entry .D-12
Format-1 Sibling Descriptor D-13

Appendix G, Table of Powers of 2 . . .G-1

Appendix H, Hexadecimal Tables H-1

Appendix I, EBCDIC and ISO-8 Codes .I-1
Control Character Representations I-2
Formatting Character Representations I-2
Additional ISO-8 Control Character

Representations . I-2

Index . X-1

xxiv© Copyright IBM Corp. 2000, 2019

xxv

Notices

References in this publication to IBM® products, pro-
grams or services do not imply that IBM intends to
make these available in all countries in which IBM
operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only
IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service
that does not infringe any of IBM's intellectual prop-
erty rights may be used instead of the IBM product,
program, or service. Evaluation and verification of
operation in conjunction with other products, except
those expressly designated by IBM, is the user's
responsibility.

IBM may have patents or pending patent applications
covering subject matter in this document. The fur-
nishing of this document does not give you any
license to these patents. You can send license inqui-
ries, in writing, to the IBM Director of Licensing, IBM
Corporation, North Castle Drive, Armonk, NY,
10504-1785 USA.

Trademarks

The following terms are trademarks or registered
trademarks of the International Business Machines
Corporation in the United States, other countries, or
both:

AIX/ESA
BookMaster
CICS
DB2
Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
Enterprise Systems Connection Architecture
ESA/370
ESA/390
FICON
IBM
IBM Z
IBM Z family
IBM z13
IBM z13s
IBM z14
IBM z15
IBM zSystems
IBMLink
ibm.com
MVS/ESA
OS/390
Processor Resource/Systems Manager
PR/SM
Sysplex Timer
System z
System z9
System z10
System/370
VM/ESA
z/Architecture
zEnterprise
z/OS
zPDT
z Systems
z/VM
z9
z10
z13
z14
z15

xxvi IBM z/Architecture Principles of Operation

ANSI is a registered trademark of the American
National Standards Institute in the United States,
other countries, or both.

IEEE is a trademark of the Institute of Electrical and
Electronics Engineers, Inc. in the United States,
other countries, or both.

Java and all Java-based marks are trademarks or
registered trademarks of Oracle America Inc. in the
United States and other countries.

Linux is a registered trademark of Linus Torvalds in
the United States, other countries or both.

Unicode is a registered trademark of Unicode, Incor-
porated in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Other trademarks and registered trademarks are the
properties of their respective companies.

xxvii© Copyright IBM Corp. 2000, 2019

Preface

This publication provides, for reference purposes, a
detailed z/Architecture™ description.

The publication applies only to systems operating as
defined by z/Architecture. For systems operating in
accordance with the Enterprise Systems Architec-
ture/390® (ESA/390™) definition, Reference [1.] on
page xxix should be consulted.

The publication describes each function at the level
of detail needed to prepare an assembler-language
program that relies on that function. It does not, how-
ever, describe the notation and conventions that must
be employed in preparing such a program, for which
the user must instead refer to the appropriate assem-
bler-language publication.

The information in this publication is provided princi-
pally for use by assembler-language programmers,
although anyone concerned with the functional
details of z/Architecture will find it useful.

This publication is written as a reference and should
not be considered an introduction or a textbook. It
assumes the user has a basic knowledge of data-
processing systems.

All facilities discussed in this publication are not nec-
essarily available on every model. Furthermore, in
some instances the definitions have been structured
to allow for some degree of extendibility, and there-
fore certain capabilities may be described or implied
that are not offered on any model. Examples of such
capabilities are the use of a 16-bit field in the subsys-
tem-identification word to identify the subchannel
number, the size of the CPU address, and the num-
ber of CPUs sharing main storage. The allowance for
this type of extendibility should not be construed as
implying any intention by IBM to provide such capa-
bilities. For information about the characteristics and
availability of facilities on a specific model, see the
functional characteristics publication for that model.

Largely because this publication is arranged for refer-
ence, certain words and phrases appear, of neces-
sity, earlier in the publication than the principal
discussions explaining them. The reader who
encounters a problem because of this arrangement
should refer to the index, which indicates the location
of the key description.

The information presented in this publication is
grouped in 26 chapters and several appendixes:

Chapter 1, Introduction, highlights the major facilities
of z/Architecture.

Chapter 2, Organization, describes the major group-
ings within the system — main storage, expanded
storage, the central processing unit (CPU), the exter-
nal time reference (ETR), and input/output — with
some attention given to the composition and charac-
teristics of those groupings.

Chapter 3, Storage, explains the information formats,
the addressing of storage, and the facilities for stor-
age protection. It also deals with dynamic address
translation (DAT), which, coupled with special pro-
gramming support, makes the use of a virtual stor-
age possible.

Chapter 4, Control, describes the facilities for the
switching of system status, for special externally initi-
ated operations, for debugging, and for timing. It
deals specifically with CPU states, control modes,
the program-status word (PSW), control registers,
tracing, program-event recording, timing facilities,
resets, store status, and initial program loading.

Chapter 5, Program Execution, explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use of
the program-status word (PSW), of branching, and of
interruptions. It contains the principal description of
the advanced address-space facilities that were intro-
duced in ESA/370™. It also details the aspects of
program execution on one CPU as observed by other
CPUs and by channel programs.

Chapter 6, Interruptions, details the mechanism that
permits the CPU to change its state as a result of
conditions external to the system, within the system,
or within the CPU itself. Six classes of interruptions
are identified and described: machine-check inter-
ruptions, program interruptions, supervisor-call inter-
ruptions, external interruptions, input/output
interruptions, and restart interruptions.

Chapter 7, General Instructions, contains detailed
descriptions of logical and binary-integer data for-
mats and of most of the unprivileged instructions.

xxviii The z/Architecture CPU Architecture

Other unprivileged instructions are described in
chapters 8-10 and 18-25.

Chapter 8, Decimal Instructions, describes in detail
decimal data formats and the decimal instructions.

Chapter 9, Floating-Point Overview and Support
Instructions, includes an introduction to the floating-
point operations, detailed descriptions of those
instructions common to binary-floating-point, deci-
mal-floating-point, and hexadecimal-floating-point
operations, and summaries of all floating-point
instructions.

Chapter 10, Control Instructions, contains detailed
descriptions of all of the semiprivileged and privi-
leged instructions except for the I/O instructions.

Chapter 11, Machine-Check Handling, describes the
mechanisms for detecting, correcting, and reporting
machine malfunctions.

Chapter 12, Operator Facilities, describes the basic
manual functions and controls available for operating
and controlling the system.

Chapters 13-17 of this publication provide a detailed
definition of the functions performed by the channel
subsystem and the logical interface between the
CPU and the channel subsystem.

Chapter 13, I/O Overview, provides a brief descrip-
tion of the basic components and operation of the
channel subsystem.

Chapter 14, I/O Instructions, contains the description
of the I/O instructions.

Chapter 15, Basic I/O Functions, describes the basic
I/O functions performed by the channel subsystem,
including the initiation, control, and conclusion of I/O
operations.

Chapter 16, I/O Interruptions, covers I/O interruptions
and interruption conditions.

Chapter 17, I/O Support Functions, describes such
functions as channel-subsystem usage monitoring,
resets, initial-program loading, reconfiguration, and
channel-subsystem recovery.

Chapter 18, Hexadecimal-Floating-Point Instructions,
contains detailed descriptions of the hexadecimal-

floating-point (HFP) data formats and the HFP
instructions.

Chapter 19, Binary-Floating-Point Instructions, con-
tains detailed descriptions of the binary-floating-point
(BFP) data formats and the BFP instructions.

Chapter 20, Decimal-Floating-Point Instructions, con-
tains detailed descriptions of the decimal-floating-
point (DFP) data formats and the DFP instructions.

Chapter 21, Vector Overview and Support Instruc-
tions, describes the vector facility support instruc-
tions.

Chapter 22, Vector Integer Instructions, describes
the vector facility integer instructions.

Chapter 23, Vector String Instructions, describes the
vector facility string instructions.

Chapter 24, Vector Floating-Point Instructions,
describes the vector facility floating-point instruc-
tions.

Chapter 25, Vector Decimal Instructions, describes
the vector decimal instructions.

Chapter 26, Specialized-Function-Assist Instructions,
describes the specialized-function-assist instruc-
tions.

The Appendices include:

• Appendix A: Information about number represen-
tation and instruction-use examples

• Appendix B: Lists of the instructions arranged in
several sequences

• Appendix C: A summary of the condition-code
settings

• Appendix D: Additional information on the com-
pression-call (CMPSC) facility, including pro-
cesses, dictionary formats, entropy encoding,
and order preservation.

• Appendix G: A table of the powers of 2
• Appendix H: Tabular information helpful in deal-

ing with hexadecimal numbers
• Appendix I: A table of EBCDIC and other codes.

Size and Number Notation

In this publication, the letters K, M, G, T, P, and E
denote the multipliers 210, 220, 230, 240, 250, and 260,

xxix

respectively. Although the letters are borrowed from
the decimal system and stand for kilo (103), mega
(106), giga (109), tera (1012), peta (1015), and exa
(1018), they do not have the decimal meaning but
instead represent the power of 2 closest to the corre-
sponding power of 10. Their meaning in this publica-
tion is as follows:

The following are some examples of the use of K, M,
G, T, and E:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K (not 65K).
224 is expressed as 16M.
231 is expressed as 2G.
242 is expressed as 4T.
253 is expressed as 8P.
264 is expressed as 16E.

When the words “thousand” and “million” are used,
no special power-of-2 meaning is assigned to them.

All numbers in this publication are in decimal unless
they are explicitly noted as being in binary or hexa-
decimal (hex).

Bytes, Characters, and Codes

Although the System/360 architecture was originally
designed to support the Extended Binary-Coded-
Decimal Interchange Code (EBCDIC), the instruc-
tions and data formats of the architecture are for the
most part independent of the external code which is
to be processed by the machine. For most instruc-
tions, all 256 possible combinations of bit patterns for
a particular byte can be processed, independent of
the character which the bit pattern is intended to rep-
resent. For instructions which use the zoned format,
and for those few instructions which are dependent

on a particular external code, the various TRANS-
LATE instructions may be used to convert data from
one code to another code. Thus, a machine operat-
ing in accordance with z/Architecture can process
EBCDIC, ASCII, or any other code which can be rep-
resented in eight or fewer bits per character.

In this publication, unless otherwise specified, the
value given for a byte is the value obtained by consid-
ering the bits of the byte to represent a binary code.
Thus, when a byte is said to contain a zero, the value
00000000 binary, or 00 hex, is meant, and not the
value for an EBCDIC character “0,” which would be
F0 hex.

Other Publications

1. The IBM ESA/390 architectural mode is
described in IBM Enterprise Systems Architec-
ture/390 Principles of Operation, SA22-7201.

2. The parallel-I/O interface is described in the pub-
lication IBM System/360 and System/370 I/O
Interface Channel to Control Unit Original Equip-
ment Manufacturers’ Information, GA22-6974.

3. The parallel-I/O channel-to-channel adapter is
described in the publication IBM Enterprise Sys-
tems Architecture/390 Channel-to-Channel
Adapter for the System/360 and System/370 I/O
Interface, SA22-7091.

4. The Enterprise Systems Connection Architec-
ture® (ESCON®) I/O interface, referred to in this
publication along with the FICON I/O interface as
the serial-I/O interface, is described in the publi-
cation IBM Enterprise Systems Architecture/390
ESCON I/O Interface, SA22-7202.

5. The FICON I/O interface is described in the
ANSI® standards document Fibre Channel - Sin-
gle-Byte Command Code Sets-2 (FC-SB-2).

6. The channel-to-channel adapter for the serial-I/O
interface is described in the publication IBM
Enterprise Systems Architecture/390 ESCON
Channel-to-Channel-Adapter, SA22-7203.

7. The commands, status, and sense data that are
common to all I/O devices that comply with
z/Architecture are described in the publication
IBM Enterprise Systems Architecture/390 Com-
mon I/O-Device Commands and Self Descrip-
tion, SA22-7204.

Symbol Value

K (kilo) 1,024 = 210

M (mega) 1,048,576 = 220

G (giga) 1,073,741,824 = 230

T (tera) 1,099,511,627,776 = 240

P (peta) 1,125,899,906,842,624 = 250

E (exa) 1,152,921,504,606,846,976 = 260

xxx The z/Architecture CPU Architecture

8. The compression facility is described in the publi-
cation IBM Enterprise Systems Architecture/390
Data Compression, SA22-7208. The z/Architec-
ture form of the COMPRESSION CALL instruc-
tion is described in this publication.

9. The interpretive-execution facility is described in
the publication IBM 370-XA Interpretive Execu-
tion, SA22-7095.

10. The load-program-parameter and CPU-mea-
surement facilities are described in the publica-
tion The Load-Program-Parameter and CPU-
Measurement Facilities, SA23-2260.

11. The store-hypervisor-information facility is
described in the publication z/VM CP Program-
ming Services (SC24-6179).

12. The IBM Enterprise Systems Architecture/
Extended Configuration (ESA/XC) virtual-
machine architecture is described in Enterprise
Systems Architecture/Extended Configuration
Principles of Operation, SC24-6192.

13. The data-encryption algorithm is described in
the publication Data Encryption Standard, Fed-
eral Information Processing Standards (FIPS)
publication 46-3, October 25, 1999.

14. The advanced encryption standard is described
in Advanced Encryption Standard, FIPS publica-
tion 197, November 26, 2001.

15. The secure hash algorithm is described in the
publication Secure Hash Standard, FIPS publica-
tion 180-4, March, 2012.

16. The cipher-feedback (CFB), output-feedback
(OFB), and counter (CTR) modes of encryption
and decryption are described in Recommenda-
tion for Block Cipher Modes of Operation,
National Institute of Standards and Technology
(NIST) Special Publication 800-38A, December,
2001.

17. The Galois/counter mode (GCM) multiplication
operation is described in Recommendation for
Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC, NIST
special publication 800-38D, November, 2007.

18. Pseudorandom number generation is described
in Recommendation for Random Number Gener-
ation Using Deterministic Random Bit Genera-
tors, NIST special publication 800-90A, January,
2012.

19. Entropy sources for random number generation
are described in Recommendation for the
Entropy Sources Used for Random Bit Genera-
tion, NIST DRAFT Special Publication 800-90B,
August, 2012.

20. Binary floating point is described in IEEE Stan-
dard for Floating-Point Arithmetic, Institute of
Electrical and Electronics Engineers publication
IEEE 754-2008.

21. The SHA-3 standard is described in SHA-3
Standard: Permutation-Based Hash and Extend-
able-Output Functions, FIPS publication 202,
August, 2015.

22. The extensible-markup language (XML) is
described in Extensible Markup Language (XML)
1.0 (Fifth Edition), published by the World Wide
Web Consortium.

23. The DEFLATE compressed-data format is
described in DEFLATE Compressed Data For-
mat Specification version 1.3, Internet Engineer-
ing Task Force (IETF), Request For Comments
(RFC) 1951, May, 1996.

24. Digital Signature Standard (DSS), National Insti-
tute of Standards and Technology (NIST) July
2013, http://nvlpubs.nist.gov/nist-
pubs/FIPS/NIST.FIPS.186-4.pdf

25. Edwards-Curve Digital Signature Algorithm
(EdDSA), Internet Research Task Force (IRTF),
RFC-8032, January 2017,
https://tools.ietf.org/html/rfc8032.

26. Ed448-Goldilocks, a new elliptic curve, Mike
Hamburg,Cryptology ePrint Archive, Report
2015/624, 2015,
https://eprint.iacr.org/2015/625.pdf

27. ANSI X9.62-1998: Public Key Cryptography for
the Financial Services Industry: the Elliptic Curve
Digital Signature Algorithm (ECDSA). September
20, 1998. Working Draft.

28. ANSI X9.63-2011: Public Key Cryptography for
the Financial Services Industry: the Elliptic Curve
Key Agreement and Key Transport Using Elliptic
Curve Cryptography. December 21, 2011. Work-
ing Draft.

29. ANSI/IEEE Std 1363a-2004: IEEE Standard
Specifications for Public-Key Cryptography -
Amendment 1: Additional Techniques. July 22,
2004.

xxxi

30. Recommendation for Pair-Wise Key Establish-
ment Schemes Using Discrete Logarithm Cryp-
tography, NIST Special Publication 800-56A,
Revision 2, May 2013,
http://dx.doi.org/10.6028/NIST.SP.800-56Ar2.

31. Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS), Network
Working Group, RFC-4492, May 2006,
https://tools.ietf.org/html/rfc4492.

32. Elliptic Curve Cryptography Subject Public Key
Information, Network Working Group, RFC-5480,
March 2009,
https://www.ietf.org/rfc/rfc5480.txt.pdf.

33. SEC 2: Recommended Elliptic Curve Domain
Parameters, Standards for Efficient Cryptogra-
phy, Certicom Research, Sept. 2000,
http://www.secg.org/SEC2-Ver-1.0.pdf.

34. SEC 1: Elliptic Curve Cryptography, Standards
for Efficient Cryptography, Certicom Research,
May 2009, http://www.secg.org/sec1-v2.pdf.

35. Recommendation for Key Management, Part 1:
General, National Institute of Standards and
Technology (NIST) Jan. 2016, http://nvl-
pubs.nist.gov/nistpubs/SpecialPublica-
tions/NIST.SP.800-57pt1r4.pdf.

36. Secure Hash Standard (SHS), National Institute
of Standards and Technology (NIST) Aug. 2015,
http://nvlpubs.nist.gov/nist-
pubs/FIPS/NIST.FIPS.180-4.pdf

37. Use of Elliptic Curve Cryptography (ECC) Algo-
rithms in Cryptographic Message Syntax (CMS),
Internet Engineering Task Force (IETF), RFC-
5753, January 2010,
https://tools.ietf.org/html/rfc5753.

38. The Transport Layer Security (TLS) Protocol
Version 1.3, Network Working Group, Internet
Engineering Task Force (IETF), draft-ietf-tls-
tls13-20, April 28, 2017,
https://tools.ietf.org/pdf/draft-ietf-tls-tls13-20.pdf.

39. The Advanced Encryption Standard (AES) Key
Wrap with Padding Algorithm, Network Working
Group, IETF, RFC-5649, August, 2009,
https://tools.ietf.org/pdf/rfc5649.pdf

40. Elliptic Curves for Security, Internet Research
Task Force (IRTF), RFC-7748, January 2016,
https://tools.ietf.org/html/rfc7748.

Summary of Changes in Thirteenth
Edition

The thirteenth edition of this publication differs from
the previous edition principally by containing the defi-
nitions of the following facilities:

• DEFLATE-conversion facility
• Message-security-assist extension 9
• Miscellaneous-instruction-extensions facility 3
• Move-page-and-set-key facility
• PER-storage-key-alteration facility
• PPA-in-order facility
• Vector-enhancements facility 2
• Vector-packed-decimal-enhancement facility

The thirteenth edition also contains the following sig-
nificant changes relative to the previous edition:

• In the Preface (this section):

– A summary of Chapter 26 is added.

– The list of other publications is extended to
include additional documents referenced by
this document.

• In Chapter 1, “Introduction,” a summary of the
new facilities is presented.

• In Chapter 4, “Control”:

– Descriptions of the short-format PSW and
set-architecture order of SIGNAL PROCES-
SOR when the CPU is in the ESA/390-com-
patibility mode are amended.

– Bits 0-8 of control register 2 have been
reserved for IBM use.

• In Chapter 5, “Program Execution”:

– Amendments are made to the sections “Mul-
tiple-Access References” and “Block-Con-
current References” to account for existing
implementations of the LOAD REVERSED
and STORE REVERSED instructions.

• In Chapter 7, “General Instructions”:

– Programming notes which state the storage-
operand references of LOAD REVERSED
and STORE REVERSED may be multiple-
access references are removed.

xxxii The z/Architecture CPU Architecture

– Clarification is made to the descriptions of
BRANCH AND SAVE AND SET MODE and
BRANCH AND SET MODE when the CPU is
in the ESA/390-compatibility mode.

• In Chapter 10, “Control Instructions”:

– The description of SYSIB 1.1.1 for the
STORE SYSTEM INFORMATION instruction
is amended to account for additional IBM
uses.

– Clarification is made to the descriptions of
LOAD PAGE TABLE ENTRY ADDRESS,
LOAD PSW, and LOAD PSW EXTENDED
when the CPU is in the ESA/390-compatibil-
ity mode.

• Chapter 26, “Specialized-Function-Assist
Instructions” is added.

• Numerous other minor clarifications and correc-
tions are included.

Summary of Changes in Twelfth
Edition

The twelfth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facilities:

• Configuration-z/Architecture-architectural-mode
(CZAM) facility

• ESA/390-compatibility-mode (ESA/390CM facil-
ity)

• Guarded-storage facility
• Insert-reference-bits-multiple facility
• Instruction-execution-protection facility
• Message-security-assist extension 6
• Message-security-assist extension 7
• Message-security-assist extension 8
• Miscellaneous-instruction-extensions facility 2
• Multiple-epoch facility
• Side-effect-access facility
• Test-pending-external-interruption facility
• Vector-enhancements facility 1
• Vector packed-decimal facility

The twelfth edition also contains the following signifi-
cant changes relative to the previous edition:

• In the Preface (this section):

– A summary of Chapter 25 is added.

– The list of other publications is extended to
include additional documents referenced by
this document.

• In Chapter 1, “Introduction,” a summary of the
new facilities is presented.

• In Chapter 2, “Organization”:

– The description of CPU registers is extended
to include the guarded-storage-facility regis-
ters and the epoch index.

– The description of general and control regis-
ters is amended to account for the ESA/390-
compatibility-mode facility.

• In Chapter 3, “Storage”:

– The sections “Address Types,” “Low-Address
Protection,” “Prefixing,” “Address Spaces,”
“ASN Translation,” “ASN Authorization,”
“Dynamic Address Translation,” and
“Assigned Storage Locations” are amended
to account for the ESA/390 compatibility
mode.

– The sections “Storage Keys” and “Address
Summary” are amended to account for the
INSERT REFERENCE BITS MULTIPLE
facility.

– The sections “Protection,” “Suppression on
Protection,” “Dynamic Address Translation,”
and “Assigned Storage Locations” are
amended to account for instruction-execution
protection. As a result, the section on “Sup-
pression on Protection” is complete rewrit-
ten, introducing the side-effect-access
facility.

– Clarification is made to the “Change Record-
ing” section.

• In Chapter 4, “Control”:

– Amendments are made to the sections “Load
State,” “Resets,” “Initial Program Loading,”
“Store Status,” and “Signal-Processor
Orders” to account for the configuration-
z/Architecture-architectural-mode facility.

– Amendments are made to the sections “Pro-
gram Status Word,” “Control Registers,”
“Tracing,” “Program Event Recording,”
“Resets,” “Store Status,” and “Signal-Proces-

xxxiii

sor Orders” to account for the ESA/390-com-
patibility-mode facility.

– Other amendments and clarifications are
made to the “Program Event Recording” sec-
tion.

– Amendments are made to the section “Trac-
ing” and “Timing” to account for the multiple-
epoch facility. Additionally, a new leap sec-
ond is defined in the section “Timing.”

– The section “Guarded-Storage Facility” is
added.

– The section “Facility Indications” is amended
to describe new facility-indication bits.

• In Chapter 5, “Program Execution”:

– Amendments are made to the sections
“Instruction Formats” and “Block-Concurrent
References” to account for the vector-
enhancements facility 1 and the vector-
packed-decimal facility.

– The section “Formation of the Intermediate
Value” is amended to account for the
BRANCH INDIRECT ON CONDITION
instruction.

– The sections “Condition-Code Alternative to
Interruptibility” and “Multiple-Access Refer-
ences” are amended to account for the mes-
sage-security-assist extension 8.

– Clarification is made to the section “Excep-
tions to Nullification and Suppression.”

– The section “Transactional-Execution Facil-
ity” is updated to account for the guarded-
storage facility. Other clarifications and cor-
rections are also included in the description
of the transactional-execution facility.

– Amendments are made to the section “Moni-
tor-Event Counting.”

– The ESA/390 compatibility mode is
described in a new section.

– Amendments are made to the section “Rela-
tion between Storage-Key Accesses” to
account for the insert-reference-bits-multiple
facility.

• In Chapter 6, “Interruptions”:

– Multiple sections are amended to account for
the ESA/390-compatibility-mode facility.

– Various subsections of the section “Program-
Interruption Conditions” are amended to
account for the guarded-storage, instruction-
execution-protection, message-security-
assist extension 6, message-security-assist
extension 8, and vector-packed-decimal
facilities.

– Various other clarifications are made to the
sections “Instruction-Length Code” and
“Exceptions Associated with the PSW.”

• In Chapter 7, “General Instructions”:

– The instructions of the guarded-storage facil-
ity, miscellaneous-instruction-extensions
facility 2, and message-security-assist exten-
sion 8 are described. (Of necessity, the origi-
nal miscellaneous-instruction-extensions
facility is now called the miscellaneous-
instruction-extensions facility 1.)

– New functions are defined for the KIMD,
KLMD, and PRNO instructions in support of
the message-security-assist extensions 6
and 7.

– Numerous other clarifications are made to
the descriptions of each of the message-
security-assist instructions and to the section
“Protection of Cryptographic Keys. All of the
figures in these sections have been redrawn.

– The descriptions of multiple instructions are
amended to account for the ESA/390-com-
patibility-mode facility.

– Clarification is made to the description of the
COMPARE AND FORM CODEWORD
instruction.

– Clarification is made to the description of the
CONVERT UTF-16 TO UTF-32, CONVERT
UTF-16 TO UTF-8, CONVERT UTF-32 TO
UTF-16, and CONVERT UTF-32 TO UTF-8
instructions.

– The description of the EXTRACT CPU
ATTRIBUTE instruction is extended to pro-
vide CPU attributes.

– A programming note is added to all instruc-
tions having a query function, advising of the
proper use of the function.

xxxiv The z/Architecture CPU Architecture

– The descriptions of STORE CLOCK, STORE
CLOCK EXTENDED, and STORE CLOCK
FAST are amended to account for the multi-
ple-epoch facility and the addition of a new
leap second.

• In Chapter 8, “Decimal Instructions”:

– Clarification is made to the introductory
material and to the sections “Decimal
Codes,” “Other Instructions for Decimal
Operands,” and “General-Operand Data
Exception.”

– In the description of EDIT and EDIT AND
MARK, clarification is made to the setting of
condition code 2.

– In the description of TEST DECIMAL, clarifi-
cation is made to the description of condition
codes 1 and 2.

• In Chapter 9, “Floating-Point Overview and Sup-
port Instructions”:

– Clarification is made to the section “Hexa-
decimal-Floating-Point (HFP).”

– Clarification is made to the section “IEEE
Computational Operations” and to the
description of the PERFORM FLOATING
POINT OPERATION instruction with regards
to subnormal numbers and exception han-
dling.

– The section “Impacts on ESA/390” is
extended to account for the ESA/390-com-
patibility-mode facility.

– Item 1 in the section “Impacts of the Floating-
Point Extension Facility” is corrected.

• In Chapter 10, “Control Instructions”:

– Descriptions of the INSERT REFERENCE
BITS MULTIPLE, and TEST PENDING
EXTERNAL INTERRUPTION instructions
are added.

– The descriptions of BRANCH AND SET
AUTHORITY, EXTRACT STACKED STATE,
INVALIDATE PAGE TABLE ENTRY, LOAD
ADDRESS SPACE PARAMETERS, LOAD
CONTROL, LOAD PSW, LOAD PSW
EXTENDED, LOAD REAL ADDRESS,
RESUME PROGRAM, SET PREFIX, SET
SYSTEM MASK, STORE PREFIX, STORE
REAL ADDRESS, STORE THEN OR SYS-

TEM MASK, and TEST ACCESS instruc-
tions are amended to account for the
ESA/390-compatibility-mode facility

– Various clarifications are made to the
description of the PERFORM FRAME MAN-
AGEMENT FUNCTION instruction.

– New function codes are described for the
PERFORM TIMING FACILITY FUNCTION
instruction in support of the multiple-epoch
facility. Additionally, the 27th leap second is
described.

– A programming note is added to the descrip-
tion of the SET CLOCK instruction in support
of the multiple-epoch facility.

– The description of the STORE CPU ID
instruction is complete rewritten.

– Various changes are made to the description
of the STORE SYSTEM INFORMATION
instruction, including a new field in the
SYSIB 1.1.1, corrections to the descriptions
of the adjustment factors in the SYSIB 1.2.2,
the addition of the virtual-server ID and vir-
tual-server name in the SYSIB 2.2.2, and the
addition of the extended-VM-name field in
the SYSIB 3.2.2.

– The description of the TEST PROTECTION
instruction is amended to account for the
instruction-execution-protection facility.

– The description of the TRACE instruction is
amended to account for the multiple-epoch
facility.

• In Chapter 11, “Machine-Check Handling”:

– The section “Effects of CPU Retry” is
amended to account for the addition of the
message-security-assist extension 8.

– The sections “Validation” and “Invalid CBC in
Registers” are amended, simplifying the
description of register validation.

– The sections “Interruption Action,” “Machine-
Check-Interruption Code,” “Machine-Check
Extended Interruption Information,” and
“Machined-Check Extended Save Area
(MCESA)” are amended to account for the
addition of the guarded-storage facility and
the ESA/390-compatibility-mode facility.

xxxv

• In Chapter 12, “Operator Facilities,” various sec-
tions are amended to account for the addition of
the ESA/390-compatibility-mode facility.

• In Chapter 14, “I/O Instructions”:

– Clarification is made to the Figure 14-1,
“Summary of I/O Instructions.”

• In Chapter 15, “Basic I/O Functions”:

– In the section “Command-Mode ORB”, a cor-
rection is made to the description of the
prefetch control.

– In the section “CCW Channel Program
Chaining”, a correction is made to the figure
“Subchannel Chaining Action.”

• In Chapter 16, “I/O Interruptions, in the section
“Extended-Status Word,” the illustration of the
subchannel logout is corrected.

• In Chapter 17, “I/O Support Functions”:

– In the section “Externally Initiated Functions,”
the descriptions of CCW-type IPL and List-
Directed IPL are amended to account for the
ESA/390-compatibility-mode (ESA/390CM)
and configuration-z/Architecture-architec-
tural-mode (CZAM) facilities, and clarification
is made to the contents of the ORB used by
a CCW-type IPL.

• In Chapter 19, “Binary-Floating-Point Instruc-
tions”:

– Terminology has been updated to conform to
that of Reference [20.] on page xxx.

– In the figure “Summary of BFP Instructions,”
clarification is made to the applicability of the
symbols Xi, Xo, Xu, Xx, and Xz (they are
data exceptions, as opposed to the same
symbols in Chapter 24, where they are vec-
tor-processing exceptions).

• In Chapter 20, “Decimal-Floating-Point Instruc-
tions,” in the figure “Summary of DFP Instruc-
tions”:

– The instruction format is corrected for CON-
VERT FROM ZONED and CONVERT TO
ZONED.

– Clarification is made to the applicability of
the symbols Xi, Xo, Xu, Xx, and Xz (they are
data exceptions, as opposed to the same
symbols in Chapter 24, where they are vec-
tor-processing exceptions).

• In Chapter 21, “Vector Overview and Support
Instructions”:

– The instructions and instruction enhance-
ments added by the vector-enhancements
facility 1 are described. The instructions
added by the vector-packed-decimal facility
are described.

– An optional alignment-hint operand is added
to the VECTOR LOAD, VECTOR LOAD
MULTIPLE, VECTOR STORE, and VECTOR
STORE MULTIPLE.

• In Chapter 22, “Vector Integer Instructions”:

– The instructions added by the vector-
enhancements facility 1 are described.

– The description of the VECTOR POPULA-
TION COUNT instruction is extended to
accommodate multiple element sizes.

• In Chapter 24, “Vector Floating-Point Instruc-
tions”:

– In the section “IEEE Exception Handling,”
clarification is made to the contents of the
VXC.

– The mnemonics for VECTOR FP LOAD
LENGTHENED and VECTOR FP LOAD
ROUNDED are changed to VFLL and VFLR,
respectively. The former mnemonics VLDE
and VLED, respectively, are deprecated but
retained for compatibility purposes.

– The instructions and instruction enhance-
ments added by the vector-enhancements
facility 1 are described.

• Chapter 25, “Vector Decimal Instructions” is
added.

• Appendix D, “Compression Call Facility” is
added.

xxxvi The z/Architecture CPU Architecture

Summary of Changes in Eleventh
Edition

The eleventh edition of this publication differs from
the previous edition principally by containing the defi-
nitions of the following facilities:

• Decimal-floating-point packed-conversion facility
• FCX-bidirectional-data-transfer facility
• Load-and-zero-rightmost-byte facility
• Load/store-on-condition facility 2
• Message-security-assist extension 5
• Multithreading facility
• Vector facility for z/Architecture

The eleventh edition also contains the following sig-
nificant changes relative to the previous edition:

• In the Preface:

– Summaries of Chapters 21-24 are added.

– The list of other publications is extended to
include additional documents referenced by
this document.

• In Chapter 1, “Introduction,” a summary of the
new facilities is presented.

• In Chapter 2, “Organization”:

– New sections are added, describing CPU
types, multithreading, and vector registers.

– Clarification is made as to the contents of bit
positions 0-31 of general registers while the
CPU is in the ESA/390 mode.

• In Chapter 3, “Storage”:

– Clarification is made as to the applicability of
key-controlled protection’s to the program-
interruption TDB.

– Clarification is made as to the applicability of
DAT to certain instructions and events.

– Bits 62-63 of the format-1 RTTE and STE are
made available for programming.

– The vector-exception code and machine-
check-extended-save-area address are
added to the assigned-storage locations.

– Because of their pervasive use by z/OS,
three additional assigned-storage locations
are made available for use by programming.

• In Chapter 4, “Operation”:

– Additional constraints are placed on the use
of CPU address-compare controls is pro-
gram-event recording is used.

– Additional bits are defined in control registers
0 and 2.

– Applicability of VRV-format instructions (used
by the vector facility) are added to the
description of PER zero-address detection.

– In the section “Timing”:

• Numerous clarifications are made to the
section “Setting and Inspecting the
Clock.”

• Leap second 26 is documented.

• Descriptions of hardware-based and off-
set-based TOD-clock steering are
added.

• Description of the UTC-information block
(UIB) is added.

• Clarification is made to the description of
the CPU timer.

– The descriptions of various reset operations
are updated to account for the addition of the
multithreading and vector facilities.

– Clarification is made to the description of
CCW-based IPL.

– In the section “Multiprocessing,” the process
of CPU-address expansion and contraction
is described.

– In the section “CPU Signaling and
Response,” various changes are described
in support of the multithreading facility:

• The SIGP set-multithreading order is
described.

• Various changes are made to other
SIGP orders in support of multithread-
ing.

– New facility indications are described.

• In Chapter 5, “Program Execution”:

xxxvii

– Instruction formats are added, most in sup-
port of vector-facility for z/Architecture
instructions.

– Clarification is made to the description of
instruction nullification and suppression.

– The section “Condition-Code Alternative to
Interruptibility” is updated to account for new
instructions.

– Clarification is added to the description of the
TBEGIN-specified TDB.

– The TDB is updated to include the vector-
exception code (VXC).

– A programming note is added, describing the
proper use of branch instructions following a
TRANSACTION BEGIN.

– The section “Multiple-Access References” is
updated to account for added instructions.

– The section “Block-Concurrent References”
is updated to account for the vector-facility
for z/Architecture instructions.

– A programming note is added to the section
“Storage-Key Accesses”, describing behav-
ior of the nonquiescing key-setting operation.

• In Chapter 6, “Interruptions”:

– The vector-processing interruption is
described.

– STP timing-alert interruptions are defined to
be floating interruptions.

– Clarification is made to the section “Excep-
tions Associated with the PSW.”

– Clarification is made to the description of
external interruptions.

– Clarification is made to the description of the
warning-track interruption.

– Because it is used for other instructions
besides decimal instructions, data-exception
code 0 is renamed general-operand data
exception (it was formerly decimal-operand
data exception).

– Descriptions of the vector-exception code,
vector-instruction data exception code, and
the vector-processing exception are added.

– The descriptions of various program-inter-
ruption codes are updated to account for
new instructions.

• In Chapter 7, “General Instructions”:

– A programming note is added to the
BRANCH PREDICTION PRELOAD and
BRANCH PREDICTION RELATIVE PRE-
LOAD instructions.

– The CIPHER MESSAGE WITH CFB and
CIPHER MESSAGE WITH OFB instructions
are renamed to the more descriptive
CIPHER MESSAGE WITH CIPHER FEED-
BACK and CIPHER MESSAGE WITH OUT-
PUT FEEDBACK, respectively. The
mnemonics for these instructions are
unchanged.

– Instructions for the following facilities are
described:

• Load-and-zero-rightmost-byte facility

• Load/store-on-condition facility 2 (note,
the former load/store-on-condition facility
is renamed load-store-on-condition facil-
ity 1)

• Message-security-assist extension 5

• Vector facility for z/Architecture (the
LOAD COUNT TO BLOCK BOUNDARY
is the only general instruction in this facil-
ity; the remaining instructions appear in
Chapters 21-24)

– Numerous clarifications and corrections are
made to the descriptions of the message-
security instructions: CIPHER MESSAGE,
CIPHER MESSAGE WITH CHAINING,
CIPHER MESSAGE WITH CIPHER FEED-
BACK, CIPHER MESSAGE WITH
COUNTER, CIPHER MESSAGE WITH
OUTPUT FEEDBACK, COMPUTE INTER-
MEDIATE MESSAGE DIGEST, COMPUTE
LAST MESSAGE DIGEST, COMPUTE MES-
SAGE AUTHENTICATION CODE, and PER-
FORM CRYPTOGRAPHIC COMPUTATION.
Additional clarification is made to the section
“Protection of Cryptographic Keys.”

– Clarification is made to the description of
access exception for instructions of the inter-
locked-access facility 1. Also, additional

xxxviii The z/Architecture CPU Architecture

extended mnemonics are described for the
instructions of the facility.

– A programming note is added to the descrip-
tion of PERFORM LOCKED OPERATION.

– Programming notes are added to the SHIFT
LEFT SINGLE LOGICAL and SHIFT RIGHT
SINGLE LOGICAL instructions.

– Clarification is added to programming note 5
for STORE CLOCK and STORE CLOCK
FAST.

– Leap second 26 is documented.

– Various changes and clarifications are made
to the description of TRANSACTION BEGIN.

• In Chapter 8, “General Instructions”:

– The description of the signed-packed-deci-
mal format is amended to accommodate the
addition of the DFP-packed-conversion facil-
ity.

– The term general-operand data exception
replaces the former decimal-operand data
exception.

• In Chapter 9, “Floating-Point Overview and Sup-
port Instructions”:

– References to the ANSI/IEEE binary-float-
ing-point standard are updated.

– Numerous clarifications are made to the
description of the PERFORM FLOATING
POINT OPERATION instruction and affiliated
text.

• In Chapter 10, “Control Instructions”:

– In the description of BRANCH AND SET
AUTHORITY, clarification is made to the dis-
cussion of special conditions.

– In the description of LOAD PAGE TABLE
ENTRY ADDRESS, a correction is made to
programming notes 2 and 3.

– Clarification is provided in the description of
the LOAD REAL ADDRESS instruction.

– In the description of PERFORM TIMING
FACILITY FUNCTION:

• New functions are added.

• Numerous other clarifications are made
to the instruction description.

• Leap second 26 is documented.

– The description of SIGNAL PROCESSOR is
changed to accommodate the vector facility
for z/Architecture and multithreading facility.

– The description of STORE SYSTEM INFOR-
MATION is updated to accommodate the
multithreading facility.

– The description of TEST PROTECTION is
updated to account for the EDAT-2 facility.

• In Chapter 11, “Machine-Check Handling”:

– Various sections are updated to accommo-
date the addition of the vector facility for
z/Architecture.

– The vector-register-validity bit is added to the
MCIC.

– The machine-check extended save area is
described.

• In Chapter 12, “Operator Facilities”:

– Various constraints are put on the use of
address-compare controls with using the
program-event-recording (PER) facility.

– Alter-and-display controls accommodate the
vector registers.

– A CPUs-per-core indicator is added in sup-
port of the multithreading facility.

– The section “Multithreading Considerations”
is added.

• In Chapter 13, “I/O Overview,” the bidirectional-
data-transfer facility and transfer-control-area
extension (TCAX) are described.

• In Chapter 15, “Basic I/O Functions”:

– Description of the bidirectional-data-transfer
operations is added to the various transport-
mode I/O control structures.

– Description of the transport-control-area
extension (TCAX) is added.

– Description of the transfer-TCA-Extension
(TTE) DCW is added.

xxxix

• In Chapter 16, “I/O Interruptions,” program-check
conditions for bidirectional-data-transfer opera-
tions are added.

• In Chapter 19, “Binary-Floating-Point Instruc-
tions,” references to the ANSI/IEEE binary-float-
ing-point standard are updated.

• In Chapter 20, “Decimal-Floating-Point Instruc-
tions”:

– The instructions of the DFP-packed-conver-
sion facility are described.

– The term general-operand data exception
replaces the former decimal-operand data
exception.

– In the description of the CONVERT TO
ZONED instruction, clarification is made to
the description of the zone control.

• Chapters 21-24 are added, describing the
instructions of the vector facility for z/Architec-
ture.

• Numerous other minor clarifications and correc-
tions are included.

Summary of Changes in Tenth
Edition

The tenth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facilities:

• Decimal-floating-point zoned-conversion facility
• Enhanced-DAT facility 2
• Execution-hint facility
• Interlocked-access facility 2
• Load-and-trap facility
• Local-TLB-clearing facility
• Miscellaneous-instruction-extensions facility 1
• PER zero-address-detection facility
• Processor-assist facility
• Side-effect-access facility
• Transactional-execution facility
• Warning-track-interruption facility

The tenth edition contains the following significant
changes relative to the previous edition:

• In Chapter 1, “Introduction,” a summary of the
new facilities is presented.

• In Chapter 3, “Storage:”

– Changes introduced by the enhanced-DAT
facility 2 are added.

– Changes introduced by the execution-hint
facility are added.

– Changes introduced by the side-effect-
access facility are described.

– Changes introduced by the transactional-
execution facility are added.

• In Chapter 4, “Control:”

– Changes introduced by the enhanced-DAT
facility 2 are added.

– Changes introduced by the execution-hint
facility are added.

– Changes introduced by the PER zero-
address-detection facility are added.

– Changes introduced by the transactional-
execution facility are added.

– Leap second 25 is documented.

– Facility indications for the new facilities are
added.

• In Chapter 5, “Program Execution:”

– New instruction formats are defined.

– Changes introduced by the enhanced-DAT
facility 2 are added.

– Changes introduced by the execution-hint
facility are added.

– Changes introduced by the interlocked-
access facility 2 are added.

– Changes introduced by the transactional-
execution facility are added.

– Clarification is made to the access-register-
translation process.

– Clarification is made to the handling of PER
events in the enhanced-monitor counting
array.

• In Chapter 6, “Interruptions:”

– Changes introduced by the load-and-trap
facility are added.

xl The z/Architecture CPU Architecture

– Changes introduced by the transactional-
execution facility are added.

– Changes introduced by the warning-track-
interruption facility are added.

– Clarification is made to the description of the
measurement-alert external interruption.

• In Chapter 7, “General Instructions:”

– Changes introduced by the execution-hint
facility are added.

– Changes introduced by the interlocked-
access facility 2 are added. The original
interlocked-access facility is now called the
interlocked-access facility 1.

– Changes introduced by the load-and-trap
facility are added.

– Changes introduced by the miscellaneous-
instruction-extension facility are added.

– Changes introduced by the processor-assist
facility are added.

– Changes introduced by the transactional-
execution facility are added.

– Changes introduced by the PER zero-
address-detection facility are added.

– The EXTRACT CACHE ATTRIBUTE instruc-
tion is renamed EXTRACT CPU ATTRI-
BUTE.

• In Chapter 8, “Decimal Instructions:”

– Changes introduced by the decimal-floating-
point zoned-conversion facility are added.

– Changes introduced by the transactional-
execution facility are added.

• In Chapter 9, “Floating-Point Overview and Sup-
port Instructions:”

– Changes introduced by the transactional-
execution facility are added.

– Miscellaneous corrections are made to Fig-
ure 9-21.

– Miscellaneous clarifications and corrections
are made to the description of PERFORM
FLOATING POINT OPERATION.

• In Chapter 10, “Control Instructions:”

– Changes introduced by the enhanced-DAT
facility 2 are added.

– Changes introduced by the local-TLB-clear-
ing facility are added.

– Changes introduced by the transactional-
execution facility are added.

– Changes introduced by the PER zero-
address-detection facility are added.

– Clarification is made to the description of
EXTRACT STACKED STATE.

– Clarification is made to the description of
STORE CPU ID and STORE SYSTEM
INFORMATION.

• In Chapter 12, “Operator Facilities,” clarification
is made to the description of the load-unit-
address controls.

• In Chapter 13, “I/O Overview:”

– Clarification is made to the description of the
device number.

• In Chapter 14, “I/O Instructions:”

– Changes introduced by the transactional-
execution facility are added.

• In Chapter 15, “Basic I/O Functions:”

– Various clarifications are made to the
description of the output-count field of the
transport-control word.

– Various clarifications and changes are made
to the device-command word, including the
description of the suppress-length-indication
flag.

– The transport-command DCW is described.

– Clarifications are made to the description of
the Transfer-CBC-offset-block DCW.

• In Chapter 16, “I/O Interruptions:”

– The incorrect-length subchannel-status indi-
cation is described.

• In Chapter 17, “I/O Support Functions:”

– The interrupt-delay-time and I/O-priority-
delay-time fields are described in the mea-
surement block.

xli

• In Chapter 18, “Hexadecimal-Floating-Point
Instructions:”

– Changes introduced by the transactional-
execution facility are added.

– Clarifications are made to the description of
CONVERT TO FIXED.

• In Chapter 19, “Binary-Floating-Point Instruc-
tions:”

– Changes introduced by the transactional-
execution facility are added.

– Clarifications and corrections are made to
the description of CONVERT TO FIXED.

– Clarifications and corrections are made to
the description of CONVERT TO LOGICAL.

• In Chapter 20, “Decimal-Floating-Point Instruc-
tions:”

– Changes introduced by the decimal-floating-
point zoned-conversion facility are added.

– Changes introduced by the transactional-
execution facility are added.

The tenth edition also contains numerous minor cor-
rections and clarifications.

Summary of Changes in Ninth
Edition

The ninth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facilities:

• CMPSC-enhancement facility
• Distinct-operands facility
• Enhanced-monitor facility
• Fast-BCR-serialization facility
• Floating-point extension facility
• High-word facility
• Interlocked-access facility 1
• IPTE-range facility
• Load/store-on-condition facility
• Message-security-assist extension 3
• Message-security-assist extension 4
• Nonquiescing key-setting facility
• Population-count facility
• The Reset-reference-bits-multiple facility

The ninth edition contains the following significant
changes relative to the previous edition:

• In Chapter 3, “Storage:”

– Changes introduced by the reset-reference-
bits-multiple are added to various sections.

– Changes introduced by the enhanced-moni-
tor facility are added.

– Changes introduced by the access-excep-
tion-fetch/store-indication facility are added.

– Clarification is added to the description of the
translation-exception identification.

• In Chapter 4, “Control:”

– Changes introduced by the enhanced-moni-
tor facility are added.

– Clarification is made to the description of the
PER ASCE identification (AI) and PER
access identification (PAID).

– Changes introduces by the high-word facility
are added.

– Descriptions of the new facility indications
are added.

• In Chapter 5, “Program Execution:”

– A significant editorial change has been made
to the description of the instruction formats.
Instruction formats having variations in
assembler syntax or field content are desig-
nated by an alphabetic suffix which is also
reflected in the instruction descriptions in
chapters 7-10, 14, and 18-24.

– Changes introduced by the enhanced-moni-
tor facility are added.

– Clarification is made to the description of
suppression.

– Changes introduced by the message-secu-
rity assist extensions 3 and 4 are added.

– Changes introduced by the nonquiescing-
key-setting facility are added, including the
description of quiescing.

– Changes introduced by the interlocked-
access facility are added, including the
description of an interlocked-fetch reference
and specific-operand serialization.

xlii The z/Architecture CPU Architecture

• In Chapter 6, “Interruptions:”

– Changes introduced by the enhanced-moni-
tor facility are added.

– Changes introduced by the floating-point
extension facility are added.

– Clarification is provided regarding the han-
dling of data exceptions resulting from the
compare-and-trap instructions.

• In Chapter 7, “General Instructions:”

– Clarification is made as to the content of the
chapter.

– Changes introduced by the distinct-operands
facility are added.

– Changes introduced by the high-word facility
are added.

– Changes introduced by the interlocked-
access facility are added.

– Changes introduced by the load/store-on-
condition facility are added.

– Changes introduced by the message-secu-
rity-assist extension 3 are added, including a
new section on the protection of cryp-
tographic keys.

– Changes introduced by the message-secu-
rity-assist extension 4 are added.

– Changes introduced by the population-count
facility are added.

– Changes introduced by the instruction-for-
mat clarifications are added.

– Clarifications are made to the description of
COMPARE AND SWAP AND STORE.

– Changes introduced by the CMPSC-
enhancement facility are added.

– Extended assembler mnemonics are defined
for the ROTATE THEN AND SELECTED
BITS, ROTATE THEN OR SELECTED BITS,
and ROTATE THEN EXCLUSIVE OR
SELECTED BITS instructions.

– Clarification is made to the descriptions of
the SEARCH STRING and SEARCH
STRING UNICODE instructions.

• In Chapter 8, “Decimal Instructions:”

– Changes introduced by the instruction-for-
mat clarifications are added.

– Clarification is made to the description of the
EDIT and EDIT AND MARK instructions.

• In Chapter 9, “Floating-Point Overview and Sup-
port Instructions:”

– Changes introduced by the instruction-for-
mat clarifications are added.

– Changes introduced by the floating-point-
extension facility are added.

• In Chapter 10, “Control Instructions:”

– Clarification is made as to the content of the
chapter; specifically, the chapter also con-
tains the description of certain nonprivileged
instructions.

– Changes introduced by the instruction-for-
mat clarifications are added.

– Changes introduced by the IPTE-range facil-
ity are added.

– Changes introduced by the message-secu-
rity-assist extension 3 are added.

– Changes introduced by the nonquiescing
key-setting facility are added.

– Changes introduced by the reset-reference-
bits-multiple facility are added.

– Changes are made to the STORE SYSTEM
INFORMATION instruction with regards to
topology information returned.

• In Chapter 14, “Basic I/O Functions,” the CBC-
offset block is added for the fibre-channel-exten-
sions facility.

• In Chapter 18, “Hexadecimal-Floating Instruc-
tions,” changes introduced by the instruction-for-
mat clarifications are added.

• In Chapter 19, “Binary-Floating-Point Instruc-
tions:”

– Changes introduced by the instruction-for-
mat clarifications are added.

– Changes introduced by the floating-point-
extension facility are added.

• In Chapter 20, “Decimal-Floating-Point Instruc-
tions:”

xliii

– Changes introduced by the instruction-for-
mat clarifications are added.

– Changes introduced by the floating-point-
extension facility are added.

The ninth edition also contains numerous minor cor-
rections and clarifications.

Summary of Changes in Eighth
Edition

The eighth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facility:

• Fibre-channel-extensions (FCX) facility

The eighth edition contains the following significant
changes relative to the previous edition:

• In Chapter 1, “Introduction,” a summary of the
fibre-channel-extensions facility is added.

• In Chapter 4, “Control,” the clock setting for the
leap second on January 1, 2009 is added to the
section “Timing.”

• In Chapter 7, “General Instructions,” the clock
setting for the leap second on January 1, 2009 is
added to the description of STORE CLOCK
EXTENDED.

• In Chapter 13, “I/O Overview,” changes intro-
duced by the fibre-channel-extensions facility are
added to various sections.

• In Chapter 14, “I/O Instructions,” changes intro-
duced by the fibre-channel-extensions facility are
added to various sections.

• In Chapter 15, “Basic I/O Functions,” changes
introduced by the fibre-channel-extensions facil-
ity are added to various sections.

• In Chapter 16, “I/O Interruptions,” changes intro-
duced by the fibre-channel-extensions facility are
added to various sections.

• In Chapter 17, “I/O Support Functions,” changes
introduced by the fibre-channel-extensions facil-
ity are added to various sections.

The eighth edition also contains numerous minor cor-
rections and clarifications.

Summary of Changes in Seventh
Edition

The seventh edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facilities:

• Compare-and-swap-and-store facility 2
• Configuration-topology facility
• Enhanced-DAT facility
• Execute-extensions facility
• General-instructions-extension facility
• Message-security-assist extension 2
• Move-with-optional-specifications facility
• Parsing-enhancement facility
• Restore-subchannel facility

The seventh edition contains the following significant
changes relative to the previous edition:

• In Chapter 3, “Storage:”

– Changes introduced by the enhanced-DAT
facility are added to various sections.

– Changes introduced by the enhanced sup-
pression-on-protection function are added

– Changes introduced by the execute-exten-
sions facility are added to various sections.

– Changes introduced by the general-instruc-
tions-extension facility are added to the sec-
tion “Assigned Storage Locations.”

– Changes introduced by the move-with-
optional-specifications facility are added to
the section “Protection.”

• In Chapter 4, “Control:”

– Changes introduced by the enhanced-DAT
facility are added to various sections.

– Changes introduced by the execute-exten-
sions facility are added to various sections.

– Changes introduced by the general-instruc-
tions-extension facility are added to various
sections.

xliv The z/Architecture CPU Architecture

– New facility bits for the compare-and-swap-
and-store facility 2, configuration-topology
facility, enhanced-DAT facility, execute-exten-
sions facility, general-instructions-extension
facility, move-with-optional-specifications
facility, and parsing-enhancement facility are
added to the section “Facility Indications.”

• In Chapter 5, “Program Execution:”

– In the section “Instruction Formats,” the RIS,
RRS, and SIL formats are added. Four new
versions of the RIE instruction format and
one new version of the RXY format are
added.

– Changes introduced by the enhanced-DAT
facility are added to various sections.

– Changes introduced by the execute-exten-
sions facility are added to various sections.

– Changes introduced by the general-instruc-
tions-extension facility are added to various
sections.

– Changes introduced by the move-with-
optional-specifications facility are added to
various sections.

– Changes introduced by the parsing-
enhancement facility are added to the sec-
tion “Multiple-Access References.”

• In Chapter 6, “Interruptions:”

– Changes introduced by the compare-and-
swap-and-store facility 2 are added to the
section “Specification Exception.”

– Changes introduced by the enhanced-DAT
facility are added to various sections.

– Changes introduced by the execute-exten-
sions facility are added to various sections.

– Changes introduced by the general-instruc-
tions-extension facility are added to various
sections.

– Changes introduced by the move-with-
optional-specifications facility are added to
various sections.

– Changes introduced by the parsing-
enhancement facility are added to section
“Specification Exception.”

• In Chapter 7, “General Instructions:”

– For various instruction descriptions in which
multiple instruction formats are present,
headings have been added to distinguish
one format from another.

– Changes introduced by the compare-and-
swap-and-store facility 2 are added to the
description of the COMPARE AND SWAP
AND STORE instruction.

– Changes introduced by the message-secu-
rity-assist extension 2 are added to the
descriptions of the CIPHER MESSAGE,
CIPHER MESSAGE WITH CHAINING,
COMPUTE INTERMEDIATE MESSAGE
DIGEST and COMPUTE LAST MESSAGE
DIGEST instructions.

– Programming notes are added to the
description of the UTF conversion instruc-
tions (CU12, CU14, CU21, CU24, CU41, and
CU42) indicating that the instructions sup-
port big-endian encoding only.

– Changes introduced by the execute-exten-
sions facility are added to various sections,
including the description of the EXECUTE
RELATIVE LONG instruction.

– Changes introduced by the general-instruc-
tions-extension facility are added to various
sections, including the descriptions of the
facility’s 72 new instructions.

– The description of the MOVE LONG UNI-
CODE instruction is amended such that an
odd length specification is permitted.

– Changes introduced by the parsing-
enhancement facility are added to various
sections, including the descriptions of the
TRANSLATE AND TEST EXTENDED and
TRANSLATE AND TEST REVERSE
EXTENDED instructions.

• In Chapter 10, “Control Instructions:”

– Changes introduced by the move-with-
optional-specifications facility are added to
various sections, including the description of
the MOVE WITH OPTIONAL SPECIFICA-
TIONS instruction.

– Changes introduced by the enhanced-DAT
facility are added to various sections, includ-
ing the description of the PERFORM FRAME
MANAGEMENT FUNCTION instruction.

xlv

– Changes introduced by the configuration-
topology facility are added to various sec-
tions, including the description of the PER-
FORM TOPOLOGY FUNCTION instruction
and enhancements to the STORE SYSTEM
INFORMATION instruction.

– Changes introduced by the execute-exten-
sions facility are added to various sections.

– The STORE SYSTEM INFORMATION
instruction is enhanced to include the follow-
ing:

• Additional information returned in SYSIB
1.1.1.

• The definition of SYSIB 15.1.2 in support
of the configuration-topology facility.

• In Chapter 11, “Machine-Check Handling:”

– Changes introduced by the enhanced-DAT
facility are added to various sections.

– Changes introduced by the execute-exten-
sions facility are added to various sections.

• In Chapter 13, “I/O Overview,” changes intro-
duces by the multiple-subchannel set facility are
described.

• In Chapter 14, “I/O Instructions,” changes intro-
duces by the multiple-subchannel set facility are
described.

• In Chapter 17, “I/O Support Functions,” changes
introduces by the multiple-subchannel set facility
are described.

The seventh edition also contains numerous minor
corrections and clarifications.

Summary of Changes in Sixth
Edition

The sixth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facilities:

• Compare-and-swap-and-store facility
• Conditional-SSKE facility
• Decimal-floating-point facility
• Decimal-floating-point-rounding facility
• Extract-CPU-time facility

• Floating-point-support-sign-handling facility
• FPR-GR-transfer facility
• IEEE-exception-simulation facility
• PFPO facility

The sixth edition contains the following significant
changes relative to the previous edition:

• In Chapter 3, “Storage”:

– Changes introduced by the conditional-
SSKE facility are added to various sections.

– In the “Assigned Storage Locations” section,
the descriptions of the various fields now
include hexadecimal as well as decimal loca-
tions.

– Clarification is made to the definition of the
exception access identification and PER
access identification at locations 160 and
161, respectively.

• In Chapter 4, “Control”:

– Changes introduced by the extract-CPU-time
facility are added to the section “CPU Timer.”

– New facility bits for the compare-and-swap-
and-store facility, decimal-floating-point facil-
ity, decimal-floating-point performance,
extract-CPU-time facility, floating-point-sup-
port-enhancement facilities (FPR-GR-trans-
fer, FPS-sign-handling, and DFP-rounding),
and PFPO (PERFORM FLOATING-POINT
OPERATION) facility are added to the sec-
tion “Facility Indications.”

• In Chapter 5, “Program Execution”:

– In the section “Instruction Formats”, the RRR
and SSF formats are added.

– Changes introduced by the compare-and-
swap-and-store facility are added to various
sections.

– Changes introduced by the extract-CPU-time
facility are added to the “Consistency Speci-
fication” section.

– Previous restrictions on storing into the
instruction stream in the access-register or
home address-space-control modes are
removed.

• In Chapter 6, “Interruptions”:

xlvi The z/Architecture CPU Architecture

– Changes introduced by the simulated IEEE
exception (IXS) are added to the various
sections.

– Changes introduced by the compare-and-
swap-and-store facility are added to various
sections.

– The descriptions of the special-operation
and specification program interruptions are
updated and rearranged.

– Clarification is added to the section “Multiple
Program-Interruption Conditions.”

• In Chapter 7, “General Instructions”:

– The descriptions of the COMPARE AND
SWAP AND STORE and EXTRACT CPU
TIME instructions are added.

– Programming notes for COMPARE LOGI-
CAL LONG UNICODE and MOVE LONG
UNICODE are amended to account for the
long-displacement facility.

– A programming note clarifying the setting of
the condition code is added to AND IMMEDI-
ATE, EXCLUSIVE OR IMMEDIATE, and OR
IMMEDIATE.

• In Chapter 9, “Floating-Point Overview and Sup-
port Instructions”:

– The concepts of “views” and “quantum” are
introduced.

– The name of the instruction SET ROUND-
ING MODE is changed to SET BFP ROUND-
ING MODE and is moved from Chapter 19 to
Chapter 9.

– The following instructions operating on the
floating-point-control (FPC) register are
moved from Chapter 19 to Chapter 9:
EXTRACT FPC, LOAD FPC, SET FPC, and
STORE FPC.

– The FPR-GR-transfer facility instructions,
LOAD FPR FROM GR and LOAD GR FROM
FPR, are added.

– The four instructions making up the floating-
point-support-sign-handling facility are
added: COPY SIGN, LOAD COMPLEMENT,
LOAD NEGATIVE, and LOAD POSITIVE.

– The decimal-floating-point-rounding facility is
added. This includes a 3-bit DFP rounding
mode field in the floating-point control (FPC)
register and the instruction SET DFP
ROUNDING MODE.

– The IEEE-exception-simulation facility is
added, including the instructions SET FPC
AND SIGNAL and LOAD FPC AND SIGNAL.

– The instruction PERFORM FLOATING-
POINT OPERATION (PFPO) is added.

• In Chapter 10, “Control Instructions”, changes
introduced by the conditional-SSKE facility are
added to the description of SET STORAGE KEY
EXTENDED.

• In Chapter 11, “Machine-Check Handling”,
changes introduced by the conditional-SSKE
facility are added.

• In Chapter 12, the operator rate control is now
defined to be model dependent.

• In Chapter 14, clarification is added to the sec-
tion “Modified CCW Indirect Data Addressing”.

• In Chapter 18, “Hexadecimal-Floating-Point
Instructions”: The names of two of the rounding
methods used by the instruction CONVERT TO
FIXED are changed from “biased round to near-
est” and “round to nearest” to “round to nearest
with ties away from 0” and “round to nearest with
ties to even”, respectively.

• In Chapter 19, “Binary-Floating-Point Instruc-
tions”: This chapter is updated extensively to be
consistent with Chapter 20. This includes the fol-
lowing:

– The terms “normal” and “subnormal”, refer-
ring to BFP data classes, replace the obso-
lete terms “normalized”, and “denormalized”,
respectively.

– The name of the instruction SET ROUND-
ING MODE is changed to SET BFP ROUND-
ING MODE and is moved from Chapter 19 to
Chapter 9.

– The following instructions operating on the
floating-point-control (FPC) register are
moved from Chapter 19 to Chapter 9:
EXTRACT FPC, LOAD FPC, SET FPC, and
STORE FPC.

xlvii

– The section “Floating-Point-Control (FPC)
Register” is moved to Chapter 9.

– The sections “BFP Rounding”, “BFP Com-
parison”, “Condition Codes for BFP Instruc-
tions”, and “IEEE Exception Conditions” are
renamed and moved to Chapter 9.

• In Chapter 20, “Decimal-Floating-Point Instruc-
tions”: This chapter is new, and describes the
decimal-floating-point (DFP) facility.

The sixth edition also contains numerous minor cor-
rections and clarifications.

Summary of Changes in Fifth
Edition

The fifth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the following facilities:

• DAT-enhancement facility 2
• ETF2-enhancement facility
• ETF3-enhancement facility
• Extended-immediate facility
• HFP-unnormalized-extensions facility
• Message-security-assist extension 1
• Modified-CCW-indirect-data-addressing facility
• PER-3 facility
• Server-time-protocol facility
• Store-clock-fast facility
• Store-facility-list-extended facility:
• TOD-clock-steering facility

The fifth edition contains minor clarifications and cor-
rections and also the following significant changes
relative to the previous edition:

• In Chapter 3, “Storage”:

– In the “Information Formats” section, the
length of a storage-operand field that is
implied by the instruction now includes a
16-byte operand.

– Changes introduced by the modified-CCW-
indirect-data-addressing facility are added to
various sections.

– Changes introduced by the DAT-enhance-
ment facility 2 are added to various sections.

– Changes introduced by the PER-3 facility are
added to the section “Assigned Storage
Locations.”

– Changes introduced by the store-facility-list-
extended facility are added to section
“Assigned Storage Locations.”

• In Chapter 4, “Control”:

– Changes introduced by the store-clock-fast
facility are added to various sections.

– Changes introduced by the PER-3 facility,
including breaking-event-address recording
and PER instruction-fetch nullification, are
added to various sections.

– Changes introduced by the server-time pro-
tocol (STP) facility are added to various sec-
tions.

– Changes introduced by the TOD-clock-steer-
ing facility are added to various sections.

– The conditional-emergency-signal and
sense-running-status orders are added to
the section “Signal-Processor Orders.”

– The location in which the PSW that is pre-
served as a result of switching from the
z/Architecture to the ESA/390 architectural
mode is formally named the Captured
z/Architecture PSW register.

– The description of all facility-indication bits
has been moved to a new section at the end
of the chapter.

• In Chapter 5, “Program Execution”:

– The instructions of the message-security
assist are added to the section “Condition
Code Alternative to Interruptibility.”

– Changes introduced by the DAT-enhance-
ment facility 2 are added to various sections.

– Changes introduced by the store-clock-fast
facility are added to various sections.

– Changes introduced by the modified-CCW-
indirect-data-addressing facility are added to
the section “Channel-Program Serialization.”

• In Chapter 6, “Interruptions”:

– Changes introduced by the PER-3 facility are
added to the various sections.

xlviii The z/Architecture CPU Architecture

– Changes introduced by the server-time pro-
tocol (STP) facility are added to various sec-
tions.

– Changes introduced by the TOD-clock-steer-
ing facility are added to various sections.

– Changes introduced by the DAT-enhance-
ment facility 2 are added to various sections.

– Changes introduced by the extended-imme-
diate facility are added to the description of
the specification exception program interrup-
tion.

• In Chapter 7, “General Instructions”:

– A note is added to the “Instructions” section
indicating that, for certain new or modified
instructions, an operand may be optional.

– Descriptions of thirty-four new instructions
introduced by the extended-immediate facil-
ity are added.

– A description of the STORE CLOCK FAST
instruction is added.

– A description of the STORE FACILITY LIST
EXTENDED instruction is added.

– Changes introduced by the TOD-clock-steer-
ing facility are added to the STORE CLOCK,
STORE CLOCK FAST, and STORE CLOCK
EXTENDED instructions.

– Descriptions of new functions introduced by
the message-security-assist extension 1 are
added to the CIPHER MESSAGE, CIPHER
MESSAGE WITH CHAINING, COMPUTE
INTERMEDIATE MESSAGE DIGEST, and
COMPUTE LAST MESSAGE DIGEST
instructions.

– Changes introduced by the ETF-2 enhance-
ment facility are added to the TRANSLATE
ONE TO ONE, TRANSLATE ONE TO TWO,
TRANSLATE TWO TO ONE, and TRANS-
LATE TWO TO TWO instructions.

– Changes introduced by the ETF-3 enhance-
ment are added to the CONVERT UTF-16
TO UTF-32, CONVERT UTF-16 TO UTF-8,
CONVERT UTF-8 TO UTF-16, and CON-
VERT UTF-8 TO UTF-32 instructions.

• In Chapter 10, “Control Instructions”:

– A description of the LOAD PAGE-TABLE-
ENTRY ADDRESS instruction, introduced by
the DAT-enhancement facility 2, is added.

– A description of the PERFORM TIMING
FACILITY FUNCTION instruction, introduced
by the TOD-clock-steering facility, is added.

– Changes introduced by the TOD-clock-steer-
ing facility are added to the description of the
SET CLOCK instruction.

– The description of all facility-indication bits
are moved to Chapter 4 (they are removed
from the description of the STORE FACILITY
LIST instruction).

– A model-dependent field is defined in the
SYSIB 2.2.2 operand stored by the STORE
SYSTEM INFORMATION instruction.

– Changes introduced by the store-clock-fast
facility are added to the description of the
TRACE instruction.

• In Chapter 11, “Machine-Check Handling”:

– Changes introduced by the store-clock-fast
facility are added to the section “CPU Retry.”

– Changes introduced by the modified-CCW-
indirect-data-addressing facility are added to
the section “Invalid CBC in Storage”.

– Changes introduced by the TOD-clock-steer-
ing facility are added to the section “Timing-
Facility Damage.”

– Changes introduced by the server-time-pro-
tocol facility are added to the section “Exter-
nal-Damage Code.”

• In Chapter 13, “I/O Overview”, changes intro-
duced by the modified-CCW-indirect-data-
address facility are added to the section “Chan-
nel-Program Execution”.

• In Chapter 15, “Basic I/O Functions”:

• Changes introduced by the modified-CCW-
indirect-data-addressing facility are added
which include:

• The modified-indirect-data-address word
(MIDAW) is defined.

• Bit 25 of word 1 of the operation-request
block (ORB) is defined as the modified-
CCW-indirect-data-addressing control.

xlix

• Bit 7 of the flags field in the channel-
command word (CCW) is defined as the
modified-indirect-data-addressing flag.

• In Chapter 16, “I/O Interruptions“:

• Changes introduced by the modified-CCW-
indirect-data-address facility are added to
the sections “Subchannel-Status Word” and
“Extended-Status Word”.

• Changes are introduced to the section “Inter-
face-Control Check” to support retrying a
CCW-type IPL when an interface-control
check is detected during the execution of the
IPL channel program.

• In Chapter 17, “I/O Support Functions”:

• Changes are introduced to the section
“CCW-Type IPL” to support retrying a CCW-
type IPL when an interface-control check is
detected during the execution of the IPL
channel program.

• Changes are introduced to the section “List-
Directed IPL” to support storing of the sub-
system-identification word (SID) for the IPL-
device during list-directed IPL, if a subchan-
nel is associated with the IPL-device.

• In Chapter 18, “Hexadecimal-Floating-Point
Instructions”, descriptions of the twelve instruc-
tions introduced by the HFP-unnormalized-
extensions facility are added.

• In Appendix I, character representations of EBC-
DIC code pages 81C, 94C, 500, and 1047, IBM-
PC, and BookMaster symbols are removed. Only
the commonly used EBCDIC code page 037 and
ISO-8 characters are shown.

Summary of Changes in Fourth
Edition

The fourth edition of this publication differs from the
previous edition principally by containing the defini-
tions of the extended-translation facility 3 and the
ASN-and-LX-reuse facility. The fourth edition con-
tains minor clarifications and corrections and also the
following significant changes relative to the previous
edition:

• In Chapter 3, “Storage”:

– Changes introduced by the ASN-and-LX-
reuse facility are added, including changes
to the “Address Spaces” and “ASN Transla-
tion” sections.

– A programming note is added to the
“Dynamic Address Translation” section,
describing implications in using common
segments.

– The ATMID and AI fields are corrected in the
“Assigned Storage Locations” figure.

• In Chapter 4, “Control”:

– Changes introduced by the ASN-and-LX-
reuse facility are added, including changes
to the “Trace” section.

– The list-directed IPL function is added to the
“Initial Program Load” section.

– In the “Trace” section, serialization require-
ments for instructions that implicitly store into
the trace table or linkage stack are relaxed.

• In Chapter 5, “Program Execution”:

– A new RI and SS instruction format are
included.

– Changes introduced by the ASN-and-LX-
reuse facility are added, including changes
to the “Authorization Mechanisms”, “PC-
Number Translation”, and “Linkage-Stack
Operations” sections.

– The instructions of the extended-translation
facility 3 (except TRANSLATE AND TEST
REVERSED) are added to the sections
“Condition-Code Alternative to Interruptibil-
ity” and “Multiple-Access References.”

– Serialization requirements for instructions
that implicitly store into the trace table or link-
age stack are relaxed.

• In Chapter 6, “Interruptions”:

– Changes introduced by the ASN-and-LX-
reuse facility include the new LFX transla-
tion, LSX translation, LSTE sequence, and
ASTE instance exceptions.

– An additional condition for TRAP is added to
the list of instructions that can cause a spe-
cial-operation exception to be recognized.

l The z/Architecture CPU Architecture

– SEARCH STRING UNICODE, a part of the
extended-translation facility 3, is added to
the list of instructions that can cause a speci-
fication exception to be recognized.

• In Chapter 7, “General Instructions”:

– Six new instructions provided by the
extended-translation facility 3 are added. The
instructions CONVERT UNICODE TO UTF-8
(CUUTF) and CONVERT UTF-8 TO UNI-
CODE (CUTFU) are renamed to CONVERT
UTF-16 TO UTF-8 (CU21) and CONVERT
UTF-8 TO UTF-16 (CU12), respectively. The
old mnemonics continue to be recognized.

– The instruction-format illustrations for
STAMY and STMY are corrected.

• In Chapter 10, “Control Instructions”:

– Changes introduced by the ASN-and-LX-
reuse facility include the following:

– Four new instructions provided by the
facility are added.

– The definitions of BRANCH AND
STACK, BRANCH IN SUBSPACE
GROUP, EXTRACT PRIMARY ASN,
EXTRACT SECONDARY ASN, LOAD
ADDRESS SPACE PARAMETERS,
PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, and
SET SECONDARY ASN are updated to
account for the facility.

– New facility bits for the ASN-and-LX-reuse
facility and the extended-translation facility 3
are added to STORE FACILITY LIST.

– New fields are added to the system-informa-
tion block (SYSIB) returned by STORE SYS-
TEM INFORMATION.

– Serialization requirements for instructions
that implicitly store into the trace table or link-
age stack are relaxed, including PROGRAM
CALL, PROGRAM RETURN, PROGRAM
TRANSFER (WITH INSTANCE), SET SEC-
ONDARY ASN (WITH INSTANCE), and
TRACE.

– Corrections and clarifications are made to
TRAP.

• In Chapter 12, “Operator Facilities”: Changes
introduced by the list-directed IPL function are

added, including the load-clear-list-directed key
and the load-with-dump key.

• In Chapter 14, “I/O Instructions”, Clarifications
are added to programming note 1 of the CAN-
CEL SUBCHANNEL instruction description.

• In Chapter 16, “I/O Interruptions”:

– Bit 1 of the extended-report word (ERW) is
defined as the request-logging-only (L) bit.

– Bit 2 of the ERW is defined as the extended-
subchannel-logout-pending (E) bit.

– Words 2-3 of the format-0 extended-status
word (ESW) are defined as the failing-stor-
age address when the failing-storage-
address-validity (F) bit, bit 6 of the ERW, is
one and as the extended-subchannel-logout
descriptor (ESLD) when the extended-sub-
channel-logout-pending (E) bit, bit 2 of the
ERW, is one. The E-bit is always zero when
the F-bit is one, and the F-bit is always zero
when the E-bit is one.

• In Chapter 17, “I/O Support Functions”, list-
directed IPL is added to support initial-program
loading (IPL) from devices that are not accessed
by CCWs. IPL from devices that are accessed by
CCWs is designated CCW-type IPL.

• In Appendix C, “Condition-Code Settings”: The
instructions of the extended-translation facility 3
are added.

Summary of Changes in Third
Edition

The third edition of this publication differs from the
previous edition principally by containing the defini-
tions of the DAT-enhancement, HFP-multiply-
add/subtract, and long-displacement facilities and the
message-security assist. The third edition contains
minor clarifications and corrections and also the fol-
lowing significant changes relative to the previous
edition:

• In Chapter 3, “Storage”:

– Clarifications are added to the description of
dynamic-address-translation process.

li

– The primary address-space-control element
(ASCE) in control register 1 is an attaching
ASCE even when the CPU is in the home-
space mode, and the home ASCE in control
register 13 is an attaching ASCE even when
the CPU is in the secondary-space mode.

– The illustration of the PER code in
Figure 3-19 is corrected.

• In Chapter 4, “Control”:

– The relationships between ETR time (TOD-
clock time), UTC, and International Atomic
Time are described in programming note 3
on page 4-52.

– Code 0 of the SIGNAL PROCESSOR set-
architecture order, and also a CPU reset due
to activation of the load normal key, are
changed to save the current z/Architecture
PSW when switching to the ESA/390 archi-
tectural mode. Also, code 2 of the order is
added, and this restores, for CPUs other
than the one executing SIGNAL PROCES-
SOR, the saved PSW when switching to the
z/Architecture architectural mode, provided
that the saved PSW has not been set to all
zeros by certain resets.

• In Chapter 5, “Program Execution”:

– The I format, the RI format with a M1 oper-
and, and the SS format with the I3 operand
are added.

– The RSY, RXY, and SIY instruction formats
are added, and the RSE format is deleted.
(All instructions that were of format RSE are
now referred to as being of format RSY.)

– The formation of an operand address using
the 20-bit signed displacement of instruc-
tions of formats RSY, RXY, and SIY is
described.

– The results when a PER instruction-fetching
event occurs along with certain exceptions or
exception conditions are clarified. See “Indi-
cation of PER Events Concurrently with
Other Interruption Conditions” on page 4-40

– The fetch of the address-space-control ele-
ment from the ASN-second-table entry
during access-register translation is double-
word concurrent as observed by other CPUs.

– The change bit is not necessarily set to one
currently with the related storage reference,
as observed by other CPUs; it may be set to
one before or after the reference, within cer-
tain limits. See “Storage-Key Accesses” on
page 5-120 for a detailed description of
when the change bit is set.

– The five instructions of the message-security
assist are added to the list of instructions
having multiple-access references.

• In Chapter 6, “Interruptions,” the list of conditions
causing a specification exception to be recog-
nized is extended to include those caused by the
message-security assist instructions.

• In Chapter 7, “General Instructions”:

– Thirty-nine instructions provided by the long-
displacement facility are added. With the
exception of the new LOAD BYTE instruc-
tion, the instructions added by the long-dis-
placement facility have names and functions
that are the same as existing instructions
(but the mnemonics and opcodes are new).
The new instructions are of formats RSY,
RXY, and SIY and have a 20-bit signed dis-
placement instead of a 12-bit unsigned dis-
placement.

– All previously existing format-RSE and for-
mat-RXE instructions are changed to be of
formats RSY and RXY, respectively, by use
of a previously unused byte in the instruc-
tions. These changes are not marked by a
bar in the margin.

– Five instructions provided by the message-
security assist are added.

– The instruction format of SUPERVISOR
CALL is changed to I.

• In Chapter 9, “Floating-Point Overview and Sup-
port Instructions,” four instructions provided by
the long-displacement facility are added. These
are the LOAD (long and short) and STORE (long
and short) instructions.

• In Chapter 10, “Control Instructions”:

– The COMPARE AND SWAP AND PURGE
(CSPG) and INVALIDATE DAT TABLE
ENTRY instructions provided by the DAT-
enhancement facility are added. CSPG oper-
ates on a doubleword operand in storage.

lii The z/Architecture CPU Architecture

– The definition of LOAD ADDRESS SPACE
PARAMETERS is clarified.

– The LOAD REAL ADDRESS (LRAY) instruc-
tion provided by the long-displacement facil-
ity is added.

– All previously existing format-RSE instruc-
tions are changed to be of format RSY by
use of a previously unused byte in the
instructions. These changes are not marked
by a bar in the margin.

– The description of the bits set by STORE
FACILITY LIST is clarified, and new bits are
assigned.

• In Chapter 14, “I/O Instructions”:

– The definition of MODIFY SUBCHANNEL is
modified.

– The definition of SET CHANNEL MONITOR
is modified.

• In Chapter 15, “Basic I/O Functions,” the follow-
ing changes are made to the subchannel-infor-
mation-block (SCHIB):

– Bit 29 of word 6 of the path-management-
control word (PMCW) is defined as the mea-
surement-block-format control.

– Bit 30 of word 6 of the PMCW is defined as
the extended-measurement-word-mode
enablement bit.

– The definition of words 10-11 (words 0-1 of
the model-dependent area) are changed to
contain a measurement-block address, when
the extended-I/O-measurement-block facility
is installed.

• In Chapter 16, “I/O Interruptions”, the interrup-
tion-response block (IRB) is extended to include
the extended-measurement word.

• In Chapter 17, “I/O Support Functions”:

– The requirement that the measurement block
be updated when secondary status is
accepted is clarified.

– The extended-measurement-block facility is
added.

– The extended-measurement-word facility is
added.

• In Chapter 18, “Hexadecimal-Floating-Point
Instructions,” the MULTIPLY AND ADD (four
instructions) and MULTIPLY AND SUBTRACT
(four instructions) instructions provided by the
HFP-multiply-add/subtract facility are added.

The above changes may affect other chapters
besides the ones listed. All technical changes to the
text or to an illustration are indicated by a vertical line
to the left of the change.

Summary of Changes in Second
Edition

The second edition of this publication differs from the
previous edition mainly by containing clarifications
and corrections. The significant changes are as fol-
lows:

• In Chapter 1, “Introduction”:

– Summaries of DIVIDE LOGICAL and MULTI-
PLY LOGICAL, TEST ADDRESSING MODE,
the set-architecture order of SIGNAL PRO-
CESSOR, and STORE FACILITY LIST are
added or improved.

– An extensive summary of the input/output
enhancements placed in z/Architecture is
added.

• In Chapter 3, “Storage”:

– Definitions of absolute locations 0-23 are
deleted since they pertain only to an
ESA/390 initial program load.

– The definition of real locations 200-203,
stored in by STORE FACILITY LIST, is cor-
rected to state that bit 16 indicates the
extended-translation facility 2.

• In Chapter 4, “Control,” a description of unas-
signed fields in the PSW is corrected to state that
bit 4 is unassigned and bit 31 is assigned.

• In Chapter 5, “Program Execution,” the RSL for-
mat and an RIL format with an M1 field are
added.

• In Chapter 7, “General Instructions”:

– The definition of BRANCH AND SET MODE
is corrected to state that bit 63 of the R1 gen-

liii

eral register remains unchanged in the 24-bit
or 31-bit addressing mode; the bit is not set
to zero.

– The definitions of PACK ASCII, PACK UNI-
CODE, UNPACK ASCII, and UNPACK UNI-
CODE are clarified.

– It is clarified that the following instructions
perform multiple-access references to their
storage operands:

– CHECKSUM
– COMPARE AND FORM CODEWORD
– CONVERT UNICODE TO UTF-8
– CONVERT UTF-8 TO UNICODE

– It is clarified that the following instructions do
not necessarily process their storage oper-
ands left to right as observed by other CPUs:
MOVE LONG, MOVE LONG EXTENDED,
and MOVE LONG UNICODE. Special pad-
ding characters of MOVE LONG and MOVE
LONG EXTENDED specify whether left-to-
right processing should be performed, as
observed by other CPUs, and whether the
data being moved should or should not be
placed in the cache for availability for subse-
quent processing.

• In Chapter 10, “Control Instructions,” it is clarified
that the following instructions perform multiple-
access references to their storage operands:

– LOAD ADDRESS SPACE PARAMETERS
– RESUME PROGRAM
– STORE SYSTEM INFORMATION

Chapters 13-17 contain many clarifying changes, all
indicated by a vertical line in the margin, in addition
to the significant changes listed below.

• In Chapter 13, “I/O Overview,” statements about
the suspend flag in a CCW are clarified to
describe the flag being specified as a one and
being valid because of a one value of the sus-
pend control in the associated ORB.

• In Chapter 14, “I/O Instructions,” the results of
MODIFY SUBCHANNEL when the device-num-
ber-valid bit at the designated subchannel is zero
are corrected.

• In Chapter 15, “Basic I/O Functions”:

– It is clarified that unlimited prefetching of
data and IDAWs associated with the current
and prefetched CCWs is allowed indepen-
dent of the value of the prefetch control in the
associated ORB.

– A specified control-unit-priority number is
ignored if the channel-subsystem-I/O-prior-
ity facility is not operational due to an opera-
tor action.

– It is clarified that address-limit checking
applies to data locations and not to locations
containing a CCW or IDAW.

• In Chapter 16, “I/O Interruptions,” the form of the
address stored in the failing-storage-address
field is described in terms of the format-2-IDAW
control instead of an addressing mode.

• In Chapter 17, “I/O Support Functions”:

– The introduction to the channel-subsystem
monitoring facilities is clarified.

– References to the measurement block by the
measurement-block-update facility are sin-
gle-access references and appear to be
word concurrent as observed by CPUs. They
do not appear to be block concurrent.

– The description of the channel-subsystem-
I/O-priority facility is corrected by including
mention of control-unit priority for fibre-chan-
nel-attached control units.

The above changes may affect other chapters
besides the ones listed.

liv The z/Architecture CPU Architecture

Introduction 1-1© Copyright IBM Corp. 2000, 2019

Chapter 1. Introduction

Highlights of Original z/Architecture 1-2
General Instructions for 64-Bit Integers 1-3
Other New General Instructions 1-3
Floating-Point Instructions 1-5
Control Instructions . 1-5
Trimodal Addressing . 1-5

Modal Instructions . 1-5
Effects on Bits 0-31 of a General Register . 1-6

Input/Output . 1-6
Additions to z/Architecture. 1-7

ASN-and-LX-Reuse Facility. 1-7
CMPSC-Enhancement Facility 1-7
Compare-and-Swap-and-Store Facility 1-8
Compare-and-Swap-and-Store Facility 2 1-8
Conditional-SSKE Facility 1-8
Configuration-Topology Facility 1-8
Configuration-z/Architecture-Architectural-Mode

Facility . 1-8
Constrained-Transactional-Execution Facility . 1-8
DAT-Enhancement Facility 1 1-8
DAT-Enhancement Facility 2 1-9
Decimal-Floating-Point Facility 1-9
Decimal-Floating-Point Packed-Conversion

Facility . 1-9
Decimal-Floating-Point-Rounding Facility 1-9
Decimal-Floating-Point Zoned-Conversion

Facility . 1-9
DEFLATE-Conversion Facility 1-9
Distinct-Operands Facility 1-9
Enhanced-DAT Facility 1 1-10
Enhanced-DAT Facility 2 1-10
Enhanced-Monitor Facility 1-11
Entropy Encoding Compression Facility 1-11
ESA/390-Compatibility-Mode Facility 1-11
ETF2-Enhancement Facility 1-11
ETF3-Enhancement Facility 1-11
Execute-Extensions Facility. 1-12
Execution-Hint Facility 1-12
Extended-Immediate Facility 1-12
Extended-I/O-Measurement-Block Facility . . 1-12
Extended-I/O-Measurement-Word Facility . . 1-12
Extended-Translation Facility 2 1-13
Extended-Translation Facility 3 1-13
Extract-CPU-Time Facility 1-13
Fast-BCR-Serialization Facility 1-13
Fibre-Channel Extensions (FCX). 1-13
FCX-Bidirectional-Data-Transfer Facility 1-14
Floating-Point Extension Facility 1-14
Floating-Point-Support-Sign- Handling Facility1-15
FPR-GR-Transfer Facility 1-15

General-Instructions-Extension Facility 1-15
Guarded-Storage Facility 1-16
HFP Multiply-and-Add/Subtract Facility 1-16
HFP-Unnormalized-Extensions Facility 1-16
High-Word Facility. 1-16
IEEE-Exception-Simulation Facility. 1-17
Insert-Reference-Bits-Multiple Facility 1-17
Instruction-Execution-Protection Facility. 1-17
Interlocked-Access Facility 1 1-17
Interlocked-Access Facility 2 1-17
IPTE-Range Facility . 1-17
List-Directed Initial Program Load. 1-17
Load-and-Trap Facility 1-18
Load-and-Zero-Rightmost-Byte Facility 1-18
Load/Store-on-Condition Facility 1 1-18
Load/Store-on-Condition Facility 2 1-18
Local-TLB-Clearing Facility. 1-18
Long-Displacement Facility. 1-18
Message-Security Assist. 1-19
Message-Security-Assist Extension 1. 1-19
Message-Security-Assist Extension 2. 1-19
Message-Security-Assist Extension 3. 1-19
Message-Security-Assist Extension 4. 1-20
Message-Security-Assist Extension 5. 1-21
Message-Security-Assist Extension 6. 1-21
Message-Security-Assist Extension 7. 1-22
Message-Security-Assist Extension 8. 1-22
Message-Security-Assist Extension 9. 1-22
Miscellaneous-Instruction-Extensions

Facility 1 . 1-23
Miscellaneous-Instruction-Extensions

Facility 2 . 1-23
Miscellaneous-Instruction-Extensions

Facility 3 . 1-23
Modified CCW Indirect Data Addressing

Facility. 1-23
Move-Page-and-Set-Key Facility 1-24
Move-With-Optional-Specifications Facility. . . 1-24
Multiple-Epoch Facility 1-24
Multiple-Subchannel-Set Facility. 1-24
Multithreading Facility 1-25
Nonquiescing Key-Setting Facility 1-25
Parsing-Enhancement Facility 1-25
PER-3 Facility . 1-25
PER-Storage-Key-Alteration Facility. 1-26
PER Zero-Address-Detection Facility 1-26
PFPO Facility . 1-26
Population-Count Facility 1-26
Processor-Assist Facility. 1-26
Reset-Reference-Bits-Multiple Facility 1-26

1-2 The z/Architecture CPU Architecture

Restore-Subchannel Facility 1-26
Server-Time-Protocol Facility. 1-26
Side-Effect-Access Facility. 1-27
Store-Clock-Fast Facility 1-27
Store-Facility-List-Extended Facility. 1-27
Test-Pending-External-Interruption Facility . . 1-27
TOD-Clock-Steering Facility. 1-27
Transactional-Execution Facility 1-27
Vector-Enhancements Facility 1 1-27
Vector-Enhancements Facility 2 1-28
Vector Facility for z/Architecture 1-28
Vector Packed-Decimal Facility 1-28

Vector-Packed-Decimal-Enhancement
Facility .1-29

Warning-Track Interruption Facility1-29
The ESA/390 Base .1-29

The ESA/370 and 370-XA Base1-34
System Program .1-36
Compatibility .1-36

Compatibility among z/Architecture Systems .1-36
Compatibility between z/Architecture and

ESA/390 .1-37
Control-Program Compatibility 1-37
Problem-State Compatibility 1-37

Availability .1-37

This publication provides, for reference purposes, a
detailed description of z/Architecture.™

The architecture of a system defines its attributes as
seen by the programmer, that is, the conceptual
structure and functional behavior of the machine, as
distinct from the organization of the data flow, the log-
ical design, the physical design, and the performance
of any particular implementation. Several dissimilar
machine implementations may conform to a single
architecture. When the execution of a set of pro-
grams on different machine implementations pro-
duces the results that are defined by a single
architecture, the implementations are considered to
be compatible for those programs.

Highlights of Original
z/Architecture

z/Architecture is the next step in the evolution from
the System/360 to the System/370™, System/370
extended architecture (370-XA), Enterprise Systems
Architecture/370™ (ESA/370™), and Enterprise
Systems Architecture/390® (ESA/390™). z/Architec-
ture includes all of the facilities of ESA/390 except for
the asynchronous-pageout, asynchronous-data-
mover, program-call-fast, and ESA/390 vector facili-
ties. z/Architecture also provides significant exten-
sions, as follows:

• Sixty-four-bit general registers and control regis-
ters.

• A 64-bit addressing mode, in addition to the
24-bit and 31-bit addressing modes of ESA/390,
which are carried forward to z/Architecture.

Both operand addresses and instruction
addresses can be 64-bit addresses. The pro-
gram-status word (PSW) is expanded to 16 bytes
to contain the larger instruction address. The
PSW also contains a newly assigned bit that
specifies the 64-bit addressing mode.

• Up to three additional levels of dynamic-address-
translation (DAT) tables, called region tables, for
translating 64-bit virtual addresses.

A virtual address space may be specified either
by a segment-table designation as in ESA/390 or
by a region-table designation, and either of these
types of designation is called an address-space-
control element (ASCE). An ASCE may alterna-
tively be a real-space designation that causes
virtual addresses to be treated simply as real
addresses without the use of DAT tables.

• An 8 K-byte prefix area for containing larger old
and new PSWs and register save areas.

• A SIGNAL PROCESSOR order for switching
between the ESA/390 and z/Architecture archi-
tectural modes.

Initial program loading sets the ESA/390 archi-
tectural mode. The new SIGNAL PROCESSOR
order then can be used to set the z/Architecture
mode or to return from z/Architecture to
ESA/390. This order causes all CPUs in the con-
figuration always to be in the same architectural
mode.

• Many new instructions, many of which operate
on 64-bit binary integers

Introduction 1-3

Some of the new instructions that do not operate on
64-bit binary integers have also been added to
ESA/390.

All of the ESA/390 instructions, except for those of
the four facilities named above, are included in
z/Architecture.

The bit positions of the general registers and control
registers of z/Architecture are numbered 0-63. An
ESA/390 instruction that operates on bit positions
0-31 of a 32-bit register in ESA/390 operates instead
on bit positions 32-63 of a 64-bit register in z/Archi-
tecture.

z/Architecture was announced in October, 2000. The
remainder of this section summarizes the original
contents of z/Architecture. Subsequent additions are
described in “Additions to z/Architecture” on
page 1-7.

General Instructions for 64-Bit
Integers

The 32-bit-binary-integer instructions of ESA/390
have new analogs in z/Architecture that operate on
64-bit binary integers. There are two types of ana-
logs:

• Analogs that use two 64-bit binary integers to
produce a 64-bit binary integer. For example, the
ESA/390 ADD instruction (A for a storage-to-reg-
ister operation or AR for a register-to-register
operation) has the analogs AG (adds 64 bits from
storage to the contents of a 64-bit general regis-
ter) and AGR (adds the contents of a 64-bit gen-
eral register to the contents of another 64-bit
general register). These analogs are distin-
guished by having “G” in their mnemonics.

• Analogs that use a 64-bit binary integer and a
32-bit binary integer to produce a 64-bit binary
integer. The 32-bit integer is either sign-extended
or extended on the left with zeros, depending on
whether the operation is signed or unsigned,
respectively. For example, the ESA/390 ADD (A
or AR) instruction has the analogs AGF (adds 32
bits from storage to the contents of a 64-bit gen-
eral register) and AGFR (adds the contents of bit
positions 32-63 of a 64-bit general register to the
contents of another 64-bit general register).
These analogs are distinguished by having “GF”
in their mnemonics.

Other New General Instructions

The other additional or significantly enhanced gen-
eral instructions of z/Architecture are highlighted as
follows:

• ADD LOGICAL WITH CARRY and SUBTRACT
LOGICAL WITH BORROW operate on either
32-bit or 64-bit unsigned binary integers and
include a carry or borrow, as represented by the
leftmost bit of the two-bit condition code in the
PSW, in the computation. This can improve the
performance of operating on extended-precision
integers (integers longer than 64 bits).

• AND IMMEDIATE and OR IMMEDIATE combine
a two-byte immediate operand with any of the
two bytes on two-byte boundaries in a 64-bit gen-
eral register.

• BRANCH AND SAVE AND SET MODE and
BRANCH AND SET MODE are enhanced so that
they set bit 63 of the R1 general register to one if
the current addressing mode is the 64-bit mode,
and they set the 64-bit addressing mode if bit 63
of the R2 general register is one. This allows
“pointer-directed” linkages between programs in
different addressing modes, including any of the
24-bit, 31-bit, and 64-bit modes.

• BRANCH RELATIVE AND SAVE LONG and
BRANCH RELATIVE ON CONDITION LONG are
like the BRANCH RELATIVE AND SAVE and
BRANCH RELATIVE ON CONDITION instruc-
tions of ESA/390 except that the new instructions
use a 32-bit immediate field. This increases the
target range available through relative branching.

• COMPARE AND FORM CODEWORD is
enhanced so that, in the 64-bit addressing mode,
the comparison unit is six bytes instead of two
and the resulting codeword is eight bytes instead
of four. UPDATE TREE is enhanced so that, in
the 64-bit addressing mode, a node is 16 bytes
instead of eight and the codeword in a node is
eight bytes instead of four. This improves the per-
formance of sorting records having long keys.

• DIVIDE LOGICAL uses a 64-bit or 128-bit
unsigned binary dividend and a 32-bit or 64-bit
unsigned binary divisor, respectively, to produce
a 32-bit or 64-bit quotient and remainder, respec-
tively. MULTIPLY LOGICAL uses a 32-bit or
64-bit unsigned binary multiplicand and multiplier

1-4 The z/Architecture CPU Architecture

to produce a 64-bit or 128-bit product, respec-
tively.

• DIVIDE SINGLE divides a 64-bit dividend by a
32-bit or 64-bit divisor and produces a 64-bit
quotient and remainder. MULTIPLY SINGLE is
enhanced so it can multiply a 64-bit multiplicand
by a 32-bit or 64-bit multiplier and produce a
64-bit product.

• EXTRACT PSW extracts bits 0-63 of the current
PSW to allow determination of the current
machine state, for example, determination of
whether the CPU is in the problem state or the
supervisor state.

• INSERT IMMEDIATE inserts a two-byte immedi-
ate operand into a 64-bit general register on any
of the two-byte boundaries in the register. LOAD
LOGICAL IMMEDIATE does the same and also
clears the remainder of the register.

• LOAD ADDRESS RELATIVE LONG forms an
address relative to the current (unupdated)
instruction address by means of a signed 32-bit
immediate field.

• LOAD LOGICAL THIRTY ONE BITS places the
rightmost 31 bits of either a general register or a
word in storage, with 33 zeros appended on the
left, in a general register.

• LOAD MULTIPLE DISJOINT loads the leftmost
32 bits of each register in a range of general reg-
isters from one area in storage and the rightmost
32 bits of each of those registers from another
area in storage. This is for use in place of a
LOAD MULTIPLE HIGH instruction and a 32-bit
LOAD MULTIPLE instruction when one of the
storage areas is addressed by one of the regis-
ters loaded.

• LOAD MULTIPLE HIGH and STORE MULTIPLE
HIGH load or store the leftmost 32 bits of each
register in a range of general registers, allowing
augmentation of existing programs that load or
store the rightmost 32 bits by means of LOAD
MULTIPLE and STORE MULTIPLE. (Sixty-four-
bit forms of LOAD MULTIPLE and STORE MUL-
TIPLE also are provided.)

• LOAD PAIR FROM QUADWORD and STORE
PAIR TO QUADWORD operate between an
even-odd pair of 64-bit general registers and a
quadword in storage (16 bytes aligned on a
16-byte boundary). These instructions provide

quadword consistency (all bytes appear to be
loaded or stored concurrently in a multiple-CPU
system). (Only the 64-bit form of COMPARE
DOUBLE AND SWAP also provides quadword
consistency.)

• LOAD REVERSED and STORE REVERSED
load or store a two-byte, four-byte, or eight-byte
unit in storage with the left-to-right sequence of
the bytes reversed. LOAD REVERSED also can
move a four-byte or eight-byte unit between two
general registers. These operations allow con-
version between “little-endian” and “big-endian”
formats.

• PERFORM LOCKED OPERATION is enhanced
with two more sets of function codes, with each
set providing six different operations. One of the
additional sets provides operations on 64-bit
operands in 64-bit general registers, and the
other provides operations on 128-bit operands in
a parameter list.

• ROTATE LEFT SINGLE LOGICAL obtains 32 bits
or 64 bits from a general register, rotates them
(the leftmost bit replaces the rightmost bit), and
places the result in another general register (a
nondestructive rotate).

• SET ADDRESSING MODE can set any of the
24-bit, 31-bit, and 64-bit addressing modes.

• SHIFT LEFT SINGLE, SHIFT LEFT SINGLE
LOGICAL, SHIFT RIGHT SINGLE, and SHIFT
RIGHT SINGLE LOGICAL are enhanced with
64-bit forms that obtain the source operand from
one general register and place the result oper-
and in another general register (a nondestructive
shift).

• TEST ADDRESSING MODE sets the condition
code to indicate whether bits 31 and 32 of the
current PSW specify the 24-bit, 31-bit, or 64-bit
addressing mode.

• TEST UNDER MASK HIGH and TEST UNDER
MASK LOW, which are ESA/390 instructions, are
given the alternative name TEST UNDER MASK,
and two additional forms are added so that a
two-byte immediate operand can be used to test
the bits of two bytes located on any of the two-
byte boundaries in a 64-bit general register. (The
ESA/390 instruction TEST UNDER MASK, which
uses a one-byte immediate operand to test a
byte in storage, continues to be provided.)

Introduction 1-5

Floating-Point Instructions

The z/Architecture floating-point instructions are the
same as in ESA/390 except that instructions are
added for converting between 64-bit signed binary
integers and either hexadecimal or binary floating-
point data. These new instructions have “G” in their
mnemonics.

Control Instructions

The new or enhanced control instructions of z/Archi-
tecture are highlighted as follows:

• EXTRACT AND SET EXTENDED AUTHORITY
is a privileged instruction for changing the
extended authorization index in a control register.
This enables real-space designations to be used
more efficiently by means of access lists.

• EXTRACT STACKED REGISTERS is enhanced
to extract optionally all 64 bits of the contents of
one or more saved general registers.

• EXTRACT STACKED STATE is enhanced to
extract optionally the entire contents of the saved
PSW, including a 64-bit instruction address.

• LOAD CONTROL and STORE CONTROL are
enhanced for operating optionally on 64-bit con-
trol registers.

• LOAD PSW uses an eight-byte storage operand
as in ESA/390 and expands this operand to a
16-byte z/Architecture PSW.

• LOAD PSW EXTENDED directly loads a 16-byte
PSW.

• LOAD REAL ADDRESS in its ESA/390 form and
in the 24-bit or 31-bit addressing mode operates
as in ESA/390 if the translation is successful and
the obtained real address has a value less than
2G bytes. LOAD REAL ADDRESS in its ESA/390
form and in the 64-bit addressing mode, or in its
enhanced z/Architecture form in any addressing
mode, loads a 64-bit real address.

• LOAD USING REAL ADDRESS and STORE
USING REAL ADDRESS are enhanced to have
optionally 64-bit operands.

• SIGNAL PROCESSOR has a new order that can
be used to switch all CPUs in the configuration
either from the ESA/390 architectural mode to

the z/Architecture architectural mode or from
z/Architecture to ESA/390. (A system that is to
operate using z/Architecture must first be IPLed
in the ESA/390 mode.)

• STORE FACILITY LIST is a privileged instruction
that stores at real location 200 an indication of
whether z/Architecture is installed and of
whether it is active. This instruction is added also
to ESA/390 and also stores an indication of
whether the new z/Architecture instructions that
have been added to ESA/390 are available. Real
location 200 has previously contained all zeros in
most systems and normally can be examined by
a problem-state program whether or not STORE
FACILITY LIST is installed. The information
stored at real location 200 also indicates whether
the extended-translation facility 2 is installed.

• STORE REAL ADDRESS is like LOAD REAL
ADDRESS except that STORE REAL ADDRESS
stores the resulting address instead of placing it
in a register.

• TRACE is enhanced to record optionally the con-
tents of 64-bit general registers.

Trimodal Addressing

“Trimodal addressing” refers to the ability to switch
between the 24-bit, 31-bit, and 64-bit addressing
modes. This switching can be done by means of:

• The old instructions BRANCH AND SAVE AND
SET MODE and BRANCH AND SET MODE.
Both of these instructions set the 64-bit address-
ing mode if bit 63 of the R2 general register is
one. If bit 63 is zero, the instructions set the
24-bit or 31-bit addressing mode if bit 32 of the
register is zero or one, respectively.

• The new instruction SET ADDRESSING MODE
(SAM24, SAM31, and SAM64). The instruction
sets the 24-bit, 31-bit, or 64-bit addressing mode
as determined by the operation code.

Modal Instructions
Trimodal addressing affects the general instructions
only in the manner in which logical storage
addresses are handled, except as follows.

• The instructions BRANCH AND LINK, BRANCH
AND SAVE, BRANCH AND SAVE AND SET
MODE, BRANCH AND SET MODE, and

1-6 The z/Architecture CPU Architecture

BRANCH RELATIVE AND SAVE place informa-
tion in bit positions 32-39 of general register R1

as in ESA/390 in the 24-bit or 31-bit addressing
mode or place address bits in those bit positions
in the 64-bit addressing mode. The new instruc-
tion BRANCH RELATIVE AND SAVE LONG
does the same.

• The instructions BRANCH AND SAVE AND SET
MODE and BRANCH AND SET MODE place a
one in bit position 63 of general register R1 in the
64-bit addressing mode. In the 24-bit or 31-bit
mode, BRANCH AND SAVE AND SET MODE
sets bit 63 to zero, and BRANCH AND SET
MODE leaves it unchanged.

• Certain instructions leave bits 0-31 of a general
register unchanged in the 24-bit or 31-bit
addressing mode but place or update address or
length information in them in the 64-bit address-
ing mode. These are listed in programming note
1 on page 7-8 and are sometimes called modal
instructions.

Effects on Bits 0-31 of a General Register
Bits 0-31 of general registers are changed by two
types of instructions. The first type is a modal instruc-
tion (see the preceding section) when the instruction
is executed in the 64-bit addressing mode. The sec-
ond type is an instruction having, independent of the
addressing mode, either a 64-bit result operand in a
single general register or a 128-bit result operand in
an even-odd general-register pair.

Most of the instructions of the second type are indi-
cated by a “G,” either alone or in “GF,” in their mne-
monics. The other instructions that change or may
change bits 0-31 of a general register regardless of
the current addressing mode are listed in program-
ming note 2 on page 7-8. All of the instructions of the
second type are sometimes referred to as “G-type”
instructions.

If a program is not executed in the 64-bit addressing
mode and does not contain a G-type instruction, it
cannot change bits 0-31 of any general register.

Input/Output

Additional I/O functions and facilities are provided
when z/Architecture is installed. They are provided in
both the ESA/390 and the z/Architecture architectural
mode and are as follows:

• Indirect data addressing is enhanced by the pro-
vision of a doubleword format-2 IDAW that is
intended to allow operations on data at or above
the 2 G-byte absolute-address boundary in
z/Architecture. The previously existing IDAW, a
word containing a 31-bit address, is now called a
format-1 IDAW. The format-2 IDAW contains a
64-bit address. A bit in the operation-request
block (ORB) associated with a channel program
specifies whether the program uses format-1 or
format-2 IDAWs. A further enhancement is the
ability of all format-2 IDAWs of a channel pro-
gram to specify either 2 K-byte or 4 K-byte data
blocks, as determined by another bit in the ORB.
The use of 4 K-byte blocks improves the effi-
ciency of data transfers.

• The FICON®-channel facility provides the capa-
bilities of attaching FICON-I/O-interface and
FICON-converted-I/O-interface channel paths
and of fully utilizing these channel-path types.
FICON channel paths can significantly enhance
overall data throughput by providing increased
data-transfer rates in comparison to ESCON
channel paths and by allowing multiple com-
mands and associated data to be “streamed” to
control units, thus further improving perfor-
mance. The facility supports the following addi-
tional control mechanisms:

– The modification-control bit in the ORB
allows the program to optimize the perfor-
mance of FICON channel paths when
dynamically modifying channel programs.

– The synchronization-control bit in the ORB
ensures data integrity along with maximum
channel-path performance by delaying the
execution of a write command until the com-
pletion of an immediately preceding read
command when performing unlimited
prefetching of CCWs and when the data to
be written may be the data read.

– The streaming-mode-control bit in the ORB
allows the program to prevent command
streaming in cases that require such preven-
tion.

– The secondary-CCW-address field in the
extended-status word assists in the recovery
of channel programs that terminate abnor-
mally when command streaming to a control
unit is being performed. The field identifies a
CCW that failed at the control unit.

Introduction 1-7

• The ORB-extension facility expands the size of
the ORB from three words to eight words. This
makes fields available for use by the channel-
subsystem-I/O-priority facility.

• The channel-subsystem-I/O-priority facility
allows the program to establish a priority relation-
ship among subchannels that have pending I/O
operations. The priority relationship specifies the
order in which I/O operations are initiated by the
channel subsystem. Additionally, for fibre-chan-
nel-attached control units, the facility allows the
program to specify the priority in which I/O oper-
ations pending at the control unit are performed.

The input/output enhancements are further high-
lighted below by describing how they affect the I/O
chapters.

• In Chapter 13, “I/O Overview,” FICON and
FICON-converted I/O interfaces and the frame-
multiplex mode are introduced.

• In Chapter 14, “I/O Instructions”:

– The CANCEL SUBCHANNEL instruction is
described.

– TEST PENDING INTERRUPTION, when the
second-operand address is zero, stores a
three-word I/O-interruption code at real loca-
tions 184-195. The new third word contains
an interruption-identification word that further
identifies the source of the I/O interruption.

• In Chapter 15, “Basic I/O Functions”:

– The ORB is extended to eight words and
newly contains a streaming-mode control,
modification control, synchronization con-
trol, format-2-IDAW control, 2K-IDAW con-
trol, ORB-extension control, channel-
subsystem priority, and control-unit priority.

– A doubleword format-2 IDAW and 4 K-byte
data blocks optionally designated by format-
2 IDAWs are added.

• In Chapter 16, “I/O Interruptions”:

– A secondary-CCW-address-validity bit and
failing-storage-address-format bit are added
to the extended-report word.

– A two-word failing-storage address and a
secondary-CCW address are added to the
format-0 extended-status word.

• In Chapter 17, “I/O Support Functions”:

– Control-unit-defer time is added. This has an
effect on the device-connect time and
device-disconnect time in the measurement
block.

– References to the measurement block by the
measurement-block-update facility are sin-
gle-access references and appear to be
word concurrent as observed by CPUs.

– Device-active-only time is added to the mea-
surement block.

– The channel-subsystem-I/O-priority facility,
providing channel-subsystem priority and
control-unit priority, is added.

Additions to z/Architecture

z/Architecture was announced in October, 2000. Any
extension added subsequently is summarized below
and has the date of its announcement at the end of
its summary.

ASN-and-LX-Reuse Facility

The ASN-and-LX-reuse facility may be available on a
model implementing z/Architecture. The facility pro-
vides the means by which an address-space number
(ASN) that is used in certain space-switching linkage
instructions may be safely reused. The facility also
adds a 32-bit program-call (PC) number, and it also
provides the means by which the linkage index that is
used in PC-number translation may be safely reused.
The facility provides the following instructions:

• EXTRACT PRIMARY ASN AND INSTANCE
• EXTRACT SECONDARY ASN AND INSTANCE
• PROGRAM TRANSFER WITH INSTANCE
• SET SECONDARY ASN WITH INSTANCE

(May, 2004)

CMPSC-Enhancement Facility

The CMPSC-enhancement facility may be available
on a model implementing z/Architecture. The facility
provides performance improvements for the COM-
PRESSION CALL instruction. (August, 2010)

1-8 The z/Architecture CPU Architecture

Compare-and-Swap-and-Store
Facility

The compare-and-swap-and-store facility may be
available on a model implementing z/Architecture.
The facility performs compare-and-swap operations
on 4- or 8-byte operands using interlocked update. If
the operands are equal, a subsequent store opera-
tion of 1, 2, 4, or 8 bytes is performed. The facility
provides the COMPARE AND SWAP AND STORE
instruction. (April, 2007)

Compare-and-Swap-and-Store
Facility 2

The compare-and-swap-and-store facility 2 may be
available on a model implementing z/Architecture.
The facility extends the compare-and-swap-and-store
facility by providing a 16-byte compare-and-swap
function and a 16-byte store operation.
(February, 2008)

Conditional-SSKE Facility

The conditional-SSKE facility may be available on a
model implementing z/Architecture. The facility pro-
vides performance improvements for the SET STOR-
AGE KEY EXTENDED instruction. (April, 2007)

The conditional-SSKE facility also provides perfor-
mance improvements for the PERFORM FRAME
MANAGEMENT FUNCTION instruction which was
introduced with the enhanced-DAT facility. (February,
2008)

Configuration-Topology Facility

The configuration-topology facility may be available
on a model implementing z/Architecture. The facility
provides additional topology awareness to the pro-
gram such that certain optimizations can be per-
formed to improve cache hit ratios and thereby
improve overall performance. The facility provides:

• The PERFORM TOPOLOGY FUNCTION (PTF)
control instruction.

• A new system-information block (SYSIB 15.1.2)
stored by the STORE SYSTEM INFORMATION
instruction.

(February, 2008)

Configuration-z/Architecture-
Architectural-Mode Facility

The configuration-z/Architecture-architectural-mode
(CZAM) facility may be present on a model imple-
menting z/Architecture. When the facility is installed
in a configuration, the configuration is reset into the
z/Architecture architectural mode (rather than into
the ESA/390 architectural mode), and the configura-
tion cannot be switched into the ESA/390 architec-
tural mode.

The facility may be installed in a configuration operat-
ing in a logical partition and in a configuration operat-
ing as a guest of a logical partition. (September,
2017)

Constrained-Transactional-
Execution Facility

The constrained-transactional-execution facility may
be available on a model in which the transactional-
execution facility is installed. The constrained-trans-
actional-execution facility ensures that – in the
absence of repeated interruptions or conflicts with
other CPUs or the I/O subsystem – transactional exe-
cution will eventually complete; thus, an abort-han-
dler routine is not required. The facility provides the
TRANSACTION BEGIN (TBEGINC) general instruc-
tion. (September, 2012)

DAT-Enhancement Facility 1

The DAT-enhancement facility 1 may be available on
a model implementing z/Architecture. The facility pro-
vides the following instructions:

• COMPARE AND SWAP AND PURGE (CSPG)
• INVALIDATE DAT TABLE ENTRY

COMPARE AND SWAP AND PURGE (CSPG) pro-
vides function similar to that of COMPARE AND
SWAP AND PURGE (CSP), but CSPG has 64-bit
operands whereas CSP has 32-bit operands.

INVALIDATE DAT TABLE ENTRY provides the
means by which one or more region-table and seg-
ment-table entries in storage may be invalidated, and
the corresponding TLB entries may be purged. The

Introduction 1-9

instruction provides an invalidation-and-clearing
operation which invalidates and clears entries based
on a specified virtual address, or a clear-by-ASCE
operation which clears TLB entries based on the
specified ASCE. (June, 2003)

DAT-Enhancement Facility 2

The DAT-enhancement facility 2 may be available on
a model implementing z/Architecture. When the DAT-
enhancement facility 2 is installed, the LOAD PAGE-
TABLE-ENTRY ADDRESS instruction is available.
Given a virtual address, the LOAD PAGE-TABLE-
ENTRY ADDRESS instruction returns the 64-bit real
address of the corresponding page-table entry. The
address-space-control mode used by the dynamic-
address-translation process is specified in the M4

field of the instruction. (September, 2005)

Decimal-Floating-Point Facility

The decimal-floating-point facility supports three dec-
imal-floating-point (DFP) data formats and provides
54 new instructions to operate on data in these for-
mats. The formats: 32-bit (short), 64-bit (long), and
128-bit (extended), were developed in collaboration
with the IEEE floating-point working group. (April,
2007)

Decimal-Floating-Point Packed-
Conversion Facility

The decimal floating point packed-conversion facility
may be available on models implementing the DFP
facility. The facility includes the following instructions:

• CONVERT FROM PACKED (CDPT)
• CONVERT FROM PACKED (CXPT)
• CONVERT TO PACKED (CPDT)
• CONVERT TO PACKED (CPXT)

(March, 2015)

Decimal-Floating-Point-Rounding
Facility

The decimal-floating-point-rounding facility provides
a 3-bit DFP rounding mode field in the floating-point
control (FPC) register, and the instruction SET DFP
ROUNDING MODE, which may be used to set this

field. The DFP rounding mode can specify any of
eight rounding methods, including the five required
by the IEEE floating-point working group.

The DFP rounding mode is used by PFPO and the
decimal-floating-point instructions. (April, 2007)

Decimal-Floating-Point Zoned-
Conversion Facility

The decimal floating point zoned-conversion facility
may be available on models implementing the DFP
facility. The facility includes the following features and
instructions:

1. In Chapter 8, “Decimal Instructions,” the zoned
format is defined to include the ASCII zone value
(0011 binary).

2. In Chapter 20, “Decimal-Floating-Point Instruc-
tions,” the following instructions are defined:

• CONVERT FROM ZONED (CDZT)
• CONVERT FROM ZONED (CXZT)
• CONVERT TO ZONED (CZDT)
• CONVERT TO ZONED (CZXT)

(September, 2012)

DEFLATE-Conversion Facility

The DEFLATE-conversion facility may be available
on models implementing z/Architecture. The facility
provides a means to compress and uncompress data
using the DEFLATE compressed-data format. The
facility includes the DEFLATE CONVERSION CALL
instruction.

(September, 2019)

Distinct-Operands Facility

The distinct-operands facility may be available on a
model implementing z/Architecture. The facility pro-
vides alternate forms of selected arithmetic and logi-
cal instructions in which the result register may be
different from either of the source registers. The facil-
ity provides alternate forms for the following instruc-
tions.

• ADD

1-10 The z/Architecture CPU Architecture

• ADD IMMEDIATE
• ADD LOGICAL
• ADD LOGICAL WITH SIGNED IMMEDIATE
• AND
• EXCLUSIVE OR
• OR
• SHIFT LEFT SINGLE
• SHIFT LEFT SINGLE LOGICAL
• SHIFT RIGHT SINGLE
• SHIFT RIGHT SINGLE LOGICAL
• SUBTRACT
• SUBTRACT LOGICAL

(August, 2010)

Enhanced-DAT Facility 1

The enhanced-DAT facility 1 may be available on
models implementing z/Architecture. When the facil-
ity is installed and enabled, DAT translation may pro-
duce either a page-frame real address or a segment-
frame absolute address, determined by the STE-for-
mat control in the segment-table entry.

When the facility is installed in a configuration, a new
bit in control register 0 enables the facility.

Note: The term EDAT-1 applies is used pervasively in
this document to describe the condition of when the
enhanced-DAT facility 1 is installed in the configura-
tion and enabled by control register 0. See
“Enhanced-DAT Terminology:” on page 3-41 for
details on this terminology.

When EDAT-1 applies, the following function is avail-
able in the DAT process:

• Region-table entries include a DAT-protection bit,
providing function similar to the DAT-protection
bits in the segment- and page-table entries.

• The segment-table entry includes a STE-format
control. When the STE-format control is zero,
DAT proceeds as if EDAT-1 does not apply.

• When the STE-format control is one, the seg-
ment-table entry also contains the following:

– A segment-frame absolute address (rather
than a page-table origin) specifying the
absolute storage location of the 1 M-byte
block.

– Access-control bits and a fetch-protection bit
which optionally may be used instead of the
corresponding bits in the segment’s individ-
ual storage keys

– A bit which determines the validity of the
access-control bits and a fetch-protection bit
in the segment-table entry

The facility adds the PERFORM FRAME MANAGE-
MENT FUNCTION control instruction. The facility
includes enhancements or changes to the following
control instructions:

• LOAD PAGE-TABLE-ENTRY ADDRESS
• MOVE PAGE
• SET STORAGE KEY EXTENDED
• TEST PROTECTION

(February, 2008)

Enhanced-DAT Facility 2

The enhanced-DAT facility 2 may be available on
models implementing z/Architecture. When the facil-
ity is installed and enabled, DAT translation may pro-
duce either a page-frame real address, a segment-
frame absolute address, or a region-frame absolute
address, determined by format controls in the region-
third-table entry (if any) and the segment-table entry
(if any).

Note: The term EDAT-2 applies is used pervasively in
this document to describe the condition of when the
enhanced-DAT facility 2 is installed in the configura-
tion and enabled by control register 0. See
“Enhanced-DAT Terminology:” on page 3-41 for
details on this terminology.

When EDAT-2 applies, the following function is avail-
able in the DAT process:

• EDAT-1 applies.

• The region-third-table entry includes a RTTE-for-
mat control. When the RTTE-format control is
zero, DAT proceeds as is the case for when
EDAT-1 applies.

• When the RTTE-format control is one, the
region-third-table entry also contains the follow-
ing:

Introduction 1-11

– A region-frame absolute address (rather than
a segment-table origin) specifying the abso-
lute storage location of the 2 G-byte block.

– Access-control bits and a fetch-protection bit
which optionally may be used in lieu of the
corresponding bits in the region’s individual
storage keys

– A bit which determines the validity of the
access-control bits and a fetch-protection bit
in the region-third-table entry

The enhanced-DAT facility 2 adds the COMPARE
AND REPLACE DAT TABLE entry instruction, provid-
ing for the dynamic replacement of valid, attached
DAT-table entries, and the selective clearing of any
TLB entries created from the replaced entry.

The enhanced-DAT facility 2 also includes enhance-
ments or changes to the following control instruc-
tions:

• INVALIDATE DAT TABLE ENTRY
• LOAD PAGE-TABLE-ENTRY ADDRESS
• MOVE PAGE
• PERFORM FRAME MANAGEMENT FUNCTION
• TEST PROTECTION

When the enhanced-DAT facility 2 is installed, the
enhanced-DAT facility 1 is also installed. (September,
2012)

Enhanced-Monitor Facility

The enhanced-monitor facility may be available on a
model implementing z/Architecture. The facility pro-
vides the means by which executions of the MONI-
TOR CALL instruction may be counted in CPU-
specific counter arrays where each entry in the array
represents a different monitor code.

The enhanced-monitor facility is controlled by the
enhanced-monitor masks in control register 8. The
enhanced-monitor masks work in conjunction with
the monitor masks in CR8. Existing programs that
use the MONITOR CALL instruction continue to
operate compatibly when the enhanced-monitor
masks are zero; the enhanced counting operation is
only provided when a monitor mask bit and its corre-
sponding enhanced-monitor mask bit are both ones.
(August, 2010)

Entropy Encoding Compression
Facility

The entropy-encoding-compression facility may be
available on models implementing z/Architecture.
When the facility is installed an additional entropy
encoding/decoding step may be performed as part of
COMPRESSION CALL. (September, 2017)

ESA/390-Compatibility-Mode
Facility

The ESA/390-compatibility-mode (390-CM) facility
may be available on a model implementing z/Archi-
tecture. A configuration operating in the ESA/390-
compatibility mode provides an environment support-
ing a subset of DAT-off ESA/390 programs in a hybrid
architectural mode. See “ESA/390-Compatibility-
Mode Facility” on page 5-111 for details. (September,
2017)

ETF2-Enhancement Facility

The ETF2-enhancement facility may be available on
a model implementing z/Architecture. The facility
includes modifications to the following instructions:

• New function is added to the TRANSLATE ONE
TO ONE, TRANSLATE ONE TO TWO, TRANS-
LATE TWO TO ONE, and TRANSLATE TWO TO
TWO instructions, allowing the test-character
comparison to be bypassed.

• For TRANSLATE TWO TO ONE and TRANS-
LATE TWO TO TWO, the alignment require-
ments for the translate table are relaxed.

(September, 2005)

ETF3-Enhancement Facility

The ETF3-enhancement facility may be available on
a model implementing z/Architecture. The facility pro-
vides improved well-formedness checking for the fol-
lowing instructions:

• CONVERT UTF-16 TO UTF-32
• CONVERT UTF-16 TO UTF-8
• CONVERT UTF-8 TO UTF-16
• CONVERT UTF-8 TO UTF-32

1-12 The z/Architecture CPU Architecture

(September, 2005)

Execute-Extensions Facility

The execute-extensions facility may be available on a
model implementing z/Architecture. The facility pro-
vides the EXECUTE RELATIVE LONG instruction.
(February, 2008)

Execution-Hint Facility

The execution-hint facility may be available on a
model implementing z/Architecture. The facility pro-
vides the means by which the program can provide
hints which the CPU may take into consideration
when deciding what information to maintain and use
for storage-operand accesses and branch prediction.
The facility provides the following instructions.

• BRANCH PREDICTION PRELOAD (BPP)
• BRANCH PREDICTION RELATIVE PRELOAD

(BPRP)
• NEXT INSTRUCTION ACCESS INTENT (NIAI)

Additionally, new prefetch-intent codes are defined
for PREFETCH DATA (PFD) and PREFETCH DATA
RELATIVE LONG (PFDRL). (September, 2012)

Extended-Immediate Facility

The extended-immediate facility may be available on
models implementing z/Architecture. The facility pro-
vides 32-bit immediate-operand versions of the fol-
lowing instructions:

• ADD IMMEDIATE
• ADD LOGICAL IMMEDIATE
• AND IMMEDIATE
• COMPARE IMMEDIATE
• COMPARE LOGICAL IMMEDIATE
• EXCLUSIVE OR IMMEDIATE
• INSERT IMMEDIATE
• LOAD IMMEDIATE
• LOAD LOGICAL IMMEDIATE
• OR IMMEDIATE
• SUBTRACT LOGICAL IMMEDIATE

Other new instructions added as a part of the
extended-immediate facility include the following:

• FIND LEFTMOST ONE
• LOAD AND TEST (32-bit and 64-bit RXY format)
• LOAD BYTE (RRE format)
• LOAD HALFWORD (RRE format)
• LOAD LOGICAL CHARACTER (64-bit RRE for-

mat, and 32-bit RXY and RRE formats)
• LOAD LOGICAL HALFWORD (64-bit RRE for-

mat, and 32-bit RXY and RRE formats)

(September, 2005)

Extended-I/O-Measurement-Block
Facility

The extended-I/O-measurement-block facility may be
available on models implementing z/Architecture.
The facility includes the following features:

• A new format of the channel-measurement block.
The new measurement block, termed a format-1
channel-measurement block, is expanded to 64
bytes and is addressed using a separate mea-
surement-block address for each subchannel.
The new measurement-block format provides
additional measurement information and the flex-
ibility to store the measurement blocks in non-
contiguous, real storage.

• The previously existing channel-measurement
block is termed a format-0 channel-measure-
ment block. A device-busy-time field is added to
the format-0 channel-measurement block.

(June, 2003)

Extended-I/O-Measurement-Word
Facility

The extended-I/O-measurement-word facility may be
available on models implementing z/Architecture.
The extended-measurement-word (EMW) is an
extension to the interruption-response block (IRB)
and allows channel-measurement data to be pro-
vided on an I/O operation basis. This reduces pro-
gram overhead by alleviating the previous
requirement that the program fetch the measurement
block before and after an operation and calculate the
difference between the respective measurement data
values. (June, 2003)

Introduction 1-13

Extended-Translation Facility 2

The extended-translation facility 2 may be available
on a model implementing z/Architecture. The facility
performs operations on double-byte, ASCII, and dec-
imal data. The double-byte data may be Unicode®

data – that is, data that uses the binary codes of the
Unicode Worldwide Character Standard and enables
the use of characters of most of the world’s written
languages. The facility provides the following instruc-
tions:

• COMPARE LOGICAL LONG UNICODE
• MOVE LONG UNICODE
• PACK ASCII
• PACK UNICODE
• TEST DECIMAL
• TRANSLATE ONE TO ONE
• TRANSLATE ONE TO TWO
• TRANSLATE TWO TO ONE
• TRANSLATE TWO TO TWO
• UNPACK ASCII
• UNPACK UNICODE

The extended-translation facility 2 is called facility 2
since an extended-translation facility, now called facil-
ity 1, was introduced in ESA/390. Facility 1 is stan-
dard in z/Architecture. Facility 1 provides the
instructions:

• CONVERT UNICODE TO UTF-8
• CONVERT UTF-8 TO UNICODE
• TRANSLATE EXTENDED

For when either or both of facility 1 and facility 2 are
not installed on the machine, both facilities are simu-
lated by the MVS CSRUNIC macro instruction, which
is provided in OS/390® Release 10 and z/OS®.

OS/390 MVS Assembler Services Reference,
GC28-1910-10, contains programming requirements,
register information, syntax, return codes, and exam-
ples for the CSRUNIC macro instruction.

When CSRUNIC is used, the program exceptions
listed in this publication do not cause program inter-
ruptions; instead, the exception conditions are indi-
cated by CSRUNIC by means of return codes, as
described in GC28-1910-10. (October, 2000)

Extended-Translation Facility 3

The extended-translation facility 3 may be available
on a model implementing z/Architecture. The facility
performs operations on Unicode and Unicode-trans-
formation-format (UTF) characters; it also includes a
right-to-left TRANSLATE AND TEST operation. The
facility provides the following instructions:

• CONVERT UTF-16 TO UTF-32
• CONVERT UTF-32 TO UTF-16
• CONVERT UTF-32 TO UTF-8
• CONVERT UTF-8 TO UTF-32
• SEARCH STRING UNICODE
• TRANSLATE AND TEST REVERSE

(May, 2004)

Extract-CPU-Time Facility

The extract-CPU-time facility may be available on a
model implementing z/Architecture. The facility adds
the general instruction EXTRACT CPU TIME. This
instruction provides an efficient means by which a
problem-state program can determine the amount of
CPU time consumed, without requiring a supervisor-
state service routine. (April, 2007)

Fast-BCR-Serialization Facility

The fast-BCR-serialization facility may be available
on a model implementing z/Architecture. When the
facility is installed, the execution of BRANCH ON
CONDITION with the M1 field containing 1110 binary
and the R2 field containing 0000 binary causes seri-
alization without checkpoint synchronization.
(August, 2010)

Fibre-Channel Extensions (FCX)

The fibre-channel-extensions (FCX) facility may be
available on models implementing z/Architecture.
The facility includes enhancements and performance
extensions that provide the program a means to
transport lists of commands to an I/O device for pro-
cessing without the channel overhead of fetching and
decoding each command.

Use of the FCX facility may be restricted to devices
accessible by certain channel path types.

1-14 The z/Architecture CPU Architecture

The FCX facility includes the following:

• Changes to the operation-request block (ORB),
interruption-response block (IRB), and subchan-
nel-information block (SCHIB).

• A form of a channel program that consists of a
transport-control word (TCW) that designates a
transport-command-control block (TCCB) and
transport-status block (TSB). The TCCB includes
a transport-command area (TCA) which contains
a list of up to 30 I/O commands that are in the
form of device-command words (DCWs). The
TSB contains completion status and other infor-
mation related to the TCW channel program that
is complementary to the completion information
contained in the IRB.

A TCW may specify the transfer of either input
data or output data.

• The ability to directly or indirectly designate any
or all of the TCCB, the input data storage area,
and the output data storage area. When a stor-
age area is designated directly, the TCW speci-
fies the location of a single, contiguous block of
storage. When a storage area is designated indi-
rectly, the TCW designates the location of a list of
one or more transport-indirect-data-address
words (TIDAWs). TIDAW lists and the storage
area designated by each TIDAW in a list are
restricted from crossing 4 K-byte boundaries.

• An interrogate operation which may be initiated
by CANCEL SUBCHANNEL to determine the
state of an I/O operation.

(February, 2009)

FCX-Bidirectional-Data-Transfer
Facility

The FCX-bidirectional-data-transfer facility may be
available on a model implementing fibre-channel
extensions. When the facility is installed and an
attached device supports bidirectional-data transfer,
transport-mode channel programs may specify the
transfer of both input and output data. (September,
2012)

Floating-Point Extension Facility

The floating-point extension facility may be available
on models implementing the DFP facility. The exten-
sion includes the following features and instructions:

Additions to Chapter 9, “Floating-Point Overview and
Support Instructions:”

• A new floating-point-support instruction, SET
BFP ROUNDING MODE (SRNMB), is added.

• A new exception, the quantum exception, is
defined for DFP computational operations.

• Bit 5 of the floating-point-control (FPC) register is
assigned to the quantum-exception mask

• Bit 13 of the FPC register is assigned to the
quantum-exception flag.

• Data-exception code (DXC) 04 (hex) is assigned
to the quantum exception.

• DXC 07 (hex) is assigned to the simulated quan-
tum exception.

• The BFP-rounding-mode field in the FPC register
is changed to 3 bits to support one additional
BFP rounding mode, round to prepare for shorter
precision.

• One new value of the effective rounding method
field is assigned to support the round to prepare
for shorter precision rounding method for CON-
VERT HFP TO BFP.

• For PFPO with a DFP result, bit 58 of general
register 0 is assigned to be the DFP quantum-
permission control.

Additions to Chapter 19, “Binary-Floating-Point
Instructions:”

• The following new BFP instructions are added:
– CONVERT FROM LOGICAL (CXLFBR,

CDLFBR, CELFBR, CXLGBR, CDLGBR,
and CELGBR).

– CONVERT TO LOGICAL (CLFXBR,
CLFDBR, CLFEBR, CLGXBR, CLGDBR,
and CLGEBR)

• One new value of the effective rounding method
field is assigned to support the round to prepare
for shorter precision rounding method for CON-
VERT TO FIXED, DIVIDE TO INTEGER, and
LOAD FP INTEGER

• An IEEE-inexact-exception control (XxC) is
added to CONVERT TO FIXED and LOAD FP
INTEGER.

Introduction 1-15

• An effective rounding method field and an IEEE-
inexact-exception control (XxC) are added to
CONVERT FROM FIXED and LOAD ROUNDED.

Additions to Chapter 20, “Decimal-Floating-Point
Instructions:”

• The following new DFP instructions are added:
– CONVERT FROM FIXED (CXFTR, CDFTR)
– CONVERT FROM LOGICAL (CXLGTR,

CDLGTR, CXLFTR, CDLFTR)
– CONVERT TO FIXED (CFXTR, CFDTR)
– CONVERT TO LOGICAL (CLGXTR, CLG-

DTR, CLFXTR, CLFDTR)
• All reserved values in the effective rounding

method field and a quantum-exception control
(XqC) are assigned for LOAD FP INTEGER,
LOAD ROUNDED, QUANTIZE, and REROUND.

• All reserved values in the effective rounding
method field are assigned for CONVERT TO
FIXED.

• An IEEE-inexact-exception control (XxC) is
added to CONVERT TO FIXED and LOAD
ROUNDED.

• An effective rounding method field and a quan-
tum-exception control (XqC) are added to ADD,
DIVIDE, MULTIPLY, and SUBTRACT.

• An effective rounding method field, an IEEE-inex-
act-exception control (XxC), and a quantum-
exception control (XqC) are added to CONVERT
FROM FIXED.

(August, 2010).

Floating-Point-Support-Sign-
Handling Facility

The floating-point-support-sign-handling facility
includes four instructions: COPY SIGN, LOAD COM-
PLEMENT, LOAD NEGATIVE, and LOAD POSITIVE.
These instructions operate on a 64-bit (long) floating-
point datum independent of the radix and do not set
the condition code. (April, 2007)

FPR-GR-Transfer Facility

The FPR-GR-transfer facility includes the following
two instructions:

• LOAD FPR FROM GR
• LOAD GR FROM FPR

These instructions provide the means to move a 64-
bit (long) floating-point datum between a floating-
point register and a general register. (April, 2007)

General-Instructions-Extension
Facility

The general-instructions-extension facility may be
available on a model implementing z/Architecture.
The facility provides the following new instructions:

• ADD LOGICAL WITH SIGNED IMMEDIATE
• COMPARE AND BRANCH
• COMPARE AND BRANCH RELATIVE
• COMPARE AND TRAP
• COMPARE HALFWORD RELATIVE LONG
• COMPARE IMMEDIATE AND BRANCH
• COMPARE IMMEDIATE AND BRANCH RELA-

TIVE
• COMPARE IMMEDIATE AND TRAP
• COMPARE LOGICAL AND BRANCH
• COMPARE LOGICAL AND BRANCH RELATIVE
• COMPARE LOGICAL AND TRAP
• COMPARE LOGICAL IMMEDIATE AND

BRANCH
• COMPARE LOGICAL IMMEDIATE AND

BRANCH RELATIVE
• COMPARE LOGICAL IMMEDIATE AND TRAP
• COMPARE LOGICAL RELATIVE LONG
• COMPARE RELATIVE LONG
• EXTRACT CPU ATTRIBUTE
• LOAD HALFWORD RELATIVE LONG
• LOAD LOGICAL HALFWORD RELATIVE LONG
• LOAD LOGICAL RELATIVE LONG
• LOAD RELATIVE LONG
• MULTIPLY SINGLE IMMEDIATE
• PREFETCH DATA
• PREFETCH DATA RELATIVE LONG
• ROTATE THEN AND SELECTED BITS
• ROTATE THEN EXCLUSIVE OR SELECTED

BITS
• ROTATE THEN INSERT SELECTED BITS
• ROTATE THEN OR SELECTED BITS
• STORE HALFWORD RELATIVE LONG
• STORE RELATIVE LONG

Additionally, the following instructions have been
enhanced to include additional formats:

• ADD IMMEDIATE
• COMPARE HALFWORD
• COMPARE HALFWORD IMMEDIATE

1-16 The z/Architecture CPU Architecture

• COMPARE LOGICAL IMMEDIATE
• LOAD ADDRESS EXTENDED
• LOAD AND TEST
• MOVE
• MULTIPLY
• MULTIPLY HALFWORD

(February, 2008)

Guarded-Storage Facility

The guarded-storage facility may be available on a
model implementing z/Architecture. The facility pro-
vides a means by which a problem-state program
can designate an area of logical storage comprising
guarded-storage sections. The facility includes the
following instructions:

• LOAD GUARDED (LGG)
• LOAD LOGICAL AND SHIFT GUARDED

(LLGFSG)
• LOAD GUARDED STORAGE CONTROLS

(LGSC)
• STORE GUARDED STORAGE CONTROLS

(STGSC)

When the facility is installed in the configuration,
enabled by the control program, and the second
operand of the LOAD GUARDED or LOAD LOGICAL
AND SHIFT GUARDED designates a guarded-stor-
age section, a guarded-storage event is recognized,
and control is passed to a guarded-storage event
handler. Otherwise, the respective instructions simply
perform their defined load operations.

The guarded-storage facility is intended to be used
by various programming languages that implement
storage-reclamation techniques commonly referred
to as garbage collection. All other instructions that
access a range of guarded storage are unaffected by
the facility, only the LGG and LLGFSG instructions
are capable of generating a guarded-storage event.
(September, 2017)

HFP Multiply-and-Add/Subtract
Facility

The HFP-multiply-and-add/subtract facility provides
instructions for improved processing of hexadecimal
floating-point numbers. The MULTIPLY AND ADD (or
SUBTRACT) instruction is intended to be used in

place of MULTIPLY followed by ADD (or SUBTRACT)
NORMALIZED. (June, 2003)

HFP-Unnormalized-Extensions
Facility

The HFP-unnormalized-extension facility may be
available on a model implementing z/Architecture.
The facility provides instructions for improved pro-
cessing of unnormalized hexadecimal floating-point
numbers. It extends the capabilities of the HFP-multi-
ply-and-add/subtract facility, by providing the follow-
ing instructions that operate on unnormalized
operands:

• MULTIPLY UNNORMALIZED
• MULTIPLY AND ADD UNNORMALIZED

(September, 2005)

High-Word Facility

The high-word facility may be available on a model
implementing z/Architecture. For selected 32-bit
instructions, the high-word facility effectively provides
sixteen additional 32-bit registers by utilizing bits 0-
31 of the sixteen 64-bit general registers. The facility
provides the following instructions.

• ADD HIGH
• ADD IMMEDIATE HIGH
• ADD LOGICAL HIGH
• ADD LOGICAL WITH SIGNED IMMEDIATE

HIGH
• BRANCH RELATIVE ON COUNT HIGH
• COMPARE HIGH
• COMPARE IMMEDIATE HIGH
• COMPARE LOGICAL HIGH
• COMPARE LOGICAL IMMEDIATE HIGH
• LOAD BYTE HIGH
• LOAD HALFWORD HIGH
• LOAD HIGH
• LOAD LOGICAL CHARACTER HIGH
• LOAD LOGICAL HALFWORD HIGH
• ROTATE THEN INSERT SELECTED BITS HIGH
• ROTATE THEN INSERT SELECTED BITS LOW
• STORE CHARACTER HIGH
• STORE HALFWORD HIGH
• SUBTRACT HIGH
• SUBTRACT LOGICAL HIGH

(August, 2010)

Introduction 1-17

IEEE-Exception-Simulation Facility

The IEEE-exception-simulation facility includes the
instructions SET FPC AND SIGNAL and LOAD FPC
AND SIGNAL. These instructions provide a means to
simulate a data exception program interruption.
(April, 2007)

Insert-Reference-Bits-Multiple
Facility

The insert-reference-bits-multiple facility may be
available on a model implementing z/Architecture.
The facility provides the means by which the refer-
ence bits for 64 contiguous blocks of storage can be
inspected in a single instruction. (September, 2017)

Instruction-Execution-Protection
Facility

The instruction-execution-protection facility may be
available on a model implementing z/Architecture.
When the facility is installed and enabled, and an
instruction is fetched from the primary or home
address space, an instruction-execution-protection
control in the leaf DAT-table entry used in the transla-
tion determines whether instructions may or may not
be executed from the frame mapped by the entry.

The facility may be used by a control program to bet-
ter segregate instructions from data. Improved sys-
tem reliability and integrity may be realized by
preventing the execution of instructions from storage
locations intended to contain only data. For example,
erroneously or maliciously modified data in a pro-
gram stack can be prevented from being executed.
(September, 2017)

Interlocked-Access Facility 1

The interlocked-access facility 1 may be available on
a model implementing z/Architecture. The facility pro-
vides the means by which a load, update, and store
operation can be performed with interlocked update
in a single instruction (as opposed to using a com-
pare-and-swap type of update). The facility also pro-
vides an instruction to attempt to load from two
distinct storage locations in an interlocked-fetch man-
ner. The facility provides the following instructions.

• LOAD AND ADD
• LOAD AND ADD LOGICAL
• LOAD AND AND
• LOAD AND EXCLUSIVE OR
• LOAD AND OR
• LOAD PAIR DISJOINT

Additionally, when the interlocked-access facility 1 is
installed, the storage-operand update reference for
the following instructions appears to be an inter-
locked-update reference as observed by other CPUs
and channel programs when the first operand is
aligned on an integral boundary corresponding to its
size:

• ADD IMMEDIATE (ASI and AGSI)
• ADD LOGICAL WITH SIGNED IMMEDIATE

(August, 2010)

Interlocked-Access Facility 2

The interlocked-access facility 2 may be available on
a model. When installed, the storage-operand update
reference for the following instructions appears to be
an interlocked-update as observed by other CPUs
and channel programs.

• AND (NI, NIY)
• OR (OI, OIY)
• EXCLUSIVE OR (XI, XIY)

(September, 2012)

IPTE-Range Facility

The IPTE-range facility may be available on a model
implementing z/Architecture. The facility provides
performance improvements for the INVALIDATE
PAGE TABLE ENTRY instruction. (August, 2010)

List-Directed Initial Program Load

The list-directed initial-program-load (IPL) function
may be available on a model. List-directed IPL, also
known as SCSI IPL in other System Library publica-
tions, provides the means by which a program can be
loaded from an I/O device other than a classical
channel-attached device (ESCON or FICON). Facili-
ties are also provided for loading a stand-alone dump
program using list-directed IPL. (May, 2004)

1-18 The z/Architecture CPU Architecture

Load-and-Trap Facility

The load-and-trap facility may be available on a
model implementing z/Architecture. The facility adds
instructions that can be used to assist the program in
determining when a value of all zeros (an address for
example) has been loaded into a designated register.
The facility provides the following instructions:

• LOAD AND TRAP (LAT and LGAT)
• LOAD HIGH AND TRAP (LFHAT)
• LOAD LOGICAL AND TRAP (LLGFAT)
• LOAD LOGICAL THIRTY ONE BITS AND TRAP

(LLGTAT)

(September, 2012)

Load-and-Zero-Rightmost-Byte
Facility

The load-and-zero-rightmost-byte facility may be
available on a model implementing z/Architecture.
The facility instructions of the facility load a value into
a register from storage and zero the rightmost eight
bits of the register. The facility provides the following
instructions:

• LOAD AND ZERO RIGHTMOST BYTE (LZRF,
LZRG)

• LOAD LOGICAL AND ZERO RIGHTMOST
BYTE (LLZRGF)

(March, 2015)

Load/Store-on-Condition Facility 1

The load/store-on-condition facility 1 may be avail-
able on a model implementing z/Architecture. The
facility provides the means by which selected opera-
tions may be executed only when a condition-code-
mask field of the instruction matches the current con-
dition code in the PSW. The facility provides the fol-
lowing instructions.

• LOAD ON CONDITION
• STORE ON CONDITION

(August, 2010)

Load/Store-on-Condition Facility 2

The load/store-on-condition facility 2 may be avail-
able on a model implementing z/Architecture. The
facility provides six load-immediate operations, two
load-high operations, and one store-high operation;
all of which are executed only when a condition-
code-mask field of the instruction matches the cur-
rent condition code in the PSW. The facility includes
the following instructions.

• LOAD HALFWORD HIGH IMMEDIATE ON
CONDITION (LOCHHI)

• LOAD HALFWORD IMMEDIATE ON CONDI-
TION (LOCHI, LOCGHI)

• LOAD HIGH ON CONDITION (LOCFHR,
LOCFH)

• STORE HIGH ON CONDITION (STOCFH)

(March, 2015)

Local-TLB-Clearing Facility

The local-TLB-clearing facility may be available on a
model implementing z/Architecture. The facility may
provide performance improvements for the INVALI-
DATE DAT TABLE ENTRY and INVALIDATE PAGE
TABLE ENTRY instructions by allowing the program
to specify whether TLB clearing should be done in all
CPUs of the configuration or only in the CPU execut-
ing the instruction. (September, 2012)

Long-Displacement Facility

The long-displacement facility provides a 20-bit
signed-displacement field in 69 previously existing
instructions (by using a previously unused byte in the
instructions) and 44 new instructions. A 20-bit signed
displacement allows relative addressing of up to
524,287 bytes beyond the location designated by a
base register or base-and-index-register pair and up
to 524,288 bytes before that location. The enhanced
previously existing instructions generally are ones
that handle 64-bit binary integers. The new instruc-
tions generally are new versions of instructions for
32-bit binary integers. The new instructions also
include (1) a LOAD BYTE instruction that sign-
extends a byte from storage to form a 32-bit or 64-bit
result in a general register and (2) new floating-point
LOAD and STORE instructions. The long-displace-
ment facility provides register-constraint relief by
reducing the need for base registers, code size

Introduction 1-19

reduction by allowing fewer instructions to be used,
and additional improved performance through
removal of possible address-generation interlocks.
(June, 2003)

Message-Security Assist

The message-security assist (MSA) may be available
on a model implementing z/Architecture. The MSA
basic facility includes the following instructions:

• CIPHER MESSAGE
• CIPHER MESSAGE WITH CHAINING
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICATION

CODE

Also included are five query functions and two func-
tions for generating a message digest based on the
secure-hash algorithm (SHA-1). The five query func-
tions, one for each instruction, are used to determine
the additional installed MSA facilities, which may
include the following.

MSA Data-Encryption-Algorithm (DEA) Facility:
The MSA DEA facility consists of nine functions for
ciphering messages, with or without chaining, and for
generating a message-authentication code (MAC)
using a 56-bit, 112-bit, or 168-bit cryptographic key.1

All of these functions are based on the DEA algo-
rithm. (June, 2003)

Message-Security-Assist
Extension 1

The message-security-assist extension 1 may be
available on models implementing the message-
security assist. The extension provides the following
functions:

MSA SHA-256 Facility: This facility consists of two
functions, one for generating an intermediate mes-
sage digest and another for generating a final mes-
sage digest.

MSA Advanced-Encryption-Standard (AES-128)
Facility: This facility consists of two functions for

ciphering messages, with or without chaining, using
the AES-128 algorithm.

MSA Pseudo-Random-Number Generation
(PRNG) Facility: This facility consists of a function
for generating a multiple of 64-bit pseudo-random
numbers using the ANSI® X9.17 pseudo-random-
number algorithm.

(September, 2005)

Message-Security-Assist
Extension 2

The message-security-assist extension 2 may be
available on models implementing the message-
security assist. The extension provides the following
functions:

MSA AES-192 Facility: This facility consists of two
functions for ciphering a message, with or without
chaining, using the AES-192 algorithm.

MSA AES-256 Facility: This facility consists of two
functions for ciphering a message, with or without
chaining, using the AES-256 algorithm.

MSA SHA-512 Facility: This facility consists of two
functions, one for generating an intermediate mes-
sage digest and another for generating a final mes-
sage digest, using the SHA-512 algorithm.

(February, 2008)

Message-Security-Assist
Extension 3

The message-security-assist extension 3 provides a
means to protect user cryptographic keys by encrypt-
ing them under machine-generated wrapping keys.
When this extension is installed, two wrapping keys
are provided for each configuration: one for protect-
ing user DEA keys and another for protecting user
AES keys. The wrapping keys reside in the machine
so that, with an appropriate setting of controls, no
clear value of user cryptographic keys is observed
any where in the system by any program.

1. These key lengths reflect the cryptographic strength. In subsequent chapters, they are referred to as 64-bit, 128-bit, or 192-bit,
respectively, to include the DEA-key-parity bits.

1-20 The z/Architecture CPU Architecture

The message-security-assist extension 3 may be
available on models implementing the message-
security assist. The extension provides the following
features:

• A 256-Bit AES Wrapping-Key Register: The reg-
ister contents are used to protect user AES keys.

• A 256-Bit AES Wrapping-Key Verification-Pattern
Register: The register contents are used to iden-
tify the version of the AES wrapping key.

• A 192-Bit DEA Wrapping-Key Register: The reg-
ister contents are used to protect user DEA keys.

• A 192-Bit DEA Wrapping-Key Verification-Pattern
Register: The register contents are used to iden-
tify the version of the DEA wrapping key.

• The following functions under the CIPHER MES-
SAGE instruction:

• Encrypted DEA
• Encrypted TDEA 128
• Encrypted TDEA 192
• Encrypted AES 128
• Encrypted AES 192
• Encrypted AES 256

These functions use an encrypted cryptographic
key.

• The following functions under the CIPHER MES-
SAGE WITH CHAINING instruction:

• Encrypted DEA
• Encrypted TDEA 128
• Encrypted TDEA 192
• Encrypted AES 128
• Encrypted AES 192
• Encrypted AES 256

These functions use an encrypted cryptographic
key.

• The following functions under the COMPUTE
MESSAGE AUTHENTICATION CODE instruc-
tion:

• Encrypted DEA
• Encrypted TDEA 128
• Encrypted TDEA 192

These functions use an encrypted cryptographic
key.

• The PERFORM CRYPTOGRAPHIC KEY MAN-
AGEMENT OPERATION instruction with the fol-
lowing functions:

• Query
• Encrypt DEA Key
• Encrypt TDEA 128 Key
• Encrypt TDEA 192 Key
• Encrypt AES 128 Key
• Encrypt AES 192 Key
• Encrypt AES 256 Key

These functions provide a means for importing
clear cryptographic keys.

(August, 2010)

Message-Security-Assist
Extension 4

The message-security-assist extension 4 provides
the support for the CFB (cipher feedback) mode, the
OFB (output feedback) mode, and the CTR (counter)
mode. In addition, a number of primitives are pro-
vided to facilitate the support for the CMAC (cipher-
based message authentication code) mode, the
CCM (counter with cipher block chaining – message
authentication code) mode, the GCM (Galois/counter
mode), and the XTS mode.

The message-security-assist extension 4 may be
available on models implementing the message-
security assist. The extension provides the following
instructions and functions:

• The CIPHER MESSAGE WITH CIPHER FEED-
BACK, CIPHER MESSAGE WITH COUNTER,
and CIPHER MESSAGE WITH OUTPUT FEED-
BACK instructions. Each of these instructions
includes the following functions:

• Query
• DEA
• TDEA 128
• TDEA 192
• Encrypted DEA
• Encrypted TDEA 128
• Encrypted TDEA 192
• AES 128
• AES 192
• AES 256
• Encrypted AES 128
• Encrypted AES 192

Introduction 1-21

• Encrypted AES 256

• The PERFORM CRYPTOGRAPHIC COMPUTA-
TION instruction with the following functions:

• Query
• Compute Last Block CMAC Using DEA
• Compute Last Block CMAC Using TDEA 128
• Compute Last Block CMAC Using TDEA 192
• Compute Last Block CMAC Using Encrypted

DEA
• Compute Last Block CMAC Using Encrypted

TDEA 128
• Compute Last Block CMAC Using Encrypted

TDEA 192
• Compute Last Block CMAC Using AES 128
• Compute Last Block CMAC Using AES 192
• Compute Last Block CMAC Using AES 256
• Compute Last Block CMAC Using Encrypted

AES 128
• Compute Last Block CMAC Using Encrypted

AES 192
• Compute Last Block CMAC Using Encrypted

AES 256
• Compute XTS Parameter Using AES 128
• Compute XTS Parameter Using AES 256
• Compute XTS Parameter Using Encrypted

AES 128
• Compute XTS Parameter Using Encrypted

AES 256

• The following functions under the CIPHER MES-
SAGE instruction:

• XTS AES 128
• XTS AES 256
• XTS Encrypted AES 128
• XTS Encrypted AES 256

• The following function under the COMPUTE
INTERMEDIATE MESSAGE DIGEST instruction:

• GHASH

• The following functions under the COMPUTE
MESSAGE AUTHENTICATION CODE instruc-
tion:

• AES 128
• AES 192
• AES 256
• Encrypted AES 128
• Encrypted AES 192
• Encrypted AES 256

The message-security-assist extension 4 requires
the message-security-assist extension 3 as a prereq-
uisite. (August, 2010)

Message-Security-Assist
Extension 5

The message-security-assist extension 5 provides
support for deterministic pseudorandom-number
seeding and generation that conforms to the National
Institute of Standards and Technology (NIST) special
publication 800-90A. The message-security-assist
extension 5 may be available on models implement-
ing the z/Architecture architectural mode. The exten-
sion provides the following instruction:

• PERFORM RANDOM NUMBER OPERATION
(PRNO)

The PERFORM RANDOM NUMBER OPERATION
instruction provides the following functions:

• PRNO-Query
• PRNO-SHA-512-DRNG

The message-security-assist extension 5 requires
the secure-hash-algorithm (SHA-512) capabilities of
the message-security-assist extension 2 as a prereq-
uisite. (March, 2015)

Note: The PERFORM RANDOM NUMBER OPERA-
TION instruction was formerly named PERFORM
PSEUDORANDOM NUMBER OPERATION. With
the addition of the message-security-assist extension
7, the same instruction is also capable of generating
true random numbers, hence the name change. The
former mnemonic PPNO is deprecated, but is still
retained.

Message-Security-Assist
Extension 6

The message-security-assist extension 6 may be
available on models implementing the message-
security assist. The extension provides the following
additional functions for the COMPUTE INTERMEDI-
ATE MESSAGE DIGEST and COMPUTE LAST
MESSAGE DIGEST instructions.

MSA SHA-3 Hash Facility: This facility consists of
the following four functions for generating message

1-22 The z/Architecture CPU Architecture

digests having a length of 224, 256, 384, and 512
bits, using the respective SHA-3 functions defined in
Reference [21.] on page xxx.

• KIMD-SHA3-224
• KIMD-SHA3-256
• KIMD-SHA3-384
• KIMD-SHA3-512
• KLMD-SHA3-224
• KLMD-SHA3-256
• KLMD-SHA3-384
• KLMD-SHA3-512

MSA SHA-3 Extendable-Output Facility: This facil-
ity consists of the following functions for producing
message digests having any desired length using the
SHAKE-128 and SHAKE-256 functions described in
Reference [21.] on page xxx.

• KIMD-SHAKE-128
• KIMD-SHAKE-256
• KLMD-SHAKE-128
• KLMD-SHAKE-256

(September,2017)

Message-Security-Assist
Extension 7

The message-security-assist extension 7 may be
available on models implementing the message-
security-assist extension 5. The extension provides
the following additional functions to the PERFORM
RANDOM NUMBER OPERATION (PRNO) instruc-
tion related to true random number generation:

• PRNO-TRNG-Query-Raw-to-Conditioned Ratio
• PRNO-TRNG

(September,2017)

Message-Security-Assist
Extension 8

The message-security-assist extension 8 may be
available on models implementing the z/Architecture
architectural mode. The message-security-assist
extension 8 provides support for both ciphering and
authentication of a message, and the authentication
of additional data (other than the message). The

message-security-assist extension 8 provides the fol-
lowing instruction:

• CIPHER MESSAGE WITH AUTHENTICATION
(KMA)

The CIPHER MESSAGE WITH AUTHENTICATION
instruction provides support for the Galois-counter-
mode (GCM) of ciphering, as described in Reference
[17.] on page xxx. Functions provided by the instruc-
tion include the following:

• KMA-Query
• KMA-GCM-AES-128
• KMA-GCM-AES-192
• KMA-GCM-AES-256
• KMA-GCM-encrypted-AES-128
• KMA-GCM-encrypted-AES-192
• KMA-GCM-encrypted-AES-256

(September, 2017)

Message-Security-Assist
Extension 9

The message-security-assist extension 9 may be
available on models implementing the z/Architecture
architectural mode. The message-security-assist
extension 9 provides support for elliptic curve cryp-
tography authentication of a message, and the gen-
eration of elliptic curve keys, and scalar-
multiplication. The message-security-assist exten-
sion 9 provides the following instruction:

• COMPUTE DIGITAL SIGNATURE AUTHENTI-
CATION (KDSA)

The COMPUTE DIGITAL SIGNATURE AUTHENTI-
CATION (KDSA) instruction provides support for the
signing and verification of elliptic curves as described
in References [24.] through [40.] on page xxx. Func-
tions provided by the instruction include the following:

• KDSA-Query
• KDSA-ECDSA-Verify-P256
• KDSA-ECDSA-Verify-P384
• KDSA-ECDSA-Verify-P521
• KDSA-ECDSA-Sign-P256
• KDSA-ECDSA-Sign-P384
• KDSA-ECDSA-Sign-P521
• KDSA-Encrypted-ECDSA-Sign-P256
• KDSA-Encrypted-ECDSA-Sign-P384

Introduction 1-23

• KDSA-Encrypted-ECDSA-Sign-P521
• KDSA-EdDSA-Verify-Ed25519
• KDSA-EdDSA-Verify-Ed448
• KDSA-EdDSA-Sign-Ed25519
• KDSA-EdDSA-Sign-Ed448
• KDSA-Encrypted-EdDSA-Sign-Ed25519
• KDSA-Encrypted-EdDSA-Sign-Ed448

Additionally, PERFORM CRYPTOGRAPHIC COM-
PUTATION instruction is modified to add functions for
elliptic curves of scalar multiplication. Here is a list of
the added functions:

• PCC-Scalar-Multiply-P256
• PCC-Scalar-Multiply-P384
• PCC-Scalar-Multiply-P521
• PCC-Scalar-Multiply-Ed25519
• PCC-Scalar-Multiply-Ed448
• PCC-Scalar-Multiply-X25519
• PCC-Scalar-Multiply-X448

Also, the PERFORM CRYPTOGRAPHIC COMPU-
TATION (PCKMO) instruction is modified to add key
generation for elliptic curves. Here is a list of the
added functions:

• PCKMO-Encrypt-ECC-P256-Key
• PCKMO-Encrypt-ECC-P384-Key
• PCKMO-Encrypt-ECC-P521-Key
• PCKMO-Encrypt-ECC-Ed25519-Key
• PCKMO-Encrypt-ECC-Ed448-Key

(September, 2019)

Miscellaneous-Instruction-
Extensions Facility 1

The miscellaneous-instruction-extensions facility 1
may be available on a model implementing the
z/Architecture. The facility provides additional
instruction formats for the following instructions:

• COMPARE LOGICAL AND TRAP (CLT and
CLGT)

• ROTATE THEN INSERT SELECTED BITS
(RISBGN)

(September, 2012)

Miscellaneous-Instruction-
Extensions Facility 2

The miscellaneous-instruction-extensions facility 2
may be available on a model implementing the
z/Architecture. The facility provides the following
additional instructions:

• ADD HALFWORD (AGH)
• BRANCH INDIRECT ON CONDITION
• MULTIPLY (MG, MGRK)
• MULTIPLY HALFWORD (MGH)
• MULTIPLY SINGLE (MSC, MSGC, MSGRKC,

MSRKC)
• SUBTRACT HALFWORD (SGH)

(September, 2017)

Miscellaneous-Instruction-
Extensions Facility 3

The miscellaneous-instruction-extensions facility 3
may be available on a model implementing z/Archi-
tecture. The facility provides the following additional
instructions:

• AND WITH COMPLEMENT (NCRK, NCGRK)
• MOVE RIGHT TO LEFT
• NAND (NNRK, NNGRK)
• NOT EXCLUSIVE OR (NXRK, NXGRK)
• NOR (NORK, NOGRK)
• OR WITH COMPLEMENT (OCRK, OCGRK)
• SELECT (SEL, SELGR)
• SELECT HIGH (SELFHR)

In addition, POPULATION COUNT includes a control
in an M3 field for counting the number of one bits in
each byte or the entire 64-bit register.

(September, 2019)

Modified CCW Indirect Data
Addressing Facility

The modified-CCW-indirect-data-addressing (MIDA)
facility may be available on models implementing
z/Architecture and provides the program an alternate
means to transfer large amounts of data that spans
noncontiguous blocks in main storage without the
overhead of data chaining and without the strict

1-24 The z/Architecture CPU Architecture

boundary and count restrictions imposed by CCW
indirect data addressing (IDA). Modified CCW indi-
rect data addressing permits a single channel-com-
mand word to control the transfer of up to 65,535
bytes of data that spans noncontiguous blocks in
main storage. Each block of main storage to be trans-
ferred may be specified on any boundary and length
up to 4K bytes, provided the specified block does not
cross a 4 K-byte boundary.

Use of modified CCW indirect data addressing may
be restricted to devices accessible by certain chan-
nel-path types.

When modified CCW indirect data addressing is
used, the CCW data address is not used to directly
address data. Instead, the address points to a contig-
uous list of up to 256 quadwords called the modified-
indirect-data-address list (MIDAL). Each quadword in
the MIDAL is called a modified-indirect-data-address
word (MIDAW) that describes a block of storage to be
transferred and contains flags, a byte count, and a
64-bit address designating a data area in absolute
storage. When modified CCW indirect data address-
ing is used, transfer of control from one MIDAW to
the next is made when the count of bytes specified by
the MIDAW count field has been transferred and the
total count of bytes transferred does not yet equal the
count specified by the CCW. This is dissimilar to indi-
rect data addressing where the transfer of control
from one IDAW to the next is made when a program-
specified 2K or 4K boundary is reached and the total
count of bytes transferred does not yet equal the
count specified in the CCW.

In addition to the MIDAW, the ORB modified-CCW-
indirect-data-addressing-control bit and the CCW
modified-indirect-data-address flag are added. (Sep-
tember, 2005)

Move-Page-and-Set-Key Facility

The move-page-and-set-key facility may be available
on a model implementing z/Architecture. The facility
provides additional functionality for the MOVE PAGE
(MVPG) instruction. It may also provide improved
performance for the PERFORM FRAME MANAGE-
MENT FUNCTION (PFMF) instruction when it is
issued with specific options.

(September, 2019)

Move-With-Optional-Specifications
Facility

The move-with-optional-specifications facility may be
available on a model implementing z/Architecture.
The facility adds the semiprivileged MOVE WITH
OPTIONAL SPECIFICATIONS instruction. This
instruction provides the means of moving from a
source operand to a destination operand using differ-
ent address-space-control modes and different keys
for each operand. (February, 2008)

Multiple-Epoch Facility

The multiple-epoch facility may be available on a
model implementing z/Architecture. The facility pro-
vides the means by which a nonzero epoch index
may be stored in byte 0 of the operand of the STORE
CLOCK EXTENDED instruction and in bits 9-15 of
the trace entry formed by the TRACE (TRACG)
instruction.

The multiple-epoch facility also provides four addi-
tional functions for the PERFORM TIMING FACILITY
FUNCTION (PTFF) instruction:

• Query steering information extended
• Query TOD offset user extended
• Set TOD offset extended
• Set TOD offset user extended

Additionally, the multiple-epoch facility provides the
clock-comparator sign control, allowing the compari-
sons of the clock comparator to be either signed or
unsigned.

When the multiple-epoch facility is installed, the
store-clock-fast and TOD-clock-steering facilities are
also installed. (September,2017)

Multiple-Subchannel-Set Facility

The multiple-subchannel-set (MSS) facility may be
available on a model implementing z/Architecture
and increases the maximum number of subchannels
that can be configured to a program. When the MSS
facility is not installed, a single set of subchannels, in
the range 0-65,535, may be provided. When the MSS
facility is installed, a maximum of four sets of sub-
channels may be provided for a program. Each sub-

Introduction 1-25

channel set provides from one to 64K subchannels in
the range 0 to-65,535. (February, 2008)

Multithreading Facility

The multithreading (MT) facility may be available on
models implementing z/Architecture. The facility pro-
vides the means by which more efficient utilization of
a configuration's resources may be realized. The
facility introduces the architectural concept of a core,
which, when multithreading is enabled, comprises a
group of CPUs (sometimes called threads). The CPU
comprises all of the architected resources available
to the program such as the program-status word, reg-
isters, timing facilities, and so forth. When the multi-
threading facility is not enabled, a core consists of a
single CPU.

When the multithreading facility is enabled, the CPUs
within a core may share certain hardware resources
such as execution units or caches. When one CPU in
a core is waiting for other hardware resources (typi-
cally, while waiting for a storage access), other CPUs
in the core can utilize the shared resources in the
core rather than have them remain idle. (March,
2015)

Nonquiescing Key-Setting Facility

The nonquiescing key-setting facility may be avail-
able on a model implementing z/Architecture. The
facility provides performance improvements for the
PERFORM FRAME MANAGEMENT FUNCTION
and SET STORAGE KEY EXTENDED instruction.
(August, 2010)

Order Preserving Compression
Facility

The order-preserving-compression facility may be
available on models implementing z/Architecture.
When the facility is installed the ordering of com-
pressed symbols is the same as the ordering of
uncompressed data when compression is performed
by COMPRESSION CALL. (September, 2017)

Parsing-Enhancement Facility

The parsing-enhancement facility may be available
on a model implementing z/Architecture. The facility
adds the following instructions:

• TRANSLATE AND TEST EXTENDED
• TRANSLATE AND TEST REVERSE

EXTENDED

These instructions perform functions similar to those
of the TRANSLATE AND TEST and TRANSLATE
AND TEST REVERSE instructions, respectively, but
provide the capability of processing either single-byte
or double-byte argument characters, returning either
8-bit or 16-bit function codes. (February, 2008)

PER-3 Facility

The PER-3 facility may be available on a model
implementing z/Architecture. When the facility is
installed, the following two functions are available for
use by the program:

Breaking-Event Address Register: The breaking-
event-address register is a 64-bit CPU register that is
updated with the address of any instruction that
causes a break in sequential instruction execution
(that is, the instruction address in the PSW is
replaced, rather than incremented by the length of
the instruction). When the PER-3 facility is installed
and a program interruption occurs, whether or not
PER is indicated, the contents of the breaking-event-
address register are stored in real storage locations
272-279. This can be used as a debugging assist for
wild-branch detection.

PER Instruction-Fetching Nullification: Bit 39 of
control register 9, when one, specifies that PER
instruction-fetching events force nullification. Bit 39 of
control register 9 is meaningful only when bit 33 of
control register 9, the instruction-fetching PER-event
mask, is also one. When the PER-3 facility is not
installed, or when bit 39 of control register 9 is zero,
nullification is not forced for PER instruction-fetching
events (called a PER instruction-fetching basic
event).

(September, 2005)

1-26 The z/Architecture CPU Architecture

PER-Storage-Key-Alteration
Facility

The PER-storage-key-alteration facility may be avail-
able on a model implementing z/Architecture. The
facility provides for program-event recording to detect
alteration of storage keys made by the SET STOR-
AGE KEY EXTENDED, PERFORM FRAME MAN-
AGEMENT FUNCTION, MOVE PAGE, and TEST
BLOCK instructions.

(September, 2019)

PER Zero-Address-Detection
Facility

The PER zero-address-detection facility may be
available on a model implementing z/Architecture.
When the facility is installed and enabled, a PER
zero-address-detection event is caused by execution
of an instruction that accesses storage using an
operand address formed from a general register con-
taining zero. (August, 2010)

PFPO Facility

The PFPO facility provides the instruction PER-
FORM FLOATING-POINT OPERATION. This
instruction, designed for future expansion, currently
provides 54 conversion functions (from any of nine
floating-point data formats to any of the six formats in
another floating-point radix) using any of eight round-
ing methods. All conversions are correctly rounded.
(April, 2007)

Population-Count Facility

The population-count facility may be available on a
model implementing z/Architecture. The facility pro-
vides the POPULATION COUNT instruction which
provides a count of one bits in each byte of a general
register. (August, 2010)

Processor-Assist Facility

The processor-assist facility may be available on a
model implementing z/Architecture. The facility pro-

vides the means by which the program can request
that the processor perform an assist function. The
program specifies which assist function is to be per-
formed in an immediate (M3) field of the instruction.

The facility provides the following general instruction:

• PERFORM PROCESSOR ASSIST

The processor-assist functions provided include the
following:

• Transaction-abort assist

(September, 2012)

Reset-Reference-Bits-Multiple
Facility

The reset-reference-bits-multiple facility may be
available on a model implementing z/Architecture.
The facility provides performance improvements for
the inspection and resetting of reference bits by
means of the RESET REFERENCE BITS MULTIPLE
instruction. (August, 2010)

Restore-Subchannel Facility

The restore-subchannel facility may be available on a
model implementing z/Architecture. The facility pro-
vides the means for the channel subsystem to
recover a damaged subchannel and report the recov-
ery to the program by means of a CRW. (February,
2008)

Server-Time-Protocol Facility

The server-time-protocol facility may be available on
a model implementing z/Architecture. The facility pro-
vides the means by which the time-of-day (TOD)
clocks in various systems can be synchronized using
message links. STP operates in conjunction with the
TOD-clock-steering facility, providing a new timing
mode, new timing states, a new STP-timing-alert
external interruption, and a new STP-sync-check
machine-check conditions. (September, 2005)

Introduction 1-27

Side-Effect-Access Facility

The side-effect-access facility may be available on a
model implementing z/Architecture. When the facility
is installed, the translation-exception identification
(TEID) stored at real locations 168-175 during cer-
tain access exceptions contains an indication that the
access was a side-effect access. A side-effect
access is an implied access not directly associated
with a storage operand of an instruction, is not an
instruction fetch, is not a fetch of table information
during ART or DAT, and is not a store of a trace entry.
Additionally, when the side-effect-access facility is
installed, an enhanced three-bit protection code is
stored in the TEID. (September, 2017)

Store-Clock-Fast Facility

The store-clock-fast facility may be available on a
model implementing z/Architecture. The facility pro-
vides a means by which an eight-byte time-of-day
clock value may be stored without any artificial delay
to ensure uniqueness. When the facility is installed,
the TOD-clock bits stored by TRACE (TRACE and
TRACG) are subject to additional control by a bit in
control register 0. The facility provides the STORE
CLOCK FAST instruction. (September, 2005)

Store-Facility-List-Extended
Facility

The store-facility-list-extended facility may be avail-
able on a model implementing z/Architecture. The
facility extends the function provided by the STORE
FACILITY LIST (STFL) instruction. Whereas STFL is
a control instruction that can store an indication of 32
facilities at real location 200, the new STORE FACIL-
ITY LIST EXTENDED (STFLE) instruction is a gen-
eral instruction that can store an indication of up to
16,384 facilities at a program-specified location.
(September, 2005)

Test-Pending-External-Interruption
Facility

The test-pending-external-interruption facility may be
available on a model implementing z/Architecture.
The facility provides the means by which a control
program can determine whether one or more of a
subset of external interruptions is pending in the

CPU. The facility provides the TEST PENDING
EXTERNAL INTERRUPTION instruction. (Septem-
ber, 2017)

TOD-Clock-Steering Facility

The TOD-clock-steering facility may be available on a
model implementing z/Architecture. The facility pro-
vides a means by which apparent stepping rate of the
time-of-day clock may be altered without changing
the physical hardware oscillator which steps the
physical clock. The facility adds the semiprivileged
PERFORM TIMING FACILITY FUNCTION (PTFF)
instruction which provides the means by which the
program can query various timing-related parame-
ters, and, optionally, the means by which an autho-
rized timing-control program can influence certain of
these parameters. (September, 2005)

Transactional-Execution Facility

The transactional-execution facility may be available
on a model implementing z/Architecture. The facility
provides the means by which a program can issue
multiple instructions, the storage accesses of which
either (a) appear to occur as a single concurrent
operation or (b) do not appear to occur, as observed
by other CPUs and by the channel subsystem.

The facility provides the following general instruc-
tions:

• EXTRACT TRANSACTION NESTING DEPTH
• NONTRANSACTIONAL STORE
• TRANSACTION ABORT
• TRANSACTION BEGIN (TBEGIN)
• TRANSACTION END

(September, 2012)

Vector-Enhancements Facility 1

The vector-enhancements facility 1 may be available
on models implementing the vector facility for z/Archi-
tecture. The facility adds support for the following fea-
tures and functions:

The facility also includes the following new instruc-
tions:

• VECTOR BIT PERMUTE
• VECTOR MULTIPLY SUM LOGICAL

1-28 The z/Architecture CPU Architecture

• VECTOR NOT EXCLUSIVE OR
• VECTOR NAND
• VECTOR OR WITH COMPLEMENT
• VECTOR FP MAXIMUM
• VECTOR FP MINIMUM

The facility adds support for halfword, word, and dou-
bleword elements to VECTOR POPULATION
COUNT

The facility adds support for BFP short format and
BFP extended format elements to most instructions
in chapter 24.

(September, 2017)

Vector-Enhancements Facility 2

The vector-enhancements facility 2 may be available
on a model implementing the z/Architecture. The
facility extends the vector-enhancements facility 1. It
provides performance improvements for algorithms
working with elements or arrays of elements stored in
the little endian format, shifting vectors, and perform-
ing substring search. In addition conversion support
for short-format arithmetic has been added.

The facility includes the following instructions:

• VECTOR LOAD BYTE REVERSED ELEMENTS
(VLBR)

• VECTOR LOAD ELEMENTS REVERSED
(VLER)

• VECTOR LOAD BYTE REVERSED ELEMENT
AND ZERO (VLLEBRZ)

• VECTOR LOAD BYTE REVERSED ELEMENT
(VLEBRH, VLEBRF, VLEBRG)

• VECTOR LOAD BYTE REVERSED ELEMENT
AND REPLOCATE (VLBRREP)

• VECTOR STORE BYTE REVERSED ELE-
MENTS (VSTBR)

• VECTOR STORE ELEMENTS REVERSED
(VSTER)

• VECTOR STORE BYTE REVERSED ELE-
MENT (VSTEBRH, VSTEBRF, VSTEBRG)

• VECTOR SHIFT LEFT DOUBLE BY BIT (VSLD)
• VECTOR SHIFT RIGHT DOUBLE BY BIT

(VSRD)
• VECTOR STRING SEARCH (VSTRS)

The facility provides alternate forms for the following
instructions:

• VECTOR SHIFT LEFT (VSL)
• VECTOR SHIFT RIGHT ARITHMETIC (VSRA)
• VECTOR SHIFT RIGHT LOGICAL (VSRL)
• VECTOR FP CONVERT FROM FIXED (VCFPS)
• VECTOR FP CONVERT FROM LOGICAL

(VCFPL)
• VECTOR FP CONVERT TO FIXED (VCSFP)
• VECTOR FP CONVERT TO LOGICAL (VCLFP)

(September, 2019)

Vector Facility for z/Architecture

The vector facility for z/Architecture may be available
on models implementing z/Architecture. When the
facility is installed and enabled, vector instructions
are available, having access to 32 128-bit registers.
The instructions are described in four chapters:

• Chapter 21 describes the vector facility support
instructions

• Chapter 22 describes the vector facility integer
instructions

• Chapter 23 describes the vector facility string
instructions

• Chapter 24 describes the vector facility floating-
point instructions.

Note: ESA/390 provided an optional vector facility,
however this facility was never available on any pro-
cessor capable of the z/Architecture architectural
mode. The vector facility for z/Architecture differs
from the ESA/390 vector facility in instruction and
register definitions. (March, 2015)

Vector Packed-Decimal Facility

The vector-packed-decimal facility may be available
on models implementing z/Architecture. When the
facility is installed and enabled, vector decimal
instructions are available, allowing operations on
packed data in vector registers. The facility provides
the following instructions:

• VECTOR ADD DECIMAL
• VECTOR COMPARE DECIMAL
• VECTOR CONVERT TO BINARY
• VECTOR CONVERT TO DECIMAL
• VECTOR DIVIDE DECIMAL
• VECTOR LOAD IMMEDIATE DECIMAL
• VECTOR LOAD RIGHTMOST WITH LENGTH
• VECTOR MULTIPLY DECIMAL

Introduction 1-29

• VECTOR MULTIPLY AND SHIFT DECIMAL
• VECTOR PACK ZONED
• VECTOR PERFORM SIGN OPERATION DECI-

MAL
• VECTOR REMAINDER DECIMAL
• VECTOR SHIFT AND DIVIDE DECIMAL
• VECTOR SHIFT AND ROUND DECIMAL
• VECTOR STORE RIGHTMOST WITH LENGTH
• VECTOR SUBTRACT DECIMAL
• VECTOR TEST DECIMAL
• VECTOR UNPACK ZONED

(September, 2017)

Vector-Packed-Decimal-
Enhancement Facility

The vector-packed-decimal-enhancement facility
may be available on models implementing the
z/Architecture. The facility extends the vector
packed-decimal facility. It provides performance
improvements for common code constructs as well
as the ability to suppress the decimal exception on
an overflow condition and handle the overflow case
when needed locally based on the condition code.

The facility provides alternate forms for the following
instructions:

• VECTOR ADD DECIMAL (VAP)
• VECTOR CONVERT TO BINARY (VCVB,

VCVBG)
• VECTOR CONVERT TO DECIMAL (VCVF,

VCVDG)
• VECTOR DIVIDE DECIMAL (VDP)
• VECTOR MULTIPLY AND SHIFT DECIMAL

(VMSP)
• VECTOR MULTIPLY DECIMAL (VMP)
• VECTOR PERFORM SIGN OPERATION DECI-

MAL (VPSOP)
• VECTOR REMAINDER DECIMAL (VRP)
• VECTOR SHIFT AND DIVIDE DECIMAL (VSDP)
• VECTOR SHIFT AND ROUND DECIMAL

(VSRP)
• VECTOR SUBTRACT DECIMAL (VSP)

(September, 2019)

Warning-Track Interruption Facility

The warning-track-interruption facility may be avail-
able on a model implementing the z/Architecture.

The facility provides the means by which a warning-
track external interruption can be presented to a CPU
in a configuration with shared-CPU resources, such
as a logical partition. The control program can use
the warning-track external interruption as the signal
to make the currently-executing dispatchable unit dis-
patchable on a different CPU of the configuration.
(September, 2012)

The ESA/390 Base

z/Architecture includes all of the facilities of ESA/390
except for the asynchronous-pageout, asynchro-
nous-data-mover, program-call-fast, and ESA/390
vector facilities. This section briefly outlines most of
the remaining facilities that were additions in
ESA/390 as compared to ESA/370.

ESA/390 is described in Reference [1.] on page xxix.

The CPU-related facilities that were new in ESA/390
are summarized below. ESA/390 was announced in
September, 1990. Any extension added subse-
quently has the date of its announcement in paren-
theses at the end of its summary.

The following extensions are described in detail in
SA22-7201 and in this publication:

• Access-list-controlled protection allows store-
type storage references to an address space to
be prohibited by means of a bit in the access-list
entry used to access the space. Thus, different
users having different access lists can have dif-
ferent capabilities to store in the same address
space.

• The program-event-recording facility 2 (PER 2) is
an alternative to the original PER facility, which is
now named PER 1. (Neither of the names PER 1
and PER 2 is used in z/Architecture; only “PER”
is used.) PER 2 provides the option of having a
successful-branching event occur only when the
branch target is within the designated storage
area, and it provides the option of having a stor-
age-alteration event occur only when the storage
area is within designated address spaces. The
use of these options improves performance by
allowing only PER events of interest to occur.
PER 2 deletes the ability to monitor for general-
register-alteration events.

1-30 The z/Architecture CPU Architecture

PER 2 includes extensions that provide addi-
tional information about PER events. The exten-
sions were described in detail beginning in the
fourth edition of SA22-7201.

• Concurrent sense improves performance by
allowing sense information to be presented at the
time of an interruption due to a unit-check condi-
tion, thus avoiding the need for a separate I/O
operation to obtain the sense information.

• Broadcasted purging provides the COMPARE
AND SWAP AND PURGE instruction for condi-
tionally updating tables associated with dynamic
address translation and access-register transla-
tion and clearing associated buffers in multiple
CPUs. This is described in detail beginning in the
eighth edition of SA22-7201.

• Storage-protection override provides a new form
of subsystem storage protection that improves
the reliability of a subsystem executed in an
address space along with possibly erroneous
application programs. When storage-protection
override is made active by a control-register bit,
fetches and stores by the CPU are permitted to
storage locations having a storage key of 9
regardless of the access key used by the CPU. If
the subsystem is in key-8 storage and is exe-
cuted with a PSW key of 8, for example, and the
application programs are in key-9 storage and
are executed with a PSW key of 9, accesses by
the subsystem to the application-program areas
are permitted while accesses by the application
programs to the subsystem area are denied.
(September, 1991)

• Move-page facility 2 extends the MOVE PAGE
instruction introduced in ESA/370 by allowing
use of a specified access key for either the
source or the destination operand, by allowing
improved performance when the destination
operand will soon be referenced, and by allowing
improved performance when an operand is
invalid in both main and expanded storage. The
ESA/370 version of MOVE PAGE is now called
move-page facility 1 and is in Chapter 7, “Gen-
eral Instructions.” MOVE PAGE of move-page
facility 2 is in Chapter 10, “Control Instructions.”
Some details about the means for control-pro-
gram support of MOVE PAGE are not provided.
(September, 1991) (The z/Architecture MOVE
PAGE instruction is described only in Chapter 10
of this publication. MOVE PAGE no longer can

move data to or from expanded storage, and all
details about MOVE PAGE are provided.)

• The square-root facility consists of the SQUARE
ROOT instruction and the square-root exception.
The instruction extracts the square root of a float-
ing-point operand in either the long or short for-
mat. The instruction is the same as that provided
on some models of the IBM 4341, 4361, and
4381 Processors. (September, 1991)

• The cancel-I/O facility allows the program to with-
draw a pending start function from a designated
subchannel without signaling the device, which is
useful in certain error-recovery situations. (Sep-
tember, 1991)

The cancel-I/O facility provides the CANCEL
SUBCHANNEL instruction and is described in
detail beginning in the eighth edition of
SA22-7201.

• The string-instruction facility (or logical string
assist) provides instructions for (1) moving a
string of bytes until a specified ending byte is
found, (2) logically comparing two strings until an
inequality or a specified ending byte is found,
and (3) searching a string of a specified length
for a specified byte. The first two instructions are
particularly useful in a C program in which strings
are normally delimited by an ending byte of all
zeros. (June, 1992)

• The suppression-on-protection facility causes a
protection exception due to page protection to
result in suppression of instruction execution
instead of termination of instruction execution,
and it causes the address and an address-space
identifier of the protected page to be stored in
low storage. This is useful in performing the
AIX/ESA® copy-on-write function, in which
AIX/ESA causes the same page of different
address spaces to map to a single page frame of
real storage so long as a store in the page is not
attempted and then, when a store is attempted in
a particular address space, assigns a unique
page frame to the page in that address space
and copies the contents of the page to the new
page frame. (February, 1993)

• The set-address-space-control-fast facility con-
sists of the SET ADDRESS SPACE CONTROL
FAST (SACF) instruction, which possibly can be
used instead of the previously existing SET
ADDRESS SPACE CONTROL (SAC) instruction,
depending on whether all of the SAC functions

Introduction 1-31

are required. SACF, unlike SAC, does not per-
form the serialization and checkpoint-synchroni-
zation functions, nor does it cause copies of
prefetched instructions to be discarded. SACF
provides improved performance on some mod-
els. (February, 1993)

• The subspace-group facility includes the
BRANCH IN SUBSPACE GROUP instruction,
which can be used to give or return control from
one address space to another in a group of
address spaces called a subspace group, with
this giving and returning of control being done
with better performance than can be obtained by
means of the PROGRAM CALL and PROGRAM
RETURN or PROGRAM TRANSFER instruc-
tions. One address space in the subspace group
is called the base space, and the other address
spaces in the group are called subspaces. It is
intended that each subspace contain a different
subset of the storage in the base space, that the
base space and each subspace contain a sub-
system control program, such as CICS®, and
application programs, and that each subspace
contain the data for a single transaction being
processed under the subsystem control program.
The placement of the data for each transaction in
a different subspace prevents the processing of a
transaction from erroneously damaging the data
of other transactions. The data of the control pro-
gram can be protected from the transaction pro-
cessing by means of the storage-protection-
override facility. (April, 1994)

• The virtual-address enhancement of suppression
on protection provides that if dynamic address
translation (DAT) was on when a protection
exception was recognized, the suppression-on-
protection result is indicated, and the address of
the protected location is stored, only if the
address is one that was to be translated by DAT;
the suppression-on-protection result is not indi-
cated if the address that would be stored is a real
address. This enhancement allows the stored
address to be translated reliably by the control
program to determine if the exception was due to
page protection as opposed to key-controlled
protection. The enhancement extends the useful-
ness of suppression on protection to operating
systems like MVS/ESA™ that use key-controlled
protection. (September, 1994)

• The immediate-and-relative-instruction facility
includes 13 new instructions, most of which use
a halfword-immediate value for either signed-

binary arithmetic operations or relative branch-
ing. The facility reduces the need for general reg-
isters, and, in particular, it eliminates the need to
use general registers to address branch targets.
As a result, the general registers and access reg-
isters can be allocated more efficiently in pro-
grams that require many registers. (September,
1996)

• The compare-and-move-extended facility pro-
vides new versions of the COMPARE LOGICAL
LONG and MOVE LONG instructions. The new
versions increase the size of the operand-length
specifications from 24 bits to 32 bits, which can
be useful when objects larger than 16M bytes are
processed through the use of 31-bit addressing.
The new versions also periodically complete to
allow software polling in a multiprocessing sys-
tem. (September, 1996)

• The checksum facility consists of the CHECK-
SUM instruction, which can be used to compute
a 16-bit or 32-bit checksum in order to improve
Transmission-Control Protocol/Internet Protocol
(TCP/IP) performance. (September, 1996)

• The called-space-identification facility improves
serviceability by further identifying the called
address space in a linkage-stack state entry
formed by the PROGRAM CALL instruction.
(September, 1996)

• The branch-and-set-authority facility consists of
the BRANCH AND SET AUTHORITY instruction,
which can be used to improve the performance
of linkages within an address space by replacing
PROGRAM CALL, PROGRAM TRANSFER, and
SET PSW KEY FROM ADDRESS instructions.
(June, 1997)

• The perform-locked-operation facility consists of
the unprivileged PERFORM LOCKED OPERA-
TION instruction, which appears to provide con-
current interlocked-update references to multiple
storage operands. A function code of the instruc-
tion can specify any of six operations: compare
and load, compare and swap, double compare
and swap, compare and swap and store, com-
pare and swap and double store, and compare
and swap and triple store. The function code fur-
ther specifies either word or doubleword oper-
ands. The instruction can be used to avoid the
use of programmed locks in a multiprocessing
system. (June, 1997)

1-32 The z/Architecture CPU Architecture

• Four additional floating-point facilities improve
the hexadecimal-floating-point (HFP) capability
of the machine and add a binary-floating-point
(BFP) capability. The facilities are:

– Basic floating-point extensions, which pro-
vides 12 additional floating-point registers to
make a total of 16 floating-point registers.
This facility also includes a floating-point-
control register and means for saving the
contents of the new registers during a store-
status operation or a machine-check inter-
ruption.

– Floating-point-support (FPS) extensions,
which provides eight new instructions,
including four to convert data between the
HFP and BFP formats.

– Hexadecimal-floating-point (HFP) exten-
sions, which provides 26 new instructions to
operate on data in the HFP format. All of
these are counterparts to new instructions
provided by the BFP facility, including con-
version between floating-point and fixed-
point formats, and a more complete set of
operations on the extended format.

– Binary floating-point (BFP), which defines
short, long, and extended binary-floating-
point (BFP) data formats and provides 87
new instructions to operate on data in these
formats. The BFP formats and operations
provide everything necessary to conform to
the IEEE standard (ANSI/IEEE Standard
754-2008, as defined in Reference [20.] on
page xxx) except for conversion between
binary-floating-point numbers and decimal
strings, which must be provided in software.

(May, 1998)

• The resume-program facility consists of the
RESUME PROGRAM instruction, which
restores, from a specified save area, the instruc-
tion address and certain other fields in the cur-
rent PSW and also the contents of an access-
and-general-register pair. RESUME PROGRAM
allows a problem-state interruption-handling pro-
gram to restore the state of an interrupted pro-
gram and return to that program despite that a
register is required for addressing the save area
from which the state is restored. (May, 1998)

• The trap facility provides the TRAP instructions
(a two-byte TRAP2 instruction and a four-byte

TRAP4 instruction) that can overlay instructions
in an application program to give control to a pro-
gram that can perform fix-up operations on data
being processed, such as dates that may be a
“Year-2000” problem. RESUME PROGRAM can
be used to return from the fix-up program. TRAP
and RESUME PROGRAM can improve perfor-
mance by avoiding program interruptions that
would otherwise be needed to give control to and
from the fix-up program. (May, 1998)

• The extended-TOD-clock facility includes (1) an
extension of the TOD clock from 64 bits to 104
bits, allowing greater resolution; (2) a TOD pro-
grammable register, which contains a TOD pro-
grammable field that can be used to identify the
configuration providing a TOD-clock value in a
sysplex; (3) the SET CLOCK PROGRAMMABLE
FIELD instruction, for setting the TOD program-
mable field in the TOD programmable register;
and (4) the STORE CLOCK EXTENDED instruc-
tion, which stores both the longer TOD-clock
value and the TOD programmable field. STORE
CLOCK EXTENDED can be used in the future
when the TOD clock is further extended to con-
tain time values that exceed the current year-
2042 limit (when there is a carry out of the cur-
rent bit 0 of the TOD clock). (August, 1998)

• The TOD-clock-control-override facility provides
a control-register bit that allows setting the TOD
clock under program control, without use of the
manual TOD-clock control of any CPU. (August,
1998)

• The store-system-information facility provides
the privileged STORE SYSTEM INFORMATION
instruction, which can be used to obtain informa-
tion about a component or components of a vir-
tual machine, a logical partition, or the basic
machine. (January, 1999)

• The extended-translation facility, now called the
extended-translation facility 1, includes the CON-
VERT UNICODE TO UTF-8, CONVERT UTF-8
TO UNICODE, and TRANSLATE EXTENDED
instructions, all of which can improve perfor-
mance. TRANSLATE EXTENDED can be used
in place of a TRANSLATE AND TEST instruction
that locates an escape character, followed by a
TRANSLATE instruction that translates the bytes
preceding the escape character. (April, 1999)

The following extensions are described in detail in
other publications:

Introduction 1-33

• The Enterprise Systems Connection Architec-
ture® (ESCON®) introduces a new type of chan-
nel that uses an optical-fiber communication link
between channels and control units. Information
is transferred serially by bit, at 200 million bits per
second, up to a maximum distance of 60 kilome-
ters. The optical-fiber technology and serial
transmission simplify cabling and improve reli-
ability. See the publication IBM Enterprise Sys-
tems Architecture/390 ESCON I/O Interface,
SA22-7202.

• The ESCON channel-to-channel adapter
(ESCON CTCA) provides the same type of func-
tion for serial channel paths as is available for the
parallel-I/O-interface channel paths. See the
publication IBM Enterprise Systems Architec-
ture/390 ESCON Channel-to-Channel Adapter,
SA22-7203.

• I/O-device self-description allows a device to
describe itself and its position in the I/O configu-
ration. See the publication IBM Enterprise Sys-
tems Architecture/390 Common I/O-Device
Commands and Self Description, SA22-7204.

• The compression facility performs a Ziv-Lempel
type of compression and expansion by means of
static (nonadaptive) dictionaries that are to be
prepared by a program before the compression
and expansion operations. Because the dictio-
naries are static, the compression facility can
provide good compression not only for long
sequential data streams (for example, archival or
network data) but also for randomly accessed
short records (for example, 80 bytes). See the
publication IBM Enterprise Systems Architec-
ture/390 Data Compression, SA22-7208. (Febru-
ary, 1993) (The z/Architecture COMPRESSION
CALL instruction is described in this publication.
However, introductory information and informa-
tion about dictionary formats still is provided only
in SA22-7208.)

The remaining extensions of ESA/390, for which
detailed descriptions are not provided, are as follows:

• The integrated cryptographic facility provides a
number of instructions to protect data privacy, to
support message authentication and personal
identification, and to facilitate key management.
The high-performance cipher capability of the
facility is designed for financial-transaction and
bulk-encryption environments, and it complies
with the Data Encryption Standard (DES).

– Usability of the cryptographic facility is
extended to virtual-machine environments,
which allows the facility to be used by
MVS/ESA being executed under VM/ESA®,
which in turn may be executed either under
another VM/ESA or in a logical partition.
(September, 1991)

• The external-time-reference facility provides a
means to initiate and maintain the synchroniza-
tion of TOD clocks to an external time reference
(ETR). Synchronization tolerance of a few micro-
seconds can be achieved, and the effect of leap
seconds is taken into account. The facility con-
sists of an ETR sending unit (Sysplex Timer®),
which may be duplexed, two or more ETR receiv-
ing units, and optical-fiber cables. The cables are
used to connect the ETR sending unit, which is
an external device, to ETR receiving units of the
configuration. CPU instructions are provided for
setting the TOD clock to the value supplied by
the ETR sending unit.

– The ETR automatic-propagation-delay-
adjustment function adjusts the time signals
from the ETR to the attached processors to
compensate for the propagation delay on the
cables to the processors, thus allowing the
cables to be of different lengths. (September,
1991)

– The ETR external-time-source function syn-
chronizes the ETR to a time signal received
from a remote location by means of a tele-
phone or radio. (September, 1991)

• Extended sorting provides instructions that
improve the performance of the DB2® sorting
function.

• Other PER extensions, besides those described
beginning in the fourth edition of this publication,
are an augmentation of PER 2 that provide addi-
tional PER function in the interpretive-execution
mode.

• Channel-subsystem call provides various func-
tions for use in the management of the I/O con-
figuration. Some of the functions acquire
information about the configuration from the
accessible elements of the configuration, while
others dynamically change the configuration.

• The operational extensions are a number of
other improvements that result in increased avail-
ability and ease of use of the system, as follows:

1-34 The z/Architecture CPU Architecture

– Automatic-reconfiguration permits an operat-
ing system in an LPAR partition to declare
itself willing to be terminated suddenly, usu-
ally to permit its storage and CPU resources
to be acquired by an adjacent partition that is
dynamically absorbing the work load of
another system that has failed. Other func-
tions deactivate and reset designated partici-
pating partitions.

– A new storage-reconfiguration command
decreases the time needed to reconfigure
storage by allowing multiple requests for
reconfiguration to be made by means of a
single communication with the service pro-
cessor.

– SCP-initiated reset allows a system control
program (SCP) to reset its I/O configuration
prior to entering the disabled wait state fol-
lowing certain check conditions.

– Console integration simplifies configuration
requirements by reducing by one the number
of consoles required by MVS.

– The processor-availability facility enables a
CPU experiencing an unrecoverable error
that will cause a check stop to save its state
and alert the other CPUs in the configura-
tion. This allows, in many cases, another
CPU to continue execution of the program
that was in execution on the failing CPU. The
facility is applicable in both the ESA/390
mode and the LPAR mode. (April, 1991)

• Extensions for virtual machines are a number of
improvements to the interpretive-execution facil-
ity, as follows:

– The VM-data-space facility provides for mak-
ing the ESA/390 access-register architecture
more useful in virtual-machine applications.
The facility improves the ability to address a
larger amount of data and to share data. For
information on how VM/ESA uses the VM-
data-space facility, see the publication
VM/ESA CP Programming Services,
SC24-5520.

– A new storage-key function improves perfor-
mance by removing the need for the previ-
ously used RCP area.

– Other improvements include an optional spe-
cial-purpose lookaside for some of the guest-

state information and greater freedom in cer-
tain implementation choices.

• The ESCON-multiple-image facility (EMIF)
allows multiple logical partitions to share ESCON
channels (and FICON channels) and optionally
to share any of the control units and associated
I/O devices configured to these shared channels.
This can reduce channel requirements, improve
channel utilization, and improve I/O connectivity.
(June, 1992)

• PR/SM LPAR mode is enhanced to allow up to
10 logical partitions in a single-image configura-
tion and 20 in a physically-partitioned configura-
tion. The previous limits were seven and 14,
respectively. (June, 1992)

Coincident with z/Architecture, PR/SM LPAR
mode allows 15 logical partitions, and physical
partitioning is not supported.

• The coupling facility enables high-performance
data sharing among MVS/ESA systems that are
connected by means of the facility. The coupling
facility provides storage that can be dynamically
partitioned for caching data in shared buffers,
maintaining work queues and status information
in shared lists, and locking data by means of
shared lock controls. MVS/ESA services provide
access to and manipulation of the coupling-facil-
ity contents. (April, 1994)

The ESA/370 and 370-XA Base

ESA/390 includes the complete set of facilities of
ESA/370 as its base. This section briefly outlines
most of the facilities that were additions in 370-XA as
compared to System/370 and that were additions in
ESA/370 as compared to 370-XA.

The CPU-related facilities that were new in 370-XA
are as follows:

• Bimodal addressing provides two modes of oper-
ation: a 24-bit addressing mode for the execution
of old programs and a 31-bit addressing mode.

• 31-bit logical addressing extends the virtual
address space from the 16M bytes addressable
with 24-bit addresses to 2G bytes
(2,147,483,648 bytes).

• 31-bit real and absolute addressing provides
addressability for up to 2G bytes of main storage.

Introduction 1-35

• The 370-XA protection facilities include key-con-
trolled protection on only 4 K-byte blocks, page
protection, and, as in System/370, low-address
protection for addresses below 512. Fetch-pro-
tection override eliminates fetch protection for
locations 0-2047.

• The tracing facility assists in the determination of
system problems by providing an ongoing record
in storage of significant events.

• The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions facilitate sorting
applications.

• The interpretive-execution facility allows creation
of virtual machines that may operate according
to several architectures and whose performance
is enhanced because many virtual-machine
functions are directly interpreted by the machine
rather than simulated by the program. This facil-
ity is described in the publication IBM 370-XA
Interpretive Execution, SA22-7095.

• The service-call-logical-processor (SCLP) facil-
ity provides a means of communicating between
the control program and the service processor
for the purpose of describing and changing the
configuration. This facility is not described.

The I/O-related differences between 370-XA and
System/370 result from the 370-XA channel subsys-
tem, which includes:

• Path-independent addressing of I/O devices,
which permits the initiation of I/O operations with-
out regard to which CPU is executing the I/O
instruction or how the I/O device is attached to
the channel subsystem. Any I/O interruption can
be handled by any CPU enabled for it.

• Path management, whereby the channel subsys-
tem determines which paths are available for
selection, chooses a path, and manages any
busy conditions encountered while attempting to
initiate I/O processing with the associated
devices.

• Dynamic reconnection, which permits any I/O
device using this capability to reconnect to any
available channel path to which it has access in
order to continue execution of a chain of com-
mands.

• Programmable interruption subclasses, which
permit the programmed assignment of I/O-inter-

ruption requests from individual I/O devices to
any one of eight maskable interruption queues.

• An additional CCW format for the direct use of
31-bit addresses in channel programs. The new
CCW format, called format 1, is provided in addi-
tion to the System/370 CCW format, now called
format 0.

• Address-limit checking, which provides an addi-
tional storage-protection facility to prevent data
access to storage locations above or below a
specified absolute address.

• Monitoring facilities, which can be invoked by the
program to cause the channel subsystem to
measure and accumulate key I/O-resource
usage parameters.

• Status-verification facility, which reports inappro-
priate combinations of device-status bits pre-
sented by a device.

• A set of 13 I/O instructions, with associated con-
trol blocks, which are provided for the control of
the channel subsystem.

The facilities that were new in ESA/370 are as fol-
lows:

• Sixteen access registers permit the program to
have immediate access to storage operands in
up to 16 2 G-byte address spaces, including the
address space in which the program resides. In a
dynamic-address-translation mode named
access-register mode, the instruction B field, or
for certain instructions the R field, designates
both a general register and an access register,
and the contents of the access register, along
with the contents of protected tables, specify the
operand address space to be accessed. By
changing the contents of the access registers,
the program, under the control of an authoriza-
tion mechanism, can have fast access to hun-
dreds of different operand address spaces.

• A linkage stack is used in a functionally
expanded mechanism for passing control
between programs in either the same or different
address spaces. This mechanism makes use
also of the previously existing PROGRAM CALL
instruction, an extended entry-table entry, and a
new PROGRAM RETURN instruction. The
mechanism saves various elements of status,
including access-register and general-register
contents, during a calling linkage, provides for

1-36 The z/Architecture CPU Architecture

changing the current status during the calling
linkage, and restores the original status during
the returning linkage. The linkage stack can also
be used to save and restore access-register and
general-register contents during a branch-type
linkage performed by the new instruction
BRANCH AND STACK.

• A translation mode named home-space mode
provides an efficient means for the control pro-
gram to obtain control in the address space,
called the home address space, in which the
principal control blocks for a dispatchable unit (a
task or process) are kept.

• The semiprivileged MOVE WITH SOURCE KEY
and MOVE WITH DESTINATION KEY instruc-
tions allow bidirectional movement of data
between storage areas having different storage
keys, without the need to change the PSW key.

• The privileged LOAD USING REAL ADDRESS
and STORE USING REAL ADDRESS instruc-
tions allow the control program to access data in
real storage more efficiently.

• The private-space facility allows an address
space not to contain any common segments and
causes low-address protection and fetch-protec-
tion override not to apply to the address space.

• The unprivileged MOVE PAGE instruction allows
the program to move a page of data between
main and expanded storage, provided that the
source and destination pages are both valid.
Some details about the means for control-pro-
gram support of MOVE PAGE are not provided.
The ESA/370 version of MOVE PAGE is now
called move-page facility 1.

• The Processor Resource/Systems Manager™
(PR/SM™) feature provides support for multiple
preferred guests under VM/XA and provides the
logically partitioned (LPAR) mode, with the latter
providing flexible partitioning of processor
resources among multiple logical partitions. Cer-
tain aspects of the LPAR use of PR/SM are
described in the publication IBM ES/3090 Pro-
cessor Complex Processor Resource/Systems
Manager Planning Guide, GA22-7123.

• The COMPARE UNTIL SUBSTRING EQUAL
instruction provides improved performance of the
compression of IMS log data sets and can be
useful in other programs also.

System Program

z/Architecture is designed to be used with a control
program that coordinates the use of system
resources and executes all I/O instructions, handles
exceptional conditions, and supervises scheduling
and execution of multiple programs.

Compatibility

Compatibility among
z/Architecture Systems

Although systems operating as defined by z/Architec-
ture may differ in implementation and physical capa-
bilities, logically they are upward and downward
compatible. Compatibility provides for simplicity in
education, availability of system backup, and ease in
system growth. Specifically, except as noted below,
any program written for z/Architecture gives identical
results on any z/Architecture implementation, pro-
vided that the program:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, I/O equipment, or optional facil-
ities) being present when the facilities are not
included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the con-
figuration. For example, the program must not
depend on interruptions caused by the use of
operation codes or command codes that are not
installed in some models. Also, it must not use or
depend on fields associated with uninstalled
facilities. For example, data should not be placed
in an area used by another model for fixed-logout
information. Similarly, the program must not use
or depend on unassigned fields in machine for-
mats (control registers, instruction formats, etc.)
that are not explicitly made available for program
use.

4. Does not depend on results or functions that are
defined to be unpredictable or model-dependent
or are identified as undefined. This includes the
requirement that the program should not depend

Introduction 1-37

on the assignment of device numbers and CPU
addresses.

5. Does not depend on results or functions that are
defined in the functional-characteristics publica-
tion for a particular model to be deviations from
the architecture.

6. Takes into account any changes made to the
architecture that are identified as affecting com-
patibility.

7. Does not depend on the installation of a facility
which provides any of the specialized-function-
assist instructions.

However, the following operations may not generate
reproducible results:

• DEFLATE CONVERSION CALL functions
DFLTCC-GDHT and DFLTCC-CMPR may gener-
ate different results from the same input data.
However, all results comply to the standard
described in Reference [23.] on page xxx and all
compressed-data symbols generated using
these functions can be decoded to the original
(uncompressed) form of the data by any decoder
which complies to the same standard. Refer to
programming note 9 on page 26-59 for further
details.

Compatibility between
z/Architecture and ESA/390

Control-Program Compatibility
Control programs written for ESA/390 cannot be
directly transferred to systems operating as defined
by z/Architecture. This is because the general-regis-
ter and control-register sizes, PSW size, assigned
storage locations, and dynamic address translation
are changed.

Problem-State Compatibility
A high degree of compatibility exists at the problem-
state level in going forward from ESA/390 to z/Archi-
tecture. Because the majority of a user’s applications
are written for the problem state, this problem-state
compatibility is useful in many installations.

A problem-state program written for ESA/390 oper-
ates with z/Architecture, provided that the program:

1. Complies with the limitations described in “Com-
patibility among z/Architecture Systems”.

2. Is not dependent on privileged facilities which are
unavailable on the system.

Programming Note: This publication assigns mean-
ings to various operation codes, to bit positions in
instructions, channel-command words, registers, and
table entries, and to fixed locations in the low 512
bytes and bytes 4096-8191 of storage. Unless specif-
ically noted, the remaining operation codes, bit posi-
tions, and low-storage locations are reserved for
future assignment to new facilities and other exten-
sions of the architecture.

To ensure that existing programs operate if and when
such new facilities are installed, programs should not
depend on an indication of an exception as a result of
invalid values that are currently defined as being
checked. If a value must be placed in unassigned
positions that are not checked, the program should
enter zeros. When the machine provides a code or
field, the program should take into account that new
codes and bits may be assigned in the future. The
program should not use unassigned low-storage
locations for keeping information since these loca-
tions may be assigned in the future in such a way that
the machine causes the contents of the locations to
be changed.

Availability

Availability is the capability of a system to accept and
successfully process an individual job. Systems oper-
ating in accordance with z/Architecture permit sub-
stantial availability by (1) allowing a large number
and broad range of jobs to be processed concur-
rently, thus making the system readily accessible to
any particular job, and (2) limiting the effect of an
error and identifying more precisely its cause, with
the result that the number of jobs affected by errors is
minimized and the correction of the errors facilitated.

Several design aspects make this possible.

• A program is checked for the correctness of
instructions and data as the program is executed,
and program errors are indicated separate from
equipment errors. Such checking and reporting
assists in locating failures and isolating effects.

1-38 The z/Architecture CPU Architecture

• The protection facilities, in conjunction with
dynamic address translation and the separation
of programs and data in different address
spaces, permit the protection of the contents of
storage from destruction or misuse caused by
erroneous or unauthorized storing or fetching by
a program. This provides increased security for
the user, thus permitting applications with differ-
ent security requirements to be processed con-
currently with other applications.

• Dynamic address translation allows isolation of
one application from another, still permitting
them to share common resources. Also, it per-
mits the implementation of virtual machines,
which may be used in the design and testing of
new versions of operating systems along with the
concurrent processing of application programs.
Additionally, it provides for the concurrent opera-
tion of incompatible operating systems.

• The use of access registers allows programs,
data, and different collections of data to reside in
different address spaces, and this further
reduces the likelihood that a store using an incor-
rect address will produce either erroneous
results or a system-wide failure.

• Multiprocessing and the channel subsystem per-
mit better use of storage and processing capabil-
ities, more direct communication between CPUs,
and duplication of resources, thus aiding in the
continuation of system operation in the event of
machine failures.

• MONITOR CALL, program-event recording, and
the timing facilities permit the testing and debug-
ging of programs without manual intervention
and with little effect on the concurrent processing
of other programs.

• On most models, error checking and correction
(ECC) in main storage, CPU retry, and command
retry provide for circumventing intermittent equip-
ment malfunctions, thus reducing the number of
equipment failures.

• An enhanced machine-check-handling mecha-
nism provides model-independent fault isolation,
which reduces the number of programs impacted
by uncorrected errors. Additionally, it provides
model-independent recording of machine-status
information. This leads to greater machine-
check-handling compatibility between models
and improves the capability for loading and oper-
ating a program on a different model when a sys-
tem failure occurs.

• A small number of manual controls are required
for basic system operation, permitting most oper-
ator-system interaction to take place via a unit
operating as an I/O device and thus reducing the
possibility of operator errors.

• The logical partitions made available by the
PR/SM feature allow continued reliable produc-
tion operations in one or more partitions while
new programming systems are tested in other
partitions. This is an advancement in particular
for non-VM installations.

• The operational extensions and channel-subsys-
tem-call facility of ESA/390 and z/Architecture
improve the ability to continue execution of appli-
cation programs in the presence of system inci-
dents and the ability to make configuration
changes with less disruption to operations.

Organization 2-1© Copyright IBM Corp. 2000, 2019

Chapter 2. Organization

Main Storage . 2-2
Expanded Storage. 2-2
CPU . 2-2

CPU Types . 2-3
Multithreading . 2-3

PSW. 2-4
General Registers . 2-4
Floating-Point Registers 2-4
Floating-Point-Control Register 2-5
Vector Registers . 2-5

Control Registers . 2-6
Access Registers . 2-6
Cryptographic Facility . 2-7

External Time Reference 2-7
I/O . 2-7

Channel Subsystem . 2-7
Channel Paths . 2-7
I/O Devices and Control Units. 2-8

Operator Facilities. 2-8

Logically, a system consists of main storage, one or
more central processing units (CPUs), operator facili-
ties, a channel subsystem, and I/O devices. I/O
devices are attached to the channel subsystem
through control units. The connection between the
channel subsystem and a control unit is called a
channel path.

A channel path employs either a parallel-transmis-
sion protocol or a serial-transmission protocol and,
accordingly, is called either a parallel or a serial
channel path. A serial channel path may connect to a
control unit through a dynamic switch that is capable
of providing different internal connections between
the ports of the switch.

Expanded storage may also be available in the sys-
tem, a cryptographic unit may be included in a CPU,
and an external time reference (ETR) may be con-
nected to the system.

The physical identity of the above functions may vary
among implementations, called “models”. Figure 2-1
depicts the logical structure of a two-CPU multipro-
cessing system that includes expanded storage and
a cryptographic unit and that is connected to an ETR.

Specific processors may differ in their internal char-
acteristics, the installed facilities, the number of sub-
channels, channel paths, and control units which can
be attached to the channel subsystem, the size of
main and expanded storage, and the representation
of the operator facilities.

A system viewed without regard to its I/O devices is
referred to as a configuration. All of the physical
equipment, whether in the configuration or not, is
referred to as the installation.

Figure 2-1. Logical Structure of a z/Architecture System
with Two CPUs

Model-dependent reconfiguration controls may be
provided to change the amount of main and
expanded storage and the number of CPUs and
channel paths in the configuration. In some
instances, the reconfiguration controls may be used
to partition a single configuration into multiple config-

Expanded
Storage

Main
Storage

CPU
Crypto

ETR

Channel Subsystem

Dynamic
Switch

Dynamic
Switch

…

…

…

CU

…

CUCUCU

… …

… … ………

Serial Channel Paths

CU

CU
…

CU…

CU …

…

…

…

…

Parallel Channel Paths

……

CPU

……

2-2 The z/Architecture CPU Architecture

urations. Each of the configurations so reconfigured
has the same structure, that is, main and expanded
storage, one or more CPUs, and one or more sub-
channels and channel paths in the channel subsys-
tem.

Each configuration is isolated in that the main and
expanded storage in one configuration is not directly
addressable by the CPUs and the channel subsys-
tem of another configuration. It is, however, possible
for one configuration to communicate with another by
means of shared I/O devices or a channel-to-channel
adapter. At any one time, the storage, CPUs, sub-
channels, and channel paths connected together in a
system are referred to as being in the configuration.
Each CPU, subchannel, channel path, main-storage
location, and expanded-storage location can be in
only one configuration at a time.

Main Storage

Main storage, which is directly addressable, provides
for high-speed processing of data by the CPUs and
the channel subsystem. Both data and programs
must be loaded into main storage from input devices
before they can be processed. The amount of main
storage available in the system depends on the
model, and, depending on the model, the amount in
the configuration may be under control of model-
dependent configuration controls. The storage is
available in multiples of 4 K-byte blocks. At any
instant, the channel subsystem and all CPUs in the
configuration have access to the same blocks of stor-
age and refer to a particular block of main-storage
locations by using the same absolute address.

Main storage may include a faster-access buffer stor-
age, sometimes called a cache. Each CPU may have
an associated cache. The effects, except on perfor-
mance, of the physical construction and the use of
distinct storage media are not observable by the pro-
gram.

Expanded Storage

Expanded storage may be available on some mod-
els. Expanded storage, when available, can be
accessed by all CPUs in the configuration by means
of instructions that transfer 4 K-byte blocks of data
from expanded storage to main storage or from main

storage to expanded storage. These instructions are
the PAGE IN and PAGE OUT instructions, described
in “PAGE IN” on page 10-73 and “PAGE OUT” on
page 10-74.

Each 4 K-byte block of expanded storage is
addressed by means of a 32-bit unsigned binary inte-
ger called an expanded-storage block number.

CPU

The central processing unit (CPU) is the controlling
center of the system. It contains the sequencing and
processing facilities for instruction execution, inter-
ruption action, timing functions, initial program load-
ing, and other machine-related functions.

The physical implementation of the CPU may differ
among models, but the logical function remains the
same. The result of executing an instruction is the
same for each model, providing that the program
complies with the compatibility rules.

The CPU, in executing instructions, can process
binary integers and floating-point numbers (binary,
decimal, and hexadecimal) of fixed length, decimal
integers of variable length, and logical information of
either fixed or variable length. Processing may be in
parallel or in series; the width of the processing ele-
ments, the multiplicity of the shifting paths, and the
degree of simultaneity in performing the different
types of arithmetic differ from one model of CPU to
another without affecting the logical results.

Instructions which the CPU executes fall into four-
teen classes: general, decimal, floating-point-support
(FPS), binary-floating-point (BFP), decimal-floating-
point (DFP), hexadecimal-floating-point (HFP), vector
support, vector integer, vector string, vector floating
point, vector decimal, specialized-function assist,
control, and I/O instructions. The general instructions
are used in performing binary-integer-arithmetic
operations and logical, branching, and other nonar-
ithmetic operations. The decimal instructions operate
on data in the decimal format. The BFP, DFP, and
HFP instructions operate on data in the BFP, DFP,
and HFP formats, respectively, while the FPS instruc-
tions operate on floating-point data independent of
the format or convert from one format to another. The
privileged control instructions and the I/O instructions
can be executed only when the CPU is in the super-
visor state; the semiprivileged control instructions

Organization 2-3

can be executed in the problem state, subject to the
appropriate authorization mechanisms.

The CPU provides registers which are available to
programs but do not have addressable representa-
tions in main storage, as follows:

• Access registers
• Breaking-event-address register
• Clock comparator
• Control registers
• CPU timer
• Current program-status word (PSW)
• Floating-point-control register
• Floating-point registers
• General registers
• Guarded-storage-control registers
• Prefix register
• TOD-programmable register
• Vector registers

This set of registers is sometimes referred to as the
CPU’s architected register context.

Each CPU in an installation provides access to a
time-of-day (TOD) clock and epoch index, which are
shared by all CPUs in the installation. The instruction
operation code determines which type of register is
to be used in an operation. See Figure 2-2 on
page 2-5 for the format of the control, access, gen-
eral, and floating-point registers.

CPU Types
Each CPU has a type attribute that indicates whether
it provides the full complement of functions and facili-
ties (called a general CPU), or whether it is intended
to process specific types of workloads. A primary
CPU is either a general CPU or a CPU having the
same type as the CPU started following the last IPL
operation (the IPL CPU). A secondary CPU is any
CPU other than a general CPU, and whose CPU type
differs from that of the IPL CPU.

Programming Note: CPUs intended to process spe-
cific types of workloads include those used by the
integrated facility for Linux (IFL), the internal coupling
facility (ICF), and the IBM z Integrated Information
Processor (zIIP). Machines prior to the IBM z13 may
have also included the IBM zEnterprise Application-
Assist Processors (zAAPs) for specific types of work-
loads.

Multithreading
When the multithreading (MT) facility is installed, it
may be enabled by execution of the set-multithread-
ing SIGP order (see “Set Multithreading” on
page 4-92 for details). The following terms are appli-
cable when the MT facility is installed:

Core: When the multithreading facility is enabled,
the following applies:

• The number of CPUs in the configuration is
increased by a multiple, the value of which is
determined by a program-specified maximum
thread identification (thread ID, or simply TID).
The number of CPUs in a core is one more than
the program-specified maximum thread identifi-
cation.

• A number of CPUs corresponding to this multiple
are grouped into a core.

• Each core has the same number of CPUs. Each
CPU within a core is of the same CPU type; how-
ever, based on the model and CPU type, some
CPUs within a core may not be operational.

When the multithreading facility is not installed, or the
facility is installed but not enabled, a core comprises
a single CPU, and the term CPU is generally used in
favor of the term core.

Thread: When the multithreading facility is
installed, a thread is synonymous with a CPU that is
a member of a core. When the multithreading facility
is not installed, or when the facility is installed but not
enabled, the term thread is not applicable.

A control program must explicitly enable multithread-
ing in order for it to be usable, as described in “Set
Multithreading” on page 4-92. However, an applica-
tion program is generally unaware of whether multi-
threading has been enabled.

When multithreading is enabled, the CPU addresses
of all CPUs in the configuration are adjusted to
include a core identification (or core ID) in the left-
most bits of the address and a thread identification
(thread ID, or TID) in the rightmost bits of the
address. See “CPU-Address Identification” on
page 4-84 for details on the core-ID and thread-ID
fields of the CPU address.

CPUs within a core may share certain hardware facil-
ities such as execution units or lower-level caches,

2-4 The z/Architecture CPU Architecture

thus execution within one CPU of a core may affect
the performance of other CPUs in the core.

PSW

The program-status word (PSW) includes the instruc-
tion address, condition code, and other information
used to control instruction sequencing and to deter-
mine the state of the CPU. The active or controlling
PSW is called the current PSW. It governs the pro-
gram currently being executed.

The CPU has an interruption capability, which per-
mits the CPU to switch rapidly to another program in
response to exceptional conditions and external stim-
uli. When an interruption occurs, the CPU places the
current PSW in an assigned storage location, called
the old-PSW location, for the particular class of inter-
ruption. The CPU fetches a new PSW from a second
assigned storage location. This new PSW deter-
mines the next program to be executed. When it has
finished processing the interruption, the program
handling the interruption may reload the old PSW,
making it again the current PSW, so that the inter-
rupted program can continue.

There are six classes of interruption: external, I/O,
machine check, program, restart, and supervisor call.
Each class has a distinct pair of old-PSW and new-
PSW locations permanently assigned in real storage.

General Registers

Instructions may designate information in one or
more of 16 general registers. The general registers
may be used as base-address registers and index
registers in address arithmetic and as accumulators
in general arithmetic and logical operations. Each
register contains 64 bit positions. The general regis-
ters are identified by the numbers 0-15 and are des-
ignated by a four-bit R field in an instruction. Some
instructions provide for addressing multiple general
registers by having several R fields. For some
instructions, the use of a specific general register is
implied rather than explicitly designated by an R field
of the instruction.

For some operations, either bits 32-63 or bits 0-63 of
two adjacent general registers are coupled, providing
a 64-bit or 128-bit format, respectively. In these oper-
ations, the program must designate an even-num-
bered register, which contains the leftmost (high-
order) 32 or 64 bits. The next higher-numbered regis-
ter contains the rightmost (low-order) 32 or 64 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16 gen-
eral registers are also used as base-address and
index registers in address generation. In these
cases, the registers are designated by a four-bit B
field or X field in an instruction. A value of zero in the
B or X field specifies that no base or index is to be
applied, and, thus, general register 0 cannot be des-
ignated as containing a base address or index.

While in the ESA/390 architectural mode, the con-
tents of bit positions 0-31 of the 64-bit general regis-
ters of all CPUs in the configuration cannot be
altered by any instruction.

In the ESA/390-compatibility mode, unless stated
otherwise, it is unpredictable whether instructions
that are unique to the z/Architecture architectural
mode result in an operation exception or in execution
as defined in z/Architecture. Therefore, it is possible
that bits 0-31 of a 64-bit general register may be
altered by a z/Architecture instruction that is exe-
cuted in the ESA/390-compatibility mode.

Floating-Point Registers

All floating-point instructions (FPS, BFP, DFP, and
HFP) use the same set of floating-point registers.
The CPU has 16 floating-point registers. The floating-
point registers are identified by the numbers 0-15
and are designated by a four-bit R field in floating-
point instructions. Each floating-point register is 64
bits long and can contain either a short (32-bit) or a
long (64-bit) floating-point operand. As shown in
Figure 2-2 on page 2-5, pairs of floating-point regis-
ters can be used for extended (128-bit) operands.
Each of the eight pairs is referred to by the number of
the lower-numbered register of the pair.

Organization 2-5

Floating-Point-Control Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. The FPC
register is described in the section “Floating-Point-
Control (FPC) Register” on page 9-9.

Vector Registers

All vector instructions use the same set of 32 vector
registers identified by the numbers 0-31 and are des-
ignated by the concatenation of a single register
number extension bit with a four-bit field. Each vector
register is 128 bits long and can contain from one to
sixteen equal sized elements. When there are multi-

R Field
and

Register
Number

Control
Registers

Access
Registers

General
Registers

Floating-Point
Registers

64 bits 32 bits 64 bits 64 bits

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

Note: The arrows indicate that the two registers may be coupled as a double-register pair, designated by specifying the lower-num-
bered register in the R field. For example, the floating-point register pair 13 and 15 is designated by 1101 binary in the R field.

Figure 2-2. Control, Access, General, and Floating-Point Registers

2-6 The z/Architecture CPU Architecture

ple elements in the register the elements are indexed
from left to right starting at element zero.

The floating-point registers overlay the vector regis-
ters as shown in Figure 2-3 on page 2-6. Bits 0-63 of
vector registers 0-15 correspond to floating-point reg-
isters 0-15. Whenever a floating-point instruction or
floating point support instruction writes to a floating
point register, or a floating point instruction that reads
a register pair reads from floating-point registers, bits
64-127 of the corresponding vector register are
unpredictable. Any use of vector registers 0-15 by a
vector instruction, except for VECTOR LOAD ELE-
MENT specifying an element not in bits 0-63 of the
vector register will cause the data in the floating point
register to be overwritten as well.

Control Registers

The CPU has 16 control registers, each having 64 bit
positions. The bit positions in the registers are
assigned to particular facilities in the system, such as
program-event recording, and are used either to
specify that an operation can take place or to furnish
special information required by the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the
instructions LOAD CONTROL and STORE CON-
TROL. Multiple control registers can be addressed by
these instructions.

While in the ESA/390 architectural mode or the
ESA/390-compatibility mode, the contents of bit posi-
tions 0-31 of the 64-bit control registers of all CPUs in
the configuration cannot be altered by any instruc-
tion. If a configuration returns to the ESA/390-com-
patibility mode from the z/Architecture architectural
mode, the contents of bit positions 0-31 of the 64-bit
control registers are all set to zeros.

Access Registers

The CPU has 16 access registers numbered 0-15.
An access register consists of 32 bit positions con-
taining an indirect specification (not described here in
detail) of an address-space-control element. An
address-space-control element is a parameter used
by the dynamic-address-translation (DAT) mecha-
nism to translate references to a corresponding
address space. When the CPU is in a mode called
the access-register mode (controlled by bits in the
PSW), an instruction B field, used to specify a logical
address for a storage-operand reference, designates
an access register, and the address-space-control
element specified by the access register is used by
DAT for the reference being made. For some instruc-
tions, an R field is used instead of a B field. Instruc-
tions are provided for loading and storing the
contents of the access registers and for moving the
contents of one access register to another.

Each of access registers 1-15 can designate any
address space, including the current instruction
space (the primary address space). Access register
0 always designates the current instruction space.
When one of access registers 1-15 is used to desig-
nate an address space, the CPU determines which
address space is designated by translating the con-

0 FPR 0 or VR 0 (bits 0-63) VR 0 (bits 64-127)
1 FPR 1 or VR 1 (bits 0-63) VR 1 (bits 64-127)
2 FPR 2 or VR 2 (bits 0-63) VR 2 (bits 64-127)
3 FPR 3 or VR 3 (bits 0-63) VR 3 (bits 64-127)
4 FPR 4 or VR 4 (bits 0-63) VR 4 (bits 64-127)
5 FPR 5 or VR 5 (bits 0-63) VR 5 (bits 64-127)
6 FPR 6 or VR 6 (bits 0-63) VR 6 (bits 64-127)
7 FPR 7 or VR 7 (bits 0-63) VR 7 (bits 64-127)
8 FPR 8 or VR 8 (bits 0-63) VR 8 (bits 64-127)
9 FPR 9 or VR 9 (bits 0-63) VR 9 (bits 64-127)
10 FPR 10 or VR 10 (bits 0-63) VR 10 (bits 64-127)
11 FPR 11 or VR 11 (bits 0-63) VR 11 (bits 64-127)
12 FPR 12 or VR 12 (bits 0-63) VR 12 (bits 64-127)
13 FPR 13 or VR 13 (bits 0-63) VR 13 (bits 64-127)
14 FPR 14 or VR 14 (bits 0-63) VR 14 (bits 64-127)
15 FPR 15 or VR 15 (bits 0-63) VR 15 (bits 64-127)
16 VR 16
17 VR 17
18 VR 18
19 VR 19
20 VR 20
21 VR 21
22 VR 22
23 VR 23
24 VR 24
25 VR 25
26 VR 26
27 VR 27
28 VR 28
29 VR 29
30 VR 30
31 VR 31

Figure 2-3. Vector and Floating Point Registers

Organization 2-7

tents of the access register. When access register 0
is used to designate an address space, the CPU
treats the access register as designating the current
instruction space, and it does not examine the actual
contents of the access register. Therefore, the 16
access registers can designate, at any one time, the
current instruction space and a maximum of 15 other
spaces.

Cryptographic Facility

Depending on the model, an integrated cryptographic
facility may be provided as an extension of the CPU.
When the cryptographic facility is provided on a CPU,
it functions as an integral part of that CPU. A sum-
mary of the benefits of the cryptographic facility is
given on page 1-33; the facility is otherwise not
described.

External Time Reference

Depending on the model, an external time reference
(ETR) may be connected to the configuration. A sum-
mary of the benefits of the ETR is given on
page 1-33; the facility is otherwise not described.

I/O

Input/output (I/O) operations involve the transfer of
information between main storage and an I/O device.
I/O devices and their control units attach to the chan-
nel subsystem, which controls this data transfer.

Channel Subsystem

The channel subsystem directs the flow of informa-
tion between I/O devices and main storage. It
relieves CPUs of the task of communicating directly
with I/O devices and permits data processing to pro-
ceed concurrently with I/O processing. The channel
subsystem uses one or more channel paths as the
communication link in managing the flow of informa-
tion to or from I/O devices. As part of I/O processing,
the channel subsystem also performs the path-man-
agement function of testing for channel-path avail-
ability, selecting an available channel path, and
initiating execution of the operation with the I/O

device. Within the channel subsystem are subchan-
nels.

One subchannel is provided for and dedicated to
each I/O device accessible to the channel subsys-
tem. Each subchannel contains storage for informa-
tion concerning the associated I/O device and its
attachment to the channel subsystem. The subchan-
nel also provides storage for information concerning
I/O operations and other functions involving the asso-
ciated I/O device. Information contained in the sub-
channel can be accessed by CPUs using I/O
instructions as well as by the channel subsystem and
serves as the means of communication between any
CPU and the channel subsystem concerning the
associated I/O device. The actual number of sub-
channels provided depends on the model and the
configuration; the maximum number of subchannels
is 65,536.

Channel Paths

I/O devices are attached through control units to the
channel subsystem via channel paths. Control units
may be attached to the channel subsystem via more
than one channel path, and an I/O device may be
attached to more than one control unit. In all, an indi-
vidual I/O device may be accessible to a channel
subsystem by as many as eight different channel
paths, depending on the model and the configuration.
The total number of channel paths provided by a
channel subsystem depends on the model and the
configuration; the maximum number of channel paths
is 256.

A channel path can use one of three types of com-
munication links:

• System/360 and System/370 I/O interface, called
the parallel-I/O interface; the channel path is
called a parallel channel path

• ESCON I/O interface, called a serial-I/O inter-
face; the channel path is called a serial channel
path

• FICON I/O interface, also called a serial-I/O
interface; the channel path again is called a
serial channel path

Each parallel-I/O interface consists of a number of
electrical signal lines between the channel subsys-
tem and one or more control units. Eight control units
can share a single parallel-I/O interface. Up to 256

2-8 The z/Architecture CPU Architecture

I/O devices can be addressed on a single parallel-I/O
interface. The parallel-I/O interface is described in
the publication IBM System/360 and System/370 I/O
Interface Channel to Control Unit Original Equipment
Manufacturers’ Information, GA22-6974.

Each serial-I/O interface consists of two optical-fiber
conductors between any two of a channel subsys-
tem, a dynamic switch, and a control unit. A dynamic
switch can be connected by means of multiple serial-
I/O interfaces to either the same or different channel
subsystems and to multiple control units. The num-
ber of control units which can be connected on one
channel path depends on the channel-subsystem
and dynamic-switch capabilities. Up to 256 devices
can be attached to each control unit that uses the
serial-I/O interface, depending on the control unit.
The ESCON I/O interface is described in the publica-
tion ESA/390 ESCON I/O Interface, SA22-7202. The
FICON I/O interface is described in the ANSI stan-
dards document Fibre Channel - Single-Byte Com-
mand Code Sets-2 (FC-SB-2).

I/O Devices and Control Units

I/O devices include such equipment as printers, mag-
netic-tape units, direct-access-storage devices, dis-
plays, keyboards, communications controllers,
teleprocessing devices, and sensor-based equip-

ment. Many I/O devices function with an external
medium, such as paper or magnetic tape. Other I/O
devices handle only electrical signals, such as those
found in displays and communications networks. In
all cases, I/O-device operation is regulated by a con-
trol unit that provides the logical and buffering capa-
bilities necessary to operate the associated I/O
device. From the programming point of view, most
control-unit functions merge with I/O-device func-
tions. The control-unit function may be housed with
the I/O device or in the CPU, or a separate control
unit may be used.

Operator Facilities

The operator facilities provide the functions neces-
sary for operator control of the machine. Associated
with the operator facilities may be an operator-con-
sole device, which may also be used as an I/O device
for communicating with the program.

The main functions provided by the operator facilities
include resetting, clearing, initial program loading,
start, stop, alter, and display.

Storage 3-1© Copyright IBM Corp. 2000, 2019

Chapter 3. Storage

Storage Addressing . 3-2
Information Formats. 3-3
Integral Boundaries . 3-3

Address Types and Formats 3-4
Address Types. 3-4

Absolute Address. 3-4
Real Address . 3-4
Virtual Address . 3-5
Primary Virtual Address 3-5
Secondary Virtual Address 3-5
AR-Specified Virtual Address 3-5
Home Virtual Address 3-5
Logical Address . 3-5
Instruction Address 3-5
Effective Address. 3-5

Address Size and Wraparound 3-6
Address Wraparound. 3-7

Storage Key. 3-9
Protection . 3-10

Key-Controlled Protection 3-11
Storage-Protection-Override Control 3-12
 Fetch-Protection-Override Control 3-13

Access-List-Controlled Protection 3-13
DAT Protection . 3-13
Low-Address Protection. 3-14
Instruction-Execution Protection 3-14
Suppression on Protection. 3-15

Reference Recording. 3-19
Change Recording. 3-20
Prefixing. 3-21

Prefixing in the z/Architecture Architectural
Mode . 3-22

Prefixing in the ESA/390-Compatibility Mode 3-22
Common Prefixing Attributes 3-22

Address Spaces . 3-23
Changing to Different Address Spaces . . . 3-23
Address-Space Number 3-23

ASN-Second-Table-Entry Sequence Number 3-24
ASN-Second-Table-Entry Instance Number

and ASN Reuse. 3-25
ASN Translation . 3-30

ASN-Translation Controls 3-30
Control Register 14 3-30

ASN-Translation Tables. 3-31
ASN-First-Table Entries. 3-31
ASN-Second-Table Entries 3-31

ASN-Translation Process 3-33
ASN-First-Table Lookup 3-33

ASN-Second-Table Lookup 3-34
Recognition of Exceptions during ASN

Translation . 3-35
ASN Authorization. 3-35

ASN-Authorization Controls 3-35
Control Register 4 . 3-35
ASN-Second-Table Entry 3-35

Authority-Table Entries 3-36
ASN-Authorization Process 3-36

Authority-Table Lookup 3-36
Recognition of Exceptions during ASN

Authorization . 3-38
Dynamic Address Translation 3-38

Translation Control . 3-40
Translation Modes. 3-40
Control Register 0 . 3-41
Control Register 1 . 3-42
Control Register 7 . 3-44
Control Register 13 3-45

Translation Tables . 3-45
Region-Table Entries 3-46
Segment-Table Entries 3-49
Page-Table Entries 3-51

Translation Process . 3-52
Inspection of Real-Space Control 3-54
Inspection of Designation-Type Control . . . 3-54
Lookup in a Table Designated by an

Address-Space-Control Element 3-57
Lookup in a Table Designated by a

Region-Table Entry 3-59
Page-Table Lookup. 3-61
Formation of the Real and Absolute

Addresses . 3-62
Recognition of Exceptions during

Translation . 3-62
Translation-Lookaside Buffer 3-62

TLB Structure . 3-63
Formation of TLB Entries 3-63
Use of TLB Entries 3-65
Modification of Translation Tables 3-67

Address Summary . 3-70
Addresses Translated 3-70
Handling of Addresses 3-71

Assigned Storage Locations 3-73
Assigned Storage Locations in the

z/Architecture Architectural Mode. 3-73
Assigned Storage Locations in the

ESA/390-Compatibility Mode 3-83

3-2 The z/Architecture CPU Architecture

This chapter discusses the representation of informa-
tion in main storage, as well as addressing, protec-
tion, and reference and change recording. The
aspects of addressing which are covered include the
format of addresses, the concept of address spaces,
the various types of addresses, and the manner in
which one type of address is translated to another
type of address.

A list of permanently assigned storage locations
appears at the end of the chapter.

Main storage provides the system with directly
addressable fast-access storage of data. Both data
and programs must be loaded into main storage
(from input devices) before they can be processed.

Main storage may include one or more smaller faster-
access buffer storages, sometimes called caches. A
cache is usually physically associated with a CPU or
an I/O processor. The effects, except on perfor-
mance, of the physical construction and use of dis-
tinct storage media are generally not observable by
the program.

Separate caches may be maintained for instructions
and for data operands. Information within a cache is
maintained in contiguous bytes on an integral bound-
ary called a cache block or cache line (or line, for
short). A model may provide the EXTRACT CPU
ATTRIBUTE instruction which returns various cache
attributes such as line size, number of cache levels,
and set associativity. A model may also provide any
or all of the PREFETCH DATA, PREFETCH DATA
RELATIVE LONG, and NEXT INSTRUCTION
ACCESS INTENT instructions which affect the
prefetching of storage into the data cache, the releas-
ing of data from the cache, or indicating access intent
of storage operands.

Fetching and storing of data by a CPU are not nor-
mally affected by any concurrent channel-subsystem
activity or by a concurrent reference to the same stor-
age location by another CPU. When concurrent
requests to a main-storage location occur, access
normally is granted in a sequence determined by the
system. If a reference changes the contents of the
location, any subsequent storage fetches obtain the
new contents. However, when the transactional-exe-
cution facility is installed, a transaction executing on
one CPU may be aborted due to conflicting fetches
and stores by another CPU or by the channel sub-
system.

Main storage may be volatile or nonvolatile. If it is vol-
atile, the contents of main storage are not preserved
when power is turned off. If it is nonvolatile, turning
power off and then back on does not affect the con-
tents of main storage, provided all CPUs are in the
stopped state and no references are made to main
storage when power is being turned off. In both types
of main storage, the contents of storage keys are not
necessarily preserved when the power for main stor-
age is turned off.

Note: Because most references in this publication
apply to virtual storage, the abbreviated term “stor-
age” is often used in place of “virtual storage.” The
term “storage” may also be used in place of “main
storage,” “absolute storage,” or “real storage” when
the meaning is clear. The terms “main storage” and
“absolute storage” are used to describe storage
which is addressable by means of an absolute
address. The terms describe fast-access storage, as
opposed to auxiliary storage, such as that provided
by direct-access storage devices. “Real storage” is
synonymous with “absolute storage” except for the
effects of prefixing.

Programming Note: On models that implement sep-
arate caches for instructions and data operands, a
significant delay may be experienced if the program
stores into a cache line from which instructions are
subsequently fetched, regardless of whether the
store alters the instructions that are subsequently
fetched.

Storage Addressing

Storage is viewed as a long horizontal string of bits.
For most operations, accesses to storage proceed in
a left-to-right sequence. The string of bits is subdi-
vided into units of eight bits. An eight-bit unit is called
a byte, which is the basic building block of all informa-
tion formats.

Each byte location in storage is identified by a unique
nonnegative integer, which is the address of that byte
location or, simply, the byte address. Adjacent byte
locations have consecutive addresses, starting with 0
on the left and proceeding in a left-to-right sequence.
Addresses are unsigned binary integers and are 24,
31, or 64 bits. Addresses are described in “Address
Size and Wraparound” on page 3-6.

Storage 3-3

Information Formats

Information is transmitted between storage and a
CPU or the channel subsystem one byte, or a group
of bytes, at a time. Unless otherwise specified, a
group of bytes in storage is addressed by the left-
most byte of the group. The number of bytes in the
group is either implied or explicitly specified by the
operation to be performed. When used in a CPU
operation, a group of bytes is called a field.

Within each group of bytes, bits are numbered in a
left-to-right sequence. The leftmost bits are some-
times referred to as the “high-order” bits and the
rightmost bits as the “low-order” bits. Bit numbers are
not storage addresses, however. Only bytes can be
addressed. To operate on individual bits of a byte in
storage, it is necessary to access the entire byte.

The bits in a byte are numbered 0 through 7, from left
to right.

The bits in an address may be numbered 8-31 or
40-63 for 24-bit addresses or 1-31 or 33-63 for 31-bit
addresses; they are numbered 0-63 for 64-bit
addresses. Within any other fixed-length format of
multiple bytes, the bits making up the format are con-
secutively numbered starting from 0.

For purposes of error detection, and in some models
for correction, one or more check bits may be trans-
mitted with each byte or with a group of bytes. Such
check bits are generated automatically by the
machine and cannot be directly controlled by the pro-
gram. References in this publication to the length of
data fields and registers exclude mention of the
associated check bits. All storage capacities are
expressed in number of bytes.

When the length of a storage-operand field is implied
by the operation code of an instruction, the field is
said to have a fixed length, which can be one, two,
four, eight, or sixteen bytes. Larger fields may be
implied for some instructions.

When the length of a storage-operand field is not
implied but is stated explicitly, the field is said to have
a variable length. Variable-length operands can vary
in length by increments of one byte.

When information is placed in storage, the contents
of only those byte locations are replaced that are
included in the designated field, even though the
width of the physical path to storage may be greater
than the length of the field being stored.

Integral Boundaries

Certain units of information must be on an integral
boundary in storage. A boundary is called integral for
a unit of information when its storage address is a
multiple of the length of the unit in bytes. Special
names are given to fields of 2, 4, 8, 16, and 32 bytes
on an integral boundary. A halfword is a group of two
consecutive bytes on a two-byte boundary and is the
basic building block of instructions. A word is a group
of four consecutive bytes on a four-byte boundary. A
doubleword is a group of eight consecutive bytes on
an eight-byte boundary. A quadword is a group of 16
consecutive bytes on a 16-byte boundary. An
octoword is a group of 32 consecutive bytes on a
32-byte boundary. (See Figure 3-1 on page 3-4.)

When storage addresses designate halfwords,
words, doublewords, quadwords, and octowords, the
binary representation of the address contains one,
two, three, four, or five rightmost zero bits, respec-
tively.

Instructions must be on two-byte integral boundaries,
and CCWs, IDAWs, MIDAWs, TIDAWs, and the stor-
age operands of certain instructions must be on
other integral boundaries. The storage operands of
most instructions do not have boundary-alignment
requirements.

Programming Notes:

1. For fixed-field-length operations with field lengths
that are a power of 2, significant performance
degradation is possible when storage operands
are not positioned at addresses that are integral
multiples of the operand length. To improve per-
formance, frequently used storage operands
should be aligned on integral boundaries.

2. Some vector instructions have an alignment-hint-
control, whereby the program can notify the CPU
of the alignment of an operand without the CPU

3-4 The z/Architecture CPU Architecture

having to perform the address arithmetic to
determine the alignment.

Address Types and Formats

Address Types

For purposes of addressing main storage, three
basic types of addresses are recognized: absolute,
real, and virtual. The addresses are distinguished on
the basis of the transformations that are applied to
the address during a storage access. Address trans-
lation converts virtual to real, and prefixing converts
real to absolute. In addition to the three basic
address types, additional types are defined which are
treated as one or another of the three basic types,
depending on the instruction and the current mode.

In the ESA/390-compatibility mode, dynamic-address
translation (DAT) is not supported, thus virtual
addresses – including primary, secondary, AR-speci-
fied, and home virtual addresses – are not applica-
ble. The ESA/390-compatibility mode may support
absolute-storage address spaces as defined in Ref-
erence [12.] on page xxx by means of host access-
register translation.

Absolute Address
An absolute address is the address assigned to a
main-storage location. An absolute address is used

for a storage access without any transformations per-
formed on it.

The channel subsystem and all CPUs in the configu-
ration refer to a shared main-storage location by
using the same absolute address. Available main
storage is usually assigned contiguous absolute
addresses starting at 0, and the addresses are
always assigned in complete 4 K-byte blocks on inte-
gral boundaries. An exception is recognized when an
attempt is made to use an absolute address in a
block which has not been assigned to physical loca-
tions. On some models, storage-reconfiguration con-
trols may be provided which permit the operator to
change the correspondence between absolute
addresses and physical locations. However, at any
one time, a physical location is not associated with
more than one absolute address.

Storage consisting of byte locations sequenced
according to their absolute addresses is referred to
as absolute storage.

Real Address
A real address identifies a location in real storage.
When a real address is used for an access to main
storage, it is converted, by means of prefixing, to an
absolute address.

 Storage Addresses

Bytes 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Halfwords 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Words 0 4 8 12 16 20 24 28 32

Doublewords 0 8 16 24 32

Quadwords 0 16 32

Octowords 0 32

Figure 3-1. Integral Boundaries with Storage Addresses

Storage 3-5

At any instant there is one real-address to absolute-
address mapping for each CPU in the configuration.
When a real address is used by a CPU to access
main storage, it is converted to an absolute address
by prefixing. The particular transformation is defined
by the value in the prefix register for the CPU.

Storage consisting of byte locations sequenced
according to their real addresses is referred to as real
storage.

Virtual Address
A virtual address identifies a location in virtual stor-
age. When a virtual address is used for an access to
main storage, it is translated by means of dynamic
address translation, either (a) to a real address which
is then further converted by prefixing to an absolute
address, or (b) directly to an absolute address.

Primary Virtual Address
A primary virtual address is a virtual address which is
to be translated by means of the primary address-
space-control element. Logical addresses are
treated as primary virtual addresses when in the pri-
mary-space mode. Instruction addresses are treated
as primary virtual addresses when in the primary-
space mode, secondary-space mode, or access-reg-
ister mode. The first-operand address of MOVE TO
PRIMARY and the second-operand address of
MOVE TO SECONDARY are always treated as pri-
mary virtual addresses.

Secondary Virtual Address
A secondary virtual address is a virtual address
which is to be translated by means of the secondary
address-space-control element. Logical addresses
are treated as secondary virtual addresses when in
the secondary-space mode. The second-operand
address of MOVE TO PRIMARY and the first-oper-
and address of MOVE TO SECONDARY are always
treated as secondary virtual addresses.

AR-Specified Virtual Address
An AR-specified virtual address is a virtual address
which is to be translated by means of an access-reg-
ister-specified address-space-control element. Logi-
cal addresses are treated as AR-specified addresses
when in the access-register mode.

Home Virtual Address
A home virtual address is a virtual address which is
to be translated by means of the home address-
space-control element. Logical addresses and
instruction addresses are treated as home virtual
addresses when in the home-space mode.

Logical Address
Except where otherwise specified, the storage-oper-
and addresses for most instructions are logical
addresses. Logical addresses are treated as real
addresses in the real mode, as primary virtual
addresses in the primary-space mode, as secondary
virtual addresses in the secondary-space mode, as
AR-specified virtual addresses in the access-register
mode, and as home virtual addresses in the home-
space mode. Some instructions have storage-oper-
and addresses or storage accesses associated with
the instruction which do not follow the rules for logical
addresses. In all such cases, the instruction definition
contains a definition of the type of address.

Instruction Address
Addresses used to fetch instructions from storage
are called instruction addresses. Instruction
addresses are treated as real addresses in the real
mode, as primary virtual addresses in the primary-
space mode, secondary-space mode, or access-reg-
ister mode, and as home virtual addresses in the
home-space mode. The following are instruction
addresses:

• The instruction address in the current PSW

• The target address of execute-type instructions
(EXECUTE and EXECUTE RELATIVE LONG)

• The instruction address in the transaction-abort
PSW

• The aborted-transaction instruction address (in
the transaction diagnostic block)

Effective Address
In some situations, it is convenient to use the term
“effective address.” An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing is per-
formed. An effective address may be specified
directly in a register or may result from address arith-
metic. Address arithmetic is the addition of the base
and displacement or of the base, index, and displace-
ment.

3-6 The z/Architecture CPU Architecture

Address Size and Wraparound

An address size refers to the maximum number of
significant bits that can represent an address. Three
sizes of addresses are provided: 24-bit, 31-bit, and
64-bit. A 24-bit address can accommodate a maxi-
mum of 16,777,216 (16M) bytes; with a 31-bit
address, 2,147,483,648 (2G) bytes can be

addressed; and, with a 64-bit address,
18,446,744,073,709,551,616 (16E) bytes can be
addressed. The bits of a 24-bit, 31-bit, or 64-bit
address produced by address arithmetic under the
control of the current addressing mode are num-
bered 40-63, 33-63, and 0-63, respectively, corre-
sponding to the numbering of base-address and
index bits in a general register, as shown below:

The byte and bit positions of a 64-bit address and
corresponding power-of-two and numerical values
are shown in Figure 3-2.

The bits of an address that is 31 bits regardless of
the addressing mode are numbered 1-31, and, when
a 24-bit or 31-bit address is contained in a four-byte
field in storage, the bits are numbered 8-31 or 1-31,
respectively:

A 24-bit or 31-bit virtual address is expanded to 64
bits by appending 40 or 33 zeros, respectively, on the
left before it is translated by means of the DAT pro-
cess, and a 24-bit or 31-bit real address is similarly
expanded to 64 bits before it is transformed by prefix-
ing. A 24-bit or 31-bit absolute address is expanded
to 64 bits before main storage is accessed. Thus, the
24-bit address always designates a location in the
first 16 M-byte block of the 16 E-byte storage
addressable by a 64-bit address, and the 31-bit

address always designates a location in the first
2 G-byte block.

Unless specifically stated to the contrary, the follow-
ing definition applies in this publication: whenever the
machine generates and provides to the program a
24-bit or 31-bit address, the address is made avail-
able (placed in storage or loaded into a general regis-
ter) by being imbedded in a 32-bit field, with the
leftmost eight bits or one bit in the field, respectively,
set to zeros. When the address is loaded into a gen-
eral register, bits 0-31 of the register remain
unchanged.

The size of effective addresses is controlled by bits
31 and 32 of the PSW, the extended-addressing-
mode bit and the basic-addressing-mode bit, respec-
tively. When bits 31 and 32 are both zero, the CPU is
in the 24-bit addressing mode, and 24-bit operand
and instruction effective addresses are specified.
When bit 31 is zero and bit 32 is one, the CPU is in
the 31-bit addressing mode, and 31-bit operand and
instruction effective addresses are specified. When

24-bit Address
0 40 63

31-bit Address
0 33 63

64-bit Address
0 63

Byte 0 1 2 3 4 5 6 7

Bit Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Power of 2 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value 8
E

4
E

2
E

1
E

5
1
2
P

2
5
6
P

1
2
8
P

6
4
P

3
2
P

1
6
P

8
P

4
P

2
P

1
P

5
1
2
T

2
5
6
T

1
2
8
T

6
4
T

3
2
T

1
6
T

8
T

4
T

2
T

1
T

5
1
2
G

2
5
6
G

1
2
8
G

6
4
G

3
2
G

1
6
G

8
G

4
G

2
G

1
G

5
1
2
M

2
5
6
M

1
2
8
M

6
4
M

3
2
M

1
6
M

8
M

4
M

2
M

1
M

5
1
2
K

2
5
6
K

1
2
8
K

6
4
K

3
2
K

1
6
K

8
K

4
K

2
K

1
K

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6

8 4 2 1

Figure 3-2. 64-Bit Address Attributes

24-bit Address
0 8 31

31-bit Address
0 1 31

Storage 3-7

bits 31 and 32 are both one, the CPU is in the 64-bit
addressing mode, and 64-bit operand and instruction
effective addresses are specified (see “Address Gen-
eration” on page 5-10).

The sizes of the real or absolute addresses used or
yielded by the ASN-translation, ASN-authorization,
PC-number-translation, and access-register-transla-
tion processes are always 31 bits regardless of the
current addressing mode. Similarly, the sizes of the
real or absolute addresses used or yielded by the
DAT, stacking, unstacking, and tracing processes are
always 64 bits.

The size of the data address in a CCW is under con-
trol of the CCW-format-control bit in the operation-
request block (ORB) designated by a START SUB-
CHANNEL instruction. The CCWs with 24-bit and
31-bit addresses are called format-0 and format-1
CCWs, respectively. Format-0 and format-1 CCWs
are described in “Basic I/O Functions” on page 15-1.
Similarly, the size of the data address in an IDAW is
under control of the IDAW-format-control bit in the
ORB. The IDAWs with 31-bit and 64-bit addresses
are called format-1 and format-2 IDAWs, respectively.
MIDAWs contain 64-bit data addresses. IDAWs and
MIDAWs are described in Chapter 15, “Basic I/O
Functions.”

Address Wraparound
The CPU performs address generation when it forms
an operand or instruction address or when it gener-
ates the address of a table entry from the appropriate
table origin and index. It also performs address gen-
eration when it increments an address to access suc-
cessive bytes of a field. Similarly, the channel
subsystem performs address generation when it
increments an address (1) to fetch a CCW, (2) to
fetch an IDAW, (3) to fetch a MIDAW, (4) to transfer

data, or (5) to compute the address of an I/O mea-
surement block.

When, during the generation of the address, an
address is obtained that exceeds the value allowed
for the address size (224 - 1, 231 - 1, or 264 - 1), one of
the following two actions is taken:

1. The carry out of the high-order bit position of the
address is ignored. This handling of an address
of excessive size is called wraparound.

2. An interruption condition is recognized.

The effect of wraparound is to make an address
space appear circular; that is, address 0 appears to
follow the maximum allowable address. Address
arithmetic and wraparound occur before transforma-
tion, if any, of the address by DAT or prefixing.

Addresses generated by the CPU that may be virtual
addresses always wrap. Wraparound also occurs
when the linkage-stack-entry address in control reg-
ister 15 is decremented below 0 by PROGRAM
RETURN. For CPU table entries that are addressed
by real or absolute addresses, it is unpredictable
whether the address wraps or an addressing excep-
tion is recognized.

For channel-program execution, when the generated
address exceeds the value for the address size (or,
for the read-backward command is decremented
below 0), an I/O program-check condition is recog-
nized.

Figure 3-3 on page 3-7 identifies what limit values
apply to the generation of different addresses and
how addresses are handled when they exceed the
allowed value.

Address Generation for
Address

Type

Handling when
Address Would

Wrap

Instructions and operands when EAM and BAM are zero L,I,R,V W24

Successive bytes of instructions and operands when EAM and BAM are zero I,L,V1 W24

Instructions and operands when EAM is zero and BAM is one L,I,R,V W31

Successive bytes of instructions and operands when EAM is zero and BAM is one I,L,V1 W31

Instructions and operands when EAM and BAM are one L,I,R,V W64

Figure 3-3. Address Wraparound (Part 1 of 3).

3-8 The z/Architecture CPU Architecture

Successive bytes of instructions and operands when EAM and BAM are one I,L,V1 W64

DAT-table entries when used for implicit translation or for LPTEA, LRA, LRAG, or STRAG A or R2 X64

ASN-second-table, authority-table (during ASN authorization), linkage-table, linkage-first-
table, linkage-second-table, and entry-table entries

R X31

Authority-table (during access-register translation) and access-list entries A or R2 X31

Linkage-stack entry V W64

I/O measurement block A P31

For a channel program with format-0 CCWs:

Successive CCWs A P24

Successive IDAWs A P24

Successive MIDAWs A P24

Successive bytes of I/O data (without IDAWs and MIDAWs) A P24

Successive bytes of I/O data (with format-1 IDAWs) A P31

Successive bytes of I/O data (with format-2 IDAWs) A P64

Successive bytes of I/O data (with MIDAWs) A P64

For a channel program with format-1 CCWs:

Successive CCWs A P31

Successive IDAWs A P31

Successive MIDAWs A P31

Successive bytes of I/O data (without IDAWs and MIDAWs) A P31

Successive bytes of I/O data (with format-1 IDAWs) A P31

Successive bytes of I/O data (with format-2 IDAWs) A P64

Successive bytes of I/O data (with MIDAWs) A P64

Address Generation for
Address

Type

Handling when
Address Would

Wrap

Figure 3-3. Address Wraparound (Part 2 of 3).

Storage 3-9

Storage Key

A storage key is associated with each 4 K-byte block
of main storage that is available in the configuration.
The storage key has the following format:

The bit positions in the storage key are allocated as
follows:

Access-Control Bits (ACC): If a reference is subject
to key-controlled protection, the four access-control
bits, bits 0-3, are matched with the four-bit access
key when information is stored and when information
is fetched from a location that is protected against
fetching.

Fetch-Protection Bit (F): If a reference is subject to
key-controlled protection, the fetch-protection bit, bit
4, controls whether key-controlled protection applies
to fetch-type references: a zero indicates that only
store-type references are monitored and that fetching

with any access key is permitted; a one indicates that
key-controlled protection applies to both fetching and
storing. No distinction is made between the fetching
of instructions and of operands.

Reference Bit (R): The reference bit, bit 5, normally
is set to one each time a location in the correspond-
ing storage block is referred to either for storing or for
fetching of information.

Change Bit (C): The change bit, bit 6, is set to one
each time information is stored at a location in the
corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key may be set by SET STOR-
AGE KEY EXTENDED and inspected by INSERT
STORAGE KEY EXTENDED. INSERT REFERENCE
BITS MULTIPLE provides a means of inspecting the
reference bits of 64 contiguous 4 K-byte blocks.
RESET REFERENCE BIT EXTENDED provides a
means of inspecting the reference and change bits
and of setting the reference bit to zero. RESET REF-
ERENCE BITS MULTIPLE provides a means of
inspecting the reference bits of 64 contiguous
4 K-byte blocks and setting the reference bits to zero.

Explanation:

1 Real addresses do not apply in this case since the instructions which designate operands by means of real
addresses cannot designate operands that cross boundary 224, 231, 264.

2 It is unpredictable whether the address is absolute or real.
A Absolute address.
BAM Basic-addressing-mode bit in the PSW.
EAM Extended-addressing-mode bit in the PSW.
I Instruction address.
L Logical address.
P24 An I/O program-check condition is recognized when the address exceeds 224 - 1 or is decremented below zero.
P31 An I/O program-check condition is recognized when the address exceeds 231 - 1 or is decremented below zero.
P64 An I/O program-check condition is recognized when the address exceeds 264 - 1 or is decremented below zero.
R Real address.
V Virtual address.
W24 Wrap to location 0 after location 224 - 1 and vice versa.
W31 Wrap to location 0 after location 231 - 1 and vice versa.
W64 Wrap to location 0 after location 264 - 1 and vice versa.
X31 When the address exceeds 231 - 1, it is unpredictable whether the address wraps to location 0 after location

231 - 1 or whether an addressing exception is recognized.
X64 When the address exceeds 264 - 1, it is unpredictable whether the address wraps to location 0 after location

264 - 1 or whether an addressing exception is recognized.

Address Generation for
Address

Type

Handling when
Address Would

Wrap

Figure 3-3. Address Wraparound (Part 3 of 3).

ACC F R C
0 4 5 6

3-10 The z/Architecture CPU Architecture

Bits 0-4 of the storage key are inspected by the
INSERT VIRTUAL STORAGE KEY instruction. The
contents of the storage key are unpredictable during
and after the execution of the usability test of the
TEST BLOCK instruction. When the conditional
SSKE facility is installed, SET STORAGE KEY
EXTENDED may be used to set all or portions of a
storage key based on program-specified criteria.
When the enhanced-DAT facility is installed, the SET
STORAGE KEY EXTENDED, PERFORM FRAME
MANAGEMENT FUNCTION, or MOVE PAGE
instructions may be used to set all or portions of one
or more storage keys based on program-specified
criteria.

When EDAT-1 applies,1 the invalid bit of the segment-
table entry used in the translation is zero, and the
STE-format-control is one, the following additional
conditions are in effect:

• Bit position 47 of the segment-table entry con-
tains the ACCF-validity control. The ACCF-valid-
ity control determines the validity of the access-
control and fetch-protection bits in the STE.
When the ACCF-validity control is zero, key-con-
trolled protection uses the access-control and
fetch-protection bits in the storage key for the
4 K-byte block corresponding to the address.

• When the ACCF-validity control is one, bit posi-
tions 48-52 of the segment-table entry contain
the access-control bits and the fetch-protection
bit for the segment. When determining accessi-
bility to a storage operand, it is unpredictable
whether bits 48-52 of the STE or bits 0-4 of the
individual storage keys for the 4 K-byte blocks
composing the segment are examined. See
“Translation Process” on page 3-52 for further
details.

When EDAT-2 applies1, the invalid bit of the region-
third-table entry (RTTE) used in the translation is
zero, and the RTTE-format-control is one, the follow-
ing conditions are in effect:

• Bit position 47 of the RTTE contains the ACCF-
validity control. The ACCF-validity control deter-
mines the validity of the access-control and
fetch-protection bits in the RTTE. When the
ACCF-validity control is zero, key-controlled pro-
tection uses the access-control and fetch-protec-
tion bits in the storage key for the 4 K-byte block
corresponding to the address.

• When the ACCF-validity control is one, bit posi-
tions 48-52 of the RTTE contain the access-con-
trol bits and the fetch-protection bit for the region.
When determining accessibility to a storage
operand, it is unpredictable whether bits 48-52 of
the RTTE or bits 0-4 of the individual storage
keys for the 4 K-byte blocks composing the seg-
ment are examined. See “Translation Process”
on page 3-52 for further details.

Programming Note: When EDAT-1 applies, and
both the ACCF-validity control and the STE-format
control (bits 47 and 53 of the segment-table entry,
respectively) are one, bits 48-52 of the STE contain
access-control and fetch-protection bits which may
be used in lieu of the corresponding bits in the stor-
age keys. In this case, the program is responsible for
ensuring that the access-control and fetch-protection
bits in the STE are identical to the corresponding bits
in each of the 256 storage keys for the segment.

Similarly, when EDAT-2 applies, and both the ACCF-
validity control and the RTTE-format control (bits 47
and 53 of the region-third-table entry, respectively)
are one, bits 48-52 of the RTTE contain access-con-
trol and fetch-protection bits which may be used in
lieu of the corresponding bits in the storage keys. In
this case, the program is responsible for ensuring
that the access-control and fetch-protection bits in
the RTTE are identical to the corresponding bits in
each of the 524,288 storage keys for the region.

See “Modification of Translation Tables” on page 3-67
for restrictions on (a) modifying the STE or the stor-
age keys when the STE-format control is one or
(b) modifying the RTTE or the storage keys when the
RTTE-format control is one.

Protection

Five protection facilities are provided to protect the
contents of main storage from destruction or misuse
by programs that contain errors or are unauthorized:

• Key-controlled protection
• Access-list-controlled protection
• DAT protection
• Low-address protection
• Instruction-execution protection (when installed)

1. See “Enhanced-DAT Terminology:” on page 3-41 for an explanation of EDAT applicability.

Storage 3-11

Key-Controlled Protection

When key-controlled protection applies to a storage
access, a store is permitted only when the storage
key matches the access key associated with the
request for storage access; a fetch is permitted when
the keys match or when the fetch-protection bit of the
storage key is zero.

Key-controlled protection affords protection against
improper storing or against both improper storing and
fetching, but not against improper fetching alone.

The keys are said to match when the four access-
control bits of the storage key are equal to the access
key, or when the access key is zero.

The protection action is summarized in Figure 3-4.

When the access to storage is initiated by the CPU
and key-controlled protection applies, the PSW key is
the access key, except that the access key is speci-
fied in a general register for the first operand of
MOVE TO SECONDARY and MOVE WITH DESTI-
NATION KEY, for the second operand of MOVE TO
PRIMARY, MOVE WITH KEY, and MOVE WITH
SOURCE KEY, and for either the first or the second
operand of MOVE PAGE. The access key may be the
PSW key or the key specified in an operand-access
control for either operand of MOVE WITH OPTIONAL
SPECIFICATIONS. The PSW key occupies bit posi-
tions 8-11 of the current PSW.

When the access to storage is for the purpose of
channel-program execution, the subchannel key
associated with that channel program is the access
key. The subchannel key for a channel program is
specified in the operation-request block (ORB).
When, for purposes of channel-subsystem monitor-
ing, an access to the measurement block is made,
the measurement-block key is the access key. The
measurement-block key is specified by the SET
CHANNEL MONITOR instruction. Even when the
enhanced-DAT facility 1 is installed, channel subsys-
tem accesses continue to reference the storage keys
for each 4 K-byte block; because channel subsystem
accesses are not subject to dynamic address transla-
tion, the access-control bits and fetch-protection bit in
the segment-table entry are not used by the channel
subsystem.

When a CPU access is prohibited because of key-
controlled protection, the execution of the instruction
is terminated, and a program interruption for a pro-
tection exception takes place. However, the unit of
operation or the execution of the instruction may be
suppressed, as described in the section “Suppres-
sion on Protection” on page 3-15. When a channel-
program access is prohibited, the start function is
ended, and the protection-check condition is indi-
cated in the associated interruption-response block
(IRB). When a measurement-block access is prohib-
ited, the I/O measurement-block protection-check
condition is indicated.

When a store access is prohibited because of key-
controlled protection, the contents of the protected
location remain unchanged. When a fetch access is
prohibited, the protected information is not loaded
into a register, moved to another storage location, or
provided to an I/O device. For a prohibited instruction
fetch, the instruction is suppressed, and an arbitrary
instruction-length code is indicated.

Key-controlled protection is independent of whether
the CPU is in the problem or the supervisor state
and, except as described below, does not depend on
the type of CPU instruction or channel-command
word being executed.

Except where otherwise specified, all accesses to
storage locations that are explicitly designated by the
program and that are used by the CPU to store or
fetch information are subject to key-controlled protec-
tion.

Conditions Is Access to
Storage PermittedFetch-Protection

Bit of Storage Key Key Relation Fetch Store
0 Match Yes Yes

0 Mismatch Yes No
1 Match Yes Yes

1 Mismatch No No

Explanation:

Match The four access-control bits of the storage key
are equal to the access key, or the access key is
zero.

Yes Access is permitted.
No Access is not permitted. On fetching, the

information is not made available to the
program; on storing, the contents of the storage
location are not changed.

Figure 3-4. Summary of Protection Action

3-12 The z/Architecture CPU Architecture

Key-controlled protection does not apply when the
storage-protection-override control is one and the
value of the four access-control bits of the storage
key is 9. Key-controlled protection for fetches may or
may not apply when the fetch-protection-override
control is one, depending on the effective address
and the private-space control.

The storage-protection-override control and fetch-
protection-override control do not affect storage ref-
erences made by the channel subsystem.

Accesses to the second operand of TEST BLOCK
are not subject to key-controlled protection.

All storage accesses by the channel subsystem to
access the I/O measurement block, or by a channel
program to fetch a CCW, IDAW, or MIDAW or to
access a data area designated during the execution
of a CCW, are subject to key-controlled protection.
However, if a CCW, an IDAW, a MIDAW, or output
data is prefetched, a protection check is not indicated
until the CCW, IDAW, or MIDAW is due to take control
or until the data is due to be written.

Key-controlled protection is not applied to accesses
that are implicitly made for any of such sequences
as:

• An interruption
• CPU logout
• Fetching of table entries for access-register

translation, dynamic-address translation, PC-
number translation, ASN translation, or ASN
authorization

• Tracing
• A store-status function
• Storing in real locations 184-191 when TEST

PENDING INTERRUPTION has an operand
address of zero

• Initial program loading
• Storing in real locations 6,144-6,399 when trans-

actional execution is aborted due to an unfiltered
program-exception condition

Similarly, protection does not apply to accesses initi-
ated via the operator facilities for altering or display-
ing information. However, when the program explicitly
designates these locations, they are subject to pro-
tection.

Storage-Protection-Override Control
Bit 39 of control register 0 is the storage-protection-
override control. When this bit is one, storage-protec-
tion override is active. When this bit is zero, storage-
protection override is inactive. When storage-protec-
tion override is active, key-controlled storage protec-
tion is ignored for storage locations having an
associated storage-key value of 9. When storage-
protection override is inactive, no special action is
taken for a storage-key value of 9.

Storage-protection override applies to instruction
fetch and to the fetch and store accesses of instruc-
tions whose operand addresses are logical, virtual,
or real. It does not apply to accesses made for the
purpose of channel-program execution or for the pur-
pose of channel-subsystem monitoring.

Storage-protection override has no effect on
accesses which are not subject to key-controlled pro-
tection.

Programming Notes:

1. Storage-protection override can be used to
improve reliability in the case when a possibly
erroneous application program is executed in
conjunction with a reliable subsystem, provided
that the application program needs to access
only a portion of the storage accessed by the
subsystem. The technique for doing this is as fol-
lows. The storage accessed by the application
program is given storage key 9. The storage
accessed by only the subsystem is given some
other nonzero storage key, for example, key 8.
The application is executed with PSW key 9. The
subsystem is executed with PSW key 8 (in this
example). As a result, the subsystem can access
both the key-8 and the key-9 storage, while the
application program can access only the key-9
storage.

2. Storage-protection override affects the accesses
to storage made by the CPU and also affects the
result set by TEST PROTECTION. However,
those instructions which, in the problem state,
test the PSW-key mask to determine if a particu-
lar key value may be used are not affected by
whether storage-protection override is active.
These instructions include, among others, MOVE
WITH KEY and SET PSW KEY FROM
ADDRESS. To permit these instructions to use
an access key of 9 in the problem state, bit 9 of
the PSW-key mask must be one.

Storage 3-13

 Fetch-Protection-Override Control
Bit 38 of control register 0 is the fetch-protection-
override control. When the bit is one, key-controlled
fetch protection is ignored for locations at effective
addresses 0-2047. An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing. However,
key-controlled fetch protection is not ignored if the
effective address is subject to dynamic address
translation and the private-space control, bit 55, is
one in the address-space-control element used in the
translation.

Fetch-protection override applies to instruction fetch
and to the fetch accesses of instructions whose oper-
and addresses are logical, virtual, or real. It does not
apply to fetch accesses made for the purpose of
channel-program execution or for the purpose of
channel-subsystem monitoring. When this bit is set
to zero, fetch protection of locations at effective
addresses 0-2047 is determined by the state of the
fetch-protection bit of the storage key associated with
those locations.

Fetch-protection override has no effect on accesses
which are not subject to key-controlled protection.

Programming Note: The fetch-protection-override
control allows fetch protection of locations at
addresses 2048-4095 along with no fetch protection
of locations at addresses 0-2047.

Access-List-Controlled Protection

In the access-register mode, bit 6 of the access-list
entry, the fetch-only bit, controls which types of oper-
and references are permitted to the address space
specified by the access-list entry. When the entry is
used in the access-register-translation part of a refer-
ence and bit 6 is zero, both fetch-type and store-type
references are permitted; when bit 6 is one, only
fetch-type references are permitted, and an attempt
to store causes a protection exception to be recog-
nized and the execution of the instruction to be sup-
pressed.

The fetch-only bit is included in the ALB access-list
entry. A change to the fetch-only bit in an access-list
entry in main storage does not necessarily have an
immediate, if any, effect on whether a protection
exception is recognized. However, this change to the

bit will have an effect immediately after PURGE ALB
or a COMPARE AND SWAP AND PURGE instruction
that purges the ALB is executed.

TEST PROTECTION takes into consideration
access-list-controlled protection when the CPU is in
the access-register mode. A violation of access-list-
controlled protection causes condition code 1 to be
set, except that it does not prevent condition code 2
or 3 from being set when the conditions for those
codes are satisfied.

Programming Note: A violation of access-list-con-
trolled protection always causes suppression. A vio-
lation of any of the other protection types may cause
termination.

DAT Protection

The DAT-protection function2 controls access to vir-
tual storage by using the DAT-protection bit in each
page-table entry and segment-table entry, and, when
the enhanced-DAT facility is installed, in each region-
table entry. It provides protection against improper
storing.

The DAT-protection bit, bit 54 of the page-table entry,
controls whether storing is allowed into the corre-
sponding 4 K-byte page. When the bit is zero, both
fetching and storing are permitted; when the bit is
one, only fetching is permitted. When an attempt is
made to store into a protected page, the contents of
the page remain unchanged, the unit of operation or
the execution of the instruction is suppressed, and a
program interruption for protection takes place.

The DAT-protection bit, bit 54 of the segment-table
entry, controls whether storing is allowed into the cor-
responding 1 M-byte segment, as follows:

• When EDAT-1 does not apply, or when EDAT-1
applies and the STE-format control is zero, the
DAT-protection bit of the segment-table entry is
treated as being ORed into the DAT-protection-bit
position of each entry in the page table desig-
nated by the segment-table entry. Thus, when
the segment-table-entry DAT-protection bit is
one, the effect is as if the DAT-protection bit were
one in each entry in the designated page table.

• When EDAT-1 applies and the STE-format con-
trol is one, the DAT-protection bit of the segment-

2. Prior to the enhanced-DAT facility, the DAT-protection function was known as the page-protection facility.

3-14 The z/Architecture CPU Architecture

table entry controls whether storing is allowed
into the corresponding 1 M-byte segment. When
the bit is zero, both fetching and storing are per-
mitted; when the bit is one, only fetching is per-
mitted. When an attempt is made to store into a
protected segment, the contents of the segment
remain unchanged, the unit of operation or the
execution of the instruction is suppressed, and a
program interruption for protection takes place

When EDAT-1 applies, the DAT-protection bit, bit 54
of the region-table entry, controls whether storing is
allowed into the corresponding region(s). The DAT-
protection bit in a region-table entry is treated as
being ORed into the DAT-protection bit position of
any subsequent region-table entry and segment-
table entry that is used in the translation. When the
STE-format control is zero, the DAT-protection bit is
further propagated to the page-table entry, as
described above.

DAT protection applies to all store-type references
that use a virtual address.

Low-Address Protection

The low-address-protection facility provides protec-
tion against the destruction of main-storage informa-
tion used by the CPU during interruption processing.
In the z/Architecture architectural mode, this is
accomplished by prohibiting instructions from storing
with effective addresses in the ranges 0 through 511
and 4096 through 4607 (the first 512 bytes of each of
the first and second 4 K-byte effective-address
blocks). In the ESA/390-compatibility mode, low-
address protection is limited to effective addresses in
the range of 0-511 (the first 512 bytes of the first
4 K-byte effective-address block). The range criterion
is applied before address transformation, if any, of
the address by dynamic address translation or prefix-
ing. However, the range criterion is not applied, with
the result that low-address protection does not apply,
if the effective address is subject to dynamic address
translation and the private-space control, bit 55, is
one in the address-space-control element used in the
translation. Low-address protection does not apply if
the address-space-control element to be used is not
available due to another type of exception.

Low-address protection is under control of bit 35 of
control register 0, the low-address-protection-control
bit. When the bit is zero, low-address protection is off;
when the bit is one, low-address protection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, the execution of the instruction is
terminated, and a program interruption for a protec-
tion exception takes place. However, the unit of oper-
ation or the execution of the instruction may be
suppressed, as described in the section “Suppres-
sion on Protection” on page 3-15.

Any attempt by the program to store by using effec-
tive addresses in the range 0 through 511 is subject
to low-address protection. In the z/Architecture archi-
tectural mode, any attempt to store by using effective
addresses in the range of 4096 through 4607 is also
subject to low-address protection. Low-address pro-
tection is applied to the store accesses of instruc-
tions whose operand addresses are logical, virtual,
real, or absolute. Low-address protection is also
applied to the trace table.

Low-address protection is not applied to accesses
made by the CPU or the channel subsystem for such
sequences as interruptions, CPU logout, the storing
of the I/O-interruption code in real locations 184-195
by TEST PENDING INTERRUPTION, the storing of
the results of STORE FACILITY LIST in real locations
200-203, and the initial-program-loading and store-
status functions, nor is it applied to data stores during
I/O data transfer. When the enhanced-monitor facility
is installed, low-address protection is not applied
when a monitor-event counting operation results in
the updating the enhanced-monitor exception count
in real locations 268-271. However, explicit stores by
a program at any of these locations are subject to
low-address protection.

Instruction-Execution Protection

The instruction-execution-protection (IEP) facility
may be available on a model implementing z/Archi-
tecture. The IEP facility is installed in a configuration
when facility indication 130, as stored by the STORE
FACILITY LIST EXTENDED instruction, is one.
When the IEP facility is installed, the access-excep-
tion-fetch/store-indication and side-effect-access
facilities and the enhanced suppression-on-protec-
tion facility 2 are also installed. When installed, the
IEP facility is enabled in a CPU when the instruction-
execution-protection-enablement (IEPE) control, bit
43 of control register 0, is one.

When the facility is enabled, and an instruction is
fetched from the primary or home address space, an

Storage 3-15

instruction-execution-protection control in the DAT
leaf-table entry used in the translation determines
whether instructions in the frame mapped by the
entry may or may not be executed. Instruction-execu-
tion protection applies to both an instruction desig-
nated directly by the PSW instruction address and to
an instruction that is the target of an execute-type
instruction.

The facility may be used by a control program to bet-
ter segregate instructions from data. Improved sys-
tem reliability and integrity may be realized by
preventing instructions from being executed in stor-
age locations intended to contain only data. For
example, erroneously or maliciously modified data in
a program stack can be prevented from being exe-
cuted.

When the instruction-execution-protection facility is
enabled, the instruction-execution-protection control,
bit 55 of a format-1 region-third-table entry, a format-
1 segment-table entry, or a page-table entry, controls
whether instructions in the respective region, seg-
ment, or page are allowed to be executed. When the
bit is zero, the execution of instructions in the respec-
tive region, segment, or page is permitted; when the
bit is one, the execution of instructions in the respec-
tive region, segment, or page is suppressed, and a
protection exception is recognized with an arbitrary
instruction-length code indicated.

When two DAT leaf-table entries are required to fetch
an instruction, an instruction-execution-protection
exception is recognized if bit 55 is one in either or
both of the leaf-table entries used to translate the
instruction’s address.

When a protection exception is recognized due to
instruction-execution protection, the protection code
in bits 56, 60, and 61 of the translation-exception
identification (TEID) at real locations 168-175 contain
101 binary, and it is unpredictable whether the bit
positions 0-51 of the TEID contain the virtual address
of the instruction or zeros.

Further details on the instruction-execution-protec-
tion facility may be found in the section “Dynamic
Address Translation” on page 3-38.

Programming Notes:

1. Low-address protection and key-controlled pro-
tection apply to the same store accesses, except
that:

a. Low-address protection does not apply to
storing performed by the channel subsystem,
whereas key-controlled protection does.

b. Key-controlled protection does not apply to
tracing, the second operand of TEST
BLOCK, or instructions that operate specifi-
cally on the linkage stack, whereas low-
address protection does.

2. Because fetch-protection override and low-
address protection do not apply to an address
space for which the private-space control is one
in the address-space-control element, locations
0-2047 and, in the z/Architecture architectural
mode, locations 4096-4607 in the address space
are usable the same as the other locations in the
space.

Suppression on Protection

The suppression-on-protection facilities provide the
means by which a control program can effectively
determine whether a protection exception resulted in
suppression, and if so, whether the exception was
due to DAT protection – without having to unneces-
sarily scan DAT-table entries to determine if DAT pro-
tection was not the cause. Determining whether a
protection exception was caused by DAT protection is
necessary for the implementation of the POSIX fork
function, discussed in programming notes below.

Depending on the model, one of three types of sup-
pression-on-protection facility is installed:

• Basic suppression-on-protection (SOP) facility
(without the side-effect access facility)

• Enhanced suppression-on-protection facility 1
(ESOP-1; without the side-effect access facility)

• Enhanced suppression on protection facility 2
(ESOP-2; with the side-effect access facility)

Whether or not a protection exception is suppressing
depends on both the type of suppression-on-protec-

3-16 The z/Architecture CPU Architecture

tion facility that is installed and the protection excep-
tion that is recognized, as shown below in Figure 3-5.

Regardless of which suppression-on-protection facil-
ity is installed, the following applies:

• When multiple protection-exception conditions
apply to the same reference, the exceptions are
recognized in the order described in Figure 6-9,
“Priority of Access Exceptions” on page 6-54.
When (a) low-address protection applies to a ref-
erence, and (b) any of access-list-controlled pro-
tection, DAT protection, or key-controlled
protection also apply to the same reference, it is
unpredictable whether the former or latter is indi-
cated.

• Information identifying the cause of the protec-
tion exception is stored in the translation-excep-
tion identification (TEID) at real locations 168-
175. The extent of information stored in the TEID
depends on both type of suppression-on-protec-
tion facility that is installed and the type of protec-
tion exception. The TEID stored during a
protection exception is further described in the
section “Translation-Exception Identification for
Protection Exceptions” on page 3-77.

Depending on the type of suppression-on-protection
facility installed and the type of protection exception,
additional information may be stored in the excep-
tion-access identification (EAID) at real location 160.
The EAID is further described in the section “Excep-
tion Access Identification (EAID): During a program
interruption due to an ASCE-type, region-first-trans-
lation, region-second-translation, region-third-trans-
lation, segment-translation, or page-translation
exception, an indication of the address space to
which the exception applies may be stored at location
160, as follows:” on page 3-74.

The following describes the fundamental differences
between the three types of suppression-on-protec-
tion facilities.

Basic Suppression-on-Protection Facility
When TEID bit 61 is zero, the operation is either sup-
pressed or terminated, and the remainder of the
TEID and the EAID are unpredictable. TEID bit 61 is
zero if DAT was on, but the effective address causing
the exception was either real or absolute.

When TEID bit 61 is one, the following applies:

• The operation is suppressed.

• TEID bit positions 0-51 contain the effective
address that caused the protection exception.

• TEID bits 52-59 are unpredictable.

• If DAT was on, the following applies:

– The effective address that caused the pro-
tection exception is a virtual address.

– When TEID bit 60 is zero, access-list-con-
trolled protection is not the cause of the
exception. When TEID bit 60 is one, access-
list-controlled protection is the cause of the
exception.

– TEID bit positions 62 and 63 and the EAID
contain additional information identifying the
address space.

If DAT was off, TEID bits 60 and 62-63 and the
EAID are unpredictable.

Protection Exception
Recognized

Type of Suppression-on-
Protection Facility Installed
SOP ESOP-1 ESOP-2

Access-List-Controlled
DAT
Instruction-Execution — —
Key-Controlled ? ?
Low-Address ? ?

Explanation:

 Exception is suppressing.

 Exception is suppressing when the protection
code in bits 56, 60, and 61 of the translation-
exception identification is nonzero.

— Not applicable

? Unpredictable whether the exception results in
suppression or termination

ESOP Enhanced suppression on protection (facility -1
or -2)

SOP Basic suppression on protection

Figure 3-5. Suppression Attributes for Protection
Exceptions

Storage 3-17

The results of basic suppression on protection are
summarized in Figure 3-6.

Programming Note: When the basic suppression-
on-protection facility is installed, the information pro-
vided in the TEID can be used to determine that DAT
protection was not the cause of the exception, but it
cannot be used directly to determine that DAT protec-
tion was the cause.

Enhanced Suppression-on-Protection
Facility 1
The enhanced suppression-on-protection facility 1
(ESOP-1) provides additional function over that of
the basic suppression-on-protection facility. When

ESOP-1 is installed, the side-effect-access facility is
not installed. Characteristics of ESOP-1 are
described in this section.

The operation is always suppressed, regardless of
the contents of TEID bit 61.

When TEID bit 61 is zero, the exception is due to
either key-controlled protection or low-address pro-
tection, and the remainder of the TEID and the EAID
are unpredictable.

When TEID bit 61 is one, the following applies:

• The exception is due to either access-list-con-
trolled protection or DAT protection, as deter-
mined by TEID bit 60. When TEID bit 60 is zero,
DAT protection is the cause of the exception.
When TEID bit 60 is one, access-list-controlled
protection is the cause of the exception.

• TEID bit positions 0-51 contain the virtual
address that caused the protection exception.

• When the access-exception-fetch/store-indica-
tion facility is installed, TEID bit positions 52-53
contain the access-exception fetch/store indica-
tion.

• TEID bit positions 54-59 are unpredictable.

• TEID bit positions 62 and 63 and the EAID con-
tain additional information identifying the address
space.

Figure 3-7 summarizes the results of a protection
exception when the enhanced suppression-on-pro-
tection facility 1 is installed.

Exception Conditions Presented Fields

LAP
or

KCP DAT

ALCP
or

DATP
Effective
Address Bit 61

If Bit 61 is One
Bits 62, 63

and Loc. 160 Bit 60
No On Yes Log. 1 P 1A

Yes On Yes Log. U1 P 1A

Yes Off No Log. U2 U3 U3

Yes Off No R/A U2 U3 U3

Yes On No Log. U2 P 0
Yes On No R/A 0R – –

Explanation:

– Immaterial or not applicable.

0R Zero because effective address is real.

1A One if bit 61 is set to one because of access-list-controlled
protection; zero otherwise.

ALCP Access-list-controlled protection.

DATP DAT protection.

KCP Key-controlled protection.

LAP Low-address protection.

Log. Logical.

P Predictable.

R/A Real or absolute

U1 Unpredictable because low-address or key-controlled
protection may be recognized instead of access-list-
controlled or DAT protection.

U2 Unpredictable because bit 61 is only required to be set to
one for access-list-controlled or DAT protection.

U3 Unpredictable because DAT is off.

Figure 3-6. Basic Suppression-on-Protection Results
Exception

Type DAT
Bits
0-51

Bits
52-53

Bit
60

Bit
61

Bits 62, 63 and
Loc. 160

LAP – – – – 0 –

KCP – – – – 0 –

ALCP Yes A FS 1 1 AS

DATP Yes A FS 0 1 AS

Explanation:

– Undefined.

A Bits 0-51 of the effective address that caused the exception
(This must be a virtual address).

ALCP Access-list-controlled protection.

Figure 3-7. Enhanced Suppression-on-Protection Facility 1
Results

3-18 The z/Architecture CPU Architecture

Enhanced Suppression-on-Protection
Facility 2
The enhanced suppression-on-protection facility 2
(ESOP-2) provides additional function over that of
ESOP-1. When ESOP-2 is installed, the side-effect-
access facility is also installed. Characteristics of
ESOP-2 are described in this section.

The contents of TEID bit positions 56, 60, and 61
form a three-bit binary code that identifies the cause
of the protection exception. When the protection
code is zero, the remainder of the TEID and the EAID
are unpredictable. When the protection code is non-
zero, the following applies:

• The three-bit code identifies the cause of the pro-
tection exception, as follows:

• When the protection code is not 000 binary, the
operation is always suppressed (regardless of
the contents of TEID bit 61).

• Except as noted below, TEID bits position 0-51
contain the effective address that caused the
protection exception. For access-list-controlled-
protection, DAT-protection, and instruction-exe-
cution-protection exceptions, the effective
address is virtual. The effective address may be

virtual for key-controlled-protection and low-
address-protection exceptions when DAT is on;
otherwise, it is real or absolute.

For key-controlled-protection or instruction-exe-
cution-protection exceptions recognized when
fetching an instruction, it is unpredictable
whether bit positions 0-51 of the TEID contain
the address of the instruction or zeros.

• TEID bit positions 52-53 contain the access-
exception fetch/store indication.

• TEID bit position 54 contains the side-effect-
access indication.

• Bit 55 is unpredictable.

• TEID bits 57-59 are unpredictable.

• TEID bit positions 62 and 63 and the EAID con-
tain additional information identifying the address
space.

Figure 3-8 summarizes the TEID for a protection
exception when the enhanced suppression-on-pro-
tection facility 2 is installed.

AS Identifies the address space containing the effective
address that caused the exception.

DAT Dynamic address translation is performed.

DATP DAT protection.

FS Access-exception fetch/store indicator if the facility is
installed, otherwise unpredictable.

KCP Key-controlled protection.

LAP Low-address protection.

Code Meaning
000 Key-controlled or low-address protection
001 DAT protection
010 Key-controlled protection
011 Access-list-controlled protection
100 Low-address protection
101 Instruction-execution-protection (when the

instruction-execution-protection facility is
installed.

Figure 3-7. Enhanced Suppression-on-Protection Facility 1
Results (Continued)

Exception
Type DAT

Addr
Type

TEID Bit Positions (168-175)

0-51 52-53 54

Protection Code 62, 63,
and

Loc. 16056 60 61
KCP or
LAP1

– – – – – 0 0 0 –

DATP Yes V @ FS S 0 0 1 AS

KCP
No R/A @2 FS S 0 1 0 –3

Yes V @2 FS S 0 1 0 AS

ALCP Yes V @ FS S 0 1 1 AS

LAP
No R/A @ FS S 1 0 0 –3

Yes V @ FS S 1 0 0 AS

IEP Yes V @2 FS 0 1 0 1 AS

Explanation:

1 Presented if TEID details are not available.
2 For an instruction fetch, zeros may be stored instead of the

translation-exception address.
3 Address type cannot be determined from TEID.

@ Bits 0-51 of the address that caused the exception.

A Absolute address.

ALCP Access-list-controlled protection.

AS Identifies the address space containing the effective
address that caused the exception.

Figure 3-8. Enhanced Suppression-on-Protection Facility 2
Results

Storage 3-19

Facility indication 131, when one, indicates that the
enhanced-suppression-on-protection facility 2 and
the side-effect-access facility are both installed.

Programming Notes: Except as noted, the following
program notes are applicable regardless of which
suppression-on-protection facility is installed.

1. The suppression-on-protection function is useful
in performing the POSIX fork function, which
causes a duplicate address space to be created.
The following discussion pertains to (a) when
EDAT-1 does not apply, (b) when EDAT-1 applies
but the STE-format-control in the segment-table
entry is zero, or (c) when EDAT-2 applies but the
RTTE-format control in the region-third-table
entry is zero.

The duplicate address space is initially created
by making a copy of the DAT tables mapping the
original address space, but marking each page-
table entry in the duplicate address space as
DAT protected. Fetch accesses in the duplicate
address space use the same common page
frame as that of the original address space. How-
ever, when a store is attempted in the duplicate
address space, the control program recognizes
the DAT-protection exception, assigns a unique
page frame for this page in the duplicate address
space, and copies the contents of the original
block into the duplicate address space’s block (a
process known as the copy-on-write function).
The control program may initially set the DAT-pro-
tection bit to one in a higher-level DAT-table entry
to detect an attempt to store anywhere in the
blocks mapped by lower-level DAT-table entries.

When EDAT-1 applies, and the STE-format con-
trol in the segment-table entry is one, a similar
technique may be used to map a single segment
frame of absolute storage. Similarly, when
EDAT-2 applies, and the RTTE-format control in
the region-third-table entry is one, this technique
may be used to map a single region frame of
absolute storage.

2. For the basic suppression-on-protection facility,
when DAT is on, TEID bit 61 being one indicates
that the address that caused a protection excep-
tion is virtual, and TEID bit 60 being zero indi-
cates that the exception was not caused by
access-list-controlled protection. These indica-
tions allow programmed forms of access-register
translation and dynamic address translation to be
performed to locate the DAT-table entries used in
the translation, and determine whether the
exception was due to DAT protection (as
opposed to low-address or key-controlled protec-
tion).

For the enhanced-suppression-on-protection
facility 1, TEID bits 60 and 61 being 01 binary
indicate that DAT protection was the cause of the
exception. For the enhanced-suppression-on-
protection facility 2, TEID bits 56, 60, and 61
being 001 binary indicate that DAT protection
was the cause of the exception.

However, regardless of which suppression-on-
protection-exception facility applies, the control
program must still locate the appropriate DAT-
table entries to effect a copy-on-write function.

Reference Recording

Reference recording provides information for use in
selecting pages for replacement. Reference record-
ing uses the reference bit, bit 5 of the storage key.
The reference bit is set to one each time a location in
the corresponding storage block is referred to either
for fetching or for storing information, regardless of
whether DAT is on or off.

Reference recording is always active and takes place
for all storage accesses, including those made by
any CPU, any operator facility, or the channel subsys-
tem. It takes place for implicit accesses made by the

DAT Dynamic address translation is performed.

DATP DAT protection.

E Effective address.

FS Access-exception fetch/store indicator.

IEP Instruction-execution protection.

KCP Key-controlled protection.

LAP Low-address protection.

R Real address.

S Side-effect-access indicator.

V Virtual address.

– Undefined, unpredictable.

Protection codes 110-111 binary are reserved.

Figure 3-8. Enhanced Suppression-on-Protection Facility 2
Results (Continued)

3-20 The z/Architecture CPU Architecture

machine, such as those which are part of interrup-
tions and I/O-instruction execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

• INSERT REFERENCE BITS MULTIPLE
• INSERT STORAGE KEY EXTENDED
• RESET REFERENCE BIT EXTENDED (refer-

ence bit is set to zero)
• RESET REFERENCE BITS MULTIPLE (refer-

ence bits of 64 consecutive 4 K-byte blocks are
set to zero)

• PERFORM FRAME MANAGEMENT FUNC-
TION, SET STORAGE KEY EXTENDED and
MOVE PAGE (reference bit may be set to a spec-
ified value)

The record provided by the reference bit is substan-
tially accurate. The reference bit may be set to one by
fetching data or instructions that are neither desig-
nated nor used by the program, and, under certain
conditions, a reference may be made without the ref-
erence bit being set to one. Under certain unusual
circumstances, a reference bit may be set to zero by
other than explicit program action.

When the CPU is in the transactional-execution
mode, it is unpredictable whether the reference bit is
set coincident with the transaction’s storage
accesses or at the end of the transaction. Reference
bits that are set during the execution of a transaction
may remain set if the transaction is aborted.

Change Recording

Change recording provides information as to which
pages have to be saved in auxiliary storage when
they are replaced in main storage. Change recording
uses the change bit, bit 6 of the storage key.

The change bit is set to one each time a store access
causes the contents of the corresponding storage
block to be changed. A store access that does not
change the contents of storage may or may not set
the change bit to one.

The change bit is not set to one for an attempt to
store if the access is prohibited. In particular:

1. For the CPU, a store access is prohibited when-
ever an access exception exists for that access,
or whenever an exception exists which is of
higher priority than the priority of an access
exception for that access.

2. For the channel subsystem, a store access is
prohibited whenever a key-controlled-protection
violation exists for that access.

Change recording is always active and takes place
for all store accesses to storage, including those
made by any CPU, any operator facility, or the chan-
nel subsystem. It takes place for implicit references
made by the machine, such as those which are part
of interruptions.

Change recording does not take place for the oper-
ands of the following instructions since they directly
modify a storage key without modifying a storage
location:

• RESET REFERENCE BIT EXTENDED
• RESET REFERENCE BITS MULTIPLE
• SET STORAGE KEY EXTENDED, PERFORM

FRAME MANAGEMENT FUNCTION, and
MOVE PAGE (change bit may be set to a speci-
fied value)

Change bits which have been changed from zeros to
ones are not necessarily restored to zeros on CPU
retry (see “CPU Retry” on page 11-2). See “Excep-
tions to Nullification and Suppression” on page 5-26
for a description of the handling of the change bit in
certain unusual situations. It is possible that the
change bit may be over-indicated for any storage
which is referenced before execution of the first
instruction that sets or extracts a storage key, sets
the PSW key to a non-zero value or uses a non-zero
alternate key for storage access.

When the condition specified by the M3 field of a
STORE ON CONDITION instruction is not met, it is
model dependent whether the change bit is set for
the storage location designated by the second oper-
and.

When the CPU is in the transactional-execution
mode, it is unpredictable whether the change bit is
set coincident with the transaction’s store accesses
or at the end of the transaction. Change bits that are
set during the execution of a transaction may remain
set if the transaction is aborted.

Storage 3-21

Prefixing

Prefixing provides the ability to assign the block of
real addresses containing assigned storage locations
to a different block in absolute storage for each CPU,
thus permitting more than one CPU sharing main
storage to operate concurrently with a minimum of
interference, especially in the processing of interrup-
tions.

In the z/Architecture architectural mode, prefixing
causes real addresses in the range 0-8191 to corre-
spond one-for-one to the block of 8 K-byte absolute
addresses (the prefix area) identified by the value in
bit positions 0-50 of the prefix register for the CPU,
and the block of real addresses identified by that
value in the prefix register to correspond one-for-one
to absolute addresses 0-8191.

In the ESA/390-compatibility mode, prefixing causes
real addresses in the range 0-4,095 to correspond
one-for-one to the block of 4 K-byte absolute
addresses (the prefix area) identified by the value in
bit positions 0-51 of the prefix register for the CPU,
and the block of real addresses identified by that
value in the prefix register to correspond one-for-one
to absolute addresses 0-4,095.

The remaining real addresses are the same as the
corresponding absolute addresses. This transforma-
tion allows each CPU to access all of main storage,
including the first 8K bytes and the locations desig-
nated by the prefix registers of other CPUs.

The relationship between real and absolute
addresses is graphically depicted in Figure 3-9 on
page 3-21.

Explanation:

N In the z/Architecture architectural mode, N is 8,192. In the ESA/390-compatibility mode, N is 4,096.
1 In the z/Architecture architectural mode, real addresses in which bits 0-50 are equal to bits 0-50 of the prefix for

this CPU (A or B). In the ESA/390-compatibility mode, real addresses in which bits 0-51 are equal to bits 0-51 of
the prefix for this CPU (A or B).

2 Absolute addresses of the block that contains for this CPU (A or B) the real locations 0 through (N–1)

Figure 3-9. Relationship between Real and Absolute Addresses

Prefixing

/

/

/

1

N

0

/

/

/

/

/

/

N

0

Prefixing

2

2 1

N

0

No change

No change

No change

No change

Real Addresses
for CPU A

Real Addresses
for CPU B

Absolute
Addresses

Apply
Zeros

Apply
Zeros

Apply
Prefix

Apply
Prefix

3-22 The z/Architecture CPU Architecture

Prefixing in the z/Architecture
Architectural Mode

In the z/Architecture architectural mode, the prefix is
a 51-bit quantity contained in bit positions 0-50 of the
prefix register. Figure 3-10 illustrates the prefix regis-
ter in the z/Architecture architectural mode.

Bits 33-50 of the register can be set and inspected by
the privileged instructions SET PREFIX and STORE
PREFIX, respectively.

SET PREFIX sets bits 33-50 of the prefix register
with the value in bit positions 1-18 of a word in stor-
age, and it ignores the contents of bit positions 0 and
19-31 of the word. STORE PREFIX stores the value
in bit positions 33-50 of the prefix register in bit posi-
tions 1-18 of a word in storage, and it stores zeros in
bit positions 0 and 19-31 of the word.

When prefixing is applied, the real address is trans-
formed into an absolute address by using one of the
following rules, depending on bits 0-50 of the real
address:

1. Bits 0-50 of the address, if all zeros, are replaced
with bits 0-50 of the prefix.

2. Bits 0-50 of the address, if equal to bits 0-50 of
the prefix, are replaced with zeros.

3. Bits 0-50 of the address, if not all zeros and not
equal to bits 0-50 of the prefix, remain
unchanged.

Bit 51 of the prefix register is always set to zero and
does not participate in the prefixing process.

Prefixing in the ESA/390-
Compatibility Mode

In the ESA/390-compatibility mode, the prefix is a
52-bit quantity contained in bit positions 0-51 of the

prefix register. Figure 3-11 illustrates the prefix regis-
ter in the ESA/390-compatibility mode.

Bits 33-51 of the register can be set and inspected by
the privileged instructions SET PREFIX and STORE
PREFIX, respectively.

SET PREFIX sets bits 33-51 of the prefix register
with the value in bit positions 1-19 of a word in stor-
age, and it ignores the contents of bit positions 0 and
20-31 of the word. STORE PREFIX stores the value
in bit positions 33-51 of the prefix register in bit posi-
tions 1-19 of a word in storage, and it stores zeros in
bit positions 0 and 20-31 of the word.

When prefixing is applied, the real address is trans-
formed into an absolute address by using one of the
following rules, depending on bits 0-51 of the real
address:

1. Bits 0-51 of the address, if all zeros, are replaced
with bits 0-51 of the prefix.

2. Bits 0-51 of the address, if equal to bits 0-51 of
the prefix, are replaced with zeros.

3. Bits 0-51 of the address, if not all zeros and not
equal to bits 0-51 of the prefix, remain
unchanged.

Common Prefixing Attributes

Bits 0-32 of the prefix register are always all zeros.
When the contents of the prefix register are changed,
the change is effective for the next sequential instruc-
tion.

Only the address presented to storage is translated
by prefixing. The contents of the source of the
address remain unchanged.

The distinction between real and absolute addresses
is made even when the prefix register contains all
zeros, in which case a real address and its corre-
sponding absolute address are identical.

0 0
0 31

0 Prefix Bits 33-50 0 / / / / / / / / / / / /
32 33 51 52 63

Figure 3-10. z/Architecture Prefix Register

0 0
0 31

0 Prefix Bits 33-51 / / / / / / / / / / / /
32 33 52 63

Figure 3-11. ESA/390-Compatibility Mode Prefix Register

Storage 3-23

Address Spaces

Note: In the ESA/390-compatibility mode, ASN
translation and dynamic address translation are not
supported, however absolute-storage address
spaces may be supported, as described in Refer-
ence [12.] on page xxx.

An address space is a consecutive sequence of inte-
ger numbers (virtual addresses), together with the
specific transformation parameters which allow each
number to be associated with a byte location in stor-
age. The sequence starts at zero and proceeds left
to right.

When a virtual address is used by a CPU to access
main storage, it is first converted, by means of
dynamic address translation (DAT), to a real address,
and then, by means of prefixing, to an absolute
address. DAT may use from five to two levels of
tables (region first table, region second table, region
third table, segment table, and page table) as trans-
formation parameters. The designation (origin and
length) of the highest-level table for a specific
address space is called an address-space-control
element, and it is found for use by DAT in a control
register or as specified by an access register. Alter-
natively, the address-space-control element for an
address space may be a real-space designation,
which indicates that DAT is to translate the virtual
address simply by treating it as a real address and
without using any tables.

DAT uses, at different times, the address-space-con-
trol elements in different control registers or specified
by the access registers. The choice is determined by
the translation mode specified in the current PSW.
Four translation modes are available: primary-space
mode, secondary-space mode, access-register
mode, and home-space mode. Different address
spaces are addressable depending on the translation
mode.

At any instant when the CPU is in the primary-space
mode or secondary-space mode, the CPU can trans-
late virtual addresses belonging to two address
spaces — the primary address space and the sec-
ondary address space. At any instant when the CPU
is in the access-register mode, it can translate virtual
addresses of up to 16 address spaces — the primary
address space and up to 15 AR-specified address
spaces. At any instant when the CPU is in the home-

space mode, it can translate virtual addresses of the
home address space.

The primary address space is identified as such
because it consists of primary virtual addresses,
which are translated by means of the primary
address-space-control element (ASCE). Similarly,
the secondary address space consists of secondary
virtual addresses translated by means of the second-
ary ASCE, the AR-specified address spaces consist
of AR-specified virtual addresses translated by
means of AR-specified ASCEs, and the home
address space consists of home virtual addresses
translated by means of the home ASCE. The primary
and secondary ASCEs are in control registers 1 and
7, respectively. The AR-specified ASCEs are in con-
trol registers 1 and 7 and in table entries called ASN-
second-table entries. The home ASCE is in control
register 13.

Changing to Different Address Spaces
A program can cause different address spaces to be
addressable by using the semiprivileged SET
ADDRESS SPACE CONTROL or SET ADDRESS
SPACE CONTROL FAST instruction to change the
translation mode to the primary-space mode, sec-
ondary-space mode, access-register mode, or home-
space mode. However, SET ADDRESS SPACE
CONTROL and SET ADDRESS SPACE CONTROL
FAST can set the home-space mode only in the
supervisor state. The program can cause still other
address spaces to be addressable by using unprivi-
leged instructions to change the contents of the
access registers and by using semiprivileged or privi-
leged instructions to change the address-space-con-
trol elements in control registers 1 and 7. The
semiprivileged instructions are ones that cause link-
age from one address space to another and are the
BRANCH IN SUBSPACE GROUP, PROGRAM
CALL, PROGRAM RETURN, PROGRAM TRANS-
FER, PROGRAM TRANSFER WITH INSTANCE,
SET SECONDARY ASN, and SET SECONDARY
ASN WITH INSTANCE instructions. The privileged
instructions are the LOAD ADDRESS SPACE
PARAMETERS and LOAD CONTROL instructions.
Only LOAD CONTROL is available for changing the
home address-space-control element in control reg-
ister 13.

Address-Space Number
An address space may be assigned an address-
space number (ASN) by the control program. The
ASN designates, within a two-level table structure in

3-24 The z/Architecture CPU Architecture

main storage, an ASN-second-table entry containing
information about the address space. If the ASN-sec-
ond-table entry is marked as valid, it contains the
address-space-control element that defines the
address space.

Under certain circumstances, the semiprivileged
instructions which place a new address-space-con-
trol element in control register 1 or 7 fetch this ele-
ment from an ASN-second-table entry. Some of
these instructions use an ASN-translation mecha-
nism which, given an ASN, can locate the designated
ASN-second-table entry.

The 16-bit unsigned binary format of the ASN per-
mits 64K unique ASNs.

The ASNs for the primary and secondary address
spaces are assigned positions in control registers.
The ASN for the primary address space, called the
primary ASN, is assigned bits 48-63 in control regis-
ter 4, and that for the secondary address space,
called the secondary ASN, is assigned bits 48-63 in
control register 3. Bits 48-63 of these registers have
the following formats:

Control Register 4

Control Register 3

A semiprivileged instruction that loads the primary or
secondary address-space-control element into the
appropriate control register also loads the corre-
sponding ASN into the appropriate control register.

The ASN for the home address space is not assigned
a position in a control register.

An access register containing the value 0 or 1 speci-
fies the primary or secondary address space,
respectively; and the address-space-control element
specified by the access register is in control register
1 or 7, respectively. An access register containing
any other value designates an entry in a table called
an access list. The designated access-list entry con-
tains the real address of an ASN-second-table entry
for the address space specified by the access regis-
ter. The address-space-control element specified by
the access register is in the ASN-second-table entry.

Translating the contents of an access register to
obtain an address-space-control element for use by
DAT does not involve the use of an ASN.

Note: Virtual storage consisting of byte locations
ordered according to their virtual addresses in an
address space is usually referred to as “storage.”

Programming Note: Because an ASN-second-table
entry is located from an access-list entry by means of
its address instead of by means of its ASN, the ASN-
second-table entries designated by access-list
entries can be “pseudo” ASN-second-table entries,
that is, entries which are not in the two-level structure
able to be indexed by means of the ASN-translation
process. The number of unique pseudo ASN-sec-
ond-table entries can be greater than the number of
unique ASNs and is limited only by the amount of
storage available to be occupied by the ASN-second-
table entries. Thus, in a sense, there is no limit on the
number of possible address spaces.

ASN-Second-Table-Entry
Sequence Number

The ASN-second-table entry contains an ASN-sec-
ond-table-entry sequence number (ASTESN) that
may be used to control storage references to the
related address space by means of an access regis-
ter or through use of the SET SECONDARY ASN,
SET SECONDARY ASN WITH INSTANCE, or LOAD
ADDRESS SPACE PARAMETERS instruction and
that may be used to control linkages to or back to the
address space by means of the BRANCH IN SUB-
SPACE GROUP, PROGRAM CALL, PROGRAM
TRANSFER, PROGRAM TRANSFER WITH
INSTANCE, and PROGRAM RETURN instructions.
These uses of the ASTESN are described below.

When any instruction uses an access register to des-
ignate an access-list entry, which in turn designates
an ASN-second-table entry, to perform a storage ref-
erence to the address space specified by the ASN-
second-table entry, an ASTESN in the access-list
entry is compared to the ASTESN in the ASN-sec-
ond-table entry, and these ASTESNs must be equal;
otherwise, an ASTE-sequence exception is recog-
nized. This use of the ASTESN allows an access-list
entry to be made unusable if some authorization pol-
icy is changed or the designated ASN-second-table
entry is reassigned to specify a conceptually different
address space. The entry can be made unusable by

… PASN
48 63

… SASN

48 63

Storage 3-25

changing the ASTESN in the ASN-second-table
entry. The use is further described in “Revoking
Accessing Capability:” on page 5-51.

The ASTESN is used in connection with subspace
groups as follows:

• When BRANCH IN SUBSPACE GROUP uses an
access register to designate an access-list entry,
which in turn designates an ASN-second-table
entry, to transfer control to the subspace speci-
fied by the ASN-second-table entry, an ASTESN
in the access-list entry is compared to the
ASTESN in the ASN-second-table entry, and
these ASTESNs must be equal.

• When BRANCH IN SUBSPACE GROUP uses, in
an access register, an access-list-entry token
with the value 00000001 hex to transfer control to
the subspace specified by the subspace-ASN-
second-table-entry origin in the current dispatch-
able-unit control table (designated by control reg-
ister 2), a subspace-ASN-second-table-entry
sequence number (SSASTESN) in the dispatch-
able-unit control table is compared to the
ASTESN in the ASN-second-table entry for the
subspace, and the SSASTESN and ASTESN
must be equal.

• When LOAD ADDRESS SPACE PARAMETERS,
PROGRAM CALL, PROGRAM RETURN, PRO-
GRAM TRANSFER, PROGRAM TRANSFER
WITH INSTANCE, SET SECONDARY ASN, or
SET SECONDARY ASN WITH INSTANCE sets
the primary address-space-control element in
control register 1 or the secondary address-
space-control element in control register 7 with
bits of the address-space-control element in the
ASN-second-table entry for a subspace, the
SSASTESN is compared to the ASTESN in the
ASN-second-table entry for the subspace, and
the SSASTESN and ASTESN must be equal.

Otherwise, in all of the above three cases, an ASTE-
sequence exception is recognized, except that LOAD
ADDRESS SPACE PARAMETERS sets condition
code 1 or 2 depending on whether the subspace is
the primary address space or the secondary address
space, respectively. These uses of the ASTESN
allow an access-list entry and the subspace-ASN-
second-table-entry origin in the current dispatchable-
unit control table to be made unusable when the
ASN-second-table entry either of them designates is
reassigned to specify a conceptually different

address space. The access-list entry and subspace-
ASN-second-table-entry origin can be made unus-
able by changing the ASTESN in the ASN-second-
table entry. The uses are further described in “Sub-
space Groups” on page 5-66.

Programming Note: The above operations use an
ASN-second-table-entry origin in either an access-
list entry or the dispatchable-unit control table; they
do not use an ASN. The designated ASN-second-
table entry is normally a pseudo ASN-second-table
entry (one not in the structure able to be indexed by
means of an ASN).

ASN-Second-Table-Entry Instance
Number and ASN Reuse

The ASN-and-LX-reuse facility may be installed on
the model. If this facility is installed, the ASN-second-
table entry contains an ASN-second-table-entry
instance number (ASTEIN), and certain new defini-
tions related to the ASTEIN and to a new linkage-
second-table-entry sequence number (LSTESN)
apply. The definitions related to the ASTEIN are sum-
marized below and also given in the appropriate sec-
tions of this publication.

• The ASN-and-LX-reuse facility includes the fol-
lowing new instructions:

– EXTRACT PRIMARY ASN AND INSTANCE
– EXTRACT SECONDARY ASN AND

INSTANCE
– PROGRAM TRANSFER WITH INSTANCE
– SET SECONDARY ASN WITH INSTANCE

• The facility also includes the following new con-
trol bits:

– The ASN-and-LX-reuse control (R), bit 44 of
control register 0

– The controlled-ASN bit (CA), bit 30 of word 1
of the ASN-second-table entry

– The reusable-ASN bit (RA), bit 31 of word 1
of the ASN-second-table entry

The three control bits are shown as follows:

Control Register 0

R

44

3-26 The z/Architecture CPU Architecture

Word 1 of ASN-Second-Table Entry

• The facility also includes the primary ASTEIN in
bit positions 0-31 of control register 4 and the
secondary ASTEIN in bit positions 0-31 of con-
trol register 3. The primary ASTEIN is a copy of
the ASTEIN in the ASN-second-table entry for
the current primary address space specified by
the PASN in control register 4, and the second-
ary ASTEIN is a copy of the ASTEIN in the ASN-
second-table entry for the current secondary
address space specified by the SASN in control
register 3. The complete formats of control regis-
ters 3 and 4 are as follows:

Control Register 3

Control Register 4

• The following operations are performed if the
ASN-and-LX-reuse control, bit 44 of control reg-
ister 0, is one. When LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, or SET
SECONDARY ASN (1) sets the primary ASN in
control register 4 or the secondary ASN in con-
trol register 3 equal to a specified ASN and
(2) sets the primary address-space-control ele-
ment in control register 1 or the secondary
address-space-control element in control register
7, respectively, with the value of an address-
space-control element obtained from an ASN-
second-table entry located by means of ASN
translation of the specified ASN (or located, by
PROGRAM CALL only, by means of an ASTE
address), the instruction also sets the primary
ASTEIN in control register 4 or secondary
ASTEIN in control register 3, respectively, with
the value of the ASTEIN in the ASN-second-table
entry. However, PROGRAM TRANSFER and

SET SECONDARY ASN, which are performing
their space-switching operations, recognize a
special-operation exception if the reusable-ASN
bit, bit 31 of word 1, in the ASN-second-table
entry is one.

When the ASN-and-LX-reuse control is one and
any of the instructions named above or BRANCH
IN SUBSPACE GROUP sets the secondary ASN
and secondary address-space-control element
equal to the primary ASN (in the space-switching
stacking PROGRAM CALL operation, this may
be the old or the new primary ASN, as deter-
mined by a bit in the entry-table entry used) and
primary address-space-control element, respec-
tively, it also sets the secondary ASTEIN in con-
trol register 3 equal to the primary ASTEIN in
control register 4 (again, in the space-switching
stacking PROGRAM CALL case, this may be the
old or the new primary ASTEIN). Since this func-
tion does not include the accessing of an ASN-
second-table entry, it is not affected by a reus-
able-ASN bit.

PROGRAM TRANSFER WITH INSTANCE and
SET SECONDARY ASN WITH INSTANCE oper-
ate as described above except (1) independent
of the value of the ASN-and-LX-reuse control
(they always update the primary ASTEIN and
secondary ASTEIN as described above),
(2) without recognizing an exception due to the
reusable-ASN bit (they ignore the bit), and (3) in
their space-switching forms and the problem
state at the beginning of the operation, by recog-
nizing a special-operation exception if the con-
trolled-ASN bit, bit 30 of word 1, is one in the
ASN-second-table entry located by ASN transla-
tion. PROGRAM TRANSFER WITH INSTANCE
and SET SECONDARY ASN WITH INSTANCE
ignore the controlled-ASN bit if the CPU is in the
supervisor state at the beginning of the opera-
tion. (PROGRAM TRANSFER WITH INSTANCE
may switch the CPU from the supervisor state to
the problem state.)

• PROGRAM TRANSFER WITH INSTANCE and
SET SECONDARY ASN WITH INSTANCE oper-
ate the same as PROGRAM TRANSFER and
SET SECONDARY ASN, respectively, except as
described in the preceding item and except as
follows.

Independent of the ASN-and-LX-reuse control
and the reusable-ASN bit, but not of the con-
trolled-ASN bit, each of PROGRAM TRANSFER

AX ATL
C
A

R
A

0 16 28 30 31

SASTEIN
0 31

PKM SASN
32 48 63

PASTEIN
0 31

AX PASN
32 48 63

Storage 3-27

WITH INSTANCE with space switching and SET
SECONDARY ASN WITH INSTANCE with space
switching, after it has used the ASN in the R1

general register to locate an ASN-second-table
entry, compares an ASTEIN in bit positions 0-31
of general register R1 to the ASTEIN in the entry.
The two ASTEINs must be equal; otherwise, an
ASTE-instance exception is recognized. This
comparison is performed in both the problem and
the supervisor state.

• The following operations are performed if the
ASN-and-LX-reuse control is one. Each of stack-
ing PROGRAM CALL and BRANCH AND
STACK places the current primary ASTEIN in
bytes 180-183 of the linkage-stack state entry
that it forms, and it places the current secondary
ASTEIN, bits 0-31 of control register 3, in bytes
176-179 of the state entry.

Note: There is not a test of an ASTEIN related to
the ASN in the entry-table entry used by PRO-
GRAM CALL. There may be a test of a linkage-
second-table-entry sequence number related to
the linkage index used to locate the entry-table
entry, as summarized in “ASN-and-LX-Reuse
Control:” on page 5-30.

• The following operations are performed if the
ASN-and-LX-reuse control is one. PROGRAM
RETURN with space switching, after it has used
the PASN in bytes 134 and 135 of the linkage-
stack program-call state entry to locate an ASN-
second-table entry (because that PASN is not
equal to the current PASN in control register 4),
compares the primary ASTEIN in bytes 180-183
of the state entry to the ASTEIN in the ASN-sec-
ond-table entry. PROGRAM RETURN to current
primary or with space switching, if it uses the
SASN in bytes 130 and 131 of the state entry to
locate an ASN-second-table entry (because that
SASN is not equal to the new PASN), compares
the secondary ASTEIN in bytes 176-179 of the
state entry to the ASTEIN in the ASN-second-
table entry. The one or two comparisons of
ASTEINs must each give equal results; other-
wise, an ASTE-instance exception is recognized.
These operations occur independent of the con-
trolled-ASN and reusable-ASN bits in the ASN-
second-table entry. PROGRAM RETURN does
not compare ASTEINs when it unstacks a branch
state entry.

• The following format applies, and the operations
are performed, if the ASN-and-LX-reuse control

is one. The first operand of LOAD ADDRESS
SPACE PARAMETERS is two consecutive dou-
blewords having the following format:

First Operand of LOAD ADDRESS SPACE
PARAMETERS

If PASN translation is performed to locate an
ASN-second-table entry, PASTEIN-d is com-
pared to the ASTEIN in the ASN-second-table
entry, and they must be equal; otherwise, condi-
tion code 1 is set. If SASN translation is per-
formed to locate an ASN-second-table entry,
SASTEIN-d is compared to the ASTEIN in the
ASN-second-table entry, and they must be equal;
otherwise, condition code 2 is set. These opera-
tions are performed independent of the con-
trolled-ASN and reusable-ASN bits in the ASN-
second-table entries.

• Independent of the ASN-and-LX-reuse control,
EXTRACT PRIMARY ASN AND INSTANCE
places the current primary ASN, bits 48-63 of
control register 4, in bit positions 48-63 of gen-
eral register R1; places the current primary
ASTEIN, bits 0-31 of control register 4, in bit
positions 0-31 of the general register; and places
zeros in bit positions 32-47 of the general regis-
ter. EXTRACT SECONDARY ASN AND
INSTANCE operates the same except that it
obtains the secondary ASN and secondary
ASTEIN in control register 3 for placement in the
general register.

• Independent of the ASN-and-LX-reuse control, a
new code, code 5, of the EXTRACT STACKED
STATE instruction is valid. Code 5 causes the
saved secondary ASTEIN, bytes 176-179 of the
state entry, to be placed in bit positions 0-31 of
the R1 general register and the saved primary
ASTEIN, bytes 180-183 of the state entry, to be
placed in bit positions 0-31 of general register
R1 + 1. Bits 32-63 of the general registers remain
unchanged.

SASTEIN-d
0 31

PKM-d SASN-d
32 63

PASTEIN-d
64 95

AX-d PASN-d
96 112 127

3-28 The z/Architecture CPU Architecture

These uses of the ASTEIN allow, in all cases except
one, an ASN associated with a particular ASTEIN to
be made unusable when the ASN and the ASN-sec-
ond-table entry it designates are reassigned to spec-
ify a conceptually different address space. The ASN-
and-ASTEIN combination can be made unusable by
(1) setting to one the reusable-ASN bit in the ASN-
second-table entry, which prevents the use of PRO-
GRAM TRANSFER and SET SECONDARY ASN,
and (2) changing the ASTEIN in the ASN-second-
table entry, which prevents the use of LOAD
ADDRESS SPACE PARAMETERS, PROGRAM
TRANSFER WITH INSTANCE, PROGRAM
RETURN, and SET SECONDARY ASN WITH
INSTANCE. The uncovered case is that of an ASN
(and the corresponding ASN-second-table-entry
address) in an entry-table entry, and this case should
be handled by means of deletion, by the control pro-
gram, of the entry-table entry. However, if the control
program then reforms the entry-table entry (forms an
entry-table entry located by means of the same PC
number, used by PROGRAM CALL, as was the
deleted entry-table entry), a PC number that was
used to link to the conceptually deleted address
space will then be usable to link to a different (differ-
ent ASN) or conceptually different (same ASN but dif-
ferent contents) address space, and this error should
be avoided by using the linkage-second-table-entry
sequence number as described in “ASN-and-LX-
Reuse Control:” on page 5-30.

Programming Notes:

1. The reusable-ASN bit of the ASN-and-LX-reuse
facility provides reliability, availability, and ser-
viceability. Most importantly, it provides availabil-
ity since it allows ASNs to be reused. However it
does not provide system integrity since the
ASTEIN in the general register used by PRO-
GRAM TRANSFER WITH INSTANCE or SET
SECONDARY ASN WITH INSTANCE is provided
by the program. (The authorization index used by
those instructions normally provides system
integrity but may fail to do so if an ASN autho-
rized by an unchanged authorization index is
reused.) The controlled-ASN bit provides system
integrity since, if the CPU is in the problem state
at the beginning of the operation, PROGRAM
TRANSFER WITH INSTANCE and SET SEC-
ONDARY ASN WITH INSTANCE are unable to
proceed successfully after accessing an ASN-
second-table entry in which the controlled-ASN
bit is one. When the calling program and called
program are both executed in the problem state,

a program in an address space for which the
controlled-ASN bit is one should perform link-
ages to programs in other address spaces only
by means of stacking PROGRAM CALL. If that is
done, the return by means of PROGRAM
RETURN will always be successful, or will fail
appropriately when the ASN of the first address
space has been changed, because of the com-
parison to the saved primary ASTEIN in the link-
age-stack state entry.

2. A program given control by a basic PROGRAM
CALL operation can use EXTRACT SECOND-
ARY ASN AND INSTANCE to obtain the ASTEIN
to be used by PROGRAM TRANSFER WITH
INSTANCE to return to the calling program or by
SET SECONDARY ASN WITH INSTANCE to
restore its secondary address space after a
change of that space. This EXTRACT SECOND-
ARY ASN AND INSTANCE instruction should be
executed while the original secondary space
remains continuously the secondary space; oth-
erwise, depending on actions by the control pro-
gram, EXTRACT SECONDARY ASN AND
INSTANCE may return an ASTEIN that allows
return to or use of a conceptually incorrect sec-
ondary space for which the ASTEIN has been
changed.

3. A summary of the functions related to ASN reuse
is given in Figure 3-12 on page 3-29.

4. There are certain programming errors, or situa-
tions that are not necessarily errors, that will not
be detected. These cases are described in the
definitions of the named instructions and are as
follows:

• In LOAD ADDRESS SPACE PARAMETERS:

– SASN translation is performed only
when, but not necessarily when, SASN-d
is not equal to PASN-d. When SASN-d is
equal to PASN-d, SASCE-new and SAS-
TEIN-new are set equal to PASCE-new
and PASTEIN-new, respectively. In this
case, there is not a test of whether SAS-
TEIN-d is equal to PASTEIN-d; SAS-
TEIN-d is ignored.

– When SASN-d is not equal to PASN-d
and is equal to SASN-old, bit 61 (force
ASN translation) is zero, and bit 63 (skip
SASN authorization) is one, SASN trans-
lation is not performed, and SASCE-old
and SASTEIN-old become SASCE-new

Storage 3-29

and SASTEIN-new, respectively. In this
case, there is not a test of whether SAS-
TEIN-d is equal to SASTEIN-old; SAS-
TEIN-d is ignored.

• In PROGRAM RETURN, if the new SASN is
equal to the new PASN, the SASCE in con-
trol register 7 is set equal to the new PASCE
in control register 1. The SASTEIN, PKM,
and SASN in control register 3 remain as
restored from the state entry. In this case,
there is not a test of whether the new SAS-
TEIN is equal to the new PASTEIN. (There
has already been a test of whether the
PASTEIN saved in the entry, which becomes
the new PASTEIN, equals the ASTEIN in the
new PASTE.)

• In the PROGRAM TRANSFER WITH
INSTANCE to-current-primary operation,
there is not a test of whether the current
PASTEIN equals the ASTEIN specified in bit
positions 0-31 of general register R1; the
ASTEIN is ignored.

• In the SET SECONDARY ASN WITH
INSTANCE to-current-primary operation,
there is not a test of whether the current
PASTEIN (to which the SASTEIN is set
equal) equals the ASTEIN specified in bit
positions 0-31 of general register R1; the
ASTEIN is ignored.

Function

Required Bit
Value

R CA RA

LASP, PC, and PR update PASTEIN or
SASTEIN in a control register after
accessing an ASN-second-table entry

1 – –

PT and SSAR update PASTEIN or
SASTEIN in a control register after
accessing an ASN-second-table entry

1 – 01

BSG, LASP, PC, PR, PT, and SSAR set
SASTEIN equal to PASTEIN

1 – –

PTI and SSAIR update PASTEIN or
SASTEIN in a control register after
accessing an ASN-second-table entry

– 02 –

PTI and SSAIR set SASTEIN equal to
PASTEIN

– – –

Figure 3-12. Summary of Functions Related to ASN Reuse
(Part 1 of 2)

PTI and SSAIR after accessing an
ASN-second-table entry, compare
ASTEIN in general register R1 to
ASTEIN in the entry

– 02 –

Stacking PC and BAKR copy PASTEIN
and SASTEIN from control registers to
state entry

1 – –

PR, after accessing an ASN-second-
table entry, compares PASTEIN or
SASTEIN in the state entry to ASTEIN
in the ASN-second-table entry3

1 – –

LASP, after accessing an ASN-second-
table entry, compares PASTEIN-d or
SASTEIN-d to ASTEIN in the entry4

1 – –

EPAIR copies PASTEIN and PASN
from control register 4 to general
register R1

– – –

ESAIR copies SASTEIN and SASN
from control register 3 to general
register R1

– – –

ESTA code 5 copies PASTEIN and
SASTEIN from state entry to general
registers

– – –

Explanation:

– Bit is ignored or not applicable to the operation.
1 A special-operation exception is recognized if the bit

is one.
2 A special-operation exception is recognized if the bit

is one and the CPU is in the problem state at the
beginning of the operation.

3 An ASTE-instance exception is recognized if the
ASTEINs are not equal.

4 Condition code 1 (if PASTEIN comparison) or 2 (if
SASTEIN comparison) is set if the ASTEIN is not
equal.

CA Controlled-ASN bit, bit 30 of word 1 of ASN-second-
table entry.

R ASN-and-LX-reuse control, bit 44 of control register
0.

RA Reusable-ASN bit, bit 31 of word 1 of ASN-second-
table entry.

Function

Required Bit
Value

R CA RA

Figure 3-12. Summary of Functions Related to ASN Reuse
(Part 2 of 2)

3-30 The z/Architecture CPU Architecture

ASN Translation

Note: The ASN-translation concepts described in fol-
lowing section are applicable only to the z/Architec-
ture architectural mode where dynamic address
translation is supported. ASN translation is not sup-
ported in the ESA/390-compatibility mode.

ASN translation is the process of translating a 16-bit
ASN to locate the ASN-second-table entry desig-
nated by the ASN. ASN translation is performed as
part of PROGRAM TRANSFER with space switching
(PT-ss) PROGRAM TRANSFER WITH INSTANCE
with space switching (PTI-ss), SET SECONDARY
ASN with space switching (SSAR-ss), and SET SEC-
ONDARY ASN WITH INSTANCE with space switch-
ing (SSAIR-ss), and it may be performed as part of
LOAD ADDRESS SPACE PARAMETERS. For PT-ss
and PTI-ss the ASN which is translated replaces the
primary ASN in control register 4. For SSAR-ss and
SSAIR-ss, the ASN which is translated replaces the
secondary ASN in control register 3. These two
translation processes are called primary ASN trans-
lation and secondary ASN translation, respectively,
and both can occur for LOAD ADDRESS SPACE
PARAMETERS. The ASN-translation process is the
same for both primary and secondary ASN transla-
tion; only the uses of the results of the process are
different.

ASN translation may also be performed as part of
PROGRAM RETURN. Primary ASN translation is
performed as part of PROGRAM RETURN with
space switching (PR-ss). Secondary ASN translation
is performed if the secondary ASN restored by PRO-
GRAM RETURN (PR-ss or PROGRAM RETURN to
current primary) does not equal the primary ASN
restored by PROGRAM RETURN.

PROGRAM CALL with space switching (PC-ss) per-
forms the equivalent of primary ASN translation by
obtaining a primary ASN and the address of the cor-
responding ASN-second-table entry from an entry-
table entry.

The ASN-translation process uses two tables, the
ASN first table and the ASN second table. They are
used to locate the ASN-second-table entry and a
third table, the authority table, which is used when
ASN authorization is performed.

For the purposes of this translation, the 16-bit ASN is
considered to consist of two parts: the ASN-first-table
index (AFX) is the leftmost 10 bits of the ASN, and
the ASN-second-table index (ASX) is the six right-
most bits. The ASN has the following format:

ASN

The AFX is used to select an entry from the ASN first
table. The origin of the ASN first table is designated
by the ASN-first-table origin in control register 14.
The ASN-first-table entry contains the origin of the
ASN second table. The ASX is used to select an
entry from the ASN second table.

As a result of primary ASN translation and during the
operation of PROGRAM CALL with space switching,
the address of the located ASN-second-table entry
(ASTE) is placed in control register 5 as the new pri-
mary-ASTE origin (PASTEO).

ASN-Translation Controls

ASN translation is controlled by the ASN-translation-
control bit and the ASN-first-table origin, both of
which reside in control register 14.

Control Register 14

ASN-Translation Control (T): Bit 44 of control
register 14 is the ASN-translation-control bit. This bit
provides a mechanism whereby the control program
can indicate whether ASN translation can occur while
a particular program is being executed, and also
whether the execution of PROGRAM CALL with
space switching is allowed. Bit 44 must be one to
allow completion of these instructions:

• LOAD ADDRESS SPACE PARAMETERS
• PROGRAM CALL with space switching
• PROGRAM RETURN with space switching or

when the restored SASN does not equal the
restored PASN

• PROGRAM TRANSFER with space switching
• PROGRAM TRANSFER WITH INSTANCE with

space switching
• SET SECONDARY ASN

AFX ASX
0 10 15

… T AFTO
44 45 63

Storage 3-31

• SET SECONDARY ASN WITH INSTANCE

Otherwise, a special-operation exception is recog-
nized. The ASN-translation-control bit is examined in
both the problem and the supervisor states.

ASN-First-Table Origin (AFTO): Bits 45-63 of
control register 14, with 12 zeros appended on the
right, form a 31-bit real address that designates the
beginning of the ASN first table.

ASN-Translation Tables

The ASN-translation process consists in a two-level
lookup using two tables: an ASN first table and an
ASN second table. These tables reside in real stor-
age.

ASN-First-Table Entries
An entry in the ASN first table has the following for-
mat:

The fields in the entry are allocated as follows:

AFX-Invalid Bit (I): Bit 0 controls whether the ASN
second table associated with the ASN-first-table
entry is available. When bit 0 is zero, ASN translation
proceeds by using the designated ASN second table.
When the bit is one, the ASN translation cannot con-
tinue.

ASN-Second-Table Origin (ASTO): Bits 1-25,
with six zeros appended on the right, are used to
form a 31-bit real address that designates the begin-
ning of the ASN second table.

ASN-Second-Table Entries
The ASN-second-table entry has a length of 64
bytes, with only the first 48 bytes currently in use.
Bytes 0-47 of the entry have the following format:

If ASN-and-LX Reuse Is Not Enabled

If ASN-and-LX Reuse Is Enabled

The fields in bytes 0-47 of the ASN-second-table
entry are allocated as follows. Only the fields that are
used in or as a result of ASN translation or PRO-
GRAM CALL with space switching are described in
detail.

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASN-second-
table entry is available. When bit 0 is zero, ASN
translation proceeds. When the bit is one, the ASN
translation cannot continue.

I ASTO
0 1 26 31

I ATO B
0 1 30 31

AX ATL
C
A

R
A

32 48 60 62 63

ASCE (RTD, STD, or RSD) Part 1

RTO, STO, or RSTKO
64 95

RTD or STD Part 2

RTO/STO (Continued) G P S X R DT TL R=0
96 116 118 122 124 127

RSD Part 2

RSTKO (Continued) G P S X R R=1
96 116 118 123 127

ALD

ALO ALL
128 153 159

ASTESN
160 191

LTD

V LTO LTL
192 217 223

LFTD

V LFTO LFTL
192 216 223

Available for programming
224 255

Available for programming
256 287

Available for programming
288 319

320 351

ASTEIN
352 383

3-32 The z/Architecture CPU Architecture

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, are used to form a
31-bit real address that designates the beginning of
the authority table.

Base-Space Bit (B): Bit 31 specifies, when one,
that the address space associated with the ASN-sec-
ond-table entry is the base space of a subspace
group. Bit 31 is further described in “Subspace-
Group ASN-Second-Table Entries” on page 5-68.

Authorization Index (AX): Bits 32-47 are used in
ASN authorization as an index to locate the authority
bits in the authority table. The AX field is used as a
result of primary ASN translation by PROGRAM
RETURN, PROGRAM TRANSFER, PROGRAM
TRANSFER WITH INSTANCE, and, possibly, LOAD
ADDRESS SPACE PARAMETERS. It is also used by
PROGRAM CALL with space switching. The AX field
is ignored after secondary ASN translation.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four bytes,
thus making the authority table variable in multiples
of 16 entries. The length of the authority table, in
units of four bytes, is one more than the ATL value.
The contents of the ATL field are used to establish
whether the entry designated by a particular AX falls
within the authority table.

Controlled-ASN Bit (CA): PROGRAM TRANS-
FER WITH INSTANCE with space switching and SET
SECONDARY ASN WITH INSTANCE with space
switching recognize a special-operation exception if
bit 62 is one and the CPU is in the problem state at
the beginning of the operation. Bit 62 is ignored in the
supervisor state.

Reusable-ASN Bit (RA): If the ASN-and-LX-reuse
facility is installed and is enabled by a one value of
the ASN-and-LX-reuse control, bit 44 of control regis-
ter 0, PROGRAM TRANSFER with space switching
and SET SECONDARY ASN with space switching
recognize a special-operation exception if bit 63 is
one in the problem or the supervisor state.

Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control ele-
ment (ASCE) that may be a region-table designation
(RTD), a segment-table designation (STD), or a real-
space designation (RSD). (The term “region-table
designation” is used to mean a region-first-table des-
ignation, region-second-table designation, or region-
third-table designation.) The ASCE field is used as a

result of ASN translation or in PROGRAM CALL with
space switching to replace the primary ASCE
(PASCE) or the secondary ASCE (SASCE). For
PROGRAM CALL with space switching, the ASCE
field replaces the PASCE, bits 0-63 of control
register 1. For SET SECONDARY ASN, and SET
SECONDARY ASN WITH INSTANCE, the ASCE
field replaces the SASCE, bits 0-63 of control
register 7. Each of these actions may occur inde-
pendently for LOAD ADDRESS SPACE PARAME-
TERS. For PROGRAM TRANSFER, and PROGRAM
TRANSFER WITH INSTANCE, the ASCE field
replaces both the PASCE and the SASCE. For PRO-
GRAM RETURN, as a result of primary ASN transla-
tion, the ASCE field replaces the PASCE, and, as a
result of secondary ASN translation, the ASCE field
replaces the SASCE. The contents of the entire
ASCE field are placed in the appropriate control reg-
isters without being inspected for validity.

The subspace-group-control bit (G), bit 118 of the
ASCE field, indicates, when one, that the ASCE
specifies an address space that is the base space or
a subspace of a subspace group. The bit is further
described in “Subspace-Group ASN-Second-Table
Entries” on page 5-68.

Bit 121 (X) of the ASCE field is the space-switch-
event-control bit. When, in the space-switching oper-
ations of PROGRAM CALL, PROGRAM RETURN,
and PROGRAM TRANSFER, and PROGRAM
TRANSFER WITH INSTANCE, this bit is one in con-
trol register 1 either before or after the execution of
the instruction, a program interruption for a space-
switch event occurs after the execution of the instruc-
tion is completed. A space-switch-event program
interruption also occurs after the completion of a SET
ADDRESS SPACE CONTROL, SET ADDRESS
SPACE CONTROL FAST, or RESUME PROGRAM
instruction that changes the translation mode either
to or from the home-space mode when this bit is one
in either control register 1 or control register 13.
When, in LOAD ADDRESS SPACE PARAMETERS,
this bit is one during primary ASN translation, this
fact is indicated by the condition code.

The real-space-control bit (R), bit 122 of the ASCE
field, indicates, when zero, that the ASCE is a region-
table or segment-table designation or, when one, that
the ASCE is a real-space designation.

When bit 122 is zero, the designation-type-control
bits (DT), bits 124 and 125 of the ASCE field, indicate
the designation type of the ASCE. A value 11, 10, 01,

Storage 3-33

or 00 binary of bits 124 and 125 indicates a region-
first-table designation, region-second-table designa-
tion, region-third-table designation, or segment-table
designation, respectively.

The other fields in the ASCE (RTO, STO, P, S, TL,
and RSTKO) are described in “Control Register 1” on
page 3-42.

Access-List Designation (ALD): The access-list-
designation (ALD) field is described in “ASN-Second-
Table Entries” on page 5-57.

ASN-Second-Table-Entry Sequence Number
(ASTESN): The ASTE-sequence-number
(ASTESN) field is described in “ASN-Second-Table
Entries” on page 5-57.

Linkage-Table Designation (LTD) or Linkage-
First-Table Designation (LFTD): The linkage-
table-designation (LTD) or linkage-first-table designa-
tion (LFTD) field in the ASN-second-table entry is
described in “PC-Number Translation Control” on
page 5-34.

ASN-Second-Table-Entry Instance Number
(ASTEIN): When the ASN-and-LX-reuse facility is
installed and is enabled by a one value of the ASN-
and-LX-reuse control in control register 0, bits
352-383 are compared to an ASTEIN specified along
with an ASN for use by PROGRAM RETURN or
LOAD ADDRESS SPACE PARAMETERS. The
ASTEINs must be equal; otherwise, an ASTE-
instance exception is recognized by PROGRAM
RETURN or condition code 1 or 2 is set by LOAD
ADDRESS SPACE PARAMETERS. This compari-
son and the exception result also occur in the opera-
tions of PROGRAM TRANSFER WITH INSTANCE
and SET SECONDARY ASN WITH INSTANCE
except independent of the ASN-and-LX-reuse con-
trol.

Bits 224-319 in the ASN-second-table entry are avail-
able for use by programming.

Programming Note: All unused fields in the ASN-
second-table entry, including the unused fields in
bytes 0-31 and all of bytes 40-43 and 48-63 should
be set to zeros. These fields are reserved for future
extensions, and programs which place nonzero val-
ues in these fields may not operate compatibly on
future machines.

ASN-Translation Process

This section describes the ASN-translation process
as it is performed during the execution of the space-
switching forms of PROGRAM RETURN, PROGRAM
TRANSFER, PROGRAM TRANSFER WITH
INSTANCE, SET SECONDARY ASN, and SET SEC-
ONDARY ASN WITH INSTANCE, and also in PRO-
GRAM RETURN when the restored secondary ASN
does not equal the restored primary ASN. ASN trans-
lation for LOAD ADDRESS SPACE PARAMETERS is
the same except that AFX-translation and ASX-trans-
lation exceptions do not occur; such conditions are
instead indicated by the condition code. Translation
of an ASN is performed by means of two tables, an
ASN first table and an ASN second table, both of
which reside in main storage.

The ASN first index is used to select an entry from
the ASN first table. This entry designates the ASN
second table to be used.

The ASN second index is used to select an entry
from the ASN second table.

If the I bit is one in either the ASN-first-table entry or
the ASN-second-table entry, the entry is invalid, and
the ASN-translation process cannot be completed.
An AFX-translation exception or ASX-translation
exception is recognized.

Whenever access to main storage is made during the
ASN-translation process for the purpose of fetching
an entry from an ASN first table or ASN second table,
key-controlled protection does not apply.

The ASN-translation process is shown in Figure 3-13
on page 3-34.

ASN-First-Table Lookup
The AFX portion of the ASN, in conjunction with the
ASN-first-table origin, is used to select an entry from
the ASN first table.

The 31-bit real address of the ASN-first-table entry is
obtained by appending 12 zeros on the right to the
AFT origin contained in bit positions 45-63 of control
register 14 and adding the AFX portion with two
rightmost and 19 leftmost zeros appended. This
addition cannot cause a carry into bit position 0. The
31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit, 31-bit,
or 64-bit addressing mode.

3-34 The z/Architecture CPU Architecture

All four bytes of the ASN-first-table entry appear to
be fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection. When
the storage address which is generated for fetching
the ASN-first-table entry designates a location which
is not available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Bit 0 of the four-byte AFT entry specifies whether the
corresponding AST is available. If this bit is one, an
AFX-translation exception is recognized. The entry
fetched from the AFT is used to access the AST.

ASN-Second-Table Lookup
The ASX portion of the ASN, in conjunction with the
ASN-second-table origin contained in the ASN-first-
table entry, is used to select an entry from the ASN
second table.

The 31-bit real address of the ASN-second-table
entry is obtained by appending six zeros on the right
to bits 1-25 of the ASN-first-table entry and adding
the ASX with six rightmost and 19 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may be
recognized, or the carry may be ignored, causing the
table to wrap from 231 - 1 to zero. The 31-bit address
is formed and used regardless of whether the current
PSW specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

The fetch of the 64 bytes of the ASN-second-table
entry appears to be word concurrent as observed by
other CPUs, with the leftmost word fetched first. The
order in which the remaining 15 words are fetched is
unpredictable. The fetch access is not subject to pro-
tection. When the storage address which is gener-
ated for fetching the ASN-second-table entry

Figure 3-13. ASN Translation

C
A

R
A ASTESNB AX ATL ASCE

/

/
ALO ALLATO LTD or LFTD ASTEIN

/

/

I ASTO

T AFTO AFX ASX

+

+

(x4096) (x4) (x64)

(x64)

Control Register 14 ASN

ASN First Table

ASN Second Table

R Address is real

R

R I
/

/

Storage 3-35

designates a location which is not available in the
configuration, an addressing exception is recognized,
and the operation is suppressed.

Bit 0 of the ASN-second-table entry specifies
whether the address space is accessible. If this bit is
one, an ASX-translation exception is recognized.

Recognition of Exceptions during ASN
Translation
The exceptions which can be encountered during the
ASN-translation process are collectively referred to
as ASN-translation exceptions. A list of these excep-
tions and their priorities is given in Chapter 6, “Inter-
ruptions”.

ASN Authorization

Note: The ASN-authorization concepts described in
following section are applicable only to the z/Archi-
tecture architectural mode where dynamic address
translation is supported. ASN authorization is not
supported in the ESA/390-compatibility mode.

ASN authorization is the process of testing whether
the program associated with the current authorization
index is permitted to establish a particular address
space. The ASN authorization is performed as part of
PROGRAM TRANSFER with space switching (PT-
ss), PROGRAM TRANSFER WITH INSTANCE with
space switching (PTI-ss), SET SECONDARY ASN
with space switching (SSAR-ss), and SET SECOND-
ARY ASN WITH INSTANCE with space switching
(SSAIR-ss), and may be performed as part of LOAD
ADDRESS SPACE PARAMETERS. ASN authoriza-
tion is performed after the ASN-translation process
for these instructions.

ASN authorization is also performed as part of PRO-
GRAM RETURN when the restored secondary ASN
does not equal the restored primary ASN. ASN
authorization of the restored secondary ASN is per-
formed after ASN translation of the restored second-
ary ASN.

When performed as part of PT-ss or PTI-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the primary ASN and is called primary-ASN
authorization. When performed as part of LOAD
ADDRESS SPACE PARAMETERS, PROGRAM
RETURN, SSAR-ss, or SSAIR-ss, the ASN authori-

zation tests whether the ASN can be established as
the secondary ASN and is called secondary-ASN
authorization.

The ASN authorization is performed by means of an
authority table in real storage which is designated by
the authority-table-origin and authority-table-length
fields in the ASN-second-table entry.

ASN-Authorization Controls

ASN authorization uses the authority-table origin and
the authority-table length from the ASN-second-table
entry, together with an authorization index.

Control Register 4
For PT-ss, PTI-ss, SSAR-ss, and SSAIR-ss, the cur-
rent contents of control register 4 include the authori-
zation index. For LOAD ADDRESS SPACE
PARAMETERS and PROGRAM RETURN, the value
which will become the new contents of control regis-
ter 4 is used. The register has the following format:

Authorization Index (AX): Bits 32-47 of control
register 4 are used as an index to locate the authority
bits in the authority table.

ASN-Second-Table Entry
The ASN-second-table entry which is fetched as part
of the ASN translation process contains information
which is used to designate the authority table. An
entry in the ASN second table has the following for-
mat:

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, are used to form a
31-bit real address that designates the beginning of
the authority table.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four bytes,
thus making the authority table variable in multiples
of 16 entries. The length of the authority table, in
units of four bytes, is equal to one more than the ATL

… AX …
32 48

ATO B
0 1 30 31

ATL …
32 48 60 64

3-36 The z/Architecture CPU Architecture

value. The contents of the length field are used to
establish whether the entry designated by the autho-
rization index falls within the authority table.

Authority-Table Entries

The authority table consists of entries of two bits
each; accordingly, each byte of the authority table
contains four entries in the following format:

The fields are allocated as follows:

Primary Authority (P): The left bit of an authority-
table entry controls whether the program with the
authorization index corresponding to the entry is per-
mitted to establish the address space as a primary
address space. If the P bit is one, the establishment
is permitted. If the P bit is zero, the establishment is
not permitted.

Secondary Authority (S): The right bit of an
authority-table entry controls whether the program
with the corresponding authorization index is permit-
ted to establish the address space as a secondary
address space. If the S bit is one, the establishment
is permitted. If the S bit is zero, the establishment is
not permitted.

The authority table is also used in the extended-
authorization process, as part of access-register
translation. Extended authorization is described in
“Authorizing the Use of the Access-List Entry” on
page 5-63.

ASN-Authorization Process

This section describes the ASN-authorization pro-
cess as it is performed during the execution of PRO-
GRAM TRANSFER with space switching,
PROGRAM TRANSFER WITH INSTANCE with
space switching, SET SECONDARY ASN with space
switching, and SET SECONDARY ASN WITH
INSTANCE with space switching. For these two
instructions, the ASN-authorization process is per-
formed by using the authorization index currently in
control register 4. Secondary authorization for PRO-
GRAM RETURN, when the restored secondary ASN
does not equal the restored primary ASN, and for
LOAD ADDRESS SPACE PARAMETERS is the

same, except that the value which will become the
new contents of control register 4 is used for the
authorization index. Also, for LOAD ADDRESS
SPACE PARAMETERS, a secondary-authority
exception does not occur. Instead, such a condition
is indicated by the condition code.

The ASN-authorization process is performed by
using the authorization index, in conjunction with the
authority-table origin and length from the AST entry,
to select an authority-table entry. The entry is
fetched, and either the primary- or the secondary-
authority bit is examined, depending on whether the
primary- or secondary-ASN-authorization process is
being performed. The ASN-authorization process is
shown in Figure 3-14.

Authority-Table Lookup
The authorization index, in conjunction with the
authority-table origin contained in the ASN-second-
table entry, is used to select an entry from the author-
ity table.

The authorization index is contained in bit positions
32-47 of control register 4.

Bit positions 1-29 of the AST entry contain the left-
most 29 bits of the 31-bit real address of the authority
table (ATO), and bit positions 48-59 contain the
length of the authority table (ATL).

The 31-bit real address of a byte in the authority table
is obtained by appending two zeros on the right to
the authority-table origin and adding the 14 leftmost
bits of the authorization index with 17 zeros
appended on the left. When a carry into bit position 0
occurs during the addition, an addressing exception
may be recognized, or the carry may be ignored,
causing the table to wrap from 231 - 1 to zero. The
31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit, 31-bit,
or 64-bit addressing mode.

As part of the authority-table-entry-lookup process,
bits 0-11 of the authorization index are compared
against the authority-table length. If the compared
portion is greater than the authority-table length, a
primary-authority exception or secondary-authority
exception is recognized for PT-ss, PTI-ss, SSAR-ss,
or SSAIR-ss, respectively. For LOAD ADDRESS
SPACE PARAMETERS, when the authority-table
length is exceeded, condition code 2 is set.

P S P S P S P S
0 7

Storage 3-37

The fetch access to the byte in the authority table is
not subject to protection. When the storage address
which is generated for fetching the byte designates a
location which is not available in the configuration, an
addressing exception is recognized, and the opera-
tion is suppressed.

The byte contains four authority-table entries of two
bits each. The rightmost two bits of the authorization
index, bits 46 and 47 of control register 4, are used to
select one of the four entries. The left or right bit of
the entry is then tested, depending on whether the
authorization test is for a primary ASN or a second-
ary ASN. The following table shows the bit which is
selected from the byte as a function of bits 46 and 47
of the authorization index and the instruction PT-ss,

PTI-ss, SSAR-ss, SSAIR-ss, PROGRAM RETURN,
or LOAD ADDRESS SPACE PARAMETERS.

If the selected bit is one, the ASN is authorized, and
the appropriate fields in the AST entry are loaded
into the appropriate control registers. If the selected
bit is zero, the ASN is not authorized, and a primary-
authority exception is recognized for PT-ss or PTI-ss,
or a secondary-authority exception is recognized for
SSAR-ss, SSAIR-ss, or PROGRAM RETURN. For

Figure 3-14. ASN Authorization

C
A

R
A ASTESNB AX ATL ASCE

/

/
ALO ALLATO LTD or LFTD ASTEIN

/

/

/

/

P S

+

(x1/4)

Control Register 4

Authority

ASN Second Table

R Address is real

R

I

AX

Table

For primary ASN authorization (PT-ss and PTI-ss only):
Primary-authority exception if P bit zero or table length exceeded.

For secondary ASN authorization (PR, SSAR-ss, and SSAIR-ss only):
Secondary-authority exception if S bit zero or table length exceeded.

For secondary ASN authorization (LASP only):
Set condition code 2 if S bit zero or table length exceeded.

(x4)

ASN-Second-Table Entry

Authorization-
Index Bits

Bit Selected from Authority-Table
Byte for Test

46 47

P Bit
(PT-ss and

PTI-ss)

S Bit
(SSAR-ss, SSAIR-ss,

PR, or LASP)
0 0 0 1

0 1 2 3
1 0 4 5

1 1 6 7

3-38 The z/Architecture CPU Architecture

LOAD ADDRESS SPACE PARAMETERS, when the
ASN is not authorized, condition code 2 is set.

Recognition of Exceptions during ASN
Authorization
The exceptions which can be encountered during the
primary- and secondary-ASN-authorization pro-
cesses and their priorities are described in the defini-
tions of the instructions in which ASN authorization is
performed.

Programming Note: The primary- and secondary-
authority exceptions cause nullification in order to
permit dynamic modification of the authority table.
Thus, when an address space is created or
“swapped in,” the authority table can first be set to all
zeros and the appropriate authority bits set to one
only when required.

Dynamic Address Translation

Note: The dynamic-address translation concepts
described in following section are applicable only to
the z/Architecture architectural mode where DAT is
supported. DAT is not supported in the ESA/390-
compatibility mode.

Dynamic address translation (DAT) provides the abil-
ity to interrupt the execution of a program at an arbi-
trary moment, record it and its data in auxiliary
storage, such as a direct-access storage device, and
at a later time return the program and the data to dif-
ferent main-storage locations for resumption of exe-
cution. The transfer of the program and its data
between main and auxiliary storage may be per-
formed piecemeal, and the return of the information
to main storage may take place in response to an
attempt by the CPU to access it at the time it is
needed for execution. These functions may be per-
formed without change or inspection of the program
and its data, do not require any explicit programming
convention for the relocated program, and do not dis-
turb the execution of the program except for the time
delay involved.

With appropriate support by an operating system, the
dynamic-address-translation facility may be used to
provide to a user a system wherein storage appears
to be larger than the main storage which is available
in the configuration. This apparent main storage is
referred to as virtual storage, and the addresses

used to designate locations in the virtual storage are
referred to as virtual addresses. The virtual storage
of a user may far exceed the size of the main storage
which is available in the configuration and normally is
maintained in auxiliary storage. The virtual storage is
considered to be composed of blocks of addresses,
called pages. Only the most recently referred-to
pages of the virtual storage are assigned to occupy
blocks of physical main storage. As the user refers to
pages of virtual storage that do not appear in main
storage, they are brought in to replace pages in main
storage that are less likely to be needed. The swap-
ping of pages of storage may be performed by the
operating system without the user’s knowledge.

The sequence of virtual addresses associated with a
virtual storage is called an address space. With
appropriate support by an operating system, the
dynamic-address-translation facility may be used to
provide a number of address spaces. These address
spaces may be used to provide degrees of isolation
between users. Such support can consist of a com-
pletely different address space for each user, thus
providing complete isolation, or a shared area may
be provided by mapping a portion of each address
space to a single common storage area. Also,
instructions are provided which permit a semiprivi-
leged program to access more than one such
address space. Dynamic address translation pro-
vides for the translation of virtual addresses from
multiple different address spaces without requiring
that the translation parameters in the control regis-
ters be changed. These address spaces are called
the primary address space, secondary address
space, and AR-specified address spaces. A privi-
leged program can also cause the home address
space to be accessed.

In the process of replacing blocks of main storage by
new information from an external medium, it must be
determined which block to replace and whether the
block being replaced should be recorded and pre-
served in auxiliary storage. To aid in this decision
process, a reference bit and a change bit are associ-
ated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the
CPU but is not available for the addressing of data
and of CCWs, IDAWs, and MIDAWs in I/O opera-
tions. The CCW-indirect-data-addressing facility and
modified-CCW-indirect-data-addressing facilities are
provided to aid I/O operations in a virtual-storage
environment.

Storage 3-39

Address computation can be carried out in the 24-bit,
31-bit, or 64-bit addressing mode. When address
computation is performed in the 24-bit or 31-bit
addressing mode, 40 or 33 zeros, respectively, are
appended on the left to form a 64-bit address. There-
fore, the resultant logical address is always 64 bits in
length. The real or absolute address that is formed by
dynamic address translation, and the absolute
address that is then formed by prefixing, are always
64 bits in length.

Dynamic address translation is the process of trans-
lating a virtual address during a storage reference
into the corresponding real or absolute address. The
virtual address may be a primary virtual address,
secondary virtual address, AR-specified virtual
address, or home virtual address. These addresses
are translated by means of the primary, the second-
ary, an AR-specified, or the home address-space-
control element, respectively. After selection of the
appropriate address-space-control element, the
translation process is the same for all of the four
types of virtual address. An address-space-control
element may be a segment-table designation speci-
fying a 2 G-byte address space, a region-table desig-
nation specifying a 4 T-byte, 8 P-byte, or 16 E-byte
space, or a real-space designation specifying a
16 E-byte space. (The letters K, M, G, T, P, and E
represent kilo, 210, mega, 220, giga, 230, tera, 240,
peta, 250, and exa, 260, respectively.) A segment-table
designation or region-table designation causes trans-
lation to be performed by means of tables estab-
lished by the operating system in real or absolute
storage. A real-space designation causes the virtual
address simply to be treated as a real address, with-
out the use of tables in storage.

In the process of translation when using a segment-
table designation or a region-table designation, three
types of units of information are recognized —
regions, segments, and pages. A region is a block of
sequential virtual addresses spanning 2G bytes and
beginning at a 2 G-byte boundary. A segment is a
block of sequential virtual addresses spanning 1M
bytes and beginning at a 1 M-byte boundary. A page
is a block of sequential virtual addresses spanning
4K bytes and beginning at a 4 K-byte boundary.

The virtual address, accordingly, is divided into four
principal fields. Bits 0-32 are called the region index
(RX), bits 33-43 are called the segment index (SX),
bits 44-51 are called the page index (PX), and bits

52-63 are called the byte index (BX). The virtual
address has the following format:

As determined by its address-space-control element,
a virtual address space may be a 2 G-byte space
consisting of one region, or it may be up to a
16 E-byte space consisting of up to 8G regions. The
RX part of a virtual address applying to a 2 G-byte
address space must be all zeros; otherwise, an
exception is recognized.

The RX part of a virtual address is itself divided into
three fields. Bits 0-10 are called the region first index
(RFX), bits 11-21 are called the region second index
(RSX), and bits 22-32 are called the region third
index (RTX). Bits 0-32 of the virtual address have the
following format:

A virtual address in which the RTX is the leftmost sig-
nificant part (a 42-bit address) is capable of address-
ing 4T bytes (2K regions), one in which the RSX is
the leftmost significant part (a 53-bit address) is
capable of addressing 8P bytes (4M regions), and
one in which the RFX is the leftmost significant part
(a 64-bit address) is capable of addressing 16E bytes
(8G regions).

A virtual address in which the RX is always zero can
be translated into real addresses by means of one or
two translation tables, as follows:

• When enhanced DAT does not apply, or when
enhanced DAT applies but the STE-format con-
trol, bit 53 of the segment-table entry, is zero, the
virtual address can be translated by means of a
segment table and a page table.

• When enhanced DAT applies and the STE-for-
mat control of the segment-table entry is one, the
virtual address can be translated by means of a
segment table only.

If the RX may be nonzero, from one to three addi-
tional translation tables are required, as follows. If the
RFX may be nonzero, a region first table, region sec-
ond table, and region third table are required. If the
RFX is always zero but the RSX may be nonzero, a

RX SX PX BX

0 33 44 52 63

RFX RSX RTX

0 11 22 33

3-40 The z/Architecture CPU Architecture

region second table and region third table are
required. If the RFX and RSX are always zero but the
RTX may be nonzero, a region third table is required.
An exception is recognized if the address-space-con-
trol element for an address space does not designate
the highest level of table (beginning with the region
first table and continuing downward to the segment
table) needed to translate a reference to the address
space.

A region first table, region second table, or region
third table is sometimes referred to simply as a
region table. Similarly, a region-first-table designa-
tion, region-second-table designation, or region-third-
table designation is sometimes referred to as a
region-table designation.

The region, segment, and, when applicable, page
tables reflect the current assignment of real or abso-
lute storage.

When EDAT-1 does not apply, or when EDAT-1
applies but the STE-format control, bit 53 of the seg-
ment-table entry, is zero, the assignment of real stor-
age occurs in units of pages, the real locations being
assigned contiguously within a page. The pages
need not be adjacent in real storage even though
assigned to a set of sequential virtual addresses.

When EDAT-1 applies and the STE-format control of
the segment-table entry is one, the assignment of
real storage occurs in units of segments, the abso-
lute locations being assigned contiguously within a
segment. The segments need not be adjacent in
absolute storage even though assigned to a set of
sequential virtual addresses.

Similarly, when EDAT-2 applies and the RTTE-format
control of the region-third-table entry is one, the
assignment of real storage occurs in units of regions,
the absolute locations being assigned contiguously
within a region. The regions need not be adjacent in
absolute storage even though assigned to a set of
sequential virtual addresses.

To improve performance, translation normally is per-
formed by means of table copies maintained in a
special buffer called the translation-lookaside buffer
(TLB). The TLB may also contain entries that provide
the virtual-equals-real translation specified by a real-
space designation.

Translation Control

Address translation is controlled by three bits in the
PSW and by a set of bits referred to as the translation
parameters. The translation parameters are in control
registers 0, 1, 7, and 13. Additional controls are
located in the translation tables.

Additional controls are provided as described in
Chapter 5, “Program Execution.” These controls
determine whether the contents of each access reg-
ister can be used to obtain an address-space-control
element for use by DAT.

Translation Modes
The three bits in the PSW that control dynamic
address translation are bit 5, the DAT-mode bit, and
bits 16 and 17, the address-space-control bits. When
the DAT-mode bit is zero, then DAT is off, and the
CPU is in the real mode. When the DAT-mode bit is
one, then DAT is on, and the CPU is in the translation
mode designated by the address-space-control bits:
00 designates the primary-space mode, 01 desig-
nates the access-register mode, 10 designates the
secondary-space mode, and 11 designates the
home-space mode.

For certain instructions such as LOAD PAGE TABLE
ENTRY ADDRESS, LOAD REAL ADDRESS and
STORE REAL ADDRESS, and for monitor-event
counting operations, dynamic address translation is
performed even when the DAT-mode bit in the PSW
is off.

The various modes are shown in Figure 3-15, along
with the handling of addresses in each mode.

PSW Bit

DAT Mode

Handling of Addresses

5 16 17
Instruction
Addresses

Logical
Addresses

0 0 0 Off Real mode Real Real
0 0 1 Off Real mode Real Real

0 1 0 Off Real mode Real Real

0 1 1 Off Real mode Real Real
1 0 0 On Primary-space

mode
Primary

virtual
Primary

virtual
1 0 1 On Access-register

mode
Primary

virtual
AR-specified

virtual

1 1 0 On Secondary-space
mode

Primary
virtual

Secondary
virtual

Figure 3-15. Translation Modes

Storage 3-41

Control Register 0
Bit 37 is provided in control register 0 for use in con-
trolling dynamic address translation. When the
enhanced-DAT facility is installed, bit 40 is also pro-
vided for use in controlling dynamic-address transla-
tion. The bit assignments are as follows:

Secondary-Space Control (SS): Bit 37 of control
register 0 is the secondary-space-control bit. When
this bit is zero and execution of MOVE TO PRIMARY,
MOVE TO SECONDARY, or SET ADDRESS SPACE
CONTROL is attempted, a special-operation excep-
tion is recognized. A special-operation exception is
also recognized when this bit is zero, execution of
MOVE WITH OPTIONAL SPECIFICATIONS is
attempted, and the operand-access control for either
operand designates the secondary space. When this
bit is one, it indicates that the region table or segment
table designated by the secondary address-space-
control element has been established.

Enhanced-DAT-Enablement Control (ED): When
the enhanced-DAT facility 1 is installed, bit 40 of con-
trol register 0 is the enhanced-DAT-enablement con-
trol. When this bit is zero, dynamic address
translation proceeds as though the enhanced-DAT
facility was not installed. When the bit is one, the fol-
lowing conditions apply:

• The DAT-protection bit is defined in bit position 54
of each region-table entry.

• The STE-format control is defined in bit position
53 of the segment-table entry. When the STE-for-
mat control is zero, bits 0-52 of the segment-
table entry are used to locate the page table (as
occurs when the enhanced-DAT facility 1 is not
installed or enabled)

When the STE-format control is one, the follow-
ing apply:

– Bits 0-43 of the segment-table entry form the
segment-frame absolute address. There is
no designation of a page table, and no page-
table entries are used.

– Bit 47 of the segment-table entry determines
the validity of the access-control bits and
fetch-protection bit (in bits 48-52 of the STE).

– Bits 48-52 of the segment-table entry contain
access-control bits and a fetch-protection bit
for the segment.

When the enhanced-DAT facility 1 is not installed, bit
40 of control register 0 is reserved and should con-
tain zero; otherwise, the program may not operate
compatibly in the future.

When the enhanced-DAT-facility 2 is installed, and
the enhanced-DAT-enablement control is one, the
RTTE-format control is defined in bit position 53 of
the region-third-table entry. When the RTTE-format
control is zero, bits 0-51 of the region-third-table
entry are used to locate the segment table (as occurs
when the enhanced-DAT facility 2 is not installed).
When the RTTE-format control is one, the following
apply:

• Bits 0-32 of the region-third-table entry form the
region-frame absolute address. There is no des-
ignation of a segment table, and no segment-
table entries are used.

• Bit 47 of the region-third-table entry determines
the validity of the access-control bits and fetch-
protection bit (in bits 48-52 of the RTTE).

• Bits 48-52 of the region-third-table entry contain
access-control bits and a fetch-protection bit for
the region.

When the enhanced-DAT facility 2 is installed, the
enhanced-DAT facility 1 is also installed.

Enhanced-DAT Terminology: For the purpose of
brevity, the following terms are used in conjunction
with the enhanced-DAT facilities:

• The term “EDAT-1 applies” refers to the case
where all of the following are true:

– The enhanced-DAT facility 1 is installed.

1 1 1 On Home-space mode Home
virtual

Home
virtual

S
S

E
D

/ /

I
E
P
E

37 40 43

PSW Bit

DAT Mode

Handling of Addresses

5 16 17
Instruction
Addresses

Logical
Addresses

Figure 3-15. Translation Modes

3-42 The z/Architecture CPU Architecture

– The enhanced-DAT-enablement control, bit
40 of control register 0, is one.

– The address is translated by means of DAT-
table entries.

• The term “EDAT-2 applies” refers to the case
where both of the following are true:

– The enhanced-DAT facility 2 is installed.
– EDAT-1 applies.

• The term “EDAT-1 does not apply” refers to the
case where any of the following are true:

– The enhanced-DAT facility 1 is not installed.
– The enhanced-DAT facility 1 is installed, but

the enhanced-DAT-enablement control is
zero.

– The address is not translated by means of
DAT-table entries (that is, DAT is off and is
not being used implicitly; DAT is on, but the
ASCE designates a real space; or the
instruction uses a real address such as
LOAD USING REAL ADDRESS or STORE
USING REAL ADDRESS).

– A real address is implicitly used, for example
in the handling of an interruption, CPU
logout, or fetching of table entries for ART,
ASN translation, ASN authorization, DAT, or
PC-number translation.

• The term “EDAT-2 does not apply” refers to the
case where either of the following is true:

– EDAT-1 does not apply
– The enhanced-DAT facility 2 is not installed.

Instruction-Execution-Protection-Enablement
(IEPE) Control: When the instruction-execution-
protection facility is installed, bit 43 of control register
0 is the instruction-execution-protection-enablement
control. When the instruction-execution-protection
facility is not installed, or when the facility is installed
and this bit is zero, instruction-execution protection
does not apply.

When the instruction-execution-protection facility is
installed, the IEPE control is one, and instructions
are fetched using an ASCE in which the real-space
control is zero, the execution of instructions is subject
to the instruction-execution-protection (IEP) control in
the leaf table entry used in the translation. (See
“Translation Tables” on page 3-45 for a definition of
“leaf.”)

Programming Notes:

1. Before DAT is enabled or implicitly performed
(such as in LOAD REAL ADDRESS), the pro-
gram should ensure that the enhanced-DAT-
enablement control is consistent with the
enhanced-DAT-enablement control in any other
CPU in the configuration that may be performing
DAT for the same address space.

2. DAT should be disabled before altering the
enhanced-DAT-enablement control, and the
TLB of the CPU should be purged before re-
enabling DAT.

Failure to follow these rules may result in unpredict-
able results, including the possibility of a delayed-
access machine-check condition being recognized.

Control Register 1
Control register 1 contains the primary address-
space-control element (PASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Primary Region-Table or
Segment-Table Designation (R=0)

Primary Real-Space Designation (R=1)

The fields in the primary address-space-control ele-
ment are allocated as follows:

Primary Region-Table or Segment-Table Origin:
Bits 0-51 of the primary region-table or segment-
table designation in control register 1, with 12 zeros
appended on the right, form a 64-bit address that
designates the beginning of the primary region table
or segment table. It is unpredictable whether the
address is real or absolute. This table is called the
primary region table or segment table since it is used

Primary Region-Table or Segment-Table Origin
0 31

Primary Region-Table or
Segment-Table Origin (continued)

G P S X R DT TL

32 52 54 55 56 57 58 59 60 62 63

Primary Real-Space Token Origin
0 31

Primary Real-Space Token Origin (cont.) G P S X R
32 52 54 55 56 57 58 59 63

Storage 3-43

to translate virtual addresses in the primary address
space.

Primary Subspace-Group Control (G): Bit 54 of
control register 1, when one, indicates that the
address space specified by the PASCE is the base
space or a subspace of a subspace group. When bit
54 is zero, the address space is not in a subspace
group.

Primary Private-Space Control (P): If bit 55 of
control register 1 is one, then (1) a one value of the
common-segment bit in a translation-lookaside-buffer
(TLB) representation of a segment-table entry pre-
vents the entry and any TLB page-table copy it desig-
nates from being used when translating references to
the primary address space, even with a match
between the table or token origin in control register 1
and the table origin in the TLB entry, (2) low-address
protection and fetch-protection override do not apply
to the primary address space; and (3) a translation-
specification exception is recognized if a reference to
the primary address space is translated by means of
a segment-table entry in storage and the common-
segment bit is one in the entry. Item 2 in the above
list applies even when the contents of control register
1 are a real-space designation.

When EDAT-2 applies and bit 55 of control register 1
is one, then (1) a one value of the common-region bit
in a translation-lookaside-buffer (TLB) representation
of a region-third-table entry prevents the entry and
any TLB segment- and page-table copy it designates
from being used when translating references to the
primary address space, even with a match between
the table or token origin in control register 1 and the
table origin in the TLB entry, (2) low-address protec-
tion and fetch-protection override do not apply to the
primary address space; and (3) a translation-specifi-
cation exception is recognized if a reference to the
primary address space is translated by means of a
region-third-table entry in storage and the common-
region bit is one in the entry. Item 2 in the above list
applies even when the contents of control register 1
are a real-space designation.

Programming Note: With respect to item 1 in the
above lists, when the contents of control register 1
are a real-space designation, a one value of the com-
mon-segment bit in a TLB representation of a seg-
ment-table entry prevents the entry and any TLB
page-table copy it designates from being used
regardless of the value of the private-space control in
the real-space designation. Similarly, when EDAT-2

applies and the contents of control register 1 are a
real-space designation, a one value of the common-
region bit in a TLB representation of a region-third-
table entry prevents the entry and any TLB segment-
and page-table copies it designates from being used
regardless of the value of the private-space control in
the real-space designation.

Primary Storage-Alteration-Event Control (S):
When the storage-alteration-space control in control
register 9 is one, bit 56 of control register 1 specifies,
when one, that the primary address space is one for
which storage-alteration events can occur. Bit 56 is
examined when the PASCE is used to perform
dynamic-address translation for a storage-operand
store reference. Bit 56 is ignored when the storage-
alteration-space control is zero.

Primary Space-Switch-Event Control (X): When
bit 57 of control register 1 is one:

• A space-switch-event program interruption
occurs when execution of the space-switching
form of PROGRAM CALL (PC-ss), PROGRAM
RETURN (PR-ss), or PROGRAM TRANSFER
(PT-ss) is completed. The interruption occurs if
bit 57 is one either before or after the operation.

• A space-switch-event program interruption
occurs upon completion of a RESUME PRO-
GRAM, SET ADDRESS SPACE CONTROL, or
SET ADDRESS SPACE CONTROL FAST
instruction that changes the address space from
which instructions are fetched either to or from
the home address space; that is, when instruc-
tions are fetched from the home address space
either before or after the operation but not both
before and after the operation.

• Condition code 3 is set by LOAD ADDRESS
SPACE PARAMETERS.

Primary Real-Space Control (R): If bit 58 of con-
trol register 1 is zero, the register contains a region-
table or segment-table designation. If bit 58 is one,
the register contains a real-space designation. When
bit 58 is one, a one value of the common-segment bit
in a translation-lookaside-buffer (TLB) representation
of a segment-table entry prevents the entry and any
TLB page-table copy it designates from being used
when translating references to the primary address
space, even with a match between the token origin in
control register 1 and the table origin in the TLB
entry. Similarly, when EDAT-2 applies and bit 58 is

3-44 The z/Architecture CPU Architecture

one, a one value of the common-region bit in a trans-
lation-lookaside-buffer (TLB) representation of a
region-third-table entry prevents the entry and any
TLB segment- and page-table copies it designates
from being used when translating references to the
primary address space, even with a match between
the token origin in control register 1 and the table ori-
gin in the TLB entry.

Primary Designation-Type Control (DT): When
R is zero, the type of table designation in control reg-
ister 1 is specified by bits 60 and 61 in the register, as
follows:

When R is zero, bits 60 and 61 must be 11 binary
when an attempt is made to use the PASCE to trans-
late a virtual address in which the leftmost one bit is
in bit positions 0-10 of the address. Similarly, bits 60
and 61 must be 11 or 10 binary when the leftmost
one bit is in bit positions 11-21 of the address, and
they must be 11, 10, or 01 binary when the leftmost
one bit is in bit positions 22-32 of the address. Other-
wise, an ASCE-type exception is recognized.

Primary Region-Table or Segment-Table Length
(TL): Bits 62 and 63 of the primary region-table
designation or segment-table designation in control
register 1 specify the length of the primary region
table or segment table in units of 4,096 bytes, thus
making the length of the region table or segment
table variable in multiples of 512 entries. The length
of the primary region table or segment table, in units
of 4,096 bytes, is one more than the TL value. The
contents of the length field are used to establish
whether the portion of the virtual address (RFX,
RSX, RTX, or SX) to be translated by means of the
table designates an entry that falls within the table.

Primary Real-Space Token Origin: Bits 0-51 of
the primary real-space designation in control register
1, with 12 zeros appended on the right, form a 64-bit
address that may be used in forming and using TLB
entries that provide a virtual-equals-real translation
for references to the primary address space.
Although this address is used only as a token and is
not used to perform a storage reference, it still must

be a valid address; otherwise, an incorrect TLB entry
may be used when the contents of control register 1
are used.

The following bits of control register 1 are not
assigned and are ignored: bits 52, 53, and 59 if the
register contains a region-table designation or seg-
ment-table designation, and bits 52, 53 and 59-63 if
the register contains a real-space designation.

Control Register 7
Control register 7 contains the secondary address-
space-control element (SASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Secondary Region-Table or
Segment-Table Designation (R=0)

Secondary Real-Space Designation (R=1)

The secondary region-table origin, secondary seg-
ment-table origin, secondary subspace-group control
(G), secondary private-space control (P), secondary
storage-alteration-event control (S), secondary real-
space control (R), secondary designation-type con-
trol (DT), secondary region-table or segment-table
length (TL), and secondary real-space token origin in
control register 7 are defined the same as the fields
in the same bit positions in control register 1, except
that control register 7 applies to the secondary
address space.

The following bits of control register 7 are not
assigned and are ignored: bits 52, 53, 57, and 59 if
the register contains a region-table designation or
segment-table designation, and bits 52, 53, 57, and
59-63 if the register contains a real-space designa-
tion.

Bits 60
and 61 Designation Type

11 Region-first-table
10 Region-second-table
01 Region-third-table
00 Segment-table

Secondary Region-Table or Segment-Table Origin
0 31

Secondary Region-Table or
Segment-Table Origin (continued)

G P S R DT TL

32 52 54 55 56 57 58 59 60 62 63

Secondary Real-Space Token Origin
0 31

Secondary Real-Space Token Origin (cont.) G P S R
32 52 54 55 56 57 58 59 63

Storage 3-45

Control Register 13
Control register 13 contains the home address-
space-control element (HASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Home Region-Table or
Segment-Table Designation (R=0)

Home Real-Space Designation (R=1)

Home Space-Switch-Event Control (X): When bit
57 of control register 13 is one, a space-switch-event
program interruption occurs upon completion of a
RESUME PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE CONTROL
FAST instruction that changes the address space
from which instructions are fetched either to or from
the home address space; that is, when instructions
are fetched from the home address space either
before or after the operation but not both before and
after the operation.

The home region-table origin, home segment-table
origin, home private-space control (P), home stor-
age-alteration-event control (S), home real-space
control (R), home designation-type control (DT),
home region-table or segment-table length (TL), and
home real-space token origin in control register 13
are defined the same as the fields in the same bit
positions in control register 1, except that control reg-
ister 13 applies to the home address space.

The following bits of control register 13 are not
assigned and are ignored: bits 52-54 and 59 if the
register contains a region-table designation or seg-
ment-table designation, and bits 52-54 and 59-63 if
the register contains a real-space designation.

Programming Notes:

1. The validity of the information loaded into a con-
trol register, including that pertaining to dynamic
address translation, is not checked at the time
the register is loaded. This information is
checked and the program exception, if any, is
indicated at the time the information is used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on, or when the
enhanced-monitor counting array is accessed, or
when COMPARE AND REPLACE DAT TABLE
ENTRY, INVALIDATE DAT TABLE ENTRY,
INVALIDATE PAGE TABLE ENTRY, LOAD
PAGE-TABLE-ENTRY ADDRESS, LOAD REAL
ADDRESS, or STORE REAL ADDRESS is exe-
cuted. The information is not considered to be
used when the PSW specifies translation but an
I/O, external, restart, or machine-check interrup-
tion occurs before an instruction is executed, or
when the PSW specifies the wait state.

Translation Tables

When the address-space-control element (ASCE)
used in a translation is a region-first-table designa-
tion, the translation process consists in a five-level
lookup using five tables: a region first table, a region
second table, a region third table, a segment table,
and a page table. These tables reside in real or abso-
lute storage. When the ASCE is a region-second-
table designation, region-third-table designation, or
segment-table designation, the lookups in the levels
of tables above the designated level are omitted, and
the higher-level tables themselves are omitted.

Notes:

1. The terms higher and lower are used to describe
the level of DAT tables or table entries, either in
storage or in the translation-lookaside buffer. A
higher-level table entry maps a larger portion of
virtual storage than a lower-level table entry.
Thus, a region-first-table entry is the highest level
of DAT-table entries, and a page-table entry is the
lowest level.

2. Higher DAT-table entries (if any) may be referred
to as limb-table entries. Limb-table entries com-
prise region-first-table entries, region-second-
table entries, region-third-table entries in which

Home Region-Table or Segment-Table Origin
0 31

Home Region-Table or
Segment-Table Origin (cont.)

P S X R DT TL

32 52 55 56 57 58 59 60 62 63

Home Real-Space Token Origin
0 31

Home Real-Space Token Origin (cont.) P S X R
32 52 55 56 57 58 59 63

3-46 The z/Architecture CPU Architecture

the format control is zero, and segment-table
entries in which the format control is zero.

The lowest (or only) DAT-table entry used in a
translation is referred to as a leaf-table entry.
Leaf-table entries comprise region-third-table
entries and segment-table entries in which the
format control is one, and page-table entries.

Region-Table Entries
The term “region-table entry” means a region-first-
table entry, region-second-table entry, or region-third-
table entry.

The entries fetched from the region first table, region
second table, and region third table have the follow-
ing formats. The level (first, second, or third) of the
table containing an entry is identified by the table-
type (TT) bits in the entry.

Region-First-Table Entry (TT=11)

Region-Second-Table Entry (TT=10)

Region-Third-Table Entry (TT=01, FC=0)

Region-Third-Table Entry (TT=01, FC=1)

The fields in the three levels of region-table entries
are allocated as follows:

Region-Second-Table Origin, Region-Third-Table
Origin, and Segment-Table Origin: A region-first-
table entry contains a region-second-table origin. A
region-second-table entry contains a region-third-
table origin. When EDAT-2 does not apply, or when
EDAT-2 applies and the RTTE-format control in the
region-third table entry is zero, a region-third-table
entry contains a segment-table origin. The following
description applies to each of the three origins. Bits
0-51 of the entry, with 12 zeros appended on the
right, form a 64-bit address that designates the
beginning of the next-lower-level table. It is unpredict-
able whether the address is real or absolute.

Region-Frame Absolute Address (RFAA): When
EDAT-2 applies and the RTTE-format control is one,
bits 0-32 of the entry, with 31 zeros appended on the
right, form the 64-bit absolute address of the region.

ACCF-Validity Control (AV): When EDAT-2
applies and the RTTE-format control is one, bit 47 is
the access-control-bits and fetch-protection bit
(ACCF) validity control. When the AV control is zero,
bits 48-52 of the region-third-table entry are ignored.
When the AV control is one, bits 48-52 are used as
described below.

Access-Control Bits (ACC): When EDAT-2
applies, and both the RTTE-format control and the
AV control in the region-third-table-entry are one, bits
48-51 of the entry contain the access-control bits that
may be used for any key-controlled access checking
that applies to the address. It is unpredictable
whether the CPU uses these bits or the access-con-
trol bits in the storage key of the 4 K-byte block corre-
sponding to the address.

Fetch-Protection Bit (F): When EDAT-2 applies,
and both the RTTE-format control and the AV control
in the region-third-table-entry are one, bit 52 of the
entry contains the fetch-protection bit that may be
used for any key-controlled access checking that
applies to the address. It is unpredictable whether
the CPU uses this bit or the fetch-protection bit in the
storage key of the 4 K-byte block corresponding to
the address.

Format Control (FC): When EDAT-2 applies, bit 53
of the region-third table entry is the RTTE-format
control for the entry, as follows:

Region-Second-Table Origin
0 31

Region-Second-Table Origin (continued) P TF I TT TL
32 52 54 56 58 59 60 62 63

Region-Third-Table Origin
0 31

Region-Third-Table Origin (continued) P TF I TT TL
32 52 54 56 58 59 60 62 63

Segment-Table Origin
0 31

Segment-Table Origin (continued)
F
C

P TF I
C
R

TT TL

32 52 53 54 55 56 58 59 60 62 63

Region-Frame Absolute Address (RFAA)
0 31

R
F
A
A

A
V

ACC F
F
C

P
I
E
P

I
C
R

TT

32 47 48 52 53 54 55 56 58 59 60 62 63

Storage 3-47

• When the FC bit is zero, bits 0-51 of the entry
form the segment-table origin, and bits 52 and 55
are reserved.

• When the FC bit is one, bits 0-32 of the entry
form the region-frame absolute address, bit 47 is
the ACCF-validity control, bits 48-51 are the
access-control bits, bit 52 is the fetch-protection
bit, and bits 56-57, and 62-63 are reserved.
When the instruction-execution-protection facility
is enabled (that is, bit 43 of control register 0 is
one), bit 55 of the format-1 RTTE is the instruc-
tion-execution-protection control; otherwise bit
55 of the format-1 RTTE is reserved.

When EDAT-2 does not apply, bit 53 of the region-
third table entry is reserved. Bit 53 is reserved in
region-first- and region-second-table entries.

DAT-Protection Bit (P): When EDAT-1 applies, bit
54 is treated as being ORed with the DAT-protection
bit in each subsequent region-table entry, and, when
applicable, segment-table entry, and page-table entry
used in the translation. Thus, when the bit is one,
DAT protection applies to the entire region or regions
specified by the region-table entry.

When the enhanced-DAT facility 1 is not installed, or
when the facility is installed but the enhanced-DAT-
enablement control is zero, bit 54 of the region-table
entry is ignored.

Instruction-Execution-Protection (IEP) Control:
When the instruction-execution-protection facility is
enabled, and the RTTE-format control is one, bit 55
of the RTTE is the instruction-execution-protection
control. When the IEP control is zero, instruction-exe-
cution protection does not apply to instructions exe-
cuted in the region frame. When the IEP control is
one, instruction-execution protection applies to the
region frame; in the absence of higher-priority excep-
tion conditions, any attempt to execute instructions
from the region frame causes a protection exception
to be recognized.

Region-Second-Table Offset, Region-Third-Table
Offset, and Segment-Table Offset (TF): A region-
first-table entry contains a region-second-table off-
set. A region-second-table entry contains a region-
third-table offset. When EDAT-2 does not apply, or
when EDAT-2 applies but the RTTE-format control in
the region-third table entry is zero, a region-third-
table entry contains a segment-table offset. The fol-
lowing description applies to each of the three off-

sets. Bits 56 and 57 of the entry specify the length of
a portion of the next-lower-level table that is missing
at the beginning of the table, that is, the bits specify
the location of the first entry actually existing in the
next-lower-level table. The bits specify the length of
the missing portion in units of 4,096 bytes, thus mak-
ing the length of the missing portion variable in multi-
ples of 512 entries. The length of the missing portion,
in units of 4,096 bytes, is equal to the TF value. The
contents of the offset field, in conjunction with the
length field, bits 62 and 63, are used to establish
whether the portion of the virtual address (RSX,
RTX, or SX) to be translated by means of the next-
lower-level table designates an entry that actually
exists in the table.

When EDAT-2 applies and the RTTE-format-control
of a region-third-table entry is one, bits 56-57 of the
entry are reserved.

Region-Invalid Bit (I): Bit 58 in a region-first-table
entry or region-second-table entry controls whether
the set of regions associated with the entry is avail-
able. Bit 58 in a region-third-table entry controls
whether the single region associated with the entry is
available. When bit 58 is zero, address translation
proceeds by using the region-table entry. When the
bit is one, the entry cannot be used for translation.

When the region-invalid bit is one, all other bits in the
region-table entry are available for use by program-
ming.

Common-Region Bit (CR): When EDAT-2 applies,
bit 59 controls the use of the translation-lookaside-
buffer (TLB) copies of the region-third-table entry.
When EDAT-2 applies but the RTTE-format control is
zero, bit 59 also controls the use of the TLB copies of
any segment table designated by the region-third-
table entry, and any page table designated by the
segment-table entry.

A zero identifies a private region; in this case, the
region-third-table entry, and any lower-level table
entries it designates may be used only in association
with the region-third-table origin that designates the
region-third table in which the region-third-table entry
resides, except that on models that implement a TLB
composite table entry that includes the region-third-
table entry, the TLB composite table entry and any
lower-level tables it designates may be used only
when (a) the table origin in the TLB composite table
entry matches the ASCE table origin or table origin of
a higher-level region-table entry, and (b) the region

3-48 The z/Architecture CPU Architecture

indices in the TLB composite table entry match the
corresponding indices of the virtual address.

A one identifies a common region; in this case, the
region-third-table entry and any lower-level tables it
designates may continue to be used for translating
addresses corresponding to the region-third index,
even though a different region-third table is specified.
However, TLB copies of the region-third-table entry
and lower-level tables for a common region are not
usable if the private-space control, bit 55, is one in
the address-space-control element used in the trans-
lation or if that address-space-control element is a
real-space designation. The common-region bit must
be zero if the region-third-table entry is fetched from
storage during a translation when the private-space
control is one in the address-space-control element
being used; otherwise, a translation-specification
exception is recognized.

Bit 59 is ignored in the region-first- and region-sec-
ond-table entries, and, when EDAT-2 does not apply,
in the region-third-table entry.

Table-Type Bits (TT): Bits 60 and 61 of the region-
first-table entry, region-second-table entry, and
region-third-table entry identify the level of the table
containing the entry, as follows:

Bits 60 and 61 must identify the correct table level,
considering the type of table designation that is the
address-space-control element being used in the
translation and the number of table levels that have
so far been used; otherwise, a translation-specifica-
tion exception is recognized.

Region-Second-Table Length, Region-Third-Table
Length, and Segment-Table Length (TL): A
region-first-table entry contains a region-second-
table length. A region-second-table entry contains a
region-third-table length. When EDAT-2 does not
apply, or when EDAT-2 applies but the RTTE-format
control in the region-third table entry is zero, a
region-third-table entry contains a segment-table
length. The following description applies to each of
the three lengths. Bits 62 and 63 of the entry specify
the length of the next-lower-level table in units of
4,096 bytes, thus making the length of the table vari-

able in multiples of 512 entries. The length of the
next-lower-level table, in units of 4,096 bytes, is one
more than the TL value. The contents of the length
field, in conjunction with the offset field, bits 56 and
57, are used to establish whether the portion of the
virtual address (RSX, RTX, or SX) to be translated by
means of the next-lower-level table designates an
entry that actually exists in the table.

When EDAT-2 applies and the RTTE-format-control
of a region-third-table entry is one, bits 62-63 of the
entry are available for programming.

All other bit positions of the region-table entry are
reserved for possible future extensions and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future.

Programming Note: When the common-region (CR)
bit is one in a valid region-third-table entry fetched
from storage during dynamic-address translation for
a non-private address space, that is, for an address
space in which the private-space control is zero in
the address-space-control element being used, then
the following conditions apply:

1. The region-third-table entries corresponding to
the same virtual address in all other non-private
address spaces must be identical.

If the program alters such a region-third-table
entry in one non-private address space, then it
must also (a) identically alter all other region-
third-table entries corresponding to the same vir-
tual address in all other non-private address
spaces, and (b) ensure that the affected entries
are cleared from the TLBs of all CPUs in the con-
figuration. Further information on clearing TLB
entries may be found in “Modification of Transla-
tion Tables” on page 3-67.

2. The program must ensure that region-third-table
entries in which the CR bit is set to one, and any
region-first- and region-second-table entries
used by the DAT process to locate such region-
third-table entries, are consistent across all
address spaces. That is, if the DAT process can
successfully locate a region-third-table entry in
which the CR bit is one in one non-private
address space, then there must be no exception
condition that prevents DAT from locating the
region-third-table entry corresponding to the
same virtual address in any other non-private
address spaces.

Bits 60
and 61 Region-Table Level

11 First
10 Second
01 Third

Storage 3-49

If the program alters such a region-table entry in
one non-private address space, then it must also
(a) perform consistent alteration to all corre-
sponding table entries in all other non-private
address spaces, and (b) ensure that the affected
entries are cleared from the TLBs of all CPUs in
the configuration.

3. If the program fails to maintain consistent DAT
table entries as described above, results are
unpredictable and may include the presentation
of a delayed-access-exception machine check,
as described in “Delayed Access Exception” on
page 11-17.

Segment-Table Entries
When EDAT-1 does not apply, or when enhanced
DAT applies and the STE-format control, bit 53 of the
segment-table entry is zero, the entry fetched from
the segment table has the following format:

Segment-Table Entry (TT=00, FC=0)

When EDAT-1 applies and the STE-format control is
one, the entry fetched from the segment table has
the following format:

Segment-Table Entry (TT=00, FC=1)

The fields in the segment-table entry are allocated as
follows:

Page-Table Origin: When EDAT-1 does not apply,
or when EDAT-1 applies but the STE-format control,
bit 53 of the segment-table entry, is zero, bits 0-52,
with 11 zeros appended on the right, form a 64-bit
address that designates the beginning of a page
table. It is unpredictable whether the address is real
or absolute.

Segment-Frame Absolute Address (SFAA):
When EDAT-1 applies and the STE-format control is
one, bits 0-43 of the entry, with 20 zeros appended
on the right, form the 64-bit absolute address of the
segment.

ACCF-Validity Control (AV): When EDAT-1
applies and the STE-format control is one, bit 47 is
the access-control-bits and fetch-protection bit
(ACCF) validity control. When the AV control is zero,
bits 48-52 of the segment-table entry are ignored.
When the AV control is one, bits 48-52 are used as
described below.

Access-Control Bits (ACC): When EDAT-1
applies, and both the STE-format control and the AV
control in the segment-table entry are one, bits 48-51
of the segment-table entry contain the access-control
bits that may be used for any key-controlled access
checking that applies to the address. It is unpredict-
able whether the CPU uses these bits or the access-
control bits in the storage key of the 4 K-byte block
corresponding to the address.

Fetch-Protection Bit (F): When EDAT-1 applies,
and both the STE-format control and the AV control
in the segment-table entry are one, bit 52 of the seg-
ment-table entry contains the fetch-protection bit that
may be used for any key-controlled access checking
that applies to the address. It is unpredictable
whether the CPU uses this bit or the fetch-protection
bit in the storage key of the 4 K-byte block corre-
sponding to the address.

STE-Format Control (FC): When EDAT-1 applies,
bit 53 is the format control for the segment-table
entry, as follows:

• When the FC bit is zero, bits 0-52 of the entry
form the page-table origin, and bit 55 is reserved.

• When the FC bit is one, bits 0-43 of the entry
form the segment-frame absolute address, bit 47
is the ACCF-validity control, bits 48-51 are the
access-control bits, and bit 52 is the fetch-protec-
tion bit. When the instruction-execution-protec-
tion facility is enabled, bit 55 of the STE is the
instruction-execution-protection control; other-
wise bit 55 of the STE is reserved.

When EDAT-1 does not apply, bit 53 is ignored.

Page-Table Origin
0 31

Page-Table Origin (continued)
F
C

P I
C
S

TT

32 53 54 55 58 59 60 62 63

Segment-Frame Absolute Address
0 31

Segment-Frame Absolute
Address (continued)

A
V

ACC F
F
C

P
I
E
P

I
C
S

TT

32 44 47 48 52 53 54 55 56 58 59 60 62 63

3-50 The z/Architecture CPU Architecture

DAT-Protection Bit (P): Bit 54, when one, indi-
cates that DAT protection applies to the entire seg-
ment.

When EDAT-1 does not apply, bit 54 is treated as
being ORed with the DAT-protection bit in the page-
table entry used in the translation.

When EDAT-1 applies, the DAT-protection bit in any
and all region-table entries used in the translation are
treated as being ORed with the DAT-protection bit in
the segment-table entry; when the STE-format con-
trol is zero, the DAT-protection bit in the STE is fur-
ther treated as being ORed with the DAT-protection
bit in the page-table entry.

Instruction-Execution-Protection (IEP) Control:
When the instruction-execution-protection facility is
enabled, and the STE-format control is one, bit 55 of
the STE is the instruction-execution-protection con-
trol. When the IEP control is zero, instruction-execu-
tion protection does not apply to instructions
executed in the segment frame. When the IEP con-
trol is one, instruction-execution protection applies to
the segment frame; in the absence of higher-priority
exception conditions, any attempt to execute instruc-
tions from the segment frame causes a protection
exception to be recognized.

Segment-Invalid Bit (I): Bit 58 controls whether
the segment associated with the segment-table entry
is available. When the bit is zero, address translation
proceeds by using the segment-table entry. When
the bit is one, the segment-table entry cannot be
used for translation.

When the segment-invalid bit is one, all other bits in
the segment-table entry are available for use by pro-
gramming.

Common-Segment Bit (CS): Bit 59 controls the
use of the translation-lookaside-buffer (TLB) copies
of the segment-table entry. When EDAT-1 does not
apply or when EDAT-1 applies but the format control
is zero, bit 59 also controls the use of the TLB copies
of the page table designated by the segment-table
entry.

A zero identifies a private segment; in this case, the
segment-table entry and any page table it designates
may be used only in association with the segment-
table origin that designates the segment table in
which the segment-table entry resides, except that

on models that implement a TLB composite table
entry that includes the STE , the TLB composite table
entry and any page table it designates may be used
only when (a) the table origin in the TLB composite
table entry matches the ASCE table origin or table
origin of a higher-level region-table entry, and (b) the
region and segment indices in the TLB composite
table entry match the corresponding indices of the
virtual address.

A one identifies a common segment; in this case, the
segment-table entry and any page table it designates
may continue to be used for translating addresses
corresponding to the segment index, even though a
different segment table is specified. However, TLB
copies of the segment-table entry and any page table
for a common segment are not usable if the private-
space control, bit 55, is one in the address-space-
control element used in the translation or if that
address-space-control element is a real-space desig-
nation. The common-segment bit must be zero if the
segment-table entry is fetched from storage during a
translation when the private-space control is one in
the address-space-control element being used; oth-
erwise, a translation-specification exception is recog-
nized.

When EDAT-2 applies, the effective value of the com-
mon-segment bit is the logical OR of bits 59 of the
segment-table entry and any region-third-table entry
designating the segment-table entry.

Table-Type Bits (TT): Bits 60 and 61 of the seg-
ment-table entry are 00 binary to identify the level of
the table containing the entry. The meanings of all
possible values of bits 60 and 61 in a region-table
entry or segment-table entry are as follows:

Bits 60 and 61 must identify the correct table level,
considering the type of table designation that is the
address-space-control element being used in the
translation and the number of table levels that have
so far been used; otherwise, a translation-specifica-
tion exception is recognized.

Bits 62-63 are available for programming.

Bits 60
and 61 Table Level

11 Region-first
10 Region-second
01 Region-third
00 Segment

Storage 3-51

All other bit positions of the segment-table entry are
reserved for possible future extensions and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future.

Programming Note: When the common-segment
(CS) bit is one in a valid segment-table entry fetched
from storage during dynamic-address translation for
a non-private address space, that is, for an address
space in which the private-space control is zero in
the address-space-control element being used, then
the following conditions apply:

1. The segment-table entries corresponding to the
same virtual address in all other non-private
address spaces must be identical.

If the program alters such a segment-table entry
in one non-private address space, then it must
also (a) identically alter all other segment-table
entries corresponding to the same virtual
address in all other non-private address spaces,
and (b) ensure that the affected entries are
cleared from the TLBs of all CPUs in the configu-
ration. Further information on clearing TLB
entries may be found in “Modification of Transla-
tion Tables” on page 3-67.

2. The program must ensure that segment-table
entries in which the CS bit is set to one, and any
region-table entries used by the DAT process to
locate such segment-table entries, are consistent
across all address spaces. That is, if the DAT
process can successfully locate a segment-table
entry in which the CS bit is one in one non-pri-
vate address space, then there must be no
exception condition that prevents DAT from locat-
ing the segment-table entry corresponding to the
same virtual address in any other non-private
address spaces.

If the program alters such a segment-table entry
or region-table entry in one non-private address
space, then it must also (a) perform consistent
alteration to all corresponding table entries in all
other non-private address spaces, and
(b) ensure that the affected entries are cleared
from the TLBs of all CPUs in the configuration.

3. If the program fails to maintain consistent DAT
table entries as described above, results are
unpredictable and may include the presentation
of a delayed-access-exception machine check,
as described in “Delayed Access Exception” on
page 11-17.

Page-Table Entries
The entry fetched from the page table entry has the
following format:

The fields in the page-table entry are allocated as fol-
lows:

Page-Frame Real Address (PFRA): Bits 0-51 pro-
vide the leftmost bits of a real storage address. When
these bits are concatenated with the 12-bit byte-
index field of the virtual address on the right, a 64-bit
real address is obtained.

Page-Invalid Bit (I): Bit 53 controls whether the
page associated with the page-table entry is avail-
able. When the bit is zero, address translation pro-
ceeds by using the page-table entry. When the bit is
one, the page-table entry cannot be used for transla-
tion.

 When the page-invalid bit is one, all other bits in the
page-table entry are available for use by program-
ming.

DAT-Protection Bit (P): Bit 54 controls whether
store accesses can be made in the page. This pro-
tection mechanism is in addition to the key-con-
trolled-protection and low-address-protection
mechanisms. The bit has no effect on fetch
accesses. If the bit is zero, stores are permitted to the
page, subject to the following additional constraints:

• The DAT-protection bit being zero in the seg-
ment-table entry used in the translation,

• When EDAT-1 applies, the DAT-protection bit
being zero in all region-table entries used in the
translation,

• Other protection mechanisms

If the bit is one, stores are disallowed. When no
higher priority exception conditions exist, an attempt
to store when the DAT-protection bit is one causes a
protection exception to be recognized. The DAT-pro-
tection bit in the segment-table entry is treated as
being ORed with bit 54 when determining whether

Page-Frame Real Address
0 31

Page-Frame Real Address (continued) 0 I P
I
E
P

32 52 53 54 55 56 63

3-52 The z/Architecture CPU Architecture

DAT protection applies to the page. When EDAT-1
applies, the DAT-protection bits in any region-table
entries used in translation are also treated as being
ORed with bit 54 when determining whether DAT-pro-
tection applies.

Bit position 52 of the entry must contain zero; other-
wise, a translation-specification exception is recog-
nized as part of the execution of an instruction using
that entry for address translation.

Instruction-Execution-Protection (IEP) Control:
When the instruction-execution-protection facility is
enabled, bit 55 of the PTE is the instruction-execu-
tion-protection control. When the IEP control is zero,
instruction-execution protection does not apply to
instruction executed in the page frame. When the IEP
control is one, instruction-execution protection
applies to the page frame; in the absence of higher-
priority exception conditions, any attempt to execute
instructions from the page frame causes a protection
exception to be recognized.

When the instruction-execution-protection (IEP) facil-
ity is not installed in the configuration and EDAT-1
does not apply, it is unpredictable whether a transla-
tion-specification exception is recognized when bit 55
of the page-table entry is one. When the IEP facility
is not installed in the configuration and EDAT-1
applies, or when the IEP facility is installed but dis-
abled, bit 55 of the page-table entry is ignored.

Bit positions 56-63 are not assigned and are ignored.

Programming Note: Bit 55 of the format-1 region-
third-table entry, format-1 segment-table entry, and
page table entry was formerly defined to be the
change-recording override (CO). The change-record-
ing override was never implemented on any IBM pro-
cessor, and this feature has been removed from the
architecture. Bit 55 of the respective table entries is
now defined to be the instruction-execution-protec-
tion control.

Architecture Notes:

Translation Process

This section describes the translation process as it is
performed implicitly before a virtual address is used
to access main storage. Explicit translation, which is
the process of translating the operand address of
LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD

REAL ADDRESS, STORE REAL ADDRESS, and
TEST PROTECTION, is the same, except that, for
LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS and TEST PROTECTION, region-
first-translation, region-second-translation, region-
third-translation, and segment-translation exceptions
are not recognized, and for LOAD REAL ADDRESS
and TEST PROTECTION, page-translation excep-
tions are not recognized; such conditions are instead
indicated by the condition code. Translation of the
operand address of LOAD PAGE-TABLE-ENTRY
ADDRESS, LOAD REAL ADDRESS and STORE
REAL ADDRESS also differs in that the CPU may be
in the real mode.

Translation of a virtual address is controlled by the
DAT-mode bit and address-space-control bits in the
PSW, by bits in control register 0, and by the
address-space-control elements (ASCEs) in control
registers 1, 7, and 13 and as specified by the access
registers. When the ASCE used in a translation is a
region-first-table designation, the translation is per-
formed by means of a region first table, region sec-
ond table, region third table, and, when applicable, a
segment table and page table, all of which reside in
real or absolute storage. When the ASCE is a lower-
level type of table designation (region-second-table
designation, region-third-table designation, or seg-
ment-table designation) the translation is performed
by means of only the table levels beginning with the
designated level, and the virtual-address bits that
would, if nonzero, require use of a higher level or lev-
els of table must be all zeros; otherwise, an ASCE-
type exception is recognized. When the ASCE is a
real-space designation, the virtual address is treated
as a real address, and table entries in real or abso-
lute storage are not used.

The address-space-control element (ASCE) used for
a particular address translation is called the effective
ASCE. Accordingly, when a primary virtual address is
translated, the contents of control register 1 are used
as the effective ASCE. Similarly, for a secondary vir-
tual address, the contents of control register 7 are
used; for an AR-specified virtual address, the ASCE
specified by the access register is used; and for a
home virtual address, the contents of control register
13 are used.

When the real-space control in the effective ASCE is
zero, the designation-type control in the ASCE speci-
fies the table-designation type of the ASCE: region-
first-table designation, region-second-table designa-
tion, region-third-table designation, or segment-table

Storage 3-53

designation. The corresponding portion of the virtual
address (region first index, region second index,
region third index, or segment index) is checked
against the table-length field in the designation, and it
is added to the origin in the designation to select an
entry in the designated table. If the selected entry is
outside its table, as determined by the table-length
field in the designation, or if the I bit is one in the
selected entry, a region-first-translation, region-sec-
ond-translation, region-third-translation, or segment-
translation exception is recognized, depending on the
table level specified by the designation. If the table-
type bits in the selected entry do not indicate the
expected table level, a translation-specification
exception is recognized.

The table entry selected by means of the effective
ASCE designates the next-lower-level table to be
used. If the current table is a region first table, region
second table, or region third table, the next portion of
the virtual address (region second index, region third
index, or, when applicable, segment index, respec-
tively) is checked against the table-offset and table-
length fields in the current table entry, and it is added
to the origin in the entry to select an entry in the next-
lower-level table. If the selected entry in the next
table is outside its table, as determined by the table-
offset and table-length fields in the current table
entry, or if the I bit is one in the selected entry, a
region-second-translation, region-third-translation,
or, when applicable, segment-translation exception is
recognized, depending on the level of the next table.
If the table-type bits in the selected entry do not indi-
cate the expected table level, a translation-specifica-
tion exception is recognized.

Processing of portions of the virtual address contin-
ues by means of any successive table levels until a
leaf table entry is reached. When EDAT-1 applies, the
DAT-protection bit in any and all region-table entries
used during the translation are treated as being
ORed with the respective bit in any segment-table
entry used in the translation.

When EDAT-2 applies, the region-third-table entry
contains a common-region bit that controls the use of
the TLB copies of any lower-level tables designated
by the region-third-table entry. The common-region
bit is logically ORed with the common-segment bit of
any segment-table entry used in the translation.

When EDAT-2 applies and a region-third-table entry
in which the RTTE-format control is one is selected,

the region-third-table entry is the leaf table entry, and
the following conditions are in effect:

• The region-third-table entry contains the leftmost
33 bits of the absolute address that represents
the translation of the virtual address.

• The segment-index, page-index and byte-index
fields of the virtual address are used unchanged
as the rightmost 31 bit positions of the real
address.

• The region-third-table entry also contains the
ACCF-validity control, the access-control bits,
the fetch-protection bit, the DAT-protection bit,
and the common-region bit that apply to the
region. When the instruction-execution-protec-
tion facility is enabled, the region-third-table entry
also contains the instruction-execution-protection
control that applies to the region.

When EDAT-1 applies and a segment-table entry in
which the STE-format control is one is selected, the
segment-table entry is the leaf table entry, the follow-
ing conditions are in effect:

• The segment-table entry contains the leftmost
bits of the absolute address that represents the
translation of the virtual address.

• The page-index and byte-index fields of the vir-
tual address are used unchanged as the right-
most bit positions of the real address.

• The segment-table entry also contains the
ACCF-validity control, the access-control bits,
the fetch-protection bit, the DAT-protection bit,
and common-segment bit that apply to the seg-
ment. When the instruction-execution-protection
facility is enabled, the segment-table entry also
contains the instruction-execution-protection
control that applies to the segment.

When EDAT-1 does not apply, or when EDAT-1
applies but the STE-format control is zero, the follow-
ing conditions are in effect:

• The segment-table entry contains a DAT-protec-
tion bit that applies to all pages in the specified
segment; the segment-table entry also contains
a common-segment bit that controls the use of
the TLB copies of the page table designated by
the segment-table entry.

3-54 The z/Architecture CPU Architecture

• The segment-table entry designates the page
table to be used, and the page-table entry is the
leaf table entry.

• The page-index portion of the virtual address is
added to the page-table origin in the segment-
table entry to select an entry in the page table. If
the I bit is one in the page-table entry, a page-
translation exception is recognized. The page-
table entry contains the leftmost bits of the real
address that represents the translation of the vir-
tual address, and it contains a DAT-protection bit
that applies only to the page specified by the
page-table entry. When the instruction-execution-
protection facility is enabled, the page-table entry
also contains the instruction-execution-protection
control that applies to the page.

• The byte-index field of the virtual address is used
unchanged as the rightmost bit positions of the
real address.

In order to eliminate the delay associated with refer-
ences to translation tables in real or absolute stor-
age, the information fetched from the tables normally
is also placed in a special buffer, the translation-loo-
kaside buffer (TLB), and subsequent translations
involving the same table entries may be performed by
using the information recorded in the TLB. The TLB
may also record virtual-equals-real translations
related to a real-space designation. The operation of

the TLB is described in “Translation-Lookaside Buf-
fer” on page 3-62.

Whenever access to real or absolute storage is made
during the address-translation process for the pur-
pose of fetching an entry from a region table, seg-
ment table, or page table, key-controlled protection
does not apply.

The translation process, including the effect of the
TLB, is shown graphically in Figure 3-16 on
page 3-55.

Inspection of Real-Space Control
When the effective address-space-control element
(ASCE) contains a real-space control, bit 58, having
the value zero, the ASCE is a region-table or seg-
ment-table designation. When the real-space control
is one, the ASCE is a real-space designation.

Inspection of Designation-Type Control
When the real-space control is zero, the designation-
type control, bits 60 and 61 of the effective address-
space-control element (ASCE), specifies the table-
designation type of the ASCE. Depending on the
type, some number of leftmost bits of the virtual
address being translated must be zeros; otherwise,
an ASCE-type exception is recognized. For each
possible value of bits 60 and 61, the table-designa-

Storage 3-55

Figure 3-16. Translation Process (Part 1 of 3)

Program Status Word

0 R 0 0 0 T I E Key 0 MWP AS CC Mask 0 0 0 0 0 0 0 E B ...

Effective Address-Space Control Element

Region-Table or Segment-Table Origin (R = 0) G P S X R DT TL

ASTE (AR-specified ASCE)

CR7 (SASCE)

CR13 (HASCE)

Region-First Table (RFT)

Region-First-Table Entry (RFTE)

Region-Second-Table Origin (RSTO) P TF I TT TL

Virtual Address

RFX RSX RTX SX PX BX

RX

Region-Second Table (RST)

Region-Second-Table Entry (RSTE)

Region-Third-Table Origin (RTO) P TF I TT TL

Region-Third Table (RTT)

Region-Third-Table Entry (RTTE)

Segment-Table Origin (FC=0) or
Region-Frame Absolute Address (FC=1)7

F
C

P TF I
C
R

TT TL

38
CR1 (PASCE) 00

01

10

11

DT 2
and

RFX 0

RFX.0-1
>

ASCE.TL

39

DT 1 &
RFX || RSX

 0

38

DT = 0
and

RX 0

38

RSX.0-1
<

RFTE.TF1

3A

RSX.0-1
>

RFTE.TL2

RTX.0-1
<

RSTE.TF1

3B

RTX.0-1
>

RSTE.TL2

3B

00 01 10 11

+

+

+

(x 4096)

(x 4096)

(x 4096)

RFTE.TT

12

False

True4

True5

True

True

True6

True

False

False

False

False

False

False

True

False

False

12

False

12

False

See next page

Explanation:

1 Examination of the table-offset (TF) is not performed when the table entry is in a table that is designated by the ASCE.
2 When the table entry is designated by the ASCE, the second comparand is the table-length field (TL) in the ASCE.
3 Table origin is one of the two pointers: either from the ASCE or from the next-higher table entry.
4 RFX is not used as a table index when ASCE.DT is less than or equal to 2.
5 RFX and RSX are not used as table indices when ASCE.DT is less than or equal to 1.
6 RFX, RSX, and RTX are not used as table indices when ASCE.DT is equal to 0.
7 RTTE FC is valid only when EDAT-2 applies; RFAA applies only when RTTE.FC is one.
8 STE FC is valid only when EDAT-1 applies; SFAA applies only when STE.FC is one.
9 The DAT-protection bit (P) in the region-table entries is only meaningful when EDAT-1 applies.

Rightmost two hexadecimal digits of the program-interruption code recognized for the condition shown, or when the invalid (I) bit is on in the selected
table entry.

nn

3A

True

39

3A

3B

3

3

(RFX x 8)

(RSX x 8)

(RTX x 8)

R=1

B

True

A

= 3

RSTE.TT
= 2

RTTE.TT
= 1

(I=1)

(I=1)

(I=1)

9

9

9

See next page

See next page
RTTE.

FC
See next pages

A

A

3-56 The z/Architecture CPU Architecture

Figure 3-16. Translation Process (Part 2 of 3)

Virtual Address

RFX RSX RTX SX PX BX

RX

Region-Third Table (RTT, from previous page)

Region-Third-Table Entry (RTTE)

Segment-Table Origin (STO)
F
C

P TF I
C
R

TT TL

Segment Table (ST)

Segment-Table Entry (STE)

Page-Table Origin (FC=0) or
Segment-Frame Absolute Address (FC=1)7

F
C

P I
C
S

TT

SX.0-1
<

RTTE.TF1

10

SX.0-1
>

RTTE.TL2

+

(x 4096)

True

False

12

False

See next section

10

True

False

10

3

(SX x 8)

See next section

STE.TT
= 0

(I=1)

Segment-Table Origin from ASCE when
ASCE DT=00 (see previous page)

RTTE.
FC=0

STE.
FC

When EDAT-2 does not apply, or when the
RTTE-format control (FC) is zero.

See previous page

See next sections

A

Virtual Address

RFX RSX RTX SX PX BX

RX

Segment Table (ST, from previous section)

Segment-Table Entry (STE)

Page-Table Origin
F
C

P I
C
S

TT

Page Table (PT)

Page-Table Entry (PTE)

Page-Frame Real Address 0 I P 0
I
E
P

+

(x 2048)

11

(PX x 8)

Real Address
Page-Frame Real Address BX

Translation Look-Aside Buffer

PFRA

B

A

When EDAT-1 does not apply, or when the
STE-format control (FC) is zero.

Note:
When EDAT-1 applies, bit position 55 of the page-table entry contains the
change-bit override; when EDAT-1 does not apply, bit position 55 of the page-
table entry is reserved and must contain zero.

STE.
FC=0

Storage 3-57

tion type and the virtual-address bits required to be
zeros are as follows:

Lookup in a Table Designated by an
Address-Space-Control Element
The designation-type control, bits 60 and 61 of the
effective address-space-control element (ASCE),
specifies both the table-designation type of the ASCE
and the portion of the virtual address that is to be

translated by means of the designated table, as fol-
lows:

Region-First-Table Lookup: When bits 60 and 61
have the value 11 binary, the region-first-index por-
tion of the virtual address, in conjunction with the

Figure 3-16. Translation Process (Part 3 of 3)

Virtual Address

RFX RSX RTX SX PX BX

RX

Segment Table (ST)

Segment-Table Entry (STE)

Segment-Frame Absolute Address
A
V

ACC F
F
C

P
I
E
P

I C TT

Absolute Address
Segment-Frame Absolute Address PX BX

Translation Look-Aside Buffer

SFAA

B

A

When EDAT-1 applies and the STE-format
control (FC) is one:

STE.
FC=1

Virtual Address

RFX RSX RTX SX PX BX

RX

Region-Third Table (RTT)

Region-Third-Table Entry (RTTE)

Region-Frame Absolute Address
A
V

ACC F
F
C

P
I
E
P

I TT

Absolute Address
Region-Frame Absolute Address SX PX BX

Translation Look-Aside Buffer

RFAA

B

A

When EDAT-2 applies and the RTTE-
format control (FC) is one: RTTE.

FC=1

Bits 60
and 61 Designation Type

Virtual-Address Bits
Required to be Zeros

11 Region-first-table None

10 Region-second-table 0-10

01 Region-third-table 0-21

00 Segment-table 0-32

Bits 60
and 61 Designation Type

Virtual-Address
Portion Translated

by the Table

11 Region-first-table Region first index
(bits 0-10)

10 Region-second-table Region second index
(bits 11-21)

01 Region-third-table Region third index
(bits 22-32)

00 Segment-table Segment index
(bits 33-43)

3-58 The z/Architecture CPU Architecture

region-first-table origin contained in the ASCE, is
used to select an entry from the region first table.

The 64-bit address of the region-first-table entry in
real or absolute storage is obtained by appending 12
zeros to the right of bits 0-51 of the region-first-table
designation and adding the region first index with
three rightmost and 50 leftmost zeros appended.
When a carry out of bit position 0 occurs during the
addition, an addressing exception may be recog-
nized, or the carry may be ignored, causing the table
to wrap from 264 - 1 to zero. All 64 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode. When forming the address of a region-first-,
region-second-, region-third-, or segment-table entry,
it is unpredictable whether prefixing, if any, is applied
to the respective table origin contained in the ASCE
before the addition of the table index value, or prefix-
ing is applied to the table-entry address that is
formed by the addition of the table origin and table
index value.

As part of the region-first-table-lookup process, bits 0
and 1 of the virtual address (which are bits 0 and 1 of
the region first index) are compared against the table
length, bits 62 and 63 of the region-first-table desig-
nation, to establish whether the addressed entry is
within the region first table. If the value in the table-
length field is less than the value in the correspond-
ing bit positions of the virtual address, a region-first-
translation exception is recognized. The comparison
against the table length may be omitted if the equiva-
lent of a region-first-table entry in the translation-loo-
kaside buffer is used in the translation.

All eight bytes of the region-first-table entry appear to
be fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection. When
the storage address generated for fetching the
region-first-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the unit of operation is
suppressed.

Bit 58 of the entry fetched from the region first table
specifies whether the corresponding set of regions is
available. This bit is inspected, and, if it is one, a
region-first-translation exception is recognized.

A translation-specification exception is recognized if
the table-type bits, bits 60 and 61, in the region-first-
table entry do not have the same value as bits 60 and
61 of the ASCE.

When no exceptions are recognized in the process of
region-first-table lookup, the entry fetched from the
region first table designates the beginning and speci-
fies the offset and length of the corresponding region
second table.

Region-Second-Table Lookup: When bits 60 and
61 of the ASCE have the value 10 binary, the region-
second-index portion of the virtual address, in con-
junction with the region-second-table origin con-
tained in the ASCE, is used to select an entry from
the region second table. Bits 11 and 12 of the virtual
address (which are bits 0 and 1 of the region second
index) are compared against the table length in the
ASCE. If the value in the table-length field is less
than the value in the corresponding bit positions of
the virtual address, a region-second-translation
exception is recognized. The comparison against the
table length may be omitted if the equivalent of a
region-second-table entry in the translation-lookaside
buffer is used in the translation. The region-second-
table-lookup process is otherwise the same as the
region-first-table-lookup process, except that a
region-second-translation exception is recognized if
bit 58 is one in the region-second-table entry. When
no exceptions are recognized, the entry fetched from
the region second table designates the beginning
and specifies the offset and length of the correspond-
ing region third table.

Region-Third-Table Lookup: When bits 60 and
61 of the ASCE have the value 01 binary, the region-
third-index portion of the virtual address, in conjunc-
tion with the region-third-table origin contained in the
ASCE, is used to select an entry from the region third
table. Bits 22 and 23 of the virtual address (which are
bits 0 and 1 of the region third index) are compared
against the table length in the ASCE. If the value in
the table-length field is less than the value in the cor-
responding bit positions of the virtual address, a
region-third-translation exception is recognized. The
comparison against the table length may be omitted
if the equivalent of a region-third-table entry in the
translation-lookaside buffer is used in the translation.
When EDAT-2 applies, a translation-specification
exception is recognized if (1) the private-space con-
trol, bit 55, in the ASCE is one and (2) the common-
region bit, bit 59, in the entry fetched from the region-
third table is one. The region-third-table-lookup pro-
cess is otherwise the same as the region-first-table-
lookup process, including the checking of the table-
type bits in the region-third-table entry, except that a
region-third-translation exception is recognized if bit
58 is one in the region-third-table entry.

Storage 3-59

When no exceptions are recognized, processing is
as follows:

• When EDAT-2 does not apply, or when EDAT-2
applies but the RTTE-format control is zero, the
entry fetched from the region third table desig-
nates the beginning and specifies the offset and
length of the corresponding segment table.

• When EDAT-2 applies and the RTTE-format con-
trol is one, the entry fetched from the region-third
table is a leaf-table entry and contains the left-
most bits of the region-frame absolute address.
In this case, if (a) the instruction-execution-pro-
tection facility is enabled, (b) the storage refer-
ence for which the translation is being performed
is for instruction execution, and (c) the instruc-
tion-execution-protection control, bit 55, is one,
then a protection exception is recognized.

• Regardless of the RTTE-format control, if
(a) EDAT-2 applies, (b) the DAT-protection bit, bit
54, is one either in any region-table entry used in
the translation, and (c) the storage reference for
which the translation is being performed is a
store, then a protection exception is recognized.

Segment-Table Lookup: When bits 60 and 61 of
the ASCE have the value 00 binary, the segment-
index portion of the virtual address, in conjunction
with the segment-table origin contained in the ASCE,
is used to select an entry from the segment table.
Bits 33 and 34 of the virtual address (which are bits 0
and 1 of the segment index) are compared against
the table length in the ASCE. If the value in the table-
length field is less than the value in the correspond-
ing bit positions of the virtual address, a segment-
translation exception is recognized. The comparison
against the table length may be omitted if the equiva-
lent of a segment-table entry in the translation-loo-
kaside buffer is used in the translation. A translation-
specification exception is recognized if (1) the pri-
vate-space control, bit 55, in the ASCE is one and
(2) the common-segment bit, bit 59, in the entry
fetched from the segment table is one. When EDAT-2
applies and the common-region bit is one in a region-
third-table entry designating the segment table, then
the common-segment bit is assumed to be one in all
entries in the segment table. The segment-table-
lookup process is otherwise the same as the region-
first-table-lookup process, including the checking of
the table-type bits in the segment-table entry, except
that a segment-translation exception is recognized if

bit 58 is one in the segment-table entry. When no
exceptions are recognized, processing is as follows:

• When EDAT-1 does not apply, or when EDAT-1
applies but the STE-format control is zero, the
entry fetched from the segment table designates
the beginning of the corresponding page table,
and processing continues as described in “Page-
Table Lookup”, below.

• When EDAT-1 applies and the STE-format con-
trol is one, the entry fetched from the segment
table is a leaf-table entry and contains the left-
most bits of the segment-frame absolute
address. In this case, if (a) the instruction-execu-
tion-protection facility is enabled, (b) the storage
reference for which the translation is being per-
formed is for instruction execution, and (c) the
instruction-execution-protection control, bit 55, is
one, then a protection exception is recognized.

• Regardless of the STE-format control, if
(a) EDAT-1 applies, (b) the DAT-protection bit, bit
54, is one either in any region-table entry used in
the translation or in the segment-table entry, and
(c) the storage reference for which the translation
is being performed is a store, then a protection
exception is recognized.

Lookup in a Table Designated by a
Region-Table Entry
When the effective address-space-control element
(ASCE) is a region-table designation, a region-table
entry is selected as described in the preceding sec-
tion. Then the contents of the selected entry and the
next index portion of the virtual address are used to
select an entry in the next-lower-level table, which
may be another region table or a segment table.

Region-Second-Table Lookup: When the table
entry selected by means of the ASCE is a region-
first-table entry, the region-second-index portion of
the virtual address, in conjunction with the region-
second-table origin contained in the region-first-table
entry, is used to select an entry from the region sec-
ond table.

The 64-bit address of the region-second-table entry
in real or absolute storage is obtained by appending
12 zeros to the right of bits 0-51 of the region-first-
table entry and adding the region second index with
three rightmost and 50 leftmost zeros appended.
When a carry out of bit position 0 occurs during the
addition, an addressing exception may be recog-

3-60 The z/Architecture CPU Architecture

nized, or the carry may be ignored, causing the table
to wrap from 264 - 1 to zero. All 64 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode. When forming the address of a region-sec-
ond-, region-third-, or segment-table entry, it is
unpredictable whether prefixing, if any, is applied to
the respective table origin contained in the higher-
level table entry before the addition of the table index
value, or prefixing is applied to the table-entry
address that is formed by the addition of the table ori-
gin and table index value.

As part of the region-second-table-lookup process,
bits 11 and 12 of the virtual address (which are bits 0
and 1 of the region second index) are compared
against the table offset, bits 56 and 57 of the region-
first-table entry, and against the table length, bits 62
and 63 of the region-first-table entry, to establish
whether the addressed entry is within the region sec-
ond table. If the value in the table-offset field is
greater than the value in the corresponding bit posi-
tions of the virtual address, or if the value in the table-
length field is less than the value in the correspond-
ing bit positions of the virtual address, a region-sec-
ond-translation exception is recognized.

All eight bytes of the region-second-table entry
appear to be fetched concurrently as observed by
other CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the region-second-table entry designates a
location which is not available in the configuration, an
addressing exception is recognized, and the unit of
operation is suppressed.

Bit 58 of the entry fetched from the region second
table specifies whether the corresponding set of
regions is available. This bit is inspected, and, if it is
one, a region-second-translation exception is recog-
nized.

A translation-specification exception is recognized if
the table-type bits, bits 60 and 61, in the region-sec-
ond-table entry do not have a value that is one less
than the value of those bits in the next-higher-level
table.

When no exceptions are recognized in the process of
region-second-table lookup, the entry fetched from
the region second table designates the beginning
and specifies the offset and length of the correspond-
ing region third table.

Region-Third-Table Lookup: When the table
entry selected by means of the ASCE is a region-
second-table entry, or if a region-second-table entry
has been selected by means of the contents of a
region-first-table entry, the region-third-index portion
of the virtual address, in conjunction with the region-
third-table origin contained in the region-second-
table entry, is used to select an entry from the region
third table. Bits 22 and 23 of the virtual address
(which are bits 0 and 1 of the region third index) are
compared against the table offset and table length in
the region-second-table entry. A region-third-transla-
tion exception is recognized if the table offset is
greater than bits 22 and 23 or if the table length is
less than bits 22 and 23. When EDAT-2 applies, a
translation-specification exception is recognized if
(1) the private-space control, bit 55, in the ASCE is
one and (2) the common-region bit, bit 59, in the
entry fetched from the region-third table is one. The
region-third-table-lookup process is otherwise the
same as the region-second-table-lookup process,
including the checking of the table-type bits in the
region-third-table entry, except that a region-third-
translation exception is recognized if bit 58 is one in
the region-third-table entry.

When no exceptions are recognized, processing is
as follows:

• When EDAT-2 does not apply, or when EDAT-2
applies but the RTTE-format control is zero, the
entry fetched from the region third table desig-
nates the beginning and specifies the offset and
length of the corresponding segment table.

• When EDAT-2 applies and the RTTE-format con-
trol is one, the entry fetched from the region-third
table is a leaf-table entry and contains the left-
most bits of the region-frame absolute address.
In this case, if (a) the instruction-execution-pro-
tection facility is enabled, (b) the storage refer-
ence for which the translation is being performed
is for instruction execution, and (c) the instruc-
tion-execution-protection control, bit 55, is one,
then a protection exception is recognized.

• Regardless of the RTTE-format control, if
(a) EDAT-2 applies, (b) the DAT-protection bit, bit
54, is one either in any region-table entry used in
the translation, and (c) the storage reference for
which the translation is being performed is a
store, then a protection exception is recognized.

Storage 3-61

Segment-Table Lookup: When (1) the table entry
selected by means of the ASCE is a region-third-
table entry, or a region-third-table entry has been
selected by means of the contents of a region-sec-
ond-table entry, and (2) EDAT-2 does not apply, or
EDAT-2 applies but the RTTE-format control is zero,
then the segment-index portion of the virtual
address, in conjunction with the segment-table origin
contained in the region-third-table entry, is used to
select an entry from the segment table. Bits 33 and
34 of the virtual address (which are bits 0 and 1 of
the segment index) are compared against the table
offset and table length in the region-third-table entry.
A segment-translation exception is recognized if the
table offset is greater than bits 33 and 34 or if the
table length is less than bits 33 and 34. A translation-
specification exception is recognized if (1) the pri-
vate-space control, bit 55, in the ASCE is one and
(2) the common-segment bit, bit 59, in the entry
fetched from the segment table is one. When EDAT-2
applies and the common-region bit is one in a region-
third-table entry designating the segment table, then
the common-segment bit is assumed to be one in all
entries in the segment table. The segment-table-
lookup process is otherwise the same as the region-
second-table-lookup process, including the checking
of the table-type bits in the segment-table entry,
except that a segment-translation exception is recog-
nized if bit 58 is one in the segment-table entry.
When no exceptions are recognized, processing is
as follows:

• When EDAT-1 does not apply, or when EDAT-1
applies but the STE-format control is zero, the
entry fetched from the segment table designates
the beginning of the corresponding page table,
and processing continues as described in “Page-
Table Lookup”, below.

• When EDAT-1 applies and the STE-format con-
trol is one, the entry fetched from the segment
table is a leaf-table entry and contains the left-
most bits of the segment-frame absolute
address. In this case, if (a) the instruction-execu-
tion-protection facility is enabled, (b) the storage
reference for which the translation is being per-
formed is for instruction execution, and (c) the
instruction-execution-protection control, bit 55, is
one, then a protection exception is recognized.

• Regardless of the STE-format control, if
(a) EDAT-1 applies, (b) the DAT-protection bit, bit
54, is one either in any region-table entry used in
the translation or in the segment-table entry, and

(c) the storage reference for which the translation
is being performed is a store, then a protection
exception is recognized.

Page-Table Lookup
When EDAT-1 does not apply, or when EDAT-1
applies but the STE-format control is zero, the page-
index portion of the virtual address, in conjunction
with the page-table origin contained in the segment-
table entry, is used to select an entry from the page
table.

The 64-bit address of the page-table entry in real or
absolute storage is obtained by appending 11 zeros
to the right of the page-table origin and adding the
page index, with three rightmost and 53 leftmost
zeros appended. A carry out of bit position 0 cannot
occur. All 64 bits of the address are used, regardless
of whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

All eight bytes of the page-table entry appear to be
fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection. When
the storage address generated for fetching the page-
table entry designates a location which is not avail-
able in the configuration, an addressing exception is
recognized, and the unit of operation is suppressed.

The entry fetched from the page table is a leaf-table
entry and indicates the availability of the page. If the
page is available, the entry contains the leftmost bits
of the page-frame real address.

• The page-invalid bit, bit 53, is inspected to estab-
lish whether the corresponding page is available.
If this bit is one, a page-translation exception is
recognized.

• If bit position 52 contains a one, a translation-
specification exception is recognized.

• When EDAT-1 does not apply, and the instruc-
tion-execution-protection facility is not installed in
the machine, a translation-specification excep-
tion is also recognized if bit position 55 contains
a one. When EDAT-1 applies, but either the
instruction-execution-protection facility is not
installed in the machine, or the facility is installed
but not enabled, bit 55 is ignored. Regardless of
whether EDAT-1 applies, if (a) the instruction-
execution-protection facility is enabled, (b) the
storage reference for which the translation is
being performed is for instruction execution, and

3-62 The z/Architecture CPU Architecture

(c) the instruction-execution-protection control,
bit 55, is one in the leaf-table entry, then a pro-
tection exception is recognized.

• If the DAT-protection bit, bit 54, is one either in
the segment-table entry used in the translation,
in the page-table entry, or, when EDAT-1 applies,
in any region-table entry used during the transla-
tion, and the storage reference for which the
translation is being performed is a store, a pro-
tection exception is recognized.

Formation of the Real and Absolute
Addresses

When the effective address-space-control element
(ASCE) is a real-space designation, bits 0-63 of the
virtual address are used directly as the real storage
address. The real address is then subjected to prefix-
ing to form an absolute address.

When the effective ASCE is not a real-space desig-
nation and no exceptions in the translation process
are encountered, the following conditions apply:

• When EDAT-2 applies and the RTTE-format con-
trol is one, the region-frame absolute address
and the segment-index, page-index and byte-
index portions of the virtual address are concate-
nated, left to right, respectively, to form the abso-
lute address which corresponds to the virtual
address.

• When EDAT-1 applies and the STE-format con-
trol is one, the segment-frame absolute address
and the page-index and byte-index portions of
the virtual address are concatenated, left to right,
respectively, to form the absolute address which
corresponds to the virtual address.

• When EDAT-1 does not apply, or when EDAT-1
applies but the STE format control is zero, the
page-frame real address is obtained from the
page-table entry. The page-frame real address
and the byte-index portion of the virtual address
are concatenated, with the page-frame real
address forming the leftmost part. The result is
the real storage address which corresponds to
the virtual address. The real address is then sub-
jected to prefixing to form an absolute address.

All 64 bits of the real and absolute addresses are
used, regardless of whether the current PSW speci-
fies the 24-bit, 31-bit, or 64-bit addressing mode.

Recognition of Exceptions during
Translation
Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when informa-
tion contained in table entries is used for translation
and is found to be incorrect. When the storage refer-
ence for which the translation is being performed is a
store, a protection exception can be recognized
when the DAT-protection bit is on in the segment, or
page-table entry, or, when EDAT-1 applies, in any
region-table entry used in the translation. When the
instruction-execution-protection facility is enabled, a
protection exception can be recognized when the
instruction-execution-protection control is one in the
leaf-table entry used in the translation.

The information pertaining to DAT is considered to be
used when an instruction is executed with DAT on,
when the enhanced-monitor counting array is
accessed, or when COMPARE AND REPLACE DAT
TABLE ENTRY, INVALIDATE DAT TABLE ENTRY,
INVALIDATE PAGE TABLE ENTRY, LOAD PAGE-
TABLE-ENTRY ADDRESS, LOAD REAL ADDRESS,
or STORE REAL ADDRESS is executed. The infor-
mation is not considered to be used when the PSW
specifies DAT on but an I/O, external, restart, or
machine-check interruption occurs before an instruc-
tion is executed, or when the PSW specifies the wait
state. Only that information required in order to trans-
late a virtual address is considered to be in use
during the translation of that address, and, in particu-
lar, addressing exceptions that would be caused by
the use of an address-space-control element are not
recognized when that address-space-control element
is not the one actually used in the translation.

A list of translation exceptions, with the action taken
for each exception and the priority in which the
exceptions are recognized when more than one is
applicable, is provided in “Recognition of Access
Exceptions” on page 6-47.

Translation-Lookaside Buffer

To enhance performance, the dynamic-address-
translation mechanism normally is implemented such
that some of the information specified in the region
tables, segment tables, and page tables is main-
tained in a special buffer, referred to as the transla-
tion-lookaside buffer (TLB). The CPU necessarily
refers to a DAT-table entry in real or absolute storage
only for the initial access to that entry. This informa-

Storage 3-63

tion may be placed in the TLB, and subsequent
translations may be performed by using the informa-
tion in the TLB. For consistency of operation, the vir-
tual-equals-real translation specified by a real-space
designation also may be performed by using informa-
tion in the TLB. The presence of the TLB affects the
translation process to the following extent:

1. A modification of the contents of a table entry in
real or absolute storage does not necessarily
have an immediate effect, if any, on the transla-
tion.

2. A region-first-table origin, region-second-table
origin, region-third-table origin, segment-table
origin, or real-space token origin in an address-
space-control element (ASCE) may select a TLB
entry that was formed by means of an ASCE
containing a table or token origin of the same
value even when the two origins were obtained
from either (a) ASCEs having differing real-space
controls or (b) ASCEs having differing designa-
tion-type controls (when the real-space controls
are zero).

3. The comparison against the table length in an
address-space-control element may be omitted if
a TLB equivalent of the designated table is used.
In a multiple-CPU configuration, each CPU has
its own TLB.

Entries within the TLB are not explicitly addressable
by the program.

Information is not necessarily retained in the TLB
under all conditions for which such retention is per-
missible. Furthermore, information in the TLB may be
cleared under conditions additional to those for which
clearing is mandatory.

TLB Structure
The description of the logical structure of the TLB
covers the implementation by all systems operating
as defined by z/Architecture. The TLB entries are
considered as being of six types: TLB region-first-
table entries, TLB region-second-table entries, TLB
region-third-table entries (collectively called TLB
region-table entries), TLB segment-table entries, TLB
page-table entries, and TLB real-space entries. A
TLB region-table entry, TLB segment-table entry, or
TLB page-table entry is considered as containing
within it both the information obtained from the table
entry in real or absolute storage and the attributes
used to fetch this information from storage. A TLB

real-space entry is considered as containing a page-
frame real address and the real-space token origin
and region, segment, and page indexes used to form
the entry.

Any applicable TLB region-table entries, the TLB
segment-table entry, and the TLB page-table entry
may be merged into a single entry called a TLB com-
posite table entry. In a similar manner, an implemen-
tation may combine any contiguous subset of table
levels. When this happens, the intermediate table ori-
gins, offsets, and lengths need not be buffered.

An equivalent to the TLB combined region-and-seg-
ment-table entry (CRSTE), described in previous ver-
sions of the architecture, may be formed which maps
a table origin, region index, segment index, and com-
mon-segment bit to a segment-frame absolute
address or page-table origin (and other designated
fields).

The token origin in a TLB real-space entry is indistin-
guishable from the table origin in a TLB composite-,
region-, or segment-table entry.

Note: The following sections describe the conditions
under which information may be placed in the TLB,
the conditions under which information from the TLB
may be used for address translation, and how
changes to the translation tables affect the transla-
tion process.

Formation of TLB Entries
The formation of TLB region-table entries, TLB seg-
ment-table entries and TLB page-table entries from
table entries in real or absolute storage, and the
effect of any manipulation of the contents of table
entries in storage by the program, depend on
whether the entries in storage are attached to a par-
ticular CPU and on whether the entries are valid.

The attached state of a table entry denotes that the
CPU to which it is attached can attempt to use the
table entry for implicit address translation, except that
a table entry for the primary or home address space
may be attached even when the CPU does not fetch
from either of those spaces. A table entry may be
attached to more than one CPU at a time.

The valid state of a table entry denotes that the
region, segment, or page associated with the table
entry is available. An entry is valid when the region-

3-64 The z/Architecture CPU Architecture

invalid, segment-invalid, or page-invalid bit in the
entry is zero.

A region-table entry, segment-table entry, or page-
table entry may be placed in the TLB whenever the
entry is attached and valid and would not cause a
translation-specification exception if used for transla-
tion.

The region-table entries, if any, and the segment-
table entry, if any, used to translate a virtual address
are called a translation path. The highest-level table
entry in a translation path is attached when it is within
a table designated by an attaching address-space-
control element (ASCE). “Within a table” means as
determined by the origin and length fields in the
ASCE. An ASCE is an attaching ASCE when all of
the following conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that would
cause an early specification exception to be rec-
ognized.

3. The ASCE meets the requirements in a, b, c, or
d, below.

a. The ASCE is the primary ASCE in control
register 1.

b. The ASCE is the secondary ASCE in control
register 7, and any of the following require-
ments is met:

• The CPU is in the secondary-space
mode or access-register mode.

• The CPU is in the primary-space mode,
and the secondary-space control, bit 37
of control register 0, is one.

• The M4 operand of LOAD PAGE TABLE
ENTRY ADDRESS explicitly allows
access to the secondary space or explic-
itly allows access-register translation.

• Either operand’s operand-access con-
trol (OAC) of MOVE WITH OPTIONAL
SPECIFICATIONS explicitly allows
access to the secondary space or explic-
itly allows access-register translation.

For further explanation of the term “explicitly
allows,” used in the above two items, see the
programming note, below.

c. The ASCE is in either an attached and valid
ASN-second-table entry (ASTE) or a usable
ALB ASTE, and any of the following require-
ments is met:

• The CPU is in the access-register mode.

• The M4 field of LOAD PAGE TABLE
ENTRY ADDRESS explicitly allows
access-register translation to be per-
formed.

• Either operand’s OAC of MOVE WITH
OPTIONAL SPECIFICATIONS explicitly
allows access-register translation to be
performed.

See the programming note, below, for further
explanation. See “ART-Lookaside Buffer” on
page 5-64 for the meaning of the terminology
used here.

d. The ASCE is the home ASCE in control reg-
ister 13.

Regardless of whether DAT is on or off, an ASCE is
also an attaching ASCE when the current PSW con-
tains no errors that would cause an early specifica-
tion exception to be recognized, and any of the
following conditions is met:

• The home ASCE is considered to be an attach-
ing ASCE when a monitor-event counting opera-
tion occurs.

Each of the remaining table entries in a translation
path is attached when it is within the table designated
either by an attached and valid entry of the next
higher level which would not cause a translation-
specification exception if used for translation or by a
usable TLB entry of the next higher level. “Within the
table” means as determined by the origin, offset, and
length fields in the next-higher-level entry. A usable
TLB entry is explained in the next section.

A page-table entry is attached when it is within the
page table designated by either an attached and
valid segment-table entry that would not cause a
translation-specification exception if used for transla-
tion or a usable TLB segment-table entry.

A region-table entry or segment-table entry causes a
translation-specification exception if the table-type
bits, bits 60 and 61, in the entry are inconsistent with
the level at which the entry would be encountered

Storage 3-65

when using the translation path in the translation pro-
cess. A segment-table entry also causes a transla-
tion-specification exception if the private-space-
control bit is one in the address-space-control ele-
ment used to select it and the common-segment bit
is one in the entry. When EDAT-2 applies, a region-
third-table entry also causes a translation-specifica-
tion exception if the private-space-control bit is one in
the address-space-control element used to select it
and the common-region bit is one in the entry. A
page-table entry causes a translation-specification
exception if bit 52 in the entry is one. When EDAT-1
does not apply, a page-table entry also causes a
translation-specification exception if bit 55 in the
entry is one.

When the instruction-execution-protection facility is
enabled, and the instruction-execution-protection
control is one in the leaf table entry, a TLB entry or
composite TLB entry of the appropriate level may be
formed even if a protection exception is recognized.
Alternatively, when an instruction-execution-protec-
tion exception is recognized, the formation of the TLB
entry may be bypassed.

A TLB real-space entry may be formed whenever an
attaching real-space designation exists. The entry is
formed using the real-space token origin in the desig-
nation and any value of bits 0-51 of a virtual address.

Subject to the attached and valid constraints defined
above, the CPU may form TLB entries in anticipation
of future storage references or as a result of the
speculative execution of instructions. See “Over-
lapped Operation of Instruction Execution” on
page 5-114 for additional details.

Programming Note: In the above list of conditions
for an ASCE to be attaching, item 3.b and 3.c use the
term “explicitly allows …”, as explained below:

• LPTEA explicitly allows access to the secondary
space when the M4 field is 0010 binary.

• LPTEA explicitly allows ART to be performed
when the M4 field is 0001 binary.

• Either operand of MVCOS explicitly allows
access to the secondary space when bits 8-9 of
the operand’s OAC are 10 binary, bit 15 of the
OAC is one, and the secondary-space control, bit
37 of control register 0, is one.

• Either operand of MVCOS explicitly allows ART
to be performed when bits 8-9 of the operand’s
OAC are 01 binary, and bit 15 of the OAC is one.

Use of TLB Entries
The usable state of a TLB entry denotes that the
CPU can attempt to use the TLB entry for implicit
address translation. A usable TLB entry attaches the
next-lower-level table, if any, and may be usable for a
particular instance of implicit address translation.

With reference to a TLB entry, the term “current level”
refers to the level of translation table (region first
table, region second table, region third table, seg-
ment table, or page table) from which the TLB entry
was formed. Likewise, the “current-level index” is that
portion of the virtual address used as an index into
the current level of translation table.

A TLB region- or segment-table entry is in the usable
state when all of the following conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that would
cause an early specification exception to be rec-
ognized.

3. The TLB entry meets at least one of the following
requirements:

a. The common-region bit is one in a TLB
region-third-table entry.

b. The common-segment bit is one in a TLB
segment-table entry.

c. The ASCE-table-origin (ASCETO) field in the
TLB entry matches the table- or token-origin
field in an attaching address-space-control
element.

d. The TLB entry is a TLB region-second-table,
region-third-table, or segment-table entry,
and the current-level table-origin field in the
TLB entry matches one of the following:

• The table-origin field in an attaching
ASCE which directly designates the cur-
rent table level (as indicated by the R
and DT bits)

• The table-origin field in an attached
region-table entry of the next higher level

3-66 The z/Architecture CPU Architecture

• The table-origin field of the same level in
a usable TLB region-table entry of the
next higher level

A TLB region-table entry may be used for a particular
instance of implicit address translation only when the
entry is in the usable state, the current-level index
field in the TLB entry matches the corresponding
index field of the virtual address being translated,
and any of the following conditions is met:

1. The ASCE-table-origin (ASCETO) field in the
TLB entry matches the table- or token-origin field
in the address-space-control element being used
in the translation, and the portion of the virtual
address being translated which is to the left of
the current-level index matches the correspond-
ing index fields in the TLB entry.

2. The address-space-control element being used
in the translation designates a table of the cur-
rent level, and the current-level table-origin field
in the TLB entry matches the table origin in that
address-space-control element.

3. The current-level table-origin field in the TLB
entry matches the table origin of the same level
in the next-higher-level table entry or TLB entry
being used in the translation.

4. For a TLB region-third-table entry, the common-
region bit is one in the TLB entry, and the region-
first-index and region-second-index fields in the
TLB entry matches those of the virtual address
being translated.

However, when EDAT-2 applies, the TLB region-third-
table entry is not used if the common-region bit is
one in the entry and either the private-space-control
bit is one in the address-space-control element being
used in the translation or that address-space-control
element is a real-space designation. In both these
cases, the TLB entry is not used even if the ASCE-
table-origin (ASCETO) field in the entry and the
table- or token-origin field in the address-space-con-
trol element match.

A TLB segment-table entry may be used for a partic-
ular instance of implicit address translation only
when the entry is in the usable state, the segment-
index field in the TLB entry matches that of the virtual
address being translated, and any of the following
conditions is met:

1. The ASCE-table-origin (ASCETO) field in the
TLB entry matches the table- or token-origin field
in the address-space-control element being used
in the translation, and the region-index field in the
TLB entry matches that of the virtual address
being translated.

2. The segment-table-origin field in the TLB entry
matches the table-origin field in the address-
space-control element being used in the transla-
tion, and that address-space-control element is a
segment-table designation.

3. The segment-table-origin field in the TLB entry
matches the segment-table-origin field in the
region-third-table entry or TLB region-third-table
entry being used in the translation.

4. The common-segment bit is one in the TLB entry,
and the region-index field in the TLB entry
matches that of the virtual address being trans-
lated.

However, the TLB segment-table entry is not used if
the common-segment bit is one in the entry and
either the private-space-control bit is one in the
address-space-control element being used in the
translation or that address-space-control element is a
real-space designation. In both these cases, the TLB
entry is not used even if the ASCE-table-origin
(ASCETO) field in the entry and the table- or token-
origin field in the address-space-control element
match.

A TLB page-table entry may be used for a particular
instance of implicit address translation only when the
page-table-origin field in the entry matches the page-
table-origin field in the segment-table entry or TLB
segment-table entry being used in the translation and
the page-index field in the TLB page-table entry
matches the page index of the virtual address being
translated.

A TLB real-space entry may be used for implicit
address translation only when the token-origin field in
the TLB entry matches the table- or token-origin field
in the address-space-control element being used in
the translation and the region-index, segment-index,
and page-index fields in the TLB entry match those
of the virtual address being translated

The operand addresses of LOAD PAGE-TABLE-
ENTRY ADDRESS, LOAD REAL ADDRESS, and
STORE REAL ADDRESS, and accesses to the
enhanced-monitor counting array may be translated

Storage 3-67

with the use of the TLB contents whether DAT is on
or off. However, for LOAD PAGE-TABLE-ENTRY
ADDRESS, LOAD REAL ADDRESS, and STORE
REAL ADDRESS, TLB entries still are formed only if
DAT is on.

Programming Notes:

1. Although contents of a table entry may be copied
into the TLB only when the table entry is both
attached and valid, the copy may remain in the
TLB even when the table entry itself is no longer
attached or valid.

2. Except when translations are performed as a
result of enhanced-monitor counting operations,
no contents can be copied into the TLB when
DAT is off because the table entries at this time
are not attached. In particular, translation of the
operand address of LOAD PAGE-TABLE-ENTRY
ADDRESS, LOAD REAL ADDRESS and STORE
REAL ADDRESS with DAT off does not cause
entries to be placed in the TLB.

Conversely, when DAT is on, information may be
copied into the TLB from all translation-table
entries that could be used for address transla-
tion, given the current translation parameters, the
setting of the address-space-control bits, and the
contents of the access registers. The loading of
the TLB does not depend on whether the entry is
used for translation as part of the execution of
the current instruction, and such loading can
occur when the CPU is in the wait state.

3. More than one copy of contents of a table entry
may exist in the TLB. For example, some imple-
mentations may cause a copy of contents of a
valid table entry to be placed in the TLB for the
table origin in each address-space-control ele-
ment by which the entry becomes attached.

Modification of Translation Tables
When an attached and invalid table entry is made
valid and no entry usable for translation of the associ-
ated virtual address is in the TLB, the change takes
effect no later than the end of the current unit of oper-
ation. Similarly, when an unattached and valid table
entry is made attached and no usable entry for the
associated virtual address is in the TLB, the change
takes effect no later than the end of the current unit of
operation.

When a valid and attached table entry is changed,
and when, before the TLB is cleared of entries that
qualify for substitution for that entry, an attempt is
made to refer to storage by using a virtual address
requiring that entry for translation, unpredictable
results may occur, to the following extent. The use of
the new value may begin between instructions or
during the execution of an instruction, including the
instruction that caused the change. Moreover, until
the TLB is cleared of entries that qualify for substitu-
tion for that entry, the TLB may contain both the old
and the new values, and it is unpredictable whether
the old or new value is selected for a particular
access. If both old and new values of a higher-level
table entry are present in the TLB, a lower-level table
entry may be fetched by using one value and placed
in the TLB associated with the other value. If the new
value of the entry is a value that would cause an
exception, the exception may or may not cause an
interruption to occur. If an interruption does occur,
the result fields of the instruction may be changed
even though the exception would normally cause
suppression or nullification.

Entries are cleared from the TLB in accordance with
the following rules:

1. All entries are cleared from the TLB by the exe-
cution of PURGE TLB or SET PREFIX and by
CPU reset.

2. All entries may be cleared from all TLBs in the
configuration by the execution of COMPARE
AND SWAP AND PURGE by any of the CPUs in
the configuration, depending on a bit in a general
register used by the instruction.

3. Selected entries are cleared from all TLBs in the
configuration by the execution of COMPARE
AND REPLACE DAT TABLE ENTRY, INVALI-
DATE DAT TABLE ENTRY or INVALIDATE PAGE
TABLE ENTRY by any of the CPUs in the config-
uration when the local-TLB-clearing facility is not
installed, or when the facility is installed but the
instruction does not specify local clearing.

Only the entries in the TLB of the CPU executing
COMPARE AND REPLACE DAT TABLE ENTRY,
INVALIDATE DAT TABLE ENTRY or INVALIDATE
PAGE TABLE ENTRY are cleared when the
local-TLB-clearing facility is installed and the
instruction specifies local clearing.

4. Some or all TLB entries may be cleared at times
other than those required by the preceding rules.

3-68 The z/Architecture CPU Architecture

Programming Notes:

1. Entries in the TLB may continue to be used for
translation after the table entries from which they
have been formed have become unattached or
invalid. These TLB entries are not necessarily
removed unless explicitly cleared from the TLB.

A change made to an attached and valid entry or
a change made to a table entry that causes the
entry to become attached and valid is reflected in
the translation process for the next instruction, or
earlier than the next instruction, unless a TLB
entry qualifies for substitution for that table entry.
However, a change made to a table entry that
causes the entry to become unattached or invalid
is not necessarily reflected in the translation pro-
cess until the TLB is cleared of entries that qual-
ify for substitution for that table entry.

2. Exceptions associated with dynamic address
translation may be established by a pretest for
operand accessibility that is performed as part of
the initiation of instruction execution. Conse-
quently, a region-first-translation, region-second-
translation, region-third-translation, segment-
translation, or page-translation exception may be
indicated when a table entry is invalid at the start
of execution even if the instruction would have
validated the table entry it uses and the table
entry would have appeared valid if the instruction
was considered to process the operands one
byte at a time.

3. A change made to an attached table entry,
except to set the I bit to zero or to alter the right-
most byte of a page-table entry, may produce
unpredictable results if that entry is used for
translation before the TLB is cleared of all copies
of contents of that entry. The use of the new
value may begin between instructions or during
the execution of an instruction, including the
instruction that caused the change. When an
instruction, such as MOVE (MVC), makes a
change to an attached table entry, including a
change that makes the entry invalid, and subse-
quently uses the entry for translation, a changed
entry is being used without a prior clearing of the
entry from the TLB, and the associated unpre-
dictability of result values and of exception recog-
nition applies.

Manipulation of attached table entries may cause
spurious table-entry values to be recorded in a
TLB. For example, if changes are made piece-

meal, modification of a valid attached entry may
cause a partially updated entry to be recorded,
or, if an intermediate value is introduced in the
process of the change, a supposedly invalid
entry may temporarily appear valid and may be
recorded in the TLB. Such an intermediate value
may be introduced if the change is made by an
I/O operation that is retried, or if an intermediate
value is introduced during the execution of a sin-
gle instruction.

As another example, if a segment-table entry is
changed to designate a different page table and
used without clearing the TLB, the new page-
table entries may be fetched and associated with
the old page-table origin. In such a case, execu-
tion of INVALIDATE PAGE TABLE ENTRY desig-
nating the new page-table origin will not
necessarily clear the page-table entries fetched
from the new page table.

4. To facilitate the manipulation of page tables, the
INVALIDATE PAGE TABLE ENTRY instruction is
provided. This instruction sets the I bit in a page-
table entry to one and clears one or more TLBs
in the configuration of entries formed from those
table entries as follows:

a. All TLBs in the configuration are cleared
when the local-TLB-clearing facility is not
installed, or when the facility is installed and
the instruction specifies the clearing of all
TLBs (that is, the local-clearing control in the
instruction is zero).

b. Only the TLB in the CPU executing the
INVALIDATE PAGE TABLE ENTRY instruc-
tion is cleared when the local-TLB-clearing
facility is installed and the instruction speci-
fies the clearing of only the local TLB (that is,
the local-clearing control in the instruction is
one).

The following aspects of the TLB operation
should be considered when using INVALIDATE
PAGE TABLE ENTRY. (See also the program-
ming notes for INVALIDATE PAGE TABLE
ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY should
be executed before making any change to a
page-table entry other than changing the
rightmost byte; otherwise, the selective-
clearing portion of INVALIDATE PAGE

Storage 3-69

TABLE ENTRY may not clear the TLB copies
of the entry.

b. Invalidation of all the page-table entries
within a page table by means of INVALIDATE
PAGE TABLE ENTRY does not necessarily
clear the TLB of any segment-table entry
designating the page table. When it is
desired to invalidate and clear the TLB of a
region- or segment-table entry, the rules in
note 5 below must be followed.

Similarly, invalidation of all the lower-level
table entries within a region or segment table
by means of INVALIDATE DAT TABLE
ENTRY does not necessarily clear the TLB
of any higher-level table entry designating
the lower-level table. When it is desired to
invalidate and clear the TLB of a higher-level
table entry, the rules in note 5 below must be
followed.

c. When a large number of page-table entries
are to be invalidated at a single time, the
overhead involved in using COMPARE AND
SWAP AND PURGE (one that purges the
TLB), INVALIDATE DAT TABLE ENTRY, or
PURGE TLB and in following the rules in
note 5 below may be less than in issuing
INVALIDATE PAGE TABLE ENTRY for each
page-table entry.

5. Manipulation of table entries should be in accor-
dance with the following rules. If these rules are
complied with, translation is performed as if the
table entries from real or absolute storage were
always used in the translation process.

a. A valid table entry must not be changed
while it is attached to any CPU and may be
used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE
PAGE TABLE ENTRY or INVALIDATE DAT
TABLE ENTRY, (2) alter bits 56-63 of a page-
table entry, (3) make a change by means of a
COMPARE AND SWAP AND PURGE
instruction that purges the TLB, or
(4) replace an entry by using COMPARE
AND REPLACE DAT TABLE ENTRY.

b. When any change is made to an invalid table
entry in such a way as to allow intermediate
valid values to appear in the entry, each CPU
to which the entry is attached must be
caused to purge its TLB after the change

occurs and prior to the use of the entry for
implicit address translation by that CPU.

c. When any change is made to an offset or
length specified for a table, each CPU which
may have a TLB entry formed from a table
entry that no longer lies within its table must
be caused to purge its TLB after the change
occurs and prior to the use of the table for
implicit translation by that CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate valid
values, the TLB need not be cleared in a CPU
which does not have any TLB entries formed
from that entry. Similarly, when an invalid region-
table or segment-table entry is made valid with-
out introducing intermediate valid values, the
TLB need not be cleared in a CPU which does
not have any TLB entries formed from that vali-
dated entry and which does not have any TLB
entries formed from entries in a page table
attached by means of that validated entry.

The execution of PURGE TLB, COMPARE AND
SWAP AND PURGE, or SET PREFIX may have
an adverse effect on the performance of some
models. Use of these instructions should, there-
fore, be minimized in conformance with the
above rules.

6. In addition to the constraints described in pro-
gramming note 3 on page 3-68, the following
considerations are in effect when EDAT-1
applies:

a. When the STE-format and ACCF-validity
controls are both one, it is unpredictable
whether the CPU inspects the access-con-
trol bits and the fetch-protection bit in the
segment-table entry or in the storage key of
the corresponding 4 K-byte block for any
given key-controlled-protection check.
Therefore, the program should ensure that
the access-control bits and fetch-protection
bit in the segment-table entry are identical to
the respective fields in all 256 storage keys
for the constituent 4 K-byte blocks of the seg-
ment, before setting the invalid bit in the STE
to zero.

b. Prior to changing the ACCF-validity control,
the access-control bits, or the fetch-protec-
tion bit in the segment-table entry, and prior
to changing the access-control bits or fetch-
protection bit in any of the segment’s 256

3-70 The z/Architecture CPU Architecture

storage keys, the program should first set the
invalid bit to one in the segment-table entry
and clear all entries in all TLBs in the config-
uration, as described previously in this sec-
tion.

When EDAT-2 applies, the following additional
considerations are in effect:

a. When the RTTE-format control and ACCF-
validity control are both one, it is unpredict-
able whether the CPU inspects the access-
control bits and the fetch-protection bit in the
region-third-table entry or in the storage key
of the corresponding 4 K-byte block for any
given key-controlled-protection check.
Therefore, the program should ensure that
the access-control bits and fetch-protection
bit in the region-third-table entry are identical
to the respective fields in all 524,288 storage
keys for the constituent 4 K-byte blocks of
the region, before setting the invalid bit in the
RTTE to zero.

b. Prior to changing the ACCF-validity control,
the access-control bits, or the fetch-protec-
tion bit in the region-third-table entry, and
prior to changing the access-control bits or
fetch-protection bit in any of the region’s
524,288 storage keys, the program should
first set the invalid bit to one in the region-
third-table entry and clear all entries in all
TLBs in the configuration, as described pre-
viously in this section.

Failure to observe these procedures may lead to
unpredictable results, possibly including a
delayed-access-exception machine-check or fail-
ure to record a change.

Address Summary

Addresses Translated

Most addresses that are explicitly specified by the
program and are used by the CPU to refer to storage
are instruction or logical addresses and are subject
to implicit translation when DAT is on. Analogously,
the corresponding addresses indicated to the pro-
gram on an interruption or as the result of executing
an instruction are instruction or logical addresses.
The operand address of LOAD PAGE TABLE ENTRY

ADDRESS, LOAD REAL ADDRESS, and STORE
REAL ADDRESS is explicitly translated, regardless
of whether the PSW specifies DAT on or off.

Translation is not applied to quantities that are
formed from the values specified in the B and D fields
of an instruction but that are not used to address
storage. This includes operand addresses in
EXTRACT CPU ATTRIBUTE, LOAD ADDRESS,
LOAD ADDRESS EXTENDED, MONITOR CALL, the
second operand address in LOAD ADDRESS
SPACE PARAMETERS and SHIFT AND ROUND
PACKED, and the shifting instructions. This also
includes the addresses in control registers 10 and 11
designating the starting and ending locations for
PER.

Except as noted below, the addresses explicitly des-
ignating storage keys (operand addresses in INSERT
STORAGE KEY EXTENDED, PERFORM FRAME
MANAGEMENT FUNCTION, RESET REFERENCE
BIT EXTENDED, and SET STORAGE KEY
EXTENDED) are real addresses.

• For INSERT VIRTUAL STORAGE KEY, the
address designating the storage key is virtual.

• For INSERT REFERENCE BITS MULTIPLE, for
PERFORM FRAME MANAGEMENT FUNCTION
when the set-key control is 1 and the frame-size
code is 1 or 2, for RESET REFERENCE BITS
MULTIPLE, and for SET STORAGE KEY
EXTENDED when the multiple-block control is
one, the address designating the storage keys is
absolute.

• For TEST PROTECTION, the address designat-
ing the block to be tested is logical.

The addresses implicitly used by the CPU for such
sequences as interruptions are real addresses.

The addresses used by channel programs to transfer
data and to refer to CCWs, IDAWs, or MIDAWs are
absolute addresses.

The handling of storage addresses associated with
DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in
“Address Types” on page 3-4. Prefixing, when pro-
vided, is applied after the address has been trans-
lated by means of the dynamic-address-translation

Storage 3-71

facility. For a description of prefixing, see “Prefixing”
on page 3-21.

Handling of Addresses

The handling of addresses is summarized in
Figure 3-17. This figure lists all addresses that are
encountered by the program and specifies the
address type.

Virtual Addresses

• Address of storage operand for INSERT VIRTUAL STORAGE KEY
• Operand address in LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD REAL ADDRESS, and STORE REAL ADDRESS
• Addresses of storage operands for MOVE TO PRIMARY, MOVE TO SECONDARY, and MOVE WITH OPTIONAL

SPECIFICATIONS
• Address stored in the doubleword at real location 168 on a program interruption for ASCE-type, region-first-translation,

region-second-translation, region-third-translation, segment-translation, or page-translation exception
• Linkage-stack-entry address in control register 15
• Backward stack-entry address in linkage-stack header entry
• Forward-section-header address in linkage-stack trailer entry
• Trap-control-block address in dispatchable-unit-control table
• Trap-save-area address and trap-program address in trap control block
• Address of the enhanced-monitor counter array in the doubleword at real location 256

Instruction Addresses

• Instruction address in PSW
• Branch address
• Target of EXECUTE and EXECUTE RELATIVE LONG
• Address stored in the doubleword at real location 152 on a program interruption for PER
• Address placed in general register by BRANCH AND LINK, BRANCH AND SAVE, BRANCH AND SAVE AND SET

MODE, BRANCH AND STACK, BRANCH IN SUBSPACE GROUP, BRANCH RELATIVE AND SAVE, BRANCH
RELATIVE AND SAVE LONG, and PROGRAM CALL

• Address used in general register by BRANCH AND STACK
• Address placed in general register by BRANCH AND SET AUTHORITY executed in reduced-authority state
• Addresses used by BRANCH PREDICTION PRELOAD and BRANCH PREDICTION RELATIVE PRELOAD
• Aborted-transaction instruction address (in the transaction diagnostic block)

Logical Addresses

• Addresses of storage operands for instructions not otherwise specified
• Address placed in general register 1 by EDIT AND MARK and TRANSLATE AND TEST
• Addresses in general registers updated by MOVE LONG, MOVE LONG EXTENDED, COMPARE LOGICAL LONG, and

COMPARE LOGICAL LONG EXTENDED
• Addresses in general registers updated by CHECKSUM, COMPARE AND FORM CODEWORD, and UPDATE TREE
• Address for TEST PENDING INTERRUPTION when the second-operand address is nonzero
• Address of parameter list of RESUME PROGRAM
• Address of the TBEGIN-specified transaction-diagnostic block

Figure 3-17. Handling of Addresses (Part 1 of 3).

3-72 The z/Architecture CPU Architecture

Real Addresses

• Address of storage key for INSERT STORAGE KEY EXTENDED, and RESET REFERENCE BIT EXTENDED
• Address of storage key for SET STORAGE KEY EXTENDED (when the enhanced-DAT facility is not installed, or when

the enhanced-DAT facility is installed but the multiple-block control is zero)
• Address of second operand for PERFORM FRAME MANAGEMENT FUNCTION when frame-size code is 0.
• Address of storage operand for LOAD USING REAL ADDRESS, STORE USING REAL ADDRESS, and TEST BLOCK
• The translated address generated by LOAD REAL ADDRESS and STORE REAL ADDRESS
• Page-frame real address in page-table entry
• Trace-entry address in control register 12
• ASN-first-table origin in control register 14
• ASN-second-table origin in ASN-first-table entry
• Authority-table origin in ASN-second-table entry, except when used by access-register translation
• Linkage-table origin in primary ASN-second-table entry
• Entry-table origin in linkage-table entry
• Dispatchable-unit-control-table origin in control register 2
• Primary-ASN-second-table-entry origin in control register 5
• Base-ASN-second-table-entry origin and subspace-ASN-second-table-entry origin in dispatchable-unit control table
• ASN-second-table-entry address in entry-table entry and access-list entry

Permanently Assigned Real Addresses

• Address of the doubleword into which TEST PENDING INTERRUPTION stores when the second-operand address is
zero

• Addresses of PSWs, interruption codes, and the associated information used during interruption
• Addresses used for machine-check logout and save areas
• Address of STORE FACILITY LIST operand

Addresses which Are Unpredictably Real or Absolute

• Region-first-table origin, region-second-table origin, region-third-table origin, or segment-table origin in control registers
1, 7, and 13, in access-register-specified address-space-control element, and in region-first-table entry, region-second-
table entry, or region-third-table entry

• Page-table origin in segment-table entry and in INVALIDATE PAGE TABLE ENTRY
• Address of segment-table entry or page-table entry provided by LOAD REAL ADDRESS
• Address of region-first-table entry, region-second-table entry, region-third-table entry, segment-table entry, or page-table

entry provided by LOAD PAGE-TABLE-ENTRY ADDRESS
• The dispatchable-unit or primary-space access-list origin and the authority-table origin (in the ASTE designated by the

ALE used) used by access-register translation

Figure 3-17. Handling of Addresses (Part 2 of 3).

Storage 3-73

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
e

Assigned Storage Locations

Figure 3-19 on page 3-87 shows the format and
extent of the assigned locations in storage in both the
z/Architecture architectural mode and ESA/390-com-
patibility mode.

Assigned Storage Locations in the
z/Architecture Architectural Mode

0-7 . Absolute Address

IPL PSW: The first eight bytes read during a
CCW-type initial-program-loading (IPL) initial-
read operation are stored at locations 0-7. The
list-directed IPL process also stores eight bytes
at locations 0-7. The contents of these locations

are used to form the new PSW at the completion
of the IPL operation. These locations may also
be used for temporary storage at the initiation of
the IPL operation.

When the configuration-z/Architecture-architec-
tural-mode (CZAM) facility is not installed, the
IPL new PSW has the format of an ESA/390
PSW. When the CZAM facility is installed, the
IPL PSW has the short-PSW format, as shown in
Figure 4-3 on page 4-8.

8-15 (08-0F hex) Absolute Address

CCW-Type IPL CCW1: Bytes 8-15 read during a
CCW-type initial-program-loading (IPL) initial-
read operation are stored at locations 8-15. The
contents of these locations are ordinarily used as
the next CCW in an IPL CCW chain after com-
pletion of the IPL initial-read operation.

Absolute Addresses

• Prefix value
• Channel-program address in ORB
• Data address in CCW
• IDAW address in a CCW specifying indirect data addressing
• MIDAW address in a CCW specifying modified indirect data addressing
• CCW address in a CCW specifying transfer in channel
• Data address in IDAW
• Data address in MIDAW
• Measurement-block origin specified by SET CHANNEL MONITOR
• Address limit specified by SET ADDRESS LIMIT
• Addresses used by the store-status-at-address SIGNAL PROCESSOR order
• Address of storage key for INSERT REFERENCE BITS MULTIPLE and RESET REFERENCE BITS MULTIPLE
• Address of storage key for SET STORAGE KEY EXTENDED (when the enhanced-DAT facility is installed and the

multiple-block control is one)
• Address of second operand for PERFORM FRAME MANAGEMENT FUNCTION when frame-size code is 1 or 2.
• Failing-storage address stored in the doubleword at real location 248
• CCW address in SCSW

Permanently Assigned Absolute Addresses

• Addresses used for the store-status function
• Addresses of PSW and first two CCWs used for initial program loading

Addresses Not Used to Reference Storage

• PER starting address in control register 10
• PER ending address in control register 11
• Address stored in the doubleword at real location 176 for a monitor event
• Address in shift instructions and other instructions specified not to use the address to reference storage
• Real-space token origin in real-space designation

Figure 3-17. Handling of Addresses (Part 3 of 3).

3-74 The z/Architecture CPU Architecture

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
e 16-23 (10-17 hex) Absolute Address

CCW-Type IPL CCW2: Bytes 16-23 read during
a CCW-type initial-program loading (IPL) initial-
read operation are stored at locations 16-23. The
contents of these locations may be used as
another CCW in the IPL CCW chain to follow IPL
CCW1.

LD IPL Machine-Loader Execution-Space Size:
During a list-directed initial-program loading (IPL)
operation, the machine-loader execution-space
size is stored at locations 16-19.

Available for Use by Programming: Locations 16-
19 are available for use by programming after
IPL.

LD IPL System-Parameter-Block Address:
During a list-directed initial-program loading (IPL)
operation, the absolute address of the first byte
of the system-parameter block is stored at loca-
tions 20-23.

128-131 (80-83 hex) Real Address

External-Interruption Parameter: During an
external interruption due to service signal or tim-
ing alert, the parameter associated with the inter-
ruption is stored at locations 128-131.

132-133 (84-85 hex) Real Address

CPU Address: During an external interruption
due to malfunction alert, emergency signal, or
external call, the CPU address associated with
the source of the interruption is stored at loca-
tions 132-133. For all other external-interruption
conditions, zeros are stored at locations
132-133.

134-135 (86-87 hex) Real Address

External-Interruption Code: During an external
interruption, the interruption code is stored at
locations 134-135.

136-139 (88-8B hex) Real Address

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption, the instruc-
tion-length code is stored in bit positions 5 and 6
of location 137, and the interruption code is
stored at locations 138-139. Zeros are stored at
location 136 and in the remaining bit positions of
location 137.

140-143 (8C-8F hex) Real Address

Program-Interruption Identification: During a pro-
gram interruption, the instruction-length code is
stored in bit positions 5 and 6 of location 141,
and the interruption code is stored at locations
142-143. Zeros are stored at location 140 and in
the remaining bit positions of location 141.

When a transaction is aborted due to a program
interruption, the instruction-length code is
respective to the instruction at which the excep-
tion condition was detected.

144-147 (90-93 hex) Real Address

Data-Exception Code (DXC): During a program
interruption due to a data exception, the data-
exception code is stored at location 147, and
zeros are stored at locations 144-146. The DXC
is described in “Data-Exception Code (DXC)” on
page 6-17.

Vector-Exception Code (VXC): During a program
interruption due to a vector-processing excep-
tion, the vector-exception code is stored at loca-
tion 147, and zeros are stored at locations 144-
146. The VXC is described in “Vector-Exception
Code” on page 6-20.

148-149 (94-95 hex) Real Address

Monitor-Class Number: During a program inter-
ruption due to a monitor event, the monitor-class
number is stored at location 149, and zeros are
stored at location 148.

150-151 (96-97 hex) Real Address

PER Code: During a program interruption due to
a PER event the PER code is stored in bit posi-
tions 0-7 of locations 150-151, and other infor-
mation is or may be stored as described in
“Identification of Cause” on page 4-30.

152-159 (98-9F hex) Real Address

PER Address: During a program interruption due
to a PER event, the PER address is stored at
locations 152-159.

160 (A0 hex) . Real Address

Exception Access Identification (EAID): During a
program interruption due to an ASCE-type,
region-first-translation, region-second-transla-
tion, region-third-translation, segment-transla-
tion, or page-translation exception, an indication

Storage 3-75

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
eof the address space to which the exception

applies may be stored at location 160, as follows:

• If the access was a storage-operand refer-
ence that used an AR-specified address-
space-control element, the number of the
access register used is stored in bit positions
4-7 of location 160, and zeros are stored in
bit positions 0-3.

• If the CPU was in the access-register mode
and either (a) the access was an instruction
fetch, including a fetch of the target of an
execute-type instruction (EXECUTE or EXE-
CUTE RELATIVE LONG), or (b) the access
was to the second operand of the relative-
long form of COMPARE, COMPARE HALF-
WORD, COMPARE LOGICAL, COMPARE
LOGICAL HALFWORD, LOAD, LOAD HALF-
WORD, LOAD LOGICAL, LOAD LOGICAL
HALFWORD, STORE or STORE HALF-
WORD, then zeros are stored at location
160.

In either of the two cases described above, stor-
ing at location 160 occurs regardless of the value
stored in bit positions 62 and 63 of the transla-
tion-exception identification (TEID) at real loca-
tions 168-175. Otherwise, the contents of
location 160 are unpredictable.

During a program interruption due to a protection
exception, the contents of real location 160 are
dependent on both the type of suppression-on-
protection facility installed and the type of protec-
tion exception recognized. In the following cases,
the information stored in real location 160 is the
same as that described above for a page-transla-
tion exception; otherwise, the contents of real
location 160 are unpredictable.

During a program interruption due to an ALEN-
translation, ALE-sequence, ASTE-validity, ASTE-
sequence, or extended-authority exception rec-
ognized during access-register translation, the
number of the access register used is stored in
bit positions 4-7 of location 160, and zeros are
stored in bit positions 0-3. During a program
interruption due to an ASTE-validity or ASTE-
sequence exception recognized during a sub-
space-replacement operation, all zeros are
stored at location 160.

During a program interruption due to an ASTE-
instance exception recognized due to use of the
ASN-and-LX-reuse facility, (1) a one is stored in
bit position 2, and zeros are stored in bit posi-
tions 0, 1, and 3-7, if the exception was recog-
nized after primary ASN translation in
PROGRAM TRANSFER WITH INSTANCE or
PROGRAM RETURN, or (2) a one is stored in bit
position 3, and zeros are stored in bit positions
0-2 and 4-7, if the exception was recognized
after secondary ASN translation in SET SEC-
ONDARY ASN WITH INSTANCE or PROGRAM
RETURN.

161 (A1 hex) .Real Address

PER Access Identification: During a program
interruption due to a PER storage-alteration
event or PER zero-address-detection event, an
indication of the address space to which the
event applies may be stored at location 161. If
the access used an AR-specified address-space-
control element, the number of the access regis-
ter used is stored in bit positions 4-7 of location
161, and zeros are stored in bit positions 0-3.
The contents of location 161 are unpredictable if
the access did not use an AR-specified address-
space-control element.

Programming Note: The PER ASCE identifica-
tion may be inspected to determine whether the
PER storage-alteration event or PER zero-
address-detection event used an AR-specified
ASCE. See “PER ASCE Identification (AI)” on
page 4-31 for further details.

162 (A2 hex) .Real Address

Operand Access Identification: When EDAT-1
does not apply, and a program interruption due to
a page-translation exception is recognized by the
MOVE PAGE instruction, the contents of the R1

field of the instruction are stored in bit positions

Facility

Protection-Exception Conditions
Producing EAID Identical to that of a
Page-Translation Exception

SOP TEID bit 61 is one, and PSW bit 5 is one.
ESOP-1 TEID bit 61 is one.
ESOP-2 The protection code in TEID bits 56, 60,

and 61 is nonzero, and the address in
TEID bits 0-51 is virtual.

Explanation:

SOP Basic suppression-on-protection
ESOP Enhanced suppression-on-protection

(facility 1 or 2)

3-76 The z/Architecture CPU Architecture

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
e 0-3 of location 162, and the contents of the R2

field are stored in bit positions 4-7. If the page-
translation exception was recognized during the
execution of an instruction other than MOVE
PAGE, or if an ASCE-type, region-first-transla-
tion, region-second-translation, region-third-
translation, or segment-translation exception was
recognized, the contents of location 162 are
unpredictable.

When EDAT-1 applies, and a program interrup-
tion due to a region-first-translation, region-sec-
ond-translation, region-third-translation,
segment-translation, or page-translation excep-
tion is recognized by the MOVE PAGE instruc-
tion, the contents of the R1 and R2 fields are
stored in location 162 as described above. If any
of the exceptions listed in the preceding sen-
tence was recognized during the execution of an
instruction other than MOVE PAGE, or if an
ASCE-type exception was recognized, the con-
tents of location 162 are unpredictable.

163 (A3 hex) Absolute Address

Store-Status Architectural-Mode Identification:
During the execution of the store-status opera-
tion, zeros are stored in bit positions 0-6 of loca-
tion 163, and a one is stored in bit position 7. A
zero stored in bit position 7 indicates the
ESA/390 architectural mode, and a one indicates
the z/Architecture architectural mode.

163 (A3 hex) . Real Address

Machine-Check Architectural-Mode Identifica-
tion: During a machine-check interruption, zeros
are stored in bit positions 0-6 of location 163, and
a one is stored in bit position 7. A zero stored in
bit position 7 indicates the ESA/390 architectural
mode, and a one indicates the z/Architecture
architectural mode.

168-175 (A8-AF hex) Real Address

Translation-Exception Identification (TEID):
In the z/Architecture architectural mode, a trans-
lation-exception identification is stored at real
locations 168-175 for various types of program
interruptions, as described below.

Translation-Exception Identification for DAT
Exceptions: During a program interruption due
to an ASCE-type, region-first-translation, region-
second-translation, region-third-translation, seg-
ment-translation, or page-translation exception,

bits 0-51 of the virtual address causing the
exception are stored in bit positions 0-51 of loca-
tions 168-175. This address is sometimes
referred to as the translation-exception address.

When the access-exception-fetch/store-indica-
tion facility is installed, bits 52 and 53 of locations
168-175 are set as described below.

Access-Exception Fetch/Store Indication
(AEFSI): Bit positions 52-53 of locations 168-175
contain an indication of whether the exception
was due to a fetch or a store operation, as fol-
lows:

When the access-exception-fetch/store-indica-
tion facility is not installed, bits 52 and 53 of loca-
tions 168-175 are unpredictable.

The access-exception fetch/store indication is
also stored for access-list-controlled-protection
and DAT-protection exceptions. When the
enhanced suppression-on-protection facility 2 is
installed, the access-exception fetch-store indi-
cation is also stored for key-controlled-protection
and low-address-protection exceptions. When
the instruction-execution-protection facility is
installed, the access-exception fetch-store indi-
cation is also stored for instruction-execution-
protection exceptions.

For DAT-protection and access-list-controlled-
protection exceptions, the field indicates a store
operation. For instruction-execution-protection
exceptions, the field indicates a fetch operation.
For a storage-operand update reference, it is
unpredictable whether a fetch or store access is
indicated. When multiple access-exception con-
ditions exist — for one or more operands — the
condition recognized is determined based on the
discussion of “Multiple Program-Interruption
Conditions” on page 6-51.

The enhanced-suppression-on-protection facility
1 is a prerequisite for the access-exception-
fetch/store-indication and instruction-execution-
protection facilities.

Bit
52

Bit
53 Meaning

0 0 Could not determine whether the exception
was due to a fetch or store

0 1 Exception was due to a store operation
1 0 Exception was due to a fetch operation
1 1 Reserved

Storage 3-77

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
eSide-Effect-Access Indication: When the side-

effect-access facility is installed, bit position 54 of
locations 168-175 contains an indication of
whether the exception was due to a side-effect
access or not, as follows:

Bit
54 Meaning

0 Recognized exception is not due to a side-effect
access.

1 Recognized exception is due to a side-effect
access.

A side-effect access is an implied access not
directly associated with a storage operand of an
instruction, is not an instruction fetch, is not a
fetch of table information during ART or DAT, and
is not a store of a trace entry. When the side-
effect-access facility is not installed, bit 54 is
unpredictable.

The location of a side-effect access is not speci-
fied by any operand of an instruction for which
the exception is recognized. Instead, the location
was established by previous loading of the rele-
vant controls.

MOVE PAGE Indication: When EDAT-1 does not
apply, and the exception was a page-translation
exception that was recognized during the execu-
tion of MOVE PAGE, bit 61 of locations 168-175
is set to one. If the exception was a page-transla-
tion exception recognized during the execution of
an instruction other than MOVE PAGE, bit 61 is
set to zero. If the exception was an ASCE-type,
region-first-translation, region-second-transla-
tion, region-third-translation, or segment-transla-
tion exception, bit 61 of locations 168-175 is
unpredictable. See the definition of real location
162 for related information.

When EDAT-1 applies, and the exception was a
region-first-, region-second, region-third-, seg-
ment-, or page-translation exception that was
recognized during the execution of MOVE PAGE,
bit 61 of locations 168-175 is set to one. If the
exception was a region-first-, region-second,
region-third-, segment-, or page-translation
exception recognized during the execution of an
instruction other than MOVE PAGE, bit 61 is set
to zero. If the exception was an ASCE-type
exception, bit 61 of locations 168-175 is unpre-
dictable. See the definition of real location 162
for related information.

ASCE Identifier: Bits 62 and 63 of locations
168-175 are set to identify the address-space-
control element (ASCE) used in the translation,
as follows:

The CPU may avoid setting bits 62 and 63 to 01
by recognizing that the access was an instruction
fetch, that access-list-entry token 00000000 or
00000001 hex was used, or that the access-list-
entry token designated, through an access-list
entry, an ASN-second-table entry containing an
ASCE equal to the primary ASCE, secondary
ASCE, or home ASCE.

Bits 55 and 57-59 are unpredictable.

Translation-Exception Identification for Pro-
tection Exceptions: The information stored in
the TEID for a protection exception depends on
which of the three suppression-on-protection
facilities is installed, as described below.

Basic Suppression-on-Protection: When TEID bit
61 is zero, the remainder of the TEID is unpre-
dictable. When TEID bit 61 is one, the following
applies:

• TEID bit positions 0-51 contain the effective
address that caused the protection excep-
tion.

• TEID bits 52-59 are unpredictable.

• If DAT was on, the following applies:

– The effective address that caused the
protection exception is a virtual address.

– When TEID bit 60 is zero, access-list-
controlled protection is not the cause of

Bit
62

Bit
63 Meaning

0 0 Primary ASCE was used.
0 1 CPU was in the access-register mode, and

either the access was an instruction fetch or it
was a storage-operand reference that used
an AR-specified ASCE (the access was not
an implicit reference to the linkage stack).
The exception access id, real location 160,
can be examined to determine the ASCE
used. However, if the primary, secondary, or
home ASCE was used, bits 62 and 63 may
be set to 00, 10, or 11, respectively, instead
of 01.

1 0 Secondary ASCE was used.
1 1 Home ASCE was used (includes the case of

an implicit reference to the linkage stack).

3-78 The z/Architecture CPU Architecture

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
e the exception. When TEID bit 60 is one,

access-list-controlled protection is the
cause of the exception.

– TEID bit positions 62-63 contain informa-
tion identifying ASCE used in the transla-
tion, as described in “ASCE Identifier:
Bits 62 and 63 of locations 168-175 are
set to identify the address-space-control
element (ASCE) used in the translation,
as follows:” on page 3-77.

If DAT was off, TEID bits 60, 62, and 63 are
unpredictable.

Enhanced Suppression-on-Protection Facility 1:
When TEID bit 61 is zero, the exception was due
to either key-controlled protection or low-address
protection, and the remainder of the TEID is
unpredictable. When TEID bit position 61 is one,
the following applies:

• The exception is due to either access-list-
controlled protection or DAT protection, as
determined by TEID bit 60.

• TEID bit positions 0-51 contain the virtual
address that caused the protection excep-
tion.

• When the access-exception-fetch/store-indi-
cation facility is installed, TEID bit positions
52-53 contain the access-exception
fetch/store indication as described in
“Access-Exception Fetch/Store Indication
(AEFSI): Bit positions 52-53 of locations 168-
175 contain an indication of whether the
exception was due to a fetch or a store oper-
ation, as follows:” on page 3-76.

• TEID bit 54-59 are unpredictable.

•

• When TEID bit 60 is zero, DAT protection is
the cause of the exception. When TEID bit
60 is one, access-list-controlled-protection is
the cause of the exception.

• TEID bit positions 62-63 contain information
identifying ASCE used in the translation, as
described in “ASCE Identifier: Bits 62 and 63
of locations 168-175 are set to identify the
address-space-control element (ASCE) used
in the translation, as follows:” on page 3-77.

Enhanced Suppression-on-Protection Facility 2:
The contents of TEID bit positions 56, 60, and 61
form a three-bit binary code that identifies the
cause of the exception. When the protection
code is zero, the remainder of the TEID is unpre-
dictable. When the protection code is nonzero,
the following applies:

• The three-bit code identifies the cause of the
protection exception, as follows:

• Except as noted below, TEID bit positions
0-51 contain the effective address that
caused the protection exception. For access-
list-controlled-protection, DAT-protection, and
instruction-execution-protection exceptions,
the effective address is virtual. The effective
address may be virtual for key-controlled-
protection and low-address-protection
exceptions.

For key-controlled-protection or instruction-
execution-protection exceptions recognized
when fetching an instruction, it is unpredict-
able whether bit positions 0-51 of the TEID
contain the address of the instruction or
zeros.

• TEID bits 52-53 are the access-exception
fetch/store indication as described in
“Access-Exception Fetch/Store Indication
(AEFSI): Bit positions 52-53 of locations 168-
175 contain an indication of whether the
exception was due to a fetch or a store oper-
ation, as follows:” on page 3-76.

• TEID bit 54 is the side-effect-access indica-
tion, as described in “Side-Effect-Access
Indication: When the side-effect-access facil-
ity is installed, bit position 54 of locations
168-175 contains an indication of whether
the exception was due to a side-effect
access or not, as follows:” on page 3-77.

• TEID bit 55 is unpredictable.

Code Meaning
000 Key-controlled or low-address

protection
001 DAT protection
010 Key-controlled protection
011 Access-list-controlled protection
100 Low-address protection
101 Instruction-execution-protection (when

the instruction-execution-protection
facility is installed.

Storage 3-79

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
e• TEID bits 57-59 are unpredictable.

• When DAT is on, TEID bit positions 62-63
contain information identifying ASCE used in
the translation, as described in “ASCE Identi-
fier: Bits 62 and 63 of locations 168-175 are
set to identify the address-space-control ele-
ment (ASCE) used in the translation, as fol-
lows:” on page 3-77. When DAT is off, or
when DAT is on but the effective address is
not virtual, TEID bits 62-63 are unpredict-
able.

Translation-Exception Identification for ASN-
Translation Exceptions: During a program
interruption due to an AFX-translation, ASX-
translation, primary-authority, or secondary-
authority exception, the ASN being translated is
stored at locations 174 and 175, zeros are stored
at locations 172 and 173, and the contents of
locations 168-171 remain unchanged.

Translation-Exception Identification for
Space-Switch Events: During a program
interruption due to a space-switch event, an iden-
tification of the old instruction space is stored at
locations 174 and 175, the old instruction-space
space-switch-event-control bit is placed in bit
position 0 and zeros are placed in bit positions
1-15 of locations 172 and 173, and the contents
of locations 168-171 remain unchanged. The
identification and bit stored are as follows:

• If the CPU was in the primary-space, sec-
ondary-space, or access-register mode
before the operation, the old PASN, bits
48-63 of control register 4 before the opera-
tion, is stored at locations 174 and 175, and
the old primary space-switch-event-control
bit, bit 57 of control register 1 before the
operation, is placed in bit position 0 of loca-
tions 172 and 173.

• If the CPU was in the home-space mode
before the operation, zeros are stored at
locations 174 and 175, and the home space-
switch-event-control bit, bit 57 of control reg-
ister 13, is placed in bit position 0 of loca-
tions 172 and 173.

Translation-Exception Identification During
PC-Number Translation: During a program
interruption due to an EX-translation or LX-trans-
lation exception recognized by PROGRAM CALL
when ASN-and-LX reuse is not installed or is not

enabled by a one value of the ASN-and-LX-reuse
control in control register 0, bits 44-63 of the sec-
ond-operand address used by PROGRAM CALL
(a 20-bit PC number), with 12 zeros appended
on the left, are stored at locations 172-175, and
the contents of locations 168-171 remain
unchanged.

During a program interruption due to an EX-
translation, LFX-translation, LSTE-sequence, or
LSX-translation exception recognized by PRO-
GRAM CALL when ASN-and-LX reuse is
enabled and bit 44 of the second-operand
address used by PROGRAM CALL is zero, bits
44-63 of the second-operand address (a 20-bit
PC number), with 12 zeros appended on the left,
are stored at locations 172-175. If bit 44 of the
second-operand address is one, bits 32-63 of the
address (a 32-bit PC number) are stored at loca-
tions 172-175. In either of these cases, the con-
tents of locations 168-171 remain unchanged.

176-183 (B0-B7 hex).Real Address

Monitor Code: During a program interruption due
to a monitor event, the monitor code is stored at
locations 176-183.

184-187 (B8-BB hex) Real Address

Subsystem-Identification Word: During an I/O
interruption, the subsystem-identification word is
stored at locations 184-187.

188-191 (BC-BF hex)Real Address

I/O-Interruption Parameter: During an I/O inter-
ruption, the interruption parameter from the
associated subchannel is stored at locations
188-191.

192-195 (C0-C3 hex) Real Address

I/O-Interruption-Identification Word: During an
I/O interruption, the I/O-interruption-identification
word, which further identifies the source of the
I/O interruption, is stored at locations 192-195.

200-203 (C8-CB hex)Real Address

STFL Facility List: The STORE FACILITY LIST
instruction stores information at real locations
200-203. The information describes which facili-
ties are provided by the configuration. The infor-
mation stored is identical in format to the first 32
bits stored by the STORE FACILITY LIST
EXTENDED instruction. Figure 4-36, “Assigned

3-80 The z/Architecture CPU Architecture

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
e Facility Bits” on page 4-99 shows the meanings

of the assigned facility bits.

232-239 (E8-EF hex) Real Address

Machine-Check-Interruption Code: During a
machine-check interruption, the machine-check-
interruption code is stored at locations 232-239.

244-247 (F4-F7 hex) Real Address

External-Damage Code: During a machine-
check interruption due to certain external-dam-
age conditions, depending on the model, an
external-damage code may be stored at loca-
tions 244-247.

248-255 (F8-FF hex) Real Address

Failing-Storage Address: During a machine-
check interruption, a 64-bit failing-storage
address may be stored at locations 248-255.

256-263 (100-107 hex) Real Address

Enhanced-Monitor Counter-Array Origin: Bits
0-60 of the doubleword at location 256,
appended on the right with three binary zeros,
form the 64-bit virtual address of the enhanced-
monitor counter array in the home address
space.

During the execution of the MONITOR CALL
instruction when the enhanced-monitor facility is
installed, both the monitor-mask bit and
enhanced-monitor-mask bit in control register 8
corresponding to the monitor class are ones, and
the monitor code derived from the first-operand
address is less than the enhanced-monitor
counter-array size in location 264, then the
enhanced-monitor counter designated by the
first-operand location is incremented by one.

Programming Note: It is recommended that the
enhanced-monitor counter array be allocated on
a cache-line boundary of the CPU’s first-level
data cache. The cache line size may be deter-
mined by the EXTRACT CPU ATTRIBUTES
(ECAG) instruction.

264-267 (108-10B hex) Real Address

Enhanced-Monitor Counter-Array Size: The word
at location 264 contains a 32-bit unsigned binary
value that is referenced during the execution of
the MONITOR CALL instruction when the
enhanced-monitor facility is installed, and both

the monitor-mask bit and enhanced-monitor-
mask bit in control register 8 corresponding to
the monitor class are both ones. In this case, if
the monitor code derived from the first-operand
address is less than the enhanced-monitor
counter-array size in location 264, then the
counter designated by the first-operand location
is incremented by one; otherwise, the enhanced-
monitor exception counter at location 268 is
incremented.

268-271 (10C-10F hex) Real Address

Enhanced-Monitor Exception Count: The word at
location 268 contains a 32-bit unsigned binary
value that may be updated during the execution
of the MONITOR CALL instruction when the
enhanced-monitor facility is installed, and the
monitor-class bit and corresponding enhanced-
monitor-class bit in control register 8 are both
ones. The word is updated in either of the follow-
ing two cases:

• The monitor code derived from the first-oper-
and address is greater than or equal to than
the enhanced-monitor counter-array size in
location 264.

• The counter designated by the first-operand
location is inaccessible.

272-279 (110-117 hex) Real Address

Breaking-Event Address: If the PER-3 facility is
installed, then, during a program interruption, the
contents of the breaking-event-address register
are stored in locations 272-279. If the breaking-
event-address-recording facility is not installed,
this location remains unchanged.

288-303 (120-12F hex) Real Address

Restart Old PSW: The current PSW is stored as
the old PSW at locations 288-303 during a
restart interruption.

304-319 (130-13F hex) Real Address

External Old PSW: The current PSW is stored as
the old PSW at locations 304-319 during an
external interruption.

320-335 (140-14F hex) Real Address

Supervisor-Call Old PSW: The current PSW is
stored as the old PSW at locations 320-335
during a supervisor-call interruption.

Storage 3-81

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
e336-351 (150-15F hex) Real Address

Program Old PSW: The current PSW is stored as
the old PSW at locations 336-351 during a pro-
gram interruption.

352-367 (160-16F hex) Real Address

Machine-Check Old PSW: The current PSW is
stored as the old PSW at locations 352-367
during a machine-check interruption.

368-383 (170-17F hex) Real Address

Input/Output Old PSW: The current PSW is
stored as the old PSW at locations 368-383
during an I/O interruption.

416-431 (1A0-1AF hex) Real Address

Restart New PSW: The new PSW is fetched from
locations 416-431 during a restart interruption.

432-447 (1B0-1BF hex) Real Address

External New PSW: The new PSW is fetched
from locations 432-447 during an external inter-
ruption.

448-463 (1C0-1CF hex). Real Address

Supervisor-Call New PSW: The new PSW is
fetched from locations 448-463 during a supervi-
sor-call interruption.

464-479 (1D0-1DF hex). Real Address

Program New PSW: The new PSW is fetched
from locations 464-479 during a program inter-
ruption.

480-495 (1E0-1EF hex) Real Address

Machine-Check New PSW: The new PSW is
fetched from locations 480-495 during a
machine-check interruption.

496-511 (1F0-1FF hex) Real Address

Input/Output New PSW: The new PSW is fetched
from locations 496-511 during an I/O interrup-
tion.

4528-4535 (11B0-11B7 hex) Real Address

Machine-Check-Extended-Save-Area Designa-
tion (MCESAD): During a machine check inter-
ruption, additional information may be stored at
the absolute storage location designated by the
doubleword at locations 4528-4535. The leftmost

bits of the doubleword, called the machine-
check-extended-save-area origin (MCESAO),
appended on the right with binary zeros, forms
the address of the area.

When the guarded-storage facility is not
installed, bit positions 0-53 of the doubleword
form the MCESAO. The MCESAO, with 10 zeros
appended on the right, is used as the absolute
address of a 1,024-byte extended-save area. Bit
positions 54-63 of the doubleword are reserved
and should contain zeros.

When the guarded-storage facility is installed, bit
positions 60-63 of the doubleword contain a
length characteristic (LC) that specifies the size
and alignment of the extended-save area as a
power of two; an LC value of zero is treated as
10. Bits 0 through 63-LC of the doubleword form
the MCESAO. The MCESAO, with LC zeros
appended on the right, is used as the absolute
address of a 2LC-byte extended-save area on a
2LC-byte boundary. Bit positions 64-LC through
59 of the doubleword are reserved and should
contain zeros. Figure 3-18 shows the length-
characteristic values and corresponding
extended-save-area attributes. If a reserved LC
value is specified, a machine-check extended
save area is not stored.

When the value of the MCESAO is zero, storing
is not performed in the extended save area.

The format of the machine-check extended save
area is described in the section “Machine-Check
Extended Save Area (MCESA)” on page 11-24.

LC
MCESA Attributes

MCESAO Alignment & Size
0* Bits 0-53 1,024 bytes

1-9† N/A 0 bytes
10 Bits 0-53 1,024 bytes
11 Bits 0-52 2,048 bytes
12 Bits 0-51 4,096 bytes

13-15† N/A 0 bytes

Explanation:

* An LC value of zero is treated as if a value of
10 was specified.

† LC values 1-9 and 13-15 are reserved.
N/A Not applicable; for reserved values, the

MCESAO is treated as if all bits are zeros.

Figure 3-18. Machine-Check Extended-Save-Area
Attributes based on Length Characteristic

3-82 The z/Architecture CPU Architecture

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
z/

A
rc

h
it

ec
tu

re
 A

rc
h

it
ec

tu
ra

l M
o

d
e

4544-4607 (11C0-11FF hex) Real Address

Available for Programming: Locations 4544-4607
are available for use by programming.

4608-4735 (1200-127F hex) Absolute Address

Store-Status Floating-Point-Register Save Area:
During the execution of the store-status opera-
tion, the contents of the floating-point registers
are stored at locations 4608-4735.

4608-4735 (1200-127F hex) Real Address

Machine-Check Floating-Point-Register Save
Area: During a machine-check interruption, the
contents of the floating-point registers are stored
at locations 4608-4735.

4736-4863 (1280-12FF hex) Absolute Address

Store-Status General-Register Save Area:
During the execution of the store-status opera-
tion, the contents of the general registers are
stored at locations 4736-4863.

4736-4863 (1280-12FF hex) Real Address

Machine-Check General-Register Save Area:
During a machine-check interruption, the con-
tents of the general registers are stored at loca-
tions 4736-4863.

4864-4879 (1300-130F hex) Absolute Address

Store-Status PSW Save Area: During the execu-
tion of the store-status operation, the contents of
the current PSW are stored at locations
4864-4879.

4864-4879 (1300-130F hex) Real Address

Fixed-Logout Area: Depending on the model,
logout information may be stored at locations
4864-4879 during a machine-check interruption.

4880-4887 (1310-1317 hex) Real Address

Assigned to IBM internal use.

4888-4891 (1318-131B hex) Absolute Address

Store-Status Prefix Save Area: During the execu-
tion of the store-status operation, the contents of
the prefix register are stored at locations
4888-4891.

4892-4895 (131C-131F hex) Absolute Address

Store-Status Floating-Point-Control-Register
Save Area: During the execution of the store-sta-
tus operation, the contents of the floating-point
control register are stored at locations
4892-4895.

4892-4895 (131C-131F hex) Real Address

Machine-Check Floating-Point-Control-Register
Save Area: During a machine-check interruption,
the contents of the floating-point control register
are stored at locations 4892-4895.

4900-4903 (1324-1327 hex) Absolute Address

Store-Status TOD-Programmable-Register Save
Area: During the execution of the store-status
operation, the contents of the TOD programma-
ble register are stored at locations 4900-4903.

4900-4903 (1324-1327 hex) Real Address

Machine-Check TOD-Programmable-Register
Save Area: During a machine-check interruption,
the contents of the TOD programmable register
are stored at locations 4900-4903.

4904-4911 (1328-132F hex) Absolute Address

Store-Status CPU-Timer Save Area: During the
execution of the store-status operation, the con-
tents of the CPU timer are stored at locations
4904-4911.

4904-4911 (1328-132F hex) Real Address

Machine-Check CPU-Timer Save Area: During a
machine-check interruption, the contents of the
CPU timer are stored at locations 4904-4911.

4913-4919 (1331-1337 hex) Absolute Address

Store-Status Clock-Comparator Save Area:
During the execution of the store-status opera-
tion, the contents of bit positions 0-55 of the
clock comparator are stored at locations
4913-4919. When this store occurs, zeros are
stored at location 4912.

4913-4919 (1331-1337 hex) Real Address

Machine-Check Clock-Comparator Save Area:
During a machine-check interruption, the con-
tents of bit positions 0-55 of the clock comparator
are stored at locations 4913-4919. When this
store occurs, zeros are stored at location 4912.

Storage 3-83

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
E

S
A

/3
90

-C
o

m
p

at
ib

ili
ty

 M
o

d
e4928-4991 (1340-137F hex) Absolute Address

Store-Status Access-Register Save Area: During
the execution of the store-status operation, the
contents of the access registers are stored at
locations 4928-4991.

4928-4991 (1340-137F hex) Real Address

Machine-Check Access-Register Save Area:
During a machine-check interruption, the con-
tents of the access registers are stored at loca-
tions 4928-4991.

4992-5119 (1380-13FF hex) Absolute Address

Store-Status Control-Register Save Area: During
the execution of the store-status operation, the
contents of the control registers are stored at
locations 4992-5119.

4992-5119 (1380-13FF hex) Real Address

Machine-Check Control-Register Save Area:
During a machine-check interruption, the con-
tents of the control registers are stored at loca-
tions 4992-5119.

6144-6399 (1800-18FF hex) Real Address

Program-Interruption Transaction Diagnostic
Block: During a program interruption while the
CPU is in the transactional-execution mode, the
transaction-diagnostic block is stored at locations
6,144-6,399. The format of the transaction-diag-
nostic block is described in “Transaction Diag-
nostic Block (TDB)” on page 5-93.

Assigned Storage Locations in the
ESA/390-Compatibility Mode

0-7 . Absolute Address

IPL PSW: The first eight bytes read during a
CCW-type initial-program-loading (IPL) initial-
read operation are stored at locations 0-7. The
list-directed IPL process also stores eight bytes
at locations 0-7. The contents of these locations
are used to form the new PSW at the completion
of the IPL operation. These locations may also
be used for temporary storage at the initiation of
the IPL operation.

The IPL PSW has the short-PSW format, as
shown in Figure 4-3 on page 4-8.

0-7 .Real Address

Restart New PSW: The new PSW is fetched from
locations 0-7 during a restart interruption. The
restart new PSW has the short-PSW format as
shown in Figure 4-3 on page 4-8.

8-15 (08-0F hex) Absolute Address

CCW-Type IPL CCW1: Bytes 8-15 read during a
CCW-type initial-program-loading (IPL) initial-
read operation are stored at locations 8-15. The
contents of these locations are ordinarily used as
the next CCW in an IPL CCW chain after com-
pletion of the IPL initial-read operation.

8-15 (08-0F hex)Real Address

Restart Old PSW: The current PSW is stored as
the old PSW at locations 288-303 during a
restart interruption. The restart old PSW has the
short-PSW format as shown in Figure 4-3 on
page 4-8.

16-23 (10-17 hex) Absolute Address

CCW-Type IPL CCW2: Bytes 16-23 read during
a CCW-type initial-program loading (IPL) initial-
read operation are stored at locations 16-23. The
contents of these locations may be used as
another CCW in the IPL CCW chain to follow IPL
CCW1.

LD IPL Machine-Loader Execution-Space Size:
During a list-directed initial-program loading (IPL)
operation, the machine-loader execution-space
size is stored at locations 16-19.

Available for Use by Programming: Locations 16-
19 are available for use by programming after
IPL.

LD IPL System-Parameter-Block Address:
During a list-directed initial-program loading (IPL)
operation, the absolute address of the first byte
of the system-parameter block is stored at loca-
tions 20-23.

24-31 (18-1F hex)Real Address

External Old PSW: The current PSW is stored as
the old PSW at locations 24-31 during an exter-
nal interruption. The external old PSW has the
short-PSW format, as shown in Figure 4-3 on
page 4-8.

3-84 The z/Architecture CPU Architecture

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
E

S
A

/3
90

-C
o

m
p

at
ib

ili
ty

 M
o

d
e 32-39 (20-27 hex) Real Address

Supervisor-Call Old PSW: The current PSW is
stored as the old PSW at locations 32-39 during
a supervisor-call interruption. The supervisor-call
old PSW has the short-PSW format, as shown in
Figure 4-3 on page 4-8.

40-47 (28-2F hex) Real Address

Program Old PSW: The current PSW is stored as
the old PSW at locations 40-47 during a program
interruption. The program old PSW has the
short-PSW format, as shown in Figure 4-3 on
page 4-8.

48-55 (30-37 hex) Real Address

Machine-Check Old PSW: The current PSW is
stored as the old PSW at locations 48-55 during
a machine-check interruption. The machine-
check old PSW has the short-PSW format, as
shown in Figure 4-3 on page 4-8.

56-63 (38-3F hex) Real Address

Input/Output Old PSW: The current PSW is
stored as the old PSW at locations 56-63 during
an input/output interruption. The input/output old
PSW has the short-PSW format, as shown in
Figure 4-3 on page 4-8.

88-95 (58-5F hex) Real Address

External New PSW: The new PSW is fetched
from locations 88-95 during an external interrup-
tion. The external new PSW has the short-PSW
format, as shown in Figure 4-3 on page 4-8.

96-103 (60-67 hex) Real Address

Supervisor-Call New PSW: The new PSW is
fetched from locations 96-103 during a supervi-
sor-call interruption. The supervisor-call new
PSW has the short-PSW format, as shown in
Figure 4-3 on page 4-8.

104-111 (68-6F hex) Real Address

Program New PSW: The new PSW is fetched
from locations 104-111 during a program inter-
ruption. The program new PSW has the short-
PSW format, as shown in Figure 4-3 on
page 4-8.

112-119 (70-77 hex) Real Address

Machine-Check New PSW: The new PSW is
fetched from locations 112-119 during a

machine-check interruption. The machine-check
new PSW has the short-PSW format, as shown
in Figure 4-3 on page 4-8.

120-127 (78-7F hex) Real Address

Input/Output New PSW: The new PSW is fetched
from locations 120-127 during an input/output
interruption. The input/output new PSW has the
short-PSW format, as shown in Figure 4-3 on
page 4-8.

128-131 (80-83 hex) Real Address

External-Interruption Parameter: During an
external interruption due to service signal or tim-
ing alert, the parameter associated with the inter-
ruption is stored at locations 128-131.

132-133 (84-85 hex) Real Address

CPU Address: During an external interruption
due to malfunction alert, emergency signal, or
external call, the CPU address associated with
the source of the interruption is stored at loca-
tions 132-133. For all other external-interruption
conditions, zeros are stored at locations
132-133.

134-135 (86-87 hex) Real Address

External-Interruption Code: During an external
interruption, the interruption code is stored at
locations 134-135.

136-139 (88-8B hex) Real Address

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption, the instruc-
tion-length code is stored in bit positions 5 and 6
of location 137, and the interruption code is
stored at locations 138-139. Zeros are stored at
location 136 and in the remaining bit positions of
location 137.

140-143 (8C-8F hex) Real Address

Program-Interruption Identification: During a pro-
gram interruption, the instruction-length code is
stored in bit positions 5 and 6 of location 141,
and the interruption code is stored at locations
142-143. Zeros are stored at location 140 and in
the remaining bit positions of location 141.

144-147 (90-93 hex) Real Address

Data-Exception Code (DXC): During a program
interruption due to a data exception, the data-

Storage 3-85

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
E

S
A

/3
90

-C
o

m
p

at
ib

ili
ty

 M
o

d
eexception code is stored at location 147, and

zeros are stored at locations 144-146. The DXC
is described in “Data-Exception Code (DXC)” on
page 6-17.

Protection-Exception Identification (PEID): Infor-
mation may stored at real locations 144-147
during a program interruption due to a protection
exception. The information has the same format
as bits 32-63 of the TEID stored at real locations
172-175 in z/Architecture architectural mode.
See “Translation-Exception Identification (TEID)”
on page 3-76 for details. See Reference [12.] on
page xxx for further details on locations 144-147
in ESA/XC virtual machines.

148-149 (94-95 hex) Real Address

Monitor-Class Number: During a program inter-
ruption due to a monitor event, the monitor-class
number is stored at location 149, and zeros are
stored at location 148.

150-151 (96-97 hex) Real Address

PER Code: During a program interruption due to
a PER event the PER code is stored in bit posi-
tions 0-7 of locations 150-151, and other infor-
mation is or may be stored as described in
“Identification of Cause” on page 4-30.

152-155 (98-9B hex) Real Address

PER Address: During a program interruption due
to a PER event, the PER address is stored at
locations 152-155.

156-159 (9C-9F hex) Real Address

Monitor Code: During a program interruption due
to a monitor event, the monitor code is stored at
locations 156-159.

160 (A0 hex) . Real Address

Exception Access Identification (EAID): During a
program interruption due to a protection excep-
tion, information is stored at location 160 as
described in “Suppression on Protection” on
page 3-15.

In ESA/XC virtual machines under z/VM, during
a program interruption due to an ALEN-transla-
tion or addressing-capability exception, if the
ALET being translated was obtained from an
access register, the number of the access regis-
ter used is stored in bit positions 4-7 of location
160, and zeros are stored in bit positions 0-3. If

the ALET being translated was not obtained from
an access register, then zeros are stored at loca-
tion 160. See Reference [12.] on page xxx for
details.

161 (A1 hex) .Real Address

PER Access Identification: During a program
interruption due to a PER storage-alteration
event or PER zero-address-detection event, the
contents of location 161 are unpredictable.

163 (A3 hex) Absolute Address

Store-Status Architectural-Mode Identification:
During the execution of the store-status opera-
tion, zeros are stored in location 163.

163 (A3 hex) .Real Address

Machine-Check Architectural-Mode Identifica-
tion: During a machine-check interruption, zeros
are stored in location 163.

168-171 (A8-AB hex) Real Address

Exception ALET: In ESA/XC virtual machines
under z/VM, during a program interruption due to
an ALEN-translation or addressing-capability
exception, the access-list-entry token used in the
translation is stored at locations 168-171. See
Reference [12.] on page xxx for details.

184-187 (B8-BB hex) Real Address

Subsystem-Identification Word: During an I/O
interruption, the subsystem-identification word is
stored at locations 184-187.

188-191 (BC-BF hex)Real Address

I/O-Interruption Parameter: During an I/O inter-
ruption, the interruption parameter from the
associated subchannel is stored at locations
188-191.

192-195 (C0-C3 hex) Real Address

I/O-Interruption-Identification Word: During an
I/O interruption, the I/O-interruption-identification
word, which further identifies the source of the
I/O interruption, is stored at locations 192-195.

200-203 (C8-CB hex)Real Address

STFL Facility List: The STORE FACILITY LIST
instruction stores information at real locations

3-86 The z/Architecture CPU Architecture

A
ss

ig
n

ed
 S

to
ra

g
e

L
o

ca
ti

o
n

s
in

 t
h

e
E

S
A

/3
90

-C
o

m
p

at
ib

ili
ty

 M
o

d
e 200-203. The information describes which facili-

ties are provided by the configuration. The infor-
mation stored is identical in format to the first 32
bits stored by the STORE FACILITY LIST
EXTENDED instruction. Figure 4-36, “Assigned
Facility Bits” on page 4-99 shows the meanings
of the assigned facility bits.

212-215 (D4-D7 hex)Absolute Address

Store-Status Extended-Save-Area Address:
During the execution of the store-status opera-
tion when the extended-save-area control, bit 34
of control register 14, is one, bits 1-19 of loca-
tions 212-215, with 33 zeros appended on the
left and 12 zeros appended on the right, are used
as the absolute address of a 4,096-byte
extended save area. Bits 0 and 20-31 of the loca-
tions are reserved and should be zeros. They are
ignored when forming the address of the
extended save area. When bits 1-19 are all
zeros, storing is not performed in the extended
save area.

212-215 (D4-D7 hex) Real Address

Machine-Check Extended-Save-Area Address:
During a machine-check interruption when the
extended-save-area control, bit 34 of control reg-
ister 14, is one, bits 1-19 of locations 212-215,
with 33 zeros appended on the left and 12 zeros
appended on the right, are used as the absolute
address of a 4,096-byte extended save area. Bits
0 and 20-31 of the locations are reserved and
should be zeros. They are ignored when forming
the address of the extended save area. When
bits 1-19 are all zeros, storing is not performed in
the extended save area.

216-223 (D8-DF hex)Absolute Address

Store-Status CPU-Timer Save Area: During the
execution of the store-status operation, the con-
tents of the CPU timer are stored at locations
216-223.

216-223 (D8-DF hex) Real Address

Machine-Check CPU-Timer Save Area: During a
machine-check interruption, the contents of the
CPU timer are stored at locations 216-223.

224-231 (E0-E7 hex)Absolute Address

Store-Status Clock-Comparator Save Area:
During the execution of the store-status opera-

tion, the contents of the clock comparator are
stored at locations 224-231.

224-231 (E0-E7 hex) Real Address

Machine-Check Clock-Comparator Save Area:
During a machine-check interruption, the con-
tents of the clock comparator are stored at loca-
tions 224-231.

232-239 (E8-EF hex). Real Address

Machine-Check-Interruption Code: During a
machine-check interruption, the machine-check-
interruption code is stored at locations 232-239.

244-247 (F4-F7 hex) Real Address

External-Damage Code: During a machine-
check interruption due to certain external-dam-
age conditions, depending on the model, an
external-damage code may be stored at loca-
tions 244-247.

248-251 (F8-FB hex) Real Address

Failing-Storage Address: During a machine-
check interruption, a 31-bit failing-storage
address may be stored at locations 248-251.

256-263 (100-107 hex) Absolute Address

Store-Status PSW Save Area: During the execu-
tion of the store-status operation, the contents of
the current PSW are stored at locations 256-263.
The PSW has the short-PSW format, as shown
in Figure 4-3 on page 4-8.

256-271 (100-10F hex) Real Address

Fixed-Logout Area: During a machine-check
interruption, logout information may be stored at
locations 256-271.

In ESA/XC virtual machines, a failing-storage
address-space-identification token (ASIT) may
be stored in locations 256-263 during a machine-
check interruption. A failing-storage ASIT is
stored whenever a failing-storage address is
stored at locations 248-251. See Reference [12.]
on page xxx for details.

264-267 (108-10B hex) Absolute Address

Store-Status Prefix Save Area: During the execu-
tion of the store-status operation, the contents of

Storage 3-87

the prefix register are stored at locations 264-
267.

288-351 (120-15F hex) Absolute Address

Store-Status Access-Register Save Area: During
the execution of the store-status operation, the
contents of the access registers are stored at
locations 288-351.

288-351 (120-15F hex) Real Address

Machine-Check Access-Register Save Area:
During a machine-check interruption, the con-
tents of the access registers are stored at loca-
tions 288-351.

352-367 (160-17F hex) Absolute Address

Store-Status Floating-Point-Register Save Area:
During the execution of the store-status opera-
tion, the contents of floating-point registers 0, 2,
4, and 6 are stored at locations 352-367.

352-367 (160-17F hex) Real Address

Machine-Check Floating-Point-Register Save
Area: During a machine-check interruption, the
contents of floating-point registers 0, 2, 4, and 6
are stored at locations 352-367.

384-447 (180-1BF hex) Absolute Address

Store-Status General-Register Save Area:
During the execution of the store-status opera-
tion, the contents of the general registers are
stored at locations 384-447.

384-447 (180-1BF hex) Real Address

Machine-Check General-Register Save Area:
During a machine-check interruption, the con-
tents of the general registers are stored at loca-
tions 384-447.

448-511 (1C0-1FF hex) Absolute Address

Store-Status Control-Register Save Area: During
the execution of the store-status operation, the

contents of the control registers are stored at
locations 448-511.

448-511 (1C0-1FF hex) Real Address

Machine-Check Control-Register Save Area:
During a machine-check interruption, the con-
tents of the control registers are stored at loca-
tions 448-511.

Programming Notes:

1. When the CPU is in the access-register mode,
some instructions, such as MVCL, which
address operands in more than one address
space, may cause a storage-alteration PER
event in one address space concurrently with a
region-translation, segment-translation, or page-
translation exception in another address space.
The access registers used to cause these condi-
tions in such a case are different. In order to
identify both access registers, two access identi-
fications, namely the exception access identifica-
tion and the PER access identification, are
provided.

2. The store-status and machine-check architec-
tural-mode identifications at absolute and real
locations 163, respectively, indicate that the CPU
is in the z/Architecture architectural mode. When
z/Architecture is installed on the CPU but the
CPU is in the ESA/390 or ESA/390-compatibility
mode, the store-status and machine-check-inter-
ruption operations store zero at location 163.

3. Figure 3-19 on page 3-87 illustrates assigned
storage locations 0-511 in both the z/Architecture
architectural mode and the ESA/390-compatibil-
ity mode. Figure 3-20 on page 3-90 illustrates
assigned storage locations 512-8191 in the
z/Architecture architectural mode. Locations
marked [A] are absolute; all other locations are
real.

Hex Dec z/Architecture Fields ESA/390-Compatibility-Mode Fields
0 0

Initial-Program-Loading PSW (when CZAM installed) [A]
Initial-Program-Loading PSW [A];

Restart New PSW4 4

8 8
CCW-Type IPL CCW1 (when CZAM installed) [A]

CCW-Type IPL CCW1 [A];
Restart Old PSWC 12

Figure 3-19. Assigned Storage Locations 0–511 in the z/Architecture Architectural Mode and ESA/390-Compatibility Mode
(Part 1 of 4)

3-88 The z/Architecture CPU Architecture

10 16 CCW-Type IPL CCW2, bytes 0-3 (when CZAM installed) [A];
Machine-loader execution-space size [A];

Available for use by programming after IPL

CCW-Type IPL CCW2, bytes 0-3 [A];
Machine-loader execution-space size [A];

Available for use by programming after IPL

14 20 CCW-Type IPL CCW2, bytes 4-7 (when CZAM installed) [A];
LD-IPL System-IPL Parameter-List Pointer [A]

CCW-Type IPL CCW2, bytes 4-7 [A];
LD-IPD System-IPL Parameter-List Pointer [A]

18 24
External Old PSW

1C 28

20 32
Supervisor-Call Old PSW

24 36

28 40
Program Old PSW

2C 44
30 48

Machine-Check Old PSW
34 52

38 56
Input / Output Old PSW

3C 60

40 64

44 68
48 72

Available for Use by Programming
4C 76

50 80
54 84

58 88
External New PSW

5C 92
60 96

Supervisor-Call New PSW
64 100

68 104
Program New PSW

6C 108

70 112
Machine-Check New PSW

74 116
78 120

Input / Output New PSW
7C 124

80 128 External-Interruption Parameter External-Interruption Parameter
84 132 CPU Address External-Interruption Code CPU Address External-Interruption Code

88 136 0 0 0 0 0 0 0 0 0 0 0 0 0 ILC 0 SVC-Interruption Code 0 0 0 0 0 0 0 0 0 0 0 0 0 ILC 0 SVC-Interruption Code

8C 140 0 0 0 0 0 0 0 0 0 0 0 0 0 ILC 0 Program-Interruption Code 0 0 0 0 0 0 0 0 0 0 0 0 0 ILC 0 Program-Interruption Code
90 144 Data-Exception Code or Vector-Exception Code Data-Exception Code or Translation-Exception Identification

94 148 Monitor-Class Number Per Code ATMID AI Monitor-Class Number Per Code ATMID SI

98 152
PER Address

PER Address
9C 156 Monitor Code

A0 160
Exception
Access ID

PER
Access ID

Operand
Access ID

SS Arch. Mode
ID [A]; MC Arch.

Mode ID

Exception
Access ID

PER
Access ID

SS Arch. Mode
ID [A]; MC Arch.

Mode ID
A4 164

A8 168
Translation-Exception Identification

AC 172

B0 176
Monitor Code

B4 180

Hex Dec z/Architecture Fields ESA/390-Compatibility-Mode Fields

Figure 3-19. Assigned Storage Locations 0–511 in the z/Architecture Architectural Mode and ESA/390-Compatibility Mode
(Part 2 of 4)

Storage 3-89

B8 184 Subsystem Identification Word Subsystem Identification Word
BC 188 I/O Interruption Parameter I/O Interruption Parameter

C0 192 I/O Interruption-Identification Word I/O Interruption-Identification Word

C4 196
C8 200 STFL Facility List STFL Facility List

CC 204

Available for Use by Programming

D0 208

D4 212 Store-Status Extended-Save-Area Address [A];
Machine-Check Extended-Save-Area Address;

D8 216 Store-Status CPU-Timer Save Area [A];
Machine-Check CPU-Timer Save AreaDC 220

E0 224 Store-Status Clock-Comparator Save Area [A];
Machine-Check Clock-Comparator Save AreaE4 228

E8 232
Machine-Check Interruption Code Machine-Check Interruption Code

EC 236

F0 240
F4 244 External-Damage Code External-Damage Code

F8 248
Failing-Storage Address

Failing-Storage Address

FC 252
100 256

Enhanced-Monitor Counter-Array Origin
Store-Status PSW Save Area [A];

Machine-Check Fixed-Logout Area (Part 1)104 260

108 264
Enhanced-Monitor Counter-Array Size

Store-Status Prefix Save Area [A];
Machine-Check Fixed-Logout Area (Part 2)

10C 268 Enhanced-Monitor Exception Count Machine-Check Fixed-Logout Area (Part 3)
110 272

Breaking-Event Address
114 276

118 280
11C 284

120 288

Restart Old PSW

Store Status Access-Register Save Area [A];
Machine-Check Access-Register Save Area

(64 bytes)

124 292
128 296

12C 300

130 304

External Old PSW
134 308

138 312

13C 316
140 320

Supervisor-Call Old PSW
144 324

148 328
14C 332

150 336

Program Old PSW
154 340
158 344

15C 348

Hex Dec z/Architecture Fields ESA/390-Compatibility-Mode Fields

Figure 3-19. Assigned Storage Locations 0–511 in the z/Architecture Architectural Mode and ESA/390-Compatibility Mode
(Part 3 of 4)

3-90 The z/Architecture CPU Architecture

160 352

Machine-Check Old PSW

Store Status Floating-Point-Register 0, 2, 4, & 6 Save Area [A];
Machine-Check Floating-Point-Register 0, 2, 4, & 6 Save Area

(32 bytes)

164 356

168 360

16C 364
170 368

Input/Output Old PSW
174 372

178 376

17C 380
180 384

Store Status General-Register Save Area [A];
Machine-Check General-Register Save Area

(64 bytes)

184 388

188 392
18C 396

190 400

194 404
198 408

19C 412

1A0 416

Restart New PSW
1A4 420

1A8 424

1AC 428
1B0 432

External New PSW
1B4 436

1B8 440
1BC 444

1C0 448

Supervisor-Call New PSW

Store Status Control-Register Save Area [A];
Machine-Check Control-Register Save Area

(64 bytes)

1C4 452
1C8 456

1CC 460

1D0 464

Program New PSW
1D4 468

1D8 472

1DC 476
1E0 480

Machine-Check New PSW
1E4 484

1E8 488
1EC 492

1F0 496

Input/Output New PSW
1F4 500
1F8 504

1FC 508

Hex Dec z/Architecture Fields
200 512

204 516

Figure 3-20. Assigned Storage Locations 512–8191 in the
z/Architecture Architectural Mode (Part 1 of 3)

Hex Dec z/Architecture Fields ESA/390-Compatibility-Mode Fields

Figure 3-19. Assigned Storage Locations 0–511 in the z/Architecture Architectural Mode and ESA/390-Compatibility Mode
(Part 4 of 4)

Storage 3-91

FF8 4088

FFC 4092

1000 4096

11AC 4524

11B0 4528
Machine-Check Extended-Save-Area Address

11B4 4532
11B8 4536

11BC 4540

11C0 4544

Available for Use by Programming
(64 bytes)

11C4 4548

11F8 4600
11FC 4604

1200 4608

Store-Status Floating-Point-Register Save Area [A];
Machine-Check Floating-Point-Register Save Area

(128 bytes)

1204 4612

1278 4728

127C 4732
1280 4736

Store-Status General-Register Save Area [A];
Machine-Check General-Register Save Area

(128 bytes)

1284 4740

12F8 4856

12FC 4860

1300 4864

Store-Status PSW Save Area [A];
Machine-Check Fixed Logout Area

1304 4868

1308 4872

130C 4876
1310 4880

Assigned to IBM internal use [POP ONLY]
1314 4884

1318 4888 Store-Status Prefix Save Area [A]
131C 4892 Store-Status Floating-Point-Control-Register Save Area [A];

Machine-Check Floating-Point-Control-Register Save Area
1320 4896

1324 4900 Store-Status TOD-Programmable-Register Save Area [A];
Machine-Check TOD-Programmable-Register Save Area

1328 4904 Store-Status CPU-Timer Save Area [A];
Machine-Check CPU-Timer Save Area132C 4908

1330 4912 Store-Status Clock-Comp. Bits 0-55 Save Area [A];

1334 4916 Machine-Check Clock-Comparator Bits 0-55 Save Area

1338 4920
133C 4924

Hex Dec z/Architecture Fields

Figure 3-20. Assigned Storage Locations 512–8191 in the
z/Architecture Architectural Mode (Part 2 of 3)

/ / /

// /

// /

// /

// /

3-92 The z/Architecture CPU Architecture

1340 4928

Store-Status Access-Register Save Area [A];
Machine-Check Access-Register Save Area

(64 bytes)

1344 4932

1378 4984
137C 4988

1380 4992

Store-Status Control-Register Save Area [A];
Machine-Check Control-Register Save Area

(128 bytes)

1384 4996

13F8 5112

13FC 5116

1400 5120
1404 5124

17F8 6136
17FC 6140

1800 6144

Program-Interruption
Transaction Diagnostic Block

(256 bytes)

1804 6148

18F8 6392

18FC 6396
1900 6400

1904 6404

1FF8 8184

1FFC 8188

Hex Dec z/Architecture Fields

Figure 3-20. Assigned Storage Locations 512–8191 in the
z/Architecture Architectural Mode (Part 3 of 3)

// /

// /

// /

// /

// /

Control 4-1© Copyright IBM Corp. 2000, 2019

Chapter 4. Control

CPU States . 4-2
Stopped State . 4-2
Operating State . 4-3
Load State . 4-3
Check-Stop State. 4-3

Program-Status Word . 4-4
Program-Status-Word Format 4-5

Short PSW Format. 4-8
Control Registers. 4-8
Tracing. 4-12

Implicit Tracing. 4-12
Branch Tracing . 4-12
ASN Tracing . 4-13
Mode Tracing. 4-13

Explicit Tracing . 4-14
Control-Register Allocation 4-15
Trace Entries . 4-15
Trace Operation. 4-25

Program-Event Recording 4-26
PER Instruction-Fetching Nullification 4-26
Control-Register Allocation and

Address-Space-Control Element 4-26
PER Operation. 4-29

Identification of Cause 4-30
Priority of Indication 4-33

Storage-Area Designation 4-35
PER Events . 4-36

Successful Branching 4-36
Instruction Fetching 4-37
Storage Alteration 4-37
Store Using Real Address 4-38
Zero-Address Detection. 4-38
Transaction End. 4-39
Storage-Key Alteration. 4-40

Indication of PER Events Concurrently with
Other Interruption Conditions 4-40
Indication of PER Events and

Guarded-Storage Events 4-44
Breaking-Event-Address Recording 4-45

Breaking-Event-Address Register 4-46
Execution-Break Instructions 4-46

Timing . 4-47
Time-of-Day Clock and Epoch Index 4-47

Format . 4-47
 States . 4-48
Changes in Clock State 4-49
Setting and Inspecting the Clock 4-50
TOD Programmable Register 4-52

TOD-Clock Synchronization 4-54
Timing Mode . 4-54

Timing State . 4-54
STP Clock Source State 4-55

TOD-Clock Steering . 4-55
 Offset-Based TOD-Clock Steering

Overview . 4-56
Hardware-Based TOD-Clock-Steering

Overview . 4-56
TOD-Offset-Update Events 4-57
Episodes . 4-57
TOD-Clock-Steering Registers 4-57
UTC Information Block (UIB) 4-58

Clock Comparator . 4-60
CPU Timer . 4-63

 Guarded-Storage Facility 4-65
Guarded-Storage-Facility Registers 4-65

Control Register 2 . 4-65
Guarded-Storage-Designation (GSD)

Register . 4-66
Guarded-Storage-Section-Mask (GSSM)

Register. 4-66
Guarded-Storage-Event Parameter-List-

Address (GSEPLA) Register. 4-67
Guarded-Storage Control Block (GSCB) 4-67
Guarded-Storage-Event Parameter List

(GSEPL) . 4-67
Guarded-Storage Facility Operation 4-70

Guarded-Storage-Event Detection 4-70
Guarded-Storage-Event Processing 4-71

Externally Initiated Functions 4-74
Resets. 4-74

. CPU Reset . 4-78
Initial CPU Reset. 4-79
Subsystem Reset . 4-80
Clear Reset . 4-80
Power-On Reset . 4-81

Initial Program Loading 4-81
CCW-Type IPL . 4-82

Store Status . 4-82
Multiprocessing . 4-83

Shared Main Storage 4-84
CPU-Address Identification. 4-84

CPU-Address Expansion 4-84
CPU-Address Contraction. 4-85

CPU Signaling and Response 4-85
Signal-Processor Orders. 4-85

Sense . 4-85
External Call . 4-85
Emergency Signal . 4-86
Start. 4-86
Stop. 4-86

4-2 The z/Architecture CPU Architecture

Restart . 4-86
Stop and Store Status 4-86
Initial CPU Reset . 4-86
CPU Reset . 4-86
Set Prefix . 4-86
Store Status at Address 4-87
Store Extended Status at Address 4-88
Set Architecture . 4-89
Conditional Emergency Signal 4-91

Sense Running Status.4-92
Set Multithreading .4-92
Store Additional Status at Address4-93

Conditions Determining Response4-95
Conditions Precluding Interpretation of the

Order Code .4-95
Status Bits .4-96

Facility Indications .4-99

This chapter describes in detail the facilities for con-
trolling, measuring, and recording the operation of
one or more CPUs.

CPU States

The stopped, operating, load, and check-stop states
are four mutually exclusive states of the CPU. When
the CPU is in the stopped state, instructions and
interruptions, other than the restart interruption, are
not executed. In the operating state, the CPU exe-
cutes instructions and takes interruptions, subject to
the control of the program-status word (PSW) and
control registers, and in the manner specified by the
setting of the operator-facility rate control. The CPU
is in the load state during the initial-program-loading
operation. The CPU enters the check-stop state only
as the result of machine malfunctions.

A change between these four CPU states can be
effected by use of the operator facilities or by accep-
tance of certain SIGNAL PROCESSOR orders
addressed to that CPU. The states are not controlled
or identified by bits in the PSW. The stopped, load,
and check-stop states are indicated to the operator
by means of the manual indicator, load indicator, and
check-stop indicator, respectively. These three indi-
cators are off when the CPU is in the operating state.

The CPU timer is updated when the CPU is in the
operating state or the load state. The TOD clock is
not affected by the state of any CPU.

Stopped State

The CPU changes from the operating state to the
stopped state by means of the stop function. The
stop function is performed when:

• The stop key is activated while the CPU is in the
operating state.

• The CPU accepts a stop or stop-and-store-status
order specified by a SIGNAL PROCESSOR
instruction addressed to this CPU while it is in
the operating state.

• The CPU has finished the execution of a unit of
operation initiated by performing the start func-
tion with the rate control set to the instruction-
step position.

When the stop function is performed, the transition
from the operating to the stopped state occurs at the
end of the current unit of operation. When the wait-
state bit of the PSW is one, the transition takes place
immediately, provided no interruptions are pending
for which the CPU is enabled. In the case of inter-
ruptible instructions, the amount of data processed in
a unit of operation depends on the particular instruc-
tion and may depend on the model.

Before entering the stopped state by means of the
stop function, all pending allowed interruptions occur
while the CPU is still in the operating state. They
cause the old PSW to be stored and the new PSW to
be fetched before the stopped state is entered. While
the CPU is in the stopped state, interruption condi-
tions remain pending.

The CPU is also placed in the stopped state when:

• CPU reset is completed. However, when the
reset operation is performed as part of initial pro-
gram loading for this CPU, then the CPU is
placed in the load state and does not necessarily
enter the stopped state.

• An address comparison indicates equality and
stopping on the match is specified.

Control 4-3

The execution of resets is described in “Resets” on
page 4-74, and address comparison is described in
“Address-Compare Controls” on page 12-1.

If the CPU is in the stopped state when a COMPARE
AND REPLACE DAT TABLE ENTRY, INVALIDATE
DAT TABLE ENTRY or INVALIDATE PAGE TABLE
ENTRY instruction is executed on another CPU in
the configuration and the instruction specifies the
clearing of all TLBs in the configuration, the clearing
of TLB entries is completed before the CPU leaves
the stopped state.

Operating State

The CPU changes from the stopped state to the
operating state by means of the start function or
when a restart interruption (see “Restart Interruption”
on page 6-56) occurs.

The start function is performed if the CPU is in the
stopped state and (1) the start key associated with
that CPU is activated or (2) that CPU accepts the
start order specified by a SIGNAL PROCESSOR
instruction addressed to that CPU. The effect of per-
forming the start function is unpredictable when the
stopped state has been entered by means of a reset.

When the rate control is set to the process position
and the start function is performed, the CPU starts
operating at normal speed. When the rate control is
set to the instruction-step position and the wait-state
bit is zero, one instruction or, for interruptible instruc-
tions, one unit of operation is executed, and all pend-
ing allowed interruptions occur before the CPU
returns to the stopped state. When the rate control is
set to the instruction-step position and the wait-state
bit is one, the start function does not cause an
instruction to be executed, but all pending allowed
interruptions occur before the CPU returns to the
stopped state.

Load State

The CPU enters the load state when the load-nor-
mal, load-with-dump, load-clear, or load-clear-list-
directed key is activated. (See “Initial Program Load-
ing” on page 4-81 and “Initial Program Loading” on
page 17-16.)

When neither the configuration-z/Architecture-archi-
tectural-mode (CZAM) facility nor the ESA/390-com-

patibility-mode facility are installed, this sets the
architectural mode to the ESA/390 mode. When the
ESA/390-compatibility-mode facility is installed, this
sets the architecture mode to the ESA/390-compati-
bility mode. When the CZAM facility is installed, the
architectural mode is unchanged (that is, it remains
in the z/Architecture architectural mode).

Programming Note: If a control program that oper-
ates in the z/Architecture architectural mode is
loaded in a configuration where the CZAM facility
may or may not be installed, then the program must
be able to tolerate any of the ESA/390, ESA/390-
compatibility, or z/Architecture architectural modes
when execution begins.

• If the load operation places the configuration into
the ESA/390 architectural mode or ESA/390
compatibility mode, then the program must issue
the SIGP set-architecture order to switch to the
z/Architecture architectural mode.

• If the load operation places the configuration into
the z/Architecture mode, then the program must
either not issue the SIGP set-architecture order,
or be able to tolerate an invalid-parameter
response from the SIGP instruction indicating
that the configuration is already in the z/Architec-
ture architectural mode.

Check-Stop State

The check-stop state, which the CPU enters on cer-
tain types of machine malfunction, is described in
“Check-Stop State” on page 11-9. The CPU leaves
the check-stop state when CPU reset is performed.

Programming Notes:

1. Except for the relationship between execution
time and real time, the execution of a program is
not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an instruc-
tion, the stop function is ineffective, and a reset
function has to be invoked instead. A similar situ-
ation occurs when an unending string of interrup-
tions results from a PSW with a PSW-format
error of the type that is recognized early, or from
a persistent interruption condition, such as one
due to the CPU timer.

4-4 The z/Architecture CPU Architecture

3. Pending I/O operations may be initiated, and
active I/O operations continue to suspension or
completion, after the CPU enters the stopped
state. The interruption conditions due to suspen-
sion or completion of I/O operations remain
pending when the CPU is in the stopped state.

Program-Status Word

The current program-status word (PSW) in the CPU
contains information required for the execution of the
currently active program. The PSW is 128 bits in
length and includes the instruction address, condition
code, and other control fields. In general, the PSW is
used to control instruction sequencing and to hold
and indicate much of the status of the CPU in relation
to the program currently being executed. Additional

control and status information is contained in control
registers and permanently assigned storage loca-
tions.

The status of the CPU can be changed by loading a
new PSW or part of a PSW.

Control is switched during an interruption of the CPU
by storing the current PSW, so as to preserve the
status of the CPU, and then loading a new PSW.

Execution of LOAD PSW or LOAD PSW
EXTENDED, or the successful conclusion of the ini-
tial-program-loading sequence, introduces a new
PSW. The instruction address is updated by sequen-
tial instruction execution and replaced by successful
branches. Other instructions are provided which
operate on a portion of the PSW. Figure 4-1 on
page 4-4 summarizes these instructions.

Instruction

System
Mask
(PSW

Bits 0-7)

PSW Key
(PSW Bits

8-11)

Problem
State
(PSW
Bit 15)

Address-
Space

Control
(PSW Bits

16-17)

Condition
Code and

Program Mask
(PSW Bits

18-23)
(PSW
Bit 24)

Basic
Addressing

Mode
(PSW Bit

32)

Extended
Addressing

Mode
(PSW Bit

31)

Saved Set Saved Set Saved Set Saved Set Saved Set Saved Set Saved Set Saved Set

BRANCH AND LINK – – – – – – – – 24AM – – – 31AM – – –

BRANCH AND SAVE – – – – – – – – – – – – BAM – – –

BRANCH AND SAVE AND SET MODE6 – – – – – – – – – – – – BAM Yes1 Yes Yes1

BRANCH AND SET AUTHORITY7 – – Yes Yes Yes Yes – – – – – – BAM2 BAM – –

BRANCH AND SET MODE6 – – – – – – – – – – – – BAM1 Yes1 Yes1 Yes1

BRANCH AND STACK7 Yes – Yes – Yes – Yes – Yes – Yes – BAM3 – Yes –

BRANCH IN SUBSPACE GROUP7 – – – – – – – – – – – – BAM1 BAM – –

BRANCH RELATIVE AND SAVE – – – – – – – – – – – – BAM – – –

BRANCH RELATIVE AND SAVE LONG – – – – – – – – – – – – BAM – – –

EXTRACT PSW Yes – Yes – Yes – Yes – Yes – Yes – Yes – Yes –

INSERT PROGRAM MASK – – – – – – – – Yes – – – – – – –

INSERT PSW KEY – – Yes – – – – – – – – – – – – –

INSERT ADDRESS SPACE CONTROL – – – – – – Yes – – – – – – – – –

Basic PROGRAM CALL7 – – – – Yes Yes – – – – – Yes BAM BAM – –

Stacking PROGRAM CALL7 Yes – Yes PKC Yes Yes Yes Yes Yes – Yes Yes Yes Yes Yes Yes

PROGRAM RETURN7 – Yes4 – Yes – Yes – Yes – Yes – Yes – Yes – Yes

PROGRAM TRANSFER7 – – – – – Yes5 – – – – – – – BAM – –

RESUME PROGRAM – – – – – – – Yes – Yes – Yes – Yes – Yes

SET ADDRESS SPACE CONTROL – – – – – – – Yes – – – – – – – –

SET ADDRESSING MODE6 – – – – – – – – – – – – – Yes – Yes

SET PROGRAM MASK – – – – – – – – – Yes – – – – – –

SET PSW KEY FROM ADDRESS – – – Yes – – – – – – – – – – – –

SET SYSTEM MASK6 – Yes – – – – – – – – – – – – – –

STORE THEN AND SYSTEM MASK Yes ANDs – – – – – – – – – – – – – –

STORE THEN OR SYSTEM MASK6 Yes ORs – – – – – – – – – – – – – –

Figure 4-1. Operations on PSW Fields.

Control 4-5

A new or modified PSW becomes active (that is, the
information introduced into the current PSW
assumes control over the CPU) when the interruption
or the execution of an instruction that changes the
PSW is completed. The interruption for PER associ-
ated with an instruction that changes the PSW
occurs under control of the PER mask that is effec-
tive at the beginning of the operation.

Bits 0-7 of the PSW are collectively referred to as the
system mask.

Programming Notes:

1. A summary of the operations which save or set
the problem state, addressing mode, and instruc-
tion address is contained in “Subroutine Linkage
without the Linkage Stack” on page 5-14.

2. In the ESA/390-compatibility mode, it is unpre-
dictable whether LOAD PSW EXTENDED is sup-
ported. If not supported, attempted execution of
LPSWE results in an operation exception being
recognized.

Program-Status-Word Format

The following is a summary of the functions of the
PSW fields. (See Figure 4-2.)

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruptions associated with program-
event recording (PER). When the bit is zero, no PER
event can cause an interruption. When the bit is one,
interruptions are permitted, subject to the PER-
event-mask bits in control register 9.

Depending on the model, when bit position 1 of the
PSW contains one, address-compare controls may
be disabled and remain disabled, even if bit position

TRAP7 – – – – Yes – Yes Yes Yes – – – Yes Yes Yes –

Explanation:

– No.
1 The action takes place only if the associated R field in the instruction is nonzero.
2 In the reduced-authority state, the action takes place only if the R1 field in the instruction is nonzero.
3 The action also takes place in the 64-bit addressing mode if the R1 field in the instruction is zero.
4 PROGRAM RETURN does not change the PER mask.
5 PROGRAM TRANSFER does not change the problem-state bit from one to zero.
6 Some restrictions apply in the ESA/390-compatibility mode; see instruction description.
7 Not supported in the ESA/390-compatibility mode.
BAM The basic-addressing-mode bit is saved or set in the 24-bit or 31-bit addressing mode.
ANDs The logical AND of the immediate field in the instruction and the current system mask replaces the current system mask.
ORs The logical OR of the immediate field in the instruction and the current system mask replaces the current system mask.
PKC When the PSW-key-control bit, bit 131 of the entry-table entry, is zero, the PSW key remains unchanged. When the PSW-key-control bit is one, the PSW

key is set with the entry key, bits 136-139 of the entry-table entry.
24AM The condition code and program mask are saved in the 24-bit addressing mode.
31AM The basic-addressing-mode bit is saved in the 31-bit addressing mode.

Instruction

System
Mask
(PSW

Bits 0-7)

PSW Key
(PSW Bits

8-11)

Problem
State
(PSW
Bit 15)

Address-
Space

Control
(PSW Bits

16-17)

Condition
Code and

Program Mask
(PSW Bits

18-23)
(PSW
Bit 24)

Basic
Addressing

Mode
(PSW Bit

32)

Extended
Addressing

Mode
(PSW Bit

31)

Saved Set Saved Set Saved Set Saved Set Saved Set Saved Set Saved Set Saved Set

Figure 4-1. Operations on PSW Fields. (Continued)

0 R 0 0 0 T
I
O

E
X

Key 0 MW P AS CC
Prog.
Mask

R
I

0 0 0 0 0 0
E
A

0 1 2 5 6 7 8 12 13 14 15 16 18 20 24 25 31

B
A

0 0

32 33 63

Instruction Address
64 95

Instruction Address (Continued)
96 127

Figure 4-2. PSW Format

4-6 The z/Architecture CPU Architecture

1 of the PSW transitions back to zero. See “Address-
Compare Controls” on page 12-1 for details.

DAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of logical and instruction
addresses used to access storage takes place.
When the bit is zero, DAT is off, and logical and
instruction addresses are treated as real addresses.
When the bit is one, DAT is on, and the dynamic-
address-translation mechanism is invoked.

In the ESA/390-compatibility mode, bit 5 of the PSW
must be zero; otherwise, a specification exception is
recognized.

I/O Mask (IO): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is zero, an
I/O interruption cannot occur. When the bit is one, I/O
interruptions are subject to the I/O-interruption sub-
class-mask bits in control register 6. When an I/O-
interruption subclass-mask bit is zero, an I/O inter-
ruption for that I/O-interruption subclass cannot
occur; when the I/O-interruption subclass-mask bit is
one, an I/O interruption for that I/O-interruption sub-
class can occur.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is zero,
an external interruption cannot occur. When the bit is
one, an external interruption is subject to the corre-
sponding external subclass-mask bits in control reg-
ister 0; when the subclass-mask bit is zero,
conditions associated with the subclass cannot
cause an interruption; when the subclass-mask bit is
one, an interruption in that subclass can occur.

PSW Key: Bits 8-11 form the access key for stor-
age references by the CPU. If the reference is sub-
ject to key-controlled protection, the PSW key is
matched with a storage key when information is
stored or when information is fetched from a location
that is protected against fetching. However, for one of
the operands of each of MOVE TO PRIMARY, MOVE
TO SECONDARY, MOVE WITH KEY, MOVE WITH
SOURCE KEY, and MOVE WITH DESTINATION
KEY, and for either or both operands of MOVE WITH
OPTIONAL SPECIFICATIONS, an access key speci-
fied as an operand is used instead of the PSW key.

Bit 12: Bit 12 of the 16-byte current PSW must be
zero; otherwise, a specification exception is recog-
nized. This specification exception may be recog-
nized either when the instruction that attempted to

load the PSW ends with suppression or when the
newly-loaded PSW becomes active.

Programming Note: Bit 12 of an 8-byte short-format
PSW in storage is inverted when the 16-byte current
PSW is loaded from the following locations:

• An assigned storage location in the ESA/390-
compatibility mode.

• The second operand of LOAD PSW (in the
z/Architecture architecture mode and in the
ESA/390-compatibility mode).

• The second operand of RESUME PROGRAM
when the P bit in the parameter list is zero (in the
z/Architecture architecture mode and in the
ESA/390-compatibility mode).

Therefore, bit 12 of an 8-byte short-format PSW must
be one; otherwise, a PSW-format error condition
exists. See “Short PSW Format” on page 4-8.

Machine-Check Mask (M): Bit 13 controls whether
the CPU is enabled for interruption by machine-check
conditions. When the bit is zero, a machine-check
interruption cannot occur. When the bit is one,
machine-check interruptions due to system damage
and instruction-processing damage are permitted,
but interruptions due to other machine-check-sub-
class conditions are subject to the subclass-mask
bits in control register 14.

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by the
CPU, but interruptions may take place. When bit 14 is
zero, instruction fetching and execution occur in the
normal manner. The wait indicator is on when the bit
is one.

Problem State (P): When bit 15 is one, the CPU is
in the problem state. When bit 15 is zero, the CPU is
in the supervisor state. In the supervisor state, all
instructions are valid. In the problem state, only those
instructions are valid that provide meaningful infor-
mation to the problem program and that cannot affect
system integrity; such instructions are called unprivi-
leged instructions. The instructions that are never
valid in the problem state are called privileged
instructions. When a CPU in the problem state
attempts to execute a privileged instruction, a privi-
leged-operation exception is recognized. Another
group of instructions, called semiprivileged instruc-
tions, are executed by a CPU in the problem state

Control 4-7

only if specific authority tests are met; otherwise, a
privileged-operation exception or some other pro-
gram exception is recognized, depending on the par-
ticular requirement which is violated.

Address-Space Control (AS): In the z/Architec-
ture architectural mode, bits 16 and 17, in conjunc-
tion with PSW bit 5, control the translation mode. See
“Translation Modes” on page 3-40. In the ESA/390-
compatibility mode, bits 16-17 may operate as
defined in Reference [12.] on page xxx.

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code. The condition code is set
to 0, 1, 2, or 3, depending on the result obtained in
executing certain instructions. Most arithmetic and
logical operations, as well as some other operations,
set the condition code. The instruction BRANCH ON
CONDITION can specify any selection of the condi-
tion-code values as a criterion for branching. A table
in Appendix C summarizes the condition-code values
that may be set for all instructions which set the con-
dition code of the PSW.

Program Mask: Bits 20-23 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

When the mask bit is one, the exception results in an
interruption. When the mask bit is zero, no interrup-
tion occurs. The setting of the HFP-exponent-under-
flow-mask bit or the HFP-significance-mask bit also
determines the manner in which the operation is
completed when the corresponding exception
occurs.

Bit 24 (RI): Bit 24 is reserved for IBM use. An early
specification exception may be recognized when bit
24 of the operand of LPSW or LPSWE is one.

Extended Addressing Mode (EA): Bit 31 controls
the size of effective addresses and effective-address
generation in conjunction with bit 32, the basic-
addressing-mode bit. When bit 31 is zero, the

addressing mode is controlled by bit 32. When bits
31 and 32 are both one, 64-bit addressing is speci-
fied.

In the ESA/390-compatibility mode, it is unpredict-
able whether a specification exception is recognized
when bit 31 of the PSW is one.

Basic Addressing Mode (BA): Bits 31 and 32
control the size of effective addresses and effective-
address generation. When bits 31 and 32 are both
zero, 24-bit addressing is specified. When bit 31 is
zero and bit 32 is one, 31-bit addressing is specified.
When bits 31 and 32 are both one, 64-bit addressing
is specified. Bit 31 one and bit 32 zero is an invalid
combination that causes a specification exception to
be recognized. The addressing mode does not con-
trol the size of PER addresses or of addresses used
to access DAT, ASN, dispatchable-unit-control, link-
age, entry, and trace tables or access lists or the link-
age stack. See “Address Generation” on page 5-10
and “Address Size and Wraparound” on page 3-6.
The control of the addressing mode by bits 31 and 32
of the PSW is summarized as follows:

Instruction Address: Bits 64-127 of the PSW are
the instruction address. This address designates the
location of the leftmost byte of the next instruction to
be executed, unless the CPU is in the wait state (bit
14 of the PSW is one).

Bit positions 0, 2-4, 25-30, and 33-63 are unassigned
and must contain zeros. A specification exception is
recognized when these bit positions do not contain
zeros.

When bits 31 and 32 of the PSW specify the 24-bit
addressing mode, bits 64-103 of the instruction
address must be zeros, or, when bits 31 and 32
specify the 31-bit mode, bits 64-96 must be zeros.
Otherwise, a specification exception is recognized. A
specification exception is also recognized when bit
31 is one and bit 32 is zero or when bit position 12
does not contain a zero.

LOAD PSW EXTENDED has a 16-byte second oper-
and, as shown in Figure 4-2 on page 4-5. The

Program-Mask
Bit Program Exception

20 Fixed-point overflow

21 Decimal overflow

22 HFP exponent underflow

23 HFP significance

PSW.31 PSW.32 Addressing Mode
0 0 24-bit
0 1 31-bit
1 1 64-bit

4-8 The z/Architecture CPU Architecture

instruction loads the operand unchanged and without
examination as the current PSW.

Short PSW Format
Certain instructions are capable of loading the full
128-bit PSW, or portions thereof, from a shorter dou-
bleword storage location, called a short PSW. The
short PSW, shown in Figure 4-3, is similar to the
ESA/390-format PSW in that bit 12 must be one.
However, unlike the ESA/390-format PSW in which
bit 31 must be zero, bit 31 of the short PSW may be
either zero or one in the short PSW.

The bit positions of the short PSW and the corre-
sponding bit positions in the full 128-bit PSW are
shown in Figure 4-4.

LOAD PSW and the initial-program-loading (IPL) pro-
cess translate a short PSW into the full 128-bit PSW,
as shown in Figure 4-4. When the P control (bit 13) of
the RESUME PROGRAM instruction’s parameter list
is zero, the instruction loads selected bits of a short
PSW into the full 128-bit PSW.

In the ESA/390-compatibility mode, the PSW used in
assigned storage locations and in the LOAD PSW
and RESUME PROGRAM instructions has the same
format as the short PSW except that when loading
the PSW, (a) bit 5must be zero, and (b) it is unpre-
dictable whether bit 31 must be zero.

Depending on the model, either LOAD PSW (LPSW)
recognizes a specification exception if bit 12 of its
second operand is not one, or this error is indicated
by an early specification exception after the comple-
tion of the execution of the LOAD PSW.

Note: The term short PSW refers only to the eight-
byte entity in storage. The actual PSW used by the
CPU is the 16-byte register illustrated in Figure 4-2.

Control Registers

The control registers provide for maintaining and
manipulating control information outside the PSW.
There are sixteen 64-bit control registers, however in
the ESA/390-compatibility mode, bits 0-31 of each
control register contains zeros.

The LOAD CONTROL (LCTLG) instruction causes
all control-register bit positions within those registers
designated by the instruction to be loaded from stor-
age. In the ESA/390-compatibility mode, LCTLG is
not supported; attempted execution of LCTLG results
in an operation exception being recognized.

The LOAD CONTROL (LCTL) instruction loads only
bit positions 32-63 of the control registers, and bits
0-31 of the registers remain unchanged. The instruc-
tions BRANCH AND SET AUTHORITY, BRANCH
AND STACK, BRANCH IN SUBSPACE GROUP,
EXTRACT AND SET EXTENDED AUTHORITY,
LOAD ADDRESS SPACE PARAMETERS, PRO-
GRAM CALL, PROGRAM RETURN, PROGRAM
TRANSFER, PROGRAM TRANSFER WITH
INSTANCE, SET SECONDARY ASN, and SET SEC-
ONDARY ASN WITH INSTANCE, provide special-

0 R 0 0 0 T
I
O

E
X

Key 1 MW P AS CC
Prog.
Mask

R
I

0 0 0 0 0 0
E
A

0 1 2 5 6 7 8 12 13 14 15 16 18 20 24 25 31

B
A

Instruction Address

32 33 63

Figure 4-3. Short PSW Format

PSW Bit Positions Short-PSW Bit Positions
0-11 0-11
12 * 12 *

13-32 13-32
33-96 —
97-127 33-63

Explanation:

* Bit 12 must be zero in the full 128-bit current
PSW and one in the short PSW. Bit 12 of the
short PSW is inverted when loaded into the full
128-bit current PSW. While in the ESA/390
compatibility mode, bit 12 of the full 128-bit
PSW is inverted in the old PSW stored during
an interruption. The result placed in bit 44 of
general register R1 for EXTRACT PSW is based
on the architectural mode and not on bit 12 of
the current PSW. When execution of EXTRACT
STACKED STATE with code 1 is completed in
the z/Architecture architectural mode, the value
of one is placed in bit 44 of general register R1,
for the purpose of placing the contents of a state
entry into a pair of general registers, in the form
of a short-format PSW.

— Zeros are placed in bit positions 33-96 of the full
128-bit PSW when a short PSW is loaded.

Figure 4-4. PSW and Short-PSW Bit Positions

Control 4-9

ized functions to place information into certain
control-register bit positions.

Information loaded into the control registers becomes
active (that is, assumes control over the system) at
the completion of the instruction that causes the
information to be loaded.

At the time the registers are loaded, the information
is not checked for exceptions, such as an address
designating an unavailable or protected location. The
validity of the information is checked and the excep-
tions, if any, are indicated at the time the information
is used.

The STORE CONTROL (STCTG) instruction causes
the contents of all control-register bit positions, within
those registers designated by the instruction, to be
placed in storage. The STORE CONTROL (STCTL)
instruction places the contents of bit positions 32-63
of the control registers in storage, and bits 0-31 of the
registers are ignored. The instructions EXTRACT
AND SET EXTENDED AUTHORITY, EXTRACT PRI-
MARY ASN, EXTRACT PRIMARY ASN AND

INSTANCE, EXTRACT SECONDARY ASN,
EXTRACT SECONDARY ASN AND INSTANCE, and
PROGRAM CALL provide specialized functions to
obtain information from certain control-register bit
positions.

Only the general structure of the control registers is
described here; the definition of a particular control-
register bit position appears in the description of the
facility with which the position is associated.
Figure 4-5 on page 4-10 shows the control-register
bit positions which are assigned and the initial values
of the positions upon execution of initial CPU reset.
All control-register bit positions not listed in the figure
are initialized to zero.

The following applies when the configuration is oper-
ating in the ESA/390-compatibility mode:

• Bits 0-31 of all control registers contain zeros.

• It is unpredictable whether any of bits 32-63 of a
control register that are unique to z/Architecture
features have any effect.

4-10 The z/Architecture CPU Architecture

Control
Register Bits Name of Field Associated with

Initial
Value

0 8 Transactional-execution control5 Transactional execution 0
0 9 Transactional-execution program-interruption filtering override5 Transactional execution 0
0 10 Clock-comparator sign control Multiple-epoch facility 0
0 15 Measurement-counter-extraction-authorization control5 CPU measurement4 0
0 30 Warning-track subclass mask5 Virtual machines 0
0 32 TRACE TOD-clock control6 Tracing 0
0 33 SSM-suppression control SET SYSTEM MASK 0
0 34 TOD-clock-sync control TOD clock 0
0 35 Low-address-protection control Low-address-protection 0
0 36 Extraction-authority control Instruction authorization 0
0 37 Secondary-space control5 Instruction authorization 0
0 38 Fetch-protection-override control Key-controlled protection 0
0 39 Storage-protection-override control Key-controlled protection 0
0 40 Enhanced-DAT-enablement control5 Dynamic address translation 0
0 43 Instruction-execution-protection-enablement control5 Instruction-execution protection 0
0 44 ASN-and-LX-reuse control5 Instruction authorization 0
0 45 AFP-register control Floating point 0
0 46 Vector enablement control Vector facility for z/Architecture 0
0 48 Malfunction-alert subclass mask External interruptions 0
0 49 Emergency-signal subclass mask External interruptions 0
0 50 External-call subclass mask External interruptions 0
0 52 Clock-comparator subclass mask External interruptions 0
0 53 CPU-timer subclass mask External interruptions 0
0 54 Service-signal subclass mask External interruptions 0
0 56 Unused1 1
0 57 Interrupt-key subclass mask External interruptions 1
0 58 Measurement-alert subclass mask CPU measurement4 1
0 59 Timing-alert subclass mask External interruptions 0
0 61 Crypto control Cryptography 0
1 0-51 Primary region-table origin2,5 Dynamic address translation 0
1 0-51 Primary segment-table origin2,5 Dynamic address translation 0
1 0-51 Primary real-space token origin2,5 Dynamic address translation 0
1 54 Primary subspace-group control5 Subspace groups 0
1 55 Primary private-space control5 Dynamic address translation 0
1 56 Primary storage-alteration-event5 Program-event recording control 0
1 57 Primary space-switch-event control5 Program interruptions 0
1 58 Primary real-space control5 Dynamic address translation 0
1 60-61 Primary designation-type control3,5 Dynamic address translation 0
1 62-63 Primary table length3,5 Dynamic address translation 0
2 0-8 Reserved for IBM use System controls 0
2 33-57 Dispatchable-unit-control-table origin Access-register translation 0
2 59 Guarded-storage-facility enablement control6 Guarded-storage facility 0
2 61 Transaction diagnostic scope5 Transactional execution 0
2 62-63 Transaction diagnostic control5 Transactional execution 0
3 0-31 Secondary ASN-second-table-entry instance number5 Instruction authorization 0
3 32-47 PSW-key mask Instruction authorization 0
3 48-63 Secondary ASN5 Address spaces 0

Figure 4-5. Assignment of Control-Register Fields (Part 1 of 3)

Control 4-11

4 0-31 Primary ASN-second-table-entry instance number5 Instruction authorization 0
4 32-47 Authorization index5 Instruction authorization 0
4 48-63 Primary ASN5 Address spaces 0
5 33-57 Primary-ASN-second-table-entry origin5 Access-register translation 0
6 32-39 I/O-interruption subclass mask I/O interruptions 0
7 0-51 Secondary region-table origin2,5 Dynamic address translation 0
7 0-51 Secondary segment-table origin2,5 Dynamic address translation 0
7 0-51 Secondary real-space token origin2,5 Dynamic address translation 0
7 54 Secondary subspace-group control5 Subspace groups 0
7 55 Secondary private-space control5 Dynamic address translation 0
7 56 Secondary storage-alteration-event5 Program-event recording control 0
7 58 Secondary real-space control5 Dynamic address translation 0
7 60-61 Secondary designation-type control3,5 Dynamic address translation 0
7 62-63 Secondary table length3,5 Dynamic address translation 0
8 16-31 Enhanced-monitor masks5 MONITOR CALL 0
8 32-47 Extended authorization index Access-register translation 0
8 48-63 Monitor masks MONITOR CALL 0
9 32 Successful-branching-event mask Program-event recording 0
9 33 Instruction-fetching-event mask Program-event recording 0
9 34 Storage-alteration-event mask Program-event recording 0
9 35 Storage-key-alteration-event mask Program-event recording 0
9 36 Store-using-real-address-event mask Program-event recording 0
9 37 Zero-address-detection-event mask6 Program-event recording 0
9 38 Transaction-end event mask5 Program-event recording 0
9 39 Instruction-fetching-nullification-event mask6 Program-event recording 0
9 40 Branch-address control Program-event recording 0
9 41 Per-event-suppression control5 Program-event recording 0
9 42 Storage-alteration-space control5 Program-event recording 0
10 0-63 PER starting address7 Program-event recording 0
11 0-63 PER ending address7 Program-event recording 0
12 0 Branch-trace control5 Tracing 0
12 1 Mode-trace control5 Tracing 0
12 2-61 Trace-entry address7 Tracing 0
12 62 ASN-trace control5 Tracing 0
12 63 Explicit-trace control Tracing 0
13 0-51 Home region-table origin2,5 Dynamic address translation 0
13 0-51 Home segment-table origin2,5 Dynamic address translation 0
13 0-51 Home real-space token origin2,5 Dynamic address translation 0
13 55 Home private-space control5 Dynamic address translation 0
13 56 Home storage-alteration-event5 Program-event recording control 0
13 57 Home space-switch-event control5 Program interruptions 0
13 58 Home real-space control5 Dynamic address translation 0
13 60-61 Home designation-type control3,5 Dynamic address translation 0
13 62-63 Home table length3,5 Dynamic address translation 0

Control
Register Bits Name of Field Associated with

Initial
Value

Figure 4-5. Assignment of Control-Register Fields (Part 2 of 3)

4-12 The z/Architecture CPU Architecture

Programming Notes:

1. The detailed definition of a particular control-reg-
ister bit position can be located by referring to the
entry “control-register assignment” in the Index.

2. To ensure that existing programs operate cor-
rectly if and when new facilities using additional
control-register bit positions are installed, the
program should load zeros in unassigned posi-
tions.

Tracing

Tracing assists in the determination of system prob-
lems by providing an ongoing record in storage of
significant events. Tracing consists of four separately

controllable functions which cause entries to be
made in a trace table: branch tracing, ASN tracing,
mode tracing, and explicit tracing.

Implicit Tracing

Branch tracing, ASN tracing, and mode tracing
together are referred to as implicit tracing. In the
ESA/390-compatibility mode, implicit tracing is not
supported.

Branch Tracing
When branch tracing is on, a branch trace entry is
made in the trace table for each execution of certain
branch instructions when they cause branching. The
branch address is placed in the trace entry. The trace
entry also indicates the following about the address-
ing mode in effect after branching and the branch

14 32 Unused1 1
14 33 Unused1 1
14 34 Extended save-area control (ESA/390-compatibility mode

only)
Floating point 0

14 35 Channel-report-pending subclass mask I/O machine-check handling 0
14 36 Recovery subclass mask Machine-check handling 0
14 37 Degradation subclass mask Machine-check handling 0
14 38 External-damage subclass mask Machine-check handling 1
14 39 Warning subclass mask Machine-check handling 0
14 42 TOD-clock-control-override control TOD clock 0
14 44 ASN-translation control5 Instruction authorization 0
14 45-63 ASN-first-table origin5 ASN translation 0
15 0-60 Linkage-stack-entry address5 Linkage-stack operations 0

Explanation:

The fields not listed are unassigned. The initial value for all unlisted control-register bit positions is zero.

1 This bit is not used but is initialized to one for consistency with the System/370 definition.
2 The address-space-control element (ASCE) in the control register has one of three formats, depending on bit 58

of the register, the real-space control, and bits 60 and 61 of the register, the designation-type control. When bit
58 is zero, the ASCE is a region-table designation if bits 60 and 61 are 11, 10, or 01 binary, or it is a segment-
table designation if bits 60 and 61 are 00 binary. When bit 58 is one, the ASCE is a real-space designation. Bits
0-51 are the region-table origin, the segment-table origin or the real-space token origin, depending on whether
the ASCE is a region-table designation, a segment-table designation, or a real-space designation, respectively.

3 Bits 60-63 are assigned when the ASCE in the control register is a region-table designation or a segment-table
designation.

4 See The Load-Program-Parameter and CPU-Measurement Facilities (SA23-2260) for details on these bits.
5 Not applicable in the ESA/390-compatibility mode.
6 It is unpredictable whether this bit has any effect in the ESA/390-compatibility mode.
7 In the ESA/390-compatibility mode. bits 0-31 of the register are all zeros. Results are unpredictable if bit 32 of the

register is one.

Control
Register Bits Name of Field Associated with

Initial
Value

Figure 4-5. Assignment of Control-Register Fields (Part 3 of 3)

Control 4-13

address: (1) the CPU is in the 24-bit addressing
mode, (2) the CPU either is in the 31-bit addressing
mode or is in the 64-bit addressing mode and bits
0-32 of the branch address are all zeros, or (3) the
CPU is in the 64-bit addressing mode and bits 0-32
of the branch address are not all zeros. The branch
instructions that are traced are:

• BRANCH AND LINK (BALR only) when the R2

field is not zero
• BRANCH AND SAVE (BASR only) when the R2

field is not zero
• BRANCH AND SAVE AND SET MODE when the

R2 field is not zero
• BRANCH AND SET AUTHORITY
• BRANCH AND STACK when the R2 field is not

zero
• BRANCH IN SUBSPACE GROUP
• RESUME PROGRAM
• TRAP

However, a branch trace entry is made for BRANCH
IN SUBSPACE GROUP only if ASN tracing is not on.

If both branch tracing and mode tracing are on and
BRANCH AND SAVE AND SET MODE or RESUME
PROGRAM changes the extended-addressing-mode
bit, PSW bit 31, a mode-switching-branch trace entry
is made instead of a branch trace entry.

ASN Tracing
When ASN tracing is on, an entry named the same
as the instruction is made in the trace table for each
execution of the following instructions:

• BRANCH IN SUBSPACE GROUP
• PROGRAM CALL
• PROGRAM RETURN
• PROGRAM TRANSFER
• SET SECONDARY ASN

However, the entry for PROGRAM RETURN is made
only when PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by PROGRAM
CALL, not when PROGRAM RETURN unstacks an
entry formed by BRANCH AND STACK.

When ASN tracing is on, a PROGRAM TRANSFER
trace entry is also made for each execution of PRO-
GRAM TRANSFER WITH INSTANCE, and a SET
SECONDARY ASN trace entry is also made for each
execution of SET SECONDARY ASN WITH

INSTANCE. In either case, a bit in the trace entry
indicates whether the entry was made due to the
without-instance or the with-instance instruction.

If both ASN tracing and mode tracing are on and
PROGRAM CALL uses a 20-bit PC number and
changes PSW bit 31, first a PROGRAM CALL trace
entry is made, and then a mode-switch trace entry is
made. In this case except when PROGRAM CALL
uses a 32-bit PC number, only a PROGRAM CALL
trace entry is made since it indicates the old and new
values of the extended-addressing-mode bit, PSW bit
31. A 32-bit PC number may be used if the ASN-and-
LX-reuse facility is installed and is enabled by a one
value of the ASN-and-LX-reuse control, bit 44 of con-
trol register 0.

Mode Tracing
Mode tracing records a switch from a basic (24-bit or
31-bit) addressing mode to the extended (64-bit)
addressing mode or from the extended mode to a
basic mode.

When mode tracing is on, a mode-switch trace entry
is made in the trace table for each execution of the
following instructions if the execution changes PSW
bit 31:

• BRANCH AND SAVE AND SET MODE
• BRANCH AND SET MODE
• PROGRAM CALL
• PROGRAM RETURN
• RESUME PROGRAM
• SET ADDRESSING MODE

However, a mode-switch trace entry is not made for
PROGRAM RETURN if ASN tracing is on and PRO-
GRAM RETURN unstacks a state entry formed by
PROGRAM CALL; a PROGRAM RETURN trace
entry is made instead, and it contains information
about PSW bit 31.

BRANCH AND SAVE AND SET MODE and
RESUME PROGRAM cause trace entries to be
made as follows: a branch trace entry if only branch
tracing is on, a mode-switching-branch trace entry if
both branch tracing and mode tracing are on, or a
mode-switch trace entry if only mode tracing is on.

The trace entries produced by implicit tracing are
summarized in Figure 4-6.

4-14 The z/Architecture CPU Architecture

Explicit Tracing

Note: In the following discussion, the term “TRACE”
by itself refers to the generic instruction name which
includes the specific instructions having the mne-
monics TRACE and TRACG. To avoid ambiguity,
when a specific instruction is described, the generic
name TRACE will be followed by the specific instruc-
tion’s mnemonic in parentheses.

When explicit tracing is on, execution of TRACE
(TRACE or TRACG) causes an entry to be made in
the trace table. The entry for TRACE (TRACE)
includes bits 16-63 from the TOD clock, the second

operand of the TRACE instruction, and bits 32-63 of
a range of general registers. The entry for TRACE
(TRACG) is the same except that it includes bits 0-79
from the TOD clock and bits 0-63 of a range of gen-
eral registers. When the multiple-epoch facility is
installed, the entry for TRACE (TRACG) also
includes bits 1-7 of the epoch index.

When the CPU is in the transactional-execution
mode, an instruction that would otherwise cause trac-
ing to occur is restricted. Attempted execution of
such an instruction causes the transaction to be
aborted with abort code 11, and the condition code is
set to 3.

Instruction

Implicit Tracing Enabled

Branch ASN Mode
Branch

and ASN
Branch

and Mode
ASN

and Mode All
Trace Entries Made

BAKR B – – B B – B
BALR B – – B B – B
BASR B – – B B – B

BASSM B – MS B B | MSB MS B | MSB
BSA B – – B B – B
BSG B BSG – BSG B BSG BSG
BSM – – MS – MS – MS

PC-20 – PC MS PC MS PC & MS PC & MS
PC-32 – PC MS PC MS PC PC
PR-b – – MS – MS MS MS
PR-pc – PR MS PR MS PR PR

PT or PTI – PT – PT – PT PT
RP B – MS B B | MSB MS B | MSB

SSAR or
SSAIR

– SSAR – SSAR – SSAR SSAR

SAM24/31/64 – – MS – MS MS MS
TRAP2/4 B – – B B – B

Explanation:

– None.
-20 The case when PROGRAM CALL uses a 20-bit PC number.
-32 The case when PROGRAM CALL uses a 32-bit PC number.
-b The case when PROGRAM RETURN unstacks a branch state entry.
-pc The case when PROGRAM RETURN unstacks a program-call state entry.
| OR.
& AND.
B Branch trace entry. Made only if the branch is taken and a mode-switching-branch trace

entry is not made.
MS Mode-switch trace entry. Made only if PSW bit 31 is changed.
MSB Mode-switching-branch trace entry. Made only if PSW bit 31 is changed (which can occur

only if the branch is taken.

Figure 4-6. Summary of Implicit Tracing

Control 4-15

Control-Register Allocation

The information to control tracing is contained in con-
trol register 12 and has the following format:

Branch-Trace-Control Bit (B): Bit 0 of control reg-
ister 12 controls whether branch tracing is turned on
or off. If the bit is zero, branch tracing is off; if the bit
is one, branch tracing is on.

Mode-Trace-Control Bit (M): Bit 1 of control regis-
ter 12 controls whether mode tracing is turned on or
off. If the bit is zero, mode tracing is off; if the bit is
one, mode tracing is on.

Trace-Entry Address: Bits 2-61 of control register
12, with two zero bits appended on the left and two
on the right, form the real address of the next trace
entry to be made.

In the ESA/390-compatibility mode, it is unpredict-
able whether bit 32 of the trace-entry address is
treated as being zero.

ASN-Trace-Control Bit (A): Bit 62 of control regis-
ter 12 controls whether ASN tracing is turned on or
off. If the bit is zero, ASN tracing is off; if the bit is
one, ASN tracing is on.

Explicit-Trace-Control Bit (E): Bit 63 of control
register 12 controls whether explicit tracing is turned
on or off. If the bit is zero, explicit tracing is off, which
causes the TRACE instruction to be executed as a
no-operation; if the bit is one, the execution of the
TRACE instruction creates an entry in the trace table,
except that no entry is made when bit 0 of the second
operand of the TRACE instruction is one.

Programming Note: The following considerations
apply to tracing in the ESA/390-compatibility mode:

• Bits 0-31 of control register 12 are always zero
(the LCTLG instruction is not supported, thus
there is no means by which bits 0-31 can be set
to a nonzero value). This means that neither
branch- nor mode-tracing can be performed.

• If bit 32 of control register 12 is one, it is unpre-
dictable whether the bit is ignored and treated as
zero, or the bit is treated as bit 32 of the trace-
entry address. If bit 32 of the trace-entry address
is one, then a trace entry may be formed
between 2- and 4 G-bytes if the real storage is
available; otherwise, an addressing exception
may be recognized if the real storage is not avail-
able.

• Instructions that perform ASN tracing require that
dynamic-address translation be enabled. DAT is
not supported in the ESA/390-compatibility
mode, thus the ASN-tracing control is ignored.

Trace Entries

Trace entries are of nine types, with most types hav-
ing more than one detailed format. The types and
numbers of formats are as follows:

• Branch (three formats)
• BRANCH IN SUBSPACE GROUP (two formats)
• Mode switch (three formats)
• Mode-switching branch (three formats)
• PROGRAM CALL (seven formats)
• PROGRAM RETURN (nine formats)
• PROGRAM TRANSFER (three formats)
• SET SECONDARY ASN (one format)
• TRACE (two formats)

Format-1 and format-2 PROGRAM CALL trace
entries are made if the ASN-and-LX reuse facility is
not enabled. Entries of formats 3-7 are made if the
facility is enabled.

The PROGRAM TRANSFER trace entry is also
made for PROGRAM TRANSFER WITH INSTANCE,
and the SET SECONDARY ASN trace entry is also
made for SET SECONDARY ASN WITH INSTANCE.
In either case, bit 15 (N) of the entry is one if the
entry was made because of execution of the with-
instance instruction.

The entries are shown in Figure 4-7. In that figure,
each entry is labeled with “Fn,” indicating a format
number, to allow references to each format within a
trace-entry type. Also, “Branch,” referring to the mne-
monic of an instruction that causes a branch trace
entry, refers to BAKR, BALR, BASR, BASSM, BSA,
or BSG.

B M Trace-Entry Address
0 1 2 31

Trace-Entry Address (Continued) A E
32 62 63

4-16 The z/Architecture CPU Architecture

Figure 4-7 lists the trace entries in ascending order
of values in bit fields that identify the entries.

F1 Branch (Branch, RP, or TRAP2/4 when Resulting Mode Is 24-Bit)

0 0 0 0 0 0 0 0 Bits 40-63 of Branch Address

0 8 31

F2 Branch (Branch, RP, or TRAP2/4 when Resulting Mode Is 31-Bit, or when Resulting PSW Bit 31 is One (See
Note) and Bits 0-32 of Branch Address Are All Zeros)

1 Bits 33-63 of Branch Address
0 1 31

F3 Branch (Branch, RP, or TRAP2/4 when Resulting PSW Bit 31 Is One (See Note) and Bits 0-32 of Branch Address
Are Not All Zeros)

0 1 0 1 0 0 1 0 1 1 0 0 All Zeros Bits 0-31 of Branch Address
0 8 12 32 63

Bits 32-63 of Branch Address

64 95

F1 BRANCH IN SUBSPACE GROUP (if ASN Is Tracing on, in 24-Bit or 31-Bit Mode)

0 1 0 0 0 0 0 1 P Bits 9-31 of ALET A Bits 33-63 of Branch Address

0 8 9 32 33 63

F2 BRANCH IN SUBSPACE GROUP (if ASN Is Tracing on, in 64-Bit Mode)

0 1 0 0 0 0 1 0 P Bits 9-31 of ALET Bits 0-31 of Branch Address
0 8 9 32 63

Bits 32-63 of Branch Address

64 95

F1 Mode Switch (BASSM, BSM, PC, PR, RP, or SAM64 from 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 is
One (See Note))

0 1 0 1 0 0 0 1 0 0 1 1 All Zeros A Updated Instruction Address

0 8 12 32 33 63

F2 Mode Switch (BASSM, BSM, PC, PR, RP, SAM24, or SAM31 from 64-Bit Mode to 24-Bit or 31-Bit Mode when
Bits 0-31 of Updated Instruction Address Are All Zeros)

0 1 0 1 0 0 0 1 0 0 1 0 All Zeros Bits 32-63 of Updated Instruction Address

0 8 12 32 63

Figure 4-7. Trace Entries (Part 1 of 7)

Control 4-17

F3 Mode Switch (BASSM, BSM, PC, PR, or RP from 64-Bit Mode to 24-Bit or 31-Bit Mode when Bits 0-31 of Updated
Instruction Address Are Not All Zeros)

0 1 0 1 0 0 1 0 0 1 1 0 All Zeros Bits 0-31 of Updated Instruction Address
0 8 12 32 63

Bits 32-63 of Updated Instruction Address
64 95

F1 Mode-Switching Branch (BASSM or RP from 64-Bit Mode to 24-Bit or 31-Bit Mode)

0 1 0 1 0 0 0 1 1 0 1 0 All Zeros A Branch Address

0 8 12 32 33 63

F2 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 Is One (See Note)
and Bits 0-31 of Branch Address Are All Zeros)

0 1 0 1 0 0 0 1 1 0 1 1 All Zeros Bits 32-63 of Branch Address

0 8 12 32 63

F3 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 Is One (See Note)
and Bits 0-31 of Branch Address Are Not All Zeros)

0 1 0 1 0 0 1 0 1 1 1 1 All Zeros Bits 0-31 of Branch Address

0 8 12 32 63

Bits 32-63 of Branch Address

64 95

F1 PROGRAM CALL (in 24-Bit or 31-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Not Enabled)

0 0 1 0 0 0 0 1
PSW
Key

PC Number A Bits 33-62 of Return Address P

0 8 12 32 33 63

F2 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Not Enabled)

0 0 1 0 0 0 1 0
PSW
Key

PC Number Bits 0-31 of Return Address

0 8 12 32 63

Bits 32-62 of Return Address P
64 95

F3 PROGRAM CALL (in 24-Bit or 31-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled and
20-Bit PC Number is Used)

0 0 1 0 0 0 0 1
PSW
Key

0 Bits 1-19 of 20-Bit PC Number A Bits 33-62 of Return Address P

0 8 12 13 32 33 63

Figure 4-7. Trace Entries (Part 2 of 7)

4-18 The z/Architecture CPU Architecture

F4 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled and 20-Bit
PC Number Is Used)

0 0 1 0 0 0 1 0
PSW
Key

0 Bits 1-19 of 20-Bit PC Number Bits 0-31 of Return Address

0 8 12 13 32 63

Bits 32-62 of Return Address P

64 95

F5 PROGRAM CALL (in 24-Bit or 31-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled and
32-Bit PC Number is Used)

0 0 1 0 0 0 1 0
PSW
Key

1 0 0 E All Zeros A Bits 33-62 of Return Address P

0 8 12 15 16 32 33 63

32-Bit PC Number

64 95

F6 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled, 32-Bit PC
Number Is Used, and Bits 0-31 of Return Address Are All Zeros)

0 0 1 0 0 0 1 0
PSW
Key

1 0 1 E All Zeros Bits 32-62 of Return Address P

0 8 12 15 16 32 63

32-Bit PC Number

64 95

F7 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode, if ASN-and-LX Reuse Is Enabled, 32-Bit PC
Number Is Used, and Bits 0-31 of Return Address Are Not All Zeros)

0 0 1 0 0 0 1 1
PSW
Key

1 1 1 E All Zeros Bits 0-31 of Return Address

0 8 12 15 16 32 63

Bits 32-62 of Return Address P 32-Bit PC Number

64 95 96 127

Figure 4-7. Trace Entries (Part 3 of 7)

Control 4-19

F1 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting Mode Is 24-Bit or 31-Bit)

0 0 1 1 0 0 1 0
PSW
Key

0 0 0 0 New PASN A Bits 33-62 of Return Address P

0 8 12 16 32 33 63

A Bits 33-63 of Updated Instruction Address
64 65 95

F2 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are All Zeros and Resulting
Mode Is 24-Bit or 31-Bit)

0 0 1 1 0 0 1 0
PSW
Key

0 0 1 0 New PASN A Bits 33-62 of Return Address P

0 8 12 16 32 33 63

Bits 32-63 of Updated Instruction Address
64 95

F3 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are Not All Zeros and
Resulting Mode Is 24-Bit or 31-Bit)

0 0 1 1 0 0 1 1
PSW
Key

0 0 1 1 New PASN A Bits 33-62 of Return Address P

0 8 12 16 32 33 63

Updated Instruction Address
64 127

F4 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 Is One (See Note) and Bits 0-31 of
Return Address Are All Zeros)

0 0 1 1 0 0 1 0
PSW
Key

1 0 0 0 New PASN Bits 32-62 of Return Address P

0 8 12 16 32 63

A Bits 33-63 of Updated Instruction Address
64 65 95

F5 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are All Zeros, Resulting
PSW Bit 31 Is One (See Note), and Bits 0-31 of Return Address Are All Zeros)

0 0 1 1 0 0 1 0
PSW
Key

1 0 1 0 New PASN Bits 32-62 of Return Address P

0 8 12 16 32 63

Bits 32-63 of Updated Instruction Address

64 95

Figure 4-7. Trace Entries (Part 4 of 7)

4-20 The z/Architecture CPU Architecture

F6 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are Not All Zeros, Resulting
PSW Bit 31 Is One (See Note), and Bits 0-31 of Return Address Are All Zeros)

0 0 1 1 0 0 1 1
PSW
Key

1 0 1 1 New PASN Bits 32-62 of Return Address P

0 8 12 16 32 63

Updated Instruction Address

64 127

F7 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31 Is One (See Note) and Bits 0-31 of
Return Address Are Not All Zeros)

0 0 1 1 0 0 1 1
PSW
Key

1 1 0 0 New PASN Bits 0-31 of Return Address

0 8 12 16 32 63

Bits 32-62 of Return Address P A Updated Instruction Address

64 95 96 97 127

F8 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are All Zeros, Resulting
PSW Bit 31 Is One (See Note), and Bits 0-31 of Return Address Are Not All Zeros)

0 0 1 1 0 0 1 1
PSW
Key

1 1 1 0 New PASN Bits 0-31 of Return Address

0 8 12 16 32 63

Bits 32-62 of Return Address P Bits 32-63 of Updated Instruction Address

64 95 96 127

F9 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction Address Are Not All Zeros, Resulting
PSW Bit 31 Is One (See Note), and Bits 0-31 of Return Address Are Not All Zeros)

0 0 1 1 0 1 0 0
PSW
Key

1 1 1 1 New PASN Bits 0-31 of Return Address

0 8 12 16 32 63

Bits 32-62 of Return Address P Bits 0-31 of Updated Instruction Address

64 95 96 127

Bits 32-63 of Updated Instruction Address
128 159

Figure 4-7. Trace Entries (Part 5 of 7)

Control 4-21

F1 PROGRAM TRANSFER (WITH INSTANCE if N Is One) (in 24-Bit or 31-Bit Mode)

0 0 1 1 0 0 0 1
PSW
Key

0 0 0 N New PASN Bits 32-63 of R2 before

0 8 12 15 16 32 63

F2 PROGRAM TRANSFER (WITH INSTANCE if N Is One) (in 64-Bit Mode when Bits 0-31 of R2 Are All Zeros)

0 0 1 1 0 0 0 1
PSW
Key

1 0 0 N New PASN Bits 32-63 of R2 before

0 8 12 15 16 32 63

F3 PROGRAM TRANSFER (WITH INSTANCE if N Is One) (in 64-Bit Mode when Bits 0-31 of R2 Are Not All Zeros)

0 0 1 1 0 0 1 0
PSW
Key

1 1 0 N New PASN Bits 0-31 of R2 before

0 8 12 15 16 32 63

Bits 32-63 of R2 before
64 95

F1 SET SECONDARY ASN (WITH INSTANCE if N Is One)

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 N New SASN

0 8 15 16 31

F1 TRACE (TRACE)

0 1 1 1 N 0 0 0 0 0 0 0 0 TOD-Clock Bits 16-63

0 4 8 16 63

TRACE Operand (when bit 32 of CR0 is zero)
(R1) – (R3) Model-Dependent Value

(when bit 32 of CR0 is one)
Bits 16-31 of TRACE Operand

(when bit 32 of CR0 is one)

64 80 96 95 + 32(N+1)

F2 TRACE (TRACG)

0 1 1 1 N 1
Epoch Index

Bits 1-7
TOD-Clock Bits 0-47

0 4 8 9 16 63

TOD-Clock Bits 48-79
TRACG Operand (when bit 32 of CR0 is zero)

Model-Dependent Value
(when bit 32 of CR0 is one)

Bits 16-31 of TRACG Operand
(when bit 32 of CR0 is one)

64 96 112 127

(R1) – (R3)

128 127 + 64(N+1)

Figure 4-7. Trace Entries (Part 6 of 7)

/

/

/

/

4-22 The z/Architecture CPU Architecture

The fields in the trace entries are defined as follows.
The fields are described in the order in which they
first appear in Figure 4-7 on page 4-16.

Branch Address: The branch address is the
address of the next instruction to be executed when
the branch is taken. In a branch trace entry made
when the 24-bit addressing mode is in effect after
branching (a format-1 entry), bit positions 8-31 con-
tain bits 40-63 of the branch address. When the
31-bit addressing mode is in effect after branching or
PSW bit 31 is one after branching and bits 0-32 of
the branch address are all zeros, bit positions 1-31 of
the trace entry (format 2) contain bits 33-63 of the
branch address. When PSW bit 31 is one after
branching and bits 0-32 of the branch address are
not all zeros, bit positions 32-95 of the trace entry
(format 3), contain bits 0-63 of the branch address.

In a BRANCH IN SUBSPACE GROUP trace entry
made on execution in the 24-bit or 31-bit addressing
mode, bit positions 33-63 of the trace entry (format 1)
contain bits 33-63 of the branch address, or, in the
64-bit addressing mode, bit positions 32-95 of the
trace entry (format 2) contain bits 0-63 of the branch
address.

In a mode-switching-branch trace entry made on a
switch from the 64-bit addressing mode to the 24-bit
or 31-bit addressing mode, bit positions 33-63 of the
entry (format 1) contain bits 33-63 of the branch
address; or, on a switch from PSW bit 31 being off to
the bit being on, bit positions 32-63 of the entry (for-
mat 2) contain bits 32-63 of the branch address if bits
0-31 of the branch address are zeros, or bits 32-95 of
the entry (format 3) contain bits 0-63 of the branch
address if bits 0-31 of the branch address are not all
zeros.

Primary-List Bit (P) and Bits 9-31 of ALET: Bit
position 8 of a BRANCH IN SUBSPACE GROUP
trace entry contains bit 7 of the access-list-entry
token (ALET) in the access register designated by
the R2 field of the instruction. Bit positions 9-31 of the
trace entry contain bits 9-31 of the ALET.

Basic-Addressing-Mode Bit (A): Bit position 32 of
a BRANCH IN SUBSPACE GROUP trace entry

made on execution in the 24-bit or 31-bit addressing
mode (a format-1 entry) contains the basic-address-
ing-mode bit that replaces bit 32 of the PSW.

Bit position 32 of a mode-switch trace entry that indi-
cates a switch from PSW bit 31 being off to the bit
being on (a format-1 entry) contains the value of
PSW bit 32 that existed before the mode-switch oper-
ation.

Bit position 32 of a mode-switching-branch trace
entry that indicates a switch from the 64-bit address-
ing mode to the 24-bit or 31-bit addressing mode (a
format-1 entry) contains the value that replaces PSW
bit 32.

Bit position 32 of a PROGRAM CALL trace entry
made on execution in the 24-bit or 31-bit addressing
mode (regardless of the resulting addressing mode)
(a format-1 entry) contains the basic-addressing-
mode bit, bit 32, from the current PSW.

Bit position 32 of a PROGRAM RETURN trace entry
made when the resulting addressing mode is the
24-bit or 31-bit mode (a format-1, format-2, or format-
3 entry) contains the basic-addressing-mode bit that
replaces bit 32 of the PSW.

Bit position 64 of a PROGRAM RETURN trace entry
made in the 24-bit or 31-bit addressing mode when
the return address occupies only one word in the
entry, (a format-1 or format-4 entry), contains the
value of PSW bit 32 that existed before the PRO-
GRAM RETURN operation. When the return address
occupies two words (a format-7 entry), bit position 96
contains that value of PSW bit 32.

Updated Instruction Address: Bit positions 33-63
of a mode-switch trace entry that indicates a switch
from PSW bit 31 being off to the bit being on (a for-
mat-1 entry) contains bits 33-63 of the updated
instruction address in the PSW (bits 97-127 of the
PSW) before that address is replaced, if it is
replaced, by the mode-switch operation. Bit positions
32-63 of a mode-switch trace entry (format 2) that
indicates a switch from the 64-bit addressing mode to
the 24-bit or 31-bit addressing mode contains bits
32-63 of the updated instruction address in the PSW

Note: The terminology “when Resulting PSW Bit 31 Is One” is used instead of “when Resulting Mode Is 64-Bit” because, if the resulting PSW
bit 32 is zero, an early specification exception will be recognized. PROGRAM RETURN can set PSW bit 31 to one and bit 32 to zero.

Figure 4-7. Trace Entries (Part 7 of 7)

Control 4-23

(bits 96-127 of the PSW) before that address is
replaced, if it is replaced, by the mode-switch opera-
tion, if bits 0-31 of the updated instruction address
are zeros; or bit positions 32-95 of the trace entry
(format 3) contain bits 0-63 of that updated instruc-
tion address (bits 64-127 of the PSW) if bits 0-31 of
the address are not all zeros.

The following description of a PROGRAM RETURN
trace entry applies when the return address in the
entry occupies only one word in the entry. Bit posi-
tions 65-95 of the trace entry made on execution in
the 24-bit or 31-bit addressing mode (a format-1 or
format-4 entry) contain bits 33-63 of the updated
instruction address in the PSW (bits 97-127 of the
PSW) before that address is replaced from the link-
age-stack state entry; or, when the execution is in the
64-bit addressing mode, bit positions 64-95 of the
trace entry (format 2 or 5) contain bits 32-63 of that
updated instruction address (bits 96-127 of the PSW)
if bits 0-31 of the address are zeros, or bit positions
64-127 of the trace entry (format 3 or 6) contain bits
0-63 of that updated instruction address (bits 64-127
of the PSW) if bits 0-31 of the address are not all
zeros. If the return address in the PROGRAM
RETURN trace entry occupies two words, the
updated instruction address in the entry is moved
one word to the right in the entry (formats 7-9).

PSW Key: Bit positions 8-11 of a PROGRAM
CALL, PROGRAM TRANSFER, or PROGRAM
RETURN trace entry contain the PSW key from the
current PSW.

PC Number: Bit positions 12-31 of a PROGRAM
CALL trace entry of format 1-4 contain the value of
the rightmost 20 bits of the second-operand address.
Bit positions 64-95 of a format-5 or format-6 PRO-
GRAM CALL trace entry, or bit positions 96-127 of a
format-7 entry, contain the value of the rightmost 32
bits of the second-operand address.

Return Address: Bit positions 33-62 of a PRO-
GRAM CALL trace entry made on execution in the
24-bit or 31-bit addressing mode (a format-1, format-
3, or format-5 entry) contain bits 33-62 of the
updated instruction address in the PSW (bits 97-126
of the PSW) before that address is replaced from the
entry-table entry; or, when the execution is in the
64-bit addressing mode, bit positions 32-94 of the
trace entry (format 2, 4, or 7) contain bits 0-62 of that
updated instruction address (bits 64-126 of the
PSW), or, when bits 0-31 of the address are all zeros,

bit positions 32-62 of the trace entry (format 6) con-
tain bits 32-62 of the address.

Extended-Addressing-Mode Bit (E): Bit position
15 of a PROGRAM CALL trace entry made using a
32-bit PC number (a format-5, format-6, or format-7
entry) contains the extended-addressing-mode bit
that replaces bit 31 of the PSW.

Bit positions 33-62 of a PROGRAM RETURN trace
entry made when the resulting addressing mode is
the 24-bit or 31-bit mode (a format-1, format-2, or for-
mat-3 entry) contain bits 33-62 of the instruction
address that replaces bits 64-127 of the PSW; or,
when the resulting PSW bit 31 is one (which causes
the addressing mode be the 64-bit mode unless the
resulting PSW bit 32 is zero), bit positions 32-62 of
the trace entry (formats 4-6) contain bits 32-62 of that
instruction address if bits 0-31 of the address are
zeros, or bit positions 32-94 of the trace entry (for-
mats 7-9) contain bits 0-62 of that instruction address
if bits 0-31 of the address are not all zeros.

Problem-State Bit (P): Bit position 63 of a PRO-
GRAM CALL trace entry made on execution in the
24-bit or 31-bit addressing mode (regardless of the
resulting mode) (a format-1, format-3, format-5, or
format-6 entry), or bit position 95 of the entry (format
2, 4, or 7) made on execution in the 64-bit addressing
mode, contains the problem-state bit from the current
PSW.

Bit position 63 of a PROGRAM RETURN trace entry
made when the resulting addressing mode is the
24-bit or 31-bit mode (a format-1, format-2, or format-
3 entry) or when the resulting PSW bit 31 is one and
bits 0-31 of the return address are zeros (formats
4-6) contains the problem-state bit that replaces bit
15 of the PSW. Bit position 95 of a PROGRAM
RETURN trace entry made when the resulting PSW
bit 31 is one and bits 0-31 of the return address are
not all zeros (formats 7-9) contains that problem-
state bit.

New PASN: Bit positions 16-31 a PROGRAM
TRANSFER trace entry contain the new PASN
(which may be zero) specified in bit positions 48-63
of general register R1.

Bit positions 16-31 of a PROGRAM RETURN trace
entry contain the new PASN that is restored from the
linkage-stack state entry.

4-24 The z/Architecture CPU Architecture

Bits 32-63 of R2 before: Bit positions 32-63 of a
PROGRAM TRANSFER trace entry made on execu-
tion in the 24-bit or 31-bit addressing mode (a format-
1 entry) contain bits 32-63 of the general register
designated by the R2 field of the instruction. (Bits 32
and 33-62 of that register replace bits 32 and 97-126,
respectively, of the PSW. Bit 63 of the register
replaces the problem-state bit in the PSW.) When
PROGRAM TRANSFER or PROGRAM TRANSFER
WITH INSTANCE is executed in the 64-bit address-
ing mode, bit positions 32-63 of the trace entry (for-
mat 2) contain bits 32-63 of the R2 general register if
bits 0-31 of the register are zeros, or bit positions
32-95 of the trace entry (format 3) contain bits 0-63
of the register if bits 0-31 of the register are not all
zeros.

New SASN: Bit positions 16-31 of a SET SEC-
ONDARY ASN trace entry contain the ASN value
loaded into control register 3 by the instruction.

Number of Registers (N): Bits 4-7 of the trace
entry for TRACE contain a value which is one less
than the number of general registers which have
been provided in the trace entry. The value of N
ranges from zero, meaning the contents of one gen-
eral register are provided in the trace entry, to 15,
meaning the contents of all 16 general registers are
provided.

Epoch Index Bits 1-7: When the multiple-epoch
facility is installed in the configuration, bits 9-15 of the
trace entry for TRACE (TRACG) are obtained from
bit positions 1-7 of the epoch index, as would be pro-
vided by a single STORE CLOCK EXTENDED
instruction executed at the time the TRACE instruc-
tion was executed (the single execution of which also
provided bits 0-79 of the TOD clock)

When the multiple-epoch facility is not installed in the
configuration, the following applies:

• When the TOD clock has not wrapped around to
zeros, bits 9-15 of the trace entry for TRACE
(TRACG) contain zeros.

• When the TOD clock has wrapped around to
zeros, it is unpredictable whether bits 9-15 of the
trace entry for TRACE (TRACG) contain zeros or
bits 1-7 of the epoch index (as described above).

TOD-Clock Bits 16-63 or 0-79: When the store-
clock-fast facility is not installed, or when the TRACE
TOD-clock control in bit 32 of control register 0 is

zero, bits 16-63 of the trace entry for TRACE
(TRACE) are obtained from bit positions 16-63 of the
TOD clock, as would be provided by a STORE
CLOCK instruction executed at the time the TRACE
instruction was executed. When the store-clock-fast
facility is installed and the TRACE TOD-clock control
in bit 32 of control register zero is one, bits 16-63 of
the trace entry for TRACE (TRACE) are obtained
from bit positions 16-63 of the TOD clock, as would
be provided by a STORE CLOCK FAST instruction
executed at the time the TRACE instruction was exe-
cuted.

Bits 16-95 of the trace entry for TRACE (TRACG) are
obtained from bit positions 0-79 of the TOD clock, as
would be provided by a STORE CLOCK EXTENDED
instruction executed at the time the TRACE instruc-
tion was executed.

TRACE Operand: When the store-clock-fast facility
is not installed, or when the TRACE TOD-clock con-
trol in bit 32 of control register 0 is zero, bit positions
64-95 of the trace entry for TRACE (TRACE) and bit
positions 96-127 of the trace entry for TRACE
(TRACG) contain a copy of the 32 bits of the second
operand of the TRACE instruction for which the entry
is made.

When the store-clock-fast facility is installed and the
TRACE TOD-clock control in bit 32 of control register
0 is one, the trace-operand field in the trace entry is
formed as follows:

• Bit positions and 80-95 of the trace entry for
TRACE (TRACE) and bit positions 112-127 of
the trace entry for TRACE (TRACG) contain a
copy of bits 16-31 of the second operand of the
TRACE instruction for which the entry is made.

• The contents of bit positions 64-79 of the trace
entry for TRACE (TRACE) and the contents of bit
positions 96-111 for TRACE (TRACG) are set to
a model-dependent value.

(R1)-(R3): The four-byte fields starting with bit 96 of
the trace entry for TRACE (TRACE) contain the con-
tents of bit positions 32-63 of the general registers
whose range is specified by the R1 and R3 fields of
the TRACE instruction. The general registers are
stored in ascending order of register numbers, start-
ing with general register R1 and continuing up to and
including general register R3, with general register 0
following general register 15. The eight-byte fields
starting with bit 128 of the trace entry for TRACE

Control 4-25

(TRACG) similarly contain the contents of bit posi-
tions 0-63 of those registers.

Programming Note: The size of the trace entry for
TRACE (TRACE) in units of words is 3 + (N + 1). The
maximum size of an entry is 19 words, or 76 bytes.
For TRACE (TRACG), the size in units of words is
4 + 2(N + 1), and the maximum size is 36 words, or
144 bytes.

Trace Operation

When an instruction which is subject to tracing is
executed and the corresponding tracing function is
turned on, a trace entry of the appropriate type and
format is made, except as noted below. The real
address of the trace entry is formed by appending
two zero bits on the left and two on the right to the
value in bit positions 2-61 of control register 12. The
address in control register 12 is subsequently
increased by the size of the entry created.

In the ESA/390-compatibility mode, implicit tracing
(that is, branch tracing, mode tracing, and ASN trac-
ing) is not supported.

No trace entry is stored if the incrementing of the
address in control register 12 would cause a carry to
be propagated into bit position 51 (that is, if the trace-
entry address would be in the next 4 K-byte block). If
this would be the case for the entry to be made, a
trace-table exception is recognized and the operation
is nullified. When PROGRAM CALL is to form both a
PROGRAM CALL trace entry and a mode-switch
trace entry, neither entry is stored, and a trace-table
exception is recognized, if either entry would cause a
carry into bit position 51. For the purpose of recog-
nizing the trace-table exception in the case of a
TRACE instruction, the maximum length of 76
(TRACE) or 144 (TRACG) bytes is used instead of
the actual length.

When the CPU is in the transactional-execution
mode, an instruction that would otherwise cause trac-
ing to occur is restricted. Attempted execution of
such an instruction causes the transaction to be
aborted with abort code 11, and the condition code is
set to 3; no trace entry is made, and no trace-table
exception condition (if any) is recognized.

The storing of a trace entry is not subject to key-con-
trolled protection (nor, since the trace-entry address
is real, is it subject to DAT protection), but it is subject

to low-address protection; that is, if the address of
the trace entry due to be created is in the range
0-511 or 4096-4607 and bit 35 of control register 0 is
one, a protection exception is recognized, and
instruction execution is suppressed. If the address of
a trace entry is invalid, an addressing exception is
recognized, and instruction execution is suppressed.

The three exceptions associated with storing a trace
entry (addressing, protection, and trace table) are
collectively referred to as trace exceptions.

If a program interruption takes place for a condition
which is not a trace-exception condition and for which
execution of an instruction is not completed, it is
unpredictable whether part or all of any trace entry
due to be made for such an interrupted instruction is
stored in the trace table. Thus, for a condition which
would ordinarily cause nullification or suppression of
instruction execution, storage locations may have
been altered beginning at the location designated by
control register 12 and extending up to the length of
the entry that would have been created.

When PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by BRANCH AND
STACK and ASN tracing is on, trace exceptions may
be recognized, even though a trace entry is not made
and no part of a trace entry is stored.

The order in which information is placed in a trace
entry is unpredictable. Furthermore, as observed by
other CPUs and by channel programs, the contents
of a byte of a trace entry may appear to change more
than once before completion of the instruction for
which the entry is made.

The trace-entry address in control register 12 is
updated only on completion of execution of an
instruction for which a trace entry is made.

A serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed. However, it is
unpredictable whether or not a store into a trace-
table entry from which a subsequent instruction is
fetched will be observed by the CPU that performed
the store. Additionally, when the store-clock-fast facil-
ity is installed and the TRACE TOD-clock control in
bit 32 of control register 0 is one, it is unpredictable
whether explicit tracing causes serialization to be
performed.

4-26 The z/Architecture CPU Architecture

Program-Event Recording

The purpose of PER is to assist in debugging pro-
grams. It permits the program to be alerted to the fol-
lowing types of events:

• Execution of a successful branch instruction. The
option is provided of having an event occur only
when the branch-target location is within the des-
ignated storage area.

• Fetching of an instruction from the designated
storage area.

• Alteration of the contents of the designated stor-
age area. The option is provided of having an
event occur only when the storage area is within
designated address spaces.

• Execution of the STORE USING REAL
ADDRESS instruction.

• Execution of the TRANSACTION END instruc-
tion.

The PER zero-address-detection facility may be
available on a model implementing z/Architecture.
When the zero-address-detection facility is installed
in the machine, it is unpredictable whether the facility
is installed in the ESA/390-compatibility mode. When
this facility is installed, the program may be alerted to
the following additional event:

• Execution of an instruction that accesses storage
using an operand address formed from a general
register containing zero.

The PER-storage-key-alteration facility may be avail-
able on a model implementing z/Architecture. When
the PER-storage-key-alteration facility is installed in
the machine, it is unpredictable whether the facility is
installed in the ESA/390-compatibility mode. When
this facility is installed, the program may be alerted to
the following additional event:

• Execution of a SET STORAGE KEY
EXTENDED, PERFORM FRAME MANAGE-
MENT FUNCTION, MOVE PAGE, or TEST
BLOCK instruction that updates the storage key
of the designated storage area.

The program can selectively specify that one or more
of the above types of events be recognized, except
that the event for STORE USING REAL ADDRESS
can be specified only along with the storage-alter-
ation event. The information concerning a PER event

is provided to the program by means of a program
interruption, with the cause of the interruption being
identified in the interruption code.

PER Instruction-Fetching
Nullification

The PER-3 facility may be available on a model
implementing z/Architecture. When the PER-3 facility
is installed in the machine, it is unpredictable whether
the facility is installed in the ESA/390-compatibility
mode.

When this facility is installed, bit 39 of control register
9, when one, specifies that PER instruction-fetching
events force nullification. Bit 39 is effective for this
purpose only when bit 33 of control register 9, the
instruction-fetching PER-event mask bit, is also one.
When bit 33 is zero, PER instruction-fetching events
are not recognized, and bit 39 has no effect. When
the PER-3 facility is not installed or bit 39 is zero,
PER instruction-fetching events do not force nullifica-
tion. A PER instruction-fetching event that forces nul-
lification is referred to as a PER instruction-fetching
nullification event. A PER event that does not force
nullification is referred to as a PER basic event.

When the PER-3 facility is installed, and bit 39 is one,
the interruption caused by a PER instruction-fetching
event occurs before the fetched instruction is exe-
cuted, the PER instruction-fetching nullification event
is indicated, no other PER events and no other pro-
gram interruption conditions are reported, and execu-
tion of the instruction is nullified. When the PER-3
facility is not installed, or bit 39 is zero, nullification is
not forced, the PER instruction-fetching basic event
is indicated, other PER events and other program
interruption conditions may be concurrently reported,
and the execution of the instruction may be com-
pleted, terminated, suppressed, or nullified. In the
absence of other conditions, the interruption caused
by the PER instruction-fetching basic event occurs
after execution of the fetched instruction, or units of
operation thereof, are completed.

Control-Register Allocation and
Address-Space-Control Element

The information for controlling PER resides in control
registers 9, 10, and 11 and the address-space-con-
trol element.

Control 4-27

Depending on the model, when any or all of control
registers 9, 10, or 11 contain nonzero values,
address-compare controls may be disabled and
remain disabled even if all of control registers 9-11
transition back to zeros. See “Address-Compare
Controls” on page 12-1 for details.

The information in the control registers has the fol-
lowing format:

Control Register 9

Control Register 10

Control Register 11

PER-Event Masks (EM): Bits 32-39 of control reg-
ister 9 specify which types of events are recognized.
Bits 32-34 and 36 are always available and control
successful-branching events, instruction-fetching
basic events, and storage-alteration events. When
the PER-storage-key-alteration facility is installed, bit
35 of the PER-event masks is also used. When the
PER zero-address-detection facility is installed, bit 37
of the PER-event masks is also used. When the
transactional-execution facility is installed, bit 38 of
the PER-event masks is also used. When the PER-3
facility is installed, bit 39 of the PER-event masks is
also used. In the ESA/390-compatibility mode it is
unpredictable whether the storage-key-alteration,
zero-address-detection, instruction-fetching-nullifica-
tion masks, bits 35, 37, and 39, respectively, are sup-
ported.

The bits are assigned as follows:

Bits 32-34 and bit 36, when ones, specify that the
corresponding types of events be recognized. How-
ever, bit 36 is effective for this purpose only when bit
34 is also one. When bit 34 is one, the storage-alter-
ation event is recognized. When bits 34 and 36 are
ones, both the storage-alteration event and the store-
using-real-address event are recognized. When a bit
is zero, the corresponding type of event is not recog-
nized. When bit 34 is zero, both the storage-alter-
ation event and the store-using-real-address event
are not recognized.

When the PER-3 facility is not installed, bit 39 is
ignored. Bit 39 is effective only when bit 33 is also
one. When bit 33 is one, and the PER-3 facility is
installed, and bit 39 is one, the PER instruction-fetch-
ing nullification event is recognized. When bit 33 is
one and bit 39 is zero (or the PER-3 facility is not
installed) the PER instruction-fetching basic event is
recognized. When bit 33 is zero, neither the PER
instruction-fetching basic event nor the PER instruc-
tion-fetching nullification event is recognized.

When the transactional-execution facility is not
installed, or when the facility is installed and bit 38 is
zero, transaction-end events are not recognized.
When the transactional-execution facility is installed
and bit 38 is one, a transaction-end event is recog-
nized as a result of the completion of an outermost
TRANSACTION END instruction. In the ESA/390-
compatibility mode, bit 38 of control register 9 is
ignored.

When the PER-storage-key-alteration facility is not
installed, bit 35 is ignored. When bit 35 is one and
the PER-storage-key-alteration facility is installed, a
storage-key-alteration event is recognized when any
of the following instructions executes and updates
the ACC or F bits of the storage key associated with

0 31

EM B
E
S

S

32 40 41 42 63

Starting Address
0 31

Starting Address (continued)
32 63

Ending Address
0 31

Ending Address (continued)
32 63

Bit 32: Successful-branching event
Bit 33: Instruction-fetching event
Bit 34: Storage-alteration event
Bit 35: Storage-key-alteration event
Bit 36: Store-using-real-address event (bit 34 must

also be one)
Bit 37: Zero-address-detection event
Bit 38: Transaction-end event
Bit 39: Instruction-fetching nullification event (bit 33

must also be one)

4-28 The z/Architecture CPU Architecture

a 4K-byte block of storage that lies within the desig-
nated area:

• MOVE PAGE when the move-page-and-set-key
facility is installed and KFC (bits 51-53 of general
register 0) contains a value of 4 or 5

• PERFORM FRAME MANAGEMENT FUNCTION
when SK (bit 46 of general register R1) is one

• SET STORAGE KEY EXTENDED
• TEST BLOCK, but only when the model’s imple-

mentation actually updates the storage key

Branch-Address Control (B): Bit 40 of control
register 9 specifies, when one, that successful-
branching events occur only for branches that are to
a location within the designated storage area. When
bit 40 is zero, successful branching events occur
regardless of the branch-target address.

Event-Suppression Control (ES): When the CPU
is in the transactional-execution mode at the begin-
ning of an instruction, bit 41 of control register 9
specifies, when one, that the PER event masks in
bits 32-34, 36, 37, and 39 of the register are to be
ignored and assumed to contain zeros. Except as
noted below, when the CPU is not in the transac-
tional-execution mode at the beginning of the instruc-
tion, or when bit 41 of the register is zero, all PER
event masks operate as defined.

When (a) an outermost TRANSACTION BEGIN
instruction is executed, (b) there are no concurrent
program-exception conditions, and (c) the ES control
is one, any PER storage-alteration or zero-address-
detection event for the TBEGIN-specified TDB and
any instruction-fetching basic event are suppressed;
instruction-fetching nullification events are not sup-
pressed in this case.

In the ESA/390-compatibility mode, the event-sup-
pression control is ignored.

Architecture Notes:

Storage-Alteration-Space Control (S): Bit 42 of
control register 9 specifies, when one, that storage-
alteration events occur as a result of references to
the designated storage area only within designated
address spaces. An address space is designated as
one for which storage-alteration events occur by
means of the storage-alteration-event bit in the
address-space-control element that is used to trans-

late references to the address space. Bit 42 is
ignored when DAT is not in effect. When DAT is not in
effect or bit 42 is zero, storage-alteration events are
not restricted to occurring for only particular address
spaces.

PER Starting Address: Bits 0-63 of control regis-
ter 10 are the address of the beginning of the desig-
nated storage area. In the ESA/390-compatibility
mode, it is unpredictable whether bit 32 of the PER
starting address is treated as being zero.

PER Ending Address: Bits 0-63 of control regis-
ter 11 are the address of the end of the designated
storage area. In the ESA/390-compatibility mode, it is
unpredictable whether bit 32 of the PER ending
address is treated as being zero.

Storage-Alteration-Event Bit (S): When the stor-
age-alteration-space control in control register 9 is
one, bit 56 of the address-space control element
(ASCE) specifies, when one, that the address space
defined by the ASCE is one for which storage-alter-
ation events can occur. See the sections “Control
Register 1” on page 3-42, “Control Register 7” on
page 3-44, and “Control Register 13” on page 3-45
for illustrations of the ASCE.

Bit 56 of the ASCE is examined when the ASCE is
used to perform dynamic-address translation for a
storage-operand store reference. The address-
space-control element may be the PASCE, SASCE,
or HASCE in control register 1, 7, or 13, respectively,
or it may be obtained from an ASN-second-table
entry during access-register translation. Instead of
being obtained from an ASN-second-table entry in
main storage, bit 56 of the ASCE may be obtained
from an ASN-second-table entry in the ART-loo-
kaside buffer (ALB). Bit 56 of the ASCE is ignored
when the storage-alteration-space control is zero.

Programming Notes:

1. Models may operate at reduced performance
while the CPU is enabled for PER events. In
order to ensure that CPU performance is not
degraded because of the operation of the PER
facility, programs that do not use it should disable
the CPU for PER events by setting either the
PER mask in the PSW to zero or the PER-event
masks in control register 9 to zero, or both. No
degradation due to PER occurs when either of
these fields is zero.

Control 4-29

2. Some degradation may be experienced on some
models every time control registers 9, 10, and 11
are loaded, even when the CPU is disabled for
PER events (see the programming note under
“Storage-Area Designation”).

3. Enabling the CPU for PER instruction-fetching
nullification may be used to determine the state
of the CPU before execution of any instruction
within the storage area designated by control
registers 10 and 11. The instruction nullified
could be the first instruction after a successful
branch, after LOAD PSW, or after LOAD PSW
EXTENDED; or it could be the target of an exe-
cute-type instruction or the leftmost instruction in
the storage area and accessed in the process of
sequential execution. After recording the desired
information, in order to allow the CPU to execute
this instruction, either the CPU must be disabled
for instruction-fetching nullification or control reg-
isters 10 and 11 must be changed to designate a
different storage area. This can be contrasted to
enabling for PER successful branching within the
same storage area, which causes a PER event to
be reported only in the first case mentioned
above, but does not require special action to con-
tinue.

PER Operation

PER is under control of bit 1 of the PSW, the PER
mask. When the PER mask and a particular PER-
event mask bit are all ones, the CPU is enabled for
the corresponding type of event; otherwise, it is dis-
abled. However, the CPU is enabled for the store-
using-real-address event only when the storage-
alteration mask bit and the store-using-real-address
mask bit are both one.

The CPU is enabled for the PER instruction-fetching
nullification event only when the PER-3 facility is
installed, and then only when the instruction-fetching-
event mask bit, the instruction-fetching-nullification-
event mask bit, and the PER mask are all ones. An
interruption due to a PER instruction-fetching nullifi-
cation event causes the execution of the instruction
causing the event to be nullified.

An interruption due to a PER basic event normally
occurs after the execution of the instruction responsi-
ble for the event. The occurrence of the event does
not affect the execution of the instruction, which may
be completed, partially completed, terminated, sup-

pressed, or nullified. However, recognition of a stor-
age-alteration event causes no more than 4K bytes
to be stored to each operand location intersecting
with the designated PER storage-area, beginning
with the byte that caused the event.

The following applies to instructions performing an
operation which may be suspended and subse-
quently resumed :

• When a storage-alteration PER event is recog-
nized, the event is indicated by an interruption
which may occur on completion of a unit of oper-
ation for an interruptible instruction, or may occur
on completion of a CPU-determined amount of
data for an instruction which has a condition-
code alternative to interruptibility.

• When a zero-address-detection PER event is
recognized, the event is indicated by an interrup-
tion which may occur on completion of a unit of
operation for an interruptible instruction, or may
occur on completion of a CPU-determined
amount of data for an instruction which has a
condition-code alternative to interruptibility.

When a storage-key-alteration event is detected on
an instruction that updates the storage keys for multi-
ple 4k-byte blocks, that instruction is interrupted
immediately upon setting the storage key for the
block where the event was detected. For MOVE
PAGE, PERFORM FRAME MANAGEMENT FUNC-
TION and TEST BLOCK, the clearing or moving of
data for that block are also completed before the
interruption for the PER event.

An interruption for an instruction-fetching nullification
event occurs before the instruction responsible for
the event is executed, and the operation is nullified.

When a PER event is recognized while the CPU is in
the transactional-execution mode, the transaction is
aborted as described in “Transaction Abort Process-
ing” on page 5-102, and bit 6 is set in the program-
interruption code, indicating that the interruption
occurred while the CPU was in the transactional-exe-
cution mode. For storage-alteration events that occur
while the CPU is in the transactional-execution mode
(except for those caused by NONTRANSACTIONAL
STORE), the store is discarded even though the
event results in a PER interruption.

A PER storage-alteration or zero-address-detection
event is detected for the TBEGIN-specified transac-

4-30 The z/Architecture CPU Architecture

tion diagnostic block during the execution of the out-
ermost TRANSACTION BEGIN instruction rather
than during transaction abort processing. It is unpre-
dictable whether a PER storage-alteration or zero-
address-detection event is detected for the TBEGIN-
specified TDB during the execution of inner TBEGIN
instructions.

When the CPU is disabled for a particular PER event
at the time it occurs, either by the PER mask in the
PSW or by the masks in control register 9, the event
is not recognized.

A change to the PER mask in the PSW or to the PER
control fields in control registers 9, 10, and 11 affects
PER starting with the execution of the immediately
following instruction. Thus, if, as a result of the
change, an instruction-fetching nullification event
applies to the immediately following instruction, exe-
cution of that instruction will be nullified and the
instruction-fetching nullification event reported.

A change to the storage-alteration-event bit in an
address-space-control element in control register 1,
7, or 13 also affects PER starting with the execution
of the immediately following instruction. A change to
the storage-alteration-event bit in an address-space-
control element that may be obtained, during access-
register translation, from an ASN-second-table entry
in either main storage or the ALB does not necessar-
ily have an immediate, if any, effect on PER. How-
ever, PER is affected immediately after either
PURGE ALB or COMPARE AND SWAP AND
PURGE that purges the ALB is executed.

If a PER basic event occurs during the execution of
an instruction which changes the CPU from being
enabled to being disabled for that type of event, that
PER event is recognized.

PER basic events may be recognized in a trial execu-
tion of an instruction, and subsequently the instruc-
tion, DAT-table entries, and operands may be
refetched for the actual execution. If any refetched
field was modified by another CPU or by a channel
program between the trial execution and the actual
execution, it is unpredictable whether the PER events
indicated are for the trial or the actual execution.

For special-purpose instructions that are not
described in this publication, the operation of PER
may not be exactly as described in this section.

Identification of Cause

A program interruption for PER sets bit 8 of the inter-
ruption code to one and places identifying informa-
tion in real storage locations 150-159. When the PER
event is a storage-alteration event or a zero-address-
detection event, information is also stored in location
161. Additional information is provided by means of
the instruction address in the program old PSW and
the ILC.

Locations 150-151:

PER Code: The occurrence of PER events is indi-
cated by ones in bit positions 0-7. The bit position in
the PER code for a particular type of event is as fol-
lows:

A one in bit position 2 and a zero in bit position 4 of
location 150 indicate a storage-alteration event, while
ones in bit positions 2 and 4 indicate a store-using-
real-address event. When a program interruption
occurs, more than one type of PER basic event can
be concurrently indicated. However, when a storage-
alteration event and a zero-address-detection event
are concurrently recognized, only the storage-alter-
ation event is indicated. Additionally, if another pro-
gram-interruption condition exists, the interruption
code for the program interruption may indicate both
the PER basic events and the other condition.

When a program interruption occurs for a PER
instruction-fetching nullification event, bits 1 and 7
are set to one in the PER code. No other PER events
are concurrently indicated.

When the transactional-execution facility is installed,
and a program interruption occurs for a transaction-
end event, bit 6 is set to one in the PER code. If an
instruction-fetching basic event coincides with the
transaction-end event, bit 1 is also set to one in the

PER Code ATMID AI
0 8 14 15

Bit PER Event
0 Successful-branching
1 Instruction-fetching
2 Storage-alteration
3 Storage-key-alteration
4 Store-using-real-address
5 Zero-address-detection
6 Transaction-end
7 Instruction-fetching nullification (PER-3)

Control 4-31

PER code. No other PER events are concurrently
indicated with a transaction-end event.

A zero is stored in bit position 3 of locations 150-151.
When the PER zero-address-detection facility is not
installed, zero is stored in bit position 5. When the
transactional-execution facility is not installed, zero is
stored in bit position 6. When PER-3 is not installed,
zero is stored in bit position 7.

Addressing-and-Translation-Mode Identification
(ATMID): During a program interruption when a
PER event is indicated, bits 31, 32, 5, 16, and 17 of
the PSW at the beginning of the execution of the
instruction that caused the event may be stored in bit
positions 8 and 10-13, respectively, of real locations
150-151. If bits 31, 32, 5, 16, and 17 are stored, then
a one bit is stored in bit position 9 of locations
150-151. If bits 31, 32, 5, 16, and 17 are not stored,
then zero bits are stored in bit positions 8-13 of loca-
tions 150-151.

Bits 8-13 of real locations 150-151 are named the
addressing-and-translation-mode identification
(ATMID). Bit 9 is named the ATMID-validity bit. When
bit 9 is zero, it indicates that an invalid ATMID (all
zeros) was stored.

The meanings of the bits of a valid ATMID are as fol-
lows:

A valid ATMID is necessarily stored only if the PER
event was caused by one of the following instruc-
tions:

• BRANCH AND SAVE AND SET MODE
(BASSM)

• BRANCH AND SET AUTHORITY (BSA)
• BRANCH AND SET MODE (BSM)
• BRANCH IN SUBSPACE GROUP (BSG)
• LOAD PSW (LPSW)
• LOAD PSW EXTENDED (LPSWE)
• PROGRAM CALL (PC)
• PROGRAM RETURN (PR)
• PROGRAM TRANSFER (PT)
• PROGRAM TRANSFER WITH INSTANCE (PTI)

• RESUME PROGRAM (RP)
• SET ADDRESS SPACE CONTROL (SAC)
• SET ADDRESS SPACE CONTROL FAST

(SACF)
• SET ADDRESSING MODE (SAM24, SAM31,

SAM64)
• SET SYSTEM MASK (SSM)
• STORE THEN AND SYSTEM MASK (STNSM)
• STORE THEN OR SYSTEM MASK (STOSM)
• SUPERVISOR CALL (SVC)
• TRAP (TRAP2, TRAP4)

It is unpredictable whether a valid ATMID is stored if
the PER event was caused by any other instruction.
The value of the PER instruction-fetching-nullifica-
tion-event mask bit does not affect the contents of the
ATMID field.

PER ASCE Identification (AI): If the PER code
contains an indication of a storage-alteration event
(bit 2 is one and bit 4 is zero), or a zero-address
detection event (bit 5 is one), and the event occurred
when both PSW bit 5 was one and an ASCE was
used to translate the reference that caused the event,
bits 14 and 15 of locations 150-151 are set to identify
the address-space-control element (ASCE) that was
used to translate the reference that caused the event,
as follows:

The CPU may avoid setting bits 14 and 15 to 01 by
recognizing that access-list-entry token (ALET)
00000000 or 00000001 hex was used or that the
ALET designated, through an access-list entry, an
ASN-second-table entry containing an ASCE equal
to the primary ASCE, secondary ASCE, or home
ASCE. When an ALE-designated ASCE was used,
and the designated ASCE matches more than one of
the primary ASCE, secondary ASCE, and home
ASCE, it is unpredictable which of the matching
ASCEs is indicated.

Bit Meaning
8 PSW bit 31
9 ATMID-validity bit
10 PSW bit 32
11 PSW bit 5
12 PSW bit 16
13 PSW bit 17

Bits
14-15 Meaning
00 Primary ASCE was used.
01 An AR-specified ASCE was used. The PER access

ID, real location 161, can be examined to determine
the ASCE used. Even when an AR-specified ASCE
is used, if the contents of the AR designate the
primary, secondary, or home ASCE, bits 14 and 15
may be set to 00, 10, or 11, respectively, instead of
to 01.

10 Secondary ASCE was used.

11 Home ASCE was used.

4-32 The z/Architecture CPU Architecture

If the PER storage-alteration event occurred as a
result of STORE HALFWORD RELATIVE LONG or
STORE RELATIVE LONG, bits 14 and 15 corre-
spond to the ASCE used to fetch the instruction: 00
when the CPU was in the primary-space mode, the
secondary-space mode, or the access-register
mode, and 11 when the CPU was in the home-space
mode.

If either of the following is true, zeros are stored in bit
positions 14 and 15 of locations 150-151.

• PSW bit 5 was zero, and an ASCE was not used
to translate the reference that caused the event.

• The PER code indicates that neither a storage-
alteration event nor a zero-address-detection
event occurred.

The contents of the PER ASCE identification are
unpredictable when any of the following is true:

• PSW bit 5 was zero, and an ASCE was used to
translate the reference that caused the event.

• PSW bit 5 was one, and an ASCE was not used
to translate the reference that caused the event.

Programming Note: Except for references to the
enhanced-monitor counting array, an ASCE is not
used to translate the reference when DAT is off or
when the operand is defined to contain a real
address (as is the case for LOAD USING REAL
ADDRESS and STORE USING REAL ADDRESS).
An ASCE is also not used to translate the reference
when the operand is defined to contain a real or
absolute address (as is the case for COMPARE AND
REPLACE DAT TABLE ENTRY, INVALIDATE DAT
TABLE ENTRY, INVALIDATE PAGE TABLE ENTRY,
SET STORAGE KEY EXTENDED, and PERFORM
FRAME MANAGEMENT FUNCTION).

PER Address: In the z/Architecture architectural
mode, the PER-address field at locations 152-159
contains the instruction address used to fetch the

instruction responsible for the recognized PER event
or events, as shown in Figure 4-8, below.

In the ESA/390-compatibility mode, the PER-address
field at locations 152-155 contains bits 33-63 of the
instruction address used to fetch the instruction
responsible for the recognized PER event or events,
as shown in Figure 4-9, below. Bit 0 of location 152 is
stored as zero.

When the instruction is the target of an execute-type
instruction (EXECUTE or EXECUTE RELATIVE
LONG), the instruction address used to fetch the exe-
cute-type instruction is placed in the PER-address
field.

PER Access Identification (PAID): If a storage-
alteration event or zero-address-detection event is
indicated in the PER code, and the PER ASCE iden-
tification (AI, bits 14-15 of locations 150-151) con-
tains 01 binary, an indication of the address space to
which the event applies is stored at location 161, as
shown below.

Location 161:

The number of the access register used is stored in
bit positions 4-7 of location 161, and zeros are stored
in bit positions 0-3. The contents of location 161 are
unpredictable when the PER ASCE identification
does not contain 01 binary.

Instruction Address: The instruction address in
the program old PSW is the address of the instruc-
tion which would have been executed next, unless
another program condition is also indicated, in which
case the instruction address is that determined by
the instruction ending due to that condition. When a

PER Address
0 31

PER Address (continued)
32 63

Figure 4-8. Locations 152-159 in the z/Architecture
Architectural Mode

0 PER Address (bits 33-63)
0 1 31

Figure 4-9. Locations 152-155 in the ESA/390-
Compatibility Mode

0 0 0 0 PAID
0 4 7

Control 4-33

PER instruction-fetching nullification event is recog-
nized, the instruction address in the program old
PSW is the address of the instruction responsible for
the event. This is the same address stored in the
PER address field in real storage locations 152-159.

ILC: For PER instruction nullification events, the
ILC is 0. For PER basic events, the ILC indicates the
length of the instruction designated by the PER
address, except when a concurrent specification
exception for the PSW introduced by LOAD PSW,
LOAD PSW EXTENDED, PROGRAM RETURN, or a
supervisor-call interruption sets an ILC of 0.

Programming Notes:

1. PSW bit 31 is the extended-addressing-mode bit,
and PSW bit 32 is the basic-addressing-mode
bit. When PSW bit 31 and 32 are both one, they
specify the 64-bit addressing mode. When PSW
bit 31 is zero, PSW 32 specifies the 24-bit
addressing mode if the bit is zero or the 31-bit
addressing mode if the bit is one. PSW bit 5 is
the DAT-mode bit, and PSW bits 16 and 17 are
the address-space-control bits. For the handling
of instruction and logical addresses in the differ-
ent translation modes, see “Translation Modes”
on page 3-40.

2. A valid ATMID allows the program handling the
PER event to determine the address space from
which the instruction that caused the event was
fetched and also to determine which translation
mode applied to the storage-operand references
of the instruction, if any. Each of the instructions
for which a valid ATMID is necessarily stored can
change one or more of PSW bits 5, 16, and 17,
with the result that the values of those bits in the
program old PSW that is stored because of the
PER event are not necessarily the values that
existed at the beginning of the execution of the
instruction that caused the event. The instruc-
tions for which a valid ATMID is necessarily
stored are the only instructions that can change
any of PSW bits 5, 16, and 17.

3. If a storage-alteration PER event or zero-
address-detection event is indicated and DAT
was on when the event occurred, an indication of
the address-space-control element that was
used to translate the reference that caused the
event is given by the PER ASCE identification,
bits 14 and 15 of real locations 150-151. If bits 14
and 15 indicate that an AR-specified address-

space-control element was used, the PER
access identification in real location 161 can be
used to determine the address space that was
referenced. To determine if DAT was on, the pro-
gram handling the PER event should first exam-
ine the ATMID-validity bit to determine whether a
valid ATMID was stored and, if it was stored, then
examine the DAT-mode bit in the ATMID. If a valid
ATMID was not stored, the program should
examine the DAT-mode bit in the program old
PSW.

4. If a valid ATMID is stored, it also allows the pro-
gram handling the PER event to determine the
addressing mode (24-bit, 31-bit, or 64-bit) that
existed for the instruction that caused the PER
event. This knowledge of the addressing mode
allows the program to determine, without any
chance of error, the meaning of one bits in bit
positions 0-39 of the addresses of the instruction
and of the storage operands, if any, of the
instruction and, thus, to determine accurately the
locations of the instruction and operands. Note
that the address of the instruction is not neces-
sarily provided without error by the PER address
in real locations 152-159 because that address
may be the address of an execute-type instruc-
tion, with the address of the target instruction still
to be determined from the fields that specify the
second-operand address of the execute-type
instruction. Also note that another possible
source of error is that, in the 24-bit or 31-bit
addressing mode, an instruction or operand may
wrap around in storage by beginning just below
the 16 M-byte or 2 G-byte boundary, respectively.

5. A valid ATMID is necessarily stored for all
instructions that can change the addressing-
mode bits. However, the ATMID mechanism does
not provide complete assurance that the instruc-
tion causing a PER event and the instruction’s
operands can be located accurately because
LOAD CONTROL and LOAD ADDRESS SPACE
PARAMETERS can change the address-space-
control element that was used to fetch the
instruction.

Priority of Indication
When a PER instruction-fetching nullification event is
recognized and other program interruption conditions
exist, only the program interruption condition with the
highest priority is indicated. See “Multiple Program-
Interruption Conditions” on page 6-51 for a descrip-
tion of the priority of program interruption conditions.

4-34 The z/Architecture CPU Architecture

When a PER instruction-fetching nullification event is
indicated, no other PER events are indicated. When
a PER instruction-fetching nullification event is not
indicated, then more than one PER basic event may
be recognized and reported. The remainder of this
section applies to these cases.

When a program interruption for PER occurs and
more than one PER basic event has been recog-
nized, all recognized PER events are concurrently
indicated in the PER code. However, when either a
storage-alteration or store-using-real-address event
is recognized concurrently with a zero-address-
detection event, only the storage alteration or store-
using-real-address event is indicated. Certain other
program-interruption conditions may be concurrently
indicated with a PER basic event as described in
“Indication of PER Events Concurrently with Other
Interruption Conditions” on page 4-40.

When a zero-address-detection event is recognized
for more than one storage operand, it is unpredict-
able which operand’s ASCE identification and AR
number, if applicable, are stored in locations 150-151
and 161.

In the case of an instruction-fetching basic event for
SUPERVISOR CALL, the program interruption
occurs immediately after the supervisor-call interrup-
tion.

If a PER basic event is recognized during the execu-
tion of an instruction which also introduces a new
PSW with the type of PSW-format error which is rec-
ognized early (see “Exceptions Associated with the
PSW” on page 6-9), both the specification exception
and PER are indicated concurrently in the interrup-
tion code of the program interruption. If the PSW-for-
mat error is of the type which is recognized late, only
PER is indicated in the interruption code. In both
cases, the invalid PSW is stored as the program old
PSW.

Recognition of a PER basic event does not normally
affect the ending of instruction execution. However, in
the following cases, execution of an interruptible
instruction is not completed normally:

1. When the instruction is due to be interrupted for
an asynchronous condition (I/O, external, restart,
or repressible machine-check condition), a pro-
gram interruption for the PER event occurs first,
and the other interruptions occur subsequently

(subject to the mask bits in the new PSW) in the
normal priority order.

2. When the stop function is performed, a program
interruption indicating the PER event occurs
before the CPU enters the stopped state.

3. When any program exception is recognized, PER
events recognized for that instruction execution
are indicated concurrently.

4. Depending on the model, in certain situations,
recognition of a PER event may appear to cause
the instruction to be interrupted prematurely with-
out concurrent indication of a program exception,
without an interruption for any asynchronous
condition, and without the CPU entering the
stopped state. In particular, recognition of a stor-
age-alteration event causes no more than 4K
bytes to be stored beginning with the byte that
caused the event, and recognition of a zero-
address-detection event may occur on comple-
tion of a unit of operation.

In cases 1 and 2 above, if the only PER event that
has been recognized is an instruction-fetching basic
event and another unit of operation of the instruction
remains to be executed, the event may be discarded,
with the result that a program interruption does not
occur. Whether the event is discarded is unpredict-
able.

Recognition of a PER instruction-fetching nullification
event causes execution of the instruction responsible
for the event to be nullified.

Programming Notes:

1. In the following cases, an instruction can both
cause a program interruption for a PER basic
event and change the value of fields controlling
an interruption for PER events. The original field
values determine whether a program interruption
takes place for the PER event.

a. The instructions LOAD PSW, LOAD PSW
EXTENDED, SET SYSTEM MASK, STORE
THEN AND SYSTEM MASK, and SUPERVI-
SOR CALL can cause an instruction-fetching
event and disable the CPU for PER interrup-
tions. Additionally, STORE THEN AND SYS-
TEM MASK can cause a storage-alteration
event to be indicated. In all these cases, the
program old PSW associated with the pro-
gram interruption for the PER event may indi-

Control 4-35

cate that the CPU was disabled for PER
events.

b. An instruction-fetching event or a zero-
address-detection event may be recognized
during execution of a LOAD CONTROL
instruction that changes the value of the
PER-event masks in control register 9 or the
addresses in control registers 10 and 11
controlling indication of instruction-fetching
events.

c. In the access-register mode, a storage-alter-
ation event that is permitted by a one value
of the storage-alteration-event bit in an
address-space-control element in an ASN-
second-table entry (designated by an
access-list entry) may be caused by any
store-type instruction that changes the value
of the bit from one to zero.

2. When a PER interruption for a PER basic event
occurs during the execution of an interruptible
instruction, the ILC indicates the length of that
instruction or execute-type instruction, as appro-
priate. When a PER interruption for a PER basic
event occurs as a result of LOAD PSW, LOAD
PSW EXTENDED, PROGRAM RETURN, or
SUPERVISOR CALL, the ILC indicates the
length of the instruction or of the execute-type
instruction which designates the interrupted type
of instruction as its target, as appropriate, unless
a concurrent specification exception on LOAD
PSW, LOAD PSW EXTENDED, or PROGRAM
RETURN calls for an ILC of 0.

3. When a PER interruption is caused by branch-
ing, the PER address identifies the branch
instruction (or execute-type instruction, as appro-
priate), whereas the old PSW points to the next
instruction to be executed. When the interruption
occurs during the execution of an interruptible
instruction, the PER address and the instruction
address in the old PSW are the same.

Storage-Area Designation

Three types of PER events — instruction fetching,
storage alteration, and storage-key alteration —
always involve the designation of an area in storage.
Successful-branching events may involve this desig-
nation. The storage area starts at the location desig-
nated by the starting address in control register 10
and extends up to and including the location desig-

nated by the ending address in control register 11.
The area extends to the right of the starting address.

An instruction-fetching event occurs whenever the
first byte of an instruction or the first byte of the target
of an execute-type instruction, as designated by the
instruction address (before any address translation is
applied), is fetched from the designated area.

A storage-alteration event occurs when a store
access is made to the designated area by using an
operand address that is defined to be a logical or a
virtual address. However, when DAT is on and the
storage-alteration-space control in control register 9
is one, a storage-alteration event occurs only when
the storage area is within an address space for which
the storage-alteration-event bit in the address-space-
control element is one. A storage-alteration event
does not occur for a store access made with an oper-
and address defined to be a real address.

When the branch-address control in control register 9
is one, a successful-branching event occurs when
the first byte of the branch-target instruction, as des-
ignated by the branch address (before any address
translation is applied), is within the designated area.

A storage-key-alteration event occurs when any byte
within the 4K-byte block asscociated with the
updated storage key lies within the designated area.
All bits of control registers 10 and 11, including the
low-order 12 bits, participate in the determination of
the designated area. The address is a real address
for TEST BLOCK, real or absolute address for PER-
FORM FRAME MANAGEMENT FUNCTION and
SET STORAGE KEY EXTENDED, and a logical
address for MOVE PAGE.

The set of addresses designated for successful-
branching, instruction-fetching, storage-alteration,
and storage-key-alteration events wraps around at
address 264 - 1; that is, address 0 is considered to fol-
low address 264 - 1. When the starting address is
less than the ending address, the area is contiguous.
When the starting address is greater than the ending
address, the set of locations designated includes the
area from the starting address to address 264 - 1 and
the area from address 0 to, and including, the ending
address. When the starting address is equal to the
ending address, only that one location is designated.

Address comparison for successful-branching,
instruction-fetching, storage-alteration, and storage-
key-alteration events is always performed using

4-36 The z/Architecture CPU Architecture

64-bit addresses. This is accomplished in the 24-bit
or 31-bit addressing mode by extending the virtual,
logical, or instruction address on the left with 40 or 33
zeros, respectively, before comparing it with the start-
ing and ending addresses.

Programming Note: In some models, performance
of address-range checking is assisted by means of
an extension to each page-table entry in the TLB. In
such an implementation, changing the contents of
control registers 10 and 11 when the successful-
branching, instruction-fetching, or storage-alteration-
event mask is one, or setting any of these PER-event
masks to one, may cause the TLB to be cleared of
entries. This degradation may be experienced even
when the CPU is disabled for PER events. Thus,
when possible, the program should avoid loading
control registers 9, 10, or 11.

PER Events

Successful Branching
When the branch-address control in control register 9
is zero, a successful-branching event occurs inde-
pendent of the branch-target address. When the
branch-address control is one, a successful-branch-
ing event occurs only when the first byte of the
branch-target instruction is in the storage area desig-
nated by control registers 10 and 11.

Subject to the effect of the branch-address control, a
successful-branching event occurs whenever one of
the following instructions causes branching:

• BRANCH AND LINK (BAL, BALR)
• BRANCH AND SAVE (BAS, BASR)
• BRANCH AND SAVE AND SET MODE

(BASSM)
• BRANCH AND SET AUTHORITY (BSA)
• BRANCH AND SET MODE (BSM)
• BRANCH AND STACK (BAKR)
• BRANCH IN SUBSPACE GROUP (BSG)
• BRANCH INDIRECT ON CONDITION
• BRANCH ON CONDITION (BC, BCR)
• BRANCH ON COUNT (BCT, BCTR, BCTG,

BCTGR)
• BRANCH ON INDEX HIGH (BXH, BXHG)
• BRANCH ON INDEX LOW OR EQUAL (BXLE,

BXLEG)
• BRANCH RELATIVE AND SAVE (BRAS)
• BRANCH RELATIVE AND SAVE LONG

(BRASL)
• BRANCH RELATIVE ON CONDITION (BRC)

• BRANCH RELATIVE ON CONDITION LONG
(BRCL)

• BRANCH RELATIVE ON COUNT (BRCT,
BRCTG)

• BRANCH RELATIVE ON COUNT HIGH
(BRCTH)

• BRANCH RELATIVE ON INDEX HIGH (BRXH,
BRXHG)

• BRANCH RELATIVE ON INDEX LOW OR
EQUAL (BRXLE, BRXLG)

• COMPARE AND BRANCH (CRB, CGRB)
• COMPARE AND BRANCH RELATIVE (CRJ,

CGRJ)
• COMPARE IMMEDIATE AND BRANCH (CIB,

CGIB)
• COMPARE IMMEDIATE AND BRANCH RELA-

TIVE (CIJ, CGIJ)
• COMPARE LOGICAL AND BRANCH (CLRB,

CLGRB)
• COMPARE LOGICAL AND BRANCH RELATIVE

(CLRJ, CLGRJ)
• COMPARE LOGICAL IMMEDIATE AND

BRANCH (CLIB, CLGIB)
• COMPARE LOGICAL IMMEDIATE AND

BRANCH RELATIVE (CLIJ, CLGIJ)
• RESUME PROGRAM (RP)
• TRAP (TRAP2, TRAP4)

Subject to the effect of the branch-address control, a
successful-branching event also occurs whenever
one of the following instructions causes branching:

• PROGRAM CALL (PC)
• PROGRAM RETURN (PR)
• PROGRAM TRANSFER (PT)
• PROGRAM TRANSFER WITH INSTANCE (PTI)

For PROGRAM CALL, PROGRAM RETURN, PRO-
GRAM TRANSFER, and PROGRAM TRANSFER
WITH INSTANCE, the branch-target address is con-
sidered to be the new instruction address that is
placed in the PSW by the instruction.

When the guarded-storage facility is enabled, a suc-
cessful-branching event is recognized as a result of a
guarded-storage event caused by either of the follow-
ing instructions:

• LOAD GUARDED (LGG)
• LOAD LOGICAL AND SHIFT GUARDED

(LLGFSG)

When the branch-address control is one, the branch
address is considered to be the contents of the

Control 4-37

guarded-storage-event handler address (GSEHA)
field in the guarded-storage-event parameter list
(GSEPL).

A successful-branching event causes a PER suc-
cessful-branching event to be recognized if bit 32 of
the PER-event masks is one and the PER mask in
the PSW is one.

A PER successful-branching event is indicated by
setting bit 0 of the PER code to one.

Instruction Fetching
An instruction-fetching event occurs if the first byte of
the instruction is within the storage area designated
by control registers 10 and 11. An instruction-fetching
event also occurs if the first byte of the target of an
execute-type instruction is within the designated stor-
age area.

Instruction-Fetching Basic Event: An instruction-
fetching event causes a PER instruction-fetching
basic event to be recognized if the PER mask in the
PSW is one and bit 33 of the PER-event masks is
one and either the PER-3 facility is not installed, or
bit 39 of the PER-event masks is zero.

If an instruction-fetching basic event is the only PER
event recognized for an interruptible instruction that
is to be interrupted because of an asynchronous con-
dition (I/O, external, restart, or repressible machine-
check condition) or the performance of the stop func-
tion, and if a unit of operation of the instruction
remains to be executed, the instruction-fetching
event may be discarded, and whether it is discarded
is unpredictable.

The PER instruction-fetching basic event is indicated
by setting bit 1 of the PER code to one and bit 7 of
the PER code to zero.

Instruction-Fetching Nullification Event: An
instruction-fetching event causes a PER instruction-
fetching nullification event to be recognized if the
PER mask in the PSW is one and bit 33 of the PER-
event masks is one and the PER-3 facility is installed
and bit 39 of the PER-event masks is one.

It is unpredictable whether the PER-3 facility is
installed in the ESA/390-compatibility mode.

The PER instruction-fetching nullification event is
indicated by setting bits 1 and 7 of the PER code to
one.

Storage Alteration
A storage-alteration event occurs whenever a CPU,
by using a logical or virtual address, makes a store
access without an access exception to the storage
area designated by control registers 10 and 11. How-
ever, when DAT is on and the storage-alteration-
space control in control register 9 is one, the event
occurs only if the storage-alteration-event bit is one in
the address-space-control element that is used by
DAT to translate the reference to the storage location.

The contents of storage are considered to have been
altered whenever the CPU executes an instruction
that causes all or part of an operand to be stored
within the designated storage area. Alteration is con-
sidered to take place whenever storing is considered
to take place for purposes of indicating protection
exceptions, except that recognition does not occur for
the storing of data by a channel program. (See “Rec-
ognition of Access Exceptions” on page 6-47.) Stor-
ing constitutes alteration for PER purposes even if
the value stored is the same as the original value.
Additionally, the contents of a TBEGIN-specified TDB
are considered to have been altered by the execution
of an outermost TBEGIN instruction, regardless of
whether the TDB is actually stored by a transaction
being aborted; it is unpredictable whether a PER
storage-alteration event is detected for the first-oper-
and location of an inner TBEGIN instruction.

Implied locations that are referred to by the CPU are
not monitored. Such locations include PSW and
interruption-code locations, the program-interruption
transaction diagnostic block, the enhanced-monitor
exception counter, and the trace entry designated by
control register 12. These locations, however, are
monitored when information is stored there explicitly
by an instruction. Similarly, monitoring does not apply
to the storing of data by a channel program. Implied
locations in the linkage stack, which are stored in by
instructions that operate on the linkage stack, and
enhanced-monitor-counting-array entries which are
stored in by the MONITOR CALL instruction, are
monitored.

The I/O instructions are considered to alter the sec-
ond-operand location only when storing actually
occurs.

4-38 The z/Architecture CPU Architecture

Storage alteration does not apply to instructions
whose operands are specified to have real or abso-
lute addresses. Thus, storage alteration does not
apply to COMPARE AND REPLACE DAT TABLE
ENTRY,INVALIDATE DAT TABLE ENTRY (invalida-
tion-and-clearing operation), INVALIDATE PAGE
TABLE ENTRY, PAGE IN, PERFORM FRAME MAN-
AGEMENT FUNCTION, RESET REFERENCE BIT
EXTENDED, RESET REFERENCE BITS MULTI-
PLE, SET STORAGE KEY EXTENDED, STORE
USING REAL ADDRESS, TEST BLOCK, and TEST
PENDING INTERRUPTION (when the effective
address is zero). Storage alteration does not apply to
the store to real location 200 by STORE FACILITY
LIST, nor does it apply to stores to the trace table by
instructions that cause tracing to occur.

A storage-alteration event causes a PER storage-
alteration event to be recognized if bit 34 of the PER-
event masks is one and the PER mask in the PSW is
one. Bit 36 of the PER-event masks is ignored when
determining whether a PER storage-alteration event
is to be recognized.

A PER storage-alteration event is indicated by setting
bit 2 of the PER code to one and bit 4 of the PER
code to zero.

Store Using Real Address
A store-using-real-address event occurs whenever
the STORE USING REAL ADDRESS instruction is
executed.

There is no relationship between the store-using-
real-address event and the designated storage area.

A store-using-real-address event causes a PER
store-using-real-address event to be recognized if
bits 34 and 36 of the PER-event mask are ones and
the PER mask in the PSW is one.

A PER store-using-real-address event is indicated by
setting bits 2 and 4 of the PER code to one.

Zero-Address Detection
When the PER zero-address-detection facility is
installed, a zero-address-detection event occurs
whenever a CPU makes a storage access using an
effective operand address formed from a general reg-
ister, or subfield of a general register, containing
zero. However, during execution of an RX-, RXE-,
RXF-, RXY-, or VRX-format instruction, the event
occurs only if the CPU makes a storage access using

an effective operand address formed under one of
the following conditions:

1. The base register number is zero, the index reg-
ister number is nonzero, and the index register
contains zero.

2. The index register number is zero, the base reg-
ister number is nonzero, and the base register
contains zero.

3. When both the base register number and the
index register number are nonzero, it is unpre-
dictable which one of the following conditions
causes the event:

(a) The base register contains zero.
(b) The sum of the contents of the base register

and the index register is zero.

During the execution of a VRV-format instruction, it is
unpredictable which one or more of the following con-
ditions will cause the event to occur if the CPU
makes a storage access:

1. The base register number is zero, and the value
of the indexed element of the second operand is
zero.

2. The base register number is non-zero and the
base register contains zero

3. The sum of the contents of the base register and
the value of the indexed element is zero.

Except as noted below, zero-address detection for an
operand address is performed whenever a fetch,
store, or update reference is made to storage using
the address, and zero-address detection is per-
formed only when an operand address is used to
access storage.

Except for BRANCH INDIRECT ON CONDITION,
zero-address detection is not performed on the
branch address of branch-type instructions. For
BRANCH INDIRECT ON CONDITION, zero-address
detection is performed on the second-operand
address but not on the branch address fetched from
the second operand. For LOAD GUARDED and
LOAD LOGICAL AND SHIFT GUARDED, zero-
address detection is performed on the second-oper-
and address of the instruction, even though these are
considered to be branch-type instructions when a
guarded-storage event is recognized.

Control 4-39

Zero-address detection is also not performed on the
target-instruction address of the EXECUTE instruc-
tion, and the contents of general register R2 for the
TEST BLOCK instruction.

For COMPRESSION CALL, CONVERT UTF-16 TO
UTF-32, CONVERT UTF-16 TO UTF-8, CONVERT
UTF-32 TO UTF-16, CONVERT UTF-32 TO UTF-8,
CONVERT UTF-8 TO UTF-16, and CONVERT UTF-
8 TO UTF-32, it is unpredictable whether a PER
zero-address-detection event is recognized for any
storage operand when the end of the first operand is
reached, but the end of the second operand has not
been reached.

Conditions for causing a zero-address-detection
event are evaluated at the start of instruction execu-
tion. It is unpredictable if those conditions are reeval-
uated during instruction execution.

Except as noted below, the determination of whether
a register’s contents are zero is dependent upon the
current addressing mode, as follows:

• In the 24- and 31-bit addressing modes, a regis-
ter is considered to contain zero if bits 32-63 are
all zeros.

• In the 64-bit addressing mode, a register is con-
sidered to contain zero if bits 0-63 are all zeros.

For COMPARE AND REPLACE DAT TABLE ENTRY,
when bit position 59 of general register R2 contains
zero, general register R2 is considered to contain
zero if bits 0-52 are all zeros; when bit position 59 of
general register R2 contains one, general register R2

is considered to contain zero if bits 0-51 are all zeros.
For INVALIDATE DAT TABLE ENTRY, general regis-
ter R1 is considered to contain zero if bits 0-51 are all
zeros, and for INVALIDATE PAGE TABLE ENTRY,
general register R1 is considered to contain zero if
bits 0-52 are all zeros, regardless of the addressing
mode.

Zero-Address-Detection Event: A zero-address-
detection event causes a PER zero-address-detec-
tion event to be recognized if the PER mask in the
PSW is one and bit 37 of the PER-event mask is one.

A PER zero-address-detection event is indicated by
setting bit 5 of the PER code to one.

Programming Notes:

1. Following are examples of instructions and corre-
sponding general register values that cause a
zero-address-detection event:

LAM 3,4,8(7) GR7=0
LG 1,8(0,3) GR3=0
L 5,87(4,0) GR4=0
LG 6,0(1,2) GR2=0
MVCL 2,4 GR2=0 or GR4=0
MVCL 0,8 GR0=0 or GR8=0

The examples using the MVCL instructions will
cause the event only if a nonzero second-oper-
and length is specified in general register R2 + 1;
see Programming Note 3.

2. A zero-address-detection event may occur for
normal programming situations. In particular, an
instruction that intentionally accesses the prefix
storage area or a data space with an origin of
zero may use a base register containing zero in
the formation of a storage operand address, and
thus cause a zero-address-detection event to
occur. If normal execution of a program fre-
quently uses registers containing zero in the for-
mation of storage addresses, then the PER zero-
address-detection event will be of limited use in
locating programming bugs involving the uninten-
tional use of a general register containing zero in
the formation of a storage address.

3. A PER zero-address-detection event is not rec-
ognized for an operand address that is not used
to access storage. For example, when the MOVE
LONG instruction is executed with a second-
operand length of zero specified in general regis-
ter R2 + 1, a PER zero-address-detection event
is not recognized when the second-operand
address is zero.

4. Recognition of a PER zero-address-detection
event is unpredictable for instructions where it is
unpredictable whether access exceptions are
recognized when the operand values allow the
operation to complete without storage being
accessed.

Transaction End
When the CPU is in the transactional-execution
mode at the beginning of an outermost TRANSAC-
TION END instruction, a transaction-end event
occurs at the completion of the instruction.

4-40 The z/Architecture CPU Architecture

There is no relationship between the transaction-end
event and the designated storage area.

A transaction-end event causes a PER transaction-
end event to be recognized if bit 38 of the PER-event
mask is one and the PER mask in the PSW is one.

A PER transaction-end event is indicated by setting
bit 6 of the PER code to one.

A transaction-end event is not recognized when a
TRANSACTION END instruction is executed and the
CPU is not in the transactional-execution mode.

Storage-Key Alteration
A storage-key-alteration event occurs whenever a
CPU updates the ACC or F bits of a storage key,
without an access exception, associated with a 4 K-
byte block of storage within the storage area desig-
nated by control registers 10 and 11. Alteration of the
R or C bits does not cause this event unless it also
alters the ACC or F bits. Updating of the ACC or F
bits is considered alteration for PER purposes even if
the new value is the same as the original value.

Four instructions can cause a storage-key-alteration
event if the 4K-byte block associated with the
updated storage key lies within the designated area:

• Any execution of SET STORAGE KEY
EXTENDED. When the conditional-SSKE facility
is installed, either or both the MR and MC bits
are one, and the access-control and fetch-pro-
tection bits are not required to be updated, then it
is model-dependent if this is considered to be a
storage-key-alteration event. In all cases that the
access-control and fetch-protection bits are
updated, a storage-key-alteration event occurs
as long as the associated 4 K-byte block of stor-
age lies within the designated area.

• PERFORM FRAME MANAGEMENT FUNCTION
when SK (bit 46 of general register R1) is one.
When the conditional-SSKE facility is installed,
the handling when either the MR or MC bits is
non-zero, is the same as described above for
SET STORAGE KEY EXTENDED.

• MOVE PAGE when the move-page-and-set-key
facility is installed and KFC (bits 51-53 of general
register 0) contains a value of 4 or 5.

• Any execution of TEST BLOCK, but only when
the model’s implementation actually updates the
storage key.

A storage-key-alteration event causes a PER stor-
age-key-alteration event to be recognized if bit 35 of
the PER-event mask is one and the PER mask in the
PSW is one.

A PER storage-key-alteration event is indicated by
setting bit 3 of the PER code to one.

Indication of PER Events
Concurrently with Other
Interruption Conditions

When a PER instruction-fetching nullification event is
reported, no other PER events and no other program
interruption conditions other than transaction-abort
exception (if applicable) are reported.

The following rules govern the indication of PER
basic events caused by an instruction that also
causes a program exception, a monitor event, a
space-switch event, or a supervisor-call interruption.

1. The indication of an instruction-fetching basic
event does not depend on whether the execution
of the instruction was completed, terminated,
suppressed, or nullified. However, special cases
of suppression and nullification are as follows:

a. When the instruction is designated by an odd
instruction address in the PSW, the instruc-
tion-fetching event is not indicated.

b. When an access exception applies to the
first, second, or third halfword of the instruc-
tion designated by the PSW instruction
address, and the PER-3 facility is installed,
the instruction-fetching event is not indicated.
However, if the PER-3 facility is not installed,
it is unpredictable whether the instruction-
fetching event is indicated.

c. When either (a) an access exception applies
to the first, second, or third halfword of the
target location of an execute-type instruction,
or (b) the target address of an EXECUTE
instruction is odd, the following applies:

1) If the PER-3 facility is installed, then the
following applies:

a) An instruction-fetching event is not
indicated for the target location.

Control 4-41

b) It is unpredictable whether an
instruction-fetching event is indi-
cated for the execute-type instruc-
tion, including the case where the
PER address range includes both
the execute-type instruction and its
target.

2) If the PER-3 facility is not installed, it is
unpredictable whether the instruction-
fetching event is indicated for either the
execute-type instruction or the target
location.

2. When the operation is completed or partially
completed, the event is indicated, regardless of
whether any program exception, space-switch
event, or monitor event is also recognized.

3. Successful branching, zero-address detection,
storage alteration, and store using real address
are not indicated for an operation or, in case the
instruction is interruptible, for a unit of operation
that is suppressed or nullified.

4. When the execution of the instruction is termi-
nated, storage alteration or zero-address detec-
tion is indicated whenever the event has
occurred. A model may indicate the event if the
event would have occurred had the execution of
the instruction been completed, even if altering
the contents of the result field is contingent on
operand values. For purposes of this definition,
the occurrence of those exceptions which permit
termination (addressing, protection, and data) is
considered to cause termination, even if no result
area is changed.

5. When LOAD PSW, LOAD PSW EXTENDED,
PROGRAM RETURN, SET SYSTEM MASK,
STORE THEN OR SYSTEM MASK, or SUPER-
VISOR CALL causes a PER basic condition and
at the same time introduces a new PSW with the
type of PSW-format error that is recognized
immediately after the PSW becomes active
(called early exception recognition), the interrup-
tion code identifies both the PER basic condition
and the specification exception.

6. When LOAD PSW, LOAD PSW EXTENDED,
PROGRAM RETURN, or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of PSW-for-
mat error that is recognized as part of the execu-
tion of the following instruction (called late
exception recognition), the interruption code

identifies the PER basic condition and the intro-
duced PSW is stored as the old PSW without the
following instruction being fetched or executed
and without the specification exception being
recognized.

7. When an outermost TRANSACTION BEGIN
instruction causes a PER basic event and a con-
current program exception, the event-suppres-
sion control does not apply.

When a PER event occurs while the CPU is in the
transactional-execution mode, the transaction is
aborted as described in “Transaction Abort Process-
ing” on page 5-102, and bit 6 is set in the program-
interruption code.

The indication of PER basic events concurrently with
other program-interruption conditions for the same
instruction, as described in cases 1-4 above, is sum-
marized in Figure 4-10 on page 4-42. Cases 5 and 6
are shown in Figure 4-11 on page 4-44.

Programming Notes:

1. The execution of the interruptible instructions
COMPARE AND FORM CODEWORD, COM-
PARE LOGICAL LONG, COMPARE UNTIL SUB-
STRING EQUAL, COMPRESSION CALL, MOVE
LONG, TEST BLOCK, and UPDATE TREE can
cause events for instruction fetching and zero-
address detection. The execution of the interrupt-
ible instructions PERFORM FRAME MANAGE-
MENT FUNCTION (when the enhanced-DAT
facility is installed, and the frame-size code des-
ignates a 1 M-byte frame), SET STORAGE KEY
EXTENDED (when the enhanced-DAT facility is
installed, and the multiple-block control is one)
and TEST BLOCK can cause events for instruc-
tion-fetching. Execution of COMPRESSION
CALL, MOVE LONG, and UPDATE TREE can
cause events for instruction-fetching, zero-
address detection and storage-alteration.

Interruption of such an instruction may cause a
PER basic event to be indicated more than once.
It may be necessary, therefore, for a program to
remove the redundant event indications from the
PER data. The following rules govern the indica-
tion of the applicable events during execution of
these instructions:

a. The instruction-fetching basic event is indi-
cated whenever the instruction is fetched for
execution, regardless of whether it is the ini-

4-42 The z/Architecture CPU Architecture

tial execution or a resumption, except that
the event may be discarded (not indicated) if
it is the only PER event to be indicated, the
interruption is due to an asynchronous inter-
ruption condition or the performance of the
stop function, and a unit of operation of the
instruction remains to be executed.

b. The storage-alteration event is indicated only
when data has been stored in the designated
storage area by the portion of the operation
starting with the last initiation and ending
with the last byte transferred before the inter-
ruption. No special indication is provided on
premature interruptions as to whether the
event will occur again upon the resumption
of the operation. When the designated stor-
age area is a single byte location, a storage-
alteration event can be recognized only once
in the execution of MOVE LONG or COM-
PRESSION CALL, but could be recognized
more than once for UPDATE TREE.

2. The following is an outline of the general action a
program must take to delete multiple entries for
PER basic events in the PER data for an inter-
ruptible instruction so that only one entry for

each complete execution of the instruction is
obtained:

a. Check to see if the PER address is equal to
the instruction address in the old PSW and if
the last instruction executed was interrupt-
ible.

b. If both conditions are met, delete instruction-
fetching events.

c. If both conditions are met and the event is
storage alteration, delete the event if some
part of the remaining destination operand is
within the designated storage area.

3. An example of the indication of a PER instruc-
tion-fetching basic event caused by either a
LOAD PSW (or LOAD PSW EXTENDED)
instruction or the following instruction, in connec-
tion with an early PSW-format error or odd
instruction address introduced by the LOAD
PSW instruction, is shown in Figure 4-11 on
page 4-44.

Notes on the Definition:

Concurrent Condition
Type of
Ending

PER Basic Event

Branch
Instr.
Fetch

Storage
Alter. STURA TEND

Z-Addr
Detect

Storage
Key

Alter.

Specification exception due to odd instruction
address in the PSW:

S – No – – – – –

Access exception fetching the instruction
designated by the PSW instruction address

Without PER-3 N or S – U – – – – –

With PER-3 N or S – No – – – – –

Specification exception due to the EXECUTE
target address being odd:

Without PER-3 S – U – – – – –

With PER-3 (PER instruction-fetching-basic
event detected only on the target instruction)

S – No – – – – –

With PER-3 (PER instruction-fetching-basic
event detected on the EXECUTE instruction)

S – U – – – – –

Access exception fetching the target of an
execute-type instruction:

Without PER-3 N or S – U – – – – –

With PER-3 (PER instruction-fetching-basic
event detected only on the target instruction)

N or S – No – – – – –

Figure 4-10. Indication of PER Basic Events with Other Concurrent Conditions (Part 1 of 2)

Control 4-43

With PER-3 (PER instruction-fetching-basic
event detected on the execute-type
instruction)

N or S – U – – – – –

Other nullifying exceptions N – Yes No1 – – No1 No

Other suppressing exceptions S – Yes No1 – – No1 No

All terminating exceptions T No Yes Yes2 – – U –

All completing exceptions or events C Yes Yes Yes – – Yes Yes

Explanation:

– The PER event does not apply, or PER event applies but is prevented by the concurrent condition.
U It is unpredictable whether the PER event is indicated.
1 Although PER events of this type are not indicated for the current unit of operation of an interruptible instruction,

PER events of this type that were recognized on completed units of operation of the interruptible instruction are
indicated.

2 This event may be indicated, depending on the model, if the event has not occurred but would have been
indicated if execution had been completed.

C The operation or, in the case of the interruptible instructions, the unit of operation is completed.
N The operation or, in the case of the interruptible instructions, the unit of operation is nullified.
No The PER event is not indicated.
S The operation or, in the case of the interruptible instructions, the unit of operation is suppressed.
T The execution of the instruction is terminated.
U It is unpredictable whether the PER event is indicated.
Yes The PER event is indicated with the other program interruption condition if the event has occurred; that is, the

instruction address in the PSW was replaced and the branch-address control and PER designated storage area
allow the event occurrence, an attempt was made to execute an instruction whose first byte is located in the
designated storage area, the contents of the designated storage area was altered, or a general register
containing zero was used in the formation of an operand address used to reference storage.

Concurrent Condition
Type of
Ending

PER Basic Event

Branch
Instr.
Fetch

Storage
Alter. STURA TEND

Z-Addr
Detect

Storage
Key

Alter.

Figure 4-10. Indication of PER Basic Events with Other Concurrent Conditions (Part 2 of 2)

4-44 The z/Architecture CPU Architecture

Indication of PER Events and Guarded-
Storage Events
For LOAD GUARDED or LOAD LOGICAL AND
SHIFT GUARDED in which a guarded-storage event
is recognized, any or all the following PER events are
recognized coincident with the guarded-storage
event (GSE):

• An instruction-fetch basic event

• A storage-alteration event (for the GSE parame-
ter list)

• A successful-branching event (branching to the
GSE handler)

• In the absence of a PER storage-alteration
event, a PER zero-address-detection event

When a GSE coincides with a PER event, the follow-
ing applies:

• The PER address contains the address of LOAD
GUARDED or LOAD LOGICAL AND SHIFT
GUARDED instruction, or, if the instruction was
the target of an execute-type instruction, the PER
address contains the address of the execute-
type instruction.

• The instruction address of the program-old PSW
is set as follows:

– When the GSE parameter list (GSEPL) is
accessible, the instruction address is set
from the contents of the GSE handler-
address (GSEHA) field. The GSEHA field is
considered to be a branch address, thus the
instruction address in the program-old PSW

LPSW at 4000 Loads a PSW

Designated
Storage

Area Includes Two-Byte Instruction Is at 6000

PSW Has Early
PSW-Format Error

 Instruction
Address
in PSW 4000

6000-
6001

Interruption
Code

Address in
Program
Old PSW ILC

PER
Address

N 6000 N N None - - -

N 6000 N Y P 6002 1 6000

N 6000 Y - P 6000 2 4000

N 6001 N N S 6001+J1 K1 None

N 6001 N Y S2 6001+J1 K1 None

N 6001 Y - P2 3 60012 3 2 4000

Y 6000 N - S 6000 04 None

Y 6000 Y - P,S2 3 60002 3 04 4000

Y 6001 N - S 6001 04 None

Y 6001 Y - P,S2 3 60012 3 04 4000

Explanation:

- Immaterial or not applicable.
1 See “ILC on Instruction-Fetching Exceptions” on page 6-8.
2 See “Indication of PER Events Concurrently with Other Interruption Conditions” on page 4-40.
3 See “Priority of Indication” on page 4-33.
4 See “Zero ILC” on page 6-7.
J Unpredictably 2, 4, or 6.
K 1, 2, or 3 depending on whether J is 2, 4, or 6, respectively.
N No.
P PER instruction-fetching basic event.
S Specification exception.
Y Yes.

Figure 4-11. Example of Instruction-Fetching PER Basic Event and Early PSW-Format Error or Odd Instruction Address

Control 4-45

is subject to the action described in “Forma-
tion of the Branch Address” on page 5-13.

– When the GSEPL is not accessible, the
instruction address is set as follows:

• If the CPU was not in the transactional-
execution mode when the GSE was rec-
ognized, and the access exception
results in nullification, then the instruc-
tion address points to the instruction
causing the GSE (that is, the same as
the PER address).

• If the CPU was not in the transactional-
execution mode when the GSE was rec-
ognized, and the access exception
results in suppression or termination,
then the instruction address points to the
next-sequential instruction following the
instruction that caused the GSE.

• If the CPU was in the transactional-exe-
cution mode when the GSE was recog-
nized, then the instruction address is set
from the corresponding field of the trans-
action-abort PSW.

• The ILC indicates the length of the instruction
designated by the PER address.

Programming Note: A GSE handler may adjust the
contents of the second operand of the LGG or
LLGFSG instruction such that a repeated execution
of the instruction no longer results in a GSE being
recognized. In this case, PER storage-alteration and
successful-branching events are no longer applicable
for the re-executed instruction. However, unless the
program adjusts the PER controls, PER instruction-
fetch-basic and zero-address-detection events that
are recognized on the first execution of the instruc-
tion (that caused the GSE to be detected) will con-
tinue to be recognized when the instruction is re-
executed, even though a GSE is not detected on the
second execution.

Breaking-Event-Address
Recording

When the PER-3 facility is installed, it provides the
program with the address of the last instruction to
cause a break in the sequential execution of the
CPU. Breaking-event-address recording can be used
as a debugging assist for wild-branch detection. This

facility provides a 64-bit register in the CPU, called
the breaking-event-address register. Each time an
instruction other than TRANSACTION ABORT
causes a break in the sequential instruction execu-
tion (that is, the instruction address in the PSW is
replaced, rather than incremented by the length of
the instruction) the address of that instruction is
placed in the breaking-event-address register. When-
ever a program interruption occurs, whether or not
PER is indicated, the current contents of the break-
ing-event-address register are placed in real storage
locations 272-279.

Normally, operation of the CPU is controlled by
instructions in storage that are executed sequentially,
one at a time, left to right in an ascending sequence
of storage addresses. This is called sequential
instruction execution, and, as part of this operation,
the instruction address in the PSW is incremented by
the length of each instruction executed. The execu-
tion of some instructions cause the contents of the
instruction address to be replaced, rather than incre-
mented. The action to replace the instruction address
is called a breaking event, and the instruction caus-
ing the action is called an execution-break instruc-
tion.

Programming Notes:

1. When the breaking-event-address register is
physically installed in the machine, the full 64-bit
value of the register is updated whenever a
breaking event occurs. This occurs regardless of
the architectural mode of the configuration

Although the breaking-event-address register is
not stored in the ESA/390 architectural mode or
ESA/390-compatibility mode, a breaking event
that occurs in one of these modes may be visible
if the configuration switches to the z/Architecture
architectural mode. If (a) the CPU does not pre-
vent a configuration operating in the ESA/390-
compatibility mode from entering the 64-bit
addressing mode, (b) the program enters the 64-
bit addressing mode and executes above the
2 G-byte boundary, and (c) the program switches
to the z/Architecture architectural mode, then a
breaking-event address above the 2 G-byte
boundary may be visible following the next pro-
gram interruption.

2. The addressing mode and address space used
to translate the instruction address are not pre-
served; therefore, breaking-event-address

4-46 The z/Architecture CPU Architecture

recording is most effective for debugging code
that does not contain address-space switches or
addressing mode changes.

Breaking-Event-Address Register
When the PER-3 facility is installed, each CPU has a
64-bit register called the breaking-event-address reg-
ister.

Each time execution of an instruction other than
TRANSACTION ABORT replaces the instruction
address in the PSW by any means other than
sequential instruction execution, the instruction
address used to fetch that instruction is placed in the
breaking-event-address register. If the instruction
causing the breaking event is the target of an exe-
cute-type instruction (EXECUTE or EXECUTE REL-
ATIVE LONG), then the instruction address used to
fetch the execute-type instruction is placed in the
breaking-event-address register.

Each time a program interruption occurs, the con-
tents of the breaking-event-address register are
placed in real storage locations 272-279.

The contents of the breaking-event-address register
are unpredictable after the SIGNAL PROCESSOR
set-architecture order.

The contents of the breaking-event-address register
are reset to a value of 0000000000000001 hex by ini-
tial CPU reset.

Execution-Break Instructions
A breaking event is considered to occur whenever
one of the following instructions causes branching:
• BRANCH AND LINK (BAL, BALR)
• BRANCH AND SAVE (BAS, BASR)
• BRANCH AND SAVE AND SET MODE

(BASSM)
• BRANCH AND SET MODE (BSM)
• BRANCH AND STACK (BAKR)
• BRANCH INDIRECT ON CONDITION
• BRANCH ON CONDITION (BC, BCR)
• BRANCH ON COUNT (BCT, BCTR, BCTG,

BCTGR)
• BRANCH ON INDEX HIGH (BXH, BXHG)
• BRANCH ON INDEX LOW OR EQUAL (BXLE,

BXLEG)
• BRANCH RELATIVE ON CONDITION (BRC)
• BRANCH RELATIVE ON CONDITION LONG

(BRCL)

• BRANCH RELATIVE ON COUNT (BRCT,
BRCTG)

• BRANCH RELATIVE ON COUNT HIGH
(BRCTH)

• BRANCH RELATIVE ON INDEX HIGH (BRXH,
BRXHG)

• BRANCH RELATIVE ON INDEX LOW OR
EQUAL (BRXLE, BRXLG)

• COMPARE AND BRANCH (CRB, CGRB)
• COMPARE AND BRANCH RELATIVE (CRJ,

CGRJ)
• COMPARE IMMEDIATE AND BRANCH (CIB,

CGIB)
• COMPARE IMMEDIATE AND BRANCH RELA-

TIVE (CIJ, CGIJ)
• COMPARE LOGICAL AND BRANCH (CLRB,

CLGRB)
• COMPARE LOGICAL AND BRANCH RELATIVE

(CLRJ, CLGRJ)
• COMPARE LOGICAL IMMEDIATE AND

BRANCH (CLIB, CLGIB)
• COMPARE LOGICAL IMMEDIATE AND

BRANCH RELATIVE (CLIJ, CLGIJ)

A breaking event is also considered to occur when-
ever one of the following instructions completes:

• BRANCH AND SET AUTHORITY (BSA)
• BRANCH IN SUBSPACE GROUP (BSG)
• BRANCH RELATIVE AND SAVE (BRAS)
• BRANCH RELATIVE AND SAVE LONG

(BRASL)
• LOAD PSW (LPSW)
• LOAD PSW EXTENDED (LPSWE)
• PROGRAM CALL (PC)
• PROGRAM RETURN (PR)
• PROGRAM TRANSFER (PT)
• PROGRAM TRANSFER WITH INSTANCE (PTI)
• RESUME PROGRAM (RP)
• TRAP (TRAP2, TRAP4)

A breaking event is also considered to occur when-
ever a guarded-storage event is detected at the com-
pletion of the following instructions:

• LOAD GUARDED (LGG)
• LOAD LOGICAL AND SHIFT GUARDED

(LLGFSG)

A breaking event is not considered to occur as a
result of a transaction being aborted (either implicitly
or as a result of the TRANSACTION ABORT instruc-
tion).

Control 4-47

Timing

The timing facilities include three facilities for mea-
suring time: the TOD clock, the clock comparator,
and the CPU timer. A TOD programmable register is
associated with the TOD clock. When the multiple-
epoch facility is installed, the TOD-clock epoch index
is also provided.

In a multiprocessing configuration, a single TOD
clock is shared by all CPUs. Each CPU has its own
clock comparator, CPU timer, and TOD programma-
ble register.

Time-of-Day Clock and Epoch
Index

The time-of-day (TOD) clock provides a high-resolu-
tion measure of real time suitable for the indication of
date and time of day. The duration of the TOD clock,
beginning with a value of zero and continuing until it
wraps around to zero, is approximately 143 years;
this duration is referred to as an epoch. A single TOD
clock is shared by all CPUs in the configuration.

Format
The TOD clock is a 104-bit register.

For certain instructions, the TOD clock is considered
to be extended to the left by an 8-bit epoch index. In
a multiprocessing configuration, a single epoch index

is shared by all CPUs. When the multiple-epoch facil-
ity is not installed in the configuration, the epoch
index contains zeros when the TOD clock has not
wrapped around to zero; when the TOD clock has
wrapped around to zeros, it is unpredictable whether
or not the epoch index contains zeros. When the mul-
tiple-epoch facility is installed in the configuration, the
epoch index extends the capacity of the monotonic
sequence of clock values to approximately 36,534
years.

The TOD clock nominally is incremented by adding a
one in bit position 51 every microsecond. In models
having a higher or lower resolution, a different bit
position is incremented at such a frequency that the
rate of advancing the clock is the same as if a one
were added in bit position 51 every microsecond.
The resolution of the TOD clock is such that the
incrementing rate is comparable to the instruction-
execution rate of the model.

The stepping value of TOD-clock bit position 63, if
implemented, is 2–12 microseconds, or approximately
244 picoseconds. This value is called a clock unit.

Figure 4-12 illustrates the format of the TOD clock
and TOD-programmable field, and their relationship
to the operands of the instructions that inspect or set
them. Additionally, the PTFF instruction may manipu-
late the TOD clock and epoch index, by means of
fields in the instruction’s parameter block that have
the same resolution as the TOD clock (see “PER-

4-48 The z/Architecture CPU Architecture

FORM TIMING FACILITY FUNCTION” on
page 10-83).

When incrementing of the TOD clock causes a carry
to be propagated out of bit position 0, the program is
not alerted, and no interruption condition is gener-
ated as a result of the overflow. The handling of such
a carry out of bit position 0 is as follows:

• The value of the TOD clock wraps around to
zero.

• When the multiple-epoch facility is not installed in
the configuration, it is unpredictable whether
(a) the carry is ignored, and counting continues
from zero, or (b) the carry causes the epoch
index to be incremented by 1. Additionally, in
case (b), above, the epoch index may revert to a
value of zeros in future observations.

• When the multiple-epoch facility is installed in the
configuration, the carry causes the epoch index
to be incremented by 1. Any carry propagated
out of the leftmost bit position of the epoch index
is ignored.

The operation of the clock is not affected by any nor-
mal activity or event in the system. Incrementing of
the clock does not depend on whether the wait-state
bit of the PSW is one or whether the CPU is in the
operating, load, stopped, or check-stop state. Its
operation is not affected by CPU, initial-CPU, or clear
resets or by initial program loading. Operation of the

clock is also not affected by the setting of the rate
control or by an initial-machine-loading operation.
Depending on the model and the configuration, the
TOD clock may or may not be powered independent
of the CPU.

 States
The following states are distinguished for the TOD
clock: set, not set, stopped, error, and not opera-
tional. The state determines the condition code set
by execution of STORE CLOCK, STORE CLOCK
EXTENDED, and STORE CLOCK FAST. The clock is
incremented, and is said to be running, when it is in
either the set state or the not-set state.

Not-Set State: When the power for the clock is
turned on, the clock is set to zero, and the clock
enters the not-set state. The clock is incremented
when in the not-set state. When the TOD-clock-steer-
ing facility is installed, the TOD clock is never
reported to be in the not-set state, as the TOD clock
is placed in the set state as part of the initial-
machine-loading (IML) process.

When the clock is in the not-set state, execution of
STORE CLOCK, STORE CLOCK EXTENDED, or
STORE CLOCK FAST causes condition code 1 to be
set and the current value of the running clock to be
stored.

Bit 51 of the TOD clock represents 1 microsecond

Epoch
Index

TOD Clock

0 51 103

Operand of SCK, SCKC, STCK, STCKC, & STCKF TOD Programmable Register

Bits 0-63 of TOD Clock 00000000 00000000
Programmable

Field
0 51 63 0 16 31

Operand of STCKE

Epoch
Index

TOD Clock
Programmable

Field
0 8 59 112 127

Operand of SCKPF (GR0)

/ 00000000 00000000
Programmable

Field
0 32 48 63

Figure 4-12. Format of the TOD Clock, Epoch Index, and TOD-Programmable Field as Set and Inspected by Various
Instructions

Control 4-49

Stopped State: The clock enters the stopped state
when SET CLOCK is executed and the execution
results in the clock being set. This occurs when SET
CLOCK is executed without encountering any excep-
tions and either any manual TOD-clock control in the
configuration is set to the enable-set position or the
TOD-clock-control-override control, bit 42 of control
register 14, is one. The clock can be placed in the
stopped state from the set, not-set, and error states.
The clock is not incremented while in the stopped
state.

When the clock is in the stopped state, execution of
STORE CLOCK, STORE CLOCK EXTENDED, or
STORE CLOCK FAST causes condition code 3 to be
set and the value of the stopped clock to be stored.

Set State: The clock enters the set state only from
the stopped state. The change of state is under con-
trol of the TOD-clock-sync-control bit, bit 34 of control
register 0, of the CPU which most recently caused
the clock to enter the stopped state. If the bit is zero,
the clock enters the set state at the completion of
execution of SET CLOCK. If the bit is one, the clock
remains in the stopped state until the bit is set to zero
on that CPU or until another CPU executes a SET
CLOCK instruction affecting the clock. If an external
time reference (ETR) is installed, a signal from the
ETR may be used to set the set state from the
stopped state. When the system is not in the inter-
pretive-execution mode, and an external time refer-
ence (ETR) is not attached to the configuration, the
TOD-clock-sync control is treated as being zero,
regardless of its actual value; in this case, the clock
enters the set state and resumes incrementing upon
completion of the instruction.

Programming Note: The STP facility does not pro-
vide a signal that will cause the clock to transition
from the stopped state to the set state. If SET
CLOCK is executed when the configuration is in
STP-timing mode and bit 34 of control register 0 is
one, the clock remains in the stopped state until the
bit is set to zero on that CPU or until another CPU
executes a SET CLOCK instruction affecting the
clock.

Incrementing of the clock begins with the first step-
ping pulse after the clock enters the set state.

In the absence of an ETR, depending on the model,
the clock may enter the set state from the stopped
state without any programming action.

When the clock is in the set state, execution of
STORE CLOCK, STORE CLOCK EXTENDED, or
STORE CLOCK FAST causes condition code 0 to be
set and the current value of the running clock to be
stored.

Error State: The clock enters the error state when
a malfunction is detected that is likely to have
affected the validity of the clock value. It depends on
the model whether the clock can be placed in this
state. A timing-facility-damage machine-check-inter-
ruption condition is generated on each CPU in the
configuration whenever the clock enters the error
state. When the TOD-clock-steering facility is
installed, the TOD clock is never reported to be in the
error state. Errors in the TOD clock cause a system
check stop.

When STORE CLOCK, STORE CLOCK
EXTENDED, or STORE CLOCK FAST is executed
and the clock is in the error state, condition code 2 is
set, and the value stored is zero.

Not-Operational State: The clock is in the not-
operational state when its power is off or when it is
disabled for maintenance. It depends on the model
whether the clock can be placed in this state. When-
ever the clock enters the not-operational state, a tim-
ing-facility-damage machine-check-interruption
condition is generated on each CPU in the configura-
tion. When the TOD-clock-steering facility is installed,
the TOD clock is never reported to be in the not-oper-
ational state.

When the clock is in the not-operational state, execu-
tion of STORE CLOCK, STORE CLOCK
EXTENDED, or STORE CLOCK FAST causes condi-
tion code 3 to be set, and zero is stored.

Programming Note: When the TOD-clock-steering
facility is installed, the TOD clock has only two states,
the set state and the stopped state. Assuming proper
operation by the operating system, problem pro-
grams are never dispatched while the TOD clock is in
the stopped state. Thus, as observed by the problem
program, the TOD clock is always in the set state and
there is no need to test the condition code after issu-
ing STORE CLOCK, STORE CLOCK EXTENDED, or
STORE CLOCK FAST.

Changes in Clock State
When the TOD-clock-steering facility is not installed,
and the TOD clock changes value because of the

4-50 The z/Architecture CPU Architecture

execution of SET CLOCK or changes state, interrup-
tion conditions pending for the clock comparator and
CPU timer may or may not be recognized for up to
1.048576 seconds (220 microseconds) after the
change.

When the TOD-clock-steering facility is installed and
SET CLOCK is issued, interruption conditions for the
clock comparator and CPU timer may or may not be
recognized while the physical clock is in the stopped
state. After the physical clock enters the set state,
interruption conditions for the clock comparator are
not necessarily recognized until one of the following
instructions is issued: SET CLOCK COMPARATOR
(SCKC), STORE CLOCK (STCK), or STORE
CLOCK EXTENDED (STCKE). After the physical
clock enters the set state, interruption conditions for
the CPU timer are not necessarily recognized until
SET CPU TIMER (SPT) is issued. If a CPU is in the
wait state when the physical clock is set or changes
state, the CPU does not necessarily recognize inter-
ruption conditions for the clock comparator or CPU
timer until after it leaves the wait state and the appro-
priate aforementioned instruction is executed.

When the TOD-clock-steering facility is installed and
the logical TOD clock is changed by PTFF-ATO,
PTFF-STO, or PTFF-STOE, interruption conditions
for the clock comparator are not necessarily recog-
nized until one of the following instructions is issued:
SET CLOCK COMPARATOR (SCKC), STORE
CLOCK (STCK), or STORE CLOCK EXTENDED
(STCKE). If a CPU is in the wait state when the logi-
cal TOD clock is changed, the CPU may or may not
recognize interruption conditions for the clock com-
parator until after it leaves the wait state and one of
the aforementioned instructions is executed. The
CPU timer and CPU-timer interruptions are not
affected by PTFF-ATO, PTFF-STO and PTFF-STOE.

The results of channel-subsystem-monitoring-facility
operations may be unpredictable as a result of
changes to the TOD clock.

Setting and Inspecting the Clock
When neither the TOD-clock-steering facility nor the
multiple-epoch facility is installed, the clock can be
set to a specified value by execution of SET CLOCK
if the manual TOD-clock control of any CPU in the
configuration is in the enable-set position or the TOD-
clock-control-override control, bit 42 of control regis-
ter 14, is one. SET CLOCK sets bits of the clock with
the contents of corresponding bit positions of a dou-

bleword operand in storage. When either the TOD-
clock-steering facility or the multiple-epoch facility is
installed, the use of the SET CLOCK instruction is
discouraged; rather, the PERFORM TIMING FACIL-
ITY FUNCTION instruction should be used to set the
clock (see “TOD-Clock Steering” on page 4-55 for
additional details).

Setting the clock replaces the values in all bit posi-
tions from bit position 0 through the rightmost posi-
tion that is incremented when the clock is running.
However, on some models, the rightmost bits starting
at or to the right of bit 52 of the specified value are
ignored, and zeros are placed in the corresponding
positions of the clock. Zeros are also placed in posi-
tions to the right of bit position 63 of the clock.

The TOD clock can be inspected by executing
STORE CLOCK or STORE CLOCK FAST, which
causes bits 0-63 of the clock to be stored in an eight-
byte operand in storage, or by executing STORE
CLOCK EXTENDED, which causes bits 0-103 of the
clock to be stored in bytes 1-13 of a 16-byte operand
in storage. STORE CLOCK EXTENDED also stores
the concurrently-obtained epoch index in byte 0 of its
storage operand, and it obtains the TOD programma-
ble field from bit positions 16-31 of the TOD program-
mable register and stores it in byte positions 14 and
15 of the storage operand. Figure 4-12 on page 4-48
shows the format of the operands stored by STORE
CLOCK, STORE CLOCK EXTENDED, and STORE
CLOCK FAST.

The following discussion of the results of STORE
CLOCK, STORE CLOCK EXTENDED, and STORE
CLOCK FAST assumes that the TOD clock is running
and in the set state; TOD-clock values or portions
thereof are considered to be unsigned binary inte-
gers.

• The values stored by any of the following
sequence of instructions always correctly imply
the sequence of execution of these instructions
by one or more CPUs for all cases where the
sequence can be discovered by the program:

– Two executions of STORE CLOCK (assum-
ing no wrap around of the TOD clock occurs
between executions)

– Two executions of STORE CLOCK
EXTENDED (assuming no wrap around of
the TOD clock occurs between executions
when the multiple-epoch facility is not

Control 4-51

installed in the configuration, and assuming
no wrap around of the epoch index occurs
when the multiple-epoch facility is installed in
the configuration)

– An execution of STORE CLOCK followed by
an execution of STORE CLOCK EXTENDED
(assuming no wrap around of the TOD clock
occurs between executions)

– An execution of STORE CLOCK
EXTENDED followed by an execution of
STORE CLOCK (assuming no wrap around
of the TOD clock occurs between execu-
tions)

To ensure that unique values are obtained, non-
zero values may be stored in positions to the
right of the rightmost incremented bit position.
When stored by STORE CLOCK EXTENDED,
the value in bit positions 64-103 of the clock (bit
positions 72-111 of the storage operand) is
always nonzero; this ensures that values stored
by STORE CLOCK EXTENDED are always
unique when compared with values stored by
STORE CLOCK, extended on the right with
zeros.

For the purpose of establishing uniqueness and
sequence of occurrence of the results of STORE
CLOCK and STORE CLOCK EXTENDED, the
64-bit value provided by STORE CLOCK may be
considered to be extended to a full 104-bit TOD
value by appending 40 zeros on the right. As nei-
ther STORE CLOCK nor STORE CLOCK FAST
store an epoch index, meaningful comparison
between the results of these instruction with
those of STORE CLOCK EXTENDED is possible
only when the instructions are executed in the
same epoch.

• Regardless of which instruction is executed first,
STORE CLOCK and STORE CLOCK FAST exe-
cuted on either the same or different CPUs do
not necessarily return different values of the
clock. The result of the second execution may be
less than, equal to, or greater than that of the first
execution.

• Two executions of STORE CLOCK FAST do not
necessarily return different values of the clock.
When executed on the same CPU, and in the
absence of a carry out of bit position 0 of the
TOD clock, the result of the second execution
may be equal to or greater than that of the first
execution. When executed on different CPUs in

the same configuration, the result of the second
execution may be less than, equal to, or greater
than that of the first execution.

• Regardless of which instruction is executed first,
STORE CLOCK EXTENDED and STORE
CLOCK FAST executed on either the same or
different CPUs do not necessarily return different
values for the common TOD-clock bit positions
stored by the instructions (that is, the entire 64-
bit result of STORE CLOCK FAST as compared
with bit positions 8-71 of the result of STORE
CLOCK EXTENDED). When executed on the
same CPU, and in the absence of a carry out of
bit position 0 of the TOD clock, the result of the
second execution may be either equal to or
greater than that of the first execution. When exe-
cuted on different CPUs in the same configura-
tion, the result of the second execution may be
less than, equal to, or greater than that of the first
execution.

Figure 4-13 summarizes the interdependencies of
the results of STCK, STCKE, and STCKF described
above, assuming no wrap-around of the TOD clock
occurs between executions.

In a configuration where more than one CPU
accesses the clock, SET CLOCK is interlocked such
that the entire contents appear to be updated concur-
rently; that is, if SET CLOCK instructions are exe-
cuted simultaneously by two CPUs, the final result is

First Execution
by:

Result of Second Execution by:
STCK STCKE STCKF

STCK A: >3 A: >1,3 A: <=>

STCKE A: >1,3 A: >
S: =>2,3

D: <=>2

STCKF A: <=>
S: =>2,3

D: <=>2
S: =>3

D: <=>

Explanation:

1 STCK results extended on the right with 40 binary zeros.
2 STCKF results compared with bits 8-71 of STCKE results.
<=> Result of the second execution may be less than, equal to,

or greater than that of the first execution.
> Result the second execution is greater than that of the first

execution.
=> Result of the second execution is equal to or greater than

that of the first execution.
A: First and second execution are on any CPU.
D: First and second execution on different CPUs.
S: First and second execution on the same CPU.

Figure 4-13. Interdependencies of the Results of STCK,
STCKE, and STCKF

4-52 The z/Architecture CPU Architecture

either one or the other value. If SET CLOCK is exe-
cuted by one CPU and STORE CLOCK, STORE
CLOCK EXTENDED, or STORE CLOCK FAST by
the other, the result obtained by STORE CLOCK,
STORE CLOCK EXTENDED, or STORE CLOCK
FAST is either the entire old value or the entire new
value. When SET CLOCK is executed by one CPU, a
STORE CLOCK, STORE CLOCK EXTENDED, or
STORE CLOCK FAST instruction executed by
another CPU may find the clock in the stopped state
even when the TOD-clock-sync-control bit, bit 34 of
control register 0, of each CPU is zero. Since the
clock enters the set state before incrementing, the
first STORE CLOCK, STORE CLOCK EXTENDED,
or STORE CLOCK FAST instruction executed after
the clock enters the set state may still find the original
value introduced by SET CLOCK.

TOD Programmable Register
Each CPU has a TOD programmable register. Bits
16-31 of the register contain the programmable field
that is appended on the right to the TOD-clock value
by STORE CLOCK EXTENDED. The register has the
following format:

The register is loaded by SET CLOCK PROGRAM-
MABLE FIELD. The contents of the register are reset
to a value of all zeros by initial CPU reset.

Programming Notes:

1. Bit position 31 of the clock is incremented every
1.048576 seconds; for some applications, refer-
ence to the leftmost 32 bits of the clock may pro-
vide sufficient resolution.

2. Communication between systems is facilitated by
establishing a standard time origin that is the cal-
endar date and time to which a clock value of
zero corresponds. January 1, 1900, 0 a.m. Coor-
dinated Universal Time (UTC) is recommended
as this origin, and it is said to begin the standard
epoch for the clock. This is also the epoch used
when the TOD clock is synchronized to the exter-
nal time reference (ETR), and, for this reason,
the epoch is sometimes referred to as ETR time.
The former term, Greenwich Mean Time (GMT),
is now obsolete and has been replaced with the
more precise UTC.

3. Historically, one of the most important uses of
standard time has been for navigation. Prior to
1972, standard time, then called GMT, was
defined to have a variable-length second and
was synchronized to within 100 milliseconds of
the rotational position of the earth. Synchroniza-
tion was accomplished by occasional changes in
the length of the second, typically in parts per bil-
lion, and also by occasional insertion and dele-
tion of small increments of time, typically 50 or
100 milliseconds. Beginning in 1972, a new stan-
dard time scale, called UTC, was defined to have
a fixed-length second and be kept synchronized
to within 900 milliseconds of the rotational posi-
tion of the earth by means of occasional adjust-
ments of exactly one second called a leap
second. The change from GMT to UTC occurred
between the last second of the day on December
31, 1971 and the first second of the day on Janu-
ary 1, 1972 and included insertion of 107.758
milliseconds in the standard time scale to make
UTC exactly 10 seconds behind International
Atomic Time (TAI). For reasons of simplicity in
this document, the term UTC is sometimes
extrapolated backward before 1972 by assuming
no time adjustments in that time scale before
1972. For the same reasons, conversion
between ETR time and UTC does not take into
consideration the time adjustments prior to 1972,
and, thus, ETR time differs from TAI by a fixed
amount of 10 seconds. Coincident with the
occurrence of the 27th leap second, UTC will be
behind TAI by 37 seconds.

4. A program using the clock value as a time-of-day
and calendar indication must be consistent with
the programming support under which the pro-
gram is to be executed. If the programming sup-
port uses the standard epoch, bit 0 of the clock
remains one through the years 1972-2041. Bit 0
turned on at 11:56:53.685248 (UTC) May 11,
1971.

5. In converting to or from the current date or time,
the programming support must take into account
that leap seconds have been inserted or deleted
because of time-correction standards. When the
TOD clock has been set correctly to a time within
the standard epoch, the sum of the accumulated
leap seconds must be subtracted from the clock
time to determine UTC time.

6. Because of the limited accuracy of manually set-
ting the clock value, the rightmost bit positions of
the clock, expressing fractions of a second, are

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Programmable Field
0 16 31

Control 4-53

normally not valid as indications of the time of
day. However, they permit elapsed-time mea-
surements of high resolution.

7. The following chart shows the time interval
between instants at which various bit positions of
the TOD clock are stepped. This time value may
also be considered as the weighted time value
that the bit, when one, represents.

8. The following chart shows the TOD clock setting
for 00:00:00 (0 am), UTC time, for several dates:
January 1, 1900, January 1, 1972, and for that
instant in time just after each of the 27 leap sec-
onds that will have occurred through January,
2017. Each of these leap seconds is inserted in
the UTC time scale beginning at 23:59:60 UTC
of the day previous to the one listed and ending
at 00:00:00 UTC of the day listed.

9. The following chart shows various time intervals
in clock units expressed in hexadecimal notation.

10. The charts in notes 7-9 are useful when examin-
ing the value stored by STORE CLOCK. Similar
charts for use when examining the value stored
by STORE CLOCK EXTENDED are in program-
ming notes at the end of the definition of that
instruction.

11. In a multiprocessing configuration, after the TOD
clock is set and begins running, the program
should delay activity for 220 microseconds
(1.048576 seconds) to ensure that the CPU-
timer and clock-comparator interruption condi-
tions are recognized by the CPU.

TOD-Clock Bit
Stepping Interval

Days Hours Min. Seconds
51 0.000 001
47 0.000 016

43 0.000 256

39 0.004 096

35 0.065 536

31 1.048 576

27 16.777 216

23 4 28.435 456
19 1 11 34.967 296

15 19 5 19.476 736
11 12 17 25 11.627 776

7 203 14 43 6.044 416

3 3257 19 29 36.710 656

Year Month Day
Leap
Sec. Clock Setting (Hex)

1900 1 1 0000 0000 0000 0000
1972 1 1 8126 D60E 4600 0000
1972 7 1 1 820B A981 1E24 0000
1973 1 1 2 82F3 00AE E248 0000
1974 1 1 3 84BD E971 146C 0000
1975 1 1 4 8688 D233 4690 0000
1976 1 1 5 8853 BAF5 78B4 0000
1977 1 1 6 8A1F E595 20D8 0000
1978 1 1 7 8BEA CE57 52FC 0000
1979 1 1 8 8DB5 B719 8520 0000
1980 1 1 9 8F80 9FDB B744 0000

1981 7 1 10 9230 5C0F CD68 0000
1982 7 1 11 93FB 44D1 FF8C 0000
1983 7 1 12 95C6 2D94 31B0 0000
1985 7 1 13 995D 40F5 17D4 0000
1988 1 1 14 9DDA 69A5 57F8 0000
1990 1 1 15 A171 7D06 3E1C 0000
1991 1 1 16 A33C 65C8 7040 0000
1992 7 1 17 A5EC 21FC 8664 0000
1993 7 1 18 A7B7 0ABE B888 0000
1994 7 1 19 A981 F380 EAAC 0000
1996 1 1 20 AC34 336F ECD0 0000
1997 7 1 21 AEE3 EFA4 02F4 0000
1999 1 1 22 B196 2F93 0518 0000
2006 1 1 23 BE25 1097 973C 0000
2009 1 1 24 C387 0CB9 BB60 0000
2012 7 1 25 C9CC 9A70 4D84 0000
2015 7 1 26 CF2D 54B4 FBA8 0000
2017 1 1 27 D1E0 D681 73CC 0000

Interval Clock Units (Hex)
1 microsecond
1 millisecond
1 second
1 minute
1 hour
1 day
365 days
366 days
1,461 days*

1000
3E 8000

F424 0000
39 3870 0000

D69 3A40 0000
1 41DD 7600 0000

1CA E8C1 3E00 0000
1CC 2A9E B400 0000
72C E4E2 6E00 0000

Explanation:

* Number of days in four years, including a
leap year. Note that the year 1900 was
not a leap year. Thus, the four-year span
starting in 1900 has only 1,460 days.

Year Month Day
Leap
Sec. Clock Setting (Hex)

4-54 The z/Architecture CPU Architecture

12. Due to the sequencing rules for the results of
STORE CLOCK and STORE CLOCK
EXTENDED, the execution of STORE CLOCK
may be considerably slower than that of STORE
CLOCK EXTENDED and STORE CLOCK FAST.
Depending on the model, the relative slowness of
STORE CLOCK (as compared with STORE
CLOCK EXTENDED and STORE CLOCK FAST)
is particularly noticeable when multiple STORE
CLOCK instructions are executed within a short
period of time.

13. Uniqueness of TOD-clock values can be
extended to apply to processors in separate con-
figurations by including a configuration identifica-
tion in the TOD programmable field.

14. Using the standard epoch, programs that issue
STORE CLOCK or STORE CLOCK FAST will
observe the TOD clock wrap around to zero on
September 17, 2042, at 23:53:57.370496 TAI. If
the program cannot tolerate such a wrap around,
it should be adapted to use STORE CLOCK
EXTENDED on a processor supporting the multi-
ple-epoch facility.

15. The results of STORE CLOCK FAST are
intended to be approximately equivalent to either
(a) the results of STORE CLOCK or (b) bits 8-71
of the results of STORE CLOCK EXTENDED.
However, when compared with the results of
STORE CLOCK or STORE CLOCK EXTENDED,
the values returned by STORE CLOCK FAST do
not necessarily indicate the correct sequence of
execution of the instruction by one or more
CPUs. STORE CLOCK FAST should not be used
in programs where a monotonically increasing
result is required.

TOD-Clock Synchronization

The following functions are provided if the configura-
tion is part of an ETR network:

• A clock in the stopped state, with the TOD-clock-
sync-control bit (bit 34 of control register 0) set to
one, is placed in the set state and starts incre-
menting when an ETR signal occurs.

• The stepping rates for the TOD clock and the
ETR are synchronized.

• Bits 32 through the rightmost incremented bit of
a clock in the set state are compared with the
same bits of the ETR. An unequal condition is

signaled by an external-damage machine-check-
interruption condition. The machine-check-inter-
ruption condition may not be recognized for up to
1.048576 seconds (220 microseconds) after the
unequal condition occurs.

When the server timer protocol (STP) facility is
installed, the timing mode, timing state and STP-
clock-source state are defined as described below.

Timing Mode
The timing mode specifies the method by which the
TOD clock is maintained for purposes of synchroni-
zation within a timing network. A TOD clock operates
in one of the following timing modes:

Local Timing Mode: When the configuration is in
local timing mode, the TOD clock has been initialized
to a local time and is being stepped at the rate of the
local hardware oscillator. The configuration is not
part of a synchronized timing network.

ETR Timing Mode: When the configuration is in
ETR-timing mode, the TOD clock has been initialized
to the ETR and is being stepped by stepping signals
from ETR. To be in ETR-timing mode, the configura-
tion must be part of an ETR network.

If the machine implements hardware-based TOD-
clock steering, the ETR timing mode is not available

STP Timing Mode: When the configuration is in
STP-timing mode, the TOD clock has been initialized
to coordinated server time (CST) and is being
stepped at the rate of the local hardware oscillator. In
STP timing mode, the TOD clock is steered so as to
maintain, or attain, synchronization with CST. To be
in STP-timing mode, the configuration must be part
of an STP network.

Timing State
The timing state indicates the synchronization state
of the TOD clock with respect to the timing network
reference time.

Synchronized State: When a configuration is in
the synchronized timing state, the TOD clock is in
synchronization with the timing-network reference
time as defined below:

• If the configuration is in ETR-timing mode, the
configuration is synchronized with the ETR.

Control 4-55

• If the configuration is in STP timing mode, the
configuration is synchronized with coordinated
server time (CST).

A configuration that is in the local-timing or uninitial-
ized-timing mode is never in the synchronized state.

Unsynchronized State: When a configuration is in
the unsynchronized timing state, the TOD clock is not
in synchronization with the timing network reference
time as defined below:

• If the configuration is in ETR-timing mode, the
configuration has lost synchronization with the
ETR.

• If the configuration is in STP timing mode, the
configuration has lost or has not been able to
attain synchronization with coordinated server
time (CST). The configuration is out of synchroni-
zation with CST when the TOD clock differs from
CST by an amount that exceeds a model depen-
dent STP-sync-check-threshold value.

Stopped State: When a configuration is in the
stopped timing state, either the TOD clock is in the
stopped state, or TOD-clock recovery is in progress.
After TOD-clock recovery completes, the TOD clock
enters either the synchronized or unsynchronized
state.

STP Clock Source State
The STP-clock-source state indicates whether a
usable STP-clock source is available. The STP-clock
source is used to determine the coordinated server
time (CST) required to be able to synchronize the
TOD clock.

Not Usable: The not-usable-STP-clock-source
state indicates that a usable STP-clock source is not
available to the STP facility. When a usable STP-
clock source is not available, CST can not be deter-
mined.

Usable: The usable-STP-clock-source state indi-
cates that a usable STP-clock source is available to
the STP facility. When a usable STP-clock source is
available, CST has been determined and can be
used to synchronize the TOD clock to the STP net-
work.

Programming Notes:

1. ETR TOD-clock synchronization provides for
synchronizing and checking only bits 32 through
the rightmost incremented bit of the TOD clock.
Bits 0-31 of the TOD clock may be different from
those of the ETR.

2. If the configuration is part of an ETR network,
SET CLOCK must place all zeros in bit positions
32 through the rightmost incremented bit position
of the TOD clock; otherwise, an external-damage
machine-check-interruption condition will be rec-
ognized.

TOD-Clock Steering

TOD clock steering provides the means by which the
TOD clock can be steered to maintain synchroniza-
tion to a selected clock source. TOD clock steering is
performed using one of the following steering mecha-
nisms:

Offset-Based TOD-Clock Steering: The appar-
ent stepping rate of the TOD clock is changed with-
out changing the physical hardware oscillator which
steps the physical clock. This is accomplished by
means of a TOD offset register which is added to the
physical clock to produce the TOD clock.

Hardware-Based TOD-Clock Steering: The step-
ping rate of the physical hardware oscillator is directly
modifiable and provides the TOD clock frequency. A
physical clock is made available via PTFF that is
derived from the TOD clock in a manner that provides
the appearance of a fixed-frequency physical clock.
This is accomplished by means of a TOD-clock offset
that is subtracted from the TOD clock to produce the
physical clock.

When the STP-hardware-based-TOD-clock-steering
facility is not installed, TOD-clock steering is per-
formed using offset-based TOD-clock steering. When
the STP-hardware-based-TOD-clock-steering facility
is installed, steering is performed using hardware-
based TOD-clock steering.

The steering method used is transparent to all pro-
grams.

TOD-clock steering includes the semiprivileged
instruction PERFORM TIMING FACILITY FUNC-
TION (PTFF), which is in the “E” format, provides a

4-56 The z/Architecture CPU Architecture

7-bit function code in general register 0 and a param-
eter block address in general register 1.

The presence of the TOD-clock steering facility is
indicated by bit 28 of the facility list, as stored by the
STORE FACILITY LIST or STORE FACILITY LIST
EXTENDED instructions. Facility-indication bit 28,
when one indicates that the TOD-clock steering facil-
ity is installed. The instruction PERFORM TIMING
FACILITY FUNCTION (PTFF) is installed only in the
z/Architecture architectural mode. However, when
the TOD-clock steering facility is installed, it is not
disabled when the configuration switches architec-
tural modes.

The total steering rate is made up of two compo-
nents, a fine-steering rate and a gross-steering rate.

The fine-steering rate is used to correct that inaccu-
racy in the local oscillator which is stable over a rela-
tively long period of time. The value will normally be
less than the specified tolerance of the local oscillator
(typically 2.0 ppm), changes will occur infrequently
(on the order of once per day to once per week), and
changes will be small (typically less than 0.2 ppm).

The gross-steering rate is used as a dynamic correc-
tion for all other effects, the most predominate being
to synchronize time with an external time source and
with other clocks in the timing network. The value will
normally change frequently (on the order of once per
second to once per minute); and the value may range
to more than 40 ppm.

TOD-clock steering includes the PTFF set-TOD-off-
set and set-TOD-offset-user control functions which
allow a program to apply a 64-bit TOD epoch differ-
ence to the TOD clock.The multiple-epoch facility
includes the PTFF set-TOD-offset-extended and set-
TOD-offset-user-extended functions which allow a
program to apply a 72-bit TOD epoch difference to
the concatenation of the epoch index and TOD clock.

When the configuration is in STP timing mode, and
the timing-control program detects an excessive off-
set between the system TOD and some reference
clock, a new episode may be started with a step
change to the TOD offset (see “Episodes” on
page 4-57). This is however not visible to programs,
as the epoch difference is adjusted in a complemen-
tary way. The epoch difference therefore consists of
two components: a sync-check offset, and a user-
specified epoch difference. A control program may
request sync check notification, and subsequently

request that its uncorrected sync check offset be cor-
rected, resulting in a program-visible step in the TOD
in a controlled manner.

TOD-clock steering also includes several query func-
tions which may be used by the problem-state pro-
gram to determine the quality of the TOD clock.

 Offset-Based TOD-Clock Steering
Overview
When the STP-hardware-based-TOD-clock-steering
facility is not installed, offset-based TOD-clock steer-
ing is performed by computing a TOD-clock offset
that is added to the physical clock to form the system
TOD clock. Offset-based TOD-clock steering is
accomplished by means of three values that are used
to compute the TOD-clock offset: a start time (s), a
base offset (b), and a steering rate (r).

The steering rate is a 32-bit signed binary fixed-point
value and considered to be scaled by a factor of 2-44.

When the multiple-epoch facility is not installed, the
start time is a 64-bit unsigned binary integer with a
resolution equal to bit 63 of the TOD clock that is set
to the physical clock start time for the current steering
episode (see "Episodes" on page 4-57). When the
multiple-epoch facility is installed, the start time may
be extended on the left with up to eight additional
bits.

When the multiple-epoch facility is not installed, the
base offset is a 64-bit signed binary integer with a
resolution equal to bit 63 of the TOD clock. When the
multiple-epoch facility is installed, the base offset
may be extended on the left with up to eight addi-
tional bits.

Hardware-Based TOD-Clock-Steering
Overview
When the STP-hardware-based-TOD-clock-steering
facility is installed, hardware-based steering of the
TOD clock is accomplished by changing the stepping
rate of the hardware oscillator. At the start of each
steering episode, the hardware steering rate is set to
a steering rate that reflects the current total steering
rate for the configuration. At an episode start time,
the TOD-clock base offset is updated to include the
accumulated hardware steering for the previous (old)
episode. The TOD-clock base offset is used to com-
pute a current TOD-clock offset that is used to deter-
mine the physical clock at any given time. The
conceptual steering parameters are the same as for

Control 4-57

offset-based TOD-clock steering: a start time (s), a
base offset (b), and a steering rate (r) (see “Epi-
sodes” on page 4-57).

When hardware-based TOD-clock steering is
installed, ETR steering does not apply.

TOD-Offset-Update Events

When the STP-hardware-based-TOD-clock-steering
facility is not installed, the TOD offset is updated peri-
odically rather than being computed continuously.
This update is referred to as a TOD-offset-update
event. A TOD-offset-update event is triggered by the
carry out of a bit position of the physical clock. The bit
position depends on the model, but is chosen such
that for normal steering rates, the difference between
the values computed for the TOD offset (d) by con-
secutive TOD-offset-update events is less than the
resolution of the TOD clock.

When the STP-hardware-based-TOD-clock-steering
facility is installed, the steering rate can be viewed as
being applied continuously. The TOD offset is calcu-
lated immediately, whenever it is needed; thus, there
is no TOD-offset-update event.

Episodes

The three values, start time (s), base offset (b), and
steering rate (r), define a linear steering adjustment
which can be applied indefinitely. The duration that
these values are applied without being changed is
called an episode.

When the STP-hardware-based-TOD-clock-steering
facility is not installed, a request by the timing-facility-
control program to change the steering rate causes
the machine to schedule a new episode to take effect
at a future time. To provide a smooth transition, the
machine schedules the start time for the new episode
to be at the next TOD-offset-update event and com-
putes a new base offset such that there will be no
discontinuity in the value of the TOD offset at the
instant the new values take effect.

When the STP-hardware-based-TOD-clock-steering
facility is installed, a request by timing-facility-control
program to change the steering rate causes a new
episode to begin immediately. A new base offset is
computed such that there is no discontinuity in the
value of the TOD offset at the instant the new values
take effect.

The machine places the new values into special reg-
isters called new-episode start time (new.s), new-epi-
sode base offset (new.b), new-episode fine-steering
rate (new.f); and new-episode gross-steering rate
(new.g); and the previous contents of these four reg-
isters are preserved by placing them into registers
called old-episode start time (old.s), old-episode
base offset (old.b), old-episode fine-steering rate
(old.f), and old-episode gross-steering rate (old.g),
respectively. The machine continues to use the val-
ues for the old episode until the new-episode start
time (new.s) and then automatically switches to use
the values for the new episode. The registers in use
at any particular instant in time are called current
start time (s), current base offset (b), and current
total steering rate (r). These are collectively referred
to as the current-episode registers. Additionally,
when the STP-hardware-based-TOD-clock-steering
facility is installed, the hardware steering rate (hr) is
set to a value that corresponds to the current steer-
ing rate in a model-dependent manner.

TOD-Clock-Steering Registers

Figure 4-14 summarizes the TOD-clock-steering reg-
isters. The contents of all TOD-clock-steering regis-
ters are initialized to zero by power-on reset, except
for the user-specified-clock offset, whose initial value
may be part of configuration information.

Current Start Time (s): When the machine is
operating in the old episode, the current start time is
obtained from the old-episode start time (old.s); and
when in the new episode, it is obtained from the new-
episode start time (new.s). When the multiple-epoch
facility is not installed, the current start time (s) is a
64-bit unsigned binary integer that has a resolution
equal to bit 63 of the TOD clock. When the multiple-
epoch facility is installed, the current start time is a
72-bit unsigned binary integer that has a resolution
equal to bit 63 of the TOD clock; however, depending
on the model, not all of the leftmost 8 bits may be
implemented.

Current Base Offset (b): When the machine is
operating in the old episode, the current base offset
is obtained from the old-episode base offset (old.b);
and when in the new episode, it is obtained from the
new-episode base offset (new.b). When the multiple-
epoch facility is not installed, the current base offset
(b) is a 64-bit signed binary integer that has a resolu-
tion equal to bit 63 of the TOD clock. When the multi-
ple-epoch facility is installed, the current base offset

4-58 The z/Architecture CPU Architecture

is a 72-bit signed binary integer that has a resolution
equal to bit 63 of the TOD clock; however, depending
on the model, not all of the leftmost 8 bits may be
implemented.

Current Steering Rates (f,g,r): When the machine
is operating in the old episode, the current fine-steer-
ing rate (f) and current gross-steering rate (g) are
obtained from the old-episode fine-steering rate
(old.f) and gross-steering rate (old.g), respectively;
when in the new episode, they are obtained from the
new-episode fine-steering rate (new.f) and gross-
steering rate (new.g), respectively.

The current total steering rate (r) is obtained from the
sum of the current fine-steering rate (f) and the cur-
rent gross-steering rate (g). A carry, if any, out of bit
position 0, is ignored in this addition. The current

total steering rate (r) is a 32-bit signed binary fixed-
point value and considered to be scaled by a factor of
2–44.

Programming Note: Bits 0 and 31 of the steering-
rate represent steering rates of -2–13 and 2–44,
respectively. Thus, steering rates of 122 parts per
million (10.5 seconds per day) may be specified with
a precision of 4.9 nanoseconds per day.

TOD Offset (d): When the multiple-epoch facility is
not installed, the TOD offset (d) is a 64-bit signed
binary integer with a resolution equal to bit 63 of the
TOD clock. . When the multiple-epoch facility is
installed, the TOD offset is a 72-bit signed binary
integer with a resolution equal to bit 63 of the TOD
clock.

When the STP-hardware-based-TOD-clock-steering
facility is not installed, the contents of the TOD offset
are added to the physical clock to obtain the system
TOD clock. When the STP-hardware-based-TOD-
clock-steering facility is installed, the contents of the
TOD offset are subtracted from the system TOD
clock to obtain the physical clock.

Depending on the model, rightmost bits of the TOD
offset corresponding to bits beyond the resolution of
the TOD clock may not be implemented and are
treated as zeros.

UTC Information Block (UIB)
The UIB includes information to convert from a TOD
clock timestamp to primary reference time (PRT) and
then to convert PRT to UTC. The UIB can be
inspected by executing PERFORM TIMING FACIL-
ITY FUNCTION specifying the PTFF-QUI (Query
UTC Information) function. Conversion from TOD to
PRT uses the TOD-to-PRT parameters and conver-
sion from PRT to UTC uses the leap-second informa-
tion.

The information in the UIB is provided by the server-
time-protocol (STP) facility that also controls TOD-
clock steering. When STP is not installed, all fields in
the UIB are zero. STP manages a coordinated timing
network (CTN) that provides the illusion of a single
global TOD clock – known as coordinated server time
(CST) – shared by several machines.

Old-Episode Start Time (old.s)

Old-Episode Base Offset (old.b)

OEFS Rate (old.f)

OEGS Rate (old.g)

New-Episode Start Time (new.s)

New-Episode Base Offset (new.b)

NEFS Rate (new.f)

NEGS Rate (new.g)

Current Start Time (s)

Current Base Offset (b)

C Fine S Rate (f)

C Gross S Rate (g)

C Total S Rate (r)

TOD Offset (d)
0 31 N

Explanation:

N When the multiple-epoch facility is not installed, N is 63;
thus the wider fields shown above are 64 bits. When the
multiple-epoch facility is installed, N may be up to 71; thus
the wider fields may be up to 72 bits. In either case, the
field is right justified, with the rightmost bit having the
resolution of a clock unit.

Figure 4-14. TOD-Clock-Steering Registers

Control 4-59

The format of the UIB is shown in Figure 4-15.

Timing Mode (TM): Bits 0-3 of byte 0 of the UIB
contain a 4-bit code indicating the timing mode of the
system. The codes are defined as follows:

Timing State: Bits 4-7 of byte 0 of the UIB contain
a 4-bit code indicating the timing state of the system.
The codes are defined as follows:

Leap Second Information: Three fields in the UIB
provide information for converting from primary refer-
ence time to UTC. These are the leap-second-event-
time, old-leap-seconds, and new-leap-seconds fields.
For a primary reference time less than the leap-sec-
ond-event time, the old-leap-seconds value applies;
for a primary reference time equal to or greater than
the leap-second-event time, the new-leap-seconds
value applies. The applicable leap-second value is
subtracted from the primary reference time (PRT) to
form UTC.

Leap Second Event Time: Bytes 8-15 of the UIB,
when valid, contain a 64-bit time in TOD-clock time-
stamp format that specifies the primary reference
time at which the new-leap seconds is to take effect.

Old Leap Seconds: Bytes 16-17 of the UIB contain a
16-bit signed binary integer indicating the number of
leap seconds in effect prior to the leap-second-event
time. Thus, when the leap-second-event time is non-
zero, the old-leap-seconds value is in effect for a pri-
mary reference time less than the leap-second-event
time. When the leap-second-event time is zero, no
change has been scheduled, and the old-leap-sec-
onds and new-leap-seconds fields contain the same
value. The value is provided in seconds with the low-
order bit equaling one second.

New Leap Seconds: Bytes 18-19 of the UIB contain
a 16-bit signed binary integer indicating the number
of leap seconds in effect for a primary reference time
equal to or greater than the leap-second-event time.
The value is provided in seconds with the low-order
bit equaling one second.

PRT Timestamp: Bytes 24-31 of the UIB, when
valid, contain a 64-bit timestamp that specifies the
time at which the primary-reference-time (PRT)
parameters (PRT dispersion, PRT offset, PRT-correc-
tion-steering-start time, and PRT-correction time)
were last updated within the CTN. This field has the
same format as bits 0-63 of the TOD clock. The PRT-

Dec Hex

0 00 TM TS Reserved

4 04 Reserved

8 08
 Leap Second Event Time

12 0C

16 10 Old Leap Seconds New Leap Seconds

20 14 Reserved

24 18
 PRT Timestamp

28 1C

32 20
PRT Dispersion

36 24

40 28
PRT Offset

44 2C

48 30
PRT Correction Steering Start Time

52 34

56 38
PRT Correction Time

60 3C

64 40
CST Reference Time

68 44

72 48
CST-TOD Dispersion

76 4C

80 50
CST Offset

84 54

88 58 Maximum Unknown Skew Rate

92 5C

Reserved
252 FC

0 4 8 16 31

Figure 4-15. UTC Information Block

Code Meaning
0 Local Timing Mode

1 ETR Timing Mode

2 STP Timing Mode
3-15 Reserved

Code Meaning
0 Unsynchronized

1 Synchronized

2-15 Reserved

4-60 The z/Architecture CPU Architecture

update-event-time field is valid only when it is non-
zero.

PRT Dispersion: Bytes 32-39 of the UIB, when
valid, contain a 64-bit unsigned binary integer indi-
cating the total maximum possible dispersion of the
PRT offset provided at the most recent PRT-update
event. This field has the same format as bits 0-63 of
the TOD clock. The PRT-dispersion field is valid only
when the PRT-timestamp field is nonzero.

PRT Offset: Bytes 40-47 of the UIB, when valid,
contain a 64-bit signed binary integer indicating the
PRT offset provided for the most recent PRT informa-
tion. This field has the same format as bits 0-63 of
the TOD clock. The value is the amount to be added
to the system TOD to match the estimated time at the
primary-reference time source. The margin of error of
this value is equal to the PRT dispersion.

PRT Correction Steering Start Time: Bytes 48-
55 of the UIB, when valid, contain a 64-bit timestamp
having the same format as bits 0-63 of the TOD clock
and indicating the time at which PRT-correction
steering is to be, or has been, initiated within the
CTN. A value of zero indicates that no PRT correc-
tion was planned at the time when the UIB was last
updated.

PRT Correction Time: Bytes 56-63 of the UIB,
when valid, contain a 64-bit unsigned binary integer
indicating the estimated amount of time required to
correct the PRT offset which is the amount of time
PRT-correction will be in effect. This field has the
same format as bits 0-63 of the TOD clock.The field
is valid when the PRT-correction-steering-start time
is nonzero.

CST Reference Time: Bytes 64-71 of the UIB,
when valid, contain a 64-bit value in TOD-clock time-
stamp format indicating the value of the system TOD
clock at the most recent time that the CST parame-
ters (CST-TOD dispersion and CST offset) were
updated. The field is valid when it is nonzero.

CST-TOD Dispersion: Bytes 72-79 of the UIB,
when valid, contain a 64-bit unsigned binary integer
indicating the CST-TOD dispersion computed at the
most recent CST parameter update. The value has a
resolution equal to bit 63 of the TOD clock. The CST-
TOD-dispersion field is valid when the CST-refer-
ence-time field is nonzero.

CST Offset: Bytes 80-87 of the UIB, when valid,
contain a 64-bit signed binary value that indicates the
offset of the system TOD clock to the TOD clock at
the machine selected as the time source. The CST
offset is added to the system-TOD clock to form the
Coordinated Server Time (CST) at the machine. For
the add operation, a carry out of bit 0 ignored. Bit 63
of the CST offset has a resolution equal to that of bit
63 of the TOD clock.The CST-offset field is valid
when the CST-reference-time field is nonzero. For
stratum-1 servers, the field is set to zero (by defini-
tion, CST is the system TOD at the stratum-1 server).

Maximum Unknown Skew Rate: Bytes 88-91 of
the UIB, when valid, contain a 32-bit unsigned binary
integer indicating the absolute value of the unknown
skew rate of the physical clock. The value has a reso-
lution of one part per 244. The maximum-skew-rate
field is valid when it is nonzero.

Clock Comparator

The clock comparator provides a means of causing
an interruption when the TOD-clock value exceeds a
value specified by the program.

In a configuration with more than one CPU, each
CPU has a separate clock comparator.

The clock comparator has the same format as bits
0-63 of the TOD clock. The clock comparator nomi-
nally consists of bits 0-47, which are compared with
the corresponding bits of the TOD clock. In some
models, higher resolution is obtained by providing
more than 48 bits. The bits in positions provided in
the clock comparator are compared with the corre-
sponding bits of the clock. When the resolution of the
clock is less than that of the clock comparator, the
contents of the clock comparator are compared with
the clock value as this value would be stored by exe-
cuting STORE CLOCK or STORE CLOCK FAST.

The clock comparator causes an external interruption
with the interruption code 1004 hex; presentation of
the interruption is subject to the clock-comparator
subclass mask, bit 52 of control register 0. When the
TOD-clock-steering facility is not installed, a request
for a clock-comparator interruption exists whenever
either of the following conditions exists:

1. The TOD clock is running and the value of the
clock comparator is less than the value in the
compared portion of the clock, both values being

Control 4-61

considered unsigned binary integers. Compari-
son follows the rules of unsigned binary arithme-
tic.

2. The TOD clock is in the error state or the not-
operational state.

When the TOD-clock-steering facility is installed, a
request for a clock-comparator interruption exists
whenever the physical clock is in the set state and
the value of the clock comparator is less than the
value in the compared portion of the logical TOD
clock.

When the clock-comparator sign control, bit 10 of
control register 0, is zero, comparison follows the
rules of unsigned binary arithmetic. When the multi-
ple-epoch facility is not installed in the configuration
and the clock-comparator sign control is one, it is
unpredictable whether the comparison follows the
rules of unsigned or signed binary arithmetic. When
the multiple-epoch facility is installed in the configura-
tion and the clock-comparator sign control is one,
comparison follows the rules of signed binary arith-
metic.

A request for a clock-comparator interruption does
not remain pending when the value of the clock com-
parator is made equal to or greater than that of the
logical TOD clock or when the value of the logical
TOD clock is made less than the clock-comparator
value. The latter may occur as a result of the physical
clock or logical TOD clock being set; when the multi-
ple-epoch facility is not installed or when the facility is
installed but the clock-comparator sign control is
zero, the latter may occur as a result of the logical
TOD clock wrapping to zero; when the multiple-
epoch facility is installed and the clock-comparator
sign control is one, the latter may occur as a result of
the logical TOD clock, considered as a signed value,
transitioning to the maximum negative value.

The clock comparator can be inspected by executing
the instruction STORE CLOCK COMPARATOR and
can be set to a specified value by executing the SET
CLOCK COMPARATOR instruction.

When the multiple-epoch facility is installed, a
change to the clock-comparator sign control may
immediately cause the conditions for requesting a
clock-comparator interruption to exist or no longer
exist (depending on the values of the TOD clock and
clock comparator). However, such a change may not
immediately cause a request for a clock comparator

to be made or withdrawn. See programming note 3
for additional information.

The contents of the clock comparator and clock-com-
parator sign control are initialized to zero by initial
CPU reset.

Programming Notes:

1. An interruption request for the clock comparator
persists as long as the clock-comparator value is
less than that of the TOD clock or as long as the
TOD clock is in the error state or the not-opera-
tional state. Therefore, one of the following
actions must be taken after an external interrup-
tion for the clock comparator has occurred and
before the CPU is again enabled for external
interruptions:

• The value of the clock comparator must be
replaced.

• The TOD clock must be set.

• The clock-comparator-subclass mask must
be set to zero.

• The TOD clock must wrap to zero (applicable
when the multiple-epoch facility is not
installed, or when the facility is installed but
the clock-comparator sign control is zero).

Otherwise, loops of external interruptions are
formed.

2. The instruction STORE CLOCK, STORE CLOCK
EXTENDED, or STORE CLOCK FAST may store
a value which is greater than that in the clock
comparator, even though the CPU is enabled for
the clock-comparator interruption. This is
because the TOD clock may be incremented one
or more times between when instruction execu-
tion is begun and when the clock value is
accessed. In this situation, the interruption
occurs when the execution of STORE CLOCK,
STORE CLOCK EXTENDED, or STORE CLOCK
FAST is completed.

3. When the multiple-epoch facility is installed in the
configuration, the clock-comparator sign control
provides the means by which a control program
can specify what constitutes a discontinuity in the
TOD clock for the purposes of clock-comparator
checking: either transitioning from the maximum
unsigned TOD-clock value to zero, or transition-

4-62 The z/Architecture CPU Architecture

ing from the maximum positive signed TOD-clock
value to the maximum negative value.

Assuming that a configuration is re-initialized at
least once during a half of an epoch, it is recom-
mended that the clock-comparator sign control
be set to the contents of bit position 0 of the TOD
clock when the program is initialized. This
ensures that clock-comparator checking
observes no discontinuity in the TOD clock.

To ensure consistent results when altering the
clock-comparator sign control, the program
should (a) disable clock-comparator interrup-
tions, (b) set the clock-comparator sign control,
(c) issue the SET CLOCK COMPARATOR
instruction to set a new comparator value, and
then (d) enable for clock-comparator interrup-
tions as appropriate.

Once set, the clock-comparator sign control is
intended to remain unchanged until the next ini-
tial CPU reset (such as at IPL). Dynamic chang-
ing of the clock-comparator sign control without
following the recommendations in this note may
result in false recognition of a clock-comparator
condition that is withdrawn as a result of the
changed control or in the delayed recognition of

a clock-comparator condition that becomes
pending as a result of the changed control.

4. When the clock-comparator sign control is zero,
(a) the program can set the clock comparator to
all zeros to ensure that an interruption condition
is immediately present, and (b) the program can
set the clock comparator to a value of all binary
ones to ensure that a clock-comparator interrup-
tion is never recognized. When the multiple-
epoch facility is installed in the configuration and
the clock-comparator sign control is one, (a) the
program can set the clock comparator to the
maximum negative value (8000000000000000
hex) to ensure that an interruption condition is
immediately present, and (b) the program can
set the clock comparator value to the maximum
positive value (7FFFFFFFFFFFFFFF hex) to
ensure that a clock-comparator interruption is
never recognized.

5. When the multiple-epoch facility is not installed in
the configuration, bit 10 of control register 0
should always be set to zero to ensure consistent
unsigned comparison of the clock comparator.

6. Figure 4-16 illustrates the effects of the clock-
comparator sign control on the recognition of

Control 4-63

clock-comparator interruption conditions, based
on various clock-comparator and TOD-clock val-
ues.

CPU Timer

The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a specified amount of time has elapsed.

In a configuration with more than one CPU, each
CPU has a separate CPU timer.

The CPU timer is a binary counter with a format
which is the same as that of bits 0-63 of the TOD
clock, except that bit 0 is considered a sign. The CPU
timer nominally is decremented by subtracting a one
in bit position 51 every microsecond. In models hav-
ing a higher or lower resolution, a different bit posi-
tion is decremented at such a frequency that the rate
of decrementing the CPU timer is the same as if a
one were subtracted in bit position 51 every micro-

second. The resolution of the CPU timer is such that
the stepping rate is comparable to the instruction-
execution rate of the model.

The CPU timer requests an external interruption with
the interruption code 1005 hex whenever the CPU-
timer value is negative (bit 0 of the CPU timer is one);
presentation of the interruption is subject to the CPU-
timer subclass mask, bit 53 of control register 0. The
request does not remain pending when the CPU-
timer value is changed to a nonnegative value.

When the TOD-clock-steering facility is not installed,
and both the CPU timer and the TOD clock are run-
ning, the stepping rates are synchronized such that
both are stepped at the same rate.

When the TOD-clock-steering facility is installed and
the STP-hardware-based-TOD-clock-steering facility

Register Value

Clock-Comparator Sign Control (CR0.10)

Zero (Unsigned) One (Signed)

CL
KC

TO
D

CL
KC

TO
D

CL
KC

TO
D

CL
KC

TO
D

CL
KC

TO
D

CL
KC

TO
D

CL
KC

TO
D

CL
KC

TO
D

CL
KC

TO
D

CL
KC

TO
D

CL
KC

TO
D

00000000 00000000

00000000 00000001

456789AB CDEF0123

456789AB CDEF0124

7FFFFFFF FFFFFFFF

80000000 00000000

CDEF1234 56789ABC

CDEF1234 56789ABD

FFFFFFFF FFFFFFFF

Explanation:

Pairs of columns represent a clock-comparator (CLKC) value, and a range of time-of-day (TOD) clock values for which a clock-comparator
interruption condition does or does not exist.

For each pair of columns, the clock comparator is set to the value shown in the “Register Value” column corresponding to the row in which the
check mark () appears. TOD-clock cells that are not shaded indicate that a clock-comparator interruption condition does not exist for the
corresponding TOD-clock value in the “Register Value” column. TOD-clock cells that are shaded (if any) indicate that a clock-comparator
interruption condition exists for the corresponding values in the “Register Value” column.

Figure 4-16. Effects of the Clock-Comparator Sign Control on the Recognition of Clock-Comparator Interruption Conditions

4-64 The z/Architecture CPU Architecture

is not installed, the CPU timer and TOD clock do not
necessarily step at the same rate and may differ by
as much as the maximum steering rate. When the
TOD-clock-steering facility is installed and the STP-
hardware-based-TOD-clock-steering facility is
installed, the CPU timer and TOD clock step at the
same rate.

Normally, decrementing the CPU timer is not affected
by concurrent I/O activity. However, in some models
the CPU timer may stop during extreme I/O activity
and other similar interference situations. In these
cases, the time recorded by the CPU timer provides
a more accurate measure of the CPU time used by
the program than would have been recorded had the
CPU timer continued to step.

The CPU timer is decremented when the CPU is in
the operating state or the load state. When the man-
ual rate control is set to instruction step, the CPU
timer is decremented only during the time in which
the CPU is actually performing a unit of operation.
However, depending on the model, the CPU timer
may or may not be decremented when the TOD clock
is in the error, stopped, or not-operational state.

Depending on the model, the CPU timer may or may
not be decremented when the CPU is in the check-
stop state.

The CPU timer can be inspected by executing the
privileged instruction STORE CPU TIMER and can
be set to a specified value by executing the privileged
SET CPU TIMER instruction. The general instruction
EXTRACT CPU TIME may be used in determining
the amount of CPU time consumed by a task.

Depending on the model, the value of the CPU timer
stored by an execution of STORE CPU TIMER may
be the same as the value stored by a subsequent
execution of STORE CPU TIMER on the same CPU
when relatively few instructions are executed
between the STORE CPU TIMER instructions. Simi-
larly, depending on the model, the value of the CPU
TIMER set by an execution of SET CPU TIMER may
be the same value as that stored by a subsequent
execution of STORE CPU TIMER on the same CPU
when relatively few instructions are executed
between the setting and storing of the timer.

The CPU timer is set to zero by initial CPU reset.

Programming Notes:

1. The CPU timer in association with a program
may be used both to measure CPU-execution
time and to signal the end of a time interval on
the CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as I/O interference, the
availability of pages, and instruction retry. There-
fore, repeated measurements of the same
sequence on the same installation may differ.

3. The fact that a CPU-timer interruption does not
remain pending when the CPU timer is set to a
positive value eliminates the problem of an unde-
sired interruption. This would occur if, between
the time when the old value is stored and a new
value is set, the CPU is disabled for CPU-timer
interruptions and the CPU timer value goes from
positive to negative.

4. The fact that CPU-timer interruptions are
requested whenever the CPU timer is negative
(rather than just when the CPU timer goes from
positive to negative) eliminates the requirement
for testing a value to ensure that it is positive
before setting the CPU timer to that value.

As an example, assume that a program being
timed by the CPU timer is interrupted for a cause
other than the CPU timer, external interruptions
are disallowed by the new PSW, and the CPU-
timer value is then saved by STORE CPU
TIMER. This value could be negative if the CPU
timer went from positive to negative since the
interruption. Subsequently, when the program
being timed is to continue, the CPU timer may be
set to the saved value by SET CPU TIMER. A
CPU-timer interruption occurs immediately after
external interruptions are again enabled if the
saved value was negative.

The persistence of the CPU-timer-interruption
request means, however, that after an external
interruption for the CPU timer has occurred, the
value of the CPU timer must be replaced, the
value in the CPU timer must wrap to a positive
value, or the CPU-timer-subclass mask must be
set to zero before the CPU is again enabled for
external interruptions. Otherwise, loops of exter-
nal interruptions are formed.

Although an initial CPU reset causes the CPU
timer to be set to zero, it also clears the CPU-

Control 4-65

timer enablement mask (bit 53 of control register
0). Thus, even if an IPL-new PSW is enabled for
external interruptions, a CPU-timer interruption
will not immediately occur.

5. The instruction STORE CPU TIMER may store a
negative value even though the CPU is enabled
for the interruption. This is because the CPU-
timer value may be decremented one or more
times between when instruction execution is
begun and when the CPU timer is accessed. In
this situation, the interruption occurs when the
execution of STORE CPU TIMER is completed.

 Guarded-Storage Facility

The guarded-storage facility provides the means by
which the program can designate an area of logical
storage comprising from zero to sixty-four guarded-
storage sections. The facility includes the following
instructions:

• LOAD GUARDED (LGG)
• LOAD LOGICAL AND SHIFT GUARDED

(LLGFSG)
• LOAD GUARDED STORAGE CONTROLS

(LGSC)
• STORE GUARDED STORAGE CONTROLS

(STGSC)

When the second operand of LGG or LLGFSG does
not designate a guarded section of the guarded-stor-
age area, the instruction performs its defined load
operation. However, when the second operand of the
instruction designates a guarded section of the
guarded-storage area, control branches to a
guarded-storage event handler with indications of the
cause of the event.

The guarded-storage facility is intended to be used
by various programming languages that implement
storage-reclamation techniques often referred to as
garbage collection. All other instructions that access
a range of guarded storage are unaffected by the
facility, only the LGG and LLGFSG instructions are
capable of generating a guarded-storage event.

Guarded-Storage-Facility Registers

The guarded-storage facility is controlled by a bit in
control register 2 and by the following three 64-bit
registers:

• Guarded-storage-designation register
• Guarded-storage-section-mask register
• Guarded-storage-event parameter-list-address

register

The contents of these three registers may be loaded
and inspected by means of the LOAD GUARDED
STORAGE CONTROLS and STORE GUARDED
STORAGE CONTROLS instructions respectively.

Control Register 2
When the guarded-storage facility is installed, bit 59
of control register 2 is the guarded-storage-facility-
enablement (GSFE) control. When bit 59 is zero,
attempted execution of the following instructions
results in a special-operation exception:

• LOAD GUARDED STORAGE CONTROLS
• STORE GUARDED STORAGE CONTROLS

When the GSFE control is one, the guarded-storage
facility is said to be enabled.

Execution of the LOAD GUARDED and LOAD LOGI-
CAL AND SHIFT GUARDED instructions is not sub-
ject to the GSFE control. A guarded-storage event is
only recognized when the GSFE control is one.

Programming Note: When facility indication 133 is
one (indicating that the guarded-storage facility is
installed in the configuration), the program can use
the LOAD GUARDED and LOAD LOGICAL AND
SHIFT GUARDED instructions, regardless of the
GSFE control. However, guarded-storage events
cannot be recognized without first loading guarded-
storage controls, and the control program must set
the GSFE control to one in order to successfully exe-
cute the LOAD GUARDED STORAGE CONTROLS
instruction. Therefore, the program should examine
an OS-provided indication of guarded-storage-facil-
ity enablement (rather than facility bit 133) to deter-
mine if the full capabilities of the facility are available.

4-66 The z/Architecture CPU Architecture

Guarded-Storage-Designation (GSD)
Register
The guarded-storage designation register is a 64-bit
register that defines the attributes of the guarded-
storage area as shown in Figure 4-17.

The fields of the GSD register are as follows:

Guarded-Storage Origin (GSO): The location of
the guarded-storage area is specified by the leftmost
bits of the GSD register. The number of leftmost bits
is determined by value of the guarded-storage-char-
acteristic (GSC) in bits 58-63 of the register. Bit posi-
tions 0 through (63 – GSC) of the guarded-storage-
designation register, padded on the right with binary
zeros in bit positions (64 – GSC) through 63, form
the 64-bit logical address of the leftmost byte of the
guarded-storage area.

Reserved: When the GSC is greater than 25, bit
positions (64 – GSC) through 38 are reserved and
should contain zeros; otherwise, the results of the
guarded-storage-event detection are unpredictable
(see “Guarded-Storage-Event Detection” on
page 4-70). Bit positions 39-52 and 56-57 of the GSD
register are reserved and should contain zeros; oth-
erwise, the program may not operate compatibly in
the future.

Guarded-Load Shift (GLS): Bits 53-55 of the
guarded-storage-designation register contains a 3-bit
unsigned binary integer that is used in the formation
of the intermediate result of LOAD LOGICAL AND
SHIFT GUARDED. Valid GLS values are 0-4; values
5-7 are reserved and may result in an unpredictable
shift amount.

Guarded-Storage Characteristic (GSC): Bit posi-
tions 58-63 of the guarded-storage-designation reg-

ister contain a 6-bit unsigned binary integer that is
treated as a power of two. Valid GSC values are 25-
56; values 0-24 and 57-63 are reserved and may
result in unpredictable guarded-storage event detec-
tion. The GSC designates the following:

• The alignment of the guarded-storage origin. A
GSC value of 25 indicates 32 M-byte alignment,
a value of 26 indicates 64 M-byte alignment, and
so forth.

• The guarded-storage-section size. A GSC value
of 25 indicates 512 K-byte sections, a value of 26
indicates a 1 M-byte sections, and so forth.

The relationship between the guarded-storage char-
acteristic, guarded-storage origin, and guarded-stor-
age-section size is shown in Figure 4-18.

Guarded-Storage-Section-Mask (GSSM)
Register
The guarded-storage-section mask is a 64-bit regis-
ter, with each bit corresponding to one of the 64

Guarded-Storage Origin (GSO)
0 31

GSO
(continued)

/ / / / / / / / / / / / / / GLS / / GSC

32 J 53 56 58 63

Explanation:

/ Reserved
GLS Guarded load shift amount
GSC Guarded-storage characteristic
J The rightmost significant bit position of the GSO (that is, bit

position 63 minus the value of GSC).

Figure 4-17. Guarded-Storage-Designation (GSD) Register

GSC

GSO
Section

Size GSC

GSO
Section

Size
Align-
ment

GSD
Bits

Align-
ment

GSD
Bits

25 32 M 0-38 512 K 41 2 T 0-22 32 G
26 64 M 0-37 1 M 42 4 T 0-21 64 G
27 128 M 0-36 2 M 43 8 T 0-20 128 G
28 256 M 0-35 4 M 44 16 T 0-19 256 G
29 512 M 0-34 8 M 45 32 T 0-18 512 G
30 1 G 0-33 16 M 46 64 T 0-17 1 T
31 2 G 0-32 32 M 47 128 T 0-16 2 T
32 4 G 0-31 64 M 48 256 T 0-15 4 T
33 8 G 0-30 128 M 49 512 T 0-14 8 T
34 16 G 0-29 256 M 50 1 P 0-13 16 T
35 32 G 0-28 512 M 51 2 P 0-12 32 T
36 64 G 0-27 1 G 52 4 P 0-11 64 T
37 128 G 0-26 2 G 53 8 P 0-10 128 T
38 256 G 0-25 4 G 54 16 P 0-9 256 T
39 512 G 0-24 8 G 55 32 P 0-8 512 T
40 1 T 0-23 16 G 56 64 P 0-7 1 P

Explanation:

G Gigabytes (230)
GSC Guarded-storage

characteristic

GSO Guarded-storage
origin

M Megabytes (220)
P Petabytes (250)
T Terabytes (240)

Figure 4-18. Guarded-Storage-Origin (GSO) Alignment,
GSO Bit Range, and Guarded-Storage Section
Size based on Guarded-Storage Characteristic
(GSC)

Control 4-67

guarded-storage sections within the guarded-storage
area. Bit 0 of the register corresponds to the leftmost
section, and bit 63 corresponds to the rightmost sec-
tion. Each bit, called a section-guard bit, controls the
access to the respective section of guarded-storage
area by the LOAD GUARDED and LOAD LOGICAL
AND SHIFT GUARDED instructions, as described
below and in the respective instructions’ descriptions.

When all 64 bits of the GSSM register are zero,
guarded-storage events are not recognized.

Guarded-Storage-Event Parameter-List-
Address (GSEPLA) Register

When a guarded-storage-event is recognized, the
contents of the GSEPLA register are a 64-bit address
that is used to locate the guarded-storage-event
parameter list, as described in the section “Guarded-
Storage-Event Parameter List (GSEPL)”, below.
When the CPU is not in the access-register mode,
the GSEPLA is a logical address; when the CPU is in
the access-register mode, the GSEPLA is a primary
virtual address.

Guarded-Storage Control Block
(GSCB)

The three guarded-storage registers may be set and
inspected by means of the LOAD GUARDED STOR-
AGE CONTROLS and STORE GUARDED STOR-
AGE CONTROLS instructions, respectively. The
storage operand for each of these instructions is a
32-byte guarded-storage control block (GSCB), and
the contents of the guarded-storage registers occupy
the last three eight-byte fields of the block, as shown
in Figure 4-19.

When the GSCB is aligned on a doubleword bound-
ary, CPU access to each of the three defined fields is
block concurrent.

For LOAD GUARDED STORAGE CONTROLS,
reserved bit positions of the GSCB should contain
zeros; otherwise, the program may not operate com-
patibly in the future.

For STORE GUARDED STORAGE CONTROLS,
reserved bit positions that are loaded with nonzero
values may or may not be stored as zeros, and
reserved values of the GLS and GSC fields of the
GSD register may or may not be corrected to model-
dependent values.

Guarded-Storage-Event Parameter
List (GSEPL)

The guarded-storage-event parameter-list-address
(GSEPLA) register contains a 64-bit address of the
guarded-storage-event parameter list. When a
guarded-storage event is recognized, the GSEPL is
accessed using all 64 bits of the GSEPLA, regard-
less of the current addressing mode of the CPU. The
GSEPL is accessed using the current translation
mode, except that when the CPU is in the access-
register mode, the GSEPL is accessed using the pri-
mary address space.

Figure 4-20 illustrates the fields of the guarded-stor-
age-event parameter list.

The contents of the guarded-storage-event parame-
ter list are as follows:

Byte

0 Reserved

8 Guarded-Storage Designation (GSD, see Figure 4-17)

16 Guarded-Storage Section Mask (GSSM)

24 Guarded-Storage-Event Parameter-List Address (GSEPLA)
0 63

Figure 4-19. Guarded-Storage Control Block (GSCB)

Byte

0
Reserved

GSEAM GSECI GSEAI

0 0 0 0 0 0 E B
T
X

C
X

0 0 0 0 0
I
N

0 T AS AR

4 Reserved
8

Guarded-Storage-Event Handler Address (GSEHA)
12

16
Guarded-Storage-Event Instruction Address (GSEIA)

20

24
Guarded-Storage-Event Operand Address (GSEOA)

28

32
Guarded-Storage-Event Intermediate Result (GSEIR)

36

40
Guarded-Storage-Event Return Address (GSERA)

44
0 8 14 15 16 17 23 25 26 28 31

Figure 4-20. Guarded-Storage-Event Parameter List
(GSEPL)

4-68 The z/Architecture CPU Architecture

Reserved: Bytes 0 and 4-7 of the GSEPL are
reserved and set to zero when a guarded-storage
event is recognized.

Guarded-Storage-Event Addressing Mode
(GSEAM): Byte 1 of the GSEPL contains an indica-
tion of the addressing mode of the CPU when the
guarded-storage-event was recognized, as follows:

Reserved: Bits 0-5 of the GSEAM are reserved and
stored as zeros.

Extended-Addressing Mode (E): Bits 6 of the
GSEAM contains the extended-addressing-mode bit,
bit 31 of the program-status word.

Basic-Addressing Mode (B): Bits 7 of the GSEAM
contains the basic-addressing-mode bit, bit 32 of the
program-status word.

Guarded-Storage-Event Cause Indications
(GSECI): Byte 2 of the GSEPL contains the
guarded-storage-event cause indications. The
GSECI is encoded as follows:

Transactional-Execution-Mode Indication (TX):

When bit 0 of the GSECI is zero, the CPU was not in
the transactional-execution mode when the guarded-
storage event was recognized. When bit 0 of the
GSECI is one, the CPU was in the transactional-exe-
cution mode when the guarded-storage event was
recognized.

Constrained-Transactional-Execution-Mode Indica-
tion (CX): When bit 1 of the GSECI is zero, the CPU
was not in the constrained-transactional-execution
mode when the guarded-storage event was recog-
nized. When bit 1 of the GSECI is one, the CPU was
in the constrained-transactional-execution mode
when the guarded-storage event was recognized. Bit
1 of the GSECI is meaningful only when bit 0 is one.

Reserved: Bits 2-6 of the GSECI are reserved and
set to zero when a guarded-storage event is recog-
nized.

Instruction Cause (IN): Bit 7 of the GSECI indicates
the instruction that caused the guarded-storage
event. When bit 7 is zero, the event was caused by
the execution of the LOAD GUARDED instruction.
When bit 7 is one, the event was caused by the exe-
cution of the LOAD LOGICAL AND SHIFT
GUARDED instruction.

Guarded-Storage-Event Access Information
(GSEAI): Byte 3 of the GSEPL contains information
describing the following CPU attributes:

Reserved: Bit 0 of the GSEAI is reserved and set to
zero when a guarded-storage event is recognized.

DAT Mode (T): Bit 1 of the GSEAI indicates the cur-
rent dynamic-address-translation mode (that is, the T
bit is a copy of PSW bit 5).

Address-Space Indication (AS): Bits 2-3 of the
GSEAI indicate the current address-space controls
(that is, the AS field is a copy of bits 16-17 of the
PSW). The AS field is meaningful only when the DAT
is enabled (that is, when the T bit is one); otherwise,
the AS field is unpredictable.

Access-Register Number (AR): When the CPU is in
the access-register mode, bits 4-7 of the GSEAI indi-
cate the access-register number used by the LGG or
LLGFSG instruction causing the event (that is, the
AR field is a copy of the B2 field of the LGG or
LLGFSG instruction). When the CPU is not in the
access-register mode, the AR field is unpredictable.

Guarded-Storage-Event Handler Address
(GSEHA): Bytes 8-15 of the GSEPL contain the
guarded-storage-event handler address. The
GSEHA field is considered to be a branch address
and is subject to the action described in “Formation
of the Branch Address” on page 5-13. When a
guarded-storage event is recognized, the GSEHA
field forms the branch address that is used to com-
plete the execution of the LOAD GUARDED or LOAD
LOGICAL AND SHIFT GUARDED instruction.

A guarded-storage event is considered to be a PER
successful-branching event. If the PER branch-
address control is one, the GSEHA is the value com-
pared with control registers 10 and 11.

Guarded-Storage-Event Instruction Address
(GSEIA): Bytes 16-23 of the GSEPL contain the
guarded-storage-event instruction address. When a
guarded-storage event is recognized, the address of
the instruction causing the event is stored into the
GSEIA field. The address placed in the GSEIA is
either that of the LOAD GUARDED or LOAD LOGI-
CAL AND SHIFT GUARDED instruction, or that of
the execute-type instruction whose target is a LOAD
GUARDED or LOAD LOGICAL AND SHIFT
GUARDED instruction.

Control 4-69

Storing of the GSEIA field is subject to the current
addressing mode when the event is detected. In the
24-bit addressing mode, bits 0-39 of the GSEIA are
set to zeros. In the 31-bit addressing mode, bits 0-32
of the GSEIA are set to zeros.

Guarded-Storage-Event Operand Address
(GSEOA): Bytes 24-31 of the GSEPL contain the
guarded-storage-event operand address. When a
guarded-storage event is recognized, the second-
operand address of a LOAD GUARDED or LOAD
LOGICAL AND SHIFT GUARDED instruction caus-
ing the event is stored into the GSEOA field.

The content of the GSEOA field is subject to the cur-
rent addressing mode when the event is detected. In
the 24-bit addressing mode, bits 0-39 of the GSEOA
are set to zeros. In the 31-bit addressing mode, bits
0-32 of the GSEOA are set to zeros.

If transactional execution is aborted due to the recog-
nition of a guarded-storage event, the GSEOA field
contains the operand address formed during transac-
tional execution. This is true even if the operand
address was formed using one or more general reg-
isters that were altered during transactional execu-
tion, and regardless of whether the register(s) were
restored when transactional execution was aborted.

Guarded-Storage-Event Intermediate Result
(GSEIR): Bytes 32-39 of the GSEPL contain the
guarded-storage-event intermediate result. When a
guarded-storage event is recognized, the intermedi-
ate result formed by a LOAD GUARDED or LOAD
LOGICAL AND SHIFT GUARDED instruction is
stored into the GSEIR field.

If the detection of a guarded-storage event causes
transactional execution to be aborted, and the model
refetches the LGG or LLGFSG second operand to
determine if the event persists, the refetching of the
second operand and the intermediate-result forma-
tion are subject to the addressing mode that was in
effect when the event was initially detected.

Guarded-Storage-Event Return Address
(GSERA): Bytes 40-47 of the GSEPL contain the
guarded-storage-event return address.

When a guarded-storage event is recognized while
the CPU is in the transaction-execution mode, the
instruction address of the transaction-abort PSW is

placed into the GSERA. In the constrained transac-
tional-execution mode, the instruction address desig-
nates the TBEGINC instruction. In the
nonconstrained transactional-execution mode, the
instruction address designates the instruction follow-
ing the TBEGIN instruction. The GSERA is subject to
the addressing mode in the transaction-abort PSW
(that is, the addressing mode prior to entering the
transactional-execution mode).

When a guarded-storage event is recognized while
the CPU is not in the transactional-execution mode,
the contents of the GSERA are identical to the
GSEIA.

During the execution of LOAD GUARDED or LOAD
LOGICAL AND SHIFT GUARDED, the GSEPL is
accessed only if a guarded-storage event is recog-
nized. Multiple accesses may be made to any field of
the GSEPL when a guarded-storage event is recog-
nized.

Accesses to the GSEPL during guarded-storage-
event processing are considered to be side-effect
accesses. Store-type access exceptions are recog-
nized for any byte of the GSEPL including the
GSEHA field and reserved fields. If an access excep-
tion other than addressing is recognized while
accessing the GSEPL, the side-effect-access indica-
tion, bit 54 of the translation-exception identification
at real location 168-175, is set to one, and the LOAD
GUARDED or LOAD LOGICAL AND SHIFT
GUARDED instruction causing the guarded-storage
event is nullified.

When DAT is on, the GSEPL is accessed using the
current address-space control (ASC) mode, except
when the CPU is in the access-register mode; in the
access-register mode, the GSEPL is accessed in the
primary address space.

Programming Notes:

1. The expected usage is that the program does not
switch ASC mode between the establishment of
GS controls and the recognition of a GS event. If
the program switches ASC mode, then the fol-
lowing apply:

• The GSEPL should be mapped to common
addresses in both the space where it was
established and in the space where the GS
event was recognized.

4-70 The z/Architecture CPU Architecture

• If a GS event is recognized in the access-
register mode, the GS event handler pro-
gram may need to examine the GSEAI field
to determine the appropriate ALET with
which to access the guarded-storage oper-
and.

2. When a nonconstrained transaction is aborted
due to a guarded-storage event, the addressing
mode from the transaction-abort PSW becomes
effective. The addressing mode that was in effect
at the time of the guarded-storage event can be
determined by inspecting the GSEAM field in the
GSE parameter list.

The addressing mode cannot be changed by a
constrained transaction; thus, if a constrained
transaction is aborted due to a guarded-storage
event, the addressing mode is necessarily the
same as when the TBEGINC instruction was
executed.

Guarded-Storage Facility
Operation

Guarded-Storage-Event Detection
Guarded-storage-event detection uses two values
formed from the intermediate result of the LOAD
GUARDED or LOAD LOGICAL AND SHIFT
GUARDED instruction:

• Guarded-storage-operand comparand (GSOC)

• Guarded-storage-mask index (GSMX)

The guarded-storage-operand comparand (GSOC) is
formed from the intermediate result of the LOAD
GUARDED or LOAD LOGICAL AND SHIFT
GUARDED instruction (see “LOAD GUARDED” on
page 7-273 for a description of the intermediate
result). Specifically, the GSOC comprises bit posi-
tions 0 through (63 - GSC) of the intermediate result,
inclusive (where GSC is the guarded-storage charac-
teristic in bit positions 58-63 of the guarded-storage-
designation register).

The GSOC is compared with the guarded-storage
origin (GSO, in the corresponding bit positions of the
GSD register). When the GSOC is not equal to the
GSO, a guarded-storage event is not recognized,
and the execution of the LOAD GUARDED or LOAD
LOGICAL AND SHIFT GUARDED is completed by

placing the intermediate result into general register
R1.

When the GSOC is equal to the GSO, the six bits of
the intermediate result to the right of the GSOC form
an unsigned binary integer called the guarded-stor-
age mask index (GSMX). The section-guard bit of the
guarded-storage-section-mask (GSSM) register cor-
responding to the GSMX is examined. If the section-
guard bit is zero, a guarded-storage event is not rec-
ognized, and the execution of the LOAD GUARDED
or LOAD LOGICAL AND SHIFT GUARDED is com-
pleted by placing the intermediate result into general
register R1. However, if the section-guard bit is one,
then a guarded-storage event is recognized.

Guarded-storage-event detection is not performed
when either (a) the guarded-storage facility is not
enabled (by means of bit 59 of control register 2), or
(b) all bit positions of the guarded-storage section
mask (GSSM) register contain zeros.

Detection of the guarded-storage event is illustrated
in Figure 4-21.

Explanation:

G Section-guard bit in the GSSM register.

GSC Guarded-storage characteristic (bits 58-63 of the GSD
register).

Figure 4-21. Guarded-Storage-Event Detection

GSMXGSOC

0 J K L 63

LGG or LLGFSG Intermediate Result

G

0 63

Guarded-Storage Section Mask (GSSM) Register

If GSOC=GSO, the section-guard
bit designated by GSMX is tested.

If the designated section-guard bit is one, a
guarded-storage event is recognized.

GSCGSO

0 J 6358

Guarded-Storage-Designation (GSD) Register

GSOC
= GSO?

Control 4-71

Guarded-Storage-Event Processing
When a guarded-storage event is recognized while
the CPU is in the transactional-execution mode, the
following occurs:

1. The transaction is aborted with abort code 19, as
described in “Transaction Abort Processing” on
page 5-102. If the transaction diagnostic block
(TDB) address is not valid, or if the TDB address
is valid and accessible, condition code 2 is set in
the transaction-abort PSW. If the TDB address is
valid, but the TDB is not accessible, condition
code 1 is set in the transaction-abort PSW.

2. Depending on the model, the second operand of
the LOAD GUARDED or LOAD LOGICAL
GUARDED AND SHIFT instruction may be
refetched to determine whether the guarded-
storage-event condition still exists. If the model
refetches the second operand, the access to the
second operand and the formation of the inter-
mediate result are both subject to the addressing
mode that was in effect at the time the event was
initially detected.

• When the second operand is refetched and
the guarded-storage-event condition no lon-
ger exists, the following applies:

– Normal transaction-abort processing
concludes by the loading of the transac-
tion-abort PSW.

– Guarded-storage-event processing does
not occur. However, the transaction abort
code remains 19.

– PER basic events associated with an
LGG or LLGFSG instruction (or an exe-
cute-type instruction whose operand is
an LGG or LLGFSG) are not recognized.

• When the second operand is not refetched,
or when it is refetched and the guarded-stor-
age-event condition persists, guarded-stor-
age-event processing continues as
described below (instead of loading the
transaction-abort PSW).

Regardless of whether the CPU was in the transac-
tional-execution mode when a guarded-storage event
is recognized, the guarded-storage-event parameter-
list-address (GSEPLA) register is used to locate the
guarded-storage-event parameter list (GSEPL). The
content of the GSEPLA register is a 64-bit address,
and 64 bits of the address are used regardless of the
current addressing mode. The GSEPL is accessed
using the current translation mode, except that when
the CPU is in the access-register mode, the GSEPL
is accessed using the primary address space.

If an access exception is recognized when accessing
the GSEPL, processing is as follows:

• A program interruption occurs.

• If the CPU was not in the transactional-execution
mode, then the instruction address in the pro-
gram-old PSW is set as follows:

– If the exception condition results in nullifica-
tion, the instruction address points to the
instruction causing the guarded-storage
event (that is, the address of the LGG or
LLGFSG, or the address of the execute-type
instruction whose target is the LGG or
LLGFSG).

– If the exception condition results in suppres-
sion or termination, the instruction address
points to the next-sequential instruction fol-
lowing the instruction that caused the
guarded-storage event.

If the CPU was in the transactional-execution
mode, the transaction-abort PSW is placed into
the program-old PSW. The transactional-execu-
tion-aborted event indication, bit 6 of the pro-
gram-interruption code, is set to one.

• For all access-exception conditions except
addressing, the side-effect-access indication, bit
54 of the translation-exception identification at
real locations 168-175, is set to one. (The TEID
is not stored for addressing exceptions.)

GSD Guarded-storage-designation register.

GSMX Guarded-storage-mask index (bits K through L of the LGG
and LLGFSG intermediate result).

GSO Guarded-storage origin (bits 0 through J of the GSD)

GSOC Guarded-storage-operand comparand (bits 0 through J of
the LGG and LLGFSG intermediate result).

GSSM Guarded-storage-section-mask register.

J The rightmost significant bit position of the GSO (that is, bit
position 63 minus the value of GSC).

K Bit position J + 1

L Bit position J + 6

Figure 4-21. Guarded-Storage-Event Detection

4-72 The z/Architecture CPU Architecture

• The remaining guarded-storage-event process-
ing, described below, does not occur when the
GSEPL is not accessible.

If the GSEPL is accessible, the following actions are
performed using the fields of the GSEPL:

• Bytes 0 and 4-7 of the GSEPL are set to zeros.

• An indication of the addressing mode is placed
into the guarded-storage-event addressing mode
(GSEAM, byte 1 of the GSEPL), as follows:

– Bits 0-5 of the GSEAM are set to zeros.

– Bits 6 and 7 of the GSEAM are set to bits 31
and 32 of the PSW at the time the guarded-
storage event was recognized.

• An indication of the cause of the event is placed
into the guarded-storage-event cause-indication
field (GSECI, byte 2 of the GSEPL), as follows:

– If the CPU was in the transactional-execution
mode when the guarded-storage event was
recognized, bit 0 of the GSECI is set to one;
otherwise, bit 0 of byte 2 is set to zero.

– If the CPU was in the constrained transac-
tional-execution mode when the guarded-
storage event was recognized, bit 1 of the
GSECI is set to one; otherwise, bit 1 of the
GSECI is set to zero.

– Bits 2-6 of the GSECI are set to zeros.

– Bit 7 of the GSECI is set to designate the
instruction that caused the guarded-storage
event. A value of zero means the event was
caused by a LGG instruction; a value of one
means the event was caused by a LLGFSG
instruction.

• An indication of the PSW DAT, addressing-mode,
and address-space controls are placed into the
guarded-storage-event access-indication field
(GSEAI, byte 3 of the GSEPL), as follows:

– Bit 0 of the GSEAI is reserved and set to
zero.

– The current translation mode, bit 5 of the
PSW, is placed into bit 1 of the GSEAI.

– If DAT is on, bits 16-17 of the PSW are
placed into bits 2-3 of the GSEAI. If DAT is
off, bits 2-3 of the GSEAI are unpredictable.

– If the CPU is in the access-register mode,
the access-register number corresponding to
the B2 field of the LGG or LLGFSG instruc-
tion causing the event is placed into bits 4-7
of the GSEAI. If the CPU is not in the AR
mode, bits 4-7 of the GSEAI are unpredict-
able.

• The instruction address in the PSW is replaced
by the contents of the guarded-storage-event
handler-address field (GSEHA, bytes 8-15 of the
GSEPL). The GSEHA field is considered to be a
branch address and is subject to the action
described in “Formation of the Branch Address”
on page 5-13. The current addressing mode is
unchanged.

• The address of the instruction causing the
guarded-storage event is placed into the
guarded-storage-event instruction-address field
(GSEIA, bytes 16-23 of the GSEPL). The
address placed in the GSEIA is either that of the
LGG or LLGFSG instruction, or that of the exe-
cute-type instruction whose target is a LGG or
LLGFSG. The GSEIA is also placed into the
breaking-event address register.

• The second-operand address of the LGG or
LLGFSG instruction is placed into the guarded-
storage-event operand-address (GSEOA, bytes
24-31 of the GSEPL). If transactional execution
was aborted due to the recognition of a guarded-
storage event, the GSEOA field contains the
operand address formed during transactional
execution.

• The intermediate result of the LGG or LLGFSG
instruction is placed into the guarded-storage-
event intermediate-result field (GSEIR, bytes 32-
39 of the GSEPL). If transactional execution is
aborted due to the recognition of a guarded-stor-
age event, the GSEIR field is formed using the
guarded-storage-operand address (GSEOA)
field.

• If the guarded-storage event was recognized
during transactional execution, it is model depen-
dent whether the GSEIR is formed from the value
that was transactionally fetched or the value that
was fetched after the transaction was aborted. In
either case, the second operand of the LGG or
LLGFSG instruction is fetched, and the interme-
diate result is formed, using the addressing
mode that was in effect when the GSE was ini-

Control 4-73

tially detected. (See programming note 3 on
page page 4-73.)

• If the CPU was in the transactional-execution
mode when guarded-storage event was recog-
nized, the instruction address of the transaction-
abort PSW is placed in the guarded-storage-
event return address field (GSERA, bytes 40-47
of the GSEPL). If the CPU was in the constrained
transactional-execution mode, the GSERA desig-
nates the TBEGINC instruction. If the CPU was
in the nonconstrained transactional-execution
mode, the GSERA designates the instruction fol-
lowing the TBEGIN instruction.

If the CPU was not in the transactional-execution
mode when the guarded-storage event was rec-
ognized, the content of the GSERA field is identi-
cal to that of the GSEIA field.

Finally, the LGG or LLGFSG instruction is considered
to have completed without altering general register
R1.

Programming Notes:

1. Programming languages that implement a stor-
age-coalescing technique known as garbage col-
lection may benefit from the guarded-storage
facility. In such a programming model, a refer-
ence to a program object is performed by first
loading a pointer to the object. The LOAD
GUARDED and LOAD LOGICAL GUARDED
AND SHIFT instructions provide the means by
which the program can load a pointer to an
object and determine whether the pointer is
usable. If no guarded-storage event (GSE) is rec-
ognized, the pointer can be used to reference the
object. However, if a GSE is recognized, it may
indicate that the current pointer designates a
storage location that is being reorganized, in
which case the object may have been relocated
elsewhere. The GSE-handler routine may then
modify the pointer to designate the object's new
location, and then branch back to location desig-
nated by the GSEIA to resume normal program
execution.

2. In response to a GSE that is recognized when
the CPU is in the transactional-execution mode,
the program’s GSE handler can attempt to cor-
rect the condition that caused the event (that is,
update the operand of the LGG or LLGFSG), and
then re-execute the transaction by branching to
the location designated by the GSERA. If non-

constrained transactional execution was aborted,
the program should set the condition code to
either 2 or 3 prior to branching to the GSERA,
depending on whether the condition causing the
event was or was not corrected, respectively. If
constrained transactional execution was aborted,
then the program should not branch to the loca-
tion designated by the GSERA unless the condi-
tion causing the event has been corrected;
otherwise, a program loop may result.

3. On models that refetch the second-operand of
the LGG or LLGFSG instruction during GSE pro-
cessing, the following applies:

• If another CPU or the I/O subsystem modi-
fies the second-operand location in between
GSE detection and GSE processing, a GSE
may no longer exist, or a GSE may persist
but the guarded-storage-event-intermediate-
result (GSEIR) field may not contain the
value that caused the event.

• If the second-operand location initially con-
tains a value that will cause a GSE, and
during transactional execution, the program
changes the location to a different value that
would also cause a GSE, then the transac-
tion is aborted due to GSE detection, the
contents of the location revert to their initial
value (prior to transactional execution), and
the GSEIR will contain the initial value prior
to transactional execution, not the value at
GSE detection.

• If the second-operand location initially con-
tains a value that will not cause a GSE, and
during transactional execution, the location is
changed to a value that causes a GSE, then
the transaction is aborted due to GSE detec-
tion, the contents of the location revert to
their initial value (prior to transactional exe-
cution), and the GSE condition no longer
exists. For a constrained transaction, or for a
nonconstrained transaction where the abort
handler does not correct this situation, a pro-
gram loop will likely result.

To ensure reliable contents of the guarded-stor-
age-event-intermediate-result (GSEIR) field, a
program executing in the transactional-execution
mode should use the NONTRANSACTIONAL
STORE instruction if it modifies the second-oper-
and location of a LOAD GUARDED instruction

4-74 The z/Architecture CPU Architecture

that is subsequently executed in the same trans-
action.

4. Similar to other instructions that alter the PSW
instruction address, a specification exception is
recognized if the PSW instruction address
(loaded from the GSEHA field) is odd following a
guarded-storage event.

5. During GSE processing, the CPU may recognize
an access exception when attempting to update
the guarded-storage-event parameter list
(GSEPL). Such an access exception may be
totally innocuous, for example, due to the GSEPL
being temporarily paged out to auxiliary storage
by the OS. Assuming the OS remedies the
exception, it will load the program-old PSW to
resume execution of the interrupted program.

If an access exception is recognized when
accessing the GSEPL, and the CPU was not in
the transactional-execution mode, the instruction
address of the program-old PSW will be set as
follows:

• If the exception resulted in nullification, the
instruction address will point to the LGG or
LLGFSG instruction that caused the GSE (or
the execute-type instruction whose operand
was the LGG or LLGFSG).

• If the exception resulted in suppression or
termination, the instruction address will point
to the next-sequential instruction following
the instruction that caused the GSE for sup-
pressing or terminating exceptions.

If an access exception is recognized when
accessing the GSEPL, and the CPU was in the
nonconstrained transactional-execution mode,
the program-old PSW will designate the instruc-
tion following the outermost TBEGIN; if the CPU
was in the constrained transactional-execution
mode, the program-old PSW will designate the
TBEGINC instruction.

If the CPU was in the nonconstrained transac-
tional-execution mode and a TDB is stored, abort
code 19 indicates that transactional execution
was aborted due to a GSE. However, a transac-
tion abort-handler routine cannot assume that
abort code 19 necessarily indicates that the
GSE-handler routine has corrected the cause of
the GSE (because of the possible access-excep-
tion condition when accessing the GSEPL). In
this scenario, an abort-handler routine may need

to re-execute the transaction multiple times to
allow for OS resolution of one or more translation
exceptions and to allow the GSE handler to cor-
rect the cause of the GSE.

Externally Initiated Functions

Resets

Note: Certain externally-initiated functions are
described as resetting the CPU into the ESA/390
architectural mode (or simply, ESA/390 mode). When
the ESA/390-compatibility-mode facility is installed in
the configuration, the same reset operations will
reset the CPU into the ESA/390-compatibility mode.
In the following discussion of resets and initial-pro-
gram loading, wherever the phrase ESA/390 or
ESA/390-compatibility mode is used, it indicates the
respective mode in which the configuration was origi-
nally established.

All floating interruptions are defined to be cleared by
initiation of manual resets through operator facilities .

Five reset functions are provided:

• CPU reset
• Initial CPU reset
• Subsystem reset
• Clear reset
• Power-on reset

CPU reset provides a means of clearing equipment-
check indications and any resultant unpredictability in
the CPU state with the least amount of information
destroyed. In particular, it is used to clear check con-
ditions when the CPU state is to be preserved for
analysis or resumption of the operation. If a CPU
reset is caused by the activation of the load-normal
or load-with-dump key, (a) if the configuration-
z/Architecture-architectural-mode (CZAM) facility is
not installed, it sets the architectural mode to the
ESA/390 or ESA/390 compatibility mode, and (b) if
the multithreading facility is installed and enabled, it
is disabled. When CPU reset changes the architec-
tural mode to the ESA/390 or ESA/390 compatibility
mode from the z/Architecture architectural mode, it
saves the current PSW so that PSW can be restored
by a SIGNAL PROCESSOR set-architecture order

Control 4-75

that changes the architectural mode back to z/Archi-
tecture. When CPU reset changes the architectural
mode to the ESA/390-compatibility mode from the
z/Architecture architectural mode, it also saves bits 0-
31 of the of control registers so that they can be
restored by a SIGP set-architecture order that
changes the architectural mode back to z/Architec-
ture. See “. CPU Reset” on page 4-78 for details.

Initial CPU reset provides the functions of CPU reset
together with initialization of the following:

• Current PSW
• Captured-z/Architecture PSW
• CPU timer
• Clock comparator
• Breaking-event-address register
• Control registers
• Captured z/Architecture control registers (when

resetting into the ESA/390-compatibility mode)
• Floating-point-control register
• Prefix register
• TOD programmable register

If initial CPU reset is caused by the activation of the
load-normal or load-with-dump key the following
applies:

• If the CZAM facility is not installed, initial CPU
reset sets the architectural mode to the ESA/390
or ESA/390-compatibility mode

• If multithreading is enabled, the initial-CPU-reset
functions are performed for the lowest-numbered
CPU of a core, and CPU reset is performed for
all other CPUs in the core

Subsystem reset provides a means for clearing float-
ing interruption conditions as well as for invoking I/O-
system reset.

Clear reset causes initial CPU reset and subsystem
reset to be performed and, additionally, clears or ini-
tializes all storage locations and registers in all CPUs
in the configuration, with the exception of the TOD
clock and epoch index. Such clearing is useful in
debugging programs and in ensuring user privacy.
Clear reset also releases all locks used by the PER-
FORM LOCKED OPERATION instruction. If the
CZAM facility is not installed, clear reset sets the
architectural mode to the ESA/390 or ESA/390-com-

patibility mode. Clearing does not affect external stor-
age, such as direct-access storage devices used by
the control program to hold the contents of unad-
dressable pages.

CPU power-on reset causes initial CPU reset to be
performed and clears the contents of general regis-
ters, access registers, floating-point registers, and
vector registers to zeros with valid checking-block
code. Locks used by PERFORM LOCKED OPERA-
TION and associated with the CPU are released
unless they are held by a CPU already powered on.
The power-on-reset sequences for the TOD clock,
epoch index, main storage, and the channel subsys-
tem may be included as part of the CPU power-on
sequence, or the power-on sequence for these units
may be initiated separately. If CPU power-on reset
establishes the configuration, it does the following:

• Sets the architectural mode to one of the follow-
ing:

– The ESA/390 mode (when neither the
ESA/390-compatibility-mode facility nor the
CZAM facility are installed)

– The ESA/390 compatibility mode (when the
ESA/390 compatibility mode is installed)

– The z/Architecture mode when the CZAM
facility is installed

• Initializes the user-specified TOD epoch differ-
ence to the low-precision version of the initial
value specified for the configuration.

If CPU power-on reset does not establish the config-
uration, then it sets the architectural mode to that of
the CPUs already in the configuration.

CPU reset, initial CPU reset, subsystem reset, and
clear reset may be initiated manually by using the
operator facilities (see Chapter 12, “Operator Facili-
ties”). Initial CPU reset is part of the initial-program-
loading function. Figure 4-22 on page 4-76 summa-
rizes how these four resets are manually initiated.
Power-on reset is performed as part of turning power
on. The reset actions are tabulated in Figure 4-23 on
page 4-76. For information concerning which resets
can be performed by the SIGNAL PROCESSOR

4-76 The z/Architecture CPU Architecture

instruction, see “Signal-Processor Orders” on
page 4-85.

Key Activated

Function Performed on1

CPU on Which Key Was
Activated Other CPUs in Config. Remainder of Config.

System-reset-normal key CPU reset CPU reset Subsystem reset

System-reset-clear key Clear reset2 Clear reset2 Clear reset3

Load-normal or load-with-
dump key

Initial CPU reset4, followed by IPL CPU reset Subsystem reset

Load-clear or load-clear-
list-directed key

Clear reset2, followed by IPL Clear reset2 Clear reset3

Explanation:

1 Activation of a system-reset or load key may change the configuration, including the connection with I/O,
storage units, and other CPUs.

2 Only the CPU elements of this reset apply.
3 Only the non-CPU elements of this reset apply.
4 When multithreading is enabled, initial CPU reset applies only to the lowest-numbered CPU of a core; CPU

reset applies to all other CPUs of the core.

Figure 4-22. Manual Initiation of Resets

Area Affected

Reset Function
Subsystem

Reset CPU Reset
Initial CPU

Reset Clear Reset
Power-On

Reset
CPU U S S1 S1 S
PSW U U/V# C*1 C*1 C*1

Captured-z/Architecture-PSW register U U/sv C C C
Prefix register U U/V C C C
CPU timer U U/V C C C
Clock comparator U U/V C C C
TOD programmable register U U/V C C C
Control registers U U/V6 I I I
Captured z/Architecture control registers U U/cv I I I
Breaking-event-address register U U/V K K K
Floating-point-control register U U/V C C C
Access registers U U/V U/V C C
General registers U U/V U/V C C
Floating-point registers U U/V U/V C C
Vector registers U U/V U/V C C
Storage keys U U U C C2

Volatile main storage U U U C C2

Nonvolatile main storage U U U C U
Expanded storage U3 U3 U3 U3 C2

Epoch index U U U U T2

TOD clock U4 U4 U4 U4 T2

TOD clock steering registers U U U U C
Floating interruption conditions C U U C C2

I/O system R U U R R5

PERFORM LOCKED OPERATION locks U U U RC RP
Transaction nesting depth U C C C C
Guarded-storage registers U U/V U/V I I

Figure 4-23. Summary of Reset Actions (Part 1 of 3)

Control 4-77

Explanation:

If the architectural mode is changed from z/Architecture to ESA/390 (that is, neither the ESA/390-compatibility-
mode facility nor the configuration-z/Architecture-architectural-mode [CZAM] facility is installed, and the reset is
due to activation of the load-normal or load-with-dump key on another CPU), the 16-byte PSW first is placed in
the captured-z/Architecture-PSW register, and then does not remain unchanged. Instead, it is changed to an
eight-byte PSW, and the bits of the eight-byte PSW are set as follows. Bits 0-11, 13-23, and 25-32 are set equal
to the same bits of the 16-byte PSW, bit 12 is set to one, bit 24 is set to zero, and bits 33-63 are set equal to bits
97-127 of the 16-byte PSW. The PSW is invalid in the ESA/390 mode if PSW bit 31 is one. It is unpredictable
whether the PSW is invalid in the ESA/390-compatibility mode if PSW bit 31 is one.

* Clearing the contents of the PSW to zero causes the PSW to be invalid if the architectural mode is ESA/390.
1 When the IPL sequence follows the reset function on that CPU, the CPU does not necessarily enter the stopped

state, and the PSW is not necessarily cleared to zeros.
2 When these units are separately powered, the action is performed only when the power for the unit is turned on.
3 Access to change expanded storage at the time a reset function is performed may cause the contents of the

4 K-byte block in expanded storage to be unpredictable. Access to examine expanded storage does not affect
the contents of the expanded storage.

4 Access to the TOD clock by means of STORE CLOCK at the time the reset function is performed does not cause
the value of the TOD clock to be affected.

5 When the channel subsystem is separately powered or consists of multiple elements which are separately
powered, the reset action is applied only to those subchannels, channel paths, and I/O control units and devices
on those paths associated with the element which is being powered on.

6 When CPU reset results in the configuration entering the ESA/390-compatibility mode, bits 0-31 of the control
registers are set to zeros.

C The condition or contents are cleared. If the area affected is a field, the contents are set to zero with valid
checking-block code.

I The state or contents are initialized. If the area affected is a field, the contents are set to the initial value with valid
checking-block code. For guarded-storage controls, all fields are set to zeros.

K The breaking-event-address register is initialized to 0000000000000001 hex with valid checking-block code.
R I/O-system reset is performed in the channel subsystem. As part of this reset, system reset is signaled to all I/O

control units and devices attached to the channel subsystem.
RC All locks in the configuration are released.

RP All locks in the configuration are released except for ones held by CPUs already powered on.

S The CPU is reset; current operations, if any, are terminated; the ALB and TLB are cleared of entries; interruption
conditions in the CPU are cleared; and the CPU is placed in the stopped state. The effect of performing the start
function is unpredictable when the stopped state has been entered by means of a reset. If the reset is initiated by
the system-reset-clear, load-normal, load-with-dump, load-clear, or load-clear-list-directed key or by a CPU
power-on reset that establishes the configuration, the architectural mode is set to one of (a) the ESA/390 mode
(when neither the ESA/390-CM facility nor the CZAM facility is installed), (b) the ESA/390-compatibility mode
(when the ESA/390 CM facility is installed), or (c) the z/Architecture mode (if the CZAM facility is installed) and
the multithreading facility is disabled. Otherwise, the architectural mode and the state of the multithreading facility
are unchanged, except that power-on reset sets the architectural mode to that of the CPUs already in the
configuration.

T The epoch index and TOD clock are initialized to the current time of day and validated; the TOD clock enters the
set state.

U The state, condition, or contents of the field remain unchanged. However, the result is unpredictable if an
operation is in progress that changes the state, condition, or contents of the field at the time of reset.

U/cv When the ESA/390-compatibility-mode is installed: if the reset is due to activation of load-normal or load-with-
dump key, the captured z/Architecture control registers are set from bits 0-31 of the current control registers
(before the control registers are initialized); otherwise, the captured-z/Architecture-control registers are
unchanged.

Area Affected

Reset Function
Subsystem

Reset CPU Reset
Initial CPU

Reset Clear Reset
Power-On

Reset

Figure 4-23. Summary of Reset Actions (Part 2 of 3)

4-78 The z/Architecture CPU Architecture

. CPU Reset
CPU reset causes the following actions:

1. The execution of the current instruction or other
processing sequence, such as an interruption, is
terminated, and all program-interruption and
supervisor-call-interruption conditions are
cleared.

2. If the CPU was in the transactional-execution
mode, the transaction nesting depth is set to
zero, and the CPU leaves the transactional-exe-
cution mode.

3. Any pending external-interruption conditions
which are local to the CPU are cleared. Floating
external-interruption conditions are not cleared.

4. Any pending machine-check-interruption condi-
tions and error indications which are local to the
CPU and any check-stop states are cleared.
Floating machine-check-interruption conditions
are not cleared. Any machine-check condition
which is reported to all CPUs in the configuration
and which has been made pending to a CPU is
said to be local to the CPU.

5. All copies of prefetched instructions or operands
are cleared. Additionally, any results to be stored
because of the execution of instructions in the
current checkpoint interval are cleared.

6. The ART-lookaside buffer and translation-loo-
kaside buffer are cleared of entries.

7. If the reset is caused by activation of the load-
normal or load-with-dump key on any CPU in the
configuration, the following actions occur:

a. If the configuration-z/Architecture-architec-
tural-mode (CZAM) facility is not installed,
the current PSW is saved in the captured-
z/Architecture-PSW register for subsequent
use by a SIGNAL PROCESSOR set-archi-

tecture order that restores the z/Architecture
mode.

b. When the ESA/390-compatibility-mode is
installed, the captured z/Architecture control
registers are set from bits 0-31 of the current
control registers (before the control registers
are initialized).

c. If the configuration is enabled for multi-
threading, the following actions occur:

1) CPU address contraction is performed
as described on page 4-85.

2) Multithreading is disabled.

d. If the configuration-z/Architecture-architec-
tural-mode (CZAM) facility is not installed,
then the following occurs:

• The architectural mode of the CPU (and
of all other CPUs in the configuration
because of the initial CPU reset or CPU
resets performed by them) is changed
from the z/Architecture mode to the
ESA/390 or ESA/390-compatibility
mode.

• The current PSW is changed from 16
bytes to eight bytes. The bits of the
eight-byte PSW are set as follows: bits
0-11 and 13-32 are set equal to the
same bits of the 16-byte PSW, bit 12 is
set to one, and bits 33-63 are set equal
to bits 97-127 of the 16-byte PSW.

If the resulting architectural mode is the
ESA/390-compatibility mode, bits 0-31 of
all control registers are set to zeros.

A CPU reset caused by activation of the system-
reset-normal key or by the SIGNAL PROCES-
SOR CPU-reset order, and any CPU reset in the
ESA/390 or ESA/390-compatibility mode, (a) do

U/sv The captured-z/Architecture-PSW register remains unchanged if the reset is due to activation of the system-reset-
normal key or the SIGNAL PROCESSOR CPU-reset order, or it is set with the value of the current 16-byte PSW
if the reset is due to activation of the load-normal or load-with-dump key.

U/V The contents remain unchanged, provided the field is not being changed at the time the reset function is
performed. However, on some models the checking-block code of the contents may be made valid. The result is
unpredictable if an operation is in progress that changes the contents of the field at the time of reset.

Area Affected

Reset Function
Subsystem

Reset CPU Reset
Initial CPU

Reset Clear Reset
Power-On

Reset

Figure 4-23. Summary of Reset Actions (Part 3 of 3)

Control 4-79

not change the architectural mode, and (b) do
not affect the captured-z/Architecture-PSW reg-
ister, the captured-z/Architecture control regis-
ters (when the ESA/390-compatibility-mode is
installed), or the enablement of the multithread-
ing facility.

8. The CPU is placed in the stopped state after
actions 1-7 have been completed. When the
CCW-type IPL sequence follows the reset func-
tion on that CPU, the CPU enters the load state
at the completion of the reset function and does
not necessarily enter the stopped state during
the execution of the reset operation. When the
list-directed IPL sequence follows the reset func-
tion on that CPU, the CPU enters the operating
state and does not necessarily enter the stopped
state during the execution of the reset operation.

Registers, storage contents, and the state of condi-
tions external to the CPU remain unchanged by CPU
reset. However, the subsequent contents of the regis-
ter, location, or state are unpredictable if an operation
is in progress that changes the contents at the time
of the reset. A lock held by the CPU when executing
PERFORM LOCKED OPERATION is not released by
CPU reset.

When the reset function in the CPU is initiated at the
time the CPU is executing an I/O instruction or is per-
forming an I/O interruption, the current operation
between the CPU and the channel subsystem may or
may not be completed, and the resultant state of the
associated channel-subsystem facility may be unpre-
dictable.

Programming Notes:

1. Most operations which would change a state, a
condition, or the contents of a field cannot occur
when the CPU is in the stopped state. However,
some signal-processor functions and some oper-
ator functions may change these fields. To elimi-
nate the possibility of losing a field when CPU
reset is issued, the CPU should be stopped, and
no operator functions should be in progress.

2. If the architectural mode is changed to the
ESA/390 or ESA/390-compatibility mode and bit
31 of the current PSW is one, the PSW is invalid.

Initial CPU Reset
Initial CPU reset combines the CPU reset functions
with the following clearing and initializing functions:

1. If the reset is caused by activation of the load-
normal or load-with-dump key, then the following
is performed:

a. If the multithreading facility is enabled, CPU
address contraction is performed and the
multithreading facility is disabled.

b. If the configuration-z/Architecture-architec-
tural-mode (CZAM) facility is not installed,
the architectural mode of the CPU (and of all
other CPUs in the configuration) is set to the
ESA/390 or ESA/390-compatibility mode.

2. The contents of the current PSW, captured-
z/Architecture-PSW, prefix, CPU timer, clock
comparator, and TOD programmable register are
set to zero. When the IPL sequence follows the
reset function on that CPU, the contents of the
PSW are not necessarily set to zero.

3. The contents of the control registers are set to
their initial z/Architecture values. All 64 bits of the
control registers are set regardless of whether
the CPU is in the ESA/390, ESA/390-compatibil-
ity, or the z/Architecture architectural mode.
When the ESA/390-compatibility-mode facility is
installed, the contents of the captured-z/Architec-
ture-control registers are set to bits 0-31 of their
respective control registers’ initial z/Architecture
values.

4. The contents of the floating-point-control register
are set to zero.

5. The contents of the breaking-event-address reg-
ister are initialized to 0000000000000001 hex.

These clearing and initializing functions include vali-
dation.

Setting the current PSW to zero when the CPU is in
the ESA/390 or ESA/390-compatibility architectural
mode at the end of the operation causes the PSW to
be invalid, since PSW bit 12 must be one in that
mode. Thus, in this case if the CPU is placed in the
operating state after a reset without first introducing a
new PSW, a specification exception is recognized.

Programming Note: When the multithreading facility
is installed and enabled, an initial-CPU reset that is
caused by the execution of a SIGP initial-CPU-reset
order does not cause multithreading to be disabled.

4-80 The z/Architecture CPU Architecture

Subsystem Reset
Subsystem reset operates only on those elements in
the configuration which are not CPUs. It performs the
following actions:

1. I/O-system reset is performed by the channel
subsystem (see “I/O-System Reset” on
page 17-13).

2. All floating interruption conditions in the configu-
ration are cleared.

3. The warning-track-interruption facility is unregis-
tered.

As part of I/O-system reset, pending I/O-interruption
conditions are cleared, and system reset is signaled
to all control units and devices attached to the chan-
nel subsystem (see “I/O-System Reset” on
page 17-13). The effect of system reset on I/O con-
trol units and devices and the resultant control-unit
and device state are described in the appropriate
System Library publication for the control unit or
device. A system reset, in general, resets only those
functions in a shared control unit or device that are
associated with the particular channel path signaling
the reset.

Clear Reset

Clear reset combines the initial-CPU-reset function
with an initializing function which causes the follow-
ing actions:

1. If the multithreading facility is enabled, CPU
address contraction is performed and the multi-
threading facility is disabled.

2. If the configuration-z/Architecture-architectural-
mode (CZAM) facility is not installed, the archi-
tectural mode of all CPUs in the configuration is
set to the ESA/390 or ESA/390-compatibility
mode.

3. The access, general, floating-point, and vector
registers of all CPUs in the configuration are set
to zero. All 64 bits of the general registers and all
128 bits of the vector registers are set to zero
regardless of whether the CPU was in the
ESA/390, ESA/390-compatibility, or z/Architec-
ture architectural mode when the clear-reset
function was initiated.

4. The contents of the main storage in the configu-
ration and the associated storage keys are set to
zero with valid checking-block code.

5. The locks used by any CPU in the configuration
when executing the PERFORM LOCKED OPER-
ATION instruction are released.

6. A subsystem reset is performed.

7. A new set of wrapping keys and their associated
verification patterns are generated.

8. The guarded-storage-facility registers are set to
zero.

Validation is included in setting registers and in clear-
ing storage and storage keys.

Programming Notes:

1. The architectural mode is not changed by activa-
tion of the system-reset-normal key or by execu-
tion of a SIGNAL PROCESSOR CPU-reset or
initial-CPU-reset order. All CPUs in the configu-
ration are always in the same architectural mode.

2. For the CPU-reset operation not to affect the
contents of fields that are to be left unchanged,
the CPU must not be executing instructions and
must be disabled for all interruptions at the time
of the reset. Except for the operation of the CPU
timer and for the possibility of a machine-check
interruption occurring, all CPU activity can be
stopped by placing the CPU in the wait state and
by disabling it for I/O and external interruptions.
To avoid the possibility of causing a reset at the
time that the CPU timer is being updated or a
machine-check interruption occurs, the CPU
must be in the stopped state.

3. CPU reset, initial CPU reset, subsystem reset,
and clear reset do not affect the value and state
of the TOD clock and epoch index.

4. The conditions under which the CPU enters the
check-stop state are model-dependent and
include malfunctions that preclude the comple-
tion of the current operation. Hence, if CPU reset
or initial CPU reset is executed while the CPU is
in the check-stop state, the contents of the PSW,
registers, and storage locations, including the
storage keys and the storage location accessed
at the time of the error, may have unpredictable
values, and, in some cases, the contents may
still be in error after the check-stop state is

Control 4-81

cleared by these resets. In this situation, a clear
reset is required to clear the error.

Power-On Reset
The power-on-reset function for a component of the
machine is performed as part of the power-on
sequence for that component.

The power-on sequences for the TOD clock, epoch
index, main storage, expanded storage, and channel
subsystem may be included as part of the CPU
power-on sequence, or the power-on sequence for
these units may be initiated separately. The following
sections describe the power-on resets for the CPU,
TOD clock, epoch index, TOD-clock-steering regis-
ters, main storage, expanded storage, and channel
subsystem. See also “I/O Support Functions” on
page 17-1, and the appropriate System Library publi-
cation for the channel subsystem, control units, and
I/O devices.

CPU Power-On Reset: The power-on reset
causes initial CPU reset to be performed and may or
may not cause I/O-system reset to be performed in
the channel subsystem. The contents of general reg-
isters, access registers, floating-point registers, and
vector registers are cleared to zeros with valid check-
ing-block code. Locks used by PERFORM LOCKED
OPERATION and associated with the CPU are
released unless they are held by a CPU already pow-
ered on.

If CPU power-on reset establishes the configuration,
then it sets the architectural mode to one of the fol-
lowing:

• The ESA/390 mode (when neither the ESA/390-
compatibility-mode facility nor the CZAM facility
is installed)

• The ESA/390-compatibility mode (when the
ESA/390-compatibility-mode facility is installed)

• The z/Architecture architectural mode (when the
CZAM facility is installed)

 If CPU power-on reset does not establish the config-
uration, then it sets the architectural mode to that of
the CPUs already in the configuration, and the CPU
address is expanded if the multithreading facility is
already enabled in the configuration.

TOD-Clock and Epoch Index Power-On Reset:
The power-on reset causes the value of the TOD
clock and epoch index to be set to the current time of
day with valid checking-block code and causes the
clock to enter the set state.

When the TOD-clock-steering facility is installed, the
TOD clock is never reported to be in the not-set state,
as the TOD clock is placed in the set state with
meaningful values as part of the initial-machine-load-
ing (IML) process.

TOD-Clock-Steering-Registers Power-On
Reset: The power-on reset causes the value of the
TOD-clock-steering registers to be set to zero with
valid checking-block code.

Main-Storage Power-On Reset: For volatile main
storage (one that does not preserve its contents
when power is off) and for storage keys, power-on
reset causes zeros with valid checking-block code to
be placed in these fields. The contents of nonvolatile
main storage, including the checking-block code,
remain unchanged.

Expanded-Storage Power-On Reset: The con-
tents of expanded storage are cleared to zeros with
valid checking-block code.

Channel-Subsystem Power-On Reset: The
channel-subsystem power-on reset causes I/O-sys-
tem reset to be performed in the channel subsystem.
(See “I/O-System Reset” on page 17-13.)

Operation Note: Functions equivalent to a power-on
reset are performed when a configuration is activated
in a logical partition or virtual machine.

Initial Program Loading

Initial program loading (IPL) provides a manual
means for causing a program to be read from a des-
ignated device and for initiating execution of that pro-
gram.

Some models may provide additional controls and
indications relating to IPL; this additional information
is specified in the System Library publication for the
model.

There are two types of IPL: CCW-type IPL and list-
directed IPL. CCW-type IPL is provided by all

4-82 The z/Architecture CPU Architecture

machine configurations. List-directed IPL may be
provided, depending on the model.

CCW-type IPL is described below. List-directed IPL is
described in “List-Directed IPL” on page 17-19.

CCW-Type IPL
CCW-type IPL is initiated manually by setting the
load-unit-address controls to a four-digit number to
designate an input device and by subsequently acti-
vating the load-clear or load-normal key. On some
models, load-normal and load-clear keys are pro-
vided for each primary CPU in the configuration. On
other models, a single load-normal and load-clear
key are provided for the entire configuration, and
apply to the lowest-numbered primary online CPU
that is not in the check-stop state. In the description
which follows, the term “this CPU” refers to either
(a) the CPU in the configuration for which the load-
clear load-normal key was activated or (b) the lowest-
numbered online primary CPU (as described above).
When the multithreading facility is enabled, “this
CPU” refers to the CPU which results from CPU
address contraction (“CPU-Address Contraction” on
page 4-85).

Activating the load-clear key causes a clear reset to
be performed on the configuration.

Activating the load-normal key causes an initial CPU
reset to be performed on this CPU, a CPU reset to be
propagated to all other CPUs in the configuration,
and a subsystem reset to be performed on the
remainder of the configuration.

When the configuration-z/Architecture-architectural-
mode (CZAM) facility is not installed, activating the
load-clear key or the load-normal key sets the archi-
tectural mode to the ESA/390 or ESA/390-compati-
bility mode.

In the loading part of the operation, after the resets
have been performed, this CPU then enters the load
state. This CPU does not necessarily enter the
stopped state during the execution of the reset oper-
ations. The load indicator is on while the CPU is in
the load state.

Subsequently, a channel-program read operation is
initiated from the I/O device designated by the load-
unit-address controls. The effect of executing the
channel program is as if a format-0 CCW beginning
at absolute storage location 0 specified a read com-

mand with the modifier bits zeros, a data address of
zero, a byte count of 24, the chain-command and SLI
flags ones, and all other flags zeros.

The details of the channel-subsystem portion of the
IPL operation are defined in “Initial Program Loading”
on page 17-16.

When the IPL I/O operation is completed success-
fully, the subsystem-identification word for the IPL
device is stored in absolute storage locations
184-187, zeros are stored in absolute storage loca-
tions 188-191, and a new PSW is loaded from abso-
lute storage locations 0-7. If the PSW loading is
successful and no machine malfunctions are
detected, this CPU leaves the load state, and the
load indicator is turned off. If the rate control is set to
the process position, the CPU enters the operating
state, and the CPU operation proceeds under control
of the new PSW. If the rate control is set to the
instruction-step position, the CPU enters the stopped
state, with the manual indicator on, after the new
PSW is loaded.

If the IPL I/O operation or the PSW loading is not
completed successfully, the CPU remains in the load
state, and the load indicator remains on. The con-
tents of absolute storage locations 0-7 are unpredict-
able.

Store Status

The store-status operation places an architectural-
mode identification and the contents of the CPU reg-
isters, except for the TOD clock, in assigned storage
locations.

Figure 4-24 lists the fields that are stored when the
CPU is in the z/Architecture architectural mode, their
length, and their locations in main storage.

Figure 4-25 lists the fields that are stored when the
CPU is in the ESA/390-Compatibility mode, their
lengths, and their locations in main storage.

In the ESA/390-compatibility mode, when the
extended-save-area control, bit 34 of control register
14, is one, and bits 1-19 of the word at absolute loca-
tions 212-215 are not all zeros, then other fields are
stored in a store-status extended save area. Figure
4-12 lists the fields that are stored, their lengths, and
their offsets within the area. Bytes 144-4095 of the
extended save area remain unchanged.

Control 4-83

During the execution of the store-status operation,
the store-status architectural-mode identification is
stored at absolute location 163, as follows:

• Zeros are stored in bit positions 0-6.

• When the CPU is in the ESA/390 architectural
mode or ESA/390-compatibility mode, a zero is
stored in bit position 7.

• When the CPU is in the z/Architecture architec-
tural mode, a one is stored in bit position 7.
When the configuration-z/Architecture-architec-
tural-mode (CZAM) facility is installed, a one is
always stored in bit position 7.

When the CPU is in the z/Architecture architectural
mode, bits 0-55 of the clock comparator are stored
beginning at absolute location 4913, and zeros are
stored at absolute location 4912. When the CPU is in
the ESA/390-compatibility mode, the entire 64-bit
clock comparator is stored beginning at absolute
location 224.

The contents of the registers are not changed. If an
error is encountered during the operation, the CPU
enters the check-stop state.

The store-status operation can be initiated manually
by use of the store-status key (see “Store-Status
Key” on page 12-5). The store-status operation can
also be initiated at the addressed CPU by executing
SIGNAL PROCESSOR, specifying the stop-and-
store-status order. Execution of SIGNAL PROCES-
SOR specifying the store-status-at-address order
permits the same status information, except for the
store-status architectural-mode identification, to be
stored at a designated address (see “Signal-Proces-
sor Orders” on page 4-85).

Multiprocessing

The multiprocessing facility provides for the intercon-
nection of CPUs, via a common main storage, in
order to enhance system availability and to share
data and resources. The multiprocessing facility
includes the following facilities:

• Shared main storage
• CPU-to-CPU interconnection
• TOD-clock synchronization

Associated with these facilities is an external-inter-
ruption condition (malfunction alert), which is
described in “Malfunction Alert” on page 6-13; and
control-register positions for the TOD-clock-sync-
control bit and for the mask for the external-interrup-
tion condition, which are listed in “Control Registers”
on page 4-8.

The channel subsystem, including all subchannels, in
a multiprocessing configuration can be accessed by
all CPUs in the configuration. I/O-interruption condi-
tions are floating and can be accepted by any CPU in
the configuration.

Field
Length in

Bytes
Absolute
Address

Architectural-mode id 1 163
Floating-point registers 0-15 128 4608
General registers 0-15 128 4736
Current PSW 16 4864
Prefix 4 4888
Floating-point control register 4 4892
TOD programmable register 4 4900
CPU timer 8 4904
Zeros 1 4912
Bits 0-55 of clock comparator 7 4913
Access registers 0-15 64 4928
Control registers 0-15 128 4992

Figure 4-24. Assigned Storage Locations for Store Status
in the z/Architecture Architectural Mode

Field
Length in

Bytes
Absolute
Address

Architectural-mode id 1 163
CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Access registers 0-15 64 288
Floating-point registers 0, 2, 4, 6 32 352
General registers 0-15 (bits 32-63) 64 384
Control registers 0-15 (bits 32-63) 64 448

Figure 4-25. Assigned Storage Locations for Store Status
in the ESA/390-Compatibility Mode

Field
Length in

Bytes
Byte

Offset
Floating-point registers 0-15 128 0
Floating-point control register 4 128
Reserved (stored as zeros) 12 132
Unchanged 3,952 144

Figure 4-26. Store-Status Extended Save Area

4-84 The z/Architecture CPU Architecture

Shared Main Storage

The shared-main-storage facility permits more than
one CPU to have access to common main-storage
locations. All CPUs having access to a common
main-storage location have access to the entire
4 K-byte block containing that location and to the
associated storage key. The channel subsystem and
all CPUs in the configuration refer to a shared main-
storage location using the same absolute address.

CPU-Address Identification

Each CPU has a number assigned, called its CPU
address. A CPU address uniquely identifies one CPU
within a configuration. The CPU is designated by
specifying this address in the CPU-address field of
SIGNAL PROCESSOR. The CPU signaling a mal-
function alert, emergency signal, or external call is
identified by storing this address in the CPU-address
field with the interruption. The CPU address is
assigned by the configuration-definition process and,
except as indicated below, is not changed as a result
of reconfiguration changes. The program can deter-
mine the address of the CPU by using STORE CPU
ADDRESS.

CPU-Address Expansion
When multithreading is enabled, the CPU address
comprises a core identification (core ID), concate-
nated with an identification of a CPU within the core;
the CPU identification within a core is commonly
called a thread identification (thread ID, or TID).
Within a configuration, all cores provide the same
number of CPUs; however, depending on the model
and CPU type, some CPUs in a core may not be
operational.

Based on the program-specified maximum thread
identification specified in bits 59-63 of the parameter
register used by the SIGNAL PROCESSOR set-mul-
tithreading order, a fixed number of bits are required
to represent the thread identification; this number of
bits is referred to as the TID width.

The core ID is formed from the rightmost bits of the
CPU address before multithreading is enabled. The
core ID is shifted left by TID-width bits, resulting in
the leftmost bits of the CPU address after multi-
threading is available. The thread ID requires the
same TID-width number of bits, and occupies the

rightmost bits of the CPU address after multithread-
ing is enabled. Thread IDs are assigned in a contigu-
ous range of numbers beginning with zero and
extending to a maximum of 31; however, a model
may implement fewer CPUs per core.

Figure 4-27 illustrates the adjustment of the CPU
address when multithreading is enabled.

Figure 4-28 illustrates the relationship of the pro-
gram-specified maximum thread identification, the
TID width and the CPU-address bits comprising the
core identification and thread identification.

CPU Address (multithreading not enabled)

CPU Address (multithreading enabled)

Core Identification TID

0 N 15

Explanation:

N Leftmost bit position of the thread ID; also, number of bits in
the core ID. N = 16 – (TID width). See Figure 4-28 for
details.

TID Thread identification

Figure 4-27. Adjustment of the CPU Address when
Multithreading is Enabled.

Program-Specified
Maximum TID1

TID
Width

CPU Address Bits
Core ID Thread ID

0 0 0-15 –

1 1 0-14 15
2-3 2 0-13 14-15

4-7 3 0-12 13-15

8-15 4 0-11 12-15
16-31 5 0-10 11-15

Explanation:

1 Specified in bits 56-63 of the parameter register for the
SIGP set-multithreading order. The number of CPUs per
core is one more than the program-specified maximum
thread identification.

– Not applicable; multithreading is not enabled.

Figure 4-28. Program-Specified Maximum TID, TID Width,
Core ID and Thread ID Fields of the CPU
Address

Control 4-85

CPU-Address Contraction
When a reset function disables multithreading,
(a) the CPU address(es) of the CPU(s) having the
thread-ID zero are shifted to the right by the same
TID-width number of bits used during enablement,
(b) zeros are inserted in the TID-width number of bits
on the left of the address, and (c) the CPU address
reverts to its original non-multithreading format. All
CPUs in a core having nonzero thread IDs when mul-
tithreading is enabled are no longer operational when
multithreading is disabled.

When multithreading is not enabled, the CPU
address remains unchanged from the value assigned
by the configuration-definition process. In this case,
the thread identification does not exist.

CPU Signaling and Response

The CPU-signaling-and-response facility consists of
SIGNAL PROCESSOR and a mechanism to interpret
and act on several order codes. The facility provides
for communications among CPUs, including transmit-
ting, receiving, and decoding a set of assigned order
codes; initiating the specified operation; and
responding to the signaling CPU. A CPU can
address SIGNAL PROCESSOR to itself. SIGNAL
PROCESSOR is described in “SIGNAL PROCES-
SOR” on page 10-136.

Signal-Processor Orders

Note: Certain SIGP orders are described as reset-
ting the CPU into the ESA/390 architectural mode (or
simply, ESA/390 mode). When the ESA/390-compat-
ibility-mode facility is installed in the configuration,
the same reset operations will reset the CPU into the
ESA/390-compatibility mode. In the following discus-
sion of SIGP orders, wherever the phrase ESA/390
or ESA/390-compatibility mode is used, it indicates
the respective mode in which the configuration was
originally activated.

The signal-processor orders are specified in bit posi-
tions 56-63 of the second-operand address of SIG-

NAL PROCESSOR and are encoded as shown in
Figure 4-29.

The orders are defined as follows:

Sense
The addressed CPU presents its status to the issuing
CPU (see “Status Bits” on page 4-96 for a definition
of the bits). No other action is caused at the
addressed CPU. The status, if not all zeros, is stored
in the general register designated by the R1 field of
the SIGNAL PROCESSOR instruction, and condition
code 1 is set; if all status bits are zeros, condition
code 0 is set.

External Call
An external-call external-interruption condition is
generated at the addressed CPU. The interruption
condition becomes pending during the execution of
SIGNAL PROCESSOR. The associated interruption
occurs when the CPU is enabled for that condition
and does not necessarily occur during the execution

Code
Order (Dec) (Hex)

0 00 Unassigned

1 01 Sense

2 02 External call
3 03 Emergency signal

4 04 Start

5 05 Stop
6 06 Restart

7 07 Unassigned

8 08 Unassigned
9 09 Stop and store status

10 0A Unassigned

11 0B Initial CPU reset
12 0C CPU reset

13 0D Set prefix

14 0E Store status at address
15-16 0F-10 Unassigned

17 11 Store extended status at address (ESA/390-
compatibility mode only)

18 12 Set architecture

19 13 Conditional Emergency Signal (z/Architecture only)
20 14

21 15 Sense Running Status (z/Architecture only)

22 16 Set multithreading (z/Architecture only)
23 17 Store additional status at address (z/Architecture only)

24-255 17-FF Unassigned

Figure 4-29. Encoding of SIGNAL PROCESSOR Orders

4-86 The z/Architecture CPU Architecture

of SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. Only one exter-
nal-call condition can be kept pending in a CPU at a
time. The order is accepted only when the addressed
CPU is in the stopped or the operating state.

Emergency Signal
An emergency-signal external-interruption condition
is generated at the addressed CPU. The interruption
condition becomes pending during the execution of
SIGNAL PROCESSOR. The associated interruption
occurs when the CPU is enabled for that condition
and does not necessarily occur during the execution
of SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. At any one time
the receiving CPU can keep pending one emer-
gency-signal condition for each CPU in the configura-
tion, including the receiving CPU itself. The order is
accepted only when the addressed CPU is in the
stopped or the operating state.

Start
The addressed CPU performs the start function (see
“CPU States” on page 4-2). The CPU does not nec-
essarily enter the operating state during the execu-
tion of SIGNAL PROCESSOR. The order is effective
only when the addressed CPU is in the stopped
state. The effect of performing the start function is
unpredictable when the stopped state has been
entered by reset.

Stop
The addressed CPU performs the stop function (see
“CPU States” on page 4-2). The CPU does not nec-
essarily enter the stopped state during the execution
of SIGNAL PROCESSOR. The order is effective only
when the CPU is in the operating state.

Restart
The addressed CPU performs the restart operation
(see “Restart Interruption” on page 6-56). The CPU
does not necessarily perform the operation during
the execution of SIGNAL PROCESSOR. The order is
effective only when the addressed CPU is in the
stopped or the operating state.

Stop and Store Status
The addressed CPU performs the stop function, fol-
lowed by the store-status operation (see “Store Sta-
tus” on page 4-82). The CPU does not necessarily

complete the operation, or even enter the stopped
state, during the execution of SIGNAL PROCES-
SOR. The order is effective only when the addressed
CPU is in the stopped or the operating state.

Initial CPU Reset
The addressed CPU performs initial CPU reset (see
“Resets” on page 4-74). The execution of an initial-
CPU reset initiated by SIGNAL PROCESSOR does
not affect the architectural mode or other CPUs, does
not disable multithreading, and does not cause I/O to
be reset. The reset operation is not necessarily com-
pleted during the execution of SIGNAL PROCES-
SOR.

CPU Reset
The addressed CPU performs CPU reset (see
“Resets” on page 4-74). The execution of a CPU
reset initiated by SIGNAL PROCESSOR does not
affect the architectural mode or other CPUs, does not
disable multithreading, and does not cause I/O to be
reset. The reset operation is not necessarily com-
pleted during the execution of SIGNAL PROCES-
SOR.

Set Prefix
The contents of bit positions 33-50 of the parameter
register of the SIGNAL PROCESSOR instruction are
treated as a prefix value, which replaces bits 33-50 of
the prefix register of the addressed CPU. Bits 0-32
and 51-63 of the parameter register are ignored. The
order is accepted only if the addressed CPU is in the
stopped state, the value to be placed in the prefix
register designates an 8K block which is available in
the configuration, and no other condition precludes
accepting the order. Verification of the stopped state
of the addressed CPU and of the availability of the
designated storage is performed during execution of
SIGNAL PROCESSOR. If accepted, the order is not
necessarily completed during the execution of SIG-
NAL PROCESSOR.

The parameter register has the following format:

The set-prefix order is completed as follows:

/ /
0 31

/ Prefix Value / / / / / / / / / / / / /
32 33 51 63

Control 4-87

• If the addressed CPU is not in the stopped state,
the order is not accepted. Instead, bit 54 (incor-
rect state) of the general register designated by
the R1 field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1 is
set.

• The value to be placed in the prefix register of
the addressed CPU is tested for the availability of
the designated storage. The absolute address of
an 8 K-byte area of storage is formed by append-
ing 13 zeros to the right and 33 zeros to the left
of bits 33-50 of the parameter value. This
address is treated as a 64-bit absolute address
regardless of whether the sending and receiving
CPUs are in the 24-bit, 31-bit, or 64-bit address-
ing mode. The two 4 K-byte blocks of storage
within the new prefix area are accessed. The
accesses to the blocks are not subject to protec-
tion, and the associated reference bits may or
may not be set to one. If either block is not avail-
able in the configuration, the order is not
accepted by the addressed CPU, bit 55 (invalid
parameter) of the general register designated by
the R1 field of the SIGNAL PROCESSOR instruc-
tion is set to one, and condition code 1 is set.

• The value is placed in the prefix register of the
addressed CPU.

• The ALB and TLB of the addressed CPU are
cleared of their contents.

• A serializing and checkpoint-synchronizing func-
tion is performed on the addressed CPU follow-
ing insertion of the new prefix value.

Store Status at Address
The contents of bit positions 33-54 of the parameter
register of the SIGNAL PROCESSOR instruction are
used as the origin of a 512-byte area on a 512-byte
boundary in absolute storage into which the status of
the addressed CPU is stored. Bits 0-32 and 55-63 of
the parameter register are ignored.

The order is accepted only if the addressed CPU is in
the stopped state, the status-area origin designates a
location which is available in the configuration, and
no other condition precludes accepting the order.
Verification of the stopped state of the addressed
CPU and of the availability of the designated storage
is performed during execution of SIGNAL PROCES-
SOR. If accepted, the order is not necessarily com-

pleted during the execution of SIGNAL
PROCESSOR.

The parameter register has the following format:

The store-status-at-address order is completed as
follows:

• If the addressed CPU is not in the stopped state,
the order is not accepted. Instead, bit 54 (incor-
rect state) of the general register designated by
the R1 field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1 is
set.

• The address of the area into which status is to be
stored is tested for availability. The absolute
address of a 512-byte area of storage is formed
by appending 9 zeros to the right and 33 zeros to
the left of bits 33-54 of the parameter value. This
address is treated as a 64-bit absolute address
regardless of whether the sending and receiving
CPUs are in the 24-bit, 31-bit, or 64-bit address-
ing mode. The 512-byte block of storage at this
address is accessed. The access is not subject
to protection, and the associated reference bit
may or may not be set to one. If the block is not
available in the configuration, the order is not
accepted by the addressed CPU, bit 55 (invalid
parameter) of the general register designated by
the R1 field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1 is
set.

• The status of the addressed CPU is placed in the
designated area. The information stored, and the
format of the area receiving the information, are
the same as for the stop-and-store-status order,
except that each field, rather than being stored at
an offset from the beginning of absolute storage,
is stored in the designated area at the offsets
listed in the figures below, except that an archi-
tectural-mode identification and the vector regis-
ters are not stored. Figure 4-30 illustrates the
status fields in the z/Architecture architectural

/ /
0 31

/ Status-Area Origin / / / / / / / / /
32 33 55 63

4-88 The z/Architecture CPU Architecture

mode. Bytes 288-291 and 312-319 of the desig-
nated area remain unchanged.

Figure 4-30 illustrates the status fields in the
ESA/390-compatibility mode.

• A serialization and checkpoint-synchronization
function is performed on the addressed CPU fol-
lowing storing of the status.

Programming Note: The architectural mode of the
CPU that stored status in a designated area normally
is indicated by bit 12 of the PSW stored at offset 256
in the area. The PSW is stored at the same offset,
256, in the ESA/390 mode, ESA/390-compatibility
mode, and the z/Architecture mode. Bit 12 is one in
an ESA/390 or ESA/390-compatibility mode PSW
and zero in a z/Architecture PSW. The store-status-
at-address order does not store the architectural-
mode identification that is stored at absolute location
163 by the store-status operation and the stop-and-
store-status order.

Store Extended Status at Address
The contents of bit positions 33-54 of the parameter
register of the SIGNAL PROCESSOR instruction are
used as the origin of a 512-byte save area. Bits 0-32
and 55-63 of the parameter register are ignored. The
contents of bit positions 1-19 of bytes 212-215 of the
save area are used as the origin of a 4,096-byte
extended save area. Bits 0 and 20-31 of bytes 212-
215 are ignored.

Status of the addressed CPU is stored in the desig-
nated save area and extended save area.

The order is accepted only if the CPU is in the
ESA/390-compatibility mode, the addressed CPU is
in the stopped state, the save-area and extended-
save-area origins designate locations that are avail-
able in the configuration, the extended-save-area ori-
gin is not 0, and no other condition precludes
accepting the order. Verification of the ESA/390-com-
patibility mode, the stopped state of the addressed
CPU, and the availability of the designated storage is
performed during the execution of SIGNAL PRO-
CESSOR. If accepted, the order is not necessarily
completed during the execution of SIGNAL PRO-
CESSOR.

The parameter register has the following format:

Figure 4-32 lists the fields in the save area, their
lengths, and their offsets from the beginning of the
area. The field in byte positions 212-215 is provided
by the program. The other fields are stored during the
execution of the operation specified by the order.

Field
Length in

Bytes
Offset in

Bytes
Floating-point registers 0-15 128 0
General registers 0-15 128 128
Current PSW 16 256
Prefix 4 280
Floating-point-control register 4 284
TOD programmable register 4 292
CPU timer 8 296
Zeros 1 304
Bits 0-55 of clock comparator 7 305
Access registers 0-15 64 320
Control registers 0-15 128 384

Figure 4-30. Location of Status Fields in Designated
Area in the z/Architecture Architectural Mode

Field
Length in

Bytes
Offset in

Bytes
CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Access registers 0-15 64 288
Floating-point registers 0, 2, 4,
6

32 352

General registers 0-15 (bits
32-63)

64 384

Control registers 0-15 (bits 32-
63)

64 448

Figure 4-31. Location of Status Fields in Designated
Area in the ESA/390-compatibility Mode

/ /
0 31

/ Save-Area Origin / / / / / / / / /
32 33 55 63

Field
Length in

Bytes
Offset in

Bytes
Extended-save-area address 4 212
CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Access registers 0-15 64 288
Floating-point registers 0, 2, 4, 6 32 352
General registers 0-15 (bits 32-63) 64 384
Control registers 0-15 (bits 32-63) 64 448

Figure 4-32. Save-Area Locations for Store-Extended-
Status-at-Address Order

Control 4-89

The extended-save-area address in bytes 212-215 of
the save area has the following format:

Figure 4-33 lists the fields that are stored in the
extended-save area, their lengths, and their offsets
from the origin of the area.

The store-extended-status-at-address order is com-
pleted as follows.

• If the ESA/390-compatibility-mode facility is not
installed, the order is not accepted. Instead, bit
62 (invalid order) of the general register desig-
nated by the R1 field of the SIGNAL PROCES-
SOR instruction is set to one, and condition code
1 is set.

• If the addressed CPU is not in the stopped state,
the order is not accepted. Instead, bit 54 (incor-
rect state) of the general register designated by
the R1 field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1 is
set.

• The save area is tested for the availability of the
designated storage. The absolute address of the
save area is formed by appending 33 zeros to
the left and nine zeros to the right of bits 33-54 of
the parameter value. This address is treated as a
64-bit absolute address regardless of the
addressing modes of the sending and receiving
CPUs. The 512-byte block of storage at this
address is accessed. The access is not subject
to protection, and the associated reference bit
may or may not be set to one. If the block is not
available in the configuration, the order is not
accepted by the addressed CPU, bit 55 (invalid
parameter) of the general register designated by
the R1 field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1 is
set.

• The extended save area is tested for having a
nonzero address and for the availability of the
designated storage. The absolute address of the
extended save area is formed by appending 33
zeros to the left and 12 zeros to the right of bits
1-19 of bytes 212-215 of the save area. This
address is treated as a 64-bit absolute address
regardless of the addressing modes of the send-
ing and receiving CPUs. If the address is not
zero, the 4,096-byte block of storage at the
address is accessed. The access is not subject
to protection, and the associated reference bit
may or may not be set to one. If the address is
zero or the block is not available in the configura-
tion, the order is not accepted by the addressed
CPU, bit 55 (invalid parameter) of the general
register designated by the R1 field of the SIGNAL
PROCESSOR instruction is set to one, and con-
dition code 1 is set.

• Status of the addressed CPU is stored in the
save area, as indicated in Figure 4-32 on
page 4-88, and in the extended save area as
indicated in Figure 4-33 on page 4-89. Bytes
0-211, 232-255, and 268-287 of the save area
and bytes 144-4095 of the extended save area
remain unchanged.

• A serialization and checkpoint-synchronization
function is performed on the addressed CPU fol-
lowing storing of the status.

Set Architecture
When the configuration-z/Architecture-architectural-
mode (CZAM) facility is not installed, the contents of
bit positions 56-63 of the parameter register are used
as a code specifying an architectural mode to which
all CPUs in the configuration are to be set, as follows:

• Code 0 specifies the ESA/390 architectural mode
or ESA/390-compatibility mode, with z/Architec-
ture- unique information captured or preserved.

• Code 1 specifies the z/Architecture architectural
mode.

• Code 2 specifies the z/Architecture architectural
mode, with captured z/Architecture-unique infor-
mation restored.

Bits 0-55 of the parameter register are ignored. The
contents of the CPU-address register of the SIGNAL

/ Extended-Save-Area Origin / / / / / / / / / / / /
0 1 20 31

Field
Length in

Bytes
Byte

Offset
Floating-point registers 0-15 128 0
Floating-point control register 4 128
Reserved (stored as zeros) 12 132
Unchanged 3,952 144

Figure 4-33. Extended-Save Area Locations for Store-
Extended-Status-at-Address Order.

4-90 The z/Architecture CPU Architecture

PROCESSOR instruction are ignored; all CPUs in
the configuration are considered to be addressed.

The order is accepted only if all of the following con-
ditions are true:

• The code is 0, 1, or 2.

• The CZAM facility is not installed.

• The CPU is not already in the mode specified by
the code.

• Each of all other CPUs is in either the stopped or
the check-stop state.

• No other condition precludes accepting the
order.

If accepted, the order is completed by all CPUs
during the execution of SIGNAL PROCESSOR. In no
case can different CPUs be in different architectural
modes.

The set-architecture order is completed as follows:

• If the code in the parameter register is not 0, 1, or
2, if the CZAM facility is installed, or if the CPU is
already in the architectural mode specified by the
code, the order is not accepted. Instead, bit 55
(invalid parameter) of the general register desig-
nated by the R1 field of the SIGNAL PROCES-
SOR instruction is set to one, and condition code
1 is set.

• If the code in the parameter register is 0 and mul-
tithreading is enabled, return to the ESA/390
architectural mode or ESA/390-compatibility
mode is not possible and the order is not
accepted. Instead, bit 54 (incorrect state) of the
general register designated by the R1 field of the
SIGNAL PROCESSOR instruction is set to one,
and condition code 1 is set.

• If it is not true that all other CPUs in the configu-
ration are in the stopped or check-stop state, the
order is not accepted. Instead, bit 54 (incorrect
state) of the general register designated by the
R1 field of the SIGNAL PROCESSOR instruction
is set to one, and condition code 1 is set.

• The architectural mode of all CPUs in the config-
uration is set as specified by the code, as follows:

– If the order changes the architectural mode
from ESA/390 to z/Architecture and the code

is 1, then, for each CPU in the configuration,
the eight-byte current PSW is changed to a
16-byte PSW, and the bits of the 16-byte
PSW are set as follows: bits 0-11 and 13-32
are set equal to the same bits of the eight-
byte PSW, bit 12 and bits 33-96 are set to
zeros, and bits 97-127 are set equal to bits
33-63 of the eight-byte PSW. Also, for each
CPU in the configuration, bit 19 of the
ESA/390 prefix, which becomes bit 51 of the
z/Architecture prefix register, is set to zero.

If the order changes the architectural mode
from ESA/390-compatibility mode to z/Archi-
tecture and the code is 1, then for each CPU
in the configuration, bit 51 of the prefix regis-
ter is set to zero.

If the order changes the architectural mode
from ESA/390 or ESA/390-compatibility
mode to z/Architecture and the code is 2, the
PSW of the CPU executing SIGNAL PRO-
CESSOR and the prefix values of all CPUs
are set as in the code-1 case. For each of all
other CPUs in the configuration, the PSW is
set with the value of the captured-z/Architec-
ture-PSW register — a PSW saved when the
CPU last went from the z/Architecture mode
to the ESA/390 or ESA/390-compatibility
mode because of a set-architecture order
with code 0 or a CPU reset due to activation
of the load-normal or load-with-dump key.
However, the captured-z/Architecture-PSW
register has been set to all zeros if the CPU
performed a reset, other than CPU reset,
either at the time of the architectural-mode
transition or subsequently.

If the order changes the architecture mode
from ESA/390-compatibility mode to z/Archi-
tecture and the code is 1, bits 0-31 of the
control registers for each CPU in the configu-
ration are not modified. If the order changes
the architecture mode from ESA/390-com-
patibility mode to z/Architecture and the code
is 2, bits 0-31 of the control registers for the
CPU executing SIGNAL PROCESSOR are
not modified and bits 0-31 of the control reg-
isters for each of all other CPUs in the con-
figuration are set with the values of the
captured-z/Architecture-control registers.

If the order changes the architecture mode
from ESA/390 to z/Architecture, bits 0-31 of

Control 4-91

the control registers for each CPU in the con-
figuration are not modified.

If the order changes the architecture mode to
z/Architecture, bits 32-63 of the control regis-
ters for each CPU in the configuration are not
modified.

– If the order changes the architectural mode
from z/Architecture to ESA/390, then, for
each CPU in the configuration, (1) the cur-
rent PSW, which is the updated PSW in the
case of the CPU executing SIGNAL PRO-
CESSOR, is saved in the captured-z/Archi-
tecture-PSW register, and (2) the 16-byte
current PSW is changed to an eight-byte
PSW by setting the bits of the eight-byte
PSW as follows: bits 0-11 and 13-32 are set
equal to the same bits of the 16-byte PSW,
bit 12 is set to one, and bits 33-63 are set
equal to bits 97-127 of the 16-byte PSW. Bit
51 of the z/Architecture prefix, which
becomes bit 19 of the ESA/390 prefix,
remains zero.

If the order changes the architectural mode
from z/Architecture to the ESA/390-compati-
bility mode, then, for each CPU in the config-
uration, (a) bits 0-31 of the control registers
are saved in the captured-z/Architecture-
control registers, (b) bits 0-31 of all control
registers are set to zeros, and (c) bits 32-63
of all control registers are not modified.

If the order changes the architecture mode
from z/Architecture to ESA/390, the 32-bit
control registers defined in ESA/390 archi-
tecture mode for each CPU in the configura-
tion are not modified.

• The ALBs and TLBs of all CPUs in the configura-
tion are cleared of their contents.

• A serialization and checkpoint-synchronization
function is performed on all CPUs in the configu-
ration.

If the order changes the architectural mode from
z/Architecture to ESA/390 or ESA/390-compatibility
and the SIGNAL PROCESSOR instruction causes
occurrence of an instruction-fetching PER event, only
the rightmost 31 bits of the address of the instruction
are stored in the ESA/390 PER-address field.

Programming Notes:

1. If the set-architecture order changes the archi-
tectural mode from z/Architecture to ESA/390
and bit 31 of the PSW is one, the PSW is invalid.
If the order changes the architectural mode from
z/Architecture to the ESA/390-compatibility
mode, it is unpredictable whether the PSW is
considered to be invalid if bit 31 is one.

2. When a program is intended to operate in the
z/Architecture architectural mode but may be
loaded in any of the ESA/390, ESA/390-compati-
bility, or z/Architecture architectural mode, the
program can implement a common code path to
issue the SIGNAL PROCESSOR set-architec-
ture command to set the architectural mode to
z/Architecture. If the program was loaded in a
configuration in which the configuration-z/Archi-
tecture-architectural-mode facility is installed,
then the SIGP instruction will complete with con-
dition code 1, and the status in general register
R1 will indicate invalid parameter (that is, bit 55 of
the register will be one). Assuming that the SIGP
parameter value is valid (1 or 2), then the pro-
gram can safely assume that the invalid parame-
ter condition means that the configuration was
already in the z/Architecture architectural mode.

Conditional Emergency Signal
An emergency-signal external-interruption condition
may be generated at the addressed CPU. The con-
tents of bit positions 48-63 of the parameter register
of the SIGNAL PROCESSOR instruction are treated
as a check-ASN value which is used as part of the
condition checking of the addressed CPU. If signal-
ing is permitted, the interruption condition becomes
pending during the execution of SIGNAL PROCES-
SOR. The associated interruption occurs when the
CPU is enabled for that condition and does not nec-
essarily occur during the execution of SIGNAL PRO-
CESSOR. The address of the CPU sending the
signal is provided with the interruption code when the
interruption occurs. At any one time the receiving
CPU can keep pending one emergency-signal condi-
tion for each CPU in the configuration, including the
receiving CPU itself.

The conditional-emergency-signal order is recog-
nized only when the CPU is in the z/Architecture
architectural mode. Otherwise, an unassigned-order
condition is recognized.

4-92 The z/Architecture CPU Architecture

The order is accepted only when the addressed CPU
is in the stopped or the operating state and one of the
following conditions of the addressed CPU can be
determined:

• The PSW is disabled for external interruptions,
I/O interruptions, or both.

• The CPU is in the wait state and the instruction
address in the PSW is not zero.

• The CPU is not in the wait state, and the speci-
fied check-ASN value equals an ASN of the CPU
(primary, secondary, both), regardless of the set-
ting of bit positions 16-17 of the PSW.

When making the above determination of possible
conditions is precluded, the conditional nature of the
order is not effective, and instead the order is
accepted as if an emergency-signal order had been
specified.

If the order is accepted, the interruption is made
pending, and condition code 0 is set. Otherwise, the
interruption is not made pending, bit 54 (incorrect
state) of the status register is set to one, and condi-
tion code 1 is set.

The parameter register has the following format:

Sense Running Status
When the multithreading facility is not enabled, the
following applies:

• If the addressed CPU is running, condition code
0 is set.

• If the addressed CPU is not running, status bit 53
is set to one and all other status bits are set to
zero in the general register designated by the R1

field of the SIGNAL PROCESSOR instruction,
and condition code 1 is set.

When the multithreading facility is enabled, the fol-
lowing applies:

• If any CPU of the core in which the addressed
CPU is a member is running, condition code 0 is
set.

• If all CPUs of the core in which the addressed
CPU is a member are not running, status bit 53 is
set to one and all other status bits are set to zero
in the general register designated by the R1 field
of the SIGNAL PROCESSOR instruction, and
condition code 1 is set.

No other action is caused at the addressed CPU.

The sense-running-status order is recognized when
the CPU is in the z/Architecture architectural mode. It
is unpredictable whether the order is recognized
when the CPU is in the ESA/390-compatibility mode;
if the order is not recognized, an unassigned-order
condition is recognized.

Programming Note: When the multithreading facility
is enabled, a sense-running-status order addressed
to a stopped CPU will complete with condition code 0
if any other CPU in the same core is running.

Set Multithreading
The set-multithreading order enables the multithread-
ing facility.

Bit positions 59-63 of the parameter register contain
the program-specified maximum thread identification
to be provided in the configuration. The program-
specified maximum thread identification is one less
than the number of CPUs to be made addressable in
each core. For example, a value of 3 in bit positions
59-63 indicates that four threads are to be provided.
Bits 0-58 of the parameter register are reserved and
should contain zeros; otherwise, the program may
not operate compatibly in the future.

The contents of the CPU-address register of the SIG-
NAL PROCESSOR instruction are ignored; all CPUs
in the configuration are considered to be addressed.

If accepted, the order is completed by all CPUs
during the execution of SIGNAL PROCESSOR. The
set-multithreading order is completed as follows:

• If the multithreading facility is not installed or the
CPU is not in the z/Architecture architectural
mode, or an external control prevents the use of
multithreading, the order is not accepted.
Instead, bit 62 (invalid order) of the general regis-
ter designated by the R1 field of the SIGNAL
PROCESSOR instruction is set to one, and con-
dition code 1 is set.

/ /
0 31

/ / / / / / / / / / / / / / / / Check ASN
32 48 63

Control 4-93

• If it is not true that all other CPUs in the configu-
ration are in the stopped or check-stop state, or if
the configuration is already enabled for multi-
threading, the order is not accepted. Instead, bit
54 (incorrect state) of the general register desig-
nated by the R1 field of the SIGNAL PROCES-
SOR instruction is set to one, and condition code
1 is set.

• If the program-specified maximum thread identifi-
cation in bit positions 59-63 of the parameter reg-
ister contains a value not supported by the
model, the order is not accepted. Instead, bit 55
(invalid parameter) of the general register desig-
nated by the R1 field of the SIGNAL PROCES-
SOR instruction is set to one, and condition code
1 is set.

• When the program-specified maximum thread
identification is nonzero, the following is per-
formed:

– The configuration is enabled for multithread-
ing, resulting in CPU-address expansion as
described in “CPU-Address Expansion” on
page 4-84.

– The meaning of a CPU-type topology-list
entry (TLE) of a SYSIB 15.1.x in the STORE
SYSTEM INFORMATION instruction is
changed (see “Fields Specific to a CPU-type
TLE” on page 10-160).

– The ALBs and TLBs of all CPUs in the con-
figuration are cleared of their contents.

– The MT-diagnostic counter set is set to the
active state.

When the program-specified maximum thread
identification is zero, the configuration is not
enabled for multithreading.

• A serialization and checkpoint-synchronization
function is performed on all CPUs in the configu-
ration.

Upon successful completion, all CPUs other than the
CPU executing the set-multithreading order remain in
the stopped or check-stop state. However, if a CPU
was in the check-stop state before multithreading is
enabled, it is unpredictable whether the CPUs having
nonzero thread IDs in the same core are placed in
the stopped or check-stopped state.

The architected register context (that is, the contents
of the PSW, CPU timer, clock comparator, general
registers, floating-point registers and floating-point-
control register, vector registers, control registers,
access registers, prefix register, and TOD-program-
mable register) of each CPU before multithreading is
enabled becomes the architected register context of
the CPU having TID zero of each respective core
after multithreading is enabled. Similarly, the archi-
tected register context of the CPU having TID zero of
each core of an MT-enabled configuration becomes
the architected register context of each respective
CPU when multithreading is disabled as a result of
the activation of the load-normal or load-with-dump
key.

The architected register context of all CPUs having a
nonzero thread identification are retained when the
multithreading facility is disabled as a result of the
activation of the load-normal or load-with-dump key.
If the multithreading facility is subsequently re-
enabled without an intervening clear reset, the archi-
tected register context of all CPUs having a nonzero
thread identification are restored.

When multithreading is re-enabled after having been
disabled by the activation of the load-normal or load-
with-dump key, if the value of the program-specified
maximum thread identification in bits 59-63 of the
parameter register differs from that used in the pre-
ceding enablement, then the architected register
context of all CPUs having nonzero thread IDs is
unpredictable.

Store Additional Status at Address
Additional status information is stored in the status
area designated by the parameter register.

When the guarded-storage facility is not installed, the
contents of bit positions 0-53 of the parameter regis-
ter of the SIGNAL PROCESSOR instruction are used
as the origin of a 1024-byte area on a 1024-byte
boundary in absolute storage into which the addi-
tional status of the addressed CPU is stored. Bits
54-63 of the parameter register must be zero.

When the guarded-storage facility is installed, bit
positions 60-63 of the parameter register contain a
length characteristic (LC) that specifies the size and
alignment of the additional-status area as a power of
two; an LC value of zero is treated as 10. Bits 0
through 63–LC of the parameter register, with LC
zeros appended on the right, are used as the abso-

4-94 The z/Architecture CPU Architecture

lute address of a 2LC-byte area, aligned on a 2LC-byte
boundary, into which the additional status of the
addressed CPU is stored. Bit positions 64-LC
through 59 of the parameter register must contain
zeros. The valid length-characteristic values are the
same as those in the machine-check-extended-save-
area designation, as shown in Figure 3-18 on
page 3-81; all other LC values are reserved.

The order is accepted only if the addressed CPU is in
the stopped state, the status-area origin designates a
location which is available in the configuration, and
no other condition precludes accepting the order.
Verification of the stopped state of the addressed
CPU and of the availability of the designated storage
is performed during execution of SIGNAL PROCES-
SOR. If accepted, the order is not necessarily com-
pleted during the execution of SIGNAL
PROCESSOR.

When the guarded-storage facility is not installed, the
parameter register has the following format:

When the guarded-storage facility is installed, the
parameter register has the following format:

The store-additional-status-at-address order is com-
pleted as follows:

• The order is accepted only if at least one of the
facilities that produce additional status is
installed, including any of the following:

– Vector facility for z/Architecture
– Guarded-storage facility

• If neither of these facilities is installed, the order
is not accepted. Instead, bit 62 (invalid order) of
the general register designated by the R1 field of
the SIGNAL PROCESSOR instruction is set to
one, and condition code 1 is set.

• If the addressed CPU is not in the stopped state,
the order is not accepted. Instead, bit 54 (incor-
rect state) of the general register designated by
the R1 field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1 is
set.

• If the guarded-storage facility is installed, and a
reserved LC value is specified, or if any of the
reserved bit positions in the parameter register
do not contain zero, the order is not accepted by
the addressed CPU, bit 55 (invalid parameter) of
the general register designated by the R1 field of
the SIGNAL PROCESSOR instruction is set to
one, and condition code 1 is set. When the
guarded-storage facility is not installed, bit posi-
tions 54-63 of the parameter register are
reserved. When the guarded-storage facility is
installed, bit positions 64-LC through 59 are
reserved.

• The address of the area into which status is to be
stored is tested for availability. When the
guarded-storage facility is not installed, the abso-
lute address of a 1024-byte area of storage is
formed by appending 10 zeros to the right of bits
0-53 of the parameter value. When the guarded-
storage facility is installed, the absolute address
of a 2LC-byte area of storage is formed by
appending LC zeros to the right of bits 0 through
63-LC of the parameter register.

This address is treated as a 64-bit absolute
address regardless of whether the sending and
receiving CPUs are in the 24-bit, 31-bit, or 64-bit
addressing mode. The block of storage at this
address is accessed. The access is not subject
to protection, and the associated reference bit
may or may not be set to one. If the block is not
available in the configuration, the order is not
accepted by the addressed CPU, bit 55 (invalid
parameter) of the general register designated by
the R1 field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1 is
set.

• A serialization and checkpoint-synchronization
function is performed on the addressed CPU fol-
lowing storing of the status.

The format of the additional-status area is identical to
that of the machine-check extended save area as
described in “Machine-Check Extended Save Area
(MCESA)” on page 11-24. If the minimum length
required to store a facility’s registers is not specified

Additional-Status-Area Origin
0 31

Additional-Status-Area Origin (continued) 0 0 0 0 0 0 0 0 0 0
32 54 63

Additional-Status-Area Origin
0 31

Additional-Status-Area Origin (continued) zeros LC
32 64-LC 60 63

Control 4-95

in the length code, then those registers are not
stored in the additional-status area.

Programming Note: For a discussion of the relative
performance of the SIGNAL PROCESSOR orders,
see the programming note following the instruction
“SIGNAL PROCESSOR” on page 10-136.

Conditions Determining Response

Conditions Precluding Interpretation of
the Order Code
The following situations preclude the initiation of the
order. The sequence in which the situations are listed
is the order of priority for indicating concurrently
existing situations:

1. The access path to the addressed CPU is busy
because a concurrently executed SIGNAL PRO-
CESSOR is using the CPU-signaling-and-
response facility. The CPU which is concurrently
executing the instruction can be any CPU in the
configuration other than this CPU, and the CPU
address can be any address, including that of
this CPU or an invalid address. The order is
rejected. Condition code 2 is set.

2. The addressed CPU is not operational; that is, it
is not provided in the installation, it is not in the
configuration, its use is restricted based on
model or CPU type, it is in any of certain cus-
tomer-engineer test modes, or its power is off.
The order is rejected. Condition code 3 is set.
This condition cannot arise as a result of a SIG-
NAL PROCESSOR instruction executed by a
CPU addressing itself.

3. One of the following conditions exists at the
addressed CPU:

a. A previously issued start, stop, restart, stop-
and-store-status, set-prefix, store-status-at-
address order, or store-additional-status-at-
address has been accepted by the
addressed CPU, and execution of the func-
tion requested by the order has not yet been
completed.

b. A manual start, stop, restart, or store-status
function has been initiated at the addressed
CPU, and the function has not yet been com-
pleted. This condition cannot arise as a
result of a SIGNAL PROCESSOR instruction
executed by a CPU addressing itself.

If the currently specified order is sense, external
call, emergency signal, start, stop, restart, stop
and store status, set prefix, store status at
address, set architecture, set multithreading, or
store additional status at address, then the order
is rejected, and condition code 2 is set. If the cur-
rently specified order is one of the reset orders,
or an unassigned or not-implemented order, the
order code is interpreted as described in “Status
Bits” on page 4-96.

4. One of the following conditions exists at the
addressed CPU:

a. A previously issued initial-CPU-reset or
CPU-reset order has been accepted by the
addressed CPU, and execution of the func-
tion requested by the order has not yet been
completed.

b. A manual-reset function has been initiated at
the addressed CPU, and the function has not
yet been completed. This condition cannot
arise as a result of a SIGNAL PROCESSOR
instruction executed by a CPU addressing
itself.

If the currently specified order is sense, external
call, emergency signal, start, stop, restart, stop
and store status, set prefix, store status at
address, set architecture, set multithreading, or
store additional status at address, then the order
is rejected, and condition code 2 is set. If the cur-
rently specified order is one of the reset orders,
or an unassigned or not-implemented order,
either the order is rejected and condition code 2
is set or the order code is interpreted as
described in “Status Bits” on page 4-96.

When any of the conditions described in items 3 and
4 exists, the addressed CPU is referred to as “busy.”
Busy is not indicated if the addressed CPU is in the
check-stop state or when the operator-intervening
condition exists. A CPU-busy condition is normally of
short duration; however, the conditions described in
item 3 may last indefinitely because of a string of
interruptions. In this situation, however, the CPU
does not appear busy to any of the reset orders.

When the conditions described in items 1 and 2
above do not apply and operator-intervening and
receiver-check status conditions do not exist at the
addressed CPU, reset orders may be accepted
regardless of whether the addressed CPU has com-
pleted a previously accepted order. This may cause

4-96 The z/Architecture CPU Architecture

the previous order to be lost when it is only partially
completed, making unpredictable whether the results
defined for the lost order are obtained.

Status Bits
Various status conditions are defined whereby the
issuing and addressed CPUs can indicate their
responses to the specified order. The status condi-
tions and their bit positions in the general register
designated by the R1 field of the SIGNAL PROCES-
SOR instruction are shown in Figure 4-34.

The status condition assigned to bit position 32, and
to bit position 55 when the order is set architecture or
set multithreading, are generated by the CPU execut-
ing SIGNAL PROCESSOR. The remaining status
conditions are generated by the addressed CPU.

When the invalid-parameter condition exists for the
set-architecture or set multithreading order, bit 55 of
the general register designated by the R1 field of the
SIGNAL PROCESSOR instruction is set to one, all
other bits in bit positions 32-63 are set to zeros, bits
0-31 of the register remain unchanged, and condition
code 1 is set. No other action is taken.

When the equipment-check condition exists, except
when the invalid-parameter condition exists for the
set-architecture or set multithreading order, bit 32 of
the general register designated by the R1 field of the
SIGNAL PROCESSOR instruction is set to one,
unassigned bits in bit positions 32-63 of the status
register are set to zeros, the other status bits are
unpredictable, and bits 0-31 of the register remain
unchanged. In this case, condition code 1 is set inde-

pendent of whether the access path to the addressed
CPU is busy and independent of whether the
addressed CPU is not operational, is busy, or has
presented zero status.

When the access path to the addressed CPU is not
busy and the addressed CPU is operational and
does not indicate busy to the currently specified
order, the addressed CPU presents its status to the
issuing CPU. These status bits are of two types:

1. Status bits 53, 54, and 55 when the order is nei-
ther set architecture nor set-multithreading,
56-59, and 61 indicate the presence of the corre-
sponding conditions in the addressed CPU at the
time the order code is received. Except in
response to the sense order and the sense-run-
ning-status order, each condition is indicated
only when the condition precludes the successful
execution of the specified order, although invalid
parameter is not necessarily indicated when any
other precluding condition exists. In the case of
sense, all existing status conditions except not-
running are indicated; the operator-intervening
condition is indicated if it precludes the execution
of any installed order.

2. Status bits 62 and 63 indicate that the corre-
sponding conditions were detected by the
addressed CPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code 0 is
set at the issuing CPU; if the presented status is not
all zeros, the order has been rejected, the status is
stored at the issuing CPU in the general register des-
ignated by the R1 field of the SIGNAL PROCESSOR
instruction, zeros are stored in the unassigned posi-
tions in bit positions 32-63 of the register, bits 0-31 of
the register remain unchanged, and condition code 1
is set.

When the order is set architecture or set multithread-
ing, “the addressed CPU” refers to each of the other
CPUs in the configuration. Those CPUs, in an unpre-
dictable order, are tested for a condition that causes
setting of condition code 1, 2, or 3. Conditions are
prioritized for a single CPU as if it were the only CPU
addressed, but there is no prioritization across
CPUs. If a condition is recognized, no further CPUs
are tested, the condition code corresponding to the
condition is set, and the execution of SIGNAL PRO-
CESSOR is completed.

Bit Position Status Condition

32 Equipment check

33-52 Unassigned; zeros stored

53 Not running

54 Incorrect state

55 Invalid parameter

56 External-call pending

57 Stopped

58 Operator intervening

59 Check stop

60 Unassigned; zero stored

61 Inoperative

62 Invalid order

63 Receiver check

Figure 4-34. Status Conditions

Control 4-97

The status conditions are defined as follows:

Equipment Check: This condition exists when the
CPU executing the instruction detects equipment
malfunctioning that has affected only the execution of
this instruction and the associated order. The order
code may or may not have been transmitted and may
or may not have been accepted, and the status bits
provided by the addressed CPU may be in error. This
condition is not detected if the invalid-parameter con-
dition for the set-architecture or set-multithreading
order is detected.

Not Running: This condition exists when the
addressed CPU is not running. The condition, when
present, is indicated only in response to the sense-
running-status order. This condition is not reported
as a result of a SIGNAL PROCESSOR instruction
executed by a CPU addressing itself; condition code
0 is always set in this case. A CPU is running when it
is assigned to a physical CPU.

Incorrect State: The condition exists in the follow-
ing cases:

1. A set-prefix, store-status-at-address, or store-
additional-status-at-address order has been
rejected because the addressed CPU is not
stopped.

2. A set-architecture, or set-multithreadingorder has
been rejected because not all other CPUs are
stopped or in the check-stop state.

3. A set-multithreading order or a set-architecture
order to set the ESA/390 architectural mode or
ESA/390-compatibility mode has been rejected
because multithreading is currently enabled.

4. A conditional emergency-signal order has been
rejected because the addressed CPU is not in a
required state.

When applicable, this status is generated during exe-
cution of SIGNAL PROCESSOR and is indicated
concurrently with other indications of conditions
which preclude execution of the order, except that
this status is not generated if an invalid-parameter
condition exists for a set-architecture order.

Invalid Parameter: This condition exists in the fol-
lowing cases:

1. The parameter value supplied with a set-prefix,
store-status-at-address, or store-additional-sta-

tus-at-address order designates a storage loca-
tion which is not available in the configuration.
When applicable, this status is generated during
execution of SIGNAL PROCESSOR, except that
it is not necessarily generated when another con-
dition precluding execution of the order also
exists.

2. The parameter value supplied with a set-archi-
tecture order either is not 0 or 1 or specifies the
current architectural mode. When applicable, this
status is generated during execution of SIGNAL
PROCESSOR, and no other status is generated.

3. The parameter value supplied with a set-multi-
threading order specifies a value not supported
by the model.

4. The parameter value supplied with a store-addi-
tional-status-at-address order contains a non-
zero value in bit positions 54-63 of the parameter
register.

5. The configuration-z/Architecture-architectural-
mode (CZAM) facility is installed, and a set-archi-
tecture order was specified.

External Call Pending: This condition exists when
an external-call interruption condition is pending in
the addressed CPU because of a previously issued
SIGNAL PROCESSOR order. The condition exists
from the time an external-call order is accepted until
the resultant external interruption has been com-
pleted or a CPU reset occurs. The condition may be
due to the issuing CPU or another CPU. The condi-
tion, when present, is indicated only in response to
sense and to external call.

Stopped: This condition exists when the
addressed CPU is in the stopped state. The condi-
tion, when present, is indicated only in response to
sense. This condition cannot be reported as a result
of a SIGNAL PROCESSOR instruction executed by a
CPU addressing itself.

Operator Intervening: This condition exists when
the addressed CPU is executing certain operations
initiated from local or remote operator facilities. The
particular manually initiated operations that cause
this condition to be present depend on the model and
on the order specified. The operator-intervening con-
dition may exist when the addressed CPU uses
reloadable control storage to perform an order and
the required licensed internal code has not been
loaded by the IML function. The operator-intervening

4-98 The z/Architecture CPU Architecture

condition, when present, can be indicated in
response to all orders. Operator intervening is indi-
cated in response to sense if the condition is present
and precludes the acceptance of any of the installed
orders. The condition may also be indicated in
response to unassigned or uninstalled orders. This
condition cannot arise as a result of a SIGNAL PRO-
CESSOR instruction executed by a CPU addressing
itself.

Check Stop: This condition exists when the
addressed CPU is in the check-stop state. The condi-
tion, when present, is indicated only in response to
sense, external call, emergency signal, conditional
emergency signal, start, stop, restart, set prefix,
store status at address, and stop and store status.
The condition may also be indicated in response to
unassigned or uninstalled orders. This condition can-
not be reported as a result of a SIGNAL PROCES-
SOR instruction executed by a CPU addressing itself.

Inoperative: This condition indicates that the exe-
cution of the operation specified by the order code
requires the use of a service processor which is inop-
erative. The failure of the service processor may
have been previously reported by a service-proces-
sor-damage machine-check condition. The inopera-
tive condition cannot occur for the conditional
emergency signal, emergency-signal, external-call,
sense, or sense-running-status order codes.

Invalid Order: This condition exists during the
communications associated with the execution of
SIGNAL PROCESSOR when an unassigned or unin-
stalled order code is decoded.

Receiver Check: This condition exists when the
addressed CPU detects malfunctioning of equipment
during the communications associated with the exe-
cution of SIGNAL PROCESSOR. When this condi-
tion is indicated, the order has not been initiated,
and, since the malfunction may have affected the
generation of the remaining receiver status bits,
these bits are not necessarily valid. A machine-check
condition may or may not have been generated at the
addressed CPU.

The following chart summarizes which status condi-
tions are presented to the issuing CPU in response
to each order code.

If the presented status bits are all zeros, the order
has been accepted, and the issuing CPU sets condi-
tion code 0. If one or more ones are presented, the
order has been rejected, and the issuing CPU stores
the status in the general register designated by the
R1 field of the SIGNAL PROCESSOR instruction and
sets condition code 1.

Order

Status Condition

53
 –

 N
ot

 ru
nn

in
g

54
 –

 In
co

rre
ct

 s
ta

te
55

 –
 In

va
lid

 p
ar

am
et

er
56

 –
 E

xt
er

na
l c

al
l p

en
di

ng
57

 –
 S

to
pp

ed
58

 –
 O

pe
ra

to
r i

nt
er

ve
ni

ng
#

59
 –

 C
he

ck
 s

to
p

61
 –

 In
op

er
at

iv
e

62
 –

 In
va

lid
 o

rd
er

63
 –

 R
ec

ei
ve

r c
he

ck

Sense 0 0 0 X X X X 0 0 X

External call 0 0 0 X 0 X X 0 0 X
Emergency signal 0 0 0 0 0 X X 0 0 X

Start 0 0 0 0 0 X X X 0 X

Stop 0 0 0 0 0 X X X 0 X
Restart 0 0 0 0 0 X X X 0 X

Stop and store status 0 0 0 0 0 X X X 0 X

Initial CPU reset 0 0 0 0 0 X 0 X 0 X
CPU reset 0 0 0 0 0 X 0 X 0 X

Set prefix 0 X X 0 0 X X X 0 X

Store status at address 0 X X 0 0 X X X 0 X
Set architecture 0 X X 0 0 X 0 X X X

Conditional emergency signal 0 X 0 0 0 X X 0 X X

Sense running status X 0 0 0 0 0 0 0 X 0
Set multithreading 0 X X 0 0 X 0 X X X

Store additional status at address 0 X X 0 0 X X X X X

Unassigned order 0 0 0 0 0 X E X 1 0

Explanation

The current state of the operator-intervening condition may
depend on the order code that is being interpreted.

 If a one is presented in the receiver-check bit position, the
values presented in the other bit positions are not
necessarily valid.

0 A zero is presented in this bit position regardless of the
current state of this condition.

1 A one is presented in this bit position.
X A zero or a one is presented in this bit position, reflecting

the current state of the corresponding condition.
E Either a zero or the current state of the corresponding

condition is indicated.

Figure 4-35. Status Conditions in Response to Order Code

Control 4-99

Programming Notes:

1. All SIGNAL PROCESSOR orders except set
architecture and set multithreading (for which all
CPUs in the configuration are considered to be
addressed) can be addressed to this same CPU.
The following are examples of functions obtained
by a CPU addressing SIGNAL PROCESSOR to
itself:

a. Sense indicates whether an external-call
condition is pending.

b. External call and emergency signal cause
the corresponding interruption conditions to
be generated. External call can be rejected
because of a previously generated external-
call condition.

c. Start sets condition code 0 and has no other
effect.

d. Stop causes the CPU to set condition code
0, take pending interruptions for which it is
enabled, and enter the stopped state.

e. Restart provides a means to store the cur-
rent PSW.

f. Stop and store status causes the machine to
stop and store all current status.

2. Two CPUs can simultaneously execute SIGNAL
PROCESSOR, with each CPU addressing the
other. When this occurs, one CPU, but not both,
can find the access path busy because of the
transmission of the order code or status bits
associated with SIGNAL PROCESSOR that is
being executed by the other CPU. Alternatively,
both CPUs can find the access path available
and transmit the order codes to each other. In
particular, two CPUs can simultaneously stop,
restart, or reset each other.

3. To obtain status from another CPU which is in
the check-stop state by means of the store-sta-
tus-at-address or store-additional-status-at-
address order, a CPU reset operation should first
be used to bring the CPU to the stopped state.
This reset order does not alter the status, and,
depending on the nature of the malfunction, pro-
vides the best chance of establishing conditions
in the addressed CPU which allow status to be
obtained.

Facility Indications

Facilities installed in a configuration are indicated by
facility bits stored by the STORE FACILITY LIST
(STFL) and STORE FACILITY LIST EXTENDED
(STFLE) instructions.

STORE FACILITY LIST stores an indication of up to
32 facilities in the word at real location 200. STFL is
described in Chapter 10, “Control Instructions”.

STORE FACILITY LIST EXTENDED stores a vari-
able number of doublewords containing facility bits in
a program-specified location. STFLE is described in
Chapter 7, “General Instructions”.

Figure 4-36 shows the meanings of the assigned
facility bits.

Bit Meaning When Bit Is One
0 The instructions marked “N3” in the instruction-

summary figures in Chapters 7 and 10 are installed.

1 The z/Architecture architectural mode is installed.

2 The z/Architecture architectural mode is active.
When bits 2 and 168 are both zero, the ESA/390
architectural mode is active. When bit 2 is zero and
bit 168 is one, the ESA/390-compatibility mode is
active.

3 The DAT-enhancement facility is installed in the
z/Architecture architectural mode. The DAT-
enhancement facility includes the INVALIDATE DAT
TABLE ENTRY (IDTE) and COMPARE AND SWAP
AND PURGE (CSPG) instructions.

4 INVALIDATE DAT TABLE ENTRY (IDTE) performs
the invalidation-and-clearing operation by
selectively clearing TLB segment-table entries
when a segment-table entry or entries are
invalidated. IDTE also performs the clearing-by-
ASCE operation. Unless bit 4 is one, IDTE simply
purges all TLBs. Bit 3 is one if bit 4 is one.

5 INVALIDATE DAT TABLE ENTRY (IDTE) performs
the invalidation-and-clearing operation by
selectively clearing TLB region-table entries when a
region-table entry or entries are invalidated. Bits 3
and 4 are ones if bit 5 is one.

6 The ASN-and-LX reuse facility is installed in the
z/Architecture architectural mode.

7 The store-facility-list-extended facility is installed.
8 The enhanced-DAT facility 1 is installed in the

z/Architecture architectural mode.
9 The sense-running-status facility is installed in the

z/Architecture architectural mode.

Figure 4-36. Assigned Facility Bits (Part 1 of 5)

4-100 The z/Architecture CPU Architecture

10 The conditional-SSKE facility is installed in the
z/Architecture architectural mode.

11 The configuration-topology facility is installed in the
z/Architecture architectural mode.

12 Assigned to IBM internal use.

13 The IPTE-range facility is installed in the
z/Architecture architectural mode.

14 The nonquiescing key-setting facility is installed in
the z/Architecture architectural mode.

15 Assigned to IBM internal use.
16 The extended-translation facility 2 is installed.

17 The message-security assist is installed.

18 The long-displacement facility is installed in the
z/Architecture architectural mode.

19 The long-displacement facility has high
performance. Bit 18 is one if bit 19 is one.

20 The HFP-multiply-and-add/subtract facility is
installed.

21 The extended-immediate facility is installed in the
z/Architecture architectural mode.

22 The extended-translation facility 3 is installed in the
z/Architecture architectural mode.

23 The HFP-unnormalized-extension facility is installed
in the z/Architecture architectural mode.

24 The ETF2-enhancement facility is installed.
25 The store-clock-fast facility is installed in the

z/Architecture architectural mode.
26 The parsing-enhancement facility is installed in the

z/Architecture architectural mode.
27 The move-with-optional-specifications facility is

installed in the z/Architecture architectural mode.
28 The TOD-clock-steering facility is installed in the

z/Architecture architectural mode.
30 The ETF3-enhancement facility is installed in the

z/Architecture architectural mode.
31 The extract-CPU-time facility is installed in the

z/Architecture architectural mode.
32 The compare-and-swap-and-store facility is

installed in the z/Architecture architectural mode.
33 The compare-and-swap-and-store facility 2 is

installed in the z/Architecture architectural mode.
34 The general-instructions-extension facility is

installed in the z/Architecture architectural mode.
35 The execute-extensions facility is installed in the

z/Architecture architectural mode.
36 The enhanced-monitor facility is installed in the

z/Architecture architectural mode.

37 The floating-point extension facility is installed in the
z/Architecture architectural mode. When bit 37 is
one, bit 42 is also one.

Bit Meaning When Bit Is One

Figure 4-36. Assigned Facility Bits (Part 2 of 5)

38 The order-preserving-compression facility is
installed in the z/Architecture architectural
mode.

39 Assigned to IBM internal use.

40 The load-program-parameters facility is installed in
the z/Architecture architectural mode.

41 The floating-point-support-enhancement facilities
(DFP-rounding, FPR-GR-transfer, FPS-sign-
handling, and IEEE-exception-simulation) are
installed in the z/Architecture architectural mode.

42 The DFP (decimal-floating-point) facility is installed
in the z/Architecture architectural mode.

43 The DFP (decimal-floating-point) facility has high
performance. Bit 42 is one if bit 43 is one.

44 The PFPO instruction is installed in the
z/Architecture architectural mode.

45 The distinct-operands, fast-BCR-serialization, high-
word, and population-count facilities, the
interlocked-access facility 1, and the load/store-on-
condition facility 1 are installed in the z/Architecture
architectural mode.

46 Assigned to IBM internal use.
47 The CMPSC-enhancement facility is installed in the

z/Architecture architectural mode.
48 The decimal-floating-point zoned-conversion facility

is installed in the z/Architecture architectural mode.
49 The execution-hint, load-and-trap, and processor-

assist facilities, and the miscellaneous-instruction-
extensions facility 1 are installed in the
z/Architecture architectural mode.

50 The constrained transactional-execution facility is
installed in the z/Architecture architectural mode.
This bit is meaningful only when bit 73 is one.

51 The local-TLB-clearing facility is installed in the
z/Architecture architectural mode.

52 The interlocked-access facility 2 is installed.

53 The load/store-on-condition facility 2 and load-and-
zero-rightmost-byte facility are installed in the
z/Architecture architectural mode.

54 The entropy-encoding compression facility is
installed in the z/Architecture architectural
mode.

55 Assigned to IBM internal use.
57 The message-security-assist extension 5 is

installed in the z/Architecture architectural mode.
58 The miscellaneous-instruction-extensions facility 2

is installed in the z/Architecture architectural mode.

59 Assigned to IBM internal use.
60 Assigned to IBM internal use.

Bit Meaning When Bit Is One

Figure 4-36. Assigned Facility Bits (Part 3 of 5)

Control 4-101

When a facility defined to be installed in a specific
architectural mode is installed in the configuration,
the corresponding facility bit is set to one, regardless
of the architectural mode at the time STORE FACIL-
ITY LIST or STORE FACILITY LIST EXTENDED is
executed. A facility, which is defined to be installed in
a specific architectural mode, is available when the
corresponding facility bit is one and the current archi-
tectural mode matches the specific architectural
mode. However, when instructions defined to be
unique to the z/Architecture architectural mode are
issued in the ESA/390-compatibility mode (a hybrid
architectural mode), it is unpredictable whether an
operation exception is recognized, or the instruction

61 The miscellaneous-instruction-extensions facility 3
is installed in the z/Architecture architectural mode.
When bit 61 is one, bit 45 is also one.

62 Assigned to IBM internal use.

63 Assigned to IBM internal use.

64 Assigned to IBM internal use.
65 Assigned to IBM internal use.

66 The reset-reference-bits-multiple facility is installed
in the z/Architecture architectural mode.

67 The CPU-measurement counter facility is installed
in the z/Architecture architectural mode.

68 The CPU-measurement sampling facility is installed
in the z/Architecture architectural mode.

69 Assigned to IBM internal use.

70 Assigned to IBM internal use.
71 Assigned to IBM internal use.

72 Assigned to IBM internal use.

73 The transactional-execution facility is installed in the
z/Architecture architectural mode. Bit 49 is one
when bit 73 is one.

74 The store-hypervisor-information facility is installed
in the z/Architecture architectural mode (see
Reference [11.] on page xxx).

75 The access-exception-fetch/store-indication facility
is installed in the z/Architecture architectural mode.

76 The message-security-assist extension 3 is
installed in the z/Architecture architectural mode.

77 The message-security-assist extension 4 is
installed in the z/Architecture architectural mode.

78 The enhanced-DAT facility 2 is installed in the
z/Architecture architectural mode.

80 The decimal-floating-point packed-conversion
facility is installed in the z/Architecture architectural
mode.

81 The PPA-in-order facility is installed in the
z/Architecture architectural mode.

82 Assigned to IBM internal use.
128 Assigned to IBM internal use.

129 The vector facility for z/Architecture is installed in
the z/Architecture architectural mode.

130 The instruction-execution-protection facility is
installed in the z/Architecture architectural mode.

131 The side-effect-access facility is installed in the
z/Architecture architectural mode.

133 The guarded-storage facility is installed in the
z/Architecture architectural mode.

134 The vector packed decimal facility is installed in the
z/Architecture architectural mode. When bit 134 is
one, bit 129 is also one.

Bit Meaning When Bit Is One

Figure 4-36. Assigned Facility Bits (Part 4 of 5)

135 The vector enhancements facility 1 is installed in
the z/Architecture architectural mode. When bit 135
is one, bit 129 is also one.

138 The configuration-z/Architecture-architectural-mode
facility is installed.

139 The multiple-epoch facility is installed in the
z/Architecture architectural mode. Bits 25 and 28
are one when bit 139 is one.

140 Assigned to IBM internal use.
141 Assigned to IBM internal use.

142 The store-CPU-counter-multiple facility is installed
(see Reference [10.] on page xxx).

144 The test-pending-external-interruption facility is
installed in the z/Architecture architectural mode.

145 The insert-reference-bits-multiple facility is installed
in the z/Architecture architectural mode.

146 The message-security-assist-extension 8 is
installed in the z/Architecture architectural mode. Bit
76 is one when bit 146 is one.

147 Reserved for IBM use.

148 The vector-enhancements facility 2 is installed in
the z/Architecture architectural mode. When bit 148
is one, bits 129 and 135 are also one.

149 The move-page-and-set-key facility is installed.
When bit 149 is one, bit 14 is also one.

151 The DEFLATE-conversion facility is installed in the
z/Architecture architectural mode.

152 The vector-packed-decimal-enhancement facility is
installed in the z/Architecture architectural mode.
When bit 152 is one, bits 129 and 134 are also one.

155 The message-security-assist-extension-9 facility is
installed in the z/Architecture architectural mode.
Bits 76 and 77 are one when bit 155 is one.

156 Assigned to IBM internal use.
168 The ESA/390-compatibility-mode facility is installed

in the configuration.

Bit Meaning When Bit Is One

Figure 4-36. Assigned Facility Bits (Part 5 of 5)

4-102 The z/Architecture CPU Architecture

executes according to its z/Architecture definition.
For further details, refer to “ESA/390-Compatibility-
Mode Facility” on page 5-111.

Unassigned bits are reserved for indication of new
facilities; these bits may be stored as ones in the
future.

STORE FACILITY LIST and STORE FACILITY LIST
EXTENDED may report the absence of a facility,
even though the execution of the facility’s instructions
may appear to indicate that the facility is installed.
The under-reporting of facility indications may occur
because one or more systems in the computing envi-
ronment (to which the application may be relocated)
do not have the facility installed.

Programming Note: Prior to the introduction of
z/Architecture, determination of the presence of a
facility was often accomplished by means of a trial
execution of an instruction. If an operation exception

was not recognized during the trial execution, then it
could be assumed that the facility was present.

Similarly, certain instructions provide a query func-
tion to determine the availability of other functions of
the instruction or related instructions. However, a
program might attempt to determine the availability of
a particular function by trial execution of the function.

With the advent of facility and function indications in
z/Architecture, the technique of trial execution should
be avoided — particularly if a workload may be relo-
cated to another system in which a facility’s instruc-
tions may not be present. In such an environment,
STORE FACILITY LIST EXTENDED (STFLE) or an
instruction’s query or test function may provide a
more accurate indication of facilities and functions
that are available on all systems in the computing
environment.

Program Execution 5-1© Copyright IBM Corp. 2000, 2019

Chapter 5. Program Execution

Instructions . 5-3
Operands. 5-3
Instruction Formats . 5-3

Register Operands. 5-7
Immediate Operands 5-8
Storage Operands . 5-9

Address Generation. 5-10
Trimodal Addressing 5-10
Sequential Instruction-Address Generation . . 5-10
Operand-Address Generation 5-11

Formation of the Intermediate Value 5-11
Formation of the Operand Address 5-12

Branch-Address Generation 5-12
Formation of the Intermediate Value 5-12
Formation of the Branch Address 5-13

Instruction Execution and Sequencing 5-14
Decision Making . 5-14
Loop Control . 5-14
Subroutine Linkage without the Linkage Stack5-14

Simple Branch Instructions 5-14
Other Linkage Instructions. 5-17

Interruptions. 5-22
Types of Instruction Ending 5-22

Completion. 5-22
Suppression. 5-22
Nullification . 5-23
Termination . 5-23

Interruptible Instructions 5-24
Point of Interruption 5-24
Unit of Operation . 5-24
Execution of Interruptible Instructions 5-24
Condition-Code Alternative to I

nterruptibility . 5-25
Exceptions to Nullification and Suppression . 5-26

Modification of DAT-Table Entries 5-27
Trial Execution for Editing Instructions and

Translate Instruction 5-27
Authorization Mechanisms 5-27

Mode Requirements 5-28
Extraction-Authority Control 5-28
PSW-Key Mask . 5-28
Secondary-Space Control 5-29
Subsystem-Linkage Control. 5-29
ASN-Translation Control 5-29
Authorization Index 5-29
Instructions and Controls Related to

ASN-and-LX Reuse 5-30
PC-Number Translation. 5-33

PC-Number Translation Control 5-34
Control Register 0 5-35

Control Register 5 . 5-35
PC-Number Translation Tables 5-36

Linkage-Table Entries 5-36
Linkage-First-Table Entries 5-36
Linkage-Second-Table Entries 5-37
Entry-Table Entries 5-37
Table Summary. 5-38

PC-Number-Translation Process 5-39
Obtaining the Linkage-Table or Linkage-

First-Table Designation. 5-42
Linkage-Table Lookup. 5-42
Linkage-First-Table Lookup 5-42
Linkage-Second-Table Lookup 5-43
Linkage-Second-Table-Entry-Sequence-

Number Comparison. 5-43
Entry-Table Lookup. 5-43
Recognition of Exceptions during

PC-Number Translation 5-44
Home Address Space. 5-44
Access-Register Introduction 5-45

Summary. 5-45
Access-Register Functions 5-46

Access-Register-Specified Address
Spaces . 5-46

Access-Register Instructions. 5-52
Access-Register Translation 5-53

Access-Register-Translation Control 5-53
Control Register 2 . 5-53
Control Register 5 . 5-54
Control Register 8 . 5-54

Access Registers . 5-54
Access-Register-Translation Tables 5-55

Dispatchable-Unit Control Table and
Access-List Designations 5-55

Access-List Entries 5-56
ASN-Second-Table Entries 5-57

Access-Register-Translation Process. 5-59
Selecting the Access-List-Entry Token 5-62
Obtaining the Primary or Secondary

Address-Space-Control Element 5-62
Checking the First Byte of the ALET. 5-62
Obtaining the Effective Access-List

Designation . 5-62
Access-List Lookup. 5-62
Locating the ASN-Second-Table Entry 5-63
Authorizing the Use of the Access-List

Entry . 5-63
Checking for Access-List-Controlled

Protection . 5-64

5-2 The z/Architecture CPU Architecture

Obtaining the Address-Space-Control
Element from the ASN-Second-Table
Entry. 5-64

Recognition of Exceptions during Access-
Register Translation 5-64

ART-Lookaside Buffer 5-64
ALB Structure. 5-64
Formation of ALB Entries 5-64
Use of ALB Entries 5-65
Modification of ART Tables 5-66

Subspace Groups . 5-66
Subspace-Group Tables 5-66

Subspace-Group Dispatchable-Unit Control
Table . 5-66

Subspace-Group ASN-Second-Table
Entries . 5-68

Subspace-Replacement Operations 5-70
Linkage-Stack Introduction 5-70

Summary . 5-71
Linkage-Stack Functions 5-71

Transferring Program Control. 5-71
Branching Using the Linkage Stack 5-73
Adding and Retrieving Information. 5-74
Testing Authorization 5-74
Program-Problem Analysis. 5-75

Linkage-Stack Entry-Table Entries 5-75
Linkage-Stack Operations 5-76

Linkage-Stack-Operations Control 5-78
Control Register 0 5-78
Control Register 15 5-78

Linkage Stack. 5-79
Entry Descriptors . 5-79
Header Entries . 5-80
Trailer Entries . 5-81
State Entries. 5-81

Stacking Process . 5-84
Locating Space for a New Entry. 5-84
Forming the New Entry. 5-85
Updating the Current Entry. 5-86
Updating Control Register 15 5-86
Recognition of Exceptions during the

Stacking Process 5-86
Unstacking Process . 5-86

Locating the Current Entry and Processing
a Header Entry . 5-87

Checking for a State Entry 5-88
Restoring Information. 5-88
Updating the Preceding Entry 5-89
Updating Control Register 15 5-89
Recognition of Exceptions during the

Unstacking Process 5-89
Transactional-Execution Facility 5-89

Transactional-Execution Terminology5-89
Transactional-Execution Facility Controls5-92

Control Register Bits5-92
Transaction-Diagnostic-Block Address

(TDBA). .5-93
Transaction-Abort PSW (TAPSW).5-93
Transaction Nesting Depth (TND)5-93

Transaction Diagnostic Block (TDB)5-93
Transactional-Execution Facility Instructions .5-97

Restricted Instructions5-97
 Transactional-Execution Facility Operation . .5-99

Transaction Initiation5-99
Execution in the Transactional-Execution

Mode .5-99
Normal Transaction Ending5-99
Transaction Abort Conditions 5-100
Transaction Abort Processing5-102
Program-Interruption Filtering on a

Transaction Abort 5-104
Priority of Abort Conditions5-107
Constrained Transaction5-107

 Monitor-Event Counting5-109
ESA/390-Compatibility-Mode Facility 5-111
Sequence of Storage References5-113

Conceptual Sequence5-113
Overlapped Operation of Instruction

Execution. .5-114
Divisible Instruction Execution.5-115

Interlocks for Virtual-Storage References . . .5-115
Interlocks between Instructions5-116
Interlocks within a Single Instruction5-116

Instruction Fetching .5-118
ART-Table and DAT-Table Fetches5-119
Storage-Key Accesses 5-120
Storage-Operand References5-123

Storage-Operand Fetch References5-123
Storage-Operand Store References5-123
Storage-Operand Update References. . . .5-124

Storage-Operand Consistency 5-125
Single-Access References 5-125
Multiple-Access References 5-125
Block-Concurrent References5-127

Relation between Operand Accesses5-129
Storage Operand References in the

Transactional-Execution Mode5-129
Other Storage References 5-130
Relation between Storage-Key Accesses . . .5-130

Serialization. .5-130
CPU Serialization .5-130

Specific-Operand Serialization 5-132
Channel-Program Serialization5-133
Quiescing .5-133

Program Execution 5-3

Normally, operation of the CPU is controlled by
instructions in storage that are executed sequentially,
one at a time, left to right in an ascending sequence
of storage addresses. A change in the sequential
operation may be caused by a breaking event, inter-
ruptions, SIGNAL PROCESSOR orders, or manual
intervention.

Instructions

Each instruction consists of two major parts:

• An operation code (op code), which specifies the
operation to be performed

• The designation of the operands that participate.

Operands

Operands can be grouped in three classes: operands
located in registers, immediate operands, and oper-
ands in storage. Operands may be either explicitly or
implicitly designated.

Register operands can be located in general, float-
ing-point, vector, access, or control registers, with the
type of register identified by the op code. The register
containing the operand is specified by identifying the
register in a four-bit field, called the R field, in the
instruction. For some instructions, an operand is
located in an implicitly designated register, the regis-
ter being implied by the op code. For vector registers,
the register containing the operand is specified using
a four-bit field with the addition of a register extension
bit as the most significant bit.

Immediate operands are contained within the instruc-
tion, and the 8-bit, 16-bit, or 32-bit field containing the
immediate operand is called the I field.

Operands in storage may have an implied length; be
specified by a bitmask; be specified by a four-bit or
eight-bit length specification, called the L field, in the
instruction; or have a length specified by the contents
of a general register. The addresses of operands in
storage are specified by means of a format that uses
the contents of a general register as part of the
address. This makes it possible to:

1. Specify a complete address by using an abbrevi-
ated notation

2. Perform address manipulation using instructions
which employ general registers for operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independent of the location of data
areas by directly using addresses received from
other programs

The address used to refer to storage either is con-
tained in a register designated by the R field in the
instruction or is calculated from a base address,
index, and displacement, specified by the B, X, and D
fields, respectively, in the instruction.

When the CPU is in the access-register mode, a B or
R field may designate an access register in addition
to being used to specify an address.

To describe the execution of instructions, operands
are designated as first and second operands and, in
some cases, third, fourth, fifth, and sixth operands.

In general, two operands participate in an instruction
execution, and the result replaces the first operand.
However, CONVERT TO DECIMAL, TEST BLOCK,
VECTOR UNPACK ZONED, and instructions with
“store” in the instruction name (other than STORE
THEN AND SYSTEM MASK and STORE THEN OR
SYSTEM MASK) use the second-operand address to
designate a location in which to store. TEST AND
SET, COMPARE AND SWAP, COMPARE AND
SWAP AND STORE, and COMPARE DOUBLE AND
SWAP may perform an update on the second oper-
and. Except when otherwise stated, the contents of
all registers and storage locations participating in the
addressing or execution part of an operation remain
unchanged.

Instruction Formats

An instruction is one, two, or three halfwords in
length and must be located in storage on a halfword
boundary. Each instruction is in one of the following
basic formats: E, I, IE, MII, RI, RIE, RIL, RIS, RR,
RRD, RRE, RRF, RRS, RS, RSI, RSL, RSY, RX,
RXE, RXF, RXY, S, SI, SIL, SIY, SMI, SS, SSE, SSF,
VRI, VRR, VRS, VRV, VRX, and VSI. Figure 5-1 illus-
trates the various instruction formats and variations.
Where a letter appears to the left of a format variant,
it represents one of the variations in assembler syn-

5-4 The z/Architecture CPU Architecture

tax as illustrated in the description of the instructions
in chapters 7-10, 14, and 18-26.

E Format

Op Code

0 15

I Format

Op Code I

0 8 15

IE Format

Op Code / / / / / / / / I1 I2
0 16 24 28 31

MII Format

Op Code M1 RI2 RI3
0 8 12 24 47

RI Formats

a. Op Code R1 OpCd I2

0 8 12 16 31

b. Op Code R1 OpCd RI2
0 8 12 16 31

c. Op Code M1 ‡ OpCd RI2

0 8 12 16 31

RIE Formats

a. Op Code R1 / / / / I2 M3 / / / / Op Code

0 8 12 16 32 36 40 47

b. Op Code R1 R2 RI4 M3 / / / / Op Code
0 8 12 16 32 36 40 47

c. Op Code R1 M3 RI4 I2 Op Code

0 8 12 16 32 40 47

d. Op Code R1 R3 I2 / / / / / / / / Op Code

0 8 12 16 32 40 47

e. Op Code R1 R3 RI2 / / / / / / / / Op Code
0 8 12 16 32 40 47

f. Op Code R1 R2 I3 I4 I5 Op Code

0 8 12 16 24 32 40 47

g Op Code R1 M3 I2 / / / / / / / / Op Code

0 8 12 16 32 40 47

Figure 5-1. Basic Instruction Formats (Part 1 of 5)

RIL Formats

a. Op Code R1 OpCd I2
0 8 12 16 47

b. Op Code R1 OpCd RI2
0 8 12 16 47

c. Op Code M1 OpCd RI2
0 8 12 16 47

RIS Format

Op Code R1 M3 B4 D4 I2 Op Code
0 8 12 16 20 32 40 47

RR Format

Op Code R1 R2 ‡

0 8 12 15

RRD Format

Op Code R1 / / / / R3 R2

0 16 20 24 28 31

RRE Format

Op Code / / / / / / / / R1 ‡ R2 ‡
0 16 24 28 31

RRF Formats

a,b Op Code R3 M4 ‡ R1 R2

0 16 20 24 28 31

c-e Op Code M3 ‡ M4 ‡ R1 R2

0 16 20 24 28 31

RRS Format

Op Code R1 R2 B4 D4 M3 / / / / Op Code
0 8 12 16 20 32 36 40 47

RS Formats

a. Op Code R1 R3 ‡ B2 D2

0 8 12 16 20 31

b. Op Code R1 M3 B2 D2

0 8 12 16 20 31

RSI Format

Op Code R1 R3 RI2
0 8 12 16 31

RSL Format

a. Op Code L1 / / / / B1 D1 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

b. Op Code L2 B2 D2 R1 M3 Op Code

0 8 16 20 32 36 40 47

Figure 5-1. Basic Instruction Formats (Part 2 of 5)

Program Execution 5-5

RSY Formats

a. Op Code R1 R3 B2 DL2 DH2 Op Code

0 8 12 16 20 32 40 47

b. Op Code R1 M3 B2 DL2 DH2 Op Code

0 8 12 16 20 32 40 47

RX Formats

a. Op Code R1 X2 B2 D2

0 8 12 16 20 31

b. Op Code M1 X2 B2 D2

0 8 12 16 20 31

RXE Format

Op Code R1 X2 B2 D2 M3‡ / / / / Op Code

0 8 12 16 20 32 36 40 47

RXF Format

Op Code R3 X2 B2 D2 R1 / / / / Op Code

0 8 12 16 20 32 36 40 47

RXY Formats

a. Op Code R1 X2 B2 DL2 DH2 Op Code
0 8 12 16 20 32 40 47

b. Op Code M1 X2 B2 DL2 DH2 Op Code

0 8 12 16 20 32 40 47

S Format

Op Code B2 ‡ D2 ‡

0 16 20 31

SI Format

Op Code I2 ‡ B1 D1

0 8 16 20 31

SIL Format

Op Code B1 D1 I2
0 16 20 32 47

SIY Format

Op Code I2 B1 DL1 DH1 Op Code

0 8 16 20 32 40 47

SMI Format

Op Code M1 / / / / B3 D3 RI2
0 8 12 16 20 32 47

Figure 5-1. Basic Instruction Formats (Part 3 of 5)

SS Formats

a. Op Code L or L1 B1 D1 B2 D2

0 8 16 20 32 36 47

b. Op Code L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

c. Op Code L1 I3 B1 D1 B2 D2

0 8 12 16 20 32 36 47

d. Op Code R1 R3 B1 D1 B2 D2

0 8 12 16 20 32 36 47

e. Op Code R1 R3 B2 D2 B4 D4

0 8 12 16 20 32 36 47

f. Op Code L2 B1 D1 B2 D2

0 8 16 20 32 36 47

SSE Format

Op Code B1 D1 B2 D2

0 16 20 32 36 47

SSF Format

Op Code R3 OpCd B1 D1 B2 D2

0 8 12 16 20 32 36 47

VRI Formats

a. Op Code V1 / / / / I2 M3‡ RXB Op Code

0 8 12 16 32 36 40 47

b. Op Code V1 / / / / I2 I3 M4 RXB Op Code
0 8 12 16 24 32 36 40 47

c. Op Code V1 V3 I2 M4 RXB Op Code

0 8 12 16 32 36 40 47

d. Op Code V1 V2 V3 / / / / I4 M5‡ RXB Op Code

0 8 12 16 20 24 32 36 40 47

e. Op Code V1 V2 I3 M5 M4 RXB Op Code
0 8 12 16 28 32 36 40 47

f. Op Code V1 V2 V3 / / / / M5 I4 RXB Op Code

0 8 12 16 20 24 28 36 40 47

g. Op Code V1 V2 I4 M5 I3 RXB Op Code

0 8 12 16 24 28 36 40 47

h. Op Code V1 / / / / I2 I3 RXB Op Code
0 8 12 16 32 36 40 47

i. Op Code V1 R2 / / / / / / / / M4 I3 RXB Op Code

0 8 12 16 24 28 36 40 47

Figure 5-1. Basic Instruction Formats (Part 4 of 5)

5-6 The z/Architecture CPU Architecture

Instruction fields shown in Figure 5-1 on page 5-4 as
containing slashes (/) are currently unassigned.
These fields in an instruction should contain zeros;
otherwise, the program may not operate compatibly
in the future.

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the
operation performed does not follow the general
rules stated in this section. All of these exceptions
are explicitly identified in the individual instruction
descriptions.

The format names indicate, in general terms, the
classes of operands which participate in the opera-
tion and some details about fields:

• E denotes an operation using implied operands
and an extended op-code field.

• I denotes an immediate operation.
• IE denotes an immediate-and-immediate opera-

tion.
• MII denotes a masked immediate-and-immediate

operation.
• RI denotes a register-and-immediate operation

and an extended op-code field.
• RIE denotes a register-and-immediate operation

and a longer extended op-code field.
• RIL denotes a register-and-immediate opera-

tion, an extended op-code field, and a longer
immediate field.

• RIS denotes a register-and-immediate operation
and a storage operation.

• RR denotes a register-and-register operation.
• RRD denotes a register-and-register operation,

an extended op-code field, and an additional R
field.

• RRE denotes a register-and-register operation
and an extended op-code field.

• RRF denotes a register-and-register operation,
an extended op-code field, and an additional R
field, M field, or both.

• RRS denotes a register-and-register operation
and a storage operation.

• RS denotes a register-and-storage operation.
• RSI denotes a register-and-immediate operation.
• RSL denotes a storage operation (with an

instruction format derived from the ESA/390 RSE
format).

• RSY denotes a register-and-storage operation,
an extended op-code field, and a long displace-
ment field.

• RX denotes a register-and-indexed-storage oper-
ation.

VRR Formats

a. Op Code V1 V2 / / / / / / / / M5‡ M4‡ M3‡ RXB Op Code

0 8 12 16 24 28 32 36 40 47

b. Op Code V1 V2 V3 / / / / M5‡ / / / / M4‡ RXB Op Code

0 8 12 16 20 24 28 32 36 40 47

c. Op Code V1 V2 V3 / / / / M6‡ M5‡ M4‡ RXB Op Code

0 8 12 16 20 24 28 32 36 40 47

d. Op Code V1 V2 V3 M5‡ M6‡ / / / / V4 RXB Op Code
0 8 12 16 20 24 28 32 36 40 47

e. Op Code V1 V2 V3 M6‡ / / / / M5‡ V4 RXB Op Code

0 8 12 16 20 24 28 32 36 40 47

f. Op Code V1 R2 R3 / / / / / / / / / / / / / / / / RXB Op Code

0 8 12 16 20 36 40 47

g. Op Code / / / / V1 / RXB Op Code
0 8 12 16 36 40 47

h. Op Code / / / / V1 V2 / / / / M3‡ / / / / / / / / RXB Op Code

0 8 12 16 20 24 28 36 40 47

i. Op Code R1 V2 / / / / / / / / M3 M4‡ / / / / RXB Op Code

0 8 12 16 24 28 32 36 40 47

VRS Format

a. Op Code V1 V3 B2 D2 M4‡ RXB Op Code
0 8 12 16 20 32 36 40 47

b. Op Code V1 R3 B2 D2 M4‡ RXB Op Code

0 8 12 16 20 32 36 40 47

c. Op Code R1 V3 B2 D2 M4 RXB Op Code

0 8 12 16 20 32 36 40 47

d. Op Code / / / / R3 B2 D2 V1 RXB Op Code
0 8 12 16 20 32 36 40 47

VRV Format

Op Code V1 V2 B2 D2 M3‡ RXB Op Code

0 8 12 16 20 32 36 40 47

VRX Format

Op Code V1 X2 B2 D2 M3‡ RXB Op Code

0 8 12 16 20 32 36 40 47

VSI Format

Op Code I3 B2 D2 V1 RXB Op Code
0 8 16 20 32 36 40 47

Explanation:

‡ For certain instructions, this operand is not defined.

Figure 5-1. Basic Instruction Formats (Part 5 of 5)

Program Execution 5-7

• RXE denotes a register-and-indexed-storage
operation and an extended op-code field.

• RXF denotes a register-and-indexed-storage
operation, an extended op-code field, and an
additional R field.

• RXY denotes a register-and-indexed-storage
operation, an extended op-code field, and a long
displacement field.

• S denotes an operation using an implied operand
and storage.

• SI denotes a storage-and-immediate operation.
• SIL denotes a storage-and-immediate operation,

with a 16-bit immediate field.
• SIY denotes a storage-and-immediate operation

and a long displacement field.
• SMI denotes a masked storage-and-immediate

operation.
• SS denotes a storage-and-storage operation.
• SSE denotes a storage-and-storage operation

and an extended op-code field.
• SSF denotes a storage-and-storage operation

and an extended op-code field.
• VRI denotes a vector register-and-immediate

operation and an extended op-code field.
• VRR denotes a vector register-and-register oper-

ation and an extended op-code field.
• VRS denotes a vector register-and-storage oper-

ation and an extended op-code field.
• VRV denotes a vector register-and-vector-index-

storage operation and an extended op-code field.
• VRX denotes a vector register-and-index-storage

operation and an extended op-code field.
• VSI denotes a vector register-and-storage opera-

tion and an extended op-code field.

In the I, RR, RS, RSI, RX, SI, and SS formats, the
first byte of an instruction contains the op code. In the
E, RRE, RRF, S, SIL, and SSE formats, the first two
bytes of an instruction contain the op code, except
that for some instructions in the S format, the op
code is in only the first byte. In the RI, RIL, and SSF
formats, the op code is in the first byte and bit posi-
tions 12-15 of an instruction. In the RIE, RIS, RRS,
RSL, RSY, RXE, RXF, RXY, SIY, VRI, VRR, VRS,
VRX, and VSI formats, the op code is in the first byte
and the sixth byte of an instruction.

The first two bits of the first or only byte of the op
code specify the length and format of the instruction,
as follows:

In the format illustration for each individual instruction
description, the op-code field or fields show the op
code as hexadecimal digits within single quotes. The
hexadecimal representation uses 0-9 for the binary
codes 0000-1001 and A-F for the binary codes
1010-1111.

The remaining fields in the format illustration for each
instruction are designated by code names, consisting
of one or two letters and possibly a subscript number.
The subscript number denotes the operand to which
the field applies.

Operation code 00 hex will never be assigned to an
instruction implemented in the CPU.

Register Operands
In the RR, RRD, RRE, RRF, RX, RXE, RXF, RXY, RS,
RSY, RSI, RI, RIE, and RIL formats, the contents of
the register designated by the R1 field are called the
first operand. The register containing the first oper-
and is sometimes referred to as the “first-operand
location,” and sometimes as “register R1”. In the RR,
RRD, RRE, and RRF formats, the R2 field designates
the register containing the second operand, and the
R2 field may designate the same register as R1. In the
RRD, RRF, RXF, RS, RSY, RSI, and RIE formats, the
use of the R3 field depends on the instruction. In the
RRF, RS, and RSY formats, the R3 field may instead
be an M3 field specifying a mask. Certain forms of the
RRF format include an M4 field specifying a mask.

The R field designates a general or access register in
the general instructions, a general register in the con-
trol instructions, and a floating-point register or a
general register in the floating-point instructions.

Bit
Positions

0-1

Instruction
Length (in
Halfwords) Instruction Format

00 One I / E / RR

01 Two RX

10 Two RI / RRD / RRE / RRF / RS /
RSI / RX / S / SI

11 Three MII / RIE / RIL / RIS / RRS /
RSL / RSY / RXE / RXF / RXY /

SIL / SIY / SMI / SS / SSE /
SSF / VRI / VRR / VRS / VRV /

VRX / VSI

5-8 The z/Architecture CPU Architecture

However, in the instructions EXTRACT STACKED
REGISTERS and LOAD ADDRESS EXTENDED, the
R field designates both a general register and an
access register, and, in the instructions LOAD CON-
TROL and STORE CONTROL, the R field designates
a control register. (This paragraph refers only to reg-
ister operands, not to the use of access registers in
addressing storage operands.)

For access, floating-point, and vector registers,
unless otherwise indicated in the individual instruc-
tion description, the register operand is one register
in length (32 bits for an access register, 64 bits for a
floating-point register, and 128 bits for a vector regis-
ter), and the second operand is the same length as
the first. For general and control registers, the regis-
ter operand is in bit positions 32-63 of the 64-bit reg-
ister or occupies the entire register, depending on the
instruction.

The V field in VRI, VRR, VRS, VRV, VRX, and VSI
formats, along with an extra bit designates a vector
register operand.

All vector instructions have a field in bits 36-39 of the
instruction labeled as RXB. This field contains the
most significant bits for all of the vector register des-
ignated operands. Bits for register designations not
specified by the instruction are reserved and should
be set to zero; otherwise, the program may not oper-
ate compatibly in the future. The most significant bit
is concatenated to the left of the four-bit register des-
ignation to create the five-bit vector register designa-
tion.

The bits of the RXB field are defined as follows:

0. Most significant bit for the vector register desig-
nation in bits 8-11 of the instruction.

1. Most significant bit for the vector register desig-
nation in bits 12-15 of the instruction.

2. Most significant bit for the vector register desig-
nation in bits 16-19 of the instruction.

3. Most significant bit for the vector register desig-
nation in bits 32-35 of the instruction.

Programming Note: Although only two RRF formats
are shown in Figure 5-1, five variations are noted.
This is because there are five variations in assem-

bler-language syntax for the RRF-format instructions,
as shown below.

Note on the Definition:

Immediate Operands
In the I format, the contents of the eight-bit immedi-
ate-data field, the I field of the instruction, are directly
used as the operand.

In the SI format, the contents of the eight-bit immedi-
ate-data field, the I2 field of the instruction, are used
directly as the second operand. The B1 and D1 fields
specify the first operand, which is one byte in length.
In the SIY format, the operation is the same except
that DH1 and DL1 fields are used instead of a D1 field.

In the RI format for the instructions ADD HALF-
WORD IMMEDIATE, COMPARE HALFWORD
IMMEDIATE, LOAD HALFWORD IMMEDIATE, and
MULTIPLY HALFWORD IMMEDIATE, the contents of
the 16-bit I2 field of the instruction are used directly
as a signed binary integer, and the R1 field specifies
the first operand, which is 32 or 64 bits in length,
depending on the instruction. For the instruction
TEST UNDER MASK (TMHH, TMHL, TMLH, TMLL),
the contents of the I2 field are used as a mask, and
the R1 field specifies the first operand, which is 64
bits in length.

For the instructions INSERT IMMEDIATE, AND
IMMEDIATE, OR IMMEDIATE, and LOAD LOGICAL
IMMEDIATE, the contents of the I2 field are used as
an unsigned binary integer or a logical value, and the
R1 field specifies the first operand, which is 64 bits in
length.

For instructions in the RI, RIE, and RSI formats hav-
ing an RI2 field, or for instructions in the RIE format
having an RI4 field, the contents of the 16-bit RI2 or
RI4 field are used as a signed binary integer desig-
nating a number of halfwords that are added to the
address of the instruction to form the operand
address. For instructions in the RIL format, the RI2
field is 32 bits and is used in the same way.

Variation Assembler Syntax

a mnemonic R1,R2[,R3[,M4]]

b mnemonic R1,R3,R2[,M4]

c mnemonic R1,R2[,M3]

d mnemonic R1,R2,M4

e mnemonic R1,M3,R2[,M4]

Program Execution 5-9

For instructions in the MII format, the contents of the
12-bit RI2 field and the 24-bit RI3 field are used as
signed binary integers designating a number of half-
words that are added to the address of the instruction
to form the respective operand addresses.

For instructions in the SMI format, the contents of the
16-bit RI2 field is used as signed binary integer desig-
nating a number of halfwords that are added to the
address of the instruction to form the operand
address.

For the RIE-format instructions COMPARE IMMEDI-
ATE AND BRANCH RELATIVE and COMPARE
LOGICAL IMMEDIATE AND BRANCH RELATIVE,
the contents of the 8-bit I2 field are used directly as
the second operand. For the RIE-format instructions
COMPARE IMMEDIATE AND BRANCH, COMPARE
IMMEDIATE AND TRAP, COMPARE LOGICAL
IMMEDIATE AND BRANCH, and COMPARE LOGI-
CAL IMMEDIATE AND TRAP, the contents of the 16-
bit I2 field are used directly as the second operand.
For the RIE-format instructions COMPARE AND
BRANCH RELATIVE, COMPARE IMMEDIATE AND
BRANCH RELATIVE, COMPARE LOGICAL AND
BRANCH RELATIVE, and COMPARE LOGICAL
IMMEDIATE AND BRANCH RELATIVE, the contents
of the 16-bit RI4 field are used as a signed binary
integer designating a number of halfwords that are
added to the address of the instruction to form the
branch address.

For the RIL-format instructions ADD IMMEDIATE,
ADD LOGICAL IMMEDIATE, ADD LOGICAL WITH
SIGNED IMMEDIATE, COMPARE IMMEDIATE,
COMPARE LOGICAL IMMEDIATE, LOAD IMMEDI-
ATE, and MULTIPLY SINGLE IMMEDIATE, the con-
tents of the 32-bit I2 field are used directly as a the
second operand.

For the RIS-format instructions, the contents of the 8-
bit I2 field are used directly as the second operand.

In the SIL format, the contents of the 16-bit I2 field are
used directly as the second operand. The B1 and D1

fields specify the first operand, as described below.

In the VRI-a format, the contents of the 16-bit I2 field
are used as a signed binary integer, except for VEC-
TOR GENERATE BYTE MASK where the contents of
the I2 field are used as a bitmask. In the VRI-b for-
mat, the contents of the 8-bit I2 and I3 fields contain
unsigned binary integers. In the VRI-c format, the I2
field contains a 16-bit unsigned binary integer. In the

VRI-d format, the contents of the 8-bit I4 field contain
an unsigned binary integer. In the VRI-e format the
12-bit I3 field contains a bitmask.

Storage Operands
The use of B and R fields to designate access regis-
ters to refer to storage operands is described in
“Access-Register-Specified Address Spaces” on
page 5-46.

In the RSL, SI, SIL, SSE, and most SS formats, the
contents of the general register designated by the B1.
field are added to the contents of the D1 field to form
the first-operand address. In the RS, RSY, S, SIY, SS,
SSE, SSF, VRS, and VSI formats, the contents of the
general register designated by the B2 field are added
to the contents of the D2 field or DH2 and DL2 fields to
form the second-operand address. In the RX, RXE,
RXF, RXY, and VRX formats, the contents of the gen-
eral registers designated by the X2 and B2 fields are
added to the contents of the D2 field or DH2 and DL2

fields to form the second-operand address. In the
SMI format, the contents of the general register des-
ignated by the B3 field are added to the contents of
the D3 field to form the third-operand address. In the
RIS and RRS formats, and in one SS format, the
contents of the general register designated by the B4

field are added to the contents of the D4 field to form
the fourth-operand address.

The VRV format has a vector-element-specified
index field.

When a general register contains a 24-bit or 32-bit
length of a storage operand, the length is an
unsigned binary integer, except that it is signed for
COMPARE UNTIL SUBSTRING EQUAL, with a neg-
ative value treated as zero. Similarly, the contents of
an L, L1, or L2 field of an instruction are an unsigned
binary integer. For VRS format instructions which
contain a length in a general register the length is an
unsigned integer that specifies the number of addi-
tional operand bytes to the right of the byte desig-
nated by the second operand address.

In the SS format with a single, eight-bit length field,
for the instructions AND (NC), EXCLUSIVE OR (XC),
MOVE (MVC), MOVE NUMERICS, MOVE ZONES,
and OR (OC), L specifies the number of additional
operand bytes to the right of the byte designated by
the first-operand address. Therefore, the length in
bytes of the first operand is 1-256, corresponding to a
length code in L of 0-255. Storage results replace the

5-10 The z/Architecture CPU Architecture

first operand and are never stored outside the field
specified by the address and length. In this format,
the second operand has the same length as the first
operand. There are variations of the preceding defini-
tion that apply to EDIT, EDIT AND MARK, PACK
ASCII, PACK UNICODE, TRANSLATE, TRANS-
LATE AND TEST, UNPACK ASCII, and UNPACK
UNICODE.

In the SS format with two length fields, in the RSL for-
mat, and in the VSI format, L1 specifies the number of
additional operand bytes to the right of the byte des-
ignated by the first-operand address. Therefore, the
length in bytes of the first operand is 1-16, corre-
sponding to a length code in L1 of 0-15. Similarly, L2

specifies the number of additional operand bytes to
the right of the location designated by the second-
operand address. Results replace the first operand
and are never stored outside the field specified by the
address and length. If the first operand is longer than
the second, the second operand is extended on the
left with zeros up to the length of the first operand.
This extension does not modify the second operand
in storage.

In the SS format with two R fields, as used by the
MOVE TO PRIMARY, MOVE TO SECONDARY, and
MOVE WITH KEY instructions, the contents of the
general register specified by the R1. field are a 32-bit
unsigned value called the true length. The operands
are both of a length called the effective length. The
effective length is equal to the true length or 256,
whichever is less. The instructions set the condition
code to facilitate programming a loop to move the
total number of bytes specified by the true length.
The SS format with two R fields is also used to spec-
ify a range of registers and two storage operands for
the LOAD MULTIPLE DISJOINT instruction and to
specify one or two registers and one or two storage
operands for the PERFORM LOCKED OPERATION
instruction.

Address Generation

Trimodal Addressing

Bits 31 and 32 of the current PSW are the address-
ing-mode bits. Bit 31 is the extended-addressing-
mode bit, and bit 32 is the basic-addressing-mode

bit. These bits control the size of the effective
address produced by address generation. When bits
31 and 32 of the current PSW both are zeros, the
CPU is in the 24-bit addressing mode, and 24-bit
instruction and operand effective addresses are gen-
erated. When bit 31 of the current PSW is zero and
bit 32 is one, the CPU is in the 31-bit addressing
mode, and 31-bit instruction and operand effective
addresses are generated. When bits 31 and 32 of the
current PSW are both one, the CPU is in the 64-bit
addressing mode, and 64-bit instruction and operand
effective addresses are generated.

Execution of instructions by the CPU involves gener-
ation of the addresses of instructions and operands.
This section describes address generation as it
applies to most instructions. In some instructions, the
operation performed does not follow the general
rules stated in this section. All of these exceptions
are explicitly identified in the individual instruction
descriptions.

In the ESA/390-compatibility mode, if the program
issues an instruction that is defined to enable the 64-
bit addressing mode, it is unpredictable whether an
exception is recognized or the CPU enters the 64-bit
addressing mode.

Sequential Instruction-Address
Generation

When an instruction is fetched from the location des-
ignated by the current PSW, the instruction address
is increased by the number of bytes in the instruction,
and the instruction is executed. The same steps are
then repeated by using the new value of the instruc-
tion address to fetch the next instruction in the
sequence.

In the 24-bit addressing mode, instruction addresses
wrap around, with the halfword at instruction address
224 - 2 being followed by the halfword at instruction
address 0. Thus, in the 24-bit addressing mode, any
carry out of PSW bit position 104, as a result of
updating the instruction address, is lost. In the 31-bit
or 64-bit addressing mode, instruction addresses
similarly wrap around, with the halfword at instruction
address 231 - 2 or 264 - 2, respectively, followed by the
halfword at instruction address 0. A carry out of PSW
bit position 97 or 64, respectively, is lost.

Program Execution 5-11

Operand-Address Generation

Formation of the Intermediate Value
An operand address that refers to storage is derived
from an intermediate value determined in one of the
following ways:

• The intermediate value is calculated from the
sum of two or three binary numbers: base
address, index (when applicable), and displace-
ment.

• The intermediate value is calculated from the
sum of three binary numbers: base address, dis-
placement, and vector element.

• The intermediate value is calculated from the
sum of two binary numbers: the address of the
instruction and an immediate (RI2) field in the
instruction specifying a number of halfwords.

• The intermediate value is contained in a register
designated by an R field in the instruction.

Intermediate Value Designated by Base Address,
Index, and Displacement: The base address (B)
is a 64-bit number contained in a general register
specified by the program in a four-bit field, called the
B field, in the instruction. Base addresses can be
used as a means of independently addressing each
program and data area. In array-type calculations, it
can designate the location of an array, and, in record-
type processing, it can identify the record. The base
address provides for addressing the entire storage.
The base address may also be used for indexing.

For instructions having the RX, RXE, RXF, RXY, and
VRX-formats, the index (X) is a 64-bit number con-
tained in a general register designated by the pro-
gram in a four-bit field, called the X field, in the
instruction. These instructions permit double index-
ing; that is, the index can be used to provide the
address of an element within an array. For other
instruction formats which do not include an X field,
the index is not applicable.

The displacement (D) is a 12-bit or 20-bit number
contained in a field, called the D field, in the instruc-
tion. A 12-bit displacement is unsigned and provides
for relative addressing of up to 4,095 bytes beyond
the location designated by the base address. A 20-bit
displacement is signed and provides for relative
addressing of up to 524,287 bytes beyond the base-
address location or of up to 524,288 bytes before it.

In array-type calculations, the displacement can be
used to specify one of many items associated with an
element. In the processing of records, the displace-
ment can be used to identify items within a record.

A 12-bit displacement is in bit positions 20-31 of
instructions of certain formats (see Figure 5-1 on
page 5-4). In instructions of some formats, a second
12-bit displacement also is in the instruction, in bit
positions 36-47.

In the z/Architecture architectural mode, a 20-bit dis-
placement is in instructions of only the RSY, RXY, or
SIY format. In these instructions, the D field consists
of a DL (low) field in bit positions 20-31 and of a DH
(high) field in bit positions 32-39. When the long-dis-
placement facility is installed, the numeric value of
the displacement is formed by appending the con-
tents of the DH field on the left of the contents of the
DL field. When the long-displacement facility is not
installed, the numeric value of the displacement is
formed by appending eight zero bits on the left of the
contents of the DL field, and the contents of the DH
field are ignored.

In the ESA/390-compatibility mode, it is unpredict-
able whether the long-displacement facility is consid-
ered to be installed.

In forming the intermediate sum, the base address
and index are treated as 64-bit binary integers. A
12-bit displacement is treated as a 12-bit unsigned
binary integer, and 52 zero bits are appended on the
left. A 20-bit displacement is treated as a 20-bit
signed binary integer, and 44 bits equal to the sign bit
are appended on the left. The three are added as
64-bit binary numbers, ignoring overflow. The sum is
always 64 bits long and is used as an intermediate
value to form the generated address. The bits of the
intermediate value are numbered 0-63.

A zero in any of the B1, B2, X2, B3, or B4 fields indi-
cates the absence of the corresponding address
component. For the absent component, a zero is
used in forming the intermediate sum, regardless of
the contents of general register 0. A displacement of
zero has no special significance.

Intermediate Value Designated by Base Address,
Displacement, and Vector Element: For VRV for-
mat instructions, a vector element is used in the for-
mation of the intermediate value. This vector element
is an unsigned binary integer value that is added to
the base address and 12-bit displacement to form a

5-12 The z/Architecture CPU Architecture

64-bit intermediate sum. The vector element is desig-
nated by a vector register and an element index. A
zero V field accesses the element in vector register
zero and does not imply a zero value.

Intermediate Value Designated by an Immediate
Field: For the following instructions, the intermedi-
ate value is determined using an immediate (RI2)
field in the instruction:

• BRANCH PREDICTION PRELOAD
• BRANCH PREDICTION RELATIVE PRELOAD
• COMPARE HALFWORD RELATIVE LONG
• COMPARE LOGICAL RELATIVE LONG
• COMPARE RELATIVE LONG
• EXECUTE RELATIVE LONG
• LOAD ADDRESS RELATIVE LONG
• LOAD HALFWORD RELATIVE LONG
• LOAD LOGICAL HALFWORD RELATIVE LONG
• LOAD LOGICAL RELATIVE LONG
• LOAD RELATIVE LONG
• PREFETCH DATA RELATIVE LONG
• STORE HALFWORD RELATIVE LONG
• STORE RELATIVE LONG

For BRANCH PREDICTION PRELOAD, the RI2 field
contains a 16-bit signed binary integer; for BRANCH
PREDICTION RELATIVE PRELOAD, the RI2 field
contains a 12-bit signed binary integer; and for each
of the other instructions listed, the RI2 field contains a
32-bit signed binary integer. The signed binary inte-
ger specifies the number of halfwords that is added
to the address of the current instruction (or the
address of the execute-type instruction if the instruc-
tion having the RI2 field is the target of an execute-
type instruction) to form the intermediate value.

When DAT is on, and the intermediate value is desig-
nated by an immediate field, the resulting operand
address is in the same address space as that used to
fetch instructions.

Intermediate Value in a Register Designated by
an R Field: When an instruction description speci-
fies that the contents of a general register designated
by an R field are used to address an operand in stor-
age, the register contents are used as the 64-bit
intermediate value.

An instruction can designate the same general regis-
ter both for address computation and as the location
of an operand. Address computation is completed
before registers, if any, are changed by the operation.

Formation of the Operand Address
Unless otherwise indicated in an individual instruc-
tion definition, the generated operand address desig-
nates the leftmost byte of an operand in storage.

The generated operand address is always 64 bits
long, and the bits are numbered 0-63. The manner in
which the generated address is obtained from the
intermediate value depends on the current address-
ing mode. In the 24-bit addressing mode, bits 0-39 of
the intermediate value are ignored, bits 0-39 of the
generated address are forced to be zeros, and bits
40-63 of the intermediate value become bits 40-63 of
the generated address. In the 31-bit addressing
mode, bits 0-32 of the intermediate value are
ignored, bits 0-32 of the generated address are
forced to be zero, and bits 33-63 of the intermediate
value become bits 33-63 of the generated address. In
the 64-bit addressing mode, bits 0-63 of the interme-
diate value become bits 0-63 of the generated
address.

Programming Note: Since a carry out of the most-
significant address bit is ignored, negative values
may be used in index and base-address registers.
Bits 0-32 of these values are ignored in the 31-bit
addressing mode, and bits 0-39 are ignored in the
24-bit addressing mode.

For instructions having the RSY, RXY, or SIY format,
a negative value may be used for the displacement.

When the intermediate value is designated by an
immediate field in the instruction, the immediate field
may contain a negative value.

Branch-Address Generation

Formation of the Intermediate Value
For branch instructions, the address of the next
instruction to be executed when the branch is taken
is called the branch address. Depending on the
branch instruction, the instruction format may be RR,
RRE, RX, RXY, RS, RSY, RSI, RI, RIE, or RIL.

Except as noted below, in the RS, RSY, RX, and RXY
formats, the branch address is specified by a base
address, a displacement, and, in the RX and RXY
formats, an index. In the RXY-format instruction
BRANCH INDIRECT ON CONDITION, the branch
address is formed from the contents of the eight-byte
second operand in storage. For the RXY-format

Program Execution 5-13

LOAD GUARDED and LOAD LOGICAL AND SHIFT
GUARDED instructions, when a guarded-storage
event is recognized, the contents of the guarded-
storage-event-handler address (in the guarded-stor-
age-event parameter list) forms the branch address.
In these formats, the generation of the intermediate
value follows the same rules as for the generation of
the operand-address intermediate value.

In the RR and RRE formats, the contents of the gen-
eral register designated by the R2 field are used as
the intermediate value from which the branch
address is formed. Unless otherwise specified, gen-
eral register 0 cannot be designated as containing a
branch address, and a value of zero in the R2 field
causes the instruction to be executed without branch-
ing.

The relative-branch instructions are in the RSI, RI,
RIE, and RIL formats. In the RSI, RI, and RIE formats
for the relative-branch instructions, the contents of
the RI2 field are treated as a 16-bit signed binary inte-
ger designating a number of halfwords. In the RIL for-
mat, the contents of the RI2 field are treated as a
32-bit signed binary integer designating a number of
halfwords. The branch address is the number of half-
words designated by the RI2 field added to the
address of the relative-branch instruction.

The 64-bit intermediate value for a relative branch
instruction in the RSI, RI, RIE, or RIL format is the
sum of two addends, with overflow from bit position 0
ignored. In the RSI, RI, or RIE format, the first
addend is the contents of the RI2 field with one zero
bit appended on the right and 47 bits equal to the
sign bit of the contents appended on the left, except
that for COMPARE AND BRANCH RELATIVE, COM-
PARE IMMEDIATE AND BRANCH RELATIVE, COM-
PARE LOGICAL AND BRANCH RELATIVE and
COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE, the first addend is the contents of the RI4
field, with bits appended as described above for the
RI2 field. In the RIL format, the first addend is the
contents of the RI2 field with one zero bit appended
on the right and 31 bits equal to the sign bit of the
contents appended on the left. In all formats, the sec-
ond addend is the 64-bit address of the branch
instruction. The address of the branch instruction is
the instruction address in the PSW before that
address is updated to address the next sequential
instruction, or it is the address of the target of the
execute-type instruction (EXECUTE or EXECUTE
RELATIVE LONG) if an execute-type instruction is
used. If an execute-type instruction is used in the

24-bit or 31-bit addressing mode, the address of the
branch instruction is the target address with 40 or 33
zeros, respectively, appended on the left.

Formation of the Branch Address
The branch address is always 64 bits long, with the
bits numbered 0-63. The branch address replaces
bits 64-127 of the current PSW.

The manner in which the branch address is obtained
from the intermediate value depends on the address-
ing mode. For those branch instructions which
change the addressing mode, the new addressing
mode is used. In the 24-bit addressing mode, bits
0-39 of the intermediate value are ignored, bits 0-39
of the branch address are made zeros, and bits
40-63 of the intermediate value become bits 40-63 of
the branch address. In the 31-bit addressing mode,
bits 0-32 of the intermediate value are ignored, bits
0-32 of the branch address are made zeros, and bits
33-63 of the intermediate value become bits 33-63 of
the branch address. In the 64-bit addressing mode,
bits 0-63 of the intermediate value become bits 0-63
of the branch address.

For several branch instructions, branching depends
on satisfying a specified condition. When the condi-
tion is not satisfied, the branch is not taken, normal
sequential instruction execution continues, and the
branch address is not used. When a branch is taken,
bits 0-63 of the branch address replace bits 64-127
of the current PSW. The branch address is not used
to access storage as part of the branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of the
instruction at the branch location are not recognized
as part of the branch operation but instead are recog-
nized as exceptions associated with the execution of
the instruction at the branch location.

A branch instruction, such as BRANCH AND SAVE,
can designate the same general register for branch-
address computation and as the location of an oper-
and. Branch-address computation is completed
before the remainder of the operation is performed.

Some models may maintain information in internal
tables about branch instructions and branch
addresses for internal branch-prediction logic. Addi-
tionally, since the formation of branch addresses is
similar to the formation of the target addresses of
execute-type instructions, some models may also

5-14 The z/Architecture CPU Architecture

maintain information about execute-type instructions
and their execute targets in the same or similar inter-
nal tables. A model may also provide the BRANCH
PREDICTION PRELOAD and BRANCH PREDIC-
TION RELATIVE PRELOAD instructions which allow
the program to identify branch instructions and asso-
ciated branch addresses, and to identify execute-
type instructions and associated execute targets,
thereby affecting the preloading of such branch-pre-
diction and execute-prediction information into such
internal tables.

Instruction Execution and
Sequencing

The program-status word (PSW), described in Chap-
ter 4 “Control” contains information required for
proper program execution. The PSW is used to con-
trol instruction sequencing and to hold and indicate
the status of the CPU in relation to the program cur-
rently being executed. The active or controlling PSW
is called the current PSW.

Branch instructions perform the functions of decision
making, loop control, and subroutine linkage. A
branch instruction affects instruction sequencing by
introducing a new instruction address into the current
PSW. The relative-branch instructions with a 16-bit I2
field allow branching to a location at an offset of up to
plus 64K - 2 bytes or minus 64K bytes relative to the
location of the branch instruction, without the use of a
base register. The relative-branch instructions with a
32-bit I2 field allow branching to a location at an offset
of up to plus 4G - 2 bytes or minus 4G bytes relative
to the location of the branch instruction, without the
use of a base register.

Decision Making

Facilities for decision making are provided by the
BRANCH ON CONDITION, BRANCH RELATIVE ON
CONDITION, and BRANCH RELATIVE ON CONDI-
TION LONG instructions. These instructions inspect
a condition code that reflects the result of a majority
of the arithmetic, logical, and I/O operations. The
condition code, which consists of two bits, provides
for four possible condition-code settings: 0, 1, 2, and
3.

The specific meaning of any setting depends on the
operation that sets the condition code. For example,
the condition code reflects such conditions as zero,
nonzero, first operand high, equal, overflow, and sub-
channel busy. Once set, the condition code remains
unchanged until modified by an instruction that
causes a different condition code to be set. See
Appendix C, “Condition-Code Settings” for a sum-
mary of the instructions which set the condition code.

Loop Control

Loop control can be performed by the use of
BRANCH ON CONDITION, BRANCH RELATIVE ON
CONDITION, and BRANCH RELATIVE ON CONDI-
TION LONG to test the outcome of address arithme-
tic and counting operations. For some particularly
frequent combinations of arithmetic and tests,
BRANCH ON COUNT, BRANCH ON INDEX HIGH,
and BRANCH ON INDEX LOW OR EQUAL are pro-
vided, and relative-branch equivalents of these
instructions are also provided. These branches,
being specialized, provide increased performance for
these tasks.

Subroutine Linkage without the
Linkage Stack

This section describes only the methods for subrou-
tine linkage that do not use the linkage stack. For the
linkage extensions provided by the linkage stack, see
“Linkage-Stack Introduction” on page 5-70. (Those
extensions include a different method of operation of
the PROGRAM CALL instruction and also the
BRANCH AND STACK and PROGRAM RETURN
instructions.)

Simple Branch Instructions
Subroutine linkage when a change of the addressing
mode is not required is provided by the BRANCH
AND LINK and BRANCH AND SAVE instructions.
(This discussion of BRANCH AND SAVE applies also
to BRANCH RELATIVE AND SAVE and BRANCH
RELATIVE AND SAVE LONG.) Both of these instruc-
tions permit not only the introduction of a new
instruction address but also the preservation of a
return address and associated information. The
return address is the address of the instruction fol-
lowing the branch instruction in storage, except that it
is the address of the instruction following an execute-

Program Execution 5-15

type instruction that has the branch instruction as its
target.

Both BRANCH AND LINK and BRANCH AND SAVE
have an R1 field. They form a branch address by
means of fields that depend on the instruction. The
operations of the instructions are summarized as fol-
lows:

• In the 24-bit addressing mode, both instructions
place the return address in bit positions 40-63 of
general register R1 and leave bits 0-31 of that
register unchanged. BRANCH AND LINK places
the instruction-length code for the instruction and
also the condition code and program mask from
the current PSW in bit positions 32-39 of general
register R1. BRANCH AND SAVE places zeros in
those bit positions.

• In the 31-bit addressing mode, both instructions
place the return address in bit positions 33-63
and a one in bit position 32 of general register
R1, and they leave bits 0-31 of the register
unchanged.

• In the 64-bit addressing mode, both instructions
place the return address in bit positions 0-63 of
general register R1.

• In any addressing mode, both instructions gener-
ate the branch address under the control of the
current addressing mode. The instructions place
bits 0-63 of the branch address in bit positions
64-127 of the PSW. In the RR format, both
instructions do not perform branching if the R2

field of the instruction is zero.

It can be seen that, in the 24-bit or 31-bit addressing
mode, BRANCH AND SAVE places the basic-
addressing-mode bit, bit 32 of the PSW, in bit posi-
tion 32 of general register R1. BRANCH AND LINK
does so in the 31-bit addressing mode.

The instructions BRANCH AND SAVE AND SET
MODE and BRANCH AND SET MODE are for use
when a change of the addressing mode is required
during linkage. These instructions have R1 and R2

fields. The operations of the instructions are summa-
rized as follows:

• BRANCH AND SAVE AND SET MODE sets the
contents of general register R1 the same as
BRANCH AND SAVE. In addition, the instruction
places the extended-addressing-mode bit, bit 31
of the PSW, in bit position 63 of the register.

• BRANCH AND SET MODE, if R1 is nonzero, per-
forms as follows. In the 24- or 31-bit mode, it
places bit 32 of the PSW in bit position 32 of gen-
eral register R1, and it leaves bits 0-31 and 33-63
of the register unchanged. Note that bit 63 of the
register should be zero if the register contains an
instruction address. In the 64-bit mode, the
instruction places bit 31 of the PSW (a one) in bit
position 63 of general register R1, and it leaves
bits 0-62 of the register unchanged.

• When R2 is nonzero, both instructions set the
addressing mode and perform branching as fol-
lows. Bit 63 of general register R2 is placed in bit
position 31 of the PSW. If bit 63 is zero, bit 32 of
the register is placed in bit position 32 of the
PSW. If bit 63 is one, PSW bit 32 is set to one.
Then the branch address is generated from the
contents of the register, except with bit 63 of the
register treated as a zero, under the control of
the new addressing mode. The instructions place
bits 0-63 of the branch address in bit positions
64-127 of the PSW. Bit 63 of general register R2

remains unchanged and, therefore, may be one
upon entry to the called program. If R2 is the
same as R1, the results in the designated general
register are as specified for the R1 register.

The operations of the simple branch instructions are
summarized in Figure 5-2 on page 5-16. For con-
trast, the figure also shows the BRANCH ON
COUNT instruction, which is not for use in linkage,
and the LOAD ADDRESS and LOAD ADDRESS
EXTENDED instructions.

Programming Notes:

1. A called program that is entered in the 64-bit
addressing mode can use bit 63 of the entry-
point register to determine the instruction used to
perform the call and, thus, the instruction that
must be used to perform the return linkage. If bit
63 is zero, BRANCH AND SAVE (BAS or BASR)
(or possibly BAL, BALR, BRAS, or BRASL) was
used, the addressing mode of the caller is not
indicated in the return register, and BRANCH ON
CONDITION (BCR) must be used to return with-
out changing the addressing mode during the
return. If bit 63 of the entry-point register is one,
BASSM or BSM was used, the addressing mode
of the caller is indicated in the return register (or
at least can be, in the case of BSM), and BSM
must be used to return and restore the address-
ing mode of the caller.

5-16 The z/Architecture CPU Architecture

2. When BSM is executed in the 24-bit or 31-bit
addressing mode and used in a forward linkage
to set the 64-bit mode, and the R1 and R2 of the
instruction are the same value, bit 63 of the des-
ignated general register does not, upon entry to
the called program, correctly indicate the mode

of the calling program. (The bit is one, instead of
zero, because the program set bit 63 of the R2

register to one and the instruction does not
change bit 63 of the R1 register in the 24- or
31-bit mode.) BASSM always correctly indicates
the addressing mode of the calling program.

Instruction Format
In

Mode

Address
Placed in GR R1

Branch or 2nd-
Op Address

R2
Bit 63

PSW
Bit 31
Set to

PSW
Bit 32
Set to

Bits
0-31

Bit
32

Bits
33-62

Bits
63

Bits
0-32

Bits
33-63

BALR*/BAL RR/RX 24 U *** *** IA SIA SIA LSExc U U
31 U BAM IA IA SIA SIA LSExc U U

64 IA IA IA IA SIA SIA LSExc U U

BASR*/BAS/
BRAS/BRASL

RR/RX/
RI/RIL

24/31 U BAM IA IA SIA SIA LSExc U U

64 IA IA IA IA SIA SIA LSExc U U
BASSM* RR 24/31 U BAM IA IA SIA SIA 0 0 R232

24/31 U BAM IA IA SIA SIA 1G0 1 1

64 IA IA IA 1 SIA SIA 0 0 R232
64 IA IA IA 1 SIA SIA 1G0 1 1

BSM** RR 24/31 U BAM U U SIA SIA 0 0 R232

24/31 U BAM U U SIA SIA 1G0 1 1
64 U U U 1 SIA SIA 0 0 R232

64 U U U 1 SIA SIA 1G0 1 1

BCTR*/BCT/
BCTGR*/BCTG

RR/RX/
RRE/RXY

24/31 NLA NLA NLA NLA SIA SIA LSExc U U
64 NLA NLA NLA NLA SIA SIA LSExc U U

LA/LAE RX/RX 24/31 U 0 Op2Ad Op2Ad FZ SR1 0/1 U U

64 Op2Ad Op2Ad Op2Ad Op2Ad SR1 SR1 0/1 U U

Explanation:

— The address does not exist, or the bit has no special effect.
* The action associated with the R2 field is not performed if the field is zero.
** The action associated with the R1 or R2 field is not performed if the field is zero.
*** The instruction-length code, condition code, and program mask are saved in bit positions 32-39 of the link

address, and bits 40-63 of the updated instruction address are saved in bit positions 40-63.
0/1 Bit 63 can be zero or one.
1G0 Bit 63 is one and is left one, but the branch address is generated as if the bit is zero.
BAM Bit 32 of the link address is set with the basic-addressing-mode bit, bit 32 of the PSW.
FZ Bits 0-32 of the second-operand address are forced to zeros in the 24-bit or 31-bit addressing mode.
IA Bits of the link address are set with the updated instruction address as shown.
LSExc A late specification exception is recognized if the bit is one.
NLA The instruction does not produce a link address. (The instruction is shown simply as an example of a non-linkage

branch instruction.)
Op2Ad Bits of the address in general register R1 are set with the corresponding bits of the second-operand address as

shown.
R232 The basic-addressing-mode bit, bit 32 of the PSW, is set with bit 32 of general register R2

SIA Bits 0-63 of the branch address are used to set the instruction address in the PSW. Bits 0-39 of the branch
address are forced to zeros in the 24-bit addressing mode. Bits 0-32 are forced to zeros in the 31-bit addressing
mode.

SR1 Bits of the second-operand address are used to set the corresponding bits of the address in the R1 general
register as shown. Bits 0-39 of the second-operand address are forced to zeros in the 24-bit addressing mode.
Bits 0-32 are forced to zeros in the 31-bit addressing mode.

U Unchanged.

Figure 5-2. Summary of Simple Branch Linkage Instructions and Other Instructions

Program Execution 5-17

3. If an entry point can be branched to in the 64-bit
addressing mode either by BAS or BASR or by
BASSM or BSM, and a USING statement pro-
vides addressability to the entry point, bit 63 of
the entry-point register must be zeroed to ensure
compatible operation regardless of whether the
linkage instruction changes the addressing
mode. For example, if general register 15 is the
entry-point register, the following may be used to
set bit 63 to zero.

NILL 15,X'FFFE'

If the entry point can be branched to in the 64-bit
addressing mode only by BASSM or BSM, the
entry-point USING statement can accommodate
bit 63 being one – without having to zero the bit –
as shown below.

USING *+1,15

Other Linkage Instructions

Note: The discussion in this section of PROGRAM
TRANSFER applies equally to PROGRAM TRANS-
FER WITH INSTANCE, which differs from PRO-
GRAM TRANSFER only as described in “ASN-
Second-Table-Entry Instance Number and ASN
Reuse” on page 3-25.

PROGRAM TRANSFER WITH INSTANCE is not fur-
ther referred to in this section.

Linkage between a problem-state program and the
supervisor or monitoring program is provided by
means of the SUPERVISOR CALL and MONITOR
CALL instructions.

The instructions PROGRAM CALL and PROGRAM
TRANSFER provide the facility for linkage between
programs of different authority and in different
address spaces. PROGRAM CALL permits linkage
to a number of preassigned programs that may be in
either the problem or the supervisor state and may
be in either the same address space or an address
space different from that of the caller. It permits a
change between the 24-bit and 31-bit addressing
modes, and it permits an increase of PSW-key-mask
authority, which authorizes the execution of the SET
PSW KEY FROM ADDRESS instruction and also
other functions. In general, PROGRAM CALL is used
to transfer control to a program of higher authority.
PROGRAM TRANSFER permits a change of the
instruction address and address space and a change
between the 24-bit and 31-bit addressing modes.

PROGRAM TRANSFER also permits a reduction of
PSW-key-mask authority and a change from the
supervisor to the problem state. In general, it is used
to transfer control from one program to another of
equal or lower authority.

When a calling linkage is to increase authority, the
calling linkage can be performed by PROGRAM
CALL and the return linkage by PROGRAM TRANS-
FER. Alternatively, when the calling linkage is to
decrease authority, the calling linkage can be per-
formed by PROGRAM TRANSFER and the return
linkage by PROGRAM CALL.

The operation of PROGRAM CALL is controlled by
means of an entry-table entry, which is located as
part of a table-lookup process during the execution of
the instruction. The entry-table entry specifies either
a basic (nonstacking) operation or the stacking oper-
ation described in “Linkage-Stack Introduction” on
page 5-70. The instruction causes the primary
address space to be changed only when the ASN in
the entry-table entry is nonzero. When the primary
address space is changed, the operation is called
PROGRAM CALL with space switching (PC-ss).
When the primary address space is not changed, the
operation is called PROGRAM CALL to current pri-
mary (PC-cp).

PROGRAM TRANSFER specifies the address space
which is to become the new primary address space.
When the primary address space is changed, the
operation is called PROGRAM TRANSFER with
space switching (PT-ss). When the primary address
space is not changed, the operation is called PRO-
GRAM TRANSFER to current primary (PT-cp).

Basic PROGRAM CALL, and PROGRAM TRANS-
FER, can be executed successfully in either a basic
(24-bit or 31-bit) addressing mode or the extended
(64-bit) addressing mode. They do not provide a
change between a basic addressing mode and the
extended addressing mode.

The BRANCH AND SET AUTHORITY instruction
can improve performance by replacing a PT-cp
instruction used to perform a calling linkage in which
PSW-key-mask authority is reduced, and by replac-
ing a PC-cp instruction used to perform the associ-
ated return linkage in which PSW-key-mask authority
is restored. BRANCH AND SET AUTHORITY also
permits changes between the supervisor and prob-
lem states, and it can replace SET PSW KEY FROM
ADDRESS by changing the PSW key during the link-

5-18 The z/Architecture CPU Architecture

age. The calling-linkage operation is called BRANCH
AND SET AUTHORITY in the base-authority state
(BSA-ba), and the return-linkage operation is called
BRANCH AND SET AUTHORITY in the reduced-
authority state (BSA-ra).

The BRANCH IN SUBSPACE GROUP instruction
allows linkage within a group of address spaces
called a subspace group, where one address space
in the group is called the base space and the others
are called subspaces. It is intended that each sub-
space contain a different subset of the storage in the
base space, that the base space and each subspace
contain a subsystem control program, such as CICS,
and application programs, and that each subspace
contain the data for a single transaction being pro-
cessed under the subsystem control program. The
placement of the data for each transaction in a differ-
ent subspace prevents a program that is being exe-
cuted to process one particular transaction from
erroneously damaging the data of other transactions.
It is intended that the primary address space be the
base space when the control program is being exe-
cuted, and that it be the subspace for a transaction
when an application program is being executed to
process that transaction. BRANCH IN SUBSPACE
GROUP changes not only the instruction address in
the PSW but also the primary address-space-control
element in control register 1. BRANCH IN SUB-
SPACE GROUP does not change the primary ASN in
control register 4 or the primary-ASN-second-table-
entry origin in control register 5, and, therefore, the
base space and the subspaces all are associated
with the same ASN, and the programs in those
address spaces all are of equal authority.

Although a subspace is intended to be a subset of
the base space as described above, BRANCH IN
SUBSPACE GROUP does not require this, and the
instruction may be useful in ways other than as
described above.

BRANCH IN SUBSPACE GROUP uses an access-
list-entry token (ALET) in an access register as an
identifier of the address space that is to receive con-
trol. The instruction saves the updated instruction
address to permit a return linkage, but it does not
save an identifier of the address space from which
control was transferred. However, an ALET equal to
00000000 hex, called ALET 0, can be used to return
from a subspace to the base space, and an ALET
equal to 00000001 hex, called ALET 1, can be used
to return from the base space to the subspace that
last had control.

The SET ADDRESSING MODE (SAM24, SAM31,
SAM64) instruction can assist in linkage by setting
the 24-bit, 31-bit, or 64-bit addressing mode either
before or after a linkage operation.

The RESUME PROGRAM instruction is intended for
use by a problem-state interruption-handling program
to return to the interrupted program. The interruption-
handling program can use LOAD ACCESS MULTI-
PLE and LOAD MULTIPLE instructions to restore the
contents of the interrupted program’s access and
general registers from a save area, except for the
contents of one access-and-general register pair.
The interruption-handling program then can use
RESUME PROGRAM to restore the contents of cer-
tain PSW fields, including the instruction address,
and also the contents of the remaining access-and-
general pair from the save area, with that pair first
being used by RESUME PROGRAM to address the
save area.

The TRAP instruction (TRAP2, TRAP4) can overlay
instructions in an application program and give con-
trol to a trap program for performing fix-ups of data
used by the application program. The RESUME
PROGRAM instruction can be used to return control
from the trap program to the application program.

The linkage instructions provided and the functions
performed by each are summarized in Figure 5-3 on
page 5-19.

Programming Note: This note describes the simple
branch-type linkage instructions that were included in
370-XA and carried forward to ESA/370, ESA/390,
and z/Architecture. To give the reader a better under-
standing of the utility and intended usage of these
linkage instructions, the following paragraphs in this
note describe various program linkages and conven-
tions and the use of the linkage instructions in these
situations.

The linkage instructions were originally provided to
permit System/370 programs to operate with no
modification or only slight modification on 370/XA
(and successor) systems and also to provide addi-
tional function for those programs which were
designed to take advantage of the 31-bit addressing
of 370/XA. The instructions provided the capability
for both old and new programs to coexist in storage
and to communicate with each other. The instruc-
tions now have been enhanced to permit usage of
the 64-bit addressing of z/Architecture.

Program Execution 5-19

Instruction Format

Instruction
Address
PSW Bits

64-127

Basic Addr.
Mode

PSW Bit 32

Extended
Addr. Mode
PSW Bit 31

Problem
State PSW

Bit 15
PASN CR4
Bits 48-63

PSW-Key
Mask

Changed
in CR3 TraceSave Set Save Set Save Set Save Set Save Set

BALR RR Yes* R2
1 BAM31 - - - - - - - - R2

1

BAL RX Yes* Yes* BAM31 - - - - - - - - -

BASR RR Yes R2
1 BAM - - - - - - - - R2

1

BAS RX Yes Yes BAM - - - - - - - - -

BASSM RR Yes R2
1 BAM R2

1 Yes R2
1 - - - - - -

BRAS RI Yes Yes BAM - - - - - - - - -

BRASL RIL Yes Yes BAM - - - - - - - - -

BSA-ba RRE Yes Yes BAM BAM - - Yes Yes4 - - “AND” R1
5 Yes

BSA-ra RRE R1
1 Yes R1

1

BAM
BAM - Yes - - Yes Yes

BSG RRE Yes Yes R1
1

BAM
BAM - - - - - -3 - Yes

BSM RR - R2
1 R1

1

BAM
R2

1 R1
1

EAM64
R2

1 - - - - - -

MC#2 SI Yes Yes Yes Yes Yes Yes Yes Yes - - - -

PC-cp S Yes Yes BAM BAM - - Yes Yes - - “OR” EKM Yes

PC-ss S Yes Yes BAM BAM - - Yes Yes Yes Yes “OR” EKM Yes

PT-cp or PTI-cp RRE - R2 - R2

BAM
- - - R2** - - “AND” R1 Yes

PT-ss or PTI-ss RRE - R2 - R2

BAM
- - - R2** - Yes “AND” R1 Yes

RP S - Yes - Yes - Yes - - - - - Yes

SAM24 E - - - Yes 0 - Yes 0 - - - - - Yes

SAM31 E - - - Yes 1 - Yes 0 - - - - - Yes

SAM64 E - - - Yes 1 - Yes 1 - - - - - Yes

SVC2 RR Yes Yes Yes Yes Yes Yes Yes Yes - - - -

TRAP2 E Yes Yes Yes Yes Yes - Yes - - - - Yes

TRAP4 S Yes Yes Yes Yes Yes - Yes - - - - Yes

Figure 5-3. Summary of Linkage Instructions without the Linkage Stack

5-20 The z/Architecture CPU Architecture

With respect to System/370 programs, it is assumed
that old, unmodified programs operate in the 24-bit
addressing mode and call, or directly communicate
with, other programs operating in the 24-bit address-
ing mode only. Modified programs normally operate
in the 24-bit addressing mode but may have called
programs which operate in either the 24-bit or 31-bit
addressing mode. They and also modified 370-XA,
ESA/370, and ESA/390 programs now may call pro-
grams that operate in the 24-bit, 31-bit, or 64-bit
addressing mode. New programs may be written to
operate in any addressing mode, and, in some
cases, a program may be written such that it can be
invoked in any addressing mode.

BRANCH AND SAVE AND SET MODE (BASSM) is
intended to be the principal calling instruction to sub-
routines outside of an assembler/linkage-editor con-
trol section (CSECT), for use by all new programs
and particularly by programs that must change the
addressing mode during the linkage. The calling
sequence has normally been:

where ACON is an A-type address constant, and the
X’80000000’ should be present to give control in the
31-bit addressing mode or should be omitted to give
control in the 24-bit addressing mode.

The return from such a routine normally is:

It is assumed that the A-type address constant will be
extended so it may be an eight-byte field containing a
64-bit entry-point address, with bit 63 of the address
indicating, when one, that the entry is in the 64-bit
addressing mode. This extended constant is shown
here as “ACONE”. The calling sequence would nor-
mally be:

The return from such a routine would normally be:

Explanation:

- No
* In the 24-bit addressing mode, the instruction-length code, condition code, and program mask are saved in bit

positions 32-39 of the R1 general register.
** A change from the supervisor to the problem state is allowed; a privileged-operation exception is recognized

when a change from the problem to the supervisor state is specified.
Monitor-mask bits provide a means of disallowing linkage, or enabling linkage, for selected classes of events.

When the enhanced-monitor facility is installed, the enhanced-monitor-mask bits are also used in controlling
linkage (by means of a monitor-event program interruption).

1 The action takes place only if the associated R field in the instruction is nonzero.
2 MC and SVC, as part of the interruption, save the entire current PSW and load a new PSW.
3 The primary address-space-control element is set even though the PASN is not set.
4 The problem state is set
5 The PSW key also is set from general register R1

BAM The basic-addressing-mode bit is saved or set only in the 24-bit or 31-bit addressing mode.
BAM31 The basic-addressing-mode bit is saved only in the 31-bit addressing mode.
EAM64 The extended-addressing-mode bit is saved only in the 64-bit addressing mode.
R1 The field or bit is saved in general register R1.

R2 The field or bit is set from general register R2.

Instruction Format

Instruction
Address
PSW Bits

64-127

Basic Addr.
Mode

PSW Bit 32

Extended
Addr. Mode
PSW Bit 31

Problem
State PSW

Bit 15
PASN CR4
Bits 48-63

PSW-Key
Mask

Changed
in CR3 TraceSave Set Save Set Save Set Save Set Save Set

Figure 5-3. Summary of Linkage Instructions without the Linkage Stack

L 15,ACON
BASSM 14,15
…
EXTRN SUB

ACON DC A(X'80000000'+SUB)

BSM 0,14

LG 15,ACONE
BASSM 14,15
…
EXTRN SUB

ACONE DC AD(X'1'+SUB)

BSM 0,14

Program Execution 5-21

When a change of the addressing mode is not
required, BRANCH AND LINK or BRANCH AND
SAVE should be used instead of BASSM.

The BRANCH AND LINK (BAL, BALR) instruction is
provided primarily for compatibility with System/370.
It is defined to operate in the 31-bit and 64-bit
addressing modes to increase the probability that an
old, straightforward program can be modified to oper-
ate in those addressing modes with minimal or no
change. It is recommended, however, that BRANCH
AND SAVE (BAS and BASR) be used instead and
that BRANCH AND LINK be avoided since it places
nonzero information in bit positions 32-39 of the gen-
eral register in the 24-bit addressing mode, which
may lead to problems and may decrease perfor-
mance.

BRANCH RELATIVE AND SAVE and BRANCH REL-
ATIVE AND SAVE LONG may be used instead of
BRANCH AND SAVE.

It is assumed that the normal return from a subrou-
tine called in the 24-bit or 31-bit addressing mode by
BRANCH AND LINK (BAL or BALR) will be:

However, the standard “return instruction”:

operates correctly for all cases except for a calling
BAL executed in the 24-bit addressing mode. In the
24-bit addressing mode, BAL causes an ILC of 10 to
be placed in bit positions 32 and 33 of the link regis-
ter. Thus, a BSM would return in the 31-bit address-
ing mode. Note that an EXECUTE of BALR in the
24-bit addressing mode also causes the same ILC
effect; an EXECUTE RELATIVE LONG of BALR in
the 24-bit addressing mode causes a similar ILC
effect (the ILC is 11 binary).

The BRANCH AND SAVE (BAS, BASR) instruction is
provided to be used for subroutine linkage to any pro-
gram either within the same CSECT or known to be
in the same addressing mode. BASR with the R2 field
0 is also useful for obtaining addressability to the
instruction stream by getting a 31-bit address, unclut-

tered by leftmost fields, in the 24-bit addressing
mode.

The instruction for returning from a routine called in
the 24-bit or 31-bit addressing mode by BRANCH
AND SAVE (BAS or BASR) may be either:

or:

The instruction for returning from a routine called in
the 64-bit addressing mode by BAS or BASR must
be BCR; BSM would set the 24-bit or 31-bit address-
ing mode, depending on bit 32 of the link register (an
address bit), because bit 63 of the link register (the
rightmost bit of an instruction address) is zero. BSM
can always be used as the return instruction if
BASSM is used as the calling instruction.

In some cases, it may be desirable to rewrite a pro-
gram that is called by an old program which has not
been rewritten. In such a case, the old program,
which operates in the 24-bit or 31-bit addressing
mode, will be given the address of an intermediate
program that will set up the correct entry and return
modes and then call the rewritten program. Such an
intermediate program is sometimes referred to as a
glue module. The instruction BRANCH AND SET
MODE (BSM) with a nonzero R1 field provides the
function necessary to perform this operation effi-
ciently. This is shown in Figure 5-4 on page 5-22 for a
linkage from a 24-bit-mode program to a 31-bit-mode
program.

Note that the “BSM 14,15” in the glue module causes
either an indication of the 64-bit addressing mode to
be saved in bit position 63 of general register 14 or
an indication of one of the 24-bit and 31-bit address-
ing modes to be saved in bit position 32 of the regis-
ter, and that the other bits of the register are
unchanged. Thus, when “BSM 0,14” is executed in
the new program, control passes directly back to the
old program without passing through the glue module
again. The glue module could give control to a pro-
gram in the 64-bit addressing mode and possibly
above the 2 G-byte boundary by loading an eight-

BCR 15,14

BSM 0,14

BCR 15,14

BSM 0,14

5-22 The z/Architecture CPU Architecture

byte A-type address constant, with bit 63 set to one,
instead of a four-byte A-type address constant.

Interruptions

Interruptions permit the CPU to change state as a
result of conditions external to the system, in sub-
channels or input/output (I/O) devices, in other
CPUs, or in the CPU itself. Details are to be found in
Chapter 6, “interruptions”.

Six classes of interruption conditions are provided:
external, I/O, machine check, program, restart, and
supervisor call. Each class has two related PSWs,
called old and new, in permanently assigned real
storage locations. In all classes, an interruption
involves storing information identifying the cause of
the interruption, storing the current PSW at the old-
PSW location, and fetching the PSW at the new-
PSW location, which becomes the current PSW.

The old PSW contains CPU-status information nec-
essary for resumption of the interrupted program. At
the conclusion of the program invoked by the inter-
ruption, the instruction LOAD PSW EXTENDED may
be used to restore the current PSW to the value of
the old PSW.

Types of Instruction Ending

Instruction execution ends in one of five ways: com-
pletion, nullification, suppression, termination, and
partial completion.

Partial completion of instruction execution occurs
only for interruptible instructions; it is described in
“Interruptible Instructions” on page 5-24.

Completion
Completion of instruction execution provides results
as called for in the definition of the instruction. When
an interruption occurs after the completion of the exe-
cution of an instruction, the instruction address in the
old PSW designates the next sequential instruction.

Suppression
Except as noted below, suppression of instruction
execution causes the instruction to be executed as if
it specified “no operation.” The contents of any result
fields, including the condition code, are not changed.
The instruction address in the old PSW on an inter-
ruption after suppression designates the next
sequential instruction.

Figure 5-4. Glue Module for Linkage from the 24-Bit Mode to the 31-Bit Mode

Old Program

L 15,OLDACON
BALR 14,15

EXTRN GLUE

OLDACON DC A(GLUE)

Glue Module

GLUE CSECT
USING *,15
L 15,NEWACON
BSM 14,15

EXTRN NEW

NEWACON DC A(NEW)

New Program

NEW CSECT
USING *,15

BSM 0,14

Program Execution 5-23

When (a) the AFP-register (additional floating-point
register) control bit, bit 45 of control register 0, is one,
(b) either an IEEE-invalid-operation condition or an
IEEE-division-by-zero condition is recognized, and
(c) the respective IEEE mask bit in the floating-point-
control (FPC) register is one, then the resulting data-
exception program interruption is considered to be
suppressing, even though the FPC is altered. See
“Data-Exception Code (DXC)” on page 6-17 for
details.

When (a) the additional floating-point register (AFP-
register) control bit, bit 45 of control register 0, is one,
(b) the vector enablement control, bit 46 of control
register 0, is one, and (c) a vector-processing excep-
tion is recognized, then the resulting vector-process-
ing exception program interruption is considered to
be suppressing, even though the FPC is altered. See
“Vector-Exception Code” on page 6-20 for details.

In the access-register mode, if an access exception
defined to be suppressing is recognized for an oper-
and of PERFORM LOCKED OPERATION whose
address is in the parameter list, the ALET associated
with the address is placed into the access register
designated by the R3 field of the instruction.

Nullification
Except as noted below, nullification of instruction exe-
cution has the same effect as suppression, except
that when an interruption occurs after the execution
of an instruction has been nullified, the instruction
address in the old PSW designates the instruction
whose execution was nullified (or an execute-type
instruction, as appropriate) instead of the next
sequential instruction.

In the access-register mode, if an access exception
defined to be nullifying is recognized for an operand
of PERFORM LOCKED OPERATION whose
address is in the parameter list, the ALET associated
with the address is placed into the access register
designated by the R3 field of the instruction.

Termination
Termination of instruction execution causes the con-
tents of any fields due to be changed by the instruc-
tion to be unpredictable. The operation may replace
all, part, or none of the contents of the designated
result fields and may change the condition code if
such change is called for by the instruction. Unless
the interruption is caused by a machine-check condi-
tion, the validity of the instruction address in the

PSW, the interruption code, and the ILC are not
affected, and the state or the operation of the
machine is not affected in any other way. The instruc-
tion address in the old PSW on an interruption after
termination designates the next sequential instruc-
tion.

The terms completion, nullification, partial comple-
tion, suppression, and termination, and their corre-
sponding effects, apply to the ending of individual
instructions. When a transaction aborts, all transac-
tional stores made by instructions while the CPU was
in the transactional-execution mode are discarded,
nontransactional stores are committed, and general
registers designated by the general-register-save
mask (GRSM) of the outermost TRANSACTION
BEGIN instruction are restored to their contents prior
to transactional execution. Any other general regis-
ters (not designated by the GRSM), access registers,
vector registers, and floating-point registers (includ-
ing the floating-point control register) that were
altered while the CPU was in the transactional-exe-
cution mode retain their contents.

When a transaction is aborted, the program-status
word is replaced with the transaction-abort PSW,
except that the condition code is set to indicate the
severity of the abort condition. In the case of a trans-
action that is aborted due to conditions that result in
an interruption, this PSW becomes the old PSW
stored as a result of the interruption. See “Transac-
tion-Abort PSW (TAPSW)” on page 5-93 for further
details.

If a transaction is aborted due to any cause except a
program-interruption condition, the instruction
address that is placed into the aborted-transaction-
instruction-address field of the transaction diagnostic
block is that of the instruction that would have been
executed next in the absence of the abort. If a trans-
action is aborted due to a program-interruption condi-
tion, the instruction address that is placed into the
aborted-transaction-instruction-address field is that
of either the instruction at which the exception condi-
tion was detected or the instruction that would have
been executed next in the absence of the abort,
depending on whether the program-interruption con-
dition was or was not nullifying, respectively. See
“Aborted-Transaction Instruction Address (ATIA)” on
page 5-95 for additional details.

Programming Note: Although the execution of an
instruction is treated as a no-operation when sup-
pression or nullification occurs, stores may be per-

5-24 The z/Architecture CPU Architecture

formed as the result of the implicit tracing action
associated with some instructions. See “Tracing” on
page 4-12.

Interruptible Instructions

Point of Interruption
For most instructions, the entire execution of an
instruction is one operation. An interruption is permit-
ted between operations; that is, an interruption can
occur after the performance of one operation and
before the start of a subsequent operation.

For the following instructions, referred to as interrupt-
ible instructions, an interruption is permitted also
after partial completion of the instruction:

• COMPARE AND FORM CODEWORD
• COMPARE LOGICAL LONG
• COMPARE UNTIL SUBSTRING EQUAL
• COMPRESSION CALL
• INVALIDATE PAGE TABLE ENTRY (when the

IPTE-range facility is installed, and the R3 field is
nonzero)

• MOVE LONG
• PERFORM FRAME MANAGEMENT FUNCTION

when the EDAT-1 facility is installed and the
frame-size code designates a 1 M-byte frame, or
when the EDAT-2 facility is installed and the
frame-size code designates a 2 G-byte frame

• SET STORAGE KEY EXTENDED (when the
enhanced-DAT facility is installed, and the multi-
ple-block control is one)

• TEST BLOCK
• UPDATE TREE

Unit of Operation
Whenever points of interruption that include those
occurring within the execution of an interruptible
instruction are discussed, the term “unit of operation”
is used. For a noninterruptible instruction, the entire
execution consists, in effect, in the execution of one
unit of operation.

The execution of an interruptible instruction is consid-
ered to consist in the execution of a number of units
of operation, and an interruption is permitted
between units of operation. The amount of data pro-
cessed in a unit of operation depends on the particu-
lar instruction and may depend on the model and on
the particular condition that causes the execution of
the instruction to be interrupted.

When an instruction execution consists of a number
of units of operation and an interruption occurs after
some, but not all, units of operation have been com-
pleted, the instruction is said to be partially com-
pleted. In this case, the type of ending (completion,
nullification, or suppression) is associated with the
unit of operation. In the case of termination, the
entire instruction is terminated, not just the unit of
operation.

An exception may exist that causes the first unit of
operation of an interruptible instruction not to be
completed. In this case when the ending is nullifica-
tion or suppression, all operand parameters and
result locations remain unchanged, except that the
condition code is unpredictable if the instruction is
defined to set the condition code.

When a storage-alteration PER event is recognized,
fewer than 4K additional bytes are stored to each
operand location intersecting with the designated
PER storage-area before the event is indicated by an
interruption that may occur on completion of a unit of
operation. When a zero-address-detection PER
event is recognized, the event is indicated by an
interruption that may occur on completion of a unit of
operation.

Execution of Interruptible Instructions
The execution of an interruptible instruction is com-
pleted when all units of operation associated with
that instruction are completed. When an interruption
occurs after completion, nullification, or suppression
of a unit of operation, all preceding units of operation
have been completed, and subsequent units of oper-
ation and instructions have not been started. The
main difference between these types of ending is the
handling of the current unit of operation and whether
the instruction address stored in the old PSW identi-
fies the current instruction or the next sequential
instruction.

At the time of an interruption, changes to storage
locations or register contents which are due to be
made by instructions following the interrupted
instruction have not yet been made.

Completion: On completion of the last unit of oper-
ation of an interruptible instruction, the instruction
address in the old PSW designates the next sequen-
tial instruction. The result location for the current unit
of operation has been updated. It depends on the
particular instruction how the operand parameters

Program Execution 5-25

are adjusted. On completion of a unit of operation
other than the last one, the instruction address in the
old PSW designates the interrupted instruction or an
execute-type instruction, as appropriate. The result
location for the current unit of operation has been
updated. The operand parameters are adjusted such
that the execution of the interrupted instruction is
resumed from the point of interruption when the old
PSW stored during the interruption is made the cur-
rent PSW.

Nullification: When a unit of operation is nullified,
the instruction address in the old PSW designates
the interrupted instruction or an execute-type instruc-
tion, as appropriate. The result location for the cur-
rent unit of operation remains unchanged. The
operand parameters are adjusted such that, if the
instruction is reexecuted, execution of the interrupted
instruction is resumed with the current unit of opera-
tion.

Suppression: When a unit of operation is sup-
pressed, the instruction address in the old PSW des-
ignates the next sequential instruction. The operand
parameters, however, are adjusted so as to indicate
the extent to which instruction execution has been
completed. If the instruction is reexecuted after the
conditions causing the suppression have been
removed, the execution is resumed with the current
unit of operation.

Termination: When an exception which causes
termination occurs as part of a unit of operation of an
interruptible instruction, the entire operation is termi-
nated, and the contents, in general, of any fields due
to be changed by the instruction are unpredictable.
On such an interruption, the instruction address in
the old PSW designates the next sequential instruc-
tion.

The differences among the four types of ending for a
unit of operation are summarized in Figure 5-5 on
page 5-25.

If an instruction is defined to set the condition code,
the execution of the instruction makes the condition
code unpredictable except when the last unit of oper-
ation has been completed.

Condition-Code Alternative to
Interruptibility

The following instructions are not interruptible
instructions but instead may be completed after per-
forming a CPU-determined subportion of the pro-
cessing specified by the parameters of the
instructions:

• CHECKSUM
• CIPHER MESSAGE
• CIPHER MESSAGE WITH AUTHENTICATION
• CIPHER MESSAGE WITH CIPHER FEEDBACK
• CIPHER MESSAGE WITH CHAINING
• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH OUTPUT FEED-

BACK
• COMPARE LOGICAL LONG EXTENDED
• COMPARE LOGICAL LONG UNICODE
• COMPARE LOGICAL STRING
• COMPUTE DIGITAL SIGNATURE AUTHENTI-

CATION
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICATION

CODE
• CONVERT UTF-16 TO UTF-32
• CONVERT UTF-16 TO UTF-8
• CONVERT UTF-32 TO UTF-16
• CONVERT UTF-32 TO UTF-8
• CONVERT UTF-8 TO UTF-16
• CONVERT UTF-8 TO UTF-32
• DEFLATE CONVERSION CALL
• MOVE LONG EXTENDED

Unit of
Operation Is

Instruction
Address

Operand
Parameters

Current Result
Location

Completed

Last unit of
operation

Next
instruction

Depends on the
instruction

Changed

Any other
unit of operation

Current
instruction

Next unit of
operation

Changed

Nullified Current
Instruction

Current unit of
operation

Unchanged

Suppressed Next
Instruction

Current unit of
operation

Unchanged

Terminated Next
instruction

Unpredictable Unpredictable

Figure 5-5. Types of Ending for a Unit of Operation

5-26 The z/Architecture CPU Architecture

• MOVE LONG UNICODE
• MOVE STRING
• PERFORM CRYPTOGRAPHIC COMPUTATION
• PERFORM RANDOM NUMBER OPERATION
• SEARCH STRING
• SEARCH STRING UNICODE
• TRANSLATE AND TEST EXTENDED
• TRANSLATE AND TEST REVERSE

EXTENDED
• TRANSLATE EXTENDED
• TRANSLATE ONE TO ONE
• TRANSLATE ONE TO TWO
• TRANSLATE TWO TO ONE
• TRANSLATE TWO TO TWO

When any of the above instructions is completed
after performing only a CPU-determined amount of
processing instead of all specified processing, the
instruction sets condition code 3. On such comple-
tion, the instruction address in the PSW designates
the next sequential instruction, and the operand
parameters of the instruction have been adjusted so
that the processing of the instruction can be resumed
simply by branching back to the instruction to exe-
cute it again. When the instruction has performed all
specified processing, it sets a condition code other
than 3.

The points at which any of the above instructions
may set condition code 3 are comparable to the
points of interruption of an interruptible instruction,
and the amount of processing between adjacent
points is comparable to a unit of operation of an inter-
ruptible instruction. However, since the instruction is
not interruptible, each execution is considered the
execution of one unit of operation.

Completion with the setting of condition code 3 per-
mits interruptions to occur. Depending on the model
and the instruction, condition code 3 may or may not
be set when there is not a need for an interruption.

The following applies to instructions which have a
condition-code alternative to interruptibility and per-
form an operation which may be suspended and sub-
sequently resumed:

• When a storage-alteration PER event is recog-
nized, fewer than 4K additional bytes are stored
to each operand location intersecting with the
designated PER storage-area before the event is
indicated by an interruption which may occur on
completion of a CPU-determined amount of data
(resulting in condition code 3 being set).

• When a zero-address-detection PER event is
recognized, the event is indicated by an interrup-
tion which may occur on completion of a CPU-
determined amount of data (resulting in condition
code 3 being set).

The COMPARE UNTIL SUBSTRING EQUAL and
COMPRESSION CALL instructions both are inter-
ruptible instructions and ones that may set condition
code 3 after performing a CPU-determined amount
of processing.

Programming Notes:

1. Any interruption, other than supervisor call and
some program interruptions, can occur after a
partial execution of an interruptible instruction. In
particular, interruptions for external, I/O,
machine-check, restart, and program interrup-
tions for access exceptions and PER events can
occur between units of operation.

2. The amount of data processed in a unit of opera-
tion of an interruptible instruction depends on the
model and may depend on the type of condition
which causes the execution of the instruction to
be interrupted or stopped. Thus, when an inter-
ruption occurs at the end of the current unit of
operation, the length of the unit of operation may
be different for different types of interruptions.
Also, when the stop function is requested during
the execution of an interruptible instruction, the
CPU enters the stopped state at the completion
of the execution of the current unit of operation.
Similarly, in the instruction-step mode, only a sin-
gle unit of operation is performed, but the unit of
operation for the various cases of stopping may
be different.

Exceptions to Nullification and
Suppression

In certain unusual situations, the result fields of an
instruction having a store-type operand are changed
in spite of the occurrence of an exception which
would normally result in nullification or suppression.
These situations are exceptions to the general rule
that the operation is treated as a no-operation when
an exception requiring nullification or suppression is
recognized. Each of these situations may result in the
turning on of the change bit associated with the
store-type operand, even though the final result in
storage may appear unchanged. Depending on the

Program Execution 5-27

particular situation, additional effects may be observ-
able. The extent of these effects is described along
with each of the situations.

All of these situations are limited to the extent that a
store access does not occur and the change bit is not
set when the store access is prohibited. For the CPU,
a store access is prohibited whenever an access
exception exists for that access, or whenever an
exception exists which is of higher priority than the
priority of an access exception for that access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the instruc-
tion address in the old PSW designates the next
sequential instruction. When an interruption for an
exception requiring nullification occurs, the instruc-
tion address in the old PSW designates the instruc-
tion causing the exception even though partial results
may have been stored.

Programming Note: The term translation-associ-
ated access exception refers to any of the following
exceptions: ALE-sequence, ALEN-translation, ALET-
specification, ASCE-type, ASTE-sequence (during
ART), ASTE-validity (during ART), addressing due to
the contents of an ART- or DAT-table entry, extended-
authority, page-translation, region-first-translation,
region-second-translation, region-third-translation,
segment-translation, translation-specification. In
some models prior to z/Architecture, if a CPU made a
store-type reference where part of the operand was
in an accessible page, and the other part of the oper-
and was in a page for which a translation-associated
access exception existed, the I/O subsystem could
observe the accessible portion of the operand
changed to an intermediate value that was then
restored to the original value. The visibility of an inter-
mediate operand was limited to the I/O subsystem;
other CPUs did not observe an intermediate value.

This behavior is not applicable to any machine that is
capable of operating in the z/Architecture architec-
tural mode.

Modification of DAT-Table Entries
When a valid and attached DAT-table entry is
changed to a value which would cause an exception,
and when, before the TLB is cleared of entries which
qualify for substitution for that entry, an attempt is
made to refer to storage by using a virtual address
requiring that entry for translation, the contents of
any fields due to be changed by the instruction are

unpredictable. Results, if any, associated with the vir-
tual address whose DAT-table entry was changed
may be placed in those real locations originally asso-
ciated with the address. Furthermore, it is unpredict-
able whether or not an interruption occurs for an
access exception that was not initially applicable. On
some machines, this situation may be reported by
means of an instruction-processing-damage machine
check with the delayed-access-exception bit also
indicated.

Trial Execution for Editing Instructions
and Translate Instruction
For the instructions EDIT, EDIT AND MARK, and
TRANSLATE, the portions of the operands that are
actually used in the operation may be established in
a trial execution for operand accessibility that is per-
formed before the execution of the instruction is
started. This trial execution consists in an execution
of the instruction in which results are not stored. If
the first operand of TRANSLATE or either operand of
EDIT or EDIT AND MARK is changed by another
CPU or by a channel program, after the initial trial
execution but before completion of execution, the
contents of any fields due to be changed by the
instruction are unpredictable.

Authorization Mechanisms

Most of the authorization mechanisms that are
described in this section permit the control program
to establish the degree of function provided to a par-
ticular semiprivileged program. These authorization
mechanisms are intended for use by programs con-
sidered to be semiprivileged, that is, programs that
are executed in the problem state but which may be
authorized to use additional capabilities. With these
authorization controls, a hierarchy of programs may
be established, with programs at a higher level hav-
ing a greater degree of privilege or authority than
programs at a lower level. The range of functions
available at each level, and the ability to transfer con-
trol from a lower to a higher level, are specified in
tables which are managed by the control program.
When the linkage stack is used, a nonhierarchical
transfer of control also can be specified.

A semiprivileged instruction is one which can be exe-
cuted in the problem state, but which is subject to the
control of one or more of the authorization mecha-
nisms described in this section. There are 25 semi-

5-28 The z/Architecture CPU Architecture

privileged instructions and also the privileged LOAD
ADDRESS SPACE PARAMETERS instruction that
are controlled by the authorization mechanisms. All
of these semiprivileged and privileged instructions
are described in Chapter 10, “Control Instructions”.

This section also describes, or refers to descriptions
of, authorization mechanisms that are available when
the ASN-and-LX-reuse facility is installed. These
mechanisms do not apply to particular programs or
provide for a hierarchy of programs.

The instructions controlled by the authorization
mechanisms are listed in Figure 5-6 on page 5-31.
The figure also shows additional authorization mech-
anisms that do not control specifically semiprivileged
instructions; they control implicit access-register
translation (access-register translation as part of an
instruction making a storage reference) and also
access-register translation in the LOAD PAGE-
TABLE-ENTRY ADDRESS, LOAD REAL ADDRESS,
STORE REAL ADDRESS, TEST ACCESS, and
TEST PROTECTION instructions and a special form
of access-register translation in the BRANCH IN
SUBSPACE GROUP instruction. These additional
mechanisms (the extended authorization index, ALE
sequence number, and ASTE sequence number)
index and ALE sequence number) are described in
“Access-Register-Specified Address Spaces” on
page 5-46, and the ASTE instance number is further
described in “ASN-Second-Table-Entry Sequence
Number” on page 3-24. The figure also shows the
LSTE sequence number, which may be used in PC-
number translation in the PROGRAM CALL instruc-
tion and is described in “ASN-and-LX-Reuse Control
(R):” on page 5-35.

Mode Requirements
Most of the semiprivileged instructions can be exe-
cuted only with DAT on. Basic PROGRAM CALL,
PROGRAM TRANSFER, and PROGRAM TRANS-
FER WITH INSTANCE, are valid only in the primary-
space mode. (Basic PROGRAM CALL is the PRO-
GRAM CALL operation when the linkage stack is not
used. When the linkage stack is used, the PRO-
GRAM CALL operation is called stacking PROGRAM
CALL). MOVE TO PRIMARY and MOVE TO SEC-
ONDARY are valid only in the primary-space and
secondary-space modes. BRANCH AND STACK,
stacking PROGRAM CALL, and PROGRAM
RETURN are valid only in the primary-space and
access-register modes. EXTRACT STACKED REG-

ISTERS, EXTRACT STACKED STATE, and MODIFY
STACKED STATE are valid only in the primary-
space, access-register, and home-space modes.
When a semiprivileged instruction is executed in an
invalid translation mode, a special-operation excep-
tion is recognized.

PROGRAM TRANSFER and PROGRAM TRANS-
FER WITH INSTANCE specify a new value for the
problem-state bit in the PSW. If a program in the
problem state attempts to execute PROGRAM
TRANSFER or PROGRAM TRANSFER WITH
INSTANCE and set the supervisor state, a privileged-
operation exception is recognized. A privileged-oper-
ation exception is also recognized on an attempt to
use RESUME PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE CONTROL
FAST to set the home-space mode in the problem
state.

Extraction-Authority Control
The extraction-authority-control bit is located in bit
position 36 of control register 0. In the problem state,
bit 36 must be one to allow completion of these
instructions:

• EXTRACT PRIMARY ASN
• EXTRACT PRIMARY ASN AND INSTANCE
• EXTRACT SECONDARY ASN
• EXTRACT SECONDARY ASN AND

INSTANCE
• INSERT ADDRESS SPACE CONTROL
• INSERT PSW KEY
• INSERT VIRTUAL STORAGE KEY

Otherwise, a privileged-operation exception is recog-
nized. The extraction-authority control is not exam-
ined in the supervisor state.

PSW-Key Mask
The PSW-key mask consists of bits 32-47 in control
register 3, with the bits corresponding to the values
0-15, respectively, of the PSW key. These bits are
used in the problem state to control which keys and
entry points are authorized for the program. The
PSW-key mask is modified by PROGRAM TRANS-
FER, and PROGRAM TRANSFER WITH
INSTANCE, is modified or loaded by BRANCH AND
SET AUTHORITY and PROGRAM CALL, and is
loaded by LOAD ADDRESS SPACE PARAMETERS
and PROGRAM RETURN. The PSW-key mask is
used in the problem state to control the following:

Program Execution 5-29

• The PSW-key values that can be set by means of
the instruction SET PSW KEY FROM
ADDRESS.

• The PSW-key values that are valid for the six
move instructions that specify a second access
key: MOVE PAGE, MOVE TO PRIMARY, MOVE
TO SECONDARY, MOVE WITH DESTINATION
KEY, MOVE WITH KEY, and MOVE WITH
SOURCE KEY.

• The PSW-key values that are valid for the MOVE
WITH OPTIONAL SPECIFICATIONS instruction
when a key is explicitly specified for the first, sec-
ond, or both operands.

• The entry points which can be called by means
of PROGRAM CALL. In this case, the PSW-key
mask is ANDed with the authorization key mask
in the entry-table entry, and, if the result is zero,
the program is not authorized.

When an instruction in the problem state attempts to
use a key not authorized by the PSW-key mask, a
privileged-operation exception is recognized. The
same action is taken when an instruction in the prob-
lem state attempts to call an entry not authorized by
the PSW-key mask. The PSW-key mask is not exam-
ined in the supervisor state, all keys and entry points
being valid.

Secondary-Space Control
Bit 37 of control register 0 is the secondary-space-
control bit. This bit provides a mechanism whereby
the control program can indicate whether or not the
secondary region-first table, region-second table,
region-third table or segment table has been estab-
lished. Bit 37 may be required to be one to allow
completion of SET ADDRESS SPACE CONTROL
FAST and MOVE WITH OPTIONAL SPECIFICA-
TIONS, and it must be one to allow completion of
these instructions:

• MOVE TO PRIMARY
• MOVE TO SECONDARY
• MOVE WITH OPTIONAL SPECIFICATIONS,

when either operand-access control designates
the secondary space

• SET ADDRESS SPACE CONTROL

Otherwise, a special-operation exception is recog-
nized. The secondary-space control is examined in
both the problem and supervisor states.

Subsystem-Linkage Control
Bit 192 of the primary ASN-second-table entry is the
subsystem-linkage-control bit. The subsystem-link-
age control must be one to allow completion of these
instructions:

• PROGRAM CALL
• PROGRAM TRANSFER
• PROGRAM TRANSFER WITH INSTANCE

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined in
both the problem and supervisor states and controls
both the space-switching and current-primary ver-
sions of the instructions.

ASN-Translation Control
Bit 44 of control register 14 is the ASN-translation-
control bit. This bit provides a mechanism whereby
the control program can indicate whether ASN trans-
lation may occur while a particular program is being
executed. Bit 44 must be one to allow completion of
these instructions:

• LOAD ADDRESS SPACE PARAMETERS
• SET SECONDARY ASN
• SET SECONDARY ASN WITH INSTANCE
• PROGRAM CALL with space switching
• PROGRAM RETURN with space switching and

also when the restored secondary ASN is not
equal to the restored primary ASN

• PROGRAM TRANSFER with space switching
• PROGRAM TRANSFER WITH INSTANCE with

space switching

Otherwise, a special-operation exception is recog-
nized. The ASN-translation control is examined in
both the problem and supervisor states. The ASN-
translation control is examined by PROGRAM CALL
even though PROGRAM CALL obtains the address
of the ASN-second-table entry directly from the
entry-table entry instead of by performing ASN trans-
lation.

Authorization Index
The authorization index is contained in bit positions
32-47 of control register 4. The authorization index is
associated with the primary address space and is
loaded along with the PASN when PROGRAM CALL
with space switching, PROGRAM RETURN with
space switching, PROGRAM TRANSFER with space
switching, PROGRAM TRANSFER WITH INSTANCE
with space switching, or LOAD ADDRESS SPACE

5-30 The z/Architecture CPU Architecture

PARAMETERS is executed. The authorization index
is used to determine whether a program is authorized
to establish a particular address space. A program
may be authorized to establish the address space as
a secondary-address space, as a primary-address
space, or both. The authorization index is examined
in both the problem and supervisor states.

Associated with each address space is an authority
table. The authorization index is used to select an
entry in the authority table. Each entry contains two
bits, which indicate whether the program with that
authorization index is permitted to establish the
address space as a primary address space, as a
secondary address space, or both.

The instructions SET SECONDARY ASN with space
switching, and SET SECONDARY ASN WITH
INSTANCE with space switching, and the instruction
PROGRAM RETURN when the restored secondary
ASN is not equal to the restored primary ASN, use
the authorization index to test the secondary-author-
ity bit in the authority-table entry to determine if the
address space can be established as a secondary
address space. The tested bit must be one; other-
wise, a secondary-authority exception is recognized.

The instructions PROGRAM TRANSFER with space
switching and PROGRAM TRANSFER WITH
INSTANCE with space switching use the authoriza-
tion index to test the primary-authority bit in the
authority-table entry to determine if the address
space can be established as a primary address
space. The tested bit must be one; otherwise, a pri-
mary-authority exception is recognized.

The instruction PROGRAM CALL with space switch-
ing causes a new authorization index to be loaded
from the ASN-second-table entry. This permits the
program which is called to be given an authorization
index which authorizes it to access more or different
address spaces than those authorized for the calling
program. The instructions PROGRAM RETURN with
space switching, PROGRAM TRANSFER with space
switching, and PROGRAM TRANSFER WITH
INSTANCE with space switching restore the authori-
zation index that is associated with the returned-to
address space.

The secondary-authority bit in the authority-table
entry may also be used, along with the extended
authorization index, to determine if the program is
authorized to use an access-list entry in access-reg-

ister translation. This is described in “Access-Regis-
ter-Specified Address Spaces” on page 5-46.

Instructions and Controls Related to
ASN-and-LX Reuse
This section describes instructions and controls that
are provided when the ASN-and-LX-reuse facility is
installed. The controls apply in both the problem and
the supervisor states.

Instructions: The ASN-and-LX-reuse facility pro-
vides the following instructions:

• EXTRACT PRIMARY ASN AND INSTANCE
• EXTRACT SECONDARY ASN AND INSTANCE
• PROGRAM TRANSFER WITH INSTANCE
• SET SECONDARY ASN WITH INSTANCE

PROGRAM TRANSFER WITH INSTANCE and SET
SECONDARY ASN WITH INSTANCE are similar to
PROGRAM TRANSFER and SET SECONDARY
ASN, respectively. The space-switching forms of
PROGRAM TRANSFER WITH INSTANCE and SET
SECONDARY ASN WITH INSTANCE compare an
ASTE instance number (ASTEIN) specified by the
program in general register 1 to the ASTEIN in the
ASN-second-table entry for the address space to
which the space switch is to occur. An ASTE-
instance exception is recognized if the two ASTEINs
are not equal.

ASN-and-LX-Reuse Control: Bit 44 of control reg-
ister 0 is the ASN-and-LX-reuse control. This bit is
used to control both ASN reuse and LX reuse, as
described below.

ASN Reuse: When the ASN-and-LX-reuse control
is one, PROGRAM RETURN and LOAD ADDRESS
SPACE PARAMETERS, when they perform ASN
translation of either a primary ASN or a secondary
ASN, compare a specified ASTEIN to the ASTEIN in
the ASN-second-table entry located by the ASN
translation. The two ASTEINs must be equal; other-
wise, PROGRAM RETURN recognizes an ASTE-
instance exception, and LOAD ADDRESS SPACE
PARAMETERS sets condition code 1 or 2. For PRO-
GRAM RETURN, the specified ASTEIN is in the link-
age-stack program-call state entry being unstacked.
For LOAD ADDRESS SPACE PARAMETERS, the
specified ASTEIN is in the first operand of the
instruction.

Program Execution 5-31

Bit 31 of word 1 of the ASN-second-table entry is the
reusable-ASN bit. When the ASN-and-LX-reuse con-
trol is one, the space-switching forms of PROGRAM
TRANSFER and SET SECONDARY ASN recognize
a special-operation exception if the reusable-ASN bit
is one in the ASN-second-table entry located by ASN
translation. These instructions do not make a com-
parison to the ASTEIN in the ASN-second-table
entry.

Bit 30 of word 1 of the ASN-second-table entry is the
controlled-ASN bit. Regardless of the value of the
ASN-and-LX-reuse control, PROGRAM TRANSFER
WITH INSTANCE and SET SECONDARY ASN
WITH INSTANCE recognize a special-operation
exception if the controlled-ASN bit is one in the ASN-
second-table entry located by ASN translation and
the CPU is in the problem state at the beginning of
the operation.

A more detailed description of ASN reuse is given in
“ASN-Second-Table-Entry Instance Number and
ASN Reuse” on page 3-25.

LX Reuse: When the ASN-and-LX-reuse control is
one, the linkage table is replaced by a linkage first
table and, for each valid linkage-first-table entry, a
linkage second table.

The second word of the linkage-second-table entry
used contains an LSTE sequence number
(LSTESN), and PROGRAM CALL recognizes an
LSTE-sequence exception if this LSTESN is nonzero
and not equal to an LSTESN specified by the pro-
gram in general register 15.

A more detailed description of LX reuse is given in
“ASN-and-LX-Reuse Control (R):” on page 5-35.

Function
or
Instruction

Mode
Requirement

Authorization Mechanism Space
Switch
Event
Ctl.
(1.57,
13.57)

Subs.
Link.
Ctl. 6

Sec.-
Space
Ctl.
(0.37)

ASN-
Trans.
Ctl.
(14.44)

Extr.
Auth.
Ctl
(0.36)

PSW-
Key
Mask
(3.32-
3.47)

Auth.
Index
(4.32-
4.47)

Ext.-
Auth.
Index
(8.32-
8.47)

ALE
Seq.
No. 7

ASTE
Seq.
No. 8

ASTE
Inst.
No. 9

LSTE
Seq.
No. 10

Pr.
Op

Trans.
Mode

Implicit AR
translation

A EA ALQ ASQ

BAKR SO-PA

BSA-ba Q
BSA-ra

BSG SO-PSAH ASQ

EPAR SO-PSAH Q
EPAIR SO-PSAH Q

EREG SO-PAH

EREGG SO-PAH
ESAR SO-PSAH Q

ESAIR SO-PSAH Q

ESTA SO-PAH
IAC SO-PSAH Q

IPK Q

IVSK SO-PSAH Q
LASP P SO CC CC CC CC

LPTEA P CCA CCA CCA

LRA P CCA CCA CCA
LRAG P CCA CCA CCA

MSTA SO-PAH

MVCDK Q

MVCOS SO-PSAH SO-MS Q
MVCP SO-PS SO Q

MVCS SO-PS SO Q

Figure 5-6. Summary of Authorization Mechanisms (Part 1 of 2)

5-32 The z/Architecture CPU Architecture

Explanation for Summary of Authorization Mech-
anisms:

1 The PSW-key mask is ANDed with the
authorization key mask in the entry-table
entry.

2 The exception is recognized on an
attempt to set the supervisor state when
in the problem state.

3 The exception is recognized on an
attempt to set the home-space mode
when in the problem state.

4 ASN translation is performed for the new
SASN, and the exception may be recog-
nized, only when the new SASN is not
equal to the new PASN.

5 Secondary authority is checked for the
new SASN, and the exception may be

recognized, only when the new SASN is
not equal to the new PASN.

6 Subsystem-linkage control is bit 92 of
the primary ASN-second-table entry.

7 ALE sequence number is bits 8-15 of the
access-list entry

8 ASTE sequence number is bits 160-191
of the ASN-second-table entry.

9 ASTE instance number is bits 352-383 of
the ASN-second-table entry

10 LSTE sequence number is bits 32-63 of
the linkage-second-table entry.

11 Special-operation exception is recog-
nized if ASN-and-LX-reuse control, bit
44 of control register 0, is one and reus-
able-ASN bit, bit 31 of word 1 of the
ASN-second-table entry, is one.

MVCSK Q

bPC-cp SO-P SO Q1 LSQ
sPC-cp SO-PA SO Q1 LSQ

bPC-ss SO-P SO SO Q1 ASQ LSQ X1

sPC-ss SO-PA SO SO Q1 ASQ LSQ X1
PR-cp SO-PA SO4 SA5 ASQ AIN

PR-ss SO-PA SO PASA5 ASQ AIN X1

PT-cp Q2 SO-P SO
PT-ss11 Q2 SO-P SO SO PA ASQ X1

PTI-cp Q2 SO-P SO

PTI-ss12 Q2 SO-P SO SO PA ASQ AIN X1
RP Q3 X2

SAC Q3 SO-PSAH SO X2

SACF Q3 SO-PSAH SO13 X2
SPKA Q

SSAR-cp SO-PSAH SO

SSAR-ss11 SO-PSAH SO SA ASQ
SSAIR-cp SO-PSAH SO

SSAIR-ss12 SO-PSAH SO SA ASQ AIN

STRAG P
TAR CC CC CC

TPROT P CC CC CC

Function
or
Instruction

Mode
Requirement

Authorization Mechanism Space
Switch
Event
Ctl.
(1.57,
13.57)

Subs.
Link.
Ctl. 6

Sec.-
Space
Ctl.
(0.37)

ASN-
Trans.
Ctl.
(14.44)

Extr.
Auth.
Ctl
(0.36)

PSW-
Key
Mask
(3.32-
3.47)

Auth.
Index
(4.32-
4.47)

Ext.-
Auth.
Index
(8.32-
8.47)

ALE
Seq.
No. 7

ASTE
Seq.
No. 8

ASTE
Inst.
No. 9

LSTE
Seq.
No. 10

Pr.
Op

Trans.
Mode

Figure 5-6. Summary of Authorization Mechanisms (Part 2 of 2)

Program Execution 5-33

12 Special-operation exception is recog-
nized if controlled-ASN bit, bit 30 of word
1 of the ASN-second-table entry, is one
and the CPU is in the problem state at
the beginning of the operation.

13 Whether the exception is recognized is
unpredictable.

A Access-register translation occurs only
in the access-register mode.

AIN ASTE-instance exception.

ALQ ALE-sequence exception.

ASQ ASTE-sequence exception

bPC Basic (nonstacking) PROGRAM CALL.

CC Test results in setting a condition code.

CCA Test results in setting a condition code.
The test occurs only in the access-regis-
ter mode.

CRx.y Control register x, bit position y.

EA Extended-authority exception.

LSQ LSTE-sequence exception.

P Privileged-operation exception for privi-
leged instruction.

PA Primary-authority exception.

PASA Primary-authority exception or second-
ary-authority exception.

Q Privileged-operation exception for semi-
privileged instruction. Authority checked
only in the problem state.

SA Secondary-authority exception.

SO Special-operation exception.

SO-MS The secondary-space control, bit 37 of
control register 0, must be one when
either operand of MOVE WITH
OPTIONAL SPECIFICATIONS is
accessed in the secondary-space mode;
otherwise, a special-operation exception
is recognized.

SO-P CPU must be in the primary-space
mode; special-operation exception if the
CPU is in the secondary-space, access-
register, home-space, or real mode.

SO-PA CPU must be in the primary-space or
access-register mode; special-operation
exception if the CPU is in the secondary-
space, home-space, or real mode.

SO-PAH CPU must be in the primary-space,
access-register, or home-space mode;
special-operation exception if the CPU is
in the secondary-space or real mode.

SO-PS CPU must be in the primary-space or
secondary-space mode; special-opera-
tion exception if the CPU is in the home-
space, access-register, or real mode.

SO-PSAH CPU must be in the primary-space, sec-
ondary-space, access-register, or home-
space mode; special-operation excep-
tion if the CPU is in the real mode.

sPC Stacking PROGRAM CALL.

X1 When bit 57 of control register 1 is one, a
space-switch event is recognized. The
operation is completed.

X2 When bit 57 of control register 1 or 13 is
one and the instruction space is
changed to or from the home address
space, a space-switch event is recog-
nized. The operation is completed.

PC-Number Translation

PC-number translation is the process of translating
PC number to locate an entry-table entry as part of
the execution of the PROGRAM CALL instruction.
When the ASN-and-LX-reuse facility is not installed
or is not enabled, the PC number is 20 bits in bit posi-
tions 44-63 of the effective address used by PRO-
GRAM CALL. When the ASN-and-LX-reuse facility is
installed and enabled, the PC number is 20 bits in bit
positions 44-63 of the effective address if bit 44 of the
address is zero, or it is 32 bits in bit positions 32-63 of
the address if bit 44 of the address is one. The facility
is enabled if the ASN-and-LX-reuse control, bit 44 of
control register 0, is one. The case when the facility is
installed and enabled is referred to simply by saying
that ASN-and-LX reuse is enabled.

To perform the translation of a PC number to locate
an entry-table entry, the PC number is divided into
two fields: a linkage index (LX) and an entry index
(EX). The entry index is always the rightmost eight

5-34 The z/Architecture CPU Architecture

bits of the PC number. When ASN-and-LX reuse is
not enabled, the leftmost 12 bits of the 20-bit PC
number are the linkage index. In this case, the effec-
tive address has the following format:

Bit 44 of the effective address has no special mean-
ing and may be zero or one.

When ASN-and-LX reuse is enabled, the linkage
index is further divided into a linkage first index (LFX)
and a linkage second index (LSX). The linkage sec-
ond index is always the five bits immediately on the
left of the entry index. The size and format of the link-
age first index depend on whether the PC number is
20 bits or 32 bits, which in turn depends on whether
bit 44 of the effective address is zero or one, respec-
tively. In these cases, the effective address has the
following formats:

When ASN-and-LX reuse is enabled and bit 44 of the
effective address is zero, the linkage first index is bits
44-50, or bits 45-50 (LFX2) with a zero appended on
the left. Thus, the linkage first index is seven bits of
which the leftmost bit is always zero. When bit 44 is
one, the linkage first index is bits 45-50 (LFX2) with
bits 32-43 (LFX1) appended on the left, or 18 bits.
However, a linkage first table can contain at most
16,384 entries, and, therefore, the leftmost four bits
of the linkage first index, bits 32-35 of the effective
address, must always be zeros; otherwise, an LFX-
translation exception is recognized.

When ASN-and-LX reuse is not enabled, the transla-
tion of a PC number is performed by means of two
tables: a linkage table and an entry table. When
ASN-and-LX reuse is enabled, the translation is per-
formed by means of three tables: a linkage first table,
a linkage second table, and an entry table. All of
these tables reside in real storage. The linkage-table
designation or linkage-first-table designation resides
in another area in storage, called the primary ASN-
second-table entry (primary ASTE), whose origin is
in control register 5. When there are two levels of
tables, The entry table is designated by means of a
linkage-table entry. When there are three levels of
tables, the linkage second table is designated by
means of a linkage-first-table entry, and the entry
table is designated by means of a linkage-second-
table entry.

Programming Notes:

1. Bit 44 of a PROGRAM CALL effective address
specifying a 32-bit PC number is not a numeric
part of the PC number.

2. The effective address from which a PC number is
derived is subject to the addressing mode in the
current PSW. Therefore, bits 0-39 of the effective
address in the 24-bit addressing mode, and bits
0-32 in the 31-bit addressing mode, are treated
as containing zeros.

PC-Number Translation Control

PC-number translation is controlled by means of the
ASN-and-LX-reuse control in control register 0 and a
linkage-table designation or linkage-first-table desig-
nation in the primary ASN-second-table entry desig-
nated by the contents of control register 5.

Effective Address when ASN-and-LX Reuse Is Not
Enabled

0 31

LX EX
32 44 56 63

Effective Address when ASN-and-LX Reuse Is Enabled
and Bit 44 Is Zero

0 31

LX

LFX

0 LFX2 LSX EX
32 44 45 51 56 63

Effective Address when ASN-and-LX Reuse Is Enabled
and Bit 44 Is One

0 31

LX

LFX

LFX1 1 LFX2 LSX EX
32 44 45 51 56 63

Program Execution 5-35

Control Register 0

ASN-and-LX-Reuse Control (R): Bit 44 of control
register 0 is the ASN-and-LX-reuse-control bit and is
assigned if the ASN-and-LX-reuse facility is installed.
When the bit is one, (1) the PC number is 20 bits if bit
44 of the effective address is zero or 32 bits if bit 44
is one, (2) the PC number is divided into a seven-bit
(bit 44 is zero) or 18 bit (bit 44 is one) linkage first
index, five-bit linkage second index, and eight-bit
entry index, (3) the primary ASN-second-table entry
contains a linkage-first-table designation instead of a
linkage-table designation, and (4) the PC number is
translated by means of a linkage first table, linkage
second table, and entry table.

Also when the ASN-and-LX-reuse-control bit is one,
if the linkage-second-table entry used during PC-
number translation performed by PROGRAM CALL
contains a nonzero linkage-second-table-entry
sequence number (LSTESN), this LSTESN must be
equal to an LSTESN specified in bit positions 0-31 of
general register 15; otherwise, the PROGRAM CALL
instruction cannot be completed, and an LSTE-
sequence exception is recognized.

The ASN-and-LX-reuse control in control register 0 is
examined in both the problem and the supervisor
states. Other uses of this control, related to the ASN-
second-table-entry instance number, are summa-
rized in “ASN-Second-Table-Entry Instance Number
and ASN Reuse” on page 3-25.

This use of the LSTESN allows a linkage index asso-
ciated with a particular LSTESN to be made unus-
able when the linkage index is reassigned to specify
a different (different origin) or conceptually different
(different contents, or containing ASNs that desig-
nate conceptually different address spaces) entry
table. The LX-and-LSTESN combination can be
made unusable by changing the LSTESN in the link-
age-second-table entry.

Control Register 5
Control register 5 specifies the location of the pri-
mary ASN-second-table entry. The register has the
following format:

Primary-ASTE Origin (PASTEO): Bits 33-57 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates the
beginning of the primary ASTE. Bytes 24-27 of the
primary ASTE contain the linkage-table designation if
the ASN-and-LX-reuse facility is not installed or is not
enabled by a one value of the ASN-and-LX-reuse
control in control register 0, or they contain the link-
age-first-table designation if the facility is installed
and enabled.

The linkage-table designation has the following for-
mat:

Subsystem-Linkage Control (V): Bit 0 of the link-
age-table designation is the subsystem-linkage-con-
trol bit. Bit 0 must be one to allow completion of these
instructions:

• PROGRAM CALL
• PROGRAM TRANSFER
• PROGRAM TRANSFER WITH INSTANCE

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined in
both the problem and the supervisor states and con-
trols both the space-switching and current-primary
versions of the instructions.

Linkage-Table Origin: Bits 1-24 of the linkage-
table designation, with seven zeros appended on the
right, form a 31-bit real address that designates the
beginning of the linkage table.

Linkage-Table Length (LTL): Bits 25-31 of the
linkage-table designation specify the length of the
linkage table in units of 128 bytes, thus making the
length of the linkage table variable in multiples of 32
four-byte entries. The length of the linkage table, in
units of 128 bytes, is one more than the value in bit

R
44

0 31

PASTEO
32 33 58 63

V Linkage-Table Origin LTL
0 1 25 31

5-36 The z/Architecture CPU Architecture

positions 25-31. The linkage-table length is com-
pared against the leftmost seven bits of the linkage-
index portion of the PC number to determine whether
the linkage index designates an entry within the link-
age table.

The linkage-first-table designation has the following
format:

Subsystem-Linkage Control (V): Bit 0 of the link-
age-first-table designation has the same definition as
bit 0 of the linkage-table designation.

Linkage-First-Table Origin: Bits 1-23 of the link-
age-first-table designation, with eight zeros
appended on the right, form a 31-bit real address that
designates the beginning of the linkage first table.

Linkage-First-Table Length (LFTL): Bits 24-31 of
the linkage-first-table designation specify the length
of the linkage first table in units of 256 bytes, thus
making the length of the linkage first table variable in
multiples of 64 four-byte entries. The length of the
linkage first table, in units of 256 bytes, is one more
than the value in bit positions 24-31. When bit 44 of
the effective address specifying the PC number is
one, the linkage-first-table length is compared
against the leftmost 12 bits of the linkage-first-index
portion of the PC number, bits 32-43 of the effective
address, to determine whether the linkage first index
designates an entry within the linkage first table.
When bit 44 of the effective address is zero, the link-
age-first-table length is ignored.

PC-Number Translation Tables

If the ASN-and-LX-reuse facility is not installed or is
not enabled by a one value of the ASN-and-LX-reuse
control in control register 0, the PC-number transla-
tion process consists in a two-level lookup using two
tables: a linkage table and an entry table. If the facil-
ity is installed and enabled, the PC-number transla-
tion process consists in a three-level lookup using
three tables: a linkage first table, a linkage second
table, and an entry table. All of these tables reside in
real storage.

Linkage-Table Entries
The entry fetched from the linkage table has the fol-
lowing format:

The fields in the linkage-table entry are allocated as
follows:

LX-Invalid Bit (I): Bit 0 controls whether the entry
table associated with the linkage-table entry is avail-
able.

When the bit is zero, PC-number translation pro-
ceeds by using the linkage-table entry. When the bit
is one, an LX-translation exception is recognized.

Entry-Table Origin: Bits 1-25, with six zeros
appended on the right, form a 31-bit real address that
designates the beginning of the entry table.

Entry-Table Length (ETL): Bits 26-31 specify the
length of the entry table in units of 128 bytes, thus
making the table variable in multiples of four 32-byte
entries. The length of the entry table, in units of 128
bytes, is one more than the value in bit positions
26-31. The entry-table length is compared against
the leftmost six bits of the entry index to determine
whether the entry index designates an entry within
the entry table.

Linkage-First-Table Entries
The entry fetched from the linkage first table has the
following format:

The fields in the linkage-first-table entry are allocated
as follows:

LFX-Invalid Bit (I): Bit 0 controls whether the link-
age second table associated with the linkage-first-
table entry is available.

When the bit is zero, PC-number translation pro-
ceeds by using the linkage-first-table entry. When the
bit is one, an LFX-translation exception is recog-
nized.

Linkage-Second-Table Origin: Bits 1-23, with
eight zeros appended on the right, form a 31-bit real

V Linkage-First-Table Origin LFTL
0 1 24 31

I Entry-Table Origin ETL
0 1 26 31

I Linage-Second-Table Origin
0 1 24 31

Program Execution 5-37

address that designates the beginning of the linkage
second table.

Programming Note: The unused field in the linkage-
first-table entry, bits 24-31, should be set to zeros.
This field is reserved for future extensions, and pro-
grams which place nonzero values in this field may
not operate compatibly on future machines.

Linkage-Second-Table Entries
The entry fetched from the linkage second table has
the following format:

The fields in the linkage-second-table entry are allo-
cated as follows:

LSX-Invalid Bit (I): Bit 0 controls whether the entry
table associated with the linkage-second-table entry
is available.

When the bit is zero, PC-number translation pro-
ceeds by using the linkage-second-table entry. When
the bit is one, an LSX-translation exception is recog-
nized.

Entry-Table Origin: Bits 1-25, with six zeros
appended on the right, form a 31-bit real address that
designates the beginning of the entry table.

Entry-Table Length (ETL): Bits 26-31 specify the
length of the entry table in units of 128 bytes, thus
making the table variable in multiples of four 32-byte
entries. The length of the entry table, in units of 128
bytes, is one more than the value in bit positions
26-31. The entry-table length is compared against
the leftmost six bits of the entry index to determine
whether the entry index designates an entry within
the entry table.

Linkage-Second-Table-Entry Sequence Number
(LSTESN): During PC-number translation in PRO-
GRAM CALL when bits 32-63 are not all zeros, bits
32-63 are compared to an LSTESN specified in bit
positions 0-31 of general register 15. The compari-
son must give an equal result; otherwise, an LSTE-
sequence exception is recognized. When bits 32-63
are all zeros, bits 0-31 of general register 15 are
ignored.

Programming Note: The format of bits 0-31 of the
linkage-second-table entry is the same as the format
of the linkage-table entry.

Entry-Table Entries
The format of bits 0-63 of the entry-table entry
depends on whether the addressing-mode in effect
after the PROGRAM CALL operation is the extended
(64-bit) addressing mode or a basic (24-bit or 31-bit)
addressing mode. This in turn depends on bits 128
and 129 of the entry-table entry.

Bit 128 of the entry-table entry (T) is the PC-type bit.
When bit 128 is zero, PROGRAM CALL is to perform
the basic (nonstacking) operation. When bit 128 is
one, PROGRAM CALL is to perform the stacking
operation.

Bit 129 of the entry-table entry (G) is the entry-
extended-addressing-mode bit. In the basic PRO-
GRAM CALL operation, bit 31 of the current PSW,
the extended-addressing-mode bit, must equal bit
129; otherwise, a special-operation exception is rec-
ognized. In the stacking operation when bit 129 is
zero, bit 31 of the current PSW is set to zero, and bit
32 of the PSW, the basic-addressing-mode bit, is set
with the value of bit 32 of the entry-table entry (A),
the entry-basic-addressing-mode bit. In the stacking
operation when bit 129 is one, bits 31 and 32 of the
current PSW both are set to one. Thus, the basic
PROGRAM CALL operation does not switch between
the extended and a basic addressing mode but can
switch between the 24-bit and 31-bit modes, and the
stacking operation can set any addressing mode.

The 32-byte entry-table entry has the following for-
mat:

I Entry-Table Origin ETL
0 1 26 31

LSTESN
32 63

If Bit 129 is Zero

0 31

A Entry Instruction Address P
32 33 63

If Bit 129 is One

Entry Instruction Address (Part 1)
0 31

Entry Instruction Address (Part 2) P
32 63

Remaining fields (independent of bit 129)

Authorization Key Mask ASN
64 80 95

5-38 The z/Architecture CPU Architecture

The fields in the entry-table entry are allocated as fol-
lows:

Entry Basic Addressing Mode (A): When bit 129
is zero, bit 32 replaces the basic-addressing-mode
bit, bit 32 of the current PSW, as part of the PRO-
GRAM CALL operation. In this case if bit 32 is zero,
bits 33-39 must also be zeros; otherwise, a PC-trans-
lation-specification exception is recognized. When bit
129 is one, bit 32 is a bit of the entry instruction
address, and bit 32 of the PSW remains or is set to
one.

Entry Instruction Address: When bit 129 is zero,
bits 33-62, with 33 zeros appended on the left and a
zero appended on the right, form the instruction
address which replaces the instruction address in the
PSW as part of the PROGRAM CALL operation.
When bit 129 is one, bits 0-62, with a zero appended
on the right, form the instruction address.

Entry Problem State (P): Bit 63 replaces the prob-
lem-state bit, bit 15 of the current PSW, as part of the
PROGRAM CALL operation.

Authorization Key Mask: Bits 64-79 are used to
verify whether the program issuing the PROGRAM
CALL instruction, when in the problem state, is
authorized to call this entry point. The authorization
key mask and the current PSW-key mask in control
register 3 are ANDed, and the result is checked for all
zeros. If the result is all zeros, a privileged-operation
exception is recognized. The test is not performed in
the supervisor state.

ASN: Bits 80-95 specify whether a space-switch-
ing (PC-ss) operation or a to-current-primary (PC-cp)
operation is to occur. When bits 80-95 are zeros, PC-
cp is specified. When bits 80-95 are not all zeros,
PC-ss is specified, and the bits are the ASN that
replaces the primary ASN.

Entry Key Mask: Bits 96-111 may be ORed into or
may replace the PSW-key mask in control register 3
as part of the PROGRAM CALL operation, as deter-
mined by a bit in bit positions 130-159.

PC-Type Bit (T): Bit 128 specifies the basic PRO-
GRAM CALL operation when the bit is zero or the
stacking PROGRAM CALL operation when the bit is
one.

Entry Extended Addressing Mode (G): In the
basic PROGRAM CALL operation, bit 129 must
match the extended-addressing-mode bit, bit 31 of
the current PSW; otherwise, a special-operation
exception is recognized. In the stacking operation, bit
129 replaces bit 31 of the PSW.

ASTE Origin: When bits 80-95 are not all zeros,
bits 161-185, with six zeros appended on the right,
form the 31-bit real ASN-second-table-entry address
that should result from applying the ASN-translation
process to bits 80-95.

Entry Parameter: When bit 129 is zero, bits
224-255 are placed in bit positions 32-63 of general
register 4, and bits 0-31 of the register remain
unchanged, as part of the PC operation. When bit
129 is one, bits 192-255 are placed in general regis-
ter 4 as part of the PC operation.

Bits 130-159 are used in connection with the linkage
stack and are described in “Linkage-Stack Entry-
Table Entries” on page 5-75.

Bits 112-127, 160, and 186-191 are reserved for pos-
sible future extensions and should be zeros.

Programming Note: The entry parameter is
intended to provide the called program with an
address which can be depended upon and used as
the basis of addressability in locating necessary
information which may be environment dependent.
The parameter may be appropriately changed for
each environment by setting up different entry tables.
The alternative — obtaining this information from the
calling program — may require extensive validity
checking or may present an integrity exposure.

Table Summary
Figure 5-7 on page 5-39 presents a summary of
information about the tables used in PC-number
translation, except for the primary ASN second table.

Entry Key Mask
96 112 127

T G Linkage-Stack Fields
128 130 159

ASTE Origin
160 186 191

Entry Parameter (Part 1)
192 223

Entry Parameter (Part 2)
224 255

Program Execution 5-39

PC-Number-Translation Process

When the ASN-and-LX-reuse facility is not installed
or is not enabled, the translation of the PC number is
performed by means of a linkage table and entry
table. When the ASN-and-LX-reuse facility is
installed and enabled, referred to by saying that ASN-
and-LX reuse is enabled, the translation of the PC
number is performed by means of a linkage first
table, linkage second table and entry table. All of
these tables reside in real storage. The translation
also requires the use of the primary ASN-second-
table entry, which also resides in real storage.

For the purposes of PC-number translation, the PC
number is divided into two parts: the leftmost part is
called the linkage index (LX), and the rightmost eight
bits are called the entry index (EX). When ASN-and-
LX reuse is not enabled, the PC number is 20 bits,
and the linkage index is 12 bits. When ASN-and-LX
reuse is enabled, the linkage index also is divided
into two parts: the leftmost part is called the linkage
first index (LFX), and the rightmost five bits are called
the linkage second index (LSX). When ASN-and LX
reuse is enabled and bit 44 of the effective address
specifying the PC number is zero, the PC number is
20 bits, and the linkage first index is seven bits, or,
when bit 44 is one, the PC number is 32 bits, and the
linkage first index is 18 bits.

When ASN-and-LX reuse is not enabled, the LX is
used to select an entry from the linkage table, the
starting address and length of which are specified by
the linkage-table designation in the primary ASTE.
This entry designates the entry table to be used. The
EX field of the PC number is used to select an entry
from the entry table.

When ASN-and-LX reuse is enabled, the LFX is used
to select an entry from the linkage first table, the
starting address and length of which are specified by
the linkage-first-table designation in the primary
ASTE. This entry designates the linkage second
table to be used. The LSX is then used to select an
entry from the linkage second table, which entry des-
ignates the entry table to be used. The EX field of the
PC number is then used to select an entry from the
entry table.

When ASN-and-LX reuse is enabled, a linkage-sec-
ond-table-entry sequence number (LSTESN) in gen-
eral register 15 is compared to the LSTESN in the
linkage-second-table entry if the LSTESN in the entry
is nonzero.

When, for the purposes of PC-number translation,
accesses are made to main storage to fetch entries
from the primary ASTE, linkage table, linkage first
table, linkage second table, and entry table, key-con-
trolled protection does not apply.

The PC-number-translation process is shown in
Figure 5-8 on page 5-40 for when ASN-and-LX-reuse
is not enabled and in Figure 5-9 on page 5-41 for
when it is enabled.

Table
Boundary

(Bytes)
Entry Size

(Bytes)

Unit Size Maximum
Number of

Units

Maximum Size

Bytes Entries Bytes Entries

Linkage Table 12 4 128 32 128 16384 4096

Linkage First Table 256 4 256 64 2561 65536 16384

Linkage Second Table 256 8 256 32 1 256 32

Entry Table 64 32 128 4 64 8192 256

Explanation:

1 A 20-bit PC number can specify an entry only within the first unit. Bits 0-3 of a 32-bit PC number specify
entries beyond the end of the largest possible table.

Figure 5-7. Summary of PC-Number-Translation Tables

5-40 The z/Architecture CPU Architecture

Figure 5-8. PC-Number Translation when ASN-and-LX Reuse Is Not Enabled

Entry Table

Entry-Table Entry (ETE)

R ** A Entry Instruction Address P

AKM ASN EKM

T G Linkage-Stack Fields ASTE Origin

Entry Parameter

Linkage Table

Linkage-Table Entry

R I Entry-Table Origin ETL

(x64)

20-Bit PC Number

LX EX

(x4) (x32)

Linkage-Table Designation in
Primary ASTE

V Linkage-Table Origin LTL

(x128)

+

+

R: Address is real.
**: First word and A of ETE are bits 0-32 of entry-instruction address (EIA) if G is one.

Program Execution 5-41

Figure 5-9. PC-Number Translation when ASN-and-LX Reuse Is Enabled

Entry Table

Entry-Table Entry (ETE)

R ** A Entry Instruction Address P

AKM ASN EKM

T G Linkage-Stack Fields ASTE Origin

Entry Parameter

Linkage First Table

Linkage-First-Table Entry

R I Linkage 2nd Tbl. Origin

(x256)

20-Bit or 32-Bit PC Number

LFX LSX EX

(x4) (x8) (x32)

Linkage-First-Table
Designation in Primary ASTE

V Linkage 1st Tbl. Origin LFTL

(x256)

+

R: Address is real.
*: PC Number is 32 bits if bit 44 of the effective address is one. Bit 44 is not shown in this case.
**: First word and A of ETE are bits 0-32 of entry-instruction address (EIA) if G is one.

Linkage Second Table

Linkage-Second-Table Entry

R I Entry-Table Origin ETL LSTESN

(x64)

+

+

Bits 0-31 of GR15

LSTESN

=
if LSTESN
in LSTE is
 0

LSTE-Sequence
Exception

No

5-42 The z/Architecture CPU Architecture

Obtaining the Linkage-Table or Linkage-
First-Table Designation
The linkage-table or linkage-first-table designation is
obtained from bytes 24-27 of the primary ASN-sec-
ond-table entry, the starting address of which is spec-
ified by the contents of control register 5.

The 31-bit real address of the linkage-table or link-
age-first-table designation is obtained by appending
six zeros on the right to the primary-ASTE origin, bits
33-57 of control register 5, and adding 24. The 31-bit
address is formed and used regardless of whether
the current PSW specifies the 24-bit, 31-bit, or 64-bit
addressing mode.

All four bytes of the linkage-table or linkage-first-table
designation appear to be fetched concurrently from
the primary ASTE as observed by other CPUs. The
fetch access is not subject to protection. When the
storage address which is generated for fetching the
linkage-table or linkage-first-table designation desig-
nates a location which is not available in the configu-
ration, an addressing exception is recognized, and
the operation is suppressed. Besides the linkage-
table or linkage-first-table designation, no other field
in the primary ASTE is examined.

Linkage-Table Lookup
When the ASN-and-LX-reuse facility is not installed
or the ASN-and-LX-reuse-control bit, bit 44 of control
register 0, is zero, the field fetched from the primary
ASTE is a linkage-table designation. The linkage-
index (LX) portion of the PC number, in conjunction
with the linkage-table origin, is used to select an
entry from the linkage table.

The 31-bit real address of the linkage-table entry is
obtained by appending seven zeros on the right to
the contents of bit positions 1-24 of the linkage-table
designation and adding the linkage index, with two
rightmost and 17 leftmost zeros appended. When a
carry into bit position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap from
231 - 1 to 0. The 31-bit address is formed and used
regardless of whether the current PSW specifies the
24-bit, 31-bit, or 64-bit addressing mode.

As part of the linkage-table-lookup process, the left-
most seven bits of the linkage index are compared
against the linkage-table length, bits 25-31 of the
linkage-table designation, to establish whether the

addressed entry is within the linkage table. If the
value in the linkage-table-length field is less than the
value of the seven leftmost bits of the linkage index,
an LX-translation exception is recognized.

All four bytes of the linkage-table entry appear to be
fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection. When
the storage address which is generated for fetching
the linkage-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Bit 0 of the linkage-table entry specifies whether the
entry table corresponding to the linkage index is
available. This bit is inspected, and, if it is one, an LX-
translation exception is recognized.

When no exceptions are recognized in the process of
linkage-table lookup, the entry fetched from the link-
age table designates the origin and length of the cor-
responding entry table.

Linkage-First-Table Lookup
When the ASN-and-LX-reuse facility is installed and
the ASN-and-LX-reuse-control bit, bit 44 of control
register 0, is one, the field fetched from the primary
ASTE is a linkage-first-table designation. The link-
age-first-index (LFX) portion of the PC number, in
conjunction with the linkage-first-table origin, is used
to select an entry from the linkage first table.

When bit 44 of the effective address of PROGRAM
CALL is zero, the PC number is 20 bits, the linkage
first index is bits 44-50 of the effective address, and
the 31-bit real address of the linkage-first-table entry
is obtained by appending eight zeros on the right to
the contents of bit positions 1-23 of the linkage-first-
table designation and adding the linkage first index,
with two rightmost and 22 leftmost zeros appended.

When bit 44 of the effective address of PROGRAM
CALL is one, the PC number is 32 bits, the linkage
first index is bits 32-43 of the effective address
appended on the left of bits 45-50 of the effective
address, and the 31-bit real address of the linkage-
first-table entry is obtained by appending eight zeros
on the right to the contents of bit positions 1-23 of the
linkage-first-table designation and adding the linkage
first index, with two rightmost and 11 leftmost zeros
appended.

Program Execution 5-43

When bit 44 of the effective address is one and a
carry into bit position 0 occurs during the addition to
form the address of a linkage-first-table entry, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap from
231 - 1 to 0.

When bit 44 of the effective address is either zero or
one, the 31-bit address of the linkage-first-table entry
is formed and used regardless of whether the current
PSW specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

As part of the linkage-first-table-lookup process
when bit 44 of the effective address is one, the left-
most 12 bits of the linkage first index are compared
against the linkage-first-table length, bits 24-31 of the
linkage-first-table designation, to establish whether
the addressed entry is within the linkage first table.
For this comparison, the linkage-first-table length is
extended with four zero bits on the left. If the value of
the extended linkage-first-table length is less than the
value of the 12 leftmost bits of the linkage first index,
an LFX-translation exception is recognized.

All four bytes of the linkage-first-table entry appear to
be fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection. When
the storage address which is generated for fetching
the linkage-first-table entry designates a location
which is not available in the configuration, an
addressing exception is recognized, and the opera-
tion is suppressed.

Bit 0 of the linkage-first-table entry specifies whether
the linkage second table corresponding to the linkage
first index is available. This bit is inspected, and, if it
is one, an LFX-translation exception is recognized.

When no exceptions are recognized in the process of
linkage-first-table lookup, the entry fetched from the
linkage first table designates the origin of the corre-
sponding linkage second table.

Linkage-Second-Table Lookup
When the ASN-and-LX-reuse facility is installed and
the ASN-and-LX-reuse-control bit, bit 44 of control
register 0, is one, a linkage-second-table lookup is
performed after a linkage-first-table entry has been
fetched. The linkage-second-index (LSX) portion of
the PC number, in conjunction with the linkage-sec-
ond-table origin, is used to select an entry from the
linkage second table.

The 31-bit real address of the linkage-second-table
entry is obtained by appending eight zeros on the
right to the linkage-second-table origin, bits 1-23 of
the linkage-first-table entry, and adding the linkage
second index, with three rightmost and 23 leftmost
zeros appended. A carry into bit position 0 cannot
occur during this addition. The 31-bit address is
formed and used regardless of whether the current
PSW specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

All eight bytes of the linkage-second-table entry
appear to be fetched concurrently as observed by
other CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gener-
ated for fetching the linkage-second-table entry
designates a location which is not available in the
configuration, an addressing exception is recognized,
and the operation is suppressed.

Bit 0 of the linkage-second-table entry specifies
whether the entry table corresponding to the linkage
second index is available. This bit is inspected, and, if
it is one, an LSX-translation exception is recognized.

When no exceptions are recognized in the process of
linkage-second-table lookup, the entry fetched from
the linkage second table designates the origin of the
corresponding entry table. The linkage-second-table
entry contains a linkage-second-table-entry
sequence number that may be used to test the cor-
rectness of the use of the linkage index.

Linkage-Second-Table-Entry-Sequence-
Number Comparison
The linkage-second-table entry contains a linkage-
second-table-entry sequence number (LSTESN) in
bit positions 32-63. If this LSTESN is nonzero, it is
compared to an LSTESN in bit positions 0-31 of gen-
eral register 15, and an LSTE-sequence exception is
recognized if the two LSTESNs are not equal.

Entry-Table Lookup
When the ASN-and-LX-reuse facility is not installed
or is not enabled, the entry-table entry is located from
a linkage-table entry. When the ASN-and-LX-reuse
facility is installed and enabled, the entry-table entry
is located from a linkage-second-table entry.

The entry-index (EX) portion of the PC number, in
conjunction with the entry-table origin contained in
the linkage-table or linkage-second-table entry, is
used to select an entry from the entry table.

5-44 The z/Architecture CPU Architecture

The 31-bit real address of the entry-table entry is
obtained by appending six zeros on the right to the
entry-table origin bits 1-25 of the linkage-table or link-
age-second-table entry, and adding the entry index,
with five rightmost and 18 leftmost zeros appended.
When a carry into bit position 0 occurs during the
addition, an addressing exception may be recog-
nized, or the carry may be ignored, causing the table
to wrap from 231 - 1 to 0. The 31-bit address is
formed and used regardless of whether the current
PSW specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

As part of the entry-table-lookup process, the six left-
most bits of the entry index are compared against the
entry-table length, bits 26-31 of the linkage-table or
linkage-second-table entry, to establish whether the
addressed entry is within the table. If the value in the
entry-table length field is less than the value of the
six leftmost bits of the entry index, an EX-translation
exception is recognized.

The 32-byte entry-table entry is fetched by using the
real address. The fetch of the entry appears to be
word concurrent, as observed by other CPUs, with
the leftmost word fetched first. The order in which the
remaining seven words are fetched is unpredictable.
The fetch access is not subject to protection. When
the storage address which is generated for fetching
the entry-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

The use that is made of the information fetched from
the entry-table entry is described in the definition of
the PROGRAM CALL instruction.

Recognition of Exceptions during PC-
Number Translation
The exceptions which can be encountered during the
PC-number-translation process and their priority are
described in the definition of the PROGRAM CALL
instruction.

Programming Note: The linkage-table or linkage-
first-table designation is fetched successfully from
the primary ASN-second-table entry regardless of
the value of bit 0, the ASX-invalid bit, in the primary
ASTE. A one value of this bit may cause an excep-
tion to be recognized in other circumstances.

Home Address Space

Facilities are provided which a privileged program,
such as the control program, can use to obtain con-
trol in and access the home address space of a dis-
patchable unit (for example, a task).

Each dispatchable unit normally has an address
space associated with it in which the control program
keeps the principal control blocks that represent the
dispatchable unit. This address space is called the
home address space of the dispatchable unit. Differ-
ent dispatchable units may have the same or different
home address spaces. When the control program ini-
tiates a dispatchable unit, it may set the primary and
secondary address spaces equal to the home
address space of the dispatchable unit. Thereafter,
because of the dispatchable unit’s possible use of the
PROGRAM CALL, PROGRAM RETURN, PRO-
GRAM TRANSFER, or SET SECONDARY ASN
instruction, the control program normally cannot
depend on either the primary address space or the
secondary address space being the home address
space when the home address space must be
accessed, for example, during the processing by the
control program of an interruption. Therefore, the
control program normally must take some special
action to ensure that the home address space is
addressed when it must be accessed. The home-
address-space facilities provide an efficient means to
take this action.

The home-address-space facilities include:

• The home address-space-control element
(HASCE) in control register 13. The HASCE is
used by DAT in the same way as the primary
address-space-control element (PASCE) in con-
trol register 1 and the secondary address-space-
control element (SASCE) in control register 7.

• Home-space mode, which results when DAT is
on and the address-space control, PSW bits 16
and 17, has the value 11 binary. When the CPU
is in the home-space mode, instruction and logi-
cal addresses are home virtual addresses and
are translated by DAT by means of the HASCE.

• The ability of the RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, and SET
ADDRESS SPACE CONTROL FAST instructions
to set the home-space mode in the supervisor
state, and the ability of the INSERT ADDRESS

Program Execution 5-45

SPACE CONTROL instruction to return an indi-
cation of the home-space mode.

• The home space-switch-event control, bit 57 of
control register 13.

• Recognition of a space-switch event upon com-
pletion of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET
ADDRESS SPACE CONTROL FAST instruction
if the CPU was in the home-space mode before
or after the operation but not both before and
after the operation, if any of the following is true:
(1) the primary space-switch-event control, bit 57
of control register 1, is one, (2) the home space-
switch-event control is one, or (3) a PER event is
to be indicated.

The space-switch event can be used to enable or dis-
able PER or tracing when fetching of instructions
begins or ends in particular address spaces.

Access-Register Introduction

Many of the functions related to access registers are
described in this section and in “Subroutine Linkage
without the Linkage Stack” on page 5-14, “Access-
Register Translation” on page 5-53, and “Sequence
of Storage References” on page 5-113. Additionally,
translation modes and access-list-controlled protec-
tion are described in Chapter 3, “Storage”; the PER
means of restricting storage-alteration events to des-
ignated address spaces and the handling of access
registers during resets and during the store-status
operation are described in Chapter 4, “Control”; inter-
ruptions are described in Chapter 6, “Interruptions”;
instructions are described in Chapter 7, “General
Instructions”, and Chapter 10, “Control Instructions”;
the handling of access registers during a machine-
check interruption and the programmed validation of
the access registers are described in Chapter 11,
“Machine-Check Handling”; and the alter-and-display
controls for access registers are described in
Chapter 12, “Operator Facilities.”

Summary

These major functions are provided:

• A maximum of 16 address spaces, including the
instruction space, for immediate and simultane-
ous use by a semiprivileged program; the

address spaces are specified by 16 registers
called access registers.

• Instructions for examining and changing the con-
tents of the access registers.

In addition, control and authority mechanisms are
incorporated to control these functions.

Access registers allow a sequence of instructions, or
even a single instruction such as MOVE (MVC) or
MOVE LONG (MVCL), to operate on storage oper-
ands in multiple address spaces, without the require-
ment of changing either the translation mode or other
control information. Thus, a program residing in one
address space can use the complete instruction set
to operate on data in that address space and in up to
15 other address spaces, and it can move data
between any and all pairs of these address spaces.
Furthermore, the program can change the contents
of the access registers in order to access still other
address spaces.

The instructions for examining and changing access-
register contents are unprivileged and are described
in Chapter 7, “General Instructions.” They are:

• COPY ACCESS
• EXTRACT ACCESS
• LOAD ACCESS MULTIPLE
• LOAD ADDRESS EXTENDED
• SET ACCESS
• STORE ACCESS MULTIPLE

The privileged PURGE ALB instruction and COM-
PARE AND SWAP AND PURGE instruction are used
in connection with access registers and are
described in Chapter 10, “Control Instructions.”

Access registers specify address spaces when the
CPU is in the access-register mode. The SET
ADDRESS SPACE CONTROL and SET ADDRESS
SPACE CONTROL FAST instructions allow setting of
the access-register mode, and the INSERT
ADDRESS SPACE CONTROL instruction provides
an indication of the access-register mode. The stack-
ing PROGRAM CALL, PROGRAM RETURN, and
RESUME PROGRAM instructions also allow setting
of the access-register mode. All of these instructions
are described in Chapter 10, “Control Instructions.”

Access registers are used in a special way by the
BRANCH IN SUBSPACE GROUP instruction. The
use of access registers by that instruction is

5-46 The z/Architecture CPU Architecture

described in detail only in the definition of the instruc-
tion in Chapter 10, “Control Instructions.” However,
“Subspace-Group Tables” on page 5-66 describes
the use of the dispatchable-unit control table and the
extended ASN-second-table entry by BRANCH IN
SUBSPACE GROUP.

Access-Register Functions

Access-Register-Specified Address
Spaces
The CPU includes sixteen 32-bit access registers
numbered 0-15. In the access-register mode, which
results when DAT is on and PSW bits 16 and 17 are
01 binary, an instruction B or R field that is used to
specify the logical address of a storage operand des-
ignates not only a general register but also an access
register. The designated general register is used in
the ordinary way to form the logical address of the
storage operand. The designated access register is
used to specify the address space to which the logi-
cal address is relative. The access register specifies
the address space by specifying an address-space-
control element for the address space, and this
address-space-control element is used by DAT to
translate the logical address. An access register
specifies an address-space-control element in an
indirect way, not by containing the address-space-
control element.

An access register may specify the primary or sec-
ondary address-space-control element in control reg-
ister 1 or 7, respectively, or it may specify an
address-space-control element contained in an ASN-
second-table entry. In the latter case, the access reg-
ister designates an entry in a table called an access
list, and the designated access-list entry in turn des-
ignates the ASN-second-table entry.

The process of using the contents of an access reg-
ister to obtain an address-space-control element for

use by DAT is called access-register translation
(ART). This is depicted in Figure 5-10.

An access register is said to specify an AR-specified
address space by means of an AR-specified
address-space-control element. The virtual
addresses in an AR-specified address space are
called AR-specified virtual addresses.

In the access-register mode, whereas all storage-
operand addresses are AR-specified virtual, instruc-
tion addresses are primary virtual.

Designating Access Registers: In the access-
register mode, an instruction B or R field designates
an access register, for use in access-register transla-
tion, under the following conditions:

• The field is a B field which designates a gen-
eral register containing a base address. The
base address is used, along with a displace-
ment (D) and possibly an index (X), to form
the logical address of a storage operand.

• The field is an R field which designates a
general register containing the logical
address of a storage operand.

Figure 5-10. Use of Access Registers

D

General Register

DAT

Base Address

Access Register

B

Real Address

Displacement
Instruction

In Access-Register Mode

Logical Address

+

ART ASCE

Program Execution 5-47

For example, consider the following instruction:

 MVC 0(L,1),0(2)

The second operand, of length L, is to be moved to
the first-operand location. The logical address of the
second operand is in general register 2, and that of
the first-operand location in general register 1. The
address space containing the second operand is
specified by access register 2, and that containing
the first-operand location by access register 1. These
two address spaces may be different address
spaces, and each may be different from the current
instruction address space (the primary address
space).

When PSW bits 16 and 17 are 01, the B2 field of the
LOAD REAL ADDRESS and STORE REAL
ADDRESS instructions designates an access regis-
ter, for use in access-register translation, regardless
of whether DAT is on or off. When the M4 field of the
LOAD PAGE-TABLE-ENTRY ADDRESS instruction
is 0001 binary, or when the M4 field is 0100 binary
and bits 16-17 of the PSW are 01 binary, then the R2

field designates an access register, for use in
access-register translation, regardless of whether
DAT is on or off. The B1 field of TEST ACCESS des-
ignates an access register regardless of whether
DAT is on or off and regardless of PSW bits 16-17.

The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions specify storage oper-
ands by means of implicitly designated general regis-
ters and access registers.

The MOVE TO PRIMARY and MOVE TO SECOND-
ARY instructions specify storage operands by means
of primary virtual and secondary virtual addresses,
and access registers do not apply to these instruc-
tions. An exception is recognized when either of
these instructions is executed in the access-register
mode. The MOVE WITH KEY instruction can be used
in place of MOVE TO PRIMARY and MOVE TO SEC-
ONDARY in the access-register mode. The MOVE
WITH SOURCE KEY and MOVE WITH DESTINA-
TION KEY instructions also can be used. The MOVE
WITH OPTIONAL SPECIFICATIONS instruction can
be used in place of MOVE TO PRIMARY, MOVE TO
SECONDARY, MOVE WITH DESTINATION KEY,
MOVE WITH KEY, or MOVE WITH SOURCE KEY in
the access-register mode.

An instruction R field may designate an access regis-
ter for other than the purpose of access-register
translation.

The fields which may designate access registers,
whether or not for access-register translation, are
indicated in the summary figure at the beginning of
each instruction chapter.

Obtaining the Address-Space-Control Element:
This section and the following ones introduce the
access-register-translation process and present the
concepts related to access lists.

The address-space-control element specified by an
access register is obtained by access-register trans-
lation as follows:

• If the access register contains 00000000
hex, the specified address-space-control ele-
ment is the primary address-space-control
element (PASCE), obtained from control reg-
ister 1.

• If the access register contains 00000001
hex, the specified address-space-control ele-
ment is the secondary address-space-con-
trol element (SASCE), obtained from control
register 7.

• If the access register contains any other
value, the specified address-space-control
element is obtained from an ASN-second-
table entry. The contents of the access regis-
ter designate an access-list entry that con-
tains the real origin of the ASN-second-table
entry.

Access register 0 is treated in a special way by
access-register translation; it is treated as containing
00000000 hex, and its actual contents are not exam-
ined. Thus, a logical address specified by means of a
zero B or R field in the access-register mode is
always relative to the primary address space, regard-
less of the contents of access register 0. However,
there is one exception to how access register 0 is
treated: the TEST ACCESS instruction uses the
actual contents of access register 0, instead of treat-
ing access register 0 as containing 00000000 hex.

The treatment of an access register containing the
value 00000000 hex as designating the current pri-
mary address space allows that address space to be
addressed, in the access-register mode, without

5-48 The z/Architecture CPU Architecture

requiring the use of an access-list entry. This is use-
ful when the primary address space is changed by a
space-switching PROGRAM CALL (PC-ss), PRO-
GRAM RETURN (PR-ss), or PROGRAM TRANS-
FER (PT-ss) instruction. Similarly, the treatment of an
access register containing the value 00000001 hex
as designating the secondary address space allows
that space to be addressed after a space-switching
operation, again without requiring the use of an
access-list entry.

The contents of the access registers are not changed
by the PROGRAM CALL and PROGRAM TRANS-
FER instructions. Therefore, an access register con-
taining 00000000 or 00000001 hex may specify a
different address space after the execution of PRO-
GRAM CALL or PROGRAM TRANSFER than before
the execution. For example, if a space-switching
PROGRAM CALL instruction is executed, an access
register containing 00000000 hex specifies the old
primary address space before the execution and the
new primary address space after the execution.

Access Lists: The access-list entry that is desig-
nated by the contents of an access register can be
located in either one of two access lists, the dispatch-
able-unit access list or the primary-space access list.
A bit in the access register specifies which of the two
access lists contains the designated entry. Both of
the access lists reside in real or absolute storage.
The locations of the access lists are specified by
means of control registers 2 and 5.

Control register 2 contains the origin of a real-storage
area called the dispatchable-unit control table. The
dispatchable-unit control table contains the designa-
tion — the real or absolute origin, and length — of the
dispatchable-unit access list.

Control register 5 contains the origin of a real-storage
area called the primary ASN-second-table entry. The
primary ASN-second-table entry contains the desig-
nation of the primary-space access list.

An access list, either the dispatchable-unit access list
or the primary-space access list, contains some mul-
tiple of eight 16-byte entries, up to a maximum of
1,024 entries.

Programs and Dispatchable Units: When dis-
cussing access lists, it is necessary to distinguish
between the terms “program” and “dispatchable unit.”
A program is a sequence of instructions and may be
referred to as a program module. A program may be

a sequence of calling and called programs. A dis-
patchable unit, which is sometimes called a process
or a task, is a unit of work that is performed through
the execution of a program by one CPU at a time.
The dispatchable-unit access list is intended to be
associated with a dispatchable unit; that is, it is
intended that a dispatchable unit have the same dis-
patchable-unit access list regardless of which pro-
gram is currently being executed to perform the
dispatchable unit. There is no mechanism, except for
the LOAD CONTROL instruction, that changes the
dispatchable-unit-control-table origin in control regis-
ter 2.

The primary-space access list is associated with the
primary address space that is specified by the pri-
mary ASN in control register 4 and the primary
address-space-control element in control register 1.
The primary-space access list that is available for
use by a dispatchable unit changes as the primary
address space of the dispatchable unit changes, that
is, whenever a program in a different primary address
space begins to be executed to perform the dispatch-
able unit. Whenever a LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL, PROGRAM
RETURN, or PROGRAM TRANSFER instruction
replaces the primary ASN in control register 4 and
the primary address-space-control element in control
register 1, it also replaces the primary-ASN-second-
table-entry origin in control register 5.

Thus, for a dispatchable unit, the dispatchable-unit
access list is intended to be constant (although its
entries may be changed, as will be described), and
the primary-space access list is a function of which
program is being executed, through being a function
of the primary address space of the program. Also,
all dispatchable units and programs in the same pri-
mary address space have the same primary-space
access list.

Access-List-Entry Token: The contents of an
access register are called an access-list-entry token
(ALET) since, in the general case, they designate an
entry in an access list. An ALET has the following for-
mat:

The ALET contains a primary-list bit (P) that specifies
which access list contains the designated access-list
entry: the dispatchable-unit access list if the bit is

0 0 0 0 0 0 0 P ALESN ALEN
0 7 8 16 31

Program Execution 5-49

zero, or the primary-space access list if the bit is one.
The specified access list is called the effective
access list.

The ALET also contains an access-list-entry number
(ALEN) which, when multiplied by 16, is the number
of bytes from the beginning of the effective access list
to the designated access-list entry. During access-
register translation, an exception is recognized if the
ALEN designates an entry that is outside the effec-
tive access list or if the leftmost seven bits in the
ALET are not all zeros.

The access-list-entry sequence number (ALESN) in
the ALET is described in the next section.

The above format of the ALET does not apply when
the ALET is 00000000 or 00000001 hex.

An ALET can exist in an access register, in a general
register, or in storage, and it has no special protec-
tion from manipulation by the problem program. Any
program can transfer ALETs back and forth among
access registers, general registers, and storage. A
called program can save the contents of the access
registers in any storage area available to it, load and
use the access registers for its own purposes, and
then restore the original contents of the access regis-
ters before returning to its caller.

Allocating and Invalidating Access-List
Entries: It is intended that access lists be provided
by the control program and that they be protected
from direct manipulation by any problem program.
This protection may be obtained by means of key-
controlled protection or by placing the access lists in
real storage not accessible by any problem program
by means of DAT.

As determined by a bit in the entry, an access-list
entry is either valid or invalid. A valid access-list entry
specifies an address space and can be used by a
suitably authorized program to access that space. An
invalid access-list entry is available for allocation as a
valid entry. It is intended that the control program pro-
vide services that allocate valid access-list entries
and that invalidate previously allocated entries.

Allocation of an access-list entry may consist in the
following steps. A problem program passes some
kind of identification of an address space to the con-
trol program, and it passes a specification of either
the dispatchable-unit access list or the primary-
space access list. The control program checks, by

some means, the authority of the problem program to
access the address space. If the problem program is
authorized, the control program selects an invalid
entry in the specified access list, changes it to a valid
entry specifying the subject address space, and
returns to the problem program an access-list-entry
token (ALET) that designates the allocated entry. The
problem program can subsequently place the ALET
in an access register in order to access the address
space. Later, through the use of the invalidation ser-
vice of the control program, the access-list entry that
was allocated may be made invalid. An exception is
recognized during access-register translation if an
ALET is used that designates an invalid access-list
entry.

It may be that a particular access-list entry is allo-
cated, then invalidated, and then allocated again, this
time specifying a different address space than the
first time. To guard against erroneous use of an ALET
that designates a conceptually wrong address space,
an access-list-entry sequence number (ALESN) is
provided in both the ALET and the access-list entry.
When the control program allocates an access-list
entry, it should place the same ALESN in the entry
and in the designating ALET that it returns to the
problem program. When the control program reallo-
cates an access-list entry, it should change the value
of the ALESN. An exception is recognized during
access-register translation if the ALESN in the ALET
used is not equal to the ALESN in the designated
access-list entry.

The ALESN check is a reliability mechanism, not an
authority mechanism, because the ALET is not pro-
tected from the problem program, and the problem
program can change the ALESN in the ALET to any
value. Also, this is not a fail-proof reliability mecha-
nism because the ALESN is one byte and its value
wraps around after 256 reallocations, assuming that
the value is incremented by one for each reallocation.

Authorizing the Use of Access-List Entries:
Although an access list is intended to be associated
with either a dispatchable unit or a primary address
space, the valid entries in the list are intended to be
associated with the different programs that are exe-
cuted, in some order, to perform the work of the dis-
patchable unit. It is intended that each program be
able to have a particular authority that permits the
use of only those access-list entries that are associ-
ated with the program. The authority being referred
to here is represented by a 16-bit extended authori-
zation index (EAX) in control register 8.

5-50 The z/Architecture CPU Architecture

Other elements used in the related authorization
mechanism are: (1) a private bit in the access-list
entry, (2) an access-list-entry authorization index
(ALEAX) in the access-list entry, and (3) the authority
table.

A program is authorized to use an access-list entry,
in access-register translation, if any of the following
conditions is met:

1. The private bit in the access-list entry is zero.
This condition provides a high-performance
means to authorize any and all programs that are
executed to perform the dispatchable unit.

2. The ALEAX in the access-list entry is equal to
the EAX in control register 8. This condition pro-
vides a high-performance means to authorize
only particular programs.

3. The EAX selects a secondary bit that is one in
the authority table associated with the address
space that is specified by the access-list entry.
The authority table is locatable in that the

access-list entry contains the real origin of the
ASN-second-table entry (ASTE) for the address
space, and the ASTE contains the real origin of
the authority table. This condition provides
another means, less well-performing than condi-
tion 2, for authorizing only particular programs.
However, providing for condition 3 to be met
instead of condition 2 can be advantageous
because it permits several programs, each exe-
cuted with a different EAX, all to use a single
access-list entry to access a particular address
space.

Access-register translation tests for the three condi-
tions in the order indicated by their numbers, and a
higher-numbered condition is not tested for if a lower-
numbered condition is met. An exception is recog-
nized if none of the conditions is met.

Figure 5-11 shows an example of how the authoriza-
tion mechanism can be used. In the figure, “PB=0”
means that the private bit is zero, and “PB=1” means
that the private bit is one.

The figure shows an access list — assume it is a dis-
patchable-unit access list — in which the entries of
interest are entries 4, 7, 9, and 12. Each access-list
entry contains a private bit, an ALEAX, and the real
origin of the ASTE for an address space. The private
bit in entry 4 is zero, and, therefore, the value of the

ALEAX in entry 4 is immaterial and is not shown. The
private bits in entries 7, 9, and 12 are ones, and the
ALEAX values in these entries are as shown. The
numbers used to identify the address spaces (36, 25,
62, and 17) are arbitrary. They may be the ASNs of
the address spaces; however, ASNs are in no way

Figure 5-11. Example of Authorizing the Use of Access-List Entries

PB=0

PB=1, ALEAX = 5

PB=1, ALEAX = 10

PB=1, ALEAX = 5

ASTE for Space 36

ASTE for Space 25

ASTE for Space 62

ASTE for Space 17

Program A

EAX = 0

Program B

EAX = 5

Access List

Authority Table

S bit selected by
EAX 10 is one.

Program C

EAX = 10

4

7

9

12

Program Execution 5-51

used in access-register translation. Only the authority
table for address space 17 is shown. In it, the sec-
ondary bit selected by EAX 10 is one. Assume that
no secondary bits are ones in the authority tables for
the other spaces.

The figure also shows a sequence of three programs,
named A, B, and C, that is executed to perform the
work of the dispatchable unit associated with the
access list. These programs may be in the same or
different address spaces. The EAX in control register
8 when each of these programs is executed is 0, 5,
and 10, respectively.

Each of programs A, B, and C can use access-list
entry (ALE) 4 to access address space 36 since the
private bit in ALE 4 is zero. Program B can use ALE 7
to access space 25 because the ALEAX in the ALE
equals the EAX for the program, and no other pro-
gram can use this ALE. Similarly, only program C can
use ALE 9. Program B can use ALE 12 because the
ALEAX and EAX are equal, and program C can use it
because A’s EAX selects a secondary bit that is one
in the authority table for space 17.

The example would be the same if programs A, B,
and C were all in the same address space and the
access list were the primary-space access list for that
space.

An ALE in which the private bit is zero may be called
public because the ALE can be used by any program,
regardless of the value of the current EAX. An ALE in
which the private bit is one may be called private
because the ability of a program to use the ALE
depends on the current EAX.

Notes on the Authorization Mechanism: An
access list is a kind of capability list, in the sense in
which the word “capability” is used in computer sci-
ence. It is up to the control program to formulate the
policies that are used to allocate entries in an access
list, and the programmed authorization checking
required during allocation may be very complex and
lengthy. After a valid entry has been made in an
access list, the access-register-translation process
enforces the control-program policies in a well-per-
forming way by means of the authorization mecha-
nism described above.

Using access lists has an advantage over using only
ASNs and authority tables. For example, assume that
an access register could contain an ASN and that
access-register translation would do ASN translation

of the ASN and then use the EAX to test the authority
table. This would make the EAX relevant to all exist-
ing address spaces, and, therefore, it would make
the management of EAXs and their assignment to
programs more difficult. With the actual definitions of
the ALET and access-register translation, an EAX is
relevant to only the address spaces that are repre-
sented in the current dispatchable-unit and primary-
space access lists. Also, since ASN translation is not
done as a part of access-register translation, the
number of concurrently existing address spaces, as
represented by ASN-second-table entries, can be
greater than the number of available ASNs (64K).

The entry-table entry and linkage stack can be used
to assign EAXs to programs and to change the EAX
in control register 8 during program linkages. These
components are introduced in “Linkage-Stack Intro-
duction” on page 5-70. The privileged EXTRACT
AND SET EXTENDED AUTHORITY instruction also
is available for saving and changing the EAX in con-
trol register 8.

The SET SECONDARY ASN instruction and the
authorization index (AX), bits 32-47 of control register
4, can play a role in the use of access registers. The
space-switching form of SET SECONDARY ASN
(SSAR-ss) establishes a new secondary address
space if the secondary bit selected by the AX is one
in the authority table associated with the new sec-
ondary space. The secondary space can be
addressed by means of an ALET having the value
00000001 hex.

Revoking Accessing Capability: Another mech-
anism, which is a combined authority and integrity
mechanism, is part of access-register translation,
and it is described in this section.

An access-list entry (ALE) contains an ASN-second-
table-entry sequence number (ASTESN), and so
does the ASTE designated by the ALE. During
access-register translation, the ASTESN in the ALE
must equal the ASTESN in the designated ASTE;
otherwise, an exception is recognized.

When the control program allocates an ALE, it should
copy the ASTESN from the designated ASTE into the
ALE. Subsequently, the control program can, in
effect, revoke the addressing capability represented
by the ALE by changing the ASTESN in the ASTE.
Changing the ASTESN in the ASTE makes all previ-
ously usable ALEs that designate the ASTE unus-
able.

5-52 The z/Architecture CPU Architecture

Making an ALE unusable may be required in either of
two cases:

1. Some element of the control-program policy for
determining the authority of a program to have
access to the address space specified by the
ASTE has changed. This may mean that some or
all of the programs that were authorized to the
address space, and for which ALEs have been
allocated, are no longer authorized. Changing
the ASTESN in the ASTE ends the usability of all
ALEs that designate the ASTE. If this revocation
of capability is to be selective, then, when an
exception is recognized because of unequal
ASTESNs, the control program can reapply its
programmed procedures for determining authori-
zation, and an ALE which should have remained
usable can be made usable again by copying the
new ASTESN into it. When the usability of an
ALE is restored, the control program normally
should cause reexecution of the instruction that
encountered the exception.

2. The ASTE has been reassigned to specify a con-
ceptually different address space, and ALEs
which specified the old address space must not
be allowed to specify the new one. (Bit 0 of the
ASTE, the ASX-invalid bit, can be set to one to
delete the assignment of the ASTE to an address
space, and this prevents the use of the ASTE in
access-register translation. But after reassign-
ment, bit 0 normally is set back to zero.)

The ASTESN mechanism may be regarded as an
authority mechanism in the first case above and as
an integrity mechanism in the second.

The ASTESN mechanism is especially valuable
because it avoids the need of the control program to
keep track of the access lists that contain the ALEs
that designate each ASTE. Furthermore, it avoids the
need of searching through these access lists in order
to find the ALEs and set them invalid, to prevent the
use of the ALEs in access-register translation. The
latter activity could be particularly time-consuming, or
could present a particularly difficult management
problem, because the access lists could be in auxil-
iary storage, such as a direct-access storage device,
when the need arises to invalidate the ALEs.

The ASTESN is a four-byte field. Assuming a reason-
able frequency of authorization-policy changes or
address-space reassignments, the approximately
four billion possible values of the ASTESN provide a

fail-proof authority or integrity mechanism over the
lifetime of the system.

Programming Note: Refer to “Modification of ART
Tables” on page 5-66 for a discussion of ALB mainte-
nance required when modifying any of the tables
used in access-register translation.

Preventing Store References: The access-list
entry contains a fetch-only bit which, when one,
specifies that the access-list entry cannot be used to
perform storage-operand store references. The prin-
cipal description of the effect of the fetch-only bit is in
“Access-List-Controlled Protection” on page 3-13.

Improving Translation Performance: Access-
register translation (ART) conceptually occurs each
time a logical address is used to reference a storage
operand in the access-register mode. To improve
performance, ART normally is implemented such that
some or all of the information contained in the ART
tables (access-list-designation sources, access lists,
ASN second tables, and authority tables) is main-
tained in a special buffer referred to as the ART-loo-
kaside buffer (ALB). The CPU necessarily refers to
an ART-table entry in real storage only for the initial
access to that entry. The information in the entry may
be placed in the ALB, and subsequent translations
may be performed using the information in the ALB.

The PURGE ALB instruction and the COMPARE
AND SWAP AND PURGE instruction can be used to
clear all information from the ALB after a change has
been made to an ART-table entry in real storage.

Access-Register Instructions

The following instructions are provided for examining
and changing the contents of access registers:

• COPY ACCESS
• EXTRACT ACCESS
• LOAD ACCESS MULTIPLE
• LOAD ADDRESS EXTENDED
• SET ACCESS
• STORE ACCESS MULTIPLE

The SET ACCESS instruction replaces the contents
of a specified access register with the contents of bit
positions 32-63 of the specified general register.
Conversely, the EXTRACT ACCESS instruction
moves the contents of an access register to bit posi-
tions 32-63 of a general register. The COPY

Program Execution 5-53

ACCESS instruction moves the contents of one
access register to another.

The LOAD ACCESS MULTIPLE instruction loads a
specified set of consecutively numbered access reg-
isters from a specified storage location whose length
in words equals the number of access registers
loaded. Conversely, the STORE ACCESS MULTIPLE
instruction function stores the contents of a set of
access registers at a storage location.

The LOAD ADDRESS EXTENDED instruction is sim-
ilar to the LOAD ADDRESS instruction in that it loads
a specified general register with an effective address
specified by means of the B, X, and D fields of the
instruction. In addition, LOAD ADDRESS
EXTENDED operates on the access register having
the same number as the general register loaded.
When the address-space control, PSW bits 16 and
17, is 00, 10, or 11 binary, LOAD ADDRESS
EXTENDED loads the access register with
00000000, 00000001, or 00000002 hex, respectively.
When the address space control is 01 binary, LOAD
ADDRESS EXTENDED loads the target access reg-
ister with a value that depends on the B field of the
instruction. If the B field is zero, LOAD ADDRESS
EXTENDED loads the target access register with
00000000 hex. If the B field is nonzero, LOAD
ADDRESS EXTENDED loads the target access reg-
ister with the contents of the access register desig-
nated by the B field. However, in the last case when
bits 0-6 of the access register designated by the B
field are not all zeros, the results in the target general
register and access register are unpredictable.

The address-space-control values 00, 01, 10, and 11
binary specify primary-space, access-register, sec-
ondary-space, and home-space mode, respectively,
when DAT is on. LOAD ADDRESS EXTENDED func-
tions the same regardless of whether DAT is on or
off.

When used in access-register translation, the
access-register values 00000000 and 00000001 hex
specify the primary and secondary address spaces,
respectively, and the value 00000002 hex designates
entry 2 in the dispatchable-unit access list. Loading
the target access register with 00000002 hex when
the address-space control is 11 binary is intended to
support assignment, by the control program, of entry
2 in the dispatchable-unit access list as specifying
the home address space.

Access-Register Translation

Access-register translation is introduced in “Access-
Register-Specified Address Spaces” on page 5-46.

Access-Register-Translation
Control

Access-register translation is controlled by an
address-space control and by controls in control reg-
isters 2, 5, and 8. The address-space control, PSW
bits 16 and 17, is described in “Translation Modes”
on page 3-40. The other controls are described
below.

Additional controls are located in the access-register-
translation tables.

Control Register 2
The location of the dispatchable-unit control table is
specified in control register 2. The register has the
following format:

Dispatchable-Unit-Control-Table Origin
(DUCTO): Bits 33-57 of control register 2, with six
zeros appended on the right, form a 31-bit real
address that designates the beginning of the dis-
patchable-unit control table. Access-register transla-
tion may obtain the dispatchable-unit access-list
designation from the dispatchable-unit control table.

Transaction Diagnostic Scope (TDS): Bit 61 is
described in “Transaction Diagnostic Scope (TDS)”
on page 5-92.

Transaction Diagnostic Control (TDC): Bits 62-
63 are described in “Transaction Diagnostic Control
(TDC)” on page 5-92.

0 31

DUCTO
T
D
S

T
D
C

32 33 58 61 62 63

5-54 The z/Architecture CPU Architecture

Control Register 5
The location of the primary ASN-second-table entry
is specified in control register 5. The register has the
following format:

Primary-ASTE Origin (PASTEO): Bits 33-57 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates the
beginning of the primary ASN-second-table entry.
Access-register translation may obtain the primary-
space access-list designation from the primary
ASTE. The primary-ASTE origin is implicitly set by
LOAD ADDRESS SPACE PARAMETERS when it
performs PASN translation and by the space-switch-
ing forms of PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER. When any
of these instructions places the primary-ASTE origin
in control register 5, it also places zeros in bit posi-
tions 32 and 58-63 of the register and leaves bits
0-31 of the register unchanged. Bits 0-32 and 58-63
of control register 5 are subject to possible future
assignment, and they should not be depended upon
to be zeros.

Control Register 8
The extended authorization index is in control regis-
ter 8. The register has the following format:

Extended Authorization Index (EAX): Bits 32-47
of control register 8 are the extended authorization
index. During access-register translation, the EAX
may be compared against the access-list-entry
authorization index (ALEAX) in an access-list entry,
and it may be used as an index to locate a secondary
bit in an authority table. The EAX may be set by a
stacking PROGRAM CALL operation, and it is
restored by PROGRAM RETURN. The EAX can also
be saved and set by the privileged instruction
EXTRACT AND SET EXTENDED AUTHORITY.

Access Registers

There are sixteen 32-bit access registers numbered
0-15. The contents of an access register are called
an access-list-entry token (ALET). An ALET has the
following format:

The fields in the ALET are allocated as follows:

Primary-List Bit (P): When the ALET is not
00000000 or 00000001 hex, bit 7 specifies the
access list to be used by access-register translation.
When bit 7 is zero, the dispatchable-unit access list is
used; this is specified by the dispatchable-unit
access-list designation in the dispatchable-unit con-
trol table designated by the contents of control regis-
ter 2. When bit 7 is one, the primary-space access
list is used; this is specified by the primary-space
access-list designation in the primary ASTE desig-
nated by the contents of control register 5.

Access-List-Entry Sequence Number (ALESN):
Bits 8-15 may be used as a check on whether the
access-list entry designated by the ALET has been
invalidated and reallocated since the ALET was
obtained. During access-register translation when
the ALET is not 00000000 or 00000001 hex, bits
8-15 of the ALET are compared against the access-
list-entry sequence number (ALESN) in the desig-
nated access-list entry.

Access-List-Entry Number (ALEN): When the
ALET is not 00000000 or 00000001 hex, bits 16-31
of the ALET designate an entry in either the dispatch-
able-unit access list or the primary-space access list,
as determined by bit 7. The access-list designation
that is used is called the effective access-list desig-
nation; it consists of the effective access-list origin
and the effective access-list length.

During access-register translation, the ALEN, with
four zeros appended on the right, is added to the
31-bit real or absolute address specified by the effec-
tive access-list origin, and the result is the real or
absolute address of the designated access-list entry.
The ALEN is compared against the effective access-
list length to determine whether the designated
access-list entry is within the list, and an ALEN-trans-
lation exception is recognized if the entry is outside
the list. Although the largest possible value of the

0 31

PASTEO
32 33 58 63

Enhanced-Monitor Mask
0 16 31

 EAX Monitor Mask
32 48 63

0 0 0 0 0 0 0 P ALESN ALEN
0 7 8 16 31

Program Execution 5-55

ALEN is 65,535, an access list can contain at most
1,024 entries.

Bits 0-6 must be zeros during access-register trans-
lation; otherwise, an ALET-specification exception is
recognized.

When the ALET is 00000000 or 00000001 hex, it
specifies the primary or secondary address space,
respectively, and the above format does not apply.

Access register 0 usually is treated in access-register
translation as containing 00000000 hex, and its
actual contents are not examined; the access-regis-
ter translation done as part of TEST ACCESS is the
only exception. Access register 0 is also treated as
containing 00000000 hex when it is designated by
the B field of LOAD ADDRESS EXTENDED when
PSW bits 16 and 17 are 01 binary. When access reg-
ister 0 is specified for TEST ACCESS or as a source
for COPY ACCESS, EXTRACT ACCESS, or STORE
ACCESS MULTIPLE, the actual contents of the
access register are used. Access register 0, like any
other access register, can be loaded by COPY
ACCESS, LOAD ACCESS MULTIPLE, LOAD
ADDRESS EXTENDED, and SET ACCESS.

Another definition of ALETs 00000000 and 00000001
hex is given in “BRANCH IN SUBSPACE GROUP” on
page 10-13.

Access-Register-Translation
Tables

When the ALET being translated is not 00000000 or
00000001 hex, access-register translation performs
a two-level lookup to locate first the effective access-
list designation and then an entry in the effective
access list. The effective access-list designation
resides in real storage. The effective access list
resides in real or absolute storage.

Access-register translation uses an origin in the
access-list entry to locate an ASN-second-table
entry, and it may perform a one-level lookup to locate
an entry in an authority table. The ASN-second-table
entry resides in real storage. The authority table
resides in real or absolute storage.

Authority-table entries are described in “Authority-
Table Entries” on page 3-36. Access-list designa-

tions, access-list entries, and ASN-second-table
entries are described in the following sections.

Dispatchable-Unit Control Table and
Access-List Designations
When the ALET being translated is not 00000000 or
00000001 hex, access-register translation obtains
the dispatchable-unit access-list designation if bit 7 of
the ALET is zero, or it obtains the primary-space
access-list designation if bit 7 is one. The obtained
access-list designation is called the effective access-
list designation.

The dispatchable-unit access-list designation
(DUALD) is located in bytes 16-19 of a 64-byte area
called the dispatchable-unit control table (DUCT).
The DUCT resides in real storage, and its location is
specified by the DUCT origin in control register 2.

The dispatchable-unit control table has the following
format:

Bytes 0-7 (BASTEO, SA, and SSASTEO) and 12-15
(SSASTESN) of the DUCT are described in “Sub-

Hex Dec

0 0 BASTEO

4 4 S
A

SSASTEO

8 8

C 12 SSASTESN

10 16 DUALD (see below)

14 20
PSW-Key Mask

PSW
Key

R
A

P

18 24

1C 28 /

In the 24-Bit or 31-Bit Addressing Mode

20 32

24 36 B
A

Bits 33-63 of Return Address

In the 64-Bit Addressing Mode

20 32 Bits 0-31 of Return Address

24 36 Bits 32-63 of Return Address

28 40

2C 44 Trap-Control-Block Address E

30 48

34 52

38 56

3C 60

5-56 The z/Architecture CPU Architecture

space-Group Dispatchable-Unit Control Table” on
page 5-66. Bytes 20-23 (PSW key mask, PSW key,
RA, and P) and 32-39 (BA and return address) are
described in “BRANCH AND SET AUTHORITY” on
page 10-7. Bytes 44-47 (trap-control-block address
and E) are described in “TRAP” on page 10-177.
Bytes 8-11, 24-27, 40-43, and 48-63 are reserved for
possible future extensions and should contain all
zeros. Bytes 28-31 are available for use by program-
ming.

The primary-space access-list designation (PSALD)
is located in bytes 16-19 of a 64-byte area called the
primary ASN-second-table entry. The primary ASTE
resides in real storage, and its location is specified by
the primary-ASTE origin in control register 5. The for-
mat of the primary ASTE is described in “ASN-Sec-
ond-Table Entries” on page 5-57.

The dispatchable-unit and primary-space access-list
designations both have the same format, which is as
follows:

Access-List Designation

The fields in the access-list designation are allocated
as follows:

Access-List Origin: Bits 1-24 of the access-list
designation, with seven zeros appended on the right,
form a 31-bit address that designates the beginning
of the access list. This address is treated unpredict-
ably as either a real address or an absolute address.

Access-List Length (ALL): Bits 25-31 of the
access-list designation specify the length of the
access list in units of 128 bytes, thus making the
length of the access list variable in multiples of eight
16-byte entries. The length of the access list, in units
of 128 bytes, is one more than the value in bit posi-
tions 25-31. The access-list length, with six zeros
appended on the left, is compared against bits 0-12
of an access-list-entry number (bits 16-28 of an
access-list-entry token) to determine whether the
access-list-entry number designates an entry in the
access list.

Bit 0 is reserved for a possible future extension and
should be zero.

Programming Note: The maximum number of
access-list entries allowed by an access-list designa-
tion is 1,024. There are two access lists available for
use at any time. Therefore, a maximum of 2,048 six-
teen-exabyte (16E) address spaces can be address-
able without control-program intervention, which is a
total of 275 bytes.

Access-List Entries
The effective access list is the dispatchable-unit
access list if bit 7 of the ALET being translated is
zero, or it is the primary-space access list if bit 7 is
one. The entry fetched from the effective access list
is 16 bytes in length and has the following format:

The fields in the access-list entry are allocated as fol-
lows:

ALEN-Invalid Bit (I): Bit 0, when zero, indicates
that the access-list entry specifies an address space.
When bit 0 is one during access-register translation,
an ALEN-translation exception is recognized.

Fetch-Only Bit (FO): Bit 6 controls which types of
operand references are permitted to the address
space specified by the access-list entry. When bit 6 is
zero, both fetch-type and store-type references are
permitted. When bit 6 is one, only fetch-type refer-
ences are permitted, and an attempt to store causes
a protection exception for access-list-controlled pro-
tection to be recognized and the operation to be sup-
pressed.

Private Bit (P): Bit 7, when zero, specifies that any
program is authorized to use the access-list entry in
access-register translation. When bit 7 is one, autho-
rization is determined as described for bits 16-31.

Access-List-Entry Sequence Number (ALESN):
Bits 8-15 are compared against the ALESN in the
ALET during access-register translation. Inequality
causes an ALE-sequence exception to be recog-

Access-List Origin ALL
0 1 25 31

I
F
O

P ALESN ALEAX

0 6 7 8 16 31

32 63

ASTEO
64 65 90 95

ASTESN
96 127

Program Execution 5-57

nized. It is intended that the control program change
bits 8-15 each time it reallocates the access-list
entry.

Access-List-Entry Authorization Index
(ALEAX): Bits 16-31 may be used to determine
whether the program for which access-register trans-
lation is being performed is authorized to use the
access-list entry. The program is authorized if any of
the following conditions is met:

1. Bit 7 is zero.

2. Bits 16-31 are equal to the extended authoriza-
tion index (EAX) in control register 8.

3. The EAX selects a secondary bit that is one in
the authority table for the specified address
space.

ASN-Second-Table-Entry Origin (ASTEO): Bits
65-89, with six zeros appended on the right, form the
31-bit real address of the ASTE for the specified
address space. Access-register translation obtains
the address-space-control element for the address
space from the ASTE.

ASTE Sequence Number (ASTESN): Bits 96-127
may be used to revoke the addressing capability rep-
resented by the access-list entry. Bits 96-127 are
compared against an ASTE sequence number
(ASTESN) in the designated ASTE during access-
register translation.

Bits 1-5, 32-64, and 90-95 are reserved for possible
future extensions and should be zeros.

In both the dispatchable-unit access list and the pri-
mary-space access list, access-list entries 0 and 1
are not used in access-register translation. Bits
1-127 of access-list entry 0 and bits 1-63 of access-
list entry 1 are reserved for possible future exten-
sions and should be zeros. Bit 0 of access-list entries
0 and 1, and bits 64-127 of access-list entry 1, are
available for use by programming. The control pro-
gram should set bit 0 of access-list entries 0 and 1 to
one in order to prevent the use of these entries by
means of ALETs in which the ALEN is 0 or 1.

ASN-Second-Table Entries
The first 48 bytes of the 64-byte ASN-second-table
entry have the following format:

If ASN-and-LX Reuse Is Not Enabled

If ASN-and-LX Reuse Is Enabled

The fields in bytes 0-47 of the ASN-second-table
entry (ASTE) are defined with respect to certain

I ATO B
0 1 30 31

AX ATL
C
A

R
A

32 48 60 62 63

ASCE (RTD, STD, or RSD) Part 1

RTO, STO, or RSTKO
64 95

RTD or STD Part 2

RTO/STO (Continued) G P S X R DT TL R=0
96 116 118 122 124 127

RSD Part 2

RSTKO (Continued) G P S X R R=1
96 116 118 123 127

ALD

ALO ALL
128 153 159

ASTESN
160 191

LTD

V LTO LTL
192 217 223

LFTD

V LFTO LFTL
192 216 223

Available for programming
224 255

Available for programming
256 287

Available for programming
288 319

320 351

ASTEIN
352 383

5-58 The z/Architecture CPU Architecture

mechanisms and instructions in “ASN-Second-Table
Entries” on page 3-31. The fields in the ASTE are
defined with respect to the BRANCH IN SUBSPACE
GROUP instruction in “Subspace-Group ASN-Sec-
ond-Table Entries” on page 5-68. With respect to
access-register translation only, and only for an
instruction other than BRANCH IN SUBSPACE
GROUP, the fields in the ASTE are allocated as fol-
lows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is available.
When bit 0 is zero, access-register translation pro-
ceeds. When the bit is one, an ASTE-validity excep-
tion is recognized. When the primary-space ALD is
fetched, the ASX-invalid bit in the primary ASTE is
ignored.

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, form a 31-bit address
that designates the beginning of the authority table.
This address is treated unpredictably as either a real
address or an absolute address, although it is treated
as a real address for ASN authorization. The author-
ity table is accessed in access-register translation
only if the private bit in the access-list entry is one
and the access-list-entry authorization index
(ALEAX) in the access-list entry is not equal to the
extended authorization index (EAX) in control regis-
ter 8.

Base-Space Bit (B): Bit 31 is ignored during
access-register translation. Bit 31 is further
described in “Subspace-Group ASN-Second-Table
Entries” on page 5-68.

Authorization Index (AX): Bits 32-47 are not used
in access-register translation.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four bytes,
thus making the authority table variable in multiples
of 16 entries. The length of the authority table, in
units of four bytes, is one more than the ATL value.
The contents of the ATL field are used to establish
whether the entry designated by a particular EAX is
within the authority table. An extended-authority
exception is recognized if the entry is not within the
table.

Controlled-ASN Bit (CA): Bit 62 is not used in
access-register translation.

Reusable-ASN Bit (RA): Bit 63 is not used in
access-register translation.

Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control ele-
ment (ASCE) that may be a segment-table designa-
tion (STD), a region-table designation (RTD), or a
real-space designation (RSD). (The term region-
table designation is used to mean a region-first-table
designation, region-second-table designation, or
region-third-table designation.) The ASCE field is
obtained as the result of access-register translation
and is used by DAT to translate the logical address
for the storage-operand reference being made. Bit
121, the space-switch-event control, is not used in or
as a result of access-register translation. The other
fields in the ASCE (RTO, STO, RSTKO, G, P, S, R,
DT, and TL) are described in “Control Register 1” on
page 3-42.

Access-List Designation (ALD): When this ASTE
is designated by the primary-ASTE origin in control
register 5, bits 128-159 are the primary-space
access-list designation (PSALD). See the description
of the access-list designation in “Dispatchable-Unit
Control Table and Access-List Designations” on
page 5-55. During access-register translation when
the primary-list bit, bit 7, in the ALET being translated
is one, the PSALD is the effective access-list desig-
nation.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control revo-
cation of the accessing capability represented by
access-list entries that designate the ASTE. During
access-register translation, bits 160-191 are com
pared against the ASTESN in the access-list entry,
and inequality causes an ASTE-sequence exception
to be recognized. It is intended that the control pro-
gram change the value of bits 160-191 when the
authorization policies for the address space specified
by the ASTE change or when the ASTE is reas-
signed to specify another address space.

Linkage-Table Designation (LTD) or Linkage-
First-Table Designation (LFTD): Bits 192-223
are not used in access-register translation.

ASN-Second-Table-Entry Instance Number
(ASTEIN): Bits 352-383 are not used in access-
register translation.

Bits 224-319 in the ASTE are available for use by
programming.

Program Execution 5-59

Programming Note: All unused fields in the ASTE,
including the unused fields in bytes 0-31, bytes
40-43, and bytes 48-63, should be set to zeros.
These fields are reserved for future extensions, and
programs which place nonzero values in these fields
may not operate compatibly on future machines.

Access-Register-Translation
Process

This section describes the access-register-transla-
tion process as it is performed during a storage-oper-
and reference in the access-register mode. The
following instructions perform access-register trans-
lation as described in this section, but with the excep-
tions noted below.

• LOAD PAGE-TABLE-ENTRY ADDRESS when
the M4 field is 0001 binary, or when the M4 field is
0100 binary and bits 16-17 of the PSW are 01
binary

• LOAD REAL ADDRESS and STORE REAL
ADDRESS when PSW bits 16 and 17 are 01
binary

• TEST ACCESS in any translation mode
• TEST PROTECTION in the access-register

mode

For LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS, TEST ACCESS, and TEST PRO-
TECTION, the following exceptions cause a setting of
the condition code instead of being treated as pro-
gram-interruption conditions:

• ALET specification
• ALEN translation
• ALE sequence
• ASTE validity
• ASTE sequence
• Extended authority

BRANCH IN SUBSPACE GROUP performs access-
register translation as described in “BRANCH IN
SUBSPACE GROUP” on page 10-13.

Access-register translation operates on the access
register designated in a storage-operand reference in
order to obtain an address-space-control element for
use by DAT. When one of access-registers 1-15 is
designated, the access-list-entry token (ALET) that is
in the access register is used to obtain the address-
space-control element. When access register 0 is

designated, an ALET having the value 00000000 hex
is used, except that TEST ACCESS uses the actual
contents of access register 0.

When the ALET is 00000000 or 00000001 hex, the
primary or secondary address-space-control ele-
ment, respectively, is obtained.

When the ALET is other than 00000000 or 00000001
hex, the leftmost seven bits of the ALET are checked
for zeros, the primary-list bit in the ALET and the con-
tents of control register 2 or 5 are used to obtain the
effective access-list designation, and the access-list
entry number (ALEN) in the ALET is used to select
an entry in the effective access list.

The access-list entry is checked for validity and for
containing the correct access-list-entry sequence
number (ALESN).

The ASN-second-table entry (ASTE) addressed by
the access-list entry is checked for validity and for
containing the correct ASN-second-table-entry
sequence number (ASTESN).

Whether the program is authorized to use the
access-list entry is determined through the use of
one or more of: (1) the private bit and access-list-
entry authorization index (ALEAX) in the access-list
entry, (2) the extended authorization index (EAX) in
control register 8, and (3) an entry in the authority
table addressed by the ASN-second-table entry.

If a store-type reference is to be performed, the fetch-
only bit in the access-list entry is checked for being
zero.

When no exceptions are recognized, the address-
space-control element in the ASN-second-table entry
is obtained.

In order to avoid the delay associated with references
to real or absolute storage, the information fetched
from real or absolute storage normally may also be
placed in a special buffer, the ART-lookaside buffer
(ALB), and subsequent translations involving the
same information may be performed by using the
contents of the ALB. The operation of the ALB is
described in “ART-Lookaside Buffer” on page 5-64.

Whenever access to real or absolute storage is made
during access-register translation for the purpose of
fetching an entry from an access-list-designation
source (DUCT or PASTE), access list, ASN second

5-60 The z/Architecture CPU Architecture

table, or authority table, key-controlled protection
does not apply.

The principal features of access-register translation,
including the effect of the ALB, are shown in
Figure 5-12 on page 5-61.

Program Execution 5-61

Figure 5-12. Access-Register Translation

ALLALO ALESN ALENP
PASCE

SASCE

Access-List Designation ALET in Access Register Control Register 1

Control Register 7

I F PO ALESN ALEAX ASTEO ASTESN

+

=0?

= ?
=0 if

store?

I

P

EAX

ATO ASCEATL ASTESN
/

/

Control Register 8

= ?

S S=1?

+

(x 1/4)

(x 4)

= ?

ALB

ASN-Second-Table Entry

Obtained ASCE

(x 16)(x 128)
1

2
3

Explanation:
1 The appropriate ALD is obtained:

When P in the ALET is zero (and the ALET is not zero or one), the DUALD in the DUCT is obtained.
When P in the ALET is one, the PSALD in the primary ASTE is obtained.

2 Information, which may include the ALD-source origin, ALET, ALO, and EAX, is used to search the ALB. This information, along with information
from the ALE, ASTE, and ATE, may be placed in the ALB.

3 The appropriate ASCE is obtained:
When the AR number is zero (except for TAR) or when the ALET is zero, the PASCE in CR 1 is obtained.
When the ALET is one, the SASCE in CR 7 is obtained.
When the ALET is larger than one:
- If a match exists, the ASCE from the ALB is used.
- If no match exists, tables from real or absolute storage are fetched. The resulting ASCE from the ASTE is obtained, and entries may be formed
in the ALB.

Access List

Access List Entry

Authority
Table

5-62 The z/Architecture CPU Architecture

Selecting the Access-List-Entry Token
When one of access registers 1-15 is designated, or
for the access register designated by the R1. field of
TEST ACCESS, access-register translation uses the
access-list-entry token (ALET) that is in the access
register. When access register 0 is designated,
except for TEST ACCESS, an ALET having the value
00000000 hex is used, and the contents of access
register 0 are not examined.

Obtaining the Primary or Secondary
Address-Space-Control Element
When the ALET being translated is 00000000 hex,
the primary address-space-control element in control
register 1 is obtained. When the ALET is 00000001
hex, the secondary address-space-control element in
control register 7 is obtained. In each of these two
cases, access-register translation is completed.

Checking the First Byte of the ALET
When the ALET being translated is other than
00000000 or 00000001 hex, bits 0-6 of the ALET are
checked for being all zeros. If bits 0-6 are not all
zeros, an ALET-specification exception is recognized,
and the operation is suppressed.

Obtaining the Effective Access-List
Designation
The primary-list bit, bit 7, in the ALET is used to per-
form a lookup to obtain the effective access-list des-
ignation. When bit 7 is zero, the effective ALD is the
dispatchable-unit ALD located in bytes 16-19 of the
dispatchable-unit control table (DUCT). When bit 7 is
one, the effective ALD is the primary-space ALD
located in bytes 16-19 of the primary ASN-second-
table entry (primary ASTE).

When bit 7 is zero, the 31-bit real address of the dis-
patchable-unit ALD is obtained by appending six
zeros on the right to the DUCT origin, bits 33-57 of
control register 2, and adding 16. The addition can-
not cause a carry into bit position 0.

When bit 7 is one, the 31-bit real address of the pri-
mary-space ALD is obtained by appending six zeros
on the right to the primary-ASTE origin, bits 33-57 of
control register 5, and adding 16. The addition can-
not cause a carry into bit position 0.

The obtained 31-bit real address is used to fetch the
effective ALD — either the dispatchable-unit ALD or
the primary-space ALD, depending on bit 7 of the

ALET. The fetch of the effective ALD appears to be
word concurrent, as observed by other CPUs, and is
not subject to protection. When the storage address
that is generated for fetching the effective ALD refers
to a location which is not available in the configura-
tion, an addressing exception is recognized, and the
operation is suppressed. When the primary-space
ALD is fetched, bit 0, the ASX-invalid bit, in the pri-
mary ASTE is ignored.

Access-List Lookup
A lookup in the effective access list is performed. The
effective access list is the dispatchable-unit access
list if bit 7 of the ALET is zero, or it is the primary-
space access list if bit 7 is one. The effective access
list is treated unpredictably as being in either real or
absolute storage.

The access-list-entry-number (ALEN) portion of the
ALET is used to select an entry in the effective
access list. The 31-bit real or absolute address of the
access-list entry is obtained by appending seven
zeros on the right to bits 1-24 of the effective ALD
and adding the ALEN, with four rightmost and 11 left-
most zeros appended. When a carry into bit position
0 occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be ignored,
causing the access list to wrap from 231 - 1 to 0. The
31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit, 31-bit,
or 64-bit addressing mode.

As part of the access-list-lookup process, the left-
most 13 bits of the ALEN are compared against the
effective access-list length, bits 25-31 of the effective
ALD, to establish whether the addressed entry is
within the access list. For this comparison, the
access-list length is extended with six leftmost zeros.
If the value formed from the access-list length is less
than the value in the 13 leftmost bits of the ALEN, an
ALEN-translation exception is recognized, and the
operation is nullified.

The 16-byte access-list entry is fetched by using the
real or absolute address. The fetch of the entry
appears to be word concurrent as observed by other
CPUs, with the leftmost word fetched first. The order
in which the remaining three words are fetched is
unpredictable. The fetch access is not subject to pro-
tection. When the storage address that is generated
for fetching the access-list entry refers to a location
which is not available in the configuration, an

Program Execution 5-63

addressing exception is recognized, and the opera-
tion is suppressed.

Bit 0 of the access-list entry indicates whether the
access-list entry specifies an address space by des-
ignating an ASN-second-table entry. This bit is
inspected, and, if it is one, an ALEN-translation
exception is recognized, and the operation is nulli-
fied.

When bit 0 is zero, the access-list-entry sequence
number (ALESN) in bit positions 8-15 of the access-
list entry is compared against the ALESN in the
ALET to determine whether the ALET designates the
conceptually correct access-list entry. Inequality
causes an ALE-sequence exception to be recognized
and the operation to be nullified.

Locating the ASN-Second-Table Entry
The ASN-second-table-entry (ASTE) origin in the
access-list entry is used to locate the ASTE. Bits
65-89 of the access-list entry, with six zeros
appended on the right, form the 31-bit real address of
the ASTE.

The 64-byte ASTE is fetched by using the real
address. The fetch of the entry appears to be word
concurrent as observed by other CPUs, with the left-
most word fetched first, except that the fetch of the
address-space-control element in the entry appears
to be doubleword concurrent as observed by other
CPUs. After the first word is fetched, the order in
which the ASCE and the remaining words are
fetched is unpredictable. The fetch access is not sub-
ject to protection. When the storage address that is
generated for fetching the ASTE refers to a location
which is not available in the configuration, an
addressing exception is recognized, and the opera-
tion is suppressed.

Bit 0 of the ASTE indicates whether the ASTE speci-
fies an address space. This bit is inspected, and, if it
is one, an ASTE-validity exception is recognized, and
the operation is nullified.

When bit 0 is zero, the ASTE sequence number
(ASTESN) in bit positions 160-191 of the ASTE is
compared against the ASTESN in bit positions
96-127 of the access-list entry to determine whether
the addressing capability represented by the access-
list entry has been revoked. Inequality causes an
ASTE-sequence exception to be recognized and the
operation to be nullified.

Authorizing the Use of the Access-List
Entry
The private bit, bit 7, in the access-list entry is used
to determine whether the program is authorized to
use the access-list entry. The access-list-entry autho-
rization index (ALEAX) in bit positions 16-31 of the
access-list entry, the extended authorization index
(EAX) in bit positions 32-47 of control register 8, and
the authority table designated by the ASTE may also
be used.

When the private bit is zero, the program is autho-
rized, and the authorization step of access-register
translation is completed.

When the private bit is one but the ALEAX is equal to
the EAX, the program is authorized, and the authori-
zation step of access-register translation is com-
pleted.

When the private bit is one and the ALEAX is not
equal to the EAX, a process called the extended-
authorization process is performed. Extended autho-
rization uses the EAX to select an entry in the author-
ity table designated by the ASTE, and it tests the
secondary-authority bit in the selected entry for being
one. The program is authorized if the tested bit is
one.

Extended authorization is the same as the second-
ary-ASN-authorization process described in “ASN
Authorization” on page 3-35, except as follows:

• The authority-table origin is treated as a real or
absolute address instead of as a real address.

• The EAX in control register 8 is used instead of
the authorization index (AX) in control register 4.

• When the value in bit positions 0-11 of the EAX is
greater than the authority-table length (ATL) in
the ASTE, an extended-authority exception is
recognized instead of a secondary-authority
exception. The operation is nullified if the
extended-authority exception is recognized.

When the private bit is one, the ALEAX is not equal
to the EAX, and the secondary bit in the authority-
table entry selected by the EAX is not one, an
extended-authority exception is recognized, and the
operation is nullified.

5-64 The z/Architecture CPU Architecture

Checking for Access-List-Controlled
Protection
If a store-type reference is to be performed and the
fetch-only bit, bit 6, in the access-list entry is one, a
protection exception is recognized, and the operation
is suppressed.

Obtaining the Address-Space-Control
Element from the ASN-Second-Table
Entry

When the ALET being translated is other than
00000000 or 00000001 hex and no exception is rec-
ognized in the steps described above, access-regis-
ter translation obtains the address-space-control
element from bit positions 64-127 of the ASTE.

Recognition of Exceptions during
Access-Register Translation
The exceptions which can be encountered during the
access-register-translation process and their priority
are shown in the section “Access Exceptions” in
Chapter 6, “Interruptions.”

Programming Note: When updating an access-list
entry or ASN-second-table entry, the program should
change the entry from invalid to valid (set bit 0 of the
entry to zero) as the last step of the updating. This
ensures, because the leftmost word is fetched first,
that words of a partially updated entry will not be
fetched.

ART-Lookaside Buffer

To enhance performance, the access-register-trans-
lation (ART) mechanism normally is implemented
such that access-list designations and information
specified in access lists, ASN second tables, and
authority tables are maintained in a special buffer,
referred to as the ART-lookaside buffer (ALB).
Access-list designations, access-list entries, ASN-
second-table entries, and authority-table entries are
collectively referred to as ART-table entries. The CPU
necessarily refers to an ART-table entry in real or
absolute storage only for the initial access to that
entry. The information in the entry may be placed in
the ALB, and subsequent ART operations may be
performed using the information in the ALB. The
presence of the ALB affects the ART process to the
extent that (1) a modification of an ART-table entry in
real or absolute storage does not necessarily have

an immediate effect, if any, on the translation, (2) the
comparison against the access-list length in an
access-list designation that is in storage and used in
a translation may be omitted if an ALB access-list
entry is used, and (3) the comparison against the
authority-table length in an ASN-second-table entry
that is in storage and used in a translation may be
omitted if an ALB authority-table entry is used. In a
multiple-CPU configuration, each CPU has its own
ALB.

Entries within the ALB are not explicitly addressable
by the program.

Information is not necessarily retained in the ALB
under all conditions for which such retention is possi-
ble. Furthermore, information in the ALB may be
cleared under conditions additional to those for which
clearing is mandatory.

ALB Structure
The description of the logical structure of the ALB
covers the implementation by all systems operating
as defined by z/Architecture. The ALB entries are
considered as being of four types: ALB access-list
designations (ALB ALDs), ALB access-list entries
(ALB ALEs), ALB ASN-second-table entries (ALB
ASTEs), and ALB authority-table entries (ALB ATEs).
An ALB entry is considered as containing within it
both the information obtained from the ART-table
entry in real or absolute storage and the attributes
used to fetch the ART-table entry from real or abso-
lute storage.

There is not an indication in an ALB ALD of whether
the ALD-source origin used to select the ALD in real
storage was the dispatchable-unit-control-table origin
or the primary-ASTE origin.

Note: The following sections describe the conditions
under which information may be placed in the ALB,
the conditions under which information from the ALB
may be used for access-register translation, and how
changes to the tables affect the ART process.

Formation of ALB Entries
The formation of ALB entries and the effect of any
manipulation of the contents of an ART-table entry in
real or absolute storage by the program depend on
whether the entry is attached to a particular CPU and
on whether the entry is valid.

Program Execution 5-65

The attached state of an ART-table entry denotes
that the CPU to which the entry is attached can
attempt to use the entry for access-register transla-
tion. The ART-table entry may be attached to more
than one CPU at a time.

An access-list entry or ASN-second-table entry is
valid when the invalid bit associated with the entry is
zero. Access-list designations and authority-table
entries have no invalid bit and are always valid. The
primary-space access-list designation is valid regard-
less of the value of the invalid bit in the primary
ASTE.

An ART-table entry may be placed in the ALB when-
ever the entry is attached and valid.

An access-list designation is attached to a CPU
when the designation is within the dispatchable-unit
control table designated by the dispatchable-unit-
control-table origin in control register 2 or is within
the primary ASTE designated by the primary-ASTE
origin in control register 5.

An access-list entry is attached to a CPU when the
entry is within the access list specified by either an
attached access-list designation (ALD) or a usable
ALB ALD. A usable ALB ALD is explained in the next
section.

An ASN-second-table entry is attached to a CPU
when it is designated by the ASTE origin in either an
attached and valid access-list entry (ALE) or a usable
ALB ALE. A usable ALB ALE is explained in the next
section.

An authority-table entry is attached to a CPU when it
is within the authority table designated by either an
attached and valid ASN-second-table entry (ASTE)
or a usable ALB ASTE. A usable ALB ASTE is
explained in the next section.

Subject to the attached and valid constraints defined
above, the CPU may form ALB entries in anticipation
of future storage references or as a result of the
speculative execution of instructions. Such ALB
entries may be formed independent of the content of
the access registers. See “Overlapped Operation of
Instruction Execution” on page 5-114 for additional
details.

Use of ALB Entries
The usable state of an ALB entry denotes that the
CPU can attempt to use the ALB entry for access-
register translation. A usable ALB entry attaches the
next-lower-level table, if any, and may be usable for a
particular instance of access-register translation.

An ALB ALD is in the usable state when the ALDSO
field in the ALB ALD matches the current dispatch-
able-unit-control-table origin or the current primary-
ASTE origin.

An ALB ALD may be used for a particular instance of
access-register translation when either of the follow-
ing conditions is met:

1. The primary-list bit in the ALET to be translated
is zero, and the ALDSO field in the ALB ALD
matches the current dispatchable-unit-control-
table origin.

2. The primary-list bit in the ALET to be translated
is one, and the ALDSO field in the ALB ALD
matches the current primary-ASTE origin.

An ALB ALE is in the usable state when the ALO field
in the ALB ALE matches the ALO field in an attached
ALD or a usable ALB ALD.

An ALB ALE may be used for a particular instance of
access-register translation when all of the following
conditions are met:

1. The ALET to be translated has a value larger
than 1. (If the ALET is 0 or 1, the contents of CR
1 or CR 7 are used.)

2. The ALO field in the ALB ALE matches the ALO
field in the ALD or ALB ALD being used in the
translation.

3. The ALEN field in the ALB ALE matches the
ALEN field in the ALET to be translated.

An ALB ASTE is in the usable state when the ASTEO
field in the ALB ASTE matches the ASTEO field in an
attached and valid ALE or a usable ALB ALE.

An ALB ASTE may be used for a particular instance
of access-register translation when the ASTEO field
in the ALB ASTE matches the ASTEO field in the
ALE or ALB ALE being used in the translation.

5-66 The z/Architecture CPU Architecture

An ALB ATE may be used for a particular instance of
access-register translation when both of the following
conditions are met:

1. The ATO field in the ALB ATE matches the ATO
field in the ASTE or ALB ASTE being used in the
translation.

2. The EAX field in the ALB ATE matches the cur-
rent EAX.

Modification of ART Tables
When an attached but invalid ART-table entry is
made valid, or when an unattached but valid ART-
table entry is made attached, and no entry formed
from the ART-table entry is already in the ALB, the
change takes effect no later than the end of the cur-
rent instruction.

When an attached and valid ART-table entry is
changed, and when, before the ALB is cleared of
copies of that entry, an attempt is made to perform
ART requiring that entry, unpredictable results may
occur, to the following extent. The use of the new
value may begin between instructions or during the
execution of an instruction, including the instruction
that caused the change. Moreover, until the ALB is
cleared of copies of the entry, the ALB may contain
both the old and the new values, and it is unpredict-
able whether the old or new value is selected for a
particular ART operation. If the old and new values
are used as representations of effective space desig-
nations, failure to recognize that the effective space
designations are the same may occur, with the result
that operand overlap may not be recognized. Effec-
tive space designations and operand overlap are dis-
cussed in“Interlocks within a Single Instruction” on
page 5-116.

When LOAD ACCESS MULTIPLE or LOAD CON-
TROL changes the parameters associated with ART,
the values of these parameters at the start of the
operation are in effect for the duration of the opera-
tion.

All entries are cleared from the ALB by the execution
of PURGE ALB, a COMPARE AND SWAP AND
PURGE instruction that purges the ALB, and SET
PREFIX, and by CPU reset.

Subspace Groups

The subspace-group facility includes the BRANCH IN
SUBSPACE GROUP instruction, allocations of fields
in the address-space-control element, dispatchable-
unit control table, and ASN-second-table entry, and
subspace-replacement operations of the PROGRAM
CALL, PROGRAM RETURN, PROGRAM TRANS-
FER, PROGRAM TRANSFER WITH INSTANCE,
SET SECONDARY ASN, SET SECONDARY ASN
WITH INSTANCE, and LOAD ADDRESS SPACE
PARAMETERS instructions. BRANCH IN SUB-
SPACE GROUP is introduced in “Subroutine Linkage
without the Linkage Stack” on page 5-14 and
described in detail in “BRANCH IN SUBSPACE
GROUP” on page 10-13.

Subspace-Group Tables

This section describes the use of the dispatchable-
unit control table and ASN-second-table entry by the
subspace-group facility.

Subspace-Group Dispatchable-Unit
Control Table

The dispatchable-unit control table has the following
format:

Hex Dec

0 0 BASTEO

4 4 S
A

SSASTEO

8 8

C 12 SSASTESN

10 16 DUALD

14 20
PSW-Key Mask

PSW
Key

R
A

P

18 24

1C 28 /

In the 24-Bit or 31-Bit Addressing Mode

20 32

24 36 B
A

Bits 33-63 of Return Address

In the 64-Bit Addressing Mode

20 32 Bits 0-31 of Return Address

24 36 Bits 32-63 of Return Address

Program Execution 5-67

The fields in the dispatchable-unit control table that
are used by the subspace-group facility are allocated
as follows:

Base-ASTE Origin (BASTEO): Bits 1-25 of bytes
0-3, with six zeros appended on the right, form a
31-bit real address that designates the beginning of
the ASN-second-table entry that specifies the base
space of a subspace group associated with the dis-
patchable unit. A comparison of bits 1-25 of bytes 0-3
to the primary-ASTE origin (PASTEO) in bit positions
33-57 of control register 5 is made by BRANCH IN
SUBSPACE GROUP to determine whether the cur-
rent primary address space is in the subspace group
for the current dispatchable unit. For this comparison,
either bits 1-25 may be compared to the PASTEO or
the entire contents of bytes 0-3 may be compared to
the contents of bit positions 33-63 of control register
5. A comparison of bits 1-25 of bytes 0-3 to the desti-
nation-ASTE origin (DASTEO) obtained from an
access-list entry by access-register translation of an
ALET other than ALETs 0 and 1 is made by
BRANCH IN SUBSPACE GROUP to determine if the
destination ASTE is the base-space ASTE. For this
comparison, either bits 1-25 may be compared to the
DASTEO or the entire contents of bytes 0-3 may be
compared to the DASTEO with one leftmost and six
rightmost zeros appended. A comparison of bits 1-25
of bytes 0-3 to an ASTE origin (ASTEO) obtained by
ASN translation may be made by PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
PROGRAM TRANSFER WITH INSTANCE, SET
SECONDARY ASN, SET SECONDARY ASN WITH
INSTANCE, and LOAD ADDRESS SPACE PARAME-
TERS. For this comparison, either bits 1-25 may be
compared to the ASTEO or the entire contents of
bytes 0-3 may be compared to the ASTEO with one
leftmost and six rightmost zeros appended. When
BRANCH IN SUBSPACE GROUP uses ALET 0, bits
1-25 of bytes 0-3, with six zeros appended on the
right, designate the destination ASTE.

Subspace-Active Bit (SA): Bit 0 of bytes 4-7 indi-
cates, when one, that the last BRANCH IN SUB-
SPACE GROUP instruction executed for the

dispatchable unit transferred control to a subspace of
the subspace group associated with the dispatchable
unit. Bit 0 being zero indicates any one of the follow-
ing: the last BRANCH IN SUBSPACE GROUP
instruction executed for the dispatchable unit trans-
ferred control to the base space of the subspace
group, BRANCH IN SUBSPACE GROUP has not yet
been executed for the dispatchable unit, or the dis-
patchable unit is not associated with a subspace
group. BRANCH IN SUBSPACE GROUP sets bit 0 of
bytes 4-7 to one when it transfers control to a sub-
space of the subspace group associated with the dis-
patchable unit, and it sets bit 0 to zero when it
transfers control to the base space of the subspace
group.

Subspace-ASTE Origin (SSASTEO): Bits 1-25 of
bytes 4-7, with six zeros appended on the right, form
a 31-bit real address that designates the beginning of
the ASN-second-table entry that specifies the sub-
space last given control by a BRANCH IN SUB-
SPACE GROUP instruction executed for the
dispatchable unit. When BRANCH IN SUBSPACE
GROUP transfers control to a subspace by means of
an ALET other than ALET 1, it places the ASTEO for
the subspace (the destination ASTEO) in bit posi-
tions 1-25 of bytes 4-7, places zeros in bit positions
26-31 of bytes 4-7, and sets the subspace-active bit,
bit 0 of bytes 4-7, to one. When BRANCH IN SUB-
SPACE GROUP uses ALET 1 to transfer control to a
subspace, bits 1-25 of bytes 4-7, with six zeros
appended on the right, designate the destination
ASTE, and BRANCH IN SUBSPACE GROUP sets
the subspace-active bit to one and either sets bits
26-31 of bytes 4-7 to zeros or leaves those bits
unchanged. However, if bits 1-25 are all zeros, a spe-
cial-operation exception is recognized. When
BRANCH IN SUBSPACE GROUP transfers control to
the base space of the subspace group, it sets the
subspace-active bit to zero, and bits 1-31 of bytes 4-7
remain unchanged. Bits 1-25 of bytes 4-7 may be
used by PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, PROGRAM TRANSFER
WITH INSTANCE, SET SECONDARY ASN, SET
SECONDARY ASN WITH INSTANCE, and LOAD
ADDRESS SPACE PARAMETERS to set bits 0-55
and 57-63 of the primary ASCE in control register 1
or the secondary ASCE in control register 7 from the
same bits of the ASCE in the subspace ASTE.

Subspace-ASTE Sequence Number
(SS-ASTESN): Bytes 12-15 may be used to revoke
the linkage capability represented by the SSASTEO,
bits 1-25 of bytes 4-7, in the DUCT. When BRANCH

28 40

2C 44 Trap-Control-Block Address E

30 48

34 52

38 56

3C 60

5-68 The z/Architecture CPU Architecture

IN SUBSPACE GROUP transfers control to a sub-
space by means of an ALET other than ALET 1, it
obtains the ASTESN in the subspace ASTE and
places it in bytes 12-15. When BRANCH IN SUB-
SPACE GROUP uses ALET 1 to transfer control to a
subspace, it compares bytes 12-15 to the ASTESN in
the subspace ASTE, and it recognizes an ASTE-
sequence exception if they are unequal. When the
SSASTEO is used by PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, PROGRAM
TRANSFER WITH INSTANCE, SET SECONDARY
ASN, SET SECONDARY ASN WITH INSTANCE,
and LOAD ADDRESS SPACE PARAMETERS to set
bits 0-55 and 57-63 of the primary ASCE in control
register 1 or the secondary ASCE in control register
7 from the same bits of the ASCE in the subspace
ASTE, those instructions first compare bytes 12-15
to the ASTESN in the subspace ASTE, and they rec-
ognize an ASTE-sequence exception if the two fields
are unequal.

Bytes 16-19 are described in “Dispatchable-Unit
Control Table and Access-List Designations” on
page 5-55. Bytes 20-23 are described in “BRANCH
AND SET AUTHORITY” on page 10-7. Bytes 32-39
and 44-47 are described in “TRAP” on page 10-177.
Bytes 24-27, 40-43, and 48-63 are reserved for pos-
sible future extensions and should contain all zeros.
Bytes 28-31 are available for use by programming.

Subspace-Group ASN-Second-Table
Entries
The first 48 bytes of the 64-byte ASN-second-table
entry have the following format:

If ASN-and-LX Reuse Is Not Enabled

If ASN-and-LX Reuse Is Enabled

For BRANCH IN SUBSPACE GROUP, the fields in
bytes 0-47 of the ASTE are allocated as follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is available.
When bit 0 is zero during access-register translation
of ALET 1 or an ALET other than 0 and 1 for
BRANCH IN SUBSPACE GROUP, the translation
proceeds. When the bit is one, an ASTE-validity
exception is recognized. The bit is ignored during
access-register translation of ALET 0. When the
ASTE is designated by a subspace-ASTE origin
(SSASTEO) in a dispatchable-unit control table, bit 0
is also used as described in the definition of bits
160-191 (ASTESN).

Authority-Table Origin (ATO): Bits 1-29 are not
used by BRANCH IN SUBSPACE GROUP.

Base-Space Bit (B): Bit 31 specifies, when one,
that the address space associated with the ASTE is
the base space of a subspace group. When
BRANCH IN SUBSPACE GROUP uses an ALET

I ATO B
0 1 30 31

AX ATL
C
A

R
A

32 48 60 62 63

ASCE (RTD, STD, or RSD) Part 1

RTO, STO, or RSTKO
64 95

RTD or STD Part 2

RTO/STO (Continued) G P S X R DT TL R=0
96 116 118 122 124 127

RSD Part 2

RSTKO (Continued) G P S X R R=1
96 116 118 123 127

ALD

ALO ALL
128 153 159

ASTESN
160 191

LTD

V LTO LTL
192 217 223

LFTD

V LFTO LFTL
192 216 223

Available for programming
224 255

Available for programming
256 287

Available for programming
288 319

320 351

ASTEIN
352 383

Program Execution 5-69

other than ALETs 0 and 1 to locate a destination
ASTE, it recognizes a special-operation exception if
the destination-ASTE origin does not equal the base-
ASTE origin in the dispatchable-unit control table and
bit 31 is one in the destination ASTE.

Authorization Index (AX): Bits 32-47 are not used
by BRANCH IN SUBSPACE GROUP.

Authority-Table Length (ATL): Bits 48-59 are not
used by BRANCH IN SUBSPACE GROUP.

Controlled-ASN Bit (CA): Bit 62 is not used by
BRANCH IN SUBSPACE GROUP.

Reusable-ASN Bit (RA): Bit 63 is not used by
BRANCH IN SUBSPACE GROUP.

Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control ele-
ment (ASCE) that may be a segment-table designa-
tion (STD), a region-table designation (RTD), or a
real-space designation (RSD). (The term “region-
table designation” is used to mean a region-first-table
designation, region-second-table designation, or
region-third-table designation.) The ASCE field is
obtained as the result of access-register translation
done for BRANCH IN SUBSPACE GROUP. When
BRANCH IN SUBSPACE GROUP uses an ALET
other than ALETs 0 and 1 to locate a destination
ASTE, it recognizes a special-operation exception if
the destination-ASTE origin does not equal the base-
ASTE origin in the dispatchable-unit control table and
the subspace-group-control bit, bit 118 (G), in the
destination ASTE is zero. When BRANCH IN SUB-
SPACE GROUP transfers control to the base space
of a subspace group associated with the current dis-
patchable unit, it places bits 64-127 in control register
1; otherwise, when BRANCH IN SUBSPACE
GROUP transfers control to a subspace of the sub-
space group, it places bits 64-119 and 121-127 in bit
positions 0-55 and 57-63, respectively, of control reg-
ister 1. Bits 64-127 are used after ASN translation by
PROGRAM CALL, PROGRAM RETURN, PRO-
GRAM TRANSFER, SET SECONDARY ASN, and
LOAD ADDRESS SPACE PARAMETERS as
described in “ASN-Second-Table Entries” on
page 3-31.

Access-List Designation (ALD): When this ASTE
is designated by the primary-ASTE origin in control
register 5, bits 128-159 are the primary-space
access-list designation (PSALD). During access-reg-
ister translation when the primary-list bit, bit 7, in the

ALET being translated is one, the PSALD is the
effective access-list designation.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control revo-
cation of the accessing capability represented by
access-list entries that designate the ASTE. During
access-register translation, bits 160-191 are com-
pared against the ASTESN in the access-list entry,
and inequality causes an ASTE-sequence exception
to be recognized.

Linkage-Table Designation (LTD) or Linkage-
First-Table Designation (LFTD): Bits 192-223
are not used by BRANCH IN SUBSPACE GROUP.

ASN-Second-Table-Entry Instance Number
(ASTEIN): Bits 352-383 are not used by BRANCH
IN SUBSPACE GROUP.

Bits 224-319 in the ASTE are available for use by
programming.

When the ASTE is designated by a subspace-ASTE
origin (SSASTEO) in a dispatchable-unit control
table, bits 160-191 are also used to control revoca-
tion of the linkage capability represented by that
SSASTEO. When BRANCH IN SUBSPACE GROUP
uses ALET 1 to transfer control to the subspace
specified by the SSASTEO, or when PROGRAM
CALL, PROGRAM RETURN, PROGRAM TRANS-
FER, SET SECONDARY ASN, or LOAD ADDRESS
SPACE PARAMETERS uses the SSASTEO to set
bits 0-55 and 57-63 of the primary ASCE in control
register 1 or the secondary ASCE in control register
7 from the same bits of the ASCE in the subspace
ASTE, those instructions first test bit 0 of the sub-
space ASTE for being zero and recognize an ASTE-
validity exception if it is not, and they then compare
bits 160-191 to the subspace-ASTE sequence num-
ber (SSASTESN) in the dispatchable-unit control
table and recognize an ASTE-sequence exception if
there is an inequality. However, when either of the
two named exception conditions exists for LOAD
ADDRESS SPACE PARAMETERS, the instruction
sets condition code 1 or 2 instead of recognizing the
exception.

Programming Note: All unused fields in the ASTE,
including the unused fields in bytes 0-31 and all of
bytes 32-63, should be set to zeros. These fields are
reserved for future extensions, and programs which
place nonzero values in these fields may not operate
compatibly on future machines.

5-70 The z/Architecture CPU Architecture

Subspace-Replacement
Operations

The subspace-group facility includes subspace-
replacement operations of PROGRAM CALL, PRO-
GRAM TRANSFER, PROGRAM RETURN, SET
SECONDARY ASN, and LOAD ADDRESS SPACE
PARAMETERS. The operations apply when the dis-
patchable unit for which any of the five named
instructions is executed is in a state called subspace
active. A dispatchable unit is subspace active if it has
used BRANCH IN SUBSPACE GROUP to transfer
control to a subspace of its subspace group and has
not subsequently used BRANCH IN SUBSPACE
GROUP to return control to the base space of the
group.

The definitions of the subspace-replacement opera-
tions are included in the definitions of the five named
instructions in Chapter 10, “Control Instructions.” The
operations are described in a general way as follows.
Whenever (1) an address space is established as the
primary or secondary address space as a result of
ASN translation or (2) PROGRAM CALL obtains the
origin of the ASN-second-table entry specifying a
new primary address space from the entry-table
entry used, then, if that address space is in a sub-
space group, as indicated by the subspace-group-
control bit, bit 54 (G), being one in the address-
space-control element (ASCE) for the address space
(the new PASCE in control register 1 or SASCE in
control register 7), and if the dispatchable unit is sub-
space-active, as indicated by the subspace-active bit,
bit 0 (SA) of word 1, in the dispatchable-unit control
table (DUCT) being one, the ASN-second-table-entry
(ASTE) origin (ASTEO) for the address space, which
was obtained by ASN translation or from the entry-
table entry, is compared to the base-ASTE origin
(BASTEO), bits 1-25 of word 0, in the DUCT. If that
ASTEO and the BASTEO are equal, the following
occurs. An ASTE-validity exception is recognized if
bit 0 in the ASTE for the last subspace entered by the
dispatchable unit, which ASTE is designated by the
subspace-ASTE origin (SSASTEO) in the DUCT, is
one. An ASTE-sequence exception is recognized if
the ASTE-sequence number (ASTESN) in word 5 of
the subspace ASTE does not equal the subspace
ASTESN (SSASTESN) in word 3 of the DUCT. How-
ever, LOAD ADDRESS SPACE PARAMETERS sets
a nonzero condition code instead of recognizing the
ASTE-validity or ASTE-sequence exception. If no
exception exists, bits 0-55 and 57-63 of the ASCE for
the address space (the PASCE in control register 1

or SASCE in control register 7) are replaced by the
same bits of the ASCE in word 2 of the subspace
ASTE.

If an addressing exception is recognized when
attempting to access the DUCT or subspace ASTE,
the instruction execution is suppressed. If an ASTE-
validity or ASTE-sequence exception is recognized,
the instruction execution is nullified. Such nullification
or suppression causes all control register contents to
remain unchanged from what they were at the begin-
ning of the instruction execution.

Key-controlled protection does not apply to any
accesses to the DUCT or subspace ASTE.

For comparing the ASTEO obtained by ASN transla-
tion to the BASTEO, either the ASTEO may be com-
pared to the BASTEO or the ASTEO, with one
leftmost and six rightmost zeros appended, may be
compared to the entire contents of word 0 of the
DUCT.

When the SSASTEO in the DUCT is used to access
the subspace ASTE, no check is made for whether
the SSASTEO is all zeros.

The references to the DUCT and subspace ASTE
are single-access references and appear to be word
concurrent as observed by other CPUs. The words of
the DUCT are accessed in no particular order. The
words of the subspace ASTE are accessed in no par-
ticular order except that word 0 is accessed first.

The exceptions that can be recognized during a sub-
space-replacement operation are referred to collec-
tively as the subspace-replacement exceptions and
are listed in priority order in “Subspace-Replacement
Exceptions” on page 6-56.

Linkage-Stack Introduction

Many of the functions related to the linkage stack are
described in this section and in “Linkage-Stack Oper-
ations” on page 5-76. Additionally, tracing of the
stacking PROGRAM CALL instruction and of the
PROGRAM RETURN instruction is described in
Chapter 5, “Program Execution”; interruptions in
Chapter 6, “Interruptions”; and the instructions are
described in Chapter 10, “Control Instructions.”

Program Execution 5-71

Summary

These major functions are provided:

1. A table-based subroutine-linkage mechanism
that provides PSW and control-register status
changing and which saves and restores this sta-
tus and the contents of general registers and
access registers through the use of an entry in a
linkage stack.

2. A branch-type linkage mechanism that uses the
linkage stack.

3. Instructions for placing an additional two words
of status in the current linkage-stack entry and
for retrieving all of the status and the general-
register and access-register contents that are in
the entry.

4. An instruction for determining whether a program
is authorized to use a particular access-list-entry
token.

5. Aids for program-problem analysis.

In addition, control and authority mechanisms are
incorporated to control these functions.

It is intended that a separate linkage stack be associ-
ated with and used by each dispatchable unit. The
linkage stack for a dispatchable unit resides in the
home address space of the dispatchable unit.

It is intended that a dispatchable unit’s linkage stack
be protected from the dispatchable unit by means of
key-controlled protection. Key-controlled protection
does not apply to the linkage-stack instructions that
place information in or retrieve information from the
linkage stack.

The linkage-stack functions are for use by programs
considered to be semi privileged, that is, programs
which are executed in the problem state but which
are authorized to use additional functions. With these
authorization controls, a nonhierarchical organization
of programs may be established, with each program
in a sequence of calling and called programs having
a degree of authority that is arbitrarily different from
those of programs before or after it in the sequence.
The range of functions available to each program,
and the ability to transfer control from one program to
another, are prescribed in tables that are managed
by the control program.

The linkage-stack instructions, which are semiprivi-
leged, are described in Chapter 10, “Control Instruc-
tions.” They are:

• BRANCH AND STACK
• EXTRACT STACKED REGISTERS
• EXTRACT STACKED STATE
• MODIFY STACKED STATE
• PROGRAM RETURN
• TEST ACCESS

In addition, the PROGRAM CALL instruction option-
ally forms an entry in the linkage stack. A PROGRAM
CALL instruction that operates on the linkage stack is
called stacking PROGRAM CALL. Recognition of
PROGRAM CALL as stacking PROGRAM CALL is
under the control of a bit in the entry-table entry.

Linkage-Stack Functions

Transferring Program Control
The use of the linkage stack permits programs oper-
ating at arbitrarily different levels of authority to be
linked directly without the intervention of the control
program. The degree of authority of each program in
a sequence of calling and called programs may be
arbitrarily different, thus allowing a nonhierarchical
organization of programs to be established. Modular
authorization control can be obtained principally by
associating an extended authorization index with
each program module. This allows program modules
with different authorities to coexist in the same
address space. On the other hand, the extended
authorization index in effect during the execution of a
called program module can be the one that is associ-
ated with the calling program module, thus allowing
the called module to be executed with different
authorities on behalf of different dispatchable units.
Options concerning the PSW-key mask and the sec-
ondary ASN are other means of associating different
authorities with different programs or with the same
called program. The authority of each program is pre-
scribed in tables that are managed by the control pro-
gram. By setting up the tables so that the same
program can be called by means of different PC num-
bers, the program can be assigned different authori-
ties depending on which PC number is used to call it.
The tables also allow control over which PC numbers
can be used by a program to call other programs.

The stacking PROGRAM CALL and PROGRAM
RETURN linkage operations can link programs resid-
ing in different address spaces and having different

5-72 The z/Architecture CPU Architecture

levels of authority. The execution state and the con-
tents of the general registers and access registers
are saved during the execution of stacking PRO-
GRAM CALL and are partially restored during the
execution of PROGRAM RETURN. A linkage stack
provides an efficient means of saving and restoring
both the execution state and the contents of registers
during linkage operations.

During the execution of a PROGRAM CALL instruc-
tion, the PC-number-translation process is performed
to locate a 32-byte entry-table entry. When the PC-
type bit in the entry-table entry is one, the stacking
PROGRAM CALL operation is specified; otherwise,
the basic PROGRAM CALL operation is specified.

In addition to the information applying to both basic
PROGRAM CALL and stacking PROGRAM CALL
(described in “PC-Number Translation” on page 5-33
and consisting of an authorization key mask and
specifications of the new ASN, addressing mode,
instruction address, problem state, PSW-key mask,
primary-ASTE address, and entry parameter), the
entry-table entry contains information that specifies
options concerning the address-space control and
PSW key in the PSW, and the PSW-key mask,
extended authorization index, and secondary ASN in
the control registers.

During the stacking PROGRAM CALL operation and
by means of the additional information in the entry-
table entry, the address-space control in the PSW
can be set to specify either the primary-space mode
or the access-register mode. The PSW key can be
either left unchanged or replaced from the entry-table
entry. The PSW-key mask in control register 3 can be
either ORed to or replaced from the entry-table entry.
The extended authorization index in control register 8
can be either left unchanged or replaced from the
entry-table entry. The secondary ASN in control reg-
ister 3 can be set equal to the primary ASN of either
the calling program or the called program; thus, the
ability of the called program to have access to the pri-
mary address space of the calling program can be
controlled.

The stacking PROGRAM CALL operation always
forms an entry, called a state entry, in the linkage
stack to save the execution state and the contents of
general registers 0-15 and access registers 0-15.
The saved execution state includes a called-space
identification, the numeric part of the PC number
used, the updated PSW before any changes are

made due to the entry-table entry, the extended
authorization index, PSW-key mask, primary ASN,
and secondary ASN existing before the operation,
and the extended-addressing-mode bit existing after
the operation. However, the value of the PER mask in
the saved updated PSW is unpredictable. The link-
age-stack state entry also contains an entry-type
code that identifies the entry as one that was formed
by PROGRAM CALL. If the ASN-and-LX-reuse facil-
ity is installed and enabled, the state entry also con-
tains the primary ASN-second-table-entry instance
number (primary ASTEIN) and secondary ASTEIN
existing before the operation.

A space-switching operation occurs when the
address-space number (ASN) specified in the entry-
table entry is nonzero. When space switching occurs,
the operation is called PROGRAM CALL with space
switching (PC-ss), and the ASN in the entry-table
entry is placed in control register 4 as a new primary
ASN. When no space switching occurs, the operation
is called PROGRAM CALL to current primary (PC-
cp), and there is no change to the primary ASN in
control register 4.

PROGRAM CALL with space switching obtains the
new ASN from the entry-table entry and places it in
control register 4 as the primary ASN. It obtains a
new primary-ASTE origin from the entry-table entry
and new primary address-space-control element
from the new primary ASTE, and it places them in
control registers 5 and 1, respectively. It sets the sec-
ondary address-space-control element in control reg-
ister 7 equal to either the old primary address-space-
control element, or the new one, depending on
whether it sets the secondary ASN in control register
3 equal to the old primary ASN or the new one,
respectively. PROGRAM CALL to current primary
sets the secondary ASN equal to the primary ASN
and the secondary address-space-control element
equal to the primary address-space-control element.

If the ASN-and-LX-reuse facility is installed and
enabled, PROGRAM CALL with space switching
obtains the ASN-second-table-entry instance number
(ASTEIN) from the new primary ASTE and places it
in control register 4 as the new primary ASTEIN. It
sets the secondary ASTEIN in control register 3
equal to either the old primary ASTEIN or the new
one, depending on whether it set the secondary ASN
equal to the old primary ASN or the new one, respec-
tively. PROGRAM CALL to current primary sets the
secondary ASTEIN equal to the primary ASTEIN.

Program Execution 5-73

The instruction PROGRAM RETURN restores most
of the information saved in the linkage stack by the
stacking PROGRAM CALL operation. It restores the
PSW, extended authorization index, PSW-key mask,
primary ASN, secondary ASN, and the contents of
general registers 2-14 and access-registers 2-14.
However, the PER mask in the current PSW remains
unchanged. If the ASN-and-LX-reuse facility is
installed and enabled, PROGRAM RETURN restores
the primary ASTEIN and secondary ASTEIN. The
operation of PROGRAM RETURN is referred to by
saying that PROGRAM RETURN unstacks a state
entry.

For PROGRAM RETURN, a space-switching opera-
tion occurs when the restored primary ASN is not
equal to the primary ASN existing before the opera-
tion. When space switching occurs, the operation is
called PROGRAM RETURN with space switching
(PR-ss). When no space switching occurs, the opera-
tion is called PROGRAM RETURN to current primary
(PR-cp).

PROGRAM RETURN with space switching performs
ASN translation of the restored primary ASN to
obtain a new primary-ASTE origin and a new primary
address-space-control element, which it places in
control registers 5 and 1, respectively. For PRO-
GRAM RETURN with space switching or to current
primary, (1) if the restored secondary ASN is the
same as the restored primary ASN, the secondary
address-space-control element in control register 7 is
set equal to the new primary address-space-control
element in control register 1, or (2) if the restored
secondary ASN is not the same as the restored pri-
mary ASN, ASN translation and ASN authorization of
the restored secondary ASN are performed to obtain
a new secondary address-space-control element,
which is placed in control register 7.

If the ASN-and-LX-reuse facility is installed and
enabled, PROGRAM RETURN with space switching
requires that the ASN-second-table-entry instance
number (ASTEIN) in the new primary ASTE be equal
to the primary ASTEIN saved in the state entry being
unstacked. PROGRAM RETURN with space switch-
ing or to current primary, if the restored secondary
ASN is not the same as the restored primary ASN,
requires that the ASTEIN in the new secondary
ASTE be equal to the saved ASTEIN. An exception is
recognized if either of these requirements is not met.

The stacking PROGRAM CALL operation and the
PROGRAM RETURN operation each can be per-

formed successfully only in the primary-space mode
or access-register mode. An exception is recognized
when the CPU is in the real mode, secondary-space
mode, or home-space mode.

A bit, named the unstack-suppression bit, can be set
to one in a linkage-stack state entry to cause an
exception if an attempt is made by PROGRAM
RETURN to unstack the entry. When the bit is one,
the entry still can be operated on by the instructions
that add information to or retrieve information from
the entry. The unstack-suppression bit is intended to
allow the control program to gain control when an
attempt is made to unstack a state entry in which the
bit is one.

Branching Using the Linkage Stack
The execution state and the contents of the general
registers and access registers can also be saved in
the linkage stack by means of the instruction
BRANCH AND STACK. BRANCH AND STACK uses
a branch address as do the other branching instruc-
tions, instead of using a PC number. BRANCH AND
STACK, along with PROGRAM RETURN, can link
programs residing in the same address space and
having the same level of authority; that is, BRANCH
AND STACK does not change the execution state
except for the instruction address.

BRANCH AND STACK forms a linkage-stack state
entry that is almost the same as one formed by PRO-
GRAM CALL. When it is necessary to distinguish
between these two types of state entry, an entry
formed by PROGRAM CALL is called a program-call
state entry, and one formed by BRANCH AND
STACK is called a branch state entry. A branch state
entry differs from a program-call state entry in two
ways: (1) it contains a different entry-type code,
which identifies it as a branch state entry, and (2) it
contains the basic-addressing-mode bit and instruc-
tion address existing after the operation instead of a
called-space identification and the numeric part of
the PC number used. These new values of PSW bits
32 and 64-127 are in addition to the complete PSW
that is saved in the state entry.

For BRANCH AND STACK, the basic- and extended
addressing mode bits and the instruction address
that are part of the complete PSW saved in the state
entry can be the current (at the beginning of the
operation) addressing-mode bits and the updated
instruction address (the address of the next sequen-
tial instruction), or they can be specified in a register.

5-74 The z/Architecture CPU Architecture

This register can be one that had link information
placed in it by a BRANCH AND LINK (BALR only),
BRANCH AND SAVE, BRANCH AND SAVE AND
SET MODE, or BRANCH AND SET MODE instruc-
tion. Thus, BRANCH AND STACK can be used either
in a calling program or at (or near) the entry point of a
called program, and, in either case, a PROGRAM
RETURN instruction located at the end of the called
program will return correctly to the calling program.
The ability to use BRANCH AND STACK at an entry
point allows the linkage stack to be used without
changing old calling programs.

When the R2 field of BRANCH AND STACK is zero,
the instruction is executed without causing branch-
ing.

When PROGRAM RETURN unstacks a branch state
entry, it ignores the extended authorization index,
PSW-key mask, primary ASN, secondary ASN, pri-
mary ASTEIN, and secondary ASTEIN in the entry.
The PROGRAM RETURN instruction restores the
PSW and the contents of general registers 2-14 and
access registers 2-14 that were saved in the entry.
However, the PER mask in the current PSW remains
unchanged.

BRANCH AND STACK can be executed successfully
only in the primary-space mode or access-register
mode. An exception is recognized when the CPU is
in the real mode, secondary-space mode, or home-
space mode. The unstack-suppression bit has the
same effect in a branch state entry as it does in a
program-call state entry.

Adding and Retrieving Information
The instruction MODIFY STACKED STATE can be
used by a program to place two words of information,
contained in a designated general-register pair, in an
area, called the modifiable area, of the current link-
age-stack state entry (a branch state entry or a pro-
gram-call state entry). This is intended to allow a
called program to establish a recovery routine that
will be given control by the control program, if neces-
sary.

The instructions EXTRACT STACKED REGISTERS
and EXTRACT STACKED STATE can be used by a
program to obtain any of the information saved in the
current state entry by BRANCH AND STACK or
PROGRAM CALL or placed there by MODIFY
STACKED STATE. EXTRACT STACKED REGIS-
TERS (EREGG) places the contents of a specified

range of general registers and access registers back
in the registers from which the contents were saved.
EXTRACT STACKED REGISTERS (EREG) does the
same except that it restores only bits 32-63 of the
general registers and leaves bits 0-31 unchanged.
EXTRACT STACKED STATE obtains pairs of words
of the nonregister information saved or placed in a
state entry and places them in bit positions 32-63 of
a designated general-register pair. Alternatively,
EXTRACT STACKED STATE obtains two double-
words containing a PSW saved in the state entry and
places them in bit positions 0-63 of a designated
general-register pair. If the ASN-and-LX-reuse facility
is installed, EXTRACT STACKED STATE can place
the contents of two words of the state entry in bit
positions 0-31 of a designated general-register pair.
These contents are the saved secondary ASTEIN
and primary ASTEIN if the ASN-and-LX-reuse facility
is enabled. EXTRACT STACKED STATE sets the
condition code to indicate whether the current state
entry is a branch state entry or a program-call state
entry.

Testing Authorization
The instruction TEST ACCESS has as operands an
access-list-entry token (ALET) in a designated
access register and an extended authorization index
(EAX) in a designated general register. TEST
ACCESS applies the access-register-translation pro-
cess, which uses the specified EAX instead of the
current EAX in control register 8, to the ALET, and it
sets the condition code to indicate the result. The
condition code may indicate: (1) the ALET is
00000000 hex, (2) the ALET designates an entry in
the dispatchable-unit access list and can be trans-
lated without exceptions in access-register transla-
tion, (3) the ALET designates an entry in the primary-
space access list and can be translated without
exceptions in access-register translation, or (4) the
ALET is 00000001 hex or causes exceptions in
access-register translation.

The principal purpose of TEST ACCESS is to allow a
called program to determine whether an ALET
passed to it by the calling program is authorized for
use by the calling program by means of the calling
program’s EAX. This is in support of a possible pro-
gramming convention in which a called program will
not operate on an AR-specified address space by
means of its own EAX unless the calling program is
authorized to operate on that space by means of the
calling program’s EAX. The called program can
obtain the calling program’s EAX, for use by TEST

Program Execution 5-75

ACCESS, from the current linkage-stack state entry
by means of the EXTRACT STACKED STATE
instruction.

Another purpose of TEST ACCESS is to indicate the
special cases in which the ALET is 00000000 hex,
designating the primary address space, or 00000001
hex, designating the secondary address space.
Because PROGRAM CALL may change the primary
and secondary address spaces, ALETs 00000000
hex and 00000001 hex may designate different
address spaces when used by the called program
than when used by the calling program.

Still another purpose of TEST ACCESS is to indicate
whether the ALET designates an entry in the pri-
mary-space access list since such a designation
after the primary address space was changed by a
space-switching program-linkage operation may be
an error.

Program-Problem Analysis
To aid program-problem analysis, the option is pro-
vided of having a trace entry made implicitly for three
additional linkage operations when the linkage stack
is used. When branch tracing is on, a trace entry is
made each time a BRANCH AND STACK instruction
is executed and causes branching. When ASN trac-
ing is on, a trace entry is made each time the stack-
ing PROGRAM CALL operation is performed and
each time PROGRAM RETURN unstacks a linkage-
stack state entry formed by PROGRAM CALL. When
mode tracing is on, a trace entry is made each time
the stacking PROGRAM CALL operation or PRO-
GRAM RETURN operation is performed and
changes PSW bit 31, except that, for PROGRAM
RETURN, a trace entry for mode tracing is not made
if one due to ASN tracing is made. A detailed defini-
tion of tracing is contained in “Tracing” on page 4-12.

As a further analysis aid, BRANCH AND STACK
when it causes branching, stacking PROGRAM
CALL, and PROGRAM RETURN are also recog-
nized as PER successful-branching events. For
PROGRAM RETURN, the unstacked state entry may
have been formed by BRANCH AND STACK or PRO-
GRAM CALL.

The execution of a space-switching stacking PRO-
GRAM CALL or PROGRAM RETURN instruction
causes a space-switch event if the primary space-
switch-event control is one before or after the opera-
tion or if a PER event is to be indicated.

Linkage-Stack Entry-Table Entries

 All of the fields in the entry-table entry except bits
130-159 are described in “Entry-Table Entries” on
page 5-37. This section describes only bits 130-159.

The entry-table entry has the following format:

The fields in bit positions 130-159 are allocated as
follows:

Reserved (RI): Bit 130 is reserved for IBM use.

PSW-Key Control (K): Bit 131, when one, speci-
fies that bits 136-139 are to replace the PSW key in
the PSW as part of the stacking PROGRAM CALL
operation. When this bit is zero, the PSW key
remains unchanged. Bit 131 is ignored during the
basic PROGRAM CALL operation.

PSW-Key-Mask Control (M): Bit 132, when one,
specifies that bits 96-111 are to replace the PSW-key

If Bit 129 is Zero

0 31

A Entry Instruction Address P
32 33 63

If Bit 129 is One

Entry Instruction Address (Part 1)
0 31

Entry Instruction Address (Part 2) P
32 63

Remaining fields (independent of bit 129)

Authorization Key Mask ASN
64 80 95

Entry Key Mask
96 112 127

T G
R
I

K M E C S EK
Entry Extended

Authorization Index
128 136 140 144 159

ASTE Origin
160 186 191

Entry Parameter (Part 1)
192 223

Entry Parameter (Part 2)
224 255

5-76 The z/Architecture CPU Architecture

mask in control register 3 as part of the stacking
PROGRAM CALL operation. When this bit is zero,
bits 96-111 are ORed into the PSW-key mask in con-
trol register 3 as part of the stacking PROGRAM
CALL operation. Bit 132 is ignored during the basic
PROGRAM CALL operation.

Extended-Authorization-Index Control (E): Bit
133, when one, specifies that bits 144-159 are to
replace the current extended authorization index in
control register 8 as part of the stacking PROGRAM
CALL operation. When this bit is zero, the current
extended authorization index remains unchanged. Bit
133 is ignored during the basic PROGRAM CALL
operation.

Address-Space-Control Control (C): Bit 134,
when one, specifies that bit 17 of the current PSW is
to be set to one as part of the stacking PROGRAM
CALL operation. When this bit is zero, bit 17 is set to
zero. Because the CPU must be in either the pri-
mary-space mode or the access-register mode when
a stacking PROGRAM CALL instruction is issued,
the result is that the CPU is placed in the access-reg-
ister mode if bit 134 is one or the primary-space
mode if bit 134 is zero. Bit 134 is ignored during the
basic PROGRAM CALL operation.

Secondary-ASN Control (S): Bit 135, when one,
specifies that bits 80-95 are to become the new sec-
ondary ASN, and the new SASCE is to be set equal
to the new PASCE, as part of the stacking PRO-
GRAM CALL with-space-switching (PC-ss) opera-
tion. When this bit is zero, the new SASN and
SASCE are set equal to the PASN and PASCE,
respectively, of the calling program. When the ASN-
and-LX-reuse facility is installed and enabled, bit 135
similarly specifies, when one, that the new SASTEIN
is to be set equal to the new PASTEIN or, when zero,
that the new SASTEIN is to be set equal to the
PASTEIN of the calling program. Bit 135 is ignored
during the basic PROGRAM CALL operation and the
stacking PROGRAM CALL to-current-primary (PC-
cp) operation.

Entry Key (EK): Bits 136-139 replace the PSW key
in the PSW as part of the stacking PROGRAM CALL
operation if the PSW-key control, bit 131, is one. Bits
136-139 are ignored, and the current PSW key
remains unchanged, if bit 131 is zero. Bits 136-139
are ignored during the basic PROGRAM CALL oper-
ation.

Entry Extended Authorization Index: Bits
144-159 replace the current extended authorization
index, bits 32-47 of control register 8, as part of the
stacking PROGRAM CALL operation if the extended-
authorization-index control, bit 133, is one. Bits
144-159 are ignored, and the current extended
authorization index remains unchanged, if bit 133 is
zero. Bits 144-159 are ignored during the basic PRO-
GRAM CALL operation.

Bits 130 and 140-143 are reserved for possible future
extensions and should be zeros.

Linkage-Stack Operations

A linkage stack may be formed by the control pro-
gram for each dispatchable unit. The linkage stack is
used to save the execution state and the contents of
the general registers and access registers during the
BRANCH AND STACK and stacking PROGRAM
CALL operations. The linkage stack is also used to
restore a portion of the execution state and general-
register and access-register contents during the
PROGRAM RETURN operation.

A linkage stack resides in virtual storage. The linkage
stack for a dispatchable unit is in the home address
space for that dispatchable unit. The home address
space is designated by the home address-space-
control element in control register 13.

The linkage stack is intended to be protected from
problem-state programs so that these programs can-
not examine or modify the information saved in the
linkage stack, except by means of the EXTRACT
STACKED REGISTERS, EXTRACT STACKED
STATE, and MODIFY STACKED STATE instructions.
This protection can be obtained by means of key-
controlled protection.

A linkage stack may consist of a number of linkage-
stack sections chained together. A linkage-stack sec-
tion is variable in length. The maximum length of
each linkage-stack section is 65,560 bytes.

There are three types of entry in the linkage stack:
header entry, trailer entry, and state entry. A header
entry and a trailer entry are at the beginning and end,
respectively, of a linkage-stack section, and they are
used to chain linkage-stack sections together.
Header entries and trailer entries are formed by the
control program. A state entry is used to contain the

Program Execution 5-77

execution state and register contents that are saved
during the BRANCH AND STACK or stacking PRO-
GRAM CALL operation, and it is formed during the
operation. A state entry is further distinguished as
being a branch state entry if it was formed by
BRANCH AND STACK or as being a program-call
state entry if it was formed by PROGRAM CALL.

The actions of forming a state entry and saving infor-
mation in it during the BRANCH AND STACK and
stacking PROGRAM CALL operations are called the
stacking process. The actions of restoring informa-
tion from a state entry and logically deleting the entry
during the PROGRAM RETURN operation are called
the unstacking process. The part of the unstacking
process that locates a state entry is also performed
during the EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, and MODIFY
STACKED STATE operations.

Each type of linkage-stack entry has a length that is a
multiple of eight bytes. A header entry and trailer
entry each has a length of 16 bytes. A state entry has
a length of 296 bytes.

Each of the header entry, trailer entry, and state entry
has a common eight-byte area at its end, called the
entry descriptor. The linkage-stack-entry address in
control register 15 designates the leftmost byte of the
entry descriptor of the last linkage-stack entry, other
than the trailer entry, in a linkage-stack section. This
entry is called the current linkage-stack entry, and the
section is called the current linkage-stack section.

Each entry descriptor in a linkage-stack section,
except the one in the trailer entry of the section,
includes a field that specifies the amount of space
existing between the end of the entry descriptor and
the beginning of the trailer entry. This field is named
the remaining-free-space field. The remaining-free-
space field in a trailer entry is unused.

When a new state entry is to be formed in the linkage
stack during the stacking process, the new entry is
placed immediately after the entry descriptor of the
current linkage-stack entry, provided that there is
enough remaining free space in the current linkage-
stack section to contain the new entry. If there is not
enough remaining free space in the current section,
and if the trailer entry in the current section indicates
that another section follows the current section, the
new entry is placed immediately after the entry
descriptor of the header entry of that following sec-
tion, provided that there is enough remaining free

space in that section. If the trailer entry indicates that
there is not a following section, an exception is recog-
nized, and a program interruption occurs. It is then
the responsibility of the control program to allocate
another section, chain it to the current section, and
cause the BRANCH AND STACK or stacking PRO-
GRAM CALL instruction to be reexecuted. If there is
a following section but there is not enough remaining
free space in it, an exception is recognized.

If the remaining-free-space value that is used to
locate a trailer entry is not a multiple of 8, an excep-
tion is recognized. The remaining-free-space value in
the header entry of a linkage-stack section must be
set to a multiple of 8 to ensure that the remaining-
free-space value that may be used to locate the
trailer entry of the section will be a multiple of 8.

When the stacking process is successful in forming a
new state entry, it updates the linkage-stack-entry
address in control register 15 so that the address
designates the leftmost byte of the entry descriptor of
the new entry, which thus becomes the new current
linkage-stack entry.

When, during the unstacking process in PROGRAM
RETURN, the current linkage-stack entry is a state
entry, the process operates on that entry and then
updates the linkage-stack-entry address so that it
designates the entry descriptor of the preceding
entry in the same linkage-stack section. The preced-
ing entry thus becomes the current entry. The new
current entry may be another state entry, or it may be
a header entry.

The header entry of a linkage-stack section indicates
whether there is a preceding section. If there is a pre-
ceding section, the header entry contains the
address of the last linkage-stack entry, other than the
trailer entry, in the preceding section. That last entry
should be a state entry (not another header entry),
unless there is an error in the linkage stack.

If the unstacking process is performed when the cur-
rent linkage-stack entry is a header entry, and if the
header entry indicates that a preceding linkage-stack
section exists, the unstacking process proceeds by
treating the entry designated in the preceding section
as if it were the current entry, provided that this entry
is a state entry. If the header entry does not indicate
a preceding section, or if the entry designated in the
preceding section is not a state entry, an exception is
recognized.

5-78 The z/Architecture CPU Architecture

When the unstacking process is performed in
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED STATE, the
process locates a state entry but does not change
the linkage-stack-entry address in control register 15.

Each entry descriptor in a linkage-stack section
includes a field that specifies the length of the next
linkage-stack entry, other than the trailer entry, in the
section. When a state entry is created during the
stacking process, zeros are placed in this field in the
created entry, and the length of the state entry is
placed in this field in the preceding entry. When a
state entry is logically deleted during the unstacking
process in PROGRAM RETURN, zeros are placed in
this field in the preceding entry. This field is named
the next-entry-size field.

When the stacking or unstacking process operates
on the linkage stack, key-controlled protection does
not apply, but low-address and DAT protection do
apply.

Linkage-Stack-Operations Control

The use of the linkage stack is controlled by the
ASN-and-LX-reuse control in control register 0, the
home address-space-control element in control reg-
ister 13 and the linkage-stack-entry address in con-
trol register 15. The home address-space-control
element is described in “Dynamic Address Transla-
tion” on page 3-38.

The ASN-and-LX-reuse control and the linkage-
stack-entry address are

Control Register 0

ASN-and-LX-Reuse Control (R): Bit 44 of control
register 0 is the ASN-and-LX-reuse-control bit (R)
and is assigned if the ASN-and-LX-reuse facility is
installed. The effects of a one value of the bit specifi-
cally on the linkage stack are as follows:

• BRANCH AND STACK and stacking PRO-
GRAM CALL save the secondary ASN-sec-
ond-table-entry instance number (ASTEIN),
bits 0-31 of control register 3, and the pri-
mary ASTEIN, bits 0-31 of control register 4,

in bytes 176-179 and 180-183, respectively,
of the linkage-stack state entry that either of
the instructions forms.

• PROGRAM RETURN with space switching,
after it has used the PASN in bytes 134 and
135 of the state entry to locate an ASN-sec-
ond-table entry, compares the primary
ASTEIN in bytes 180-183 of the state entry
to the ASTEIN in the ASN-second-table
entry. PROGRAM RETURN to current pri-
mary or with space switching, if it uses the
SASN in bytes 130 and 131 of the state entry
to locate an ASN-second-table entry
(because the new SASN is not equal to the
new PASN), compares the secondary
ASTEIN in bytes 176-179 of the state entry
to the ASTEIN in the ASN-second-table
entry. The one or two comparisons of
ASTEINs must each give equal results; oth-
erwise, an ASTE-instance exception is rec-
ognized. The comparisons occur regardless
of the reusable-ASN bits in the ASN-second-
table entries. PROGRAM RETURN to cur-
rent primary or with space switching restores
the secondary and primary ASTEINs saved
in the state entry to bit positions 0-31 of con-
trol registers 3 and 4, respectively (if no
exception is recognized). When unstacking a
state entry formed by BRANCH AND
STACK, PROGRAM RETURN does not com-
pare or restore ASTEINs.

The effect of the ASN-and-LX-reuse control on PC-
number translation is described in “ASN-and-LX-
Reuse Control (R):” on page 5-35. Other effects of
the control are described in “ASN-Second-Table-
Entry Instance Number and ASN Reuse” on
page 3-25.

Control Register 15
The location of the entry descriptor of the current
linkage-stack entry is specified in control register 15.
The register has the following format:

Linkage-Stack-Entry Address: Bits 0-60 of con-
trol register 15, with three zeros appended on the
right, form the 64-bit home virtual address of the

R
44

Linkage-Stack-Entry Address (Part 1)
0 31

Linkage-Stack-Entry Address (Part 2)
32 61 63

Program Execution 5-79

entry descriptor of the current linkage-stack entry in
the current linkage-stack section. Bits 0-60 are
changed during the stacking process in BRANCH
AND STACK and stacking PROGRAM CALL and
during the unstacking process in PROGRAM
RETURN. Bits 61-63 of control register 15 are set to
zeros when bits 0-60 are changed.

Linkage Stack

The linkage stack consists of one or more linkage-
stack sections containing linkage-stack entries.
There are three principal types of linkage-stack entry:
header entry, trailer entry, and state entry. A state
entry is further distinguished as being either a branch
state entry or a program-call state entry.

Each type of linkage-stack entry has an entry
descriptor at its end. The leftmost byte of the entry
descriptor of the current linkage-stack entry in the
current linkage-stack section is designated by the
linkage-stack-entry address in control register 15.

The linkage stack resides in the home address
space, designated by the home address-space-con-
trol element in control register 13.

Entry Descriptors
An entry descriptor is at the end of each linkage-
stack entry. The entry descriptor is eight bytes in
length and has the following format:

The fields in the entry descriptor are allocated as fol-
lows:

Unstack-Suppression Bit (U): When bit 0 is one
in the entry descriptor of a header entry or state entry
encountered during the unstacking process in PRO-
GRAM RETURN, a stack-operation exception is rec-
ognized. Bit 0 is ignored in a trailer entry and during
the unstacking process in EXTRACT STACKED
REGISTERS, EXTRACT STACKED STATE, and
MODIFY STACKED STATE. The control program can
temporarily set bit 0 to one in the current linkage-
stack entry (a header entry or state entry) to prevent
PROGRAM RETURN from being executed success-
fully while still allowing EXTRACT STACKED REGIS-

TERS, EXTRACT STACKED STATE, and MODIFY
STACKED STATE to be executed successfully. Bit 0
is set to zero in the entry descriptor of a state entry
when the entry is formed during the stacking pro-
cess.

Entry Type (ET): Bits 1-7 are a code that specifies
the type of the linkage-stack entry containing the
entry descriptor. The assigned codes are:

Codes 0000000-0001000, 0001011, and 0001110
through 0111111 binary are reserved for possible
future assignments. Codes 1000000 through
1111111 binary are available for use by program-
ming.

Bits 1-7 are set to 0001100 or 0001101 binary in the
entry descriptor of a state entry when the entry is
formed during the stacking process.

A stack-type exception is recognized during the
unstacking process in EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN if bits 1-7
in the current linkage-stack entry do not indicate that
the entry is a state entry or a header entry; or, when
the current entry is a header entry, if bits 1-7 in the
entry designated by the backward stack-entry
address in the header entry do not indicate that the
designated entry is a state entry. However, a stack-
specification exception is recognized, instead of a
stack-type exception, if both the current entry and the
designated entry are header entries.

Section Identification (SI): Bits 8-15 are an identi-
fication, provided by the control program, of the link-
age-stack section containing the entry descriptor. In
the state entry formed by a stacking process, the pro-
cess sets bits 8-15 equal to the contents of the sec-
tion-identification field in the preceding linkage-stack
entry.

Remaining Free Space (RFS): Bits 16-31 specify
the number of bytes between the end of this entry
descriptor and the beginning of the trailer entry in the
same linkage-stack section, except that this field in a
trailer entry has no meaning. Thus, in the last state

U ET SI RFS
0 1 8 16 31

NES
32 48 63

Code (in Binary) Entry Type

0001001 Header entry

0001010 Trailer entry

0001100 Branch State entry

0001101 Program-call state entry

5-80 The z/Architecture CPU Architecture

entry in a section, or in the header entry if there is no
state entry, bits 16-31 specify the number of bytes
available in the section for performance of the stack-
ing process. In the state entry formed by a stacking
process, the process sets bits 16-31 equal to the
contents of the remaining-free-space field in the pre-
ceding linkage-stack entry minus the size, in bytes, of
the new entry. Bits 16-31 must be a multiple of 8 (bits
29-31 must be zeros) in the entry descriptor of the
header entry in a linkage-stack section; otherwise, a
value that is not a multiple of 8 will be propagated to
bits 16-31 in the entry descriptor of each state entry
in the section, and a stack-specification exception will
be recognized if the stacking process attempts to
locate the trailer entry in the section in order to pro-
ceed to the next section.

Next-Entry Size (NES): Bits 32-47 specify the size
in bytes of the next linkage-stack entry, other than a
trailer entry, in the same linkage-stack section. This
field in the current linkage-stack entry contains all
zeros. This field in a trailer entry has no meaning.
When the stacking process forms a state entry, it
places zeros in the next-entry-size field of the new
entry, and it places the size of the new entry in the
next-entry-size field of the preceding entry. When the
unstacking process logically deletes a state entry, it
places zeros in the next-entry-size field of the pre-
ceding entry, which entry becomes the current entry.

Bits 48-63 are set to zeros in a state entry when the
entry is formed during the stacking process. In a
header entry, trailer entry, or state entry, bits 48-63
are reserved for possible future extensions and
should always be zeros.

Programming Note: No entry-type code will be
assigned in which the leftmost bit of the code is one.
The control program can temporarily set the leftmost
bit to one in the entry-type code of the current link-
age-stack entry (a header entry or a state entry) to
prevent the successful execution of EXTRACT
STACKED REGISTERS, EXTRACT STACKED
STATE, MODIFY STACKED STATE, or PROGRAM
RETURN.

Header Entries
A header entry is at the beginning of each linkage-
stack section. The header entry is 16 bytes in length
and has the following format:

The fields in the first eight bytes of the header entry
are allocated as follows:

Backward Stack-Entry Validity Bit (B): Bit 63
when one, specifies that the preceding linkage-stack
section is available and that the backward stack-entry
address, bits 0-60 is valid. Bit 63 is set to one during
the stacking process when the process proceeds to
this section from the preceding one because there is
not enough space available in the preceding section
to perform the process. During the unstacking pro-
cess when this header entry is the current linkage-
stack entry, a stack-empty exception is recognized if
bit 63 is zero.

Backward Stack-Entry Address (BSEA): When
bit 63 is one, bits 0-60 with three zeros appended on
the right, form the 64-bit home virtual address of the
entry descriptor of the last linkage-stack entry, other
than the trailer entry, in the preceding linkage-stack
section. However, if the current linkage-stack entry is
in the preceding or an earlier linkage-stack section,
bits 0-60 may have no meaning because the entry
they designate, and earlier entries, may have been
logically deleted. Bits 0-60 are set during the stacking
process when the process proceeds to this section
from the preceding one because there is not enough
space available in the preceding section to perform
the process. During the unstacking process when
this header entry is the current linkage-stack entry
and bit 63 is one, the entry designated by bits 0-60 is
treated as the current entry.

Bits 61 and 62 are set to zeros when bits 0-60 are set
during the stacking process. Bits 61 and 62 are
reserved for possible future extensions.

Backward Stack-Entry Address (Part 1)
0 31

Backward Stack-Entry Address (Part 2) B
32 61 63

Entry Descriptor (Part 1)
64 95

Entry Descriptor (Part 2)
96 127

Program Execution 5-81

Trailer Entries
A trailer entry is at the end of each linkage-stack sec-
tion. The trailer entry begins immediately after the
area specified by the remaining-free-space field in
the entry descriptors of the header entry and each
state entry in the same linkage-stack section. The
trailer entry is 16 bytes in length and has the follow-
ing format:

The fields in the first eight bytes of the trailer entry
are allocated as follows:

Forward-Section Validity Bit (F): Bit 63 when
one, specifies that the next linkage-stack section is
available and that the forward-section-header
address, bits is valid. During the stacking process
when there is not enough space available in the cur-
rent linkage-stack section to perform the process, a
stack-full exception is recognized if bit 63 in the trailer
entry of the current section is zero.

Forward-Section-Header Address (FSHA):

When bit 63 is one, bits 0-60, with three zeros
appended on the right, form the 64-bit home virtual
address of the entry descriptor of the header entry in
the next linkage-stack section. During the stacking
process when there is not enough space available in
the current section to perform the process and bit 63
is one, the header entry designated by bits 0-60
becomes the current linkage-stack entry.

Bits 61 and 62 are reserved for possible future exten-
sions.

Programming Note: All of the fields in the trailer
entry are set only by the control program.

State Entries
Zero, one, or more state entries may follow the
header entry in each linkage-stack section. A state
entry may be a branch state entry, formed by a

BRANCH AND STACK instruction, or a program-call
state entry, formed by a stacking PROGRAM CALL
instruction. The state entry is 296 bytes in length and
has the following format:

Bytes 0-127 of the state entry contain the contents of
general registers 0-15 in the ascending order of the
register numbers. Bytes 224-287 contain the con-
tents of access registers 0-15 in the ascending order
of the register numbers. The contents of these fields
are moved from the registers to the state entry during
the BRANCH AND STACK and stacking PROGRAM
CALL operations. The contents of general registers
2-14 and access registers 2-14 are restored from the
state entry to the registers during the PROGRAM
RETURN operation. The contents of a specified
range of general registers and access registers can
be restored from the state entry to the registers by
EXTRACT STACKED REGISTERS.

Bytes 128-223 of the state entry contain the other
status information that is placed in the entry by
BRANCH AND STACK, stacking PROGRAM CALL,

and MODIFY STACKED STATE. A portion of this sta-
tus information is restored to the PSW and control
registers by PROGRAM RETURN, and all of the
information can be examined by means of EXTRACT
STACKED STATE. Bytes 288-295 contain the entry
descriptor. EXTRACT STACKED STATE sets the
condition code to indicate whether the entry-type
code in the entry descriptor specifies a branch state
entry or a program-call state entry.

Forward-Section-Header Address (Part 1)
0 31

Forward-Section-Header Address (Part 2) F
32 61 63

Entry Descriptor (Part 1)
64 95

Entry Descriptor (Part 2)
96 127

Hex Dec Contents Bytes

0
8

70
78

0
8

112
120

Contents of General Registers 0 - 15 128

80
88

D0
D8

128
136

208
216

Other Status Information 96

E0
E8

110
118

224
232

272
280

Contents of Access Registers 0 - 15 64

120 288 Entry Descriptor 8

5-82 The z/Architecture CPU Architecture

Bytes 128-223 of the state entry have the following
detailed format:

In a Branch State Entry Made in 24-Bit or 31-Bit Mode

In a Branch State Entry Made in 64-Bit Mode

In a Program-Call State Entry Made When Resulting Mode
Is 24 Bit or 31 Bit

In a Program-Call State Entry Made When Resulting Mode
Is 64 Bit

If ASN-and-LX Reuse Is Enabled; otherwise Unpredictable

The fields in bytes 128-183 are allocated as follows.
In the following,”of the calling program” means the
value existing at the beginning of the execution of the
BRANCH AND STACK or stacking PROGRAM CALL
instruction that formed the state entry.

PSW-Key Mask (PKM): Bytes 128-129 contain the
PSW-key mask, bits 32-47 of control register 3, of the
calling program. The PSW-key mask is saved in the
state entry by BRANCH AND STACK or stacking
PROGRAM CALL, and it is restored to the control
register by a PROGRAM RETURN instruction that
unstacks an entry formed by stacking PROGRAM
CALL.

Secondary ASN (SASN): Bytes 130-131 contain
the secondary ASN, bits 48-63 of control register 3,
of the calling program. The SASN is saved in the
state entry by BRANCH AND STACK or stacking
PROGRAM CALL, and it is restored to the control
register by a PROGRAM RETURN instruction that
unstacks an entry formed by stacking PROGRAM
CALL.

Extended Authorization Index (EAX): Bytes
132-133 contain the extended authorization index,
bits 32-47 of control register 8, of the calling program.
The EAX is saved in the state entry by BRANCH
AND STACK or stacking PROGRAM CALL, and it is
restored to the control register by a PROGRAM
RETURN instruction that unstacks an entry formed
by stacking PROGRAM CALL.

Primary ASN (PASN): Bytes 134-135 contain the
primary ASN, bits 48-63 of control register 4, of the
calling program. The PASN is saved in the state entry
by BRANCH AND STACK or stacking PROGRAM
CALL, and it is restored to the control register by a
PROGRAM RETURN instruction that unstacks an
entry formed by stacking PROGRAM CALL.

Program-Status Word (PSW): In a branch state
entry formed by a BRANCH AND STACK instruction
in which the R1 field is zero, and in a program-call
state entry, bytes 136-143 and 168-175 contain the
updated PSW of the calling program. Bytes 136-143
contain bits 0-63 of the PSW, and bytes 168-175 con-
tain bits 64-127 of the PSW. Thus, the basic and
extended addressing-mode bits in this PSW specify
the addressing mode of the calling program, and the
instruction address designates the next sequential
instruction following the BRANCH AND STACK or
stacking PROGRAM CALL instruction that formed
the state entry, or following an execute-type instruc-
tion that had the BRANCH AND STACK or stacking
PROGRAM CALL instruction as its target instruction.
In a branch state entry formed by a BRANCH AND
STACK instruction in which the R1. field is nonzero,
bytes 136-143 and 168-175 contain the PSW of the
calling program, except that the extended-address-

PKM SASN EAX PASN
128 130 132 134 135

PSW Bits 0-63
136 143

A Bits 33-63 of Branch Address

144 148 151

Bits 0-62 of Branch Address 1

144 151

Called-Space Id. 0 Numeric Part of PC Number

144 148 151

Called-Space Id. 1 Numeric Part of PC Number

144 148 151

Modifiable Area

152 159

All Zeros

160 167

PSW Bits 64-127

168 175

Secondary ASTEIN Primary ASTEIN

176 180 183

Unpredictable

184 223

Program Execution 5-83

ing-mode bit in bit position 31 of bytes 136-139, the
basic-addressing-mode bit in bit position 0 of byte
140, and the instruction address in bytes 168-175 are
as specified by the contents of the general register
designated by the R1 field. See the definition of
BRANCH AND STACK in Chapter 10, “Control
Instructions” for how the basic- and extended-
addressing-mode bits and instruction address are
specified. The value of the PER mask in bytes
136-143 is always unpredictable. The PSW is saved
in the state entry by BRANCH AND STACK or stack-
ing PROGRAM CALL and is restored as the current
PSW by PROGRAM RETURN, except that the PER
mask is not restored. PROGRAM RETURN does not
change the PER mask in the current PSW.

Basic Addressing Mode (A): In a branch state
entry made in the 24-bit or 31-bit addressing mode,
bit position 0 of bytes 148-151 contains the basic-
addressing-mode bit, bit 32 of the PSW, at the end of
the execution of the BRANCH AND STACK instruc-
tion that formed the state entry. The basic-address-
ing-mode bit is saved in bit position 0 of bytes
148-151 by BRANCH AND STACK. BRANCH AND
STACK does not change the basic-addressing-mode
bit in the PSW.

Branch Address: In a branch state entry made in
the 24-bit or 31-bit addressing mode, bit positions
1-31 of bytes 148-151 contain bits 33-63 of the
instruction address in the PSW at the end of the exe-
cution of the BRANCH AND STACK instruction that
formed the state entry, and the contents of bytes
144-147 are unpredictable. In a branch state entry
made in the 64-bit addressing mode, bytes 144-151
contain bits 0-62 of that instruction address with a
one appended on the right. The instruction address
is saved in bytes 148-151 or 144-151 (depending on
the addressing mode) by BRANCH AND STACK.
When the R2. field of BRANCH AND STACK is non-
zero, the instruction causes branching, and the
instruction address in bytes 148-151 or 144-151 is
the branch address. When the R2 field of BRANCH
AND STACK is zero, the instruction is executed with-
out branching, and the instruction address in bytes
148-151 or 144-151 is the address of the next
sequential instruction following the BRANCH AND
STACK instruction, or following an execute-type
instruction that had the BRANCH AND STACK
instruction as its target instruction.

Called-Space Identification: In a program-call
state entry, bytes 144-147 contain the called-space

identification (CSI). The CSI is saved in the state
entry by stacking PROGRAM CALL.

If the PROGRAM CALL operation was space switch-
ing, bytes 0 and 1 of the CSI (bytes 144 and 145 of
the state entry) contain the new primary ASN that
was placed in control register 4 by the PROGRAM
CALL instruction. When the ASN-and-LX-reuse facil-
ity is not enabled, bytes 2 and 3 of the CSI (bytes 146
and 147 of the state entry) contain the rightmost two
bytes of the ASTE sequence number (ASTESN) in
the new primary ASTE whose address was placed in
control register 5 by the PROGRAM CALL instruc-
tion. When the ASN-and-LX-reuse facility is installed
and enabled, bytes 2 and 3 of the CSI (bytes 146 and
147 of the state entry) contain the rightmost two
bytes of the ASTE instance number (ASTEIN) in the
new primary ASTE whose address was placed in
control register 5 by the PROGRAM CALL instruc-
tion.

If the PROGRAM CALL operation was the to-current-
primary operation, the CSI is all zeros.

Numeric Part of PC Number: In a program-call
state entry, bit positions 1-31 of bytes 148-151 con-
tain the numeric part of the PC number used by the
stacking PROGRAM CALL instruction that formed
the entry. When ASN-and-LX reuse is not enabled, or
when it is and bit 44 of the effective address used by
stacking PROGRAM CALL is zero, stacking PRO-
GRAM CALL places bits 44-63 of the effective
address, with 11 zeros appended on the left, in bit
positions 1-31 of bytes 148-151. When ASN-and-LX
reuse is enabled and bit 44 of the effective address is
one, stacking PROGRAM CALL places bits 45-63 of
the effective address, with bits 32-43 of the effective
address appended on the left, in bit positions 1-31 of
bytes 148-151. In any case, stacking PROGRAM
CALL places a zero in bit position 0 of the bytes if the
resulting addressing mode is the 24-bit or 31-bit
mode or a one in bit position 0 if the resulting
addressing mode is the 64-bit mode.

Modifiable Area: Bytes 152-159 are the field that
is set by MODIFY STACKED STATE. BRANCH AND
STACK and stacking PROGRAM CALL place all
zeros in bytes 152-159.

Secondary ASTEIN (SASTEIN): If the ASN-and-
LX-reuse facility is installed and is enabled by a one
value of the ASN-and-LX-reuse control in control reg-
ister 0, bytes 176-179 contain the secondary
ASTEIN, bits 0-31 of control register 3, of the calling

5-84 The z/Architecture CPU Architecture

program. The SASTEIN is saved in the state entry by
BRANCH AND STACK or stacking PROGRAM
CALL. When PROGRAM RETURN unstacks a pro-
gram-call state entry, it compares the SASTEIN in
the state entry to the ASTEIN in the ASN-second-
table entry if SASN translation occurs, and it always
restores the SASTEIN to control register 3.

Primary ASTEIN (PASTEIN): If the ASN-and-LX-
reuse facility is installed and is enabled by the ASN-
and-LX-reuse control in control register 0, bytes
180-183 contain the primary ASTEIN, bits 0-31 of
control register 4, of the calling program. The
PASTEIN is saved in the state entry by BRANCH
AND STACK or stacking PROGRAM CALL. When
PROGRAM RETURN unstacks a program-call state
entry, it compares the PASTEIN in the state entry to
the ASTEIN in the ASN-second-table entry if PASN
translation occurs, and it always restores the
PASTEIN to control register 4.

All zeros are placed in bytes 160-167 by BRANCH
AND STACK and stacking PROGRAM CALL.

The contents of bytes 184-223 are unpredictable.

Stacking Process

The stacking process is performed as part of a
BRANCH AND STACK or stacking PROGRAM CALL
operation. The process locates space for a new link-
age-stack state entry, forms the entry, updates the
next-entry-size field in the preceding entry, and
updates the linkage-stack-entry address in control
register 15 so that the new entry becomes the cur-
rent linkage-stack entry.

For the stacking process to be performed success-
fully, DAT must be on and the CPU must be in the pri-
mary-space mode or access-register mode;
otherwise, a special-operation exception is recog-
nized, and the operation is suppressed.

Except as just mentioned, the stacking process is
performed independent of the current addressing
mode and translation mode, as specified by bits 31,
32, 16, and 17 of the current PSW. All addresses
used during the stacking process are always 64-bit
home virtual addresses.

During the stacking process when any address is
formed through the addition or subtraction of a value
to or from another address, a carry out of, or a bor-

row into, bit position 0 of the address, if any, is
ignored.

When the stacking process fetches or stores by using
an address that designates, after translation, a loca-
tion that is not available in the configuration, an
addressing exception is recognized, and the opera-
tion is suppressed.

Key-controlled protection does not apply to the
accesses made during the stacking process, but DAT
protection and low-address protection do apply. A
protection exception causes the operation to be sup-
pressed.

Locating Space for a New Entry
The linkage-stack-entry address in control register 15
is used to locate the current linkage-stack entry. Bits
0-60 of control register 15, with three zeros
appended on the right, form the 64-bit home virtual
address of the leftmost byte of the entry descriptor of
the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 64-bit
home virtual address. This fetch is for the purpose of
obtaining the section-identification and remaining-
free-space fields in the word; the unstack-suppres-
sion bit and entry-type field in the word are not exam-
ined.

The 16-bit unsigned binary value in the remaining-
free-space field, bits 16-31 of the entry descriptor, is
compared against the size in bytes of the linkage-
stack entry to be formed. The size of a state entry is
296 bytes. If the value in the field is equal to or
greater than the size of the entry to be formed, pro-
cessing continues as described in “Forming the New
Entry” on page 5-85; otherwise, processing contin-
ues as described below.

When the remaining-free-space field in the current
linkage-stack entry indicates that there is not enough
space available in the current linkage-stack section to
form the new entry, the first doubleword of the trailer
entry of the current section is fetched. The address
for fetching this doubleword is determined as follows:
to the address formed from the contents of control
register 15, add 8 to address the first byte after the
entry descriptor of the current entry, and then add the
contents of the remaining-free-space field of the cur-
rent entry to address the first byte of the trailer entry.
The remaining-free-space value used in the addition

Program Execution 5-85

must be a multiple of 8; otherwise, a stack-specifica-
tion exception is recognized, and the operation is nul-
lified.

If the forward-section-validity bit, bit 63 of the trailer
entry is zero, a stack-full exception is recognized,
and the operation is nullified; otherwise, the forward-
section-header address in the trailer entry is used to
locate the header entry in the next linkage-stack sec-
tion. Bits 0-60 of the trailer entry, with three zeros
appended on the right, form the 64-bit home virtual
address of the leftmost byte of the entry descriptor of
the header entry in the next section.

The first word of the entry descriptor of the header
entry in the next linkage-stack section is fetched. This
fetch is for the purpose of obtaining the section-iden-
tification and remaining-free-space fields in the word;
the unstack-suppression bit and entry-type field in
the word are not examined.

The value in the remaining-free-space field of the
header entry in the next linkage-stack section is com-
pared against the size in bytes of the entry to be
formed. If the value in the field is equal to or greater
than the size of the entry to be formed, the following
occurs:

• The linkage-stack-entry address, bits 0-60 of
control register 15, is placed, as the back-
ward stack-entry address, in bit positions
0-60 of the header entry in the next linkage-
stack section, and zeros are placed in bit
positions 61 and 62.

• The backward stack-entry validity bit, bit 63,
in the header entry in the next section is set
to one.

• Bits 0-60 of the 64-bit home virtual address
of the entry descriptor of the header entry in
the next section are placed in bit positions
0-60 of control register 15, and zeros are
placed in bit positions 61-63 of control regis-
ter 15. Thus, the header entry in the next
section becomes the current linkage-stack
entry, and the next section becomes the cur-
rent linkage-stack section.

• Processing continues as described in “Form-
ing the New Entry”.

If the value in the remaining-free-space field of the
header entry in the next section (before the next sec-
tion becomes the current section) is less than the

size of the linkage-stack entry to be formed, a stack-
specification exception is recognized, and the opera-
tion is nullified.

Forming the New Entry
When the remaining-free-space field in the current
linkage-stack entry indicates that there is enough
space available in the current linkage-stack section to
form the new entry, the new entry is formed begin-
ning immediately after the entry descriptor of the cur-
rent entry.

The new entry is a state entry. The contents of gen-
eral registers 0-15 are stored in bytes 0-127 of the
new entry, in the ascending order of the register num-
bers. The contents of access registers 0-15 are
stored in bytes 224-287 of the new entry, in the
ascending order of the register numbers. The PSW-
key mask, bits 32-47 of control register 3; secondary
ASN, bits 48-63 of control register 3; extended autho-
rization index, bits 32-47 of control register 8; and pri-
mary ASN, bits 48-63 of control register 4, are stored
in bytes 128-129, 130-131, 132-133, and 134-135,
respectively, of the new entry. The current PSW, in
which the instruction address has been updated, is
stored in bytes 136-143 and 168-175 of the new
entry. Bytes 136-143 contain bits 0-63 of the PSW,
and bytes 168-175 contain bits 64-127 of the PSW.
However, the value of the PER mask, bit 1 in the
PSW stored, is unpredictable. Also, if the instruction
being executed is a BRANCH AND STACK instruc-
tion in which the R1. field is nonzero, the extended-
and basic-addressing-mode bits stored in bytes 139
and 140, respectively, of the new entry, and the
instruction address stored in bytes 168-175 of the
new entry, are as specified by the contents of the
general register designated by the R1 field.

If the ASN-and-LX-reuse facility is installed and is
enabled by a one value of the ASN-and-LX-reuse
control, bit 44 of control register 0, the secondary
ASTEIN, bits 0-31 of control register 3, and the pri-
mary ASTEIN, bits 0-31 of control register 4, are
stored in bytes 176-179 and 180-183, respectively, of
the new entry.

When the instruction is PROGRAM CALL, the called-
space identification is stored in bytes 144-147 of the
new entry. When the instruction is performing the
space-switching PROGRAM CALL operation and the
ASN-and-LX-reuse facility is not enabled, the called-
space identification is the two-byte ASN, bytes 10
and 11 in the entry-table entry used by the instruc-

5-86 The z/Architecture CPU Architecture

tion, followed by bytes 2 and 3 of the ASTE sequence
number, bytes 2 and 3 being bits 176-191, in the
ASN-second-table entry specified by the ASN. When
the instruction is performing the space-switching
PROGRAM CALL operation and the ASN-and-LX-
reuse facility is installed and enabled, the called-
space identification is the two-byte ASN, bytes 10
and 11 in the entry-table entry used by the instruc-
tion, followed by bytes 2 and 3 of the ASTE instance
number, bytes 2 and 3 being bits 368-383, in the
ASN-second-table entry specified by the ASN. When
the instruction is performing the to-current-primary
PROGRAM CALL operation, the called-space identi-
fication is all zeros.

When the instruction is BRANCH AND STACK in the
24-bit or 31-bit addressing mode, the basic-address-
ing-mode bit from the current PSW is stored in bit
position 0 of byte 148 in the state entry, bits 33-63 of
the branch address, or of the updated instruction
address if the operation is performed without branch-
ing, are stored in bit positions 1-31 of bytes 148-151,
and the contents of bytes 144-147 are unpredictable.
In the 64-bit addressing mode, bits 0-62 of the
branch address or updated instruction address, with
a one appended on the right, are stored in bytes
144-151 of the state entry.

When the instruction is PROGRAM CALL, the
numeric part of the PC number used, with 11 zeros
appended on the left if the number is 20 bits, is
stored in bit positions 1-31 of bytes 148-151. If the
resulting addressing mode after the execution of
PROGRAM CALL is the 24-bit or 31-bit addressing
mode, a zero is stored in bit position 0 of byte 148. If
the resulting addressing mode is the 64-bit address-
ing mode, a one instead of a zero is stored in bit posi-
tion 0 of byte 148.

Zeros are stored in bytes 152-167 of the new entry.
The contents of bytes 176-223 are unpredictable, or
the contents of bytes 184-223 are unpredictable if the
secondary ASTEIN and primary ASTEIN were
stored.

Bytes 288-295 of the new entry are its entry descrip-
tor. The unstack-suppression bit, bit 0, of this entry
descriptor is set to zero. The code 0001100 binary is
stored in the entry-type field, bits 1-7, of this entry
descriptor if the instruction being executed is
BRANCH AND STACK. The code 0001101 binary is
stored if the instruction is PROGRAM CALL. The
value in the section-identification field of the current
linkage-stack entry is stored in the section-identifica-

tion field, bits 8-15, of this entry descriptor. The value
in the remaining-free-space field of the current entry,
minus the size in bytes of the new entry, is stored in
the remaining-free-space field of this entry descrip-
tor. Zeros are stored in the next-entry-size field, bits
32-47, and in bit positions 48-63 of this entry descrip-
tor.

The stores into the new entry appear to be word con-
current as observed by other CPUs. The order in
which the stores occur is unpredictable.

Updating the Current Entry
The size in bytes of the new linkage-stack entry is
stored in the next-entry-size field of the current entry.
The remainder of the current entry remains
unchanged.

The order of the stores into the current entry and the
new entry is unpredictable.

Updating Control Register 15
Bits 0-60 of the 64-bit home virtual address of the
entry descriptor of the new linkage-stack entry are
placed in bit positions 0-60 of control register 15, the
linkage-stack-entry address. Zeros are placed in bit
positions 61-63 of control register 15. Thus, the new
entry becomes the current linkage-stack-entry.

Recognition of Exceptions during the
Stacking Process
The exceptions which can be encountered during the
stacking process and their priority are described in
the definitions of the BRANCH AND STACK and
PROGRAM CALL instructions.

Programming Note: Any exception recognized
during the execution of BRANCH AND STACK and
PROGRAM CALL causes either nullification or sup-
pression. Therefore, if an exception is recognized,
the stacking process does not store into any linkage-
stack entry or change the contents of control register
15.

Unstacking Process

The unstacking process is performed as part of the
PROGRAM RETURN operation. The process locates
the last state entry in the linkage stack, restores a
portion of the information in the entry to the CPU reg-
isters, updates the next-entry-size field in the preced-
ing entry, and updates the linkage-stack-entry

Program Execution 5-87

address in control register 15 so that the preceding
entry becomes the current linkage-stack entry. The
part of the unstacking process that locates the last
state entry is also performed as part of the
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED STATE
operations.

For the unstacking process to be performed success-
fully, DAT must be on and the CPU must be in the pri-
mary-space mode or access-register mode;
otherwise, a special-operation exception is recog-
nized, and the operation is suppressed. However,
when the unstacking process is performed as part of
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED STATE, the
CPU may be in the primary-space, access-register,
or home-space mode.

Except as just mentioned, the unstacking process is
performed independent of the current addressing
mode and translation mode, as specified by bits 31,
32, 16, and 17 of the current PSW. All addresses
used during the unstacking process are always 64-bit
home virtual addresses.

During the unstacking process when any address is
formed through the addition or subtraction of a value
to or from another address, a carry out of, or a bor-
row into, bit position 0 of the address, if any, is
ignored.

When the unstacking process fetches or stores by
using an address that designates, after translation, a
location that is not available in the configuration, an
addressing exception is recognized, and the opera-
tion is suppressed.

Key-controlled protection does not apply to the
accesses made during the unstacking process, but
DAT protection and low-address protection do apply.
A protection exception causes the operation to be
suppressed.

Locating the Current Entry and
Processing a Header Entry
The linkage-stack-entry address in control register 15
is used to locate the current linkage-stack entry. Bits
0-60 of control register 15, with three zeros
appended on the right, form the 64-bit home virtual
address of the leftmost byte of the entry descriptor of
the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 64-bit
home virtual address. If the entry-type code in bits
1-7 of the entry descriptor is not 0001001 binary, indi-
cating that the entry is not a header entry, processing
continues as described in “Checking for a State
Entry”; otherwise, processing continues as described
below.

When the entry-type code in the current linkage-
stack entry is 0001001 binary, indicating a header
entry, the next processing depends on which instruc-
tion is being executed. When the unstacking process
is performed as part of the PROGRAM RETURN
operation and the unstack-suppression bit, bit 0, in
the entry descriptor of the current entry is one, a
stack-operation exception is recognized, and the
operation is nullified. When the unstacking process is
performed as part of EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, or MODIFY
STACKED STATE, the unstack-suppression bit is
ignored.

When there is not an exception due to the unstack-
suppression bit, the first doubleword of the current
linkage-stack entry (a header entry) is fetched. The
address of this doubleword is determined by sub-
tracting 8 from the address of the entry descriptor of
the current entry.

If the backward stack-entry validity bit, bit 63, of the
current entry is zero, a stack-empty exception is rec-
ognized, and the operation is nullified; otherwise, the
backward stack-entry address in the current entry is
used to locate a linkage-stack entry referred to here
as the designated entry. Bits 0-60 of the current
entry, with three zeros appended on the right, form
the 64-bit home virtual address of the leftmost byte of
the entry descriptor of the designated entry.

It is assumed in this definition of the unstacking pro-
cess that the designated linkage-stack entry is the
last entry, other than the trailer entry, in the preceding
linkage-stack section. This assumption does not
imply any processing that is not explicitly described.

The first word of the entry descriptor of the desig-
nated entry is fetched. If the entry-type code in this
entry descriptor is not 0001001 binary, indicating that
the entry is not a header entry, the following occurs:

• When the unstacking process is performed as
part of the PROGRAM RETURN operation, bits
0-60 of the 64-bit home virtual address of the

5-88 The z/Architecture CPU Architecture

entry descriptor of the designated entry are
placed in bit positions 0-60 of control register 15,
and zeros are placed in bit positions 61-63 of
control register 15. Thus, the designated entry
becomes the current linkage-stack entry, and the
preceding section (based on the assumption)
becomes the current linkage-stack section.
When the unstacking process is performed as
part of EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, or MODIFY
STACKED STATE, the contents of control regis-
ter 15 remain unchanged, but the designated
entry is temporarily, during the remainder of the
definition of the instruction, referred to as the cur-
rent linkage-stack entry.

• Processing continues as described in “Checking
for a State Entry”.

If the entry-type code in the designated entry is
0001001 binary, indicating a header entry, a stack-
specification exception is recognized, and the opera-
tion is nullified.

Checking for a State Entry
When the entry-type code in the current linkage-
stack entry indicates that the entry is not a header
entry, the code is checked for being 0001100 or
0001101 binary, which are the codes assigned to a
state entry.

If the current linkage-stack entry is a state entry, the
next processing depends on which instruction is
being executed. When the unstacking process is per-
formed as part of the PROGRAM RETURN opera-
tion, processing continues as described in “Restoring
Information” on page 5-88. When the process is per-
formed as part of EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, or MODIFY
STACKED STATE, the process is completed; that is,
no additional processing occurs as a part of the
unstacking process.

If the current linkage-stack entry is not a state entry
(and necessarily not a header entry either), a stack-
type exception is recognized, and the operation is
nullified.

Restoring Information
The remaining parts of the unstacking process occur
only in the PROGRAM RETURN operation.

The current linkage-stack entry is a state entry. If the
unstack-suppression bit in the entry is one, a stack-
operation exception is recognized, and the operation
is nullified.

When there is not an exception due to the unstack-
suppression bit, a portion of the contents of the cur-
rent linkage-stack entry are restored to the CPU reg-
isters. The contents of general registers 2-14 and
access registers 2-14 are restored to those registers
from where they were saved in the current entry by
the stacking process. When the entry-type code in
the current entry is 0001101 binary, indicating a pro-
gram-call state entry, the PSW-key mask and sec-
ondary ASN in control register 3, extended
authorization index in control register 8, and primary
ASN in control register 4 are similarly restored.
During this restoration, the authorization index in
control register 4 and the monitor masks and
enhanced-monitor masks in control register 8 remain
unchanged. (The authorization index may be
changed by the part of the PROGRAM RETURN
execution that occurs after the unstacking process.)

When the state entry is a program-call state entry,
and if the ASN-and-LX-reuse facility is installed and
is enabled by a one value of the ASN-and-LX-reuse
control in control register 0, the secondary ASTEIN in
control register 3 and the primary ASTEIN in control
register 4 are restored from where they were saved in
the state entry. However, the primary ASTEIN and
secondary ASTEIN may be subject to certain tests,
as described in the PROGRAM RETURN definition.

When the entry-type code is 0001100 binary, indicat-
ing a branch state entry, the PSW-key mask, second-
ary ASN, extended authorization index, primary
ASN, secondary ASTEIN, and primary ASTEIN in
the current entry are ignored, and all contents of the
control registers remain unchanged.

When the current entry is either a branch state entry
or a program-call state entry, bits 0-63 and 64-127 of
the current PSW are restored from bytes 136-143
and bytes 168-175, respectively, of the entry, except
that the PER mask is not restored. The PER mask in
the current PSW remains unchanged. Bytes 144-159
and bytes 160-167 of the current entry are ignored.

The fetches from the current entry appear to be word
concurrent as observed by other CPUs. The order in
which the fetches occur is unpredictable.

Program Execution 5-89

Updating the Preceding Entry
Zeros are stored in the next-entry-size field, bits
32-47, of the entry descriptor of the preceding link-
age-stack entry. The remainder of the preceding
entry remains unchanged. The address of the entry
descriptor of the preceding entry is determined by
subtracting the size in bytes of the current entry from
the address of the entry descriptor of the current
entry.

The order of the store into the preceding entry and
the fetches from the current entry is unpredictable.

Updating Control Register 15
Bits 0-60 of the 64-bit home virtual address of the
entry descriptor of the preceding linkage-stack entry
are placed in bit positions 0-60 of control register 15,
the linkage-stack-entry address. Zeros are placed in
bit positions 61-63 of control register 15. Thus, the
preceding entry becomes the current linkage-stack
entry.

Recognition of Exceptions during the
Unstacking Process
The exceptions which can be encountered during the
unstacking process and their priority are described in
the definition of the PROGRAM RETURN instruction.
The exceptions which apply to EXTRACT STACKED
REGISTERS, EXTRACT STACKED STATE, and
MODIFY STACKED STATE are described in the defi-
nitions of those instructions.

Programming Notes:

1. Any exceptions recognized during the execution
of EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN
cause either nullification or suppression. There-
fore, if an exception is recognized, the unstacking
process does not change the contents of any
CPU register (except for updating the instruction
address in the PSW in the case of suppression)
or store into any linkage-stack entry.

2. The unstacking process in PROGRAM RETURN
does not restore the PER mask in the PSW so
that an act of turning PER on or off after the exe-
cution of the related BRANCH AND STACK or
PROGRAM CALL instruction but before the exe-
cution of the PROGRAM RETURN instruction
will not be counteracted. When PROGRAM
CALL or PROGRAM RETURN is space switch-

ing, the space-switch event can be used as a sig-
nal to turn PER on or off, if desired.

Transactional-Execution Facility

This section describes the registers, instructions,
controls, and operation of the transactional-execution
facility. The transactional-execution facility provides
the means by which a program can issue multiple
instructions, the storage-operand accesses of which
appear to occur as a single concurrent operation as
observed by other CPUs and by the channel subsys-
tem.

Three special-purpose controls (the transaction-
abort PSW, the transaction diagnostic-block address,
and the transaction nesting depth), five control regis-
ter bits, and six general instructions are used to con-
trol the transactional-execution facility. When the
facility is installed, it is installed in all CPUs in the
configuration. Facility indication 73, when one, indi-
cates that the transactional-execution facility is
installed.

When the transactional-execution facility is installed,
the configuration may also provide the constrained
transactional-execution facility. See “Constrained
Transaction” (below) for details on constrained trans-
actions. When facility indications 50 and 73 are both
one, the constrained transactional-execution facility
is installed.

Note: In the following discussion of the transactional-
execution facility, the instruction name TRANSAC-
TION BEGIN refers to the instructions having the
mnemonics TBEGIN and TBEGINC. Discussions
pertaining to a specific instruction are indicated by
the instruction name followed by the mnemonic in
parentheses or brackets, or simply by the mnemonic.

Transactional-Execution Terminology
The following terms are used pervasively in the
description of the transactional-execution facility.

Note: Of necessity, some of these terms are cross-
referential. They appear in alphabetical order only for
convenience.

Abort: A transaction is said to abort when it is
ended prior to a TRANSACTION END instruction

5-90 The z/Architecture CPU Architecture

that results in a transaction nesting depth of zero.
When a transaction aborts, the following occurs:

• Transactional store accesses made by any and
all levels of the transaction are discarded (that is,
not committed).

• Nontransactional store accesses made by any
and all levels of the transaction are committed.

• Registers designated by the general-register-
save mask of the outermost TRANSACTION
BEGIN instruction are restored to their contents
prior to transactional execution (that is, to their
contents at execution of the outermost TRANS-
ACTION BEGIN instruction). General registers
not designated by the general-register-save
mask of the outermost TRANSACTION BEGIN
instruction are not restored.

• Access registers, vector registers, floating-point
registers, and the floating-point control register
are not restored. Any changes made to these
registers during transactional execution are
retained when the transaction aborts.

A transaction may be aborted due to a variety of rea-
sons, including attempted execution of a restricted
instruction, attempted modification of a restricted
resource, transactional conflict, exceeding various
CPU resources, any interruption, a TRANSACTION
ABORT instruction, and other reasons. “Transaction
Abort Code (TAC)” on page 5-95 provides specific
reasons why a transaction may be aborted.

Commit: At the completion of the outermost
TRANSACTION END instruction, the CPU is said to
commit the store accesses made by the transaction
such that they are visible to other CPUs and the
channel subsystem. As observed by other CPUs and
by the channel subsystem, all fetch and store
accesses made by all nested levels of the transaction
appear to occur as a single concurrent operation
when the commit occurs.

The contents of the general registers, access regis-
ters, vector registers, floating-point registers, and the
floating-point control register are not modified by the
commit process. Any changes made to these regis-
ters during transactional execution are retained when
the transaction’s stores are committed.

Conflict: A transactional access made by one CPU
is said to conflict with either (a) a transactional
access or nontransactional access made by another

CPU, or (b) a nontransactional access made by the
channel subsystem, if both accesses are to any loca-
tion within the same cache line, and one or both of
the accesses is a store.

A conflict may be detected by a CPU’s speculative
execution of instructions, even though the conflict
may not be detected in the conceptual sequence.

Programming Note: Because of speculative execu-
tion by the CPU, a conflict may be detected at a stor-
age location that would not necessarily be accessed
by the conceptual execution sequence.

Constrained Transaction: A constrained transac-
tion is a transaction that executes in the constrained
transactional-execution mode (see below) and is
subject to the following limitations:

• A subset of the general instructions is available.

• A limited number of instructions may be exe-
cuted.

• A limited number of storage-operand locations
may be accessed.

• The transaction is limited to a single nesting
level.

In the absence of repeated interruptions, guarded-
storage-event detection, or conflicts with other CPUs
or the channel subsystem, a constrained transaction
will eventually complete, thus an abort-handler rou-
tine is not required. Constrained transactions are
described in detail in “Constrained Transaction” on
page 5-107.

Programming Note: When the TBEGINC instruction
is executed while the CPU is already in the noncon-
strained transactional-execution mode, execution
continues as a nested nonconstrained transaction.

Constrained Transactional-Execution Mode:
When the transaction nesting depth is zero, and a
transaction is initiated by the TRANSACTION BEGIN
(TBEGINC) instruction, the CPU enters the con-
strained transactional-execution mode. While the
CPU is in the constrained transactional-execution
mode, the transaction nesting depth is always one.

Nested Transaction: When the TRANSACTION
BEGIN instruction is issued while the CPU is in the
nonconstrained transactional-execution mode, the

Program Execution 5-91

transaction is said to be nested. See “Transaction
Nesting Depth (TND)” on page 5-93 below.

The transactional-execution facility uses a model
called flattened nesting. In the flattened-nesting
model, stores made by an inner transaction are not
observable by other CPUs and by the channel sub-
system until the outermost transaction commits its
stores. Similarly, if a transaction aborts, all nested
transactions abort, and all transactional stores of all
nested transactions are discarded.

Nonconstrained Transaction: A nonconstrained
transaction is a transaction that executes in the non-
constrained transactional-execution mode (see
below). Although a nonconstrained transaction is not
limited in the manner described in “Constrained
Transaction” on page 5-107, it may still be aborted
due to a variety of causes as described in “Abort” on
page 5-89.

Nonconstrained Transactional-Execution
Mode: When a transaction is initiated by the
TRANSACTION BEGIN (TBEGIN) instruction, the
CPU enters the nonconstrained transactional-execu-
tion mode. While the CPU is in the nonconstrained
transactional-execution mode, the transaction nest-
ing depth may vary from one to the maximum trans-
action nesting depth.

Nontransactional Access: Nontransactional
accesses are storage operand accesses made by
the CPU when it is not in the transactional-execution
mode (that is, classic storage accesses outside of a
transaction). Additionally, the NONTRANSAC-
TIONAL STORE instruction may be used to cause a
nontransactional store access while the CPU is in the
nonconstrained transactional-execution mode.

Accesses made by the channel subsystem are non-
transactional accesses.

Outer / Outermost Transaction: A transaction
with a lower-numbered transaction nesting depth is
said to be an outer transaction. A transaction with a
transaction-nesting-depth value of one is said to be
the outermost transaction.

An outermost TRANSACTION BEGIN instruction is
one that is executed when the transaction nesting
depth is initially zero. An outermost TRANSACTION
END instruction is one that causes the transaction

nesting depth to transition from one to zero. A con-
strained transaction is always the outermost transac-
tion.

Program-Interruption Filtering: When a transac-
tion is aborted due to certain program-interruption
conditions, the program can optionally prevent the
interruption from occurring. This technique is called
program-interruption filtering. Program-interruption
filtering is subject to the transactional class of the
interruption, the effective program-interruption-filter-
ing control from the TRANSACTION BEGIN instruc-
tion, and the transactional-execution program-
interruption-filtering override in control register 0.

Transaction: A transaction comprises the storage-
operand accesses made, and selected general regis-
ters altered, while the CPU is in the transactional-
execution mode. For a nonconstrained transaction,
storage-operand accesses may include both transac-
tional accesses and nontransactional accesses. For
a constrained transaction, storage-operand accesses
are limited to transactional accesses. As observed by
other CPUs and by the channel subsystem, all stor-
age-operand accesses made by the CPU while in the
transactional-execution mode appear to occur as a
single concurrent operation. If a transaction is
aborted, transactional store accesses are discarded,
and any registers designated by the general-register-
save mask of the outermost TRANSACTION BEGIN
instruction are restored to their contents prior to
transactional execution.

Transactional Accesses: Transactional accesses
are storage operand accesses made while the CPU
is in the transactional-execution mode, with the
exception of accesses made by the NONTRANSAC-
TIONAL STORE instruction.

Transactional-Execution Mode: The term trans-
actional-execution mode describes the common
operation of both the nonconstrained and the con-
strained transactional-execution modes. Thus, when
the transaction nesting depth is nonzero, the CPU is
in the transactional-execution mode. Where specific
operation is described, the terms nonconstrained
and constrained are used to qualify the transactional-
execution mode.

When the transaction nesting depth is zero, the CPU
is not in the transactional-execution mode (also
called the nontransactional-execution mode).

5-92 The z/Architecture CPU Architecture

Transactional-Execution Facility
Controls

The following section describes the controls that
affect the operation of the transactional-execution
facility.

Control Register Bits
The transactional-execution facility is controlled by
two bits in control register zero and three bits in con-
trol register two.

Control Register 0 Bits: The bit assignments are
as follows:

Transactional-Execution Control (TXC): Bit 8 of con-
trol register zero is the transactional-execution con-
trol. This bit provides a mechanism whereby the
control program can indicate whether or not the
transactional-execution facility is usable by the pro-
gram. Bit 8 must be one to successfully enter the
transactional-execution mode.

When bit 8 of control register 0 is zero, attempted
execution of the EXTRACT TRANSACTION NEST-
ING DEPTH, TRANSACTION BEGIN, and TRANS-
ACTION END instructions results in a special-
operation exception.

Transactional-Execution Program-Interruption-Filter-
ing Override (PIFO): Bit 9 of control register zero is
the transactional-execution program-interruption-fil-
tering override. This bit provides a mechanism by
which the control program can ensure that any pro-
gram-exception condition that occurs while the CPU
is in the transactional-execution mode results in an
interruption, regardless of the effective program-
interruption-filtering control specified or implied by
the TRANSACTION BEGIN instruction(s). See “Pro-
gram-Interruption Filtering on a Transaction Abort” on
page 5-104 for details.

Programming Note: Even though facility indication
73 may be one (indicating that the transactional-exe-
cution facility is installed in the configuration), the

program should determine whether the facility is
enabled by examining an OS-provided indication of
whether the OS supports the facility.

Control Register 2 Bits: The bit assignments
are as follows:

Transaction Diagnostic Scope (TDS): Bit 61 of con-
trol register 2 controls the applicability of the transac-
tion diagnostic control (TDC) in bits 62-63 of the
register, as follows.

Transaction Diagnostic Control (TDC): Bits 62-63 of
control register 2 are a 2-bit unsigned integer that
may be used to cause transactions to be randomly
aborted for diagnostic purposes. The encoding of the
TDC is as follows:

When a transaction is aborted due to a nonzero TDC,
then either of the following may occur:

• The abort code is set to any of codes 7-11, 13-
16, or 255, with the value of the code randomly
chosen by the CPU; the condition code is set
corresponding to the abort code, as indicated in
Figure 5-14 on page 5-102.

T
X
C

P
I
F
O

8 9

T
D
S

T
D
C

61 62 63

TDS
Value Meaning

0 The TDC applies regardless of whether the
CPU is in the problem or supervisor state.

1 The TDC applies only when the CPU is in the
problem state. When the CPU is in the
supervisor state, processing is as if the TDC
contained zero.

TDC
Value Meaning
0 Normal operation; transactions are not aborted as

a result of the TDC.

1 Abort every transaction at a random instruction,
but before execution of the outermost
TRANSACTION END instruction.

2 Abort random transactions at a random
instruction.

3 Reserved.

Program Execution 5-93

• For a nonconstrained transaction, the condition
code is set to one. In this case, the abort code is
not applicable.

It is model dependent whether TDC value 1 is imple-
mented. If not implemented, a value of 1 acts as if 2
was specified.

For a constrained transaction, a TDC value of 1 is
treated as if a TDC value of 2 was specified.

If a TDC value of 3 is specified, the results are unpre-
dictable.

Transaction-Diagnostic-Block Address
(TDBA)
When the B1 field of an outermost TRANSACTION
BEGIN (TBEGIN) instruction is nonzero, a valid
transaction-diagnostic-block address (TDBA) is set
from the first-operand address of the instruction.
When the CPU is in the primary-space or access-
register mode, the TDBA designates a location in the
primary address space. When the CPU is in the sec-
ondary-space, or home-space mode, the TDBA des-
ignates a location in the secondary or home address
space, respectively. When DAT is off, the TDBA des-
ignates a location in real storage.

The TDBA is used by the CPU to locate the transac-
tion diagnostic block – called the TBEGIN-specified
TDB – if the transaction is subsequently aborted. The
rightmost three bits of the TDBA are always zero,
meaning that the TBEGIN-specified TDB is on a dou-
bleword boundary. The transaction diagnostic block
is described in “Transaction Diagnostic Block (TDB)”
on page 5-93.

When the B1 field of an outermost TRANSACTION
BEGIN (TBEGIN) instruction is zero, the transaction-
diagnostic-block address is invalid, and no TBEGIN-
specified TDB is stored if the transaction is subse-
quently aborted.

Programming Note: Abort processing may be sig-
nificantly slower when the TDBA is valid.

Transaction-Abort PSW (TAPSW)
During the execution of the TRANSACTION BEGIN
(TBEGIN) instruction when the nesting depth is ini-
tially zero, the transaction-abort PSW is set to the
contents of the current PSW; the instruction address
of the transaction-abort PSW designates the next
sequential instruction (that is, the instruction follow-

ing the outermost TBEGIN). During the execution of
the TRANSACTION BEGIN (TBEGINC) instruction
when the nesting depth is initially zero, the transac-
tion-abort PSW is set to the contents of the current
PSW, except that the instruction address of the trans-
action-abort PSW designates the TBEGINC instruc-
tion (rather than the next sequential instruction
following the TBEGINC).

When a transaction is aborted, the condition code in
the transaction-abort PSW is replaced with a code
indicating the severity of the abort condition. Subse-
quently, if the transaction was aborted due to causes
that do not result in an interruption, the PSW is
loaded from the transaction-abort PSW; if the trans-
action was aborted due to causes that result in an
interruption, the transaction-abort PSW is stored as
the interruption old PSW.

The transaction-abort PSW is not altered during the
execution of any inner TRANSACTION BEGIN
instruction.

Transaction Nesting Depth (TND)
The transaction nesting depth is a 16-bit unsigned
value that is incremented each time a TRANSAC-
TION BEGIN instruction is completed with condition
code 0 and decremented each time a TRANSAC-
TION END instruction is completed with condition
code 0. The transaction nesting depth is reset to zero
when a transaction is aborted or by CPU reset.

All models implement a maximum TND of 15.

Programming Notes:

1. When the CPU is in the constrained transac-
tional-execution mode, the transaction nesting
depth is always one.

2. Although the maximum TND can be represented
as a 4-bit value, the TND is defined to be a 16-bit
value to facilitate its inspection in the transaction-
diagnostic block.

Transaction Diagnostic Block
(TDB)

When a transaction is aborted, various status infor-
mation is saved in a transaction diagnostic block
(TDB). The CPU places status into one or two TDBs,
as follows:

5-94 The z/Architecture CPU Architecture

TBEGIN-Specified TDB: The 256-byte location
specified by a valid transaction-diagnostic-block
address. When the transaction-diagnostic-block
address is valid, the TBEGIN-specified TDB is
always stored on a transaction abort. When the
transaction-diagnostic-block address is not valid, a
TBEGIN-specified TDB is not stored.

Access exceptions for the TBEGIN-specified TDB
are recognized during the execution of the outermost
TRANSACTION BEGIN (TBEGIN) instruction. If an
access exception is recognized for the TBEGIN-
specified TDB, the CPU does not enter the transac-
tional-execution mode.

The recognition of PER storage-alteration events and
zero-address-detection events for the TBEGIN-speci-

fied TDB is described in the section “PER Operation”
on page 4-29.

Program-Interruption TDB: Real locations 6,144-
6,399 (1800-18FF hex). The program-interruption
TDB is stored when a transaction is aborted due to
program interruption . When a transaction is aborted
due to other causes, the contents of the program-
interruption TDB are unpredictable.

The program-interruption TDB is not subject to any
protection mechanism. PER storage-alteration
events are not detected for the program-interruption
TDB when it is stored during a program interruption.

The transaction diagnostic block has the following
format:

The fields of the transaction diagnostic block are as
follows:

Format: Byte 0 contains a validity and format indi-
cation, as follows:

Dec Hex

0 00 Format Flags Reserved TND

8 08 Transaction Abort Code

16 10 Conflict Token

24 18 Aborted-Transaction Instruction Address

32 20 EAID1 DXC/VXC1 Reserved Program Interruption Identification1

40 28 Translation-Exception Identification1

48 30 Breaking-Event Address1

56

38
Reserved

128

248

80

F8

General Registers

0 8 16 32 48 63

Explanation:

1 Field is stored only in the TBEGIN-specified TDB; otherwise, the field is reserved. The program interruption identification is only stored for
filtered program-interruption conditions. The translation-exception identification are stored only for filtered access-list-controlled, DAT, or
instruction-execution protection, ASCE-type, page translation, region-first translation, region-second translation, region-third translation,
and segment translation program-interruption conditions. The DXC is stored only for filtered data program-exception conditions. The VXC
is stored only for filtered vector-processing program-exception conditions.

Figure 5-13. Transaction Diagnostic Block (TDB)

Value Meaning

0 The remaining fields of the TDB are
unpredictable.

Program Execution 5-95

Programming Note: A TDB in which the format field
is zero is referred to as a null TDB.

Flags: Byte 1 contains various indications, as fol-
lows:

Conflict-Token Validity (CTV): When a transaction is
aborted due to a fetch or store conflict (that is, abort
codes 9 or 10, respectively), bit 0 of byte 1 is the con-
flict-token-validity indication. When the CTV indica-
tion is one, the conflict token in bytes 16-23 of the
TDB contain the logical address at which the conflict
was detected. When the CTV indication is zero, bytes
16-23 of the TDB are unpredictable.

When a transaction is aborted due to any reason
other than a fetch or store conflict, bit 0 of byte 1 is
stored as zero.

Constrained-Transaction Indication (CTI): When the
CPU was in the constrained transactional-execution
mode, bit 1 of byte 1 is set to one. When the CPU
was in the nonconstrained transactional-execution
mode, bit 1 of byte 1 is set to zero.

Reserved: Bits 2-7 of byte 1 are reserved, and stored
as zeros.

Transaction Nesting Depth (TND): Bytes 6-7
contain the transaction nesting depth when the trans-
action was aborted.

Transaction Abort Code (TAC): Bytes 8-15 con-
tain a 64-bit unsigned transaction abort code. Each
code point indicates a reason for a transaction being
aborted, as summarized in Figure 5-14 on
page 5-102.

It is model dependent whether the transaction abort
code is stored in the program-interruption TDB when
a transaction is aborted due to conditions other than
a program interruption.

Conflict Token: For transactions that are aborted
due to fetch or store conflict (that is, abort codes 9
and 10, respectively), bytes 16-23 contain the logical
address of the storage location at which the conflict

was detected. The conflict token is meaningful only
when the CTV bit, bit 0 of byte 1, is one.

When the CTV bit is zero, bytes 16-23 are unpredict-
able.

Programming Note: Because of speculative execu-
tion by the CPU, the conflict token may designate a
storage location that would not necessarily be
accessed by the transaction’s conceptual execution
sequence.

Aborted-Transaction Instruction Address
(ATIA): Bytes 24-31 contain an instruction address
that identifies the instruction that was executing when
an abort was detected. When a transaction is
aborted due to abort codes 2, 5, 6, 11, 13, 19, or 256
or higher, or when a transaction is aborted due to
abort codes 4 or 12 and the program-exception con-
dition is nullifying, the ATIA points directly to the
instruction that was being executed. When a transac-
tion is aborted due to abort codes 4 or 12, and the
program-exception condition is not nullifying, the
ATIA points past the instruction that was being exe-
cuted (see the programming note, below).

When a transaction is aborted due to abort codes 7-
10, 14-16, or 255, the ATIA does not necessarily indi-
cate the exact instruction causing the abort, but may
point to an earlier or later instruction within the trans-
action.

If a transaction is aborted due to an instruction that is
the target of an execute-type instruction, the ATIA
identifies the execute-type instruction, either pointing
to the instruction or past it, depending on the abort
code as described above. The ATIA does not indicate
the target of the execute-type instruction.

The ATIA is subject to the addressing mode when the
transaction is aborted. In the 24-bit addressing
mode, bits 0-39 of the field contain zeros. In the 31-
bit addressing mode, bits 0-32 of the field contain
zeros.

It is model dependent whether the aborted-transac-
tion instruction address is stored in the program-
interruption TDB when a transaction is aborted due
to conditions other than a program interruption.

Programming Note: When a transaction is aborted
due to abort code 4 or 12, and the program-excep-
tion condition is not nullifying, the ATIA does not point
to the instruction causing the abort. By subtracting

1 A format-1 TDB, the remaining fields of
which are described below.

2-255 Reserved

Value Meaning

5-96 The z/Architecture CPU Architecture

the number of halfwords indicated by the interruption-
length code (ILC) from the ATIA, the instruction caus-
ing the abort can be identified in conditions that are
suppressing or terminating, or for non-PER events
that are completing. When a transaction is aborted
due to a PER event, and no other program-exception
condition is present, the ATIA is unpredictable.

When the transaction-diagnostic-block address is
valid, the ILC may be examined in program-interrup-
tion identification (PIID) in bytes 36-39 of the
TBEGIN-specified TDB. When filtering does not
apply, the ILC may be examined in the PIID at loca-
tion 140-143 in real storage.

Exception Access Identification (EAID): For
transactions that are aborted due to certain filtered
program-exception conditions, byte 32 of the
TBEGIN-specified TDB contains the exception
access identification. The format of the EAID, and the
cases for which it is stored, are identical to those
described in real location 160 when the exception
condition results in an interruption. See “Exception
Access Identification” on page 3-74 for details.

For transactions that are aborted for other reasons,
including any exception conditions that result in a
program interruption, byte 32 is unpredictable. Byte
32 is always unpredictable in the program-interrup-
tion TDB .

Data-Exception Code (DXC) / Vector-Exception
Code (VXC): For transactions that are aborted due
to filtered data-exception program-exception condi-
tions, byte 33 of the TBEGIN-specified TDB contains
the data-exception code. The format of the DXC, and
the cases for which it is stored, are identical to those
described in real location 147 when the exception
condition results in an interruption. See “Data-Excep-
tion Code” on page 3-74 and page 6-17 for details.

For transactions that are aborted due to filtered vec-
tor-processing exception program-exception condi-
tions, byte 33 of the TBEGIN-specified TDB contains
the vector-exception code. The format of the VXC,
and the cases for which it are stored, are identical to
those described in real location 147 when the excep-
tion condition results in an interruption. See “Vector-
Exception Code” on page 3-74 and page 6-20 for
details.

For transactions that are aborted for other reasons,
including any exception conditions that result in a
program interruption, byte 33 is unpredictable. Byte

33 is always unpredictable in the program-interrup-
tion TDB .

Program Interruption Identification (PIID): For
transactions that are aborted due to filtered program-
exception conditions, bytes 36-39 of the TBEGIN-
specified TDB contain the program interruption iden-
tification. The format of the PIID is identical to that
described in real locations 140-143 when the condi-
tion results in an interruption, except that (a) the
instruction-length code in bits 13-14 of the PIID is
respective to the instruction at which the exception
condition was detected, and (b) bit 22 of the PIID is
unpredictable. See “Program-Interruption Identifica-
tion” on page 3-74 for details.

For transactions that are aborted for other reasons,
including exception conditions that result in a pro-
gram interruption, bytes 36-39 are unpredictable.
Bytes 36-39 are always unpredictable in the pro-
gram-interruption TDB .

Translation-Exception Identification (TEID): For
transactions that are aborted due to any of the follow-
ing filtered program-exception conditions, bytes 40-
47 of the TBEGIN-specified TDB contain the transla-
tion-exception identification.

• Access-list-controlled, DAT, or instruction-execu-
tion protection

• ASCE-type
• Page translation
• Region-first translation
• Region-second translation
• Region-third translation
• Segment translation exception

The format of the TEID is identical to that described
in real locations 168-175 when the condition results
in an interruption. See “Translation-Exception Identifi-
cation” on page 3-76 for details.

For transactions that are aborted for other reasons,
including exception conditions that result in a pro-
gram interruption, bytes 40-47 are unpredictable.
Bytes 40-47 are always unpredictable in the pro-
gram-interruption TDB .

Breaking-Event Address: For transactions that
are aborted due to filtered program-exception condi-
tions, bytes 48-55 of the TBEGIN-specified TDB con-
tain the breaking-event address. The format of the
breaking-event address is identical to that described
in real locations 272-279 when the condition results

Program Execution 5-97

in an interruption. See “Breaking-Event Address” on
page 3-80 and page 4-46 for details.

For transactions that are aborted for other reasons,
including exception conditions that result in a pro-
gram interruption, bytes 48-55 are unpredictable.
Bytes 48-55 are always unpredictable in the pro-
gram-interruption TDB.

General Registers: Bytes 128-255 contain the
contents of general registers 0-15 at the time the
transaction was aborted. The registers are stored in
ascending order, beginning with general register 0 in
bytes 128-135, general register 1 in bytes 136-143,
and so forth.

Reserved: All other fields are reserved. Unless
indicated otherwise, the contents of reserved fields
are unpredictable.

As observed by other CPUs and the channel subsys-
tem, accesses to the TDB(s) during a transaction
abort are multiple-access update references occur-
ring after any nontransactional stores, and the fields
of the TDB(s) are not necessarily accessed in any
order.

Programming Notes:

1. A transaction may be aborted due to causes that
are outside the scope of the immediate configu-
ration in which it executes. For example, transient
events recognized by a hypervisor (such as
LPAR or z/VM) may cause a transaction to be
aborted.

2. The information provided in the transaction-diag-
nostic block is intended for diagnostic purposes
and is substantially correct. However, because
an abort may have been caused by an event out-
side the scope of the immediate configuration,
information such as the abort code or program
interruption identification may not accurately
reflect conditions within the configuration, and
thus should not be used in determining program
action.

3. An example of the scenario described in the
above notes may occur if a configuration’s first
execution of an additional-floating-point (AFP)
instruction occurs within a transaction. The con-
trol program can eliminate this scenario by exe-
cuting the first AFP instruction outside of a
transaction.

In addition to the diagnostic information saved in the
TDB, when a transaction is aborted due to any data-
exception program-exception condition and both the
AFP-register control, bit 45 of control register 0, and
the effective allow-floating-point-operation control (F)
are one, the data-exception code (DXC) is placed
into byte 2 of the floating-point control register
(FPCR), regardless of whether filtering applies to the
program-interruption condition. When a transaction is
aborted, and either or both the AFP-register control
or effective allow-floating-point-operation control are
zero, the DXC is not placed into the FPCR.

Transactional-Execution Facility
Instructions

When the transactional-execution facility is installed,
the following general instructions are provided.

• EXTRACT TRANSACTION NESTING DEPTH
• NONTRANSACTIONAL STORE
• TRANSACTION ABORT
• TRANSACTION BEGIN
• TRANSACTION END

Restricted Instructions
When the CPU is in the transactional-execution
mode, attempted execution of certain instructions is
restricted and causes the transaction to be aborted.

When issued in the constrained transactional-execu-
tion mode, attempted execution of restricted instruc-
tions may also result in a transaction-constraint
program interruption, or may result in execution pro-
ceeding as if the transaction was not constrained.
See “Constrained Transaction” on page 5-107 for fur-
ther details.

Restricted instructions include all instructions that
are not defined in Chapters 7-9 and 18-26 of this
document and the following nonprivileged instruc-
tions.

• COMPARE AND SWAP AND STORE
• LOAD GUARDED STORAGE CONTROLS
• PERFORM LOCKED OPERATION
• PERFORM PROCESSOR ASSIST
• STORE FACILITY LIST EXTENDED
• STORE GUARDED STORAGE CONTROLS
• SUPERVISOR CALL

5-98 The z/Architecture CPU Architecture

Under the conditions listed below, the following
instructions are restricted:

• BRANCH AND LINK (BALR), BRANCH AND
SAVE (BASR), and BRANCH AND SAVE AND
SET MODE, when the R2 field of the instruction
is nonzero and branch tracing is enabled

• BRANCH AND SAVE AND SET MODE and
BRANCH AND SET MODE, when the R2 field is
nonzero and mode tracing is enabled; SET
ADDRESSING MODE, when mode tracing is
enabled

• MONITOR CALL, when a monitor-event condi-
tion is recognized

When the CPU is in the transactional-execution
mode, it is model dependent whether the following
instructions are restricted:

• CIPHER MESSAGE
• CIPHER MESSAGE WITH AUTHENTICATION
• CIPHER MESSAGE WITH CIPHER FEEDBACK
• CIPHER MESSAGE WITH CHAINING
• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH OUTPUT FEED-

BACK
• COMPRESSION CALL
• COMPUTE DIGITAL SIGNATURE AUTHENTI-

CATION
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICATION

CODE
• CONVERT UNICODE-16 TO UNICODE-32
• CONVERT UNICODE-16 TO UNICODE-8
• CONVERT UNICODE-32 TO UNICODE-16
• CONVERT UNICODE-32 TO UNICODE-8
• CONVERT UNICODE-8 TO UNICODE-16
• CONVERT UNICODE-8 TO UNICODE-32
• DEFLATE CONVERSION CALL
• PERFORM CRYPTOGRAPHIC COMPUTATION
• PERFORM RANDOM NUMBER OPERATION
•

When the effective allow-AR-modification (A) control
is zero, the following instructions are restricted:

• COPY ACCESS
• LOAD ACCESS MULTIPLE
• LOAD ADDRESS EXTENDED
• SET ACCESS

When the effective allow-floating-point-operation (F)
control is zero, all floating-point and vector instruc-
tions are restricted (that is, all instructions described
in Chapters 9 and 18-25).

Under certain circumstances, the following instruc-
tions may be restricted:

• EXTRACT CPU TIME
• EXTRACT PSW
• STORE CLOCK
• STORE CLOCK EXTENDED
• STORE CLOCK FAST

It is model dependent whether the following instruc-
tions are restricted:

• PREFETCH DATA (RELATIVE LONG), when the
code in the M1 field is either 6 or 7.

• STORE CHARACTERS UNDER MASK
(STCMH), when the M3 field is zero and the code
in the R1 field is either 6 or 7.

If a model does not restrict the above two instructions
for the cited conditions, then it is unpredictable
whether attempted execution results in transactional
execution being aborted with abort code 16.

When a nonconstrained transaction is aborted
because of the attempted execution of a restricted
instruction, the transaction abort code in the transac-
tion diagnostic block is set to 11 (restricted instruc-
tion), and the condition code is set to 3, except as
follows. When a nonconstrained transaction is
aborted due to the attempted execution of an instruc-
tion that would otherwise result in a privileged-opera-
tion exception, it is unpredictable whether the abort
code is set to 11 (restricted instruction) or 4 (unfil-
tered program interruption resulting from the recogni-
tion of the privileged-operation program interruption).
When a nonconstrained transaction is aborted due to
the attempted execution of MONITOR CALL, and
both a monitor-event condition and a specification-
exception condition are present, it is unpredictable
whether the abort code is set to 11 or 4, or, if the pro-
gram interruption is filtered, 12.

Additional instructions may be restricted in a con-
strained transaction, as described in “Constrained
Transaction” on page 5-107. Although these instruc-
tions are not currently defined to be restricted in a
nonconstrained transaction, they may be restricted
under certain circumstances in a nonconstrained
transaction on future processors. See “Constrained

Program Execution 5-99

Transaction” on page 5-107 for details on the addi-
tional restrictions and alternate results if a restricted
instruction is attempted.

Programming Notes:

1. Certain restricted instructions may be allowed in
the transactional-execution mode on future pro-
cessors. Therefore, the program should not rely
on the transaction being aborted due to the
attempted execution of a restricted instruction.
The TRANSACTION ABORT instruction should
be used to reliably cause a transaction to be
aborted.

2. In a nonconstrained transaction, the program
should provide an alternative nontransactional
code path to accommodate a transaction that
aborts due the attempted execution of an instruc-
tion that is restricted under certain conditions.

3. The effective allow-AR-modification and effec-
tive allow-floating-point-operation controls (A and
F bits, respectively) are described in “TRANSAC-
TION BEGIN (TBEGIN)” on page 7-401.

 Transactional-Execution Facility
Operation

The transactional-execution facility is under the con-
trol of bits 8-9 of control register 0, bits 61-63 of con-
trol register 2, the transaction nesting depth, the
transaction-diagnostic-block address, and the trans-
action-abort PSW. See “Transactional-Execution
Facility Controls” on page 5-92 for details on these
controls.

Following an initial CPU reset, the contents of bit
positions 8-9 of control register 0, bit positions 62-63
of control register 2, and the transaction nesting
depth are set to zero. When the transactional-execu-
tion control, bit 8 of control register 0, is zero, the
CPU cannot be placed into the transactional-execu-
tion mode.

Transaction Initiation
When the transaction nesting depth is zero, execu-
tion of the TRANSACTION BEGIN (TBEGIN) instruc-
tion resulting in condition code zero causes the CPU
to enter the nonconstrained transactional-execution
mode. When the transaction nesting depth is zero,
execution of the TRANSACTION BEGIN (TBEGINC)

instruction resulting in condition code zero causes
the CPU to enter the constrained transactional-exe-
cution mode.

When the CPU is in the nonconstrained transac-
tional-execution mode, execution of the TRANSAC-
TION BEGIN instruction resulting in condition code
zero causes the CPU to remain in the noncon-
strained transactional-execution mode. Details of the
instructions may be found in “TRANSACTION BEGIN
(TBEGIN)” on page 7-401 and “TRANSACTION
BEGIN (TBEGINC)” on page 7-406.

Execution in the Transactional-Execution
Mode
Except where explicitly noted otherwise, all rules that
apply for nontransactional execution also apply to
transactional execution. This section describes addi-
tional characteristics of processing while the CPU is
in the transactional-execution mode.

As observed by the CPU, fetches and stores made in
the transactional-execution mode are no different
than those made while not in the transactional-exe-
cution mode. See “Storage-Operand Consistency” on
page 5-125 and “Relation between Operand
Accesses” on page 5-129 for a description of the
rules of storage ordering.

As observed by other CPUs and by the channel sub-
system, all storage-operand accesses made while a
CPU is in the transactional-execution mode appear to
be a single block-concurrent access. Storage
accesses for instruction and DAT- and ART-table
fetches follow the non-transactional rules.

Normal Transaction Ending
The CPU leaves the transactional-execution mode
normally by means of a TRANSACTION END
instruction that causes the transaction nesting depth
to transition to zero; in this case the transaction is
said to complete. See “TRANSACTION END” on
page 7-408 for the details.

When the CPU leaves the transactional-execution
mode by means of the completion of a TRANSAC-
TION END instruction, all stores made while in the
transactional-execution mode are committed, that is,
the stores appear to occur as a single block-concur-
rent operation as observed by other CPUs and by the
channel subsystem.

5-100 The z/Architecture CPU Architecture

Transaction Abort Conditions
A transaction may be implicitly aborted for a variety
of causes, or it may be explicitly aborted by the
TRANSACTION ABORT instruction. The following
text enumerates each possible cause of a transaction
abort, the corresponding abort code, and the condi-
tion code that is placed into the transaction-abort
PSW.

External Interruption: The transaction-abort code
is set to 2, and the condition code in the transaction-
abort PSW is set to 2. The transaction-abort PSW is
stored as the external-old PSW as a part of external-
interruption processing.

Program Interruption (Unfiltered): A program-
exception condition that results in an interruption
(that is, an unfiltered condition) causes the transac-
tion to be aborted with code 4. The condition code in
the transaction-abort PSW is set specific to the pro-
gram interruption code, as described in “Transaction
Abort Processing” on page 5-102 and Figure 5-15 on
page 5-104. The transaction-abort PSW is stored as
the program-old PSW as a part of program-interrup-
tion processing.

An instruction that would otherwise result in a trans-
action being aborted due to an operation exception
may yield alternate results: For a nonconstrained
transaction, the transaction may instead aborted with
abort code 11 (restricted instruction); for a con-
strained transaction, a transaction-constraint pro-
gram interruption may be recognized instead of the
operation exception.

When a PER event is recognized in conjunction with
any other unfiltered program-exception condition, the
condition code is set to 3.

Machine-Check Interruption: The transaction-
abort code is set to 5, and the condition code in the
transaction-abort PSW is set to 2. The transaction-
abort PSW is stored as the machine-check-old PSW
as a part of machine-check interruption processing.

I/O Interruption: The transaction-abort code is set
to 6, and the condition code in the transaction-abort
PSW is set to 2. The transaction-abort PSW is stored
as the I/O-old PSW as a part of I/O interruption pro-
cessing.

Fetch Overflow: A fetch-overflow condition is
detected when the transaction attempts to fetch from
more locations than the CPU supports. The transac-

tion-abort code is set to 7, and the condition code is
set to either 2 or 3.

Store Overflow: A store-overflow condition is
detected when the transaction attempts to store to
more locations than the CPU supports. The transac-
tion-abort code is set to 8, and the condition code is
set to either 2 or 3.

Fetch Conflict: A fetch-conflict condition is
detected when another CPU or the channel subsys-
tem attempts to store into a location that has been
transactionally fetched by this CPU. The transaction-
abort code is set to 9, and the condition code is set to
2.

Store Conflict: A store-conflict condition is
detected when another CPU or the channel subsys-
tem attempts to access a location that has been
stored during transactional execution by this CPU.
The transaction-abort code is set to 10, and the con-
dition code is set to 2.

Restricted Instruction: When the CPU is in the
transactional-execution mode, attempted execution
of a restricted instruction causes the transaction to
be aborted. The transaction-abort code is set to 11,
and the condition code is set to 3.

Restricted instructions, and the conditions under
which they are restricted is described in “Restricted
Instructions” on page 5-97.

Program-Interruption Condition (Filtered): A
program-interruption condition that does not result in
an interruption (that is, a filtered condition) causes
the transaction to be aborted with a transaction-abort
code of 12. The condition code is set to 3. See “Pro-
gram-Interruption Filtering on a Transaction Abort” on
page 5-104 for details on program-interruption filter-
ing.

Nesting Depth Exceeded: The nesting-depth-
exceeded condition is detected when the transaction
nesting depth is at the maximum allowable value for
the configuration, and a TRANSACTION BEGIN
instruction is executed. The transaction is aborted
with a transaction-abort code of 13, and the condition
code is set to 3.

Cache Fetch-Related Condition: A condition
related to storage locations fetched by the transac-
tion is detected by the CPU's cache circuitry. The

Program Execution 5-101

transaction is aborted with a transaction-abort code
of 14, and the condition code is set to either 2 or 3.

Cache Store-Related Condition: A condition
related to storage locations stored by the transaction
is detected by the CPU's cache circuitry. The trans-
action is aborted with a transaction-abort code of 15,
and the condition code is set to either 2 or 3.

Cache Other Condition: A cache other condition
is detected by the CPU’s cache circuitry. The trans-
action is aborted with a transaction-abort code of 16,
and the condition code is set to 2 or 3.

On some models, attempting to execute a nontrans-
actional store and a transactional store in a transac-
tion when both designate any locations within the
same cache line, results in the transaction being
aborted with abort code 16 and condition code 3 set.
This occurs even if the nontransactional store does
not overlap the transactional store.

During transactional execution, if the CPU accesses
instructions or storage operands using different logi-
cal addresses that are mapped to the same absolute
address, it is model dependent whether the transac-
tion is aborted. If the transaction is aborted due to
accesses using different logical addresses mapped
to the same absolute address, abort code 14, 15, or
16 is set, depending on the condition.

Guarded-Storage Event: Execution of a LOAD
GUARDED or LOAD LOGICAL AND SHIFT
GUARDED instruction resulted in the recognition of a
guarded-storage event. The transaction is aborted
with a transaction-abort code of 19, and the condition
code is set to two.

If a guarded-storage event is recognized while the
CPU is in the transactional-execution mode, the
guarded-storage event is processed as described in
“Guarded-Storage-Event Processing” on page 4-71.
If the guarded-storage event is recognized while the
CPU is in the constrained transactional-memory
mode, no transaction diagnostic block is stored.

Miscellaneous Condition: A miscellaneous condi-
tion is any other condition recognized by the CPU
that causes the transaction to abort. The transaction-
abort code is set to 255, and the condition code is set
to either 2 or 3.

When multiple configurations are executing in the
same machine (for example, logical partitions or vir-

tual machines), a transaction may be aborted due to
an external, machine-check, or I/O interruption that
occurred in a different configuration.

Programming Notes:

1. The miscellaneous condition may result from any
of the following:

• COMPARE AND REPLACE DAT TABLE
ENTRY, COMPARE AND SWAP AND
PURGE, INVALIDATE DAT TABLE ENTRY,
INVALIDATE PAGE TABLE ENTRY, PER-
FORM FRAME MANAGEMENT FUNCTION
in which the NQ control is zero and SK con-
trol is one, SET STORAGE KEY EXTENDED
in which the NQ control is zero, performed by
another CPU in the configuration; the condi-
tion code is set to 2.

• An operator function (such as reset, restart,
or stop) or the equivalent SIGNAL PROCES-
SOR order is performed on the CPU. The
condition code is set to 2.

• Any other condition not enumerated above;
the condition code is set to 2 or 3.

2. The location at which fetch and store conflicts
are detected may be anywhere within the same
cache line.

3. Under certain conditions, the CPU may not be
able to distinguish between similar abort condi-
tions. For example, a fetch or store overflow may
be indistinguishable from a respective fetch or
store conflict.

4. Speculative execution of multiple instruction
paths by the CPU may result in a transaction
being aborted due to conflict or overflow condi-
tions, even if such conditions do not occur in the
conceptual sequence. While in the constrained
transactional-execution mode, the CPU may tem-
porarily inhibit speculative execution, allowing the
transaction to attempt to complete without
detecting such conflicts or overflows specula-
tively.

When multiple abort conditions apply, it is unpredict-
able which abort code is reported by the CPU.

TABORT Instruction: Execution of the TRANSAC-
TION ABORT instruction causes the transaction to
abort. The transaction-abort code is set from the sec-
ond-operand address. The condition code is set to

5-102 The z/Architecture CPU Architecture

either 2 or 3, depending on whether bit 63 of the sec-
ond-operand address is zero or one, respectively.

Figure 5-14 summarizes the abort codes stored in
the transaction diagnostic block, and the correspond-
ing condition code.

Programming Notes:

1. Abort codes 0-255 are reserved for use by the
CPU. If the program specifies any of these codes
in the TRANSACTION ABORT instruction, a
specification exception is recognized, and the
transaction is aborted with the resulting abort
code indicating a program interruption (code 4)
or program-interruption condition (code 12).

2. Abort codes 17-18 and 20-254 are reserved for
potential enhancements. Such enhancements
may result in the setting of either condition code
2 or 3.

3. Depending on the model, the CPU may not be
able to distinguish between certain abort rea-
sons. For example, a fetch/store overflow and a
fetch/store conflict may not be distinguishable by
the CPU in all circumstances.

Therefore, the program should be able to accom-
modate unanticipated abort reasons.

4. Abort code 0 is reserved and will never be
assigned to a meaningful abort indication.

Transaction Abort Processing
Abort processing consists of the following steps:

1. All nontransactional store accesses made while
the CPU was in the transactional-execution
mode are committed.

All other (transactional) stores made while the
CPU was in the transactional-execution mode
are discarded.

2. The CPU leaves the transactional-execution
mode. Subsequent stores occur nontransaction-
ally.

3. When the transaction is aborted due to a
guarded-storage event, the PSW instruction
address and the guarded-storage-event parame-
ter list (if accessible) are updated as described in
“Guarded-Storage-Event Processing” on
page 4-71.

In all other cases, the current PSW is replaced
with the contents of the transaction-abort PSW,
except that the condition code is set according to
Figure 5-14 on page 5-102 and Figure 5-16 on
page 5-104.

4. When the transaction-diagnostic-block address
is valid, diagnostic information identifying the
reason for the abort and the contents of the gen-
eral registers are stored into the TBEGIN-speci-
fied transaction diagnostic block (TDB). The TDB
fields stored and conditions under which they are
stored are described in “Transaction Diagnostic
Block (TDB)” on page 5-93.

If the transaction-diagnostic-block address is
valid, but the block has become inaccessible
subsequent to the execution of the outermost
TRANSACTION BEGIN (TBEGIN) instruction,
the block is not accessed, and condition code 1
applies. If the transaction-diagnostic-block
address is not valid, no TBEGIN-specified TDB is

Code Reason for Abort CC Set
2 External interruption 2
4 Program interruption (unfiltered) 2 or 3 †

5 Machine-check interruption 2

6 I/O interruption 2
7 Fetch overflow 2 or 3

8 Store overflow 2 or 3

9 Fetch conflict 2
10 Store conflict 2

11 Restricted instruction 3

12 Program-interruption condition (filtered) 3
13 Nesting depth exceeded 3

14 Cache fetch-related 2 or 3

15 Cache store-related 2 or 3
16 Cache other 2 or 3

19 Guarded-storage event recognized 2

255 Miscellaneous condition 2 or 3
 256 TABORT instruction 2 or 3

‡ Cannot be determined; no TDB stored 1

Explanation:

† See Figure 5-16 on page 5-104 to determine which
condition code is set based on the interruption code.

‡ This situation occurs when a transaction aborts, but the
TDB has become inaccessible subsequent to the
successful execution of the outermost TRANSACTION
BEGIN (TBEGIN) instruction. No TBEGIN-specified TDB
is stored, and the condition code is set to 1.

Figure 5-14. Transaction Abort Codes

Program Execution 5-103

stored, and condition code 2 or 3 applies,
depending on the reason for aborting.

For transactions that are aborted due to pro-
gram-exception conditions that result in an inter-
ruption, the program-interruption TDB is stored.
See “Transaction Diagnostic Block (TDB)” on
page 5-93 for a description of the contents of the
TDB.

5. The transaction nesting depth is set to zero.

6. Any general register pairs designated to be
saved by the outermost TRANSACTION BEGIN
instruction are restored. General register pairs
that were not designated to be saved by the out-
ermost TRANSACTION BEGIN instruction are
not restored when a transaction is aborted.

7. A serialization function is performed.

8. If the transaction is aborted due to an exception
condition that results in an interruption, any and
all other interruption codes or parameters associ-
ated with the interruption are stored at the
assigned-storage locations corresponding to the
type of interruption. The current PSW, as set in
step 3, is stored into the interruption-old PSW.

Programming Notes:

1. Attempted execution of a SUPERVISOR CALL
instruction while in the transactional-execution
mode results in the transaction being aborted
due to a restricted instruction. An SVC interrup-
tion cannot occur in this case.

2. Access registers, vector registers, floating-point
registers, the floating-point-control register, and
any general registers not specified by the outer-
most TRANSACTION BEGIN instruction’s gen-
eral-register-save mask are not restored when a
transaction aborts.

3. When the CPU was in the nonconstrained trans-
actional-execution mode, the instruction address
of the transaction-abort PSW designates the
storage location following the outermost TRANS-
ACTION BEGIN (TBEGIN) instruction. The
sequence of instructions at this location should
be able to accommodate all four condition codes,
even though a failing transaction only causes

codes 1, 2, and 3 to be set. A summary of the
condition code meanings is as follows:

When the CPU was in the constrained transac-
tional-execution mode, the instruction address of
the transaction-abort PSW designated the
TRANSACTION BEGIN (TBEGINC) instruction.
By definition, a constrained transaction does not
normally provide an abort-handler routine; how-
ever, when a transaction is aborted due to the
recognition of a guarded-storage event, the
guarded-storage-event handler may be used to
remove the cause of the guarded-storage event.

4. When using nested transactions, an inner trans-
action may cause abort conditions to occur that
may not otherwise occur in the outermost trans-
action. Examples of such conditions include the
following:

• The inner transaction may issue the TRANS-
ACTION ABORT instruction, specifying an
unanticipated abort code.

• The inner transaction may result in an unan-
ticipated program-interruption condition.

• The inner transaction may filter program-
interruption conditions that are not filtered by
the outermost transaction, thus resulting in a
different abort code.

Any transaction abort-handler routine must be
able to accommodate unanticipated abort and
exception conditions that occur within inner

CC Meaning

0 The transaction was successfully initiated.

1 The transaction was aborted due to an
indeterminate condition. The transaction
diagnostic block could not be stored.
Reexecution of the transaction is unlikely to be
productive.

2 The transaction was aborted due to a transient
condition. Reexecution of the transaction may
be productive.

3 The transaction was aborted due to a
persistent condition. Reexecution of the
transaction under current conditions is unlikely
to be productive. If conditions change, for
example, data that is manipulated
transactionally is rearranged, then reexecution
may be more productive.

5-104 The z/Architecture CPU Architecture

transactions, even if they never occur in the out-
ermost transaction.

Program-Interruption Filtering on a
Transaction Abort
A program-exception condition that is recognized
while in the transactional-execution mode always
results in the transaction being aborted. For a non-
constrained transaction, the program can optionally
specify that certain program-exception conditions not
result in an interruption. This action is called pro-
gram-interruption filtering. Program-interruption filter-
ing is subject to the following controls:

• The transactional-execution program-interrup-
tion-filtering override, bit 9 of control register 0

• The effective program-interruption-filtering con-
trol (PIFC)

• The program-interruption code corresponding to
the exception condition recognized.

When the transactional-execution program-interrup-
tion filtering override is zero, the program specifies
which classes of exception conditions are to be fil-
tered by means of the program-interruption-filtering
control (PIFC), bits 14-15 of the I2 field of the
TRANSACTION BEGIN (TBEGIN) instruction. The
effective PIFC is the highest value of the PIFC in the
TBEGIN instruction for the current nesting level and
for all outer levels.

For most program-exception conditions, there is a
corresponding transactional-execution class. The
effective PIFC and the transactional-execution
classes interact as follows:

The TRANSACTION BEGIN (TBEGINC) instruction
provides no explicit program-interruption-filtering
control; an implied PIFC of zero is assumed for
TBEGINC. Thus, when the CPU enters the con-
strained transactional-execution mode as a result of
TBEGINC, the effective PIFC is zero; when the CPU
remains in the nonconstrained transactional-execu-
tion mode as a result of TBEGINC, the effective PIFC
is unchanged.

Figure 5-15 summarizes the relationship of the effec-
tive PIFC, the type of program-interruption filtering,
the transactional-execution class, and whether the
exception condition results in an interruption.

Figure 5-16 lists the program-interruption conditions,
the corresponding transactional-execution class, and
the condition code that is set when the transaction is
aborted due to a program-interruption condition.

Effective
PIFC Results based on Transactional-Execution Class

0 No program-interruption filtering occurs. Exception
conditions having classes 1, 2, or 3 always result in an
interruption.

1 Limited program-interruption filtering occurs. Exception
conditions having classes 1 or 2 result in an interruption;
conditions having class 3 do not result in an interruption.

2 Moderate program-interruption filtering occurs. Only
exception conditions having class 1 result in an interruption;
conditions having classes 2 or 3 do not result in an
interruption.

Effective PIFC

Program-
Interruption

Filtering

Result Based on Transactional-
Execution (TX) Class

1 2 3
0 None Interrupt Interrupt Interrupt
1 Limited Interrupt Interrupt Filtered
2 Moderate Interrupt Filtered Filtered

Explanation:

PIFC Program-Interruption-Filtering Control (bits 14-15 of the I2
field of the TBEGIN instruction; zeros for TBEGINC); the
effective PIFC is the highest value specified (or implied) for
the current and all outer-level TRANSACTION BEGIN
instructions.

Figure 5-15. Effective PIFC and Transactional-Execution
Program-Interruption Classes

Code
(Hex) Exception Condition TX Class CC Set
0001 Operation 1 3
0002 Privileged operation 1 3
0003 Execute 1 3
0004 Protection 1 or 2 † 2 or 3 ‡
0005 Addressing 1 or 2 † 2 or 3 ‡
0006 Specification 3 2 or 3 ‡
0007 Data (DXC 01, 02, 03, and FE) 1 2
0007 Data (all other DXCs) 3 2 or 3 ‡
0008 Fixed-point overflow 3 2 or 3 ‡
0009 Fixed-point divide 3 2 or 3 ‡
000A Decimal overflow 3 2 or 3 ‡
000B Decimal divide 3 2 or 3 ‡
000C HFP exponent overflow 3 2 or 3 ‡
000D HFP exponent underflow 3 2 or 3 ‡

Figure 5-16. Transactional-Execution Classes for Various
Program-Interruption Conditions (Part 1 of 3)

Program Execution 5-105

When a program-interruption condition does not
result in an interruption (that is, the condition is fil-
tered), the program-new PSW is not loaded, and
none of the assigned storage locations associated
with a program interruption is stored; these locations
include the program-interruption identification, the
breaking-event address, the program-old PSW, and,
when applicable, the data-exception code, PER
code, PER address, exception access identification,
PER access identification, operand access identifica-
tion, and translation-exception identification. When a
program-interruption condition results in an interrup-
tion (that is, the condition is unfiltered), most
assigned storage locations associated with a pro-
gram interruption are stored as is normal; however,
the instruction-length code in bits 13-14 of the pro-
gram-interruption identification is respective to the
instruction at which the exception condition was
detected, and the transaction-abort PSW is stored as
the program-old PSW.

When a PER event is recognized in conjunction with
any other filtered program-exception condition, the
following applies:

• The transaction class and condition code for the
PER event apply. In this case, the PER exception
condition cannot be filtered, and the condition
code is set to 3.

• The program-interruption code in the prefix area
does not include the non-PER exception condi-
tion, nor are any other non-PER program-inter-
ruption parameters stored in the prefix area.

When the transactional-execution program-interrup-
tion filtering override (bit 9 of control register 0) is
one, program-interruption conditions are not subject
to program-interruption filtering. In this case, execu-
tion proceeds as if the effective PIFC was zero.

Access-exception conditions recognized during the
fetching of an instruction are never subject to pro-

000E HFP significance 3 2 or 3 ‡
000F HFP divide 3 2 or 3 ‡
0010 Segment translation 1 or 2 † 2 or 3 ‡
0011 Page translation 1 or 2 † 2 or 3 ‡
0012 Translation specification 1 3
0013 Special operation 1 3
0015 Operand — —
0016 Trace table — —
0018 Transaction constraint 1 3
001B Vector processing 3 2 or 3‡
001C Space-switch event — —
001D HFP square root 3 2 or 3 ‡
001F PC-translation specification — —
0020 AFX translation — —
0021 ASX translation — —
0022 LX translation — —
0023 EX translation — —
0024 Primary authority — —
0025 Secondary authority — —
0026 LFX translation — —
0027 LSX translation — —
0028 ALET specification 2 2 or 3 ‡
0029 ALEN translation 2 2 or 3 ‡
002A ALE sequence 2 2 or 3 ‡
002B ASTE validity 2 2 or 3 ‡
002C ASTE sequence 2 2 or 3 ‡
002D Extended authority 2 2 or 3 ‡
002E LSTE sequence — —
002F ASTE instance — —
0030 Stack full — —
0031 Stack empty — —
0032 Stack specification — —
0033 Stack type — —
0034 Stack operation — —
0038 ASCE type 1 or 2 † 2 or 3 ‡
0039 Region-first translation 1 or 2 † 2 or 3 ‡
003A Region-second translation 1 or 2 † 2 or 3 ‡
003B Region-third translation 1 or 2 † 2 or 3 ‡
0040 Monitor event — —
0080 PER event 1 3 *

Explanation:

— Not applicable; the exception cannot occur in the
transactional-execution mode because the instruction that
causes the exception is a restricted instruction.

† Access exceptions recognized during the fetching of an
instruction in the transactional-execution mode are TX
class 1 (that is, they cannot be filtered). Access exceptions
when accessing a storage operand in the transactional-
execution mode are TX class 2.

Code
(Hex) Exception Condition TX Class CC Set

Figure 5-16. Transactional-Execution Classes for Various
Program-Interruption Conditions (Part 2 of 3)

‡ When the exception condition is not filtered, the condition
code is 2; when the condition is filtered, the condition code
is 3.

* The CPU sets condition code 3. A control program or
hypervisor may change the condition code in the program-
old PSW to 2.

Code
(Hex) Exception Condition TX Class CC Set

Figure 5-16. Transactional-Execution Classes for Various
Program-Interruption Conditions (Part 3 of 3)

5-106 The z/Architecture CPU Architecture

gram-interruption filtering. In these cases, the excep-
tion condition results both in the transaction being
aborted and in a program interruption.

In addition to the program-interruption code repre-
senting the cause of the interruption, bit 6 of the pro-
gram-interruption code at real locations 142-143 is
set to one, indicating that the program interruption
occurred during transactional execution. The fields
of the program-old PSW are set as described in step
3 of “Transaction Abort Processing” on page 5-102.

Programming Notes:

1. A MONITOR CALL instruction that would other-
wise cause a monitor-event is a restricted
instruction. Therefore, a monitor-event program
interruption can never occur while the CPU is in
the transactional-execution mode, thus the moni-
tor code at real locations 176-183 is not stored
when the transaction is aborted.

Similarly, any other program-interruption condi-
tion listed in Figure 5-16 having a not-applicable
transaction class (–) and condition code cannot
occur as the instructions that cause these excep-
tions are restricted. Thus, neither the program-
interruption identification nor any of the other
ancillary program-interruption information are
stored in real locations in the prefix area.

2. The following example illustrates the instructions
necessary to initiate and end a nonconstrained
transaction. Note that if the transaction is
aborted, it is retried several times before finally
branching to the non-transactional fallback path
at label NO_RETRY.

LHI 15,0 Zero counter
LOOP TBEGIN TDB,X'F000' Restore GRs 0-7 if aborted.

JNZ ABORT CC0: Aborted or can’t init.

 Transactional-execution code

TEND End of transaction.

ABORT JC 5,NO_RETRY CC 1/3: Not worth retrying.
AHI 15,1 Increment counter.
CIJNL 15,6,NO_RETRY Give up after 6 attempts
PPA 15,0,1 Request assistance.
J LOOP And try it again.

NO_RETRY DS 0H Perform fall-back path

3. As shown in programming note 2, the first condi-
tional branch instruction following a TBEGIN
should be one of the following:

• A branch to the abort handler for all possible
aborting conditions; that is, a conditional
branch instruction having a mask of 0111
binary (as shown in programming note 2). In
this case, separate conditional branches in
an out-of-line abort handler may be used to
accommodate the three possible aborting
conditions. This is the preferred sequence.

• A branch to the next instruction to be exe-
cuted in the transactional-execution mode;
that is, a conditional branch instruction hav-
ing a mask of 1000 binary. In this case, sepa-
rate conditional branches to accommodate
the aborting conditions may immediately fol-
low the first conditional branch. This is not
the preferred sequence and may result in
significant performance degradation.

Other branching combinations – such as having
a first, second, and third conditional branch fol-
lowing the TBEGIN to handle the respective con-
dition code 1, 2, and 3 cases – may result in
unnecessary or repetitive aborting of the transac-
tion.

4. Programming note 2 shows the use of the PER-
FORM PROCESSOR ASSIST (PPA) instruction.
The program can improve the likelihood of suc-
cess when redriving the transaction by invoking
the PPA instruction before branching back to the
label LOOP following an abort. PPA is described
on page 7-351.

5. As shown in programming note 2, the loop
counter in general register 15 is not subject to
the general-register save mask (GRSM) in the
TRANSACTION BEGIN instruction; thus, the
register is not restored if the transaction aborts.
Therefore, the program should not alter the con-
tents of general register 15 within the transac-
tion.

However, if the loop counter was changed to use
a register that is subject to the GRSM, for exam-
ple general register 7, then the transaction could
safely alter that register within the transaction,
and the program could use the same register for
the loop counter. If the transaction completes
successfully, any results in general register 7 are
available following the TRANSACTION END
instruction. However, if the transaction aborts,

Program Execution 5-107

the original value of general register 7 (that is,
the value before the TBEGIN) is restored, thus
the register can also be used for the loop counter
in the abort handler.

6. Program-interruption filtering may be useful in
programs that, for various reasons, defer the vali-
dation of data – sometimes called speculative
execution. Instead of establishing a potentially
complicated recovery environment, the program
simply executes nonconstrained transaction(s) in
which the effective program-interruption filtering
control (PIFC) is nonzero. This allows the pro-
gram’s abort-handler routine to receive control
for certain types of program-interruption condi-
tions directly – without operating-system inter-
vention.

An effective PIFC of 1 indicates that limited filter-
ing is to be performed by the CPU; this may be
useful in the recognition of unexpected data or
arithmetic exceptions. An effective PIFC of 2 indi-
cates that moderate filtering is to be performed;
this may be useful in the recognition of inaccessi-
ble storage locations.

However, it should be noted that if a program is
aborted due to various types of filtered access
exceptions, it does not necessarily indicate that
the location would be inaccessible if the program
attempted nontransactional execution. For exam-
ple, the program might specify a PIFC of 2, and
subsequently be aborted due to a page-transla-
tion exception. This exception may indicate that
the storage location is not part of the virtual
address space, or it may simply indicate that the
block of storage has been paged out.

Priority of Abort Conditions
During transactional execution, multiple abort condi-
tions may be present simultaneously. Abort condi-
tions having corresponding interruptions are honored
in the order defined in “Priority of Program-Interrup-
tion Conditions” on page 6-52. Except for the
restricted-instruction abort condition, abort condi-
tions that do not correspond to interruptions may
occur in any order. The priority of the restricted-
instruction abort condition is equivalent to a program-
interruption priority of 7.D (see “Priority of Program-

Interruption Conditions” on page 6-52). Figure 5-17
illustrates the priority of each of the abort conditions.

Constrained Transaction
In the absence of constraint violations, repeated
occurrences of interruptions, guarded-storage
events, or conflicts with other CPUs or the channel
subsystem, a constrained transaction will eventually
complete, thus an abort-handler routine is not
required. A constrained transaction is initiated by the
TRANSACTION BEGIN (TBEGINC) instruction when
the transaction nesting depth is initially zero. A con-
strained transaction is subject to the following con-
straints:

1. The transaction executes no more than 32
instructions, not including the TRANSACTION
BEGIN (TBEGINC) and TRANSACTION END
instructions.

2. All instructions in the transaction must be within
256 contiguous bytes of storage, including the
TRANSACTION BEGIN (TBEGINC) and any
TRANSACTION END instructions.

3. In addition to all instructions listed in the section
“Restricted Instructions” on page 5-97, the fol-

Priority Abort Condition
A. Fetch-overflow (abort code 7)

B. Store overflow (abort code 8)

C. Fetch conflict (abort code 9)

D. Store Conflict (abort code 10)
E. Nesting depth exceeded (abort code 13)

F. Cache fetch-related condition (abort code 14)

G. Cache store-related condition (abort code 15)
H. Cache other condition (abort code 16)

I. Miscellaneous condition (abort code 255)

J. 1. Exigent machine check (abort code 5)
2. a. Program interruption (unfiltered; abort code 4)

b. Restricted instruction (abort code 11)

c. Program interruption (filtered; abort code 12)
3. a. TABORT instruction (abort code > 255)

4. Repressible machine check (abort code 5)

5. External interruption (abort code 2)
6. Input/output interruption (abort code 6)

Explanation:
The meaning of the priority indications is similar to that described in
Figure 6-8 on page 6-52.

Figure 5-17. Priority of Abort Conditions

5-108 The z/Architecture CPU Architecture

lowing restrictions apply to a constrained trans-
action.

a. Instructions are limited to those defined in
Chapter 7, “General Instructions.”

b. Branching instructions are limited to the fol-
lowing:

• BRANCH RELATIVE ON CONDITION in
which the M1 field is nonzero and the RI2
field contains a positive value

• BRANCH RELATIVE ON CONDITION
LONG in which the M1 field is nonzero,
and the RI2 field contains a positive
value that does not cause address wrap-
around.

• COMPARE AND BRANCH RELATIVE,
COMPARE IMMEDIATE AND BRANCH
RELATIVE, COMPARE LOGICAL AND
BRANCH RELATIVE, and COMPARE
LOGICAL IMMEDIATE AND BRANCH
RELATIVE in which the M3 field is non-
zero and the RI4 field contains a positive
value

(that is, only forward branches with nonzero
branch masks)

c. Except for TRANSACTION END and instruc-
tions which cause a specific-operand serial-
ization, instructions which cause a
serialization function are restricted. The
instructions which are restricted for this rea-
son and are not restricted for other reasons
are as follows:

• COMPARE AND SWAP
• COMPARE DOUBLE AND SWAP
• STORE CLOCK
• STORE CLOCK EXTENDED
• TEST AND SET
• TRANSACTION ABORT
• TRANSACTION BEGIN (TBEGIN and

TBEGINC)

d. All SS-format, SSE-format, and SSF-format
instructions are restricted.

e. All of the following general instructions are
restricted.

• BRANCH INDIRECT ON CONDITION
• BRANCH PREDICTION PRELOAD

• BRANCH PREDICTION RELATIVE
PRELOAD

• CHECKSUM
• CIPHER MESSAGE
• CIPHER MESSAGE WITH AUTHENTI-

CATION
• CIPHER MESSAGE WITH CIPHER

FEEDBACK
• CIPHER MESSAGE WITH CHAINING
• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH OUTPUT

FEEDBACK
• COMPARE AND FORM CODEWORD
• COMPARE LOGICAL LONG, COM-

PARE LOGICAL LONG EXTENDED,
and COMPARE LOGICAL LONG UNI-
CODE

• COMPARE LOGICAL STRING
• COMPARE UNTIL SUBSTRING EQUAL
• COMPRESSION CALL
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICA-

TION CODE
• CONVERT TO BINARY
• CONVERT TO DECIMAL
• CONVERT UNICODE-16 TO UNICODE-

32, CONVERT UNICODE-16 TO UNI-
CODE-8, CONVERT UNICODE-32 TO
UNICODE-16, CONVERT UNICODE-32
TO UNICODE-8, CONVERT UNICODE-
8 TO UNICODE-16, and CONVERT
UNICODE-8 TO UNICODE-32

• DIVIDE, DIVIDE LOGICAL, and DIVIDE
SINGLE

• EXECUTE and EXECUTE RELATIVE
LONG

• EXTRACT CPU ATTRIBUTE
• EXTRACT CPU TIME
• EXTRACT PSW
• EXTRACT TRANSACTION NESTING

DEPTH
• LOAD AND ADD, LOAD AND ADD LOG-

ICAL, LOAD AND AND, LOAD AND
EXCLUSIVE OR, and LOAD AND OR

• LOAD PAIR FROM QUADWORD
• MONITOR CALL
• MOVE LONG, MOVE LONG

EXTENDED, and MOVE LONG UNI-
CODE

• MOVE STRING
• NONTRANSACTIONAL STORE

Program Execution 5-109

• PERFORM CRYPTOGRAPHIC COM-
PUTATION

• PERFORM RANDOM NUMBER OPER-
ATION

• PREFETCH DATA (RELATIVE LONG)
• SEARCH STRING and SEARCH

STRING UNICODE
• SET ADDRESSING MODE
• STORE CHARACTERS UNDER MASK

(STCMH), when the M3 field is zero
• STORE CLOCK FAST
• STORE FACILITY LIST EXTENDED
• STORE PAIR TO QUADWORD
• TEST ADDRESSING MODE
• TRANSLATE AND TEST EXTENDED

and TRANSLATE AND TEST REVERSE
EXTENDED

• TRANSLATE EXTENDED
• TRANSLATE ONE TO ONE, TRANS-

LATE ONE TO TWO, TRANSLATE TWO
TO ONE, and TRANSLATE TWO TO
TWO

• UPDATE TREE

4. The transaction’s storage operands access no
more than four octowords. Note: LOAD ON CON-
DITION and STORE ON CONDITION are con-
sidered to reference storage regardless of the
condition code.

5. The transaction executing on this CPU, or stores
by other CPUs or the channel subsystem, do not
access storage operands in any 4 K-byte blocks
that contain the 256 bytes of storage beginning
with the TRANSACTION BEGIN (TBEGINC)
instruction.

6. The transaction does not access instructions or
storage operands using different logical
addresses that are mapped to the same absolute
address.

7. Operand references made by each instruction in
the transaction must be within a single double-
word, except that for LOAD ACCESS MULTIPLE,
LOAD MULTIPLE, LOAD MULTIPLE HIGH,
STORE ACCESS MULTIPLE, STORE MULTI-
PLE, and STORE MULTIPLE HIGH, operand ref-
erences must be within a single octoword.

If a constrained transaction violates any of con-
straints 1-7, listed above, then it is unpredictable
whether a transaction-constraint program interruption
is recognized. However, if a transaction-constraint
program interruption is not recognized for one trans-

action-constraint violation, it may still be recognized
for a subsequent violation within the same con-
strained transaction.

If the execution of a LOAD GUARDED or LOAD
LOGICAL AND SHIFT GUARDED instruction results
in the recognition of a guarded-storage event while
the CPU is in the constrained transactional-execution
mode, the transaction is aborted and the PSW
instruction address and guarded-storage-event
parameters are updated as described in “Guarded-
Storage-Event Processing” on page 4-71.

Programming Notes:

1. The chance of successfully completing a con-
strained transaction improves if the transaction
meets the following criteria:

a. The instructions issued are fewer than the
maximum of 32.

b. The storage-operand references are fewer
than the maximum of 4 octowords.

c. The storage-operand references are on the
same cache line.

d. Storage-operand references to the same
locations occur in the same order by all
transactions.

2. A constrained transaction is not necessarily
assured of successfully completing on its first
execution. However, if a constrained transaction
that does not violate any of the listed constraints
is aborted, the CPU employs special circuitry to
ensure that a repeated execution of the transac-
tion is subsequently successful.

3. Within a constrained transaction, TRANSAC-
TION BEGIN is a restricted instruction, thus a
constrained transaction cannot be nested.

4. Violation of any of constraints 1-7 by a con-
strained transaction may result in a program
loop.

 Monitor-Event Counting

When the execution of a MONITOR CALL instruction
causes a monitor event to occur, the enhanced-moni-
tor facility is installed, and the enhanced-monitor-

5-110 The z/Architecture CPU Architecture

mask bit corresponding to the monitor class is one, a
monitor-event counting operation is performed. See
“MONITOR CALL” on page 7-287 for further details
on the execution of the MONITOR CALL instruction.

The enhanced-monitor counter-array size contained
in the word at real location 264, extended on the left
with 32 binary zeros, is logically compared with the
monitor code formed by the first-operand address. If
the monitor code is greater than or equal to the
enhanced-monitor counter-array size, then one is
logically added to the enhanced-monitor exception
count contained in the word at real location 268, and
the instruction completes. Any carry as a result of
this addition is ignored.

If the monitor code is less than the enhanced-monitor
counter-array size (extended on the left with 32
zeros), then one is added to the enhanced-monitor
counter corresponding to the monitor code. An
enhanced-monitor counter comprises two discontigu-
ous storage locations: an unsigned halfword which is
incremented first, and an unsigned word which is
incremented whenever a carry out of bit position 0 of
the halfword addition occurs.

The enhanced-monitor counter-array origin in bits
0-60 of the doubleword at real location 256,
appended on the right with three binary zeros, forms
the 64-bit virtual address of the enhanced-monitor
counter array in the home address space.

Although the enhanced-monitor counter array is
located in the home address space (as designated
by control register 13), the updating of a counter
occurs regardless of whether DAT is on. The access
to the counters may be performed with the use of the
translation-lookaside buffer (TLB), and TLB entries
may be formed, regardless of whether DAT is on.

The enhanced-monitor-counter-array-size field at
real location 264 specifies the number of halfword
and word entries in the array; the halfword entries in
the array appear first, followed immediately by the
word entries.

The monitor code multiplied by two is added to the
enhanced-monitor counter-array origin to form the
64-bit virtual address of a halfword to which one is
logically added. If this addition results in a carry out
of bit position 0 of the halfword, then one is logically
added to the corresponding word. The enhanced-
monitor-counter-array-size value multiplied by two is
added to the monitor code multiplied by four; this

value is added to the enhanced-monitor counter-
array origin to form the 64-bit virtual address of the
word. Any carry in the word addition is ignored.

Key-controlled protection does not apply to any
accesses made in the process of incrementing the
counters. Except for addressing exceptions, any
other access exception recognized in the process of
incrementing the counters results in (a) one being
logically added to the enhanced-monitor exception
count contained in the word at real location 268, and
(b) the instruction completing; any carry as a result of
this addition is ignored. It is unpredictable whether an
addressing-exception condition occurring in the pro-
cess of incrementing an enhanced-monitor counter
results in the incrementing of the enhanced-monitor
exception counter or the recognition of the address-
ing exception.

The word portion of a counter is accessed only if the
addition of the corresponding halfword portion of the
counter results in an overflow. If the addition of the
halfword results in an overflow, the storing of the
updated halfword is performed only if both the half-
word and word portions of the counter are accessi-
ble.

Locations within the enhanced-monitor counter array
that are accessed by an enhanced-monitor counting
operation are subject to PER storage-alteration
events; however, PER storage-alteration events do
not apply to updates made to the exception counter.
During an enhanced-monitor counting operation, a
PER storage-alteration event is recognized only if all
counter-array locations updated by the event are
accessible.

Figure 5-18 illustrates the structures used in the
monitor-event-counting operation.

Programming Notes:

1. It is recommended that the enhanced-monitor
counter array be allocated on a cache-line
boundary of the CPU’s first-level data cache. The
cache line size may be determined by the
EXTRACT CPU ATTRIBUTES (ECAG) instruc-
tion.

2. The enhanced-monitor counters may be incre-
mented using a non-interlocked update. There-
fore, each enhanced-monitor counter array
should be processor unique.

Program Execution 5-111

3. It is recommended that the enhanced-monitor-
counter-array be allocated in fixed storage such
that dynamic-address-translation (DAT) excep-
tions do not occur when accessing the array.

4. In the ESA/390-compatibility mode, all 16 bits of
the enhanced-monitor mask (bits 16-31 of con-
trol register 8) are always zeros. Thus, an
enhanced-monitor-counting event is never recog-
nized in this mode.

ESA/390-Compatibility-Mode
Facility

The ESA/390-compatibility-mode (390-CM) facility
provides an environment supporting ESA/390 appli-
cations in a hybrid architectural mode having the fol-
lowing attributes:

• Except as described below, operation is similar
to that of the ESA/390 architectural mode
described in Reference [1.] on page xxix and the
ESA/extended-configuration (ESA/XC) architec-
ture described in Reference [12.] on page xxx.

• PSWs in assigned storage locations, in the sec-
ond operand of LOAD PSW, and in the second
operand of RESUME PROGRAM when the P bit
in the parameter list is zero, all have the short-
PSW format shown in Figure 4-3 on page 4-8,

except that when loading the PSW, (a) bit 5 must
be zero, and (b) it is unpredictable whether bit 31
must be zero.

• The prefix area is a 4 K-byte block, aligned on a
4 K-byte boundary. The prefix register accommo-
dates absolute addresses on a 4 K-byte bound-
ary.

PSWs, interruption parameters, and the results
of operator- or SIGP-initiated store-status opera-
tions in the prefix area are at the locations
defined in the ESA/390 architecture.

• Low address protection applies only to effective
addresses designating locations 0-511.

• Dynamic address translation is not supported.
Attempted execution of any instruction that
enables DAT results in the recognition of a speci-
fication exception.

Attempted execution of an instruction that implic-
itly performs DAT, including LOAD PAGE TABLE
ENTRY ADDRESS, LOAD REAL ADDRESS,
and STORE REAL ADDRESS, results in an
operation exception being recognized, except
that attempted execution of LOAD REAL
ADDRESS may result in a privileged-operation
exception in the problem state.

• The expanded-storage facility is not installed.
Attempted execution of the PAGE IN and PAGE
OUT instructions results in an operation excep-
tion being recognized.

• Instructions that may perform address-space-
number (ASN) translation are not supported.
Attempted execution of an instruction that may
perform ASN translation results in a special-
operation exception being recognized, except
that it is unpredictable whether attempted execu-
tion of LOAD ADDRESS SPACE PARAMETERS
results in an operation exception, privileged-
operation exception (when the CPU is in the
problem state), special-operation exception, or
specification exception (if the first operand is not
doubleword aligned). Consequently, ASN tracing
is not supported.

• The branch-and-set-authority facility is not sup-
ported. Attempted execution of the BRANCH
AND SET AUTHORITY instruction results in
either an operation exception or special-opera-
tion exception being recognized.

Prefix Area
256 CAO CAS EC

0 64 96 127

Home Address Space

C

AS

 2

C

AS

 4

0 16 32 48 64 80 96 112 127

Explanation:

CAO Enhanced-monitor counter-array origin
CAS Enhanced-monitor counter-array size
EC Enhanced-monitor exception count

Figure 5-18. Monitor-Event-Counting Structures

5-112 The z/Architecture CPU Architecture

• Except as noted below, access-register transla-
tion is not supported within the scope of the con-
figuration (since, in most cases ART requires that
DAT is enabled).

ART may be performed by the TEST ACCESS
instruction. It is unpredictable whether a special-
operation exception is recognized by TEST
ACCESS when bit position 47 of control register
0 contains zero.

For configurations that are operating in the
ESA/XC mode, ART may be performed for the
configuration using tables provided by the host
program. See Reference [12.] on page xxx for
details of ART performed in this context.

• Bits 0-31 of the general, control, and prefix regis-
ters as defined in the ESA/390 architecture
occupy bits 32-63 of the respective registers as
defined in the z/Architecture architecture.

• Bits 0-31 of the (z/Architecture) control registers
contain zeros and cannot be modified. Attempted
execution of the LOAD CONTROL (LCTLG)
instruction results in an operation exception
being recognized. Because of this restriction,
z/unique functions corresponding to the following
controls are unavailable:

– Transactional-execution control (CR0, bit 8)
– Transactional-execution program-interrup-

tion-filtering override (CR0, bit 9)
– Clock-comparator sign control (CR0, bit 10)
– Measurement-counter-extraction-authoriza-

tion control (CR0, bit 15)
– Warning-track-interruption control (CR0, bit

30)
– Enhanced-monitor masks (CR8, bits 16-31)
– Branch and mode tracing controls (CR12,

bits 0 and 1, respectively)

• It is unpredictable whether any of bits 32-63 of a
control register that are unique to z/Architecture
features have any effect, specifically:

– It is unpredictable whether bit 32 of control
registers 10 and 11 are used in forming the
PER address range.

– For explicit tracing, it is unpredictable
whether bit 32 of control register 12 is used
in forming the trace-entry address.

• If the program issues any other instruction that is
defined as being unique to the z/Architecture
architectural mode, it is unpredictable whether an

operation exception is recognized or the instruc-
tion executes according to its z/Architecture defi-
nition.

• If the program issues an instruction that is
defined to enable the 64-bit addressing mode,
the results are as follows:

– For BRANCH AND SAVE AND SET MODE
and BRANCH AND SET MODE, when the
R2 field is nonzero and bit 63 of general reg-
ister R2 is one, it is unpredictable whether
(a) the CPU enters the 64-bit addressing
mode, (b) bit 31 of the PSW is set to one,
resulting in an early specification exception
being recognized, or (c) the branch address
in general register R2 is considered to be
odd, resulting in a late specification excep-
tion being recognized.

– For LOAD PSW and RESUME PROGRAM,
it is unpredictable whether (a) the CPU
enters the 64-bit addressing mode, or (b) bit
31 of the PSW is set to one, resulting in an
early specification exception being recog-
nized. Similarly, if LOAD PSW EXTENDED
does not result in an operation exception, the
results are as described for LOAD PSW,
above.

– For SET ADDRESSING MODE (SAM64), it
is unpredictable whether (a) the CPU enters
the 64-bit addressing mode, or (b) an opera-
tion exception is recognized.

• If the program issues an instruction that is valid
in both the ESA/390 and z/Architecture architec-
tural modes, but the instruction specifies an attri-
bute that is unique to the z/Architecture
architectural mode, it is unpredictable whether an
exception condition is recognized, the attribute is
ignored, or the instruction executes according to
its z/Architecture definition. This behavior applies
as follows :

– It is unpredictable whether the long displace-
ment facility is installed. If installed, the long-
displacement facility may apply to the follow-
ing instructions:

• ADD LOGICAL WITH CARRY (ALC)
• COMPARE LOGICAL LONG UNICODE
• DIVIDE LOGICAL (DL)
• LOAD REVERSED (LRV, LRVH)
• MOVE LONG UNICODE
• MULTIPLY LOGICAL (ML)

Program Execution 5-113

• STORE REVERSED (STRV, STRVH)
• SUBTRACT LOGICAL WITH BORROW

(SLB)

– It is unpredictable whether the ETF3-
enhancement facility is considered to be
installed by the following instructions:

• CONVERT UTF-16 TO UTF8
• CONVERT UTF8 TO UTF-16

If the ETF3-enhancement facility is not
installed, then there is no M3 field in bits 16-
19 of the instruction, and enhanced well-
formedness checking does not occur.

– It is unpredictable whether any of the
CMPSC-enhancement facility, the entropy-
encoding compression facility, and the order-
preserving compression facility are consid-
ered to be installed by the COMPRESSION
CALL instruction. When the facilities are not
installed, their respective enablement con-
trols are ignored.

– It is unpredictable whether any new function
code added in the message-security-assist
extension 3 or higher is supported by the fol-
lowing instructions:

• CIPHER MESSAGE
• CIPHER MESSAGE WITH CHAINING
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICA-

TION CODE

If the function code is not supported, then a
specification exception is recognized if the
function is attempted. The query function will
only indicate the availability of functions that
are valid in the ESA/390 architectural mode.

– It is unpredictable whether functions of the
PERFORM LOCKED OPERATION that are
unique to z/Architecture operate as defined
or result in a specification exception being
recognized. The test operation will only indi-
cate the availability of functions that are valid
in the ESA/390 architectural mode.

– It is unpredictable whether z/Architecture-
unique functions that have been added to
floating-point instructions are available. Simi-
larly, it is unpredictable whether z/Architec-
ture unique controls and indications in the

floating-point-control register are available.
See “Impacts on ESA/390 and ESA/390-
Compatibility Mode” on page 9-52.

– It is unpredictable whether either or both the
IPTE-range facility or the local-TLB-clearing
facility is considered to be installed, as used
by the INVALIDATE PAGE TABLE ENTRY
instruction. When the facilities are not
installed, their respective enablement con-
trols are ignored. See “INVALIDATE PAGE
TABLE ENTRY” on page 10-37 for details.

• It is unpredictable whether PER instruction-fetch-
ing nullification, zero-address-detection, and
storage-key-alteration events are recognized.

• SIGP order codes that are unique to the z/Archi-
tecture architectural mode result in an invalid-
order status condition being recognized.

The ESA/390-compatibility mode is available only to
a virtual machine under the control of a hypervisor
program such as z/VM.

Programming-System Notes:

Sequence of Storage References

The following sections describe the effects which can
be observed in storage due to overlapped operations
and piecemeal execution of a CPU program. Most of
the effects described in these sections are observ-
able only when two or more CPUs or channel pro-
grams are in simultaneous execution and access
common storage locations. Thus, most of the effects
need be taken into account by a program only if the
program interacts with another CPU or a channel
program.

Some of the effects described in the following sec-
tions are independent of interaction with another
CPU or a channel program. These effects, which are
therefore more readily observable, relate to
prefetched instructions and overlapping operands of
a single instruction. These effects are described in
“Conceptual Sequence” and in “Interlocks for Virtual-
Storage References” on page 5-115.

Conceptual Sequence
The CPU conceptually processes instructions one at
a time, with the execution of one instruction preced-

5-114 The z/Architecture CPU Architecture

ing the execution of the following instruction. The
execution of the instruction designated by a success-
ful branch follows the execution of the branch. Simi-
larly, an interruption takes place between instructions
or, for interruptible instructions, between units of
operation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation of instruction execution appears to
the program itself to be performed sequentially, with
the current instruction being fetched after the preced-
ing operation is completed and before the execution
of the current operation is begun. This appearance is
maintained even though the storage-implementation
characteristics and overlap of instruction execution
with storage accessing may cause actual processing
to be different. The results generated are those that
would have been obtained had the operations been
performed in the conceptual sequence. Thus, it is
possible for an instruction to modify the next suc-
ceeding instruction in storage.

A case in which the copies of prefetched instructions
are not necessarily discarded occurs when the fetch
and the store are done by means of different effective
addresses that map to the same real address. This
case is described in more detail in “Interlocks for Vir-
tual-Storage References” on page 5-115.

When the transactional-execution facility is installed,
the CPU may appear to deviate from the conceptual
sequence to the extent that when a transaction is
aborted, the following may be visible by the program:

• Although transactional stores are discarded,
stores made by the NONTRANSACTIONAL
STORE instruction are observable by all CPUs
and by the channel subsystem.

• General registers that were altered by the trans-
action, but not designated to be saved by the
TRANSACTION BEGIN instruction, contain mod-
ified values

• Access registers, vector registers, and floating-
point registers (including the floating-point-con-
trol register) that were altered by the transaction
contain modified values.

• The breaking-event-address register may contain
the address of a breaking-event instruction within
the aborted transaction.

• While in the nonconstrained transactional-execu-
tion mode, if a CPU makes transactional and
non-transactional stores to the same storage
location, and the transaction then aborts, the
contents of the storage location are unpredict-
able.

Overlapped Operation of Instruction
Execution
In simple models in which operations are not over-
lapped, the conceptual and actual sequences are
essentially the same. However, in more complex
machines, overlapped operation, buffering of oper-
ands and results, and execution times which are
comparable to the propagation delays between units
can cause the actual sequence to differ considerably
from the conceptual sequence. Except as noted
below, these machines employ special circuitry to
detect dependencies between operations and ensure
that the results obtained, as observed by the CPU
which generates them, are those that would have
been obtained if the operations had been performed
in the conceptual sequence. However, other CPUs
and channel programs may, unless otherwise con-
strained, observe a sequence that differs from the
conceptual sequence.

Exceptions to the conceptual-sequence ordering of
instruction execution are as follows:

• The modification of ART and DAT table entries
may not have immediate effect on the conceptual
sequence. See “Modification of Translation
Tables” on page 3-67, “Modification of DAT-Table
Entries” on page 5-27, and “Modification of ART
Tables” on page 5-66 for further details.

• To improve performance, a machine may specu-
latively execute multiple instructions – including
multiple instruction paths – in parallel, discarding
results from the speculatively-executed instruc-
tions that do not represent the conceptual
sequence. Speculative execution may result in
the formation of ALB and TLB entries, even
though such entries might not be created in the
conceptual sequence. However, TLB and ALB
entries are not formed as a result of, or subse-
quent to, the execution of following instructions
unless such execution occurs in the conceptual
sequence:

– BRANCH IN SUBSPACE GROUP
– LOAD CONTROL that alters control registers

0, 1, 2, 5, 7, 8, or 13

Program Execution 5-115

– LOAD PSW
– LOAD PSW EXTENDED
– LOAD PAGE TABLE ENTRY ADDRESS
– LOAD REAL ADDRESS
– MONITOR CALL that results in a monitor-

counting operation
– MOVE WITH OPTIONAL SPECIFICATIONS
– PROGRAM CALL
– PROGRAM RETURN
– PROGRAM TRANSFER (WITH INSTANCE)
– SET ADDRESS SPACE CONTROL
– SET ADDRESS SPACE CONTROL FAST
– SET SECONDARY ASN (WITH INSTANCE)
– SET SYSTEM MASK
– STORE REAL ADDRESS
– STORE THEN AND SYSTEM MASK
– STORE THEN OR SYSTEM MASK
– TEST ACCESS

Divisible Instruction Execution
It can normally be assumed that the execution of
each instruction occurs as an indivisible event. How-
ever, in actual operation, the execution of an instruc-
tion consists in a series of discrete steps. Depending
on the instruction, operands may be fetched and
stored in a piecemeal fashion, and some delay may
occur between fetching operands and storing results.
As a consequence, intermediate or partially com-
pleted results may be observable by other CPUs and
by channel programs.

When a program interacts with the operation on
another CPU, or with a channel program, the pro-
gram may have to take into consideration that a sin-
gle operation may consist in a series of storage
references, that a storage reference may in turn con-
sist in a series of accesses, and that the conceptual
and observed sequences of these accesses may dif-
fer.

Storage references associated with instruction exe-
cution are of the following types: instruction fetches,
ART-table and DAT-table fetches, and storage-oper-
and references. For the purpose of describing the
sequence of storage references, accesses to storage
in order to perform ASN translation, PC-number
translation, tracing, and the linkage-stack stacking
and unstacking processes are considered to be stor-
age-operand references.

Programming Note: The sequence of execution of a
CPU may differ from the simple conceptual definition
in the following ways:

• As observed by the CPU itself, instructions may
appear to be prefetched when different effective
addresses are used. (See “Interlocks for Virtual-
Storage References”.)

• As observed by other CPUs and by channel pro-
grams, the execution of an instruction may
appear to be performed as a sequence of piece-
meal steps. This is described for each type of
storage reference in the following sections.

• As observed by other CPUs and by channel pro-
grams, the storage-operand accesses associ-
ated with one instruction are not necessarily
performed in the conceptual sequence. (See
“Relation between Operand Accesses” on
page 5-129.)

• As observed by channel programs, in certain
unusual situations, the contents of storage may
appear to change and then be restored to the
original value.

Interlocks for Virtual-Storage
References

As described in the immediately preceding sections,
CPU operation appears, with certain exceptions, to
be performed sequentially as observed by the CPU
itself; the stores performed by one instruction gener-
ally appear to be completed before the next instruc-
tion and its operands are fetched. This appearance is
maintained in overlapped machines by means of
interlock circuitry that detects accesses to a common
storage location.

For those instructions which alter the contents of
storage and have more than one operand, the
instruction definition normally describes the results
that are obtained when the operands overlap in stor-
age, this definition being in terms of a sequence of
stores and fetches. The interlock circuitry is used in
determining whether operand overlap exists.

The purpose of this section is to define those cases
in which the machine must appear to operate
sequentially, and in which operands of a single
instruction must or must not be treated as overlap-
ping.

Proper operation is provided in part by comparing
effective addresses. For the purpose of this defini-
tion, the term “effective address” means an address

5-116 The z/Architecture CPU Architecture

before translation, if any, regardless of whether the
address is virtual, real, or absolute. If two effective
addresses have the same value, the effective
addresses are said to be the same even though one
may be real or in a different address space.

The values of two virtual effective addresses do not
necessarily indicate whether or not the addresses
designate the same storage location. The address-
translation tables may be set up so that different
effective addresses map to the same real address, or
so that the same effective address in different
address spaces maps to different real addresses.

The interlocks for virtual-storage references are con-
sidered in two situations: storage references of one
instruction as they affect storage references of
another instruction, and multiple storage references
of a single instruction.

Interlocks between Instructions
Except as described below, as observed by the CPU
itself, the storage accesses for operands for each
instruction appear to occur in the conceptual
sequence independent of the effective address used.
That is, the operand stores for one instruction appear
to be completed before the operand fetches for the
next instruction occur. For instruction fetches, the
operand stores for one instruction necessarily appear
to be completed before the next instruction is fetched
only when the same effective address is used for the
operand store and the instruction fetch.

When an instruction changes the contents of a main-
storage location in which a conceptually subsequent
instruction is to be executed, either directly or by
means of an execute-type instruction, and when dif-
ferent effective addresses are used to designate that
location for storing the result and fetching the instruc-
tion, the instruction may appear to be fetched before
the store occurs. If an intervening operation causes
the prefetched instructions to be discarded, then the
updated value is recognized. A definition of when
prefetched instructions must be discarded is included
in “Instruction Fetching” on page 5-118.

Any change to the storage key appears to be com-
pleted before the conceptually following reference to
the associated storage block is made, regardless of
whether the reference to the storage location is made
by means of a virtual, real, or absolute address.
Analogously, any conceptually prior references to the

storage block appear to be completed when the key
for that block is changed or inspected.

When the CPU is in the transactional-execution
mode, and an instruction changes the contents of a
main-storage location from which a conceptually sub-
sequent instruction may be fetched, the transaction
may be aborted with any of abort codes 14, 15, 16, or
255 and condition code 3.

Programming Note: Depending on the model,
detection of a changed storage location may include
any location within the same or adjacent cache lines
as that of the store, regardless of whether the
changed location is actually an instruction. Because
of the characteristics described above and in the pre-
ceding paragraph, self-modifying code within a trans-
action is strongly discouraged.

Interlocks within a Single Instruction
For those instructions which alter the contents of
storage and have more than one operand, the
instruction definition normally describes the results
which are obtained when the operands overlap in
storage. This result is normally defined in terms of
the sequence of the storage accesses; that is, a por-
tion of the results of a store-type operand must
appear to be placed in storage before some portion
of the other operand is fetched. This definition
applies provided that the store and fetch accesses
are specified by means of the same effective
addresses and the same effective space designa-
tions.

When multiple address spaces are involved in the
access-register mode, the term “effective space des-
ignation” is used to denote the value used by the
machine to determine whether two spaces are the
same. In the access-register mode, the 32-bit
access-list-entry-token (ALET) value associated with
each storage-operand address is called the effective
space designation. When a B field of zero is speci-
fied, a value of all zeros is used for the effective
space designation. If the effective space designa-
tions are different, the spaces are considered to be
different even if both ALETs map to the same
address-space-control-element value.

When the store and the fetch accesses are specified
by means of different effective space designations or
by means of different effective addresses, the oper-
and fetch may appear to precede the operand store.

Program Execution 5-117

Figure 5-19 on page 5-117 summarizes the cases of
overlap and the specified results, including when

MOVE LONG (MVCL) sets condition code 3, for each
case.

Effective space designations may be represented by
ALB entries, and the test for whether two effective
space designations are the same may be performed
by comparing ALB entries. If the program changes
an attached and valid ART-table entry without subse-
quently causing the execution of PURGE ALB or a
COMPARE AND SWAP AND PURGE instruction that
purges the ALB, two effective space designations
that are the same may have different representations
in the ALB, and failure to recognize operand overlap
may result. The use of the ALB never causes overlap
to be recognized when the effective space designa-
tions are different.

Programming Note: A single main-storage location
can be accessed by means of more than one
address in several ways:

1. The DAT tables may be set up such that multiple
addresses in a single address space, or
addresses in different address spaces, including
the real address specified by a real-space desig-
nation, map to a single real address.

2. The translation of logical, instruction, and virtual
addresses may be changed by loading the DAT
parameters in the control registers, by changing
the address-space-control bits in the PSW, or, for
logical and instruction addresses, by turning DAT
on or off.

3. In the access-register mode, different address
spaces may be selected by means of each

access register. In addition, the primary address
space is selected for instruction fetching and the
target of an execute-type instruction.

4. STORE USING REAL ADDRESS performs a
store by means of a real address.

5. Certain other instructions also use real
addresses (even when a logical address is not
translated by means of a real-space designation,
which is a situation covered in case 1), the
instructions MOVE TO PRIMARY and MOVE TO
SECONDARY access two address spaces, and
the instruction MOVE WITH OPTIONAL SPECI-
FICATIONS may access one or two address
spaces.

6. Accesses to storage for the purpose of storing
and fetching information for interruptions is per-
formed by means of real addresses, and, for the
store-status function, by means of absolute
addresses, whereas accesses by the program
may be by means of virtual addresses.

7. The real-to-absolute mapping may be changed
by means of the SET PREFIX instruction or a
reset.

8. A main-storage location may be accessed by
channel programs by means of an absolute
address and by the CPU by means of an abso-
lute, a real, or a virtual address.

Effective Space
Designations Equal?

Effective Addresses
Overlap
Destructively?

Operand Overlap
Destructively in
Real Storage?

Is Overlap Recognized?

MVCL Sets CC 3 Operand Results

Yes

No
No No No

Yes No Unpredictable

Yes
No – –

Yes Yes Yes

No

No
No No No

Yes No Unpredictable

Yes
No No No

Yes No Unpredictable

Explanation:

– This case cannot occur.

Figure 5-19. Virtual-Storage Interlocks within a Single Instruction

5-118 The z/Architecture CPU Architecture

9. A main-storage location may be accessed by
another CPU by means of one type of address
and by this CPU by means of a different type of
address.

The primary purpose of this section on interlocks is
to describe the effects caused in cases 1, 3, and 4,
above.

For case 2, no effect is observable because
prefetched instructions are discarded when the trans-
lation parameters are changed, and the delay of
stores by a CPU is not observable by the CPU itself.

For case 5, for those instructions which fetch by
using real addresses (for example, LOAD REAL
ADDRESS, which fetches a segment-table entry and
a page-table entry, and may fetch a region-table
entry), no effect is observable because only operand
accesses between instructions are involved. All
instructions that store by using a real address, except
STORE USING REAL ADDRESS, or that store
across address spaces, except in the access-register
mode, cause prefetched instructions to be discarded,
and no effect is observable.

Cases 6 and 7 are situations which are defined to
cause serialization, with the result that prefetched
instructions are discarded. In these cases, no effect
is observable.

The handling of cases 8 and 9 involves accesses as
observed by other CPUs and by channel programs
and is covered in the following sections in this chap-
ter.

Instruction Fetching

Instruction fetching consists in fetching the one, two,
or three halfwords designated by the instruction
address in the current PSW. The immediate field of
an instruction is accessed as part of an instruction
fetch. If, however, an instruction designates a storage
operand at the location occupied by the instruction
itself, the location is accessed both as an instruction
and as a storage operand. The fetch of the target
instruction of an execute-type instruction is consid-
ered to be an instruction fetch.

The bytes of an instruction may be fetched piecemeal
and are not necessarily accessed in a left-to-right
direction. The instruction may be fetched multiple
times for a single execution; for example, it may be

fetched for testing the addressability of operands or
for inspection of PER events, and it may be refetched
for actual execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched each time they are
executed. In particular, the fetching of an instruction
may precede the storage-operand references for an
instruction that is conceptually earlier. The instruction
fetch occurs prior to all storage-operand references
for all instructions that are conceptually later.

An instruction may be prefetched by using a virtual
address only when the associated DAT table entries
are attached and valid or when entries which qualify
for substitution for the table entries exist in the TLB.
An instruction that has been prefetched may be inter-
preted for execution only for the same virtual address
for which the instruction was prefetched.

No limit is established on the number of instructions
which may be prefetched, and multiple copies of the
contents of a single storage location may be fetched.
As a result, the instruction executed is not necessar-
ily the most recently fetched copy. Storing caused by
other CPUs and by channel programs does not nec-
essarily change the copy of prefetched instructions.
However, if a store that is conceptually earlier is
made by the same CPU using the same effective
address as that by which the instruction is subse-
quently fetched, the updated information is obtained,
except as noted below. If the effective addresses are
different, the updated information is not necessarily
obtained. However, the updated information is
obtained if either execution is in the real mode since
prefetched instructions are discarded if DAT is turned
on or off.

All copies of prefetched instructions are discarded
when:

• A serializing function is performed. However, for
PROGRAM TRANSFER, PROGRAM TRANS-
FER WITH INSTANCE, SET SECONDARY ASN,
SET SECONDARY ASN WITH INSTANCE, and
TRACE, it is unpredictable whether or not a store
into a trace-table entry from which a subsequent
instruction is fetched will be observed by the
CPU that performed the store; for PROGRAM
CALL and PROGRAM RETURN it is unpredict-
able whether or not a store into a trace-table
entry or linkage-stack entry from which a subse-
quent instruction is fetched will be observed by

Program Execution 5-119

the CPU that performed the store. Additionally,
when the store-clock-fast facility is installed and
the TRACE TOD-clock control in bit 32 of control
register 0 is one, it is unpredictable whether
explicit tracing causes serialization to be per-
formed.

• The CPU enters the operating state.

• DAT is turned on or off.

• A change is made to a translation parameter in
control register 1 when in the primary-space,
secondary-space, or access-register mode, or in
control register 13 when in the home-space
mode.

The SET ADDRESS SPACE CONTROL instruction
can change the translation mode between any of the
primary-space, secondary-space, access-register,
and home-space modes, and it performs serializa-
tion. The SET ADDRESS SPACE CONTROL FAST
instruction can perform the same mode changes, but
it does not serialize.

Programming Notes:

1. As observed by a CPU itself, its own instruction
prefetching may be apparent when different
effective addresses map to a single real address.
This is described in “Conceptual Sequence” on
page 5-113 and “Interlocks for Virtual-Storage
References” on page 5-115.

2. Any means of changing PSW bits 16 and 17,
except the SET ADDRESS SPACE CONTROL
FAST instruction, causes serialization to be per-
formed and prefetched instructions to be dis-
carded. Turning DAT on or off causes prefetched
instructions to be discarded. Therefore, any
change of the translation mode, except a change
made by SET ADDRESS SPACE CONTROL
FAST, always causes prefetched instructions to
be discarded.

3. The following are some effects of instruction
prefetching on one CPU as observed by other
CPUs and by channel programs.

It is possible for one CPU to prefetch the con-
tents of a storage location, after which another
CPU or a channel program can change the con-
tents of that storage location and then set a flag
to indicate that the change has been made. Sub-
sequently, the first CPU can test and find the flag

set, branch to the modified location, and execute
the original prefetched contents.

It is possible, if another CPU or a channel pro-
gram concurrently modifies the instruction, for
one CPU to recognize the changes to some but
not all bit positions of an instruction.

It is possible for one CPU to prefetch an instruc-
tion and subsequently, before the instruction is
executed, for another CPU to change the storage
key. As a result, the first CPU may appear to exe-
cute instructions from a protected storage loca-
tion. However, the copy of the instructions
executed is the copy prefetched before the loca-
tion was protected.

4. Previous versions of both the ESA/390 Principles
of Operation and the z/Architecture Principles of
Operation have allowed a CPU to not recognize
a store into the instruction stream when the CPU
was operating in the home-space or access-reg-
ister modes. To ensure that stores into the
instruction stream were recognized in these
modes, the program was required to insert a
serializing operation following the store.

No IBM processor has ever implemented this
characteristic; stores into the instruction stream
using the same effective address as that by
which a subsequent instruction is fetched have
always been recognized, regardless of the
address-space-control mode. This characteristic
is now removed from the architecture. Any serial-
izing operations that were inserted to ensure rec-
ognition of stores into the instruction stream
while in the AR or home-space modes may be
safely removed from programs that execute on
IBM processors.

ART-Table and DAT-Table Fetches

The access-register-translation (ART) table entries
are access-list designations, access-list entries,
ASN-second-table entries, and authority-table
entries. The dynamic-address-translation (DAT) table
entries are region-table entries, segment-table
entries, and page-table entries. The fetching of these
entries may occur as follows:

1. An ART-table entry may be prefetched into the
ART-lookaside buffer (ALB) and used from the
ALB without refetching from storage, until the
entry is cleared by a COMPARE AND SWAP

5-120 The z/Architecture CPU Architecture

AND PURGE, PURGE ALB, or SET PREFIX
instruction, by CPU reset, or by a set prefix or
set-architecture SIGNAL PROCESSOR order. A
DAT-table entry may be prefetched into the trans-
lation-lookaside buffer (TLB) and used from the
TLB without refetching from storage, until the
entry is cleared by a COMPARE AND REPLACE
DAT TABLE ENTRY, COMPARE AND SWAP
AND PURGE, INVALIDATE DAT TABLE ENTRY,
INVALIDATE PAGE TABLE ENTRY, PURGE
TLB, or SET PREFIX instruction, by CPU reset,
or by a set prefix or set-architecture SIGNAL
PROCESSOR order. ART-table and DAT-table
entries are not necessarily fetched in the
sequence conceptually called for; they may be
fetched at any time they are attached and valid,
including during the execution of conceptually
previous instructions.

2. The fetching of access-list designations, access-
list entries, ASN-second-table entries, and DAT-
table entries appears to be word concurrent as
observed by other CPUs, except that the fetching
of an address-space-control element from an
ASN-second-table entry appears to be double-
word concurrent as observed by other CPUs.
The reference to an entry may appear to access
a single byte at a time as observed by channel
programs.

3. The order in which the words of an access-list
entry or ASN-second-table entry are fetched is
unpredictable, except that the leftmost word of an
entry is fetched first. However, the leftmost word
of an ASN-second-table entry is not fetched
when access-list-entry token 00000000 hex is
translated for BRANCH IN SUBSPACE GROUP.

4. An ART-table or DAT-table entry may be fetched
even after some operand references for the
instruction have already occurred. The fetch may
occur as late as just prior to the actual byte
access requiring the ART-table or DAT-table
entry.

5. An ART-table or DAT-table entry may be fetched
for each use of the address, including any trial
execution, and for each reference to each byte of
each operand.

6. The DAT page-table-entry fetch precedes the ref-
erence to the page. When no copy of the page-
table entry is in the TLB, the fetch of the associ-
ated segment-table entry precedes the fetch of
the page-table entry. When no copy of the seg-

ment-table entry is in the TLB, the fetch of the
region-third-table entry, if one is required, pre-
cedes the fetch of the segment-table entry. Simi-
larly, the fetch of a required region-second-table
entry precedes the fetch of the region-first-table
entry, and the fetch of a required region-first-
table entry precedes the fetch of the region-sec-
ond-table entry.

7. When no copy of a region-table entry or seg-
ment-table entry designated by means of an
ART-obtained address-space-control element is
in the TLB, the ART fetch of the ASN-second-
table entry precedes the DAT region-table-entry
or segment-table-entry fetch. When no copy of a
required authority-table entry is in the ALB, the
ART fetch of the associated ASN-second-table
entry precedes the fetch of the authority-table
entry. When no copy of a required ASN-second-
table entry is in the ALB, the fetch of the associ-
ated access-list entry precedes the fetch of the
ASN-second-table entry. When no copy of a
required access-list entry is in the ALB, the fetch
of the associated access-list designation pre-
cedes the fetch of the access-list entry.

Storage-Key Accesses

In the following sections, the term key-setting instruc-
tion refers either to the SET STORAGE KEY
EXTENDED instruction, to the PERFORM FRAME
MANAGEMENT FUNCTION instruction when the
set-key control is one, or to the MOVE PAGE instruc-
tion when setting the storage key. When the nonqui-
escing key-setting facility is installed, a nonquiescing
key-setting instruction refers to a SET STORAGE
KEY EXTENDED instruction in which the nonquiesc-
ing control is set to one, to a PERFORM FRAME
MANAGEMENT FUNCTION instruction in which the
set-key control is set to one, and to a MOVE PAGE
instruction when setting the storage key. (For PFMF,
it is unpredictable whether a quiescing operation is
performed when the nonquiescing key-setting facility
is installed; thus in the following discussion, PFMF
may be considered to be either quiescing or nonqui-
escing.)

References to the storage key are handled as fol-
lows:

1. Whenever a reference to storage is made and
key-controlled protection applies to the refer-
ence, the four access-control bits and the fetch-

Program Execution 5-121

protection bit associated with the storage loca-
tion are inspected concurrently. The inspection of
the access-control and fetch-protection bits
occurs concurrently with the reference to the
storage location, except that when a nonquiesc-
ing key-setting operation is performed for a stor-
age location by one CPU, the following applies:

• The inspection of the access-control and
fetch-protection bits for the storage location
by any CPU may precede a store reference
to the location. In the case where the inspec-
tion of the access-control and fetch-protec-
tion bits precedes the store, the inspection
occurs no earlier than after the last serializa-
tion operation on the CPU, and no earlier
than the last quiescing key-setting operation
for the same storage location on any CPU.

• When a unit of operation or instruction exe-
cution on any other CPU causes multiple
accesses to the same 4 K-byte block as that
of the key-setting operation, the other CPU
necessarily inspects the access-control and
fetch-protection bits only for the first refer-
ence to the block. The other CPU does not
necessarily inspect the access-control and
fetch-protection bits for the subsequent
accesses within the block by the same unit of
operation.

When (a) EDAT-1 does not apply,1 (b) EDAT-1
applies but the storage is accessed by means of
a segment-table entry in which the STE-format
control is zero, (c) EDAT-1 applies, the storage is
accessed by means of a segment-table entry in
which the STE-format control is one, but the
ACCF-validity control is zero, or (d) EDAT-2
applies, the storage is accessed by means of a
region-third-table entry in which the RTTE-format
control is one, but the ACCF-validity control is
zero, the access-control bits and the fetch-pro-
tection bit are in bits 0-4 of the storage key for the
4 K-byte block.

When EDAT-1 applies and the storage is
accessed by means of a segment-table entry in
which both the STE-format control and ACCF-
validity control are one, it is unpredictable
whether bits 0-4 of the storage key or bits 48-52
of the segment-table entry provide the access-
control bits and fetch-protection bit. Furthermore,
when the segment-table entry provides the
access-control bits and fetch-protection bit, a

buffered copy from the translation-lookaside buf-
fer may be used.

When EDAT-2 applies and the storage is
accessed by means of a region-third-table entry
in which both the RTTE-format control and
ACCF-validity control are one, it is unpredictable
whether bits 0-4 of the storage key or bits 48-52
of the region-third-table entry provide the
access-control bits and fetch-protection bit. Fur-
thermore, when the region-third-table entry pro-
vides the access-control bits and fetch-protection
bit, a buffered copy from the translation-loo-
kaside buffer may be used.

For accesses made by the channel subsystem,
the access-control bits and fetch-protection bits
are in bits 0-4 of the storage key for the 4 K-byte
block.

2. When storing is performed by a CPU, the change
bit is set to one in the associated storage key
concurrently with the completion of the store
access, as observed by the CPU itself. When
storing is performed by a CPU or a channel pro-
gram, the change bit is set to one in the associ-
ated storage key either before or after the
completion of the store access, as observed by
other (if the store was performed by a CPU) or all
(if the store was performed by a channel pro-
gram) CPUs. As observed by other or all CPUs,
the change bit is set no earlier than (1) after the
last serialization function performed previously
by the CPU or channel program performing the
store, and (2) after the execution, by any CPU in
the configuration, of a quiescing key-setting
instruction that last set the associated storage
key before the completion of the store. As
observed by other or all CPUs, a change-bit set-
ting necessarily occurs only when any of the fol-
lowing occurs subsequent to the storing
operation:

• The CPU or channel program that performed
the store performs a serialization function.

• The store was performed by a CPU or a
channel program, and any CPU in the config-
uration sets the subject change bit by execut-
ing a key-setting instruction after the store
access is completed. The change-bit setting
due to the store access occurs before the
setting by the key-setting instruction, except
that when the nonquiescing key-setting facil-

1. See “Enhanced-DAT Terminology:” on page 3-41 for an explanation of EDAT applicability.

5-122 The z/Architecture CPU Architecture

ity is installed, the change bit may appear to
be set following a nonquiescing key-setting
instruction.

• The store was performed by a CPU and is or
will be completed, and any CPU in the con-
figuration executes a COMPARE AND
REPLACE DAT TABLE ENTRY, COMPARE
AND SWAP AND PURGE, INVALIDATE DAT
TABLE ENTRY, or INVALIDATE PAGE
TABLE ENTRY instruction that clears from
the ALB or TLB of the storing CPU any entry
used to complete the store. Completion of
the clearing instruction is delayed until the
subject store and change-bit setting have
been completed.

• The store was performed by a CPU, and that
CPU examines the subject change bit by
means of an INSERT STORAGE KEY
EXTENDED or RESET REFERENCE BIT
EXTENDED instruction. See “Relation
between Operand Accesses” on page 5-129.

3. The following discussion assumes that other
CPUs are not simultaneously executing nonqui-
escing key-setting operations for the same stor-
age key. See the programming note below.

a. When the conditional-SSKE facility is not
installed, the SET STORAGE KEY
EXTENDED instruction causes all seven bits
to be set concurrently in the storage key.
When the conditional-SSKE facility is
installed, SET STORAGE KEY EXTENDED
may be used to set all or portions of the stor-
age key based on program-specified criteria.
The access to the storage key for SET
STORAGE KEY EXTENDED follows the
sequence rules for storage-operand store
references and is a single-access reference.
When the enhanced-DAT facility is installed,
SET STORAGE KEY EXTENDED or PER-
FORM FRAME MANAGEMENT FUNCTION
may be used to set all or portions of one or
more storage keys based on program-speci-
fied criteria. When the move-page-and-set-
key facility is installed, MOVE PAGE may be
used to set the key based on program-speci-
fied criteria.

b. The INSERT STORAGE KEY EXTENDED
instruction provides a consistent image of
bits 0-6 of the storage key for a 4 K-byte
block. Similarly, the instructions INSERT

VIRTUAL STORAGE KEY and TEST PRO-
TECTION provide a consistent image of the
access-control bits and the fetch-protection
bit. The access to the storage key for all of
these instructions follows the sequence rules
for storage-operand fetch references and is a
single-access reference.

c. The instruction RESET REFERENCE BIT
EXTENDED modifies only the reference bit.
All other bits of the storage key remain
unchanged. The reference bit and change bit
are inspected concurrently to set the condi-
tion code. The fetch and store accesses to
the storage key for RESET REFERENCE
BIT EXTENDED follow the sequence rules
for storage-operand fetch and store refer-
ences, respectively, and are single-access
references.

d. For each of the 64 storage keys accessed,
the instruction RESET REFERENCE BITS
MULTIPLE modifies only the reference bit.
All other bits of the storage key remain
unchanged. The fetch and store accesses to
each of the individual storage keys for
RESET REFERENCE BITS MULTIPLE fol-
low the sequence rules for storage-operand
fetch and store references, respectively, and
are single-access references.

The record of references provided by the reference
bit is not necessarily accurate. However, in the major-
ity of situations, reference recording approximately
coincides with the related storage reference.

The change bit may be set in cases when no storing
has occurred. See “Exceptions to Nullification and
Suppression” on page 5-26.

Programming Note: When a nonquiescing key-set-
ting instruction is executed on one CPU to set the
storage key of a block, the program should ensure
that no other CPU or I/O subsystem is simultane-
ously referencing the storage block in which the key
is being set; similarly, the program should ensure that
no other CPU is attempting to set the storage key of
the block. In a virtual storage environment, the pro-
gram can ensure that other CPUs do not access the
block using a virtual address by simply not mapping
the block to any virtual address.

Failure to comply with this restriction may result in
either of the following:

Program Execution 5-123

• An unpredictable storage key for the block may
be used in the enforcement of key-controlled pro-
tection.

• An unpredictable storage key for the block may
be inspected by key-inspecting instructions such
as IRBM, ISKE, IVSK, RRBE, and RRBM.

Storage-Operand References

A storage-operand reference is the fetching or stor-
ing of the explicit operand or operands in the storage
locations designated by the instruction.

During the execution of an instruction, all or some of
the storage operands for that instruction may be
fetched, intermediate results may be maintained for
subsequent modification, and final results may be
temporarily held prior to placing them in storage.
Stores caused by other CPUs and by channel pro-
grams do not necessarily affect these intermediate
results.

Storage-operand references are of three types:
fetches, stores, and updates.

Storage-Operand Fetch References
When the bytes of a storage operand participate in
the instruction execution only as a source, the oper-
and is called a fetch-type operand, and the reference
to the location is called a storage-operand fetch refer-
ence. A fetch-type operand is identified in individual
instruction definitions by indicating that the access
exception is for fetch.

All bits within a single byte of a fetch-type operand
are accessed concurrently. When an operand con-
sists of more than one byte, the bytes may be fetched
from storage piecemeal, one byte at a time. Unless
otherwise specified, the bytes are not necessarily
fetched in any particular sequence.

The storage-operand fetch references of one instruc-
tion occur after those of all preceding instructions
and before those of subsequent instructions, as
observed by other CPUs and by channel programs.
The operands of any one instruction are fetched in
the sequence specified for that instruction. The CPU
may fetch the operands of instructions before the
instructions are executed. There is no defined limit on
the length of time between when an operand is
fetched and when it is used. Still, as observed by the

CPU itself, its storage-operand references are per-
formed in the conceptual sequence.

For certain special instructions, the fetch references
for multiple operands may appear to be interlocked
against certain accesses by other CPUs and by
channel programs. Such a fetch reference is called
an interlocked-fetch reference. The fetch accesses
associated with an interlocked-fetch reference do not
necessarily occur one immediately after the other,
but store accesses by other CPUs may not occur at
the same locations as the interlocked-fetch reference
between the fetch accesses of the interlocked-fetch
reference.

The storage-operand fetch reference for the LOAD
PAIR DISJOINT instruction may be an interlocked-
fetch reference. Whether or not LOAD PAIR DIS-
JOINT is able to fetch both operands by means of an
interlocked fetch is indicated by the condition code.

Storage-Operand Store References
When the bytes of a storage operand participate in
the instruction execution only as a destination, to the
extent of being replaced by the result, the operand is
called a store-type operand, and the reference to the
location is called a storage-operand store reference.

A store-type operand is identified in individual
instruction definitions by indicating that the access
exception is for store.

All bits within a single byte of a store-type operand
are accessed concurrently. When an operand con-
sists of more than one byte, the bytes may be placed
in storage piecemeal, one byte at a time. Unless oth-
erwise specified, the bytes are not necessarily stored
in any particular sequence.

The CPU may delay placing results in storage. There
is no defined limit on the length of time that results
may remain pending before they are stored. This
delay does not affect the sequence in which results
are placed in storage.

With the exceptions noted below, the results of one
instruction are placed in storage after the results of
all preceding instructions have been placed in stor-
age and before any results of the succeeding instruc-
tions are stored, as observed by other CPUs and by
the channel subsystem. However, the following
exception cases exist:

5-124 The z/Architecture CPU Architecture

• When a transaction aborts, only the results of
non transactional stores are committed to stor-
age; transactional stores are discarded.

The results of any one instruction are stored in the
sequence specified for that instruction.

The CPU does not fetch operands, ART-table entries,
or DAT-table entries from a storage location until all
information destined for that location by the CPU has
been stored. Prefetched instructions may appear to
be updated before the information appears in stor-
age.

The stores are necessarily completed only as a result
of a serializing operation and before the CPU enters
the stopped state.

Storage-Operand Update References
In some instructions, the storage-operand location
participates both as a source and as a destination. In
these cases, the reference to the location consists
first in a fetch and subsequently in a store. The oper-
and is called an update-type operand, and the combi-
nation of the two accesses is referred to as an
update reference. Instructions such as MOVE
ZONES, TRANSLATE, OR (OC, OI), and ADD DECI-
MAL cause an update to the first-operand location.
An update-type operand is identified in the individual
instruction definition by indicating that the access
exception is for both fetch and store.

Noninterlocked-Update References: For most
instructions which have update-type operands, the
fetch and store accesses associated with an update
reference do not necessarily occur one immediately
after the other, and it is possible for other CPUs and
channel programs to make fetch and store accesses
to the same location during this time. Such an update
reference is sometimes called a noninterlocked-
update storage reference.

Interlocked-Update References: For certain spe-
cial instructions, the update reference is interlocked
against certain accesses by other CPUs and channel
programs. Such an update reference is called an
interlocked-update reference. The fetch and store
accesses associated with an interlocked-update ref-
erence do not necessarily occur one immediately
after the other, but all store accesses by other CPUs
and channel programs and the fetch and store
accesses associated with interlocked-update refer-
ences by other CPUs are prevented from occurring at

the same location between the fetch and the store
accesses of an interlocked-update reference.

The storage-operand update reference for the follow-
ing instructions appears to be an interlocked-update
reference as observed by other CPUs and channel
programs.

• ADD IMMEDIATE (ASI and AGSI), when the
interlocked-access facility 1 is installed and the
first operand is aligned on an integral boundary
corresponding to its size

• ADD LOGICAL WITH SIGNED IMMEDIATE,
when the interlocked-access facility 1 is installed
and the first operand is aligned on an integral
boundary corresponding to its size

• AND (NI and NIY), when the interlocked-access
facility 2 is installed

• COMPARE AND REPLACE DAT TABLE ENTRY
• COMPARE AND SWAP
• COMPARE AND SWAP AND PURGE
• COMPARE AND SWAP AND STORE
• COMPARE DOUBLE AND SWAP
• EXCLUSIVE OR (XI and XIY), when the inter-

locked-access facility 2 is installed
• LOAD AND ADD
• LOAD AND ADD LOGICAL
• LOAD AND AND
• LOAD AND EXCLUSIVE OR
• LOAD AND OR
• OR (OI and OIY), when the interlocked-access

facility 2 is installed
• STORE CHARACTERS UNDER MASK, on mod-

els in which the instruction with a mask of zero
fetches and stores the byte designated by the
second-operand address

• TEST AND SET

Within the limitations of the above requirements, the
fetch and store accesses associated with an update
reference follow the same rules as the fetches and
stores described in the previous sections.

Programming Notes:

1. When two CPUs attempt to update information at
a common main-storage location by means of a
noninterlocked-update reference, it is possible for
both CPUs to fetch the information and subse-
quently make the store access. The change
made by the first CPU to store the result in such
a case is lost. Similarly, if one CPU updates the
contents of a field by means of a noninterlocked-
update reference, but another CPU makes a

Program Execution 5-125

store access to that field between the fetch and
store parts of the update reference, the effect of
the store is lost. If, instead of a store access, a
CPU makes an interlocked-update reference to
the common storage field between the fetch and
store portions of a noninterlocked-update refer-
ence due to another CPU, any change in the
contents produced by the interlocked-update ref-
erence is lost.

2. Except for STORE CHARACTERS UNDER
MASK, the instructions listed in this section
(“Interlocked-Update References”) facilitate
updating of a common storage field by two or
more CPUs. To ensure that no changes are lost,
all CPUs must use an instruction providing an
interlocked-update reference.

3. Only those bytes which are included in the result
field of both operations are considered to be part
of the common main-storage location. However,
all bits within a common byte are considered to
be common even if the bits modified by the two
operations do not overlap. As an example, if
(1) one CPU executes the instruction OR (OC)
with a length of 1 and the value 80 hex in the
second-operand location, (2) the other CPU exe-
cutes AND (NC) with a length of 1 and the value
FE hex in the second-operand location, and
(3) the first operand of both instructions is the
same byte, then the result of one of the updates
can be lost. This is because the updates to the
byte by both NC and OC are not interlocked-
update references.

4. When the store access is part of an update refer-
ence by the CPU, the execution of the storing is
not necessarily contingent on whether the infor-
mation to be stored is different from the original
contents of the location. In particular, the con-
tents of all designated byte locations are
replaced, and, for each byte in the field, the
entire contents of the byte are replaced.

Depending on the model, an access to store
information may be performed, for example, in
the following cases:

a. Execution of the OR instruction (OI, OIY, or
OC) with a second operand of all zeros.

b. Execution of OR (OC) with the first-and sec-
ond-operand fields coinciding.

c. For those locations of the first operand of
TRANSLATE where the argument and func-
tion values are the same.

Storage-Operand Consistency

Single-Access References
A fetch reference is said to be a single-access refer-
ence if the value is fetched in a single access to each
byte of the data field. In the case of overlapping oper-
ands, the location may be accessed once for each
operand. A store-type reference is said to be a sin-
gle-access reference if a single store access occurs
to each byte location within the data field. An update
reference is said to be single access if both the fetch
and store accesses are each single access.

Except for the accesses associated with multiple-
access references and the stores associated with
storage change and restoration for DAT-associated
access exceptions, all storage-operand references
are single-access references.

Multiple-Access References
In some cases, multiple accesses may be made to all
or some of the bytes of a storage operand. The fol-
lowing cases may involve multiple-access refer-
ences:

1. The storage operands of the following instruc-
tions:

• CHECKSUM
• CIPHER MESSAGE
• CIPHER MESSAGE WITH AUTHENTICA-

TION
• CIPHER MESSAGE WITH CIPHER FEED-

BACK
• CIPHER MESSAGE WITH CHAINING
• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH OUTPUT FEED-

BACK
• COMPARE AND FORM CODEWORD
• COMPARE UNTIL SUBSTRING EQUAL
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICATION

CODE
• CONVERT FROM PACKED
• CONVERT FROM ZONED
• CONVERT TO BINARY
• CONVERT TO DECIMAL

5-126 The z/Architecture CPU Architecture

• CONVERT TO PACKED
• CONVERT TO ZONED
• CONVERT UTF-16 TO UTF-32
• CONVERT UTF-16 TO UTF-8
• CONVERT UTF-32 TO UTF-16
• CONVERT UTF-32 TO UTF-8
• CONVERT UTF-8 TO UTF-16
• CONVERT UTF-8 TO UTF-32
• LOAD ADDRESS SPACE PARAMETERS
• MOVE INVERSE
• MOVE LONG UNICODE
• MOVE PAGE
• MOVE RIGHT TO LEFT
• MOVE WITH OFFSET
• PACK
• PACK ASCII
• PACK UNICODE
• PERFORM CRYPTOGRAPHIC COMPUTA-

TION
• PERFORM CRYPTOGRAPHIC KEY MAN-

AGEMENT OPERATION
• PERFORM FRAME MANAGEMENT FUNC-

TION, when the clear-frame control is one
• PERFORM RANDOM NUMBER OPERA-

TION
• RESUME PROGRAM
• STORE SYSTEM INFORMATION
• TEST BLOCK
• TRANSLATE
• TRANSLATE AND TEST
• TRANSLATE AND TEST EXTENDED
• TRANSLATE AND TEST REVERSE
• TRANSLATE AND TEST REVERSE

EXTENDED
• TRANSLATE EXTENDED
• TRANSLATE ONE TO ONE
• TRANSLATE ONE TO TWO
• TRANSLATE TWO TO ONE
• TRANSLATE TWO TO TWO
• UNPACK
• UNPACK ASCII
• UNPACK UNICODE
• UPDATE TREE

2. The storage operands of MOVE LONG and
MOVE LONG EXTENDED, when the padding
character is not B1 hex.

3. The stores into that portion of the first operand of
MOVE LONG, MOVE LONG EXTENDED, or
MOVE LONG UNICODE which is filled with pad-
ding bytes.

4. The storage operands of the decimal instruc-
tions.

5. The main-storage operands of PAGE IN and
PAGE OUT.

6. The storage operands of the I/O instructions.

7. The stores into a trace entry.

8. The stores associated with the stop-and-store-
status and store-status-at-address SIGNAL
PROCESSOR orders.

9. The trap control block and trap save area used
by TRAP.

10. The operands, dictionaries, and symbol-transla-
tion table of COMPRESSION CALL.

11. The operands and parameter block of DEFLATE
CONVERSION CALL.

12. The storage operand and parameter block of
COMPUTE DIGITAL SIGNATURE AUTHENTI-
CATION.

When a storage-operand store reference to a loca-
tion is not a single-access reference, the value
placed at a byte location is not necessarily the same
for each store access; thus, intermediate results in a
single-byte location may be observed by other CPUs
and by channel programs.

Programming Notes:

1. When multiple fetch, store, or update accesses
are made to a single byte that is being changed
by another CPU or by a channel program, the
result is not necessarily limited to that which
could be obtained by fetching or storing the bits
individually. For example, the execution of MUL-
TIPLY DECIMAL may consist in repetitive addi-
tions and subtractions, each of which causes the
second operand to be fetched from storage and
the first operand to be updated in storage.

2. When CPU instructions which make multiple-
access references are used to modify storage
locations being simultaneously accessed by
another CPU or by a channel program, multiple
store accesses to a single byte by the CPU may
result in intermediate values being observed by
the other CPU or by the channel program. To
avoid these intermediate values (for example,
when modifying a CCW chain), only instructions
making single-access references should be
used.

Program Execution 5-127

3. An instruction fetch, including the fetch of the tar-
get of an execute-type instruction, is a multiple-
access reference.

Block-Concurrent References
For some references, the accesses to all bytes within
a halfword, word, doubleword, or quadword are spec-
ified to appear to be block concurrent as observed by
other CPUs and channel programs. The halfword,
word, doubleword, or quadword is referred to in this
section as a block. When a fetch-type reference is
specified to appear to be concurrent within a block,
no store access to the block by another CPU or chan-
nel program is permitted during the time that bytes
contained in the block are being fetched. When a
store-type reference is specified to appear to be con-
current within a block, no access to the block, either
fetch or store, is permitted by another CPU or chan-
nel program during the time that the bytes within the
block are being stored.

For all instructions in the RX, RXE, RXY, S, SIL, SIY,
VRV, and VRX formats, with the exception of CON-
VERT TO DECIMAL, CONVERT TO BINARY, LOAD
PSW EXTENDED, RESUME PROGRAM, STORE
CLOCK EXTENDED, STORE SYSTEM INFORMA-
TION, TRAP, VECTOR LOAD, VECTOR LOAD TO
BLOCK BOUNDARY, VECTOR STORE, and the I/O
instructions, when the operand is addressed on a
boundary which is integral to the size of the operand,
the storage-operand references appear to be block
concurrent as observed by other CPUs. For LOAD
PSW EXTENDED, the accesses to each of the two
doublewords of the storage operand appear to be
doubleword concurrent as observed by other CPUs.

For the instructions VECTOR LOAD, VECTOR LOAD
MULTIPLE, VECTOR LOAD TO BLOCK BOUND-
ARY, VECTOR STORE, and VECTOR STORE MUL-
TIPLE, when the operand is addressed on an integral
block boundary up to eight bytes, the storage-oper-
and references appear to be block concurrent with
respect to that integral block boundary. Note that
integral boundaries greater than eight bytes are by
definition on an integral 8 byte boundary.

For VECTOR LOAD WITH LENGTH, VECTOR
LOAD RIGHTMOST WITH LENGTH, VECTOR
STORE WITH LENGTH, and VECTOR STORE
RIGHTMOST WITH LENGTH, when the operand is
addressed on an integral boundary up to eight bytes
and the number of bytes accessed is a multiple of the
integral boundary, the storage-operand references

appear to be block concurrent with respect to that
integral block boundary. If the number of bytes
accessed is less than the integral boundary, the stor-
age-operand references appear to be block concur-
rent with an integral boundary that is the greatest
common power of two divisor between the storage-
operand address and the number of bytes accessed.
For example, if the storage-operand address is on a
doubleword boundary and the number of storage-
operand bytes is a multiple of two, the storage-oper-
and references will appear halfword concurrent as
observed by other CPUs.

For the instructions COMPARE AND SWAP, COM-
PARE AND SWAP AND PURGE, COMPARE DOU-
BLE AND SWAP, COMPARE HALFWORD
RELATIVE LONG, COMPARE LOGICAL RELATIVE
LONG, COMPARE RELATIVE LONG, LOAD AND
ADD, LOAD AND ADD LOGICAL, LOAD AND AND,
LOAD AND EXCLUSIVE OR, LOAD AND OR, LOAD
HALFWORD RELATIVE LONG, LOAD LOGICAL
HALFWORD RELATIVE LONG, LOAD LOGICAL
RELATIVE LONG, LOAD PAIR DISJOINT, LOAD
RELATIVE LONG, STORE HALFWORD RELATIVE
LONG, and STORE RELATIVE LONG, all accesses
to the storage operand appear to be block concurrent
as observed by other CPUs. For COMPARE AND
SWAP AND STORE, all accesses to the first operand
and the store of the second operand appear to be
block concurrent as observed by other CPUs.

For the instruction PERFORM LOCKED OPERA-
TION, the accesses to the even-numbered storage
operands appear to be word concurrent, as observed
by other CPUs, for function codes that are a multiple
of 4 and appear to be doubleword concurrent, as
observed by other CPUs, for function codes that are
one, 2, or 3 more than a multiple of 4. The accesses
to the doublewords in the parameter list appear to be
doubleword concurrent, as observed by other CPUs,
regardless of the function code.

The instructions LOAD MULTIPLE (LM), LOAD MUL-
TIPLE DISJOINT, LOAD MULTIPLE HIGH, STORE
MULTIPLE (STM), and STORE MULTIPLE HIGH,
when the operand or operands start on a word
boundary; the instructions LOAD MULTIPLE (LMG)
and STORE MULTIPLE (STMG), when the operand
starts on a doubleword boundary; and the instruc-
tions COMPARE LOGICAL (CLC), COMPARE LOGI-
CAL CHARACTERS UNDER MASK, INSERT
CHARACTERS UNDER MASK, LOAD CONTROL
(LCTLG), STORE CHARACTERS UNDER MASK,
and STORE CONTROL (STCTG) access their stor-

5-128 The z/Architecture CPU Architecture

age operands in a left-to-right direction, and all bytes
accessed within each doubleword appear to be
accessed concurrently as observed by other CPUs.

The instructions VECTOR LOAD MULTIPLE and
VECTOR STORE MULTIPLE, when the operands
start on a quadword boundary accesses to their stor-
age operands appear to be doubleword concurrent,
as observed by other CPUs. The doublewords may
be accessed in any order.

When any operand of EXTRACT CPU TIME starts
on a doubleword boundary, all eight bytes within the
operand appear to be accessed concurrently as
observed by other CPUs.

The instructions LOAD ACCESS MULTIPLE, LOAD
CONTROL (LCTL), STORE ACCESS MULTIPLE,
and STORE CONTROL (STCTL) access the storage
operand in a left-to-right direction, and all bytes
accessed within each word appear to be accessed
concurrently as observed by other CPUs.

When destructive overlap does not exist, the oper-
ands of MOVE (MVC), MOVE WITH KEY, MOVE TO
PRIMARY, and MOVE TO SECONDARY are
accessed as follows:

1. The first operand is accessed in a left-to-right
direction, and all bytes accessed within a double-
word appear to be accessed concurrently as
observed by other CPUs.

2. The second operand is accessed in a left-to-right
direction, and all bytes within a doubleword in the
second operand that are moved into a single
doubleword in the first operand appear to be
fetched concurrently as observed by other CPUs.
Thus, if the first and second operands begin on
the same byte offset within a doubleword, the
fetch of the second operand appears to be dou-
bleword concurrent as observed by other CPUs.
If the offsets within a doubleword differ by 4, the
fetch of the second operand appears to be word
concurrent as observed by other CPUs.

Destructive overlap is said to exist when the result
location is used as a source after the result has been
stored, assuming processing to be performed one
byte at a time.

The operands of MOVE WITH SOURCE KEY, MOVE
WITH DESTINATION KEY, and MOVE STRING are
accessed the same as those of MOVE (MVC), except
that destructive overlap is assumed not to exist.

The operands of MOVE RIGHT TO LEFT are
accessed the same as those of MOVE (MVC), except
that neither operand is accessed in a defined direc-
tion, as observed by other CPUs. Furthermore, if
destructive overlap exists, results are unpredictable.
Refer to page 7-301 for the definition of destructive
overlap for MOVE RIGHT TO LEFT.

Except as noted in the individual instruction descrip-
tions, accesses to operands of MOVE LONG, MOVE
LONG EXTENDED, and MOVE LONG UNICODE do
not necessarily appear to occur in a left-to-right
direction as observed by other CPUs and by channel
programs. The operands of these instructions do
appear to be accessed doubleword concurrent, as
observed by other CPUs, when all of the following
are true:

• Both operands start on doubleword boundaries
and are an integral number of doublewords in
length.

• The operands do not overlap.

• The nonpadding part of the operation is being
executed.

The operands of COMPARE LOGICAL LONG, COM-
PARE LOGICAL LONG EXTENDED, and COMPARE
LOGICAL LONG UNICODE appear to be accessed
doubleword concurrent, as observed by other CPUs,
when both operands start on doubleword boundaries
and are an integral number of doublewords in length.

The operands of COMPARE LOGICAL STRING
appear to be accessed doubleword concurrent, as
observed by other CPUs, when both operands start
on doubleword boundaries. The operands of
SEARCH STRING and SEARCH STRING UNI-
CODE appear to be accessed doubleword concur-
rent, as observed by other CPUs, when it starts on a
doubleword boundary.

For EXCLUSIVE OR (XC), the operands are pro-
cessed in a left-to-right direction, and, when the first
and second operands coincide, all bytes accessed
within a doubleword appear to be accessed concur-
rently as observed by other CPUs.

Program Execution 5-129

Programming Notes:

1. In the case of EXCLUSIVE OR (XC) designating
operands which coincide exactly, the bytes within
the field may appear to be accessed as many as
three times, by two fetches and one store: once
as the fetch portion of the first operand update,
once as the second-operand fetch, and then
once as the store portion of the first-operand
update. Each of the three accesses appears to
be doubleword concurrent as observed by other
CPUs, but the three accesses do not necessarily
appear to occur one immediately after the other.
One or both fetch accesses may be omitted
since the instruction can be completed without
fetching the operands.

2. All z/Architecture-capable machines have imple-
mented LOAD REVERSED and STORE
REVERSED as block concurrent if they are
aligned on an integral boundary of their operand
size. LOAD REVERSED and STORE
REVERSED have never been implemented as
multiple-access references.

Relation between Operand
Accesses

As observed by other CPUs and by channel pro-
grams, storage-operand fetches associated with one
instruction execution appear to precede all storage-
operand references for conceptually subsequent
instructions. A storage-operand store specified by
one instruction appears to precede all storage-oper-
and stores specified by conceptually subsequent
instructions, but it does not necessarily precede stor-
age-operand fetches specified by conceptually sub-
sequent instructions. However, a storage-operand
store appears to precede a conceptually subsequent
storage-operand fetch from the same main-storage
location.

When an instruction has two storage operands both
of which cause fetch references, it is unpredictable
which operand is fetched first, or how much of one
operand is fetched before the other operand is
fetched. When the two operands overlap, the com-
mon locations may be fetched independently for each
operand.

When an instruction has two storage operands the
first of which causes a store and the second a fetch
reference, it is unpredictable how much of the second

operand is fetched before the results are stored. In
the case of destructively overlapping operands, the
portion of the second operand which is common to
the first is not necessarily fetched from storage.

When an instruction has two storage operands the
first of which causes an update reference and the
second a fetch reference, it is unpredictable which
operand is fetched first, or how much of one operand
is fetched before the other operand is fetched. Simi-
larly, it is unpredictable how much of the result is pro-
cessed before it is returned to storage. In the case of
destructively overlapping operands, the portion of the
second operand which is common to the first is not
necessarily fetched from storage.

The independent fetching of a single location for
each of two operands may affect the program execu-
tion in the following situation. When the same storage
location is designated by two operand addresses of
an instruction, and another CPU or a channel pro-
gram causes the contents of the location to change
during execution of the instruction, the old and new
values of the location may be used simultaneously.
For example, comparison of a field to itself may yield
a result other than equal, or EXCLUSIVE-ORing of a
field with itself may yield a result other than zero.

Storage Operand References in the
Transactional-Execution Mode

While the CPU is in the transactional-execution
mode, the normal rules for instruction, ART and DAT
table, and operand fetching apply, except where
explicitly noted otherwise. This section describes
additional rules for operand storage accesses.
Instruction and ART and DAT table fetching are not
impacted by transactional execution.

As observed by other CPUs and by the channel sub-
system, when the CPU is in the transactional-execu-
tion mode, transactional and nontransactional stores
are committed when the transaction ends. When a
transaction is aborted all transactional stores are dis-
carded; only nontransactional stores made by the
transaction are committed when a transaction is
aborted.

As observed by other CPUs and by the channel sub-
system, all storage-operand fetches and stores made
while a CPU is in the transactional-execution mode
appear to be a single block-concurrent access. Stor-

5-130 The z/Architecture CPU Architecture

age accesses by other CPUs or by the channel sub-
system may prevent a transaction from maintaining
block-concurrent access, in which case the transac-
tion aborts with either store or fetch conflict.

Programming Note: Storage accesses made while
the CPU is in the transactional-execution mode are
said to be block concurrent, even though the refer-
ences may not represent a contiguous block of stor-
age on an integral boundary.

Other Storage References

The restart, program, supervisor-call, external,
input/output, and machine-check PSWs appear to be
accessed doubleword concurrent as observed by
other CPUs. These references appear to occur after
the conceptually previous unit of operation and
before the conceptually subsequent unit of operation.
The relationship between the new-PSW fetch, the
old-PSW store, and the interruption-code store is
unpredictable.

Store accesses for interruption codes are not neces-
sarily single-access stores. The store accesses for
the external and supervisor-call-interruption codes
appear to occur between the conceptually previous
and conceptually subsequent operations. The store
accesses for the program-interruption codes may
precede the storage-operand references associated
with the instruction which results in the program inter-
ruption.

Relation between Storage-Key
Accesses

As observed by other CPUs, storage-key fetches and
stores due to instructions that explicitly manipulate a
storage key (INSERT REFERENCE BITS MULTI-
PLE, INSERT STORAGE KEY EXTENDED, INSERT
VIRTUAL STORAGE KEY, PERFORM FRAME
MANAGEMENT FUNCTION [when SK is one],
MOVE PAGE [when setting the key], RESET REFER-
ENCE BIT EXTENDED, and SET STORAGE KEY
EXTENDED) are ordered among themselves and
among storage-operand references as if the storage-
key accesses were themselves storage-operand
fetches and stores, respectively.

Accesses of the access-control and fetch-protection
bits due to storage-operand references are concur-
rent with the references. When EDAT-1 applies and a

storage-operand reference is made using a segment-
table entry in which the STE-format and ACCF-valid-
ity controls are both one, the source of the access-
control and fetch-protection bits may be any of the
following: (a) the storage key for the corresponding
4 K-byte block, (b) the access-control bits and the
fetch-protection bit in the segment-table entry, or
(c) a buffered copy of these bits in the TLB; it is
unpredictable which source is used. Similarly, when
EDAT-2 applies and a storage-operand reference is
made using a region-third-table entry in which the
RTTE-format and ACCF-validity controls are both
one, the source of the access-control and fetch-pro-
tection bits may be any of the following: (a) the stor-
age key for the corresponding 4 K-byte block, (b) the
access-control bits and the fetch-protection bit in the
region-third-table entry, or (c) a buffered copy of
these bits in the TLB; it is unpredictable which source
is used.

Accesses of the reference and change bits due to
storage-operand references are in no particular order
within the interval in which they are defined to occur.
(See the description of when the change bit is set in
“Storage-Key Accesses” on page 5-120.) However,
whether due to an instruction that explicitly manipu-
lates a storage key or due to a storage-operand refer-
ence, a storage-key store appears to precede a
conceptually subsequent storage-key fetch from the
same storage key.

Serialization

The sequence of functions performed by a CPU is
normally independent of the functions performed by
other CPUs and by channel programs. Similarly, the
sequence of functions performed by a channel pro-
gram is normally independent of the functions per-
formed by other channel programs and by CPUs.
However, at certain points in its execution, serializa-
tion of the CPU occurs. Serialization also occurs at
certain points for channel programs.

CPU Serialization

All interruptions, entering or leaving the transac-
tional-execution mode, and the execution of certain
instructions cause a serialization of CPU operations.
A serialization operation consists in completing all
conceptually previous main storage accesses and
related reference-bit and change-bit settings by the

Program Execution 5-131

CPU, as observed by other CPUs and by the channel
subsystem, before the conceptually subsequent main
storage accesses and related reference-bit and
change-bit settings occur. Serialization affects the
sequence of all CPU accesses to main storage and
to the storage keys, except for those associated with
ART-table-entry and DAT-table-entry fetching.

As observed by all CPUs and by the channel subsys-
tem, a serializing operation performed while a CPU is
in the transactional-execution mode occurs when the
CPU leaves the transactional-execution mode, as a
result of any of the following: a TRANSACTION END
instruction that decrements the transaction nesting
depth to zero (normal ending), or a transaction-abort
condition.

Serialization is performed by CPU reset, all interrup-
tions, the entering or leaving of the transactional-exe-
cution mode, and the execution of the following
instructions:

• The general instruction BRANCH ON CONDI-
TION (BCR) with the M1 and R2 field containing
1111 binary and 0000 binary, respectively.

• When the fast-BCR-serialization facility is
installed, the general instruction BRANCH ON
CONDITION (BCR) with the M1 and R2 fields
containing 1110 binary and 0000 binary, respec-
tively.

• The general instructions COMPARE AND SWAP,
COMPARE AND SWAP AND STORE, COM-
PARE DOUBLE AND SWAP, STORE CLOCK,
STORE CLOCK EXTENDED, SUPERVISOR
CALL, and TEST AND SET.

• COMPARE AND SWAP AND PURGE, which can
also cause the ALB and the TLB to be cleared of
all entries on all CPUs.

• COMPARE AND REPLACE DAT TABLE ENTRY,
INVALIDATE DAT TABLE ENTRY, and INVALI-
DATE PAGE TABLE ENTRY.

• All I/O instructions .

• LOAD PSW, LOAD PSW EXTENDED, PER-
FORM FRAME MANAGEMENT FUNCTION,
SET STORAGE KEY EXTENDED, and MOVE
PAGE when the KFC field is 4 or 5.

• MOVE TO PRIMARY, MOVE TO SECONDARY,
and SET ADDRESS SPACE CONTROL.

• PAGE IN and PAGE OUT.

• PERFORM LOCKED OPERATION. A serializa-
tion function is performed immediately after the
lock is obtained and again immediately before it
is released. However, values fetched from the
parameter list before the lock is obtained are not
necessarily refetched.

• PROGRAM CALL, and, when the state entry to
be unstacked is a program-call state entry, PRO-
GRAM RETURN. However, it is unpredictable
whether or not a store into a trace-table entry or
linkage-stack entry from which a subsequent
instruction is fetched will be observed by the
CPU that performed the store.

• PROGRAM TRANSFER, PROGRAM TRANS-
FER WITH INSTANCE, SET SECONDARY ASN,
and SET SECONDARY ASN WITH INSTANCE,
and TRACE. However, it is unpredictable
whether or not a store into a trace-table entry
from which a subsequent instruction is fetched
will be observed by the CPU that performed the
store. Additionally, when the store-clock-fast
facility is installed and the TRACE TOD-clock
control in bit 32 of control register 0 is one, it is
unpredictable whether explicit tracing causes a
serialization function to be performed.

• PURGE ALB, PURGE TLB, and SET PREFIX.
PURGE ALB and SET PREFIX also cause the
ALB to be cleared of all entries. PURGE TLB and
SET PREFIX also cause the TLB to be cleared of
all entries.

• SIGNAL PROCESSOR. The set-architecture
SIGNAL PROCESSOR order causes serializa-
tion on all CPUs in the configuration.

• TEST BLOCK.

• TRANSACTION BEGIN and TRANSACTION
END

The four trace functions — branch tracing, ASN trac-
ing, mode tracing, and explicit tracing — cause a seri-
alization function to be performed before the trace
action and after completion of the trace action. How-
ever, it is unpredictable whether or not a store into a
trace-table entry from which a subsequent instruction
is fetched will be observed by the CPU that per-
formed the store. Additionally, when the store-clock-
fast facility is installed and the TRACE TOD-clock
control in bit 32 of control register 0 is one, it is

5-132 The z/Architecture CPU Architecture

unpredictable whether explicit tracing causes a seri-
alization function to be performed.

In the following discussion, the term serializing
instruction refers to an instruction which causes one
or more serialization functions to be performed. The
term serializing operation refers to a unit of operation
within an instruction or to a machine operation such
as an interruption which causes a serialization func-
tion is performed.

The sequence of events associated with a serializing
operation is as follows:

1. All conceptually previous storage accesses by
the CPU are completed as observed by other
CPUs and by channel programs. This includes all
conceptually previous stores and changes to the
storage keys.

2. The normal function associated with the serializ-
ing operation is performed. In the case of instruc-
tion execution, operands are fetched, and the
storing of results is completed. The exceptions
are LOAD PSW, LOAD PSW EXTENDED, and
SET PREFIX, in which the operand may be
fetched before previous stores have been com-
pleted, and interruptions, in which the interrup-
tion code and associated fields may be stored
prior to the serialization. The fetching of the seri-
alizing instruction occurs before the execution of
the instruction and may precede the execution of
previous instructions, but may not precede the
completion of any previous serializing operation.
In the case of an interruption, the old PSW, the
interruption code, and other information, if any,
are stored, and the new PSW is fetched, but not
necessarily in that sequence.

3. Finally, instruction fetch and operand accesses
for conceptually subsequent operations may
begin.

A serializing function affects the sequence of storage
accesses that are under the control of the CPU in
which the serializing function takes place. It does not
affect the sequence of storage accesses under the
control of other CPUs and of channel programs.

Programming Notes:

1. The following are some effects of a serializing
operation:

a. When the execution of an instruction
changes the contents of a storage location
that is used as a source of a following
instruction and when different addresses are
used to designate the same absolute loca-
tion for storing the result and fetching the
instruction, a serializing operation following
the change ensures that the modified
instruction is executed.

b. When a serializing operation takes place,
other CPUs and channel programs observe
instruction and operand fetching and result
storing to take place in the sequence estab-
lished by the serializing operation.

2. Storing into a location from which a serializing
instruction is fetched does not necessarily affect
the execution of the serializing instruction unless
a serializing function has been performed after
the storing and before the execution of the serial-
izing instruction.

3. Following is an example showing the effects of
serialization. Location A initially contains FF hex.

The BCR 15,0 instruction executed by CPU 1 is a
serializing instruction that ensures that the store
by CPU 1 at location A is completed. However,
CPU 2 may loop indefinitely, or until the next
interruption on CPU 2, because CPU 2 may
already have fetched from location A for every
execution of the CLI instruction. A serializing
instruction must be in the CPU-2 loop to ensure
that CPU 2 will again fetch from location A.

Specific-Operand Serialization
Certain instructions cause specific-operand serializa-
tion to be performed for an operand of the instruction.
As observed by other CPUs and by the channel sub-
system, a specific-operand-serialization operation
consists in completing all conceptually previous stor-
age accesses to the specified operand by the CPU
before a conceptually subsequent accesses to the
specific storage operand of the instruction may occur.

CPU 1 CPU 2

MVI A,X'00' G CLI A,X'00'
BCR 15,0 BNE G

Program Execution 5-133

At the completion of an instruction causing specific-
operand serialization, the instruction’s store is com-
pleted as observed by other CPUs and channel pro-
grams.

Specific-operand serialization is performed by the
execution of the following instructions:

• ADD IMMEDIATE (ASI, AGSI) and ADD LOGI-
CAL WITH SIGNED IMMEDIATE, for the first
operand, when the interlocked-access facility 1 is
installed and the first operand is aligned on a
boundary which is integral to the size of the oper-
and.

• AND (NI, NIY), when the interlocked-access
facility 2 is installed

• EXCLUSIVE OR (XI, XIY), when the interlocked-
access facility 2 is installed

• LOAD AND ADD, LOAD AND ADD LOGICAL,
LOAD AND AND, LOAD AND EXCLUSIVE OR,
LOAD AND OR, for the second operand.

• OR (OI, OIY), when the interlocked-access facil-
ity 2 is installed

Channel-Program Serialization

Serialization of a channel program occurs as follows:

1. All storage accesses and storage-key accesses
by the channel program follow initiation of the
execution of START SUBCHANNEL, or, if sus-
pended, RESUME SUBCHANNEL, as observed
by CPUs and by other channel programs. This
includes all accesses for the CCWs, IDAWs,
MIDAWs, and data.

2. All storage accesses and storage-key accesses
by the channel program are completed, as
observed by CPUs and by other channel pro-
grams, before the subchannel status indicating
status-pending with primary status is made avail-
able to any CPU.

3. If a CCW contains a PCI flag or a suspend flag
which is one, all storage accesses and storage-
key accesses due to CCWs preceding it in the
CCW chain are completed, as observed by
CPUs and by other channel programs, before the
subchannel status indicating status-pending with

intermediate status (PCI or suspended) is made
available to any CPU.

The serialization of a channel program does not
affect the sequence of storage accesses or storage-
key accesses performed by other channel programs
or by a CPU.

Quiescing

Quiescing is an additional means of serialization that
may be performed to ensure that updates to a config-
uration-wide resource are immediately visible to all
CPUs. A quiescing operation initiated by one CPU
causes the following to occur on all other CPUs in the
configuration:

• Any instruction or unit of operation executing on
the CPU is completed.

• Any transaction executing on the CPU is aborted
with abort code 255; the condition code is set to
2.

• All locally-cached copies of the configuration-
wide resource being updated are discarded.

• Resumption of instruction execution is delayed
until the update to the configuration-wide
resource is visible to all CPUs.

Quiescing may occur as a result of the execution of
the following key-setting instructions:

• PERFORM FRAME MANAGEMENT FUNCTION
(when the set-key control is one)

• SET STORAGE KEY EXTENDED.

When the nonquiescing key-setting facility is not
installed, a quiescing operation is performed by
either of the above instructions. Similarly, when the
nonquiescing key-setting facility is installed, but the
nonquiescing (NQ) control of the SSKE instruction is
zero, a quiescing operation is performed. When the
nonquiescing key-setting facility is installed and the
NQ control of the SSKE instruction is one, a quiesc-
ing operation is not necessarily performed. When the
nonquiescing key-setting facility is installed and the
set-key control of a PFMF instruction is one, a qui-
escing operation is not necessarily performed. When
the KFC value is 4 or 5 for a MVPG instruction, a qui-
escing operation is not necessarily performed.

5-134 The z/Architecture CPU Architecture

Programming Note: Although quiescing is defined
as a additional serialization mechanism, the term
serialization function (used in the description of CPU

instructions and channel operations) is limited to
CPU serialization and channel-program serialization.

Interruptions 6-1© Copyright IBM Corp. 2000, 2019

Chapter 6. Interruptions

Interruption Action . 6-2
Interruption Code. 6-5
Enabling and Disabling 6-6
Handling of Floating Interruption Conditions . . 6-6
Instruction-Length Code 6-7

Zero ILC. 6-7
ILC on Instruction-Fetching Exceptions 6-8

Exceptions Associated with the PSW 6-9
Early Exception Recognition 6-9
Late Exception Recognition 6-10

External Interruption . 6-11
Clock Comparator . 6-12
CPU Timer . 6-12
Emergency Signal . 6-13
External Call . 6-13
Interrupt Key . 6-13
Malfunction Alert . 6-13
Measurement Alert . 6-14
Service Signal . 6-14
Timing Alert . 6-14

ETR-Timing-Alert Condition. 6-14
STP-Timing-Alert Condition 6-14

Warning Track . 6-15
I/O Interruption. 6-15
Machine-Check Interruption 6-16
Program Interruption . 6-16

Data-Exception Code (DXC) 6-17
Priority of Program Interruptions for Data

Exceptions . 6-17
Vector-Exception Code 6-20
Program-Interruption Conditions 6-20

Addressing Exception 6-20
AFX-Translation Exception 6-22
ALEN-Translation Exception 6-22
ALE-Sequence Exception 6-22
ALET-Specification Exception 6-22
ASCE-Type Exception 6-22
ASTE-Instance Exception 6-23
ASTE-Sequence Exception 6-23
ASTE-Validity Exception 6-24
ASX-Translation Exception 6-24
Crypto-Operation Exception 6-24
Data Exception . 6-25
Decimal-Divide Exception 6-26
Decimal-Overflow Exception 6-26
Execute Exception 6-26
EX-Translation Exception 6-26
Extended-Authority Exception 6-27

Fixed-Point-Divide Exception 6-27
Fixed-Point-Overflow Exception 6-27
HFP-Divide Exception 6-28
HFP-Exponent-Overflow Exception 6-28
HFP-Exponent-Underflow Exception 6-28
HFP-Significance Exception 6-28
HFP-Square-Root Exception. 6-29
LFX-Translation Exception 6-29
LSTE-Sequence Exception 6-29
LSX-Translation Exception 6-29
LX-Translation Exception 6-30
Monitor Event . 6-30
Operand Exception 6-31
Operation Exception 6-31
Page-Translation Exception 6-32
PC-Translation-Specification Exception . . . 6-32
PER Event. 6-32
Primary-Authority Exception 6-33
Privileged-Operation Exception. 6-33
Protection Exception 6-34
Region-First-Translation Exception. 6-35
Region-Second-Translation Exception 6-36
Region-Third-Translation Exception 6-36
Secondary-Authority Exception. 6-37
Segment-Translation Exception 6-37
Space-Switch Event 6-37
Special-Operation Exception. 6-38
Specification Exception 6-40
Stack-Empty Exception 6-44
Stack-Full Exception 6-45
Stack-Operation Exception 6-45
Stack-Specification Exception. 6-45
Stack-Type Exception 6-45
Trace-Table Exception 6-45
Transaction-Constraint Exception 6-46
Transactional-Execution-Aborted Event . . . 6-46
Translation-Specification Exception 6-46
Vector Processing Exception 6-47

Collective Program-Interruption Names 6-47
Recognition of Access Exceptions 6-47
Multiple Program-Interruption Conditions 6-51

Access Exceptions 6-53
ASN-Translation Exceptions 6-55
Subspace-Replacement Exceptions 6-56
Trace Exceptions . 6-56

Restart Interruption . 6-56
Supervisor-Call Interruption 6-57
Priority of Interruptions . 6-57

6-2 The z/Architecture CPU Architecture

The interruption mechanism permits the CPU to
change its state as a result of conditions external to
the configuration, within the configuration, or within
the CPU itself. To permit fast response to conditions
of high priority and immediate recognition of the type
of condition, interruption conditions are grouped into
six classes: external, input/output, machine check,
program, restart, and supervisor call.

Interruption Action

An interruption consists in storing the current PSW
as an old PSW, storing information identifying the
cause of the interruption, and fetching a new PSW.
Processing resumes as specified by the new PSW.

The old PSW stored on an interruption normally con-
tains the address of the instruction that would have
been executed next had the interruption not

occurred, thus permitting resumption of the inter-
rupted program. For program and supervisor-call
interruptions, the information stored also contains a
code that identifies the length of the last-executed
instruction, thus permitting the program to respond to
the cause of the interruption. In the case of some
program conditions for which the normal response is
reexecution of the instruction causing the interrup-
tion, the instruction address directly identifies the
instruction last executed.

Except for restart, an interruption can occur only
when the CPU is in the operating state. The restart
interruption can occur with the CPU in either the
stopped or operating state.

The details of source identification, location determi-
nation, and instruction execution are explained in
later sections and are summarized in Figure 6-1 on
page 6-2.

Source Identification Interruption Code

PSW-
Mask
Bits

Mask Bits
in Control
Registers ILC

Set

Execution of
Instruction
Identified

by Old PSWReg Bit

MACHINE CHECK
Old PSW: 352-367 (z/Arch), 48-55 (390-CM)
New PSW: 480-495 (z/Arch), 112-119 (390-CM)

Locations 232-2391

Exigent condition 13 u terminated or nullified2

Repressible condition 13 14 35-39 u unaffected2

SUPERVISOR CALL
Old PSW: 320-335 (z/Arch), 32-39 (390-CM)
New PSW: 448-463 (z/Arch), 96-103 (390-CM)

Locations 138-139

Instruction bits 00000000 ssssssss 1, 2, 3 completed

PROGRAM
Old PSW: 336-351 (z/Arch), 40-47 (390-CM)
New PSW: 464-479 (z/Arch), 104-111 (390-CM)

Locations 142-143

Binary Hex3

Operation 000000t0 p0000001 0001 1, 2, 3 suppressed

Privileged operation 000000t0 p0000010 0002 1, 2, 3 suppressed

Execute 000000t0 p0000011 0003 2, 3 suppressed

Protection 000000t0 p0000100 0004 1, 2, 3 suppressed or terminated

Addressing 000000t0 p0000101 0005 1, 2, 3 suppressed or terminated

Specification 000000t0 p0000110 0006 0, 1, 2, 3 suppressed or completed

Data 000000t0 p0000111 0007 1, 2, 3 suppressed, terminated
or completed

Fixed-point overflow 000000t0 p0001000 0008 20 1, 2, 3 completed

Fixed-point divide 000000t0 p0001001 0009 1, 2, 3 suppressed or completed

Decimal overflow 000000t0 p0001010 000A 21 2, 3 completed

Decimal divide 000000t0 p0001011 000B 2, 3 suppressed

Figure 6-1. Interruption Action (Part 1 of 4)

Interruptions 6-3

HFP exp. overflow 000000t0 p0001100 000C 1, 2, 3 completed

HFP exp. underflow 000000t0 p0001101 000D 22 1, 2, 3 completed

HFP significance 000000t0 p0001110 000E 23 1, 2, 3 completed

HFP divide 000000t0 p0001111 000F 1, 2, 3 suppressed

Segment translation 000000t0 p0010000 0010 1, 2, 3 nullified

Page translation 000000t0 p0010001 0011 1, 2, 3 nullified

Translation spec 000000t0 p0010010 0012 1, 2, 3 suppressed

Special operation 000000t0 p0010011 0013 0 33 1, 2, 3 suppressed

Operand 00000000 p0010101 0015 2, 3 suppressed

Trace table 00000000 p0010110 0016 1, 2, 3 nullified

Transaction constraint 000000t0 00011000 0018 1, 2, 3 suppressed

Vector-processing 000000t0 p0011011 001B 2 3 suppressed

Space-switch event 00000000 p0011100 001C 1 57 0, 1, 2, 3 completed

HFP square root 000000t0 p0011101 001D 2, 3 suppressed

PC-transl spec 00000000 p0011111 001F 2, 3 suppressed

AFX translation 00000000 p0100000 0020 1, 2, 3 nullified

ASX translation 00000000 p0100001 0021 1, 2, 3 nullified

LX translation 00000000 p0100010 0022 2, 3 nullified

EX translation 00000000 p0100011 0023 2, 3 nullified

Primary authority 00000000 p0100100 0024 2, 3 nullified

Secondary authority 00000000 p0100101 0025 1, 2, 3 nullified

LFX translation 00000000 p0100110 0026 2, 3 nullified

LSX translation 00000000 p0100111 0027 2, 3 nullified

ALET specification 000000t0 p0101000 0028 1, 2, 3 suppressed

ALEN translation 000000t0 p0101001 0029 1, 2, 3 nullified

ALE sequence 000000t0 p0101010 002A 1, 2, 3 nullified

ASTE validity 000000t0 p0101011 002B 1, 2, 3 nullified

ASTE sequence 000000t0 p0101100 002C 1, 2, 3 nullified

Extended authority 000000t0 p0101101 002D 1, 2, 3 nullified

LSTE sequence 00000000 p0101110 002E 2, 3 nullified

ASTE instance 00000000 p0101111 002F 1, 2, 3 nullified

Stack full 00000000 p0110000 0030 2, 3 nullified

Stack empty 00000000 p0110001 0031 1, 2, 3 nullified

Stack specification 00000000 p0110010 0032 1, 2, 3 nullified

Stack type 00000000 p0110011 0033 1, 2, 3 nullified

Stack operation 00000000 p0110100 0034 1, 2, 3 nullified

ASCE type 000000t0 p0111000 0038 1, 2, 3 nullified

Region first trans 000000t0 p0111001 0039 1, 2, 3 nullified

Region second trans 000000t0 p0111010 003A 1, 2, 3 nullified

Region third trans 000000t0 p0111011 003B 1, 2, 3 nullified

Monitor event 000000t0 p1000000 0040 8 32-47 2, 3 completed

Source Identification Interruption Code

PSW-
Mask
Bits

Mask Bits
in Control
Registers ILC

Set

Execution of
Instruction
Identified

by Old PSWReg Bit

Figure 6-1. Interruption Action (Part 2 of 4)

6-4 The z/Architecture CPU Architecture

PER basic event 000000tn 1nnnnnnn5 0080 1 9 32-36 0, 1, 2, 3 completed6

PER nullification event 000000t0 10000000 0080 1 9 33,39 0 nullified7

Crypto operation 000000t1 p0011001 0119 2, 3 nullified

Transactional-execution aborted event 0000001n nnnnnnnn 0200 0 8-9 1, 2, 3 completed8

EXTERNAL
Old PSW: 304-319 (z/Arch), 24-31 (390-CM)
New PSW: 432-447 (z/Arch), 88-95 (390-CM)

Location 134-135

Binary Hex3

Interrupt key 00000000 01000000 0040 7 0 57 u unaffected

Clock comparator 00010000 00000100 1004 7 0 52 u unaffected

CPU timer 00010000 00000101 1005 7 0 53 u unaffected

Warning track 00010000 00000111 1007 7 0 30 u unaffected

Malfunction alert 00010010 00000000 1200 7 0 48 u unaffected

Emergency Signal 00010010 00000001 1201 7 0 49 u unaffected

External call 00010010 00000010 1202 7 0 50 u unaffected

Timing alert 00010100 00000110 1406 7 0 59 u unaffected

Measurement alert 00010100 00000111 1407 7 0 58 u unaffected

Service signal 00100100 00000001 2401 7 0 54 u unaffected

INPUT/OUTPUT
Old PSW: 368-383 (z/Arch), 56-63 (390-CM)
New PSW: 496-511 (z/Arch), 120-127 (390-CM)

Locations 184-191

I/O-interruption
subclass

6 6 32-394 u unaffected

RESTART
Old PSW: 288-303 (z/Arch), 8-15 (390-CM)
New PSW: 416-431 (z/Arch), 0-7 (390-CM)

None

Restart key u unaffected

Explanation:

Locations for the old PSWs, new PSWs, and interruption codes are real locations.

z/Arch Interruption PSW locations when the CPU is in the z/Architecture architectural mode.

390-CM Interruption PSW locations when the CPU is in the ESA/390-compatibility mode.
1 A model-independent machine-check interruption code of 64 bits is stored at real locations 232-239.
2 The effect of the machine-check condition is indicated by bits in the machine- check-interruption code. The setting of these bits indicates

the extent of the damage and whether the unit of operation is nullified, terminated, or unaffected.
3 The interruption code in the column labeled “Hex” is the hex code for the basic interruption; this code does not show the effects of

concurrent interruption conditions represented by n or p in the column labeled “Binary.”
4 Bits 32-39 of control register 6 provide detailed masking of I/O-interruption subclasses 0-7 respectively.
5 When the interruption code indicates a PER basic event, an ILC of 0 may be stored only when bits 8-15 of the interruption code are

10000110 (PER, specification).
6 The unit of operation is completed, unless a program exception concurrently indicated causes the unit of operation to be nullified,

suppressed, or terminated.
7 The unit of operation is nullified and no other program interruption is indicated when a nullifying PER event is recognized.

Source Identification Interruption Code

PSW-
Mask
Bits

Mask Bits
in Control
Registers ILC

Set

Execution of
Instruction
Identified

by Old PSWReg Bit

Figure 6-1. Interruption Action (Part 3 of 4)

Interruptions 6-5

Programming Note: In the ESA/390-compatibility
mode, an old PSW stored during interruption pro-
cessing has the short format, as illustrated in
Figure 4-3 on page 4-8. If the model does not recog-
nize a specification exception when PSW bit 31 is
one in the ESA/390-compatibility mode (thus allow-
ing the CPU to operate in the 64-bit addressing
mode), any nonzero bits in bit positions 0-32 of the
PSW instruction address will be lost when storing the
interruption-old PSW.

Similarly in the ESA/390-compatibility mode, if the
model allows the execution of either (a) LOAD PSW
EXTENDED or (b) RESUME PROGRAM with the P
bit, bit 13 of the parameter list, set to one, then a 16-
byte PSW may be loaded. If such a PSW has a for-
mat error in which bit 31 is zero, but any of bits 64-96
(bits 0-32 of the instruction address) are nonzero,
then an early specification exception is recognized.
However, the program-old PSW that is stored when
such a PSW becomes active has the short PSW for-
mat in which the invalid instruction-address bits are
not stored.

Interruption Code

The six classes of interruptions (external, I/O,
machine check, program, restart, and supervisor
call) are distinguished by the storage locations at
which the old PSW is stored and from which the new
PSW is fetched. For most classes, the causes are
further identified by an interruption code and, for
some classes, by additional information placed in
permanently assigned real storage locations during
the interruption. (See “Assigned Storage Locations”
on page 3-73.) For external, program, and supervi-

sor-call interruptions, the interruption code consists
of 16 bits.

For external interruptions, the interruption code is
stored at real locations 134-135. A parameter may be
stored at real locations 128-131, or a CPU address
may be stored at real locations 132-133.

For I/O interruptions, the I/O-interruption code is
stored at real locations 184-195. The I/O-interruption
code consists of a 32-bit subsystem-identification
word, a 32-bit interruption parameter, and a 32-bit
I/O-interruption identification word.

For machine-check interruptions, the interruption
code consists of 64 bits and is stored at real locations
232-239. Additional information for identifying the
cause of the interruption and for recovering the state
of the machine may be provided by the contents of
the machine-check failing-storage address and the
contents of the fixed-logout and machine-check-save
areas. (See Chapter 11, “Machine-Check Handling.”)

For supervisor-call interruptions, the interruption
code comprises eight binary zeros concatenated with
the 8-bit immediate operand of the SUPERVISOR
CALL instruction (as modified by an execute-type
instruction, if applicable). The interruption code is
stored at real locations 138-139, and the instruction-
length code is stored in bit positions 5 and 6 of real
location 137.

For program interruptions, the interruption code is
stored at real locations 142-143, and the instruction-
length code is stored in bit positions 5 and 6 of real
location 141. In the z/Architecture architectural
mode, further information may be provided in the

8 A transactional-execution aborted event indication always accompanies another program-interruption indication. The completed
indication refers only to the TBEGIN or TBEGINC instruction, as identified by the old PSW. The instruction identified by the aborted-
transaction instruction address in the TDB is either nullified, suppressed, or completed.

n A possible nonzero code indicating another concurrent program-interruption condition

p If one, the bit indicates a concurrent PER-event interruption condition.

s Bits of the I field of SUPERVISOR CALL.

t Transactional-execution-aborted event

u Not stored.

Source Identification Interruption Code

PSW-
Mask
Bits

Mask Bits
in Control
Registers ILC

Set

Execution of
Instruction
Identified

by Old PSWReg Bit

Figure 6-1. Interruption Action (Part 4 of 4)

6-6 The z/Architecture CPU Architecture

form of the data-exception code (DXC) or vector-
exception code (VXC), monitor-class number, PER
code, addressing-and-translation-mode identifica-
tion, PER address, exception access identification,
PER access identification, operand-access identifica-
tion, translation-exception identification, and monitor
code, which are stored at real locations 144-162 and
168-183. In the ESA/390-compatibility mode, the
DXC, translation-exception identification, monitor-
class number, PER code, addressing-and-transla-
tion-mode identification, PER address, monitor code,
exception access identification, and PER access
identification, may be stored at real locations 144-
161.

Enabling and Disabling

By means of mask bits in the current PSW, floating-
point-control (FPC) register, and control registers, the
CPU may be enabled or disabled for all external, I/O,
and machine-check interruptions and for some pro-
gram interruptions. When a mask bit is one, the CPU
is enabled for the corresponding class of interrup-
tions, and those interruptions can occur.

When a mask bit is zero, the CPU is disabled for the
corresponding interruptions. The conditions that
cause I/O interruptions remain pending. External-
interruption conditions either remain pending or per-
sist until the cause is removed. Machine-check-inter-
ruption conditions, depending on the type, are
ignored, remain pending, or cause the CPU to enter
the check-stop state. The disallowed program-inter-
ruption conditions are ignored, except that some
causes are indicated also by the setting of the condi-
tion code, and IEEE exceptions set flags in the FPC
register. The setting of the HFP-significance and
HFP-exponent-underflow program-mask bits affects
the manner in which HFP operations are completed
when the corresponding condition occurs. Similarly,
the setting of the IEEE mask bits in the FPC register
affects the manner in which IEEE computational
operations are completed when the corresponding
condition occurs.

Programming Notes:

1. Mask bits in the PSW provide a means of disal-
lowing most maskable interruptions; thus, subse-
quent interruptions can be disallowed by the new
PSW introduced by an interruption. Furthermore,
the mask bits can be used to establish a hierar-
chy of interruption priorities, where a condition in

one class can interrupt the program handling a
condition in another class but not vice versa. To
prevent an interruption-handling routine from
being interrupted before the necessary house-
keeping steps are performed, the new PSW must
disable the CPU for further interruptions within
the same class or within a class of lower priority.

2. Because the mask bits in control registers are
not changed as part of the interruption proce-
dure, these masks cannot be used to prevent an
interruption immediately after a previous inter-
ruption in the same class. The mask bits in con-
trol registers provide a means for selectively
enabling the CPU for some sources and dis-
abling it for others within the same class.

3. Controlling bits exist for several program interrup-
tions, but with no mask bit in the PSW. Such bits
include the IEEE mask bits in the FPC register,
the monitor masks in bit positions 48-63 of con-
trol register 8, the primary space-switch-event-
control bit in bit position 57 of control register 1,
and the home space-switch-event-control bit in
bit position 57 of control register 13. A bit of this
nature is somewhat arbitrarily considered to be a
“mask” bit only if the polarity is such that interrup-
tion is enabled when the bit is one.

Thus, for example, the SSM-suppression-control
bit, bit 33 of control register 0, is considered to be
a mask bit, while the AFP-register-control bit, bit
45 of control register 0, is not. Regardless of the
polarity of such control bits, to avoid another pro-
gram interruption, an interruption-handling rou-
tine must avoid issuing instructions subject to
these bits until they have been set appropriately.

In the z/Architecture architectural mode, the
enhanced-monitor masks in bit positions 16-31
of control register 8 are an exception to the
above definition of a mask in that they work in
conjunction with the monitor masks in bit posi-
tions 48-63 of control register 8. When both a
monitor mask bit and its corresponding
enhanced-monitor mask bit are one, a monitor-
event counting operation occurs rather than an
interruption.

Handling of Floating Interruption
Conditions

An interruption condition which can be presented to
any CPU in the configuration is called a floating inter-

Interruptions 6-7

ruption condition. The condition is presented to the
first CPU in the configuration which is enabled for the
corresponding interruption and which can perform
the interruption, and then the condition is cleared and
not presented to any other CPU in the configuration.
A CPU cannot perform the interruption when it is in
the check-stop state, has an invalid prefix, is in a
string of program interruptions due to a specification
exception of the type which is recognized early or is
in the stopped state. However, a CPU with the rate
control set to instruction step can perform the inter-
ruption when the start key is activated.

Service signal, I/O, and certain machine-check con-
ditions are floating interruption conditions. Addition-
ally, when the STP-floating-interrupt facility is
installed and STP timing-alert floating interruptions
are enabled, STP timing-alert external-interruption
conditions are floating interruption conditions.

Instruction-Length Code

The instruction-length code (ILC) occupies two bit
positions and provides the length of the last instruc-
tion executed. It permits identifying the instruction
causing the interruption when the instruction address
in the old PSW designates the next sequential
instruction. The ILC is provided also by the BRANCH
AND LINK instructions in the 24-bit addressing
mode.

The ILC for program and supervisor-call interruptions
is stored in bit positions 5 and 6 of the bytes at real
locations 141 and 137, respectively. For external, I/O,
machine-check, and restart interruptions, the ILC is
not stored since it cannot be related to the length of
the last-executed instruction.

For supervisor-call and program interruptions, a non-
zero ILC identifies in halfwords the length of the
instruction that was last executed. That instruction
may be one for which a specification exception was
recognized due to an odd instruction address or for
which an access exception (addressing, ASCE-type,
page-translation, protection, region-translation, seg-
ment-translation, or translation-specification) was
recognized during the fetching of the instruction.
Whenever an instruction is executed by means of
EXECUTE, instruction-length code 2 is set to indi-
cate the length of EXECUTE and not that of the tar-
get instruction. Similarly, when an instruction is
executed by means of EXECUTE RELATIVE LONG,
instruction length code 3 is set.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction. The
value does not depend on whether the operation
code is assigned or on whether the instruction is
installed. The following table summarizes the mean-
ing of the instruction-length code:

Except as noted below, when a transaction is aborted
due to a program interruption, the ILC stored in bit
positions 5-6 of real location 141 is respective to the
instruction identified by the aborted-transaction
instruction address (ATIA) in the program-interruption
TDB. Similarly, when a nonconstrained transaction is
aborted due to a program interruption, and the trans-
action-diagnostic-block address is valid, the ILC
stored in bit positions 5-6 of byte 37 in the TBEGIN-
specified-TDB is respective to the instruction identi-
fied by the ATIA in the TDB. However, when a trans-
action is aborted due to a program interruption and a
null TDB is stored, the ILC is unpredictable.

Programming Note: When a transaction is aborted
due to a program interruption, the ILC is not mean-
ingful with respect to the instruction address in the
program-old PSW. If a constrained transaction is
aborted due to a program interruption, the instruction
address in the program-old PSW points directly to
the TBEGINC instruction that initiated constrained
transactional execution. If a nonconstrained transac-
tion is aborted due to an unfiltered program interrup-
tion, the instruction address in the program-old PSW
points six bytes past the outermost TBEGIN instruc-
tion that initiated nonconstrained transactional execu-
tion. The program can determine whether a
constrained or nonconstrained transaction was
aborted by examining the constrained-transaction
indication in the program-interruption TDB (bit 1 of
the flags byte, stored at real location 6,145).

Zero ILC
Instruction-length code 0, after a program interrup-
tion (other than for an instruction-fetching nullification
event), indicates that the instruction address stored
in the old PSW does not identify the instruction caus-

ILC Instruction
Bits 0-1

Instruction Length
Decimal Binary

0 00 Not available

1 01 00 One halfword

2 10 01 Two halfwords

2 10 10 Two halfwords

3 11 11 Three halfwords

6-8 The z/Architecture CPU Architecture

ing the interruption. In the case of a program inter-
ruption due to an instruction-fetching nullification
event, the ILC is set to zero. The remainder of this
section discusses zero ILC due to cases other than
for instruction-fetching nullification events.

An ILC of 0 occurs when a specification exception
due to a PSW-format error is recognized as part of
early exception recognition and the PSW has been
introduced by LOAD PSW, LOAD PSW EXTENDED,
PROGRAM RETURN, or an interruption. (See
“Exceptions Associated with the PSW” on page 6-9.)
In the case of LOAD PSW, LOAD PSW EXTENDED,
or PROGRAM RETURN, the instruction address of
the instruction or of an execute-type instruction
(EXECUTE or EXECUTE RELATIVE LONG) has
been replaced by the instruction address in the new
PSW. When the invalid PSW is introduced by an
interruption, the PSW-format error cannot be
attributed to an instruction.

In the case of LOAD PSW, LOAD PSW EXTENDED,
PROGRAM RETURN, and the supervisor-call inter-
ruption, a PER event may be indicated concurrently
with a specification exception for which the ILC is 0.

In the case of a PROGRAM RETURN instruction that
causes both a space-switch event and a PSW-format
error, the space-switch event is recognized, but it is
unpredictable whether the ILC is 0 or 1, or 0 or 2 if
EXECUTE was used, or 0 or 3 if EXECUTE RELA-
TIVE LONG was used.

ILC on Instruction-Fetching Exceptions
When a program interruption occurs because of an
exception that prohibits access to the instruction, the
instruction is considered to have been executed with-
out being fetched, and the instruction-length code
cannot be set on the basis of the first two bits of the
instruction. As far as the significance of the ILC for
this case is concerned, the following two situations
are distinguished:

1. When an odd instruction address causes a spec-
ification exception to be recognized or when an
addressing, protection, or translation-specifica-
tion exception is encountered on fetching an
instruction, the ILC is set to 1, 2, or 3, indicating
the multiple of 2 by which the instruction address
has been incremented. It is unpredictable
whether the instruction address is incremented
by 2, 4, or 6. By reducing the instruction address
in the old PSW by the number of halfword loca-
tions indicated in the ILC, the instruction address

originally appearing in the PSW may be
obtained.

2. When an ASCE-type, region-translation, seg-
ment-translation, or page-translation exception is
recognized while fetching an instruction, the ILC
is arbitrarily set to 1, 2, or 3. In this case, the
operation is nullified, and the instruction address
is not incremented.

The ILC is not necessarily related to the first two bits
of the instruction when the first halfword of an
instruction can be fetched but an access exception is
recognized on fetching the second or third halfword.
The ILC may be arbitrarily set to 1, 2, or 3 in these
cases. The instruction address is or is not updated,
as described in situations 1 and 2 above.

When any exceptions or any PER events other than
an instruction-fetching-nullification event are encoun-
tered on fetching the target instruction of EXECUTE,
the ILC is 2. When any exceptions or any PER events
other than an instruction-fetching-nullification event
are encountered on fetching the target instruction of
EXECUTE RELATIVE LONG, the ILC is 3. When a
PER instruction-fetching-nullification event is
encountered on fetching the target of an execute-
type instruction, and no other exception is recog-
nized, the ILC is 0.

Programming Notes:

1. A nonzero instruction-length code for a program
interruption indicates the number of halfword
locations by which the instruction address in the
program old PSW must be reduced to obtain the
instruction address of the last instruction exe-
cuted, unless one of the following situations
exists:

a. The interruption is caused by an exception
resulting in nullification.

b. An interruption for a PER event occurs
before the execution of an interruptible
instruction is completed, and no other pro-
gram-interruption condition is indicated con-
currently.

c. The interruption is caused by a PER event or
space-switch event due to LOAD PSW,
LOAD PSW EXTENDED, or a branch or link-
age instruction, including SUPERVISOR
CALL (but not including MONITOR CALL).

Interruptions 6-9

d. The interruption is caused by an addressing
exception or protection exception for the stor-
age operand of a LOAD CONTROL instruc-
tion that loads the control register (1 or 13)
containing the address-space-control ele-
ment that specifies the address space from
which instructions are fetched.

For situations a and b above, the instruction
address in the PSW is not incremented, and the
instruction designated by the instruction address
is the same as the last one executed. These situ-
ations are the only ones in which the instruction
address in the old PSW identifies the instruction
causing the exception. Situation b can be distin-
guished from a PER event indicated after com-
pletion of an interruptible or noninterruptible
instruction in that, for situation b, the instruction
address in the PSW is the same as the PER
address at real location 152.

For situation c, the instruction address has been
replaced as part of the operation, and the
address of the last instruction executed cannot
be calculated using the one appearing in the pro-
gram old PSW.

For situation d, the effective address of the last
instruction executed can be calculated, but, since
the address-space-control element for the
instruction address space is unpredictable, the
corresponding real address is unknown.

2. The instruction-length code (ILC) is redundant
when a PER event is indicated since the PER
address in the doubleword at real location 152
identifies the instruction causing the interruption
(or the execute-type instruction, as appropriate).
Similarly, the ILC is may be unpredictable when
the operation is nullified; in this case the instruc-
tion address in the PSW is not incremented. If
the ILC value is required in this case, it can be
derived from the operation code of the instruction
identified by the old PSW.

3. The address of the last instruction executed
before a program interruption is insufficient to
locate the program problem if one of the following
situations exists:

a. The interruption is caused by an access
exception encountered in fetching an instruc-
tion, and the instruction address was intro-
duced into the PSW by a means other than
sequential operation (by a branch or linkage
instruction, LOAD PSW, LOAD PSW

EXTENDED, an interruption, or conclusion of
an IPL sequence).

b. The interruption is caused by a specification
exception due to an odd instruction address,
which necessarily also results from introduc-
tion of an instruction address into the PSW.

c. The interruption is caused by an early speci-
fication exception due to a STORE THEN
OR SYSTEM MASK or SET SYSTEM MASK
instruction that switches to or from the real
mode while introducing invalid values in bit
positions 0-7 of the PSW.

For situations a and b, the instruction address
was replaced by the operation preceding the last
instruction execution, and the address of the pro-
gram location related to that preceding operation
is unavailable.

For situation c, the address of the last instruction
executed is available, but the corresponding real
address is unknown.

4. The address of the last instruction executed is
not available when an interruption is caused by
an early specification exception due to a LOAD
PSW, LOAD PSW EXTENDED, or PROGRAM
RETURN instruction or an interruption.

Exceptions Associated with the
PSW

Exceptions associated with erroneous information in
the current PSW may be recognized as follows:

• When the information is introduced into the PSW
(called early exception recognition)

• As part of the execution of the next instruction
(called late exception recognition)

Errors in the PSW which are specification-exception
conditions are called PSW-format errors.

Early Exception Recognition
For the following error conditions, a program interrup-
tion for a specification exception occurs immediately
after the PSW becomes active:

• Any of the unassigned bits (0, 2-4, 25-30, or
33-63) is a one.

• Bit 12 is a one.

6-10 The z/Architecture CPU Architecture

• Bit 24 is one (recognition of this condition is
optional)

• Bits 31 and 32 are zero and one, respectively,
and bits 64-96 are not all zeros.

• Bits 31 and 32 are both zero, and bits 64-103 are
not all zeros.

• Bits 31 and 32 are one and zero, respectively.

Programming Note: Bit 12 of an 8-byte short-format
PSW in storage is inverted when the 16-byte current
PSW is loaded from the following locations:

• An assigned storage location in the ESA/390-
compatibility mode.

• The second operand of LOAD PSW (in the
z/Architecture architecture mode and in the
ESA/390-compatibility mode).

• The second operand of RESUME PROGRAM
when the P bit in the parameter list is zero (in the
z/Architecture architecture mode and in the
ESA/390-compatibility mode).

The interruption occurs regardless of whether the
wait state is specified. If the invalid PSW causes the
CPU to become enabled for a pending I/O, external,
or machine-check interruption, the program interrup-
tion occurs instead, and the pending interruption is
subject to the mask bits of the new PSW introduced
by the program interruption.

When an interruption or the execution of LOAD PSW,
LOAD PSW EXTENDED, or PROGRAM RETURN
introduces a PSW with one of the above error condi-
tions, the instruction-length code is set to 0, and the
newly introduced PSW is stored unmodified as the
old PSW. Except as noted below, when one of the
above error conditions is introduced by execution of
SET SYSTEM MASK or STORE THEN OR SYSTEM
MASK, the instruction-length code is set to 2, and the
instruction address is incremented by 4. When one of
the above error conditions is introduced by execution
of SET SYSTEM MASK or STORE THEN OR SYS-
TEM MASK that is the target of EXECUTE RELA-
TIVE LONG, the instruction-length code is set to 3,
and the instruction address is incremented by 6. The
PSW containing the invalid value introduced into the
system-mask field is stored as the old PSW.

Late Exception Recognition
For the following conditions, the exception is recog-
nized as part of the execution of the next instruction:

• A specification exception is recognized due to an
odd instruction address in the PSW (PSW bit 127
is one).

• An access exception (addressing, ASCE-type,
page-translation, protection, region-translation,
segment-translation, or translation-specification)
is associated with the location designated by the
instruction address or with the location of the
second or third halfword of the instruction start-
ing at the designated instruction address.

The instruction-length code and instruction address
stored in the program old PSW under these condi-
tions are discussed in “ILC on Instruction-Fetching
Exceptions” on page 6-8, and an example is given in
Figure 4-11 on page 4-44.

If an I/O, external, or machine-check-interruption
condition is pending and the PSW causes the CPU to
be enabled for that condition, the corresponding
interruption occurs, and the PSW is not inspected for
exceptions which are recognized late. Similarly, a
PSW specifying the wait state is not inspected for
exceptions which are recognized late.

Programming Notes:

1. The execution of BRANCH AND SET AUTHOR-
ITY, LOAD ADDRESS SPACE PARAMETERS,
LOAD PSW, LOAD PSW EXTENDED, PRO-
GRAM CALL, PROGRAM RETURN, PROGRAM
TRANSFER, PROGRAM TRANSFER WITH
INSTANCE, RESUME PROGRAM, SET PRE-
FIX, SET SECONDARY ASN, SET SECOND-
ARY ASN WITH INSTANCE, SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK is sup-
pressed on an addressing or protection excep-
tion, and hence the program old PSW provides
information concerning the program causing the
exception.

2. When the first halfword of an instruction can be
fetched but an access exception is recognized on
fetching the second or third halfword, the ILC is
not necessarily related to the operation code.

3. If the new PSW introduced by an interruption
contains a PSW-format error, a string of interrup-
tions may occur. (See “Priority of Interruptions”
on page 6-57.)

Interruptions 6-11

External Interruption

The external interruption provides a means by which
the CPU responds to various signals originating from
either inside or outside the configuration.

In the z/Architecture architectural mode, an external
interruption causes the old PSW to be stored at real
locations 304-319 and a new PSW to be fetched from
real locations 432-447. In the ESA/390-compatibility
mode, an external interruption causes the short-for-
mat old PSW to be stored at real locations 24-31 and
a short-format new PSW to be fetched from real loca-
tions 88-95.

The source of the interruption is identified in the inter-
ruption code which is stored at real locations
134-135. The instruction-length code is not stored.

Additionally, for the malfunction-alert, emergency-
signal, and external-call conditions, a 16-bit CPU
address is associated with the source of the interrup-
tion and is stored at real locations 132-133. When
the CPU address is stored, bit 6 of the interruption
code is set to one. For all other conditions, no CPU
address is stored, bit 6 of the interruption code is set
to zero, and zeros are stored at real locations
132-133.

For the timing-alert, measurement-alert, and service-
signal interruptions, a 32-bit parameter is associated
with the interruption and is stored at real locations
128-131. Bit 5 of the external-interruption code indi-
cates that a parameter has been stored. When bit 5
is zero, the contents of real locations 128-131 remain
unchanged.

External-interruption conditions are presented as one
of three types of interruption requests: pendable,
direct-condition, and floating as described below:

• A pendable interruption request is preserved and
remains pending in each CPU until it is honored
at the CPU. The pendable interruption condition
is cleared when the interruption occurs.

• A direct-condition interruption request is pending
only during the time that the condition exists. If
the condition is removed before the request is
honored, then no interruption occurs. If the con-
dition persists, then more than one interruption

may result from a single occurrence of the condi-
tion.

• A floating interruption request is held pending
external to the CPU. The interruption can be
accepted by any CPU in the configuration. The
information associated with the interruption is not
transferred to a particular CPU until the interrup-
tion occurs. The floating interruption condition is
cleared when the interruption is accepted at any
CPU in the configuration.

The clock comparator and CPU timer external-inter-
ruption conditions result in direct-condition interrup-
tion requests. The interrupt-key, malfunction-alert,
warning-track, emergency-signal, and external-call
external-interruption conditions result in pendable
interruption requests. The service-signal external-
interruption condition results in a floating interruption
request. The timing-alert external-interruption condi-
tion results in either a floating interruption request or
a pendable interruption request. See the individual
description of each of the external-interruption condi-
tions for additional details.

When several interruption requests for a single
source are generated before the interruption occurs,
and the interruption condition is a pendable or float-
ing interruption request, only one request for that
source is preserved and remains pending.

An external interruption for a particular source can
occur only when the CPU is enabled for interruption
by that source. The external interruption occurs at
the completion of a unit of operation. The external
mask, PSW bit 7, and external subclass-mask bits in
control register 0 control whether the CPU is enabled
for a particular source. Each source for an external
interruption has a subclass-mask bit assigned to it,
and the source can cause an interruption only when
the external-mask bit is one and the corresponding
subclass-mask bit is one.

When the CPU becomes enabled for a pendable or
floating external-interruption condition, the interrup-
tion occurs at the completion of the instruction execu-
tion or interruption that causes the enabling.

More than one source may present a request for an
external interruption at the same time. When the
CPU becomes enabled for more than one concur-
rently pending request, the interruption occurs for the
pending condition or conditions having the highest
priority.

6-12 The z/Architecture CPU Architecture

The priorities for external-interruption requests in
descending order are as follows:

• Interrupt key
• Malfunction alert
• Emergency signal
• External call
• Clock comparator
• CPU timer
• Timing alert
• Warning track
• Service signal or measurement alert

All requests are honored one at a time. When more
than one emergency-signal request exists at a time
or when more than one malfunction-alert request
exists at a time, the request associated with the
smallest CPU address is honored first.

Clock Comparator

When the TOD-clock-steering facility is not installed,
an interruption request for the clock comparator
exists whenever either of the following conditions is
met:

1. The TOD clock is in the set or not-set state, and
the value of the clock comparator is less than the
value in the compared portion of the TOD clock,
both compare values being considered unsigned
binary integers.

2. The TOD clock is in the error or not-operational
state.

When the TOD-clock-steering facility is installed, an
interruption request for the clock comparator exists
whenever the physical clock is in the set state and
the value of the clock comparator is less than the
value in the compared portion of the logical TOD
clock, both compare values being considered
unsigned binary integers.

When the TOD-clock-steering facility is installed and
a CPU remains in the wait state for a long period of
time, clock-comparator interruptions may be propor-
tionally late by the maximum steering rate.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption occurs.
Conversely, the request is not cleared by the inter-
ruption, and, if the condition persists, more than one

interruption may result from a single occurrence of
the condition.

When the TOD-clock-steering facility is not installed,
and the TOD clock is set or changes state, interrup-
tion conditions, if any, that are due to the clock com-
parator may or may not be recognized for up to
1.048576 seconds after the change.

When the TOD-clock-steering facility is installed and
the physical clock is set or changes state, or the logi-
cal TOD clock is changed by PTFF-ATO or PTFF-
STO, the CPUs in the configuration do not necessar-
ily recognize this change for purposes of clock com-
parator interruptions until one of the following
instructions is issued: SET CLOCK COMPARATOR
(SCKC), STORE CLOCK (STCK), or STORE
CLOCK EXTENDED (STCKE). If a CPU is in the wait
state when this change occurs, it may not recognize
the change until it leaves the wait state and one of
the aforementioned instructions is executed.

The subclass-mask bit is in bit position 52 of control
register 0. This bit is initialized to zero.

The clock-comparator condition is indicated by an
external-interruption code of 1004 hex.

CPU Timer

An interruption request for the CPU timer exists
whenever the CPU-timer value is negative (bit 0 of
the CPU timer is one). If the value is made positive
before the request is honored, the request does not
remain pending, and no interruption occurs. Con-
versely, the request is not cleared by the interruption,
and, if the condition persists, more than one interrup-
tion may occur from a single occurrence of the condi-
tion.

When the TOD-clock-steering facility is not installed,
and the TOD clock is set or changes state, interrup-
tion conditions, if any, that are due to the CPU timer
may or may not be recognized for up to 1.048576
seconds after the change.

When the TOD-clock-steering facility is installed,
CPU timer interruptions may or may not be recog-
nized while the physical clock is in the stopped state.
After the physical clock enters the set state, interrup-
tion conditions for the CPU timer are not necessarily
recognized until SET CPU TIMER (SPT) is issued.

Interruptions 6-13

CPU timer interruptions are not affected by changes
to the logical TOD clock.

The subclass-mask bit is in bit position 53 of control
register 0. This bit is initialized to zero.

The CPU-timer condition is indicated by an external-
interruption code of 1005 hex.

Emergency Signal

An interruption request for an emergency signal is
generated when the CPU accepts the emergency-
signal order specified by a SIGNAL PROCESSOR
instruction addressing this CPU. The instruction may
have been executed by this CPU or by another CPU
in the configuration. The request is preserved and
remains pending in the receiving CPU until it is
cleared. The pending request is cleared when it
causes an interruption and by CPU reset.

Facilities are provided for holding a separate emer-
gency-signal request pending in the receiving CPU
for each CPU in the configuration, including the
receiving CPU itself.

The subclass-mask bit is in bit position 49 of control
register 0. This bit is initialized to zero.

The emergency-signal condition is indicated by an
external-interruption code of 1201 hex. The address
of the CPU that executed the SIGNAL PROCESSOR
instruction is stored at real locations 132-133.

External Call

An interruption request for an external call is gener-
ated when the CPU accepts the external-call order
specified by a SIGNAL PROCESSOR instruction
addressing this CPU. The instruction may have been
executed by this CPU or by another CPU in the con-
figuration. The request is preserved and remains
pending in the receiving CPU until it is cleared. The
pending request is cleared when it causes an inter-
ruption and by CPU reset.

Only one external-call request, along with the pro-
cessor address, may be held pending in a CPU at a
time.

The subclass-mask bit is in bit position 50 of control
register 0. This bit is initialized to zero.

The external-call condition is indicated by an exter-
nal-interruption code of 1202 hex. The address of the
CPU that executed the SIGNAL PROCESSOR
instruction is stored at real locations 132-133.

Interrupt Key

An interruption request for the interrupt key is gener-
ated when the operator activates that key. The
request is preserved and remains pending in the
CPU until it is cleared. The pending request is
cleared when it causes an interruption and by CPU
reset.

When the interrupt key is activated while the CPU is
in the load state, it depends on the model whether an
interruption request is generated or the condition is
lost.

The subclass-mask bit is in bit position 57 of control
register 0. This bit is initialized to one.

The interrupt-key condition is indicated by an exter-
nal-interruption code of 0040 hex.

Malfunction Alert

An interruption request for a malfunction alert is gen-
erated when another CPU in the configuration enters
the check-stop state or loses power. The request is
preserved and remains pending in the receiving CPU
until it is cleared. The pending request is cleared
when it causes an interruption and by CPU reset.

Facilities are provided for holding a separate mal-
function-alert request pending in the receiving CPU
for each of the other CPUs in the configuration.
Removal of a CPU from the configuration does not
generate a malfunction-alert condition.

The subclass-mask bit is in bit position 48 of control
register 0. This bit is initialized to zero.

The malfunction-alert condition is indicated by an
external-interruption code of 1200 hex. The address
of the CPU that generated the condition is stored at
real locations 132-133.

6-14 The z/Architecture CPU Architecture

Measurement Alert

The measurement-alert external interruption is
described in the publication The Load-Program-
Parameter and CPU-Measurement Facilities (SA23-
2260).

The measurement-alert subclass-mask bit is in bit
position 58 of control register 0. This bit is initialized
to one, which enables the interruption.

The measurement-alert condition is indicated by an
external interruption code of 1407 hex. The interrup-
tion parameter stored at real locations 128-131 indi-
cate the cause or causes for the interruption.

Service Signal

An interruption request for a service signal is gener-
ated upon the completion of certain configuration-
control and maintenance functions, such as those ini-
tiated by means of the model-dependent DIAGNOSE
instruction. A 32-bit parameter is provided with the
interruption to assist the program in determining the
operation for which the interruption is reported.

Service signal is a floating interruption condition and
is presented to the first CPU in the configuration
which can perform the interruption. The interruption
condition is cleared when it causes an interruption in
any one of the CPUs and also by subsystem reset.

The subclass-mask bit is in bit position 54 of control
register 0. This bit is initialized to zero.

The service-signal condition is indicated by an exter-
nal-interruption code of 2401 hex. A 32-bit parameter
is stored at real locations 128-131.

Timing Alert

An interruption request for a timing alert is generated
when an ETR-timing-alert or STP-timing-alert condi-
tion is detected.

If the same timing-alert condition occurs more than
once before the interruption occurs, the request is
generated only once.

When the STP-floating-interrupt facility is not
installed or is not enabled for STP timing-alert float-
ing interruptions, the timing-alert condition causes a

pendable interruption request to be generated for
each CPU in the configuration and to remain pending
at each CPU until it is cleared. The pending request
is cleared when it causes an interruption at the CPU
and by CPU reset.

When the STP-floating-interrupt facility is installed
and is enabled for STP timing-alert floating interrup-
tions, an STP timing-alert condition causes a floating
interruption request to be generated.

The subclass-mask bit is in bit position 59 of control
register 0. This bit is initialized to zero.

The timing-alert condition is indicated by an external
interruption code of 1406 hex. The interruption
parameter stored at real locations 128-131 indicate
the reason or reasons for the signal.

ETR-Timing-Alert Condition
An ETR-timing-alert condition is detected when a
port-availability change occurs at any port in the cur-
rent CPC-port group or when an ETR alert occurs.
The terms specific to the ETR are not defined in this
publication.

STP-Timing-Alert Condition
An STP-timing-alert condition is detected when any
of the following occur:

Timing Status Change: A timing-status-change
condition is detected when a timing-status change
has occurred for the configuration. Timing status for a
configuration includes the timing mode, timing state,
the STP-clock-source state, and certain external time
source conditions.

A timing-state change from the synchronized state to
the unsynchronized or stopped state is reported as
an ETR- or STP-sync-check machine-check condi-
tion rather than a timing-alert external interruption
condition.

An STP-clock-source-state change from the usable
state to the not-usable is reported as a clock-source-
error machine-check condition rather than a timing-
alert external interruption condition.

Link Availability Change: A link-availability-
change condition is detected when the availability of
an STP link has changed. The condition is detected
whenever an STP link state that was unavailable
becomes available for STP communication, or when

Interruptions 6-15

a link that was available becomes unavailable for
STP communication.

A timing-alert condition is not generated by a link-
availability-change condition if a CTN configuration-
change machine check condition is detected concur-
rently with the link-availability change.

Time Control Parameter Change: The time con-
trol-parameter-change condition is detected when
any of the time-control parameters change for the
configuration, including when a time-control-parame-
ter change is scheduled. Time-control parameters for
a configuration include the following:

• Total-time offset (the combination of time-zone
offset and DST offset)

• Leap seconds offset
• Time-zone offset
• Daylight-savings-time (DST) offset
• Scheduled changes to any of the above

A 32-bit parameter is associated with the interruption
and is stored at real locations 128-131. The field is
defined as shown below:

Multiple alert conditions may be indicated concur-
rently in the external-interruption parameter field.

Warning Track

An interruption request for a warning-track event may
be generated to inform the control program it is near-
ing the end of the current execution interval on a
shared CPU. The interruption request is a pending-
condition type which may be generated when the
configuration is registered and is enabled for warn-
ing-track interruptions.

When the configuration is enabled for multithreading,
a warning-track interruption may be made pending
for each CPU of a core.

The subclass-mask bit is in bit position 30 of control
register 0. This bit is initialized to zero.

The warning-track condition is indicated by an exter-
nal-interruption code of 1007 hex.

I/O Interruption

The input/output (I/O) interruption provides a means
by which the CPU responds to conditions originating
in I/O devices and the channel subsystem.

A request for an I/O interruption may occur at any
time, and more than one request may occur at the
same time. The requests are preserved and remain
pending until accepted by a CPU, or until cleared by
some other means, such as subsystem reset.

The I/O interruption occurs at the completion of a unit
of operation. Priority is established among requests
so that in each CPU only one interruption request is
processed at a time. Priority among requests for
interruptions of differing I/O-interruption subclasses
is according to the numerical value of the I/O-inter-
ruption subclass (with zero having the highest prior-
ity), in conjunction with the I/O-interruption subclass-
mask settings in control register 6. For more details,
see “I/O Interruptions” on page 16-1.

When a CPU becomes enabled for I/O interruptions
and the channel subsystem has established priority
for a pending I/O-interruption condition, the interrup-
tion occurs at the completion of the instruction execu-
tion or interruption that causes the enabling.

In the z/Architecture architectural mode, an I/O inter-
ruption causes the old PSW to be stored at real loca-
tions 368-383 and a new PSW to be fetched from
real locations 496-511. In the ESA/390-compatibility
mode, an I/O interruption causes the short-format old
PSW to be stored at real locations 56-63 and a short-
format new PSW to be fetched from real locations
120-127.

Additional information, in the form of a twelve-byte
I/O-interruption code, is stored at real locations
184-195. The I/O-interruption code consists of a
32-bit subsystem-identification word, a 32-bit inter-
ruption parameter, and a 32-bit I/O-interruption iden-
tification word.

Bit Meaning

0-13 Reserved

14 Timing-status change

15 Link-availability change

16 Time-control-parameter change

17-31 Reserved

6-16 The z/Architecture CPU Architecture

An I/O interruption can occur only while a CPU is
enabled for the interruption subclass presenting the
request. The I/O-mask bit, bit 6 of the PSW, and the
I/O-interruption subclass mask in control register 6
determine whether the CPU is enabled for a particu-
lar I/O interruption.

I/O interruptions are grouped into eight I/O-interrup-
tion subclasses, numbered from 0-7. Each I/O-inter-
ruption subclass has an associated I/O-interruption
subclass-mask bit in bit positions 32-39 of control
register 6. Each subchannel has an I/O-interruption
subclass value associated with it. The CPU is
enabled for I/O interruptions of a particular I/O-inter-
ruption subclass only when PSW bit 6 is one and the
associated I/O-interruption subclass-mask bit in con-
trol register 6 is also one. If the corresponding I/O-
interruption subclass-mask bit is zero, then the CPU
is disabled for I/O interruptions with that subclass
value. I/O interruptions for all subclasses are disal-
lowed when PSW bit 6 is zero.

Machine-Check Interruption

The machine-check interruption is a means for
reporting to the program the occurrence of equip-
ment malfunctions. Information is provided to assist
the program in determining the source of the fault
and extent of the damage.

In the z/Architecture architectural mode, a machine-
check interruption causes the old PSW to be stored
at real locations 352-367 and a new PSW to be
fetched from real locations 480-495. In the ESA/390-
compatibility mode, a machine-check interruption
causes the short-format old PSW to be stored at real
locations 48-55 and a short-format new PSW to be
fetched from real locations 112-119.

The cause and severity of the malfunction are identi-
fied by a 64-bit machine-check-interruption code
stored at real locations 232-239 and an indication of
the architectural mode to be stored at real location
163. In the z/Architecture architectural mode, further
information identifying the cause of the interruption
and the location of the fault may be stored at real
locations 244-255 and 4608-5119. In the ESA/390-
compatibility mode, further information identifying the
cause of the interruption and the location of the fault
may be stored at real locations 216-231, 244-251,
288-511, and in the machine-check extended save
area pointed to by real locations 212-215.

The interruption action and the storing of the associ-
ated information are under the control of PSW bit 13
and bits in control register 14. See Chapter 11,
“Machine-Check Handling” for more detailed informa-
tion.

Program Interruption

Program interruptions are used to report exceptions
and events which occur during execution of the pro-
gram.

In the z/Architecture architectural mode, a program
interruption causes the old PSW to be stored at real
locations 336-351 and a new PSW to be fetched from
real locations 464-479. In the ESA/390-compatibility
mode, a program interruption causes the short-for-
mat old PSW to be stored at real locations 40-47 and
a short-format new PSW to be fetched from real loca-
tions 104-111.

The cause of the interruption is identified by the inter-
ruption code. The interruption code is placed at real
locations 142-143, the instruction-length code is
placed in bit positions 5 and 6 of the byte at real loca-
tion 141 with the rest of the bits set to zeros, and
zeros are stored at real location 140. When a trans-
action is aborted due to a program interruption, the
instruction-length code is respective to the instruction
at which the exception condition was detected. For
some causes, additional information identifying the
reason for the interruption is stored at real locations
144-183.

If the PER-3 facility is installed, then, as part of the
program interruption action, the contents of the
breaking-event-address register are placed in real
storage locations 272-279.

Except for PER events and the crypto-operation
exception, the condition causing the interruption is
indicated by a coded value placed in the rightmost
seven bit positions of the interruption code. Only one
condition at a time can be indicated.

PER events are indicated by setting bit 8 of the inter-
ruption code to one. When this is the only condition,
bits 0-7 and 9-15 are also set to zeros. When a PER
event is indicated concurrently with another program-
interruption condition, bit 8 is one, and bits 0-7 and
9-15 are set as for the other condition.

Interruptions 6-17

The crypto-operation exception is indicated by an
interruption code of 0119 hex, (or 0199, 0319, or
0399 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

When a program interruption is recognized during
transactional execution, bit 6 of the interruption code
is set to one. Bits 0-5 of the interruption code are set
to zero.

When there is a corresponding mask bit, a program
interruption can occur only when that mask bit is one.
The program mask in the PSW controls four of the
exceptions, the IEEE masks in the FPC register con-
trol the IEEE exceptions, bit 33 in control register 0
controls whether SET SYSTEM MASK causes a spe-
cial-operation exception, bits 48-63 in control register
8 control interruptions due to monitor events, and a
hierarchy of masks control interruptions due to PER
events. When any controlling mask bit is zero, the
condition is ignored; the condition does not remain
pending.

Programming Notes:

1. When the new PSW for a program interruption
has a PSW-format error or causes an exception
to be recognized in the process of instruction
fetching, a string of program interruptions may
occur. See “Priority of Interruptions” on
page 6-57 for a description of how such strings
are terminated.

2. Some of the conditions indicated as program
exceptions may be recognized also by the chan-
nel subsystem, in which case the exception is
indicated in the subchannel-status word or
extended-status word.

Data-Exception Code (DXC)

When a data exception causes a program interrup-
tion, a data-exception code (DXC) is stored at loca-
tion 147, and zeros are stored at locations 144-146.
The DXC distinguishes between the various types of
data-exception conditions. When the AFP-register
(additional floating-point register) control bit, bit 45 of
control register 0, is one, the DXC is also placed in
the DXC field of the floating-point-control (FPC) reg-
ister. The DXC field in the FPC register remains
unchanged when any other program exception is
reported. The DXC is an 8-bit code indicating the

specific cause of a data exception. The data excep-
tions and data-exception codes are shown in
Figure 6-2 and Figure 6-3 on page 6-18.

Priority of Program Interruptions for Data
Exceptions

DXC 2 and 3 are mutually exclusive and are of higher
priority than any other DXC. Thus, for example, DXC
2 (BFP instruction) takes precedence over any IEEE
exception; and DXC 3 (DFP instruction) takes prece-
dence over any IEEE exception or simulated IEEE
exception. As another example, if the conditions for
both DXC 3 (DFP instruction) and DXC 1 (AFP regis-
ter) exist, DXC 3 is reported.

When both a specification exception and an AFP-
register data exception or a vector-instruction data
exception apply, it is unpredictable which one is
reported.

DXC
(Hex) Data Exception

00 General operand

01 AFP register

02 BFP instruction

03 DFP instruction

04 Quantum Exception

07 Simulated Quantum Exception

08 IEEE inexact and truncated

0B Simulated IEEE inexact

0C IEEE inexact and incremented

10 IEEE underflow, exact

13 Simulated IEEE underflow, exact

18 IEEE underflow, inexact and truncated

1B Simulated IEEE underflow, inexact

1C IEEE underflow, inexact and incremented

20 IEEE overflow, exact

23 Simulated IEEE overflow, exact

28 IEEE overflow, inexact and truncated

2B Simulated IEEE overflow, inexact

2C IEEE overflow, inexact and incremented

40 IEEE division by zero

43 Simulated IEEE division by zero

80 IEEE invalid operation

83 Simulated IEEE invalid operation

Figure 6-2. Data-exception codes (DXC)

6-18 The z/Architecture CPU Architecture

FE Vector instruction

FF Compare-and-trap instruction

DXC
(Hex) Data Exception

Figure 6-2. Data-exception codes (DXC) (Continued)

Exception

Applicable
Instruction

Types CR0.45
FPC
Mask

FPC
Flag

DXC
(Binary)

Instruction
Action

DXC
Placed in

Real
Loc. 147

DXC
Placed in

FPC
Byte 2

General operand Various1 0 none none 0000 0000 Suppress or
Terminate

Yes No

1 Yes Yes

AFP register FPS & HFP 0* none none 0000 0001 Suppress Yes No

BFP instruction BFP 0* none none 0000 0010 Suppress Yes No

DFP instruction DFP 0* none none 0000 0011 Suppress Yes No

IEEE invalid operation ICMP 1* 0.0 1.0 1000 0000 Suppress2 Yes Yes

IEEE division by zero ICMP 1* 0.1 1.1 0100 0000 Suppress2 Yes Yes

IEEE overflow ICMP 1* 0.2 1.2 0010 xy00 Complete Yes Yes

IEEE underflow ICMP 1* 0.3 1.3 0001 xy00 Complete Yes Yes

IEEE inexact ICMP 1* 0.4 1.4 0000 1y00 Complete Yes Yes

Quantum Exception ICMP 1* 0.5 1.5 0000 0100 Complete Yes Yes

Simulated IEEE invalid operation IXS 1* 0.0 1.0 1000 0011 Complete Yes Yes

Simulated IEEE division by zero IXS 1* 0.1 1.1 0100 0011 Complete Yes Yes

Simulated IEEE overflow IXS 1* 0.2 1.2 0010 w011 Complete Yes Yes

Simulated IEEE underflow IXS 1* 0.3 1.3 0001 w011 Complete Yes Yes

Simulated IEEE inexact IXS 1* 0.4 1.4 0000 1011 Complete Yes Yes

Simulated Quantum Exception IXS 1* 0.5 1.5 0000 0111 Complete Yes Yes

Vector instruction VEC 0† none none 1111 1110 Suppress Yes Unp

1‡ Yes Yes

Figure 6-3. Data Exceptions

Interruptions 6-19

Programming Note: The data-exception code
(DXC) in bits 16-23 of the floating-point control regis-
ter (FPCR) is primarily intended for use by floating-
point applications that rely on the enablement of the
AFP-register control, bit 45 of control register 0.
When a data-exception program interruption occurs
as a result of the execution of a compare-and-trap or
a load-and-trap facility instruction (DXC 255), the
DXC in the FPCR may contain an unpredictable
value under the following conditions.

• For a control program, an instruction examining
the FPCR (for example, EXTRACT FPC) is the
first instruction that is subject to the AFP control
to be executed since the last initial-CPU reset.

• For a task running under a control program such
as z/OS, an instruction examining the FPCR is

the first instruction that is subject to the AFP con-
trol to be executed by the task.

This unpredictability is the result of the control pro-
gram or task being dispatched with the AFP control
initially set to zero, and only applies to DXC 255 in
the FPCR. Subsequent inspections of the DXC in the
FPCR will yield predictable values.

If the program always needs to observe a predictable
compare-and-trap DXC value in the FPCR, it should
first issue any instruction that is subject to the AFP
control (for example EXTRACT FPC) before issuing
an instruction that causes the data-exception pro-
gram interruption for the compare-and-trap condition.
Alternatively, the program can inspect the DXC
stored in real location 147, as copied into a control-
program-supplied diagnostic work area; the DXC
stored at location 147 is predictable in all cases.

Compare-and-trap instruction CT & LT 0 none none 1111 1111 Complete Yes No

1 Yes Yes

Explanation:
1 General-operand data exception applies to the decimal instructions (Chapter 8), the general instructions

COMPRESSION CALL, CONVERT TO BINARY, and PERFORM RANDOM NUMBER OPERATION (Chapter
7), and the DFP instructions CONVERT FROM PACKED, CONVERT FROM SIGNED PACKED, CONVERT
FROM UNSIGNED PACKED, and CONVERT FROM ZONED (Chapter 20).

2 When the FPC mask bit corresponding to the exception condition is one, the DXC is stored in the FPC register,
even though the resulting data-exception program interruption is considered to be suppressing.

0* This exception is recognized only when CR0.45 is zero.
1* This exception is recognized only when CR0.45 is one.
0† This exception may be recognized if CR0.46 is zero or one
1‡ This exception is recognized only when CR0.46 is zero.
w For simulated IEEE overflow and simulated IEEE underflow, bit 4 of the DXC is set to bit 4 of the signaling flags

in the FPC register.
xy For IEEE overflow and IEEE underflow, bits 4 and 5 of the DXC are set to 00, 10, or 11 binary, indicating that the

result is exact, inexact and truncated, or inexact and incremented, respectively.
y For IEEE inexact, bit 5 of the DXC is set to zero or one, indicating that the result is inexact and truncated or

inexact and incremented, respectively.
BFP Binary-floating-point instructions (Chapter 19).
CT COMPARE AND TRAP, COMPARE IMMEDIATE AND TRAP, COMPARE LOGICAL AND TRAP, or COMPARE

LOGICAL IMMEDIATE AND TRAP instructions.
DFP Decimal-floating-point instructions (Chapter 20).
FPS Floating-point-support instructions (Chapter 9).
HFP Hexadecimal-floating-point instructions (Chapter 18).
ICMP IEEE computational instructions.
IXS IEEE-exception-simulation instructions (LOAD FPC AND SIGNAL and SET FPC AND SIGNAL).
LT Load-and-trap facility instructions.
UNP Unpredictable if FPC byte 2 is updated if CR0.46 is one. Otherwise, FPC Byte 2 is not updated.
VEC Vector instructions (Chapters 21, 22, 23, 24, and 25).

Exception

Applicable
Instruction

Types CR0.45
FPC
Mask

FPC
Flag

DXC
(Binary)

Instruction
Action

DXC
Placed in

Real
Loc. 147

DXC
Placed in

FPC
Byte 2

Figure 6-3. Data Exceptions (Continued)

6-20 The z/Architecture CPU Architecture

Vector-Exception Code

When a vector-processing exception causes a pro-
gram interruption, a vector-exception code (VXC) is
stored at location 147, and zeros are stored at loca-
tions 144-146. The VXC is also placed in the DXC
field of the floating-point-control (FPC) register if bit
45 of control register 0 is one. When bit 45 of control
register 0 is zero and bit 46 of control register 0 is
one, the DXC field of the FPC register and the con-
tents of storage at location 147 are unpredictable.
The VXC distinguishes between various types of vec-
tor floating point exceptions and which element
caused the exception.

The VXC has the following format:

Bits 0-3 of the VXC are the vector index (VIX). The
index in the VXC is always the index of the source
element that caused the trapping exception, except
for one special case in VECTOR LOAD LENGTH-
ENED (see the programming note on page 24-27). If
trapping vector-processing exception conditions exist
for multiple elements, the exception of the lowest-
indexed source element is recognized.

Bits 4-7 of the VXC are the vector interrupt code
(VIC). This field can have the following values:

0001 - IEEE invalid operation
0010 - IEEE division by zero
0011 - IEEE overflow
0100 - IEEE underflow
0101 - IEEE inexact

Program-Interruption Conditions

The following is a detailed description of each pro-
gram-interruption condition.

Addressing Exception
An addressing exception is recognized when the
CPU attempts to reference a main-storage location
that is not available in the configuration. A main-stor-
age location is not available in the configuration when
the location is not installed, when the storage unit is
not in the configuration,or when power is off in the
storage unit. An address designating a storage loca-

tion that is not available in the configuration is
referred to as invalid.

The operation is suppressed when the address of the
instruction is invalid. Similarly, the operation is sup-
pressed when the address of the target instruction of
an execute-type instruction (EXECUTE or EXECUTE
RELATIVE LONG) is invalid. Also, the unit of opera-
tion is suppressed when an addressing exception is
encountered in accessing a table or table entry. The
tables and table entries to which the rule applies are
the dispatchable-unit-control table, the primary ASN-
second-table entry, and entries in the access list,
region first table, region second table, region third
table, segment table, page table, linkage table, link-
age-first table, linkage-second table, entry table, ASN
first table, ASN second table, authority table, linkage
stack, and trace table. Addressing exceptions result
in suppression when they are encountered for refer-
ences to the region first table, region second table,
region third table, segment table, and page table, in
both implicit references for dynamic address transla-
tion and references associated with the execution of
LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS, STORE REAL ADDRESS, and
TEST PROTECTION. Similarly, addressing excep-
tions for accesses to the dispatchable-unit-control
table, primary ASN-second-table entry, access list,
ASN second table, or authority table result in sup-
pression when they are encountered in access-regis-
ter translation done either implicitly or as part of
LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS, STORE REAL ADDRESS, TEST
ACCESS, or TEST PROTECTION.

Except for some specific instructions whose execu-
tion is suppressed, the operation is terminated for an
operand address that can be translated but desig-
nates an unavailable location. See Figure 6-4 on
page 6-21.

For termination, changes may occur only to result
fields. In this context, the term “result field” includes
the condition code, registers, and any storage loca-
tions that are provided and that are designated to be
changed by the instruction. Therefore, if an instruc-
tion is due to change only the contents of a field in
storage, and every byte of the field is in a location
that is not available in the configuration, the operation
is suppressed. When part of an operand location is
available in the configuration and part is not, storing
may be performed in the part that is available in the
configuration.

VIX VIC
0 3 4 7

Interruptions 6-21

When an addressing exception occurs during the
fetching of an instruction or during the fetching of a
DAT table entry associated with an instruction fetch, it
is unpredictable whether the ILC is 1, 2, or 3. When
the exception is associated with fetching the target of
EXECUTE, the ILC is 2. When the exception is asso-
ciated with fetching the target of EXECUTE RELA-
TIVE LONG, the ILC is 3.

In all cases of addressing exceptions not associated
with instruction fetching, the ILC is 1, 2, or 3, indicat-
ing the length of the instruction that caused the refer-
ence.

An addressing exception is indicated by a program-
interruption code of 0005 hex (or 0085, 0205, or
0285 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Exception

Action on

Table-Entry
Fetch1

Table-Entry
Store2

Instruction
Fetch Operand Reference

Addressing exception Suppress Suppress Suppress Suppress for IPTE, LASP, LPSW, LPSWE, MSCH, PLO6,
RP, SCKC, SPT, SPX, SSCH, SSM, STCRW, STNSM,
STOSM, TPI, and TPROT.
Terminate for all others.4

Protection exception for
key-controlled
protection

— — Suppress Suppress for IPTE, LASP, LPSW, LPSWE, MSCH, PLO6,
RP, SCKC, SPT, SPX, SSCH, SSM, STCRW, STNSM,
STOSM, and TPI5
Terminate for all others.4

Protection exception for
access-list-controlled
protection

— — — Suppress

Protection exception for
instruction-execution
protection

— — Suppress —

Protection exception for
DAT protection

— Suppress3 — Suppress5

Protection exception for
low-address protection

— Suppress — Suppress for IPTE, PLO6, STCRW, STNSM, STOSM,
and TPI5.
Terminate for all others.4

Explanation:

— Not applicable
1 Table entries include region table, segment table, page table, linkage table, linkage-first table, linkage-second

table, entry table, ASN first table, ASN second table, authority table, dispatchable-unit-control table, primary
ASN-second-table entry, access list, and linkage stack.

2 Table entries include linkage stack and trace table.
3 DAT protection applies to the linkage stack but not the trace table.
4 For termination, changes may occur only to result fields. In this context, “result field” includes condition code,

registers, and storage locations, if any, which are designated to be changed by the instruction. However, no
change is made to a storage location or a storage key when the reference causes an access exception.
Therefore, if an instruction is due to change only the contents of a field in main storage, and every byte of that
field would cause an access exception, the result is the same as if the operation had been suppressed. The
action may be, for key-controlled protection and low-address protection, suppression instead of termination; see
“Suppression on Protection” on page 3-15.

5 When the effective address of TPI is zero, the store access is to implicit real locations 184-191, and key-controlled
protection, DAT protection, and low-address protection do not apply.

6 Suppression occurs only for the compare-and-load and compare-and-swap operations.

Figure 6-4. Summary of Action for Addressing and Protection Exceptions

6-22 The z/Architecture CPU Architecture

AFX-Translation Exception
An AFX-translation exception is recognized when,
during ASN translation in the space-switching form of
PROGRAM RETURN, PROGRAM TRANSFER,
PROGRAM TRANSFER WITH INSTANCE, SET
SECONDARY ASN, or SET SECONDARY ASN
WITH INSTANCE, or during ASN translation in PRO-
GRAM RETURN when the restored SASN does not
equal the restored PASN, bit 0 of the ASN-first-table
entry used is not zero.

The ASN being translated is stored at real locations
174 and 175, and real locations 172 and 173 are set
with zeros.

The operation is nullified.

The instruction-length code is 1 or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 3.

The AFX-translation exception is indicated by a pro-
gram-interruption code of 0020 hex (or 00A0 hex if a
concurrent PER event is indicated).

ALEN-Translation Exception
An ALEN-translation exception is recognized during
access-register translation when either:

1. The access register used contains an access-
list-entry number that designates an access-list
entry which is beyond the end of the access list
designated by the effective access-list designa-
tion.

2. Bit 0 of the access-list entry is not zero.

The number of the access register is stored in bit
positions 4-7 of real location 160, and bits 0-3 of the
location are set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ALEN-translation exception is indicated by a pro-
gram-interruption code of 0029 hex (or 00A9, 0229,
or 02A9 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

ALE-Sequence Exception
An ALE-sequence exception is recognized during
access-register translation when the access register

used contains an access-list-entry sequence number
(ALESN) which is not equal to the ALESN in the
access-list entry that is designated by the access
register.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0-3 are set
to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ALE-sequence exception is indicated by a pro-
gram-interruption code of 002A hex (or 00AA, 022A,
or 02AA hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

ALET-Specification Exception
An ALET-specification exception is recognized during
access-register translation when bit positions 0-6 of
the access-list-entry token in the access register
used do not contain all zeros. However, when
access-register 0 is used, except in TEST ACCESS,
it is treated as containing all zeros, and this exception
is not recognized. TEST ACCESS uses the actual
contents of access register 0.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The ALET-specification exception is indicated by a
program-interruption code of 0028 hex (or 00A8,
0228, or 02A8 hex, if a concurrent PER event, a con-
current transactional-execution-aborted event, or
both are indicated, respectively).

ASCE-Type Exception
An ASCE-type exception is recognized when any of
the following is true during dynamic address transla-
tion:

1. The address-space-control element being used
is a region-second-table designation, and bits
0-10 of the virtual address being translated are
not all zeros.

2. The address-space-control element being used
is a region-third-table designation, and bits 0-21
of the virtual address being translated are not all
zeros.

Interruptions 6-23

3. The address-space-control element being used
is a segment-table designation, and bits 0-32 of
the virtual address being translated are not all
zeros.

The exception is recognized as part of the execution
of an instruction that needs the address-space-con-
trol element in the translation of an instruction, oper-
and, or side-effect address, except for the operand
address in LOAD PAGE-TABLE-ENTRY ADDRESS,
LOAD REAL ADDRESS, and TEST PROTECTION,
in which case the condition is indicated by the setting
of the condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at real
locations 168-175 and conditionally at real location
160. See “Assigned Storage Locations” on page 3-73
for a detailed description of this information.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1, 2,
or 3. When the exception occurs during a reference
to the target of EXECUTE, the ILC is 2. When the
exception occurs during a reference to the target of
EXECUTE RELATIVE LONG, the ILC is 3.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC) is
1, 2, or 3 and indicates the length of the instruction
causing the exception.

The ASCE-type exception is indicated by a program-
interruption code of 0038 hex (or 00B8, 0238, or
02B8 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

ASTE-Instance Exception
An ASTE-instance exception is recognized when the
ASN-and-LX-reuse facility is installed, and any of the
following is true:

1. During ASN translation in PROGRAM TRANS-
FER WITH INSTANCE with space switching, the
ASTEIN in bit positions 0-31 of general register
R1 is not equal to the ASTEIN in the located
ASTE.

2. During PASN translation in PROGRAM RETURN
with space switching, the ASN-and-LX-reuse
control in control register 0 is one and the

PASTEIN in the linkage-stack state entry is not
equal to the ASTEIN in the located ASTE.

3. During ASN translation in SET SECONDARY
ASN WITH INSTANCE with space switching, the
ASTEIN in bit positions 0-31 of general register
R1 is not equal to the ASTEIN in the located
ASTE.

4. During SASN translation in PROGRAM
RETURN to current primary or with space
switching, the ASN-and-LX-reuse control in con-
trol register 0 is one, and the SASTEIN in the
linkage-stack state entry is not equal to the
ASTEIN in the located ASTE.

Information is stored as follows:

• In cases 1 and 2, bit 2 of real location 160 is set
to one, and bits 0, 1, and 3-7 are set to zeros.

• In cases 3 and 4, bit 3 of real location 160 is set
to one, and bits 0-2 and 4-7 are set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASTE-instance exception is indicated by a pro-
gram-interruption code of 002F hex (or 00AF hex if a
concurrent PER event is indicated).

ASTE-Sequence Exception
An ASTE-sequence exception is recognized when
any of the following is true:

1. During access-register translation, except as in
2, the access-list entry used contains an ASN-
second-table-entry sequence number (ASTESN)
which is not equal to the ASTESN in the ASN-
second-table entry that is designated by the
access-list entry. The access-list entry is the one
designated by the access register used.

2. During access-register translation of ALET 1 by
BRANCH IN SUBSPACE GROUP, the subspace
ASTESN (SSASTESN) in the dispatchable-unit
control table (DUCT) is not equal to the ASTESN
in the subspace ASTE designated by the sub-
space-ASTE origin (SSASTEO) in the DUCT.

3. During a subspace-replacement operation, the
subspace ASTESN (SSASTESN) in the dis-
patchable-unit control table (DUCT) is not equal
to the ASTESN in the subspace ASTE desig-

6-24 The z/Architecture CPU Architecture

nated by the subspace-ASTE origin (SSASTEO)
in the DUCT.

In the first and second cases, the number of the
access register is stored in bit positions 4-7 at real
location 160, and bits 0-3 are set to zeros. In the third
case, all zeros are stored at real location 160.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASTE-sequence exception is indicated by a pro-
gram-interruption code of 002C hex (or 00AC, 022C,
or 02AC hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Programming Note: The storing of zeros at real
location 160 in the case of an ASTE-sequence
exception recognized during a subspace-replace-
ment operation is a unique indication since the use of
access register 0 in access-register translation can-
not result in the exception.

ASTE-Validity Exception
An ASTE-validity exception is recognized when any
of the following is true:

1. During access-register translation, except as in
2, the access-list entry used designates an ASN-
second-table entry in which bit 0 is not zero. The
access-list entry is the one designated by the
access register used.

2. During access-register translation of ALET 1 by
BRANCH IN SUBSPACE GROUP, the subspace-
ASTE origin (SSASTEO) in the dispatchable-unit
control table designates an ASN-second-table
entry in which bit 0 is not zero.

3. During a subspace-replacement operation, the
subspace-ASTE origin (SSASTEO) in the dis-
patchable-unit control table designates an ASN-
second-table entry in which bit 0 is not zero.

In the first and second cases, the number of the
access register is stored in bit positions 4-7 at real
location 160, and bits 0-3 are set to zeros. In the third
case, all zeros are stored at real location 160.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASTE-validity exception is indicated by a pro-
gram-interruption code of 002B hex (or 00AB, 022B,
or 02AB hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Programming Note: The storing of zeros at real
location 160 in the case of an ASTE-validity excep-
tion recognized during a subspace-replacement
operation is a unique indication since the use of
access register 0 in access-register translation can-
not result in the exception.

ASX-Translation Exception
An ASX-translation exception is recognized when,
during execution of the space-switching form of PRO-
GRAM CALL, during ASN translation in the space-
switching form of PROGRAM RETURN, PROGRAM
TRANSFER, PROGRAM TRANSFER WITH
INSTANCE, SET SECONDARY ASN, or SET SEC-
ONDARY ASN WITH INSTANCE, or during ASN
translation in PROGRAM RETURN when the
restored SASN does not equal the restored PASN, bit
0 of the ASN-second-table entry used is not zero.

The ASN being translated is stored at real locations
174 and 175, and real locations 172 and 173 are set
with zeros.

The operation is nullified.

The instruction-length code is 1 or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 3.

The ASX-translation exception is indicated by a pro-
gram-interruption code of 0021 hex (or 00A1 hex if a
concurrent PER event is indicated).

Crypto-Operation Exception
A crypto-operation exception is recognized when a
crypto-facility instruction is executed while bit 61 of
control register 0 is zero on a CPU which has the
crypto facility installed and available. The crypto-
operation exception is also recognized when a
crypto-facility instruction is executed and the crypto
facility is not installed or available on this CPU, but
the facility can be made available to the program
either on this CPU or another CPU in the configura-
tion.

When a crypto-facility instruction is executed and the
crypto facility is not installed on any CPU which is or

Interruptions 6-25

can be placed in the configuration, it depends on the
model whether a crypto-operation exception or an
operation exception is recognized.

The operation is nullified when the crypto-operation
exception is recognized.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

The crypto-operation exception is indicated by a pro-
gram-interruption code of 0119 hex (or 0199, 0319,
or 0399 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Data Exception
The data exceptions are shown in Figure 6-3 on
page 6-18. A mask bit may or may not control
whether an interruption occurs, as noted for each
exception.

When a non-maskable data exception is recognized,
a program interruption for a data exception always
occurs.

Each of the IEEE exceptions is controlled by a mask
bit in the floating-point-control (FPC) register. The
handling of these exceptions is described in the sec-
tion “IEEE Exceptions” on page 9-18.

A data exception is recognized for the following
cases:

• General-operand data exception is recognized
for the following cases:

– An instruction which operates on decimal
operands encounters invalid decimal digit or
sign codes or has its operands specified
improperly. The operation is suppressed,
except that, for EDIT and EDIT AND MARK,
it is model dependent whether the operation
is suppressed or terminated. See the section
“General-Operand Data Exception” on
page 8-5 for details.

– COMPRESSION CALL encounters errors in
its dictionaries, in which case it is model
dependent whether the operation is sup-
pressed or terminated.

– PERFORM RANDOM NUMBER OPERA-
TION when the reseed counter is zero for the
generate operation, in which case the opera-
tion is suppressed.

The general-operand data exception is reported
with DXC 0.

Note: In earlier versions of the architecture, the
general-operand data exception was known as
the decimal-operand data exception.

• AFP-register data exception is recognized when
bit 45 of control register 0 is zero, and a floating-
point-support (FPS) instruction or a hexadeci-
mal-floating-point (HFP) instruction specifies a
floating-point register other than 0, 2, 4, or 6.
AFP-register data exception is also recognized
when bit 45 of control register 0 is zero and a
PFPO instruction is executed. The operation is
suppressed and is reported with DXC 1.

• BFP-instruction data exception is recognized
when bit 45 of control register 0 is zero and a
BFP instruction is executed. The operation is
suppressed and is reported with DXC 2.

• Compare-and-trap-instruction data exception
is recognized when the operands compared by
COMPARE AND TRAP, COMPARE IMMEDIATE
AND TRAP, COMPARE LOGICAL AND TRAP, or
COMPARE LOGICAL IMMEDIATE AND TRAP
match the conditions specified by the M3 field of
the instruction. The operation is completed and is
reported with DXC FF hex.

When the load-and-trap facility is installed, com-
pare-and-trap-instruction data exception is rec-
ognized when all zeros are loaded into the first
operand of LOAD AND TRAP, LOAD HIGH AND
TRAP, LOAD LOGICAL AND TRAP, and LOAD
LOGICAL THIRTY ONE BITS AND TRAP. The
operation is completed and is reported with DXC
FF hex.

• DFP-instruction data exception is recognized
when bit 45 of control register 0 is zero and a
DFP instruction is executed. The operation is
suppressed and is reported with DXC 3.

• IEEE-exception data exceptions are recognized
when an IEEE computational instruction encoun-
ters an enabled exceptional condition. The oper-
ation is suppressed or completed, depending on

6-26 The z/Architecture CPU Architecture

the type of exception. See the section “IEEE
Exceptions” on page 19-7 for details.

• Simulated IEEE-exception data exceptions are
recognized when an IEEE-exception-simulation
instruction (LOAD FPC AND SIGNAL or SET
FPC AND SIGNAL) encounters an enabled sig-
naling flag. The operation is completed. See the
section “IEEE Exceptions” on page 19-7 for
details.

• Vector-instruction data exceptions are recog-
nized when bit 46 of control register 0 is zero and
a vector instruction is executed (a vector instruc-
tion any instruction defined in chapters 21, 22,
23, 24, or 25). It is unpredictable if a data excep-
tion is recognized if bit 45 of control register 0 is
zero, bit 46 of control register 0 is one, and a vec-
tor instruction is executed. The operation is sup-
pressed and is reported with DXC FE hex.

The instruction-length code is 1, 2, or 3.

The data exception is indicated by a program-inter-
ruption code of 0007 hex (or 0087, 0207, or 0287
hex, if a concurrent PER event, a concurrent transac-
tional-execution-aborted event, or both are indicated,
respectively).

Decimal-Divide Exception
A decimal-divide exception is recognized when either
of the following is true:

• For DIVIDE DECIMAL when the divisor is zero or
the quotient exceeds the specified data-field
size. the sign codes of both the divisor and divi-
dend are valid, and the digit or digits used in
establishing the exception are valid.

• For VECTOR DIVIDE DECIMAL, VECTOR
REMAINDER DECIMAL, and VECTOR SHIFT
AND DIVIDE DECIMAL, when the divisor is zero
and the divisor sign code used is valid. The divi-
sor sign code used is the third operand sign code
when the force operand 3 positive (P3) bit is
zero, and is a positive sign code when the force
operand 3 positive (P3) bit is one.

The operation is suppressed.

The instruction-length code is 2 or 3.

The decimal-divide exception is indicated by a pro-
gram-interruption code of 000B hex (or 008B, 020B,
or 028B hex, if a concurrent PER event, a concurrent

transactional-execution-aborted event, or both are
indicated, respectively).

Decimal-Overflow Exception
A decimal-overflow exception is recognized when the
designated destination of a decimal operation is too
short to contain all nonzero digits of the result.

The interruption may be disallowed by the decimal-
overflow mask (PSW bit 21).

The operation is completed. When the destination is
a storage operand, the overflow digits are ignored,
and condition code 3 is set. When the destination is a
vector register, the overflow digits are replaced with
zeros, and if the condition code set (CS) flag is one,
condition code 3 is set.

The instruction-length code is 2 or 3.

The decimal-overflow exception is indicated by a pro-
gram-interruption code of 000A hex (or 008A, 020A,
or 028A hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Execute Exception

The execute exception is recognized when the target
instruction of an execute-type instruction (EXECUTE
or EXECUTE RELATIVE LONG) is one of the follow-
ing instructions:

• Another execute-type instruction
• TRANSACTION ABORT
• TRANSACTION BEGIN
• TRANSACTION END

The operation is suppressed.

The instruction-length code is 2 or 3 and indicates
the length of the execute-type instruction that
attempted to execute the target instruction.

The execute exception is indicated by a program-
interruption code of 0003 hex (or 0083, 0203, or
0283 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

EX-Translation Exception
An EX-translation exception is recognized during PC-
number translation in PROGRAM CALL when the

Interruptions 6-27

entry-table entry designated by the entry-index part
of the PC number is beyond the end of the entry table
as designated by the linkage-table or linkage-sec-
ond-table entry used.

When ASN-and-LX reuse is not installed or is not
enabled by a one value of the ASN-and-LX-reuse
control in control register 0, or if it is installed and
enabled and bit 44 of the second-operand address
used by PROGRAM CALL is zero, bits 44-63 of the
address (a 20-bit PC number), with 12 zeros
appended on the left, are stored in the word at real
location 172. When ASN-and-LX reuse is installed
and enabled and bit 44 of the second-operand
address is one, bits 32-63 of the address (a 32-bit PC
number) are stored in the word at real location 172.

The operation is nullified.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

The EX-translation exception is indicated by a pro-
gram-interruption code of 0023 hex (or 00A3 hex if a
concurrent PER event is indicated).

Extended-Authority Exception
An extended-authority exception is recognized during
access-register translation when all of the following
are true:

1. The private bit in the access-list entry used is
one.

2. The access-list-entry authorization index
(ALEAX) in the access-list entry is not equal to
the extended authorization index (EAX) in control
register 8.

3. Either of the following is true:

a. The authority-table entry designated by the
EAX is beyond the length of the authority
table used. The authority table is the one
designated by the ASN-second-table entry
that is designated by the access-list entry
used.

b. The secondary-authority bit designated by
the EAX is zero.

The access-list entry is the one designated by the
access register used.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0-3 are set
to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The extended-authority exception is indicated by a
program-interruption code of 002D hex (or 00AD,
022D, or 02AD hex, if a concurrent PER event, a con-
current transactional-execution-aborted event, or
both are indicated, respectively).

Fixed-Point-Divide Exception
A fixed-point-divide exception is recognized when
any of the following is true:

1. In signed or unsigned binary division when the
result is defined to be 32 bits, the divisor is zero,
or the quotient cannot be expressed as a 32-bit
signed or unsigned, respectively, binary integer.

2. In signed or unsigned binary division when the
result is defined to be 64 bits, the divisor is zero,
or the quotient cannot be expressed as a 64-bit
signed or unsigned, respectively, binary integer.

3. The result of CONVERT TO BINARY cannot be
expressed as a 32-bit signed binary integer for a
32-bit result or as a 64-bit signed binary integer
for a 64-bit result.

In the case of division, the operation is suppressed.
The execution of CONVERT TO BINARY (CVB,
CVBY) is completed by ignoring the leftmost bits that
cannot be placed in the register. The execution of
CONVERT TO BINARY (CVBG) is suppressed.

The instruction-length code is 1, 2, or 3.

The fixed-point-divide exception is indicated by a pro-
gram-interruption code of 0009 hex (or 0089, 0209,
or 0289 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Fixed-Point-Overflow Exception
A fixed-point-overflow exception is recognized when
an overflow occurs during signed binary arithmetic,
signed left-shift operations, or some decimal to
binary conversions,

6-28 The z/Architecture CPU Architecture

The interruption may be disallowed by the fixed-
point-overflow mask (PSW bit 20).

The operation is completed. The result is obtained by
ignoring the overflow information, and condition code
3 is set, except for VECTOR CONVERT TO BINARY
instructions where condition code 3 is set only when
the condition code set (CS) flag is one.

The instruction-length code is 1, 2, or 3.

The fixed-point-overflow exception is indicated by a
program-interruption code of 0008 hex (or 0088,
0208, or 0288 hex, if a concurrent PER event, a con-
current transactional-execution-aborted event, or
both are indicated, respectively).

HFP-Divide Exception
An HFP-divide exception is recognized when in HFP
division the divisor has a zero fraction.

The operation is suppressed.

The instruction-length code is 1 or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 3.

The HFP-divide exception is indicated by a program-
interruption code of 000F hex (or 008F, 020F, or 028F
hex, if a concurrent PER event, a concurrent transac-
tional-execution-aborted event, or both are indicated,
respectively).

HFP-Exponent-Overflow Exception
An HFP-exponent-overflow exception is recognized
when the result characteristic of an HFP operation
exceeds 127 and the result fraction is not zero.

The operation is completed. The fraction is normal-
ized, and the sign and fraction of the result remain
correct. The result characteristic is made 128 smaller
than the correct characteristic.

The instruction-length code is 1, 2, or 3.

The HFP-exponent-overflow exception is indicated by
a program-interruption code of 000C hex (or 008C,
020C, or 028C hex, if a concurrent PER event, a con-
current transactional-execution-aborted event, or
both are indicated, respectively).

HFP-Exponent-Underflow Exception
An HFP-exponent-underflow exception is recognized
when the result characteristic of an HFP operation is
less than zero and the result fraction is not zero. For
an extended-format HFP result, HFP-exponent
underflow is indicated only when the high-order char-
acteristic underflows.

The interruption may be disallowed by the HFP-expo-
nent-underflow mask (PSW bit 22).

The operation is completed. The HFP-exponent-
underflow mask also affects the result of the opera-
tion. When the mask bit is zero, the sign, characteris-
tic, and fraction are set to zero, making the result a
true zero. When the mask bit is one, the fraction is
normalized, the characteristic is made 128 larger
than the correct characteristic, and the sign and frac-
tion remain correct.

The instruction-length code is 1, 2, or 3.

The HFP-exponent-underflow exception is indicated
by a program-interruption code of 000D hex (or
008D, 020D, or 028D hex, if a concurrent PER event,
a concurrent transactional-execution-aborted event,
or both are indicated, respectively).

HFP-Significance Exception
An HFP-significance exception is recognized when
the result fraction in HFP addition or subtraction is
zero.

The interruption may be disallowed by the HFP-sig-
nificance mask (PSW bit 23).

The operation is completed. The HFP-significance
mask also affects the result of the operation. When
the mask bit is zero, the operation is completed by
replacing the result with a true zero. When the mask
bit is one, the operation is completed without further
change to the characteristic of the result.

The instruction-length code is 1 or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 3.

The HFP-significance exception is indicated by a pro-
gram-interruption code of 000E hex (or 008E, 020E,
or 028E hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Interruptions 6-29

HFP-Square-Root Exception
An HFP-square-root exception is recognized when
the second operand of an HFP SQUARE ROOT
instruction is less than zero.

The operation is suppressed.

The instruction-length code is 2 or 3.

The HFP-square-root exception is indicated by a pro-
gram-interruption code of 001D hex (or 009D, 021D,
or 029D hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

LFX-Translation Exception
An LFX-translation exception may be recognized
only when the ASN-and-LX-reuse facility is installed
and the ASN-and-LX-reuse control in control register
0 is one.

An LFX-translation exception is recognized during
PC-number translation in PROGRAM CALL when
either:

1. The linkage-first-table entry specified by the link-
age-first-index part of the PC number is beyond
the end of the linkage first table as designated by
the linkage-first-table designation used.

2. Bit 0 of the linkage-first-table entry is not zero.

When bit 44 of the second-operand address used by
PROGRAM CALL is zero, bits 44-63 of the address
(a 20-bit PC number), with 12 zeros appended on the
left, are stored in the word at real location 172. When
bit 44 of the second-operand address is one, bits
32-63 of the address (a 32-bit PC number) are stored
in the word at real location 172.

The operation is nullified.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

The LFX-translation exception is indicated by a pro-
gram-interruption code of 0026 hex (or 00A6 hex if a
concurrent PER event is indicated).

LSTE-Sequence Exception
An LSTE-sequence exception may be recognized
only when the ASN-and-LX-reuse facility is installed

and the ASN-and-LX-reuse control in control register
0 is one.

An LSTE-sequence exception is recognized during
PC-number translation in PROGRAM CALL when the
linkage-second-table-entry sequence number
(LSTESN) in the linkage-second-table entry used is
nonzero and not equal to the LSTESN in bit positions
0-31 of general register 15.

When bit 44 of the second-operand address used by
PROGRAM CALL is zero, bits 44-63 of the address
(a 20-bit PC number), with 12 zeros appended on the
left, are stored in the word at real location 172. When
bit 44 of the second-operand address is one, bits
32-63 of the address (a 32-bit PC number) are stored
in the word at real location 172.

The operation is nullified.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

The LSTE-sequence exception is indicated by a pro-
gram-interruption code of 002E hex (or 00AE hex if a
concurrent PER event is indicated).

LSX-Translation Exception
An LSX-translation exception may be recognized
only when the ASN-and-LX-reuse facility is installed
and the ASN-and-LX-reuse control in control register
0 is one.

An LSX-translation exception is recognized during
PC-number translation in PROGRAM CALL when bit
0 of the linkage-second-table entry specified by the
linkage-second-index part of the PC number is not
zero.

When bit 44 of the second-operand address used by
PROGRAM CALL is zero, bits 44-63 of the address
(a 20-bit PC number), with 12 zeros appended on the
left, are stored in the word at real location 172. When
bit 44 of the second-operand address is one, bits
32-63 of the address (a 32-bit PC number) are stored
in the word at real location 172.

The operation is nullified.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

6-30 The z/Architecture CPU Architecture

The LSX-translation exception is indicated by a pro-
gram-interruption code of 0027 hex (or 00A7 hex if a
concurrent PER event is indicated).

LX-Translation Exception
An LX-translation exception may be recognized only
when the ASN-and-LX-reuse facility is not installed or
the ASN-and-LX-reuse control in control register 0 is
zero.

An LX-translation exception is recognized during PC-
number translation in PROGRAM CALL when either:

1. The linkage-table entry designated by the link-
age-index part of the PC number is beyond the
end of the linkage table as designated by the
linkage-table designation used.

2. Bit 0 of the linkage-table entry is not zero.

Bits 44-63 of the second-operand address used by
PROGRAM CALL (a 20-bit PC number), with 12
zeros appended on the left, are stored in the word at
real location 172.

The operation is nullified.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

The LX-translation exception is indicated by a pro-
gram-interruption code of 0022 hex (or 00A2 hex if a
concurrent PER event is indicated).

Monitor Event
A monitor event is recognized when MONITOR CALL
is executed and the monitor-mask bit in control regis-
ter 8 corresponding to the monitor class specified by
instruction bits 12-15 is one. The information in con-
trol register 8 has the following format:

The monitor-mask bits, bits 48-63 of control register
8, correspond to monitor classes 0-15, respectively.
Any number of monitor-mask bits may be on at a
time; together they specify the classes of monitor

events that are monitored at that time. The mask bits
are initialized to zeros.

When the enhanced-monitor facility is installed, the
enhanced-monitor-mask bits, bits 16-31 of control
register 8, correspond to the monitor classes 0-15,
respectively. Any number of enhanced-monitor-mask
bits may be on at a time; together they specify the
classes of monitor events that result in monitor-call
program interruptions versus monitor-event counting
operations.

When a monitor event occurs and either (a) the
enhanced-monitor facility is not installed, or (b) the
facility is installed but the enhanced-monitor-mask bit
corresponding to the monitor class specified in bits
12-15 of the MONITOR CALL instruction is zero, then
a monitor-event program interruption occurs. When a
monitor event occurs, the enhanced-monitor facility is
installed, and the enhanced-monitor-mask bit corre-
sponding to the monitor class is one, a monitor-
event-counting operation is performed, as described
in “Monitor-Event Counting” on page 5-109. Note, in
the ESA/390-compatibility mode, the enhanced-mon-
itor masks are always zero; thus, a monitor-event
counting operation never occurs.

When a monitor-event program interruption occurs,
additional information is stored at real locations in the
prefix area, as follows:

The contents of bit positions 8-15 of the MONITOR
CALL instruction are stored at real location 149 and
constitute the monitor-class number. Zeros are
stored at real location 148. The contents of real loca-
tions 148-149 are as follows:

The effective address specified by the B1 and D1

fields of the instruction forms the monitor code. In the
z/Architecture architectural mode, the monitor code
is stored in the doubleword at real location 176, as
shown in Figure 6-5. In the ESA/390-compatibility
mode, bits 32-63 of the monitor code are stored in
the word at real location 156, as shown in Figure 6-6.
The value of the address is under control of the
addressing mode, bits 31 and 32 of the current PSW.
In the 24-bit addressing mode, bits 0-39 of the

Enhanced-Monitor Mask
0 16 31

 EAX Monitor Mask
32 48 63

Real Locations 148-149

0 0 0 0 0 0 0 0
Monitor Class

Number
0 8 15

Interruptions 6-31

address are zeros, while in the 31-bit addressing
mode, bits 0-32 are zeros.

The operation is completed.

The instruction-length code is 2, except that when
the exception occurs during the execution of a MONI-
TOR CALL instruction that is the target of EXECUTE
RELATIVE LONG, the ILC is 3.

The monitor event is indicated by a program-interrup-
tion code of 0040 hex (or 00C0 hex if a concurrent
PER event is indicated).

Operand Exception
An operand exception is recognized when any of the
following is true:

1. Execution of CLEAR SUBCHANNEL, HALT
SUBCHANNEL, MODIFY SUBCHANNEL,
RESUME SUBCHANNEL, START SUBCHAN-
NEL, STORE SUBCHANNEL, or TEST SUB-
CHANNEL is attempted and bit positions 32-47
of general register 1 do not contain 0001 hex.
However, an exception due to ones in bit posi-
tions 32-39 of the register may or may not be rec-
ognized.

2. Execution of MODIFY SUBCHANNEL is
attempted, and bits 1 and 6 of word 1 of the
SCHIB operand are not zeros or bits 9-10 and
25-30 of word 6 of the SCHIB operand are not all
zeros.

3. Execution of MODIFY SUBCHANNEL is
attempted, and bits 9 and 10 of word 1 of the
SCHIB operand are both one.

4. Execution of MOVE PAGE with KFC values of 4
or 5 and the two operands have identical real

addresses. It is model dependent whether or not
this exception is recognized.

5. Execution of RESET CHANNEL PATH is
attempted, and bits 40-55 of general register 1
are not all zeros.

6. Execution of SET ADDRESS LIMIT is attempted,
and bits 32 and 48-63 of general register 1 are
not all zeros.

7. Execution of SET CHANNEL MONITOR is
attempted, bit 62 of general register 1 is one, and
bits 59-63 of general register 2 are not all zeros.

8. Execution of SET CHANNEL MONITOR is
attempted, and bits 36-61 of general register 1
are not all zeros.

9. Execution of START SUBCHANNEL is
attempted, and bits 5, 13, and 25-28 of word 1 of
the ORB operand are not all zeros.

10. Execution of START SUBCHANNEL is
attempted, and bit 11 of word 1 of the ORB oper-
and is not zero. This exception may or may not
be recognized.

The operation is suppressed.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

The operand exception is indicated by a program-
interruption code of 0015 hex (or 0095 hex if a con-
current PER event is indicated).

Operation Exception
An operation exception is recognized when the CPU
attempts to execute an instruction with an invalid
operation code. The operation code may be unas-
signed, or the instruction with that operation code
may not be installed on the CPU.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The operation exception is indicated by a program-
interruption code of 0001 hex (or 0081, 0201, or
0281 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Monitor Code
0 31

Monitor Code (continued)
32 63

Figure 6-5. Monitor Code in Real Locations 176-183 in the
z/Architecture Architectural Mode

Monitor Code (bits 32-63)
0 31

Figure 6-6. Monitor Code in Real Locations 156-159 in the
ESA/390-compatibility Mode

6-32 The z/Architecture CPU Architecture

An operation exception detected while the CPU is in
the nonconstrained transactional-execution mode
may result in the transaction being aborted due to a
restricted instruction (abort code 11). An operation
exception detected while the CPU is in the con-
strained transactional-execution mode may be indi-
cated as a transaction-constraint exception
(program-interruption code 0018 hex).

Programming Notes:

1. Some models may offer instructions not
described in this publication, such as those pro-
vided for assists or as part of special or custom
features. Consequently, operation codes not
described in this publication do not necessarily
cause an operation exception to be recognized.
Furthermore, these instructions may cause
modes of operation to be set up or may other-
wise alter the machine so as to affect the execu-
tion of subsequent instructions. To avoid causing
such an operation, an instruction with an opera-
tion code not described in this publication should
be executed only when the specific function
associated with the operation code is desired.

2. Operation code 00 hex will never be assigned to
an instruction implemented in the CPU.

Page-Translation Exception
A page-translation exception is recognized when the
page-invalid bit is one.

The exception is recognized as part of the execution
of an instruction that needs the page-table entry in
the translation of an instruction, operand, or side-
effect address, except for the operand address in
LOAD REAL ADDRESS and TEST PROTECTION,
in which case the condition is indicated by the setting
of the condition code, and except for an operand
address in MOVE PAGE, in which case the condition
is indicated by the setting of the condition code if the
condition-code-option bit, bit 55 of general register 0,
is one.

When an interruption occurs, information about the
virtual address causing the exception is stored at real
locations 168-175 and conditionally at real locations
160 and 162. See “Assigned Storage Locations” on
page 3-73 for a detailed description of this informa-
tion.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1, 2,
or 3. When the exception occurs during a reference
to the target of EXECUTE, the ILC is 2. When the
exception occurs during a reference to the target of
EXECUTE RELATIVE LONG, the ILC is 3.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC) is
1, 2, or 3 and indicates the length of the instruction
causing the exception.

The page-translation exception is indicated by a pro-
gram-interruption code of 0011 hex (or 0091, 0211,
or 0291 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

PC-Translation-Specification Exception
A PC-translation-specification exception is recog-
nized during PC-number translation in PROGRAM
CALL when either of the following is true for the
entry-table entry (ETE) used:

1. The PROGRAM CALL operation is the basic
operation (bit 128 of the ETE is zero) in the 24-bit
or 31-bit addressing mode (bit 31 of the PSW is
zero), bit 32 of the ETE is zero (specifying the
24-bit mode), and bits 33-39 of the ETE are not
all zeros.

2. The PROGRAM CALL operation is the stacking
operation (bit 128 of the ETE is one), bits 32 and
129 of the ETE are zeros (specifying the 24-bit
mode), and bits 33-39 of the ETE are not all
zeros.

The operation is suppressed.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

The PC-translation-specification exception is indi-
cated by a program-interruption code of 001F hex (or
009F hex if a concurrent PER event is indicated).

PER Event
A PER event is recognized when the CPU is enabled
for PER and one or more of these events occur.

The PER mask, bit 1 of the PSW, controls whether
the CPU is enabled for PER. When the PER mask is
zero, PER events are not recognized. When the bit is

Interruptions 6-33

one, PER events are recognized, subject to the PER-
event-mask bits in control register 9.

For a PER instruction-fetching nullification event, the
unit of operation is nullified. For other PER events,
the unit of operation is completed, unless another
condition has caused the unit of operation to be nulli-
fied, suppressed, or terminated.

In the z/Architecture architectural mode, information
identifying the event is stored at real locations
150-159 and conditionally at real location 161. In the
ESA/390-compatibility mode, information identifying
the event is stored at real locations 150-155 and con-
ditionally at real location 161.

The instruction-length code is 0, 1, 2, or 3. Code 0 is
set for the PER instruction-fetching basic event only if
a specification exception is indicated concurrently.
Code 0 is always set when the PER instruction-fetch-
ing nullification event is indicated.

The PER event is indicated by setting bit 8 of the pro-
gram-interruption code to one.

See “Program-Event Recording” on page 4-26 for a
detailed description of the PER event and the associ-
ated interruption information.

Primary-Authority Exception

A primary-authority exception is recognized during
ASN authorization in PROGRAM TRANSFER with
space switching (PT-ss) or PROGRAM TRANSFER
WITH INSTANCE with space switching (PTI-ss)
when either:

1. The authority-table entry indicated by the autho-
rization index in control register 4 is beyond the
end of the authority table used. The authority
table is the one designated by the ASN-second-
table entry for the ASN used.

2. The primary-authority bit indicated by the autho-
rization index is zero.

The ASN used is stored at real locations 174-175,
and real locations 172-173 are set to zeros.

The operation is nullified.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

The primary-authority exception is indicated by a pro-
gram-interruption code of 0024 hex (or 00A4 hex if a
concurrent PER event is indicated).

Privileged-Operation Exception
A privileged-operation exception is recognized when
any of the following is true:

1. Execution of a privileged instruction is attempted
in the problem state.

2. The value of the rightmost bit of the general reg-
ister designated by the R2 field of the PROGRAM
TRANSFER or PROGRAM TRANSFER WITH
INSTANCE instruction is zero and would cause
the PSW problem-state bit to change from the
problem state (one) to the supervisor state
(zero).

3. In the problem state, the key value specified by
the second operand of the SET PSW KEY
FROM ADDRESS instruction corresponds to a
zero PSW-key-mask bit in control register 3.

4. In the problem state, the key value specified by
the rightmost byte of the register designated by
the R3 field for the instruction MOVE TO PRI-
MARY, MOVE TO SECONDARY, or MOVE WITH
KEY corresponds to a zero PSW-key-mask bit in
control register 3.

5. In the problem state, any of the following instruc-
tions is encountered, and the extraction-authority
control, bit 4 of control register 0, is zero.

• EXTRACT PRIMARY ASN
• EXTRACT SECONDARY ASN
• INSERT ADDRESS SPACE CONTROL
• INSERT PSW KEY
• INSERT VIRTUAL STORAGE KEY

6. In the problem state, the result of ANDing the
authorization key mask (AKM) with the PSW-key
mask in control register 3 during PROGRAM
CALL produces a result of zero.

7. In the problem state, bits 20-23 of the second-
operand address of the SET ADDRESS SPACE
CONTROL or SET ADDRESS SPACE CON-
TROL FAST instruction have the value 0011
binary.

8. In the problem state, the key value specified by
the rightmost byte of general register 1 for the
instruction MOVE WITH SOURCE KEY or MOVE

6-34 The z/Architecture CPU Architecture

WITH DESTINATION KEY corresponds to a zero
PSW-key-mask bit in control register 3.

9. In the problem state, the key value specified by
the rightmost byte of the register designated by
the R1 field for the instruction BRANCH AND
SET AUTHORITY corresponds to a zero PSW-
key-mask bit in control register 3.

10. In the problem state, bits 16 and 17 of the PSW
field in the second operand of RESUME PRO-
GRAM have the value 11 binary.

11. Execution of MOVE PAGE is attempted in the
problem state, and any of the following is true:

• The KFC value is 1 or 2 and the access key
specified in general register 0 bits 56-59 des-
ignates a PSW-key-mask (PKM) bit position
in control register 3 that contains zero.

• The move-page-and-set-key facility is
installed and the KFC value is 4 or 5.

12. Execution of MOVE WITH OPTIONAL SPECIFI-
CATIONS is attempted in the problem state, and
any of the following is true:

• The specified-access-key control for the first
operand, bit 46 of general register 0, is one;
and the corresponding specified-access key,
bits 32-35 of the register, designates a PSW-
key-mask (PKM) bit position in control regis-
ter 3 that contains zero.

• The specified-access-key control for the sec-
ond operand, bit 62 of general register 0, is
one; and the corresponding specified-access
key, bits 48-51 of the register, designates a
PKM bit position that contains zero.

• Either or both bits 46 and 62 of general regis-
ter 0 are zero, and the PSW key, bits 8-11 of
the PSW, designates a PKM bit position that
contains zero.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The privileged-operation exception is indicated by a
program-interruption code of 0002 hex (or 0082,
0202, or 0282 hex, if a concurrent PER event, a con-

current transactional-execution-aborted event, or
both are indicated, respectively).

Protection Exception
A protection exception is recognized when any of the
following is true:

Access-List-Controlled Protection: The CPU
attempts to store, in the access-register mode, by
means of an access-list entry which has the fetch-
only bit set to one.

DAT Protection: The CPU attempts to store, with
DAT on, into any of the following:

• A page which has the DAT-protection bit set to
one in the page-table entry used in the transla-
tion

• A segment which has the DAT-protection bit set
to one in the segment-table entry used in the
translation

• When EDAT-1 applies,1 a region which has the
DAT-protection bit set to one in any region-table
entry used in the translation.

Instruction-Execution Protection: The instruction-
execution-protection facility is installed and enabled,
and the CPU attempts to fetch an instruction, with
DAT on, from any of the following:

• A page which has the instruction-execution-pro-
tection control set to one in the page-table entry
used in the translation.

• When EDAT-1 applies, a segment which has the
instruction-execution-protection control set to
one in the format-1 segment-table entry used in
the translation.

• When EDAT-2 applies, a region which has the
instruction-execution-protection control set to
one in the format-1 region-third-table entry used
in the translation.

Key-Controlled Protection: The CPU attempts to
access a storage location that is protected against
the type of reference, and the access key does not
match the storage key.

Low-Address Protection: The CPU attempts a store
that is subject to low-address protection, the effective

1. See “Enhanced-DAT Terminology:” on page 3-41 for an explanation of the term “enhanced-DAT applies.”

Interruptions 6-35

address is in the range 0-511 or 4096-4607, and the
low-address protection control, bit 35 of control regis-
ter 0, is one.

The operation is suppressed when the location of the
instruction is protected against fetching. Similarly, the
operation is suppressed when the location of the tar-
get instruction of an execute-type instruction is pro-
tected against fetching.

For access-list-controlled protection, DAT-protection,
and instruction-execution protection, the operation is
suppressed. For key-controlled protection and low-
address protection, the operation may be either sup-
pressed or terminated, depending on the type of sup-
pression-on-protection facility that is installed. See
“Suppression on Protection” on page 3-15 and
Figure 6-4 on page 6-21 for details.

For termination, changes may occur only to result
fields. In this context, the term “result field” includes
condition code, registers, and storage locations, if
any, which are due to be changed by the instruction.
However, no change is made to a storage location
when a reference to that location causes a protection
exception. Therefore, if an instruction is due to
change only the contents of a field in storage, and
every byte of that field would cause a protection
exception, the operation is suppressed. When termi-
nation occurs on fetching, the protected information
is not loaded into an addressable register nor moved
to another storage location.

In the z/Architecture architectural mode, information
about the address causing the exception is stored at
real locations 168-175 and conditionally at real loca-
tion 160. In the ESA/390-compatibility mode, infor-
mation about the address causing the exception may
be stored at real locations 144-147 and 160. See
“Suppression on Protection” on page 3-15.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1, 2,
or 3. When the exception occurs during the fetching
of the target of EXECUTE, the ILC is 2. When the
exception occurs during the fetching of the target of
EXECUTE RELATIVE LONG, the ILC is 3.

For a protected operand location, the instruction-
length code (ILC) is 1, 2, or 3, indicating the length of
the instruction that caused the reference, except that
when the protected operand location is accessed by
an instruction that is the target of an EXECUTE or

EXECUTE RELATIVE LONG instruction, the ILC is 2
or 3, respectively.

The protection exception is indicated by a program-
interruption code of 0004 hex (or 0084, 0204, or
0284 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Region-First-Translation Exception
A region-first-translation exception is recognized
when a region first table is in the translation path for
translation of a virtual address and either:

1. The region-first-table entry indicated by the
region-first-index portion of the virtual address is
outside the region first table.

2. The region-invalid bit is one.

The exception is sometimes called simply a region-
translation exception, which term applies also to a
region-second-translation exception and a region-
third-translation exception.

The exception is recognized as part of the execution
of an instruction that needs the region-first-table
entry in the translation of an instruction, operand, or
side-effect address, except for the operand address
in LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS and TEST PROTECTION, in which
case the condition is indicated by the setting of the
condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at real
locations 168-175 and conditionally at real locations
160 and 162. See “Assigned Storage Locations” on
page 3-73 for a detailed description of this informa-
tion.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1, 2,
or 3. When the exception occurs during the fetching
of the target of EXECUTE, the ILC is 2. When the
exception occurs during the fetching of the target of
EXECUTE RELATIVE LONG, the ILC is 3.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC) is
1, 2, or 3 and indicates the length of the instruction
causing the exception.

6-36 The z/Architecture CPU Architecture

The region-first-translation exception is indicated by
a program-interruption code of 0039 hex (or 00B9,
0239, or 02B9 hex, if a concurrent PER event, a con-
current transactional-execution-aborted event, or
both are indicated, respectively).

Region-Second-Translation Exception
A region-second-translation exception is recognized
when a region second table is in the translation path
for translation of a virtual address and either:

1. The region-second-table entry indicated by the
region-second-index portion of the virtual
address is outside the region second table.

2. The region-invalid bit is one.

The exception is sometimes called simply a region-
translation exception, which term applies also to a
region-first-translation exception and a region-third-
translation exception.

The exception is recognized as part of the execution
of an instruction that needs the region-second-table
entry in the translation of an instruction, operand, or
side-effect address, except for the operand address
in LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS and TEST PROTECTION, in which
case the condition is indicated by the setting of the
condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at real
locations 168-175 and conditionally at real locations
160 and 162. See “Assigned Storage Locations” on
page 3-73 for a detailed description of this informa-
tion.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1, 2,
or 3. When the exception occurs during the fetching
of the target of EXECUTE, the ILC is 2. When the
exception occurs during the fetching of the target of
EXECUTE RELATIVE LONG, the ILC is 3.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC) is
1, 2, or 3 and indicates the length of the instruction
causing the exception.

The region-second-translation exception is indicated
by a program-interruption code of 003A hex (or

00BA, 023A, or 02BA hex, if a concurrent PER event,
a concurrent transactional-execution-aborted event,
or both are indicated, respectively).

Region-Third-Translation Exception
A region-third-translation exception is recognized
when a region third table is in the translation path for
translation of a virtual address and either:

1. The region-third-table entry indicated by the
region-third-index portion of the virtual address is
outside the region third table.

2. The region-invalid bit is one.

The exception is sometimes called simply a region-
translation exception, which term applies also to a
region-first-translation exception and a region-sec-
ond-translation exception.

The exception is recognized as part of the execution
of an instruction that needs the region-third-table
entry in the translation of an instruction, operand, or
side-effect address, except for the operand address
in LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS and TEST PROTECTION, in which
case the condition is indicated by the setting of the
condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at real
locations 168-175 and conditionally at real locations
160 and 162. See “Assigned Storage Locations” on
page 3-73 for a detailed description of this informa-
tion.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1, 2,
or 3. When the exception occurs during the fetching
of the target of EXECUTE, the ILC is 2. When the
exception occurs during the fetching of the target of
EXECUTE RELATIVE LONG, the ILC is 3.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC) is
1, 2, or 3 and indicates the length of the instruction
causing the exception.

The region-third-translation exception is indicated by
a program-interruption code of 003B hex (or 00BB,
023B, or 02BB hex, if a concurrent PER event, a con-

Interruptions 6-37

current transactional-execution-aborted event, or
both are indicated, respectively).

Secondary-Authority Exception
A secondary-authority exception is recognized during
ASN authorization in SET SECONDARY ASN with
space switching, SET SECONDARY ASN WITH
INSTANCE with space switching, or during ASN
authorization in PROGRAM RETURN when the
restored SASN does not equal the restored PASN,
when either:

1. The authority-table entry indicated by the autho-
rization index in control register 4 is beyond the
end of the authority table used. The authority
table is the one designated by the ASN-second-
table entry for the ASN used. For PROGRAM
RETURN, the ASN is the SASN being restored
from the linkage-stack state entry used.

2. The secondary-authority bit indicated by the
authorization index is zero.

The ASN used is stored at real locations 174-175,
and real locations 172-173 are set to zeros.

The operation is nullified.

The instruction-length code is 1 or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 3.

The secondary-authority exception is indicated by a
program-interruption code of 0025 hex (or 00A5 hex
if a concurrent PER event is indicated).

Segment-Translation Exception
A segment-translation exception is recognized when
either:

1. The segment-table entry indicated by the seg-
ment-index portion of a virtual address is outside
the segment table.

2. The segment-invalid bit is one.

The exception is recognized as part of the execution
of an instruction that needs the segment-table entry
in the translation of an instruction, operand, or side-
effect address, except for the operand address in
LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD
REAL ADDRESS and TEST PROTECTION, in which
case the condition is indicated by the setting of the
condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at real
locations 168-175 and conditionally at real locations
160 and 162. See “Assigned Storage Locations” on
page 3-73 for a detailed description of this informa-
tion.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1, 2,
or 3. When the exception occurs during the fetching
of the target of EXECUTE, the ILC is 2. When the
exception occurs during the fetching of the target of
EXECUTE RELATIVE LONG, the ILC is 3.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC) is
1, 2, or 3 and indicates the length of the instruction
causing the exception.

The segment-translation exception is indicated by a
program-interruption code of 0010 hex (or 0090,
0210, or 0290 hex, if a concurrent PER event, a con-
current transactional-execution-aborted event, or
both are indicated, respectively).

Space-Switch Event
A space-switch event is recognized at the completion
of the operation in each of the following cases:

1. The space-switching form of PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
or PROGRAM TRANSFER WITH INSTANCE is
executed and any of the following is true:

a. The primary space-switch-event-control bit,
bit 57 of control register 1, is one before the
operation.

b. The primary space-switch-event-control bit is
one after the operation.

c. A PER event is indicated.

2. RESUME PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE CON-
TROL FAST is executed, the CPU is in the home-
space mode either before or after the operation,
but not both before and after the operation, and
any of the following is true:

a. The primary space-switch-event-control bit,
bit 57 of control register 1, is one.

6-38 The z/Architecture CPU Architecture

b. The home space-switch-event-control bit, bit
57 of control register 13, is one.

c. A PER event is indicated.

For PROGRAM CALL, PROGRAM RETURN, PRO-
GRAM TRANSFER, and PROGRAM TRANSFER
WITH INSTANCE, and for a RESUME PROGRAM,
SET ADDRESS SPACE CONTROL, or SET
ADDRESS SPACE CONTROL FAST instruction that
changes the translation mode to the home-space
mode, the old PASN, which is in bit positions 48-63 of
control register 4 before the operation, is stored at
real locations 174-175, and the old primary space-
switch-event-control bit is placed in bit position 0 and
zeros are placed in bit positions 1-15 at real locations
172-173.

For a RESUME PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE CONTROL
FAST instruction that changes the translation mode
away from the home-space mode, zeros are stored
at real locations 174-175, and the home space-
switch-event-control bit is placed in bit position 0 and
zeros are placed in bit positions 1-15 at real locations
172-173.

For a PROGRAM RETURN instruction that intro-
duces a PSW-format error, it is unpredictable
whether the instruction-length code is 0 or 1, or 0 or 2
if EXECUTE was used, or 0 or 3 if EXECUTE RELA-
TIVE LONG was used.

The operation is completed.

The instruction-length code is 0, 1, or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 0 or
3.

The space-switch event is indicated by a program-
interruption code of 001C hex (or 009C hex if a con-
current PER event is indicated).

Programming Notes:

1. The space-switch event permits the control pro-
gram to gain control whenever a program enters
or leaves a particular address space. The pri-
mary space-switch-event-control bit is loaded
into control register 1, along with the remaining
bits of the primary address-space-control ele-
ment, whenever control register 1 is loaded.

2. The space-switch event may be useful in obtain-
ing programmed authorization checking, in caus-
ing additional trace information to be recorded, or
in enabling or disabling the CPU for PER or trac-
ing.

3. Bit 121 of the ASN-second-table entry (ASTE) is
loaded into bit position 57 of control register 1 as
part of the PC-ss, PR-ss, PT-ss, and PTI-ss oper-
ations. If bit 121 of the ASTE for a particular
address space is set to one, then a space-switch
event is recognized when a program enters or
leaves the address space by means of any of
PC-ss, PR-ss, PT-ss, or PTI-ss.

4. The occurrence of a space-switch event at the
completion of a PC-ss, PR-ss, PT-ss, or PTI-ss
operation when any PER event is indicated, or at
the completion of execution of a RESUME PRO-
GRAM, SET ADDRESS SPACE CONTROL, or
SET ADDRESS SPACE CONTROL FAST
instruction that changes to or from the home-
space mode when any PER event is indicated,
permits the control program to determine the
address space from which the instruction caus-
ing the PER event was fetched.

Special-Operation Exception
A special-operation exception is recognized when
any of the following is true:

1. Execution of any of the following instructions is
attempted with DAT off:

• EXTRACT PRIMARY ASN
• EXTRACT SECONDARY ASN
• INSERT ADDRESS SPACE CONTROL
• INSERT VIRTUAL STORAGE KEY
• MOVE WITH OPTIONAL SPECIFICATIONS
• SET ADDRESS SPACE CONTROL
• SET SECONDARY ASN

2. Execution of BRANCH AND SET AUTHORITY is
attempted, and the R2 field is zero in the base-
authority state or nonzero in the reduced-author-
ity state.

3. Execution of BRANCH AND STACK, stacking
PROGRAM CALL, PROGRAM RETURN, or
TRAP is attempted, and the CPU is not in the pri-
mary-space or access-register mode.

4. Execution of BRANCH IN SUBSPACE GROUP is
attempted, and any of the following is true:

Interruptions 6-39

• The current primary address space is not in
a subspace group associated with the cur-
rent dispatchable unit, that is, the primary-
ASTE origin (PASTEO) in control register 5
does not equal the base-ASTE origin (BAS-
TEO) in the dispatchable-unit control table
(DUCT).

• The access-list-entry token (ALET) in access
register R2 is ALET 1, but a subspace has
not previously been entered by the dispatch-
able unit by means of BRANCH IN SUB-
SPACE GROUP, that is, the subspace-ASTE
origin (SSASTEO) in the DUCT is all zeros.

• The ALET used is other than ALET 0 and
ALET 1, and the destination ASTE (DASTE)
does not specify the base space or a sub-
space of the subspace group, that is, the
DASTE origin (DASTEO) obtained from an
access-list entry does not equal the BAS-
TEO in the DUCT, and either the subspace-
group bit (G) in the address-space-control
element in the DASTE is zero or the base-
space bit (B) in the DASTE is one.

5. Execution of EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE or MODIFY
STACKED STATE is attempted, and the CPU is
not in the primary-space, access-register, or
home-space mode.

6. Execution of EXTRACT TRANSACTION NEST-
ING DEPTH, TRANSACTION BEGIN, or
TRANSACTION END is attempted, and the
transactional-execution control, bit 8 of control
register 0, is zero.

7. Execution of LOAD ADDRESS SPACE PARAM-
ETERS, PROGRAM CALL with space switching
(PC-ss), PROGRAM TRANSFER with space
switching (PT-ss), PROGRAM TRANSFER WITH
INSTANCE with space switching (PT-ss), SET
SECONDARY ASN, or SET SECONDARY ASN
WITH INSTANCE is attempted, or execution of a
PROGRAM RETURN instruction requiring PASN
or SASN translation is attempted, and the ASN-
translation control, bit 44 of control register 14, is
zero.

8. Execution of LOAD GUARDED STORAGE CON-
TROLS or STORE GUARDED STORAGE CON-
TROLS is attempted, and the guarded-storage-
facility-enablement (GSFE) control, bit 59 of con-
trol register 2, is zero.

9. Execution of LOAD PAGE-TABLE-ENTRY
ADDRESS is attempted and the effective
address-space-control element specified by the
M4 field of the instruction designates the real
space.

10. Execution of LOAD REAL ADDRESS (LRA) is
attempted in the 24-bit or 31-bit addressing
mode, and bits 0-32 of the resulting real or abso-
lute address are not all zeros.

11. Execution of MOVE TO PRIMARY or MOVE TO
SECONDARY is attempted, and the CPU is not
in the primary-space or secondary-space mode.

12. Execution of MOVE TO PRIMARY, MOVE TO
SECONDARY, or SET ADDRESS SPACE CON-
TROL is attempted, and the secondary-space
control, bit 37 of control register 0, is zero. The
exception may be recognized for this reason
when execution of SET ADDRESS SPACE CON-
TROL FAST is attempted.

13. Execution of MOVE WITH OPTIONAL SPECIFI-
CATIONS is attempted, and either of the follow-
ing conditions are true:

• Bit 47 of general register 0 is one, bits 40-41
of the register contain 11 binary, and the
problem-state bit, bit 15 of the current PSW,
is one.

• The secondary-space control, bit 37 of con-
trol register 0 is zero, and any of the following
conditions are true:

– Bit 47 of general register 0 is zero, and
bits 16-17 of the current PSW are 10
binary.

– Bit 47 of general register 0 is one, and
bits 40-41 of the register are 10 binary.

– Bit 63 of general register 0 is zero, and
bits 16-17 of the current PSW are 10
binary.

– Bit 63 of general register 0 is one, and
bits 56-57 of the register are 10 binary.

14. Execution of basic PROGRAM CALL, PRO-
GRAM TRANSFER, or PROGRAM TRANSFER
WITH INSTANCE is attempted, and the CPU is
not in the primary-space mode.

6-40 The z/Architecture CPU Architecture

15. Execution of basic PROGRAM CALL is
attempted, and the extended-addressing-mode
bit, bit 31 of the current PSW, does not equal the
entry-extended-addressing-mode bit, bit 129, in
the entry-table entry.

16. Execution of PROGRAM CALL, PROGRAM
TRANSFER, or PROGRAM TRANSFER WITH
INSTANCE is attempted, and the subsystem-
linkage control, bit 192 of the primary ASN-sec-
ond-table entry, is zero.

17. Execution of the space-switching form of PRO-
GRAM TRANSFER or SET SECONDARY ASN
is attempted, the ASN-and-LX-reuse control in
control register 0 is one, and the reusable-ASN
bit in the located ASTE is one.

18. Execution of the space-switching form of PRO-
GRAM TRANSFER WITH INSTANCE or SET
SECONDARY ASN WITH INSTANCE is
attempted, the controlled-ASN bit is one in the
ASN-second-table entry used, and the CPU is in
the problem state at the beginning of the opera-
tion.

19. Execution of SET SYSTEM MASK is attempted
in the supervisor state, and the SSM-suppres-
sion control, bit 33 of control register 0, is one.

20. Execution of TRANSACTION ABORT is
attempted, and the CPU is not in the transac-
tional-execution mode at the beginning of the
instruction.

21. Execution of TRAP is attempted, and either of
the following is true:

• The TRAP-enabled bit, bit 31 in bytes 44-47
of the dispatchable-unit control table, is zero.

• The PSW control, bit 13 of bytes 0-3 of the
trap control table, is zero and bit 31 of the
current PSW, the extended-addressing-
mode bit, is one.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The special-operation exception is indicated by a
program-interruption code of 0013 hex (or 0093,
0213, or 0293 hex, if a concurrent PER event, a con-
current transactional-execution-aborted event, or
both are indicated, respectively).

Specification Exception
A specification exception is recognized when any of
the following is true:

1. A one is introduced into an unassigned bit posi-
tion of the PSW (that is, any of bit positions 0,
2-4, 25-30, or 33-63). This is handled as an early
PSW specification exception.

2. A one is introduced into bit position 12 of the
PSW. This is handled as an early PSW specifica-
tion exception.

3. The PSW is invalid in any of the following ways:

a. Bit 31 of the PSW is one and bit 32 is zero.

b. Bits 31 and 32 of the PSW are zero, indicat-
ing the 24-bit addressing mode, and bits
64-103 of the PSW are not all zeros.

c. Bit 31 of the PSW is zero and bit 32 is one,
indicating the 31-bit addressing mode, and
bits 64-96 of the PSW are not all zeros.

d. In the ESA/390-compatibility mode, bit 5 of
the PSW is one.

e. In the ESA/390-compatibility mode, bit 31 of
the PSW is one. It is unpredictable whether
this condition is recognized.

This is handled as an early PSW specification
exception. Note, items b and c, above, do not
apply to SAM24 and SAM31, respectively. See
items 48 and 49 in this list for further explanation.

4. The PSW contains an odd instruction address.

5. An operand address does not designate an inte-
gral boundary in an instruction requiring such
integral-boundary designation.

6. An odd-numbered general register is designated
by an R field of an instruction that requires an
even-numbered register designation.

7. A floating-point register other than 0, 1, 4, 5, 8, 9,
12, or 13 is designated for an extended operand.

8. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

9. The length of the first-operand field is less than
or equal to the length of the second-operand field
in decimal multiplication or division.

10. Execution of CIPHER MESSAGE, CIPHER
MESSAGE WITH AUTHENTICATION, CIPHER

Interruptions 6-41

MESSAGE WITH CIPHER FEEDBACK,
CIPHER MESSAGE WITH CHAINING, CIPHER
MESSAGE WITH COUNTER, CIPHER MES-
SASGE WITH OUTPUT FEEDBACK, COM-
PUTE DIGITAL SIGNATURE
AUTHENTICATION, COMPUTE INTERMEDI-
ATE MESSAGE DIGEST, COMPUTE LAST
MESSAGE DIGEST, COMPUTE MESSAGE
AUTHENTICATION CODE, PERFORM CRYP-
TOGRAPHIC KEY MANAGEMENT OPERA-
TION, PERFORM CRYPTOGRAPHIC
COMPUTATION, or PERFORM RANDOM NUM-
BER OPERATION is attempted, and the function
code in bits 57-63 of general register 0 contain
an unassigned or uninstalled function code.

11. Execution of CIPHER MESSAGE, CIPHER
MESSAGE WITH CIPHER FEEDBACK,
CIPHER MESSAGE WITH CHAINING, CIPHER
MESSASGE WITH OUTPUT FEEDBACK, or
PERFORM RANDOM NUMBER OPERATION is
attempted, and the R1 or R2 field designates an
odd-numbered register or general register 0.

12. Execution of CIPHER MESSAGE, CIPHER
MESSAGE WITH CHAINING, CIPHER MES-
SAGE WITH COUNTER, CIPHER MESSASGE
WITH OUTPUT FEEDBACK, COMPUTE
INTERMEDIATE MESSAGE DIGEST or COM-
PUTE MESSAGE AUTHENTICATION CODE is
attempted, and the second operand length is not
a multiple of the data block size of the designated
function. This specification-exception condition
does not apply to the query functions.

13. Execution of CIPHER MESSAGE WITH
AUTHENTICATION or CIPHER MESSAGE
WITH COUNTER is attempted, and the R1, R2,
or R3 field designates an odd-numbered register
or general register 0.

14. Execution of CIPHER MESSAGE WITH
AUTHENTICATION is attempted, the function
code is nonzero, the LPC flag is one (indicating
that the last blocks of plaintext or ciphertext are
being processed), but the LAAD flag is zero.

15. Execution of CIPHER MESSAGE WITH
CIPHER FEEDBACK is attempted, and any of
the following applies:

• The second operand length is not a multiple
of the length of cipher feedback. This specifi-
cation-exception condition does not apply to
the query functions.

• For DEA or TDEA functions, bits 32-39 of
general register 0 specify a value that is zero
or greater than 8.

• For AES functions, bits 32-39 of general reg-
ister 0 specify a value that is zero or greater
than 16.

16. Execution of COMPARE AND FORM CODE-
WORD is attempted, and general registers 1, 2,
and 3 do not initially contain even values.

17. Execution of COMPARE AND REPLACE DAT
TABLE ENTRY is attempted and either of the fol-
lowing conditions exist:

• The DTT field, bit positions 59-61 of general
register R2, contain 001, 010, or 011 binary.

• Bit positions 52-63 of general register R2 + 1
contain nonzero values.

18. Execution of COMPARE AND SWAP AND
STORE is attempted and any of the following
conditions exist:

• The function code specifies an unassigned
value.

• The store characteristic specifies an unas-
signed value.

• The function code is 0, and the first operand
is not designated on a word boundary.

• The function code is 1, and the first operand
is not designated on a doubleword boundary.

• The function code is 2, and any of the follow-
ing is true:

– The compare-and-swap-and-store facil-
ity 2 is not installed.

– The first operand is not designated on a
quadword boundary.

– The R3 field does not designate the
even-numbered register of an even-odd
register pair.

• The second operand is not designated on an
integral boundary corresponding to the size
of the store value.

6-42 The z/Architecture CPU Architecture

19. Execution of COMPARE LOGICAL LONG UNI-
CODE or MOVE LONG UNICODE is attempted,
and the contents of either general register R1 + 1
or R3 + 1 do not specify an even number of bytes.

20. Execution of COMPARE LOGICAL STRING,
MOVE STRING or SEARCH STRING is
attempted, and bits 32-55 of general register 0
are not all zeros.

21. Execution of COMPRESSION CALL is
attempted, and bits 48-51 of general register 0
have any of the values 0000 and 0110-1111
binary when bit 44 is 0.

22. Execution of COMPUTE INTERMEDIATE MES-
SAGE DIGEST, COMPUTE LAST MESSAGE
DIGEST, or COMPUTE MESSAGE AUTHENTI-
CATION CODE is attempted, and bit 56 of gen-
eral register 0 is not zero.

23. Execution of COMPUTE DIGITAL SIGNATURE
AUTHENTICATION, COMPUTE INTERMEDI-
ATE MESSAGE DIGEST, COMPUTE LAST
MESSAGE DIGEST, or COMPUTE MESSAGE
AUTHENTICATION CODE is attempted, and the
R2 field designates an odd-numbered register or
general register 0.

24. Execution of the COMPUTE LAST MESSAGE
DIGEST functions KLMD-SHAKE-128 or KLMD-
SHAKE-256 is attempted, and the R1 field desig-
nates an odd-numbered register or general regis-
ter 0.

25. Execution of CONVERT HFP TO BFP, CON-
VERT TO FIXED (BFP or HFP), or LOAD FP
INTEGER (BFP) is attempted, and the M3 field
does not designate a valid modifier.

26. Execution of DEFLATE CONVERSION CALL is
attempted, and any of the following applies:

• The function code in bits 57-63 of general
register 0 designate an unassigned or unin-
stalled function code.

• The parameter block is not designated on a
doubleword boundary.

• The R1 or R2 field designates an odd-num-
bered register or general register 0.

• The R3 field designates general register 0 or
1.

• The DFLTCC-CMPR or DFLTCC-XPND
function is specified and the specified his-

tory-buffer type is circular and the third oper-
and is not designated on a 4 K-byte
boundary.

• The DFLTCC-GDHT function is specified
and the second-operand length equals zero.

• The DFLTCC-CMPR or DFLTCC-XPND
function is specified, the continuation flag
(CF) field of the parameter block is initially
zero, and the second-operand length equals
zero.

27. Execution of DIVIDE TO INTEGER is attempted,
and the M4 field does not designate a valid modi-
fier.

28. Execution of EXTRACT STACKED STATE is
attempted, and the code in bit positions 56-63 of
general register R2 is greater than 4 when the
ASN-and-LX-reuse facility is not installed or is
greater than 5 when the facility is installed.

29. Execution of INVALIDATE DAT TABLE ENTRY is
attempted, and bits 44-51 of general register R2

are not all zeros.

30. Execution of INVALIDATE PAGE TABLE ENTRY
is attempted, the IPTE-range facility is installed,
the R3 field is nonzero, and the page index in
general register R2 plus the additional-entry
count in general register R3 is greater than 255.

31. Execution of LOAD COUNT TO BLOCK
BOUNDARY is attempted, and the M3 field speci-
fies a reserved value.

32. Execution of LOAD FPC or LOAD FPC AND
SIGNAL is attempted, and one or more bits of
the second operand corresponding to unsup-
ported bits in the FPC register are one.

33. Execution of LOAD PAGE-TABLE-ENTRY
ADDRESS is attempted and the M4 field of the
instruction contains any value other than
0000-0100 binary.

34. Execution of LOAD PSW is attempted and bit 12
of the doubleword at the second-operand
address is zero. It is model dependent whether
or not this exception is recognized.

35. Execution of MONITOR CALL is attempted, and
bit positions 8-11 of the instruction do not contain
zeros.

36. Execution of MOVE PAGE is attempted, and bit
positions 48-51 of general register 0 do not con-

Interruptions 6-43

tain zeros or bits 52 and 53 of the register are
both one.

37. Execution of PACK ASCII is attempted, and the
L2 field is greater than 31.

38. Execution of PACK UNICODE is attempted, and
the L2 field is greater than 63 or is even.

39. Execution of PERFORM FLOATING POINT
OPERATION is attempted, bit 32 of general reg-
ister 0 is zero, and one or more fields in bits 33-
63 are invalid or designate an uninstalled func-
tion.

40. Execution of PERFORM FRAME MANAGE-
MENT FUNCTION is attempted, and either or
both of the following are true:

• Bits 32-45, 52, 55, or 63 of general register
R1 are not zero.

• The frame-size code in general register R1

specifies a reserved value.

41. Execution of PERFORM LOCKED OPERATION
is attempted, and any of the following is true:

• The T bit, bit 55 of general register 0 is zero,
and the function code in bits 56-63 of the
register is invalid.

• Bits 32-54 of general register 0 are not all
zeros.

• In the access-register mode, for function
codes that cause use of a parameter list con-
taining an ALET, the R3 field is zero.

42. Execution of PERFORM RANDOM NUMBER
OPERATION is attempted, bit 56 of general reg-
ister 0 is one, and the length in general register
R2 + 1 is greater than 512.

43. Execution of PERFORM TIMING FACILITY
FUNCTION is attempted, and either of the follow-
ing is true:

• Bit 56 of general register 0 is not zero.

• Bits 57-63 of general register 0 specify an
unassigned or uninstalled function code.

44. Execution of PROGRAM TRANSFER or PRO-
GRAM TRANSFER WITH INSTANCE is
attempted, and all of the following are true:

• The extended-addressing-mode bit in the
PSW is zero.

• The basic-addressing-mode bit, bit 32, in the
general register designated by the R2 field of
the instruction is zero.

• Bits 33-39 of the instruction address in the
same register are not all zeros.

45. Execution of RESUME PROGRAM is attempted,
and any of the following is true:

• Bits 31, 32, and 64-127 of the PSW field in
the second operand are not valid for place-
ment in the current PSW. The exception is
recognized if any of the following is true:

– Bits 31 and 32 are both zero and bits
64-103 are not all zeros.

– Bits 31 and 32 are zero and one, respec-
tively, and bits 64-96 are not all zeros.

– Bits 31 and 32 are one and zero, respec-
tively.

– Bit 127 is one.

• Bits 0-12 of the parameter list are not all
zeros.

46. Execution of SEARCH STRING UNICODE is
attempted, and bits 32-47 of general register 0
are not all zeros.

47. Execution of SET ADDRESS SPACE CONTROL
or SET ADDRESS SPACE CONTROL FAST is
attempted, and bits 52 and 53 of the second-
operand address are not both zeros.

48. Execution of SET ADDRESSING MODE
(SAM24) is attempted, and bits 0-39 of the unup-
dated instruction address in the PSW, bits
64-103 of the PSW, are not all zeros.

49. Execution of SET ADDRESSING MODE
(SAM31) is attempted, and bits 0-32 of the unup-
dated instruction address in the PSW, bits 64-96
of the PSW, are not all zeros.

50. Execution of SET CLOCK PROGRAMMABLE
FIELD is attempted, and bits 32-47 of general
register 0 are not all zeros.

51. Execution of SET BFP ROUNDING MODE
(SRNMB) is attempted, and either bits 56-60 of
the second-operand address are not all zeros, or
bits 61-63 of the second-operand address do not
designate a valid rounding mode.

6-44 The z/Architecture CPU Architecture

52. Execution of SET FPC or SET FPC AND SIG-
NAL is attempted, and one or more bits of the
first operand corresponding to unsupported bits
in the FPC register are one.

53. Execution of STORE SYSTEM INFORMATION
is attempted, the function code in general regis-
ter 0 is valid, and bits 36-55 of general register 0
and bits 32-47 of general register 1 are not all
zeros.

54. Execution of TRANSACTION ABORT is
attempted, and the second-operand address is
between 0 and 255

55. Execution of TRANSACTION BEGIN (TBEGIN)
is attempted, and the program-interruption-filter-
ing control, bits 14-15 of I2 field of the instruction,
contains the value 3.

56. Execution of TRANSACTION BEGIN
(TBEGINC) is attempted, and the B1 field is not
zero.

57. Execution of TRANSLATE AND TEST
EXTENDED or TRANSLATE AND TEST
REVERSE EXTENDED is attempted, the A bit,
bit 0 of the M3 field, is one, and the argument-
character length in general register R1 + 1 is not
an even number.

58. Execution of TRANSLATE TWO TO ONE or
TRANSLATE TWO TO TWO is attempted, and
the length in general register R1 + 1 does not
specify an even number of bytes.

59. Execution of UNPACK ASCII is attempted, and
the L1 field is greater than 31.

60. Execution of UNPACK UNICODE is attempted,
and the L1 field is greater than 63 or is even.

61. Execution of UPDATE TREE is attempted, and
the initial contents of general registers 4 and 5
are not a multiple of 8 in the 24-bit or 31-bit
addressing mode or are not a multiple of 16 in
the 64-bit addressing mode.

62. Execution of a vector instruction is attempted,
and an instruction-specified reason was recog-
nized. See instruction descriptions in Chapters
21-25 for detailed reasons for specification
exceptions.

The execution of the instruction identified by the old
PSW is suppressed. However, for early PSW specifi-

cation exceptions (causes 1-3) the operation that
introduces the new PSW is completed, but an inter-
ruption occurs immediately thereafter.

Except as noted below, the instruction-length code
(ILC) is 1, 2, or 3, indicating the length of the instruc-
tion causing the exception.

When the instruction address is odd (cause 4 on
page 6-40), it is unpredictable whether the ILC is 1,
2, or 3.

When the exception is recognized because of an
early PSW specification exception (causes 1-3) and
the exception has been introduced by LOAD PSW,
LOAD PSW EXTENDED, PROGRAM RETURN, or
an interruption, the ILC is 0. When the exception is
introduced by SET ADDRESSING MODE (SAM24,
SAM31), the ILC is 1, or it is 2 if SET ADDRESSING
MODE was the target of EXECUTE, or 3 if the SET
ADDRESSING MODE was the target of EXECUTE
RELATIVE LONG. When the exception is introduced
by SET SYSTEM MASK or by STORE THEN OR
SYSTEM MASK, the ILC is 2, except that when the
SSM or STOSM instruction is the target of EXECUTE
RELATIVE LONG, the ILC is 3.

The specification exception is indicated by a pro-
gram-interruption code of 0006 hex (or 0086, 0206,
or 0286 hex, if a concurrent PER event, a concurrent
transactional-execution-aborted event, or both are
indicated, respectively).

Programming Note: See “Exceptions Associated
with the PSW” on page 6-9 for a definition of when
the exceptions associated with the PSW are recog-
nized.

Stack-Empty Exception
A stack-empty exception is recognized during the
unstacking process in EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN when the
current linkage-stack entry is a header entry and the
backward stack-entry validity bit in the header entry
is zero.

The operation is nullified.

The instruction-length code is 1 or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 3.

Interruptions 6-45

The stack-empty exception is indicated by a pro-
gram-interruption code of 0031 hex (or 00B1 hex if a
concurrent PER event is indicated).

Stack-Full Exception
A stack-full exception is recognized during the stack-
ing process in BRANCH AND STACK or stacking
PROGRAM CALL when there is not enough remain-
ing free space in the current linkage-stack section
and the forward-section validity bit in the trailer entry
of the section is zero.

The operation is nullified.

The instruction-length code is 2, except that when
the exception occurs during the fetching of the target
of EXECUTE RELATIVE LONG, the ILC is 3.

The stack-full exception is indicated by a program-
interruption code of 0030 hex (or 00B0 hex if a con-
current PER event is indicated).

Stack-Operation Exception
A stack-operation exception is recognized during the
unstacking process in PROGRAM RETURN when
the unstack-suppression bit is one in any linkage-
stack state entry or header entry encountered during
the process.

The operation is nullified.

The instruction-length code is 1 or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 3.

The stack-operation exception is indicated by a pro-
gram-interruption code of 0034 hex (or 00B4 hex if a
concurrent PER event is indicated).

Stack-Specification Exception
A stack-specification exception is recognized in each
of the following cases:

1. During the stacking process in BRANCH AND
STACK or stacking PROGRAM CALL when there
is not enough remaining free space in the current
linkage-stack section and either of the following
is true:

a. The remaining-free-space value used to
locate the trailer entry of the current section
is not a multiple of 8.

b. There is not enough remaining free space in
the next section.

2. During the unstacking process in EXTRACT
STACKED REGISTERS, EXTRACT STACKED
STATE, MODIFY STACKED STATE, or PRO-
GRAM RETURN when the current linkage-stack
entry is a header entry in which the backward
stack-entry address designates another header
entry.

The operation is nullified.

The instruction-length code is 1 or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 3.

The stack-specification exception is indicated by a
program-interruption code of 0032 hex (or 00B2 hex
if a concurrent PER event is indicated).

Stack-Type Exception
A stack-type exception is recognized during the
unstacking process in EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN in each
of the following cases:

1. The current linkage-stack entry is not a header
entry or a state entry.

2. When the current linkage-stack entry is a header
entry, the preceding entry, designated by the
backward stack-entry address in the header
entry, is not a header entry or a state entry. (A
stack-specification exception is recognized if the
preceding entry is a header entry.)

The operation is nullified.

The instruction-length code is 1 or 2, except that
when the exception occurs during the fetching of the
target of EXECUTE RELATIVE LONG, the ILC is 3.

The stack-type exception is indicated by a program-
interruption code of 0033 hex (or 00B3 hex if a con-
current PER event is indicated).

Trace-Table Exception
A trace-table exception is recognized when the CPU
attempts to store a trace-table entry which would
reach or cross the next 4 K-byte block boundary. For
the purpose of recognizing this exception in the
TRACE instruction, the explicit trace entry is treated

6-46 The z/Architecture CPU Architecture

as being 76 bytes long for TRACE (TRACE) and as
144 bytes long for TRACE (TRACG). For a PRO-
GRAM CALL instruction that would cause storing of
both a PROGRAM CALL trace entry and a mode-
switch trace entry, the exception is recognized for the
first entry when either the first or the second entry
would reach or cross the boundary.

The operation is nullified.

The instruction-length code is 1, 2, or 3, indicating
the length of the instruction causing the exception.

The trace-table exception is indicated by a program-
interruption code of 0016 hex (or 0096 hex if a con-
current PER event is indicated).

Transaction-Constraint Exception
A transaction-constraint exception is recognized
when a constrained transaction violates one or more
of its constraints. See “Constrained Transaction” on
page 5-107 for details on the constraints.

The unit of operation is suppressed.

When the exception occurs as a result of the fetching
of an instruction, it is unpredictable whether the ILC
is 1, 2, or 3. Otherwise, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction at which the exception was detected.

The transaction-constraint exception is indicated by a
program-interruption code of 0218 hex (or 0298 hex if
a concurrent PER event is indicated).

Programming Note: The instruction designated by
the aborted-transaction instruction address is not
necessarily the instruction that caused the transac-
tion-constraint exception.

Transactional-Execution-Aborted Event
A transactional-execution-aborted event is recog-
nized when a transaction is aborted due to a pro-
gram-interruption condition that results in an
interruption.

The instruction-length code stored in bits 5-6 of real
location 141, and, when a TBEGIN-specified transac-
tion diagnostic block (TDB) is stored, the instruction-
length code stored in bits 5-6 of byte 37 of the TDB,
is 1, 2, or 3, reflecting the length of the instruction
that caused the abort, except that when the excep-

tion occurs during fetching of an instruction, it is
unpredictable whether the ILC is 1, 2, or 3.

The transactional-execution-aborted event is indi-
cated by setting bit 6 of the program-interruption
code at real locations 142-143 to one. The remainder
of the program-interruption code at real locations
142-143 identifies the program-interruption condition
that caused the abort. When a TBEGIN-specified
transaction diagnostic block is stored, bit 6 is not set
in the program-interruption code in bytes 38-39 of the
TDB.

See “Transaction Abort Processing” on page 5-102
for a detailed description of transaction abort pro-
cessing due to program interruptions.

Translation-Specification Exception
A translation-specification exception is recognized
when translation of a virtual address is attempted
and any of the following is true:

1. In the lookup in the table designated by the
address-space-control element used for the
translation, the table-type bits in the selected
table entry do not equal the designation-type bits
in the address-space-control element.

2. In a lookup in a table designated by an entry in a
region first table, region second table, or region
third table, the value of the table-type bits in the
selected table entry is not one less than the
value of the same bits in the designating table
entry.

3. The private-space control, bit 55 in the address-
space-control element used for the translation, is
one, and either of the following is true:

• The segment-table entry used for the trans-
lation is valid, and the common-segment bit,
bit 59, in the segment-table entry is one.

• EDAT-2 applies, the region-third-table entry
used for the translation is valid, and the com-
mon-region bit, bit 59, in the region-third-
table entry is one.

4. The page-table entry used for the translation is
valid, and bit position 52 does not contain zero.

5. The page-table entry used for the translation is
valid, EDAT-1 does not apply, the instruction-exe-
cution-protection facility is not installed, and bit
position 55 does not contain zero. It is model
dependent whether this condition is recognized.

Interruptions 6-47

Any of the reasons 1-5 listed above is referred to by
saying that the DAT-table entry has a format error.

The exception is recognized only as part of the exe-
cution of an instruction using address translation,
that is, when DAT is on and a logical address, instruc-
tion address, or virtual address must be translated, or
when LOAD PAGE-TABLE-ENTRY ADDRESS,
LOAD REAL ADDRESS or STORE REAL ADDRESS
is executed.

The unit of operation is suppressed.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1, 2,
or 3. When the exception occurs during the fetching
of the target of EXECUTE, the ILC is 2. When the
exception occurs during the fetching of the target of
EXECUTE RELATIVE LONG, the ILC is 3.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC) is
1, 2, or 3 and indicates the length of the instruction
causing the exception.

The translation-specification exception is indicated
by a program-interruption code of 0012 hex (or 0092,
0212, or 0292 hex, if a concurrent PER event, a con-
current transactional-execution-aborted event, or
both are indicated, respectively).

Programming Note: When a translation-specifica-
tion exception is recognized in the process of trans-
lating an instruction address, the operation is
suppressed. In this case, the instruction-length code
(ILC) is needed to derive the address of the instruc-
tion, as the instruction address in the old PSW has
been incremented by the amount indicated by the
ILC. In the case of region-first-translation, region-
second-translation, region-third-translation, segment-
translation, and page-translation exceptions, the
operation is nullified, the instruction address in the
old PSW identifies the instruction, and the ILC may
be arbitrarily set to 1, 2, or 3.

Vector Processing Exception
A vector-processing exception is recognized when
there is an exception while executing a vector floating
point instruction. See the section “IEEE Exceptions”
on page 19-7 for details.

The operation is suppressed.

The instruction-length code is 3, except that when
the instruction is target of EXECUTE, the ILC is 2.

Each of the IEEE exceptions is controlled by a mask
bit in the floating-point-control (FPC) register. The
handling of these exceptions is described in the sec-
tion “IEEE Exceptions” on page 9-18.

The vector-processing exception is indicated by a
program-interruption code of 001B hex (or 009B,
021B, or 029B hex, if a concurrent PER event, a con-
current transactional-execution-aborted event, or
both are indicated, respectively).

Collective Program-Interruption
Names

For the sake of convenience, certain program excep-
tions are grouped together under a single collective
name. These collective names are used when it is
necessary to refer to the complete set of exceptions,
such as in instruction definitions. Four collective
names are used:

• Access exceptions
• ASN-translation exceptions
• Subspace-replacement exceptions
• Trace exceptions

The individual exceptions and their priorities are
listed in “Multiple Program-Interruption Conditions”
on page 6-51.

Recognition of Access Exceptions

Figure 6-7 on page 6-48 summarizes the conditions
that can cause access exceptions and the action
taken when they are encountered.

Any access exception is recognized as part of the
execution of the instruction with which the exception
is associated. An access exception is not recognized
when the CPU attempts to prefetch from an unavail-
able location or detects some other access-exception
condition, but a branch instruction or an interruption
changes the instruction sequence such that the
instruction is not executed.

Every instruction can cause an access exception to
be recognized because of instruction fetch. Addition-
ally, access exceptions associated with instruction

6-48 The z/Architecture CPU Architecture

Condition2

Translation for
Virtual Address

of LPTEA

Translation for
Virtual Address
of LOAD REAL

ADDRESS

Translation for
TAR and TPROT,
and Access for

Logical Address
of TPROT1

Translation and
Access for Any
Other Address

Indi-
cation Action

Indi-
cation Action

Indi-
cation Action

Indi-
cation Action

Access register3
Bits 0-6 not all zeros cc3 Complete cc3 Complete cc3 Complete AS Suppress

Effective access-list designation
Invalid address of designation A Suppress A Suppress A Suppress A Suppress

Access-list entry3
Access-list-length violation cc3 Complete cc3 Complete cc3 Complete AT Nullify
Invalid address of entry A Suppress A Suppress A Suppress A Suppress
I bit on cc3 Complete cc3 Complete cc3 Complete AT Nullify
Sequence number in access register
not equal to sequence number in entry

cc3 Complete cc3 Complete cc3 Complete ALQ Nullify

ASN-second-table entry3
Invalid address of entry A Suppress A Suppress A Suppress A Suppress
I bit on cc3 Complete cc3 Complete cc3 Complete AV Nullify
Sequence number in access-list entry
not equal to sequence number in entry

cc3 Complete cc3 Complete cc3 Complete ASQ Nullify

Authority-table entry3,4
Authority-table-length violation cc3 Complete cc3 Complete cc3 Complete EA Nullify
Invalid address of entry A Suppress A Suppress A Suppress A Suppress
Second-authority bit not one cc3 Complete cc3 Complete cc3 Complete EA Nullify

Address-space-control element
Bits 0-10, 0-21, or 0-32 of instruction or
operand address not all zeros when
address-space-control element is a
region-second-table designation,
region-third-table designation, or
segment-table designation, respectively

cc3 Complete cc3 Complete cc3 Complete ATY Nullify

Region-table-entry designation by
address-space-control element or
region-table-entry
Entry outside of table cc3 Complete cc3 Complete cc3 Complete RT Nullify
Invalid address of entry A Suppress A Suppress A Suppress A Suppress
I bit on cc2 Complete cc3 Complete cc3 Complete RT Nullify
TT in entry not equal DT in address-
space-control element or not one less
than TT in next-higher-level entry

TS Suppress TS Suppress TS Suppress TS Suppress

Figure 6-7. Handling of Access Exceptions (Part 1 of 3)

Interruptions 6-49

Segment-table entry designation by
address-space-control element or
region-table-entry
Entry outside of table cc3 Complete cc3 Complete cc3 Complete ST Nullify
Invalid address of entry A Suppress A Suppress A Suppress A Suppress
I bit on (except as follows) cc2 Complete cc1 Complete cc3 Complete ST Nullify
I bit on (LRA in 24-bit or 31-bit mode
when bits 0-32 of entry address not all
zeros)

- - cc3 Complete - - - -

One in a bit position which is checked
for zero5

TS Suppress TS Suppress TS Suppress TS Suppress

TT in entry not equal DT in address-
space-control element or not one less
than TT in next-higher-level entry (TT
not zero)

TS Suppress TS Suppress TS Suppress TS Suppress

Page-table entry
Invalid address of entry - - A Suppress A Suppress A Suppress
I bit on (except as follow) - - cc2 Complete cc3 Complete PT Nullify
I bit on (LRA in 24-bit or 31-bit mode
when bits 0-32 of entry address not all
zeros)

- - cc3 Complete cc3 Complete PT Nullify

One in a bit position which is checked
for zeros5

- - TS Suppress TS Suppress TS Suppress

Access for instruction fetch
Location protected (key-controlled or
instruction-execution protection)

- - - - - - P Suppress

Invalid address - - - - - - A Suppress

Access for operand
Location protected (low-address, DAT,
or key-controlled protection)

- - - - cc set6 Complete P Term.*

Invalid address - - - - A Suppress A Term.*

Explanation
- The condition does not apply.
* Action is to terminate except where otherwise specified in this publication. For access-list-controlled protection,

DAT protection, and instruction-execution protection, the action is always to suppress.
1 TAR does not have a logical address. The rows “Address-space-control element” through “Access for

operands” apply only to TPROT, not to TAR.
2 Protection applies only to accesses for instruction fetch and for operands. It does not apply to the fetching of the

effective access-list designation or any of the listed entries.
3 Exceptions related to an access register, effective access-list designation, access-list entry, ASN-second-table

entry, or authority-table entry are recognized only in the access-register mode except that, for LOAD REAL
ADDRESS and STORE REAL ADDRESS, they are recognized when PSW bits 16 and 17 are 01 binary, and,
for TEST ACCESS, they are recognized regardless of the translation mode.

Condition2

Translation for
Virtual Address

of LPTEA

Translation for
Virtual Address
of LOAD REAL

ADDRESS

Translation for
TAR and TPROT,
and Access for

Logical Address
of TPROT1

Translation and
Access for Any
Other Address

Indi-
cation Action

Indi-
cation Action

Indi-
cation Action

Indi-
cation Action

Figure 6-7. Handling of Access Exceptions (Part 2 of 3)

6-50 The z/Architecture CPU Architecture

execution may occur because of an access to an
operand in storage.

An access exception due to fetching an instruction is
indicated when the first instruction halfword cannot
be fetched without encountering the exception. When
the first halfword of the instruction has no access
exceptions, access exceptions may be indicated for
additional halfwords according to the instruction
length specified by the first two bits of the instruction;
however, when the operation can be performed with-
out accessing the second or third halfwords of the
instruction, it is unpredictable whether the access
exception is indicated for the unused part. Since the
indication of access exceptions for instruction fetch is

common to all instructions, it is not covered in the
individual instruction definitions.

Except where otherwise indicated in the individual
instruction description, the following rules apply for
exceptions associated with an access to an operand
location. For a fetch-type operand, access exceptions
are necessarily indicated only for that portion of the
operand which is required for completing the opera-
tion. It is unpredictable whether access exceptions
are indicated for those portions of a fetch-type oper-
and which are not required for completing the opera-
tion. For a store-type operand, access exceptions are
recognized for the entire operand even if the opera-
tion could be completed without the use of the inac-
cessible part of the operand. In situations where the

4 Authority table is not accessed and secondary-authority bit is not checked if the private bit in the access-list
entry is zero or the access-list- entry authorization index in the access-list entry is equal to the extended
authorization index in control register 8.

5 A translation-specification exception for a format error in a table entry is recognized only when the execution of
an instruction requires the entry for translation of an address.

6 The condition code is set as follows:
0 Operand location not protected.
1 Fetches permitted, but stores not permitted.
2 Neither fetches nor stores permitted.

A Addressing exception.

ALQ ALE-sequence exception.

AS ALET-specification exception.

ASQ ASTE-sequence exception.

AT ALEN-translation exception.

ATY ASCE-type exception.

AV ASTE-validity exception.

cc1 Condition code 1 set.

cc2 Condition code 2 set.

cc3 Condition code 3 set.

EA Extended-authority exception.

P Protection exception.

PT Page-translation exception.

RT Region-first-translation, region-second-translation, or region-third translation exception, depending on the level
of the table.

ST Segment-translation exception.

TS Translation-specification exception.

Condition2

Translation for
Virtual Address

of LPTEA

Translation for
Virtual Address
of LOAD REAL

ADDRESS

Translation for
TAR and TPROT,
and Access for

Logical Address
of TPROT1

Translation and
Access for Any
Other Address

Indi-
cation Action

Indi-
cation Action

Indi-
cation Action

Indi-
cation Action

Figure 6-7. Handling of Access Exceptions (Part 3 of 3)

Interruptions 6-51

value of a store-type operand is defined to be unpre-
dictable, it is unpredictable whether an access excep-
tion is indicated.

Whenever an access to an operand location can
cause an access exception to be recognized, the
word “access” is included in the list of program
exceptions in the description of the instruction. This
entry also indicates which operand can cause the
exception to be recognized and whether the excep-
tion is recognized on a fetch or store access to that
operand location. Access exceptions are recognized
only for the portion of the operand as defined for
each particular instruction.

Multiple Program-Interruption
Conditions

Except for PER basic events, only one program-inter-
ruption condition is indicated with a program interrup-
tion. The existence of one condition, however, does
not preclude the existence of other conditions. When
more than one program-interruption condition exists,
only the condition having the highest priority is identi-
fied in the interruption code.

When multiple conditions of the same priority apply, it
is unpredictable which is indicated.

When multiple parts of the same storage operand are
subject to separate access controls, the priority of
access exceptions associated with the parts is
unpredictable and is not necessarily related to the
sequence specified for the access of bytes within the
operand. For example, when (a) the first operand of a
MOVE (MVC) instruction crosses a segment bound-
ary, (b) the invalid bit is one in the segment-table
entry used to translate the leftmost part of the oper-
and, and (c) the DAT-protection bit is one in a valid
page-table entry used to translate the rightmost part
of the operand, then it is unpredictable whether a
segment-translation exception or protection excep-
tion is recognized.

When an instruction has two storage operands and
access-exception conditions exist for both operands,
it is unpredictable which condition is recognized. A
subsequent execution of the same instruction (with
the same exception conditions) may result in the
exception condition being recognized for the same
operand as the first execution, or for the other oper-
and.

The type of ending which occurs (nullification, sup-
pression, or termination) is that which is defined for
the type of exception that is indicated in the interrup-
tion code. However, if a condition is indicated which
permits termination, and another condition also
exists which would cause either nullification or sup-
pression, then the unit of operation is suppressed.

Figure 6-8 on page 6-52 lists the priorities of all pro-
gram-interruption conditions other than PER basic
events and exceptions associated with some of the
more complex control instructions. All exceptions
associated with references to storage for a particular
instruction halfword or a particular operand byte are
grouped as a single entry called “access.” Figure 6-9
on page 6-54 lists the priority of access exceptions
for a single access. Thus, the second figure specifies
which of several exceptions, encountered either in
the access of a particular portion of an instruction or
in any particular access associated with an operand,
has highest priority, and the first figure specifies the
priority of this condition in relation to other conditions
detected in the operation. Similarly, the priorities for
exceptions occurring as part of ASN translation and
tracing are covered in Figure 6-10 on page 6-56 and
Figure 6-12 on page 6-56, respectively.

For some instructions, the priority is shown in the
individual instruction description.

The relative priorities of any two conditions listed in
the figure can be found by comparing the priority
numbers, as found in the figure, from left to right until
a mismatch is found. If the first inequality is between
numeric characters, either the two conditions are
mutually exclusive or, if both can occur, the condition
with the smaller number is indicated. If the first
inequality is between alphabetic characters, then the
two conditions are not exclusive, and it is unpredict-
able which is indicated when both occur.

To understand the use of the table, consider an
example involving the instruction ADD DECIMAL,
which is a six-byte instruction. Assume that the first
four bytes of the instruction can be accessed but that
the instruction crosses a boundary so that an
addressing exception exists for the last two bytes.
Additionally, assume that the first operand addressed
by the instruction contains invalid decimal digits and
is in a location that can be fetched from, but not
stored into, because of key-controlled protection. The

6-52 The z/Architecture CPU Architecture

three exceptions which could result from attempted
execution of the ADD DECIMAL are:

Since the first inequality (68) is between numeric
characters, the addressing exception would be indi-
cated. If, however, the entire ADD DECIMAL instruc-
tion can be fetched, and only the second two
exceptions listed above exist, then the inequality (B
D) is between alphabetic characters, and it is unpre-
dictable whether the protection exception or the data
exception would be indicated.

Priority
Number Exception

6.2.B Access exceptions for third instruction halfword

8.B Access exceptions (operand 1).

8.D Data exception

Any Transaction constraint exception, except for one caused by a restricted instruction8

1. Specification exception due to any PSW error of the type that causes an immediate interruption.1

2. Specification exception due to an odd instruction address in the PSW.

3. Access exceptions for first halfword of an execute-type instruction.2

4.A Access exceptions for second halfword of an execute-type instruction.2

4.B Access exceptions for third halfword of EXECUTE RELATIVE LONG.2

5.1 PER event due to instruction-fetching nullification on an execute-type instruction. (With PER-3)

5.2 Specification exception due to target instruction of EXECUTE not being specified on halfword boundary.2

6.1 Access exceptions for first instruction halfword.

6.2.A Access exceptions for second instruction halfword.3 (With PER-3)

6.2.B Access exceptions for third instruction halfword.3 (With PER-3)

6.3 PER event due to instruction-fetching nullification. (PER-3)

7.A Access exceptions for second instruction halfword.3 (Without PER-3)

7.B Access exceptions for third instruction halfword. 3 (Without PER-3)

7.C.1 Operation exception.

7.C.2 Privileged-operation exception for privileged instructions.

7.C.3 Execute exception.

7.C.4 Special-operation exception.4

7.D Transaction-constraint exception due to any restricted instruction.

8.A Specification exception due to conditions other than those included in 1, 2, and 5.2 above.

8.B5 Access exceptions for an access to an operand in storage.6

8.C5 Access exceptions for any other access to an operand in storage.6

8.D.1 Data exception.7

8.D.2 Vector-processing exception.

8.E Decimal-divide exception.7

8.F Trace exceptions.

Figure 6-8. Priority of Program-Interruption Conditions

Interruptions 6-53

Access Exceptions
The access exceptions consist of those exceptions
which can be encountered while using an absolute,
instruction, logical, real, or virtual address to access
storage. Thus, in the access-register mode, the
exceptions are:

1. ALET specification
2. ALEN translation
3. ALE sequence
4. ASTE validity
5. ASTE sequence
6. Extended authority

9. Events other than PER events, exceptions which result in completion, and the following exceptions:
• Fixed-point divide,
• HFP divide,
• Operand,
• Special-operation recognized by any of the following:

– LOAD PAGE-TABLE-ENTRY ADDRESS due to a real-space designation
– LOAD REAL ADDRESS

See the definition of the TRAP instruction for other priorities of the special-operation exception.
• Square root.

Either these exceptions and events are mutually exclusive or their priority is specified in the corresponding
definitions.

Explanation:

Numbers indicate priority, with “1” being the highest priority; letters indicate no priority.
1 PSW errors which cause an immediate interruption may be introduced by a new PSW loaded as a result of an

interruption or by the instructions BRANCH AND SET AUTHORITY, LOAD PSW, LOAD PSW EXTENDED,
PROGRAM RETURN, SET SYSTEM MASK, and STORE THEN OR SYSTEM MASK. The priority shown in the
chart is for a PSW error introduced by an interruption and may also be considered as the priority for a PSW error
introduced by the previous instruction. The error is introduced only if the instruction introducing the error
encounters no other exceptions. The resulting interruption has a higher priority than any interruption caused by
the instruction which would have been executed next; it has lower priority, however, than any interruption caused
by the instruction which introduced the erroneous PSW.

2 Priorities 3, 4.A, and 5.1 are for both EXECUTE and EXECUTE RELATIVE LONG, priority 4.B is for EXECUTE
RELATIVE LONG, priority 5.2 is for EXECUTE; priorities starting with 6 are for the target instruction. When no
execute-type instruction is encountered, priorities 3-5 do not apply.

3 Separate accesses may occur for each halfword of an instruction. The second instruction halfword is accessed
only if bits 0-1 of the instruction are not both zeros. The third instruction halfword is accessed only if bits 0-1 of
the instruction are both ones. Access exceptions for one of these halfwords are not necessarily recognized if the
instruction can be completed without use of the contents of the halfword or if an exception of lower priority can
be determined without the use of the halfword.

4 Except for the special-operation-exception conditions listed in priority 9.
5 As in instruction fetching, separate accesses may occur for each portion of an operand. Each of these accesses,

and also accesses for different operands, are of equal priority, and the two entries 8.B and 8.C are listed to
represent the relative priorities of exceptions associated with any two of these accesses. Access exceptions for
INSERT STORAGE KEY EXTENDED, INSERT VIRTUAL STORAGE KEY, INVALIDATE PAGE TABLE ENTRY,
LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD REAL ADDRESS, PERFORM FRAME MANAGEMENT
FUNCTION, RESET REFERENCE BIT EXTENDED, SET STORAGE KEY EXTENDED, STORE REAL
ADDRESS, and TEST PROTECTION are also included in 8.B.

6 For MOVE LONG, MOVE LONG EXTENDED, COMPARE LOGICAL LONG, and COMPARE LOGICAL LONG
EXTENDED, an access exception for a particular operand can be indicated only if the R field for that operand
designates an even-numbered register.

7 The exception can be indicated only if any operand data fetched that is responsible for the exception were
fetched without encountering an access exception.

8 Except as noted, the transaction-constraint exception may occur at any priority.

Figure 6-8. Priority of Program-Interruption Conditions (Continued)

6-54 The z/Architecture CPU Architecture

7. Addressing (the ART tables)
8. ASCE type
9. Region first translation
10. Region second translation
11. Region third translation
12. Segment translation
13. Page translation
14. Translation specification
15. Addressing (the DAT tables)
16. Addressing (the operand or instruction)
17. Protection (access-list-controlled, DAT, instruc-

tion-execution, key-controlled, and low-address)

With DAT on but in other than the access-register
mode, exceptions 8-17 in the above list, except for
access-list-controlled protection, can be encoun-
tered.

With DAT off, the exceptions are:

18. Addressing (the operand or instruction)
19. Protection (key-controlled and low-address)

Additionally, even with DAT off, the instruction
STORE REAL ADDRESS can encounter exceptions
1-17, the instructions LOAD PAGE-TABLE-ENTRY
ADDRESS and LOAD REAL ADDRESS can encoun-
ter exceptions 7, 14, and 15, and the instructions
COMPARE AND REPLACE DAT TABLE ENTRY,
INVALIDATE DAT TABLE ENTRY, and INVALIDATE
PAGE TABLE ENTRY can encounter exception 15.

The access exceptions are listed in more detail in
Figure 6-9 on page 6-54.

Programming Note: The priorities in Figure 6-9 on
page 6-54 could be renumbered, but they are kept as
they are to allow easier comparison to the corre-
sponding ESA/390 priorities. Specifically, B.1.A.1-
B.1.A.9 could be changed to B.1-B.9, but ESA/390
contains “B.1.B Translation-specification exception
due to invalid encoding of bits 8-12 of control register
0.”

A. Protection exception (low-address protection) due to a store-type operand reference with an effective address in
the range 0-511 or 4096-4607. Not recognized if DAT is on and the address-space-control element to be used in
the translation cannot be obtained because of another exception.

B.1.A.1 ALET-specification exception due to bits 0-6 of access register not being all zeros.1

B.1.A.2 Addressing exception for access to effective access-list designation.2
B.1.A.3 ALEN-translation exception due to access-list entry being outside the list.1

B.1.A.4 Addressing exception for access to access-list entry.2
B.1.A.5 ALEN-translation exception due to I bit in access-list entry having the value one.1

B.1.A.6 ALE-sequence exception due to access-list-entry sequence number (ALESN) in access register not being equal
to ALESN in access-list entry.1

B.1.A.7 Addressing exception for access to ASN-second-table entry.2

B.1.A.8 ASTE-validity exception due to I bit in ASN-second-table entry having the value one.1
B.1.A.9 ASTE-sequence exception due to ASN-second-table-entry sequence number (ASTESN) in access-list entry not

being equal to ASTESN in ASN-second-table entry.1

Note: Exceptions B.1.A.10 through B.1.A.12 are recognized only when the private bit in the access-list entry is
one and the ALEAX in the entry is not equal to the EAX in control register 8.

B.1.A.10 Extended-authority exception due to authority-table entry being outside table.1

B.1.A.11 Addressing exception for access to authority-table entry.2

B.1.A.12 Extended-authority exception due to (1) private bit in access-list entry not being zero, (2) access-list-entry
authorization index in access-list entry not being equal to extended authorization index in control register 8, and
(3) secondary-authority bit selected by extended authorization index not being one.1

B.2.A Protection exception (access-list-controlled protection) due to store-type operand reference to a virtual address
which is protected against stores.1

B.2.B.1 ASCE-type exception due to bits 0-10, 0-21, or 0-32 of instruction or operand address not being zeros when
address-space-control element is a region-second-table designation, region-third-table designation, or
segment-table designation, respectively.3

B.2.B.2 Region-first-, region-second-, region-third-, or segment-translation exception due to required entry in table
designated by address-space-control element being outside of table.3

Note: Exceptions B.2.B.3 through B.2.B.6 are recognized for a region-first-table, region-second- table, region-
third-table, and segment-table entry in the order in which the entries are used.

Figure 6-9. Priority of Access Exceptions (Part 1 of 2)

Interruptions 6-55

ASN-Translation Exceptions
The ASN-translation exceptions are those exceptions
which are common to the process of translating an

ASN in the instructions PROGRAM RETURN, PRO-
GRAM TRANSFER, PROGRAM TRANSFER WITH
INSTANCE, SET SECONDARY ASN, and SET SEC-

B.2.B.3 Addressing exception for access to table entry.4
B.2.B.4 Region-first-, region-second-, region-third-, or segment-translation exception due to I bit in table entry having

the value one.3

B.2.B.5 Translation-specification exception due to (1) TT in table entry not equal to DT in designating address-space-
control element or not one less than TT in designating next-higher-level table entry, (2) invalid one in segment-
table entry if this entry is a segment-table entry (common-segment bit if private- space bit in address-space-
control element is one), or (3) invalid one in region-third-table entry if EDAT-2 applies and this entry is a region-
third-table entry (common-region bit if private-space bit in address-space-control element is one).

B.2.B.6 Region-second-, region-third-, or segment-translation exception due to required entry in next-lower-level table
entry, if any, being outside of table.3

B.2.B.7 Addressing exception for access to page-table entry.5
B.2.B.8 Page-translation exception due to I bit in page-table entry having the value one.3, 7
B.2.B.9 Translation-specification exception due to invalid ones in page-table entry in which I bit is zero.8 A one in bit

position 52 of a valid PTE always causes the exception. When EDAT-1 does not apply and the instruction-
execution-protection facility is not installed, it is model dependent whether a one in bit position 55 of a valid PTE
causes the exception.

B.3.A Protection exception (instruction-execution protection) due to an instruction fetch from a virtual address which is
protected from instruction execution.6

B.3.B Protection exception (DAT protection) due to a store-type or update-type reference to a virtual address which is
protected against stores.6

B.3.C Addressing exception for access to instruction or operand.
B.4 Protection exception (key-controlled protection) due to attempt to access a protected instruction or operand

location.

Explanation:
1 Not applicable when not in the access-register mode; not applicable for execution of TEST ACCESS and for

translation of operand address of LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD REAL ADDRESS, and TEST
PROTECTION.

2 Not applicable when not in the access-register mode, except applicable for execution of TEST ACCESS and,
when PSW bits 16 and 17 are 01 binary, for translation of operand address of LOAD REAL ADDRESS and
second-operand address of STORE REAL ADDRESS; also applicable for LOAD PAGE-TABLE-ENTRY
ADDRESS when the M4 field is 0001 binary or when the M4 field is 0100 binary and PSW bits 16-17 are 01
binary.

3 Not applicable when DAT is off except for translation of second-operand address of STORE REAL ADDRESS; not
applicable to operand addresses of LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD REAL ADDRESS and TEST
PROTECTION.

4 Not applicable when DAT is off except for translation of operand address of LOAD PAGE-TABLE-ENTRY
ADDRESS, LOAD REAL ADDRESS and second-operand address of STORE REAL ADDRESS.

5 Not applicable when DAT is off, except for execution of INVALIDATE PAGE TABLE ENTRY and for translation of
operand address of LOAD PAGE-TABLE-ENTRY ADDRESS and LOAD REAL ADDRESS and second-operand
address of STORE REAL ADDRESS.

6 Not applicable when DAT is off.
7 For MOVE PAGE, if the condition is true for both operands, the exception is recognized for the second operand.

Also, if the condition-code-option bit is one, the exception is not recognized. Instead, condition code 1 is set if the
condition is true for only the first operand, or condition code 2 is set if the condition is true for the second operand
or both operands.

8 Not applicable when DAT is off except for translation of operand address of LOAD REAL ADDRESS and second-
operand address of STORE REAL ADDRESS.

Figure 6-9. Priority of Access Exceptions (Part 2 of 2)

6-56 The z/Architecture CPU Architecture

ONDARY ASN WITH INSTANCE. The exceptions
and the priority in which they are detected are shown
in Figure 6-10.

Subspace-Replacement Exceptions
The subspace-replacement exceptions are those
exceptions which can be recognized during a sub-
space-replacement operation in PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
PROGRAM TRANSFER WITH INSTANCE, SET
SECONDARY ASN, or SET SECONDARY ASN
WITH INSTANCE. The exceptions and their priority
are shown in Figure 6-11 on page 6-56.

Trace Exceptions
The trace exceptions are those exceptions which can
be encountered while forming a trace-table entry.
The exceptions and their priority are shown in
Figure 6-12 on page 6-56.

Restart Interruption

The restart interruption provides a means for the
operator or another CPU to invoke the execution of a
specified program. The CPU cannot be disabled for
this interruption.

In the z/Architecture architectural mode, a restart
interruption causes the old PSW to be stored at real
locations 288-303 and a new PSW, designating the
start of the program to be executed, to be fetched
from real locations 416-431. In the ESA/390-compat-
ibility mode, a restart interruption causes the short-
format old PSW to be stored at real locations 8-15
and a short-format new PSW to be fetched from real
locations 0-7. The instruction-length code and inter-
ruption code are not stored.

If the CPU is in the operating state, the exchange of
the PSWs occurs at the completion of the current unit
of operation and after all other pending interruption
conditions for which the CPU is enabled have been
honored. If the CPU is in the stopped state, the CPU
enters the operating state and exchanges the PSWs
without first honoring any other pending interruptions.

The restart interruption is initiated by activating the
restart key. The operation can also be initiated at the
addressed CPU by executing a SIGNAL PROCES-
SOR instruction which specifies the restart order.

When the rate control is set to the instruction-step
position, it is unpredictable whether restart causes a
unit of operation or additional interruptions to be per-
formed after the PSWs have been exchanged.

Programming Note: To perform a restart when the
CPU is in the check-stop state, the CPU has to be
reset. Resetting with loss of the least amount of infor-
mation can be accomplished by means of the sys-
tem-reset-normal key, which does not clear the
contents of program-addressable registers, including
the control registers, but causes the channel subsys-
tem to be reset. The CPU-reset SIGNAL PROCES-
SOR order can be used to clear the CPU without
affecting the channel subsystem.

1. Addressing exception for access to ASN- first-table
entry.

2. AFX-translation exception due to I bit (bit 0) in ASN-
first-table entry being one.

3. Addressing exception for access to ASN-second-
table entry.

4. ASX-translation exception due to I bit (bit 0) in ASN-
second-table entry being one.

Figure 6-10. Priority of ASN-Translation Exceptions

1. Addressing exception for access to dispatchable-unit
control table.

2. Addressing exception for access to subspace ASN-
second-table entry.

3. ASTE-validity exception due to bit 0 being one in
subspace ASN-second-table entry.

4. ASTE-sequence exception due to subspace ASN-
second-table-entry sequence number in
dispatchable-unit control table not being equal to
ASN-second-table-entry sequence number in
subspace ASN-second-table entry.

Figure 6-11. Priority of Subspace-Replacement Exceptions

A. Protection exception (low-address protection) due to
entry address being in the range 0-511 or 4096-4607.

B.1 Trace-table exception due to new entry reaching or
crossing next 4 K-byte boundary.

Figure 6-12. Priority of Trace Exceptions

B.2 Addressing exception for access to trace-table entry.

Figure 6-12. Priority of Trace Exceptions

Interruptions 6-57

Supervisor-Call Interruption

The supervisor-call interruption occurs when the
instruction SUPERVISOR CALL is executed. The
CPU cannot be disabled for the interruption, and the
interruption occurs immediately upon the execution
of the instruction.

In the z/Architecture architectural mode, the supervi-
sor-call interruption causes the old PSW to be stored
at real locations 320-335 and a new PSW to be
fetched from real locations 448-463. In the ESA/390-
compatibility mode, the supervisor-call interruption
causes the short-format old PSW to be stored at real
locations 32-39 and a short-format new PSW to be
fetched from real locations 96-103.

The contents of bit positions 8-15 of the SUPERVI-
SOR CALL instruction are placed in the rightmost
byte of the interruption code. The leftmost byte of the
interruption code is set to zero. The instruction-length
code is 1, unless the instruction was executed by
means of an execute-type instruction. When the
SUPERVISOR CALL instruction was executed by
means of EXECUTE, the instruction-length code is 2;
when it is executed by means of EXECUTE RELA-
TIVE LONG, the instruction-length code is 3.

The interruption code is placed at real locations
138-139; the instruction-length code is placed in bit
positions 5 and 6 of the byte at real location 137, with
the other bits set to zeros; and zeros are stored at
real location 136.

Priority of Interruptions

During the execution of an instruction, several inter-
ruption-causing events may occur simultaneously.
The instruction may give rise to a program interrup-
tion, a request for an external interruption may be
received, equipment malfunctioning may be
detected, an I/O-interruption request may be made,
and the restart key may be activated. Instead of the
program interruption, a supervisor-call interruption
might occur; or both can occur if PER is active.
Simultaneous interruption requests are honored in a
predetermined order.

An exigent machine-check condition has the highest
priority. When it occurs, the current operation is ter-

minated or nullified. Program and supervisor-call
interruptions that would have occurred as a result of
the current operation may be eliminated. Any pend-
ing repressible machine-check conditions may be
indicated with the exigent machine-check interrup-
tion. Every reasonable attempt is made to limit the
side effects of an exigent machine-check condition,
and requests for external, I/O, and restart interrup-
tions normally remain unaffected.

In the absence of an exigent machine-check condi-
tion, interruption requests existing concurrently at the
end of a unit of operation are honored, in descending
order of priority, as follows:

• Supervisor call
• Program
• Repressible machine check
• External
• Input/output
• Restart

The processing of multiple simultaneous interruption
requests consists in storing the old PSW and fetching
the new PSW belonging to the interruption first hon-
ored. This new PSW is subsequently stored without
the execution of any instructions, and the new PSW
associated with the next interruption is fetched. Stor-
ing and fetching of PSWs continues until no more
interruptions are to be serviced. The priority is
reevaluated after each new PSW is loaded. Each
evaluation takes into consideration any additional
interruptions which may have become pending. Addi-
tionally, external and I/O interruptions, as well as
machine-check interruptions due to repressible con-
ditions, occur only if the current PSW at the instant of
evaluation indicates that the CPU is interruptible for
the cause.

Instruction execution is resumed using the last-
fetched PSW. The order of executing interruption
subroutines is, therefore, the reverse of the order in
which the PSWs are fetched.

If the new PSW for a program interruption does not
specify the wait state and has an odd instruction
address, or causes an access exception to be recog-
nized, another program interruption occurs. Since
this second interruption introduces the same unac-
ceptable PSW, a string of interruptions is established.
These program exceptions are recognized as part of
the execution of the following instruction, and the
string may be broken by an external, I/O, machine-
check, or restart interruption or by the stop function.

6-58 The z/Architecture CPU Architecture

If the new PSW for a program interruption contains a
one in bit position 12 or in an unassigned bit position,
if the leftmost 40 bits of the instruction address are
not zeros when bit 31 and 32 indicate 24-bit address-
ing, or the leftmost 33 bits are not zeros when bits 31
and 32 indicate 31-bit addressing, or if bit 32 is zero
when bit 31 is one, another program interruption
occurs. This condition is of higher priority than
restart, I/O, external, or repressible machine-check
conditions, or the stop function, and CPU reset has
to be used to break the string of interruptions.

A string of interruptions for other interruption classes
can also exist if the new PSW allows the interruption
which has just occurred. These include machine-
check interruptions, external interruptions, and I/O
interruptions due to program-controlled-interruption
(PCI) conditions generated because of CCWs which
form a loop. Furthermore, a string of interruptions
involving more than one interruption class can exist.
For example, assume that the CPU timer is negative
and the CPU-timer subclass mask is one. If the exter-
nal new PSW has a one in an unassigned bit posi-
tion, and the program new PSW is enabled for

external interruptions, then a string of interruptions
occurs, alternating between external and program.
Even more complex strings of interruptions are possi-
ble. As long as more interruptions must be serviced,
the string of interruptions cannot be broken by
employing the stop function; CPU reset is required.

Similarly, CPU reset has to be invoked to terminate
the condition that exists when an interruption is
attempted with a prefix value designating a storage
location that is not available to the CPU.

Interruptions for all requests for which the CPU is
enabled occur before the CPU is placed in the
stopped state. When the CPU is in the stopped state,
restart has the highest priority.

Programming Note: The order in which concurrent
interruption requests are honored can be changed to
some extent by masking.

General Instructions 7-1© Copyright IBM Corp. 2000, 2019

Chapter 7. General Instructions

Data Format. 7-4
Binary-Integer Representation. 7-4
Binary Arithmetic . 7-5

Signed Binary Arithmetic 7-5
Addition and Subtraction 7-5
Fixed-Point Overflow 7-6

Unsigned Binary Arithmetic 7-6
Signed and Logical Comparison 7-7
Instructions . 7-7

ADD . 7-25
ADD IMMEDIATE . 7-26
ADD HALFWORD . 7-28
ADD HALFWORD IMMEDIATE. 7-28
ADD HIGH . 7-28
ADD IMMEDIATE HIGH 7-29
ADD LOGICAL. 7-29
ADD LOGICAL IMMEDIATE 7-29
ADD LOGICAL HIGH. 7-30
ADD LOGICAL WITH CARRY. 7-30
ADD LOGICAL WITH SIGNED IMMEDIATE. 7-31
ADD LOGICAL WITH SIGNED IMMEDIATE

HIGH . 7-32
AND . 7-32
AND IMMEDIATE . 7-34
AND WITH COMPLEMENT. 7-34
BRANCH AND LINK 7-35
BRANCH AND SAVE 7-36
BRANCH AND SAVE AND SET MODE 7-36
BRANCH AND SET MODE 7-38
BRANCH INDIRECT ON CONDITION 7-39
BRANCH ON CONDITION 7-40
 BRANCH ON COUNT 7-41
BRANCH ON INDEX HIGH 7-41
BRANCH ON INDEX LOW OR EQUAL 7-41
BRANCH PREDICTION PRELOAD 7-42
BRANCH PREDICTION RELATIVE

PRELOAD . 7-42
BRANCH RELATIVE AND SAVE 7-45
BRANCH RELATIVE AND SAVE LONG. . . . 7-45
BRANCH RELATIVE ON CONDITION 7-46
BRANCH RELATIVE ON CONDITION LONG 7-46
BRANCH RELATIVE ON COUNT. 7-47
BRANCH RELATIVE ON COUNT HIGH. . . . 7-47
BRANCH RELATIVE ON INDEX HIGH. 7-48
BRANCH RELATIVE ON INDEX LOW OR

EQUAL . 7-48
CHECKSUM . 7-49
CIPHER MESSAGE 7-53
CIPHER MESSAGE WITH CHAINING 7-53

CIPHER MESSAGE WITH
AUTHENTICATION 7-78

CIPHER MESSAGE WITH CIPHER
FEEDBACK. 7-92

CIPHER MESSAGE WITH COUNTER. 7-107
CIPHER MESSAGE WITH OUTPUT

FEEDBACK. 7-120
COMPARE . 7-134
COMPARE IMMEDIATE. 7-134
COMPARE RELATIVE LONG 7-135
COMPARE AND BRANCH 7-135
COMPARE AND BRANCH RELATIVE. 7-135
COMPARE IMMEDIATE AND BRANCH . . . 7-136
COMPARE IMMEDIATE AND BRANCH

RELATIVE. 7-136
COMPARE AND FORM CODEWORD. 7-137
COMPARE AND SWAP 7-144
COMPARE DOUBLE AND SWAP 7-144
COMPARE AND SWAP AND STORE 7-146
COMPARE AND TRAP. 7-149
COMPARE IMMEDIATE AND TRAP 7-149
COMPARE HALFWORD 7-150
COMPARE HALFWORD IMMEDIATE 7-150
COMPARE HALFWORD RELATIVE LONG. 7-150
COMPARE HIGH . 7-151
COMPARE IMMEDIATE HIGH. 7-151
COMPARE LOGICAL 7-152
COMPARE LOGICAL IMMEDIATE 7-152
COMPARE LOGICAL RELATIVE LONG . . . 7-153
COMPARE LOGICAL AND BRANCH 7-154
COMPARE LOGICAL AND BRANCH

RELATIVE. 7-154
COMPARE LOGICAL IMMEDIATE AND

BRANCH. 7-154
COMPARE LOGICAL IMMEDIATE AND

BRANCH RELATIVE 7-154
COMPARE LOGICAL AND TRAP 7-155
COMPARE LOGICAL IMMEDIATE AND

TRAP . 7-156
COMPARE LOGICAL CHARACTERS

UNDER MASK . 7-157
COMPARE LOGICAL HIGH 7-157
COMPARE LOGICAL IMMEDIATE HIGH . . 7-158
COMPARE LOGICAL LONG 7-158
COMPARE LOGICAL LONG EXTENDED . . 7-160
COMPARE LOGICAL LONG UNICODE . . . 7-163
COMPARE LOGICAL STRING. 7-166
COMPARE UNTIL SUBSTRING EQUAL . . . 7-167
COMPRESSION CALL 7-170

7-2 The z/Architecture CPU Architecture

COMPUTE INTERMEDIATE MESSAGE
DIGEST . 7-188

COMPUTE LAST MESSAGE DIGEST 7-201
COMPUTE MESSAGE AUTHENTICATION

CODE. 7-219
CONVERT TO BINARY 7-230
CONVERT TO DECIMAL. 7-231
CONVERT UTF-16 TO UTF-32 7-231
CONVERT UTF-16 TO UTF-8 7-234
CONVERT UNICODE TO UTF-8. 7-234
CONVERT UTF-32 TO UTF-16 7-238
CONVERT UTF-32 TO UTF-8 7-241
CONVERT UTF-8 TO UTF-16 7-244
CONVERT UTF-8 TO UNICODE. 7-244
CONVERT UTF-8 TO UTF-32 7-248
COPY ACCESS . 7-252
DIVIDE . 7-252
DIVIDE LOGICAL. 7-253
DIVIDE SINGLE . 7-254
EXCLUSIVE OR. 7-254
EXCLUSIVE OR IMMEDIATE 7-256
EXECUTE . 7-256
EXECUTE RELATIVE LONG. 7-256
EXTRACT ACCESS. 7-257
EXTRACT CPU ATTRIBUTE. 7-257
EXTRACT CPU TIME 7-260
EXTRACT PSW . 7-261
EXTRACT TRANSACTION NESTING

DEPTH. 7-261
FIND LEFTMOST ONE 7-262
INSERT CHARACTER. 7-262
INSERT CHARACTERS UNDER MASK . . . 7-262
INSERT IMMEDIATE 7-263
INSERT PROGRAM MASK 7-264
LOAD . 7-264
LOAD IMMEDIATE 7-264
LOAD RELATIVE LONG 7-264
LOAD ACCESS MULTIPLE 7-265
LOAD ADDRESS . 7-266
LOAD ADDRESS EXTENDED 7-266
LOAD ADDRESS RELATIVE LONG 7-267
LOAD AND ADD . 7-268
LOAD AND ADD LOGICAL 7-268
LOAD AND AND . 7-269
LOAD AND EXCLUSIVE OR 7-269
LOAD AND OR . 7-270
LOAD AND TEST. 7-270
LOAD AND TRAP . 7-271
LOAD AND ZERO RIGHTMOST BYTE. . . . 7-271
LOAD BYTE. 7-272
LOAD BYTE HIGH . 7-272
LOAD COMPLEMENT 7-272
LOAD COUNT TO BLOCK BOUNDARY . . . 7-273
LOAD GUARDED . 7-274

LOAD LOGICAL AND SHIFT GUARDED . .7-274
LOAD GUARDED STORAGE CONTROLS .7-275
LOAD HALFWORD .7-276
LOAD HALFWORD IMMEDIATE 7-276
LOAD HALFWORD RELATIVE LONG7-276
LOAD HALFWORD HIGH7-277
LOAD HALFWORD IMMEDIATE ON

CONDITION .7-277
LOAD HALFWORD HIGH IMMEDIATE ON

CONDITION .7-277
LOAD HIGH. .7-278
LOAD HIGH AND TRAP7-278
LOAD LOGICAL .7-278
LOAD LOGICAL RELATIVE LONG.7-278
LOAD LOGICAL AND TRAP.7-279
LOAD LOGICAL AND ZERO RIGHTMOST

BYTE .7-279
LOAD LOGICAL CHARACTER.7-279
LOAD LOGICAL CHARACTER HIGH.7-280
LOAD LOGICAL HALFWORD.7-280
LOAD LOGICAL HALFWORD RELATIVE

LONG .7-280
LOAD LOGICAL HALFWORD HIGH.7-281
LOAD LOGICAL IMMEDIATE7-281
LOAD LOGICAL THIRTY ONE BITS 7-281
LOAD LOGICAL THIRTY ONE BITS AND

TRAP. .7-282
LOAD MULTIPLE .7-282
LOAD MULTIPLE DISJOINT.7-283
LOAD MULTIPLE HIGH 7-283
LOAD NEGATIVE .7-283
LOAD ON CONDITION7-284
LOAD HIGH ON CONDITION7-284
LOAD PAIR DISJOINT7-285
LOAD PAIR FROM QUADWORD.7-286
LOAD POSITIVE .7-287
LOAD REVERSED .7-287
MONITOR CALL .7-288
MOVE .7-289
MOVE INVERSE .7-290
MOVE LONG. .7-290
MOVE LONG EXTENDED 7-294
MOVE LONG UNICODE7-297
MOVE NUMERICS .7-301
MOVE RIGHT TO LEFT7-301
MOVE STRING .7-302
MOVE WITH OFFSET.7-303
MOVE ZONES .7-304
MULTIPLY. .7-305
MULTIPLY HALFWORD7-306
MULTIPLY HALFWORD IMMEDIATE 7-306
MULTIPLY LOGICAL 7-307
MULTIPLY SINGLE.7-308
MULTIPLY SINGLE IMMEDIATE7-308

General Instructions 7-3

NAND. 7-309
NEXT INSTRUCTION ACCESS INTENT . . 7-310
NONTRANSACTIONAL STORE 7-311
NOR. 7-312
NOT EXCLUSIVE OR 7-312
OR . 7-313
OR IMMEDIATE . 7-314
OR WITH COMPLEMENT. 7-315
PACK. 7-315
PACK ASCII. 7-316
PACK UNICODE . 7-317
PERFORM CRYPTOGRAPHIC

COMPUTATION . 7-317
PERFORM LOCKED OPERATION. 7-338
PERFORM PROCESSOR ASSIST. 7-352
PERFORM RANDOM NUMBER

OPERATION . 7-353
 POPULATION COUNT. 7-366
PREFETCH DATA. 7-366
PREFETCH DATA RELATIVE LONG 7-367
ROTATE LEFT SINGLE LOGICAL 7-368
ROTATE THEN AND SELECTED BITS . . . 7-369
ROTATE THEN EXCLUSIVE OR SELECTED

BITS. 7-369
ROTATE THEN OR SELECTED BITS 7-369
ROTATE THEN INSERT SELECTED BITS 7-370
 ROTATE THEN INSERT SELECTED BITS

HIGH . 7-372
ROTATE THEN INSERT SELECTED BITS

LOW . 7-372
SEARCH STRING . 7-373
SEARCH STRING UNICODE 7-375
SELECT. 7-377
SELECT HIGH. 7-377
SET ACCESS . 7-378
SET ADDRESSING MODE 7-378
SET PROGRAM MASK. 7-379
SHIFT LEFT DOUBLE. 7-379
SHIFT LEFT DOUBLE LOGICAL 7-380
SHIFT LEFT SINGLE 7-380
SHIFT LEFT SINGLE LOGICAL 7-381
SHIFT RIGHT DOUBLE 7-382
SHIFT RIGHT DOUBLE LOGICAL 7-382
SHIFT RIGHT SINGLE 7-383
SHIFT RIGHT SINGLE LOGICAL 7-384
STORE . 7-384
STORE RELATIVE LONG. 7-385
STORE ACCESS MULTIPLE 7-385
STORE CHARACTER. 7-386
STORE CHARACTER HIGH. 7-386
STORE CHARACTERS UNDER MASK . . . 7-386

STORE CLOCK . 7-387
STORE CLOCK FAST 7-387
STORE CLOCK EXTENDED 7-388
STORE FACILITY LIST EXTENDED 7-390
STORE GUARDED STORAGE CONTROLS7-391
STORE HALFWORD 7-391
STORE HALFWORD RELATIVE LONG . . . 7-392
STORE HALFWORD HIGH 7-392
STORE HIGH . 7-392
STORE MULTIPLE . 7-393
STORE MULTIPLE HIGH 7-393
STORE ON CONDITION 7-393
STORE HIGH ON CONDITION 7-394
STORE PAIR TO QUADWORD 7-394
STORE REVERSED. 7-395
SUBTRACT. 7-395
SUBTRACT HALFWORD 7-396
SUBTRACT HIGH. 7-397
SUBTRACT LOGICAL 7-397
SUBTRACT LOGICAL IMMEDIATE 7-398
SUBTRACT LOGICAL HIGH 7-398
SUBTRACT LOGICAL WITH BORROW . . . 7-399
SUPERVISOR CALL 7-399
TEST ADDRESSING MODE 7-400
TEST AND SET . 7-400
TEST UNDER MASK (TEST UNDER MASK

HIGH, TEST UNDER MASK LOW) 7-401
TRANSACTION ABORT. 7-402
TRANSACTION BEGIN (TBEGIN) 7-402
TRANSACTION BEGIN (TBEGINC). 7-407
TRANSACTION END 7-409
TRANSLATE. 7-409
TRANSLATE AND TEST 7-410
TRANSLATE AND TEST EXTENDED 7-411
TRANSLATE AND TEST REVERSE

EXTENDED . 7-411
TRANSLATE AND TEST REVERSE 7-416
TRANSLATE EXTENDED 7-416
TRANSLATE ONE TO ONE 7-419
TRANSLATE ONE TO TWO. 7-419
TRANSLATE TWO TO ONE. 7-419
TRANSLATE TWO TO TWO 7-419
UNPACK . 7-424
UNPACK ASCII. 7-424
UNPACK UNICODE 7-425
UPDATE TREE. 7-426

Protection of Cryptographic Keys 7-432
Protection of DES Keys 7-433
Protection of AES Keys. 7-435
Protection of ECC Keys 7-437

7-4 The z/Architecture CPU Architecture

This chapter includes most of the unprivileged
instructions described in this publication. Other
unprivileged instructions are described in chapters
8-9 and 18-26.

Data Format

The general instructions treat data as being of four
types: signed binary integers, unsigned binary inte-
gers, unstructured logical data, and decimal data.
Data is treated as decimal by the conversion, pack-
ing, and unpacking instructions. Decimal data is
described in Chapter 8, “Decimal Instructions.”

The general instructions manipulate data which
resides in general registers or in storage or is intro-
duced from the instruction stream. Some general
instructions operate on data which resides in the
PSW or the TOD clock.

In a storage-and-storage operation the operand
fields may be defined in such a way that they overlap.
The effect of this overlap depends upon the opera-
tion. When the operands remain unchanged, as in
COMPARE or TRANSLATE AND TEST, overlapping
does not affect the execution of the operation. For
instructions such as MOVE and TRANSLATE, one
operand is replaced by new data, and the execution
of the operation may be affected by the amount of
overlap and the manner in which data is fetched or
stored. For purposes of evaluating the effect of over-
lapped operands, data is considered to be handled
one eight-bit byte at a time. Special rules apply to the
operands of MOVE LONG and MOVE INVERSE.
See “Interlocks within a Single Instruction” on
page 5-116 for how overlap is detected in the
access-register mode.

Binary-Integer Representation

Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When two
unsigned binary integers of different lengths are
added, the shorter number is considered to be
extended on the left with zeros.

In some operations, the result is achieved by the use
of the one’s complement of the number. The one’s

complement of a number is obtained by inverting
each bit of the number, including the sign.

For signed binary integers, the leftmost bit represents
the sign, which is followed by the numeric field. Posi-
tive numbers are represented in true binary notation
with the sign bit set to zero. When the value is zero,
all bits are zeros, including the sign bit. Negative
numbers are represented in two’s-complement
binary notation with a one in the sign-bit position.

Specifically, a negative number is represented by the
two’s complement of the positive number of the same
absolute value. The two’s complement of a number is
obtained by forming the one’s complement of the
number, adding a value of one in the rightmost bit
position, allowing a carry into the sign position, and
ignoring any carry out of the sign position.

This number representation can be considered the
rightmost portion of an infinitely long representation
of the number. When the number is positive, all bits
to the left of the most significant bit of the number are
zeros. When the number is negative, these bits are
ones. Therefore, when a signed operand must be
extended with bits on the left, the extension is
achieved by setting these bits equal to the sign bit of
the operand.

The notation for signed binary integers does not
include a negative zero. It has a number range in
which, for a given length, the set of negative nonzero
numbers is one larger than the set of positive non-
zero numbers. The maximum positive number con-
sists of a sign bit of zero followed by all ones,
whereas the maximum negative number (the nega-
tive number with the greatest absolute value) con-
sists of a sign bit of one followed by all zeros.

A signed binary integer of either sign, except for zero
and the maximum negative number, can be changed
to a number of the same magnitude but opposite sign
by forming its two’s complement. Forming the two’s
complement of a number is equivalent to subtracting
the number from zero. The two’s complement of zero
is zero.

The two’s complement of the maximum negative
number cannot be represented in the same number
of bits. When an operation, such as LOAD COMPLE-
MENT, attempts to produce the two’s complement of
the maximum negative number, the result is the max-
imum negative number, and a fixed-point-overflow
exception is recognized. An overflow does not result,

General Instructions 7-5

however, when the maximum negative number is
complemented as an intermediate result but the final
result is within the representable range. An example
of this case is a subtraction of the maximum negative
number from -1. The product of two maximum nega-
tive numbers of a given length is representable as a
positive number of double that length.

In discussions of signed binary integers in this publi-
cation, a signed binary integer includes the sign bit.
Thus, the expression “32-bit signed binary integer”
denotes an integer with 31 numeric bits and a sign
bit, and the expression “64-bit signed binary integer”
denotes an integer with 63 numeric bits and a sign
bit.

In an arithmetic operation, a carry out of the numeric
field of a signed binary integer is carried into the sign
bit. However, in algebraic left-shifting, the sign bit
does not change even if significant numeric bits are
shifted out.

Programming Notes:

1. An alternate way of forming the two’s comple-
ment of a signed binary integer is to invert all bits
to the left of the rightmost one bit, leaving the
rightmost one bit and all zero bits to the right of it
unchanged.

2. The numeric bits of a signed binary integer may
be considered to represent a positive value, with
the sign representing a value of either zero or the
maximum negative number.

Binary Arithmetic

Many of the instructions that perform a register-and-
storage or register-and-register binary-arithmetic
operation are provided in sets of three instructions
corresponding to three different combinations of
operand lengths. These three instructions have the
same name but different operation codes and mne-
monics. For example, ADD (A) operates on 32-bit
operands and produces a 32-bit result, ADD (AG)
operates on 64-bit operands and produces a 64-bit
result, and ADD (AGF) operates on a 64-bit operand
and a 32-bit operand and produces a 64-bit result.
The letter “G” alone in the mnemonic indicates a
completely 64-bit operation, and the letters “GF” indi-
cate a 32-to-64-bit operation.

In a 32-to-64-bit operation, the intermediate result is
64 bits. LOAD COMPLEMENT (LCGFR) forms the
two’s complement of the maximum negative 32-bit
number without recognizing overflow.

Except for the instructions of the high-word facility, a
32-bit operand in a general register is in bit positions
32-63 of the register. In an operation on the operand,
such as by ADD (A), bits 0-31 of the register are
unused and remain unchanged. A 64-bit operand in a
general register is in bit positions 0-63 of the register,
and all of the bits participate in an operation on the
operand, such as by ADD (AG). However, some
instructions, which do not have “G” in their mnemon-
ics, use a 64-bit operand of which the leftmost 32 bits
are in bit positions 32-63 of the even register of an
even-odd general-register pair, and the rightmost 32
bits are in bit positions 32-63 of the odd register of
the pair.

The bits of a 32-bit operand in storage are numbered
0-31. When the operand is in bit positions 32-63 of a
general register, the bits are numbered 32-63.

Signed Binary Arithmetic

Addition and Subtraction
Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the shorter
operand is considered to be extended on the left to
the length of the longer operand by propagating the
sign-bit value.

For a 32-bit signed binary integer in a general regis-
ter, the sign bit is bit 32 of the register. For a 64-bit
signed binary integer in a general register, the sign
bit is bit 0 of the register.

Subtraction is performed by adding the one’s comple-
ment of the second operand and a value of one to the
first operand.

Fixed-Point Overflow
A fixed-point-overflow condition exists for signed
binary addition or subtraction when the carry out of
the sign-bit position and the carry out of the leftmost
numeric bit position disagree. Detection of an over-
flow does not affect the result produced by the addi-
tion. In mathematical terms, signed addition and
subtraction produce a fixed-point overflow when the
result is outside the range of representation for

7-6 The z/Architecture CPU Architecture

signed binary integers. Specifically, for ADD, LOAD
AND ADD, LOAD COMPLEMENT, and LOAD POSI-
TIVE instructions which operate on 32-bit signed
binary integers, there is an overflow when the proper
result would be greater than or equal to +231 or less
than -231. The actual result placed in the general reg-
ister after an overflow differs from the proper result by
232. Similarly, for ADD, LOAD AND ADD, LOAD
COMPLEMENT, and LOAD POSITIVE instructions
which operate on 64-bit signed binary integers, there
is an overflow when the proper result would be
greater than or equal to +263 or less than -263, and
the actual result placed in the general register after
an overflow differs from the proper result by 264. ADD
(AGF) and SUBTRACT (SGF) have the same 64-bit
result and overflow rules as ADD (AG) and SUB-
TRACT (SG).

The instructions SHIFT LEFT SINGLE and SHIFT
LEFT DOUBLE produce an overflow when the result
is outside the range of representation for signed
binary integers. The actual result differs from that for
addition and subtraction in that the sign of the result
remains the same as the original sign.

For MULTIPLY SINGLE (MSC and MSRKC), there is
an overflow result when the proper result would be
greater than or equal to +231 or less than -231. Simi-
larly, for MULTIPLY SINGLE (MSGC and MSGRKC),
there is an overflow result when the proper result
would be greater than or equal to +263 or less than
-263. The actual result placed in the general register
after an overflow is the rightmost 32 bits (MSC,
MSRKC) or 64 bits (MSGC, MSGRKC) of the prod-
uct.

When an overflow result occurs, condition code 3 is
set. When the fixed-point overflow mask (bit 20 of the
PSW) is one, a fixed-point-overflow program-excep-
tion condition is recognized.

Unsigned Binary Arithmetic

Addition of unsigned binary integers is performed by
adding all bits of each operand. Subtraction is per-
formed by adding the one’s complement of the sec-
ond operand (the subtractor) and a value of one to
the first operand (the subtrahend). In any case, when
one of the operands is shorter, the shorter operand is
considered to be extended on the left with zeros.
During subtraction, this extension applies before an
operand is complemented, and it applies to the value
of one.

Unsigned binary arithmetic is used in address arith-
metic for adding the X, B, and D fields. (See “Address
Generation” on page 5-10.) It is also used to obtain
the addresses of the function bytes in TRANSLATE
and TRANSLATE AND TEST. Furthermore, unsigned
binary arithmetic is used on 32-bit or 64-bit unsigned
binary integers by ADD LOGICAL, ADD LOGICAL
WITH CARRY, DIVIDE LOGICAL, MULTIPLY LOGI-
CAL, SUBTRACT LOGICAL, and SUBTRACT LOGI-
CAL WITH BORROW.

Given the same length operands, ADD (A, AG, AGF)
and ADD LOGICAL (AL, ALG, ALGF) produce the
same 32-bit or 64-bit result. The instructions differ
only in the interpretation of this result. ADD interprets
the result as a signed binary integer and inspects it
for sign, magnitude, and overflow to set the condition
code accordingly. ADD LOGICAL interprets the result
as an unsigned binary integer and sets the condition
code according to whether the result is zero and
whether there was a carry out of bit position 32, for a
32-bit integer, or out of bit position 0 for a 64-bit inte-
ger. Such a carry is not considered an overflow, and
no program interruption for overflow can occur for
ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD LOGICAL in
that the one’s complement of the second operand
and a value of one are added to the first operand.

For ADD LOGICAL WITH CARRY, a carry from a
previous operation is represented by a one value of
bit 18 of the current PSW. Bit 18 is the leftmost bit of
the two-bit condition code in the PSW. For SUB-
TRACT LOGICAL WITH BORROW, a borrow from a
previous operation is represented by a zero value of
bit 18. A borrow is equivalent to the absence of a
carry.

For VECTOR ADD WITH CARRY, a carry from a pre-
vious operation is represented by a one in the right-
most bit of each element of a vector register. For
VECTOR SUBTRACT WITH BORROW INDICA-
TION, an indication of borrow from a previous opera-
tion is represented by a one in the rightmost bit of
each element of a vector register. The indication of
borrow is equivalent to a carry. The vector integer
instructions may be found in Chapter 22.

Programming Notes:

1. Logical addition and subtraction may be used to
perform arithmetic on multiple-precision binary-
integer operands. Thus, for multiple-precision

General Instructions 7-7

addition, ADD LOGICAL can be used to add the
lowest-order corresponding parts of the oper-
ands, and ADD LOGICAL WITH CARRY can be
used to add the other corresponding parts of the
operands, moving from right to left in the oper-
ands.

2. Another use for ADD LOGICAL is to increment
values representing binary counters, which are
allowed to wrap around from all ones to all zeros
without indicating overflow.

Signed and Logical Comparison

Comparison operations determine whether two oper-
ands are equal or not and, for most operations, which
of two unequal operands is the greater (high).
Signed-binary-comparison operations are provided
which treat the operands as signed binary integers,
and logical-comparison operations are provided
which treat the operands as unsigned binary integers
or as unstructured data.

COMPARE (C, CG, CGF) and COMPARE HALF-
WORD are signed-binary-comparison operations.
These instructions are equivalent to SUBTRACT (S,
SG, SGF) and SUBTRACT HALFWORD without
replacing either operand, the resulting difference
being used only to set the condition code. The opera-
tions permit comparison of numbers of opposite sign
which differ by 263 or more. Thus, unlike SUBTRACT,
COMPARE cannot cause overflow.

Logical comparison of two operands is performed
byte by byte, in a left-to-right sequence. The oper-
ands are equal when all their bytes are equal. When
the operands are unequal, the comparison result is
determined by a left-to-right comparison of corre-
sponding bit positions in the first unequal pair of
bytes: the zero bit in the first unequal pair of bits indi-
cates the low operand, and the one bit the high oper-
and. Since the remaining bit and byte positions do
not change the comparison, it is not necessary to
continue comparing unequal operands beyond the
first unequal bit pair.

Instructions

The general instructions and their mnemonics, for-
mats, and operation codes are listed in Figure 7-1 on

page 7-13. The figure also indicates which instruc-
tions are new in z/Architecture as compared to
ESA/390, when the condition code is set, the instruc-
tion fields that designate access registers, and the
exceptional conditions in operand designations, data,
or results that cause a program interruption.

The instructions that are new in z/Architecture are
indicated in Figure 7-1 by “N.” A few of the instruc-
tions that are new in z/Architecture have also been
added to ESA/390, and these are indicated by “N3.”

When the operands of an instruction are 32-bit oper-
ands, the mnemonic for the instruction normally does
not include a letter indicating the operand length;
however some mnemonics for instructions with 32-bit
operands contain the letter “F”. If there is an instruc-
tion with the same name but with 64-bit operands, its
mnemonic includes the letter “G.” If there is an
instruction with the same name but with a 64-bit first
operand and a 32-bit second operand, its mnemonic
includes the letters “GF.” Certain instruction mne-
monics indicate the length of the first and second
operands with combinations of G (64-bit), F (32-bit),
or H (16-bit), although the F is usually omitted for the
first operand.

In Figure 7-1, when there is an instruction with 32-bit
operands and other instructions with the same name
but with “G” or “GF” added in their mnemonics, the
first instruction has “(32)” after its name, and the
other instructions have “(64)” or “(6432),” respec-
tively, after their names. Some 32-bit operand-length
instructions do not have 64-bit operand-length coun-
terparts, and they do not have “(32)” after their
names. However, all instructions for multiplication or
division are marked to show, or approximately show,
operand lengths.

A detailed definition of instruction formats, operand
designation and length, and address generation is
contained in “Instructions” on page 5-3. Exceptions
to the general rules stated in that section are explic-
itly identified in the individual instruction descriptions.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designations for the assembler language are
shown with each instruction. For LOAD AND TEST
with 32-bit operands, for example, LTR is the mne-
monic and R1,R2 the operand designation.

Certain fields of various instructions are considered
to be optional, as indicated by the field being con-

7-8 The z/Architecture CPU Architecture

tained within brackets [] in the assembler syntax.
When an optional field is not specified, the assembler
places zeros in that field of the instruction.

Programming Notes:

1. Trimodal addressing affects the general instruc-
tions only in the manner in which logical storage
addresses are handled, except as follows.

The instructions BRANCH AND LINK (BAL,
BALR), BRANCH AND SAVE (BAS, BASR),
BRANCH AND SAVE AND SET MODE,
BRANCH AND SET MODE, BRANCH RELA-
TIVE AND SAVE, and BRANCH RELATIVE AND
SAVE LONG place information in bit positions
32-39 of general register R1 as in ESA/390 in the
24-bit or 31-bit addressing mode or place
address bits in those bit positions in the 64-bit
addressing mode.

The instruction BRANCH AND SAVE AND SET
MODE places a zero in bit position 63 of general
register R1 in the 24-bit or 31-bit addressing
mode or places a one in that bit position in the
64-bit addressing mode.

The instruction BRANCH AND SET MODE
leaves the contents of bit position 63 of general
register R1 unchanged in the 24-bit or 31-bit
addressing mode or places a one in that bit posi-
tion in the 64-bit addressing mode.

The following instructions leave bits 0-31 of a
general register unchanged in the 24-bit or 31-bit
addressing mode but place or update address or
length information in them in the 64-bit address-
ing mode. Also, the leftmost byte of the results in
registers may be handled differently depending
on whether the addressing mode is the 24-bit or
the 31-bit mode.

• BRANCH AND LINK (BAL, BALR)
• BRANCH AND SAVE (BAS, BASR)
• BRANCH AND SAVE AND SET MODE
• BRANCH RELATIVE AND SAVE
• BRANCH RELATIVE AND SAVE LONG
• CHECKSUM
• COMPARE AND FORM CODEWORD
• COMPARE LOGICAL LONG
• COMPARE LOGICAL LONG EXTENDED
• COMPARE LOGICAL LONG UNICODE
• COMPARE LOGICAL STRING
• COMPARE UNTIL SUBSTRING EQUAL
• COMPRESSION CALL

• CONVERT UTF-16 TO UTF-32
• CONVERT UTF-16 TO UTF-8
• CONVERT UTF-32 TO UTF-16
• CONVERT UTF-32 TO UTF-8
• CONVERT UTF-8 TO UTF-16
• CONVERT UTF-8 TO UTF-32
• LOAD ADDRESS
• LOAD ADDRESS EXTENDED
• LOAD ADDRESS RELATIVE LONG
• MOVE LONG
• MOVE LONG EXTENDED
• MOVE LONG UNICODE
• MOVE STRING
• SEARCH STRING
• TRANSLATE EXTENDED
• TRANSLATE AND TEST
• TRANSLATE AND TEST EXTENDED
• TRANSLATE AND TEST REVERSE
• TRANSLATE AND TEST REVERSE

EXTENDED
• TRANSLATE ONE TO ONE
• TRANSLATE ONE TO TWO
• TRANSLATE TWO TO ONE
• TRANSLATE TWO TO TWO
• UPDATE TREE

The instructions in the preceding list are some-
times called modal instructions.

2. Bits 0-31 of general registers are changed by two
types of instructions. The first type is a modal
instruction, as listed in the preceding note, when
the instruction is executed in the 64-bit address-
ing mode. The second type is an instruction hav-
ing, independent of the addressing mode, either
a 64-bit result operand in a single general regis-
ter or a 128-bit result operand in an even-odd
general-register pair.

Most of the instructions of the second type are
indicated by a “G,” either alone or in “GF,” in their
mnemonics. The other instructions that change
or may change bits 0-31 of a general register
regardless of the current addressing mode are:

• AND IMMEDIATE (NIHF, NIHH, NIHL only)
• EXCLUSIVE OR IMMEDIATE (XIHF only)
• INSERT CHARACTERS UNDER MASK

(ICMH only)
• INSERT IMMEDIATE (IIHF, IIHH, IIHL only)
• LOAD LOGICAL IMMEDIATE (LLIHF, LLIHH,

LLIHL only)
• LOAD MULTIPLE DISJOINT
• LOAD MULTIPLE HIGH
• LOAD PAIR FROM QUADWORD

General Instructions 7-9

• OR IMMEDIATE (OIHF, OIHH, OIHL only)

All of the instructions of the second type are
sometimes referred to as “G-type” instructions.

If a program is not executed in the 64-bit
addressing mode and does not contain a G-type
instruction, it cannot change bits 0-31 of any
general register.

3. It is not intended or expected that old programs
not containing G-type instructions will be able to
be executed successfully in the 64-bit addressing
mode. However, this may be possible, particu-
larly if, by programming convention, bits 0-31 of
the general registers are always all zeros when
an old program is given control.

4. The following additional general instructions are
available when the extended-translation facility 2
is installed:

• COMPARE LOGICAL LONG UNICODE
• MOVE LONG UNICODE
• PACK ASCII
• PACK UNICODE
• TRANSLATE ONE TO ONE
• TRANSLATE ONE TO TWO
• TRANSLATE TWO TO ONE
• TRANSLATE TWO TO TWO
• UNPACK ASCII
• UNPACK UNICODE

5. The long-displacement facility uses new instruc-
tion formats, named RSY, RXY, and SIY, to pro-
vide 20-bit signed displacements. In connection
with the long-displacement facility, all previously
existing general instructions of the RSE or RXE
format are changed to be of format RSY or RXY,
respectively, where the new formats differ from
the old by using a previously unused byte, now
named DH, in the instructions. When the long-
displacement facility is installed, the displace-
ment for an instruction operand address is
formed by appending DH on the left of the previ-
ous displacement field, now named DL, of the
instruction. When the long-displacement facility
is not installed, eight zero bits are appended on
the left of DL, and DH is ignored.

The following additional general instruction is
available when the long-displacement facility is
installed.

• LOAD BYTE

The following additional RSY-format versions of
general instructions are available when the long-
displacement facility is installed.

• COMPARE AND SWAP
• COMPARE DOUBLE AND SWAP
• COMPARE LOGICAL CHARACTERS

UNDER MASK
• LOAD ACCESS MULTIPLE
• LOAD MULTIPLE
• STORE ACCESS MULTIPLE
• STORE CHARACTERS UNDER MASK
• STORE MULTIPLE

The following additional RXY-format versions of
general instructions are available when the long-
displacement facility is installed.

• ADD
• ADD HALFWORD
• ADD LOGICAL
• AND
• COMPARE
• COMPARE HALFWORD
• COMPARE LOGICAL
• CONVERT TO BINARY
• CONVERT TO DECIMAL
• EXCLUSIVE OR
• INSERT CHARACTER
• INSERT CHARACTER UNDER MASK
• LOAD
• LOAD ADDRESS
• LOAD HALFWORD
• MULTIPLY SINGLE
• OR
• STORE
• STORE CHARACTER
• STORE HALFWORD
• SUBTRACT
• SUBTRACT HALFWORD
• SUBTRACT LOGICAL

The following additional SIY-format versions of
general instructions are available when the long-
displacement facility is installed.

• AND
• COMPARE LOGICAL
• EXCLUSIVE OR
• MOVE
• OR
• TEST UNDER MASK

6. The following additional general instructions are
available when the message-security assist is
installed:

7-10 The z/Architecture CPU Architecture

• CIPHER MESSAGE
• CIPHER MESSAGE WITH CHAINING
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICATION

CODE

7. The following additional general instructions are
available when the extended-translation facility 3
is installed:

• CONVERT UTF-16 TO UTF-32
• CONVERT UTF-32 TO UTF-16
• CONVERT UTF-32 TO UTF-8
• CONVERT UTF-8 TO UTF-32
• SEARCH STRING UNICODE
• TRANSLATE AND TEST REVERSE

Additionally, CONVERT UNICODE TO UTF-8
(CUUTF) and CONVERT UTF-8 TO UNICODE
(CUTFU) are renamed to CONVERT UTF-16 TO
UTF-8 (CU21) and CONVERT UTF-8 TO
UTF-16 (CU12), respectively, in order to conform
to the names used by this facility. The old names
continue to be recognized.

8. The following additional general instructions are
available when the extended-immediate facility is
installed:

• ADD IMMEDIATE (AFI, AGFI)
• ADD LOGICAL IMMEDIATE (ALFI, ALGFI)
• AND IMMEDIATE (NIHF, NILF)
• COMPARE IMMEDIATE (CFI, CGFI)
• COMPARE LOGICAL IMMEDIATE (CLFI,

CLGFI)
• EXCLUSIVE OR IMMEDIATE (XIHF, XILF)
• FIND LEFTMOST ONE (FLOGR)
• INSERT IMMEDIATE (IIHF, IILF)
• LOAD AND TEST (LT, LTG)
• LOAD BYTE (LBR, LGBR)
• LOAD HALFWORD (LHR, LGHR)
• LOAD IMMEDIATE (LGFI)
• LOAD LOGICAL CHARACTER (LLC, LLCR,

LLGCR)
• LOAD LOGICAL HALFWORD (LLGHR, LLH,

LLHR)
• LOAD LOGICAL IMMEDIATE (LLIHF, LLILF)
• OR IMMEDIATE (OIHF, OILF)
• SUBTRACT LOGICAL IMMEDIATE (SLFI,

SLGFI)

The instructions that are part of the extended-
immediate facility are indicated in Figure 7-1 by
“EI.”

9. The STORE CLOCK FAST general instruction is
available when the store-clock-fast facility is
installed.

10. The STORE FACILITY LIST EXTENDED gen-
eral instruction is available when the store-facil-
ity-list-extended facility is installed.

11. When the ETF2-enhancement facility is
installed, new functions are provided for the
TRANSLATE ONE TO ONE, TRANSLATE ONE
TO TWO, TRANSLATE TWO TO ONE, and
TRANSLATE TWO TO TWO instructions.

12. When the ETF3-enhancement facility is
installed, improved well-formedness checking is
provided for the CONVERT UTF-16 TO UTF-32,
CONVERT UTF-16 TO UTF-8, CONVERT UTF-
8 TO UTF-16, and CONVERT UTF-8 TO UTF-32
instructions.

13. The COMPARE AND SWAP AND STORE gen-
eral instruction is available if the compare-and-
swap-and-store facility is installed.

14. The EXTRACT CPU TIME general instruction is
available if the extract-CPU-time facility is
installed.

15. The following additional general instructions are
available when the parsing-enhancement facility
is installed:

• TRANSLATE AND TEST EXTENDED
• TRANSLATE AND TEST REVERSE

EXTENDED

16. The EXECUTE RELATIVE LONG general
instruction is available when the execute-exten-
sion facility is installed.

17. The following additional general instructions are
available when the general-instructions-exten-
sion facility is installed:

• ADD IMMEDIATE (AGSI, ASI)
• ADD LOGICAL WITH SIGNED IMMEDIATE

(ALGSI, ALSI)
• COMPARE AND BRANCH (CGRB, CRB)
• COMPARE AND BRANCH RELATIVE

(CGRJ, CRJ)
• COMPARE AND TRAP (CGRT, CRT)
• COMPARE HALFWORD (CGH)
• COMPARE HALFWORD IMMEDIATE

(CGHSI, CHHSI, CHSI)

General Instructions 7-11

• COMPARE HALFWORD RELATIVE LONG
(CGHRL, CHRL)

• COMPARE IMMEDIATE AND BRANCH
(CGIB, CIB)

• COMPARE IMMEDIATE AND BRANCH
RELATIVE (CGIJ, CIJ)

• COMPARE IMMEDIATE AND TRAP (CIT,
CGIT)

• COMPARE LOGICAL AND BRANCH
(CLGRB, CLRB)

• COMPARE LOGICAL AND BRANCH RELA-
TIVE (CLGRJ, CLRJ)

• COMPARE LOGICAL AND TRAP (CLGRT,
CLRT)

• COMPARE LOGICAL IMMEDIATE (CLF-
HSI, CLGHSI, CLHHSI)

• COMPARE LOGICAL IMMEDIATE AND
BRANCH (CLIB, CLGIB)

• COMPARE LOGICAL IMMEDIATE AND
BRANCH RELATIVE (CLGIJ, CLIJ)

• COMPARE LOGICAL IMMEDIATE AND
TRAP (CLFIT, CLGIT)

• COMPARE LOGICAL RELATIVE LONG
(CLGFRL, CLGHRL, CLGRL, CLHRL,
CLRL)

• COMPARE RELATIVE LONG (CGFRL,
CGRL, CRL)

• EXTRACT CPU ATTRIBUTE (ECAG)
• LOAD ADDRESS EXTENDED (LAEY)
• LOAD AND TEST (LTGF)
• LOAD HALFWORD RELATIVE LONG

(LGHRL, LHRL)
• LOAD LOGICAL HALFWORD RELATIVE

LONG (LLGHRL, LLHRL)
• LOAD LOGICAL RELATIVE LONG (LLG-

FRL)
• LOAD RELATIVE LONG (LGFRL, LGRL,

LRL)
• MOVE (MVHI, MVGHI, MVHHI)
• MULTIPLY (MFY)
• MULTIPLY HALFWORD (MHY)
• MULTIPLY SINGLE IMMEDIATE (MSFI,

MSGFI)
• PREFETCH DATA (PFD)
• PREFETCH DATA RELATIVE LONG

(PFDRL)
• ROTATE THEN AND SELECTED BITS

(RNSBG)
• ROTATE THEN EXCLUSIVE OR

SELECTED BITS (RXSBG)
• ROTATE THEN INSERT SELECTED BITS

(RISBG)
• ROTATE THEN OR SELECTED BITS

(ROSBG)

• STORE HALFWORD RELATIVE LONG
(STHRL)

• STORE RELATIVE LONG (STGRL, STRL)

18. The following additional general instructions are
available when the high-word facility is installed:

• ADD HIGH (AHHHR, AHHLR)
• ADD IMMEDIATE HIGH (AIH)
• ADD LOGICAL HIGH (ALHHHR, ALHHLR)
• ADD LOGICAL WITH SIGNED IMMEDIATE

HIGH (ALSIH, ALSIHN)
• BRANCH RELATIVE ON COUNT HIGH

(BRCTH)
• COMPARE HIGH (CHHR, CHLR, CHF)
• COMPARE IMMEDIATE HIGH (CIH)
• COMPARE LOGICAL HIGH (CLHHR,

CLHLR, CLHF)
• COMPARE LOGICAL IMMEDIATE HIGH

(CLIH)
• LOAD BYTE HIGH (LBH)
• LOAD HALFWORD HIGH (LHH)
• LOAD HIGH (LFH)
• LOAD LOGICAL CHARACTER HIGH

(LLCH)
• LOAD LOGICAL HALFWORD HIGH (LLHH)
• ROTATE THEN INSERT SELECTED BITS

HIGH (RISBHG)
• ROTATE THEN INSERT SELECTED BITS

LOW (RISBLG)
• STORE CHARACTER HIGH (STCH)
• STORE HALFWORD HIGH (STHH)
• STORE HIGH (STFH)
• SUBTRACT HIGH (SHHHR, SHHLR)
• SUBTRACT LOGICAL HIGH (SLHHHR,

SLHHLR)

19. The following additional general instructions are
available when the interlocked-access facility 1 is
installed:

• LOAD AND ADD (LAA, LAAG)
• LOAD AND ADD LOGICAL (LAAL, LAALG)
• LOAD AND AND (LAN, LANG)
• LOAD AND EXCLUSIVE OR (LAX, LAXG)
• LOAD AND OR (LAO, LAOG)
• LOAD PAIR DISJOINT (LPD, LPDG)

20. The following additional general instructions are
available when the load/store-on-condition facility
1 is installed:

• LOAD ON CONDITION (LOC, LOCG,
LOCGR, LOCR)

• STORE ON CONDITION (STOC, STOCG)

7-12 The z/Architecture CPU Architecture

21. The following additional general instructions are
available when the distinct-operands facility is
installed:

• ADD (ARK, AGRK)
• ADD IMMEDIATE (AHIK, AGHIK)
• ADD LOGICAL (ALRK, ALGRK)
• ADD LOGICAL WITH SIGNED IMMEDIATE

(ALHSIK, ALGHSIK)
• AND (NRK, NGRK)
• EXCLUSIVE OR (XRK, XGRK)
• OR (ORK, OGRK)
• SHIFT LEFT SINGLE (SLAK)
• SHIFT LEFT SINGLE LOGICAL (SLLK)
• SHIFT RIGHT SINGLE (SRAK)
• SHIFT RIGHT SINGLE LOGICAL (SRLK)
• SUBTRACT (SRK, SGRK)
• SUBTRACT LOGICAL (SLRK, SLGRK)

22. The POPULATION COUNT general instruction
is available when the population-count facility is
installed.

23. The following additional general instructions are
available when the message-security-assist
extension 4 is installed:

• CIPHER MESSAGE WITH CIPHER FEED-
BACK

• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH OUTPUT FEED-

BACK
• PERFORM CRYPTOGRAPHIC COMPUTA-

TION

24. The following additional general instructions are
available when the execution-hint facility is
installed:

• BRANCH PREDICTION PRELOAD (BPP)
• BRANCH PREDICTION RELATIVE PRE-

LOAD (BPRP)
• NEXT INSTRUCTION ACCESS INTENT

(NIAI)

25. The following additional general instructions are
available when the load-and-trap facility is
installed:

• LOAD AND TRAP (LAT and LGAT)

• LOAD HIGH AND TRAP (LFHAT)

• LOAD LOGICAL AND TRAP (LLGFAT)

• LOAD LOGICAL THIRTY ONE BITS AND
TRAP (LLGTAT)

26. The following additional general instructions are
available when the miscellaneous-instruction-
extensions facility 1 is installed:

• COMPARE LOGICAL AND TRAP (CLT,
CLGT)

• ROTATE THEN INSERT SELECTED BITS
(RISBGN)

27. The following additional general instructions are
available when the load-and-zero-rightmost-byte
facility is installed:

• LOAD AND ZERO RIGHTMOST BYTE
(LZRF, LZRG)

• LOAD LOGICAL AND ZERO RIGHTMOST
BYTE (LLZRGF)

28. The following additional general instructions are
available when the load/store-on-condition facility
2 is installed:

• LOAD HALFWORD HIGH IMMEDIATE ON
CONDITION (LOCHHI)

• LOAD HALFWORD IMMEDIATE ON CON-
DITION (LOCHI, LOCGHI)

• LOAD HIGH ON CONDITION (LOCFH,
LOCFHR)

• STORE HIGH ON CONDITION (STOCFH)

29. The PERFORM RANDOM NUMBER OPERA-
TION general instruction is available when the
message-security-assist extension 5 is installed:

30. The LOAD COUNT TO BLOCK BOUNDARY
general instruction is available when the vector
facility for z/Architecture is installed. Other
instructions of the vector facility for z/Architecture
are described in Chapters 21-24.

31. The following additional general instructions are
available when the miscellaneous-instruction-
extensions facility 2 is installed:

• ADD HALFWORD (AGH)
• BRANCH INDIRECT ON CONDITION
• MULTIPLY (MG, MGRK)
• MULTIPLY HALFWORD (MGH)
• MULTIPLY SINGLE (MSC, MSGC,

MSGRKC, MSRKC)
• SUBTRACT HALFWORD (SGH)

General Instructions 7-13

32. The following additional general instructions are
available when the guarded-storage facility is
installed:

• LOAD GUARDED (LGG)
• LOAD GUARDED STORAGE CONTROLS

(LGSC)
• LOAD LOGICAL AND SHIFT GUARDED

(LLGFSG)
• STORE GUARDED STORAGE CONTROLS

(STGSC)

33. The CIPHER MESSAGE WITH AUTHENTICA-
TION general instruction is available when the
message-security-assist extension 8 is installed.

34. The following additional general instructions are
available when the miscellaneous-instruction-
extensions facility 3 is installed:

• AND WITH COMPLEMENT (NCRK,
NCGRK)

• MOVE RIGHT TO LEFT

• NAND (NNRK, NNGRK)
• NOT EXCLUSIVE OR (NXRK, NXGRK)
• NOR (NORK, NOGRK)
• OR WITH COMPLEMENT (OCRK, OCGRK)
• SELECT (SELR, SELGR
• SELECT HIGH (SELFHR)

In addition, POPULATION COUNT includes a
control in an M3 field for counting the number of
one bits in each byte or the entire 64-bit register.

Figure 7-1 lists the instructions, mnemonics, charac-
teristics, and operation codes of the general instruc-
tions. In the Characteristics columns of this figure, a
facility code associated with the instruction may be
indicated in the third column (immediately to the left
of the first vertical ruling in the Characteristics col-
umns). If the facility code is blank, E2, MS, or N3,
then the instruction is supported in the ESA/390-
compatibility mode, although not all operands or
functions of the instruction may be valid.

Name
Mne-

monic Characteristics
Op-

code Page
ADD (32) A RX-a C A IF B2 5A 7-26
ADD (32) AR RR C IF 1A 7-25
ADD (32) ARK RRF-a C DO IF B9F8 7-25
ADD (32) AY RXY-a C LD A IF B2 E35A 7-26
ADD (64) AG RXY-a C N A IF B2 E308 7-26
ADD (64) AGR RRE C N IF B908 7-25
ADD (64) AGRK RRF-a C DO IF B9E8 7-25
ADD (6432) AGF RXY-a C N A IF B2 E318 7-26
ADD (6432) AGFR RRE C N IF B918 7-25
ADD HALFWORD (3216) AH RX-a C A IF B2 4A 7-27
ADD HALFWORD (3216) AHY RXY-a C LD A IF B2 E37A 7-27
ADD HALFWORD (6416) AGH RXY-a C MI2 A IF B2 E338 7-28
ADD HALFWORD IMMEDIATE (3216) AHI RI-a C IF A7A 7-28
ADD HALFWORD IMMEDIATE (6416) AGHI RI-a C N IF A7B 7-28
ADD HIGH (32) AHHHR RRF-a C HW IF B9C8 7-28
ADD HIGH (32) AHHLR RRF-a C HW IF B9D8 7-28
ADD IMMEDIATE (32) AFI RIL-a C EI IF C29 7-26
ADD IMMEDIATE (3216) AHIK RIE-d C DO IF ECD8 7-26
ADD IMMEDIATE (328) ASI SIY C GE A IF £1 ST B1 EB6A 7-26
ADD IMMEDIATE (6416) AGHIK RIE-d C DO IF ECD9 7-26
ADD IMMEDIATE (6432) AGFI RIL-a C EI IF C28 7-26
ADD IMMEDIATE (648) AGSI SIY C GE A IF £1 ST B1 EB7A 7-26
ADD IMMEDIATE HIGH (32) AIH RIL-a C HW IF CC8 7-29
ADD LOGICAL (32) AL RX-a C A B2 5E 7-29
ADD LOGICAL (32) ALR RR C 1E 7-29
ADD LOGICAL (32) ALRK RRF-a C DO B9FA 7-29
ADD LOGICAL (32) ALY RXY-a C LD A B2 E35E 7-29
ADD LOGICAL (64) ALG RXY-a C N A B2 E30A 7-29
ADD LOGICAL (64) ALGR RRE C N B90A 7-29
ADD LOGICAL (64) ALGRK RRF-a C DO B9EA 7-29
ADD LOGICAL (6432) ALGF RXY-a C N A B2 E31A 7-29
ADD LOGICAL (6432) ALGFR RRE C N B91A 7-29
ADD LOGICAL HIGH (32) ALHHHR RRF-a C HW B9CA 7-30
ADD LOGICAL HIGH (32) ALHHLR RRF-a C HW B9DA 7-30

Figure 7-1. Summary of General Instructions (Part 1 of 13)

7-14 The z/Architecture CPU Architecture

ADD LOGICAL IMMEDIATE (32) ALFI RIL-a C EI C2B 7-29
ADD LOGICAL IMMEDIATE (6432) ALGFI RIL-a C EI C2A 7-29
ADD LOGICAL WITH CARRY (32) ALC RXY-a C N3 A B2 E398 7-30
ADD LOGICAL WITH CARRY (32) ALCR RRE C N3 B998 7-30
ADD LOGICAL WITH CARRY (64) ALCG RXY-a C N A B2 E388 7-30
ADD LOGICAL WITH CARRY (64) ALCGR RRE C N B988 7-30
ADD LOGICAL WITH SIGNED IMMEDIATE (3216) ALHSIK RIE-d C DO ECDA 7-31
ADD LOGICAL WITH SIGNED IMMEDIATE (328) ALSI SIY C GE A £1 ST B1 EB6E 7-31
ADD LOGICAL WITH SIGNED IMMEDIATE (6416) ALGHSIK RIE-d C DO ECDB 7-31
ADD LOGICAL WITH SIGNED IMMEDIATE (648) ALGSI SIY C GE A £1 ST B1 EB7E 7-31
ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
(32)

ALSIH RIL-a C HW CCA 7-32

ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
(32)

ALSIHN RIL-a HW CCB 7-32

AND (32) N RX-a C A B2 54 7-32
AND (32) NR RR C 14 7-32
AND (32) NRK RRF-a C DO B9F4 7-32
AND (32) NY RXY-a C LD A B2 E354 7-33
AND (64) NG RXY-a C N A B2 E380 7-33
AND (64) NGR RRE C N B980 7-32
AND (64) NGRK RRF-a C DO B9E4 7-32
AND (character) NC SS-a C ¤9 A ST B1 B2 D4 7-33
AND (immediate) NI SI C A £2 ST B1 94 7-33
AND (immediate) NIY SIY C LD A £2 ST B1 EB54 7-33
AND IMMEDIATE (high high) NIHH RI-a C N A54 7-34
AND IMMEDIATE (high low) NIHL RI-a C N A55 7-34
AND IMMEDIATE (high) NIHF RIL-a C EI C0A 7-34
AND IMMEDIATE (low high) NILH RI-a C N A56 7-34
AND IMMEDIATE (low low) NILL RI-a C N A57 7-34
AND IMMEDIATE (low) NILF RIL-a C EI C0B 7-34
AND WITH COMPLEMENT (32) NCRK RRF-a C MI3 B9F5 7-34
AND WITH COMPLEMENT (64) NCGRK RRF-a C MI3 B9E5 7-34
BRANCH AND LINK BAL RX-a ¤9 B 45 7-35
BRANCH AND LINK BALR RR ¤2,9 T B 05 7-35
BRANCH AND SAVE BAS RX-a ¤9 B 4D 7-36
BRANCH AND SAVE BASR RR ¤2,9 T B 0D 7-36
BRANCH AND SAVE AND SET MODE BASSM RR ¤2,3,9 T B 0C 7-36
BRANCH AND SET MODE BSM RR ¤3,9 T B 0B 7-37
BRANCH INDIRECT ON CONDITION BIC RXY-b MI2 ¤9 A B B2 E347 7-38
BRANCH ON CONDITION BC RX-b ¤9 B 47 7-39
BRANCH ON CONDITION BCR RR ¤9 ¢1 B 07 7-39
BRANCH ON COUNT (32) BCT RX-a ¤9 B 46 7-40
BRANCH ON COUNT (32) BCTR RR ¤9 B 06 7-40
BRANCH ON COUNT (64) BCTG RXY-a N ¤9 B E346 7-40
BRANCH ON COUNT (64) BCTGR RRE N ¤9 B B946 7-40
BRANCH ON INDEX HIGH (32) BXH RS-a ¤9 B 86 7-41
BRANCH ON INDEX HIGH (64) BXHG RSY-a N ¤9 B EB44 7-41
BRANCH ON INDEX LOW OR EQUAL (32) BXLE RS-a ¤9 B 87 7-41
BRANCH ON INDEX LOW OR EQUAL (64) BXLEG RSY-a N ¤9 B EB45 7-41
BRANCH PREDICTION PRELOAD BPP SMI EH ¤9 C7 7-42
BRANCH PREDICTION RELATIVE PRELOAD BPRP MII EH ¤9 C5 7-42
BRANCH RELATIVE AND SAVE BRAS RI-b ¤9 B A75 7-45
BRANCH RELATIVE AND SAVE LONG BRASL RIL-b N3 ¤9 B C05 7-45
BRANCH RELATIVE ON CONDITION BRC RI-c ¤10 B A74 7-46
BRANCH RELATIVE ON CONDITION LONG BRCL RIL-c N3 ¤10 B C04 7-46
BRANCH RELATIVE ON COUNT (32) BRCT RI-b ¤9 B A76 7-47
BRANCH RELATIVE ON COUNT (64) BRCTG RI-b N ¤9 B A77 7-47
BRANCH RELATIVE ON COUNT HIGH (32) BRCTH RIL-b HW ¤9 B CC6 7-47
BRANCH RELATIVE ON INDEX HIGH (32) BRXH RSI ¤9 B 84 7-47
BRANCH RELATIVE ON INDEX HIGH (64) BRXHG RIE-e N ¤9 B EC44 7-47
BRANCH RELATIVE ON INDEX LOW OR EQ. (32) BRXLE RSI ¤9 B 85 7-47

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 2 of 13)

General Instructions 7-15

BRANCH RELATIVE ON INDEX LOW OR EQ. (64) BRXLG RIE-e N ¤9 B EC45 7-48
CHECKSUM CKSM RRE C ¤9 A SP IC R2 B241 7-49
CIPHER MESSAGE KM RRE C MS ¤5,9 A SP IC GM I1 ST R1 R2 B92E 7-52
CIPHER MESSAGE WITH AUTHENTICATION KMA RRF-b C M8 ¤5,9 A SP IC GM I1 ST R1 R2 R3 B929 7-77
CIPHER MESSAGE WITH CHAINING KMC RRE C MS ¤5,9 A SP IC GM I1 ST R1 R2 B92F 7-52
CIPHER MESSAGE WITH CIPHER FEEDBACK KMF RRE C M4 ¤5,9 A SP IC GM I1 ST R1 R2 B92A 7-91
CIPHER MESSAGE WITH COUNTER KMCTR RRF-b C M4 ¤5,9 A SP IC GM I1 ST R1 R2 R3 B92D 7-106
CIPHER MESSAGE WITH OUTPUT FEEDBACK KMO RRE C M4 ¤5,9 A SP IC GM I1 ST R1 R2 B92B 7-119
COMPARE (32) C RX-a C A B2 59 7-133
COMPARE (32) CR RR C 19 7-133
COMPARE (32) CY RXY-a C LD A B2 E359 7-133
COMPARE (64) CG RXY-a C N A B2 E320 7-133
COMPARE (64) CGR RRE C N B920 7-133
COMPARE (6432) CGF RXY-a C N A B2 E330 7-133
COMPARE (6432) CGFR RRE C N B930 7-133
COMPARE AND BRANCH (32) CRB RRS GE ¤9 B ECF6 7-134
COMPARE AND BRANCH (64) CGRB RRS GE ¤9 B ECE4 7-134
COMPARE AND BRANCH RELATIVE (32) CRJ RIE-b GE ¤10 B EC76 7-134
COMPARE AND BRANCH RELATIVE (64) CGRJ RIE-b GE ¤10 B EC64 7-135
COMPARE AND FORM CODEWORD CFC S C ¤9 A SP II GM I1 B21A 7-136
COMPARE AND SWAP (32) CS RS-a C ¤9 A SP $ ST B2 BA 7-143
COMPARE AND SWAP (32) CSY RSY-a C LD ¤9 A SP $ ST B2 EB14 7-143
COMPARE AND SWAP (64) CSG RSY-a C N ¤9 A SP $ ST B2 EB30 7-143
COMPARE AND SWAP AND STORE CSST SSF C CS ¤1 A SP $ GM ST B1 B2 C82 7-145
COMPARE AND TRAP (32) CRT RRF-c GE Dc B972 7-148
COMPARE AND TRAP (64) CGRT RRF-c GE Dc B960 7-148
COMPARE DOUBLE AND SWAP (32) CDS RS-a C ¤9 A SP $ ST B2 BB 7-143
COMPARE DOUBLE AND SWAP (32) CDSY RSY-a C LD ¤9 A SP $ ST B2 EB31 7-143
COMPARE DOUBLE AND SWAP (64) CDSG RSY-a C N ¤9 A SP $ ST B2 EB3E 7-143
COMPARE HALFWORD (3216) CH RX-a C A B2 49 7-149
COMPARE HALFWORD (3216) CHY RXY-a C LD A B2 E379 7-149
COMPARE HALFWORD (6416) CGH RXY-a C GE A B2 E334 7-149
COMPARE HALFWORD IMMEDIATE (1616) CHHSI SIL C GE A B1 E554 7-149
COMPARE HALFWORD IMMEDIATE (3216) CHI RI-a C A7E 7-149
COMPARE HALFWORD IMMEDIATE (3216) CHSI SIL C GE A B1 E55C 7-149
COMPARE HALFWORD IMMEDIATE (6416) CGHI RI-a C N A7F 7-149
COMPARE HALFWORD IMMEDIATE (6416) CGHSI SIL C GE A B1 E558 7-149
COMPARE HALFWORD RELATIVE LONG (3216) CHRL RIL-b C GE A* C65 7-149
COMPARE HALFWORD RELATIVE LONG (6416) CGHRL RIL-b C GE A* C64 7-149
COMPARE HIGH (32) CHF RXY-a C HW A B2 E3CD 7-150
COMPARE HIGH (32) CHHR RRE C HW B9CD 7-150
COMPARE HIGH (32) CHLR RRE C HW B9DD 7-150
COMPARE IMMEDIATE (32) CFI RIL-a C EI C2D 7-133
COMPARE IMMEDIATE (6432) CGFI RIL-a C EI C2C 7-134
COMPARE IMMEDIATE AND BRANCH (328) CIB RIS GE ¤9 B ECFE 7-135
COMPARE IMMEDIATE AND BRANCH (648) CGIB RIS GE ¤9 B ECFC 7-135
COMPARE IMMEDIATE AND BRANCH RELATIVE
(328)

CIJ RIE-c GE ¤10 B EC7E 7-135

COMPARE IMMEDIATE AND BRANCH RELATIVE
(648)

CGIJ RIE-c GE ¤10 B EC7C 7-135

COMPARE IMMEDIATE AND TRAP (3216) CIT RIE-a GE Dc EC72 7-148
COMPARE IMMEDIATE AND TRAP (6416) CGIT RIE-a GE Dc EC70 7-148
COMPARE IMMEDIATE HIGH (32) CIH RIL-a C HW CCD 7-150
COMPARE LOGICAL (32) CL RX-a C A B2 55 7-151
COMPARE LOGICAL (32) CLR RR C 15 7-151
COMPARE LOGICAL (32) CLY RXY-a C LD A B2 E355 7-151
COMPARE LOGICAL (64) CLG RXY-a C N A B2 E321 7-151
COMPARE LOGICAL (64) CLGR RRE C N B921 7-151
COMPARE LOGICAL (6432) CLGF RXY-a C N A B2 E331 7-151
COMPARE LOGICAL (6432) CLGFR RRE C N B931 7-151
COMPARE LOGICAL (character) CLC SS-a C ¤9 A B1 B2 D5 7-151

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 3 of 13)

7-16 The z/Architecture CPU Architecture

COMPARE LOGICAL (immediate) CLI SI C A B1 95 7-151
COMPARE LOGICAL (immediate) CLIY SIY C LD A B1 EB55 7-151
COMPARE LOGICAL AND BRANCH (32) CLRB RRS GE ¤9 B ECF7 7-153
COMPARE LOGICAL AND BRANCH (64) CLGRB RRS GE ¤9 B ECE5 7-153
COMPARE LOGICAL AND BRANCH RELATIVE (32) CLRJ RIE-b GE ¤10 B EC77 7-153
COMPARE LOGICAL AND BRANCH RELATIVE (64) CLGRJ RIE-b GE ¤10 B EC65 7-153
COMPARE LOGICAL AND TRAP (32) CLRT RRF-c GE Dc B973 7-154
COMPARE LOGICAL AND TRAP (32) CLT RSY-b MI1 A Dc B2 EB23 7-154
COMPARE LOGICAL AND TRAP (64) CLGRT RRF-c GE Dc B961 7-154
COMPARE LOGICAL AND TRAP (64) CLGT RSY-b MI1 A Dc B2 EB2B 7-154
COMPARE LOGICAL CHAR. UNDER MASK (high) CLMH RSY-b C N A B2 EB20 7-156
COMPARE LOGICAL CHAR. UNDER MASK (low) CLM RS-b C A B2 BD 7-156
COMPARE LOGICAL CHAR. UNDER MASK (low) CLMY RSY-b C LD A B2 EB21 7-156
COMPARE LOGICAL HIGH (32) CLHF RXY-a C HW A B2 E3CF 7-156
COMPARE LOGICAL HIGH (32) CLHHR RRE C HW B9CF 7-156
COMPARE LOGICAL HIGH (32) CLHLR RRE C HW B9DF 7-156
COMPARE LOGICAL IMMEDIATE (1616) CLHHSI SIL C GE A B1 E555 7-151
COMPARE LOGICAL IMMEDIATE (32) CLFI RIL-a C EI C2F 7-151
COMPARE LOGICAL IMMEDIATE (3216) CLFHSI SIL C GE A B1 E55D 7-151
COMPARE LOGICAL IMMEDIATE (6416) CLGHSI SIL C GE A B1 E559 7-151
COMPARE LOGICAL IMMEDIATE (6432) CLGFI RIL-a C EI C2E 7-151
COMPARE LOGICAL IMMEDIATE AND BRANCH
(328)

CLIB RIS GE ¤9 B ECFF 7-153

COMPARE LOGICAL IMMEDIATE AND BRANCH
(648)

CLGIB RIS GE ¤9 B ECFD 7-153

COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE (328)

CLIJ RIE-c GE ¤10 B EC7F 7-153

COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE (648)

CLGIJ RIE-c GE ¤10 B EC7D 7-153

COMPARE LOGICAL IMMEDIATE AND TRAP
(3216)

CLFIT RIE-a GE Dc EC73 7-155

COMPARE LOGICAL IMMEDIATE AND TRAP
(6416)

CLGIT RIE-a GE Dc EC71 7-155

COMPARE LOGICAL IMMEDIATE HIGH (32) CLIH RIL-a C HW CCF 7-157
COMPARE LOGICAL LONG CLCL RR C ¤9 A SP II R1 R2 0F 7-157
COMPARE LOGICAL LONG EXTENDED CLCLE RS-a C ¤9 A SP IC R1 R3 A9 7-159
COMPARE LOGICAL LONG UNICODE CLCLU RSY-a C E2 ¤9 A SP IC R1 R2 EB8F 7-162
COMPARE LOGICAL RELATIVE LONG (32) CLRL RIL-b C GE A* SP C6F 7-152
COMPARE LOGICAL RELATIVE LONG (3216) CLHRL RIL-b C GE A* C67 7-152
COMPARE LOGICAL RELATIVE LONG (64) CLGRL RIL-b C GE A* SP C6A 7-152
COMPARE LOGICAL RELATIVE LONG (6416) CLGHRL RIL-b C GE A* C66 7-152
COMPARE LOGICAL RELATIVE LONG (6432) CLGFRL RIL-b C GE A* SP C6E 7-152
COMPARE LOGICAL STRING CLST RRE C ¤9 A SP IC G0 R1 R2 B25D 7-165
COMPARE RELATIVE LONG (32) CRL RIL-b C GE A* SP C6D 7-134
COMPARE RELATIVE LONG (64) CGRL RIL-b C GE A* SP C68 7-134
COMPARE RELATIVE LONG (6432) CGFRL RIL-b C GE A* SP C6C 7-134
COMPARE UNTIL SUBSTRING EQUAL CUSE RRE C ¤9 A SP II GM R1 R2 B257 7-166
COMPRESSION CALL CMPSC RRE C ¤5,9 A SP II Dg GM ST R1 R2 B263 7-169
COMPUTE INTERMEDIATE MESSAGE DIGEST KIMD RRE C MS ¤5,9 A SP IC GM I1 ST R2 B93E 7-187
COMPUTE LAST MESSAGE DIGEST KLMD RRE C MS ¤5,9 A SP IC GM I1 ST R2 B93F 7-200
COMPUTE MESSAGE AUTHENTICATION CODE KMAC RRE C MS ¤5,9 A SP IC GM I1 ST R2 B91E 7-218
CONVERT TO BINARY (32) CVB RX-a ¤9 A Dg IK B2 4F 7-229
CONVERT TO BINARY (32) CVBY RXY-a LD ¤9 A Dg IK B2 E306 7-229
CONVERT TO BINARY (64) CVBG RXY-a N ¤9 A Dg IK B2 E30E 7-229
CONVERT TO DECIMAL (32) CVD RX-a ¤9 A ST B2 4E 7-230
CONVERT TO DECIMAL (32) CVDY RXY-a LD ¤9 A ST B2 E326 7-230
CONVERT TO DECIMAL (64) CVDG RXY-a N ¤9 A ST B2 E32E 7-230
CONVERT UNICODE TO UTF-8 CUUTF RRF-c C ¤5,9 A SP IC ST R1 R2 B2A6 7-233
CONVERT UTF-16 TO UTF-32 CU24 RRF-c C E3 ¤5,9 A SP IC ST R1 R2 B9B1 7-230
CONVERT UTF-16 TO UTF-8 CU21 RRF-c C ¤5,9 A SP IC ST R1 R2 B2A6 7-233
CONVERT UTF-32 TO UTF-16 CU42 RRE C E3 ¤5,9 A SP IC ST R1 R2 B9B3 7-237

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 4 of 13)

General Instructions 7-17

CONVERT UTF-32 TO UTF-8 CU41 RRE C E3 ¤5,9 A SP IC ST R1 R2 B9B2 7-240
CONVERT UTF-8 TO UNICODE CUTFU RRF-c C ¤5,9 A SP IC ST R1 R2 B2A7 7-243
CONVERT UTF-8 TO UTF-16 CU12 RRF-c C ¤5,9 A SP IC ST R1 R2 B2A7 7-243
CONVERT UTF-8 TO UTF-32 CU14 RRF-c C E3 ¤5,9 A SP IC ST R1 R2 B9B0 7-247
COPY ACCESS CPYA RRE ¤6 U1 U2 B24D 7-251
DIVIDE (3264) D RX-a ¤9 A SP IK B2 5D 7-251
DIVIDE (3264) DR RR ¤9 SP IK 1D 7-251
DIVIDE LOGICAL (3264) DL RXY-a N3 ¤9 A SP IK B2 E397 7-252
DIVIDE LOGICAL (3264) DLR RRE N3 ¤9 SP IK B997 7-252
DIVIDE LOGICAL (64128) DLG RXY-a N ¤9 A SP IK B2 E387 7-252
DIVIDE LOGICAL (64128) DLGR RRE N ¤9 SP IK B987 7-252
DIVIDE SINGLE (64) DSG RXY-a N ¤9 A SP IK B2 E30D 7-253
DIVIDE SINGLE (64) DSGR RRE N ¤9 SP IK B90D 7-253
DIVIDE SINGLE (6432) DSGF RXY-a N ¤9 A SP IK B2 E31D 7-253
DIVIDE SINGLE (6432) DSGFR RRE N ¤9 SP IK B91D 7-253
EXCLUSIVE OR (32) X RX-a C A B2 57 7-253
EXCLUSIVE OR (32) XR RR C 17 7-253
EXCLUSIVE OR (32) XRK RRF-a C DO B9F7 7-253
EXCLUSIVE OR (32) XY RXY-a C LD A B2 E357 7-253
EXCLUSIVE OR (64) XG RXY-a C N A B2 E382 7-253
EXCLUSIVE OR (64) XGR RRE C N B982 7-253
EXCLUSIVE OR (64) XGRK RRF-a C DO B9E7 7-253
EXCLUSIVE OR (character) XC SS-a C ¤9 A ST B1 B2 D7 7-254
EXCLUSIVE OR (immediate) XI SI C A £2 ST B1 97 7-254
EXCLUSIVE OR (immediate) XIY SIY C LD A £2 ST B1 EB57 7-254
EXCLUSIVE OR IMMEDIATE (high) XIHF RIL-a C EI C06 7-255
EXCLUSIVE OR IMMEDIATE (low) XILF RIL-a C EI C07 7-255
EXECUTE EX RX-a ¤9 AI SP EX 44 7-255
EXECUTE RELATIVE LONG EXRL RIL-b XX ¤9 AI* EX C60 7-255
EXTRACT ACCESS EAR RRE U2 B24F 7-256
EXTRACT CPU ATTRIBUTE ECAG RSY-a GE ¤9 EB4C 7-256
EXTRACT CPU TIME ECTG SSF ET ¤8,9 A GM R3 B1 B2 C81 7-259
EXTRACT PSW EPSW RRE N3 ¤8,9 B98D 7-260
EXTRACT TRANSACTION NESTING DEPTH ETND RRE TX ¤9 SO B2EC 7-260
FIND LEFTMOST ONE FLOGR RRE C EI SP B983 7-261
INSERT CHARACTER IC RX-a A B2 43 7-261
INSERT CHARACTER ICY RXY-a LD A B2 E373 7-261
INSERT CHARACTERS UNDER MASK (high) ICMH RSY-b C N A B2 EB80 7-261
INSERT CHARACTERS UNDER MASK (low) ICM RS-b C A B2 BF 7-261
INSERT CHARACTERS UNDER MASK (low) ICMY RSY-b C LD A B2 EB81 7-261
INSERT IMMEDIATE (high high) IIHH RI-a N A50 7-262
INSERT IMMEDIATE (high low) IIHL RI-a N A51 7-262
INSERT IMMEDIATE (high) IIHF RIL-a EI C08 7-262
INSERT IMMEDIATE (low high) IILH RI-a N A52 7-262
INSERT IMMEDIATE (low low) IILL RI-a N A53 7-262
INSERT IMMEDIATE (low) IILF RIL-a EI C09 7-262
INSERT PROGRAM MASK IPM RRE B222 7-263
LOAD (32) L RX-a A B2 58 7-263
LOAD (32) LR RR 18 7-263
LOAD (32) LY RXY-a LD A B2 E358 7-263
LOAD (64) LG RXY-a N A B2 E304 7-263
LOAD (64) LGR RRE N B904 7-263
LOAD (6432) LGF RXY-a N A B2 E314 7-263
LOAD (6432) LGFR RRE N B914 7-263
LOAD ACCESS MULTIPLE LAM RS-a ¤6 A SP UB 9A 7-264
LOAD ACCESS MULTIPLE LAMY RSY-a LD ¤6 A SP UB EB9A 7-264
LOAD ADDRESS LA RX-a 41 7-265
LOAD ADDRESS LAY RXY-a LD E371 7-265
LOAD ADDRESS EXTENDED LAE RX-a ¤6 U1 BP 51 7-265
LOAD ADDRESS EXTENDED LAEY RXY-a GE ¤6 U1 BP E375 7-265
LOAD ADDRESS RELATIVE LONG LARL RIL-b N3 C00 7-266

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 5 of 13)

7-18 The z/Architecture CPU Architecture

LOAD AND ADD (32) LAA RSY-a C IA ¤9 A SP IF £ ST B2 EBF8 7-267
LOAD AND ADD (64) LAAG RSY-a C IA ¤9 A SP IF £ ST B2 EBE8 7-267
LOAD AND ADD LOGICAL (32) LAAL RSY-a C IA ¤9 A SP £ ST B2 EBFA 7-267
LOAD AND ADD LOGICAL (64) LAALG RSY-a C IA ¤9 A SP £ ST B2 EBEA 7-267
LOAD AND AND (32) LAN RSY-a C IA ¤9 A SP £ ST B2 EBF4 7-268
LOAD AND AND (64) LANG RSY-a C IA ¤9 A SP £ ST B2 EBE4 7-268
LOAD AND EXCLUSIVE OR (32) LAX RSY-a C IA ¤9 A SP £ ST B2 EBF7 7-268
LOAD AND EXCLUSIVE OR (64) LAXG RSY-a C IA ¤9 A SP £ ST B2 EBE7 7-268
LOAD AND OR (32) LAO RSY-a C IA ¤9 A SP £ ST B2 EBF6 7-269
LOAD AND OR (64) LAOG RSY-a C IA ¤9 A SP £ ST B2 EBE6 7-269
LOAD AND TEST (32) LT RXY-a C EI A B2 E312 7-270
LOAD AND TEST (32) LTR RR C 12 7-269
LOAD AND TEST (64) LTG RXY-a C EI A B2 E302 7-270
LOAD AND TEST (64) LTGR RRE C N B902 7-269
LOAD AND TEST (6432) LTGF RXY-a C GE A B2 E332 7-270
LOAD AND TEST (6432) LTGFR RRE C N B912 7-269
LOAD AND TRAP (32) LAT RXY-a LT A Dc B2 E39F 7-270
LOAD AND TRAP (64) LGAT RXY-a LT A Dc B2 E385 7-270
LOAD AND ZERO RIGHTMOST BYTE (32) LZRF RXY-a LZ A B2 E33B 7-270
LOAD AND ZERO RIGHTMOST BYTE (64) LZRG RXY-a LZ A B2 E32A 7-270
LOAD BYTE (328) LB RXY-a LD A E376 7-271
LOAD BYTE (328) LBR RRE EI B926 7-271
LOAD BYTE (648) LGB RXY-a LD A E377 7-271
LOAD BYTE (648) LGBR RRE EI B906 7-271
LOAD BYTE HIGH (328) LBH RXY-a HW A B2 E3C0 7-271
LOAD COMPLEMENT (32) LCR RR C IF 13 7-271
LOAD COMPLEMENT (64) LCGR RRE C N IF B903 7-272
LOAD COMPLEMENT (6432) LCGFR RRE C N B913 7-272
LOAD COUNT TO BLOCK BOUNDARY LCBB RXE C VF SP E727 7-272
LOAD GUARDED (64) LGG RXY-a GF ¤12 A SP B ST B2 E34C 7-273
LOAD GUARDED STORAGE CONTROLS LGSC RXY-a GF ¤1 A SO B2 E34D 7-274
LOAD HALFWORD (3216) LH RX-a A B2 48 7-275
LOAD HALFWORD (3216) LHR RRE EI B927 7-275
LOAD HALFWORD (3216) LHY RXY-a LD A B2 E378 7-275
LOAD HALFWORD (6416) LGH RXY-a N A B2 E315 7-275
LOAD HALFWORD (6416) LGHR RRE EI B907 7-275
LOAD HALFWORD HIGH (3216) LHH RXY-a HW A B2 E3C4 7-276
LOAD HALFWORD HIGH IMMEDIATE ON
CONDITION (3216)

LOCHHI RIE-g L2 EC4E 7-276

LOAD HALFWORD IMMEDIATE (3216) LHI RI-a A78 7-275
LOAD HALFWORD IMMEDIATE (6416) LGHI RI-a N A79 7-275
LOAD HALFWORD IMMEDIATE ON CONDITION
(3216)

LOCHI RIE-g L2 EC42 7-276

LOAD HALFWORD IMMEDIATE ON CONDITION
(6416)

LOCGHI RIE-g L2 EC46 7-276

LOAD HALFWORD RELATIVE LONG (3216) LHRL RIL-b GE A* C45 7-275
LOAD HALFWORD RELATIVE LONG (6416) LGHRL RIL-b GE A* C44 7-275
LOAD HIGH (32) LFH RXY-a HW A B2 E3CA 7-277
LOAD HIGH AND TRAP (32) LFHAT RXY-a LT A Dc B2 E3C8 7-277
LOAD HIGH ON CONDITION (32) LOCFH RSY-b L2 A B2 EBE0 7-283
LOAD HIGH ON CONDITION (32) LOCFHR RRF-c L2 B9E0 7-283
LOAD IMMEDIATE (6432) LGFI RIL-a EI C01 7-263
LOAD LOGICAL (6432) LLGF RXY-a N A B2 E316 7-277
LOAD LOGICAL (6432) LLGFR RRE N B916 7-277
LOAD LOGICAL AND TRAP (6432) LLGFAT RXY-a LT A Dc B2 E39D 7-278
LOAD LOGICAL AND ZERO RIGHTMOST BYTE
(6432)

LLZRGF RXY-a LZ A B2 E33A 7-278

LOAD LOGICAL AND SHIFT GUARDED (6432) LLGFSG RXY-a GF ¤12 A SP B ST B2 E348 7-273
LOAD LOGICAL CHARACTER (328) LLC RXY-a EI A B2 E394 7-278
LOAD LOGICAL CHARACTER (328) LLCR RRE EI B994 7-278
LOAD LOGICAL CHARACTER (648) LLGC RXY-a N A B2 E390 7-278

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 6 of 13)

General Instructions 7-19

LOAD LOGICAL CHARACTER (648) LLGCR RRE EI B984 7-278
LOAD LOGICAL CHARACTER HIGH (328) LLCH RXY-a HW A B2 E3C2 7-279
LOAD LOGICAL HALFWORD (3216) LLH RXY-a EI A B2 E395 7-279
LOAD LOGICAL HALFWORD (3216) LLHR RRE EI B995 7-279
LOAD LOGICAL HALFWORD (6416) LLGH RXY-a N A B2 E391 7-279
LOAD LOGICAL HALFWORD (6416) LLGHR RRE EI B985 7-279
LOAD LOGICAL HALFWORD HIGH (3216) LLHH RXY-a HW A B2 E3C6 7-280
LOAD LOGICAL HALFWORD RELATIVE LONG
(3216)

LLHRL RIL-b GE A* C42 7-279

LOAD LOGICAL HALFWORD RELATIVE LONG
(6416)

LLGHRL RIL-b GE A* C46 7-279

LOAD LOGICAL IMMEDIATE (high high) LLIHH RI-a N A5C 7-280
LOAD LOGICAL IMMEDIATE (high low) LLIHL RI-a N A5D 7-280
LOAD LOGICAL IMMEDIATE (high) LLIHF RIL-a EI C0E 7-280
LOAD LOGICAL IMMEDIATE (low high) LLILH RI-a N A5E 7-280
LOAD LOGICAL IMMEDIATE (low low) LLILL RI-a N A5F 7-280
LOAD LOGICAL IMMEDIATE (low) LLILF RIL-a EI C0F 7-280
LOAD LOGICAL RELATIVE LONG (6432) LLGFRL RIL-b GE A* SP C4E 7-277
LOAD LOGICAL THIRTY ONE BITS (6431) LLGT RXY-a N A B2 E317 7-281
LOAD LOGICAL THIRTY ONE BITS (6431) LLGTR RRE N B917 7-280
LOAD LOGICAL THIRTY ONE BITS AND TRAP
(6431)

LLGTAT RXY-a LT A Dc B2 E39C 7-281

LOAD MULTIPLE (32) LM RS-a A B2 98 7-281
LOAD MULTIPLE (32) LMY RSY-a LD A B2 EB98 7-281
LOAD MULTIPLE (64) LMG RSY-a N A B2 EB04 7-281
LOAD MULTIPLE DISJOINT (6432&32) LMD SS-e N ¤9 A B2 B4 EF 7-282
LOAD MULTIPLE HIGH (32) LMH RSY-a N A B2 EB96 7-282
LOAD NEGATIVE (32) LNR RR C 11 7-282
LOAD NEGATIVE (64) LNGR RRE C N B901 7-282
LOAD NEGATIVE (6432) LNGFR RRE C N B911 7-283
LOAD ON CONDITION (32) LOC RSY-b L1 A B2 EBF2 7-283
LOAD ON CONDITION (32) LOCR RRF-c L1 B9F2 7-283
LOAD ON CONDITION (64) LOCG RSY-b L1 A B2 EBE2 7-283
LOAD ON CONDITION (64) LOCGR RRF-c L1 B9E2 7-283
LOAD PAIR DISJOINT (32) LPD SSF C IA ¤9 A SP B1 B2 C84 7-284
LOAD PAIR DISJOINT (64) LPDG SSF C IA ¤9 A SP B1 B2 C85 7-284
LOAD PAIR FROM QUADWORD (64&64128) LPQ RXY-a N ¤9 A SP B2 E38F 7-285
LOAD POSITIVE (32) LPR RR C IF 10 7-286
LOAD POSITIVE (64) LPGR RRE C N IF B900 7-286
LOAD POSITIVE (6432) LPGFR RRE C N B910 7-286
LOAD RELATIVE LONG (32) LRL RIL-b GE A SP C4D 7-263
LOAD RELATIVE LONG (64) LGRL RIL-b GE A* SP C48 7-263
LOAD RELATIVE LONG (6432) LGFRL RIL-b GE A* SP C4C 7-263
LOAD REVERSED (16) LRVH RXY-a N3 A B2 E31F 7-286
LOAD REVERSED (32) LRV RXY-a N3 A B2 E31E 7-286
LOAD REVERSED (32) LRVR RRE N3 B91F 7-286
LOAD REVERSED (64) LRVG RXY-a N A B2 E30F 7-286
LOAD REVERSED (64) LRVGR RRE N B90F 7-286
MONITOR CALL MC SI ¤4,8,9 SP ME ST AF 7-287
MOVE (1616) MVHHI SIL GE A ST B1 E544 7-288
MOVE (3216) MVHI SIL GE A ST B1 E54C 7-288
MOVE (6416) MVGHI SIL GE A ST B1 E548 7-288
MOVE (character) MVC SS-a ¤9 A ST B1 B2 D2 7-288
MOVE (immediate) MVI SI A ST B1 92 7-288
MOVE (immediate) MVIY SIY LD A ST B1 EB52 7-288
MOVE INVERSE MVCIN SS-a ¤9 A ST B1 B2 E8 7-289
MOVE LONG MVCL RR C ¤9 A SP II ST R1 R2 0E 7-289
MOVE LONG EXTENDED MVCLE RS-a C ¤9 A SP IC ST R1 R3 A8 7-293
MOVE LONG UNICODE MVCLU RSY-a C E2 ¤9 A SP IC ST R1 R3 EB8E 7-296
MOVE NUMERICS MVN SS-a ¤9 A ST B1 B2 D1 7-300
MOVE RIGHT TO LEFT MVCRL SSE MI3 ¤9 A G0 ST B1 B2 E50A 7-300

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 7 of 13)

7-20 The z/Architecture CPU Architecture

MOVE STRING MVST RRE C ¤9 A SP IC G0 ST R1 R2 B255 7-301
MOVE WITH OFFSET MVO SS-b ¤9 A ST B1 B2 F1 7-302
MOVE ZONES MVZ SS-a ¤9 A ST B1 B2 D3 7-303
MULTIPLY (12864) MG RXY-a MI2 A SP B2 E384 7-304
MULTIPLY (12864) MGRK RRF-a MI2 SP B9EC 7-304
MULTIPLY (6432) M RX-a A SP B2 5C 7-304
MULTIPLY (6432) MFY RXY-a GE A SP B2 E35C 7-304
MULTIPLY (6432) MR RR SP 1C 7-304
MULTIPLY HALFWORD (3216) MH RX-a A B2 4C 7-305
MULTIPLY HALFWORD (3216) MHY RXY-a GE A B2 E37C 7-305
MULTIPLY HALFWORD (6416) MGH RXY-a MI2 A B2 E33C 7-305
MULTIPLY HALFWORD IMMEDIATE (3216) MHI RI-a A7C 7-305
MULTIPLY HALFWORD IMMEDIATE (6416) MGHI RI-a N A7D 7-305
MULTIPLY LOGICAL (12864) MLG RXY-a N A SP B2 E386 7-306
MULTIPLY LOGICAL (12864) MLGR RRE N SP B986 7-306
MULTIPLY LOGICAL (6432) ML RXY-a N3 A SP B2 E396 7-306
MULTIPLY LOGICAL (6432) MLR RRE N3 SP B996 7-305
MULTIPLY SINGLE (32) MS RX-a A B2 71 7-307
MULTIPLY SINGLE (32) MSC RXY-a C MI2 A IF B2 E353 7-307
MULTIPLY SINGLE (32) MSR RRE B252 7-307
MULTIPLY SINGLE (32) MSRKC RRF-a C MI2 IF B9FD 7-307
MULTIPLY SINGLE (32) MSY RXY-a LD A B2 E351 7-307
MULTIPLY SINGLE (64) MSG RXY-a N A B2 E30C 7-307
MULTIPLY SINGLE (64) MSGC RXY-a C MI2 A IF B2 E383 7-307
MULTIPLY SINGLE (64) MSGR RRE N B90C 7-307
MULTIPLY SINGLE (64) MSGRKC RRF-a C MI2 IF B9ED 7-307
MULTIPLY SINGLE (6432) MSGF RXY-a N A B2 E31C 7-307
MULTIPLY SINGLE (6432) MSGFR RRE N B91C 7-307
MULTIPLY SINGLE IMMEDIATE (32) MSFI RIL-a GE C21 7-307
MULTIPLY SINGLE IMMEDIATE (6432) MSGFI RIL-a GE C20 7-307
NAND (32) NNRK RRF-a C MI3 B974 7-308
NAND (64) NNGRK RRF-a C MI3 B964 7-308
NEXT INSTRUCTION ACCESS INTENT NIAI IE EH B2FA 7-309
NONTRANSACTIONAL STORE (64) NTSTG RXY-a TX ¤9 A SP ST B2 E325 7-310
NOR (32) NORK RRF-a C MI3 B976 7-311
NOR (64) NOGRK RRF-a C MI3 B966 7-311
NOT EXCLUSIVE OR (32) NXRK RRF-a C MI3 B977 7-311
NOT EXCLUSIVE OR (64) NXGRK RRF-a C MI3 B967 7-311
OR (32) O RX-a C A B2 56 7-312
OR (32) OR RR C 16 7-312
OR (32) ORK RRF-a C DO B9F6 7-312
OR (32) OY RXY-a C LD A B2 E356 7-312
OR (64) OG RXY-a C N A B2 E381 7-312
OR (64) OGR RRE C N B981 7-312
OR (64) OGRK RRF-a C DO B9E6 7-312
OR (character) OC SS-a C ¤9 A ST B1 B2 D6 7-312
OR (immediate) OI SI C A £2 ST B1 96 7-312
OR (immediate) OIY SIY C LD A £2 ST B1 EB56 7-312
OR IMMEDIATE (high high) OIHH RI-a C N A58 7-313
OR IMMEDIATE (high low) OIHL RI-a C N A59 7-313
OR IMMEDIATE (high) OIHF RIL-a C EI C0C 7-313
OR IMMEDIATE (low high) OILH RI-a C N A5A 7-313
OR IMMEDIATE (low low) OILL RI-a C N A5B 7-313
OR IMMEDIATE (low) OILF RIL-a C EI C0D 7-313
OR WITH COMPLEMENT (32) OCRK RRF-a C MI3 B975 7-314
OR WITH COMPLEMENT (64) OCGRK RRF-a C MI3 B965 7-314
PACK PACK SS-b ¤9 A ST B1 B2 F2 7-314
PACK ASCII PKA SS-f E2 ¤9 A SP ST B1 B2 E9 7-315
PACK UNICODE PKU SS-f E2 ¤9 A SP ST B1 B2 E1 7-316
PERFORM CRYPTOGRAPHIC COMPUTATION PCC RRE C M4 ¤5,9 A SP IC GM I1 ST B92C 7-316
PERFORM PROCESSOR ASSIST PPA RRF-c PA ¤1 B2E8 7-351

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 8 of 13)

General Instructions 7-21

PERFORM LOCKED OPERATION PLO SS-e C ¤1 A SP $ GM ST FC EE 7-337
PERFORM RANDOM NUMBER OPERATION PRNO RRE C M5 ¤5,9 A SP IC Dg GM I1 ST R1 R2 B93C 7-352
POPULATION COUNT POPCNT RRF-c C PK B9E1 7-365
PREFETCH DATA PFD RXY-b GE ¤9,11 B2 E336 7-365
PREFETCH DATA RELATIVE LONG PFDRL RIL-c GE ¤9,11 C62 7-366
ROTATE LEFT SINGLE LOGICAL (32) RLL RSY-a N3 EB1D 7-367
ROTATE LEFT SINGLE LOGICAL (64) RLLG RSY-a N EB1C 7-367
ROTATE THEN AND SELECTED BITS (64) RNSBG RIE-f C GE EC54 7-368
ROTATE THEN EXCLUSIVE OR SEL. BITS (64) RXSBG RIE-f C GE EC57 7-368
ROTATE THEN INSERT SELECTED BITS (64) RISBG RIE-f C GE EC55 7-369
ROTATE THEN INSERT SELECTED BITS (64) RISBGN RIE-f MI1 EC59 7-369
ROTATE THEN INSERT SELECTED BITS HIGH (32) RISBHG RIE-f HW EC5D 7-371
ROTATE THEN INSERT SELECTED BITS LOW (32) RISBLG RIE-f HW EC51 7-371
ROTATE THEN OR SELECTED BITS (64) ROSBG RIE-f C GE EC56 7-368
SEARCH STRING SRST RRE C ¤9 A SP IC G0 R2 B25E 7-372
SEARCH STRING UNICODE SRSTU RRE C E3 ¤9 A SP IC G0 R1 R2 B9BE 7-374
SELECT (32) SELR RRF-a MI3 B9F0 7-376
SELECT (64) SELGR RRF-a MI3 B9E3 7-376
SELECT HIGH (32) SELFHR RRF-a MI3 B9C0 7-376
SET ACCESS SAR RRE ¤6 U1 B24E 7-377
SET ADDRESSING MODE (24) SAM24 E N3 ¤3,9 SP T 010C 7-377
SET ADDRESSING MODE (31) SAM31 E N3 ¤3,9 SP T 010D 7-377
SET ADDRESSING MODE (64) SAM64 E N ¤3,9 T 010E 7-377
SET PROGRAM MASK SPM RR L 04 7-378
SHIFT LEFT DOUBLE (64) SLDA RS-a C SP IF 8F 7-378
SHIFT LEFT DOUBLE LOGICAL (64) SLDL RS-a SP 8D 7-379
SHIFT LEFT SINGLE (32) SLA RS-a C IF 8B 7-379
SHIFT LEFT SINGLE (32) SLAK RSY-a C DO IF EBDD 7-379
SHIFT LEFT SINGLE (64) SLAG RSY-a C N IF EB0B 7-379
SHIFT LEFT SINGLE LOGICAL (32) SLL RS-a 89 7-380
SHIFT LEFT SINGLE LOGICAL (32) SLLK RSY-a DO EBDF 7-380
SHIFT LEFT SINGLE LOGICAL (64) SLLG RSY-a N EB0D 7-380
SHIFT RIGHT DOUBLE (64) SRDA RS-a C SP 8E 7-381
SHIFT RIGHT DOUBLE LOGICAL (64) SRDL RS-a SP 8C 7-381
SHIFT RIGHT SINGLE (32) SRA RS-a C 8A 7-382
SHIFT RIGHT SINGLE (32) SRAK RSY-a C DO EBDC 7-382
SHIFT RIGHT SINGLE (64) SRAG RSY-a C N EB0A 7-382
SHIFT RIGHT SINGLE LOGICAL (32) SRL RS-a 88 7-383
SHIFT RIGHT SINGLE LOGICAL (32) SRLK RSY-a DO EBDE 7-383
SHIFT RIGHT SINGLE LOGICAL (64) SRLG RSY-a N EB0C 7-383
STORE (32) ST RX-a A ST B2 50 7-383
STORE (32) STY RXY-a LD A ST B2 E350 7-384
STORE (64) STG RXY-a N A ST B2 E324 7-384
STORE ACCESS MULTIPLE STAM RS-a A SP ST UB 9B 7-384
STORE ACCESS MULTIPLE STAMY RSY-a LD A SP ST UB EB9B 7-384
STORE CHARACTER STC RX-a A ST B2 42 7-385
STORE CHARACTER STCY RXY-a LD A ST B2 E372 7-385
STORE CHARACTER HIGH (8) STCH RXY-a HW A ST B2 E3C3 7-385
STORE CHARACTERS UNDER MASK (high) STCMH RSY-b N ¤9,11 A ST B2 EB2C 7-385
STORE CHARACTERS UNDER MASK (low) STCM RS-b A ST B2 BE 7-385
STORE CHARACTERS UNDER MASK (low) STCMY RSY-b LD A ST B2 EB2D 7-385
STORE CLOCK STCK S C ¤8,9 A $ ST B2 B205 7-386
STORE CLOCK EXTENDED STCKE S C ¤8,9 A $ ST B2 B278 7-387
STORE CLOCK FAST STCKF S C SC ¤8,9 A ST B2 B27C 7-386
STORE FACILITY LIST EXTENDED STFLE S C FL ¤1 A SP G0 ST B2 B2B0 7-389
STORE GUARDED STORAGE CONTROLS STGSC RXY-a GF ¤1 A SO ST B2 E349 7-390
STORE HALFWORD (16) STH RX-a A ST B2 40 7-390
STORE HALFWORD (16) STHY RXY-a LD A ST B2 E370 7-391
STORE HALFWORD HIGH (16) STHH RXY-a HW A ST B2 E3C7 7-391
STORE HALFWORD RELATIVE LONG (16) STHRL RIL-b GE A* ST C47 7-391
STORE HIGH (32) STFH RXY-a HW A ST B2 E3CB 7-391

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 9 of 13)

7-22 The z/Architecture CPU Architecture

STORE HIGH ON CONDITION STOCFH RSY-b L2 A ST B2 EBE1 7-393
STORE MULTIPLE (32) STM RS-a A ST B2 90 7-392
STORE MULTIPLE (32) STMY RSY-a LD A ST B2 EB90 7-392
STORE MULTIPLE (64) STMG RSY-a N A ST B2 EB24 7-392
STORE MULTIPLE HIGH (32) STMH RSY-a N A ST B2 EB26 7-392
STORE ON CONDITION (32) STOC RSY-b L1 A ST B2 EBF3 7-392
STORE ON CONDITION (64) STOCG RSY-b L1 A ST B2 EBE3 7-392
STORE PAIR TO QUADWORD (64&64128) STPQ RXY-a N ¤9 A SP ST B2 E38E 7-393
STORE RELATIVE LONG (32) STRL RIL-b GE A* SP ST C4F 7-384
STORE RELATIVE LONG (64) STGRL RIL-b GE A* SP ST C4B 7-384
STORE REVERSED (16) STRVH RXY-a N3 A ST B2 E33F 7-394
STORE REVERSED (32) STRV RXY-a N3 A ST B2 E33E 7-394
STORE REVERSED (64) STRVG RXY-a N A ST B2 E32F 7-394
SUBTRACT (32) S RX-a C A IF B2 5B 7-395
SUBTRACT (32) SR RR C IF 1B 7-394
SUBTRACT (32) SRK RRF-a C DO IF B9F9 7-394
SUBTRACT (32) SY RXY-a C LD A IF B2 E35B 7-395
SUBTRACT (64) SG RXY-a C N A IF B2 E309 7-395
SUBTRACT (64) SGR RRE C N IF B909 7-394
SUBTRACT (64) SGRK RRF-a C DO IF B9E9 7-394
SUBTRACT (6432) SGF RXY-a C N A IF B2 E319 7-395
SUBTRACT (6432) SGFR RRE C N IF B919 7-394
SUBTRACT HALFWORD (3216) SH RX-a C A IF B2 4B 7-395
SUBTRACT HALFWORD (3216) SHY RXY-a C LD A IF B2 E37B 7-395
SUBTRACT HALFWORD (6416) SGH RXY-a C MI2 A IF B2 E339 7-395
SUBTRACT HIGH (32) SHHHR RRF-a C HW IF B9C9 7-396
SUBTRACT HIGH (32) SHHLR RRF-a C HW IF B9D9 7-396
SUBTRACT LOGICAL (32) SL RX-a C A B2 5F 7-396
SUBTRACT LOGICAL (32) SLR RR C 1F 7-396
SUBTRACT LOGICAL (32) SLRK RRF-a C DO B9FB 7-396
SUBTRACT LOGICAL (32) SLY RXY-a C LD A B2 E35F 7-396
SUBTRACT LOGICAL (64) SLG RXY-a C N A B2 E30B 7-397
SUBTRACT LOGICAL (64) SLGR RRE C N B90B 7-396
SUBTRACT LOGICAL (64) SLGRK RRF-a C DO B9EB 7-396
SUBTRACT LOGICAL (6432) SLGF RXY-a C N A B2 E31B 7-397
SUBTRACT LOGICAL (6432) SLGFR RRE C N B91B 7-396
SUBTRACT LOGICAL HIGH (32) SLHHHR RRF-a C HW B9CB 7-397
SUBTRACT LOGICAL HIGH (32) SLHHLR RRF-a C HW B9DB 7-397
SUBTRACT LOGICAL IMMEDIATE (32) SLFI RIL-a C EI C25 7-397
SUBTRACT LOGICAL IMMEDIATE (6432) SLGFI RIL-a C EI C24 7-397
SUBTRACT LOGICAL WITH BORROW (32) SLB RXY-a C N3 A B2 E399 7-398
SUBTRACT LOGICAL WITH BORROW (32) SLBR RRE C N3 B999 7-398
SUBTRACT LOGICAL WITH BORROW (64) SLBG RXY-a C N A B2 E389 7-398
SUBTRACT LOGICAL WITH BORROW (64) SLBGR RRE C N B989 7-398
SUPERVISOR CALL SVC I ¤1 ¢ 0A 7-398
TEST ADDRESSING MODE TAM E C N3 ¤9 010B 7-399
TEST AND SET TS SI C ¤9 A $ ST B2 93 7-399
TEST UNDER MASK TM SI C A B1 91 7-400
TEST UNDER MASK TMY SIY C LD A B1 EB51 7-400
TEST UNDER MASK (high high) TMHH RI-a C N A72 7-400
TEST UNDER MASK (high low) TMHL RI-a C N A73 7-400
TEST UNDER MASK (low high) TMLH RI-a C N A70 7-400
TEST UNDER MASK (low low) TMLL RI-a C N A71 7-400
TEST UNDER MASK HIGH TMH RI-a C A70 7-400
TEST UNDER MASK LOW TML RI-a C A71 7-400
TRANSACTION ABORT TABORT S TX ¤9 SP SO $ EX B2FC 7-401
TRANSACTION BEGIN (nonconstrained) TBEGIN SIL C TX ¤9 A SP SO $ EX ST E560 7-401
TRANSACTION BEGIN (constrained) TBEGINC SIL C CX ¤9 SP SO $ EX E561 7-406
TRANSACTION END TEND S C TX SO $ EX B2F8 7-408
TRANSLATE TR SS-a ¤9 A ST B1 B2 DC 7-408
TRANSLATE AND TEST TRT SS-a C ¤9 A GM B1 B2 DD 7-409

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 10 of 13)

General Instructions 7-23

TRANSLATE AND TEST EXTENDED TRTE RRF-c C PE ¤9 A SP IC G1 RM B9BF 7-410
TRANSLATE AND TEST REVERSE TRTR SS-a C E3 ¤9 A GM B1 B2 D0 7-415
TRANSLATE AND TEST REVERSE EXTENDED TRTRE RRF-c C PE ¤9 A SP IC G1 RM B9BD 7-410
TRANSLATE EXTENDED TRE RRE C ¤9 A SP IC G0 ST R1 R2 B2A5 7-415
TRANSLATE ONE TO ONE TROO RRF-c C E2 ¤9 A SP IC GM ST RM R2 B993 7-418
TRANSLATE ONE TO TWO TROT RRF-c C E2 ¤9 A SP IC GM ST RM R2 B992 7-418
TRANSLATE TWO TO ONE TRTO RRF-c C E2 ¤9 A SP IC GM ST RM R2 B991 7-418
TRANSLATE TWO TO TWO TRTT RRF-c C E2 ¤9 A SP IC GM ST RM R2 B990 7-418
UNPACK UNPK SS-b ¤9 A ST B1 B2 F3 7-423
UNPACK ASCII UNPKA SS-a C E2 ¤9 A SP ST B1 B2 EA 7-423
UNPACK UNICODE UNPKU SS-a C E2 ¤9 A SP ST B1 B2 E2 7-424
UPDATE TREE UPT E C ¤9 A SP II GM I4 ST 0102 7-425

Explanation:

¢ Causes serialization and checkpoint synchronization.

¢1 Causes serialization and checkpoint synchronization when the M1 and R2 fields contain 1111 binary and 0000 binary, respectively. Causes only serialization
when the fast-BCR-serialization facility is installed, and the M1 and R2 fields contain 1110 binary and 0000 binary, respectively.

$ Causes serialization.

£ Causes specific-operand serialization.

£1 Causes specific-operand serialization when the interlocked-access facility 1 is installed and the storage operand is aligned on an integral boundary
corresponding to its size.

£2 Causes specific-operand serialization when the interlocked-access facility 2 is installed.

¤1 Restricted from transactional execution.

¤2 Restricted from transactional execution when R2 nonzero and branch tracing is enabled.

¤3 Restricted from transactional execution when mode tracing is enabled.

¤4 Restricted from transactional execution when a monitor-event condition occurs.

¤5 Model dependent whether the instruction is restricted from transactional execution.

¤6 Restricted from transactional execution when the effective allow-AR-modification control is zero.

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤8 May be restricted from transactional execution depending on machine conditions.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized. For STCMH, the instruction is
restricted only when the M3 field is zero.

¤10 Restricted to forward branches in the constrained transactional-execution mode.

¤11 For PFD and PFDRL, it is model dependent whether the instruction is restricted from transactional execution when the code in the M1 field is 6 or 7; for
STCMH, it is model dependent whether the instruction is restricted when the M3 field is zero, and the code in the R1 field is 6 or 7.

¤12 Restricted from transactional execution when a guarded-storage event is recognized. When in the transactional-execution mode, the transaction is aborted,
and the guarded-storage event is processed.

* PER zero-address-detection not recognized.

32H 32 high-order bits of a register.

32L 32 low-order bits of a register.

A Access exceptions for logical addresses.

AI Access exceptions for instruction address.

B PER branch event. (For LGG and LLGFSG, the PER branch event is only recognized coincident with a guarded-storage event.)

B1 B1 field designates an access register in the access-register mode.

B2 B2 field designates an access register in the access-register mode.

B4 B4 field designates an access register in the access-register mode.

BP B2 field designates an access register when PSW bits 16 and 17 have the value 01 binary.

C Condition code is set.

CS Compare-and-swap-and-store facility.

CX Constrained transactional-execution facility

Dc Compare-and-trap data exception

Dg General-operand data exception.

DO Distinct-operands facility

E E instruction format.

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 11 of 13)

7-24 The z/Architecture CPU Architecture

EH Execution-hint facility

EI Extended-immediate facility.

ET Extract-CPU-time facility.

EX Execute exception.

E2 Extended-translation facility 2.

E3 Extended-translation facility 3.

FC Designation of access registers depends on the function code of the instruction.

FL Store-facility-list-extended facility.

G0 Instruction execution includes the implied use of general register 0.

G1 Instruction execution includes the implied use of general register 1.

GE General-instructions-extension facility.

GF Guarded-storage facility.

GM Instruction execution includes the implied use of multiple general registers:
• General registers 1, 2, and 3 for COMPARE AND FORM CODEWORD.
• General registers 0 and 1 for CIPHER MESSAGE, CIPHER MESSAGE WITH AUTHENTICATION, CIPHER MESSAGE WITH CHAINING, CIPHER

MESSAGE WITH CIPHER FEEDBACK, CIPHER MESSAGE WITH COUNTER, CIPHER MESSAGE WITH OUTPUT FEEDBACK, COMPARE AND
SWAP AND STORE, COMPARE UNTIL SUBSTRING EQUAL, COMPRESSION CALL, COMPUTE INTERMEDIATE MESSAGE DIGEST, COM-
PUTE LAST MESSAGE DIGEST, COMPUTE MESSAGE AUTHENTICATION CODE, EXTRACT CPU TIME, PERFORM CRYPTOGRAPHIC COM-
PUTATION, PERFORM LOCKED OPERATION, PERFORM RANDOM NUMBER OPERATION, TRANSLATE ONE TO ONE, TRANSLATE ONE TO
TWO, TRANSLATE TWO TO ONE, and TRANSLATE TWO TO TWO

• General registers 1 and 2 for TRANSLATE AND TEST and TRANSLATE AND TEST REVERSE.
• General registers 0-5 for UPDATE TREE.
•

HW High-word facility

I I instruction format.

I1 Access register 1 is implicitly designated in the access-register mode.

I4 Access register 4 is implicitly designated in the access-register mode.

IA Interlocked-access facility 1

IC Condition code alternative to interruptible instruction

IE IE instruction format.

IF Fixed-point-overflow exception.

II Interruptible instruction.

IK Fixed-point-divide exception.

L New condition code is loaded.

L1 Load/store-on-condition facility 1.

L2 Load/store-on-condition facility 2.

LD Long-displacement facility.

LT Load-and-trap facility

LZ Load-and-zero-rightmost-byte facility.

ME Monitor event.

MI1 Miscellaneous-instruction-extensions facility 1

MI2 Miscellaneous-instruction-extensions facility 2

MI3 Miscellaneous-instruction-extensions facility 3

MII MII instruction format.

MS Message-security assist.

M4 Message-security-assist extension 4.

M5 Message-security-assist extension 5.

M8 Message-security-assist extension 8.

N Instruction is new in z/Architecture as compared to ESA/390.

N3 Instruction is new in z/Architecture and has been added to ESA/390. Any RSY or RXY instructions still use the RSE or RXE format and 12-bit displacements
in ESA/390. RSY- and RXY-format instructions having the N3 facility code may use long displacements in the ESA/390-compatibility mode.

PA Processor-assist facility.

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 12 of 13)

General Instructions 7-25

A
D

D
ADD

Register-and-register formats:

AR R1,R2 [RR]

AGR R1,R2 [RRE]

AGFR R1,R2 [RRE]

ARK R1,R2,R3 [RRF-a]

PE Parsing-enhancement facility.

PK Population-count facility

R1 R1 field designates an access register in the access-register mode.

R2 R2 field designates an access register in the access-register mode.

R3 R3 field designates an access register in the access-register mode.

RI RI instruction format.

RIE RIE instruction format.

RIL RIL instruction format.

RIS RIS instruction format.

RM R1 field designates an access register in the access-register mode, and access-register 1 also is used in the access-register mode.

RR RR instruction format.

RRE RRE instruction format.

RRF RRF instruction format.

RRS RRS instruction format.

RS RS instruction format.

RSI RSI instruction format.

RSY RSY instruction format.

RX RX instruction format.

RXY RXY instruction format.

S S instruction format.

SC Store-clock-fast facility.

SI SI instruction format.

SIL SIL instruction format.

SIY SIY instruction format.

SMI SMI instruction format.

SO Special-operation exception.

SP Specification exception.

SS SS instruction format.

SSF SSF instruction format.

ST PER storage-alteration event. (For LGG and LLGFSG, the PER storage-alteration event is only recognized coincident with a guarded-storage event.)

T Trace exceptions (includes trace table, addressing, and low-address protection).

TX Transactional-execution facility

U1 R1 field designates an access register unconditionally.

U2 R2 field designates an access register unconditionally.

UB R1 and R3 fields designate access registers unconditionally, and B2 field designates an access register in the access-register mode.

VF Vector facility for z/Architecture

XX Execute-extension facility.

Name
Mne-

monic Characteristics
Op-

code Page

Figure 7-1. Summary of General Instructions (Part 13 of 13)

'1A' R1 R2

0 8 12 15

'B908' / / / / / / / / R1 R2

0 16 24 28 31

'B918' / / / / / / / / R1 R2

0 16 24 28 31

'B9F8' R3 / / / / R1 R2

0 16 20 24 28 31

7-26 The z/Architecture CPU Architecture

A
D

D
 IM

M
E

D
IA

T
E AGRK R1,R2,R3 [RRF-a]

Register-and-storage formats:

A R1,D2(X2,B2) [RX-a]

AY R1,D2(X2,B2) [RXY-a]

AG R1,D2(X2,B2) [RXY-a]

AGF R1,D2(X2,B2) [RXY-a]

ADD IMMEDIATE

Register-and-immediate formats:

AFI R1,I2 [RIL-a]

AGFI R1,I2 [RIL-a]

AHIK R1,R3,I2 [RIE-d]

AGHIK R1,R3,I2 [RIE-d]

Storage-and-immediate formats:

ASI D1(B1),I2 [SIY]

AGSI D1(B1),I2 [SIY]

For ADD (A, AG, AGF, AGFR, AGR, AR, and AY) and
for ADD IMMEDIATE (AFI, AGFI, AGSI, and ASI), the
second operand is added to the first operand, and
the sum is placed at the first-operand location. For
ADD (AGRK and ARK) and for ADD IMMEDIATE
(AGHIK and AHIK), the second operand is added to
the third operand, and the sum is placed at the first-
operand location.

For ADD (A, AR, ARK, and AY) and for ADD IMME-
DIATE (AFI), the operands and the sum are treated
as 32-bit signed binary integers. For ADD (AG, AGR,
and AGRK), they are treated as 64-bit signed binary
integers. For ADD (AGFR, AGF) and for ADD IMME-
DIATE (AGFI), the second operand is treated as a
32-bit signed binary integer, and the first operand
and the sum are treated as 64-bit signed binary inte-
gers. For ADD IMMEDIATE (ASI), the second oper-
and is treated as an 8-bit signed binary integer, and
the first operand and the sum are treated as 32-bit
signed binary integers. For ADD IMMEDIATE (AGSI),
the second operand is treated as an 8-bit signed
binary integer, and the first operand and the sum are
treated as 64-bit signed binary integers. For ADD
IMMEDIATE (AHIK), the first and third operands are
treated as 32-bit signed binary integers, and the sec-
ond operand is treated as a 16-bit signed binary inte-
ger. For ADD IMMEDIATE (AGHIK), the first and third
operands are treated as 64-bit signed binary inte-
gers, and the second operand is treated as a 16-bit
signed binary integer.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position, and condi-
tion code 3 is set. If the fixed-point-overflow mask is
one, a program interruption for fixed-point overflow
occurs.

When the interlocked-access facility 1 is installed and
the first operand of ADD IMMEDIATE (ASI, AGSI) is
aligned on an integral boundary corresponding to its

'B9E8' R3 / / / / R1 R2

0 16 20 24 28 31

'5A' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '5A'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '08'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '18'
0 8 12 16 20 32 40 47

'C2' R1 '9' I2
0 8 12 16 47

'C2' R1 '8' I2
0 8 12 16 47

'EC' R1 R3 I2 / / / / / / / / 'D8'
0 8 12 16 32 40 47

'EC' R1 R3 I2 / / / / / / / / 'D9'
0 8 12 16 32 40 47

'EB' I2 B1 DL1 DH1 '6A'

0 8 16 20 32 40 47

'EB' I2 B1 DL1 DH1 '7A'

0 8 16 20 32 40 47

General Instructions 7-27

A
D

D
 H

A
L

F
W

O
R

Dsize, then the fetch and store of the first operand are
performed as an interlocked update as observed by
other CPUs, and a specific-operand-serialization
operation is performed. When the interlocked-access
facility 1 is not installed, or when the first operand of
ADD IMMEDIATE (ASI, AGSI) is not aligned on an
integral boundary corresponding to its size, then the
fetch and store of the operand are not performed as
an interlocked update.

The displacement for A is treated as a 12-bit
unsigned binary integer. The displacement for AY,
AG, AGF, AGSI and ASI, is treated as a 20-bit signed
binary integer.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch and store, operand 1 of AGSI and
ASI only; fetch, operand 2 of A, AY, AG, and AGF
only)

• Fixed-point overflow
• Operation (AY, if the long-displacement facility is

not installed; AFI and AGFI, if the extended-
immediate facility is not installed; AGSI and ASI,
if the general-instructions-extension facility is not
installed; ARK, AGRK, AHIK, and AGHIK, if the
distinct-operands facility is not installed)

Programming Notes:

1. Accesses to the first operand of ADD IMMEDI-
ATE (AGSI and ASI) consist in fetching a first-
operand from storage and subsequently storing
the updated value.

2. When the interlocked-access facility 1 is not
installed, or when the first operand is not aligned
on an integral boundary corresponding to its
size, the fetch and store accesses to the first
operand do not necessarily occur one immedi-
ately after the other. Under such conditions, ADD
IMMEDIATE (AGSI and ASI) cannot be safely
used to update a location in storage if the possi-
bility exists that another CPU or a channel pro-
gram may also be updating the location. An
example of this effect is shown in “Multiprogram-
ming and Multiprocessing Examples” in Appen-

dix A, “Number Representation and Instruction-
Use Examples.”

When the interlocked-access facility 1 is installed
and the first operand is aligned on an integral
boundary corresponding to its size, the operand
is accessed using a block-concurrent interlocked
update.

3. For certain programming languages which ignore
overflow conditions on arithmetic operations, the
setting of condition code 3 obscures the sign of
the result. However, for ADD IMMEDIATE, the
sign of the I2 field (which is known at the time of
code generation) may be used in setting a
branch mask which will accurately determine the
resulting sign, as shown below.

The technique described above is also applica-
ble to ADD HALFWORD IMMEDIATE.

ADD HALFWORD

AH R1,D2(X2,B2) [RX-a]

AHY R1,D2(X2,B2) [RXY-a]

Result to be Tested

I2 Value Positive Negative Zero

Positive 0010 0101a 1000

Negative 0011b 0100 1000c

Zero 0010 0100 1000

Explanation:

a If the first operand was positive, then a mask
of 0001 covers that case (overflow). If the
first operand was negative, then a mask of
0100 is appropriate. Combining the two
gives a mask of 0101.

b Similarly, a mask of 0010 (first operand was
positive) and mask of 0001 (first operand
was negative) yields a mask of 0011 which
covers both cases.

c A separate test for zero may be required
when the I2 field contains 80000000 hex.

Figure 7-2. Branch Masks to Determine Resulting Sign for
ADD IMMEDIATE

'4A' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '7A'

0 8 12 16 20 32 40 47

7-28 The z/Architecture CPU Architecture

A
D

D
 H

A
L

F
W

O
R

D
 IM

M
E

D
IA

T
E AGH R1,D2(X2,B2) [RXY-a]

ADD HALFWORD IMMEDIATE

AHI R1,I2 [RI-a]

AGHI R1,I2 [RI-a]

The second operand is added to the first operand,
and the sum is placed at the first-operand location.
The second operand is two bytes in length and is
treated as a 16-bit signed binary integer. For ADD
HALFWORD (AH, AHY) and ADD HALFWORD
IMMEDIATE (AHI), the first operand and the sum are
treated as 32-bit signed binary integers. For ADD
HALFWORD (AGH) and ADD HALFWORD IMMEDI-
ATE (AGHI), they are treated as 64-bit signed binary
integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position, and condi-
tion code 3 is set. If the fixed-point-overflow mask is
one, a program interruption for fixed-point overflow
occurs.

The displacement for AH is treated as a 12-bit
unsigned binary integer. The displacement for AGH
and AHY is treated as a 20-bit signed binary integer.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2 of AH, AGH, AHY)
• Fixed-point overflow
• Operation (AHY, if the long-displacement facility

is not installed; AGH, if the miscellaneous-
instruction-extensions facility 2 is not installed)

Programming Notes:

1. An example of the use of the ADD HALFWORD
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. See programming note 3 on page 7-27 for ADD
IMMEDIATE regarding the implications of ignor-
ing overflow.

ADD HIGH

AHHHR R1,R2,R3 [RRF-a]

AHHLR R1,R2,R3 [RRF-a]

The second operand is added to the third operand,
and the sum is placed at the first-operand location.
The operands and the sum are treated as 32-bit
signed binary integers. The first and second oper-
ands are in bits 0-31 of general registers R1 and R2,
respectively; bits 32-63 of general register R1 are
unchanged, and bits 32-63 of general register R2 are
ignored. For AHHHR, the third operand is in bits 0-31
of general register R3; bits 32-63 of the register are
ignored. For AHHLR, the third operand is in bits 32-
63 of general register R3; bits 0-31 of the register are
ignored.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position, and condi-
tion code 3 is set. If the fixed-point-overflow mask is
one, a program interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow
• Operation (if the high-word facility is not installed)

'E3' R1 X2 B2 DL2 DH2 '38'

0 8 12 16 20 32 40 47

'A7' R1 'A' I2
0 8 12 16 31

'A7' R1 'B' I2
0 8 12 16 31

'B9C8' R3 / / / / R1 R2

0 16 20 24 28 31

'B9D8' R3 / / / / R1 R2

0 16 20 24 28 31

General Instructions 7-29

A
D

D
 L

O
G

IC
A

L
 IM

M
E

D
IA

T
EADD IMMEDIATE HIGH

AIH R1,I2 [RIL-a]

The second operand is added to the first operand,
and the sum is placed at the first-operand location.
The operands and the sum are treated as 32-bit
signed binary integers. The first operand is in bits
0-31 of general register R1; bits 32-63 of the register
are unchanged.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position, and condi-
tion code 3 is set. If the fixed-point-overflow mask is
one, a program interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow
• Operation (if the high-word facility is not installed)

ADD LOGICAL

Register-and-register formats:

ALR R1,R2 [RR]

ALGR R1,R2 [RRE]

ALGFR R1,R2 [RRE]

ALRK R1,R2,R3 [RRF-a]

ALGRK R1,R2,R3 [RRF-a]

Register-and-storage formats:

AL R1,D2(X2,B2) [RX-a]

ALY R1,D2(X2,B2) [RXY-a]

ALG R1,D2(X2,B2) [RXY-a]

ALGF R1,D2(X2,B2) [RXY-a]

ADD LOGICAL IMMEDIATE

ALFI R1,I2 [RIL-a]

ALGFI R1,I2 [RIL-a]

For ADD LOGICAL (AL, ALG, ALGF, ALGFR, ALGR,
ALR, and ALY) and for ADD LOGICAL IMMEDIATE
(ALGFI and ALFI), the second operand is added to
the first operand, and the sum is placed at the first-
operand location. For ADD LOGICAL (ALGRK and
ALRK), the second operand is added to the third
operand, and the sum is placed at the first-operand
location.

For ADD LOGICAL (AL, ALR, ALRK, and ALY) and
for ADD LOGICAL IMMEDIATE (ALFI), the operands

'CC' R1 '8' I2
0 8 12 16 47

'1E' R1 R2

0 8 12 15

'B90A' / / / / / / / / R1 R2

0 16 24 28 31

'B91A' / / / / / / / / R1 R2

0 16 24 28 31

'B9FA' R3 / / / / R1 R2

0 16 20 24 28 31

'B9EA' R3 / / / / R1 R2

0 16 20 24 28 31

'5E' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '5E'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '0A'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '1A'
0 8 12 16 20 32 40 47

'C2' R1 'B' I2
0 8 12 16 47

'C2' R1 'A' I2
0 8 12 16 47

7-30 The z/Architecture CPU Architecture

A
D

D
 L

O
G

IC
A

L
 H

IG
H and the sum are treated as 32-bit unsigned binary

integers. For ADD LOGICAL (ALG, ALGR, and
ALGRK), they are treated as 64-bit unsigned binary
integers. For ADD LOGICAL (ALGFR, ALGF) and for
ADD LOGICAL IMMEDIATE (ALGFI), the second
operand is treated as a 32-bit unsigned binary inte-
ger, and the first operand and the sum are treated as
64-bit unsigned binary integers.

The displacement for AL is treated as a 12-bit
unsigned binary integer. The displacement for ALY,
ALG, and ALGF is treated as a 20-bit signed binary
integer.

Resulting Condition Code:

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

Program Exceptions:

• Access (fetch, operand 2 of AL, ALY, ALG, and
ALGF only)

• Operation (ALY, if the long-displacement facility is
not installed; ALFI and ALGFI, if the extended-
immediate facility is not installed; ALRK and
ALGRK, if the distinct-operands facility is not
installed)

ADD LOGICAL HIGH

ALHHHR R1,R2,R3 [RRF-a]

ALHHLR R1,R2,R3 [RRF-a]

The second operand is added to the third operand,
and the sum is placed at the first-operand location.
The operands and the sum are treated as 32-bit
unsigned binary integers. The first and second oper-
ands are in bits 0-31 of general registers R1 and R2,
respectively; bits 32-63 of general register R1 are
unchanged, and bits 32-63 of general register R2 are
ignored. For ALHHHR, the third operand is in bits
0-31 of general register R3; bits 32-63 of the register
are ignored. For ALHHLR, the third operand is in bits

32-63 of general register R3; bits 0-31 of the register
are ignored.

Resulting Condition Code:

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

Program Exceptions:

• Operation (if the high-word facility is not installed)

ADD LOGICAL WITH CARRY

Register-and-register formats:

ALCR R1,R2 [RRE]

ALCGR R1,R2 [RRE]

Register-and-storage formats:

ALC R1,D2(X2,B2) [RXY-a]

ALCG R1,D2(X2,B2) [RXY-a]

The second operand and the carry are added to the
first operand, and the sum is placed at the first-oper-
and location. For ADD LOGICAL WITH CARRY
(ALCR, ALC), the operands, the carry, and the sum
are treated as 32-bit unsigned binary integers. For
ADD LOGICAL WITH CARRY (ALCGR, ALCG), they
are treated as 64-bit unsigned binary integers.

Resulting Condition Code:

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

'B9CA' R3 / / / / R1 R2

0 16 20 24 28 31

'B9DA' R3 / / / / R1 R2

0 16 20 24 28 31

'B998' / / / / / / / / R1 R2

0 16 24 28 31

'B988' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '98'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '88'

0 8 12 16 20 32 40 47

General Instructions 7-31

A
D

D
 L

O
G

IC
A

L
 W

IT
H

 S
IG

N
E

D
 IM

M
E

D
IA

T
EProgram Exceptions:

• Access (fetch, operand 2 of ALC and ALCG only)

Programming Notes:

1. A carry is represented by a one value of bit 18 of
the current PSW. Bit 18 is the leftmost bit of the
two-bit condition code in the PSW. Bit 18 is set to
one by an execution of an ADD LOGICAL or
ADD LOGICAL WITH CARRY instruction that
produces a carry out of bit position 0 of the
result.

2. ADD and ADD LOGICAL may provide better per-
formance than ADD LOGICAL WITH CARRY,
depending on the model.

ADD LOGICAL WITH SIGNED
IMMEDIATE

Storage-and-immediate formats:

ALSI D1(B1),I2 [SIY]

ALGSI D1(B1),I2 [SIY]

Register-and-immediate formats:

ALHSIK R1,R3,I2 [RIE-d]

ALGHSIK R1,R3,I2 [RIE-d]

For ALGSI and ALSI, the second operand is added to
the first operand, and the sum is placed at the first-
operand location. For ALGHSIK and ALHSIK, the
second operand is added to the third operand, and
the sum is placed at the first-operand location.

For ALSI, the first operand and the sum are treated
as 32-bit unsigned binary integers. For ALGSI, the

first operand and the sum are treated as 64-bit
unsigned binary integers. For both ALSI and ALGSI,
the second operand is treated as an 8-bit signed
binary integer.

For ALHSIK, the first and third operands are treated
as 32-bit unsigned binary integers. For ALGHSIK, the
first and third operands are treated as 64-bit
unsigned binary integers. For both ALGHSIK and
ALHSIK, the second operand is treated as a 16-bit
signed binary integer.

When the interlocked-access facility 1 is installed and
the first operand of ALGSI or ALSI is aligned on an
integral boundary corresponding to its size, then the
fetch and store of the first operand is performed as
an interlocked update as observed by other CPUs,
and a specific-operand-serialization operation is per-
formed. When the interlocked-access facility 1 is not
installed, or when the first operand of ADD LOGICAL
WITH SIGNED IMMEDIATE (ALSI, ALGSI) is not
aligned on an integral boundary corresponding to its
size, then the fetch and store of the operand are not
performed as an interlocked update.

When the second operand contains a negative value,
the condition code is set as though a SUBTRACT
LOGICAL operation was performed. Condition code
0 is never set when the second operand is negative.

The displacement is treated as a 20-bit signed binary
integer.

Resulting Condition Code:

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

Program Exceptions:

• Access (fetch and store, operand 1)
• Operation (ALGSI and ALSI, if the general-

instructions-extension facility is not installed;
ALGHSIK, and ALHSIK, if the distinct-operands
facility is not installed)

Programming Notes:

1. When the second operand contains a negative
value, the condition-code setting can also be

'EB' I2 B1 DL1 DH1 '6E'

0 8 16 20 32 40 47

'EB' I2 B1 DL1 DH1 '7E'

0 8 16 20 32 40 47

'EC' R1 R3 I2 / / / / / / / / 'DA'
0 8 12 16 32 40 47

'EC' R1 R3 I2 / / / / / / / / 'DB'
0 8 12 16 32 40 47

7-32 The z/Architecture CPU Architecture

A
D

D
 L

O
G

IC
A

L
 W

IT
H

 S
IG

N
E

D
 IM

M
E

D
IA

T
E

 H
IG

H interpreted as indicating the presence or
absence of a borrow, as follows:

2. Accesses to the first operand of consist in fetch-
ing a first-operand from storage and subse-
quently storing the updated value.

When the interlocked-access facility 1 is not
installed, or when the first operand is not aligned
on an integral boundary corresponding to its
size, the fetch and store accesses to the first
operand do not necessarily occur one immedi-
ately after the other. Under such conditions, ADD
LOGICAL WITH SIGNED IMMEDIATE cannot be
safely used to update a location in storage if the
possibility exists that another CPU or a channel
program may also be updating the location. An
example of this effect is shown in “Multiprogram-
ming and Multiprocessing Examples” in Appen-
dix A, “Number Representation and Instruction-
Use Examples.”

When the interlocked-access facility 1 is installed
and the first operand is aligned on an integral
boundary corresponding to its size, the operand
is accessed using a block-concurrent interlocked
update.

3. When the second operand is negative, the
instruction effectively performs a subtraction
operation.

ADD LOGICAL WITH SIGNED
IMMEDIATE HIGH

ALSIH R1,I2 [RIL-a]

ALSIHN R1,I2 [RIL-a]

The second operand is added to the first operand,
and the sum is placed at the first-operand location.
The first operand and the sum are treated as 32-bit

unsigned binary integers. The second operand is
treated as a 32-bit signed binary integer. The first
operand is in bits 0-31 of general register R1; bits
32-63 of the register are unchanged.

Resulting Condition Code:

For ALSIH, the code is set as follows:

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

For ALSIHN, the code remains unchanged.

Program Exceptions:

• Operation (if the high-word facility is not installed)

Programming Note: See programming notes 1 and
3 for ADD LOGICAL WITH SIGNED IMMEDIATE.

AND

Register-and-register formats:

NR R1,R2 [RR]

NGR R1,R2 [RRE]

NRK R1,R2,R3 [RRF-a]

NGRK R1,R2,R3 [RRF-a]

Register-and-storage formats:

N R1,D2(X2,B2) [RX-a]

1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

'CC' R1 'A' I2
0 8 12 16 47

'CC' R1 'B' I2
0 8 12 16 47

'14' R1 R2

0 8 12 15

'B980' / / / / / / / / R1 R2

0 16 24 28 31

'B9F4' R3 / / / / R1 R2

0 16 20 24 28 31

'B9E4' R3 / / / / R1 R2

0 16 20 24 28 31

'54' R1 X2 B2 D2

0 8 12 16 20 31

General Instructions 7-33

A
N

DNY R1,D2(X2,B2) [RXY-a]

NG R1,D2(X2,B2) [RXY-a]

Storage-and-immediate formats:

NI D1(B1),I2 [SI]

NIY D1(B1),I2 [SIY]

Storage-and-storage format:

NC D1(L,B1),D2(B2) [SS-a]

For N, NC, NG, NGR, NI, NIY, NR, and NY, the AND
of the first and second operands is placed at the first-
operand location. For NGRK and NRK, the AND of
the second and third operands is placed at the first-
operand location.

The connective AND is applied to the operands bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit positions in both oper-
ands contain ones; otherwise, the result bit is set to
zero.

For AND (NC), each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one byte
at a time and each result byte were stored immedi-
ately after fetching the necessary operand bytes.

For AND (NI, NIY), the first operand is one byte in
length, and only one byte is stored. When the inter-
locked-access facility 2 is installed, the update of the
first operand appears to be an interlocked-update ref-
erence as observed by other CPUs and channel pro-
grams, and a specific-operand-serialization operation
is performed.

For AND (N, NR, NRK, and NY), the operands are 32
bits, and for AND (NG, NGR, and NGRK), they are
64 bits.

The displacements for N, NI, and both operands of
NC are treated as 12-bit unsigned binary integers.
The displacement for NY, NIY, and NG is treated as a
20-bit signed binary integer.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Access (fetch, operand 2, N, NY, NG, and NC;
fetch and store, operand 1, NI, NIY, and NC)

• Operation (NY and NIY, if the long-displacement
facility is not installed; NGRK and NRK, if the dis-
tinct-operands facility is not installed)

• Transaction constraint (NC)

Programming Notes:

1. An example of the use of the AND instruction is
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. The AND instruction may be used to set a bit to
zero.

3. Accesses to the first operand of AND (NC) – and,
when the interlocked-access facility 2 is not
installed, accesses to the first operand of AND
(NI, NIY) – consist in fetching a first-operand byte
from storage and subsequently storing the
updated value. These fetch and store accesses
to a particular byte do not necessarily occur one
immediately after the other. Thus, these instruc-
tions cannot be safely used to update a location
in storage if the possibility exists that another
CPU or a channel program may also be updating
the location. An example of this effect is shown
for OR (OI) in “Multiprogramming and Multipro-
cessing Examples” on page A-45.

When the interlocked-access facility 2 is
installed, AND (NI, NIY) can be safely used to
update a location in storage, even if the possibil-
ity exists that another CPU or a channel program
may also be updating the location.

'E3' R1 X2 B2 DL2 DH2 '54'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '80'

0 8 12 16 20 32 40 47

'94' I2 B1 D1

0 8 16 20 31

'EB' I2 B1 DL1 DH1 '54'
0 8 16 20 32 40 47

'D4' L B1 D1 B2 D2

0 8 16 20 32 36 47

7-34 The z/Architecture CPU Architecture

A
N

D
 IM

M
E

D
IA

T
E AND IMMEDIATE

NIHF R1,I2 [RIL-a]

NIHH R1,I2 [RI-a]

NIHL R1,I2 [RI-a]

NILF R1,I2 [RIL-a]

NILH R1,I2 [RI-a]

NILL R1,I2 [RI-a]

The second operand is ANDed with bits of the first
operand, and the result replaces those bits of the first
operand. The remainder of the first operand remains
unchanged.

For each instruction, the bits of the first operand that
are ANDed with the second operand and then
replaced are as follows:

The connective AND is applied to the operands bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit positions in both oper-

ands contain ones; otherwise, the result bit is set to
zero.

Resulting Condition Code:

0 Result is zero
1 Result is not zero
2 --
3 --

Program Exceptions:

• Operation (NIHF, NILF, if the extended-immedi-
ate facility is not installed)

Programming Note: The setting of the condition
code is based only on the bits that are ANDed and
replaced.

AND WITH COMPLEMENT

NCRK R1,R2,R3 [RRF-a]

NCGRK R1,R2,R3 [RRF-a]

The second operand is ANDed with the bit-wise com-
plement of the third operand and the result is placed
in the first-operand location.

The connective AND is applied to the second oper-
and and bit-wise complemented third operand, bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit positions in the second
and third operands contain one and zero, respec-
tively; otherwise, the result bit is set to zero.

For NCRK, the operands are 32 bits, and for
NCGRK, they are 64 bits.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

'C0' R1 'A' I2
0 8 12 16 47

'A5' R1 '4' I2
0 8 12 16 31

'A5' R1 '5' I2
0 8 12 16 31

'C0' R1 'B' I2
0 8 12 16 47

'A5' R1 '6' I2
0 8 12 16 31

'A5' R1 '7' I2
0 8 12 16 31

Instruction
Bits ANDed
and Replaced

NIHF 0-31

NIHH 0-15

NIHL 16-31

NILF 32-63

NILH 32-47

NILL 48-63

'B9F5' R3 / / / / R1 R2

0 16 20 24 28 31

'B9E5' R3 / / / / R1 R2

0 16 20 24 28 31

General Instructions 7-35

B
R

A
N

C
H

 A
N

D
 L

IN
K• Operation (if the miscellaneous-instruction-

extensions facility 3 is not installed)

Programming Note: This instruction is useful for
zeroing selected bits based on a mask.

BRANCH AND LINK

Register-and-register format:

BALR R1,R2 [RR]

Register-and-storage format:

BAL R1,D2(X2,B2) [RX-a]

Information from the current PSW, including the
updated instruction address, is saved as link informa-
tion at the first-operand location. Subsequently, the
instruction address in the PSW is replaced by the
branch address.

The link information in the 24-bit addressing mode
consists of the instruction-length code (ILC), the con-
dition code (CC), the program-mask bits, and the
rightmost 24 bits of the updated instruction address,
arranged in bit positions 32-63 of the first-operand
location in the following format:

When BRANCH AND LINK is not the target of an
execute-type instruction, the ILC is set to 1 for BALR
or 2 for BAL. When BRANCH AND LINK is the target
of an EXECUTE instruction, the ILC is set to 2. When
BRANCH AND LINK is the target of an EXECUTE
RELATIVE LONG instruction, the ILC is set to 3.

The link information in the 31-bit addressing mode
consists of bit 32 of the PSW, the basic-addressing-
mode bit (always a one) and the rightmost 31 bits of
the updated instruction address, arranged in bit posi-

tions 32-63 of the first-operand location in the follow-
ing format:

In the 24-bit or 31-bit addressing mode, bits 0-31 of
the first-operand location remain unchanged.

The link information in the 64-bit addressing mode
consists of the updated instruction address, placed in
bit positions 0-63 of the first-operand location.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of general register R2 are used to generate
the branch address; however, when the R2 field is
zero, the operation is performed without branching.
The branch address is computed before general reg-
ister R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Trace (R2 field nonzero, BALR only)
• Transaction constraint

Programming Notes:

1. An example of the use of the BRANCH AND
LINK instruction is given in Appendix A, “Number
Representation and Instruction-Use Examples.”

2. When the R2 field in the RR format is zero, the
link information is loaded without branching.

3. The BRANCH AND LINK instruction (BAL and
BALR) is provided for compatibility purposes. It is
recommended that, where possible, the
BRANCH AND SAVE instruction (BAS and
BASR), BRANCH RELATIVE AND SAVE, or
BRANCH RELATIVE AND SAVE LONG be used
and BRANCH AND LINK avoided, since the lat-
ter places nonzero information in bit positions
32-39 of the link register in the 24-bit addressing
mode, which may lead to problems. Additionally,
in the 24-bit addressing mode, BRANCH AND
LINK may be slower than the other instructions
because BRANCH AND LINK must construct the
ILC, condition code, and program mask to be
placed in bit positions 32-39 of the link register.

'05' R1 R2

0 8 12 15

'45' R1 X2 B2 D2

0 8 12 16 20 31

ILC CC
Prog
Mask

Instruction Address

32 34 36 40 63

1 Instruction Address
32 33 63

7-36 The z/Architecture CPU Architecture

B
R

A
N

C
H

 A
N

D
 S

A
V

E 4. The condition-code and program-mask informa-
tion, which is provided in the leftmost byte of the
link information only in the 24-bit addressing
mode, can be obtained in any addressing mode
by means of the INSERT PROGRAM MASK
instruction.

BRANCH AND SAVE

BASR R1,R2 [RR]

BAS R1,D2(X2,B2) [RX-a]

Information from the current PSW, including the
updated instruction address, is saved as link informa-
tion at the first-operand location. Subsequently, the
instruction address in the PSW is replaced by the
branch address.

In the 24-bit or 31-bit addressing mode, the link infor-
mation is bits 32 and 97-127 of the PSW, consisting
of the basic-addressing-mode bit and the rightmost
31 bits of the updated instruction address. The link
information is placed in bit positions 32 and 33-63,
respectively, of the first-operand location, and bits
0-31 of the location remain unchanged.

In the 64-bit addressing mode, the link information
consists of the updated instruction address, placed in
bit positions 0-63 of the first-operand location.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of general register R2 are used to generate
the branch address; however, when the R2 field is
zero, the operation is performed without branching.
The branch address is computed before general reg-
ister R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Trace (R2 field nonzero, BASR only)
• Transaction constraint

Programming Notes:

1. An example of the use of the BRANCH AND
SAVE instruction is given in Appendix A, “Num-
ber Representation and Instruction-Use Exam-
ples.”

2. The BRANCH AND SAVE instruction (BAS and
BASR) is intended to be used for linkage to pro-
grams known to be in the same addressing mode
as the caller. This instruction should be used in
place of the BRANCH AND LINK instruction
(BAL and BALR). See the programming notes on
pages 5-15 and 5-18 in the section “Subroutine
Linkage without the Linkage Stack” for a detailed
discussion of this and other linkage instructions.
See also the programming note under BRANCH
AND LINK for a discussion of the advantages of
the BRANCH AND SAVE instruction.

BRANCH AND SAVE AND SET
MODE

BASSM R1,R2 [RR]

Information from the current PSW, including the
updated instruction address, is saved as link informa-
tion at the first-operand location. Subsequently, if the
R2 field is nonzero, the addressing-mode bits and
instruction address in the PSW are replaced as spec-
ified by the second operand.

In the 24-bit or 31-bit addressing mode, the link infor-
mation is bits 32 and 97-127 of the PSW, consisting
of the basic-addressing-mode bit and the rightmost
31 bits of the updated instruction address. The link
information is placed in bit positions 32 and 33-63,
respectively, of the first-operand location, and bits
0-31 of the location remain unchanged. In the 64-bit
addressing mode, the link information is the updated
instruction address in bits 64-126 of the PSW with a
one appended on the right, placed in bit positions
0-63 of the first-operand location.

The contents of general register R2 specify the new
addressing mode and designate the branch address;
however, when the R2 field is zero, the operation is
performed without branching and without setting
either addressing-mode bit.

'0D' R1 R2

0 8 12 15

'4D' R1 X2 B2 D2

0 8 12 16 20 31

'0C' R1 R2

0 8 12 15

General Instructions 7-37

B
R

A
N

C
H

 A
N

D
 S

E
T

 M
O

D
EWhen the contents of general register R2 are used

and bit 63 of the register is zero, bit 31 of the current
PSW, the extended-addressing-mode bit, is set to
zero, bit 32 of the register specifies the new basic
addressing mode and replaces bit 32 of the PSW,
and the branch address is generated from the con-
tents of the register under the control of the new
addressing mode. The branch address replaces the
instruction address in the PSW.

In the z/Architecture architectural mode, when the
contents of general register R2 are used and bit 63 of
the register is one, the following occurs. Bits 31 and
32 of the current PSW are set to one, the branch
address is generated from the contents of the regis-
ter, except with bit 63 of the register treated as a
zero, under the control of the new extended address-
ing mode, and the branch address replaces the
instruction address in the PSW. Bit 63 of the register
remains one. However, if R2 is the same as R1, the
results in the designated general register are as
specified for the R1 register.

The new value for the PSW is computed before gen-
eral register R1 is changed.

In the ESA/390-compatibility mode, when the R2 field
is nonzero and bit 63 of general register R2 is one, it
is unpredictable which of the following occurs:

• The CPU enters the 64-bit addressing mode as
described above for the z/Architecture architec-
tural mode.

• Bit 31 of the PSW is set to zero, bit 32 of the reg-
ister specifies the new basic addressing mode
and replaces bit 32 of the PSW, and the branch
address is generated from the contents of the
register, including bit 63, under the control of the
new addressing mode. The branch address
replaces the instruction address in the PSW.
Subsequently, a late specification exception is
recognized due to an odd instruction address.

Condition Code: The code remains unchanged.

Program Exceptions:

• Trace (R2 field nonzero)
• Transaction constraint

Programming Notes:

1. An example of the use of the BRANCH AND
SAVE AND SET MODE instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. BRANCH AND SAVE AND SET MODE is
intended to be the principal calling instruction to
subroutines which may operate in a different
addressing mode from that of the caller. See the
programming notes on pages 5-15 and 5-18 in
the section “Subroutine Linkage without the Link-
age Stack” for a detailed discussion of this and
other linkage instructions.

3. An old 24-bit or 31-bit program can use BRANCH
AND SAVE AND SET MODE to call a new 64-bit
program without any change, provided that bits
0-31 of general register R2 are all zeros. The old
program can load into bit positions 32-63 of gen-
eral register R2 a four-byte address constant,
which is provided from outside the program, in
which bit 63 in the register (bit 31 of the constant
in storage) either is or is not one. If the address-
ing mode is not changed to the 64-bit mode by
the execution of the BRANCH AND SAVE AND
SET MODE instruction, or even if it is, the called
program can set the 64-bit mode by issuing a
SET ADDRESSING MODE (SAM64) instruction.

4. See the programming notes on page 5-15 (under
“Simple Branch Instructions”).

BRANCH AND SET MODE

BSM R1,R2 [RR]

In the 24-bit or 31-bit addressing mode, bit 32 of the
current PSW, the basic-addressing-mode bit, is
inserted into bit position 32 of the first operand, and
bits 0-31 and 33-63 of the operand remain
unchanged. In the 64-bit addressing mode, a one is
inserted into bit position 63 of the first operand, and
bits 0-62 of the operand remain unchanged. Subse-
quently, the addressing-mode bits and instruction
address in the PSW are replaced as specified by the
second operand. The action associated with an oper-
and is not performed if the associated R field is zero.

'0B' R1 R2

0 8 12 15

7-38 The z/Architecture CPU Architecture

B
R

A
N

C
H

 IN
D

IR
E

C
T

 O
N

 C
O

N
D

IT
IO

N The contents of general register R2 specify the new
addressing mode and designate the branch address;
however, when the R2 field is zero, the operation is
performed without branching and without setting
either addressing-mode bit.

When the contents of general register R2 are used
and bit 63 of the register is zero, bit 31 of the current
PSW, the extended-addressing-mode bit, is set to
zero, bit 32 of the register specifies the new basic
addressing mode and replaces bit 32 of the PSW,
and the branch address is generated from the con-
tents of the register under the control of the new
addressing mode. The branch address replaces the
instruction address in the PSW.

In the z/Architecture architectural mode, when the
contents of general register R2 are used and bit 63 of
the register is one, the following occurs. Bits 31 and
32 of the current PSW are set to one, the branch
address is generated from the contents of the regis-
ter, except with bit 63 of the register treated as a
zero, under the control of the new extended address-
ing mode, and the branch address replaces the
instruction address in the PSW. Bit 63 of the register
remains one. However, if R2 is the same as R1, the
results in the designated general register are as
specified for the R1 register.

The new value for the PSW is computed before gen-
eral register R1 is changed.

In the ESA/390-compatibility mode, when the R2 field
is nonzero and bit 63 of general register R2 is one, it
is unpredictable which of the following occurs:

• The CPU enters the 64-bit addressing mode as
described above for the z/Architecture architec-
tural mode.

• Bit 31 of the PSW is set to zero, bit 32 of the reg-
ister specifies the new basic addressing mode
and replaces bit 32 of the PSW, and the branch
address is generated from the contents of the
register, including bit 63, under the control of the
new addressing mode. The branch address
replaces the instruction address in the PSW.
Subsequently, a late specification exception is
recognized due to an odd instruction address.

Condition Code: The code remains unchanged.

Program Exceptions:

• Trace
• Transaction constraint

Programming Notes:

1. An example of the use of the BRANCH AND SET
MODE instruction is given in Appendix A, “Num-
ber Representation and Instruction-Use Exam-
ples.”

2. BRANCH AND SET MODE with an R1 field of
zero is intended to be the standard return
instruction in a program entered by means of
BRANCH AND SAVE AND SET MODE. It can
also be the return instruction in a program
entered in the 24-bit or 31-bit addressing mode
by means of BRANCH AND SAVE, BRANCH
RELATIVE AND SAVE, or BRANCH RELATIVE
AND SAVE LONG. BRANCH AND SET MODE
with a nonzero R1 field is intended to be used in a
“glue module” to connect either old 24-bit pro-
grams and newer programs that are executed in
the 31-bit addressing mode or old 24-bit or 31-bit
programs and new programs that are executed in
the 64-bit addressing mode. See the program-
ming notes on pages 5-15 and 5-18 in the sec-
tion “Subroutine Linkage without the Linkage
Stack” for a detailed discussion of this and other
linkage instructions.

BRANCH INDIRECT ON
CONDITION

BIC M1,D2(X2,B2) [RXY-b]

The instruction-address in the current PSW is
replaced by the branch address if the condition code
in the current PSW designates a bit position in the M1

field containing a one; otherwise, normal instruction
sequencing proceeds with the updated instruction
address.

The eight-byte second operand in storage is used as
the branch address. The branch address is subject to
the current addressing mode. All eight bytes of the
second operand are accessed, regardless of the
addressing mode.

'E3' M1 X2 B2 DL2 DH2 '47'

0 8 12 16 20 32 40 47

General Instructions 7-39

B
R

A
N

C
H

 O
N

 C
O

N
D

IT
IO

NThe M1 field is used as a four-bit mask. The four con-
dition codes (0, 1, 2, and 3) correspond, left to right,
with the four bits of the mask, as follows:

The current condition code is used to select the cor-
responding mask bit. If the mask bit selected by the
condition code is one, the branch is successful. If the
mask bit selected is zero, normal instruction
sequencing proceeds with the next sequential
instruction.

The displacement is treated as a 20-bit signed binary
integer.

It is model dependent whether an access exception
or PER zero-address-detection event is recognized
for the second operand when the condition code in
the current PSW designates a bit position in the M1

field containing a zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation (if the miscellaneous-instruction-

extensions facility 2 is not installed)
• Transaction constraint

Programming Notes:

1. Unlike other branch-type instructions such as
BRANCH ON CONDITION, where PER zero-
address detection is not performed on the branch
address, a PER zero-address-detection event
may be recognized for the second operand of
BRANCH INDIRECT ON CONDITION.

2. BRANCH INDIRECT ON CONDITION may be
useful in returning to a calling program based on
a return address in memory (such as in a pro-
gram stack or save area).

3. The second operand is fetched using the current
DAT and address-space controls in the PSW.
However, the branch address that is fetched from
the second-operand location is treated as an
instruction address and is treated as a real

address in the real mode, as a primary virtual
address in the primary-space mode, secondary-
space mode, or access-register mode, and as a
home virtual address in the home-space mode.

4. The High-Level Assembler provides extended-
mnemonic suffixes for BRANCH INDIRECT ON
CONDITION as follows:

When an extended mnemonic is coded, the M1

field must be omitted.

5. BRANCH INDIRECT ON CONDITION may be
useful in a table-based branch mechanism.

BRANCH ON CONDITION

BCR M1,R2 [RR]

BC M1,D2(X2,B2) [RX-b]

The instruction address in the current PSW is
replaced by the branch address if the condition code
has one of the values specified by M1; otherwise, nor-
mal instruction sequencing proceeds with the
updated instruction address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of general register R2 are used to generate
the branch address; however, when the R2 field is
zero, the operation is performed without branching.

Condition Code 0 1 2 3

Instruction Bit Number of Mask 8 9 10 11

Mask Position Value 8 4 2 1

M1 Field Extended
MnemonicsDecimal Hex Binary

1 1 0001 BIO —

2 2 0010 BIP BIH

4 4 0100 BIM BIL

7 7 0111 BINZ BINE

8 8 1000 BIZ BIE

11 B 1011 BINM BINL

13 D 1101 BINP BINH

14 E 1110 BINO —

15 F 1111 BI —

'07' M1 R2

0 8 12 15

'47' M1 X2 B2 D2

0 8 12 16 20 31

7-40 The z/Architecture CPU Architecture

B
R

A
N

C
H

 O
N

 C
O

U
N

T The M1 field is used as a four-bit mask. The four con-
dition codes (0, 1, 2, and 3) correspond, left to right,
with the four bits of the mask, as follows:

The current condition code is used to select the cor-
responding mask bit. If the mask bit selected by the
condition code is one, the branch is successful. If the
mask bit selected is zero, normal instruction
sequencing proceeds with the next sequential
instruction.

When the M1 and R2 fields of BRANCH ON CONDI-
TION (BCR) are 1111 binary and 0000 binary,
respectively, a serialization and checkpoint-synchro-
nization function is performed. When the fast-BCR-
serialization facility is installed and the M1 and R2

fields of BRANCH ON CONDITION (BCR) are 1110
binary and 0000 binary, respectively, a serialization
function is performed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Transaction constraint

Programming Notes:

1. An example of the use of the BRANCH ON CON-
DITION instruction is given in Appendix A, “Num-
ber Representation and Instruction-Use
Examples.”

2. When a branch is to depend on more than one
condition, the pertinent condition codes are
specified in the mask as the sum of their mask
position values. A mask of 12, for example, spec-
ifies that a branch is to be made when the condi-
tion code is 0 or 1.

3. When all four mask bits are zeros or when the R2

field in the RR format contains zero, the branch
instruction is equivalent to a no-operation. When
all four mask bits are ones, that is, the mask
value is 15, the branch is unconditional unless
the R2 field in the RR format is zero.

4. Execution of BCR 15,0 (that is, an instruction
with a value of 07F0 hex) may result in significant
performance degradation. To ensure optimum

performance, the program should avoid use of
BCR 15,0 except in cases when the serialization
or checkpoint-synchronization function is actually
required.

When the fast-BCR-serialization facility is
installed, and the program only needs the serial-
ization function (without the checkpoint synchro-
nization function), then BCR 14,0 should be
used. Depending on the model, this may be
faster than BCR 15,0.

5. Note that the relation between the RR and RX
formats in branch-address specification is not the
same as in operand-address specification. For
branch instructions in the RX format, the branch
address is the address specified by X2, B2, and
D2; in the RR format, the branch address is con-
tained in the register designated by R2. For oper-
ands, the address specified by X2, B2, and D2 is
the operand address, but the register designated
by R2 contains the operand, not the operand
address.

 BRANCH ON COUNT

Register-and-register formats:

BCTR R1,R2 [RR]

BCTGR R1,R2 [RRE]

Register-and-storage formats:

BCT R1,D2(X2,B2) [RX-a]

BCTG R1,D2(X2,B2) [RXY-a]

A one is subtracted from the first operand, and the
result is placed at the first-operand location. For
BRANCH ON COUNT (BCT, BCTR), the first oper-
and and result are treated as 32-bit binary integers,
with overflow ignored. For BRANCH ON COUNT

Condition Code 0 1 2 3

Instruction Bit Number of Mask 8 9 10 11

Mask Position Value 8 4 2 1

'06' R1 R2

0 8 12 15

'B946' / / / / / / / / R1 R2

0 16 24 28 31

'46' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '46'
0 8 12 16 20 32 40 47

General Instructions 7-41

B
R

A
N

C
H

 O
N

 IN
D

E
X

 L
O

W
 O

R
 E

Q
U

A
L(BCTG, BCTGR), the first operand and result are

treated as 64-bit binary integers, with overflow
ignored. When the result is zero, normal instruction
sequencing proceeds with the updated instruction
address. When the result is not zero, the instruction
address in the current PSW is replaced by the branch
address.

In the RX or RXY format, the second-operand
address is used as the branch address. In the RR or
RRE format, the contents of general register R2 are
used to generate the branch address; however, when
the R2 field is zero, the operation is performed with-
out branching. The branch address is generated
before general register R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Transaction constraint

Programming Notes:

1. An example of the use of the BRANCH ON
COUNT instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The first operand and result can be considered
as either signed or unsigned binary integers
since the result of a binary subtraction is the
same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in -1 and causes branching to be per-
formed; an initial count of -1 results in -2 and
causes branching to be performed; and so on. In
a loop, branching takes place each time the
instruction is executed until the result is again
zero. Note that for BCT or BCTR, because of the
number range, an initial count of -231 results in a
positive value of 231 - 1, or, for BCTG or BCTGR,
an initial count of -263 results in a positive value
of 263 - 1.

4. Counting is performed without branching when
the R2 field in the RR or RRE format contains
zero.

BRANCH ON INDEX HIGH

BXH R1,R3,D2(B2) [RS-a]

BXHG R1,R3,D2(B2) [RSY-a]

BRANCH ON INDEX LOW OR
EQUAL

BXLE R1,R3,D2(B2) [RS-a]

BXLEG R1,R3,D2(B2) [RSY-a]

An increment is added to the first operand, and the
sum is compared with a compare value. The result of
the comparison determines whether branching
occurs. Subsequently, the sum is placed at the first-
operand location. The second-operand address is
used as a branch address. The R3 field designates
registers containing the increment and the compare
value.

For BRANCH ON INDEX HIGH, when the sum is
high, the instruction address in the current PSW is
replaced by the branch address. When the sum is
low or equal, normal instruction sequencing pro-
ceeds with the updated instruction address.

For BRANCH ON INDEX LOW OR EQUAL, when the
sum is low or equal, the instruction address in the
current PSW is replaced by the branch address.
When the sum is high, normal instruction sequencing
proceeds with the updated instruction address.

When the R3 field is even, it designates a pair of reg-
isters; the contents of the even and odd registers of
the pair are used as the increment and the compare
value, respectively. When the R3 field is odd, it desig-
nates a single register, the contents of which are
used as both the increment and the compare value.

'86' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '44'

0 8 12 16 20 32 40 47

'87' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '45'

0 8 12 16 20 32 40 47

7-42 The z/Architecture CPU Architecture

B
R

A
N

C
H

 P
R

E
D

IC
T

IO
N

 P
R

E
L

O
A

D For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers for BXH and BXLE or as 64-bit signed
binary integers for BXHG and BXLEG. Overflow
caused by the addition is ignored.

The original contents of the compare-value register
are used as the compare value even when that regis-
ter is also specified to be the first-operand location.
The branch address is generated before general reg-
ister R1 is changed.

The sum is placed at the first-operand location,
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.

Program Exceptions:

• Transaction constraint

Programming Notes:

1. Several examples of the use of the BRANCH ON
INDEX HIGH and BRANCH ON INDEX LOW OR
EQUAL instructions are given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The word “index” in the names of these instruc-
tions indicates that one of the major purposes is
the incrementing and testing of an index value.
The increment, being a signed binary integer,
may be used to increase or decrease the value in
general register R1 by an arbitrary amount, sub-
ject to the limit of the integer size.

3. Care must be taken in the 31-bit addressing
mode when a data area in storage is at the right-
most end of a 31-bit address space and a
BRANCH ON INDEX HIGH (BXH) or BRANCH
ON INDEX LOW OR EQUAL (BXLE) instruction
is used to step upward through the data. Since
the addition and comparison operations per-
formed during the execution of these instructions
treat the operands as 32-bit signed binary inte-
gers, the value following 231 - 1 is not 231, which
cannot be represented in that format, but -231.
The instruction does not provide an indication of
such overflow. Consequently, some common
looping techniques based on the use of these
instructions do not work when a data area ends

at address 231 - 1. This problem is illustrated in a
BRANCH ON INDEX LOW OR EQUAL example
in Appendix A, “Number Representation and
Instruction-Use Examples.” A similar caution
applies in the 64-bit addressing mode when data
is at the end of a 64-bit address space and
BRANCH ON INDEX HIGH (BXHG) or BRANCH
ON INDEX LOW OR EQUAL (BXLEG) is used.

BRANCH PREDICTION PRELOAD

BPP M1,RI2,D3(B3) [SMI]

BRANCH PREDICTION RELATIVE
PRELOAD

BPRP M1,RI2,RI3 [MII]

Subject to the controls in the M1 field, the CPU is pro-
vided with information about a branch or execute-
type instruction designated by the second operand.
The predicted target address of the designated
instruction is specified by the third operand.

The contents of the RI2 field are a signed binary inte-
ger specifying the number of halfwords that is added
to the address of the current instruction to generate
the address of a branch, or execute-type instruction.
For BRANCH PREDICTION PRELOAD, the RI2 field
contains a signed 16-bit integer. For BRANCH PRE-
DICTION RELATIVE PRELOAD, the RI2 field con-
tains a signed 12-bit integer.

When adding the number of halfwords specified in
the RI2 field to the address of the current instruction,
the result is subject to the current addressing mode.
That is, the result is treated as a 24-bit address in the
24-bit addressing mode, a 31-bit address in the 31-bit
addressing mode, or a 64-bit address in the 64-bit
addressing mode.

The M1 field contains a 4-bit unsigned binary integer
that is used as a code to signal the CPU attributes of

‘C7’ M1 / / / / B3 D3 RI2
0 8 12 16 20 32 47

‘C5’ M1 RI2 RI3
0 8 12 24 47

General Instructions 7-43

B
R

A
N

C
H

 P
R

E
D

IC
T

IO
N

 R
E

L
A

T
IV

E
 P

R
E

L
O

A
Dthe instruction designated by the second operand.

The codes are as follows:

For BRANCH PREDICTION PRELOAD when the M1

field specifies a branch instruction, the third operand
address is the predicted branch-target address of the

instruction designated by the second operand. For
BRANCH PREDICTION PRELOAD when the M1

field specifies an execute-type instruction, the third
operand address is the execute-target address of the
instruction designated by the second operand.

For BRANCH PREDICTION RELATIVE PRELOAD,
when the M1 field specifies a branch instruction, the
contents of the RI3 field are a 24-bit signed binary
integer specifying the number of halfwords that is
added to the address of the BRANCH PREDICTION
RELATIVE PRELOAD instruction to generate the
branch-target address of the instruction designated
by the second operand. For BRANCH PREDICTION
RELATIVE PRELOAD, when the M1 field specifies an
execute-type instruction, the contents of the RI3 field
are a 24-bit signed binary integer specifying the num-
ber of halfwords that is added to the address of the
BRANCH PREDICTION RELATIVE PRELOAD
instruction to generate the execute-target address of
the instruction designated by the second operand.
When adding the number of halfwords specified by
the RI3 field to the address of the BRANCH PREDIC-
TION RELATIVE PRELOAD instruction, the result is
subject to the current addressing mode. That is, the
result is treated as a 24-bit address in the 24-bit
addressing mode, a 31-bit address in the 31-bit
addressing mode, or a 64-bit address in the 64-bit
addressing mode.

When the boundary of the third operand of BRANCH
PREDICTION PRELOAD is not on a halfword bound-
ary, it is model dependent whether the instruction
acts as a no-operation.

Depending on the model, the CPU may not imple-
ment all of the branch-attribute codes. For codes that
are not recognized by the CPU, and for reserved
codes, the instruction acts as a no-operation.

The second and third operand addresses are instruc-
tion or effective addresses, not logical addresses. No
access exceptions are recognized for the second or
third operands. For BRANCH PREDICTION PRE-
LOAD, there is no specification exception when the
third operand specifies an odd address.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (if the execution-hint facility is not
installed)

Code Meaning

0 The instruction is a branch instruction that is 4
bytes in length. The branch instruction is not
used for calling linkage or a returning linkage
and there may be multiple potential targets of
this branch instruction.

1-4 Reserved.

5 The instruction is a branch instruction that is 2
bytes in length. The branch instruction is used
for calling linkage and there is only one target of
this branch instruction.

6 The instruction is a branch instruction that is 2
bytes in length. The branch instruction is used
for returning linkage.

7 The instruction is a branch instruction that is 2
bytes in length. The branch instruction is used
for calling linkage and there may be multiple
potential targets of this branch instruction.

8 The instruction is a branch instruction that is 4
bytes in length. The branch instruction is not
used for calling linkage or returning linkage and
there is only one target of this branch
instruction.

9 The instruction is a branch instruction that is 4
bytes in length. The branch instruction is used
for calling linkage and there is only one target of
the branch instruction.

10 The instruction is a branch instruction that is 4
bytes in length. The branch instruction is used
for returning linkage.

11 The instruction is a branch instruction that is 4
bytes in length. The branch instruction is used
for calling linkage and there may be multiple
potential targets of this branch instruction.

12 The instruction is a branch instruction that is 6
bytes in length. The branch instruction is not
used for calling linkage or returning linkage and
there is only one target of this branch
instruction.

13 The instruction is a branch instruction that is 6
bytes in length. The branch instruction is used
for calling linkage and there is only one target of
this branch instruction.

14 The instruction is an EXECUTE instruction.

15 The instruction is an EXECUTE RELATIVE
LONG instruction.

7-44 The z/Architecture CPU Architecture

B
R

A
N

C
H

 P
R

E
D

IC
T

IO
N

 R
E

L
A

T
IV

E
 P

R
E

L
O

A
D Programming Notes:

1. In the absence of any branch-history information
observed during program execution or provided
by BPP or BPRP, current processor models that
implement branch-prediction logic assume that
the following operations represent conditional
branches that are taken (that is, branches that
update the PSW instruction address):

• BAL, BAS, BCT, BCTG, BRAS, BRASL,
BRCT, BRCTG, BRCTH, BRXLE, BRXLG,
BXLE, and BXLEG

• BALR, BASR, BCTGR, and BCTR, when the
R2 field is nonzero

• BC, BIC, BRC, and BRCL, when the mask
field is 1111 binary

• BCR, when both the mask field is 1111
binary and the R2 field is nonzero

Similarly, for the purposes of branch prediction,
the following operations are assumed to repre-
sent conditional branches that are not taken:

• BC, BIC, BRC, and BRCL, when the mask
field is between 0001 and 1110 binary, inclu-
sive

• BCR, when both the mask field is between
0001 and 1110 binary, inclusive, and the R2

field is nonzero
• BRXH, BRXHG, BXH, and BXHG
• CGIB, CGIJ, CGRB, CGRJ, CIB, CIJ, CLGIB,

CLGIJ, CLGRB, CLGRJ, CLIB, CLIJ, CLRB,
CLRJ, CRB, and CRJ, when bits 0-2 of the
mask field are between 001 and 110 binary

Additionally, for the purposes of branch-predic-
tion, the following operations are not considered
to be branches.

• BALR, BASR, BCTGR, and BCTR, when the
R2 field is zero

• BC, BIC, BRC, and BRCL, when the mask
field is 0000 binary

• BCR, when either the mask field is 0000
binary or the R2 field is zero

The predictive behavior of conditional-branching
operations not listed above is model dependent.

The BPP and BPRP instructions provide a
means by which the program can influence the
branch-history logic, informing the CPU that the
branching instruction designated by the second
operand is expected to be a taken branch,

regardless of the assumed behavior described
above.

2. BRANCH PREDICTION PRELOAD and
BRANCH PREDICTION RELATIVE PRELOAD
inform the CPU of a branch instruction and its
predicted target, but this does not guarantee that
the CPU will necessarily retain or use this
branch-prediction information.

3. If a CPU retains the specified branch-prediction
information, it is model dependent how long the
information is retained.

4. Figure 7-3 shows the branch-prediction codes
and their most-common usage. Refer to the defi-
nition of the codes on page 7-43 for a complete
explanation of the codes and their respective
meanings.

M1 Code
Value

IL
Corresponding Branch

Instruction(s) by Mnemonic
Usage Type

0 4 BC2, BIC2 Branch table
1 (none - code is reserved)
2 (none - code is reserved)
3 (none - code is reserved)
4 (none - code is reserved)
5 2 BALR1, BASR1, BCR1,2 Static calling

linkage
6 2 BCR1,2 Returning

linkage
7 2 BALR1, BASR1, BCR1,2 Dynamic calling

linkage
8 4 BC2, BIC2, BCT, BRXH,

BRXLE, BXH, BXLE, BRC2,
BRCT, BRCTG, BCTGR1

Conditional or
unconditional
branches

9 4 BAL, BAS, BRAS Static calling
linkage

10 4 BC3 , BIC2 unconditional
returning
linkage

11 4 BAL, BAS, Dynamic calling
linkage

12 6 BRCTH, BRCL2, BCTG, BXHG,
BXLEG, BRXHG, BRXLG,
CGRJ2, CLGRJ2, CRJ2, CLRJ2,
CGIJ2, CLGIJ2, CIJ2, CLIJ2,
CGRB2, CLGRB2, CRB2,
CLRB2, CGIB2, CLGIB2, CIB2,
CLIB2

Conditional or
unconditional
branches

13 6 BRASL Static calling
linkage

14 4 EX
15 6 EXRL

Figure 7-3. Branch-Prediction Codes and Most-
Common Usage (Part 1 of 2)

General Instructions 7-45

B
R

A
N

C
H

 R
E

L
A

T
IV

E
 A

N
D

 S
A

V
E

 L
O

N
G

5. Performance degradation may occur for any of
the following:

• The RI2 field is zero or the second operand
designates an instruction that is not a branch
instruction or execute-type instruction.

• The RI2 and M1 fields designate a branch
instruction and the branch is not taken.

• The M1 field designates a code specifying an
incorrect length, instruction or usage type for
the instruction designated by the second
operand as shown by programming note 4.

• The M1 field designates a code specifying
that the instruction designated by the second
operand is a calling-linkage instruction, how-
ever there is no direct returning-linkage
instruction. That is, the returning-linkage
instruction is executed from a nested use of
calling and returning subroutine linkage.

• For BRANCH PREDICTION PRELOAD, the
third operand specifies an odd address or
designates an incorrect branch-target for the
instruction designated by the second oper-
and. For BRANCH PREDICTION RELATIVE
PRELOAD, the RI3 field designates an incor-
rect branch-target for the instruction desig-
nated by the RI2 field.

• BRANCH PREDICTION PRELOAD or
BRANCH PREDICTION RELATIVE PRE-
LOAD are the target of an execute-type
instruction.

6. Other than the performance implications
described in the preceding note, the use of BPP
or BPRP in a program does not change the exe-
cution sequence from that of a program that does
not use BPP or BPRP.

BRANCH RELATIVE AND SAVE

BRAS R1,RI2 [RI-b]

BRANCH RELATIVE AND SAVE
LONG

BRASL R1,RI2 [RIL-b]

Information from the current PSW, including the
updated instruction address, is saved as link informa-
tion at the first-operand location. Subsequently, the
instruction address in the PSW is replaced by the
branch address.

In the 24-bit or 31-bit addressing mode, the link infor-
mation is bits 32 and 97-127 of the PSW, consisting
of the basic-addressing-mode bit and the rightmost
31 bits of the updated instruction address. The link
information is placed in bit positions 32 and 33-63,
respectively, of the first-operand location, and bits
0-31 of the location remain unchanged.

In the 64-bit addressing mode, the link information
consists of the updated instruction address, placed in
bit positions 0-63 of the first-operand location.

The contents of the RI2 field are a signed binary inte-
ger specifying the number of halfwords that is added
to the address of the instruction to generate the
branch address.

Condition Code: The code remains unchanged.

Program Exceptions:

Explanation:

IL Instruction length
1 When the R2 field is not zero.
2 When the mask field is not zero.
3 When the mask field is 1111 binary.

Notes:
1. A usage type of branch table indicates an instruction that is

used to branch to a table of other instructions. An example is
the "B BR_TBL(15)" instruction shown in programming note
3 for “TRANSLATE AND TEST EXTENDED” on page 7-410.

2. A usage type of linkage designates an instruction that calls
or returns from a subroutine, as described in “Subroutine
Linkage without the Linkage Stack” on page 5-14. Static
calling linkage indicates a branch whose target location is a
single location that is not changed by the program during
execution. Dynamic calling linkage indicates a branch
whose target location may be one of many locations that is
determined by the program during execution.

M1 Code
Value

IL
Corresponding Branch

Instruction(s) by Mnemonic
Usage Type

Figure 7-3. Branch-Prediction Codes and Most-
Common Usage (Part 2 of 2)

'A7' R1 '5' RI2
0 8 12 16 31

'C0' R1 '5' RI2
0 8 12 16 47

7-46 The z/Architecture CPU Architecture

B
R

A
N

C
H

 R
E

L
A

T
IV

E
 O

N
 C

O
N

D
IT

IO
N • Transaction constraint

Programming Notes:

1. The operation is the same as that of the
BRANCH AND SAVE (BAS) instruction except
for the means of specifying the branch address.
An example of the use of BRANCH AND SAVE is
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. The BRANCH RELATIVE AND SAVE and
BRANCH RELATIVE AND SAVE LONG instruc-
tions, like the BRANCH AND SAVE instruction,
are intended to be used for linkage to programs
known to be in the same addressing mode as the
caller. These instructions should be used in
place of the BRANCH AND LINK instruction
(BAL and BALR). See the programming notes on
pages 5-15 and 5-18 in the section “Subroutine
Linkage without the Linkage Stack” for a detailed
discussion of these and other linkage instruc-
tions. See also the programming note under
BRANCH AND LINK for a discussion of the
advantages of the BRANCH RELATIVE AND
SAVE, BRANCH RELATIVE AND SAVE LONG,
and BRANCH AND SAVE instructions.

3. When the instruction is the target of an execute-
type instruction, the branch is relative to the tar-
get address; see “Branch-Address Generation”
on page 5-12.

BRANCH RELATIVE ON
CONDITION

BRC M1,RI2 [RI-c]

BRANCH RELATIVE ON
CONDITION LONG

BRCL M1,RI2 [RIL-c]

The instruction address in the current PSW is
replaced by the branch address if the condition code
has one of the values specified by M1; otherwise, nor-

mal instruction sequencing proceeds with the
updated instruction address.

The contents of the RI2 field are a signed binary inte-
ger specifying the number of halfwords that is added
to the address of the instruction to generate the
branch address.

The M1 field is used as a four-bit mask. The four con-
dition codes (0, 1, 2, and 3) correspond, left to right,
with the four bits of the mask, as follows:

The current condition code is used to select the cor-
responding mask bit. If the mask bit selected by the
condition code is one, the branch is successful. If the
mask bit selected is zero, normal instruction
sequencing proceeds with the next sequential
instruction.

Condition Code: The code remains unchanged.

Program Exceptions:

• Transaction constraint

Programming Notes:

1. The operation is the same as that of the
BRANCH ON CONDITION instruction except for
the means of specifying the branch address. An
example of the use of BRANCH ON CONDITION
is given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. When a branch is to depend on more than one
condition, the pertinent condition codes are
specified in the mask as the sum of their mask
position values. A mask of 12, for example, spec-
ifies that a branch is to be made when the condi-
tion code is 0 or 1.

3. When all four mask bits are zeros, the branch
instruction is equivalent to a no-operation. When
all four mask bits are ones, that is, the mask
value is 15, the branch is unconditional.

4. When the instruction is the target of an execute-
type instruction, the branch is relative to the tar-
get address; see “Branch-Address Generation”
on page 5-12.

'A7' M1 '4' RI2
0 8 12 16 31

'C0' M1 '4' RI2
0 8 12 16 47

Condition Code 0 1 2 3

Instruction Bit Number of Mask 8 9 10 11

Mask Position Value 8 4 2 1

General Instructions 7-47

B
R

A
N

C
H

 R
E

L
A

T
IV

E
 O

N
 IN

D
E

X
 L

O
W

 O
R

 E
Q

U
A

LBRANCH RELATIVE ON COUNT

BRCT R1,RI2 [RI-b]

BRCTG R1,RI2 [RI-b]

BRANCH RELATIVE ON COUNT
HIGH

BRCTH R1,RI2 [RIL-b]

A one is subtracted from the first operand, and the
result is placed at the first-operand location. For
BRANCH RELATIVE ON COUNT (BRCT), the first
operand and result are treated as 32-bit binary inte-
gers in bits 32-63 of general register R1, with overflow
ignored; bits 0-31 of the register are unchanged. For
BRANCH RELATIVE ON COUNT HIGH (BRCTH),
the first operand and result are treated as 32-bit
binary integers in bits 0-31 of general register R1,
with overflow ignored; bits 32-63 of the register are
unchanged. For BRANCH RELATIVE ON COUNT
(BRCTG), the first operand and result are treated as
64-bit binary integers, with overflow ignored. When
the result is zero, normal instruction sequencing pro-
ceeds with the updated instruction address. When
the result is not zero, the instruction address in the
current PSW is replaced by the branch address.

The contents of the RI2 field are a signed binary inte-
ger specifying the number of halfwords that is added
to the address of the instruction to generate the
branch address.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (BRCTH, if the high-word facility is not
installed)

• Transaction constraint

Programming Notes:

1. The operation is the same as that of the
BRANCH ON COUNT instruction except for the
means of specifying the branch address. An
example of the use of BRANCH ON COUNT is
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. The first operand and result can be considered
as either signed or unsigned binary integers
since the result of a binary subtraction is the
same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in -1 and causes branching to be exe-
cuted; an initial count of -1 results in -2 and
causes branching to be executed; and so on. In a
loop, branching takes place each time the
instruction is executed until the result is again
zero. Note that for BRCT, because of the number
range, an initial count of -231 results in a positive
value of 231 - 1, or, for BRCTG, an initial count of
-263 results in a positive value of 263 - 1.

4. When the instruction is the target of an execute-
type instruction, the branch is relative to the tar-
get address; see “Branch-Address Generation”
on page 5-12.

BRANCH RELATIVE ON INDEX
HIGH

BRXH R1,R3,RI2 [RSI]

BRXHG R1,R3,RI2 [RIE-e]

BRANCH RELATIVE ON INDEX
LOW OR EQUAL

BRXLE R1,R3,RI2 [RSI]

'A7' R1 '6' RI2
0 8 12 16 31

'A7' R1 '7' RI2
0 8 12 16 31

'CC' R1 '6' RI2
0 8 12 16 47

'84' R1 R3 RI2
0 8 12 16 31

'EC' R1 R3 RI2 / / / / / / / / '44'
0 8 12 16 32 40 47

'85' R1 R3 RI2
0 8 12 16 31

7-48 The z/Architecture CPU Architecture

B
R

A
N

C
H

 R
E

L
A

T
IV

E
 O

N
 IN

D
E

X
 L

O
W

 O
R

 E
Q

U
A

L BRXLG R1,R3,RI2 [RIE-e]

An increment is added to the first operand, and the
sum is compared with a compare value. The result of
the comparison determines whether branching
occurs. Subsequently, the sum is placed at the first-
operand location. The R3 field designates registers
containing the increment and the compare value.

The contents of the RI2 field are a signed binary inte-
ger specifying the number of halfwords that is added
to the address of the instruction to generate the
branch address.

For BRANCH RELATIVE ON INDEX HIGH, when the
sum is high, the instruction address in the current
PSW is replaced by the branch address. When the
sum is low or equal, normal instruction sequencing
proceeds with the updated instruction address.

For BRANCH RELATIVE ON INDEX LOW OR
EQUAL, when the sum is low or equal, the instruction
address in the current PSW is replaced by the branch
address. When the sum is high, normal instruction
sequencing proceeds with the updated instruction
address.

When the R3 field is even, it designates a pair of reg-
isters; the contents of the even and odd registers of
the pair are used as the increment and the compare
value, respectively. When the R3 field is odd, it desig-
nates a single register, the contents of which are
used as both the increment and the compare value.

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers for BRXH and BRXLE or as 64-bit
signed binary integers for BRXHG and BRXLG.
Overflow caused by the addition is ignored.

The original contents of the compare-value register
are used as the compare value even when that regis-
ter is also specified to be the first-operand location.

The sum is placed at the first-operand location,
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.

Program Exceptions:

• Transaction constraint

Programming Notes:

1. The operations are the same as those of the
BRANCH ON INDEX HIGH and BRANCH ON
INDEX LOW OR EQUAL instructions except for
the means of specifying the branch address.
Several examples of the use of BRANCH ON
INDEX HIGH and BRANCH ON INDEX LOW OR
EQUAL are given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. The word “index” in the names of these instruc-
tions indicates that one of the major purposes is
the incrementing and testing of an index value.
The increment, being a signed binary integer,
may be used to increase or decrease the value in
general register R1 by an arbitrary amount.

3. Care must be taken in the 31-bit addressing
mode when a data area in storage is at the right-
most end of an address space and a BRANCH
RELATIVE ON INDEX HIGH (BRXH) or
BRANCH RELATIVE ON INDEX LOW OR
EQUAL (BRXLE) instruction is used to step
upward through the data. Since the addition and
comparison operations performed during the
execution of these instructions treat the oper-
ands as 32-bit signed binary integers, the value
following 231 - 1 is not 231, which cannot be repre-
sented in that format, but -231. The instruction
does not provide an indication of such overflow.
Consequently, some common looping tech-
niques based on the use of these instructions do
not work when a data area ends at address
231 - 1. This problem is illustrated in a BRANCH
ON INDEX LOW OR EQUAL example in
Appendix A, “Number Representation and
Instruction-Use Examples.” A similar caution
applies in the 64-bit addressing mode when data
is at the end of a 64-bit address space and
BRANCH RELATIVE ON INDEX HIGH (BRXHG)
or BRANCH RELATIVE ON INDEX LOW OR
EQUAL (BRXLG) is used.

4. When the instruction is the target of an execute-
type instruction, the branch is relative to the tar-
get address; see “Branch-Address Generation”
on page 5-12.

'EC' R1 R3 RI2 / / / / / / / / '45'

0 8 12 16 32 40 47

General Instructions 7-49

C
H

E
C

K
S

U
MCHECKSUM

CKSM R1,R2 [RRE]

Successive four-byte elements of the second oper-
and are added to the first operand in bit positions
32-63 of general register R1 to form a 32-bit check-
sum in those bit positions. The first operand and the
four-byte elements are treated as 32-bit unsigned
binary integers. After each addition of an element, a
carry out of bit position 32 of the first operand is
added to bit position 63 of the first operand. Bits 0-31
of general register R1 always remain unchanged. If
the second operand is not a multiple of four bytes, its
last one, two, or three bytes are treated as appended
on the right with the number of all-zeros bytes
needed to form a four-byte element. The four-byte
elements are added to the first operand until either
the entire second operand or a CPU-determined
amount of the second operand has been processed.
The result is indicated in the condition code.

The R2 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

The location of the leftmost byte of the second oper-
and is specified by the contents of the R2 general
register. The number of bytes in the second-operand
location is specified by the 32-bit or 64-bit unsigned
binary integer in the R2 + 1 general register.

The handling of the address in general register R2

and the length in general register R2 + 1 is depen-
dent on the addressing mode. In the 24-bit address-
ing mode, the contents of bit positions 40-63 of
general register R2 constitute the address, and the
contents of bit positions 0-39 are ignored. In the
31-bit addressing mode, the contents of bit positions
33-63 of the register constitute the address, and the
contents of bit positions 0-32 are ignored. In the
64-bit addressing mode, the contents of bit positions
0-63 of the register constitute the address. In the
24-bit or 31-bit addressing mode, the length is a
32-bit unsigned binary integer in bit positions 32-63
of general register R2 + 1, and the contents of bit
positions 0-31 are ignored. In the 64-bit addressing
mode, the length is a 64-bit unsigned binary integer
in the register.

The addition of second-operand four-byte elements
to the first operand proceeds left to right, four-byte
element by four-byte element, and ends as soon as
(1) the entire second operand has been processed or
(2) a lesser CPU-determined amount of the second
operand has been processed. In either case, the
result in bit positions 32-63 of general register R1 is a
32-bit checksum for the part of the second operand
that has been processed. When the second operand
is not a multiple of four bytes, the final second-oper-
and bytes in excess of a multiple of four are concep-
tually appended on the right with an appropriate
number of all-zeros bytes to form the final four-byte
element.

If the operation ends because the entire second
operand has been processed, the condition code is
set to 0. If the operation ends because a lesser CPU-
determined amount of the second operand has been
processed, the condition code is set to 3. When the
operation is to end with a setting of condition code 3,
any carry out of bit position 32 of the first operand is
added to bit position 63 of the first operand before
the operation ends.

At the completion of the operation, the 32-bit or 64-bit
operand-length field in the R2 + 1 register is decre-
mented by the number of actual second-operand
bytes added to the first operand (not including any
conceptually appended all-zeros bytes), and the
address in the R2 register is incremented by the
same number. Thus, the 32-bit or 64-bit operand-
length field contains a zero value if the condition
code is set to 0, or it contains a nonzero value if the
condition code is set to 3. In the 24-bit or 31-bit
addressing mode, bits 0-31 of the R2 + 1 register
always remain unchanged.

When condition code 3 is set, the general registers
used by the instruction have been set so that the
remainder of the second operand can be processed
by simply branching back to reexecute the instruc-
tion.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed. The minimum amount is four bytes or the
number of bytes specified in the R2 + 1 general regis-
ter, whichever is smaller.

At the completion of the operation in the 24-bit or
31-bit addressing mode, the leftmost bits which are

'B241' / / / / / / / / R1 R2

0 16 24 28 31

7-50 The z/Architecture CPU Architecture

C
H

E
C

K
S

U
M not part of the address in bit positions 32-63 of gen-

eral register R2 may be set to zeros or may remain
unchanged, even when the initial length in register
R2 + 1 is zero. Bits 0-31 of general register R2 remain
unchanged.

When the R1 register is the same register as the R2

or R2 + 1 register, the results are unpredictable.

Access exceptions for the portion of the second oper-
and to the right of the last byte processed may or
may not be recognized. For a second operand longer
than 4K bytes, access exceptions are not recognized
for locations more than 4K bytes beyond the last byte
processed.

Access exceptions are not recognized if the R2 field
is odd. When the length of the second operand is
zero, no access exceptions are recognized.

Resulting Condition Code:

0 Entire second operand processed
1 --
2 --
3 CPU-determined amount of the second operand

processed

Program Exceptions:

• Access (fetch, operand 2)
• Specification
• Transaction constraint

Programming Notes:

1. The initial contents of bit positions 32-63 of the
R1 general register contribute to the 32-bit check-
sum. The program normally should set those
contents to all zeros before issuing the CHECK-
SUM instruction.

2. A 16-bit checksum is used in, for example, the
TCP/IP application. The following program can
be executed after the CHECKSUM instruction to
produce in bit positions 32-63 of general register
R2 a 16-bit checksum from the 32-bit checksum
in bit positions 32-63 of general register R1. The
program is annotated to show the contents of bit
positions 32-63 of the R2 and R2 + 1 registers
after the execution of each instruction. The con-

tents of bit positions 32-63 of the R1 register are
represented as A,B, meaning the value A in bit
positions 32-47 and the value B in bit positions
48-63. The value C is a carry from A + B. Note
that bit positions 32-63 of register R2 + 1 are
known to contain all zeros when CHECKSUM
has set condition code 0.

3. The CHECKSUM instruction may be used in
computing hash values as illustrated in the fol-
lowing programming example. The variable KEY
contains a string to be mapped into a slot in a
hash table. The variable SIZE is a prime number
designating the size of the hash table. The value
of SIZE is determined by (a) the number of
strings to be hashed into the table divided by the
acceptable number of hash collisions, and (b) a
value that is not too close to a power of two. Fol-
lowing the DIVIDE (D) instruction, the remainder
in register 0 represents the resulting hash value.

4. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

5. The storage-operand references of CHECKSUM
may be multiple-access references. (See “Stor-
age-Operand Consistency” on page 5-125.)

6. Figure 7-4 on page 7-51 contains a summary of
the operation.

Program
R2 Bits
32-63

R2 + 1 Bits
32-63

LR R2,R1 A,B 0,0
SRDL R2,16 0,A B,0
ALR R2,R2+1 B,A B,0
ALR R2,R1 A+B+C,A+B B,0
SRL R2,16 0,A+B+C B,0

SR 1,1 Zero accumulator
LA 2,KEY Point to string
LA 3,L'KEY Load string length

LOOP CKSM 1,2 Compute checksum
BNZ LOOP Repeat if not done
SR 0,0 Zero for divide
D 0,SIZE Compute hash value
…

KEY DS CL64 String to be hashed
SIZE DS F Size of hash table

General Instructions 7-51

C
H

E
C

K
S

U
M

Figure 7-4. Execution of CHECKSUM

CHECKSUM R1 bits 32-63
ADR Address in R2

LEN length in R2 + 1

LEN >= 4

INC 4
ELEMENT 4 bytes at ADR

CHECKSUM CHECKSUM +
ELEMENT

CHECKSUM CHECKSUM + 1

Carry
from

addition

INC LEN
ELEMENT INC bytes at ADR

followed by 4-INC
all-zero bytes

Set condition code 0 Set condition code 3

ADR ADR + INC
LEN LEN - INC

LEN = 0
or CPU-determined

reason to end
operation

LEN = 0

R1 bits 32-63 CHECKSUM
R2 ADR
R2 + 1 LEN

End operation End operation

No

Yes

Yes

No

Yes

No

No

Yes

Note: All addends are
unsigned binary integers

7-52 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E CIPHER MESSAGE

KM R1,R2 [RRE]

CIPHER MESSAGE WITH
CHAINING

KMC R1,R2 [RRE]

A function specified by the function code in general
register 0 is performed.

Bits 16-23 of the instruction are ignored.

Bit positions 57-63 of general register 0 contain the
function code. Figure 7-5 and 7-6 show the assigned
function codes for CIPHER MESSAGE and CIPHER
MESSAGE WITH CHAINING, respectively. All other
function codes are unassigned. For cipher functions,
bit 56 is the modifier bit which specifies whether an
encryption or a decryption operation is to be per-
formed. The modifier bit is ignored for all other func-
tions. All other bits of general register 0 are ignored.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

The function codes for CIPHER MESSAGE are as
follows.

The function codes for CIPHER MESSAGE WITH
CHAINING are as follows.

'B92E' / / / / / / / / R1 R2

0 16 24 28 31

'B92F' / / / / / / / / R1 R2

0 16 24 28 31

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 KM-Query * 16 —

1 KM-DEA * 8 8

2 KM-TDEA-128 * 16 8

3 KM-TDEA-192 * 24 8

9 KM-Encrypted-DEA 32 8

10 KM-Encrypted-TDEA-128 40 8

11 KM-Encrypted-TDEA-192 48 8

18 KM-AES-128 * 16 16

19 KM-AES-192 * 24 16

20 KM-AES-256 * 32 16

26 KM-Encrypted-AES-128 48 16

27 KM-Encrypted-AES-192 56 16

28 KM-Encrypted-AES-256 64 16

50 KM-XTS-AES-128 32 16

52 KM-XTS-AES-256 48 16

58 KM-XTS-Encrypted-AES-128 64 16

60 KM-XTS-Encrypted-AES-256 80 16

Explanation:

— Not applicable
* Function is also defined in the ESA/390

architectural mode and the ESA/390-
compatibility mode. It is unpredictable whether
other function codes are available in the
ESA/390-compatibility mode.

Figure 7-5. Function Codes for CIPHER MESSAGE

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 KMC-Query * 16 —

1 KMC-DEA * 16 8

2 KMC-TDEA-128 * 24 8

3 KMC-TDEA-192 * 32 8

9 KMC-Encrypted-DEA 40 8

Figure 7-6. Function Codes for CIPHER MESSAGE WITH
CHAINING

General Instructions 7-53

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G

All other function codes are unassigned.

The query function provides the means of indicating
the availability of the other functions. The contents of
general registers R1, R2, and R2 + 1 are ignored for
the query function.

For all other functions, the second operand is
ciphered as specified by the function code using a
cryptographic key in the parameter block, and the
result is placed in the first-operand location. For
CIPHER MESSAGE WITH CHAINING, ciphering
also uses an initial chaining value in the parameter
block, and the chaining value is updated as part of
the operation. For XTS functions, ciphering also uses
an XTS parameter in the parameter block, and the
XTS parameter is updated as part of the operation.

The R1 field designates a general register and must
designate an even-numbered register other than
general register 0; otherwise, a specification excep-
tion is recognized. The R2 field designates an even-
odd pair of general registers and must designate an
even-numbered register other than general register
0; otherwise, a specification exception is recognized.

The location of the leftmost byte of the first and sec-
ond operands is specified by the contents of the R1

and R2 general registers, respectively. The number of
bytes in the second-operand location is specified in
general register R2 + 1. The first operand is the same
length as the second operand.

As part of the operation, the addresses in general
registers R1 and R2 are incremented by the number
of bytes processed, and the length in general register
R2 + 1 is decremented by the same number. The for-
mation and updating of the addresses and length is
dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the addresses of the first and second operands,
respectively, and the contents of bit positions 0-39
are ignored; bits 40-63 of the updated addresses
replace the corresponding bits in general registers R1

and R2, carries out of bit position 40 of the updated
address are ignored, and the contents of bit positions
32-39 of general registers R1 and R2 are set to zeros.
In the 31-bit addressing mode, the contents of bit
positions 33-63 of general registers R1 and R2 consti-
tute the addresses of the first and second operands,
respectively, and the contents of bit positions 0-32
are ignored; bits 33-63 of the updated addresses
replace the corresponding bits in general registers R1

and R2, carries out of bit position 33 of the updated
address are ignored, and the content of bit position
32 of general registers R1 and R2 is set to zero. In the
64-bit addressing mode, the contents of bit positions
0-63 of general registers R1 and R2 constitute the
addresses of the first and second operands, respec-
tively; bits 0-63 of the updated addresses replace the
contents of general registers R1 and R2, and carries
out of bit position 0 are ignored.

In both the 24-bit and the 31-bit addressing modes,
the contents of bit positions 32-63 of general register
R2 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the first and second
operands, and the contents of bit positions 0-31 are
ignored; bits 32-63 of the updated value replace the
corresponding bits in general register R2 + 1. In the
64-bit addressing mode, the contents of bit positions
0-63 of general register R2 + 1 form a 64-bit unsigned
binary integer which specifies the number of bytes in
the first and second operands; and the updated value
replaces the contents of general register R2 + 1.

10 KMC-Encrypted-TDEA-128 48 8

11 KMC-Encrypted-TDEA-192 56 8

18 KMC-AES-128 * 32 16

19 KMC-AES-192 * 40 16

20 KMC-AES-256 * 48 16

26 KMC-Encrypted-AES-128 64 16

27 KMC-Encrypted-AES-192 72 16

28 KMC-Encrypted-AES-256 80 16

67 KMC-PRNG 32 8

Explanation:

— Not applicable
* Function is also defined in the ESA/390

architectural mode and the ESA/390-
compatibility mode. It is unpredictable whether
other function codes are available in the
ESA/390-compatibility mode.

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

Figure 7-6. Function Codes for CIPHER MESSAGE WITH
CHAINING (Continued)

7-54 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R2, and
R2 + 1, always remain unchanged.

Figure 7-7 on page 7-54 shows the contents of the
general registers just described.

In the access-register mode, access registers 1, R1,
and R2 specify the address spaces containing the
parameter block, first, and second operands, respec-
tively.

The result is obtained as if processing starts at the
left end of both the first and second operands and
proceeds to the right, block by block. The operation is
ended when the number of bytes in the second oper-
and as specified in general register R2 + 1 have been
processed and placed at the first-operand location

(called normal completion) or when a CPU-deter-
mined number of blocks that is less than the length of
the second operand have been processed (called
partial completion). The CPU-determined number of
blocks depends on the model, and may be a different
number each time the instruction is executed. The
CPU-determined number of blocks is usually non-
zero. In certain unusual situations, this number may
be zero, and condition code 3 may be set with no
progress. However, the CPU protects against end-
less reoccurrence of this no-progress case.

All Addressing Modes

GR0 / M FC
0 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R1 / First-Operand Address
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R1 / First-Operand Address
0 33 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R1 First-Operand Address
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-7. General Register Assignment for KM and KMC

General Instructions 7-55

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

GThe results in the first-operand location, the chaining-
value field, or the XTS parameter field are unpredict-
able if any of the following situations occur:

1. The cryptographic-key field or the encrypted
cryptographic-key field overlaps any portion of
the first operand.

2. The XTS parameter field overlaps any portion of
the first operand.

3. The chaining-value field overlaps any portion of
the first operand or the second operand.

4. The first and second operands overlap destruc-
tively. Operands are said to overlap destructively
when the first-operand location would be used as
a source after data would have been moved into
it, assuming processing to be performed from left
to right and one byte at a time.

When the operation ends due to normal completion,
condition code 0 is set and the resulting value in
R2 + 1 is zero. When the operation ends due to par-
tial completion, condition code 3 is set and the result-
ing value in R2 + 1 is nonzero.

A PER storage-alteration event may be recognized
both for the first-operand location and for the portion
of the parameter block that is stored. A PER zero-
address-detection event may be recognized for the
first- and second-operand locations and for the
parameter block. When PER events are detected for
one or more of these locations, it is unpredictable
which location is identified in the PER access identifi-
cation (PAID) and PER ASCE ID (AI).

When a storage-alteration PER event is recognized,
fewer than 4K additional bytes are stored into the
first-operand locations before the event is reported.

When the second-operand length is initially zero, the
parameter block, first, and second operands are not
accessed, general registers R1, R2, and R2 + 1 are
not changed, and condition code 0 is set.

When the contents of the R1 and R2 fields are the
same, the contents of the designated registers are
incremented only by the number of bytes processed,
not by twice the number of bytes processed.

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block and
storage operands may be multiple-access refer-
ences, accesses to these storage locations are not
necessarily block-concurrent, and the sequence of
these accesses or references is undefined.

In certain unusual situations, instruction execution
may complete by setting condition code 3 without
updating the registers, the chaining value, and the
XTS parameter to reflect the last unit of the first and
second operands processed. The size of the unit pro-
cessed in this case depends on the situation and the
model, but is limited such that the portion of the first
and second operands which have been processed
and not reported do not overlap in storage. In all
cases, change bits are set and PER storage-alter-
ation events are reported, when applicable, for all
first-operand locations processed.

For functions that perform a comparison of the wrap-
ping-key verification pattern field in the parameter
block with the wrapping-key verification-pattern regis-
ter, it is unpredictable whether access exceptions
and PER zero-address-detection events are recog-
nized for the first and second operands when the
comparison results in a mismatch.

Access exceptions may be reported for a larger por-
tion of an operand than is processed in a single exe-
cution of the instruction; however, access exceptions
are not recognized for locations beyond the length of
an operand nor for locations more than 4K bytes
beyond the current location being processed.

Symbols Used in Function Descriptions

The following symbols are used in the subsequent
description of the CIPHER MESSAGE and CIPHER
MESSAGE WITH CHAINING functions. For data-
encryption-algorithm (DEA) functions, the DEA-key-
parity bit in each byte of the DEA key is ignored, and
the operation proceeds normally, regardless of the
DEA-key parity of the key.

Further description of the data-encryption algorithm
may be found in Reference [13.] on page xxx. Further
description of the AES standard may be found in Ref-
erence [14.] on page xxx. The XTS multiplication
operation is the same as the GCM (Galois/counter
mode) multiplication operation. Further description of

7-56 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G the GCM multiplication over GF(2128) may be found in
Reference [17.] on page xxx.

Figure 7-8. Symbol For Bit-Wise Exclusive OR

Symbol Explanation:

 XTS multiplication operation over GF(2128)

Figure 7-9. Symbol For XTS Multiplication Operation Over

GF(2128)

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-10. Symbols for DEA Encryption and Decryption

A

C

B

C = A B

Z = X Y

Z <16>

X <16>

Y <16>

DEA

P <8>

C <8>

Symbol for DEA

K <8>

Encryption

e
DEA

C <8>

P <8>

Symbol for DEA

K <8>

Decryption

d

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-11. Symbols for AES-128 Encryption and
Decryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-12. Symbols for AES-192 Encryption and
Decryption

AES

P <16>

C <16>

Symbol for AES-128

K <16>

Encryption

e
AES

C <16>

P <16>

Symbol for AES-128

K <16>

Decryption

d

AES

P <16>

C <16>

Symbol for AES-192

K <24>

Encryption

e
AES

C <16>

P <16>

Symbol for AES-192

K <24>

Decryption

d

General Instructions 7-57

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G

KM-Query (KM Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the CIPHER MESSAGE
instruction. When a bit is one, the corresponding
function is installed; otherwise, the function is not
installed.

Condition code 0 is set when execution of the KM-
Query function completes; condition codes 1 and 3
are not applicable to this function.

KM-DEA (KM Function Code 1)

KM-Encrypted-DEA (KM Function Code
9)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KM-DEA function
has the following format:

For the KM-DEA function, the cryptographic key is in
byte offsets 0-7 of the parameter block.

The parameter block used for the KM-Encrypted-
DEA function has the following format:

For the KM-Encrypted-DEA function, the contents of
byte offsets 8-31 of the parameter block are com-
pared with the contents of the DEA wrapping-key ver-
ification-pattern register. If they mismatch, the first-
operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 0-7 of the parameter block are deci-
phered using the DEA wrapping key to obtain the 64-
bit cryptographic key. (See the section, “Protection of
Cryptographic Keys” on page 7-431, for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the DEA algorithm with the 64-bit cryptographic
key. Each plaintext block is independently enci-
phered; that is, the encipher operation is performed
without chaining. The ciphertext blocks (C1, C2, …,

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-13. Symbols for AES-256 Encryption and
Decryption

0
Status Word

8
0 63

Figure 7-14. Parameter Block for KM-Query

AES

P <16>

C <16>

Symbol for AES-256

K <32>

Encryption

e
AES

C <16>

P <16>

Symbol for AES-256

K <32>

Decryption

d

0 Cryptographic Key (K)
0 63

Figure 7-15. Parameter Block for KM-DEA

0 Encrypted Cryptographic Key (WKd(K))

8 DEA Wrapping-Key
Verification Pattern

(WKdVP)
16

24
0 63

Figure 7-16. Parameter Block for KM-Encrypted-DEA

7-58 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G Cn) are stored in operand 1. The operation is shown
in Figure 7-17.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the DEA algorithm with the 64-bit
cryptographic key. Each ciphertext block is inde-
pendently deciphered; that is, the decipher operation
is performed without chaining. The plaintext blocks
(P1, P2, …, Pn) are stored in operand 1. The opera-
tion is shown in Figure 7-18.

KM-TDEA-128 (KM Function Code 2)

KM-Encrypted-TDEA-128 (KM Function
Code 10)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KM-TDEA-128
function has the following format:

For the KM-TDEA-128 function, the cryptographic
key is in byte offsets 0-15 of the parameter block.

The parameter block used for the KM-Encrypted-
TDEA-128 function has the following format:

For the KM-Encrypted-TDEA-128 function, the con-
tents of byte offsets 16-39 of the parameter block are
compared with the contents of the DEA wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 0-15 of the parameter block are deci-
phered using the DEA wrapping key to obtain the
128-bit cryptographic key, K = K1 || K2, where K1 is
the leftmost 64 bits of K and K2 is the rightmost 64
bits of K. (See the section, “Protection of Cryp-
tographic Keys” on page 7-431, for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the TDEA (triple DEA) algorithm with the two
64-bit cryptographic keys. Each plaintext block is
independently enciphered; that is, the encipher oper-
ation is performed without chaining. The ciphertext

Figure 7-17. KM-DEA Encipher Operation Using 64-Bit Key

Figure 7-18. KM-DEA Decipher Operation Using 64-Bit Key

P1 <8> P2 <8> P3 <8> ... Pn <8>
...Operand 2

in
Storage

Operand 1
in
Storage

C1 <8> C2 <8> C3 <8> ... Cn <8>
...

DEAK
e

DEAK
e

DEAK
e

DEAK
e<8> <8> <8> <8>

C1 <8> C2 <8> C3 <8> ... Cn <8>
...Operand 2

in
Storage

Operand 1
in
Storage

P1 <8> P2 <8> P3 <8> ... Pn <8>
...

DEAK
d

DEAK
d

DEAK
d

DEAK
d <8> <8> <8> <8>

0 Cryptographic Key 1 (K1)

8 Cryptographic Key 2 (K2)
0 63

Figure 7-19. Parameter Block for KM-TDEA-128

0 Encrypted Cryptographic Key
(WKd(K))8

16 DEA Wrapping-Key
Verification Pattern

(WKdVP)
24

32
0 63

Figure 7-20. Parameter Block for KM-Encrypted-TDEA-128

General Instructions 7-59

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

Gblocks (C1, C2, …, Cn) are stored in operand 1. The
operation is shown in Figure 7-21.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA algorithm with the two 64-bit
cryptographic keys. Each ciphertext block is inde-
pendently deciphered; that is, the decipher operation
is performed without chaining. The plaintext blocks

(P1, P2, …, Pn) are stored in operand 1. The opera-
tion is shown in Figure 7-22.

KM-TDEA-192 (KM Function Code 3)

KM-Encrypted-TDEA-192 (KM Function
Code 11)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KM-TDEA-192
function has the following format:

For the KM-TDEA-192 function, the cryptographic
key is in byte offsets 0-23 of the parameter block.

Figure 7-21. KM-TDEA Encipher Operation Using 128-Bit
Key

P1 <8> P2 <8> P3 <8> ... Pn <8>
...Operand 2

in
Storage

Operand 1
in
Storage

C1 <8> C2 <8> C3 <8> ... Cn <8>
...

DEAK1
e

DEAK1
e

DEAK1
e

DEAK1
e

DEAK2
d

DEAK2
d

DEAK2
d

DEAK2
d

DEAK1
e

DEAK1
e

DEAK1
e

DEAK1
e

 <8>

 <8>

 <8>

K = K1 || K2, where || means concatenation

Figure 7-22. KM TDEA Decipher Operation Using 128-Bit
Key

0 Cryptographic Key 1 (K1)

8 Cryptographic Key 2 (K2)

16 Cryptographic Key 3 (K3)
0 63

Figure 7-23. Parameter Block for KM-TDEA-192

C1 <8> C2 <8> C3 <8> ... Cn <8>
...Operand 2

in
Storage

Operand 1
in
Storage

P1 <8> P2 <8> P3 <8> ... Pn <8>
...

DEAK1
d

DEAK1
d

DEAK1
d

DEAK1
d

DEAK2
e

DEAK2
e

DEAK2
e

DEAK2
e

DEAK1
d

DEAK1
d

DEAK1
d

DEAK1
d

 <8>

 <8>

 <8>

K = K1 || K2, where || means concatenation

7-60 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G The parameter block used for the KM-Encrypted-
TDEA-192 function has the following format:

For the KM-Encrypted-TDEA-192 function, the con-
tents of byte offsets 24-47 of the parameter block are
compared with the contents of the DEA wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 0-23 of the parameter block are deci-
phered using the DEA wrapping key to obtain the
192-bit cryptographic key, K = K1 || K2 || K3, where
K1 is the leftmost 64 bits of K, K2 is the middle 64
bits of K, and K3 is the rightmost 64 bits of K. (See
the section, “Protection of Cryptographic Keys” on
page 7-431, for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the TDEA algorithm with the three 64-bit cryp-

tographic keys. Each plaintext block is independently
enciphered; that is, the encipher operation is per-
formed without chaining. The ciphertext blocks (C1,
C2, …, Cn) are stored in operand 1. The operation is
shown in Figure 7-25.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA algorithm with the three
64-bit cryptographic keys. Each ciphertext block is
independently deciphered; that is, the decipher oper-
ation is performed without chaining. The plaintext

0 Encrypted
Cryptographic
Key (WKd(K))

8

16

24 DEA Wrapping-Key
Verification Pattern

(WKdVP)
32

40
0 63

Figure 7-24. Parameter Block for KM-Encrypted-TDEA-192

Figure 7-25. KM TDEA Encipher Operation Using 192-Bit
Key

 <8>

P1 <8> P2 <8> P3 <8> ...

...Operand 2
in
Storage

Operand 1
in
Storage

C1 <8> C2 <8> C3 <8> ... Cn <8>
...

DEAK1
e

DEAK1
e

DEAK1
e

DEAK1
e

DEAK2
d

DEAK2
d

DEAK2
d

DEAK2
d

DEAK3
e

DEAK3
e

DEAK3
e

DEAK3
e

 <8>

 <8>

K = K1 || K2 || K3, where || means concatenation

Pn <8>

General Instructions 7-61

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

Gblocks (P1, P2, …, Pn) are stored in operand 1. The
operation is shown in Figure 7-26.

KM-AES-128 (KM Function Code 18)

KM-Encrypted-AES-128 (KM Function
Code 26)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KM-AES-128 func-
tion has the following format:

For the KM-AES-128 function, the cryptographic key
is in byte offsets 0-15 of the parameter block.

The parameter block used for the KM-encrypted-
AES-128 function has the following format:

For the KM-Encrypted-AES-128 function, the con-
tents of byte offsets 16-47 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 0-15 of the parameter block are deci-
phered using the AES wrapping key to obtain the
128-bit cryptographic key, K. (See the section, “Pro-
tection of Cryptographic Keys” on page 7-431, for
details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES algorithm with the 128-bit
cryptographic key. Each plaintext block is inde-
pendently enciphered; that is, the encipher operation
is performed without chaining. The ciphertext blocks
(C1, C2, …, Cn) are stored in operand 1. The opera-
tion is shown in Figure 7-29.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-

Figure 7-26. KM TDEA Decipher Operation Using 192-Bit
Key

0
Cryptographic Key

8
0 63

Figure 7-27. Parameter Block for KM-AES-128

C1 <8> C2 <8> C3 <8> ... Cn <8>
...Operand 2

in
Storage

Operand 1
in
Storage

P1 <8> P2 <8> P3 <8> ... Pn <8>
...

DEAK3
d

DEAK3
d

DEAK3
d

DEAK3
d

DEAK2
e

DEAK2
e

DEAK2
e

DEAK2
e

DEAK1
d

DEAK1
d

DEAK1
d

DEAK1
d

 <8>

 <8>

 <8>

K = K1 || K2 || K3, where || means concatenation

0 Encrypted Cryptographic Key
(WKa(K))8

16
AES Wrapping-Key
Verification Pattern

(WKaVP)

24

32

40
0 63

Figure 7-28. Parameter Block for KM-Encrypted-AES-128

Figure 7-29. KM-AES Encipher Operation Using 128-Bit
Key

 <16>

P1 <16> P2 <16> P3 <16> ... Pn <16>
...Operand 2

in
Storage

Operand 1
in
Storage

C1 <16> C2 <16> C3 <16> ... Cn <16>
...

AESK
e

AESK
e

AESK
e

AESK
e <16> <16> <16>

7-62 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G phered using the AES algorithm with the 128-bit
cryptographic key. Each ciphertext block is inde-
pendently deciphered; that is, the decipher operation
is performed without chaining. The plaintext blocks
(P1, P2, …, Pn) are stored in operand 1. The opera-
tion is shown in Figure 7-30.

KM-AES-192 (KM Function Code 19)

KM-Encrypted-AES-192 (KM Function
Code 27)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KM-AES-192 func-
tion has the following format:

For the KM-AES-192 function, the cryptographic key
is in byte offsets 0-23 of the parameter block.

The parameter block used for the KM-Encrypted-
AES-192 function has the following format:

For the KM-Encrypted-AES-192 function, the con-
tents of byte offsets 24-55 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 0-23 of the parameter block are deci-
phered using the AES wrapping key to obtain the
192-bit cryptographic key, K. (See the section, “Pro-
tection of Cryptographic Keys” on page 7-431, for
details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES algorithm with the 192-bit
cryptographic key. Each plaintext block is inde-
pendently enciphered; that is, the encipher operation
is performed without chaining. The ciphertext blocks
(C1, C2, …, Cn) are stored in operand 1. The opera-
tion is shown in Figure 7-33.

Figure 7-30. KM-AES Decipher Operation Using 128-Bit
Key

0

Cryptographic Key8

16
0 63

Figure 7-31. Parameter Block for KM-AES-192

 <16>

C1 <16> C2 <16> C3 <16> ... Cn <16>
...Operand 2

in
Storage

Operand 1
in
Storage

P1 <16> P2 <16> P3 <16> ... Pn <16>
...

AESK
d

AESK
d

AESK
d

AESK
d <16> <16> <16>

0 Encrypted
Cryptographic
Key (WKa(K))

8

16

24
AES Wrapping-Key
Verification Pattern

(WKaVP)

32

40

48
0 63

Figure 7-32. Parameter Block for KM-Encrypted-AES-192

Figure 7-33. KM AES Encipher Operation Using 192-Bit
Key

P1 <16> P2 <16> P3 <16> ... Pn <16>
...Operand 2

in
Storage

Operand 1
in
Storage

C1 <16> C2 <16> C3 <16> ... Cn <16>
...

AESK
e

AESK
e

AESK
e

AESK
e <24> <24> <24> <24>

General Instructions 7-63

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

GWhen the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES algorithm with the 192-bit
cryptographic key. Each ciphertext block is inde-
pendently deciphered; that is, the decipher operation
is performed without chaining. The plaintext blocks
(P1, P2, …, Pn) are stored in operand 1. The opera-
tion is shown Figure 7-34.

KM-AES-256 (KM Function Code 20)

KM-Encrypted-AES-256 (KM Function
Code 28)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KM-AES-256 func-
tion has the following format:

For the KM-AES-256 function, the cryptographic key
is in byte offsets 0-31 of the parameter block.

The parameter block used for the KM-Encrypted-
AES-256 function has the following format:

For the KM-Encrypted-AES-256 function, the con-
tents of byte offsets 32-63 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 0-31 of the parameter block are deci-
phered using the AES wrapping key to obtain the
256-bit cryptographic key, K. (See the section, “Pro-
tection of Cryptographic Keys” on page 7-431, for
details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES algorithm with the 256-bit
cryptographic key. Each plaintext block is inde-
pendently enciphered; that is, the encipher operation
is performed without chaining. The ciphertext blocks
(C1, C2, …, Cn) are stored in operand 1. The opera-
tion is shown in Figure 7-37.

Figure 7-34. KM AES Decipher Operation Using 192-Bit
Key

0

Cryptographic Key
8

16

24
0 63

Figure 7-35. Parameter Block for KM-AES-256

 <24>

C1 <16> C2 <16> C3 <16> ... Cn <16>
...Operand 2

in
Storage

Operand 1
in
Storage

P1 <16> P2 <16> P3 <16> ... Pn <16>
...

AESK
d

AESK
d

AESK
d

AESK
d <24> <24> <24>

0 Encrypted
Cryptographic

Key
(WKa(K))

8

16

24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)

40

48

56
0 63

Figure 7-36. Parameter Block for KM-Encrypted-AES-256

Figure 7-37. KM AES Encipher Operation Using 256-Bit
Key

 <32>

P1 <16> P2 <16> P3 <16> ... Pn <16>
...Operand 2

in
Storage

Operand 1
in
Storage

C1 <16> C2 <16> C3 <16> ... Cn <16>
...

AESK
e

AESK
e

AESK
e

AESK
e <32> <32> <32>

7-64 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES algorithm with the 256-bit
cryptographic key. Each ciphertext block is inde-
pendently deciphered; that is, the decipher operation
is performed without chaining. The plaintext blocks
(P1, P2, …, Pn) are stored in operand 1. The opera-
tion is shown in Figure 7-38.

KM-XTS-AES-128 (KM Function Code 50)

KM-XTS-Encrypted-AES-128 (KM
Function Code 58)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KM-XTS-AES-128
function has the following format:

For the KM-XTS-AES-128 function, the cryptographic
key is in byte offsets 0-15 of the parameter block, and
the initial XTS parameter is in bytes offsets 16-31 of
the parameter block.

The parameter block used for the KM-XTS-
encrypted-AES-128 function has the following for-
mat:

For the KM-XTS-Encrypted-AES-128 function, the
contents of byte offsets 16-47 of the parameter block
are compared with the contents of the AES wrap-
ping-key verification-pattern register. If they mis-
match, the first-operand and parameter-block
locations remain unchanged, and the operation is
completed by setting condition code 1. If they match,
byte offsets 48-63 of the parameter block contain the
initial XTS parameter, and the contents of byte off-
sets 0-15 of the parameter block are deciphered
using the AES wrapping key to obtain the 128-bit
cryptographic key. (See the section “Protection of
Cryptographic Keys” on page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES-encryption algorithm with the
128-bit cryptographic key and the 128-bit initial XTS
parameter.

Except for the first block, the XTS parameter used is
the XTS parameter for the previous block multiplied
by the value of 2 in GF(2128). To encrypt the first block
of plaintext, the initial XTS parameter is used.

The XTS parameter for each block is exclusive-ORed
with the corresponding plaintext block. The result of
the exclusive-OR operation is then encrypted using
the AES-encryption algorithm with the 128-bit cryp-
tographic key. The result of the encryption is then
exclusive-ORed with the XTS parameter to produce
the ciphertext block. The XTS parameter for this
block is multiplied by the value of 2 in GF(2128) to

Figure 7-38. KM AES Decipher Operation Using 256-Bit
Key

0
Cryptographic Key (K)

8

16
Initial XTS Parameter

24
0 63

Figure 7-39. Parameter Block for KM-XTS-AES-128

 <32>

P1 <16> P2 <16> P3 <16> ... Pn <16>
...Operand 2

in
Storage

Operand 1
in
Storage

C1 <16> C2 <16> C3 <16> ... Cn <16>
...

AESK
d

AESK
d

AESK
d

AESK
d <32> <32> <32>

0 Encrypted Cryptographic Key
(WKa(K))8

16
AES Wrapping-Key
Verification Pattern

(WKaVP)

24

32

40

48
 Initial XTS Parameter

56
0 63

Figure 7-40. Parameter Block for KM-XTS-Encrypted-AES-
128

General Instructions 7-65

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

Gobtain the XTS parameter for the next block. The
operation is shown in Figure 7-41.

The ciphertext blocks (C1, C2, …, Cn) are stored in
operand 1. The result of the final GCM multiplication,
called the output XTS parameter (output XTSP), is
stored into the initial XTS parameter field of the
parameter block.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES-decryption algorithm with the
128-bit cryptographic key and the 128-bit initial XTS
parameter.

Except for the first block, the XTS parameter used is
the XTS parameter for the previous block multiplied
by the value of 2 in GF(2128). To decrypt the first block
of ciphertext, the initial XTS parameter is used.

The XTS parameter for each block is exclusive-ORed
with the corresponding ciphertext block. The result of
the exclusive-OR operation is then decrypted using
the AES-decryption algorithm with the 128-bit cryp-
tographic key. The result of the encryption is then
exclusive-ORed with the XTS parameter to produce
the plaintext block. The XTS parameter for this block
is multiplied by the value of 2 in GF(2128) to obtain the

XTS parameter for the next block. The operation is
shown in Figure 7-42.

The plaintext blocks (P1, P2, …, Pn) are stored in
operand 1. The result of the final GCM multiplication,
called the output XTS parameter (output XTSP), is
stored into the initial XTS parameter field of the
parameter block.

KM-XTS-AES-256 (KM Function Code 52)

KM-XTS-Encrypted-AES-256 (KM
Function Code 60)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KM-XTS-AES-256
function has the following format:

For the KM-XTS-AES-256 function, the cryptographic
key is in byte offsets 0-31 of the parameter block, and

Figure 7-41. KM-XTS-AES-128 Encipher Operation

K

2

P1

Initial

<16>

<16>

<16>

<16><16>

...
Output
XTSP
<16>

XTSP

AES
e

C1

<16>

<16>

AES
e

Cn

2 <16> 2 <16>

Pn

K
<16>

<16>

AES
e

C2

P2

K
<16>

...

...

<16>

...

...

Figure 7-42. KM-XTS-AES-128 Decipher Operation

0

Cryptographic Key (K)
8

16

24

32
Initial XTS Parameter

40
0 63

Figure 7-43. Parameter Block for KM-XTS-AES-256

K

2

C1

Initial

<16>

<16>

<16>

<16><16>

...
Output
XTSP
<16>

XTSP

AES
d

P1

<16>

<16>

AES
d

Pn

2 <16> 2 <16>

Cn

K
<16>

<16>

AES
d

P2

C2

K
<16>

...

...

<16>

...

...

7-66 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G the initial XTS parameter is in bytes offsets 32-47 of
the parameter block.

The parameter block used for the KM-XTS-
encrypted-AES-256 function has the following for-
mat:

For the KM-XTS-Encrypted-AES-256 function, the
contents of byte offsets 32-63 of the parameter block
are compared with the contents of the AES wrap-
ping-key verification-pattern register. If they mis-
match, the first-operand and parameter-block
locations remain unchanged, and the operation is
completed by setting condition code 1. If they match,
byte offsets 64-79 of the parameter block contain the
initial XTS parameter, and the contents of byte off-
sets 0-31 of the parameter block are deciphered
using the AES wrapping key to obtain the 256-bit
cryptographic key. (See the section “Protection of
Cryptographic Keys” on page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES-encryption algorithm with the
256-bit cryptographic key and the 128-bit initial XTS
parameter.

Except for the first block, the XTS parameter used is
the XTS parameter for the previous block multiplied
by the value of 2 in GF(2128). To encrypt the first block
of plaintext, the initial XTS parameter is used.

The XTS parameter for each block is exclusive-ORed
with the corresponding plaintext block. The result of
the exclusive-OR operation is then encrypted using

the AES-encryption algorithm with the 256-bit cryp-
tographic key. The result of the encryption is then
exclusive-ORed with the XTS parameter to produce
the ciphertext block. The XTS parameter for this
block is multiplied by the value of 2 in GF(2128) to
obtain the XTS parameter for the next block. The
operation is shown in Figure 7-45.

The ciphertext blocks (C1, C2, …, Cn) are stored in
operand 1. The result of the final GCM multiplication,
called the output XTS parameter (output XTSP), is
stored into the initial XTS parameter field of the
parameter block.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES-decryption algorithm with the
256-bit cryptographic key and the 128-bit initial XTS
parameter.

Except for the first block, the XTS parameter used is
the XTS parameter for the previous block multiplied
by the value of 2 in GF(2128). To decrypt the first block
of ciphertext, the initial XTS parameter is used.

The XTS parameter for each block is exclusive-ORed
with the corresponding ciphertext block. The result of
the exclusive-OR operation is then decrypted using
the AES-decryption algorithm with the 256-bit cryp-
tographic key. The result of the encryption is then
exclusive-ORed with the XTS parameter to produce
the plaintext block. The XTS parameter for this block
is multiplied by the value of 2 in GF(2128) to obtain the

0

Encrypted Cryptographic Key
(WKa(K))

8

16

24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)

40

48

56

64
Initial XTS Parameter

72
0 63

Figure 7-44. Parameter Block for KM-XTS-Encrypted-AES-
256

Figure 7-45. KM-XTS-AES-256 Encipher Operation

K

2

P1

Initial

<16>

<16>

<32>

<16><16>

...
Output
XTSP
<16>

XTSP

AES
e

C1

<16>

<16>

AES
e

Cn

2 <16> 2 <16>

Pn

K
<32>

<16>

AES
e

C2

P2

K
<32>

...

...

<16>

...

...

General Instructions 7-67

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

GXTS parameter for the next block. The operation is
shown in Figure 7-46.

The plaintext blocks (P1, P2, …, Pn) are stored in
operand 1. The result of the final GCM multiplication,
called the output XTS parameter (output XTSP), is
stored into the initial XTS parameter field of the
parameter block.

KMC-Query (KMC Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the CIPHER MESSAGE
WITH CHAINING instruction. When a bit is one, the
corresponding function is installed; otherwise, the
function is not installed.

Condition code 0 is set when execution of the KMC-
Query function completes; condition codes 1 and 3
are not applicable to this function.

KMC-DEA (KMC Function Code 1)

KMC-Encrypted-DEA (KMC Function
Code 9)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KMC-DEA function
has the following format:

For the KMC-DEA function, the chaining value is in
byte offsets 0-7 of the parameter block and the cryp-
tographic key is in byte offsets 8-15 of the parameter
block.

The parameter block used for the KMC-Encrypted-
DEA function has the following format:

For the KMC-Encrypted-DEA function, the contents
of byte offsets 16-39 of the parameter block are com-
pared with the contents of the DEA wrapping-key ver-
ification-pattern register. If they mismatch, the first-
operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 8-15 of the parameter block are deci-
phered using the DEA wrapping key to obtain the 64-
bit cryptographic key. (See the section, “Protection of
Cryptographic Keys” on page 7-431, for details.) The
chaining value is in byte offsets 0-7 of the parameter
block.

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered

Figure 7-46. XTS-AES-256 Decipher Operation

0
Status Word

8
0 63

Figure 7-47. Parameter Block for KMC-Query

K

2

C1

Initial

<16>

<16>

<32>

<16><16>

...
Output
XTSP
<16>

XTSP

AES
d

P1

<16>

<16>

AES
d

Pn

2 <16> 2 <16>

Cn

K
<32>

<16>

AES
d

P2

C2

K
<32>

...

...

<16>

...

...

0 Chaining Value (CV)

8 Cryptographic Key (K)
0 63

Figure 7-48. Parameter Block for KMC-DEA

0 Chaining Value (CV)

8 Encrypted Cryptographic Key (WKd(K))

16 DEA Wrapping-Key
Verification Pattern

(WKdVP)
24

32
0 63

Figure 7-49. Parameter Block for KMC-Encrypted-DEA

7-68 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G using the DEA algorithm with the 64-bit cryptographic
key and the 64-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first ciphertext block is the
chaining value in the parameter block; the chaining
value for deriving each subsequent ciphertext block
is the corresponding previous ciphertext block. The
ciphertext blocks (C1, C2, …, Cn) are stored in oper-
and 1. The last ciphertext block is the output chaining
value (OCV) and is stored into the chaining-value
field of the parameter block. The operation is shown
in Figure 7-50.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the DEA algorithm with the 64-bit
cryptographic key and the 64-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first plaintext block is in the
parameter block; the chaining value for deriving each
subsequent plaintext block is the corresponding pre-
vious ciphertext block. The plaintext blocks (P1, P2,
…, Pn) are stored in operand 1. The last ciphertext
block is the output chaining value (OCV) and is

stored into the chaining-value field in the parameter
block. The operation is shown in Figure 7-51.

KMC-TDEA-128 (KMC Function Code 2)

KMC-Encrypted-TDEA-128 (KMC
Function Code 10)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KMC-TDEA-128
function has the following format:

For the KMC-TDEA-128 function, the chaining value
is in byte offsets 0-7 of the parameter block and the
cryptographic key is in byte offsets 8-23 of the
parameter block.

Figure 7-50. KMC DEA Encipher Operation Using 64-Bit
Key

P1 <8> P2 <8> P3 <8> ... Pn <8>
...

Operand 2
in Storage

C1 <8> C2 <8> C3 <8> ... Cn <8>
...

DEAK
e

DEA
e

DEA
e

DEA
e

<8>

OCV

ICV ...

<8>

Operand 1
in Storage

K
<8>

K
<8>

K
<8>

Figure 7-51. KMC DEA Decipher Operation Using 64-Bit
Key

0 Chaining Value (CV)

8 Cryptographic Key 1 (K1)

16 Cryptographic Key 2 (K2)
0 63

Figure 7-52. Parameter Block for KMC-TDEA-128

C1 <8> C2 <8> C3 <8>
...

Cn <8>
...

P1 <8> P2 <8> P3 <8> ... Pn <8>
...

DEA
d

DEA
d

DEA
d

DEA
d

OCV

ICV
...

<8>

Operand 2
in Storage

Operand 1
in Storage

K
<8>

K
<8>

K
<8>

K
<8>

General Instructions 7-69

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

GThe parameter block used for the KMC-Encrypted-
TDEA-128 function has the following format:

For the KMC-Encrypted-TDEA-128 function, the con-
tents of byte offsets 24-47 of the parameter block are
compared with the contents of the DEA wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 8-23 of the parameter block are deci-
phered using the DEA wrapping key to obtain the
128-bit cryptographic key. (See the section, “Protec-
tion of Cryptographic Keys” on page 7-431, for
details.) The chaining value is in byte offsets 0-7 of
the parameter block.

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the TDEA algorithm with the two 64-bit cryp-
tographic keys and the 64-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first ciphertext block is the
chaining value in the parameter block; the chaining
value for deriving each subsequent ciphertext block
is the corresponding previous ciphertext block. The
ciphertext blocks (C1, C2, …, Cn) are stored in oper-
and 1. The last ciphertext block is the output chaining

value (OCV) and is stored into the chaining-value
field of the parameter block. The operation is shown
in Figure 7-54.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA algorithm with the two 64-bit
cryptographic keys and the 64-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first plaintext block is in the
parameter block; the chaining value for deriving each
subsequent plaintext block is the corresponding pre-
vious ciphertext block. The plaintext blocks (P1, P2,
…, Pn) are stored in operand 1. The last ciphertext
block is the output chaining value (OCV) and is

0 Chaining Value (CV)

8 Encrypted Cryptographic Key
(WKd(K))16

24 DEA Wrapping-Key
Verification Pattern

(WKdVP)
32

40
0 63

Figure 7-53. Parameter Block for KMC-Encrypted-TDEA-
128

Figure 7-54. KMC TDEA Encipher Operation Using 128-Bit
Key

P1 <8> P2 <8> P3 <8> ... Pn <8>
...

Operand 2
in Storage

C1 <8> C2 <8> C3 <8> ... Cn <8>
...

DEAK1
e

DEAK1
e

DEAK1
e

DEAK1
e

OCV

ICV ...

 <8>

DEAK2
d

DEAK2
d

DEAK2
d

DEAK2
d

DEAK1
e

DEAK1
e

DEAK1
e

DEAK1
e

 <8>

 <8>

 <8>

K = K1 || K2, where || means concatenation

Operand 1
in Storage

7-70 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G stored into the chaining-value field in the parameter
block. The operation is shown in Figure 7-55.

KMC-TDEA-192 (KMC Function Code 3)

KMC-Encrypted-TDEA-192 (KMC
Function Code 11)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KMC-TDEA-192
function has the following format:

For the KMC-TDEA-192 function, the chaining value
is in byte offsets 0-7 of the parameter block and the

cryptographic key is in byte offsets 8-31of the param-
eter block.

The parameter block used for the KMC-Encrypted-
TDEA-192 function has the following format:

For the KMC-Encrypted-TDEA-192 function, the con-
tents of byte offsets 32-55 of the parameter block are
compared with the contents of the DEA wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 8-31 of the parameter block are deci-
phered using the DEA wrapping key to obtain the
192-bit cryptographic key. (See the section, “Protec-
tion of Cryptographic Keys” on page 7-431, for
details.) The chaining value is in byte offsets 0-7 of
the parameter block.

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the TDEA algorithm with the three 64-bit cryp-
tographic keys and the 64-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first ciphertext block is the
chaining value in the parameter block; the chaining
value for deriving each subsequent ciphertext block
is the corresponding previous ciphertext block. The
ciphertext blocks (C1, C2, …, Cn) are stored in oper-
and 1. The last ciphertext block is the output chaining
value (OCV) and is stored into the chaining-value

Figure 7-55. KMC TDEA Decipher Operation Using 128-Bit
Key

0 Chaining Value (CV)

8 Cryptographic Key 1 (K1)

16 Cryptographic Key 2 (K2)

24 Cryptographic Key 3 (K3)
0 63

Figure 7-56. Parameter Block for KMC-TDEA-192

C1 <8> C2 <8> C3 <8> ... Cn <8>
...

Operand 2
in Storage

P1 <8> P2 <8> P3 <8> ... Pn <8>
...

DEAK1
d

DEAK1
d

DEAK1
d

DEAK1
d

OCV

ICV ...

DEAK2
e

DEAK2
e

DEAK2
e

DEAK2
e

DEAK1
d

DEAK1
d

DEAK1
d

DEAK1
d

 <8>

 <8>

 <8>

 <8>

K = K1 || K2, where || means concatenation

Operand 1
in Storage

0 Chaining Value (CV)

8
Encrypted Cryptographic Key

(WKd(K))
16

24

32 DEA Wrapping-Key
Verification Pattern

(WKdVP)
40

48
0 63

Figure 7-57. Parameter Block for KMC-Encrypted-TDEA-
192

General Instructions 7-71

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

Gfield of the parameter block. The operation is shown
in Figure 7-58.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA algorithm with the three
64-bit cryptographic keys and the 64-bit chaining
value.

The chaining value, called the initial chaining value
(ICV), for deriving the first plaintext block is in the
parameter block; the chaining value for deriving each
subsequent plaintext block is the corresponding pre-
vious ciphertext block. The plaintext blocks (P1, P2,
…, Pn) are stored in operand 1. The last ciphertext
block is the output chaining value (OCV) and is

stored into the chaining-value field in the parameter
block. The operation is shown in Figure 7-59.

KMC-AES-128 (KMC Function Code 18)

KMC-Encrypted-AES-128 (KMC Function
Code 26)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KMC-AES-128
function has the following format:

For the KMC-AES-128 function, the chaining value is
in byte offsets 0-15 of the parameter block and the
cryptographic key is in byte offsets 16-31 of the
parameter block.

Figure 7-58. KMC TDEA Encipher Operation Using 192-Bit
Key

P1 <8> P2 <8> P3 <8> ... Pn <8>
...

Operand 2
in Storage

C1 <8> C2 <8> C3 <8> ... Cn <8>
...

DEAK1
e

DEAK1
e

DEAK1
e

DEAK1
e

OCV

ICV ...

 <8>

DEAK2
d

DEAK2
d

DEAK2
d

DEAK2
d

DEAK3
e

DEAK3
e

DEAK3
e

DEAK3
e

 <8>

 <8>

 <8>

K = K1 || K2 || K3, where || means concatenation

Operand 1
in Storage

Figure 7-59. KMC TDEA Decipher Operation Using 192-Bit
Key

0
Chaining Value (CV)

8

16
Cryptographic Key (K)

24
0 63

Figure 7-60. Parameter Block for KMC-AES-128

C1 <8> C2 <8> C3 <8> ... Cn <8>
...

Operand 2
in Storage

P1 <8> P2 <8> P3 <8> ... Pn <8>
...

DEAK3
d

DEAK3
d

DEAK3
d

DEAK3
d

OCV

ICV ...

DEAK2
e

DEAK2
e

DEAK2
e

DEAK2
e

DEAK1
d

DEAK1
d

DEAK1
d

DEAK1
d

 <8>

 <8>

 <8>

 <8>

K = K1 || K2 || K3, where || means concatenation

Operand 1
in Storage

7-72 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G The parameter block used for the KMC-Encrypted-
AES-128 function has the following format:

For the KMC-Encrypted-AES-128 function, the con-
tents of byte offsets 32-63 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 16-31 of the parameter block are deci-
phered using the AES wrapping key to obtain the
128-bit cryptographic key, K. (See the section, “Pro-
tection of Cryptographic Keys” on page 7-431, for
details.) The chaining value is in byte offsets 0-15 of
the parameter block.

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES algorithm with the 128-bit
cryptographic key and the 128-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first ciphertext block is the
chaining value in the parameter block; the chaining
value for deriving each subsequent ciphertext block
is the corresponding previous ciphertext block. The
ciphertext blocks (C1, C2, …, Cn) are stored in oper-
and 1. The last ciphertext block is the output chaining
value (OCV) and is stored into the chaining-value

field of the parameter block. The operation is shown
in Figure 7-62.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES algorithm with the 128-bit
cryptographic key and the 128-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first plaintext block is in the
parameter block; the chaining value for deriving each
subsequent plaintext block is the corresponding pre-
vious ciphertext block. The plaintext blocks (P1, P2,
…, Pn) are stored in operand 1. The last ciphertext
block is the output chaining value (OCV) and is
stored into the chaining-value field in the parameter
block. The operation is shown in Figure 7-63.

0
Chaining Value (CV)

8

16 Encrypted Cryptographic Key
(WKa(K))24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)

40

48

56
0 63

Figure 7-61. Parameter Block for KMC-Encrypted-AES-128

Figure 7-62. KMC AES Encipher Operation Using 128-Bit
Key

Figure 7-63. KMC AES Decipher Operation Using 128-Bit
Key

P1 <16> P2 <16> P3 <16> ... Pn <16>
...

Operand 2
in Storage

C1 <16> C2 <16> C3 <16> ... Cn <16>
...

AESK
e

AES
e

AES
e

AES
e

<16>

OCV

ICV ...

<16>

Operand 1
in Storage

K
<16>

K
<16>

K
<16>

C1 <16> C2 <16> C3 <16>
...

Cn <16>
...

P1 <16> P2 <16> P3 <16> ... Pn <16>
...

AES
d

AES
d

AES
d

AES
d

OCV

ICV
...

<16>

Operand 2
in Storage

Operand 1
in Storage

K
<16>

K
<16>

K
<16>

K
<16>

General Instructions 7-73

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

GKMC-AES-192 (KMC Function Code 19)

KMC-Encrypted-AES-192 (KMC Function
Code 27)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KMC-AES-192
function has the following format:

For the KMC-AES-192 function, the chaining value is
in byte offsets 0-15 of the parameter block and the
cryptographic key is in byte offsets 16-39 of the
parameter block.

The parameter block used for the KMC-Encrypted-
AES-192 function has the following format:

For the KMC-Encrypted-AES-192 function, the con-
tents of byte offsets 40-71 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 16-39 of the parameter block are deci-
phered using the AES wrapping key to obtain the
192-bit cryptographic key, K. (See the section, “Pro-

tection of Cryptographic Keys” on page 7-431, for
details.) The chaining value is in byte offsets 0-15 of
the parameter block.

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES algorithm with the 192-bit
cryptographic key and the 128-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first ciphertext block is the
chaining value in the parameter block; the chaining
value for deriving each subsequent ciphertext block
is the corresponding previous ciphertext block. The
ciphertext blocks (C1, C2, …, Cn) are stored in oper-
and 1. The last ciphertext block is the output chaining
value (OCV) and is stored into the chaining-value
field of the parameter block. The operation is shown
in Figure 7-66.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES algorithm with the 192-bit
cryptographic key and the 128-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first plaintext block is in the
parameter block; the chaining value for deriving each
subsequent plaintext block is the corresponding pre-
vious ciphertext block. The plaintext blocks (P1, P2,
…, Pn) are stored in operand 1. The last ciphertext
block is the output chaining value (OCV) and is

0
Chaining Value (CV)

8

16

Cryptographic Key (K)24

32
0 63

Figure 7-64. Parameter Block for KMC-AES-192

0
Chaining Value (CV)

8

16
Encrypted Cryptographic Key

(WKa(K))
24

32

40
AES Wrapping-Key
Verification Pattern

(WKaVP)

48

56

64
0 63

Figure 7-65. Parameter Block for KMC-Encrypted-AES-192

Figure 7-66. KMC AES Encipher Operation Using 192-Bit
Key

P1 <16> P2 <16> P3 <16> ... Pn <16>
...

Operand 2
in Storage

C1 <16> C2 <16> C3 <16> ... Cn <16>
...

AESK
e

AES
e

AES
e

AES
e

<16>

OCV

ICV ...

<24>

Operand 1
in Storage

K
<24>

K
<24>

K
<24>

7-74 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G stored into the chaining-value field in the parameter
block. The operation is shown in Figure 7-67.

KMC-AES-256 (KMC Function Code 20)

KMC-Encrypted-AES-256 (KMC Function
Code 28)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the KMC-AES-256
function has the following format:

For the KMC-AES-256 function, the chaining value is
in byte offsets 0-15 of the parameter block and the
cryptographic key is in byte offsets 16-47 of the
parameter block.

The parameter block used for the KMC-Encrypted-
AES-256 function has the following format:

For the KMC-Encrypted-AES-256 function, the con-
tents of byte offsets 48-79 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 16-47 of the parameter block are deci-
phered using the AES wrapping key to obtain the
256-bit cryptographic key, K. (See the section, “Pro-
tection of Cryptographic Keys” on page 7-431, for
details.) The chaining value is in byte offsets 0-15 of
the parameter block.

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES algorithm with the 256-bit
cryptographic key and the 128-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first ciphertext block is the
chaining value in the parameter block; the chaining
value for deriving each subsequent ciphertext block
is the corresponding previous ciphertext block. The
ciphertext blocks (C1, C2, …, Cn) are stored in oper-
and 1. The last ciphertext block is the output chaining
value (OCV) and is stored into the chaining-value

Figure 7-67. KMC AES Decipher Operation Using 192-Bit
Key

0
Chaining Value (CV)

8

16

Cryptographic Key (K)
24

32

40
0 63

Figure 7-68. Parameter Block for KMC-AES-256

C1 <16> C2 <16> C3 <16>
...

Cn <16>
...

P1 <16> P2 <16> P3 <16> ... Pn <16>
...

AES
d

AES
d

AES
d

AES
d

OCV

ICV
...

<16>

Operand 2
in Storage

Operand 1
in Storage

K
<24>

K
<24>

K
<24>

K
<24>

0
Chaining Value (CV)

8

16

Encrypted Cryptographic Key
(WKa(K))

24

32

40

48
AES Wrapping-Key
Verification Pattern

(WKaVP)

56

64

72
0 63

Figure 7-69. Parameter Block for KMC-Encrypted-AES-256

General Instructions 7-75

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

Gfield of the parameter block. The operation is shown
in Figure 7-70.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES algorithm with the 256-bit
cryptographic key and the 128-bit chaining value.

The chaining value, called the initial chaining value
(ICV), for deriving the first plaintext block is in the
parameter block; the chaining value for deriving each
subsequent plaintext block is the corresponding pre-
vious ciphertext block. The plaintext blocks (P1, P2,
…, Pn) are stored in operand 1. The last ciphertext
block is the output chaining value (OCV) and is

stored into the chaining-value field in the parameter
block. The operation is shown in Figure 7-71.

KMC-PRNG (KMC Function Code 67)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-7 on
page 7-54.

The parameter block used for the function has the fol-
lowing format:

Regardless of the value of the modifier bit in general
register 0, the 8-byte plaintext blocks in operand 2
are used to generate the 8-byte ciphertext blocks in
operand 1 based on a pseudo-random-number-gen-
eration algorithm. The algorithm is based on TDEA
using three 64-bit cryptographic keys and a 64-bit
chaining value. The output chaining value (OCV) is

Figure 7-70. KMC AES Encipher Operation Using 256-Bit
Key

P1 <16> P2 <16> P3 <16> ... Pn <16>
...

Operand 2
in Storage

C1 <16> C2 <16> C3 <16> ... Cn <16>
...

AESK
e

AES
e

AES
e

AES
e

<16>

OCV

ICV ...

<32>

Operand 1
in Storage

K
<32>

K
<32>

K
<32>

Figure 7-71. KMC AES Decipher Operation Using 256-Bit
Key

0 Chaining Value (CV)

8 Cryptographic Key 1 (K1)

16 Cryptographic Key 2 (K2)

24 Cryptographic Key 3 (K3)
0 63

Figure 7-72. Parameter Block for KMC-PRNG

C1 <16> C2 <16> C3 <16>
...

Cn <16>
...

P1 <16> P2 <16> P3 <16> ... Pn <16>
...

AES
d

AES
d

AES
d

AES
d

OCV

ICV
...

<16>

Operand 2
in Storage

Operand 1
in Storage

K
<32>

K
<32>

K
<32>

K
<32>

7-76 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

H
A

IN
IN

G stored in the chaining-value field of the parameter
block. The operation is shown in Figure 7-73.

Special Conditions for KM and KMC

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

2. The R1 or R2 field designates an odd-numbered
register or general register 0.

3. The second operand length is not a multiple of
the data block size of the designated function
(see Figure 7-5 on page 7-52 to determine the
data block sizes for CIPHER MESSAGE func-
tions; see Figure 7-6 on page 7-52 to determine
the data block sizes for CIPHER MESSAGE
WITH CHAINING functions). This specification-
exception condition does not apply to the query
functions.

Resulting Condition Code:

0 Normal completion
1 Verification-pattern mismatch
2 --
3 Partial completion

Program Exceptions:

• Access (fetch, operand 2, cryptographic key, and
wrapping-key verification pattern; store, operand
1; fetch and store, chaining value, XTS parame-
ter)

• Operation (if the message-security assist is not
installed)

• Specification
• Transaction constraint

Figure 7-73. KMC-PRNG Operation

ICV

Parameter
Block in
Storage

CV <8>

P1 <8>Operand 2
in Storage

K1

K1 <8>

OCV

K2

K2 <8>

K3

K3 <8>

DEA
e

K1

DEA
d

K2

DEA
e

K3

P2 <8>

DEA
e

K1

DEA
d

K2

DEA
e

K3

P3 <8>

DEA
e

K1

DEA
d

K2

DEA
e

K3

Pn <8>

DEA
e

K1

DEA
d

K2

DEA
e

K3

...

...

DEA
e

K1

DEA
d

K2

DEA
e

K3

DEA
e

K1

DEA
d

K2

DEA
e

K3

DEA
e

K1

DEA
d

K2

DEA
e

K3

DEA
e

K1

DEA
d

K2

DEA
e

K3

DEA
e

K1

DEA
d

K2

DEA
e

K3

DEA
e

K1

DEA
d

K2

DEA
e

K3

DEA
e

K1

DEA
d

K2

DEA
e

K3

DEA
e

K1

DEA
d

K2

DEA
e

K3

C1 <8> C2 <8> C3 <8> Cn <8>
...

...

ICV ...

OCV

Operand 1
in Storage

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint

8. Specification exception due to invalid function
code or invalid register number.

9. Specification exception due to invalid operand
length.

10. Condition code 0 due to second-operand length
originally zero.

11.A.1 Access exceptions for an access to the
parameter block.

11.A.2. Condition code 1 due to verification-pattern
mismatch.

Figure 7-74. Priority of Execution: KM and KMC

General Instructions 7-77

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. When condition code 3 is set, the general regis-
ters containing the operand addresses and
length, and the chaining value or the XTS param-
eter in the parameter block, are usually updated
such that the program can simply branch back to
the instruction to continue the operation.

For unusual situations, the CPU protects against
endless reoccurrence of the no-progress case
and also protects against setting condition code
3 when the portion of the first and second oper-
ands to be reprocessed overlap in storage. Thus,
the program can safely branch back to the
instruction whenever condition code 3 is set with
no exposure to an endless loop and no exposure
to incorrectly retrying the instruction.

3. If the length of the second operand is nonzero
initially and condition code 0 is set, the registers
are updated in the same manner as for condition
code 3. For CIPHER MESSAGE WITH CHAIN-
ING, the chaining value in this case is such that
additional operands can be processed as if they
were part of the same chain.

4. To save storage, the first and second operands
may overlap exactly or the starting point of the
first operand may be to the left of the starting
point of the second operand. In either case, the
overlap is not destructive.

5. For XTS functions, the program must compute
the initial XTS parameter by using the appropri-

ate Compute-XTS-Parameter PCC functions
before processing the first part of a message.

6. The initial XTS parameter used in the KM-XTS-
AES-128 (or the KM-XTS-Encrypted-AES-128)
function is computed by using the AES encryp-
tion algorithm with a 128-bit cryptographic key,
which shall be different from the 128-bit cryp-
tographic key used in the KM-XTS-AES-128 (or
the KM-XTS-Encrypted-AES-128) function.

Similarly, the initial XTS parameter used in the
KM-XTS-AES-256 (or the KM-XTS-Encrypted-
AES-256) function is computed by using the
AES-encryption algorithm with a 256-bit cryp-
tographic key, which shall be different from the
256- bit cryptographic key used in the KM-XTS-
AES-256 (or the KM-XTS-Encrypted-AES-256)
function.

7. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

CIPHER MESSAGE WITH
AUTHENTICATION

KMA R1,R3,R2 [RRF-b]

A function specified by the function code in general
register 0 is performed.

General register 0 contains various controls affecting
the operation of the instruction, as follows:

Flags (F): Bit positions 48-55 of general register 0
contain an 8-bit flags field controlling the operation of
the function. The flags field is meaningful only when
the function code in bits 57-63 of general register 0
designates a ciphering function (that is, when the
function code is nonzero). The format of the flags
field is as follows:

11.B Access exceptions for an access to the first, or
second operand.

12. Condition code 0 due to normal completion
(second-operand length originally nonzero, but
stepped to zero).

13. Condition code 3 due to partial completion
(second-operand length still nonzero).

Figure 7-74. Priority of Execution: KM and KMC

‘B929’ R3 / / / / R1 R2

0 16 20 24 28 31

/ / / / /
H
S

L
A
A
D

L
P
C

0 5 6 7

7-78 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N The individual flag fields are as follows:

Reserved: Bits 0-4 of the flags field are reserved and
should contain zeros; otherwise, the program may
not operate compatibly in the future.

Hash-subkey-Supplied (HS) Flag: Bit 5 of the flags
field indicates whether the hash-subkey (H) field in
the parameter block contains a valid hash subkey.
The HS flag is meaningful only when the function
code is nonzero, and the function does not use an
encrypted cryptographic key; the HS flag is ignored
for functions that use an encrypted cryptographic key.

Last-AAD (LAAD) Flag: Bit 6 of the flags field quali-
fies the contents of the third operand. When the
LAAD flag is one, it indicates that the third operand
designates the last series of additional-authenti-
cated-data (AAD) blocks. When the LAAD flag is
zero, it indicates that the third operand does not des-
ignate the last series of AAD blocks.

Last-Plaintext / Ciphertext (LPC) Flag: Bit 7 of the
flags field qualifies the contents of the second oper-
and. When the LPC flag is one, it indicates that the
second operand designates the last series of plain-
text or ciphertext blocks. When the LPC flag is zero, it
indicates that the second operand does not desig-
nate the last series of plaintext or ciphertext blocks.

A specification exception is recognized, and the
operation is suppressed when the LPC flag is one,
and the LAAD flag is zero.

Modifier (M): When the function code in bits 57-63
of general register 0 is nonzero, bit position 56 of
general register 0 contains a modifier bit indicating
encryption or decryption is to be performed by the
function. When the M bit is zero, the function per-
forms encryption of the second operand; when the M
bit is one, the function performs decryption of the
second operand. The M bit is ignored when the func-
tion code is zero.

Function Code (FC): Bit positions 57-63 of gen-
eral register 0 contain the function code. Figure 7-75
shows the assigned function codes for CIPHER

MESSAGE WITH AUTHENTICATION. All other func-
tion codes are unassigned.

Bits 0-31 of general register 0 are ignored. Bits 32-47
of general register 0 are reserved and should contain
zeros; otherwise, the program may not operate com-
patibly in the future.

The query function provides the means of indicating
the availability of the other functions. The contents of
general registers R1, R2, R2 + 1, R3, and R3 + 1 are
ignored for the query function.

For functions other then the query function (that is,
for functions having a nonzero function code), a mes-
sage-authentication tag is formed from the contents
of the third operand and from the contents of either
the resulting first operand or the second operand,
depending on whether the M bit is 0 or 1, respec-
tively. Based on the M bit, the second operand is
either encrypted or decrypted using a cryptographic
key and counter values from the parameter block,
and the result is placed in the first-operand location.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

Code Function

Param.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 KMA-Query 16 —

18 KMA-GCM-AES-128 96 16

19 KMA-GCM-AES-192 104 16

20 KMA-GCM-AES-256 112 16

26 KMA-GCM-Encrypted-AES-128 128 16

27 KMA-GCM-Encrypted-AES-192 136 16

28 KMA-GCM-Encrypted-AES-256 144 16

Explanation:

— Not applicable

Figure 7-75. Function Codes for CIPHER MESSAGE WITH
AUTHENTICATION

General Instructions 7-79

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

NThe R1 field designates a general register and must
designate an even-numbered register other than
general register 0; otherwise, a specification excep-
tion is recognized. The R2 and R3 fields each desig-
nate an even-odd pair of general registers and must
designate even-numbered registers other than gen-
eral register 0; otherwise, a specification exception is
recognized. A specification exception is also recog-
nized if the R3 field designates the same register as
either the R1 or R2 fields.

The location of the leftmost byte of the first, second,
and third operands is specified by the contents of
general registers R1, R2, and R3, respectively. The
number of bytes in the second-operand location is
specified in general register R2 + 1. The first operand
is the same length as the second operand. The num-
ber of bytes in the third-operand location is specified
in general register R3 + 1.

As part of the operation, the address in general regis-
ter R3 is incremented by the number of third-operand
bytes processed, and the length in general register
R3 + 1 is decremented by the same number; addi-
tionally, the addresses in general registers R1 and R2

are each incremented by the number of second-oper-
and bytes processed, and the length in general regis-
ter R2 + 1 is decremented by the same number. The
formation and updating of the addresses and length
is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1, R2, and R3

constitute the addresses of the first, second, and
third operands, respectively, and the contents of bit
positions 0-39 are ignored; bits 40-63 of the updated
addresses replace the corresponding bits in general
registers R1, R2, and R3, carries out of bit position 40
of the updated address are ignored, and the contents
of bit positions 32-39 of general registers R1, R2, and
R3 are set to zeros. In the 31-bit addressing mode,
the contents of bit positions 33-63 of general regis-
ters R1, R2, and R3 constitute the addresses of the
first, second, and third operands, respectively, and
the contents of bit positions 0-32 are ignored; bits

33-63 of the updated addresses replace the corre-
sponding bits in general registers R1, R2, and R3, car-
ries out of bit position 33 of the updated address are
ignored, and the content of bit position 32 of general
registers R1, R2, and R3 is set to zero. In the 64-bit
addressing mode, the contents of bit positions 0-63
of general registers R1, R2, and R3 constitute the
addresses of the first, second, and third operands,
respectively; bits 0-63 of the updated addresses
replace the contents of general registers R1, R2, and
R3, and carries out of bit position 0 are ignored.

In both the 24-bit and the 31-bit addressing modes,
the contents of bit positions 32-63 of general register
R2 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the first and second
operands, and the contents of bit positions 0-31 are
ignored; bits 32-63 of the updated value replace the
corresponding bits in general register R2 + 1. In the
64-bit addressing mode, the contents of bit positions
0-63 of general register R2 + 1 form a 64-bit unsigned
binary integer which specifies the number of bytes in
the first and second operands; the updated value
replaces the contents of general register R2 + 1.

In both the 24-bit and the 31-bit addressing modes,
the contents of bit positions 32-63 of general register
R3 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the third operand,
and the contents of bit positions 0-31 are ignored;
bits 32-63 of the updated value replace the corre-
sponding bits in general register R3 + 1. In the 64-bit
addressing mode, the contents of bit positions 0-63
of general register R3 + 1 form a 64-bit unsigned
binary integer which specifies the number of bytes in
the third operand; the updated value replaces the
contents of general register R3 + 1.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R2,
R2 + 1, R3, and R3 + 1 always remain unchanged.

Figure 7-76 on page 7-79 shows the contents of the
general registers just described.

All Addressing Modes

GR0 / Reserved Flags M FC
0 8 32 48 56 57 63

Figure 7-76. General Register Assignment for CIPHER MESSAGE WITH AUTHENTICATION (Part 1 of 2)

7-80 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N

In the access-register mode, access registers 1, R1,
R2, and R3 specify the address spaces containing the
parameter block, first, second, and third operands,
respectively.

KMA-Query (Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-76 on
page 7-79.

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R1 / First-Operand Address
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

R3 / Third-Operand Address
0 40 63

R3 + 1 / Third-Operand Length
0 32 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R1 / First-Operand Address
0 33 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

R3 / Third-Operand Address
0 33 63

R3 + 1 / Third-Operand Length
0 32 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R1 First-Operand Address
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

R3 Third-Operand Address
0 63

R3 + 1 Third-Operand Length
0 63

Figure 7-76. General Register Assignment for CIPHER MESSAGE WITH AUTHENTICATION (Part 2 of 2)

General Instructions 7-81

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

NThe parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the CIPHER MESSAGE
WITH AUTHENTICATION instruction. When a bit is
one, the corresponding function is installed; other-
wise, the function is not installed.

Condition code 0 is set when execution of the KMA-
Query function completes; condition codes 1, 2, and
3 are not applicable to this function.

KMA-GCM-AES Functions

Note: The description of the KMA-GCM-AES instruc-
tion assumes that the reader is familiar with the
Galois counter mode (GCM) described in Reference
[17.] on page xxx. In particular, see [17] for a descrip-
tion of the GCM functions GHASH and GCTR.

This section illustrates the operation for six KMA-
GCM-AES functions:

• KMA-GCM-AES-128 (function code 18)
• KMA-GCM-AES-192 (function code 19)
• KMA-GCM-AES-256 (function code 20)
• KMA-GCM-Encrypted AES-128 (function code

26)
• KMA-GCM-Encrypted AES-192 (function code

27)
• KMA-GCM-Encrypted AES-256 (function code

28)

The locations of the operands and addresses used
by each of these functions are as shown in
Figure 7-76 on page 7-79.

The parameter block used for all KMA-GCM-AES
functions has a common format as shown in
Figure 7-78, below.

The fields of the parameter block for all KMA-GCM-
AES functions are as follows:

Reserved: Bytes 0-11 of the parameter block are
reserved. The reserved field may contain model
dependent values at the completion of the instruc-
tion.

Counter Value (CV): Bytes 12-15 of the parameter
block contain a 32-bit binary integer. The leftmost 12
bytes of the initial-counter value (J0, in bytes 64-79 of
the parameter block) are concatenated with the con-
tents of the CV field on the right to form the initial-
counter block (ICB) that is used by the GCTR func-
tion (described in Reference [17.] on page xxx).

For each execution of the instruction, the CPU incre-
ments the CV field in the parameter block by the
number of second-operand blocks processed. A
carry out of bit position 0 of the CV field is ignored.

0
Status Word

8
0 63

Figure 7-77. Parameter Block for KMA-Query

Offset

Dec Hex

00 00 Reserved

08 08 Counter Value (CV)

16
24

10
18

Tag (T)

32
40

20
28

Hash Subkey (H)

48 30 Total AAD Length (TAADL)

56 38 Total Plaintext or Ciphertext Length (TPCL)

64
72

40
48

Initial Counter Value (J0)

80

X

50

X

 Cryptographic Key (K) (for functions 18-20)
Encrypted Cryptographic Key (WKa(K)) (for functions 26-28)

Y

Z

Y

Z

AES Wrapping-Key Verification Pattern (WKaVP)
(only present for functions 26-28)

0 32 63

Explanation:

X 72 (48 hex) plus the length of K (in bytes)
Y 80 (50 hex) plus the length of K (in bytes)
Z Y plus 24 (18 hex; the first byte of the last 8 bytes).

Figure 7-78. Parameter Block for KMA-GCM-AES
Functions

/ /

7-82 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N Tag (T): Bytes 16-31 of the parameter block con-
tain the message-authentication tag field.

For each block of the third operand, and for each
block of the resulting first operand (when M is 0) or
each block of the second operand (when M is 1), the
CPU uses the tag field as both input and output to
the GHASH function. When all AAD and ciphertext
has been hashed, the concatenation of the TAADL
and TPCL fields are hashed using GHASH, and the
results of the hash are encrypted using the GCTR
function to produce a last tag (T) field in the parame-
ter block.

Hash Subkey (H): For the KMA-GCM-AES func-
tions, bytes 32-47 of the parameter block contain a
128-bit hash subkey that is used by the GHASH func-
tions of the instruction. When the hash-subkey-sup-
plied flag (HS, bit 53 of general register 0) is zero, the
CPU computes the hash subkey by encrypting 128
bits of binary zeros using the cryptographic key (K),
stores the hash subkey in the H field, and sets the
HS flag to one. When the HS flag is one, the CPU
uses the program-supplied hash subkey in the H
field; the H field and HS flag are not altered in this
case.

For the KMA-GCM-encrypted-AES functions, bytes
32-47 of the parameter block are reserved and
should contain zeros; otherwise, the program may
not operate compatibly in the future. In this case, the
CPU always computes the hash subkey by encrypt-
ing 128 bits of binary zeros using the deciphered
cryptographic key (K); the H field and HS flag are not
altered in this case.

Total AAD Length (TAADL): Bytes 48-55 of the
parameter block contain a 64-bit unsigned binary
integer designating the total length in bits of the
entire additional-authenticated-data (AAD) for the
message being processed.

Total Plaintext or Ciphertext Length (TPCL):
Bytes 56-63 of the parameter block contain a 64-bit
unsigned binary integer designating the total length
in bits of the entire plaintext or ciphertext for the mes-
sage being processed.

Initial Counter Value (J0): Bytes 64-79 of the
parameter block contain a 128-bit initial counter value
that is used (a) to provide the leftmost 96 bits of the
initial-counter block used by the GCTR function, and
(b) to encrypt the last authentication tag (T) field.

Cryptographic Key (K): The cryptographic key
used in the encipher and decipher operations begins
at byte 80 of the parameter block. The size of the key
field and its offset in the parameter block are depen-
dent on the function code, as shown in Figure 7-79.

AES Wrapping-Key Verification Pattern
(WKaVP): For the KMA-GCM-encrypted-AES func-
tions (codes 26-28), the 32 bytes immediately follow-
ing the key in the parameter block contain the AES
wrapping-key verification pattern (WKaVP).

For the KM-AES functions (codes 18-20), the WKaVP
field is not present in the parameter block.

Symbols Used in KMA-GCM-AES Function
Descriptions

The following symbols are used in the subsequent
description of the KMA-GCM-AES functions.

Further description of the AES standard may be
found in Reference [14.] on page xxx. Further
description of the Galois-counter mode of encryption
and decryption may be found in Reference [17.] on
page xxx.

Function
Code Function

Key
Length
(bytes)

Key
Offset
(bytes)

18 KMA-GCM-AES-128 16 80-95

19 KMA-GCM-AES-192 24 80-103

20 KMA-GCM-AES-256 32 80-111

26 KMA-GCM-Encrypted-AES-128 16 80-95

27 KMA-GCM-Encrypted-AES-192 24 80-103

28 KMA-GCM-Encrypted-AES-256 32 80-111

Figure 7-79. Key Lengths and Offsets for KMA-GCM
Functions

Figure 7-80. Symbol For Bit-Wise Exclusive OR

A

C

B

C = A B

General Instructions 7-83

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N

The following description applies to all KMA-GCM-
AES functions. A sequence of operations is per-
formed, depending on the flags and function code in
general register 0, as follows:

Wrapping-Key Verification: For the KMA-GCM-
encrypted-AES functions (function codes 26-28), the
contents of the 32-byte WKaVP field are compared
with the contents of the AES wrapping-key verifica-
tion-pattern register. If they mismatch, the first-oper-
and and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
the key field of the parameter block are deciphered
using the AES wrapping key to obtain the cryp-
tographic key, K. (See the section “Protection of
Cryptographic Keys” on page 7-431 for details.)

For the KMA-GCM-AES functions that do not use
encrypted keys (codes 18-20), wrapping-key verifica-
tion is not performed.

Computing the Hash Subkey: A hash subkey is
used in the GHASH processing to produce the result-
ing message-authentication tag. GHASH processing
is described in Reference [17.] on page xxx.

For KMA-GCM-AES functions (function codes 18-
20), the following applies:

• When the hash-subkey-supplied flag (HS, bit 53
of general register 0) is zero, a block of 128
binary zeros is encrypted using the AES algo-
rithm described in Reference [14.] on page xxx.
The AES algorithm uses the key (K) field from
the parameter block, as shown in Figure 7-83,
below.

The resulting 128-bit hash subkey is placed into
the H field of the parameter block, and the HS
flag is set to one in general register 0.

• When the HS flag is one, the H field in the
parameter block is used as the hash subkey. In
this case, the H field and HS flag are not altered.

For KMA-GCM-encrypted-AES functions (function
codes 26-28), the HS flag is ignored. A block of 128
binary zeros is always encrypted using the AES algo-
rithm as shown in Figure 7-83, using the decrypted
key (K). In this case, the H field of the parameter
block and the HS flag are not altered.

Additional-Authenticated-Data (AAD) Hashing:
AAD hashing is not performed when either of the fol-
lowing conditions apply. In either of these conditions,

Symbol Explanation
 GCM multiplication operation over GF(2128)

<n> Length of item in bytes.
H Hash subkey
Note: The figure on the right illustrates the GCM multiplication of the
hash subkey as illustrated in Reference [17.] on page xxx.

Figure 7-81. Symbols For GCM Multiplication Operation

Over GF(2128)

Symbol Explanation
<n> Length of item in bytes.
C Ciphertext.
K Key value.
KL Key length (see Figure 7-79).
P Plaintext

Figure 7-82. Symbols for AES Encryption

Y = X H

Y <16>

X <16>

H <16>

 H

Xn

Yn

P <16>

C <16>

Symbol for AES-128

K <KL>

Encryption

AES
e

Symbol Explanation
<n> Length of item in bytes
H Hash subkey.
K Key value.
KL Key length (see Figure 7-79).

Figure 7-83. Encrypting the Hash Subkey

Zeros <16>

H <16>

K <KL> AES
e

7-84 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N general registers R3 and R3+1 are not modified, and
it is model dependent whether the T field in the
parameter block is fetched and stored back unmodi-
fied.

• The third-operand length in general register
R3 + 1 is initially less than 16, and the last-AAD
flag (LAAD, bit 54 of general register 0) is zero. In
this case, the instruction completes by setting
condition code 2.

• The third-operand length is initially zero, and the
LAAD flag is one. In this case, processing contin-
ues as described in “Ciphering and Hashing” on
page 7-85.

When the third-operand length in general register
R3 + 1 is nonzero, additional-authenticated-data
hashing is performed. In this case, general register
R3 contains the address of a storage location con-
taining data from which a message-authentication
tag is computed using the GHASH algorithm
described in Reference [17.] on page xxx. In addition
to the blocks of the third operand, the GHASH func-
tion uses the hash subkey (described above) and the
tag field in the parameter block as input values.

The result is obtained as if processing starts at the
left end of the third operand and proceeds to the
right, block by block. When one or more full 16-byte
blocks of AAD remain, the processing is illustrated in
Figure 7-84.

The AAD-hashing process ends when any of the fol-
lowing is true:

• A CPU-determined number of blocks that is less
than the length of the third operand has been
processed. In this case, the message-authenti-

cation tag computed thus far is placed into the T
field of the parameter block, general register R3

is incremented by the number of third-operand
bytes processed, general register R3 + 1 is dec-
remented by the same amount, and the instruc-
tion completes by setting condition code 3.

• The last-AAD flag (LAAD, bit 54 of general regis-
ter 0) is zero, and number of bytes remaining in
the third operand is less than 16. In this case, the
message-authentication tag computed thus far is
placed into the T field of the parameter block,
general register R3 is incremented by the number
of third-operand bytes processed (if any), gen-
eral register R3 + 1 is decremented by the same
amount, and the instruction completes by setting
condition code 2.

• The LAAD flag is one, and the number of bytes
remaining in the third operand is between 1 and
15. In this case, the following is performed:

– A copy of the remaining short block is pad-
ded on the right with sufficient binary zeros
to form a full block that is hashed using
GHASH.

– General register R3 is incremented by the
number of third-operand bytes processed,
and the third-operand length in general reg-
ister R3 + 1 is set to zero.

Processing of the last block of the third operand
is illustrated in Figure 7-85.

Symbol Explanation
<n> Length of item in bytes
An Block n of additional authenticated data (third operand).
H Hash subkey
T Message-authentication tag (in the parameter block).

Figure 7-84. GHASH Processing of Full Blocks.

T <16>

 ...

...

Output tag

A1 <16>

H
<16>

A2 <16>

H
<16>

A3 <16>

H
<16>

An <16>

H
<16>

...

T <16>

Input tag

Symbol Explanation
<n> Length of item in bytes
A Last (short) block of additional authenticated data (in

the third operand).
H Hash subkey
L Length of last 3rd-operand block in bytes (between 1

and 15).
T Message-authentication tag (in the parameter block).
V Number of bytes of zeros to pad the last block: 16 – L.
Z Zeros.

Figure 7-85. GHASH Processing of Last (Short) Block

Output tag

A<L>

H
<16>

Input tag

Z<V>

T<16>

T<16>

General Instructions 7-85

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N• The LAAD flag is one and the number of bytes
remaining in the third operand is zero.

For either of the above two cases (when the LAAD
flag is one), it is model dependent whether the
instruction completes with condition code 3, or pro-
cessing continues with the ciphering and hashing of
the second operand, as described below.

Ciphering and Hashing: The ciphering-and-hash-
ing process is not performed when either of the fol-
lowing conditions apply. In either of these conditions,
general registers R1, R2, and R2+1 are not modified,
and it is model dependent whether the CV and T
fields in the parameter block are fetched and stored
back unmodified.

• The second-operand length in general register
R2 + 1 is initially less than 16, and the last-plain-
text/ciphertext flag (LPC, bit 55 of general regis-
ter 0) is zero. In this case, the instruction
completes by setting condition code 2.

• The second-operand length is initially zero, and
the LPC flag is one. In this case, processing con-
tinues as described in “Last Message-Authenti-
cation-Tag Hashing and Encryption” on page 7-
87.

Depending on the M bit (bit 56 of general register 0),
each block of the second operand is either encrypted
or decrypted using the GCTR function described in
Reference [17.] on page xxx. The respective
encrypted or decrypted result is placed at the first-
operand location, and the encrypted operand is
hashed using the GHASH function. The combination
of the GCTR and GHASH processing is described as
the GCM function in Reference [17.] on page xxx.

Conceptually, the result is obtained as if processing
starts at the left end of the first and second operands
and proceeds to the right, block by block, as illus-
trated in Figure 7-86 and Figure 7-87. However,
depending on the model, a unit of operation may pro-
cess multiple blocks of the first and second operands
in parallel; thus, the blocks may not necessarily be
accessed in left-to-right order. Furthermore, multiple
accesses may be made to a block, and in the case of
the encryption operation, a first-operand block may
be re-fetched after it is stored.

The GCTR function uses a 16-byte initial-counter
block (ICB) formed from the concatenation of the left-
most 12 bytes of the initial-counter-value (J0) on the

left with the four-byte counter value (CV) on the right.
GCTR also uses the key field (either directly from the
parameter block for the KMA-GCM-AES functions, or
the decrypted key for the KMA-GCM-encrypted-AES
functions). For each block that is ciphered by GCTR,
the counter value (CV) is incremented by one; a carry
out of bit position 0 of the counter value is ignored.
The GCTR function then uses a 16-byte counter
block (CB) formed from the leftmost 12 bytes of J0

concatenated with the incremented counter value.

The GHASH function uses the encrypted data (that
is, the encrypted first-operand result when M is 0 or
the second operand when M is one), the tag (T) field
from either the parameter block or from the preceding
step, and the hash subkey.

When the M bit is zero (that is, when the second
operand is being encrypted), GCM processing of full
blocks is illustrated in Figure 7-86.

Symbol Explanation
<n> Length of item in bytes
CB Counter block formed from the concatenation of the leftmost

12 bytes of J0 with the incremented counter value (CV)
Cn Block n of the ciphertext (first operand).
CV Counter value stored into the parameter block.
H Hash subkey.
ICB Initial counter block comprising the leftmost 12 bytes of the

initial-counter value (J0) concatenated with the 4-byte
counter value (CV).

inc32 Incrementing of the 32-bit counter value (CV); a carry out of
the leftmost bit position is ignored.

K Key value.
KL Key length (see Figure 7-79).
Pn Block n of the plaintext (second operand).
T Message-authentication tag (in the parameter block).

Figure 7-86. Combined Ciphering and Hashing of Full
Blocks for Encryption

inc32

AES
e

ICB <16>

Input tag

AES
e

AES
e

Output tag

...

...

...

K
<KL>

K
<KL>

K
<KL>

P1 <16>

CB <16>

C1 <16>

T <16>

 H
<16>

inc32 CB <16>

P2 <16>

inc32

C2 <16>

 H
<16>

...

CB <16>

Pn <16>

CV<4>

Cn <16>

 H
<16>

T <16>

7-86 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N When the M bit is one (that is, when the second oper-
and is being decrypted), GCM processing of full
blocks is illustrated in Figure 7-87.

The ciphering-and-hashing process for either encryp-
tion or decryption continues until any of the following
is true:

• A CPU-determined number of blocks that is less
than the length of the second operand has been
processed. In this case, the current counter value
is placed into the CV field of the parameter block,
the message-authentication tag computed thus
far is placed into the T field of the parameter
block, general registers R1 and R2 are incre-
mented by the number of second-operand bytes
processed, general register R2 + 1 is decre-
mented by the same amount, and the instruction
completes by setting condition code 3.

• The last-plaintext/ciphertext flag (LPC, bit 55 of
general register 0) is zero, and number of bytes

remaining in the second operand is less than 16.
In this case, the current counter value is placed
into the CV field of the parameter block, the mes-
sage-authentication tag computed thus far (if
any) is placed into the T field of the parameter
block, general registers R1 and R2 are incre-
mented by the number of second-operand bytes
processed (if any), general register R2 + 1 is dec-
remented by the same amount, and the instruc-
tion completes by setting condition code 2.

• The LPC flag is one, and the number of bytes
remaining in the second operand is between 1
and 15. In this case, the following is performed:

– A copy of the remaining bytes of the second
operand is padded on the right with sufficient
binary zeros to form a full block that is
ciphered using the GCTR algorithm, and the
leftmost bytes of the resulting encrypted or
decrypted block are placed at the first-oper-
and location. The number of bytes placed at
the first-operand location is the same as the
number of bytes remaining in the second
operand (that is, less than 16).

– The GHASH algorithm is then applied to the
ciphertext. When M is zero, the input to the
GHASH algorithm consists of a copy of the
short block stored into the first-operand loca-
tion, padded on the right with sufficient
binary zeros to form a full block. When M is
one, the input to the GHASH algorithm is the
same as the input to the GCTR algorithm
(that is, a copy of the remaining bytes of the
second operand, padded on the right with
sufficient binary zeros to form a full block).

– The current counter value is placed into the
CV field of the parameter block, the resulting
tag value is placed in the parameter block,
general registers R1 and R2 are incremented
by the number of second-operand bytes pro-
cessed, and general register R2 + 1 is set to
zero.

Explanation

Cn Block n of the ciphertext (second operand).
Pn Block n of the plaintext (first operand).
Other symbols are the same as in Figure 7-86.

Figure 7-87. Combined Ciphering and Hashing of Full
Blocks for Decryption

inc32

AES
e

ICB <16>

Input tag

AES
e

AES
e

Output tag

...

...

...

K
<KL>

K
<KL>

K
<KL>

C1 <16>

CB <16>

P1 <16>

T <16>

 H
<16>

inc32 CB <16>

C2 <16>

inc32

P2 <16>

 H
<16>

...

CB <16>

Cn <16>

CV<4>

Pn <16>

 H
<16>

T <16>

General Instructions 7-87

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

NGCM processing of the last block of the second
operand is illustrated in Figure 7-88.

• The LPC flag is one, and the number of bytes
remaining in the second operand is zero.

For either of the above two cases (when the LPC flag
is one), it is model dependent whether the instruction
completes with condition code 3 or continues pro-
cessing with the last message-authentication-tag
hashing and encryption, as described below.

Last Message-Authentication-Tag Hashing and
Encryption: A 128-bit value comprising the con-
catenation of the 64-bit total-AAD-length (TAADL)
and total-plaintext-or-ciphertext-length (TPCL) fields
from the parameter block is hashed using the
GHASH function. The GHASH function uses the con-
catenated lengths field, the tag (T) field as computed
in the ciphering-and-hashing operation, and the hash
subkey.

The resulting 128-bit output of GHASH is then pro-
cessed by the GCTR algorithm. Note, unlike the
ciphering-and-hashing operation, the input counter to
GCTR is the initial-counter-block (J0) field from the
parameter block. The resulting 128-bit value replaces
the tag (T) field in the parameter block, and the
instruction completes with condition code 0.
Figure 7-89 illustrates the hashing and encryption of
the last tag value.

Common Operation: The detection of conditions
resulting in condition code 3 depends on the model,
and may be a different number each time the instruc-
tion is executed. The CPU-determined number of
blocks is usually nonzero. In certain unusual situa-
tions, this number may be zero, and condition code 3
may be set with no progress. However, the CPU pro-
tects against endless reoccurrence of this no-prog-
ress case.

Symbol Explanation
<n> Length of item in bytes
CB Counter block formed from the concatenation of the

leftmost 12 bytes of J0 with the incremented counter
value (CV)

C Last (short) block of the ciphertext (first operand when
M=0, second operand when M=1).

CV Counter value (in the parameter block)
H Hash subkey
ICB Initial counter block comprising the leftmost 12 bytes

of the initial-counter value (J0) concatenated with the
4-byte counter value (CV).

inc32 Incrementing of the 32-bit counter value (CV); a carry
out of the leftmost bit position is ignored.

K Key value.
KL Key length (see Figure 7-79).
L Length of last second-operand block in bytes

(between 1 and 15).
P Last (short) block n of the plaintext (second operand

when M=0, first operand when M=1).
T Message-authentication tag (in the parameter block).
U Number of bytes of zeros to pad the last block: 16 – L.
Z Zeros.

Figure 7-88. Ciphering and Hashing of the Last (Short)
Block.

AES
e

CB <16>

Output Tag

inc32

T <16>
Input Tag

C<L>

Encrypting and Hashing
the Last (Short) Bloc

K
<KL>

CV<4>

Z<U>

P<L> Z<U>ICB <16>

T <16>

H
<16>

Decrypting and Hashing
the Last (Short) Block

ICB <16> C<L> Z<U>

AES
e

CB <16>inc32

K
<KL>

CV<4>

P<L>

T <16>

Input Tag

T <16>
Output Tag

H
<16>

Symbol Explanation
<n> Length of item in bytes
H Hash subkey
J0 Initial counter value (from the parameter block)
K Key value.
KL Key length (see Figure 7-79).
T Message-authentication tag (in the parameter block).
TAADL Total length of the message’s additional-authenticated data

(AAD) in bits (from the parameter block).
TPCL Total length of the message’s plaintext or ciphertext in bits

(from the parameter block).

Figure 7-89. Hashing and Encrypting the Last Tag

K
<KL>

Last output tag

J0<16>

T<16>

AES
e

TAADL<8> TPCL<8>

 H
<16>

T<16>

GHASH Function GCTR Function

7-88 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N The results are unpredictable if either of the following
is true:

• The third operand overlaps destructively with any
portion of the parameter block that may be
updated during AAD processing.

• The LAAD flag is one, and any of the following is
true:

– The second operand overlaps destructively
with any portion of the parameter block that
may be updated during ciphering and hash-
ing.

– The first operand overlaps destructively with
any portion of the parameter block that may
be accessed during ciphering and hashing.

– The first operand overlaps destructively with
the second operand, but the operands do not
designate the same location.

Operands are said to overlap destructively when a
location would be used as a source after data would
have been moved into it, assuming processing to be
performed from left to right.

Figure 7-90 illustrates the various condition codes
set by the instruction, and the resulting second- and
third-operand lengths based on the LAAD and LPC
flags.

Store-type access exceptions may be recognized for
any location in the parameter block, even though only
the CV, T, and H fields are actually stored by the
instruction.

A PER storage-alteration event may be recognized
both for the first-operand location and for the portion
of the parameter block that is stored. A PER zero-
address-detection event may be recognized for the
first-, second-, and third-operand locations and for
the parameter block (including the reserved field of
the parameter block). When PER events are
detected for one or more of these locations, it is
unpredictable which location is identified in the PER
access identification (PAID) and PER ASCE ID (AI).

It is unpredictable how many bytes of the first-, sec-
ond-, or third-operand locations has been processed
when a PER storage-alteration event is recognized
for the parameter block. When a storage-alteration
PER event is recognized for the first-operand loca-
tion, fewer than 4K additional bytes are stored into
the first-operand locations before the event is
reported.

When the third-operand length is initially zero, the
third operand is not accessed, and the third-operand
address and third-operand length in general registers
R3 and R3 + 1, respectively, are not changed. When
the second-operand length is initially zero, the sec-
ond operand is not accessed, and the second-oper-
and address and second-operand length in general
registers R2 and R2 + 1, respectively, are not
changed. However, the parameter block may be
accessed even when the second- and third-operand
lengths are both zero.

When the contents of the R1 and R2, fields are the
same, the contents of the designated registers are
incremented only by the number of bytes processed,
not by a multiple of the number of bytes processed.

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block and
storage operands may be multiple-access refer-
ences, accesses to these storage locations are not
necessarily block-concurrent, and the sequence of
these accesses or references is undefined.

In certain unusual situations, instruction execution
may complete by setting condition code 3 without
updating the registers to reflect the last unit of the
first, second, and third operands processed. The size
of the unit processed in this case depends on the sit-

Condition
Code LAAD LPC

3rd-operand
length

2nd-operand
length

0 1 1 0 0
1 — — Unchanged† Unchanged†

2
0 — < 16 Unchanged
1 0 0 < 16

3
0 — >= 16 Unchanged
1 0 0 >= 16

1 ‡ 1 ‡ 0 ‡ 0 ‡

Explanation:

— Not applicable
† Also, first-, second-, and third-operand addresses in general

registers R1, R2, and R3 are unchanged
‡ It is model dependent whether CC3 is set for these

conditions (which are identical to the CC0 conditions).
LAAD Last-additional-authenticated-data flag, bit 54 of general

register 0
LPC Last-plaintext/ciphertext flag, bit 55 of general register 0

Figure 7-90. Condition Codes and Resulting Operand
Lengths, based on LAAD and LPC

General Instructions 7-89

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

Nuation and the model, but is limited such that the por-
tion of the first and second operands which have
been processed and not reported do not overlap in
storage; and the portion of the first and third oper-
ands which have been processed and not reported
do not overlap in storage. In all cases, change bits
are set and PER storage-alteration events are
reported, when applicable, for all first-operand loca-
tions processed.

For functions that perform a comparison of the wrap-
ping-key verification pattern field in the parameter
block with the wrapping-key verification-pattern regis-
ter, it is unpredictable whether access exceptions
and PER zero-address-detection events are recog-
nized for the first, second, and third operands when
the comparison results in a mismatch and respective
operand’s length is nonzero.

Access exceptions may be reported for a larger por-
tion of an operand than is processed in a single exe-
cution of the instruction; however, access exceptions
are not recognized for locations beyond the length of
an operand nor for locations more than 4K bytes
beyond the current location being processed.

Special Conditions for KMA

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

2. The R1 R2, or R3 field designates an odd-num-
bered register or general register 0.

3. The R3 field designates the same register as
either the R1 or R2 fields.

4. The function code is nonzero, and the LPC flag is
one (indicating that the last blocks of plaintext or
ciphertext are being processed), but the LAAD
flag is zero (indicating that not all AAD has been
processed).

Resulting Condition Code:

0 Normal completion
1 Verification-pattern mismatch
2 Incomplete processing (remaining third-operand

length is less than 16 when the LAAD flag is

zero, or remaining second-operand length is less
than 16 when the LPC flag is zero)

3 Partial completion (model-dependent limit
exceeded)

Program Exceptions:

• Access (fetch, operand 2, operand 3, parameter
block fields; store, operand 1, counter value,
hash subkey, tag)

• Operation (if the message-security-assist exten-
sion 8 is not installed)

• Specification
• Transaction constraint

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a

1.-7. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

8. Specification exception due to invalid function
code or invalid register number.

9. Specification exception due to LPC flag being
one when the LAAD flag is zero (applicable only
when the function code is nonzero).

10.A.1 Access exceptions for an access to the
parameter block.

10.A.2. Condition code 1 due to verification-pattern
mismatch.

10.B Access exceptions for an access to the first,
second, or third operand.

11. Condition code 3 due to partial processing of the
third operand.

12. Condition code 2 due to the remaining third-
operand length being less than 16 when the
LAAD flag is zero.

13. Condition code 3 due to partial processing of the
second operand.

14. Condition code 2 due to remaining second-
operand length being less than 16 when the LPC
flag is zero.

15. Condition code 0 due to normal completion.

Figure 7-91. Priority of Execution: KMA

7-90 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 A

U
T

H
E

N
T

IC
A

T
IO

N function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

3. When processing an individual message, the
program should initially set the following fields in
the parameter block and not alter these fields
until the instruction completes with condition
code 0; otherwise, the results will not conform to
the GCM standard, as described in Reference
[17.] on page xxx.

a. Counter Value (CV): The CV field should be
initialized with the rightmost 4 bytes of the
initial-counter-value (J0) field.

b. Tag (T): The tag field should be initialized to
zeros.

c. The Hash Subkey (H): For KMA-GCM-AES
functions (codes 18-20), the following
applies:

• When the HS flag is one, the program
supplies a pre-computed hash subkey in
the H field. The subkey comprises 16
bytes of zeros, encrypted using the AES
algorithm.

• When the HS flag is zero, the CPU
encrypts 16 bytes of zeros using the
AES algorithm and key field in the
parameter block, stores the results in the
H field, and sets the HS flag to one.

For KM-GCM-encrypted-AES functions
(codes 26-28), the CPU always calculates
the hash subkey, and the H field and HS
flags are not altered.

d. Initial-Counter Value (J0): The initial-counter
value is derived from an initialization vector
(IV) provided by the program. If the program
uses a 96-bit IV (as recommended in Refer-
ence [17.] on page xxx), then it should store
the IV into the leftmost 12 bytes of the J0

field, and store 00000001 hex in the right-
most bytes of the J0 field. If the program uses
an IV having a different length, then it must

supply a 16-byte hashed value of the IV in
the J0 field using the GHASH algorithm (as
described in Reference [17]).

e. Key Value (K) and Wrapping-Key Verification
Pattern (WKaVP): For proper ciphering of an
individual message, the key must be the
same for all executions of the instruction. For
KM-encrypted-AES functions, the wrapping-
key-verification-pattern field must also
remain unchanged.

4. When processing the last plaintext or ciphertext
block(s) (that is, when the LPC flag is one), the
total-AAD-length (TAADL) and total-plain-
text/ciphertext-length (TPCL) fields in the param-
eter block should contain the total length in bits of
the respective AAD and plaintext or ciphertext for
the entire message.

5. The program is responsible for comparing the
hashed tag of a decrypted message with that of
the message when it was encrypted to ensure
authenticity of the message.

6. The LAAD and LPC flags provide the means by
which a message can be ciphered and hashed
when not all components of the message are
available for a single execution of the instruction.
For example, if the plaintext or ciphertext portion
of a message spans multiple disk or tape
records, and not all blocks of the message have
been read into storage, the program can process
the earlier blocks of the message by issuing the
instruction with the LPC flag set to zero. When
the final plaintext or ciphertext blocks of the mes-
sage are available, the program can then com-
plete the message ciphering by issuing the
instruction with the LPC flag set to one.

When condition code 2 is set due to either or
both the LAAD or LPC flag being zero, the gen-
eral registers containing the operand addresses
and lengths, and the parameter block are
updated to indicate the progress thus far. How-
ever, unlike condition code 3 (where the program
can simply branch back to the instruction to con-
tinue the operation), the program is responsible
for updating the operand addresses and lengths,
and the LAAD and LPC flags, as necessary,
before branching back to the instruction. If the
program simply branches back to the instruction
in response to condition code 2, a nonproductive
program loop will result.

General Instructions 7-91

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K7. When condition code 3 is set, the general regis-

ters containing the operand addresses and
lengths, and the parameter block, are usually
updated such that the program can simply
branch back to the instruction to continue the
operation.

CIPHER MESSAGE WITH CIPHER
FEEDBACK

KMF R1,R2 [RRE]

A function specified by the function code in general
register 0 is performed.

Bits 16-23 of the instruction are ignored.

Bit positions 32-39 of general register 0 contain the
length of cipher feedback in bytes (LCFB, also known
as “s”), and bit positions 57-63 of general register 0
contain the function code. Figure 7-92 shows the
assigned function codes for CIPHER MESSAGE
WITH CIPHER FEEDBACK. All other function codes
are unassigned. For cipher functions, bit 56 is the
modifier bit which specifies whether an encryption or
a decryption operation is to be performed. The modi-
fier bit is ignored for all other functions. Bits 0-31 and
40-55 of general register 0 are ignored.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

The function codes for CIPHER MESSAGE WITH
CIPHER FEEDBACK are as follows.

All other function codes are unassigned.

The query function provides the means of indicating
the availability of the other functions. The contents of
general registers R1, R2, and R2 + 1 are ignored for
the query function.

For all other functions, the second operand is
ciphered as specified by the function code using a
cryptographic key and an initial chaining value in the
parameter block, and the result is placed in the first-
operand location. The chaining value is updated as
part of the operation.

The R1 field designates a general register and must
designate an even-numbered register other than
general register 0; otherwise, a specification excep-
tion is recognized. The R2 field designates an even-
odd pair of general registers and must designate an

'B92A' / / / / / / / / R1 R2

0 16 24 28 31

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size1

(bytes)

0 KMF-Query 16 —

1 KMF-DEA 16 8

2 KMF-TDEA-128 24 8

3 KMF-TDEA-192 32 8

9 KMF-Encrypted-DEA 40 8

10 KMF-Encrypted-TDEA-128 48 8

11 KMF-Encrypted-TDEA-192 56 8

18 KMF-AES-128 32 16

19 KMF-AES-192 40 16

20 KMF-AES-256 48 16

26 KMF-Encrypted-AES-128 64 16

27 KMF-Encrypted-AES-192 72 16

28 KMF-Encrypted-AES-256 80 16

Explanation:

1 The size of ciphertext and plaintext segments (s)
range from 1 to the data-block size, depending
on the value of the LCFB in bits 32-39 of
general register 0.

— Not applicable

Figure 7-92. Function Codes for CIPHER MESSAGE WITH
CIPHER FEEDBACK

7-92 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K even-numbered register other than general register

0; otherwise, a specification exception is recognized.

The location of the leftmost byte of the first and sec-
ond operands is specified by the contents of the R1

and R2 general registers, respectively. The number of
bytes in the second-operand location is specified in
general register R2 + 1 and must be a multiple of the
cipher-feedback length in bits 32-39 of general regis-
ter 0; otherwise, a specification exception is recog-
nized. The first operand is the same length as the
second operand.

As part of the operation, the addresses in general
registers R1 and R2 are incremented by the number
of bytes processed, and the length in general register
R2 + 1 is decremented by the same number. The for-
mation and updating of the addresses and length is
dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the addresses of the first and second operands,
respectively, and the contents of bit positions 0-39
are ignored; bits 40-63 of the updated addresses
replace the corresponding bits in general registers R1

and R2, carries out of bit position 40 of the updated
address are ignored, and the contents of bit positions
32-39 of general registers R1 and R2 are set to zeros.
In the 31-bit addressing mode, the contents of bit
positions 33-63 of general registers R1 and R2 consti-
tute the addresses of the first and second operands,

respectively, and the contents of bit positions 0-32
are ignored; bits 33-63 of the updated addresses
replace the corresponding bits in general registers R1

and R2, carries out of bit position 33 of the updated
address are ignored, and the content of bit position
32 of general registers R1 and R2 is set to zero. In the
64-bit addressing mode, the contents of bit positions
0-63 of general registers R1 and R2 constitute the
addresses of the first and second operands, respec-
tively; bits 0-63 of the updated addresses replace the
contents of general registers R1 and R2, and carries
out of bit position 0 are ignored.

In both the 24-bit and the 31-bit addressing modes,
the contents of bit positions 32-63 of general register
R2 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the first and second
operands, and the contents of bit positions 0-31 are
ignored; bits 32-63 of the updated value replace the
corresponding bits in general register R2 + 1. In the
64-bit addressing mode, the contents of bit positions
0-63 of general register R2 + 1 form a 64-bit unsigned
binary integer which specifies the number of bytes in
the first and second operands; and the updated value
replaces the contents of general register R2 + 1.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R2, and
R2 + 1, always remain unchanged.

Figure 7-93 on page 7-92 shows the contents of the
general registers just described.

All Addressing Modes

GR0 / LCFB / / / / / / / / / / / / / / / / M FC
0 32 40 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R1 / First-Operand Address
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

Figure 7-93. General Register Assignment for KMF (Part 1 of 2)

General Instructions 7-93

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K

In the access-register mode, access registers 1, R1,
and R2 specify the address spaces containing the
parameter block, first, and second operands, respec-
tively.

The result is obtained as if processing starts at the
left end of both the first and second operands and
proceeds to the right, block by block. The operation is
ended when the number of bytes in the second oper-
and as specified in general register R2 + 1 have been
processed and placed at the first-operand location
(called normal completion) or when a CPU-deter-
mined number of blocks that is less than the length of
the second operand have been processed (called
partial completion). The CPU-determined number of
blocks depends on the model, and may be a different
number each time the instruction is executed. The
CPU-determined number of blocks is usually non-
zero. In certain unusual situations, this number may
be zero, and condition code 3 may be set with no
progress. However, the CPU protects against end-
less reoccurrence of this no-progress case.

The results in the first-operand location and the
chaining-value field are unpredictable if any of the fol-
lowing situations occur:

1. The cryptographic-key field or the encrypted
cryptographic-key field overlaps any portion of
the first operand.

2. The chaining-value field overlaps any portion of
the first operand or the second operand.

3. The first and second operands overlap destruc-
tively. Operands are said to overlap destructively
when the first-operand location would be used as
a source after data would have been moved into
it, assuming processing to be performed from left
to right and one byte at a time.

When the operation ends due to normal completion,
condition code 0 is set and the resulting value in
R2 + 1 is zero. When the operation ends due to par-
tial completion, condition code 3 is set and the result-
ing value in R2 + 1 is nonzero.

A PER storage-alteration event may be recognized
both for the first-operand location and for the portion
of the parameter block that is stored. A PER zero-
address-detection event may be recognized for the
first- and second-operand locations and for the
parameter block. When PER events are detected for
one or more of these locations, it is unpredictable
which location is identified in the PER access identifi-
cation (PAID) and PER ASCE ID (AI).

When a storage-alteration PER event is recognized,
fewer than 4K additional bytes are stored into the
first-operand locations before the event is reported.

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R1 / First-Operand Address
0 33 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R1 First-Operand Address
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-93. General Register Assignment for KMF (Part 2 of 2)

7-94 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K When the second-operand length is initially zero, the

parameter block, first, and second operands are not
accessed, general registers R1, R2, and R2 + 1 are
not changed, and condition code 0 is set.

When the contents of the R1 and R2 fields are the
same, the contents of the designated registers are
incremented only by the number of bytes processed,
not by twice the number of bytes processed.

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block and
storage operands may be multiple-access refer-
ences, accesses to these storage locations are not
necessarily block-concurrent, and the sequence of
these accesses or references is undefined.

In certain unusual situations, instruction execution
may complete by setting condition code 3 without
updating the registers and chaining value to reflect
the last unit of the first and second operands pro-
cessed. The size of the unit processed in this case
depends on the situation and the model, but is limited
such that the portion of the first and second operands
which have been processed and not reported do not
overlap in storage. In all cases, change bits are set
and PER storage-alteration events are reported,
when applicable, for all first-operand locations pro-
cessed.

For functions that perform a comparison of the wrap-
ping-key verification pattern field in the parameter
block with the wrapping-key verification-pattern regis-
ter, it is unpredictable whether access exceptions
and PER zero-address-detection events are recog-
nized for the first and second operands when the
comparison results in a mismatch.

Access exceptions may be reported for a larger por-
tion of an operand than is processed in a single exe-
cution of the instruction; however, access exceptions
are not recognized for locations beyond the length of
an operand nor for locations more than 4K bytes
beyond the current location being processed.

Symbols Used in Function Descriptions

The following symbols are used in the subsequent
description of the CIPHER MESSAGE WITH
CIPHER FEEDBACK functions. For data-encryption-
algorithm (DEA) functions, the DEA-key-parity bit in
each byte of the DEA key is ignored, and the opera-
tion proceeds normally, regardless of the DEA-key
parity of the key.

Further description of the data-encryption algorithm
may be found in Reference [13.] on page xxx. Further
description of the AES standard may be found in Ref-
erence [14.] on page xxx. Further description of the
cipher-feedback mode of encryption and decryption
may be found in Reference [16.] on page xxx.

Figure 7-94. Symbol For Bit-Wise Exclusive OR

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-95. Symbols for DEA Encryption and Decryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-96. Symbols for AES-128 Encryption

A

C

B

C = A B

DEA

P <8>

C <8>

Symbol for DEA

K <8>

Encryption

e
DEA

C <8>

P <8>

Symbol for DEA

K <8>

Decryption

d

AES

P <16>

C <16>

Symbol for AES-128

K <16>

Encryption

e

General Instructions 7-95

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K

KMF-Query (Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-93 on
page 7-92.

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the CIPHER MESSAGE
WITH CIPHER FEEDBACK instruction. When a bit is

one, the corresponding function is installed; other-
wise, the function is not installed.

Condition code 0 is set when execution of the KMF-
Query function completes; condition codes 1 and 3
are not applicable to this function.

In the following function descriptions, the term input
block refers to the 8- or 16-byte input to the DEA or
AES algorithms, respectively. Similarly, the term out-
put block refers to the 8- or 16-byte results from the
respective algorithms. The term segment refers to
the s-byte portions of the first and second operands.

KMF-DEA (Function Code 1)

KMF-Encrypted-DEA (Function Code 9)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-93 on
page 7-92.

The parameter block used for the KMF-DEA function
has the following format:

For the KMF-DEA function, the chaining value is in
byte offset 0-7 of the parameter block and the cryp-
tographic key is in byte offsets 8-15 of the parameter
block.

The parameter block used for the KMF-Encrypted-
DEA function has the following format:

For the KMF-Encrypted-DEA function, the contents
of byte offsets 16-39 of the parameter block are com-
pared with the contents of the DEA wrapping-key ver-
ification-pattern register. If they mismatch, the first-
operand and parameter-block locations remain
unchanged, and the operation is completed by set-

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-97. Symbols for AES-192 Encryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-98. Symbols for AES-256 Encryption

0
Status Word

8
0 63

Figure 7-99. Parameter Block for KMF-Query

AES

P <16>

C <16>

Symbol for AES-192

K <24>

Encryption

e

AES

P <16>

C <16>

Symbol for AES-256

K <32>

Encryption

e

0 Chaining Value (CV)

8 Cryptographic Key (K)
0 63

Figure 7-100. Parameter Block for KMF-DEA

0 Chaining Value (CV)

8 Encrypted Cryptographic Key (WKd(K))

16 DEA Wrapping-Key
Verification Pattern

(WKdVP)
24

32
0 63

Figure 7-101. Parameter Block for KMF-Encrypted-DEA

7-96 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K ting condition code 1. If they match, byte offsets 0-7

of the parameter block contain the chaining value,
and the contents of byte offsets 8-15 of the parame-
ter block are deciphered using the DEA wrapping key
to obtain the 64-bit cryptographic key. (See the sec-
tion, “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The s-byte plaintext
segments (P1, P2, …, Pn) in operand 2 are enci-
phered using the DEA-encryption algorithm with the
64-bit cryptographic key and the 64-bit chaining
value, where s is the length of cipher feedback in
bytes (LCFB).

The first input block to the DEA-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte plaintext segment to form a s-byte ciphertext
segment. The remaining (8 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (8 - s) rightmost bytes of
the previous input block to form the next input block.

The process is repeated with the successive input
blocks until a ciphertext segment is produced for
every plaintext segment, or until a CPU-determined
number of ciphertext segments have been produced.

The ciphertext segments (C1, C2, …, Cn) are stored
in operand 1. The final next-input block is stored into

the chaining-value field of the parameter block. The
operation is shown in Figure 7-102.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The s-byte cipher-
text segments (C1, C2, …, Cn) in operand 2 are deci-
phered using the DEA-encryption algorithm with the
64-bit cryptographic key and the 64-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the DEA-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte ciphertext segment to form a s-byte plaintext
segment. The remaining (8 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (8 - s) rightmost bytes of
the previous input block to form the next input block.

The process is repeated with the successive input
blocks until a plaintext segment is produced for every
ciphertext segment, or until a CPU-determined num-
ber of plaintext segments have been produced.

Symbol Explanation

|| Concatenation
Ij Input block j to DEA
RB(Ij) Rightmost (8-s) bytes of input block j

Note: The rightmost (8–s) bytes of the output block from the DEA-encipher
operation are ignored.

Figure 7-102. KMF-DEA Encipher Operation

K

OCV = RB(In) || Cn

<8>
DEA

I1

ICV

e
K

<8>
DEA

e

I2

K
<8>

DEA
e

…

In

<s>

C1RB(I1)
<8> <s><8–s>

Cn-1RB(In-1)
<s><8–s>

<8–s> <s> <8–s> <s> <8–s>

P1
<s>

P2
<s>

Pn
<s>

C1
<s>

C2
<s>

Cn
<s>

…

…

…

…

…

General Instructions 7-97

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
KThe plaintext segments (P1, P2, …, Pn) are stored in

operand 1. The final next-input block (OCV) is stored
into the chaining-value field of the parameter block.
The operation is shown in Figure 7-103.

KMF-TDEA-128 (Function Code 2)

KMF-Encrypted-TDEA-128 (Function
Code 10)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-93 on
page 7-92.

The parameter block used for the KMF-TDEA-128
function has the following format:

For the KMF-TDEA-128 function, the chaining value
is in byte offset 0-7 of the parameter block and the
cryptographic key is in byte offsets 8-23 of the
parameter block.

The parameter block used for the KMF-Encrypted-
TDEA-128 function has the following format:

For the KMF-Encrypted-TDEA-128 function, the con-
tents of byte offsets 24-47 of the parameter block are
compared with the contents of the DEA wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-7
of the parameter block contain the chaining value,
and the contents of byte offsets 8-23 of the parame-
ter block are deciphered using the DEA wrapping key
to obtain the 128-bit cryptographic key. (See the sec-
tion, “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The s-byte plaintext
segments (P1, P2, …, Pn) in operand 2 are enci-
phered using the TDEA-encryption algorithm with the
128-bit cryptographic key and the 64-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the TDEA-encryption algo-
rithm is the initial chaining value (ICV) in the parame-
ter block. Each input block is enciphered to produce
an output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte plaintext segment to form a s-byte ciphertext
segment. The remaining (8 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (8 - s) rightmost bytes of
the previous input block to form the next input block.

The process is repeated with the successive input
blocks until a ciphertext segment is produced for
every plaintext segment, or until a CPU-determined
number of ciphertext segments have been produced.

Symbol Explanation

|| Concatenation
Ij Input block j to DEA
RB(Ij) Rightmost (8-s) bytes of input block j

Note: The rightmost (8–s) bytes of the output block from the DEA-decipher
operation are ignored.

Figure 7-103. KMF-DEA Decipher Operation

0 Chaining Value (CV)

8 Cryptographic Key 1 (K1)

16 Cryptographic Key 2 (K2)
0 63

Figure 7-104. Parameter Block for KMF-TDEA-128

K

OCV = RB(In) || Cn

<8>
DEA

I1

e
K

<8>
DEA

e

I2

K
<8>

DEA
e

…

…

…

…

…

…

In

ICV
<8>

C1RB(I1)
<s><8–s>

Cn-1RB(In-1)
<s><8–s>

<s> <8–s> <s> <8–s> <s> <8–s>

C1
<s>

C2
<s>

Cn
<s>

P1
<s>

P2
<s>

Pn
<s>

0 Chaining Value (CV)

8 Encrypted Cryptographic Key
(WKd(K))16

24 DEA Wrapping-Key
Verification Pattern

(WKdVP)
32

40
0 63

Figure 7-105. Parameter Block for KMF-Encrypted-TDEA-
128

7-98 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K The ciphertext segments (C1, C2, …, Cn) are stored

in operand 1. The final next-input block is stored into
the chaining-value field of the parameter block. The
operation is shown in Figure 7-106.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The s-byte cipher-
text segments (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA-encryption algorithm with the
128-bit cryptographic key and the 64-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the TDEA-encryption algo-
rithm is the initial chaining value (ICV) in the parame-
ter block. Each input block is enciphered to produce
an output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte ciphertext segment to form a s-byte plaintext
segment. The remaining (8 - s) bytes of each output
block are ignored. Each ciphertext segment is con-

catenated to the right of the (8 - s) rightmost bytes of
the previous input block to form the next input block.

The process is repeated with the successive input
blocks until a plaintext segment is produced for every
ciphertext segment, or until a CPU-determined num-
ber of plaintext segments have been produced.

The plaintext segments (P1, P2, …, Pn) are stored in
operand 1. The final next-input block (OCV) is stored
into the chaining-value field of the parameter block.
The operation is shown in Figure 7-107.

KMF-TDEA-192 (Function Code 3)

KMF-Encrypted-TDEA-192 (Function
Code 11)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-93 on
page 7-92.

Symbol Explanation

|| Concatenation
Ij Input block j to TDEA
RB(Ij) Rightmost (8-s) bytes of input block j

Note: The rightmost (8–s) bytes of the output block from the TDEA-encipher
operation are ignored.

Figure 7-106. KMF-TDEA-128 Encipher Operation

K1

OCV = RB(In) || Cn

<8>
DEA

I1

e
K1
<8>

DEA
e

I2

K1
<8>

DEA
e

…

…

…

…

…

…

In

K2
<8>

DEA
d

K2
<8>

DEA
d

K2
<8>

DEA
d

…

K1
<8>

DEA
e

K1
<8>

DEA
e

K1
<8>

DEA
e

…

K = K1 || K2

ICV
<8>

C1RB(I1)
<s><8–s>

Cn-1RB(In-1)
<s><8–s>

<s> <8–s> <s> <8–s> <s> <8–s>

P1
<s>

P2
<s>

Pn
<s>

C1
<s>

C2
<s>

Cn
<s>

Symbol Explanation

|| Concatenation
Ij Input block j to TDEA
RB(Ij) Rightmost (8-s) bytes of input block j

Note: The rightmost (8–s) bytes of the output block from the TDEA-decipher
operation are ignored.

Figure 7-107. KMF-TDEA-128 Decipher Operation

K1

OCV = RB(In) || Cn

<8>
DEA

I1

e
K1
<8>

DEA
e

I2

K1
<8>

DEA
e

…

…

…

…

…

In

K2
<8>

DEA
d

K2
<8>

DEA
d

K2
<8>

DEA
d

…

K1
<8>

DEA
e

K1
<8>

DEA
e

K1
<8>

DEA
e

…

K = K1 || K2

ICV
<8>

C1RB(I1)
<s><8–s>

Cn-1RB(In-1)
<s><8–s>

<s> <8–s> <s> <8–s> <s> <8–s>

C1
<s>

C2
<s>

Cn
<s>

P1
<s>

P2
<s>

Pn
<s>

General Instructions 7-99

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
KThe parameter block used for the KMF-TDEA-192

function has the following format:

For the KMF-TDEA-192 function, the chaining value
is in byte offset 0-7 of the parameter block and the
cryptographic key is in byte offsets 8-31 of the
parameter block.

The parameter block used for the KMF-Encrypted-
TDEA-192 function has the following format:

For the KMF-Encrypted-TDEA-192 function, the con-
tents of byte offsets 32-55 of the parameter block are
compared with the contents of the DEA wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-7
of the parameter block contain the chaining value,
and the contents of byte offsets 8-31 of the parame-
ter block are deciphered using the DEA wrapping key
to obtain the 192-bit cryptographic key. (See the sec-
tion, “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The s-byte plaintext
segments (P1, P2, …, Pn) in operand 2 are enci-
phered using the TDEA-encryption algorithm with the
192-bit cryptographic key and the 64-bit chaining

value, where s is the length of cipher feedback in
bytes.

The first input block to the TDEA-encryption algo-
rithm is the initial chaining value (ICV) in the parame-
ter block. Each input block is enciphered to produce
an output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte plaintext segment to form a s-byte ciphertext
segment. The remaining (8 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (8 - s) rightmost bytes of
the previous input block to form the next input block.

The process is repeated with the successive input
blocks until a ciphertext segment is produced for
every plaintext segment, or until a CPU-determined
number of ciphertext segments have been produced.

The ciphertext segments (C1, C2, …, Cn) are stored
in operand 1. The final next-input block (OCV) is
stored into the chaining-value field of the parameter
block. The operation is shown in Figure 7-110.

0 Chaining Value (CV)

8 Cryptographic Key 1 (K1)

16 Cryptographic Key 2 (K2)

24 Cryptographic Key 3 (K3)
0 63

Figure 7-108. Parameter Block for KMF-TDEA-192

0 Chaining Value (CV)

8
Encrypted Cryptographic Key

(WKd(K))
16

24

32 DEA Wrapping-Key
Verification Pattern

(WKdVP)
40

48
0 63

Figure 7-109. Parameter Block for KMF-Encrypted-TDEA-
192

Figure 7-110. KMF-TDEA-192 Encipher Operation

K1

OCV = RB(In) || Cn

<8>
DEA

I1

e
K1
<8>

DEA
e

I2

K1
<8>

DEA
e

…

…

…

…

…

…

In

K2
<8>

DEA
d

K2
<8>

DEA
d

K2
<8>

DEA
d

…

K3
<8>

DEA
e

K3
<8>

DEA
e

K3
<8>

DEA
e

…

K = K1 || K2 || K3

ICV
<8>

C1RB(I1)
<s><8–s>

Cn-1RB(In-1)
<s><8–s>

<s> <8–s> <s> <8–s> <s> <8–s>

P1
<s>

P2
<s>

Pn
<s>

C1
<s>

C2
<s>

Cn
<s>

7-100 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K

When the modifier bit in general register 0 is one, a
decipher operation is performed. The s-byte cipher-
text segments (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA-encryption algorithm with the
192-bit cryptographic key and the 64-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the TDEA-encryption algo-
rithm is the initial chaining value (ICV) in the parame-
ter block. Each input block is enciphered to produce
an output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte ciphertext segment to form a s-byte plaintext
segment. The remaining (8 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (8 - s) rightmost bytes of
the previous input block to form the next input block.

The process is repeated with the successive input
blocks until a plaintext segment is produced for every
ciphertext segment, or until a CPU-determined num-
ber of plaintext segments have been produced.

The plaintext segments (P1, P2, …, Pn) are stored in
operand 1. The final next-input block is stored into

the chaining-value field of the parameter block.The
operation is shown in Figure 7-111.

KMF-AES-128 (Function Code 18)

KMF-Encrypted-AES-128 (Function Code
26)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-93 on
page 7-92.

The parameter block used for the KMF-AES-128
function has the following format:

Symbol Explanation

|| Concatenation
Ij Input block j to TDEA
RB(Ij) Rightmost (8-s) bytes of input block j

Note: The rightmost (8–s) bytes of the output block from the TDEA-encipher
operation are ignored.

Figure 7-110. KMF-TDEA-192 Encipher Operation

Symbol Explanation

|| Concatenation
Ij Input block j to TDEA
RB(Ij) Rightmost (8-s) bytes of input block j

Note: The rightmost (8–s) bytes of the output block from the TDEA-decipher
operation are ignored.

Figure 7-111. KMF-TDEA-192 Decipher Operation

0
Chaining Value (CV)

8

16
Cryptographic Key (K)

24
0 63

Figure 7-112. Parameter Block for KMF-AES-128

K1

OCV = RB(In) || Cn

<8>
DEA

I1

e
K1
<8>

DEA
e

I2

K1
<8>

DEA
e

…

…

…

…

…

In

K2
<8>

DEA
d

K2
<8>

DEA
d

K2
<8>

DEA
d

…

K3
<8>

DEA
e

K3
<8>

DEA
e

K3
<8>

DEA
e

…

K = K1 || K2 || K3

ICV
<8>

C1RB(I1)
<s><8–s>

Cn-1RB(In-1)
<s><8–s>

<s> <8–s> <s> <8–s> <s> <8–s>

C1
<s>

C2
<s>

Cn
<s>

P1
<s>

P2
<s>

Pn
<s>

General Instructions 7-101

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
KFor the KMF-AES-128 function, the chaining value is

in byte offset 0-15 of the parameter block and the
cryptographic key is in byte offsets 16-31 of the
parameter block.

The parameter block used for the KMF-Encrypted-
AES-128 function has the following format:

For the KMF-Encrypted-AES-128 function, the con-
tents of byte offsets 32-63 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-15
of the parameter block contain the chaining value,
and the contents of byte offsets 16-31 of the parame-
ter block are deciphered using the AES wrapping key
to obtain the 128-bit cryptographic key. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The s-byte plaintext
segments (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES-encryption algorithm with the
128-bit cryptographic key and the 128-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte plaintext segment to form a s-byte ciphertext
segment. The remaining (16 - s) bytes of each output
block are ignored. Each ciphertext segment is con-

catenated to the right of the (16 - s) rightmost bytes
of the previous input block to form the next input
block.

The process is repeated with the successive input
blocks until a ciphertext segment is produced for
every plaintext segment, or until a CPU-determined
number of ciphertext segments have been produced.

The ciphertext segments (C1, C2, …, Cn) are stored
in operand 1. The final next-input block is stored into
the chaining-value field of the parameter block. The
operation is shown in Figure 7-114.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The s-byte cipher-
text segments (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES-encryption algorithm with the
128-bit cryptographic key and the 128-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-

0
Chaining Value (CV)

8

16 Encrypted Cryptographic Key
(WKa(K))24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)

40

48

56
0 63

Figure 7-113. Parameter Block for KMF-Encrypted-AES-
128

Symbol Explanation

|| Concatenation
Ij Input block j to AES
RB(Ij) Rightmost (16-s) bytes of input block j

Note: The rightmost (16–s) bytes of the output block from the AES-encipher
operation are ignored.

Figure 7-114. KMF-AES-128 Encipher Operation

K

OCV = RB(In) || Cn

<16>
AES

I1

ICV

e
K

<16>
AES

e

I2

K
<16>

AES
e

…

…

…

…

…

…

In

<s>

C1RB(I1)
<16> <s><16–s>

Cn-1RB(In-1)
<s><16–s>

<16–s> <s> <16–s> <s> <16–s>

P1
<s>

P2
<s>

Pn
<s>

C1
<s>

C2
<s>

Cn
<s>

7-102 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K byte ciphertext segment to form a s-byte plaintext

segment. The remaining (16 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (16 - s) rightmost bytes

of the previous input block to form the next input
block.

The process is repeated with the successive input
blocks until a plaintext segment is produced for every
ciphertext segment, or until a CPU-determined num-
ber of plaintext segments have been produced.

The plaintext segments (P1, P2, …, Pn) are stored in
operand 1. The final next-input block (OCV) is stored
into the chaining-value field of the parameter block.
The operation is shown in Figure 7-115.

KMF-AES-192 (Function Code 19)

KMF-Encrypted-AES-192 (Function Code
27)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-93 on
page 7-92.

The parameter block used for the KMF-AES-192
function has the following format:

For the KMF-AES-192 function, the chaining value is
in byte offset 0-15 of the parameter block and the
cryptographic key is in byte offsets 16-39 of the
parameter block.

The parameter block used for the KMF-Encrypted-
AES-192 function has the following format:

For the KMF-Encrypted-AES-192 function, the con-
tents of byte offsets 40-71 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-15
of the parameter block contain the chaining value,
and the contents of byte offsets 16-39 of the parame-
ter block are deciphered using the AES wrapping key
to obtain the 192-bit cryptographic key. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The s-byte plaintext

Symbol Explanation

|| Concatenation
Ij Input block j to AES
RB(Ij) Rightmost (16-s) bytes of input block j

Note: The rightmost (16–s) bytes of the output block from the AES-encipher
operation are ignored.

Figure 7-115. KMF-AES-128 Decipher Operation

K

OCV = RB(In) || Cn

<16>
AES

I1

e
K

<16>
AES

e

I2

K
<16>

AES
e

…

…

…

…

…

…

In

ICV
<16>

C1RB(I1)
<s><16–s>

Cn-1RB(In-1)
<s><16–s>

<s> <16–s> <s> <16–s> <s> <16–s>

C1
<s>

C2
<s>

Cn
<s>

P1
<s>

P2
<s>

Pn
<s>

0
Chaining Value (CV)

8

16

Cryptographic Key (K)24

32
0 63

Figure 7-116. Parameter Block for KMF-AES-192

0
Chaining Value (CV)

8

16
Encrypted Cryptographic Key

(WKa(K))
24

32

40
AES Wrapping-Key
Verification Pattern

(WKaVP)

48

56

64
0 63

Figure 7-117. Parameter Block for KMF-Encrypted-AES-
192

General Instructions 7-103

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
Ksegments (P1, P2, …, Pn) in operand 2 are enci-

phered using the AES-encryption algorithm with the
192-bit cryptographic key and the 128-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte plaintext segment to form a s-byte ciphertext
segment. The remaining (16 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (16 - s) rightmost bytes
of the previous input block to form the next input
block.

The process is repeated with the successive input
blocks until a ciphertext segment is produced for
every plaintext segment, or until a CPU-determined
number of ciphertext segments have been produced.

The ciphertext segments (C1, C2, …, Cn) are stored
in operand 1. The final next-input block (OCV) is
stored into the chaining-value field of the parameter
block. The operation is shown in Figure 7-118.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The s-byte cipher-
text segments (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES-encryption algorithm with the
192-bit cryptographic key and the 128-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte ciphertext segment to form a s-byte plaintext
segment. The remaining (16 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (16 - s) rightmost bytes
of the previous input block to form the next input
block.

The process is repeated with the successive input
blocks until a plaintext segment is produced for every
ciphertext segment, or until a CPU-determined num-
ber of plaintext segments have been produced.

The plaintext segments (P1, P2, …, Pn) are stored in
operand 1. The final next-input block (OCV) is stored
into the chaining-value field of the parameter block.
The operation is shown in Figure 7-119.

Symbol Explanation

|| Concatenation
Ij Input block j to AES
RB(Ij) Rightmost (16-s) bytes of input block j

Note: The rightmost (16–s) bytes of the output block from the AES-encipher
operation are ignored.

Figure 7-118. KMF-AES-192 Encipher Operation

K

OCV = RB(In) || Cn

<24>
AES

I1

ICV

e
K

<24>
AES

e

I2

K
<24>

AES
e

…

…

…

…

…

…

In

<s>

C1RB(I1)
<16> <s><16–s>

Cn-1RB(In-1)
<s><16–s>

<16–s> <s> <16–s> <s> <16–s>

P1
<s>

P2
<s>

Pn
<s>

C1
<s>

C2
<s>

Cn
<s>

Figure 7-119. KMF-AES-192 Decipher Operation

K

OCV = RB(In) || Cn

<24>
AES

I1

e
K

<24>
AES

e

I2

K
<24>

AES
e

…

…

…

…

…

…

In

ICV
<16>

C1RB(I1)
<s><16–s>

Cn-1RB(In-1)
<s><16–s>

<s> <16–s> <s> <16–s> <s> <16–s>

C1
<s>

C2
<s>

Cn
<s>

P1
<s>

P2
<s>

Pn
<s>

7-104 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
K

KMF-AES-256 (Function Code 20)

KMF-Encrypted-AES-256 (Function Code
28)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-93 on
page 7-92.

The parameter block used for the KMF-AES-256
function has the following format:

For the KMF-AES-256 function, the chaining value is
in byte offset 0-15 of the parameter block and the
cryptographic key is in byte offsets 16-47 of the
parameter block.

The parameter block used for the KMF-Encrypted-
AES-256 function has the following format:

For the KMF-Encrypted-AES-256 function, the con-
tents of byte offsets 48-79 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-15
of the parameter block contain the chaining value,
and the contents of byte offsets 16-47 of the parame-
ter block are deciphered using the AES wrapping key
to obtain the 256-bit cryptographic key. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The s-byte plaintext
segments (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES-encryption algorithm with the
256-bit cryptographic key and the 128-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte plaintext segment to form a s-byte ciphertext
segment. The remaining (16 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (16 - s) rightmost bytes
of the previous input block to form the next input
block.

The process is repeated with the successive input
blocks until a ciphertext segment is produced for
every plaintext segment, or until a CPU-determined
number of ciphertext segments have been produced.

The ciphertext segments (C1, C2, …, Cn) are stored
in operand 1. The final next-input block (OCV) is

Symbol Explanation

|| Concatenation
Ij Input block j to AES
RB(Ij) Rightmost (16-s) bytes of input block j

Note: The rightmost (16–s) bytes of the output block from the AES-decipher
operation are ignored.

0
Chaining Value (CV)

8

16

Cryptographic Key (K)
24

32

40
0 63

Figure 7-120. Parameter Block for KMF-AES-256

0
Chaining Value (CV)

8

16

Encrypted Cryptographic Key
(WKa(K))

24

32

40

48
AES Wrapping-Key
Verification Pattern

(WKaVP)

56

64

72
0 63

Figure 7-121. Parameter Block for KMF-Encrypted-AES-
256

Figure 7-119. KMF-AES-192 Decipher Operation

General Instructions 7-105

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

IP
H

E
R

 F
E

E
D

B
A

C
Kstored into the chaining-value field of the parameter

block.The operation is shown in Figure 7-122.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The s-byte cipher-
text segments (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES-encryption algorithm with the
256-bit cryptographic key and the 128-bit chaining
value, where s is the length of cipher feedback in
bytes.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. The s leftmost bytes of each output
block are exclusive-ORed with the corresponding s-
byte ciphertext segment to form a s-byte plaintext
segment. The remaining (16 - s) bytes of each output
block are ignored. Each ciphertext segment is con-
catenated to the right of the (16 - s) rightmost bytes
of the previous input block to form the next input
block.

The process is repeated with the successive input
blocks until a plaintext segment is produced for every
ciphertext segment, or until a CPU-determined num-
ber of plaintext segments have been produced.

The plaintext segments (P1, P2, …, Pn) are stored in
operand 1. The final next-input block is stored into
the chaining-value field of the parameter block. The
operation is shown in Figure 7-123.

Special Conditions

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. For DEA or TDEA functions, bits 32-39 of gen-
eral register 0 specify a value that is zero or
greater than 8.

2. For AES functions, bits 32-39 of general register
0 specify a value that is zero or greater than 16.

3. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

4. The R1 or R2 field designates an odd-numbered
register or general register 0.

5. The second operand length is not a multiple of
the length of cipher feedback. This specification-
exception condition does not apply to the query
functions.

Symbol Explanation

|| Concatenation
Ij Input block j to AES
RB(Ij) Rightmost (16-s) bytes of input block j

Note: The rightmost (16–s) bytes of the output block from the AES-encipher
operation are ignored.

Figure 7-122. KMF-AES-256 Encipher Operation

K

OCV = RB(In) || Cn

<32>
AES

I1

ICV

e
K

<32>
AES

e

I2

K
<32>

AES
e

…

…

…

…

…

…

In

<s>

C1RB(I1)
<16> <s><16–s>

Cn-1RB(In-1)
<s><16–s>

<16–s> <s> <16–s> <s> <16–s>

P1
<s>

P2
<s>

Pn
<s>

C1
<s>

C2
<s>

Cn
<s>

Symbol Explanation

|| Concatenation
Ij Input block j to AES
RB(Ij) Rightmost (16-s) bytes of input block j

Note: The rightmost (16–s) bytes of the output block from the AES-decipher
operation are ignored.

Figure 7-123. KMF-AES-256 Decipher Operation

K

OCV = RB(In) || Cn

<32>
AES

I1

e
K

<32>
AES

e

I2

K
<32>

AES
e

…

…

…

…

…

…

In

ICV
<16>

C1RB(I1)
<s><16–s>

Cn-1RB(In-1)
<s><16–s>

<s> <16–s> <s> <16–s> <s> <16–s>

C1
<s>

C2
<s>

Cn
<s>

P1
<s>

P2
<s>

Pn
<s>

7-106 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
R Resulting Condition Code:

0 Normal completion
1 Verification-pattern mismatch
2 --
3 Partial completion

Program Exceptions:

• Access (fetch, operand 2, cryptographic key, and
wrapping-key verification pattern; store, operand
1; fetch and store, chaining value)

• Operation (if the message-security-assist exten-
sion 4 is not installed)

• Specification
• Transaction constraint

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply

examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. See the programming notes for CIPHER MES-
SAGE WITH CHAINING.

3. In earlier versions of the architecture, CIPHER
MESSAGE WITH CIPHER FEEDBACK was
known as CIPHER MESSAGE WITH CFB.

4. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

CIPHER MESSAGE WITH
COUNTER

KMCTR R1,R3,R2 [RRF-b]

A function specified by the function code in general
register 0 is performed.

Bits 20-23 of the instruction are ignored.

Bit positions 57-63 of general register 0 contain the
function code. Figure 7-125 shows the assigned
function codes for CIPHER MESSAGE WITH
COUNTER. All other function codes are unassigned.
For cipher functions, bit 56 is the modifier bit which
specifies whether an encryption or a decryption oper-
ation is to be performed. The modifier bit is ignored
for all other functions. All other bits of general register
0 are ignored.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint

8. Specification exception due to invalid function
code or invalid register number.

9. Specification exception due to invalid operand
length.

10. Condition code 0 due to second-operand length
originally zero.

11.A.1 Access exceptions for an access to the
parameter block.

11.A.2. Condition code 1 due to verification-pattern
mismatch.

11.B Access exceptions for an access to the first, or
second operand.

12. Condition code 0 due to normal completion
(second-operand length originally nonzero, but
stepped to zero).

13. Condition code 3 due to partial completion
(second-operand length still nonzero).

Figure 7-124. Priority of Execution: KMF

‘B92D’ R3 / / / / R1 R2

0 16 20 24 28 31

General Instructions 7-107

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
Rof bit positions 0-63 of general register 1 constitute

the address.

The function codes for CIPHER MESSAGE WITH
COUNTER are as follows.

All other function codes are unassigned.

The query function provides the means of indicating
the availability of the other functions. The contents of
general registers R1, R2, R2 + 1, and R3 are ignored
for the query function.

For all other functions, the second operand is
ciphered as specified by the function code using a
cryptographic key and counter values, and the result
is placed in the first-operand location.

The R1 and R3 fields each designate a general regis-
ter and must designate an even-numbered register
other than general register 0; otherwise, a specifica-
tion exception is recognized. The R2 field designates
an even-odd pair of general registers and must des-
ignate an even-numbered register other than general
register 0; otherwise, a specification exception is rec-
ognized.

The location of the leftmost byte of the first, second,
and third operands is specified by the contents of the
R1, R2, and R3 general registers, respectively. The
number of bytes in the second-operand location is
specified in general register R2 + 1. The first operand
and the third operand are the same length as the
second operand.

As part of the operation, the addresses in general
registers R1, R2, and R3 are incremented by the num-
ber of bytes processed, and the length in general
register R2 + 1 is decremented by the same number.
The formation and updating of the addresses and
length is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1, R2, and R3

constitute the addresses of the first, second, and
third operands, respectively, and the contents of bit
positions 0-39 are ignored; bits 40-63 of the updated
addresses replace the corresponding bits in general
registers R1, R2, and R3, carries out of bit position 40
of the updated address are ignored, and the contents
of bit positions 32-39 of general registers R1, R2, and
R3 are set to zeros. In the 31-bit addressing mode,
the contents of bit positions 33-63 of general regis-
ters R1, R2, and R3 constitute the addresses of the
first, second, and third operands, respectively, and
the contents of bit positions 0-32 are ignored; bits
33-63 of the updated addresses replace the corre-
sponding bits in general registers R1, R2, and R3, car-
ries out of bit position 33 of the updated address are
ignored, and the content of bit position 32 of general
registers R1, R2, and R3 is set to zero. In the 64-bit
addressing mode, the contents of bit positions 0-63
of general registers R1, R2, and R3 constitute the
addresses of the first, second, and third operands,
respectively; bits 0-63 of the updated addresses
replace the contents of general registers R1, R2, and
R3, and carries out of bit position 0 are ignored.

In both the 24-bit and the 31-bit addressing modes,
the contents of bit positions 32-63 of general register
R2 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the first, second, and
third operands, and the contents of bit positions 0-31
are ignored; bits 32-63 of the updated value replace
the corresponding bits in general register R2 + 1. In
the 64-bit addressing mode, the contents of bit posi-
tions 0-63 of general register R2 + 1 form a 64-bit
unsigned binary integer which specifies the number
of bytes in the first, second, and third operands; the
updated value replaces the contents of general regis-
ter R2 + 1.

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 KMCTR-Query 16 —

1 KMCTR-DEA 8 8

2 KMCTR-TDEA-128 16 8

3 KMCTR-TDEA-192 24 8

9 KMCTR-Encrypted-DEA 32 8

10 KMCTR-Encrypted-TDEA-128 40 8

11 KMCTR-Encrypted-TDEA-192 48 8

18 KMCTR-AES-128 16 16

19 KMCTR-AES-192 24 16

20 KMCTR-AES-256 32 16

26 KMCTR-Encrypted-AES-128 48 16

27 KMCTR-Encrypted-AES-192 56 16

28 KMCTR-Encrypted-AES-256 64 16

Explanation:

— Not applicable

Figure 7-125. Function Codes for CIPHER MESSAGE
WITH COUNTER

7-108 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
R In the 24-bit or 31-bit addressing mode, the contents

of bit positions 0-31 of general registers R1, R2,
R2 + 1, and R3 always remain unchanged.

Figure 7-126 on page 7-108 shows the contents of
the general registers just described.

In the access-register mode, access registers 1, R1,
R2, and R3 specify the address spaces containing the
parameter block, first, second, and third operands,
respectively.

The result is obtained as if processing starts at the
left end of the first, second, and third operands and
proceeds to the right, block by block. The operation is
ended when the number of bytes in the second oper-

All Addressing Modes

GR0 / M FC
0 8 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R1 / First-Operand Address
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

R3 / Third-Operand Address
0 40 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R1 / First-Operand Address
0 33 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

R3 / Third-Operand Address
0 33 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R1 First-Operand Address
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

R3 Third-Operand Address
0 63

Figure 7-126. General Register Assignment for KMCTR

General Instructions 7-109

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
Rand as specified in general register R2 + 1 have been

processed and placed at the first-operand location
(called normal completion) or when a CPU-deter-
mined number of blocks that is less than the length of
the second operand have been processed (called
partial completion). The CPU-determined number of
blocks depends on the model, and may be a different
number each time the instruction is executed. The
CPU-determined number of blocks is usually non-
zero. In certain unusual situations, this number may
be zero, and condition code 3 may be set with no
progress. However, the CPU protects against end-
less reoccurrence of this no-progress case.

The results in the first-operand location are unpre-
dictable if any of the following situations occurs:

1. The cryptographic-key field or the encrypted
cryptographic-key field overlaps any portion of
the first operand.

2. The first and second operands overlap destruc-
tively.

3. The first and third operands overlap destructively.

Operands are said to overlap destructively when the
first-operand location would be used as a source
after data would have been moved into it, assuming
processing to be performed from left to right and one
byte at a time.

When the operation ends due to normal completion,
condition code 0 is set and the resulting value in
R2 + 1 is zero. When the operation ends due to par-
tial completion, condition code 3 is set and the result-
ing value in R2 + 1 is nonzero.

A PER storage-alteration event may be recognized
both for the first-operand location and for the portion
of the parameter block that is stored. A PER zero-
address-detection event may be recognized for the
first- , second-, and third-operand locations and for
the parameter block. When PER events are detected
for one or more of these locations, it is unpredictable
which location is identified in the PER access identifi-
cation (PAID) and PER ASCE ID (AI).

When a storage-alteration PER event is recognized,
fewer than 4K additional bytes are stored into the
first-operand locations before the event is reported.

When the second-operand length is initially zero, the
parameter block, first, second, and third operands

are not accessed, general registers R1, R2, R2 + 1,
and R3 are not changed, and condition code 0 is set.

When the contents of any two or all three of the R1,
R2, and R3 fields are the same, the contents of the
designated registers are incremented only by the
number of bytes processed, not by a multiple of the
number of bytes processed.

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block and
storage operands may be multiple-access refer-
ences, accesses to these storage locations are not
necessarily block-concurrent, and the sequence of
these accesses or references is undefined.

In certain unusual situations, instruction execution
may complete by setting condition code 3 without
updating the registers to reflect the last unit of the
first, second, and third operands processed. The size
of the unit processed in this case depends on the sit-
uation and the model, but is limited such that the por-
tion of the first and second operands which have
been processed and not reported do not overlap in
storage; and the portion of the first and third oper-
ands which have been processed and not reported
do not overlap in storage. In all cases, change bits
are set and PER storage-alteration events are
reported, when applicable, for all first-operand loca-
tions processed.

For functions that perform a comparison of the wrap-
ping-key verification pattern field in the parameter
block with the wrapping-key verification-pattern regis-
ter, it is unpredictable whether access exceptions
and PER zero-address-detection events are recog-
nized for the first, second, and third operands when
the comparison results in a mismatch.

Access exceptions may be reported for a larger por-
tion of an operand than is processed in a single exe-
cution of the instruction; however, access exceptions
are not recognized for locations beyond the length of
an operand nor for locations more than 4K bytes
beyond the current location being processed.

Symbols Used in Function Descriptions

The following symbols are used in the subsequent
description of the CIPHER MESSAGE WITH
COUNTER functions. For data-encryption-algorithm
(DEA) functions, the DEA-key-parity bit in each byte
of the DEA key is ignored, and the operation pro-

7-110 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
R ceeds normally, regardless of the DEA-key parity of

the key.

Further description of the data-encryption algorithm
may be found in Reference [13.] on page xxx. Further
description of the AES standard may be found in Ref-
erence [14.] on page xxx. Further description of the
counter mode of encryption and decryption may be
found in Reference [16.] on page xxx.

Figure 7-127. Symbol For Bit-Wise Exclusive OR

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-128. Symbols for DEA Encryption

A

C

B

C = A B

DEA

P <8>

C <8>

Symbol for DEA

K <8>

Encryption

e

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-129. Symbols for AES-128 Encryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-130. Symbols for AES-192 Encryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-131. Symbols for AES-256 Encryption

AES

P <16>

C <16>

Symbol for AES-128

K <16>

Encryption

e

AES

P <16>

C <16>

Symbol for AES-192

K <24>

Encryption

e

AES

P <16>

C <16>

Symbol for AES-256

K <32>

Encryption

e

General Instructions 7-111

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
RKMCTR-Query (Function Code 0)

The locations of the operands and addresses used
by the instruction are as shown in Figure 7-126 on
page 7-108.

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the CIPHER MESSAGE
WITH COUNTER instruction. When a bit is one, the
corresponding function is installed; otherwise, the
function is not installed.

Condition code 0 is set when execution of the
KMCTR-Query function completes; condition codes
1 and 3 are not applicable to this function.

KMCTR-DEA (Function Code 1)

KMCTR-Encrypted-DEA (Function Code
9)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-126 on
page 7-108.

The parameter block used for the KMCTR-DEA func-
tion has the following format:

For the KMCTR-DEA function, the cryptographic key
is in byte offsets 0-7 of the parameter block.

The parameter block used for the KMCTR-
Encrypted-DEA function has the following format:

For the KMCTR-Encrypted-DEA function, the con-
tents of byte offsets 8-31 of the parameter block are
compared with the contents of the DEA wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
byte offsets 0-7 of the parameter block are deci-
phered using the DEA wrapping key to obtain the 64-
bit cryptographic key. (See the section “Protection of
Cryptographic Keys” on page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the DEA algorithm with the 64-bit cryptographic
key and using 8-byte counter-value blocks (R1, R2,
…, Rn) in operand 3. Each plaintext block is inde-
pendently enciphered; that is, the encipher operation
is performed without chaining. The ciphertext blocks
(C1, C2, …, Cn) are stored in operand 1. The opera-
tion is shown in Figure 7-135.

0
Status Word

8
0 63

Figure 7-132. Parameter Block for KMCTR-Query

0 Cryptographic Key (K)
0 63

Figure 7-133. Parameter Block for KMCTR-DEA

0 Encrypted Cryptographic Key (WKd(K))

8 DEA Wrapping-Key
Verification Pattern

(WKdVP)
16

24
0 63

Figure 7-134. Parameter Block for KMCTR-Encrypted-DEA

Figure 7-135. KMCTR DEA Encipher Operation Using 64-
Bit Key

R1 <8> R2 <8> R3 <8>
...

Rn <8>
...

Operand 3
in Storage

C1 <8> C2 <8> C3 <8>
...

Cn <8>
...

Operand 1
in Storage

DEA
e

DEA
e

DEA
e

DEA
e

K
<8>

K
<8>

K
<8>

K
<8>

P1
<8>

P2
<8>

P3
<8>

Pn
<8>

P1 <8> P2 <8> P3 <8>
...

Pn <8>
...

Operand 2
in Storage

...

...

7-112 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
R When the modifier bit in general register 0 is one, a

decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the DEA algorithm with the 64-bit
cryptographic key and using 8-byte counter-value
blocks (R1, R2, …, Rn) in operand 3. Each ciphertext
block is independently deciphered; that is, the deci-
pher operation is performed without chaining. The
plaintext blocks (P1, P2, …, Pn) are stored in oper-
and 1. The operation is shown in Figure 7-136.

KMCTR-TDEA-128 (Function Code 2)

KMCTR-Encrypted-TDEA-128 (Function
Code 10)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-126 on
page 7-108.

The parameter block used for the KMCTR-TDEA-128
function has the following format:

For the KMCTR-TDEA-128 function, the cryp-
tographic key is in byte offsets 0-15 of the parameter
block.

The parameter block used for the KMCTR-
Encrypted-TDEA-128 function has the following for-
mat:

For the KMCTR-Encrypted-TDEA-128 function, the
contents of byte offsets 16-39 of the parameter block
are compared with the contents of the DEA wrap-
ping-key verification-pattern register. If they mis-
match, the first-operand and parameter-block
locations remain unchanged, and the operation is
completed by setting condition code 1. If they match,
the contents of byte offsets 0-15 of the parameter
block are deciphered using the DEA wrapping key to
obtain the 128-bit cryptographic key, K = K1 || K2,
where K1 is the leftmost 64 bits of K and K2 is the
rightmost 64 bits of K. (See the section “Protection of
Cryptographic Keys” on page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the TDEA (triple DEA) algorithm with the two
64-bit cryptographic keys and using 8-byte counter-
value blocks (R1, R2, …, Rn) in operand 3. Each
plaintext block is independently enciphered; that is,
the encipher operation is performed without chaining.

Figure 7-136. KMCTR DEA Decipher Operation Using 64-
Bit Key

0 Cryptographic Key 1 (K1)

8 Cryptographic Key 2 (K2)
0 63

Figure 7-137. Parameter Block for KMCTR-TDEA-128

...

R1 <8> R2 <8> R3 <8>
...

Rn <8>
...

Operand 3
in Storage

P1 <8> P2 <8> P3 <8>
...

Pn <8>
...

Operand 1
in Storage

DEA
e

DEA
e

DEA
e

DEA
e

K
<8>

K
<8>

K
<8>

K
<8>

C1
<8>

C2
<8>

C3
<8>

Cn
<8>

C1 <8> C2 <8> C3 <8>
...

Cn <8>
...

Operand 2
in Storage

...

...

0 Encrypted Cryptographic Key
(WKd(K))8

16 DEA Wrapping-Key
Verification Pattern

(WKdVP)
24

32
0 63

Figure 7-138. Parameter Block for KMCTR Encrypted-
TDEA-128

General Instructions 7-113

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
RThe ciphertext blocks (C1, C2, …, Cn) are stored in

operand 1. The operation is shown in Figure 7-139.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA algorithm with the two 64-bit
cryptographic keys and using 8-byte counter-value
blocks (R1, R2, …, Rn) in operand 3. Each ciphertext
block is independently deciphered; that is, the deci-
pher operation is performed without chaining. The

plaintext blocks (P1, P2, …, Pn) are stored in oper-
and 1. The operation is shown in Figure 7-140.

KMCTR-TDEA-192 (Function Code 3)

KMCTR-Encrypted-TDEA-192 (Function
Code 11)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-126 on
page 7-108.

The parameter block used for the KMCTR-TDEA-192
function has the following format:

For the KMCTR-TDEA-192 function, the cryp-
tographic key is in byte offsets 0-23 of the parameter
block.

Figure 7-139. KMCTR TDEA Encipher Operation Using
128-Bit Key

R1 <8> R2 <8> R3 <8>
...

Rn <8>
...

Operand 3
in Storage

C1 <8>
...

...
Operand 1
in Storage

DEA
e

DEA
e

DEA
e

DEA
e

K1
<8>

K1
<8>

K1
<8>

K1
<8>

P1
<8>

P1 <8> P2 <8> P3 <8>
...

Pn <8>
...

Operand 2
in Storage

...

...

DEA
d

DEA
d

DEA
d

DEA
d

K2
<8>

K2
<8>

K2
<8>

K2
<8>

...

DEA
e

DEA
e

DEA
e

DEA
e

K1
<8>

K1
<8>

K1
<8>

K1
<8>

...

C2 <8>

P2
<8>

C3 <8>

P3
<8>

Cn <8>

Pn
<8>

Figure 7-140. KMCTR TDEA Decipher Operation Using
128-Bit Key

0 Cryptographic Key 1 (K1)

8 Cryptographic Key 2 (K2)

16 Cryptographic Key 3 (K3)
0 63

Figure 7-141. Parameter Block for KMCTR-TDEA-192

R1 <8> R2 <8> R3 <8>
...

Rn <8>
...

Operand 3
in Storage

P1 <8>
...

...
Operand 1
in Storage

DEA
e

DEA
e

DEA
e

DEA
e

K1
<8>

K1
<8>

K1
<8>

K1
<8>

C1
<8>

C1 <8> C2 <8> C3 <8>
...

Cn <8>
...

Operand 2
in Storage

...

...

DEA
d

DEA
d

DEA
d

DEA
d

K2
<8>

K2
<8>

K2
<8>

K2
<8>

...

DEA
e

DEA
e

DEA
e

DEA
e

K1
<8>

K1
<8>

K1
<8>

K1
<8>

...

P2 <8>

C2
<8>

P3 <8>

C3
<8>

Pn <8>

Cn
<8>

7-114 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
R The parameter block used for the KMCTR-

Encrypted-TDEA-192 function has the following for-
mat:

For the KMCTR-Encrypted-TDEA-192 function, the
contents of byte offsets 24-47 of the parameter block
are compared with the contents of the DEA wrap-
ping-key verification-pattern register. If they mis-
match, the first-operand and parameter-block
locations remain unchanged, and the operation is
completed by setting condition code 1. If they match,
the contents of byte offsets 0-23 of the parameter
block are deciphered using the DEA wrapping key to
obtain the 192-bit cryptographic key, K = K1 || K2 ||
K3, where K1 is the leftmost 64 bits of K, K2 is the
middle 64 bits of K, and K3 is the rightmost 64 bits of
K. (See the section “Protection of Cryptographic
Keys” on page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the TDEA algorithm with the three 64-bit cryp-
tographic keys and using 8-byte counter-value blocks

(R1, R2, …, Rn) in operand 3. Each plaintext block is
independently enciphered; that is, the encipher oper-
ation is performed without chaining. The ciphertext
blocks (C1, C2, …, Cn) are stored in operand 1. The
operation is shown in Figure 7-143.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA algorithm with the three
64-bit cryptographic keys and using 8-byte counter-
value blocks (R1, R2, …, Rn) in operand 3. Each
ciphertext block is independently deciphered; that is,
the decipher operation is performed without chaining.

0 Encrypted
Cryptographic
Key (WKd(K))

8

16

24 DEA Wrapping-Key
Verification Pattern

(WKdVP)
32

40
0 63

Figure 7-142. Parameter Block for KMCTR-Encrypted-
TDEA-192

Figure 7-143. KMCTR TDEA Encipher Operation Using
192-Bit Key

R1 <8> R2 <8> R3 <8>
...

Rn <8>
...

Operand 3
in Storage

C1 <8>
...

...
Operand 1
in Storage

DEA
e

DEA
e

DEA
e

DEA
e

K1
<8>

K1
<8>

K1
<8>

K1
<8>

P1
<8>

P1 <8> P2 <8> P3 <8>
...

Pn <8>
...

Operand 2
in Storage

...

...

DEA
d

DEA
d

DEA
d

DEA
d

K2
<8>

K2
<8>

K2
<8>

K2
<8>

...

DEA
e

DEA
e

DEA
e

DEA
e

K3
<8>

K3
<8>

K3
<8>

K3
<8>

...

C2 <8>

P2
<8>

C3 <8>

P3
<8>

Cn <8>

Pn
<8>

General Instructions 7-115

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
RThe plaintext blocks (P1, P2, …, Pn) are stored in

operand 1. The operation is shown in Figure 7-144.

KMCTR-AES-128 (Function Code 18)

KMCTR-Encrypted-AES-128 (Function
Code 26)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-126 on
page 7-108.

The parameter block used for the KMCTR-AES-128
function has the following format:

For the KMCTR-AES-128 function, the cryptographic
key is in byte offsets 0-15 of the parameter block.

The parameter block used for the KMCTR-encrypted-
AES-128 function has the following format:

For the KMCTR-Encrypted-AES-128 function, the
contents of byte offsets 16-47 of the parameter block
are compared with the contents of the AES wrap-
ping-key verification-pattern register. If they mis-
match, the first-operand and parameter-block
locations remain unchanged, and the operation is
completed by setting condition code 1. If they match,
the contents of byte offsets 0-15 of the parameter
block are deciphered using the AES wrapping key to
obtain the 128-bit cryptographic key, K. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES algorithm with the 128-bit
cryptographic key and using 16-byte counter-value
blocks (R1, R2, …, Rn) in operand 3. Each plaintext
block is independently enciphered; that is, the enci-
pher operation is performed without chaining. The

Figure 7-144. KMCTR TDEA Decipher Operation Using
192-Bit Key

0
Cryptographic Key (K)

8
0 63

Figure 7-145. Parameter Block for KMCTR-AES-128

R1 <8> R2 <8> R3 <8>
...

Rn <8>
...

Operand 3
in Storage

P1 <8>
...

...
Operand 1
in Storage

DEA
e

DEA
e

DEA
e

DEA
e

K1
<8>

K1
<8>

K1
<8>

K1
<8>

C1
<8>

C1 <8> C2 <8> C3 <8>
...

Cn <8>
...

Operand 2
in Storage

...

...

DEA
d

DEA
d

DEA
d

DEA
d

K2
<8>

K2
<8>

K2
<8>

K2
<8>

...

DEA
e

DEA
e

DEA
e

DEA
e

K3
<8>

K3
<8>

K3
<8>

K3
<8>

...

P2 <8>

C2
<8>

P3 <8>

C3
<8>

Pn <8>

Cn
<8>

0 Encrypted Cryptographic Key
(WKa(K))8

16
AES Wrapping-Key
Verification Pattern

(WKaVP)

24

32

40
0 63

Figure 7-146. Parameter Block for KMCTR-Encrypted-
AES-128

7-116 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
R ciphertext blocks (C1, C2, …, Cn) are stored in oper-

and 1. The operation is shown in Figure 7-147.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES algorithm with the 128-bit
cryptographic key and using 16-byte counter-value
blocks (R1, R2, …, Rn) in operand 3. Each ciphertext
block is independently deciphered; that is, the deci-
pher operation is performed without chaining. The
plaintext blocks (P1, P2, …, Pn) are stored in oper-
and 1. The operation is shown in Figure 7-148.

KMCTR-AES-192 (Function Code 19)

KMCTR-Encrypted-AES-192 (Function
Code 27)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-126 on
page 7-108.

The parameter block used for the KMCTR-AES-192
function has the following format:

For the KMCTR-AES-192 function, the cryptographic
key is in byte offsets 0-23 of the parameter block.

The parameter block used for the KMCTR-
Encrypted-AES-192 function has the following for-
mat:

For the KMCTR-Encrypted-AES-192 function, the
contents of byte offsets 24-55 of the parameter block
are compared with the contents of the AES wrap-
ping-key verification-pattern register. If they mis-
match, the first-operand and parameter-block
locations remain unchanged, and the operation is
completed by setting condition code 1. If they match,
the contents of byte offsets 0-23 of the parameter
block are deciphered using the AES wrapping key to
obtain the 192-bit cryptographic key, K. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

Figure 7-147. KMCTR AES Encipher Operation Using 128-
Bit Key

Figure 7-148. KMCTR AES Decipher Operation Using 128-
Bit Key

R1 <16> R2 <16> R3 <16>
...

Rn <16>
...

Operand 3
in Storage

C1 <16> C2 <16> C3 <16>
...

Cn <16>
...

Operand 1
in Storage

AES
e

AES
e

AES
e

AES
e

K
<16>

K
<16>

K
<16>

K
<16>

P1
<16>

P2
<16>

P3
<16>

Pn
<16>

P1 <16> P2 <16> P3 <16>
...

Pn <16>
...

Operand 2
in Storage

...

...

R1 <16> R2 <16> R3 <16>
...

Rn <16>
...

Operand 3
in Storage

P1 <16> P2 <16> P3 <16>
...

Pn <16>
...

Operand 1
in Storage

AES
e

AES
e

AES
e

AES
e

K
<16>

K
<16>

K
<16>

K
<16>

C1
<16>

C2
<16>

C3
<16>

Cn
<16>

C1 <16> C2 <16> C3 <16>
...

Cn <16>
...

Operand 2
in Storage

...

...

0

Cryptographic Key (K)8

16
0 63

Figure 7-149. Parameter Block for KMCTR-AES-192

0 Encrypted
Cryptographic
Key (WKa(K))

8

16

24
AES Wrapping-Key
Verification Pattern

(WKaVP)

32

40

48
0 63

Figure 7-150. Parameter Block for KMCTR-Encrypted-
AES-192

General Instructions 7-117

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
RWhen the modifier bit in general register 0 is zero, an

encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES algorithm with the 192-bit
cryptographic key and using 16-byte counter-value
blocks (R1, R2, …, Rn) in operand 3. Each plaintext
block is independently enciphered; that is, the enci-
pher operation is performed without chaining. The
ciphertext blocks (C1, C2, …, Cn) are stored in oper-
and 1. The operation is shown in Figure 7-151.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES algorithm with the 192-bit
cryptographic key and using 16-byte counter-value
blocks (R1, R2, …, Rn) in operand 3. Each ciphertext
block is independently deciphered; that is, the deci-
pher operation is performed without chaining. The

plaintext blocks (P1, P2, …, Pn) are stored in oper-
and 1. The operation is shown Figure 7-152.

KMCTR-AES-256 (Function Code 20)

KMCTR-Encrypted-AES-256 (Function
Code 28)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-126 on
page 7-108.

The parameter block used for the KMCTR-AES-256
function has the following format:

For the KMCTR-AES-256 function, the cryptographic
key is in byte offsets 0-31 of the parameter block.

Figure 7-151. KMCTR AES Encipher Operation Using 192-
Bit Key

R1 <16> R2 <16> R3 <16>
...

Rn <16>
...

Operand 3
in Storage

C1 <16> C2 <16> C3 <16>
...

Cn <16>
...

Operand 1
in Storage

AES
e

AES
e

AES
e

AES
e

K
<24>

K
<24>

K
<24>

K
<24>

P1
<16>

P2
<16>

P3
<16>

Pn
<16>

P1 <16> P2 <16> P3 <16>
...

Pn <16>
...

Operand 2
in Storage

...

...

Figure 7-152. KMCTR AES Decipher Operation Using 192-
Bit Key

0

Cryptographic Key (K)
8

16

24
0 63

Figure 7-153. Parameter Block for KMCTR-AES-256

R1 <16> R2 <16> R3 <16>
...

Rn <16>
...

Operand 3
in Storage

P1 <16> P2 <16> P3 <16>
...

Pn <16>
...

Operand 1
in Storage

AES
e

AES
e

AES
e

AES
e

K
<24>

K
<24>

K
<24>

K
<24>

C1
<16>

C2
<16>

C3
<16>

Cn
<16>

C1 <16> C2 <16> C3 <16>
...

Cn <16>
...

Operand 2
in Storage

...

...

7-118 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 C

O
U

N
T

E
R The parameter block used for the KMCTR-

Encrypted-AES-256 function has the following for-
mat:

For the KMCTR-Encrypted-AES-256 function, the
contents of byte offsets 32-63 of the parameter block
are compared with the contents of the AES wrap-
ping-key verification-pattern register. If they mis-
match, the first-operand and parameter-block
locations remain unchanged, and the operation is
completed by setting condition code 1. If they match,
the contents of byte offsets 0-31 of the parameter
block are deciphered using the AES wrapping key to
obtain the 256-bit cryptographic key, K. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES algorithm with the 256-bit
cryptographic key and using 16-byte counter-value
blocks (R1, R2, …, Rn) in operand 3. Each plaintext
block is independently enciphered; that is, the enci-
pher operation is performed without chaining. The

ciphertext blocks (C1, C2, …, Cn) are stored in oper-
and 1. The operation is shown in Figure 7-155.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES algorithm with the 256-bit
cryptographic key and using 16-byte counter-value
blocks (R1, R2, …, Rn) in operand 3. Each ciphertext
block is independently deciphered; that is, the deci-
pher operation is performed without chaining. The
plaintext blocks (P1, P2, …, Pn) are stored in oper-
and 1. The operation is shown in Figure 7-156.

Special Conditions for KMCTR

A specification exception is recognized and no other
action is taken if any of the following occurs:

0 Encrypted
Cryptographic

Key
(WKa(K))

8

16

24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)

40

48

56
0 63

Figure 7-154. Parameter Block for KMCTR-Encrypted-
AES-256

Figure 7-155. KMCTR AES Encipher Operation Using 256-
Bit Key

Figure 7-156. KMCTR AES Decipher Operation Using 256-
Bit Key

R1 <16> R2 <16> R3 <16>
...

Rn <16>
...

Operand 3
in Storage

C1 <16> C2 <16> C3 <16>
...

Cn <16>
...

Operand 1
in Storage

AES
e

AES
e

AES
e

AES
e

K
<32>

K
<32>

K
<32>

K
<32>

P1
<16>

P2
<16>

P3
<16>

Pn
<16>

P1 <16> P2 <16> P3 <16>
...

Pn <16>
...

Operand 2
in Storage

...

...

R1 <16> R2 <16> R3 <16>
...

Rn <16>
...

Operand 3
in Storage

P1 <16> P2 <16> P3 <16>
...

Pn <16>
...

Operand 1
in Storage

AES
e

AES
e

AES
e

AES
e

K
<32>

K
<32>

K
<32>

K
<32>

C1
<16>

C2
<16>

C3
<16>

Cn
<16>

C1 <16> C2 <16> C3 <16>
...

Cn <16>
...

Operand 2
in Storage

...

...

General Instructions 7-119

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

K1. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

2. The R1 R2, or R3 field designates an odd-num-
bered register or general register 0.

3. The second operand length is not a multiple of
the data block size of the designated function
(see Figure 7-125 on page 7-107 to determine
the data block sizes for CIPHER MESSAGE
WITH COUNTER functions).This specification-
exception condition does not apply to the query
functions.

Resulting Condition Code:

0 Normal completion
1 Verification-pattern mismatch
2 --
3 Partial completion

Program Exceptions:

• Access (fetch, operand 2, operand 3, cryp-
tographic key, and wrapping-key verification pat-
tern; store, operand 1)

• Operation (if the message-security-assist exten-
sion 4 is not installed)

• Specification
• Transaction constraint

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

CIPHER MESSAGE WITH OUTPUT
FEEDBACK

KMO R1,R2 [RRE]

A function specified by the function code in general
register 0 is performed.

Bits 16-23 of the instruction are ignored.

Bit positions 57-63 of general register 0 contain the
function code. Figure 7-158 shows the assigned
function codes for CIPHER MESSAGE WITH OUT-
PUT FEEDBACK. All other function codes are unas-
signed. For cipher functions, bit 56 is the modifier bit
which specifies whether an encryption or a decryp-
tion operation is to be performed. The modifier bit is
ignored for all other functions. All other bits of general
register 0 are ignored.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint

8. Specification exception due to invalid function
code or invalid register number.

9. Specification exception due to invalid operand
length.

10. Condition code 0 due to second-operand length
originally zero.

11.A.1 Access exceptions for an access to the
parameter block.

Figure 7-157. Priority of Execution: KMCTR

11.A.2. Condition code 1 due to verification-pattern
mismatch.

11.B Access exceptions for an access to the first,
second, or third operand.

12. Condition code 0 due to normal completion
(second-operand length originally nonzero, but
stepped to zero).

13. Condition code 3 due to partial completion
(second-operand length still nonzero).

'B92B' / / / / / / / / R1 R2

0 16 24 28 31

Figure 7-157. Priority of Execution: KMCTR (Continued)

7-120 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

K General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

The function codes for CIPHER MESSAGE WITH
OUTPUT FEEDBACK are as follows.

All other function codes are unassigned.

The query function provides the means of indicating
the availability of the other functions. The contents of
general registers R1, R2, and R2 + 1 are ignored for
the query function.

For all other functions, the second operand is
ciphered as specified by the function code using a
cryptographic key and an initial chaining value in the
parameter block, and the result is placed in the first-

operand location. The chaining value is updated as
part of the operation.

The R1 field designates a general register and must
designate an even-numbered register other than
general register 0; otherwise, a specification excep-
tion is recognized. The R2 field designates an even-
odd pair of general registers and must designate an
even-numbered register other than general register
0; otherwise, a specification exception is recognized.

The location of the leftmost byte of the first and sec-
ond operands is specified by the contents of the R1

and R2 general registers, respectively. The number of
bytes in the second-operand location is specified in
general register R2 + 1. The first operand is the same
length as the second operand.

As part of the operation, the addresses in general
registers R1 and R2 are incremented by the number
of bytes processed, and the length in general register
R2 + 1 is decremented by the same number. The for-
mation and updating of the addresses and length is
dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the addresses of the first and second operands,
respectively, and the contents of bit positions 0-39
are ignored; bits 40-63 of the updated addresses
replace the corresponding bits in general registers R1

and R2, carries out of bit position 40 of the updated
address are ignored, and the contents of bit positions
32-39 of general registers R1 and R2 are set to zeros.
In the 31-bit addressing mode, the contents of bit
positions 33-63 of general registers R1 and R2 consti-
tute the addresses of the first and second operands,
respectively, and the contents of bit positions 0-32
are ignored; bits 33-63 of the updated addresses
replace the corresponding bits in general registers R1

and R2, carries out of bit position 33 of the updated
address are ignored, and the content of bit position
32 of general registers R1 and R2 is set to zero. In the
64-bit addressing mode, the contents of bit positions
0-63 of general registers R1 and R2 constitute the
addresses of the first and second operands, respec-
tively; bits 0-63 of the updated addresses replace the
contents of general registers R1 and R2, and carries
out of bit position 0 are ignored.

In both the 24-bit and the 31-bit addressing modes,
the contents of bit positions 32-63 of general register
R2 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the first and second

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 KMO-Query 16 —

1 KMO-DEA 16 8

2 KMO-TDEA-128 24 8

3 KMO-TDEA-192 32 8

9 KMO-Encrypted-DEA 40 8

10 KMO-Encrypted-TDEA-128 48 8

11 KMO-Encrypted-TDEA-192 56 8

18 KMO-AES-128 32 16

19 KMO-AES-192 40 16

20 KMO-AES-256 48 16

26 KMO-Encrypted-AES-128 64 16

27 KMO-Encrypted-AES-192 72 16

28 KMO-Encrypted-AES-256 80 16

Explanation:

— Not applicable

Figure 7-158. Function Codes for CIPHER MESSAGE
WITH OUTPUT FEEDBACK

General Instructions 7-121

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

Koperands, and the contents of bit positions 0-31 are
ignored; bits 32-63 of the updated value replace the
corresponding bits in general register R2 + 1. In the
64-bit addressing mode, the contents of bit positions
0-63 of general register R2 + 1 form a 64-bit unsigned
binary integer which specifies the number of bytes in
the first and second operands; and the updated value
replaces the contents of general register R2 + 1.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R2, and
R2 + 1, always remain unchanged.

Figure 7-159 on page 7-121 shows the contents of
the general registers just described.

In the access-register mode, access registers 1, R1,
and R2 specify the address spaces containing the
parameter block, first, and second operands, respec-
tively.

The result is obtained as if processing starts at the
left end of both the first and second operands and
proceeds to the right, block by block. The operation is
ended when the number of bytes in the second oper-
and as specified in general register R2 + 1 have been
processed and placed at the first-operand location

All Addressing Modes

GR0 / M FC
0 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R1 / First-Operand Address
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R1 / First-Operand Address
0 33 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R1 First-Operand Address
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-159. General Register Assignment for KMO

7-122 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

K (called normal completion) or when a CPU-deter-
mined number of blocks that is less than the length of
the second operand have been processed (called
partial completion). The CPU-determined number of
blocks depends on the model, and may be a different
number each time the instruction is executed. The
CPU-determined number of blocks is usually non-
zero. In certain unusual situations, this number may
be zero, and condition code 3 may be set with no
progress. However, the CPU protects against end-
less reoccurrence of this no-progress case.

The results in the first-operand location and the
chaining-value field are unpredictable if any of the fol-
lowing situations occur:

1. The cryptographic-key field or the encrypted
cryptographic-key field overlaps any portion of
the first operand.

2. The chaining-value field overlaps any portion of
the first operand or the second operand.

3. The first and second operands overlap destruc-
tively. Operands are said to overlap destructively
when the first-operand location would be used as
a source after data would have been moved into
it, assuming processing to be performed from left
to right and one byte at a time.

When the operation ends due to normal completion,
condition code 0 is set and the resulting value in
R2 + 1 is zero. When the operation ends due to par-
tial completion, condition code 3 is set and the result-
ing value in R2 + 1 is nonzero.

A PER storage-alteration event may be recognized
both for the first-operand location and for the portion
of the parameter block that is stored. A PER zero-
address-detection event may be recognized for the
first- and second-operand locations and for the
parameter block. When PER events are detected for
one or more of these locations, it is unpredictable
which location is identified in the PER access identifi-
cation (PAID) and PER ASCE ID (AI).

When a storage-alteration PER event is recognized,
fewer than 4K additional bytes are stored into the
first-operand locations before the event is reported.

When the second-operand length is initially zero, the
parameter block, first, and second operands are not
accessed, general registers R1, R2, and R2 + 1 are
not changed, and condition code 0 is set.

When the contents of the R1 and R2 fields are the
same, the contents of the designated registers are
incremented only by the number of bytes processed,
not by twice the number of bytes processed.

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block and
storage operands may be multiple-access refer-
ences, accesses to these storage locations are not
necessarily block-concurrent, and the sequence of
these accesses or references is undefined.

In certain unusual situations, instruction execution
may complete by setting condition code 3 without
updating the registers and chaining value to reflect
the last unit of the first and second operands pro-
cessed. The size of the unit processed in this case
depends on the situation and the model, but is limited
such that the portion of the first and second operands
which have been processed and not reported do not
overlap in storage. In all cases, change bits are set
and PER storage-alteration events are reported,
when applicable, for all first-operand locations pro-
cessed.

For functions that perform a comparison of the wrap-
ping-key verification pattern field in the parameter
block with the wrapping-key verification-pattern regis-
ter, it is unpredictable whether access exceptions
and PER zero-address-detection events are recog-
nized for the first and second operands when the
comparison results in a mismatch.

Access exceptions may be reported for a larger por-
tion of an operand than is processed in a single exe-
cution of the instruction; however, access exceptions
are not recognized for locations beyond the length of
an operand nor for locations more than 4K bytes
beyond the current location being processed.

Symbols Used in Function Descriptions

The following symbols are used in the subsequent
description of the CIPHER MESSAGE WITH OUT-
PUT FEEDBACK functions. For data-encryption-
algorithm (DEA) functions, the DEA-key-parity bit in
each byte of the DEA key is ignored, and the opera-
tion proceeds normally, regardless of the DEA-key
parity of the key.

Further description of the data-encryption algorithm
may be found in Reference [13.] on page xxx. Further
description of the AES standard may be found in Ref-
erence [14.] on page xxx. Further description of the

General Instructions 7-123

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

Koutput-feedback mode of encryption and decryption
may be found in Reference [16.] on page xxx.

KMO-Query (Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-159 on
page 7-121.

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the CIPHER MESSAGE
WITH OUTPUT FEEDBACK instruction. When a bit

Figure 7-160. Symbol For Bit-Wise Exclusive OR

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-161. Symbols for DEA Encryption and Decryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-162. Symbols for AES-128 Encryption

A

C

B

C = A B

DEA

P <8>

C <8>

Symbol for DEA

K <8>

Encryption

e
DEA

C <8>

P <8>

Symbol for DEA

K <8>

Decryption

d

AES

P <16>

C <16>

Symbol for AES-128

K <16>

Encryption

e

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-163. Symbols for AES-192 Encryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-164. Symbols for AES-256 Encryption

0
Status Word

8
0 63

Figure 7-165. Parameter Block for KMO-Query

AES

P <16>

C <16>

Symbol for AES-192

K <24>

Encryption

e

AES

P <16>

C <16>

Symbol for AES-256

K <32>

Encryption

e

7-124 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

K is one, the corresponding function is installed; other-
wise, the function is not installed.

Condition code 0 is set when execution of the KMO-
Query function completes; condition codes 1 and 3
are not applicable to this function.

KMO-DEA (Function Code 1)

KMO-Encrypted-DEA (Function Code 9)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-159 on
page 7-121.

The parameter block used for the KMO-DEA function
has the following format:

For the KMO-DEA function, the chaining value is in
byte offset 0-7 of the parameter block and the cryp-
tographic key is in byte offsets 8-15 of the parameter
block.

The parameter block used for the KMO-Encrypted -
DEA function has the following format:

For the KMO-Encrypted-DEA function, the contents
of byte offsets 16-39 of the parameter block are com-
pared with the contents of the DEA wrapping-key ver-
ification-pattern register. If they mismatch, the first-
operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-7
of the parameter block contain the chaining value,
and the contents of byte offsets 8-15 of the parame-
ter block are deciphered using the DEA wrapping key
to obtain the 64-bit cryptographic key. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the DEA-encryption algorithm with the 64-bit
cryptographic key and the 64-bit chaining value.

The first input block to the DEA-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. Each output block is exclusive-ORed
with the corresponding plaintext block to form a
ciphertext block. Each output block is also used as
the next input block.

The process is repeated with the successive input
blocks until a ciphertext block is produced for every
plaintext block, or until a CPU-determined number of
ciphertext blocks have been produced.

The ciphertext blocks (C1, C2, …, Cn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-
value field of the parameter block. The operation is
shown in Figure 7-168.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the DEA-encryption algorithm with the
64-bit cryptographic key and the 64-bit chaining
value.

The first input block to the DEA-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. Each output block is exclusive-ORed

0 Chaining Value (CV)

8 Cryptographic Key (K)
0 63

Figure 7-166. Parameter Block for KMO-DEA

0 Chaining Value (CV)

8 Encrypted Cryptographic Key (WKd(K))

16 DEA Wrapping-Key
Verification Pattern

(WKdVP)
24

32
0 63

Figure 7-167. Parameter Block for KMO-Encrypted-DEA

Figure 7-168. KMO-DEA Encipher Operation

K
<8>

DEA

P1

ICV <8>

e
K

<8>
DEA

e
K

<8>
DEA

Pn

e

<8>

…

…

…

P2

…

<8><8>

<8><8><8>

OCV

C1 C2 Cn

General Instructions 7-125

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

Kwith the corresponding ciphertext block to form a
plaintext block. Each output block is also used as the
next input block.

The process is repeated with the successive input
blocks until a plaintext block is produced for every
ciphertext block, or until a CPU-determined number
of plaintext blocks have been produced.

The plaintext blocks (P1, P2, …, Pn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-
value field of the parameter block. The operation is
shown in Figure 7-169.

KMO-TDEA-128 (Function Code 2)

KMO-Encrypted-TDEA-128 (Function
Code 10)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-159 on
page 7-121.

The parameter block used for the KMO-TDEA-128
function has the following format:

For the KMO-TDEA-128 function, the chaining value
is in byte offset 0-7 of the parameter block and the
cryptographic key is in byte offsets 8-23 of the
parameter block.

The parameter block used for the KMO-Encrypted-
TDEA-128 function has the following format:

For the KMO-Encrypted-TDEA-128 function, the con-
tents of byte offsets 24-47 of the parameter block are
compared with the contents of the DEA wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-7
of the parameter block contain the chaining value,
and the contents of byte offsets 8-23 of the parame-
ter block are deciphered using the DEA wrapping key
to obtain the 128-bit cryptographic key. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the TDEA-encryption algorithm with the 128-bit
cryptographic key and the 64-bit chaining value.

The first input block to the TDEA-encryption algo-
rithm is the initial chaining value (ICV) in the parame-
ter block. Each input block is enciphered to produce
an output block. Each output block is exclusive-ORed
with the corresponding plaintext block to form a
ciphertext block. Each output block is also used as
the next input block.

The process is repeated with the successive input
blocks until a ciphertext block is produced for every
plaintext block, or until a CPU-determined number of
ciphertext blocks have been produced.

The ciphertext blocks (C1, C2, …, Cn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-

Figure 7-169. KMO-DEA Decipher Operation

0 Chaining Value (CV)

8 Cryptographic Key 1 (K1)

16 Cryptographic Key 2 (K2)
0 63

Figure 7-170. Parameter Block for KMO-TDEA-128

K
<8>

DEA

C1

ICV <8>

e
K

<8>
DEA

e
K

<8>
DEA

Cn

e

<8>

…

…

…

C2

…

<8><8>

<8><8><8>

OCV

P1 P2 Pn

0 Chaining Value (CV)

8 Encrypted Cryptographic Key
(WKd(K))16

24 DEA Wrapping-Key
Verification Pattern

(WKdVP)
32

40
0 63

Figure 7-171. Parameter Block for KMO-Encrypted-TDEA-
128

7-126 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

K value field of the parameter block. The operation is
shown in Figure 7-172.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA-encryption algorithm with the
128-bit cryptographic key and the 64-bit chaining
value.

The first input block to the TDEA-encryption algo-
rithm is the initial chaining value (ICV) in the parame-
ter block. Each input block is enciphered to produce
an output block. Each output block is exclusive-ORed
with the corresponding ciphertext block to form a
plaintext block. Each output block is also used as the
next input block.

The process is repeated with the successive input
blocks until a plaintext block is produced for every
ciphertext block, or until a CPU-determined number
of plaintext blocks have been produced.

The plaintext blocks (P1, P2, …, Pn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-

value field of the parameter block. The operation is
shown in Figure 7-173.

KMO-TDEA-192 (Function Code 3)

KMO-Encrypted-TDEA-192 (Function
Code 11)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-159 on
page 7-121.

The parameter block used for the KMO-TDEA-192
function has the following format:

For the KMO-TDEA-192 function, the chaining value
is in byte offset 0-7 of the parameter block and the
cryptographic key is in byte offsets 8-31 of the
parameter block.

Figure 7-172. KMO-TDEA-128 Encipher Operation

K1
<8>

DEA

P1

ICV <8>

e
K1
<8>

DEA
e

K1
<8>

DEA

Pn

e

<8>

…

…

…

…

<8>

<8><8><8>

OCV

C1 Cn

K2
<8>

DEA
d

K2
<8>

DEA
d

K2
<8>

DEA
d

…

K1
<8>

DEA
e

K1
<8>

DEA
e

K1
<8>

DEA
e

…

K = K1 || K2, where || means concatenation

P2

<8>

C2

Figure 7-173. KMO-TDEA-128 Decipher Operation

0 Chaining Value (CV)

8 Cryptographic Key 1 (K1)

16 Cryptographic Key 2 (K2)

24 Cryptographic Key 3 (K3)
0 63

Figure 7-174. Parameter Block for KMO-TDEA-192

K1
<8>

DEA

C1

ICV <8>

e
K1
<8>

DEA
e

K1
<8>

DEA

Cn

e

<8>

…

…

…

…

<8>

<8><8><8>

OCV

P1 Pn

K2
<8>

DEA
d

K2
<8>

DEA
d

K2
<8>

DEA
d

…

K1
<8>

DEA
e

K1
<8>

DEA
e

K1
<8>

DEA
e

…

K = K1 || K2, where || means concatenation

C2

<8>

P2

General Instructions 7-127

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

KThe parameter block used for the KMO-Encrypted-
TDEA-192 function has the following format:

For the KMO-Encrypted-TDEA-192 function, the con-
tents of byte offsets 32-55 of the parameter block are
compared with the contents of the DEA wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-7
of the parameter block contain the chaining value,
and the contents of byte offsets 8-31 of the parame-
ter block are deciphered using the DEA wrapping key
to obtain the 192-bit cryptographic key. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 8-byte plaintext
blocks (P1, P2, …, Pn) in operand 2 are enciphered
using the TDEA-encryption algorithm with the 192-bit
cryptographic key and the 64-bit chaining value.

The first input block to the TDEA-encryption algo-
rithm is the initial chaining value (ICV) in the parame-
ter block. Each input block is enciphered to produce
an output block. Each output block is exclusive-ORed
with the corresponding plaintext block to form a
ciphertext block. Each output block is also used as
the next input block.

The process is repeated with the successive input
blocks until a ciphertext block is produced for every
plaintext block, or until a CPU-determined number of
ciphertext blocks have been produced.

The ciphertext blocks (C1, C2, …, Cn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-
value field of the parameter block. The operation is
The operation is shown in Figure 7-176.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 8-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the TDEA-encryption algorithm with the
192-bit cryptographic key and the 64-bit chaining
value.

The first input block to the TDEA-encryption algo-
rithm is the initial chaining value (ICV) in the parame-
ter block. Each input block is enciphered to produce
an output block. Each output block is exclusive-ORed
with the corresponding ciphertext block to form a
plaintext block. Each output block is also used as the
next input block.

The process is repeated with the successive input
blocks until a plaintext block is produced for every
ciphertext block, or until a CPU-determined number
of plaintext blocks have been produced.

The plaintext blocks (P1, P2, …, Pn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-

0 Chaining Value (CV)

8
Encrypted Cryptographic Key

(WKd(K))
16

24

32 DEA Wrapping-Key
Verification Pattern

(WKdVP)
40

48
0 63

Figure 7-175. Parameter Block for KMO-Encrypted-TDEA-
192

Figure 7-176. KMO-TDEA-192 Encipher Operation

K1
<8>

DEA

P1

ICV <8>

e
K1
<8>

DEA
e

K1
<8>

DEA

Pn

e

<8>

…

…

…

…

<8>

<8><8><8>

OCV

C1 Cn

K2
<8>

DEA
d

K2
<8>

DEA
d

K2
<8>

DEA
d

…

K3
<8>

DEA
e

K3
<8>

DEA
e

K3
<8>

DEA
e

…

K = K1 || K2 || K3, where || means concatenation

P2

<8>

C2

7-128 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

K value field of the parameter block. The operation is
shown in Figure 7-177.

KMO-AES-128 (Function Code 18)

KMO-Encrypted-AES-128 (Function
Code 26)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-159 on
page 7-121.

The parameter block used for the KMO-AES-128
function has the following format:

For the KMO-AES-128 function, the chaining value is
in byte offset 0-15 of the parameter block and the
cryptographic key is in byte offsets 16-31 of the
parameter block.

The parameter block used for the KMO-Encrypted-
AES-128 function has the following format:

For the KMO-Encrypted-AES-128 function, the con-
tents of byte offsets 32-63 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-15
of the parameter block contain the chaining value,
and the contents of byte offsets 16-31 of the parame-
ter block are deciphered using the AES wrapping key
to obtain the 128-bit cryptographic key. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES-encryption algorithm with the
128-bit cryptographic key and the 128-bit chaining
value.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. Each output block is exclusive-ORed
with the corresponding plaintext block to form a
ciphertext block. Each output block is also used as
the next input block.

The process is repeated with the successive input
blocks until a ciphertext block is produced for every
plaintext block, or until a CPU-determined number of
ciphertext blocks have been produced.

Figure 7-177. KMO-TDEA-192 Decipher Operation

0
Chaining Value (CV)

8

16
Cryptographic Key (K)

24
0 63

Figure 7-178. Parameter Block for KMO-AES-128

K1
<8>

DEA

C1

ICV <8>

e
K1
<8>

DEA
e

K1
<8>

DEA

Cn

e

<8>

…

…

…

…

<8>

<8><8><8>

OCV

P1 Pn

K2
<8>

DEA
d

K2
<8>

DEA
d

K2
<8>

DEA
d

…

K3
<8>

DEA
e

K3
<8>

DEA
e

K3
<8>

DEA
e

…

K = K1 || K2 || K3, where || means concatenation

C2

<8>

P2

0
Chaining Value (CV)

8

16 Encrypted Cryptographic Key
(WKa(K))24

32
AES Wrapping-Key
Verification-Pattern

(WKaVP)

40

48

56
0 63

Figure 7-179. Parameter Block for KMO-Encrypted-AES-
128

General Instructions 7-129

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

KThe ciphertext blocks (C1, C2, …, Cn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-
value field of the parameter block. The operation is
shown in Figure 7-180.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES-encryption algorithm with the
128-bit cryptographic key and the 128-bit chaining
value.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. Each output block is exclusive-ORed
with the corresponding ciphertext block to form a
plaintext block. Each output block is also used as the
next input block.

The process is repeated with the successive input
blocks until a plaintext block is produced for every
ciphertext block, or until a CPU-determined number
of plaintext blocks have been produced.

The plaintext blocks (P1, P2, …, Pn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-

value field of the parameter block. The operation is
shown in Figure 7-181.

KMO-AES-192 (Function Code 19)

KMO-Encrypted-AES-192 (Function
Code 27)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-159 on
page 7-121.

The parameter block used for the KMO-AES-192
function has the following format:

For the KMO-AES-192 function, the chaining value is
in byte offset 0-15 of the parameter block and the
cryptographic key is in byte offsets 16-39 of the
parameter block.

Figure 7-180. KMO-AES-128 Encipher Operation

K
<16>

AES

P1

ICV <16>

e
K

<16>
AES

e
K

<16>
AES

Pn

e

<16>

…

…

…

P2

…

<16><16>

<16><16><16>

OCV

C1 C2 Cn
Figure 7-181. KMO-AES-128 Decipher Operation

0
Chaining Value (CV)

8

16

Cryptographic Key (K)24

32
0 63

Figure 7-182. Parameter Block for KMO-AES-192

K
<16>

AES

C1

ICV <16>

e
K

<16>
AES

e
K

<16>
AES

Cn

e

<16>

…

…

…

C2

…

<16><16>

<16><16><16>

OCV

P1 P2 Pn

7-130 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

K The parameter block used for the KMO-Encrypted-
AES-192 function has the following format:

For the KMO-Encrypted-AES-192 function, the con-
tents of byte offsets 40-71 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-15
of the parameter block contain the chaining value,
and the contents of byte offsets 16-39 of the parame-
ter block are deciphered using the AES wrapping key
to obtain the 192-bit cryptographic key. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES-encryption algorithm with the
192-bit cryptographic key and the 128-bit chaining
value.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. Each output block is exclusive-ORed
with the corresponding plaintext block to form a
ciphertext block. Each output block is also used as
the next input block.

The process is repeated with the successive input
blocks until a ciphertext block is produced for every
plaintext block, or until a CPU-determined number of
ciphertext blocks have been produced.

The ciphertext blocks (C1, C2, …, Cn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-
value field of the parameter block. The operation is
shown in Figure 7-184.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES-encryption algorithm with the
192-bit cryptographic key and the 128-bit chaining
value.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. Each output block is exclusive-ORed
with the corresponding ciphertext block to form a
plaintext block. Each output block is also used as the
next input block.

The process is repeated with the successive input
blocks until a plaintext block is produced for every
ciphertext block, or until a CPU-determined number
of plaintext blocks have been produced.

The plaintext blocks (P1, P2, …, Pn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-

0
Chaining Value (CV)

8

16
Encrypted Cryptographic Key

(WKa(K))
24

32

40
AES Wrapping-Key
Verification Pattern

(WKaVP)

48

56

64
0 63

Figure 7-183. Parameter Block for KMO-Encrypted-AES-
192

Figure 7-184. KMO-AES-192 Encipher Operation

K
<24>

AES

P1

ICV <16>

e
K

<24>
AES

e
K

<24>
AES

Pn

e

<16>

…

…

…

P2

…

<16><16>

<16><16><16>

OCV

C1 C2 Cn

General Instructions 7-131

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

Kvalue field of the parameter block. The operation is
shown in Figure 7-185.

KMO-AES-256 (Function Code 20)

KMO-Encrypted-AES-256 (Function
Code 28)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-159 on
page 7-121.

The parameter block used for the KMO-AES-256
function has the following format:

For the KMO-AES-256 function, the chaining value is
in byte offset 0-15 of the parameter block and the
cryptographic key is in byte offsets 16-47 of the
parameter block.

The parameter block used for the KMO-Encrypted-
AES-256 function has the following format:

For the KMO-Encrypted-AES-256 function, the con-
tents of byte offsets 48-79 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
first-operand and parameter-block locations remain
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-15
of the parameter block contain the chaining value,
and the contents of byte offsets 16-47 of the parame-
ter block are deciphered using the AES wrapping key
to obtain the 256-bit cryptographic key. (See the sec-
tion “Protection of Cryptographic Keys” on
page 7-431 for details.)

The following description applies to both functions.

When the modifier bit in general register 0 is zero, an
encipher operation is performed. The 16-byte plain-
text blocks (P1, P2, …, Pn) in operand 2 are enci-
phered using the AES-encryption algorithm with the
256-bit cryptographic key and the 128-bit chaining
value.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. Each output block is exclusive-ORed
with the corresponding plaintext block to form a
ciphertext block. Each output block is also used as
the next input block.

The process is repeated with the successive input
blocks until a ciphertext block is produced for every
plaintext block, or until a CPU-determined number of
ciphertext blocks have been produced.

Figure 7-185. KMO-AES-192 Decipher Operation

0
Chaining Value (CV)

8

16

Cryptographic Key (K)
24

32

40
0 63

Figure 7-186. Parameter Block for KMO-AES-256

K
<24>

AES

C1

ICV <16>

e
K

<24>
AES

e
K

<24>
AES

Cn

e

<16>

…

…

…

C2

…

<16><16>

<16><16><16>

OCV

P1 P2 Pn

0
Chaining Value (CV)

8

16

Encrypted Cryptographic Key
(WKa(K))

24

32

40

48
AES Wrapping-Key
Verification Pattern

(WKaVP)

56

64

72
0 63

Figure 7-187. Parameter Block for KMO-AES-256

7-132 The z/Architecture CPU Architecture

C
IP

H
E

R
 M

E
S

S
A

G
E

 W
IT

H
 O

U
T

P
U

T
 F

E
E

D
B

A
C

K The ciphertext blocks (C1, C2, …, Cn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-
value field of the parameter block. The operation is
shown in Figure 7-188.

When the modifier bit in general register 0 is one, a
decipher operation is performed. The 16-byte cipher-
text blocks (C1, C2, …, Cn) in operand 2 are deci-
phered using the AES-encryption algorithm with the
256-bit cryptographic key and the 128-bit chaining
value.

The first input block to the AES-encryption algorithm
is the initial chaining value (ICV) in the parameter
block. Each input block is enciphered to produce an
output block. Each output block is exclusive-ORed
with the corresponding ciphertext block to form a
plaintext block. Each output block is also used as the
next input block.

The process is repeated with the successive input
blocks until a plaintext block is produced for every
ciphertext block, or until a CPU-determined number
of plaintext blocks have been produced.

The plaintext blocks (P1, P2, …, Pn) are stored in
operand 1. The next input block, called the output
chaining value (OCV), is stored into the chaining-

value field of the parameter block. The operation is
shown in Figure 7-189.

Special Conditions

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

2. The R1 or R2 field designates an odd-numbered
register or general register 0.

3. The second operand length is not a multiple of
the data block size of the designated function
(see Figure 7-158 on page 7-120 to determine
the data block sizes for CIPHER MESSAGE
WITH OUTPUT FEEDBACK functions). This
specification-exception condition does not apply
to the query functions.

Resulting Condition Code:

0 Normal completion
1 Verification-pattern mismatch
2 --
3 Partial completion

Program Exceptions:

• Access (fetch, operand 2, cryptographic key, and
wrapping-key verification pattern; store, operand
1; fetch and store, chaining value)

• Operation (if the message-security-assist exten-
sion 4 is not installed)

• Specification

Figure 7-188. KMO-AES-256 Encipher Operation

K
<32>

AES

P1

ICV <16>

e
K

<32>
AES

e
K

<32>
AES

Pn

e

<16>

…

…

…

P2

…

<16><16>

<16><16><16>

OCV

C1 C2 Cn
Figure 7-189. KMO-AES-256 Decipher Operation

K
<32>

AES

C1

ICV <16>

e
K

<32>
AES

e
K

<32>
AES

Cn

e

<16>

…

…

…

C2

…

<16><16>

<16><16><16>

OCV

P1 P2 Pn

General Instructions 7-133

C
O

M
P

A
R

E
 IM

M
E

D
IA

T
E• Transaction constraint

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. See the programming notes for CIPHER MES-
SAGE WITH CHAINING.

3. In earlier versions of the architecture, CIPHER
MESSAGE WITH OUTPUT FEEDBACK was
known as CIPHER MESSAGE WITH OFB.

4. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

COMPARE

Register-and-register formats:

CR R1,R2 [RR]

CGR R1,R2 [RRE]

CGFR R1,R2 [RRE]

Register-and-storage formats:

C R1,D2(X2,B2) [RX-a]

CY R1,D2(X2,B2) [RXY-a]

CG R1,D2(X2,B2) [RXY-a]

CGF R1,D2(X2,B2) [RXY-a]

COMPARE IMMEDIATE

CFI R1,I2 [RIL-a]

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint

8. Specification exception due to invalid function
code or invalid register number.

9. Specification exception due to invalid operand
length.

10. Condition code 0 due to second-operand length
originally zero.

11.A.1 Access exceptions for an access to the
parameter block.

11.A.2. Condition code 1 due to verification-pattern
mismatch.

11.B Access exceptions for an access to the first or
second operand.

12. Condition code 0 due to normal completion
(second-operand length originally nonzero, but
stepped to zero).

13. Condition code 3 due to partial completion
(second-operand length still nonzero).

Figure 7-190. Priority of Execution: KMO

'19' R1 R2

0 8 12 15

'B920' / / / / / / / / R1 R2

0 16 24 28 31

'B930' / / / / / / / / R1 R2

0 16 24 28 31

'59' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '59'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '20'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '30'

0 8 12 16 20 32 40 47

'C2' R1 'D' I2
0 8 12 16 47

7-134 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 R

E
L

A
T

IV
E

 L
O

N
G CGFI R1,I2 [RIL-a]

COMPARE RELATIVE LONG

CRL R1,RI2 [RIL-b]

CGRL R1,RI2 [RIL-b]

CGFRL R1,RI2 [RIL-b]

The first operand is compared with the second oper-
and, and the result is indicated in the condition code.

For COMPARE (CR, C, CY), COMPARE IMMEDIATE
(CFI), and COMPARE RELATIVE LONG (CRL), the
operands are treated as 32-bit signed binary inte-
gers. For COMPARE (CGR, CG) and COMPARE
RELATIVE LONG (CGRL), they are treated as 64-bit
signed binary integers. For COMPARE (CGFR,
CGF), COMPARE IMMEDIATE (CGFI), and COM-
PARE RELATIVE LONG (CGFRL), the second oper-
and is treated as a 32-bit signed binary integer, and
the first operand is treated as a 64-bit signed binary
integer.

The displacement for COMPARE (C) is treated as a
12-bit unsigned binary integer. The displacement for
COMPARE (CY, CG, and CGF) is treated as a 20-bit
signed binary integer.

For COMPARE RELATIVE LONG, the contents of the
RI2 field are a signed binary integer specifying the
number of halfwords that is added to the address of
the instruction to generate the address of the second
operand in storage. When DAT is on, the second
operand is accessed using the same addressing-
space mode as that used to access the instruction.
When DAT is off, the second operand is accessed
using a real address.

For COMPARE RELATIVE LONG (CRL, CGFRL),
the second operand must be aligned on a word

boundary, and for COMPARE RELATIVE LONG
(CGRL), the second operand must be aligned on a
doubleword boundary; otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

Program Exceptions:

• Access (operand 2 of C, CY, CG, CGF, CRL,
CGRL, and CGFRL only)

• Operation (CY, if the long-displacement facility is
not installed; CFI and CGFI, if the extended-
immediate facility is not installed; CGFRL,
CGRL, and CRL, if the general-instructions-
extension facility is not installed)

• Specification (CGFRL, CGRL, and CRL only)

Programming Notes:

1. For COMPARE RELATIVE LONG, the second
operand must be aligned on an integral boundary
corresponding to the operand’s size.

2. When COMPARE RELATIVE LONG is the target
of an execute-type instruction, the second-oper-
and address is relative to the target address.

COMPARE AND BRANCH

CRB R1,R2,M3,D4(B4) [RRS]

CGRB R1,R2,M3,D4(B4) [RRS]

COMPARE AND BRANCH
RELATIVE

CRJ R1,R2,M3,RI4 [RIE-b]

'C2' R1 'C' I2
0 8 12 16 47

'C6' R1 'D' RI2
0 8 12 16 47

'C6' R1 '8' RI2
0 8 12 16 47

'C6' R1 'C' RI2
0 8 12 16 47

'EC' R1 R2 B4 D4 M3 / / / / 'F6'
0 8 12 16 20 32 36 40 47

'EC' R1 R2 B4 D4 M3 / / / / 'E4'
0 8 12 16 20 32 36 40 47

'EC' R1 R2 RI4 M3 / / / / '76'

0 8 12 16 32 36 40 47

General Instructions 7-135

C
O

M
P

A
R

E
 IM

M
E

D
IA

T
E

 A
N

D
 B

R
A

N
C

H
 R

E
L

A
T

IV
ECGRJ R1,R2,M3,RI4 [RIE-b]

COMPARE IMMEDIATE AND
BRANCH

CIB R1,I2,M3,D4(B4) [RIS]

CGIB R1,I2,M3,D4(B4) [RIS]

COMPARE IMMEDIATE AND
BRANCH RELATIVE

CIJ R1,I2,M3,RI4 [RIE-c]

CGIJ R1,I2,M3,RI4 [RIE-c]

The first operand is compared with the second oper-
and. If the mask bit in the M3 field corresponding to
the comparison result is one, the instruction address
in the current PSW is replaced by the branch address
specified by the fourth operand; otherwise, normal
instruction sequencing proceeds with the updated
instruction address.

For COMPARE AND BRANCH (CRB), COMPARE
AND BRANCH RELATIVE (CRJ), COMPARE IMME-
DIATE AND BRANCH (CIB) and COMPARE IMME-
DIATE AND BRANCH RELATIVE (CIJ), the first
operand is treated as a 32-bit signed binary integer.
For COMPARE AND BRANCH (CGRB), COMPARE
AND BRANCH RELATIVE (CGRJ), COMPARE
IMMEDIATE AND BRANCH (CGIB) and COMPARE
IMMEDIATE AND BRANCH RELATIVE (CGIJ), the
first operand is treated as a 64-bit signed binary inte-
ger.

For COMPARE AND BRANCH (CRB) and COM-
PARE AND BRANCH RELATIVE (CRJ), the second
operand is treated as a 32-bit signed binary integer.
For COMPARE AND BRANCH (CGRB) and COM-
PARE AND BRANCH RELATIVE (CGRJ), the sec-
ond operand is treated as a 64-bit signed binary
integer. For COMPARE IMMEDIATE AND BRANCH
and COMPARE IMMEDIATE AND BRANCH RELA-
TIVE, the second operand is treated as an 8-bit
signed binary integer.

The comparison results and corresponding M3 bits
are as follows:

Bit 3 of the M3 field is reserved and should be zero;
otherwise, the program may not operate compatibly
in the future.

For COMPARE AND BRANCH and COMPARE
IMMEDIATE AND BRANCH, the fourth-operand
address is used as the branch address. For COM-
PARE AND BRANCH RELATIVE and COMPARE
IMMEDIATE AND BRANCH RELATIVE, the contents
of the RI4 field are a signed binary integer specifying
the number of halfwords that is added to the address
of the instruction to generate the branch address.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (if the general-instructions-extension
facility is not installed).

• Transaction constraint

Programming Notes:

1. When bit positions 0-2 of the M3 field contain
zeros, the instruction acts as a NOP, however
this is not the preferred instruction with which to
create a NOP. When bit positions 0-2 of the M3

field contain 111 binary, a branch always occurs.

2. When COMPARE AND BRANCH RELATIVE or
COMPARE IMMEDIATE AND BRANCH RELA-
TIVE are the target of an execute-type instruc-
tion, the branch is relative to the target address.
See “Branch-Address Generation” on page 5-12.

'EC' R1 R2 RI4 M3 / / / / '64'

0 8 12 16 32 36 40 47

'EC' R1 M3 B4 D4 I2 'FE'

0 8 12 16 20 32 40 47

'EC' R1 M3 B4 D4 I2 'FC'

0 8 12 16 20 32 40 47

'EC' R1 M3 RI4 I2 '7E'

0 8 12 16 32 40 47

'EC' R1 M3 RI4 I2 '7C'

0 8 12 16 32 40 47

Comparison Result M3 Bit

Equal 0
First operand low 1

First operand high 2

7-136 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 F
O

R
M

 C
O

D
E

W
O

R
D 3. The high-level assembler (HLASM) provides

extended-mnemonic formats for all of the multi-
ple-operation instructions which perform a com-
pare (arithmetic or logical) followed by a branch
or trap. In the extended-mnemonic format, the
mask field is not explicitly coded; rather the
branch mask is implicitly indicated by the
extended mnemonic.

The extended-mnemonic names are formed by
concatenating the base mnemonic, followed by
one of the suffix characters, as shown below.

Consider the following example of a COMPARE
IMMEDIATE AND BRANCH RELATIVE (CGIJ)
instruction that is coded using an extended mne-
monic:

CGIJNE 10,-123,SKIP

SKIP DS 0H (128 bytes past CGIJNE)

The implied mask field corresponding to the
mnemonic suffix (NE) is 6, thus the generated
code is ECA60040857C hex.

COMPARE AND FORM
CODEWORD

CFC D2(B2) [S]

General register 2 contains an index, which is used
along with contents of general registers 1 and 3 to
designate the starting addresses of two fields in stor-
age, called the first and third operands. The first and
third operands are logically compared, and a code-
word is formed in general register 2 for use in
sort/merge algorithms.

The second-operand address is not used to address
data. Bits 49-62 of the second-operand address, with

one rightmost and one leftmost zero appended, are
used as a 16-bit index limit. Bit 63 of the second-
operand address is the operand-control bit; the oper-
and-control bit is applicable when the first and third
operands are unequal. When bit 63 is zero, the code-
word is formed from the one’s complement of the
high operand; when bit 63 is one, the codeword is
formed from the low operand. The remainder of the
second-operand address is ignored.

General registers 1 and 3 contain the base
addresses of the first and third operands. Bits 48-63
of general register 2 are used as an index for
addressing both the first and third operands. General
registers 1, 2, and 3 must all initially contain even val-
ues; otherwise, a specification exception is recog-
nized.

In the access-register mode, access register 1 speci-
fies the address space containing the first and third
operands.

The size of the units by which the first and third oper-
ands are compared, the size of the resulting code-
word, and the participation of bits 0-31 of general
registers 1, 2, and 3 in the operation depend on the
addressing mode. In the 24-bit or 31-bit addressing
mode, the comparison unit is two bytes, the code-
word is four bytes, and bits 0-31 of the registers are
ignored and remain unchanged. In the 64-bit
addressing mode, the comparison unit is six bytes,
the codeword is eight bytes, and bits 0-31 of the reg-
isters are used in and may be changed by the opera-
tion.

Operation in the 24-Bit or 31-Bit Addressing
Mode

The operation consists in comparing the first and
third operands halfword by halfword and increment-
ing the index until an unequal pair of halfwords is
found or the index exceeds the index limit. This pro-
ceeds in units of operation, between which interrup-
tions may occur.

At the start of a unit of operation, the index, bits
48-63 of general register 2, is logically compared with
the index limit. If the index is larger, the instruction is
completed by placing bits 32-63 of general register 3,
with bit 32 set to one, in bit positions 32-63 of general
register 2, and by setting condition code 0.

If the index is less than or equal to the index limit, the
index is applied to the first-operand and third-oper-

Suffix
Chars Meaning

Mask
Field

E Equal 8

H First operand high 2

L First operand low 4
NE Not equal 6

NH First operand not high 12

NL First operand not low 10

'B21A' B2 D2

0 16 20 31

General Instructions 7-137

C
O

M
P

A
R

E
 A

N
D

 F
O

R
M

 C
O

D
E

W
O

R
Dand base addresses to locate the current pair of half-

words to be compared. The index, with 48 leftmost
zeros appended, and bits 32-63 of general register 1,
with 32 leftmost zeros appended, are added to form a
64-bit intermediate value. A carry out of bit position
32, if any, is ignored. The address of the current first-
operand halfword is generated from the intermediate
value by following the normal rules for operand
address generation. The address of the current third-
operand halfword is formed in the same manner by
adding bits 32-63 of general register 3 and the index.

The current first-operand and third-operand half-
words are logically compared. If they are equal, the
contents of general register 2 are incremented by 2,
and a unit of operation ends.

If the compare values are unequal, the contents of
general register 2 are incremented by 2 and then
shifted left logically by 16 bit positions. The shifting
occurs only within bit positions 32-63. If the operand-
control bit is zero, (1) the one’s complement of the
higher halfword is placed in bit positions 48-63 of
general register 2, and (2) if operand 1 was higher,
bits 32-63 of general registers 1 and 3 are inter-
changed. If the operand-control bit is one, (1) the
lower halfword is placed in bit positions 48-63 of gen-
eral register 2, and (2) if operand 1 was lower, bits
32-63 of general registers 1 and 3 are interchanged.
Condition code 2 is set if general registers 1 and 3
are interchanged; otherwise, condition code 1 is set.

For the purpose of recognizing access exceptions,
operand 1 and operand 3 are both considered to
have a length equal to 2 more than the value of the
index limit minus the index.

Operation in the 64-bit Addressing Mode

The operation consists in comparing the first and
third operands in units of six bytes at a time and
incrementing the index until an unequal pair of six-
byte units is found or the index exceeds the index
limit. This proceeds in units of operation, between
which interruptions may occur.

At the start of a unit of operation, the index, bits
48-63 of general register 2, is logically compared with
the index limit. If the index is larger, the instruction is
completed by placing bits 0-63 of general register 3,
with bit 0 set to one, in bit positions 0-63 of general
register 2, and by setting condition code 0.

If the index is less than or equal to the index limit, the
index is applied to the first-operand and third-oper-
and base addresses to locate the current pair of six-
byte units to be compared. The index, with 48 left-
most zeros appended, and bits 0-63 of general regis-
ter 1 are added to form the 64-bit address of the
current first-operand six-byte unit. A carry out of bit
position 0, if any, is ignored. The address of the cur-
rent third-operand six-byte unit is formed in the same
manner by adding bits 0-63 of general register 3 and
the index.

The current first-operand and third-operand six-byte
units are logically compared. If they are equal, the
contents of general register 2 are incremented by 6,
and a unit of operation ends.

If the compare values are unequal, the contents of
general register 2 are incremented by 6 and then
shifted left logically by 48 bit positions. If the oper-
and-control bit is zero, (1) the one’s complement of
the higher six-byte unit is placed in bit positions
16-63 of general register 2, and (2) if operand 1 was
higher, bits 0-63 of general registers 1 and 3 are
interchanged. If the operand-control bit is one, (1) the
lower six-byte unit is placed in bit positions 16-63 of
general register 2, and (2) if operand 1 was lower,
bits 0-63 of general registers 1 and 3 are inter-
changed. Condition code 2 is set if general registers
1 and 3 are interchanged; otherwise, condition code
1 is set.

For the purpose of recognizing access exceptions,
operand 1 and operand 3 are both considered to
have a length equal to 6 more than the value of the
index limit minus the index. However, depending on
the model, access exceptions may or may not be rec-
ognized for the portion of a storage operand to the
right of the first unequal byte when the operand is not
needed to form the codeword in general register 2.

Specifications Independent of Addressing Mode

The condition code is unpredictable if the instruction
is interrupted.

When the index is initially larger than the index limit,
access exceptions are not recognized for the storage
operands. For operands longer than 4K bytes,
access exceptions are not recognized more than 4K
bytes beyond the byte being processed. Access
exceptions are not recognized when a specification-
exception condition exists.

7-138 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 F
O

R
M

 C
O

D
E

W
O

R
D If the B2 field designates general register 2, it is

unpredictable whether or not the index limit is recom-
puted; thus, in this case the operand length is unpre-
dictable. However, in no case can the operands
exceed 215 bytes in length.

Resulting Condition Code:

0 Operands equal
1 Operand-control bit zero and operand 1 low, or

operand-control bit one and operand 3 low
2 Operand-control bit zero and operand 1 high, or

operand-control bit one and operand 3 high
3 --

Program Exceptions:

• Access (fetch, operands 1 and 3)
• Specification
• Transaction constraint

Programming Notes:

1. An example of the use of COMPARE AND
FORM CODEWORD is given in “Sorting Instruc-
tions” in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. The offset of the halfword or six-byte unit
(depending on the addressing mode) of the first
and third operands at which comparison is to
begin should be placed in bit positions 48-63 of
general register 2 before executing COMPARE
AND FORM CODEWORD. The index limit
derived from the second-operand address
should be the offset of the last halfword or six-
byte unit of the first and third operands for which
comparison can be made. When the operands
do not compare equal, the leftmost 16 bits of the
codeword formed in general register 2 (bits 32-47
of the register in the 24-bit or 31-bit addressing
mode, or bits 0-15 in the 64-bit addressing mode)
by the execution of COMPARE AND FORM
CODEWORD gives the offset of the first halfword
or six-byte unit not compared. If the codewords
compare equal in an UPDATE TREE operation,
bit positions 32-47 of general register 2 in the
24-bit or 31-bit addressing mode, or bit positions
0-15 in the 64-bit addressing mode, will contain

the offset at which another COMPARE AND
FORM CODEWORD should resume comparison
for breaking codeword ties. Operand-control-bit
values of zero or one are used for sorting oper-
ands in ascending or descending order, respec-
tively. Refer to “Sorting Instructions” on
page A-53 for a discussion of the use of code-
words in sorting.

3. The condition code indicates the results of com-
paring operands up to 32,768 bytes long. Equal
operands result in a negative codeword in bit
positions 32-63 of general register 2 in the 24-bit
or 31-bit addressing mode, or in bit positions
0-63 in the 64-bit addressing mode. A negative
codeword also results in the 24-bit or 31-bit
mode when the index limit is 32,766 and the
operands that are compared differ in only their
last two bytes, or in the 64-bit mode when the
limit is 32,762 and the operands differ in only
their last six bytes. If this latter codeword is used
by UPDATE TREE, an incorrect result may be
indicated in general registers 0 and 1. Therefore,
the index limit should not exceed 32,764 in the
24-bit or 31-bit mode, or 32,760 in the 64-bit
mode, when the resulting codeword is to be used
by UPDATE TREE.

4. Special precautions should be taken if COM-
PARE AND FORM CODEWORD is made the tar-
get of an execute-type instruction. See the
programming note concerning interruptible
instructions under EXECUTE.

5. Further programming notes concerning interrupt-
ible instructions are included in “Interruptible
Instructions” in Chapter 5, “Program Execution.”

6. The storage-operand references of COMPARE
AND FORM CODEWORD may be multiple-
access references. (See “Storage-Operand Con-
sistency”.)

7. Figure 7-191 on page 7-139 and Figure 7-192 on
page 7-140 contain summaries of the operation
in the 24-bit or 31-bit addressing mode, and
Figure 7-193 on page 7-141 and Figure 7-194 on
page 7-142 contain summaries of the operation
in the 64-bit addressing mode.

General Instructions 7-139

C
O

M
P

A
R

E
 A

N
D

 F
O

R
M

 C
O

D
E

W
O

R
D

Operand-
Control Bit Relation

Resulting
Condition

Code

Result in
GR2 (Bits

32-63)

Result in
GR1 (Bits

32-63)

Result in
GR3 (Bits

32-63)
0 op1 = op3 0 OGR3b1 – –
0 op1 < op3 1 X, nop3 – –
0 op1 > op3 2 X, nop1 OGR3 OGR1
1 op1 = op3 0 OGR3b1 – –
1 op1 < op3 2 X, top1 OGR3 OGR1
1 op1 > op3 1 X, top3 – –

Explanation:

– The bits remain unchanged.
OGR1 The original value of GR1 bits 32-63.
OGR3 The original value of GR3 bits 32-63.
OBR3b1 The original value of GR3 bits 32-63 with bit 32 set to one.
X Bits 32-47 of GR2 are 2 more than the index of the first unequal

halfword.
nop1 Bits 48-63 of GR2 are the one's complement of the first unequal

halfword in operand 1.
nop3 Bits 48-63 of GR2 are the one's complement of the first unequal

halfword in operand 3.
top1 Bits 48-63 of GR2 are the first unequal halfword in operand 1.
top3 Bits 48-63 of GR2 are the first unequal halfword in operand 3.

Figure 7-191. Operation of COMPARE AND FORM CODEWORD in the 24-Bit or 31-bit Addressing Mode

7-140 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 F
O

R
M

 C
O

D
E

W
O

R
D

Figure 7-192. Execution of COMPARE AND FORM CODEWORD in the 24-Bit or 31-bit Addressing Mode

index limit 2 x bits 49-62 of 2nd-operand address

operand-control bit Bit 63 of 2nd-operand address

1st-operand address GR1 +
bits 48-63 of GR2

Bit 63 of
GR1, GR2 and GR3

all zeros

TEMPHW One's comp-
lement of 3rd-op HW

Condition code 1

End operation

End operation

Bits 48-63
of GR2 >
index limit

3rd-operand address GR3 +
bits 48-63 of GR2

Fetch halfwords from current 1st- and
3rd-operand locations

GR2 GR2 + 2

Compare
halfwords
fetched

Test
operand-control

bit

GR2 GR3

Bit 32 of GR2 1

Condition code 0

TEMPHW 1st-op HW

Exchange GR1 and GR3

Condition code 2

TEMPHW One's comp-
lement of 1st-op HW

Exchange GR1 and GR3

TEMPHW 3rd-op HW

Condition code 1

Test
operand-control

bit

Condition code 2

Shift GR2 left 16 positions

Bits 48-63 of GR2 TEMPHW

Specification
exception

Unit-of-
operation
boundary

No

Yes

Yes

No

Equal 1st op high

1st op low

Zero ZeroOne One

*

*
*

*

*

* *

* Only bits 32-63 of a GR participate
when no bits are mentioned

General Instructions 7-141

C
O

M
P

A
R

E
 A

N
D

 F
O

R
M

 C
O

D
E

W
O

R
D

Operand-
Control Bit Relation

Resulting
Condition

Code

Result in
GR2 (Bits

0-63)

Result in
GR1 (Bits

0-63)

Result in
GR3 (Bits

0-63)
0 op1 = op3 0 OGR3b1 – –
0 op1 < op3 1 X, nop3 – –
0 op1 > op3 2 X, nop1 OGR3 OGR1
1 op1 = op3 0 OGR3b1 – –
1 op1 < op3 2 X, top1 OGR3 OGR1
1 op1 > op3 1 X, top3 – –

Explanation:

– The bits remain unchanged.
OGR1 The original value of GR1 bits 0-63.
OGR3 The original value of GR3 bits 0-63.
OBR3b1 The original value of GR3 bits 0-63 with bit 0 set to one.
X Bits 0-15 of GR2 are 6 more than the index of the first unequal six-byte

unit.
nop1 Bits 16-63 of GR2 are the one's complement of the first unequal six-byte

unit in operand 1.
nop3 Bits 16-63 of GR2 are the one's complement of the first unequal six-byte

unit in operand 3.
top1 Bits 16-63 of GR2 are the first unequal six-byte unit in operand 1.
top3 Bits 16-63 of GR2 are the first unequal six-byte unit in operand 3.

Figure 7-193. Operation of COMPARE AND FORM CODEWORD in the 64-bit Addressing Mode

7-142 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 F
O

R
M

 C
O

D
E

W
O

R
D

Figure 7-194. Execution of COMPARE AND FORM CODEWORD in the 64-bit Addressing Mode

index limit 2 x bits 49-62 of 2nd-operand address

operand-control bit Bit 63 of 2nd-operand address

1st-operand address GR1 +
bits 48-63 of GR2

Bit 63 of
GR1, GR2 and GR3

all zeros

TEMP6 One's comp-
lement of 3rd-op

Condition code 1

End operation

End operation

Bits 48-63
of GR2 >
index limit

3rd-operand address GR3 +
bits 48-63 of GR2

Fetch six bytes from current 1st-
and 3rd-operand locations

GR2 GR2 + 6

Compare
six bytes
fetched

Test
operand-control

bit

GR2 GR3

Bit 0 of GR2 1

Condition code 0

TEMP6 1st-op six

Exchange GR1 and GR3

Condition code 2

TEMP6 One's comp-
lement of 1st-op

Exchange GR1 and GR3

TEMP6 3rd-op six

Condition code 1

Test
operand-control

bit

Condition code 2

Shift GR2 left 48 positions

Bits 16-63 of GR2 TEMP6

Specification
exception

Unit-of-
operation
boundary

No

Yes

Yes

No

Equal 1st op high

1st op low

Zero ZeroOne One

*

*
*

*

*

* *

* Bits 0-63 of a GR participate
when no bits are mentioned

six bytes
bytes

six bytes
bytes

General Instructions 7-143

C
O

M
P

A
R

E
 D

O
U

B
L

E
 A

N
D

 S
W

A
PCOMPARE AND SWAP

CS R1,R3,D2(B2) [RS-a]

CSY R1,R3,D2(B2) [RSY-a]

CSG R1,R3,D2(B2) [RSY-a]

COMPARE DOUBLE AND SWAP

CDS R1,R3,D2(B2) [RS-a]

CDSY R1,R3,D2(B2) [RSY-a]

CDSG R1,R3,D2(B2) [RSY-a]

The first and second operands are compared. If they
are equal, the third operand is stored at the second-
operand location. If they are unequal, the second
operand is loaded into the first-operand location. The
result of the comparison is indicated in the condition
code.

For COMPARE AND SWAP (CS, CSY), the first and
third operands are 32 bits in length, with each oper-
and occupying bit positions 32-63 of a general regis-
ter. The second operand is a word in storage.

For COMPARE AND SWAP (CSG), the first and third
operands are 64 bits in length, with each operand
occupying bit positions 0-63 of a general register.
The second operand is a doubleword in storage.

For COMPARE DOUBLE AND SWAP (CDS, CDSY),
the first and third operands are 64 bits in length. The
first 32 bits of an operand occupy bit positions 32-63
of the even-numbered register of an even-odd pair of
general registers, and the second 32 bits occupy bit
positions 32-63 of the odd-numbered register of the
pair. The second operand is a doubleword in storage.

For COMPARE DOUBLE AND SWAP (CDSG), the
first and third operands are 128 bits in length. The
first 64 bits of an operand occupy bit positions 0-63 of
the even-numbered register of an even-odd pair of
general registers, and the second 64 bits occupy bit
positions 0-63 of the odd-numbered register of the
pair. The second operand is a quadword in storage.

When an equal comparison occurs, the third operand
is stored at the second-operand location. The fetch of
the second operand for purposes of comparison and
the store into the second-operand location appear to
be a block-concurrent interlocked-update reference
as observed by other CPUs.

When the result of the comparison is unequal, the
second operand is loaded at the first-operand loca-
tion, and the second-operand location remains
unchanged. However, on some models, the contents
may be fetched and subsequently stored back
unchanged at the second-operand location. This
update appears to be a block-concurrent interlocked-
update reference as observed by other CPUs.

A serialization function is performed before the oper-
and is fetched and again after the operation is com-
pleted.

The displacement for CS and CDS is treated as a
12-bit unsigned binary integer. The displacement for
CSY, CSG, CDSY, and CDSG is treated as a 20-bit
signed binary integer.

The second operand of COMPARE AND SWAP (CS,
CSY) must be designated on a word boundary. The
second operand of COMPARE AND SWAP (CSG)
and COMPARE DOUBLE AND SWAP (CDS, CDSY)
must be designated on a doubleword boundary. The
second operand of COMPARE DOUBLE AND SWAP
(CDSG) must be designated on a quadword bound-
ary. The R1 and R3 fields for COMPARE DOUBLE
AND SWAP must each designate an even-numbered
register. Otherwise, a specification exception is rec-
ognized.

'BA' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '14'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '30'

0 8 12 16 20 32 40 47

'BB' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '31'
0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '3E'
0 8 12 16 20 32 40 47

7-144 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 D

O
U

B
L

E
 A

N
D

 S
W

A
P Resulting Condition Code:

0 First and second operands equal, second oper-
and replaced by third operand

1 First and second operands unequal, first operand
replaced by second operand

2 --
3 --

Program Exceptions:

• Access (fetch and store, operand 2)
• Operation (CSY and CDSY, if the long-displace-

ment facility is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. Several examples of the use of the COMPARE
AND SWAP and COMPARE DOUBLE AND
SWAP instructions are given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. Some of the following notes are worded, with
respect to operand size, for CS, CSY, CDS, and
CDSY. Similar notes, worded for a larger operand
size, would apply to CSG and CDSG.

3. COMPARE AND SWAP can be used by CPU
programs sharing common storage areas in
either a multiprogramming or multiprocessing
environment. Two examples are:

a. By performing the following procedure, a
CPU program can modify the contents of a
storage location even though the possibility
exists that the CPU program may be inter-
rupted by another CPU program that will
update the location or that another CPU pro-
gram may simultaneously update the loca-
tion. First, the entire word containing the byte
or bytes to be updated is loaded into a gen-
eral register. Next, the updated value is com-
puted and placed in another general register.
Then COMPARE AND SWAP is executed
with the R1 field designating the register that
contains the original value and the R3 field
designating the register that contains the
updated value. If the update has been suc-
cessful, condition code 0 is set. If the storage
location no longer contains the original
value, the update has not been successful,
the general register designated by the R1

field of the COMPARE AND SWAP instruc-
tion contains the new current value of the
storage location, and condition code 1 is set.
When condition code 1 is set, the CPU pro-
gram can repeat the procedure using the
new current value.

b. COMPARE AND SWAP can be used for con-
trolled sharing of a common storage area,
including the capability of leaving a message
(in a chained list of messages) when the
common area is in use. To accomplish this, a
word in storage can be used as a control
word, with a zero value in the word indicating
that the common area is not in use and that
no messages exist, a negative value indicat-
ing that the area is in use and that no mes-
sages exist, and a nonzero positive value
indicating that the common area is in use
and that the value is the address of the most
recent message added to the list. Thus, any
number of CPU programs desiring to seize
the area can use COMPARE AND SWAP to
update the control word to indicate that the
area is in use or to add messages to the list.
The single CPU program which has seized
the area can also safely use COMPARE
AND SWAP to remove messages from the
list.

4. COMPARE DOUBLE AND SWAP can be used in
a manner similar to that described for COMPARE
AND SWAP. In addition, it has another use. Con-
sider a chained list, with a control word used to
address the first message in the list, as
described in programming note 3.b above. If mul-
tiple CPU programs are to be permitted to delete
messages by using COMPARE AND SWAP (and
not just the single CPU program which has
seized the common area), there is a possibility
the list will be incorrectly updated. This would
occur if, for example, after one CPU program has
fetched the address of the most recent message
in order to remove the message, another CPU
program removes the first two messages and
then adds the first message back into the chain.
The first CPU program, on continuing, cannot
easily detect that the list is changed. By increas-
ing the size of the control word to a doubleword
containing both the first message address and a
word with a change number that is incremented
for each modification of the list, and by using
COMPARE DOUBLE AND SWAP to update both
fields together, the possibility of the list being

General Instructions 7-145

C
O

M
P

A
R

E
 A

N
D

 S
W

A
P

 A
N

D
 S

T
O

R
Eincorrectly updated is reduced to a negligible

level. That is, an incorrect update can occur only
if the first CPU program is delayed while changes
exactly equal in number to a multiple of 232 take
place and only if the last change places the origi-
nal message address in the control word.

5. To ensure successful updating of a common stor-
age field by two or more CPUs, all updates must
be done by means of an interlocked-update ref-
erence (the section “Interlocked-Update Refer-
ences” on page 5-124 lists the instructions that
perform an interlocked-update reference). For
example, in a configuration where the inter-
locked-access facility 2 is not installed, if one
CPU executes OR IMMEDIATE and another
CPU executes COMPARE AND SWAP to update
the same byte, the fetch by OR IMMEDIATE may
occur either before the fetch by COMPARE AND
SWAP or between the fetch and the store by
COMPARE AND SWAP, and then the store by
OR IMMEDIATE may occur after the store by
COMPARE AND SWAP, in which case the
change made by COMPARE AND SWAP is lost.

6. For the case of a condition-code setting of 1,
COMPARE AND SWAP and COMPARE DOU-
BLE AND SWAP may or may not, depending on
the model, cause any of the following to occur for
the second-operand location: a PER storage-
alteration event may be recognized; a protection
exception for storing may be recognized; and,
provided no access exception exists, the change
bit may be set to one. Because the contents of
storage remain unchanged, the change bit may
or may not be one when a PER storage-alter-
ation event is recognized.

7. The performance of CDSG on some models may
be significantly slower than that of CSG. When
quadword consistency is not required by the pro-
gram, alternate code sequences should be used.

COMPARE AND SWAP AND STORE

CSST D1(B1),D2(B2),R3 [SSF]

The first operand is compared with the third operand.
If they are equal, the replacement value is stored into
the first-operand location, and subsequently, the

store value is placed into the second-operand loca-
tion. If they are not equal, then the first operand is
loaded into the third-operand location, and the sec-
ond operand is not changed. The result is indicated
by the condition code.

The size of the first and third operands, the size of
the replacement value, and the alignment of the first
operand are determined by the contents of a function
code (FC) in bits 56-63 of general register 0. The
assigned function codes are as follows:

• When the function code is 0, the operands are 32
bits in length. The first operand is a word in stor-
age, and the third operand is in bits 32-63 of gen-
eral register R3. The replacement value is in
bytes 0-3 of the parameter list.

• When the function code is 1, the operands are 64
bits in length. The first operand is a doubleword
in storage, and the third operand is in bits 0-63 of
general register R3. The replacement value is
bytes 0-7 of the parameter list.

• When the function code is 2 and the compare-
and-swap-and-store facility 2 is installed, the
operands are 128 bits in length. The first operand
is a quadword in storage, and the third operand
is in bits 0-63 of general registers R3 and R3 + 1.
The replacement value is in bytes 0-15 of the
parameter list.

The size of the store value and the alignment of the
second operand are determined by a store character-
istic (SC) in bits 48-55 of general register 0. The
store characteristic is expressed as a power of two;
the assigned store characteristics are 0, 1, 2, and 3.
An SC of 0 means that one byte is stored on a byte
boundary; an SC of 1 means that two bytes are
stored on a halfword boundary, an SC of 2 means
that four bytes are stored on a word boundary, and
an SC of 3 means that eight bytes are stored on a
doubleword boundary. When the CSST facility 2 is
installed, an SC of 4 is also assigned; an SC of 4
means that sixteen bytes are stored on a quadword
boundary. The store value begins at byte 16 of the
parameter list.

Bits 0-31 of general register 0 are ignored. Bits 32-47
of general register 0 and bits 60-63 of general regis-
ter 1 are reserved and should contain zeros; other-
wise, the program may not operate compatibly in the
future.

'C8' R3 '2' B1 D1 B2 D2

0 8 12 16 20 32 36 47

7-146 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 S
W

A
P

 A
N

D
 S

T
O

R
E General register 1 contains the logical address of a

parameter list that contains the replacement value
and the store value. The parameter list is on a quad-
word boundary. In the access-register mode, access
register 1 specifies the address space containing the
parameter list.

The handling of the parameter-list address is depen-
dent on the addressing mode. In the 24-bit address-
ing mode, the contents of bit positions 40-59 of
general register 1, with four zeros appended to the

right, constitute the address, and bit positions 0-39
are ignored. In the 31-bit addressing mode, the con-
tents of bit positions 33-59 of the register, with four
zeros appended to the right, constitute the address,
and bit positions 0-32 are ignored. In the 64-bit
addressing mode, the contents of bit positions 0-59
of the register, with four zeros appended to the right,
constitute the address.

Figure 7-195 illustrates contents of the registers and
parameter list just described.

All Addressing Modes

GR0 / Reserved SC FC
0 48 56 63

24-Bit Addressing Mode

GR1 / Parameter List Address / / / /
0 40 60 63

31-Bit Addressing Mode

GR1 / Parameter List Address / / / /
0 33 60 63

64-Bit Addressing Mode

GR1 Parameter List Address / / / /
0 60 63

R3 and Parameter List when FC = 0

R3 / Compare Value
0 32 63

Parameter List

0 Replacement Value /

8 /

16 Store Value
(1, 2, 4, 8, or 16 bytes)24

0 32 63

R3 and Parameter List when FC = 1

R3 Compare Value
0 63

Parameter List

0 Replacement Value

8 /

16 Store Value
(1, 2, 4, 8, or 16 bytes)24

0 63

Figure 7-195. Register Contents for COMPARE AND SWAP AND STORE

General Instructions 7-147

C
O

M
P

A
R

E
 A

N
D

 S
W

A
P

 A
N

D
 S

T
O

R
E

When an equal comparison occurs, the replacement
value is stored at the first-operand location, and the
store value is stored at the second-operand location.
The fetch of the first operand for purposes of compar-
ison, and the store of the replacement value into the
first-operand location, both appear to be a block-con-
current interlocked-update reference as observed by
other CPUs. The store of the store value appears to
be block-concurrent as observed by other CPUs.

When the result of the comparison is unequal, the
first operand is loaded into the third-operand location,
and the first operand remains unchanged. However,
on some models, the contents of the first operand
may be fetched and subsequently stored back
unchanged at the first-operand location. This update
appears to be a block-concurrent interlocked-update
reference as observed by other CPUs.

As observed by this CPU and by other CPUs, all
fetches appear to occur before all stores, and the
store into the first operand appears to occur before
the store into the second operand. Access-exception
conditions are recognized for the entire 32-byte
parameter list and for the second operand, regard-
less of whether the first and third operands are or are
not equal. For the second operand, PER storage-
alteration and zero-address-detection events are rec-
ognized, and a change bit is set, only if a store
occurs.

A serialization function is performed before the oper-
ation begins and again after the operation is com-
pleted.

Special Conditions

A specification exception is recognized for any of the
following conditions:

• The function code specifies an unassigned
value.

• The store characteristic specifies an unassigned
value.

• The function code is 0, and the first operand is
not designated on a word boundary.

• The function code is 1, and the first operand is
not designated on a doubleword boundary.

• The function code is 2, and any of the following is
true:

– The compare-and-swap-and-store facility 2
is not installed.

– The first operand is not designated on a
quadword boundary.

– The R3 field does not designate the even-
numbered register of an even-odd register
pair.

• The second operand is not designated on an
integral boundary corresponding to the size of
the store value.

For all of the above conditions, and for all addressing
and protection exceptions, the operation is sup-
pressed.

R3, R3 + 1, and Parameter List when FC = 2

R3 Compare Value (leftmost bits)
0 63

R3 + 1 Compare Value (rightmost bits)
0 63

Parameter List

0
Replacement Value

8

16 Store Value
(1, 2, 4, 8, or 16 bytes)24

0 63

Figure 7-195. Register Contents for COMPARE AND SWAP AND STORE

7-148 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 T
R

A
P Resulting Condition Code:

0 First and third operands equal; first operand
replaced by replacement value, and second
operand replaced by store value

1 First and third operands unequal; third operand
replaced by first operand

2 --
3 --

Program Exceptions:

• Access (fetch, parameter list; fetch and store,
operand 1; store, operand 2)

• Operation (if the compare-and-swap-and-store
facility is not installed)

• Specification
• Transaction constraint

Programming Notes:

1. COMPARE AND SWAP AND STORE may be
used in conjunction with other COMPARE AND
SWAP or COMPARE DOUBLE AND SWAP
instructions to manipulate locks, queue pointers,
or other fields that require interlocked updates.

2. COMPARE AND SWAP AND STORE should not
be used to manipulate fields that are also manip-
ulated by PERFORM LOCKED OPERATION.

3. The store value is intended to provide a separate
“footprint” of the interlocked-update operation in
a location apart from the first operand in a single
unit of operation.

4. The performance of COMPARE AND SWAP
AND STORE may be significantly slower than the
that of separate COMPARE AND SWAP,
BRANCH ON CONDITION, and STORE instruc-
tions.

5. COMPARE AND SWAP AND STORE should
only be used when an interruption between the
compare-and-swap operation and the store oper-
ation cannot be tolerated, and other means of
disabling for interruptions are not practical.

COMPARE AND TRAP

CRT R1,R2,M3 [RRF-c]

CGRT R1,R2,M3 [RRF-c]

COMPARE IMMEDIATE AND TRAP

CIT R1,I2,M3 [RIE-a]

CGIT R1,I2,M3 [RIE-a]

The first operand is compared with the second oper-
and. If the mask bit in the M3 field corresponding to
the comparison result is one, a compare-and-trap-
instruction data exception is recognized, and the
operation is completed; otherwise, normal instruction
sequencing proceeds with the updated instruction
address.

The comparison results and corresponding M3 bits
are as follows:

Bit 3 of the M3 field is reserved and should be zero;
otherwise, the program may not operate compatibly
in the future.

For COMPARE AND TRAP (CRT) and COMPARE
IMMEDIATE AND TRAP (CIT), the first operand is
treated as a 32-bit signed binary integer. For COM-
PARE AND TRAP (CGRT) and COMPARE IMMEDI-
ATE AND TRAP (CGIT), the first operand is treated
as a 64-bit signed binary integer.

For COMPARE IMMEDIATE AND TRAP, the second
operand is treated as a 16-bit signed binary integer.

'B972' M3 / / / / R1 R2

0 16 20 24 28 31

'B960' M3 / / / / R1 R2

0 16 20 24 28 31

'EC' R1 / / / / I2 M3 / / / / '72'
0 8 12 16 32 36 40 47

'EC' R1 / / / / I2 M3 / / / / '70'
0 8 12 16 32 36 40 47

Comparison Result M3 Bit
Equal 0
First operand low 1

First operand high 2

General Instructions 7-149

C
O

M
P

A
R

E
 H

A
L

F
W

O
R

D
 R

E
L

A
T

IV
E

 L
O

N
GFor COMPARE AND TRAP (CRT), the second oper-

and is treated as a 32-bit signed binary integer. For
COMPARE AND TRAP (CGRT), the second operand
is treated as a 64-bit signed binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data
• Operation (if the general-instructions-extension

facility is not installed)

Programming Notes:

1. Possible uses of COMPARE AND TRAP and
COMPARE IMMEDIATE AND TRAP include
checking for pointers containing zero (null
pointer), or array range checking.

2. On most models, when a data exception is not
recognized, the performance of COMPARE AND
TRAP and COMPARE IMMEDIATE AND TRAP
is typically similar to other COMPARE instruc-
tions. When a data exception is recognized, the
instruction may be significantly slower than an
equivalent COMPARE instruction followed by a
BRANCH ON CONDITION instruction.

3. When bit positions 0-2 of the M3 field contain
zeros, the instruction acts as a NOP, however
this is not the preferred instruction with which to
create a NOP. When bit positions 0-2 of the M3

field contain 111 binary, a data exception is
always recognized.

4. When a data exception is recognized, the com-
pare-and-trap data-exception code (DXC FF hex)
is stored, as described in “Data Exception” on
page 6-25.

5. The discussion of extended mnemonics in pro-
gramming note 3 for COMPARE AND BRANCH
on page 7-136 also applies to the compare-and-
trap instructions.

COMPARE HALFWORD

CH R1,D2(X2,B2) [RX-a]

CHY R1,D2(X2,B2) [RXY-a]

CGH R1,D2(X2,B2) [RXY-a]

COMPARE HALFWORD
IMMEDIATE

Register-and-immediate formats:

CHI R1,I2 [RI-a]

CGHI R1,I2 [RI-a]

Storage-and-immediate formats:

CHHSI D1(B1),I2 [SIL]

CHSI D1(B1),I2 [SIL]

CGHSI D1(B1),I2 [SIL]

COMPARE HALFWORD RELATIVE
LONG

CHRL R1,RI2 [RIL-b]

CGHRL R1,RI2 [RIL-b]
'49' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '79'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '34'

0 8 12 16 20 32 40 47

'A7' R1 'E' I2
0 8 12 16 31

'A7' R1 'F' I2
0 8 12 16 31

'E554' B1 D1 I2
0 16 20 32 47

'E55C' B1 D1 I2
0 16 20 32 47

'E558' B1 D1 I2
0 16 20 32 47

'C6' R1 '5' RI2
0 8 12 16 47

'C6' R1 '4' RI2
0 8 12 16 47

7-150 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 H

IG
H The first operand is compared with the second oper-

and, and the result is indicated in the condition code.
The second operand is two bytes in length and is
treated as a 16-bit signed binary integer.

For COMPARE HALFWORD IMMEDIATE (CHHSI),
the first operand is treated as a 16-bit signed binary
integer. For COMPARE HALFWORD (CH, CHY),
COMPARE HALFWORD IMMEDIATE (CHI and
CHSI), and COMPARE HALFWORD RELATIVE
LONG (CHRL), the first operand is treated as a 32-bit
signed binary integer. For COMPARE HALFWORD
(CGH), COMPARE HALFWORD IMMEDIATE (CGHI
and CGHSI), and COMPARE HALFWORD RELA-
TIVE LONG (CGHRL), the first operand is treated as
a 64-bit signed binary integer.

The displacement for COMPARE HALFWORD (CH)
and for COMPARE HALFWORD IMMEDIATE
(CGHSI, CHHSI, CHSI) is treated as a 12-bit
unsigned binary integer. The displacement for COM-
PARE HALFWORD (CHY, CGH) is treated as a 20-bit
signed binary integer.

For COMPARE HALFWORD RELATIVE LONG, the
contents of the RI2 field are a signed binary integer
specifying the number of halfwords that is added to
the address of the instruction to generate the
address of the second operand in storage. When
DAT is on, the second operand is accessed using the
same addressing-space mode as that used to
access the instruction. When DAT is off, the second
operand is accessed using a real address.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

Program Exceptions:

• Access (fetch, operand 1 of CGHSI, CHHSI, and
CHSI only; fetch, operand 2 of CGH, CGHRL,
CH, CHRL, CHY only)

• Operation (CHY, if the long-displacement facility
is not installed; CGH, CHRL, CGHRL, CGHSI,
CHHSI, and CHSI, if the general-instructions-
extension facility is not installed)

Programming Notes:

1. An example of the use of the COMPARE HALF-
WORD instruction is given in Appendix A, “Num-
ber Representation and Instruction-Use
Examples.”

2. For COMPARE HALFWORD RELATIVE LONG,
the second operand is necessarily aligned on an
integral boundary corresponding to the operand’s
size.

3. When COMPARE HALFWORD RELATIVE
LONG is the target of an execute-type instruc-
tion, the second-operand address is relative to
the target address.

COMPARE HIGH

Register-and-register formats:

CHHR R1,R2 [RRE]

CHLR R1,R2 [RRE]

Register-and-storage format:

CHF R1,D2(X2,B2) [RXY-a]

COMPARE IMMEDIATE HIGH

CIH R1,I2 [RIL-a]

The first operand is compared with the second oper-
and, and the result is indicated in the condition code.

The operands are treated as 32-bit signed binary
integers. The first operand is in bit positions 0-31 of
general register R1; bit positions 32-63 of the register
are ignored. For COMPARE HIGH (CHHR), the sec-
ond operand is in bit positions 0-31 of general regis-
ter R2; bit positions 32-63 of the register are ignored.

'B9CD' / / / / / / / / R1 R2

0 16 24 28 31

'B9DD' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 'CD'
0 8 12 16 20 32 40 47

'CC' R1 'D' I2
0 8 12 16 47

General Instructions 7-151

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 IM

M
E

D
IA

T
EFor COMPARE HIGH (CHLR), the second operand is

in bit positions 32-63 of general register R2; bit posi-
tions 0-31 of the register are ignored.

The displacement for CHF is treated as a 20-bit
signed binary integer.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

Program Exceptions:

• Access (operand 2 of CHF only)
• Operation (if the high-word facility is not installed)

COMPARE LOGICAL

Register-and-register formats:

CLR R1,R2 [RR]

CLGR R1,R2 [RRE]

CLGFR R1,R2 [RRE]

Register-and-storage formats:

CL R1,D2(X2,B2) [RX-a]

CLY R1,D2(X2,B2) [RXY-a]

CLG R1,D2(X2,B2) [RXY-a]

CLGF R1,D2(X2,B2) [RXY-a]

Storage-and-storage format:

CLC D1(L,B1),D2(B2) [SS-a]

COMPARE LOGICAL IMMEDIATE

Register-and-immediate formats:

CLFI R1,I2 [RIL-a]

CLGFI R1,I2 [RIL-a]

Storage-and-immediate formats:

CLI D1(B1),I2 [SI]

CLIY D1(B1),I2 [SIY]

CLFHSI D1(B1),I2 [SIL]

CLGHSI D1(B1),I2 [SIL]

CLHHSI D1(B1),I2 [SIL]

'15' R1 R2

0 8 12 15

'B921' / / / / / / / / R1 R2

0 16 24 28 31

'B931' / / / / / / / / R1 R2

0 16 24 28 31

'55' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '55'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '21'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '31'

0 8 12 16 20 32 40 47

'D5' L B1 D1 B2 D2

0 8 16 20 32 36 47

'C2' R1 'F' I2
0 8 12 16 47

'C2' R1 'E' I2
0 8 12 16 47

'95' I2 B1 D1

0 8 16 20 31

'EB' I2 B1 DL1 DH1 '55'

0 8 16 20 32 40 47

'E55D' B1 D1 I2
0 16 20 32 47

'E559' B1 D1 I2
0 16 20 32 47

'E555' B1 D1 I2
0 16 20 32 47

7-152 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 R

E
L

A
T

IV
E

 L
O

N
G COMPARE LOGICAL RELATIVE

LONG

CLRL R1,RI2 [RIL-b]

CLGRL R1,RI2 [RIL-b]

CLGFRL R1,RI2 [RIL-b]

CLHRL R1,RI2 [RIL-b]

CLGHRL R1,RI2 [RIL-b]

The first operand is compared with the second oper-
and, and the result is indicated in the condition code.

The lengths of the operands are as follows:

• For COMPARE LOGICAL (CLR, CL, CLY), COM-
PARE LOGICAL IMMEDIATE (CLFI), and COM-
PARE LOGICAL RELATIVE LONG (CLRL), the
operands are treated as 32 bits.

• For COMPARE LOGICAL (CLGR, CLG) and
COMPARE LOGICAL RELATIVE LONG
(CLGRL), the operands are treated as 64 bits.

• For COMPARE LOGICAL (CLGFR, CLGF),
COMPARE LOGICAL IMMEDIATE (CLGFI), and
COMPARE LOGICAL RELATIVE LONG (CLG-
FRL), the first operand is treated as 64 bits, and
the second operand is treated as 32 bits with 32
zeros appended on the left.

• For COMPARE LOGICAL IMMEDIATE (CLH-
HSI), the operands are treated as 16 bits.

• For COMPARE LOGICAL IMMEDIATE (CLFHSI)
and COMPARE LOGICAL RELATIVE LONG
(CLHRL), the first operand is treated as 32 bits,

and the second operand is treated as 16 bits with
16 zeros appended on the left.

• For COMPARE LOGICAL IMMEDIATE (CLGHSI)
and COMPARE LOGICAL RELATIVE LONG
(CLGHRL), the first operand is treated as 64 bits,
and the second operand is treated as 16 bits with
48 zeros appended on the left.

• For COMPARE LOGICAL IMMEDIATE (CLI,
CLIY), the operands are treated as 8 bits.

• For COMPARE LOGICAL (CLC), the first and
second operands have the same length, in the
range of one to 256 bytes.

The comparison proceeds left to right, byte by byte,
and ends as soon as an inequality is found or the end
of the fields is reached. For COMPARE LOGICAL
(CL, CLY, CLG, CLGF, CLC), COMPARE LOGICAL
IMMEDIATE (CLFHSI, CLGHSI, CLHHSI) and COM-
PARE LOGICAL RELATIVE LONG, access excep-
tions may or may not be recognized for the portion of
a storage operand to the right of the first unequal
byte.

The displacements for CL, CLI, CLFHSI, CLGHSI,
CLHHSI, and both operands of CLC are treated as
12-bit unsigned binary integers. The displacement for
CLY, CLG, CLGF, and CLIY is treated as a 20-bit
signed binary integer.

For COMPARE LOGICAL RELATIVE LONG, the con-
tents of the RI2 field are a signed binary integer spec-
ifying the number of halfwords that is added to the
address of the instruction to generate the address of
the second operand in storage. When DAT is on, the
second operand is accessed using the same
addressing-space mode as that used to access the
instruction. When DAT is off, the second operand is
accessed using a real address.

For COMPARE LOGICAL RELATIVE LONG (CLRL,
CLGFRL), the second operand must be aligned on a
word boundary, and for COMPARE LOGICAL RELA-
TIVE LONG (CLGRL), the second operand must be
aligned on a doubleword boundary; otherwise, a
specification exception is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

'C6' R1 'F' RI2
0 8 12 16 47

'C6' R1 'A' RI2
0 8 12 16 47

'C6' R1 'E' RI2
0 8 12 16 47

'C6' R1 '7' RI2
0 8 12 16 47

'C6' R1 '6' RI2
0 8 12 16 47

General Instructions 7-153

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 IM

M
E

D
IA

T
E

 A
N

D
 B

R
A

N
C

H
 R

E
L

A
T

IV
EProgram Exceptions:

• Access (fetch, operand 2, CL, CLC, CLG, CLGF,
CLGFRL, CLGHRL, CLGRL, CLHRL, CLRL, and
CLY; fetch, operand 1, CLC, CLFHSI, CLGHSI,
CLHHSI, CLI, and CLIY)

• Operation (CLY and CLIY, if the long-displace-
ment facility is not installed; CLFI and CLGFI, if
the extended-immediate facility is not installed;
CLFHSI, CLGFRL, CLGHSI, CLGHRL, CLGRL,
CLHHSI, CLHRL, and CLRL, if the general-
instructions-extension facility is not installed)

• Specification (CLRL, CLGFRL, CLGRL)
• Transaction constraint (CLC)

Programming Notes:

1. Examples of the use of the COMPARE LOGICAL
instruction are given in Appendix A, “Number
Representation and Instruction-Use Examples.”

2. COMPARE LOGICAL treats all bits of each oper-
and alike as part of a field of unstructured logical
data. For COMPARE LOGICAL (CLC), the com-
parison may extend to field lengths of 256 bytes.

3. For COMPARE LOGICAL RELATIVE LONG, the
second operand must be aligned on an integral
boundary corresponding to the operand’s size.

4. When COMPARE LOGICAL RELATIVE LONG is
the target of an execute-type instruction, the sec-
ond-operand address is relative to the target
address.

COMPARE LOGICAL AND
BRANCH

CLRB R1,R2,M3,D4(B4) [RRS]

CLGRB R1,R2,M3,D4(B4) [RRS]

COMPARE LOGICAL AND
BRANCH RELATIVE

CLRJ R1,R2,M3,RI4 [RIE-b]

CLGRJ R1,R2,M3,RI4 [RIE-b]

COMPARE LOGICAL IMMEDIATE
AND BRANCH

CLIB R1,I2,M3,D4(B4) [RIS]

CLGIB R1,I2,M3,D4(B4) [RIS]

COMPARE LOGICAL IMMEDIATE
AND BRANCH RELATIVE

CLIJ R1,I2,M3,RI4 [RIE-c]

CLGIJ R1,I2,M3,RI4 [RIE-c]

The first operand is compared with the second oper-
and. If the mask bit in the M3 field corresponding to
the comparison result is one, the instruction address
in the current PSW is replaced by the branch address
specified by the fourth operand; otherwise, normal
instruction sequencing proceeds with the updated
instruction address.

For COMPARE LOGICAL AND BRANCH (CLRB),
COMPARE LOGICAL AND BRANCH RELATIVE
(CLRJ), COMPARE LOGICAL IMMEDIATE AND
BRANCH (CLIB), and COMPARE LOGICAL IMME-
DIATE AND BRANCH RELATIVE (CLIJ), the first

'EC' R1 R2 B4 D4 M3 / / / / 'F7'
0 8 12 16 20 32 36 40 47

'EC' R1 R2 B4 D4 M3 / / / / 'E5'
0 8 12 16 20 32 36 40 47

'EC' R1 R2 RI4 M3 / / / / '77'

0 8 12 16 32 36 40 47

'EC' R1 R2 RI4 M3 / / / / '65'

0 8 12 16 32 36 40 47

'EC' R1 M3 B4 D4 I2 'FF'

0 8 12 16 20 32 40 47

'EC' R1 M3 B4 D4 I2 'FD'

0 8 12 16 20 32 40 47

'EC' R1 M3 RI4 I2 '7F'

0 8 12 16 32 40 47

'EC' R1 M3 RI4 I2 '7D'

0 8 12 16 32 40 47

7-154 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 A

N
D

 T
R

A
P operand is treated as a 32-bit unsigned binary inte-

ger. For COMPARE LOGICAL AND BRANCH
(CLGRB), COMPARE LOGICAL AND BRANCH
RELATIVE (CLGRJ), COMPARE LOGICAL IMMEDI-
ATE AND BRANCH (CLGIB), and COMPARE LOGI-
CAL IMMEDIATE AND BRANCH RELATIVE
(CLGIJ), the first operand is treated as a 64-bit
unsigned binary integer.

For COMPARE LOGICAL AND BRANCH (CLRB)
and COMPARE LOGICAL AND BRANCH RELATIVE
(CLRJ), the second operand is treated as a 32-bit
unsigned binary integer. For COMPARE LOGICAL
AND BRANCH (CLGRB) and COMPARE LOGICAL
AND BRANCH RELATIVE (CLGRJ), the second
operand is treated as a 64-bit unsigned binary inte-
ger. For COMPARE LOGICAL IMMEDIATE AND
BRANCH and COMPARE LOGICAL IMMEDIATE
AND BRANCH RELATIVE, the second operand is
treated as an 8-bit unsigned binary integer. When the
size of the second operand is smaller than the size of
the first operand, the second operand is extended on
the left with zeros to match the size of the first oper-
and.

The comparison results and corresponding M3 bits
are as follows:

Bit 3 of the M3 field is reserved and should be zero;
otherwise, the program may not operate compatibly
in the future.

For COMPARE LOGICAL AND BRANCH and COM-
PARE LOGICAL IMMEDIATE AND BRANCH, the
fourth operand is used as the branch address. For
COMPARE LOGICAL AND BRANCH RELATIVE and
COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE, the contents of the RI4 field are a signed
binary integer specifying the number of halfwords
that is added to the address of the instruction to gen-
erate the branch address.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (if the general-instructions-extension
facility is not installed).

• Transaction constraint

Programming Notes:

1. When bit positions 0-2 of the M3 field contain
zeros, the instruction acts as a NOP, however
this is not the preferred instruction with which to
create a NOP. When bit positions 0-2 of the M3

field contain 111 binary, a branch always occurs.

2. When COMPARE LOGICAL AND BRANCH
RELATIVE or COMPARE LOGICAL IMMEDIATE
AND BRANCH RELATIVE are the target of an
execute-type instruction, the branch is relative to
the target address. See “Branch-Address Gener-
ation” on page 5-12.

3. The discussion of extended mnemonics in pro-
gramming note 3 for COMPARE AND BRANCH
on page 7-136 also applies to the compare-logi-
cal-and-branch instructions.

COMPARE LOGICAL AND TRAP

Register-and-register formats:

CLRT R1,R2,M3 [RRF-c]

CLGRT R1,R2,M3 [RRF-c]

Register-and-storage formats:

CLT R1,M3,D2(B2) [RSY-b]

CLGT R1,M3,D2(B2) [RSY-b]

Comparison Result M3 Bit

Equal 0
First operand low 1

First operand high 2 'B973' M3 / / / / R1 R2

0 16 20 24 28 31

'B961' M3 / / / / R1 R2

0 16 20 24 28 31

'EB R1 M3 B2 DL2 DH2 '23'
0 8 12 16 20 32 40 47

'EB' R1 M3 B2 DL2 DH2 '2B'

0 8 12 16 20 32 40 47

General Instructions 7-155

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 IM

M
E

D
IA

T
E

 A
N

D
 T

R
A

PCOMPARE LOGICAL IMMEDIATE
AND TRAP

CLFIT R1,I2,M3 [RIE-a]

CLGIT R1,I2,M3 [RIE-a]

The first operand is compared with the second oper-
and. If the mask bit in the M3 field corresponding to
the comparison result is one, a compare-and-trap-
instruction data exception is recognized, and the
operation is completed; otherwise, normal instruction
sequencing proceeds with the updated instruction
address.

The comparison results and corresponding M3 bits
are as follows:

Bit 3 of the M3 field is reserved and should be zero;
otherwise, the program may not operate compatibly
in the future.

For COMPARE LOGICAL AND TRAP (CLRT, CLT)
and COMPARE LOGICAL IMMEDIATE AND TRAP
(CLFIT), the first operand is treated as a 32-bit
unsigned binary integer. For COMPARE LOGICAL
AND TRAP (CLGRT, CLGT) and COMPARE LOGI-
CAL IMMEDIATE AND TRAP (CLGIT), the first oper-
and is treated as a 64-bit unsigned binary integer.

For COMPARE LOGICAL IMMEDIATE AND TRAP,
the second operand is treated as a 16-bit unsigned
binary integer. For COMPARE LOGICAL AND TRAP
(CLRT, CLT), the second operand is treated as a 32-
bit unsigned binary integer. For COMPARE LOGICAL
AND TRAP (CLGRT, CLGT), the second operand is
treated as a 64-bit unsigned binary integer. When the
size of the second operand is smaller than the size of
the first operand, the second operand is extended on
the left with zeros to match the size of the first oper-
and.

For COMPARE LOGICAL AND TRAP (CLT, CLGT),
when bit positions 0-2 of the M3 field contain either
000 or 111 binary, it is model dependent whether an
access exception is recognized for the second-oper-
and location; if accessible, it is model dependent
whether a PER zero-address-detection event is rec-
ognized for the location.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2, CLT, CLGT)
• Data
• Operation (CLRT, CLGRT, CLFIT, CLGIT, if the

general-instructions-extension facility is not
installed; CLT, CLGT if the miscellaneous-
instruction-extensions facility 1 is not installed)

Programming Notes:

1. Possible uses of COMPARE LOGICAL AND
TRAP and COMPARE LOGICAL IMMEDIATE
AND TRAP include checking for pointers con-
taining zero (null pointer), or array range check-
ing.

2. On most models, when a data exception is not
recognized, the performance of COMPARE
LOGICAL AND TRAP and COMPARE LOGICAL
IMMEDIATE AND TRAP is typically similar to
other COMPARE LOGICAL instructions. When a
data exception is recognized, the instruction may
be significantly slower than an equivalent COM-
PARE LOGICAL instruction followed by a
BRANCH ON CONDITION instruction.

3. For CLFIT, CLGIT, CLGRT, and CLRT, when bit
positions 0-2 of the M3 field contain zeros, the
instruction acts as a NOP, however this is not the
preferred instruction with which to create a NOP.
This NOP characteristic may not apply to CLGT
and CLT.

When bit positions 0-2 of the M3 field contain 111
binary, a data exception is always recognized.

4. When a data exception is recognized, the com-
pare-and-trap data-exception code (DXC FF hex)
is stored, as described in “Data Exception” on
page 6-25.

5. The discussion of extended mnemonics in pro-
gramming note 3 for COMPARE AND BRANCH

'EC' R1 / / / / I2 M3 / / / / '73'

0 8 12 16 32 36 40 47

'EC' R1 / / / / I2 M3 / / / / '71'

0 8 12 16 32 36 40 47

Comparison Result M3 Bit
Equal 0

First operand low 1

First operand high 2

7-156 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 C

H
A

R
A

C
T

E
R

S
 U

N
D

E
R

 M
A

S
K on page 7-136 also applies to the compare-logi-

cal-and-trap instructions.

COMPARE LOGICAL
CHARACTERS UNDER MASK

CLM R1,M3,D2(B2) [RS-b]

CLMY R1,M3,D2(B2) [RSY-b]

CLMH R1,M3,D2(B2) [RSY-b]

The first operand is compared with the second oper-
and under control of a mask, and the result is indi-
cated in the condition code.

The contents of the M3 field are used as a mask.
These four bits, left to right, correspond one for one
with four bytes, left to right, of general register R1. For
COMPARE LOGICAL CHARACTERS UNDER
MASK (CLM, CLMY), the four bytes to which the
mask bits correspond are in bit positions 32-63 of
general register R1. For COMPARE LOGICAL
CHARACTERS UNDER MASK (CLMH), the four
bytes are in the high-order half, bit positions 0-31, of
the register. The byte positions corresponding to
ones in the mask are considered as a contiguous
field and are compared with the second operand.
The second operand is a contiguous field in storage,
starting at the second-operand address and equal in
length to the number of ones in the mask. The bytes
in the general register corresponding to zeros in the
mask do not participate in the operation.

The comparison proceeds left to right, byte by byte,
and ends as soon as an inequality is found or the end
of the fields is reached.

When the mask is not zero, exceptions associated
with storage-operand access are recognized for no

more than the number of bytes specified by the
mask. Access exceptions may or may not be recog-
nized for the portion of a storage operand to the right
of the first unequal byte. When the mask is zero,
access exceptions are recognized for one byte at the
second-operand address.

The displacement for CLM is treated as a 12-bit
unsigned binary integer. The displacement for CLMY
and CLMH is treated as a 20-bit signed binary inte-
ger.

Resulting Condition Code:

0 Operands equal, or mask bits all zeros
1 First operand low
2 First operand high
3 --

Program Exceptions:

• Access (fetch, operand 2)
• Operation (CLMY, if the long-displacement facil-

ity is not installed)

Programming Note: An example of the use of the
COMPARE LOGICAL CHARACTERS UNDER
MASK instruction is given in Appendix A, “Number
Representation and Instruction-Use Examples.”

COMPARE LOGICAL HIGH

Register-and-register formats:

CLHHR R1,R2 [RRE]

CLHLR R1,R2 [RRE]

Register-and-storage format:

CLHF R1,D2(X2,B2) [RXY-a]

'BD' R1 M3 B2 D2

0 8 12 16 20 31

'EB' R1 M3 B2 DL2 DH2 '21'
0 8 12 16 20 32 40 47

'EB' R1 M3 B2 DL2 DH2 '20'
0 8 12 16 20 32 40 47

'B9CF' / / / / / / / / R1 R2

0 16 24 28 31

'B9DF' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 'CF'

0 8 12 16 20 32 40 47

General Instructions 7-157

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 L

O
N

GCOMPARE LOGICAL IMMEDIATE
HIGH

CLIH R1,I2 [RIL-a]

The first operand is compared with the second oper-
and, and the result is indicated in the condition code.

The operands are treated as 32-bit unsigned binary
integers. The first operand is in bit positions 0-31 of
general register R1; bit positions 32-63 of the register
are ignored. For COMPARE LOGICAL HIGH
(CLHHR), the second operand is in bit positions 0-31
of general register R2; bit positions 32-63 of the regis-
ter are ignored. For COMPARE LOGICAL HIGH
(CLHLR), the second operand is in bit positions
32-63 of general register R2; bit positions 0-31 of the
register are ignored.

The displacement for CLHF is treated as a 20-bit
signed binary integer.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

Program Exceptions:

• Access (operand 2 of CLHF only)
• Operation (if the high-word facility is not installed)

COMPARE LOGICAL LONG

CLCL R1,R2 [RR]

The first operand is compared with the second oper-
and, and the result is indicated in the condition code.
The shorter operand is considered to be extended on
the right with padding bytes.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and second operand is designated by the contents of
general registers R1 and R2, respectively. The num-
ber of bytes in the first-operand and second-operand
locations is specified by unsigned binary integers in
bit positions 40-63 of general registers R1 + 1 and
R2 + 1, respectively. Bit positions 32-39 of general
register R2 + 1 contain the padding byte. The con-
tents of bit positions 0-39 of general register R1 + 1
and of bit positions 0-31 of general register R2 + 1
are ignored.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

'CC' R1 'F' I2
0 8 12 16 47

'0F' R1 R2

0 8 12 15

7-158 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 L

O
N

G The contents of the registers just described are
shown in Figure 7-196.

The comparison proceeds left to right, byte by byte,
and ends as soon as an inequality is found or the end
of the longer operand is reached. If the operands are
not of the same length, the shorter operand is con-
sidered to be extended on the right with the appropri-
ate number of padding bytes.

If both operands are of zero length, the operands are
considered to be equal.

The execution of the instruction is interruptible. When
an interruption occurs, other than one that follows ter-
mination, the lengths in general registers R1 + 1 and
R2 + 1 are decremented by the number of bytes com-
pared, and the addresses in general registers R1 and
R2 are incremented by the same number, so that the

instruction, when reexecuted, resumes at the point of
interruption. In the 24-bit or 31-bit addressing mode,
the leftmost bits which are not part of the address in
bit positions 32-63 of general registers R1 and R2 are
set to zeros, and the contents of bit positions 0-31
remain unchanged. In any addressing mode, the
contents of bit positions 0-39 of general registers
R1 + 1 and R2 + 1 remain unchanged, and the condi-
tion code is unpredictable. If the operation is inter-
rupted after the shorter operand has been
exhausted, the length field pertaining to the shorter
operand is zero, and its address is updated accord-
ingly.

If the operation ends because of an inequality, the
address fields in general registers R1 and R2 at com-

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Pad Second-Operand Length
0 32 40 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 40 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Pad Second-Operand Length
0 32 40 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 / First-Operand Length
0 40 63

R2 Second-Operand Address
0 63

R2 + 1 / Pad Second-Operand Length
0 32 40 63

Figure 7-196. Register Contents for COMPARE LOGICAL LONG

General Instructions 7-159

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 L

O
N

G
 E

X
T

E
N

D
E

Dpletion identify the first unequal byte in each oper-
and. The lengths in bit positions 40-63 of general
registers R1 + 1 and R2 + 1 are decremented by the
number of bytes that were equal, unless the inequal-
ity occurred with the padding byte, in which case the
length field for the shorter operand is set to zero. The
addresses in general registers R1 and R2 are incre-
mented by the amounts by which the corresponding
length fields were reduced.

If the two operands, including the padding byte, if
necessary, are equal, both length fields are made
zero at completion, and the addresses are incre-
mented by the corresponding operand-length values.

At the completion of the operation, in the 24-bit or
31-bit addressing mode, the leftmost bits which are
not part of the address in bit positions 32-63 of gen-
eral registers R1 and R2 are set to zeros, even when
one or both of the initial length values are zero. In any
addressing mode, the contents of bit positions 0-39
of general registers R1 + 1 and R2 + 1 remain
unchanged.

Access exceptions for the portion of a storage oper-
and to the right of the first unequal byte may or may
not be recognized. For operands longer than 2K
bytes, access exceptions are not recognized more
than 2K bytes beyond the byte being processed.
Access exceptions are not indicated for locations
more than 2K bytes beyond the first unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd.

Resulting Condition Code:

0 Operands equal, or both zero length
1 First operand low
2 First operand high
3 --

Program Exceptions:

• Access (fetch, operands 1 and 2)
• Specification
• Transaction constraint

Programming Notes:

1. An example of the use of the COMPARE LOGI-
CAL LONG instruction is given in Appendix A,

“Number Representation and Instruction-Use
Examples.”

2. When the R1 and R2 fields are the same, the
operation proceeds in the same way as when two
distinct pairs of registers having the same con-
tents are specified, except that the contents of
the designated registers are incremented or dec-
remented only by the number of bytes compared,
not by twice the number of bytes compared. In
the absence of dynamic modification of the oper-
and area by another CPU or by a channel pro-
gram, condition code 0 is set. However, it is
unpredictable whether access exceptions are
recognized for the operand since the operation
can be completed without storage being
accessed.

3. Special precautions should be taken when COM-
PARE LOGICAL LONG is made the target of an
execute-type instruction. See the programming
note concerning interruptible instructions under
EXECUTE.

4. Other programming notes concerning interrupt-
ible instructions are included in “Interruptible
Instructions” in Chapter 5, “Program Execution.”

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

COMPARE LOGICAL LONG
EXTENDED

CLCLE R1,R3,D2(B2) [RS-a]

The first operand is compared with the third operand
until unequal bytes are compared, the end of the lon-
ger operand is reached, or a CPU-determined num-
ber of bytes have been compared, whichever occurs
first. The shorter operand is considered to be
extended on the right with padding bytes. The result
is indicated in the condition code.

The R1 and R3 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

'A9' R1 R3 B2 D2

0 8 12 16 20 31

7-160 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 L

O
N

G
 E

X
T

E
N

D
E

D The location of the leftmost byte of the first operand
and third operand is designated by the contents of
general registers R1 and R3, respectively. In the
24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and third-operand locations
is specified by the contents of bit positions 32-63 of
general registers R1 + 1 and R3 + 1, respectively, and
those contents are treated as 32-bit unsigned binary
integers. In the 64-bit addressing mode, the number
of bytes in the first-operand and third-operand loca-
tions is specified by the entire contents of general
registers R1 + 1 and R3 + 1, respectively, and those
contents are treated as 64-bit unsigned binary inte-
gers.

The handling of the addresses in general registers R1

and R3 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R3 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

The second-operand address is not used to address
data; instead, the rightmost eight bits of the second-
operand address, bits 56-63, are the padding byte.
Bits 0-55 of the second-operand address are
ignored.

The contents of the registers and address just
described are shown in Figure 7-197.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R3 / Third-Operand Address
0 40 63

R3 + 1 / Third-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R3 / Third-Operand Address
0 33 63

R3 + 1 / Third-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R3 Third-Operand Address
0 63

R3 + 1 Third-Operand Length
0 63

Figure 7-197. Register Contents and Second-Operand Address for COMPARE LOGICAL LONG EXTENDED (Part 1 of 2)

General Instructions 7-161

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 L

O
N

G
 E

X
T

E
N

D
E

D

The comparison proceeds left to right, byte by byte,
and ends as soon as an inequality is found, the end
of the longer operand is reached, or a CPU-deter-
mined number of bytes have been compared, which-
ever occurs first. If the operands are not of the same
length, the shorter operand is considered to be
extended on the right with the appropriate number of
padding bytes.

If both operands are of zero length, the operands are
considered to be equal.

If the operation ends because of an inequality, the
address fields in general registers R1 and R3 at com-
pletion identify the first unequal byte in each oper-
and. The lengths in bit positions 32-63, in the 24-bit
or 31-bit addressing mode, or in bit positions 0-63, in
the 64-bit addressing mode, of general registers
R1 + 1 and R3 + 1 are decremented by the number of
bytes that were equal, unless the inequality occurred
with the padding byte, in which case the length field
for the shorter operand is set to zero. The addresses
in general registers R1 and R3 are incremented by the
amounts by which the corresponding length fields
were decremented. Condition code 1 is set if the first
operand is low, or condition code 2 is set if the first
operand is high.

If the two operands, including the padding byte, if
necessary, are equal, both length fields are made
zero at completion, and the addresses are incre-
mented by the corresponding operand-length values.
Condition code 0 is set.

If the operation is completed because a CPU-deter-
mined number of bytes have been compared without
finding an inequality or reaching the end of the longer
operand, the lengths in general registers R1 + 1 and
R3 + 1 are decremented by the number of bytes com-
pared, and the addresses in general registers R1 and
R3 are incremented by the same number, so that the
instruction, when reexecuted, resumes at the next
bytes to be compared. If the operation is completed
after the shorter operand has been exhausted, the
length field pertaining to the shorter operand is zero,
and the operand address is updated accordingly.
Condition code 3 is set.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R3, and R3 + 1, always remain unchanged.

The padding byte may be formed from D2(B2) multi-
ple times during the execution of the instruction, and
the registers designated by R1 and R3 may be
updated multiple times. Therefore, if B2 equals R1,
R1 + 1, R3, or R3 + 1 and is subject to change during
the execution of the instruction, the results are unpre-
dictable.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed. The maximum amount is approximately 4K
bytes of either operand.

At the completion of the operation in the 24-bit or
31-bit addressing mode, the leftmost bits which are
not part of the address in bit positions 32-63 of gen-
eral registers R1 and R3 may be set to zeros or may
remain unchanged from their original values, even
when one or both of the initial length values are zero.

Access exceptions for the portion of a storage oper-
and to the right of the first unequal byte may or may
not be recognized. For operands longer than 4K
bytes, access exceptions are not recognized more
than 4K bytes beyond the byte being processed.
Access exceptions are not indicated for locations
more than 4K bytes beyond the first unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd.

Resulting Condition Code:

0 All bytes compared; operands equal, or both zero
length

1 All bytes compared, first operand low
2 All bytes compared, first operand high
3 CPU-determined number of bytes compared

without finding an inequality

All Addressing Modes

2nd Op
Addr.

/ Pad
0 56 63

Figure 7-197. Register Contents and Second-Operand Address for COMPARE LOGICAL LONG EXTENDED (Part 2 of 2)

7-162 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 L

O
N

G
 U

N
IC

O
D

E Program Exceptions:

• Access (fetch, operands 1 and 3)
• Specification
• Transaction constraint

Programming Notes:

1. COMPARE LOGICAL LONG EXTENDED is
intended for use in place of COMPARE LOGICAL
LONG when the operand lengths are specified
as 32-bit or 64-bit binary integers. COMPARE
LOGICAL LONG EXTENDED sets condition
code 3 in cases in which COMPARE LOGICAL
LONG would be interrupted.

2. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the comparison. The program need not deter-
mine the number of bytes that were compared.

3. The function of not processing more than
approximately 4K bytes of either operand is
intended to permit software polling of a flag that
may be set by a program on another CPU during
long operations.

4. When the R1 and R3 fields are the same, the
operation proceeds in the same way as when two
distinct pairs of registers having the same con-
tents are specified, except that the contents of
the designated registers are incremented or dec-
remented only by the number of bytes compared,
not by twice the number of bytes compared. In
the absence of dynamic modification of the oper-
and area by another CPU or by a channel pro-
gram, the condition code is finally set to 0 after
possible settings to 3. However, it is unpredict-
able whether access exceptions are recognized
for the operand since the operation can be com-
pleted without storage being accessed. If storage
is not accessed, condition code 3 may or may not
be set regardless of the operand length.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

COMPARE LOGICAL LONG
UNICODE

CLCLU R1,R3,D2(B2) [RSY-a]

The first operand is compared with the third operand
until unequal two-byte Unicode characters are com-
pared, the end of the longer operand is reached, or a
CPU-determined number of characters have been
compared, whichever occurs first. The shorter oper-
and is considered to be extended on the right with
two-byte padding characters. The result is indicated
in the condition code.

The R1 and R3 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost character of the first
operand and third operand is designated by the con-
tents of general registers R1 and R3, respectively. In
the 24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and third-operand locations
is specified by the contents of bit positions 32-63 of
general registers R1 + 1 and R3 + 1, respectively, and
those contents are treated as 32-bit unsigned binary
integers. In the 64-bit addressing mode, the number
of bytes in the first-operand and third-operand loca-
tions is specified by the contents of bit positions 0-63
of general registers R1 + 1 and R3 + 1, respectively,
and those contents are treated as 64-bit unsigned
binary integers.

The contents of general registers R1 + 1 and R3 + 1
must specify an even number of bytes; otherwise, a
specification exception is recognized.

The handling of the addresses in general registers R1

and R3 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R3 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 of the registers consti-
tute the address.

'EB' R1 R3 B2 DL2 DH2 '8F'

0 8 12 16 20 32 40 47

General Instructions 7-163

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 L

O
N

G
 U

N
IC

O
D

EThe second-operand address is not used to address
data; instead, the rightmost 16 bits of the second-
operand address, bits 48-63, are the two-byte pad-
ding character. Bits 0-47 of the second-operand
address are ignored.

The contents of the registers and address just
described are shown in Figure 7-198.

The comparison proceeds left to right, character by
character, and ends as soon as an inequality is
found, the end of the longer operand is reached, or a
CPU-determined number of characters have been
compared, whichever occurs first. If the operands are
not of the same length, the shorter operand is con-
sidered to be extended on the right with the appropri-
ate number of two-byte padding characters.

If both operands are of zero length, the operands are
considered to be equal.

If the operation ends because of an inequality, the
address fields in general registers R1 and R3 at com-
pletion identify the first unequal two-byte character in
each operand. The lengths in bit positions 32-63, in
the 24-bit or 31-bit addressing mode, or in bit posi-
tions 0-63, in the 64-bit addressing mode, of general

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R3 / Third-Operand Address
0 40 63

R3 + 1 / Third-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R3 / Third-Operand Address
0 33 63

R3 + 1 / Third-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R3 Third-Operand Address
0 63

R3 + 1 Third-Operand Length
0 63

All Addressing Modes

2nd Op
Addr.

/ Pad
0 48 63

Figure 7-198. Register Contents and Second-Operand Address for COMPARE LOGICAL LONG UNICODE

7-164 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 L

O
N

G
 U

N
IC

O
D

E registers R1 + 1 and R3 + 1 are decremented by 2
times the number of characters that were equal,
unless the inequality occurred with the two-byte pad-
ding character, in which case the length field for the
shorter operand is set to zero. The addresses in gen-
eral registers R1 and R3 are incremented by the
amounts by which the corresponding length fields
were decremented. Condition code 1 is set if the first
operand is low, or condition code 2 is set if the first
operand is high.

If the two operands, including the two-byte padding
character, if necessary, are equal, both length fields
are made zero at completion, and the addresses are
incremented by the corresponding operand-length
values. Condition code 0 is set.

If the operation is completed because a CPU-deter-
mined number of characters have been compared
without finding an inequality or reaching the end of
the longer operand, the lengths in general registers
R1 + 1 and R3 + 1 are decremented by 2 times the
number of characters compared, and the addresses
in general registers R1 and R3 are incremented by the
same number, so that the instruction, when reexe-
cuted, resumes at the next characters to be com-
pared. If the operation is completed after the shorter
operand has been exhausted, the length field per-
taining to the shorter operand is zero, and the oper-
and address is updated accordingly. Condition code
3 is set.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R3, and R3 + 1, always remain unchanged.

The two-byte padding character may be formed from
D2(B2) multiple times during the execution of the
instruction, and the registers designated by R1 and
R3 may be updated multiple times. Therefore, if B2

equals R1, R1 + 1, R3, or R3 + 1 and is subject to
change during the execution of the instruction, the
results are unpredictable.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

At the completion of the operation in the 24-bit or
31-bit addressing mode, the leftmost bits which are
not part of the address in bit positions 32-63 of gen-

eral registers R1 and R3 may be set to zeros or may
remain unchanged from their original values, includ-
ing the case when one or both of the initial length val-
ues are zero.

Access exceptions for the portion of a storage oper-
and to the right of the first unequal character may or
may not be recognized. For operands longer than 4K
bytes, access exceptions are not recognized more
than 4K bytes beyond the character being pro-
cessed. Access exceptions are not indicated for loca-
tions more than 4K bytes beyond the first unequal
character.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field or length associated with that operand is odd.

Resulting Condition Code:

0 All characters compared; operands equal, or
both zero length

1 First operand low
2 First operand high
3 CPU-determined number of characters com-

pared without finding an inequality

Program Exceptions:

• Access (fetch, operands 1 and 3)
• Operation (if the extended-translation facility 2 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. COMPARE LOGICAL LONG UNICODE is
intended for use in place of COMPARE LOGICAL
LONG or COMPARE LOGICAL LONG
EXTENDED when two-byte characters are to be
compared. The characters may be Unicode char-
acters or any other double-byte characters.
COMPARE LOGICAL LONG UNICODE sets
condition code 3 in cases in which COMPARE
LOGICAL LONG would be interrupted.

2. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the comparison. The program need not deter-
mine the number of characters that were com-
pared.

General Instructions 7-165

C
O

M
P

A
R

E
 L

O
G

IC
A

L
 S

T
R

IN
G3. When the R1 and R3 fields are the same, the

operation proceeds in the same way as when two
distinct pairs of registers having the same con-
tents are specified, except that the contents of
the designated registers are incremented or dec-
remented only by 2 times the number of charac-
ters compared, not by 4 times the number of
characters compared. In the absence of dynamic
modification of the operand area by another CPU
or by a channel program, the condition code is
finally set to 0 after possible settings to 3. How-
ever, it is unpredictable whether access excep-
tions are recognized for the operand since the
operation can be completed without storage
being accessed. If storage is not accessed, con-
dition code 3 may or may not be set regardless of
the operand length.

4. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

5. The padding character may be represented in
the displacement field of the instruction. The fol-
lowing example illustrates padding with a Uni-
code space character.

CLCLU 6,8,X'020'

When the B2 field of the instruction designates
general register 0, and the long-displacement
facility is not installed, the padding character is
limited to a character whose representation is
less than or equal to FFF hex.

COMPARE LOGICAL STRING

CLST R1,R2 [RRE]

The first operand is compared with the second oper-
and until unequal bytes are compared, the end of
either operand is reached, or a CPU-determined
number of bytes have been compared, whichever
occurs first. The CPU-determined number is at least
256. The result is indicated in the condition code.

The location of the leftmost byte of the first operand
and second operand is designated by the contents of
general registers R1 and R2, respectively.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode. In the
24-bit addressing mode, the contents of bit positions
40-63 of general registers R1 and R2 constitute the
address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the contents
of bit positions 33-63 of the registers constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 constitute the address.

The first and second operands may be of the same
or different lengths. The end of an operand is indi-
cated by an ending character in the last byte position
of the operand. The ending character to be used to
determine the end of an operand is specified in bit
positions 56-63 of general register 0. Bit positions
32-55 of general register 0 are reserved for possible
future extensions and must contain all zeros; other-
wise, a specification exception is recognized.

The operation proceeds left to right, byte by byte, and
ends as soon as the ending character is encountered
in either or both operands, unequal bytes which do
not include an ending character are compared, or a
CPU-determined number of bytes have been com-
pared, whichever occurs first. The CPU-determined
number is at least 256. When the ending character is
encountered simultaneously in both operands,
including when it is in the first byte position of the
operands, the operands are of the same length and
are considered to be equal, and condition code 0 is
set. When the ending character is encountered in
only one operand, that operand, which is the shorter
operand, is considered to be low, and condition code
1 or 2 is set. Condition code 1 is set if the first oper-
and is low, or condition code 2 is set if the second
operand is low. Similarly, when unequal bytes which
do not include an ending character are compared,
condition code 1 is set if the lower byte is in the first
operand, or condition code 2 is set if the lower byte is
in the second operand. When a CPU-determined
number of bytes have been compared, condition
code 3 is set.

When condition code 1 or 2 is set, the address of the
last byte processed in the first and second operands
is placed in general registers R1 and R2, respectively.
That is, when condition code 1 is set, the address of
the ending character or first unequal byte in the first
operand, whichever was encountered, is placed in
general register R1, and the address of the second-
operand byte corresponding in position to the first-
operand byte is placed in general register R2. When

'B25D' / / / / / / / / R1 R2

0 16 24 28 31

7-166 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 U

N
T

IL
 S

U
B

S
T

R
IN

G
 E

Q
U

A
L condition code 2 is set, the address of the ending

character or first unequal byte in the second oper-
and, whichever was encountered, is placed in gen-
eral register R2, and the address of the first-operand
byte corresponding in position to the second-operand
byte is placed in general register R1. When condition
code 3 is set, the address of the next byte to be pro-
cessed in the first and second operands is placed in
general registers R1 and R2, respectively. Whenever
an address is placed in a general register, bits 32-39
of the register, in the 24-bit addressing mode, or bit
32 in the 31-bit addressing mode, are set to zeros.
Bits 0-31 of the R1 and R2 registers always remain
unchanged in the 24-bit or 31-bit mode.

When condition code 0 is set, the contents of general
registers R1 and R2 remain unchanged.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

Access exceptions for the first and second operands
are recognized only for that portion of the operand
which is necessarily examined in the operation.

Resulting Condition Code:

0 Entire operands equal; general registers R1 and
R2 unchanged

1 First operand low; general registers R1 and R2

updated with addresses of last bytes processed
2 First operand high; general registers R1 and R2

updated with addresses of last bytes processed
3 CPU-determined number of bytes equal; general

registers R1 and R2 updated with addresses of
next bytes

Program Exceptions:

• Access (fetch, operands 1 and 2)
• Specification
• Transaction constraint

Programming Notes:

1. Several examples of the use of the COMPARE
LOGICAL STRING instruction are given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. When condition code 0 is set, no indication is
given of the position of either ending character.

3. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the comparison. The program need not deter-
mine the number of bytes that were compared.

4. R1 or R2 may be zero, in which case general reg-
ister 0 is treated as containing an address and
also the ending character.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

COMPARE UNTIL SUBSTRING
EQUAL

CUSE R1,R2 [RRE]

The first operand is compared with the second oper-
and until equal substrings (sequences of bytes) of a
specified length are found, the end of the longer
operand is reached, or a CPU-determined number of
unequal bytes have been compared, whichever
occurs first. The shorter operand is considered to be
extended on the right with padding bytes. The CPU-
determined number is at least 256. The result is indi-
cated in the condition code.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and second operand is specified by the contents of
the R1 and R2 general registers, respectively. In the
24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and second-operand loca-
tions is specified by the 32-bit signed binary integer
in bit positions 32-63 of general registers R1 + 1 and
R2 + 1, respectively. In the 64-bit addressing mode,
the number of bytes is specified by the 64-bit signed
binary integer in bit positions 0-63 of those registers.
When an operand length is negative, it is treated as
zero, and it remains unchanged upon completion of
the instruction.

'B257' / / / / / / / / R1 R2

0 16 24 28 31

General Instructions 7-167

C
O

M
P

A
R

E
 U

N
T

IL
 S

U
B

S
T

R
IN

G
 E

Q
U

A
LBits 56-63 of general register 0 specify the unsigned

substring length, a value of 0-255, in bytes. Bits
56-63 of general register 1 are the padding byte. Bits
0-55 of general registers 0 and 1 are ignored.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode. In the
24-bit addressing mode, the contents of bit positions
40-63 of general registers R1 and R2 constitute the

address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the contents
of bit positions 33-63 of the registers constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-199.

The result is obtained as if the operands were pro-
cessed from left to right. However, multiple accesses

may be made to all or some of the bytes of each
operand.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

All Addressing Modes

GR0 / SS Length
0 56 63

GR1 / Pad
0 56 63

Figure 7-199. Register Contents for COMPARE UNTIL SUBSTRING EQUAL

7-168 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 U

N
T

IL
 S

U
B

S
T

R
IN

G
 E

Q
U

A
L The comparison proceeds left to right, byte by byte,

and ends as soon as (1) equal substrings of the
specified length are found, (2) the end of the longer
operand is reached without finding equal substrings
of the specified length, or (3) the last bytes compared
are unequal, and a CPU-determined number of bytes
have been compared. The CPU-determined number
is at least 256. If the operands are not of the same
length, the shorter operand is considered to be
extended on the right with the appropriate number of
padding bytes.

If the operation ends because equal substrings of the
specified length were found, the condition code is set
to 0. If the operation ends because the end of the
longer operand was reached without finding equal
substrings of the specified length, the condition code
is set to 1 if equal bytes were the last bytes com-
pared, or it is set to 2 if unequal bytes were the last
bytes compared. If the operation ends because
unequal bytes were compared when a CPU-deter-
mined number of bytes had been compared, the con-
dition code is set to 3.

If the specified substring length is zero, it is consid-
ered that equal substrings of the specified length
were found, and condition code 0 is set.

If both operands are of zero length but the specified
substring length is not zero, it is considered that the
end of the longer operand was reached when
unequal bytes were the last bytes compared, and
condition code 2 is set.

If equal bytes have been compared but then unequal
bytes are compared, it is considered that all bytes so
far compared are unequal.

At the completion of the operation, the operand-
length fields in the R1 + 1 and R2 + 1 registers are
decremented by the number of unequal bytes com-
pared (including equal bytes before unequal bytes
compared), and the addresses in the R1 and R2 reg-
isters are incremented by the same number. How-
ever, in the case when a byte of the longer operand is
compared against the padding byte, the length field
for the shorter operand is not decremented below
zero, and the corresponding address is not incre-
mented above the address of the first byte after the
shorter operand. In the 24-bit or 31-bit addressing
mode, the leftmost bits which are not part of the
addresses in bit positions 32-63 of registers R1 and
R2 are set to zeros, even if the substring length is
zero or both operand lengths are initially zero.

Thus, when condition code 0 or 1 is set, the resulting
addresses in the R1 and R2 registers designate the
first bytes of equal substrings in the two operands,
and the lengths in the R1 + 1 and R2 + 1 registers
have been decremented by the number of bytes pre-
ceding the equal substrings, except when the equal
substring in the shorter operand begins with the pad-
ding byte, in which case the length field for the
shorter operand is zero, and the corresponding
address field has been incremented by the operand
length. When condition code 2 is set, each address
field designates the first byte after the corresponding
operand, and both length fields are zero. When con-
dition code 3 is set, each address field designates
the first byte after the last compared byte of the cor-
responding operand, and both length fields have
been decremented by the number of bytes com-
pared, except that a length field is not decremented
below zero.

When the contents of the R1 and R2 fields are the
same, the first and second operands may be com-
pared, or the condition code may be set to 0 or 1
without comparing the operands.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R2, and R2 + 1, always remain unchanged.

The substring length and padding byte may be
fetched from general registers 0 and 1 multiple times
during the execution of the instruction, and the regis-
ters designated by R1 and R2 may be updated multi-
ple times. Therefore, if R1 or R2 is zero, the results
are unpredictable.

When condition code 3 is set, the general registers
used by the instruction have been set so that the
remainder of the operands can be processed by sim-
ply branching back and reexecuting the instruction.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

The execution of the instruction is interruptible when
the last bytes compared are unequal; it is not inter-
ruptible when the last bytes compared are equal.
When an interruption occurs, other than one that fol-
lows termination, the contents of the registers desig-
nated by the R1 and R2 fields are updated the same
as upon normal completion of the instruction, so that

General Instructions 7-169

C
O

M
P

R
E

S
S

IO
N

 C
A

L
Lthe instruction, when reexecuted, resumes at the

point of interruption. The condition code is unpredict-
able.

Access exceptions for the portion of a storage oper-
and to the right of the last byte processed may or
may not be recognized. For operands longer than 4K
bytes, access exceptions are not recognized for loca-
tions more than 4K bytes beyond the last byte pro-
cessed.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd. Although
the operand address and length fields remain
unchanged when a zero substring length is specified,
the recognition of access exceptions is not necessar-
ily prevented.

Resulting Condition Code:

0 Equal substrings of specified length found
1 End of longer operand reached when last bytes

compared are equal
2 End of longer operand reached when last bytes

compared are unequal
3 Last bytes compared are unequal, and CPU-

determined number of bytes compared

Program Exceptions:

• Access (fetch, operands 1 and 2)
• Specification
• Transaction constraint

Programming Notes:

1. When the R1 and R2 fields are the same, the
operation proceeds in the same way as when two
distinct pairs of registers having the same con-
tents are specified, and, in the absence of
dynamic modification of the operand area by
another CPU or by a channel program, condition
code 0, 1, or 2 is set (as explained in the next
note). However, it is unpredictable whether
access exceptions are recognized for the oper-
and since the operation can be completed with-
out storage being accessed.

2. If the contents of the R1 and R2 fields are the
same and the operand length is nonzero, and
provided that another CPU or a channel program
is not changing an operand, condition code 0 is

set if the operand length is equal to or greater
than the specified substring length, or condition
code 1 is set if the operand length is less than
the specified substring length. Whether or not R1

equals R2, if both operand lengths are zero, con-
dition code 0 is set if the specified substring
length is zero, or condition code 2 is set if the
specified substring length is nonzero. In all of
these cases, the addresses in the R1 and R2 reg-
isters and the lengths in the R1 + 1 and R2 + 1
registers remain unchanged.

3. Special precautions should be taken when COM-
PARE UNTIL SUBSTRING EQUAL is made the
target of an execute-type instruction. See the
programming note concerning interruptible
instructions under EXECUTE.

4. Other programming notes concerning interrupt-
ible instructions are included in “Interruptible
Instructions” on page 5-24.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

6. The storage-operand references of COMPARE
UNTIL SUBSTRING EQUAL may be multiple-
access references. (See “Storage-Operand Con-
sistency” on page 5-125.)

COMPRESSION CALL

CMPSC R1,R2 [RRE]

This definition assumes knowledge of the introduc-
tory information and information about dictionary for-
mats in Appendix D.

The second operand is compressed or expanded,
depending on a specification in general register 0,
and the results are placed at the first-operand loca-
tion. The compressed-data operand consists of
either index symbols corresponding to entries in a
dictionary designated by an address in general regis-
ter 1, or codewords which are converted to index
symbols depending on the specification of entropy
encoding. This dictionary is a compression dictionary
during a compression operation or an expansion dic-
tionary during an expansion operation.

'B263' / / / / / / / / R1 R2

0 16 24 28 31

7-170 The z/Architecture CPU Architecture

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L During compression when format-1 sibling descrip-

tors are specified in general register 0, an expansion
dictionary immediately follows the compression dic-
tionary. During compression when the symbol-trans-
lation option is specified in general register 0, the
index symbols resulting from compression are trans-
lated to interchange symbols by means of a symbol-
translation table designated by the address and an
offset in general register 1, and it is the interchange
symbols that are placed at the first-operand location.
During compression when the order preservation
option is specified in general register 0, a modified
form of symbol translation occurs. During compres-
sion when the entropy-encoding option is specified in
general register 0, the index symbols are translated
into codewords via a modified version of symbol
translation whose parameters are specified by the
address and offset in general register 1. The number
of bits in an index or interchange symbol in the com-
pressed-data operand or in an index symbol used in
entropy encoding is specified in general register 0.
The operation proceeds until the end of either oper-
and is reached or a CPU-determined amount of data
has been processed, whichever occurs first. The
results are indicated in the condition code.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte containing any bit of
the first operand and second operand is designated
by an address in general registers R1 and R2, respec-
tively. The number of bytes containing any bits of the
first operand and second operand is specified by bits
32-63 of general registers R1 + 1 and R2 + 1, respec-
tively, in the 24-bit or 31-bit addressing mode or by
bits 0-63 of the registers in the 64-bit addressing
mode. The contents of general registers R1 + 1 and
R2 + 1 are treated as 32-bit unsigned binary integers
in the 24-bit or 31-bit addressing mode or as 64-bit
unsigned binary integers in the 64-bit addressing
mode.

The location of the leftmost byte of the compression
dictionary during compression, or of the expansion
dictionary during expansion, is designated on a
4 K-byte boundary by an address in general register
1. Optionally, general register 1 also contains an off-
set to the first byte of an entropy descriptor or symbol
translation table.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

GR1 / Dictionary Origin1 Offset2 CBN
0 40 52 61 63

Figure 7-200. Register Contents for COMPRESSION CALL (Part 1 of 2)

General Instructions 7-171

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

GR1 / Dictionary Origin1 Offset2 CBN
0 33 52 61 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

GR1 Dictionary Origin1 Offset2 CBN
0 52 61 63

All Addressing Modes

GR0
/ /

E
E

O
P

Z
P

S
T

CDSS / /
F
1

E / / / / / / / /

0 44 45 46 47 48 52 54 55 56 63

Explanation:

1 Compression dictionary during compression, or expansion dictionary during expansion
2 The Offset field is only meaningful during compression when any of the ST, EE, and OP bits are one. When the ST, EE, and OP bits are

zero during compression, or the EE bit is zero during expansion, the Offset field is ignored.
CBN Compressed-data bit number
CDSS Compressed-data symbol size

CDSS Symbol Dictionary
(binary) Size Size
0000 Causes a specification exception to be recognized
0001 9 bits 512 entries, 4K bytes
0010 10 bits 1K entries, 8K bytes
0011 11 bits 2K entries, 16K bytes
0100 12 bits 4K entries, 32K bytes
0101 13 bits 8K entries, 64K bytes
0110-1111 Causes a specification exception to be recognized

E Expansion operation
EE Entropy-encoding option (when the entropy-encoding compression facility is installed).
F1 Format-1 sibling descriptors (ignored during expansion)
Offset Offset to symbol translation table or entropy descriptor
OP Order-preservation option (ignored during expansion, or when the order-preserving-compression facility is not installed)
ST Symbol-translation option (ignored during expansion, implied one for entropy encoding)
ZP Zero padding control (when the CMPSC-enhancement facility is installed).

Figure 7-200. Register Contents for COMPRESSION CALL (Part 2 of 2)

7-172 The z/Architecture CPU Architecture

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L The handling of the addresses in general registers

R1, R2, and 1 is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 40-63 of registers R1 and R2 constitute the
address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the contents
of bit positions 33-63 of registers R1 and R2 consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 of registers R1 and R2

constitute the address. In the 24-bit addressing
mode, the contents of bit positions 40-51 of register
1, with 12 rightmost zeros appended, constitute the
address, and the contents of bit positions 0-39 and
52-63 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-51 of register 1, with 12
rightmost zeros appended, constitute the address,
and the contents of bit positions 0-32 and 52-63 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-51 of register 1, with 12 rightmost
zeros appended, constitute the address, and the con-
tents of bit positions 52-63 are ignored.

Although the contents of bit positions 52-63 of gen-
eral register 1 are ignored in the formation of a dictio-
nary address, those contents are used as follows.
The contents of bit positions 61-63 of the register are
the compressed-data bit number (CBN). At the
beginning of the operation, the CBN designates the
leftmost bit within the leftmost byte of the com-
pressed-data operand. The compressed-data oper-
and is the first operand during compression, or it is
the second operand during expansion. When the
symbol-translation or order-preservation option is
specified during compression and the entropy-encod-
ing option is not specified, the contents of bit posi-
tions 52-60 of the register, with seven rightmost zeros
appended, are the byte offset from the beginning of
the compression dictionary to the leftmost byte of the
symbol-translation table. When the entropy-encoding
option is specified the contents of bit positions 52-60
of the register, with seven rightmost zeros appended,
are the byte offset from the beginning of the com-
pression dictionary to the leftmost byte of the entropy
descriptor. When the entropy encoding option is
specified during compression, the leftmost byte of
the entropy encoding symbol translation table is
located at the byte offset plus 32. Symbol translation
and order-preservation cannot be specified during
expansion, and the contents of bit positions 52-60
are ignored during expansion.

The contents of the registers just described and also
of general register 0 are shown in Figure 7-200 on
page 7-170.

Bit 55 (E) of general register 0 specifies the compres-
sion operation if zero or the expansion operation if
one.

When the CMPSC-enhancement facility is installed,
bit 46 of general register 0 is the zero-padding (ZP)
control. When the ZP control is zero, zero padding of
the first operand is not performed. When the ZP con-
trol is one, zero padding of the first operand may be
performed, as described below. When the CMPSC-
enhancement facility is not installed, bit 46 of general
register 0 is ignored.

Bit 44 (EE) of general register 0 is the entropy-encod-
ing-option bit; this bit is only meaningful when the
entropy-encoding-compression facility is installed. Bit
45 (OP) of general register 0 is the order-preserva-
tion-option bit; this bit is only meaningful when the
order-preserving-compression facility is installed. Bit
47 (ST) of general register 0 is the symbol-transla-
tion-option bit. When bit 44 (EE) is one, bit 45 (OP)
must be zero; otherwise results are unpredictable.

During compression when bits 45 and 47 are both
zero, the operation produces indexes, called index
symbols, to compression-dictionary entries that rep-
resent character strings, and the operation then
places the index symbols in the compressed-data
operand. During compression when bit 45 is zero
and bit 47 is one, the operation still produces index
symbols but then translates the index symbols to
other symbols, called interchange symbols, that it
then places in the compressed-data operand. This
symbol translation is done by using the symbol-trans-
lation table specified by the address and offset in
general register 1. During compression when bit 45 is
one, bit 47 is ignored, and a modified form of symbol
translation is done by using the symbol-translation
table. Bits 45 and 47 and the offset in general regis-
ter 1 are ignored during expansion. During expan-
sion, the compressed-data operand always contains
index symbols that designate entries in the expan-
sion dictionary.

When bit 44 of general register 0 is one during com-
pression the operation produces indexes called index
symbols which are translated to codewords which
are then placed in the compressed-data operand.
The translation is done by using the symbol-transla-
tion table specified by the address and offset + 32

General Instructions 7-173

C
O

M
P

R
E

S
S

IO
N

 C
A

L
Lbytes. During expansion the compressed-data oper-

and always contains codewords that are converted to
index symbols by the process shown in Figure 7-205,
“Entropy Encoded Expansion” on page 7-186 which
are then used to designate entries in the expansion
dictionary.

When bit 44 of general register 0 is zero, bits 48-51
(CDSS) of the register specify the number of bits in
the index symbols or interchange symbols in the
compressed-data operand, as shown in the figure.
Bits 48-51 must not have any of the values 0000 or
0110-1111 binary; otherwise, a specification excep-
tion is recognized. When bit 44 (EE) of general regis-
ter 0 is one, bits 48-51 (CDSS) are ignored. When
order preservation, entropy encoding, and symbol-
translation are not specified, bits 48-51 also specify,
as shown in the figure, the number of eight-byte
entries in each of the compression and expansion
dictionaries, and, thus, they specify the size in bytes
of each of the dictionaries. When order preservation,
entropy encoding or symbol translation is specified,
the compression dictionary is considered to extend to
the beginning of the symbol-translation table, that is,
the size in bytes of the compression dictionary is the
offset in bit positions 52-60 of general register 1, with
seven rightmost zeros appended. The size in bytes of
the symbol-translation table is considered to be one
fourth that of the compression dictionary. However,
the offset in general register 1 must be at least as
large as the size of the compression dictionary would
be if symbol translation were not specified and the
CDSS were one less than it actually is, and, when
the CDSS is 0001 binary, the offset must be at least
2K bytes; otherwise, the results are unpredictable.
For example, if the CDSS is 0101, the offset must be
at least 32 K-bytes. When entropy encoding is speci-
fied, the compression dictionary must be at least 2K
bytes and at most 64 K-bytes; otherwise, the results
are unpredictable.

Bit 54 (F1) of general register 0 specifies that the
compression dictionary contains format-0 sibling
descriptors if the bit is zero or format-1 sibling
descriptors if the bit is one. Sibling descriptors are
used during the compression operation. A format-0
sibling descriptor is eight bytes at an index position in
the compression dictionary. A format-1 sibling
descriptor is 16 bytes, with the first eight bytes at an
index position in the compression dictionary and the
second eight bytes at the same index position in the
expansion dictionary. During compression when bit
54 is one, an expansion dictionary is considered to
immediately follow the compression dictionary speci-

fied by the address in general register 1. Bit 54 is
ignored during expansion. During compression when
bit 54 is one, bits 44, 45 and 47 of general register 0
must be zeros; otherwise, the results are unpredict-
able.

Bits 47 and 54 of general register 0 must not both be
ones; otherwise, the results are unpredictable.

The unused bit positions in general register 0 are
reserved for possible future extensions and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future.

In the access-register mode, the contents of access
register R1 are used for accessing the first operand,
and the contents of access register R2 are used for
accessing the second operand, the dictionaries, the
entropy descriptor, and the symbol-translation table.

When the entropy-encoding option is not specified
and the first or second operand lengths are initially
zero, the dictionary, first, and second operands are
not accessed and condition code 0 or 1 is set.

The operation starts at the left end of both operands
and proceeds to the right. The operation is ended
when the end of either operand is reached or when a
CPU-determined amount of data has been pro-
cessed, whichever occurs first.

During a compression operation, the end of the first
operand is considered to be reached when the num-
ber of unused bit positions remaining in the first-oper-
and location is not sufficient to contain additional
compressed data. When the entropy-encoding option
is specified and the first operand length is non-zero,
this check can only be performed after compression
is attempted and the codeword size is determined.

During an expansion operation, the end of the first-
operand location is considered to be reached when
any of the following conditions are met:

1. The number of unused byte positions remaining
in the first-operand location is not sufficient to
contain all the characters that would result from
expansion of the next index symbol or codeword.

2. Immediately when the number of unused byte
positions is zero, that is, immediately when the
expansion of an index symbol or codeword com-
pletely fills the first-operand location.

7-174 The z/Architecture CPU Architecture

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L During an expansion operation, the end of the sec-

ond-operand location is considered to be reached
when the next index symbol or codeword does not
reside entirely within the second-operand location or
if the entropy-encoding option is specified and a
codeword of all zeros is encountered. The second-
operand location ends at the beginning of the byte
designated by the sum of the address in general reg-
ister R2 and the length in general register R2 + 1,
regardless of the compressed-data bit number in bit
positions 61-63 of general register 1.

If the operation is ended because the end of the sec-
ond operand is reached, condition code 0 is set. If
the operation is ended because the end of the first
operand is reached, condition code 1 is set, except
that condition code 0 is set provided that the end of
the second operand is also reached. If the operation
is ended because a CPU-determined amount of data
has been processed, condition code 3 is set.

At the completion of the operation, the length in gen-
eral register R1 + 1 is decremented by the number of
complete bytes stored at the first-operand location,
and the address in general register R1 is incremented
by the same amount. During compression, a com-
plete byte is considered to be stored only if all of its
bit positions contain bits of compressed data. During
compression when the first bit of compressed data
stored is not in bit position 0 of a byte, the bits in the
byte to the left of the first bit of compressed data
remain unchanged. During compression if the last
byte stored does not completely contain compressed
data, the bits in the byte to the right of the rightmost
bit of compressed data in the byte either are
unchanged or are set to zeros.

The length in general register R2 + 1 is decremented
by the number of complete bytes processed at the
second-operand location, and the address in general
register R2 is incremented by the same amount.
During expansion, a complete byte is considered to
be processed only if all of its bits have been used to
produce expanded data.

The leftmost bits which are not part of the address in
general registers R1 and R2 may be set to zeros or
may remain unchanged. However, in the 24-bit or
31-bit addressing mode, bits 0-31 of these registers
and also of general registers R1 + 1 and R2 + 1
always remain unchanged.

When all of the following conditions are met, zero
padding may be performed, as described below.

• The CMPSC-enhancement facility is installed.

• The zero-padding (ZP) control, bit 46 of general
register 0, is one.

• Any of the following is true:

– The end of the first operand is reached
(CC1).

– The end of the second operand is reached
(CC0).

– A CPU-determined amount of data has been
processed (CC3).

– A codeword consisting of all zero bits is
found in the middle of the compressed oper-
and (CC0).

• The last byte of compressed or expanded data
does not coincide with the rightmost byte of a
model-dependent integral storage boundary.

• The remaining length in general register R1 + 1 is
sufficient to store up to the model-dependent
integral storage boundary.

It is model dependent whether zero padding is per-
formed. When none of the conditions listed above are
met, zero padding is not performed.

Zero padding consists of storing zeros to the right of
the last compressed or expanded byte, up to a
model-dependent integral storage boundary. The
address in general register R1 and the length in gen-
eral register R1 + 1 are not updated to account for the
zero padding. PER storage-alteration events are rec-
ognized for stores that occur as a result of zero pad-
ding. The model-dependent integral storage
boundary is no larger than 4,096.

When the R1 and R2 fields do not designate general
register 0, the handling of general register 1 is as fol-
lows. The bit number of the bit following the last bit of
compressed data processed is placed in bit positions
61-63 of general register 1, and bits 52-60 of the reg-
ister and the leftmost bits which are not part of the
address in the register may be set to zeros or may
remain unchanged, except that when one or both of
the original length values are so small that no com-
pressed data can be processed, all bits in the regis-
ter may remain unchanged. However, when bits 44,
45 or 47 of general register 0 are one, bits 52-60 of
general register 1 always remain unchanged. Also, in

General Instructions 7-175

C
O

M
P

R
E

S
S

IO
N

 C
A

L
Lthe 24-bit or 31-bit addressing mode, bits 0-31 of the

register always remain unchanged.

If (a) the operands overlap one another, (b) the first
operand overlaps the dictionaries, entropy descriptor,
or the symbol-translation table in storage in any way,
or (c) either the R1 or the R2 field designates general
register 0, the results are unpredictable.

The compression dictionary is a tree of entries in
which a parent entry may have child entries. Each
entry represents one or more characters called
extension characters, and it also represents a char-
acter symbol consisting of the extension characters
represented by the entry preceded by the extension
characters represented by all of the entry's ances-
tors.

When order preservation is not specified, the com-
pression process uses an unordered comparison
algorithm: the children of a parent are not considered
to be in any particular order, and the next characters
from the string being compressed are compared
against the extension characters represented by the
children in the left-to-right order of the children until
either a match is found or all of the children have
been processed. (However, see Appendix D,
“Restriction on Identical Child and Sibling Charac-
ters” for a restriction on identical first extension char-
acters of children of the same parent.) The result of
the compression process is the index symbol that
designates the last matched entry, which is the par-
ent entry if no match was found on any child or there
are no children.

The order-preservation option causes the compres-
sion process to use an ordered comparison algo-
rithm: the children of a parent are considered to be
ordered such that the string of one or more extension
characters represented by any child is always earlier
in the collating sequence than the string of one or
more extension characters represented by the next
child of the same parent, that is, the children are con-
sidered to be in collating-sequence order. The next
characters from the string being compressed are
compared against the extension characters repre-
sented by the children in the left-to-right order of the
children until any of the following is true: (1) a match
is found on an entry without children, or a match is
found on an entry with children but there is not
another character in the string; (2) the next charac-
ters from the string have a collating-sequence value
less than that of the extension characters repre-
sented by a child of the last matched parent; or (3)

the next characters from the string have a collating-
sequence value greater than that of the extension
characters represented by the last child of the last
matched parent. The result of the compression pro-
cess in each of the three cases is as follows:

Note that Case 2 includes the case when the next
character of the string match the leftmost extension
characters represented by a child but there are not
as many next characters remaining in the string as
there are additional extension characters repre-
sented in the child.

When symbol translation is specified, the symbol-
translation table consists of two-byte entries, and an
entry contains an interchange symbol in the right-
most bit positions of the entry. The length of the inter-
change symbol is specified by bits 48-51 of general
register 0. The left-hand bits that are not part of the
interchange symbol in a symbol-translation-table
entry must be zeros; otherwise, the results are
unpredictable.

To translate an index symbol to an interchange sym-
bol, the index symbol is multiplied by 2 and then
added to the address of the beginning of the symbol-
translation table to locate an entry in the table, and
then the interchange symbol is obtained from the
entry.

When order preservation is specified, the index sym-
bol produced by the compression process is used to
locate a symbol-translation-table entry containing an
interchange symbol just as when the symbol-transla-
tion option is specified. The resulting interchange
symbol that is placed in the compressed-data oper-
and depends on which of the above three cases the

Case Resulting Index Symbol

1 If the process ends because of a match on an entry
without children or because of a match on an entry
when there is not another character in the string,
the result is the index symbol that designates the
entry.

2 If the process ends because the next characters of
the string have a value less than that of the
characters represented by a child, the result is the
index symbol that designates the child.

3 If the process ends because the next characters of
the string have a value greater than that of the
characters represented by the last child, the result
is the index symbol that designates the last child.

7-176 The z/Architecture CPU Architecture

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L index symbol was produced. The resulting inter-

change symbol is as follows:

In the above, the result of subtracting one from an
interchange symbol consisting of all zero bits is an
interchange symbol consisting of all one bits, and the
result of adding one to an interchange symbol con-
sisting of all one bits is an interchange symbol con-
sisting of all zero bits.

When entropy encoding is specified, the index sym-
bol produced by the compression process is used to
locate a two-byte symbol-translation-table entry con-
taining a codeword. The size of the codeword is
determined and that number of leftmost bits of the
symbol-translation-table entry are placed in the com-
pressed data operand. The size of the codeword can
be determined by the process shown in Figure 7-206,
“Entropy Encoded Compression” on page 7-187.

The execution of the instruction is interruptible. When
an interruption occurs, other than one that follows ter-
mination, the contents of the registers designated by
the R1 and R2 fields and of general register 1 are
updated the same as upon normal completion of the
instruction, so that the instruction, when reexecuted,
resumes at the point of interruption. The condition
code is unpredictable.

For operands longer than 4K bytes, access excep-
tions are not recognized for locations more than 4K
bytes beyond the current location being processed.
Access exceptions may be recognized for all loca-
tions in the dictionaries and symbol-translation table
if those areas are specified to be used and even if the
locations would not be used during the operation.
Access exceptions are not recognized for an oper-
and, the dictionaries, or the symbol-translation table
if the R field associated with that operand is odd.

Also, when the R1 field is odd, PER storage-alteration
events are not recognized, and no change bits are
set.

If an access exception is due to be recognized for
either of the operands or for a dictionary, entropy
descriptor, or the symbol-translation table, the result
is that either the exception is recognized or condition
code 3 is set. If condition code 3 is set, the exception
will be recognized when the instruction is executed
again to continue processing the same operands,
assuming that the exception condition still exists.

During compression, regardless of whether the
exception is recognized or condition code 3 is set, a
nullifying access-exception condition or a suppress-
ing DAT-protection exception conditionis handled so
that an index symbol is generated only if it is the one
that would result if there were no access-exception
condition.

During compression or expansion, regardless of
whether the exception is recognized or condition
code 3 is set, a nullifying or suppressing access-
exception condition may result in data having been
stored at the first-operand location at or to the right of
the location designated by the final address in gen-
eral register R1, which result is not true nullification or
suppression. The amount of data stored depends on
the reason for the access-exception condition. If the
condition is due to a reference to a dictionary or the
symbol-translation table, up to 4K bytes of data may
have been stored at or to the right of the location des-
ignated by the final address. If the condition is due to
a reference to the first or second operand, part of one
index or interchange symbol, during compression, or
part of one character symbol, during expansion, may
have been stored at or to the right of the location des-
ignated by the final address. In all cases, the storing
will be repeated when the instruction is executed
again to continue processing the same operands.

If the end of the first operand is reached and an
access exception is due to be recognized for the sec-
ond operand, it is unpredictable whether condition
code 1 is set or the access exception is recognized.

During expansion when the expansion dictionary is
not logically correct, unusual storing may occur as
described in Appendix D, “Expansion Process”. The
results of an access exception in this case may not
be true nullification or suppression.

Case Resulting Interchange Symbol

1 The interchange symbol in the entry.

2 The interchange symbol in the entry, minus one;
that is, one is subtracted from the value of the
interchange symbol that is in the entry to form the
interchange symbol that is stored.

3 The interchange symbol in the entry, plus one; that
is, one is added to the value of the interchange
symbol that is in the entry to form the interchange
symbol that is stored.

General Instructions 7-177

C
O

M
P

R
E

S
S

IO
N

 C
A

L
LSpecial Conditions

A specification exception is recognized for any of the
following conditions:

1. Either the R1 or R2 fields contain an odd-num-
bered register.

2. Bits 48-51 of general register 0 contain any value
not in the range of 0001-0101 binary and bit 44
of general register 0 is zero.

During compression of each character symbol, either
the characters in the symbol or the dictionary charac-
ter entries (not sibling descriptors) representing char-
acters of the symbol are counted, and a general-
operand data exception is recognized if this count
becomes too large. The count can reach at least 260
without the exception being recognized.

During compression, the number of child characters
or sibling characters processed during the process-
ing of each parent entry are counted, and a general-
operand data exception is recognized if this count
becomes too large. The count can reach at least 260
without the exception being recognized. That is, a
parent must not have more than 260 children; other-
wise, a general-operand data exception may be rec-
ognized. Extension characters are not counted
toward the maximum number of child and sibling
characters until a child becomes a parent. When the
examine child bit is zero, and a match is encoun-
tered, further matches are stopped and the child
does not become a parent.

During expansion of each character symbol, either
the characters in the symbol or the dictionary entries
representing characters of the symbol are counted,
and a general-operand data exception is recognized
if this count becomes too large. If the characters in
the symbol are counted, the count can reach at least
260 without the exception being recognized. If the
dictionary entries representing characters of the
symbol are counted, the count can reach at least 127
without the exception being recognized.

Certain error conditions in the dictionaries cause a
general-operand data exception to be recognized
and the operation to be either suppressed or termi-
nated. Some of these error conditions are described
in the sections “Expansion Process”, “Results of Dic-
tionary Errors”, “Compression Dictionary”, and
“Expansion Dictionary” in Appendix D.

When entropy encoding is specified, the entropy
descriptor must satisfy the following properties other-
wise a general-operand data exception is recog-
nized.

1. The sum of the sixteen entries must add up to
the number of dictionary entries plus one.

2. There is no arithmetic underflow or overflow
when performing bounds calculations see Figure
7-204, “Entropy Descriptor Validation” on
page 7-186.

During compression, when entropy encoding is spec-
ified, a symbol-translation-table entry with a zero
value or an entry not padded on the right with zeros
will cause a general-operand data exception to be
recognized.

Resulting Condition Code:

0 End of second operand reached
1 End of first operand reached and end of second

operand not reached
2 --
3 CPU-determined amount of data processed

Program Exceptions:

• Access (fetch, operand 2, dictionaries, and sym-
bol-translation table; store, operand 1)

• Data with DXC 0, general operand
• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the operation. The program need not determine
the amount of data processed.

2. During compression when a nullifying access
exception is due to be recognized, an index sym-
bol is generated only if it is the one that would
result if there were no access-exception condi-
tion. The result of this is that compression of the
same expanded data by means of one or more
executions of the instruction and by using the
same dictionary always results in the same com-
pressed data. That is, (1) the best possible
matches in the dictionary are always found for
the characters in the second operand, or else the
execution is ended by either setting CC3 or rec-

7-178 The z/Architecture CPU Architecture

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L ognizing the exception, and (2) the results of

compression are repeatable (although possibly
by means of a different number of executions of
the instruction) and predictable.

For example, if the next characters of the string
being compressed are ABC, and dictionary entry
A has a child B, which has a child C, the normal
operation is to compress ABC as a single index
symbol, but if the C of the string is in the first byte
of an invalid page (a page-translation exception
is due to be recognized), no index symbol is gen-
erated. More specifically, an index symbol corre-
sponding to the character symbol AB is not
generated because this is not the index symbol
that would be generated if the access-exception
condition did not exist.

In the above, “best possible match” refers only to
the characters in the second operand. In the
example above, if the next two characters of the
second operand (the string) are AB, and these
are the last two characters of the second oper-
and, the best possible match is on AB, even
though there could be a match on ABC if the sec-
ond operand included one more byte containing
C.

Expansion is normally always repeatable. An
index symbol is always expanded to exactly the
character symbol it represents unless an excep-
tion that causes termination is recognized.

3. During expansion, if at least one unused byte
position remains in the first operand location,
COMPRESSION CALL may completely process
the next index symbol in the second operand
before it determines that the first-operand loca-
tion does not have sufficient unused byte posi-
tions to contain the expanded data that would
result from the next index symbol. If that next
index symbol causes encountering of bad dictio-
nary entries, the result can be either a data
exception or condition code 1.

COMPRESSION CALL immediately sets condi-
tion code 1 when processing of an index symbol
exactly fills the first-operand location, except that
it sets condition code 0 if the end of the second-
operand location also has been reached. Imme-
diately setting condition code 1 has the advan-
tage that data can be compressed using one
dictionary and then followed immediately, possi-
bly on a bit boundary, by a different type of data
compressed using another dictionary. The com-

pressed data can be successfully expanded if,
during the expansion of the data compressed
using the first dictionary, the length of the first-
operand location is specified to be exactly the
length of the expanded data that will be pro-
duced. Condition code 1 will then be set when
the first-operand location is full, at which time the
specification of the dictionary can be changed in
order to expand the remainder of the com-
pressed data using the second dictionary. If the
definition allowed condition code 1 not to be set,
it might be attempted to expand the next index
symbol, which resulted from use of the second
dictionary, by means of the first dictionary, and
this might cause recognition of a general-oper-
and data exception. For example, the next index
symbol, which properly designates a character
entry in the second dictionary, might designate
the second half of a format-1 sibling descriptor in
the first dictionary, and that second half might
begin with a character, such as 0 (F0 hex), that
would appear to be an invalid partial symbol
length in a character entry.

4. A nullifying access-exception condition due to a
reference to a dictionary or the symbol-transla-
tion table may result in the storing of data at or to
the right of the location designated by the final
address in general register R1. This storing and
the processing needed to produce the data
stored will be repeated when COMPRESSION
CALL is executed again to continue processing
the same operands. The repeated processing
will reduce the performance of the instruction
execution, and it should be avoided by ensuring
that the environment in which the program is exe-
cuted is one in which page-translation-exception
conditions for the dictionaries and symbol-trans-
lation table are infrequent.

5. Following is an example of how the compressed-
data bit number (CBN) is used and set. In this
example:

• The operation is an expansion operation.

• The CDSS in general register 0 is 0010
binary. Therefore, there are 1K entries in the
expansion dictionary, and the length of an
index symbol is 10 bits.

• The second operand (compressed-data
operand) begins at location 6000 hex and
has a length of five bytes. The initial CBN is

General Instructions 7-179

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L7. Therefore, there are three index symbols

to be expanded, and the final CBN will be 5.

• The compressed data beginning at location
6000 hex is 0081FF9FF8 hex. Therefore, the
three index symbols are 103, 3FC, and 3FF
hex.

• The first operand (expanded-data operand)
begins at location 5000 hex and has a length
of 64 bytes. The three index symbols are
expanded to a total of 14 bytes of expanded
data.

The following figure shows the initial and final
contents of general registers R1, R1 + 1, R2, and
R2 + 1, the contents of locations 6000-6004 hex
in binary, and the way a cursor corresponding to
the CBN is advanced during the expansion oper-
ation.

6. The reason for allowing a parent to have no more
than 260 children is as follows. The parent can
contain five identical child characters. Then, 255
different sibling characters are possible — all of
these must be different from the child characters
and each other, or else they may be wasted
(never matched against), depending on the
implementation. Thus, every possible child is
permitted.

7. Symbol translation is for use by VTAM. VTAM will
begin by doing compression by means of soft-
ware and an adaptive dictionary. When the adap-
tive dictionary has matured such that the degree
of compression becomes sufficiently good
(crosses some threshold), VTAM will “freeze”
(stop adapting) its dictionary, inform the other
end of the session to freeze also, transform its
adaptive dictionary to the dictionary form used by

COMPRESSION CALL, and then use COM-
PRESSION CALL to continue on with the com-
pression. The other end of the session can
continue to use its frozen adaptive dictionary.

Following is clarification about the STT offset.
Assume VTAM uses a 4K-entry adaptive dictio-
nary, which is the largest size VTAM uses. All of
the entries in this dictionary correspond to char-
acter symbols because there are no sibling
descriptors in the VTAM dictionary. The VTAM
dictionary cannot map one-to-one to a COM-
PRESSION CALL dictionary because the latter
requires that some of the entries be sibling
descriptors. Therefore, VTAM must have an 8K-
entry dictionary for use in the basic compression
operation. Only the first hundred or so entries in
the second 4K of the 8K need to be used, and
these entries compensate for (take the place of)
the entries in the first 4K that must be sibling
descriptors. The STT can and should, to save
space, begin immediately after those hundred or
so entries in the second 4K. In this example, the
index symbols will be 13 bits but will be trans-
formed to 12-bit interchange symbols.

8. A program may place the dictionaries in pages
that are managed by means of chaining fields at
their beginnings. In this case, either the parts of a
dictionary have to be moved to be compacted
into contiguous locations or there have to be
holes in the dictionaries. The definition of COM-
PRESSION CALL contains nothing explicitly to
support holes. However, assuming there is at
least one character that never appears in the
expanded data, that character can be used as a
child character in a parent entry or as a sibling
character in a sibling descriptor to specify a child
or children that will never be referenced, thus
creating a hole.

9. The references to the operands, dictionaries, and
symbol-translation table for COMPRESSION
CALL may be multiple-access references. (See
“Storage-Operand Consistency” on page 5-125.)

10. Setting the ZP control to one may provide
improved performance on models in which the
CMPSC-enhancement facility is installed.

11. Zero padding is not necessarily performed in
every case where it is permissible.

12. Figure 7-201 on page 7-181 and Figure 7-203
on page 7-185 show possible forms (not the only
possible forms) of the compression process

Register

Initial
Contents

in Hex

Final
Contents

in Hex
R1 5000 500E
R1+1 40 32
R2 6000 6004
R2+1 5 1

Contents of Locations 6000-6004 Hex in Binary

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

Initial
CBN
(7)

Final
CBN
(5)

7-180 The z/Architecture CPU Architecture

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L (without order preservation), the order preserva-

tion compression process and expansion pro-
cesses. The figures do not show testing for or the
results of dictionary errors.

13. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See

the section “Effects of CPU Retry” on page 11-3
for further details.

14. When the entropy-encoding option is specified
the minimum dictionary size is 128-bytes or 16
entries. The dictionary must also be a multiple of
16 entries.

General Instructions 7-181

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L

Figure 7-201. Compression Process (Part 1 of 2)

Start

Another SRC
char exists?

Another
DST index position

exists?

Use next SRC char as
index of alphabet entry.
Call this entry parent.
Advance 1 byte in SRC

1

CCT=0?

Set flag=1

Another SRC
char exists?

Next SRC
char = CC?

Set flag=0

Another CC?

CCT
indicates more

children?

4

Set CC1 and endop.

1

Store parent index in DST.
Advance 1 index in DST.
Set CC0 and endop.

Repeat for each CC. Note: See the definition for how CCT specifies
number of CCs and more children.

Note: Flag is 1 as long as there are equal
comparisons to identical leading CCs.

Store parent index in DST.
Advance 1 index in DST.

Set child index =
CPTR + CC number
(0-origin numbering).

X=1
for child?

ACT=0 or D=0
in child?

Compare SRC chars after
next char to AECs in child.

6

(See note below.)
Store child index in DST.
Advance 1 index in DST.
Advance 1 byte in SRC.

Call child the parent.
Advance 1 byte in SRC

5

2

3

1

2

Notes: Entry fields are in parent or sibling descriptor.
SRC = source, DST = destination.

No

No

Yes

Yes

Yes

No

No

Yes

Yes

Yes

No

No

No

Yes

Yes

Yes

No

No

Note: The preferred path for X=0
is shown, but the other
path may be taken.

Go to Part 2.

Go to Part 2.

Store parent index in DST.
Advance 1 index in DST.

Set CC0 and endop.
Perform model-
dependent zero

padding, as needed

Perform model-
dependent zero

padding, as needed

7-182 The z/Architecture CPU Architecture

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L

Figure 7-201. Compression Process (Part 2 of 2)

Enough
SRC chars for
comparison?

4

Y=1 for child
or no Y?

Next SRC
char = SC?

Another SC?

SCT
indicates more

children?

5

Set sibling descriptor
(SD) index = CPTR +

number of CCs.

Note: Second half of format-1 SD
is in expansion dictionary

Note: The preferred path for Y=0
is shown, but the other

Set SD index =
current SD index +
number of SCs + 1

ACT=0 or D=0
in child?

Compare SRC chars after
next char to AECs in child.

Call child the parent.
Advance 1 byte in SRC.

2

From Part 1.

Repeat for each SC in SD.

6

From Part 1.

Another CC?

Flag=1? 5

Call child the parent.
Advance in SRC by
1 + number of AEC bytes.

Chars equal?

Flag=1?

Another CC?

5

5

3 path may be taken

Set child index =
SD index + SC number

(1-origin numbering)

(See note above.)
Store child index in DST.
Advance 1 index in DST.
Advance 1 byte in SRC.

1

Enough
SRC chars for
comparison?

Chars equal?

5

5

Call child the parent.
Advance in SRC by 1 +

2

number of AEC bytes.

Yes

Yes

5

Yes

No

No

No

No

No

3

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Note: See the definition for how
SCT specifies number of
SCs and more children. Yes

Yes

2

General Instructions 7-183

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L

Figure 7-202. Order-Preservation Compression Process (Part 1 of 2)

Start

Another SRC
char exists?

Another
DST index position

exists?

Use next SRC char as
index of alphabet entry.
Call this entry parent.
Advance 1 byte in SRC

CCT=0?

Another SRC
char exists?

Another CC?

CCT
indicates more

children?

Repeat for each CC. Note: See the definition for how CCT specifies
number of CCs and more children.

Set child index =
CPTR + CC number
(0-origin numbering).

Call child the parent.
Advance 1 byte in SRC

2

Notes: Entry fields are in parent or sibling descriptor.
SRC = source, DST = destination.

No

No

Yes

Yes

Yes

No

No

Yes

No

Yes

Yes

No

No

Yes

No

Go to Part 2. Go to Part 2.

3

INTSYM = interchange symbol.

4

Next SRC
char = CC?

Yes

No

Set CC1 and endop

Set CC0 and endopPerform model-dependent
zero padding, as needed.

Perform model-dependent
zero padding, as needed.

Use parent index to get INTSYM.
Store INTSYM in DST.

Advance 1 symbol in DST.

Use child index to get INTSYM.
Store INTSYM–1 in DST.

Advance 1 symbol in DST.

Next SRC
char > CC?

X=1
for child?

Use child index to get INTSYM.
Store INTSYM in DST.

Advance 1 symbol in DST.
Advance 1 byte in SRC.

7

ACT=0 or D=0
in child?

5

Yes

No

Use child index to get INTSYM.
Store INTSYM+1 in DST.

Advance 1 symbol in DST.

1

6

Set CC0 and endop
Use parent index to get INTSYM.

Store INTSYM in DST.
Advance 1 symbol in DST.

Yes

3

Set child index=CPTR+last CC
number (0 origin numbering)

8

7-184 The z/Architecture CPU Architecture

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L

Figure 7-202. Order-Preservation Compression Process (Part 2 of 2)

6

Y=1 for child
or no Y?

Next SRC
char > SC?

Another SC?

SCT
indicates more

children?

Set sibling descriptor (SD) index
= CPTR + number of CCs.

Note: Second half of format-1 SD
is in expansion dictionary

Set SD index = current SD index
+ number of SCs + 1

ACT=0 or D=0
in child?

Compare SRC chars after
next char to AECs in child.

Call child the parent.
Advance 1 byte in SRC.

3

From Part 1.

Repeat for each SC in SD.

Set child index =
SD index + SC number

(1-origin numbering)

Use child index to get INTSYM.
Store INTSYM in DST.

Advance 1 symbol in DST.
Advance 1 byte in SRC.

1

No

Yes

8

Yes

Yes

No

No

Yes

Yes

No

No

Note: See the definition for how SCT specifies
number of SCs and more children.

Next SRC
char = SC? No

Yes

7

Repeat for each AEC.

Another AEC?

SRC char
exists?

Yes

7

No

No

SRC char
> AEC?

SRC char
= AEC?

7
No

Yes

YesNo

5

Another AEC?

Compare SRC chars after next
char to ACEs in child.
Repeat for each AEC.

SRC char
exists?

2

From Part 1.

Call child the parent.
Advance in SRC by 1 +
number of AEC bytes.

Yes

7

No

No

SRC char
> AEC?

4

SRC char
= AEC?

7
No

Yes

Yes

No

Yes

Set child index=SD index+last
SC number (1 origin numbering)

General Instructions 7-185

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L

Figure 7-203. Expansion Process

Start

Another SRC
index or codeword

> 0 DST
byte positions

exist?

1

Next SRC
index < 256?

Set CC0 and endop

Set CC1 and endop

Use next SRC index as
index of current entry. 1

Get PSL ECs from entry
and store in DST at OFST.

Use PPTR as index of
current entry (see note).

Notes: Fields are in current entry.
SRC = source, DST = destination

No

No

Yes

Yes

Another
DST byte pos.

exists?
Set CC1 and endop

PSL=0?

Set SYMLEN = PSL + OFST

SYMLEN DST
byte positions

exist?

PSL=0?

Get PSL ECs from entry
and store in DST at OFST.

Use PPTR as index of
current entry (see note).

Get CSL ECs from entry
and store in DST.

Advance 1 index in SRC.
Advance SYMLEN bytes in DST.

Set CC1 and endop

1

Store index as char in DST.
Advance 1 index in SRC.
Advance 1 byte in DST.

CSL DST
byte positions

exist?
Set CC1 and endop

Get CSL ECs from entry
and store in DST.

Advance 1 index in SRC.
Advance CSL bytes in DST.

1

Store PPTR as char in DST.
Advance 1 index in SRC.

Advance SYMLEN bytes in DST.
1

Note: If PPTR<256, the action can be:

Yes

No

No

Yes

Yes

No

No

Yes

No

No

Yes

Yes

Perform model-
dependent zero

padding, as needed

Perform model-
dependent zero

padding, as needed

Entropy
Encoding
enabled?

No

Yes

exists?

7-186 The z/Architecture CPU Architecture

C
O

M
P

R
E

S
S

IO
N

 C
A

L
L

Figure 7-204. Entropy Descriptor Validation

Begin Validation

LB <
ED[BitLength] ?

No

Yes

Set BitLength =
BitLength + 1;

Set LB = LB 2;

Set LB = 2;

Set SymbolCount = 0;

Set BitLength = 1;

Set LB =
LB – ED[BitLength];

Set SymbolCount =
SymbolCount +
ED[BitLength];

SymbolCount >
offset 16 + 1?

BitLength
 16 ?

LB > 0 ?

SymbolCount
offset 16 + 1 ?

Exception
(code tree overflow)

Exception
(code tree describes
too many symbols)

Exception
(code tree incomplete)

Exception
(code tree describes

too few symbols)

Validation Complete

Yes

No

No

Yes

Yes

Yes

No

No

Figure 7-205. Entropy Encoded Expansion

Set BitLength =
BitLength + 1;

Set LB = LB 2;

Set LB = 2;

Set CurIndex = 0;

Set BitLength = 1;

Set CurCodeword = 0;

Set LB =
LB – ED[BitLength];

Set CurCodeword =
CurCodeword with next

src bit appended on
the right;

Set CurIndex =
CurIndex +

ED[BitLength];

CurCodeword
 LB ?

Emit Index SymbolTerminating
Codeword Found

Begin
Codeword Conversion

CurCodeword
= 0 ?

Set CurIndex = CurIndex –
(CurCodeword – (LB – 1));

Yes

No

No

Yes

General Instructions 7-187

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

T

COMPUTE INTERMEDIATE
MESSAGE DIGEST

KIMD R1,R2 [RRE]

A function specified by the function code in general
register 0 is performed.

Bits 16-23 of the instruction and the R1 field are
reserved and should contain zeros; otherwise, the
program may not operate compatibly in the future.

Bit positions 57-63 of general register 0 contain the
function code. Figure 7-207 shows the assigned
function codes for COMPUTE INTERMEDIATE MES-
SAGE DIGEST. All other function codes are unas-
signed. Bit 56 of general register 0 must be zero;
otherwise, a specification exception is recognized. All
other bits of general register 0 are ignored.

The assigned function codes are enumerated in
Figure 7-207. All other function codes are unas-
signed.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

Figure 7-206. Entropy Encoded Compression

'B93E' / / / / / / / / R1 R2

0 16 24 28 31

Set LB = LB 2;

Set LB = 2;

Set BitLength = 1;

Set CurCodeword = 0;

Set LB =
LB – ED[BitLength];

Set BitLength =
BitLength + 1;

Set CurCodeword =
BitLength leftmost bits
of symbol table entry;

CurCodeword
 LB ?

End Codeword Emission
Exception

(non-zero trailing bits)

Begin
Codeword Emission

Bitlength+1 to bit
16 of symbol-table

Output BitLength leftmost
bits of symbol-table entry

Yes

No

No

Yes

entry = 0?

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 KIMD-Query * 16 —

1 KIMD-SHA-1 * 20 64

2 KIMD-SHA-256 * 32 64

3 KIMD-SHA-512 * 64 128

32 KIMD-SHA3-224 200 144

33 KIMD-SHA3-256 200 136

34 KIMD-SHA3-384 200 104

35 KIMD-SHA3-512 200 72

36 KIMD-SHAKE-128 200 168

37 KIMD-SHAKE-256 200 136

65 KIMD-GHASH 32 16

Explanation:

— Not applicable
* Function is also defined in the ESA/390

architectural mode and the ESA/390-
compatibility mode. It is unpredictable whether
other function codes are available in the
ESA/390-compatibility mode.

Figure 7-207. Function Codes for COMPUTE
INTERMEDIATE MESSAGE DIGEST

7-188 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

T The query function provides the means of indicating
the availability of the other functions. The contents of
general registers R2 and R2 + 1 are ignored for the
query function.

For all other functions, the second operand is pro-
cessed as specified by the function code using an ini-
tial chaining value in the parameter block, and the
result replaces the chaining value. For COMPUTE
LAST MESSAGE DIGEST, the operation also uses a
message bit length in the parameter block. The oper-
ation proceeds until the end of the second-operand
location is reached or a CPU-determined number of
bytes have been processed, whichever occurs first.
The result is indicated in the condition code.

The R2 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister other than general register 0; otherwise, a spec-
ification exception is recognized.

The location of the leftmost byte of the second oper-
and is specified by the contents of the R2 general
register. The number of bytes in the second-operand
location is specified in general register R2 + 1. For all
functions except KIMD-query, the number of bytes in
general register R2 + 1 must be a multiple of the data
block size for the function; otherwise, a specification
exception is recognized.

As part of the operation, the address in general regis-
ter R2 is incremented by the number of bytes pro-
cessed from the second operand, and the length in
general register R2 + 1 is decremented by the same
number. The formation and updating of the address
and length is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general register R2 constitute the

address of the second operand, and the contents of
bit positions 0-39 are ignored; bits 40-63 of the
updated address replace the corresponding bits in
general register R2, carries out of bit position 40 of
the updated address are ignored, and the contents of
bit positions 32-39 of general register R2 are set to
zeros. In the 31-bit addressing mode, the contents of
bit positions 33-63 of general register R2 constitute
the address of the second operand, and the contents
of bit positions 0-32 are ignored; bits 33-63 of the
updated address replace the corresponding bits in
general register R2, carries out of bit position 33 of
the updated address are ignored, and the content of
bit position 32 of general register R2 is set to zero. In
the 64-bit addressing mode, the contents of bit posi-
tions 0-63 of general register R2 constitute the
address of the second operand; bits 0-63 of the
updated address replace the contents of general reg-
ister R2 and carries out of bit position 0 are ignored.

In both the 24-bit and the 31-bit addressing modes,
the contents of bit positions 32-63 of general register
R2 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the second operand;
and the updated value replaces the contents of bit
positions 32-63 of general register R2 + 1. In the
64-bit addressing mode, the contents of bit positions
0-63 of general register R2 + 1 form a 64-bit unsigned
binary integer which specifies the number of bytes in
the second operand; and the updated value replaces
the contents of general register R2 + 1.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R2 and
R2 + 1, always remain unchanged.

Figure 7-208 shows the contents of the general reg-
isters just described.

All Addressing Modes

GR0 / 0 FC
0 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

Figure 7-208. General Register Assignment for KIMD and KLMD (Part 1 of 2)

General Instructions 7-189

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

T

In the access-register mode, access registers 1 and
R2 specify the address spaces containing the param-
eter block and second operand, respectively.

The result is obtained as if processing starts at the
left end of the second operand and proceeds to the
right, block by block. The operation is ended when all
source bytes in the second operand have been pro-
cessed (called normal completion), or when a CPU-
determined number of blocks that is less than the
length of the second operand have been processed
(called partial completion). The CPU-determined
number of blocks depends on the model, and may be
a different number each time the instruction is exe-
cuted. The CPU-determined number of blocks is usu-
ally nonzero. In certain unusual situations, this
number may be zero, and condition code 3 may be
set with no progress. However, the CPU protects
against endless reoccurrence of this no-progress
case.

When the chaining-value field overlaps any portion of
the second operand, the result in the chaining-value
field is unpredictable.

Normal completion occurs when the number of bytes
in the second operand as specified in general regis-
ter R2 + 1 have been processed.

When the operation ends due to normal completion,
condition code 0 is set, the second-operand address
in general register R2 is updated, and the second-
operand length in R2 + 1 is zero. When the operation

ends due to partial completion, condition code 3 is
set and the resulting value in R2 + 1 is nonzero.

When the second-operand length is initially zero, the
second operand is not accessed, the second-oper-
and address and second-operand length in general
registers R2 and R2 + 1, respectively, are not
changed, and condition code 0 is set. The parameter
block is not accessed.

A PER storage-alteration event is recognized, when
applicable, for the portion of the parameter block that
is stored. A PER zero-address-detection event is rec-
ognized, when applicable, for the second-operand
location and for the parameter block. When PER
events are detected for more than one location, it is
unpredictable which location is identified in the PER
access identification (PAID) and PER ASCE ID (AI).

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block and
storage operands may be multiple-access refer-
ences, accesses to these storage locations are not
necessarily block-concurrent, and the sequence of
these accesses or references is undefined.

Access exceptions may be reported for a larger por-
tion of the second operand than is processed in a
single execution of the instruction; however, access
exceptions are not recognized for locations beyond
the length of the second operand nor for locations
more than 4K bytes beyond the current location
being processed.

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-208. General Register Assignment for KIMD and KLMD (Part 2 of 2)

7-190 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

T Symbols Used in Function Descriptions

The following symbols are used in the subsequent
description of the COMPUTE INTERMEDIATE MES-
SAGE DIGEST and COMPUTE LAST MESSAGE
DIGEST functions. Further description of the secure
hash algorithm may be found in Reference [15.] on
page xxx. Further description of the GCM
(Galois/counter mode) multiplication over GF(2128)
may be found in Reference [17.] on page xxx. Further
description of the SHA-3 and SHAKE hash algo-
rithms and the KECCAK family of sponge functions
may be found in Reference [21.] on page xxx.

KIMD-Query (KIMD Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the COMPUTE INTER-
MEDIATE MESSAGE DIGEST instruction. When a
bit is one, the corresponding function is installed; oth-
erwise, the function is not installed.

Symbol Explanation
<n> Length of item in bytes
bda Block digest algorithm
ICV Initial chaining value
M Message block
OCV Output chaining value

Figure 7-209. Symbol for SHA-1 Block Digest Algorithm

Symbol Explanation
<n> Length of item in bytes
bda Block digest algorithm
ICV Initial chaining value
M Message block
OCV Output chaining value

Figure 7-210. Symbol for SHA-256 Block Digest Algorithm

SHA-1

M <64>

OCV <20>

ICV <20>

bda

SHA-256

M <64>

OCV <32>

ICV <32>

bda

Symbol Explanation
<n> Length of item in bytes
bda Block digest algorithm
ICV Initial chaining value
M Message block
OCV Output chaining value

Figure 7-211. Symbol for SHA-512 Block Digest Algorithm

Symbol Explanation
 GCM multiplication operation over GF(2128)

Figure 7-212. Symbol For GCM Multiplication Operation

Over GF(2128)

0
Status Word

8
0 63

Figure 7-213. Parameter Block for KIMD-Query

SHA-512

M <128>

OCV <64>

ICV <64>

bda

Z = X Y

Z <16>

X <16>

Y <16>

General Instructions 7-191

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

TCondition code 0 is set when execution of the KIMD-
Query function completes; condition code 3 is not
applicable to this function.

KIMD-SHA-1 (KIMD Function Code 1)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

The parameter block used for the function has the fol-
lowing format:

A 20-byte intermediate message digest is generated
for the 64-byte message blocks in operand 2 using
the SHA-1 block digest algorithm with the 20-byte
chaining value (called H fields) in the parameter
block. The generated intermediate message digest,
also called the output chaining value (OCV), is stored
in the chaining-value field of the parameter block.
The operation is shown in Figure 7-215.

KIMD-SHA-256 (KIMD Function Code 2)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

The parameter block used for the function has the fol-
lowing format:

A 32-byte intermediate message digest is generated
for the 64-byte message blocks in operand 2 using
the SHA-256 block digest algorithm with the 32-byte
chaining value (called H fields) in the parameter
block. The generated intermediate message digest,
also called the output chaining value (OCV), is stored
in the chaining-value field of the parameter block.
The operation is shown in Figure 7-217.

KIMD-SHA-512 (KIMD Function Code 3)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

0 H0

4 H1

8 H2

12 H3

16 H4
0 31

Figure 7-214. Parameter Block for KIMD-SHA-1

Figure 7-215. KIMD-SHA-1

Parameter
Block in
Storage

H0

Operand 2
in
Storage

M2 <64>

SHA-1
bda

M3 <64>

SHA-1
bda

M1 <64>

SHA-1
bda

Mn <64>

SHA-1
bda

...

...

...

OCV <20>

H1 H2 H3 H4

ICV <20>

ICV

OCV <20>

0 H0

4 H1

8 H2

12 H3

16 H4

20 H5

24 H6

28 H7
0 31

Figure 7-216. Parameter Block for KIMD-SHA-256

Figure 7-217. KIMD-SHA-256

Parameter
Block in
Storage

H0

Operand 2
in
Storage

M2 <64>

SHA-256
bda

M3 <64>

SHA-256
bda

M1 <64>

SHA-256
bda

Mn <64>

SHA-256
bda

...

...

...

OCV <32>

H1 H2 H3 H4

ICV <32>

ICV

OCV <32>

H5 H6 H7

7-192 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

T The parameter block used for the function has the fol-
lowing format:

A 64-byte intermediate message digest is generated
for the 128-byte message blocks in operand 2 using
the SHA-512 block digest algorithm with the 64-byte
chaining value (called H fields) in the parameter
block. The generated intermediate message digest,
also called the output chaining value (OCV), is stored
in the chaining-value field of the parameter block.
The operation is shown in Figure 7-219.

KIMD-SHA3-224 (KIMD Function Code
32)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

A 200-byte intermediate message digest is gener-
ated for the 144-byte message blocks in operand 2
using the KECCAK[c] algorithm with the 200-byte ini-
tial chaining value in the parameter block. The gener-
ated intermediate message digest, also called the
output chaining value (OCV), is stored in the chain-
ing-value field of the parameter block. See program-
ming note 10 on page 7-199 regarding the
numbering of the bits in the parameter block and sec-
ond operand as compared with the numbering of the
bits in the state array.

0 H0

8 H1

16 H2

24 H3

32 H4

40 H5

48 H6

56 H7
0 63

Figure 7-218. Parameter Block for KIMD-SHA-512

Figure 7-219. KIMD-SHA-512

Parameter
Block in
Storage

H0

Operand 2
in
Storage

M2 <128>

SHA-512
bda

M3 <128>

SHA-512
bda

M1 <128>

SHA-512
bda

Mn <128>

SHA-512
bda

...

...

...

OCV <64>

H1 H2 H3 H4

ICV <64>

ICV

OCV <64>

H5 H6 H7

0

192

ICV

0 63

Figure 7-220. Parameter Block for KIMD-SHA3-224

General Instructions 7-193

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

TThe operation is shown in Figure 7-221. KIMD-SHA3-256 (KIMD Function Code
33)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

A 200-byte intermediate message digest is gener-
ated for the 136-byte message blocks in operand 2
using the KECCAK[c] algorithm with the 200-byte ini-
tial chaining value in the parameter block. The gener-
ated intermediate message digest, also called the
output chaining value (OCV), is stored in the chain-
ing-value field of the parameter block. See program-
ming note 10 on page 7-199 regarding the
numbering of the bits in the parameter block and sec-
ond operand as compared with the numbering of the
bits in the state array.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
M 144-byte block of the second-operand message
n Number of blocks in the second-operand (that is, the

second operand length divided by the block size of 144)
OCV Output chaining value (in the parameter block)

Figure 7-221. KIMD-SHA3-224 Processing

KECCAK[c]

M0

Parameter Block in Storage

Operand 2 in Storage

ICV

<144>
M1

<144>
M2

<144>

M0
<144>

Zeros
<56>

M1
<144>

Zeros
<56>

M2
<144>

Zeros
<56>

…

…

…

Mn-1
<144>

Zeros
<56>

… Mn-1
<144>

<200>

OCV
<200>

<200> <200> <200> <200>

<200> <200> <200> <200>

KECCAK[c] KECCAK[c] KECCAK[c]

Parameter Block in Storage

… … … … … …
0

192

ICV

0 63

Figure 7-222. Parameter Block for KIMD-SHA3-256

7-194 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

T The operation is shown in Figure 7-223. KIMD-SHA3-384 (KIMD Function Code
34)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

A 200-byte intermediate message digest is gener-
ated for the 104-byte message blocks in operand 2
using the KECCAK[c] algorithm with the 200-byte ini-
tial chaining value in the parameter block. The gener-
ated intermediate message digest, also called the
output chaining value (OCV), is stored in the chain-
ing-value field of the parameter block. See program-
ming note 10 on page 7-199 regarding the
numbering of the bits in the parameter block and sec-
ond operand as compared with the numbering of the
bits in the state array.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
M 136-byte block of the second-operand message
n Number of blocks in the second-operand (that is, the

second operand length divided by the block size of 136)
OCV Output chaining value (in the parameter block)

Figure 7-223. KIMD-SHA3-256 Processing

KECCAK[c]

Parameter Block in Storage

Operand 2 in Storage

M0
<136>

Zeros
<64>

M1
<136>

Zeros
<64>

M2
<136>

Zeros
<64>

…

…

…

Mn-1
<136>

Zeros
<64>

<200> <200> <200> <200>

<200> <200> <200> <200>

KECCAK[c] KECCAK[c] KECCAK[c]

ICV
<200>

OCV
<200>

Parameter Block in Storage

M0
<136>

M1
<136>

M2
<136>

… Mn-1
<136>

… … … … … …
0

192

ICV

0 63

Figure 7-224. Parameter Block for KIMD-SHA3-384

General Instructions 7-195

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

TThe operation is shown in Figure 7-225. KIMD-SHA3-512 (KIMD Function Code
35)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

A 200-byte intermediate message digest is gener-
ated for the 72-byte message blocks in operand 2
using the KECCAK[c] algorithm with the 200-byte ini-
tial chaining value in the parameter block. The gener-
ated intermediate message digest, also called the
output chaining value (OCV), is stored in the chain-
ing-value field of the parameter block. See program-
ming note 10 on page 7-199 regarding the
numbering of the bits in the parameter block and sec-
ond operand as compared with the numbering of the
bits in the state array.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
M 104-byte block of the second-operand message
n Number of blocks in the second-operand (that is, the

second operand length divided by the block size of 104)
OCV Output chaining value (in the parameter block)

Figure 7-225. KIMD-SHA3-384 Processing

KECCAK[c]

Parameter Block in Storage

Operand 2 in Storage

M0
<104>

Zeros
<96>

M1
<104>

Zeros
<96>

M2
<104>

Zeros
<96>

…

…

…

Mn-1
<104>

Zeros
<96>

<200> <200> <200> <200>

<200> <200> <200> <200>

KECCAK[c] KECCAK[c] KECCAK[c]

ICV
<200>

OCV
<200>

Parameter Block in Storage

M0
<104>

M1
<104>

M2
<104>

… Mn-1
<104>

… … … … … …
0

192

ICV

0 63

Figure 7-226. Parameter Block for KIMD-SHA3-512

7-196 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

T The operation is shown in Figure 7-227. KIMD-SHAKE-128 (KIMD Function Code
36)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHAKE algorithms described in Refer-
ence [21.] on page xxx.

A 200-byte intermediate message digest is gener-
ated for the 168-byte message blocks in operand 2
using the KECCAK[c] algorithm with the 200-byte ini-
tial chaining value in the parameter block. The gener-
ated intermediate message digest, also called the
output chaining value (OCV), is stored in the chain-
ing-value field of the parameter block. See program-
ming note 10 on page 7-199 regarding the
numbering of the bits in the parameter block and sec-
ond operand as compared with the numbering of the
bits in the state array.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
M 72-byte block of the second-operand message
n Number of blocks in the second-operand (that is, the

second operand length divided by the block size of 72)
OCV Output chaining value (in the parameter block)

Figure 7-227. KIMD-SHA3-512 Processing

KECCAK[c]

M0

Parameter Block in Storage

Operand 2 in Storage

ICV

<72>
M1

<72>
M2

<72>

M0
<72>

Zeros
<128>

M1
<72>

Zeros
<128>

M2
<72>

Zeros
<128>

…

…

…

Mn-1
<72>

Zeros
<128>

… Mn-1
<72>

<200>

OCV
<200>

<200> <200> <200> <200>

<200> <200> <200> <200>

KECCAK[c] KECCAK[c] KECCAK[c]

Parameter Block in Storage

… … … … … …
0

192

ICV

0 63

Figure 7-228. Parameter Block for KIMD-SHAKE-128

General Instructions 7-197

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

TThe operation is shown in Figure 7-229.

KIMD-SHAKE-256 (KIMD Function Code
37)
The operands, addresses, parameter-block format,
and operation of the KIMD-SHAKE-256 function are
identical to those of the KIMD-SHA3-256 function.

Note: A separate function code for KIMD-SHAKE-
256 is defined to retain symmetry with the KLMD
functions (where the operation of KLMD-SHAKE-256
differs from that of KLMD-SHA3-256).

KIMD-GHASH (Function Code 65)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-208 on
page 7-188.

The parameter block used for the KIMD-GHASH
function has the following format:

The initial-chaining value is in byte offsets 0-15 of the
parameter block, and the hash subkey is in byte off-
sets 16-31 of the parameter block.

The GHASH for the 16-byte message blocks (M1,
M2, …, Mn) in operand 2 is computed using the hash
subkey and the 128-bit chaining value.

The first message block is exclusive-ORed with the
initial chaining value (ICV) in the parameter block.
The result of the exclusive-OR operation and the
hash subkey (H) are multiplied using a
Galois/counter-mode (GCM) multiplication operation
over a Galois field (GF(2128)) to produce the chaining
value for the next message block. The process is
repeated until all message blocks have been pro-
cessed, or until a CPU-determined number of mes-
sage blocks have been processed.

The GHASH, called the output chaining value (OCV),
is stored into the Initial-chaining-value field of the
parameter block. The operation is shown in
Figure 7-231 on page 7-197.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
M 168-byte block of the second-operand message
n Number of blocks in the second-operand (that is, the

second operand length divided by the block size of 168)
OCV Output chaining value (in the parameter block)

Figure 7-229. KIMD-SHAKE-128 Processing

KECCAK[c]

Parameter Block in Storage

Operand 2 in Storage

M0
<168>

Zeros
<32>

M1
<168>

Zeros
<32>

M2
<168>

Zeros
<32>

…

…

…

Mn-1
<168>

Zeros
<32>

<200> <200> <200> <200>

<200> <200> <200> <200>

KECCAK[c] KECCAK[c] KECCAK[c]

ICV
<200>

OCV
<200>

Parameter Block in Storage

M0
<168>

M1
<168>

M2
<168>

… Mn-1
<168>

… … … … … …
0

Initial Chaining Value (ICV)
8

16
Hash Subkey (H)

24
0 63

Figure 7-230. Parameter Block for KIMD-GHASH

Figure 7-231. KIMD-GHASH

ICV
<16>

H
<16>

M1 <16> M2 <16> M3 <16>
...

Mn <16>
...

Operand 2
in Storage

OCV

...

...

7-198 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

T Special Conditions

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. Bit 56 of general register 0 is not zero.

2. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

3. The R2 field designates an odd-numbered regis-
ter or general register 0.

4. The second-operand length is not a multiple of
the data block size of the designated function
(see Figure 7-207 on page 7-187 for COMPUTE
INTERMEDIATE MESSAGE DIGEST functions).

Resulting Condition Code:

0 Normal completion
1 --
2 --
3 Partial completion

Program Exceptions:

• Access (fetch, operand 2 and message bit
length; fetch and store, chaining value)

• Operation (if the message-security assist is not
installed)

• Specification
• Transaction constraint

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. Bit 56 of general register 0 is reserved for future
extension and should be set to zero.

3. When condition code 3 is set, the second oper-
and address and length in general registers R2

and R2 + 1, respectively, and the chaining-value
in the parameter block are usually updated such
that the program can simply branch back to the
instruction to continue the operation.

For unusual situations, the CPU protects against
endless reoccurrence for the no-progress case.
Thus, the program can safely branch back to the
instruction whenever condition code 3 is set with
no exposure to an endless loop.

4. If the length of the second operand is nonzero
initially and condition code 0 is set, the registers
are updated in the same manner as for condition
code 3; the chaining value in this case is such
that additional operands can be processed as if
they were part of the same chain.

5. The instructions COMPUTE INTERMEDIATE
MESSAGE DIGEST and COMPUTE LAST MES-
SAGE DIGEST are designed to be used by a
security service application programming inter-
face (API). These APIs provide the program with
means to compute the digest of messages of
almost unlimited size, including those too large to
fit in storage all at once. This is accomplished by
permitting the program to pass the message to
the API in parts. The following programming
notes are described in terms of these APIs.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint

8. Specification exception due to invalid function
code or invalid register number.

9. Specification exception due to invalid operand
length.

10. Condition code 0 due to second-operand length
originally zero.

11. Access exceptions for an access to the
parameter block or second operand.

Figure 7-232. Priority of Execution: KIMD

12. Condition code 0 due to normal completion
(second-operand length originally nonzero, but
stepped to zero).

13. Condition code 3 due to partial completion
(second-operand length still nonzero).

Figure 7-232. Priority of Execution: KIMD

General Instructions 7-199

C
O

M
P

U
T

E
 IN

T
E

R
M

E
D

IA
T

E
 M

E
S

S
A

G
E

 D
IG

E
S

T6. Before processing the first part of a message,
the program must set the initial values for the
chaining-value field. For SHA-1, the initial hexa-
decimal chaining values are listed as follows:

For SHA-256, the initial hexadecimal chaining
values are listed as follows:

For SHA-512, the initial hexadecimal chaining
value are listed as follows:

For the SHA3 and SHAKE functions, the initial
chaining value must be set to all zeros.

7. When computing a message digest, the program
may not initially be aware of the total message-bit
length; for example, for a message being read
from an I/O device, the message-bit length may
not be known until the final block is read. When
computing a message digest for a message
whose length is not known, or for a message
where it is known that the last message block is
not included in the calculation, COMPUTE
INTERMEDIATE MESSAGE DIGEST may be
used. When computing a message digest for a
message that includes the last block, COMPUTE
LAST MESSAGE DIGEST must be used.

8. The SHA-224 algorithm is the same as the SHA-
256 algorithm, except that the initial chaining val-
ues and the final message digest lengths are dif-
ferent. The program may obtain the SHA-224

message digest using the SHA-256 functions
with the following two actions:

a. The following initial hexadecimal chaining
values for SHA-224 are used:

b. The 224-bit message digest is obtained by
truncating the final message digest to its
leftmost 224 bits.

9. The SHA-384 algorithm is the same as the SHA-
512 algorithm, except that the initial chaining val-
ues and the final message digest lengths are dif-
ferent. The program may obtain the SHA-384
message digest using the SHA-512 functions
with the following two actions:

a. The following initial hexadecimal chaining
values for SHA-384 are used:

b. The 384-bit message digest is obtained by
truncating the final message digest to its left-
most 384 bits.

10. For the SHA3 and SHAKE functions (for both
KIMD and KLMD), the KECCAK[c] algorithm uses
a 1,600-bit state array in the parameter block.
The state array comprises 25 lanes having 64
bits each. The bits of the state array are num-
bered from 0 to from 1,599, and the bits of each
lane are numbered from 0 to 63.

In the parameter block, the bytes of the state
array appear in ascending order from left-to-right;
but within each byte, the bits appear in descend-
ing order from left to right. That is, byte 0 of the
parameter block contains (from left to right) bits
7, 6, 5, 4, 3, 2, 1, and 0 of the state array; byte 1

H0 = 6 7 4 5 2 3 0 1
H1 = E FCD AB 8 9
H2 = 9 8 BA DCF E
H3 = 1 0 3 2 5 4 7 6
H4 = C 3 D 2 E 1 F 0

H0 = 6 A 0 9 E 6 6 7
H1 = BB 6 7 AE 8 5
H2 = 3 C 6 E F 3 7 2
H3 = A 5 4 F F 5 3 A
H4 = 5 1 0 E 5 2 7 F
H5 = 9 B 0 5 6 8 8 C
H6 = 1 F 8 3 D 9 AB
H7 = 5 BE 0 CD 1 9

H0 = 6 A 0 9 E 6 6 7 F 3 BC C 9 0 8
H1 = BB 6 7 AE 8 5 8 4 CA A 7 3 B
H2 = 3 C 6 E F 3 7 2 F E 9 4 F 8 2 B
H3 = A 5 4 F F 5 3 A 5 F 1 D 3 6 F 1
H4 = 5 1 0 E 5 2 7 F ADE 6 8 2 D 1
H5 = 9 B 0 5 6 8 8 C 2 B 3 E 6 C 1 F
H6 = 1 F 8 3 D 9 AB F B 4 1 BD 6 B
H7 = 5 BE 0 CD 1 9 1 3 7 E 2 1 7 9

H0 = C 1 0 5 9 ED 8
H1 = 3 6 7 C D 5 0 7
H2 = 3 0 7 0 DD 1 7
H3 = F 7 0 E 5 9 3 9
H4 = F FC 0 0 B 3 1
H5 = 6 8 5 8 1 5 1 1
H6 = 6 4 F 9 8 F A 7
H7 = BE F A 4 F A 4

H0 = CBBB 9 D 5 D C 1 0 5 9 ED 8
H1 = 6 2 9 A 2 9 2 A 3 6 7 C D 5 0 7
H2 = 9 1 5 9 0 1 5 A 3 0 7 0 DD 1 7
H3 = 1 5 2 F ECD 8 F 7 0 E 5 9 3 9
H4 = 6 7 3 3 2 6 6 7 F FC 0 0 B 3 1
H5 = 8 EB 4 4 A 8 7 6 8 5 8 1 5 1 1
H6 = DB 0 C 2 E 0 D 6 4 F 9 8 F A 7
H7 = 4 7 B 5 4 8 1 D BE F A 4 F A 4

7-200 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T contains bits 15, 14, 13, 12, 11, 10, 9 and 8 of
the state array; and so forth. When represented
in memory, the bit positions of any individual lane
of the state array correspond to powers of two, as
shown below.

The bit ordering of the parameter block
described above also applies to the message
bytes of the second operand. For the KLMD-
SHAKE functions, the results stored in the first
operand are similar to that of the parameter block
in that the left-to-right ordering of bits within each
byte is 7, 6, 5, 4, 3, 2, 1, and 0.

11. For the GHASH function, the hash subkey, H, is
the result of encrypting a 128-bit zero using the
AES encryption algorithm with a 128-bit, 192-bit,
or 256-bit cryptographic key.

COMPUTE LAST MESSAGE
DIGEST

KLMD R1,R2 [RRE]

A function specified by the function code in general
register 0 is performed.

Bits 16-23 of the instruction are reserved, and for all
functions except KLMD-SHAKE-128 and KLMD-
SHAKE-256, the R1 field is reserved. Reserved fields
should contain zeros; otherwise, the program may
not operate compatibly in the future.

Bit positions 57-63 of general register 0 contain the
function code. Figure 7-233 show the assigned func-
tion codes. All other function codes are unassigned.
Bit 56 of general register 0 must be zero; otherwise, a
specification exception is recognized. For the KLMD-
SHAKE functions, bit 55 of general register 0 is the
padding state; bit 55 of the register is ignored for all
other functions. All other bits of general register 0 are
ignored.

The assigned function codes are enumerated in
Figure 7-233. All other function codes are unas-
signed.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

The query function provides the means of indicating
the availability of the other functions. The contents of
general registers R1, R1 + 1, R2 and R2 + 1 are
ignored for the query function.

For all other functions, the second operand is pro-
cessed as specified by the function code using an ini-

Byte 0 1 6 7

Lane
Bit

7 6 5 4 3 2 1 0 1
5

1
4

1
3

1
2

1
1

1
0 9 8 … 5

5
5
4

5
3

5
2

5
1

5
0

4
9

4
8

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

'B93F' / / / / / / / / R1 R2

0 16 24 28 31

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size1

(bytes)

0 KLMD-Query * 16 —

1 KLMD-SHA-1 * 28 64

2 KLMD-SHA-256 * 40 64

3 KLMD-SHA-512 * 80 128

32 KLMD-SHA3-224 200 144

33 KLMD-SHA3-256 200 136

34 KLMD-SHA3-384 200 104

35 KLMD-SHA3-512 200 72

36 KLMD-SHAKE-128 200 168

37 KLMD-SHAKE-256 200 136

Explanation:

— Not applicable
1 For all data blocks except the last block. The size

of the last data block ranges from 0 to one less
than the value shown.

* Function is also defined in the ESA/390
architectural mode and the ESA/390-
compatibility mode. It is unpredictable whether
other function codes are available in the
ESA/390-compatibility mode.

Figure 7-233. Function Codes for COMPUTE LAST
MESSAGE DIGEST

General Instructions 7-201

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

Ttial chaining value in the parameter block, and the
result replaces the chaining value. For the SHA-1,
SHA-256, and SHA-512 functions, the operation also
uses a message bit length in the parameter block.
The operation proceeds until the end of the second-
operand location is reached or a CPU-determined
number of bytes have been processed, whichever
occurs first.

For the KLMD-SHAKE functions, when the end of the
second operand is reached, an extended-output-
function (XOF) digest is stored at the first operand
location. The operation then proceeds until either the
end of the first-operand location is reached or a
CPU-determined number of bytes have been stored,
whichever occurs first.

The result is indicated in the condition code.

The R2 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister other than general register 0; otherwise, a spec-
ification exception is recognized.

The location of the leftmost byte of the second oper-
and is specified by the contents of the R2 general
register. The number of bytes in the second-operand
location is specified in general register R2 + 1.

As part of the operation, the address in general regis-
ter R2 is incremented by the number of bytes pro-
cessed from the second operand, and the length in
general register R2 + 1 is decremented by the same
number. The formation and updating of the address
and length is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general register R2 constitute the
address of the second operand, and the contents of
bit positions 0-39 are ignored; bits 40-63 of the
updated address replace the corresponding bits in
general register R2, carries out of bit position 40 of
the updated address are ignored, and the contents of
bit positions 32-39 of general register R2 are set to
zeros. In the 31-bit addressing mode, the contents of
bit positions 33-63 of general register R2 constitute
the address of the second operand, and the contents
of bit positions 0-32 are ignored; bits 33-63 of the
updated address replace the corresponding bits in
general register R2, carries out of bit position 33 of
the updated address are ignored, and the content of
bit position 32 of general register R2 is set to zero. In
the 64-bit addressing mode, the contents of bit posi-
tions 0-63 of general register R2 constitute the

address of the second operand; bits 0-63 of the
updated address replace the contents of general reg-
ister R2 and carries out of bit position 0 are ignored.

In both the 24-bit and the 31-bit addressing modes,
the contents of bit positions 32-63 of general register
R2 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the second operand;
and the updated value replaces the contents of bit
positions 32-63 of general register R2 + 1. In the
64-bit addressing mode, the contents of bit positions
0-63 of general register R2 + 1 form a 64-bit unsigned
binary integer which specifies the number of bytes in
the second operand; and the updated value replaces
the contents of general register R2 + 1.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R2 and
R2 + 1, always remain unchanged.

For the two KLMD-SHAKE functions, the following
applies:

• Bit 55 of general register 0 is the padding state
(PS). A value of zero indicates that padding of
the second operand has not yet been performed.
A value of one indicates that padding of the sec-
ond operand has been performed.

A specification exception is recognized, and the
operation is suppressed when the padding state
is one and the second-operand length in general
register R2 + 1 is nonzero at the beginning of the
instruction.

When the remaining second-operand length is
zero, the CPU inspects the padding state to
determine whether padding of the second oper-
and is to be performed. The padding state is set
to one by the CPU when padding of the second
operand has been performed.

• The R1 field designates an even-odd pair of gen-
eral registers and must designate an even-num-
bered register other than general register 0 and
other than general register R2; otherwise a speci-
fication exception is recognized.

• The location of the leftmost byte of the first oper-
and is specified by the contents of general regis-
ter R1. The number of bytes in the first-operand
location is specified in general register R1 + 1.

• As a part of the operation, the address in general
register R1 is incremented by the number of

7-202 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T bytes stored into the first operand, and the length
in general register R1 + 1 is decremented by the
same number. The formation and updating of the
address and length is dependent on the address-
ing mode.

• The addressing-mode characteristics for general
registers R1 and R1 + 1 are identical to those for
general registers R2 and R2 + 1, respectively, as
described above.

For functions other than the two KLMD-SHAKE func-
tions, bit 55 of general register 0 and the R1 field of
the instruction are ignored. In this case, a first oper-
and is not present, and general registers R1 and
R1 + 1 are not modified.

Figure 7-234 shows the contents of the general reg-
isters just described.

All Addressing Modes

GR0
/ /

P
S

0 FC

0 55 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R1 / First-Operand Address (SHAKE functions only)
0 40 63

R1 + 1 / First-Operand Length (SHAKE functions only)
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R1 / First-Operand Address (SHAKE functions only)
0 33 63

R1 + 1 / First-Operand Length (SHAKE functions only)
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

Figure 7-234. General Register Assignment for KLMD (Part 1 of 2)

General Instructions 7-203

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T

In the access-register mode, access registers 1 and
R2 specify the address spaces containing the param-
eter block and second operand, respectively. For the
KLMD-SHAKE functions, access register R1 speci-
fies the address space containing the first operand.

The result is obtained as if processing starts at the
left end of the second operand and proceeds to the
right, block by block. For all functions except the
KLMD-SHAKE functions, the operation is ended
when all source bytes in the second operand have
been processed (called normal completion), or when
a CPU-determined number of blocks that is less than
the length of the second operand have been pro-
cessed (called partial completion). The CPU-deter-
mined number of blocks depends on the model, and
may be a different number each time the instruction
is executed. The CPU-determined number of blocks
is usually nonzero. In certain unusual situations, this
number may be zero, and condition code 3 may be
set with no progress. However, the CPU protects
against endless reoccurrence of this no-progress
case.

When the chaining-value field overlaps any portion of
the first or second operand, the result in the chaining-
value field is unpredictable.

For the KLMD-SHA-1, KLMD-SHA-256, and KLMD-
SHA-512 functions, after all bytes in the second
operand as specified in general register R2 + 1 have
been processed, the padding operation is performed,
a final hashing operation is performed on the padded
block, and then normal completion occurs. For the
KLMD-SHA3 and KLMD-SHAKE functions, after all
full blocks of the second operand have been pro-
cessed, the padding operation is performed on either
the remaining partial block or on a null block, a final

hashing operation is performed on the padded block;
normal completion then occurs for the KLMD-SHA3
functions.

For the KLMD-SHAKE functions, when padding has
been performed, the padding state is set to one in
general register 0, and an extended-output-function
(XOF) message digest is stored into the first-operand
location. XOF message-digest generation is ended
when all of the first operand has been stored (called
normal completion) or when a CPU-determined num-
ber of blocks that is less than the length of the first
operand have been stored (called partial comple-
tion). The CPU-determined number of blocks
depends on the model, and may be a different num-
ber each time the instruction is executed. The CPU-
determined number of blocks is usually nonzero. In
certain unusual situations, this number may be zero,
and condition code 3 may be set with no progress.
However, the CPU protects against endless reoccur-
rence of this no-progress case.

When the operation ends due to normal completion,
condition code 0 is set, the second-operand address
in general register R2 is updated, and the second-
operand length in general register R2 + 1 is zero; for
the KLMD-SHAKE functions, the first-operand
address in general register R1 is updated, and the
first-operand length in general register R1 + 1 is zero.

When the operation ends due to partial completion,
condition code 3 is set. For all functions except the
KLMD-SHAKE functions, the resulting value in gen-
eral register R2 + 1 is nonzero. For the KLMD-
SHAKE functions, if the second operand has not
been completely processed, the resulting value in
general register R2 + 1 is nonzero, and if the first

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R1 First-Operand Address (SHAKE functions only)
0 63

R1 + 1 First-Operand Length (SHAKE functions only)
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-234. General Register Assignment for KLMD (Part 2 of 2)

7-204 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T operand has not been completely processed, the
resulting value in general register R1 is nonzero.

When the second-operand length is initially zero, the
second operand is not accessed, the second-oper-
and address and second-operand length in general
registers R2 and R2 + 1, respectively, are not
changed, and condition code 0 is set. Except for the
KLMD-SHAKE functions when the padding-state
(PS) control is one, the empty block padding opera-
tion is performed and the result is stored into the
parameter block.

For the KLMD-SHAKE functions, when the first-oper-
and length is initially zero, the first operand is not
accessed, and the first-operand address and first-
operand length in general registers R1 and R1 + 1,
respectively, are not changed. When the first-oper-
and length is initially zero and the PS control is one, it
is model dependent whether the parameter block is
updated.

A PER storage-alteration event is recognized, when
applicable, for the portion of the parameter block and
first-operand location that is stored. A PER zero-
address-detection event is recognized, when applica-
ble, for the first-operand location, for the second-
operand location and for the parameter block. When
PER events are detected for more than one location,
it is unpredictable which location is identified in the
PER access identification (PAID) and PER ASCE ID
(AI).

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block and
storage operands may be multiple-access refer-
ences, accesses to these storage locations are not
necessarily block-concurrent, and the sequence of
these accesses or references is undefined.

Access exceptions may be reported for a larger por-
tion of the first operand (when applicable) and sec-
ond operand than is processed in a single execution
of the instruction; however, access exceptions are
not recognized for locations beyond the length of the
first or second operand nor for locations more than
4K bytes beyond the current location being pro-
cessed.

Symbols Used in Function Descriptions

The subsequent description of COMPUTE LAST
MESSAGE DIGEST uses the same symbols as

those used in COMPUTE INTERMEDIATE MES-
SAGE DIGEST, plus the following additional symbols.
Further description of the secure hash algorithm may
be found in Reference [15.] on page xxx. Further
description of the SHA-3 and SHAKE hash algo-
rithms and the KECCAK family of sponge functions
may be found in Reference [21.] on page xxx.

KLMD-Query (KLMD Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

The parameter block used for the function has the fol-
lowing format:

Symbol Explanation for KLMD Function Figures
L Byte length of operand 2 in storage.
p <n> n padding bytes; leftmost byte is 80 hex; all

other bytes are 00 hex.
z <n> n padding bytes of zero.

mbl an 8-byte or 16-byte value specifying the bit
length of the total message.

q <64> a padding block, consisting of 56 bytes of
zero followed by an 8-byte mbl.

q <128> a padding block, consisting of 112 bytes of
zero followed by a 16-byte mbl.

sp<n> n padding bytes used by SHA-3 functions.
Bit positions 7, 6, and 5 of the leftmost byte
of the pad contain binary 0, 1, and 1,
respectively, and bit position 0 of the
rightmost byte of the pad contains a binary
one. All other bits are zeros. Padding for
SHA-3 functions is performed even if the
second-operand length is zero.

xp<n> n padding bytes used by SHAKE functions.
Bit positions 3 through 7 of the leftmost byte
of the pad all contain binary ones, and bit
position 0 of the rightmost pad byte
contains a binary one. All other bits are
zeros. Padding for SHAKE functions is
performed when the padding state (PS, bit
55 of general register 0) is zero and the
remaining second-operand length is less
than the data-block size.

0
Status Word

8
0 63

Figure 7-235. Parameter Block for KLMD-Query

General Instructions 7-205

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

TA 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the COMPUTE LAST
MESSAGE DIGEST instruction. When a bit is one,
the corresponding function is installed; otherwise, the
function is not installed.

Condition code 0 is set when execution of the KLMD-
Query function completes; condition code 3 is not
applicable to this function.

KLMD-SHA-1 (KLMD Function Code 1)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

The parameter block used for the function has the fol-
lowing format:

The message digest for the message (M) in operand
2 is generated using the SHA-1 algorithm with the
chaining value (called H fields) and message-bit-
length information in the parameter block.

If the length of the message in operand 2 is equal to
or greater than 64 bytes, an intermediate message
digest is generated for each 64-byte message block
using the SHA-1 block digest algorithm with the
20-byte chaining value in the parameter block, and
the generated intermediate message digest, also
called the output chaining value (OCV), is stored into
the chaining-value field of the parameter block. This
operation is shown in Figure 7-237 and repeats until
the remaining message is less than 64 bytes or until
a CPU-determined number of blocks have been
stored.

If the length of the message or the remaining mes-
sage is zero bytes, then the operation in Figure 7-238
is performed. If the length of the message or the
remaining message is between one byte and 55
bytes inclusive, then the operation in Figure 7-239 is

performed; if the length is between 56 bytes and 63
bytes inclusive, then the operation in Figure 7-240 is
performed. The message digest, also called the out-
put chaining value (OCV), is stored into the chaining-
value field of the parameter block.

0 H0

4 H1

8 H2

12 H3

16 H4

20
Message Bit Length (mbl)

24
0 31

Figure 7-236. Parameter Block for KLMD-SHA-1

Figure 7-237. KLMD-SHA-1 Full Block (L 64)

Figure 7-238. KLMD-SHA-1 Empty Block (L = 0)

Parameter
Block in
Storage

H0

M <64>

SHA-1
bda

OCV <20>

H1 H2 H3 H4

ICV <20>

OCV <20>

Op 2 in Storage

ICV
<20>

...

...

Parameter
Block in
Storage

H0

SHA-1
bda

OCV <20>

H1 H2 H3 H4

ICV <20>

ICV

OCV <20>

<20>

mbl

<64>

<8>

p <56>

7-206 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T KLMD-SHA-256 (KLMD Function Code 2)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

The parameter block used for the function has the fol-
lowing format:

The message digest for the message (M) in operand
2 is generated using the SHA-256 algorithm with the
chaining value (called H fields) and message-bit-
length information in the parameter block.

If the message in operand 2 is equal to or greater
than 64 bytes, an intermediate message digest is
generated for each 64-byte message block using the
SHA-256 block digest algorithm with the 32-byte
chaining value in the parameter block, and the gener-
ated intermediate message digest, also called the
output chaining value (OCV), is stored into the chain-
ing-value field of the parameter block. This operation
is shown in Figure 7-242 and repeats until the
remaining message is less than 64 bytes or until a
CPU-determined number of blocks have been stored.

If the length of the message or the remaining mes-
sage is zero bytes, then the operation in Figure 7-243
is performed. If the length of the message or the
remaining message is between one byte and 55
bytes inclusive, then the operation in Figure 7-244 is
performed; if the length is between 56 bytes and 63
bytes inclusive, then the operation in Figure 7-245 is
performed. The message digest, also called the out-

Figure 7-239. KLMD-SHA-1 Partial-Block Case 1 (1 L
55)

Figure 7-240. KLMD-SHA-1 Partial-Block Case 2 (56
L 63)

General Instructions 7-207

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

Tput chaining value (OCV), is stored into the chaining-
value field of the parameter block.

KLMD-SHA-512 (KLMD Function Code 3)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

Figure 7-242. KLMD-SHA-256 Full Block (L 64)

Figure 7-243. KLMD-SHA-256 Empty Block (L = 0)

Parameter
Block in
Storage

H0

M <64>

SHA-256
bda

OCV <32>

H1 H2 H3 H4

ICV <32>

OCV <32>

Op 2 in Storage

ICV
<32>

...

...

H5 H6 H7

Parameter
Block in
Storage

SHA-256
bda

OCV <32>

ICV <32>

ICV

OCV <32>

<32>

mbl

<64>

<8>

p <56>

H0 H1 H2 H3 H4 H5 H6 H7

Figure 7-244. KLMD-SHA-256 Partial-Block Case 1 (1 L
 55)

Figure 7-245. KLMD-SHA-256 Partial-Block Case 2 (56 L
 63)

Parameter
Block in
Storage

ICV <32>

OCV <32>

mblH0 H1 H2 H3 H4 H5 H6 H7

SHA-256
bda

OCV <32>

ICV
<32>

M <L>

Operand 2 in Storage

<64>

<8>

p <56-L>

Parameter
Block in
Storage

ICV <32>

OCV <32>

mblH0 H1 H2 H3 H4 H5 H6 H7

SHA-256
bda

ICV
<32>

M <L>

Operand 2 in Storage

<64>

p <64-L>

q <64>

<8>

z <56>

SHA-256
bda

OCV <32>

q <64>

<32>

7-208 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T The parameter block used for the function has the fol-
lowing format:

The message digest for the message (M) in operand
2 is generated using the SHA-512 algorithm with the
chaining value (called H fields) and message-bit-
length information in the parameter block.

If the message in operand 2 is equal to or greater
than 128 bytes, an intermediate message digest is
generated for each 128-byte message block using
the SHA-512 block digest algorithm with the 64-byte
chaining value in the parameter block, and the gener-
ated intermediate message digest, also called the
output chaining value (OCV), is stored into the chain-
ing-value field of the parameter block. This operation
is shown in Figure 7-247 and repeats until the
remaining message is less than 128 bytes or until a
CPU-determined number of blocks have been stored.

If the length of the message or the remaining mes-
sage is zero bytes, then the operation in Figure 7-248
is performed. If the length of the message or the
remaining message is between one byte and 111
bytes inclusive, then the operation in Figure 7-249 is
performed; if the length is between 112 bytes and
127 bytes inclusive, then the operation in
Figure 7-250 is performed. The message digest, also

called the output chaining value (OCV), is stored into
the chaining-value field of the parameter block.

0 H0

8 H1

16 H2

24 H3

32 H4

40 H5

48 H6

56 H7

64
Message Bit Length (mbl)

72
0 63

Figure 7-246. Parameter Block for KLMD-SHA-512
Figure 7-247. KLMD-SHA-512 Full Block (L 128)

Figure 7-248. KLMD-SHA-512 Empty Block (L = 0)

Parameter
Block in
Storage

H0

M <128>

SHA-512
bda

OCV <64>

H1 H2 H3 H4

ICV <64>

OCV <64>

Op 2 in Storage

ICV
<64>

...

...

H5 H6 H7

Parameter
Block in
Storage

SHA-512
bda

OCV <64>

ICV <64>

ICV

OCV <64>

<64>

mbl

<128>

<16>

p <112>

H0 H1 H2 H3 H4 H5 H6 H7

General Instructions 7-209

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

TKLMD-SHA3-224 (KLMD Function Code
32)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

When the length of the second operand in general
register R2 + 1 is greater than or equal to 144 bytes,
then the operation is identical to that described in the
section “KIMD-SHA3-224 (KIMD Function Code 32)”
on page 7-192. This operation proceeds until the
length of the second operand is less than 144 bytes,
at which point the operation continues as described
below.

Any remaining bytes of the second operand are pad-
ded on the right to form a 144-byte message block as
described for the symbol “sp<n>” on page 7-204.
Padding occurs even when there are no remaining
bytes in the second operand and does not alter the
contents of the second operand.

A 224-bit (28-byte) message digest is generated for
the padded message block using the KECCAK[c] algo-
rithm with the 200-byte initial chaining value in the
parameter block. The message digest is generated
regardless of whether the second-operand length is
zero. The entire 200-byte output of the KECCAK[c]
algorithm, also called the output chaining value
(OCV), is stored into the parameter block. The gener-
ated message digest is contained in bytes 0-27 of the
parameter block. See programming note 10 on
page 7-199 regarding the numbering of the bits in the
parameter block and second operand as compared
with the numbering of the bits in the state array.

Figure 7-249. KLMD-SHA-512 Partial-Block Case 1 (1 L
 111)

Figure 7-250. KLMD-SHA-512 Partial-Block Case 2 (112
L 127)

Parameter
Block in
Storage

ICV <64>

OCV <64>

mblH0 H1 H2 H3 H4 H5 H6 H7

SHA-512
bda

OCV <64>

ICV
<64>

M <L>

Operand 2 in Storage

<128>

<16>

p <112-L>

Parameter
Block in
Storage

ICV <64>

OCV <64>

mblH0 H1 H2 H3 H4 H5 H6 H7

SHA-512
bda

ICV
<64>

M <L>

Operand 2 in Storage

<128>

p <128-L>

q <128>

<16>

z <112>

SHA-512
bda

OCV <64>

q <128>

<64>

0

192

ICV

0 63

Figure 7-251. Parameter Block for KLMD-SHA3-224

7-210 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T The operation is shown in Figure 7-252.

KLMD-SHA3-256 (KLMD Function Code
33)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

When the length of the second operand in general
register R2 + 1 is greater than or equal to 136 bytes,
then the operation is identical to that described in the
section “KIMD-SHA3-256 (KIMD Function Code 33)”
on page 7-193. This operation proceeds until the
length of the second operand is less than 136 bytes,
at which point the operation continues as described
below.

Any remaining bytes of the second operand are pad-
ded on the right to form a 136-byte message block as
described for the symbol “sp<n>” on page 7-204.
Padding occurs even when there are no remaining
bytes in the second operand and does not alter the
contents of the second operand.

A 256-bit (32-byte) message digest is generated for
the padded message block using the KECCAK[c] algo-
rithm with the 200-byte initial chaining value in the
parameter block. The message digest is generated
regardless of whether the second-operand length is
zero. The entire 200-byte output of the KECCAK[c]
algorithm, also called the output chaining value
(OCV), is stored into the parameter block. The gener-
ated message digest is contained in bytes 0-31 of the
parameter block. See programming note 10 on page
page 7-199 regarding the numbering of the bits in the
parameter block and second operand as compared
with the numbering of the bits in the state array.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
L Length of the second operand (< 144 bytes)
M Message block (when L > 0)
OCV Output chaining value (in the parameter block); bytes 0-27

contain the 224-bit message digest
sp SHA-3 padding algorithm

Figure 7-252. KLMD-SHA3-224 Processing (L < 144)

KECCAK[c]

Parameter Block in Storage Operand 2 in Storage (if L > 0)

M
<L>

sp
<144–L>

<200>

Zeros
<56>

ICV
<200>

OCV
<200>

Parameter Block in Storage

The message
digest appears

in bytes 0-27
of the OCV.

M0
<L>

0

192

ICV

0 63

Figure 7-253. Parameter Block for KLMD-SHA3-256

General Instructions 7-211

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

TThe operation is shown in Figure 7-254.

KLMD-SHA3-384 (KLMD Function Code
34)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

When the length of the second operand in general
register R2 + 1 is greater than or equal to 104 bytes,
then the operation is identical to that described in the
section “KIMD-SHA3-384 (KIMD Function Code 34)”
on page 7-194. This operation proceeds until the
length of the second operand is less than 104 bytes,
at which point the operation continues as described
below.

Any remaining bytes of the second operand are pad-
ded on the right to form a 104-byte message block as
described for the symbol “sp<n>” on page 7-204.
Padding occurs even when there are no remaining
bytes in the second operand and does not alter the
contents of the second operand.

A 384-bit (48-byte) message digest is generated for
the padded message block using the KECCAK[c] algo-
rithm with the 200-byte initial chaining value in the
parameter block. The message digest is generated
regardless of whether the second-operand length is
zero. The entire 200-byte output of the KECCAK[c]
algorithm, also called the output chaining value
(OCV), is stored into the parameter block. The gener-
ated message digest is contained in bytes 0-47 of the
parameter block. See programming note 10 on
page 7-199 regarding the numbering of the bits in the
parameter block and second operand as compared
with the numbering of the bits in the state array.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
L Length of the second operand (< 136 bytes)
M Message block (when L > 0)
OCV Output chaining value (in the parameter block); bytes 0-31

contain the 256-bit message digest
sp SHA-3 padding algorithm

Figure 7-254. KLMD-SHA3-256 Processing (L < 136)

The message
digest appears

in bytes 0-31
of the OCV.

KECCAK[c]

Parameter Block in Storage Operand 2 in Storage (if L > 0)

M
<L>

sp
<136–L>

<200>

Zeros
<64>

ICV
<200>

OCV
<200>

Parameter Block in Storage

M0
<L>

0

192

ICV

0 63

Figure 7-255. Parameter Block for KLMD-SHA3-384

7-212 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T The operation is shown in Figure 7-256.

KLMD-SHA3-512 (KLMD Function Code
35)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

When the length of the second operand in general
register R2 + 1 is greater than or equal to 72 bytes,
then the operation is identical to that described in the
section “KIMD-SHA3-512 (KIMD Function Code 35)”
on page 7-195. This operation proceeds until the
length of the second operand is less than 72 bytes, at
which point the operation continues as described
below.

Any remaining bytes of the second operand are pad-
ded on the right to form a 72-byte message block as
described for the symbol “sp<n>” on page 7-204.
Padding occurs even when there are no remaining
bytes in the second operand and does not alter the
contents of the second operand.

A 512-bit (64-byte) message digest is generated for
the padded message block using the KECCAK[c] algo-
rithm with the 200-byte initial chaining value in the
parameter block. The message digest is generated
regardless of whether the second-operand length is
zero. The entire 200-byte output of the KECCAK[c]
algorithm, also called the output chaining value
(OCV), is stored into the parameter block. The gener-
ated message digest is contained in bytes 0-63 of the
parameter block. See programming note 10 on
page 7-199 regarding the numbering of the bits in the
parameter block and second operand as compared
with the numbering of the bits in the state array.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
L Length of the second operand (< 104 bytes)
M Message block (when L > 0)
OCV Output chaining value (in the parameter block); bytes 0-47

contain the 384-bit message digest
sp SHA-3 padding algorithm

Figure 7-256. KLMD-SHA3-384 Processing (L < 104)

KECCAK[c]

Parameter Block in Storage Operand 2 in Storage (if L > 0)

M
<L>

sp
<104–L>

<200>

Zeros
<96>

ICV
<200>

OCV
<200>

Parameter Block in Storage

The message
digest appears

in bytes 0-47
of the OCV.

M0
<L>

0

192

ICV

0 63

Figure 7-257. Parameter Block for KLMD-SHA3-512

General Instructions 7-213

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

TThe operation is shown in Figure 7-258.

KLMD-SHAKE-128 (KLMD Function Code
36)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

When the length of the second operand in general
register R2 + 1 is greater than or equal to 168 bytes,
the operation is identical to that described in the sec-
tion “KIMD-SHAKE-128 (KIMD Function Code 36)”
on page 7-196, except that when the remaining sec-
ond-operand length is zero, processing is as
described below.

When the padding state, bit 55 of general register 0
is zero (indicating that padding has not yet been per-
formed), the following occurs:

• Any remaining bytes of the second operand are
padded on the right to form a 168-byte message
block as described for the symbol “xp<n>” on
page 7-204. Padding occurs even when there
are no remaining bytes in the second operand
and does not alter the contents of the second
operand.

• The padding state is set to one, indicating that
padding has been performed.

• The second-operand address in general register
R2 is incremented by the number of message
bytes processed, and the second-operand length
in general register R2+1 is set to zero.

• The 168-byte padded message, is exclusive
ORed with the contents of the leftmost 168 bytes
of the state array (from the ICV in the parameter
block or from the OCV resulting from the previ-
ous block’s processing) to form an output chain-
ing value that is used in the extended-output-
function (XOF) processing. The rightmost 32
bytes of the state array are unchanged.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
L Length of the second operand (< 72 bytes)
M Message block (when L > 0)
OCV Output chaining value (in the parameter block); bytes 0-63

contain the 512-bit message digest
sp SHA-3 padding algorithm

Figure 7-258. KLMD-SHA3-512 Processing (L < 72)

0

192

ICV

0 63

Figure 7-259. Parameter Block for KLMD-SHAKE-128

The message
digest appears

in bytes 0-63
of the OCV.

KECCAK[c]

Parameter Block in Storage Operand 2 in Storage (if L > 0)

M
<L>

sp
<72–L>

<200>

Zeros
<128>

ICV
<200>

OCV
<200>

Parameter Block in Storage

M0
<L>

7-214 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T The padding operation is shown in Figure 7-260.

Depending on the number of second-operand blocks
processed when padding is completed, either (a) the
output chaining value is stored into the parameter
block, and the instruction completes by setting condi-
tion code 3 (partial completion), or (b) the operation
continues with extended-output-function (XOF) pro-
cessing, as described below.

When the padding state is one (indicating that pad-
ding has been performed for the message, either by
the current or a previous execution of the instruction),
extended-output-function (XOF) processing is per-
formed as follows.

1. If the first-operand length in general register
R1 + 1 is zero, then the output chaining value is
stored into the parameter block, and the instruc-
tion completes with condition code 0. If the first-
operand length is zero at the beginning of the
instruction, then it is model dependent whether
the ICV is fetched from the parameter block and
stored back unmodified as the OCV.

2. The KECCAK[c] function is invoked using the pre-
vious output-chaining value (OCV) as input, and
replacing the output-chaining value.

3. General register R1 contains the current address
of the first operand, and general register R1 + 1
contains the remaining length of the first oper-
and. The number of bytes to be stored, n, is
either the remaining first-operand length or 168,
whichever is smaller.

The first n bytes of the output-chaining value are
stored at the first-operand location. See pro-
gramming note 10 on page 7-199 regarding the
numbering of the bits in the first operand as com-
pared with the numbering of the bits in the state
array.

The first-operand address in general register R1

is incremented by n, and the first-operand length
general register R1 + 1 is decremented by n.

Steps 1-3 of this process are repeated until the first-
operand length becomes zero (in which case, the
instruction completes with condition code 0) or until a
CPU-determined number of bytes have been stored
(in which case, the instruction completes with condi-
tion code 3). The output-chaining value is stored into
bytes 0-199 of the parameter block regardless of
whether condition code 0 or 3 is set. Figure 7-261
illustrates the XOF processing described above.

Explanation:

The bit positions of each byte of the parameter block and
the message block(s) appear in storage in descending
order from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
L Length of the second operand (< 168 bytes)
M Message block (when L > 0)
OCV Output chaining value (used in XOF processing, below)
xp SHAKE padding algorithm

Figure 7-260. KLMD-SHAKE-128 Padding (L < 168)

Operand 2 in Storage

M
<L>

xp
<168–L>

M0
<L>

ICV
<200>

OCV
<200>

Parameter Block in Storage
(if L > 0)

<168>

<168>

Parameter Block in Storage

<32>

Figure 7-261. KLMD-SHAKE-128 Extended-Output-
Function (XOF) Processing

KECCAK[c]

Parameter Block in Storage

XOF1
<168>

<200>

OCV
<200>

KECCAK[c]

XOF2
<168>

XOF0
<168>

<200>

KECCAK[c]

XOFi
<n>

…

…

…

First Operand in Storage

KECCAK[c]

<200>

ICV
<200>

Parameter Block in Storage

General Instructions 7-215

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T

KLMD-SHAKE-256 (KLMD Function Code
37)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-234 on
page 7-202.

The parameter block used for the function has the fol-
lowing format:

The initial chaining value (ICV) represents the 1600-
bit state array used by the KECCAK[c] functions which
implement the SHA-3 algorithms described in Refer-
ence [21.] on page xxx.

When the length of the second operand in general
register R2 + 1 is greater than or equal to 136 bytes,
the operation is identical to that described in the sec-
tion “KIMD-SHAKE-256 (KIMD Function Code 37)”
on page 7-197, except that when the remaining sec-
ond-operand length is zero, processing is as
described below. This operation proceeds until the
length of the second operand is less than 136 bytes,
at which point the operation continues as described
below.

When the padding state, bit 55 of general register 0
is zero (indicating that padding has not yet been per-
formed), the following occurs:

• Any remaining bytes of the second operand are
padded on the right to form a 136-byte message
block as described for the symbol “xp<n>” on
page 7-204. Padding occurs even when there
are no remaining bytes in the second operand
and does not alter the contents of the second
operand.

• The padding state is set to one, indicating that
padding has been performed.

• The second-operand address in general register
R2 is incremented by the number of message
bytes processed, and the second-operand length
in general register R2+1 is set to zero.

• The 136-byte padded message, is exclusive
ORed with the contents of the leftmost 136 bytes
of the state array (from the ICV in the parameter
block or from the OCV resulting from the previ-
ous block’s processing) to form an output chain-
ing value that is used in the extended-output-
function (XOF) processing. The rightmost 64
bytes of the state array are unchanged.

The padding operationis shown in Figure 7-263.

Explanation:

The bit positions of each byte of the parameter block and
the XOF block(s) appear in storage in descending order
from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

<#> Size of an item in bytes
ICV Input chaining value (either from the parameter block or

from the output of the padding operation).
OCV Output chaining value; (the final OCV appears in the

parameter block)
n The residual length of the final block of the first operand

(less than or equal to 168 bytes)
XOFi<n> Block i of the extended-output-function results in the first

operand.

0

192

ICV

0 63

Figure 7-262. Parameter Block for KLMD-SHAKE-256

Figure 7-261. KLMD-SHAKE-128 Extended-Output-
Function (XOF) Processing (Continued)

Figure 7-263. KLMD-SHAKE-256 Padding (L < 136)

Operand 2 in Storage

M
<L>

xp
<136–L>

M0
<L>

ICV
<200>

OCV
<200>

Parameter Block in Storage
(if L > 0)

<136>

<136>

Parameter Block in Storage

<64>

7-216 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

T

Depending on the number of second-operand blocks
processed when padding is completed, either (a) the
output chaining value is stored into the parameter
block, and the instruction completes by setting condi-
tion code 3 (partial completion), or (b) the operation
continues with extended-output-function (XOF) pro-
cessing, as described below.

When the padding state is one (indicating that pad-
ding has been performed for the message, either by
the current or a previous execution of the instruction),
extended-output-function (XOF) processing is per-
formed as follows.

1. If the first-operand length in general register
R1 + 1 is zero, then the output chaining value is
stored into the parameter block, and the instruc-
tion completes with condition code 0. If the first-
operand length is zero at the beginning of the
instruction, then it is model dependent whether
the ICV is fetched from the parameter block and
stored back unmodified as the OCV.

2. The KECCAK[c] function is invoked using the pre-
vious output-chaining value (OCV) as input, and
replacing the output-chaining value.

3. General register R1 contains the current address
of the first operand, and general register R1 + 1
contains the remaining length of the first oper-
and. The number of bytes to be stored, n, is
either the remaining first-operand length or 136,
whichever is smaller.

The first n bytes of the output-chaining value are
stored at the first-operand location. See pro-
gramming note 10 on page 7-199 regarding the
numbering of the bits in the first operand as com-

pared with the numbering of the bits in the state
array.

The first-operand address in general register R1

is incremented by n, and the first-operand length
general register R1 + 1 is decremented by n.

Steps 1-3 of this process are repeated until the first-
operand length becomes zero (in which case, the
instruction completes with condition code 0) or until a
CPU-determined number of bytes have been stored
(in which case, the instruction completes with condi-
tion code 3). The output-chaining value is stored into
bytes 0-199 of the parameter block regardless of
whether condition code 0 or 3 is set. Figure 7-264
illustrates the XOF processing described above.

Explanation:

The bit positions of each byte of the parameter block and
the XOF block(s) appear in storage in descending order
from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

Bitwise exclusive-OR operation
<#> Size of an item in bytes
ICV Input chaining value (in the parameter block)
L Length of the second operand (< 136 bytes)
M Message block (when L > 0)
OCV Output chaining value (used in XOF processing, below)
xp SHAKE padding algorithm

Figure 7-263. KLMD-SHAKE-256 Padding (L < 136)

Explanation:

The bit positions of each byte of the parameter block and
the XOF block(s) appear in storage in descending order
from left to right, respective to their corresponding bit
positions in the bytes of the KECCAK[c] state array.

<#> Size of an item in bytes
ICV Input chaining value (either from the parameter block or

from the output of the padding operation).
OCV Output chaining value; (the final OCV appears in the

parameter block)
n The residual length of the final block of the first operand

(less than or equal to 136 bytes)
XOFi<n> Block i of the extended-output-function results in the first

operand.

Figure 7-264. KLMD-SHAKE-256 Extended-Output-
Function (XOF) Processing

KECCAK[c]

Parameter Block in Storage

XOF1
<136>

<200>

OCV
<200>

KECCAK[c]

XOF2
<136>

XOF0
<136>

<200>

KECCAK[c]

XOFi
<n>

…

…

…

First Operand in Storage

KECCAK[c]

<200>

ICV
<200>

Parameter Block in Storage

General Instructions 7-217

C
O

M
P

U
T

E
 L

A
S

T
 M

E
S

S
A

G
E

 D
IG

E
S

TSpecial Conditions

A specification exception is recognized and no other
action is taken if any of the following occurs:

• Bit 56 of general register 0 is not zero.

• Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

• The R2 field designates an odd-numbered regis-
ter or general register 0.

• For the KLMD-SHAKE functions, either of the fol-
lowing is true:

– The R1 field designates an odd-numbered
register, general register 0, or register R2.

– The second-operand length is nonzero, and
the padding state is one.

Resulting Condition Code:

0 Normal completion
1 --
2 --
3 Partial completion

Program Exceptions:

• Access (fetch, operand 2 and message bit
length; fetch and store, chaining value; store,
operand 1)

• Operation (if the message-security assist is not
installed)

• Specification
• Transaction constraint

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. Programming notes 2-10 for COMPUTE INTER-
MEDIATE MESSAGE DIGEST are also applica-
ble to COMPUTE LAST MESSAGE DIGEST.

3. For the KLMD-SHAKE functions, when condition
code 3 is set during the XOF processing, the first
operand address and length in general registers
R1 and R1 + 1, respectively, are updated such
that the program can simply branch back to the
instruction to continue the operation.

For unusual situations, the CPU protects against
endless reoccurrence for the no-progress case.
Thus, the program can safely branch back to the
instruction whenever condition code 3 is set with
no exposure to an endless loop.

4. For the KLMD-SHA-1, KLMD-SHA-256, and
KLMD-SHA-512 functions, if the length of the
second operand is nonzero initially and condition
code 0 is set, the registers are updated in the
same manner as for condition code 3; the chain-
ing value in this case is such that additional oper-

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint

8.a Specification exception due to invalid function
code, or invalid register number.

8.b Specification exception due to nonzero second-
operand length when the padding state is one
(SHAKE functions only).

Figure 7-265. Priority of Execution: KLMD

9. Condition code 0 due to second-operand length
originally zero.

10. Access exceptions for an access to the
parameter block or second operand.

11. Access exceptions for an access to the first
operand (SHAKE functions only).

12. Condition code 0 due to normal completion (for
functions other than SHAKE, second-operand
length originally nonzero, but stepped to zero; for
SHAKE functions, second-operand length zero
and first-operand length stepped to zero).

13. Condition code 3 due to partial completion (for
functions other than SHAKE, second-operand
length still nonzero; for SHAKE functions, either
first- or second-operand length still nonzero).

Figure 7-265. Priority of Execution: KLMD (Continued)

7-218 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
E ands can be processed as if they were part of the

same chain.

5. For the KLMD-SHA-1, KLMD-SHA-256, and
KLMD-SHA-512 functions, when processing the
last message part, the program must compute
the length of the original message in bits and
place this length value in the message-bit-length
field of the parameter block, and use the COM-
PUTE LAST MESSAGE DIGEST instruction.

6. The COMPUTE LAST MESSAGE DIGEST
instruction does not require the second operand
to be a multiple of the data block size. It first pro-
cesses complete blocks, and may set condition
code 3 before processing all blocks. After pro-
cessing all complete blocks, it then performs the
padding operation including the remaining por-
tion of the second operand. This may require one
or two iterations of the designated block digest
algorithm.

7. The COMPUTE LAST MESSAGE DIGEST
instruction provides the SHA padding for mes-
sages that are a multiple of eight bits in length. If
a SHA function is to be applied to a bit string
which is not a multiple of eight bits, the program
must perform the SHA padding and use the
COMPUTE INTERMEDIATE MESSAGE
DIGEST instruction.

8. The following applies to the message-bit length
(MBL) in the parameter block of KLMD-SHA-1,
KLMD-SHA-256, and KLMD-SHA-512.

a. The MBL is completely independent of the
second-operand length in general register
R2 + 1.

b. Regardless of whether the instruction ends
with condition code 0 or 3, the MBL is not
decremented by the number of bytes pro-
cessed.

c. In normal usage, the MBL is expected to be
eight times the total size of the message in
bytes. If the program supplies a MBL that is
not a multiple of eight, the results will be
algorithmically correct, but may not be
usable in any practical application.

d. The secure-hash algorithm described in Ref-
erence [21.] on page xxx allows for mes-
sage-bit length that are not multiples of eight.
COMPUTE LAST MESSGE DIGEST

requires the message-bit length to be a mul-
tiple of eight.

9. For the KLMD-SHAKE functions, the following
applies:

a. The padding-state, bit 55 of general register
0, should be set to zero prior to the first exe-
cution of KLMD for a message, and the pad-
ding state should not be altered by the
program for any subsequent executions of
KLMD for the same message until normal
completion occurs.

b. If padding of the final (short or null) block of
the second operand is performed when the
first-operand length is zero, then the padded
block is exclusive ORed with the contents of
the state array, the result is stored as the out-
put-chaining value in the parameter block,
and the instruction completes with condition
code 0. The KECCAK[c] function is not
invoked in this case.

10. The KLMD SHA-3 and SHAKE functions per-
form padding according to the adopted NIST
SHA-3 specification (see Reference [21.] on
page xxx). Earlier draft versions of the SHA-3
specification used different padding bit
sequences. Software that was designed accord-
ing to earlier draft SHA-3 specifications can still
benefit from the KIMD SHA-3 and SHAKE func-
tions if the software performs the padding of the
last message block.

COMPUTE MESSAGE
AUTHENTICATION CODE

KMAC R1,R2 [RRE]

A function specified by the function code in general
register 0 is performed.

Bits 16-23 of the instruction and the R1 field are
ignored.

Bit positions 57-63 of general register 0 contain the
function code. Figure 7-266 shows the assigned

'B91E' / / / / / / / / R1 R2

0 16 24 28 31

General Instructions 7-219

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
Efunction codes. All other function codes are unas-

signed. Bit 56 of general register 0 must be zero; oth-
erwise, a specification exception is recognized. All
other bits of general register 0 are ignored.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

The function codes for COMPUTE MESSAGE
AUTHENTICATION CODE are as follows.

All other function codes are unassigned.

The query function provides the means of indicating
the availability of the other functions. The contents of
general registers R2 and R2 + 1 are ignored.

For all other functions, the second operand is pro-
cessed as specified by the function code using an ini-
tial chaining value in the parameter block, and the
result replaces the initial chaining value. The opera-
tion also uses a cryptographic key in the parameter
block. The operation proceeds until the end of the
second-operand location is reached or a CPU-deter-
mined number of bytes have been processed, which-
ever occurs first. The result is indicated in the
condition code.

The R2 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister other than general register 0; otherwise, a spec-
ification exception is recognized.

The location of the leftmost byte of the second oper-
and is specified by the contents of the R2 general
register. The number of bytes in the second-operand
location is specified in general register R2 + 1.

As part of the operation, the address in general regis-
ter R2 is incremented by the number of bytes pro-
cessed from the second operand, and the length in
general register R2 + 1 is decremented by the same
number. The formation and updating of the address
and length is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general register R2 constitute the
address of the second operand, and the contents of
bit positions 0-39 are ignored; bits 40-63 of the
updated address replace the corresponding bits in
general register R2, carries out of bit position 40 of
the updated address are ignored and, the contents of
bit positions 32-39 of general register R2 are set to
zeros. In the 31-bit addressing mode, the contents of
bit positions 33-63 of general register R2 constitute
the address of the second operand, and the contents
of bit positions 0-32 are ignored; bits 33-63 of the
updated address replace the corresponding bits in
general register R2, carries out of bit position 33 of
the updated address are ignored, and the content of
bit position 32 of general register R2 is set to zero. In
the 64-bit addressing mode, the contents of bit posi-
tions 0-63 of general register R2 constitute the
address of the second operand; bits 0-63 of the
updated address replace the contents of general reg-
ister R2 and carries out of bit position 0 are ignored.

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 KMAC-Query * 16 —

1 KMAC-DEA * 16 8

2 KMAC-TDEA-128 * 24 8

3 KMAC-TDEA-192 * 32 8

9 KMAC-Encrypted-DEA 40 8

10 KMAC-Encrypted-TDEA-128 48 8

11 KMAC-Encrypted-TDEA-192 56 8

18 KMAC-AES-128 32 16

19 KMAC-AES-192 40 16

20 KMAC-AES-256 48 16

26 KMAC-Encrypted-AES-128 64 16

27 KMAC-Encrypted-AES-192 72 16

28 KMAC-Encrypted-AES-256 80 16

Explanation:

— Not applicable
* Function is also defined in the ESA/390

architectural mode and the ESA/390-
compatibility mode. It is unpredictable whether
other function codes are available in the
ESA/390-compatibility mode.

Figure 7-266. Function Codes for COMPUTE MESSAGE
AUTHENTICATION CODE

7-220 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
E In both the 24-bit and the 31-bit addressing modes,

the contents of bit positions 32-63 of general register
R2 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the second operand;
and the updated value replaces the contents of bit
positions 32-63 of general register R2 + 1. In the
64-bit addressing mode, the contents of bit positions
0-63 of general register R2 + 1 form a 64-bit unsigned
binary integer which specifies the number of bytes in

the second operand; and the updated value replaces
the contents of general register R2 + 1.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R2 and
R2 + 1, always remain unchanged.

Figure 7-267 shows the contents of the general reg-
isters just described.

In the access-register mode, access registers 1 and
R2 specify the address spaces containing the param-
eter block and second operand, respectively.

The result is obtained as if processing starts at the
left end of the second operand and proceeds to the
right, block by block. The operation is ended when all
source bytes in the second operand have been pro-
cessed (called normal completion), or when a CPU-
determined number of blocks that is less than the
length of the second operand have been processed
(called partial completion). The CPU-determined

number of blocks depends on the model, and may be
a different number each time the instruction is exe-
cuted. The CPU-determined number of blocks is usu-
ally nonzero. In certain unusual situations, this
number may be zero, and condition code 3 may be
set with no progress. However, the CPU protects
against endless reoccurrence of this no-progress
case.

When the initial-chaining-value field overlaps any
portion of the second operand, the result in the
chaining-value field is unpredictable.

All Addressing Modes

GR0 / 0 FC
0 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-267. General Register Assignment for KMAC

General Instructions 7-221

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
ENormal completion occurs when the number of bytes

in the second operand as specified in general regis-
ter R2 + 1 have been processed.

When the operation ends due to normal completion,
condition code 0 is set and the resulting value in
R2 + 1 is zero. When the operation ends due to par-
tial completion, condition code 3 is set and the result-
ing value in R2 + 1 is nonzero.

When the second-operand length is initially zero, the
second operand and the parameter block are not
accessed, general registers R2 and R2 + 1 are not
changed, and condition code 0 is set.

A PER storage-alteration event may be recognized
for the portion of the parameter block that is stored. A
PER zero-address-detection event may be recog-
nized for the second-operand location and for the
parameter block. When PER events are detected for
one or more locations, it is unpredictable which loca-
tion is identified in the PER access identification
(PAID) and PER ASCE ID (AI).

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block and
storage operand may be multiple-access references,
accesses to these storage locations are not neces-
sarily block-concurrent, and the sequence of these
accesses or references is undefined.

For functions that perform a comparison of the wrap-
ping-key verification pattern field in the parameter
block with the wrapping-key verification-pattern regis-
ter, it is unpredictable whether access exceptions
and PER zero-address-detection events are recog-
nized for the second operand when the comparison
results in a mismatch.

Access exceptions may be reported for a larger por-
tion of the second operand than is processed in a
single execution of the instruction; however, access
exceptions are not recognized for locations beyond
the length of the second operand nor for locations
more than 4K bytes beyond the current location
being processed.

Symbols Used in Function Descriptions

The following symbols are used in the subsequent
description of the COMPUTE MESSAGE AUTHEN-
TICATION CODE functions. For data-encryption-
algorithm (DEA) functions, the DEA-key-parity bit in
each byte of the DEA key is ignored, and the opera-

tion proceeds normally, regardless of the DEA-key
parity of the key. Further description of the data-
encryption algorithm may be found in Reference [13.]
on page xxx. Further description of the AES standard
may be found in Reference [14.] on page xxx.

Figure 7-268. Symbol For Bit-Wise Exclusive OR

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-269. Symbols for DEA Encryption and Decryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-270. Symbols for AES-128 Encryption

A

C

B

C = A B

DEA

P <8>

C <8>

Symbol for DEA

K <8>

Encryption

e
DEA

C <8>

P <8>

Symbol for DEA

K <8>

Decryption

d

AES

P <16>

C <16>

Symbol for AES-128

K <16>

Encryption

e

7-222 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
E

KMAC-Query (Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-267 on
page 7-220.

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the KMAC instruction.

When a bit is one, the corresponding function is
installed; otherwise, the function is not installed.

Condition code 0 is set when execution of the KMAC-
Query function completes; condition codes 1 and 3
are not applicable to this function.

KMAC-DEA (Function Code 1)

KMAC-Encrypted-DEA (Function Code 9)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-267 on
page 7-220.

The parameter block used for the KMAC-DEA func-
tion has the following format:

For the KMAC-DEA function, the initial chaining value
is in byte offsets 0-7 of the parameter block and the
cryptographic key is in byte offsets 8-15 of the
parameter block.

The parameter block used for the KMAC-Encrypted-
DEA function has the following format:

For the KMAC-Encrypted-DEA function, the contents
of byte offsets 16-39 of the parameter block are com-
pared with the contents of the DEA wrapping-key ver-
ification-pattern register. If they mismatch, the
parameter-block location remains unchanged, and
the operation is completed by setting condition code
1. If they match, byte offsets 0-7 of the parameter
block contain the initial chaining value, and the con-
tents of byte offsets 8-15 of the parameter block are
deciphered using the DEA wrapping key to obtain the
64-bit cryptographic key. (See the section, “Protec-
tion of Cryptographic Keys” on page 7-431, for
details.)

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-271. Symbols for AES-192 Encryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-272. Symbols for AES-256 Encryption

0
Status Word

8
0 63

Figure 7-273. Parameter Block for KMAC-Query

AES

P <16>

C <16>

Symbol for AES-192

K <24>

Encryption

e

AES

P <16>

C <16>

Symbol for AES-256

K <32>

Encryption

e

0 Chaining Value (CV)

8 Cryptographic Key (K)
0 63

Figure 7-274. Parameter Block for KMAC-DEA

0 Initial Chaining Value (ICV)

8 Encrypted Cryptographic Key (WKd(K))

16 DEA Wrapping-Key
Verification Pattern

(WKdVP)
24

32
0 63

Figure 7-275. Parameter Block for KMAC-Encrypted-DEA

General Instructions 7-223

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
EThe description in the following paragraph applies to

both functions.

The message authentication code for the 8-byte
message blocks (M1, M2, …, Mn) in operand 2 is
computed using the DEA algorithm with the 64-bit
cryptographic key and the 64-bit initial chaining
value.

The message authentication code, also called the
output chaining value (OCV), is stored in the initial-
chaining-value field of the parameter block. The oper-
ation is shown in Figure 7-276.

KMAC-TDEA-128 (Function Code 2)

KMAC-Encrypted-TDEA-128 (Function
Code 10)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-267 on
page 7-220.

The parameter block used for the KMAC-TDEA-128
function has the following format:

For the KMAC-TDEA-128 function, the initial chaining
value is in byte offsets 0-7 of the parameter block and
the cryptographic key is in byte offsets 8-23 of the
parameter block.

The parameter block used for the KMAC-Encrypted-
TDEA-128 function has the following format:

For the KMAC-Encrypted-TDEA-128 function, the
contents of byte offsets 24-47 of the parameter block
are compared with the contents of the DEA wrap-
ping-key verification-pattern register. If they mis-
match, the parameter-block location remains
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-7
of the parameter block contain the initial chaining
value, and the contents of byte offsets 8-23 of the
parameter block are deciphered using the DEA wrap-
ping key to obtain the 128-bit cryptographic key, K.
(See the section, “Protection of Cryptographic Keys”
on page 7-431, for details.)

The description in the following paragraph applies to
both functions.

The message authentication code for the 8-byte
message blocks (M1, M2, …, Mn) in operand 2 is
computed using the TDEA algorithm with the two
64-bit cryptographic keys and the 64-bit initial chain-
ing value.

The message authentication code, also called the
output chaining value (OCV), is stored in the initial-

Figure 7-276. MAC Computation Using 64-bit DEA Key

0 Initial Chaining Value (CV)

8 Cryptographic Key 1 (K1)

16 Cryptographic Key 2 (K2)
0 63

Figure 7-277. Parameter Block for KMAC-TDEA-128

ICV

Parameter
Block in
Storage

CV <8>

M1 <8> M2 <8> M3 <8> ... Mn <8>
...

Operand 2
in Storage

DEA
K e

DEA
K e

DEA
K e

DEA
K e

K

K <8>

OCV

OCV

ICV ...

0 Initial Chaining Value (ICV)

8 Encrypted Cryptographic Key
(WKd(K))16

24 DEA Wrapping-Key
Verification Pattern

(WKdVP)
32

40
0 63

Figure 7-278. Parameter Block for KMAC-Encrypted-
TDEA-128

7-224 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
E chaining-value field of the parameter block. The oper-

ation is shown in Figure 7-279.

KMAC-TDEA-192 (Function Code 3)

KMAC-Encrypted-TDEA-192 (Function
Code 11)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-267 on
page 7-220.

The parameter block used for the KMAC-TDEA-192
function has the following format:

For the KMAC-TDEA-192 function, the initial chaining
value is in byte offsets 0-7 of the parameter block and
the cryptographic key is in byte offsets 8-31 of the
parameter block.

The parameter block used for the KMAC-Encrypted-
TDEA-192 function has the following format:

For the KMAC-Encrypted-TDEA-192 function, the
contents of byte offsets 32-55 of the parameter block
are compared with the contents of the DEA wrap-
ping-key verification-pattern register. If they mis-
match, the parameter-block location remains
unchanged, and the operation is completed by set-
ting condition code 1. If they match, byte offsets 0-7
of the parameter block contain the initial chaining
value, and the contents of byte offsets 8-31 of the
parameter block are deciphered using the DEA wrap-
ping key to obtain the 192-bit cryptographic key, K.
(See the section, “Protection of Cryptographic Keys”
on page 7-431, for details.)

The description in the following paragraph applies to
both functions.

The message authentication code for the 8-byte
message blocks (M1, M2, …, Mn) in operand 2 is
computed using the TDEA algorithm with the three
64-bit cryptographic keys and the 64-bit chaining
value.

The message authentication code, also called the
output chaining value (OCV), is stored in the initial-

Figure 7-279. MAC Computation Using 128-bit TDEA Key

0 Initial Chaining Value (CV)

8 Cryptographic Key 1 (K1)

16 Cryptographic Key 2 (K2)

24 Cryptographic Key 3 (K3)
0 63

Figure 7-280. Parameter Block for KMAC-TDEA-192

ICV

Parameter
Block in
Storage

CV <8>

M1 <8> M2 <8> M3 <8> ... Mn <8>
...

Operand 2
in Storage

DEA
K1 e

DEA
K1 e

DEA
K1 e

DEA
e

K1

K1 <8>

OCV

OCV

ICV

K2

K2 <8>

DEA
K2 d

DEA
K2 d

DEA
K2 d

DEA
K1 e

DEA
K1 e

DEA
K1 e

...

DEA
d

DEA
e

K1

K2

K1

0 Initial Chaining Value (ICV)

8
Encrypted Cryptographic Key

(WKd(K))
16

24

32 DEA Wrapping-Key
Verification Pattern

(WKdVP)
40

48
0 63

Figure 7-281. Parameter Block for KMAC-Encrypted-
TDEA-192

General Instructions 7-225

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
Echaining-value field of the parameter block. The oper-

ation is shown in Figure 7-282.

KMAC-AES-128 (Function Code 18)

KMAC-Encrypted-AES-128 (Function
Code 26)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-267 on
page 7-220.

The parameter block used for the KMAC-AES-128
function has the following format:

For the KMAC-AES-128 function, the initial-chaining
value is in byte offsets 0-15 of the parameter block
and the cryptographic key is in byte offsets 16-31of
the parameter block.

The parameter block used for the KMAC-Encrypted-
AES-128 function has the following format:

For the KMAC-Encrypted-AES-128 function, the con-
tents of byte offsets 32-63 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
parameter-block location remains unchanged, and
the operation is completed by setting condition code
1. If they match, byte offsets 0-15 of the parameter
block contain the initial chaining value, and the con-
tents of byte offsets 16-31 of the parameter block are
deciphered using the AES wrapping key to obtain the
128-bit cryptographic key, K. (See the section “Pro-
tection of Cryptographic Keys” on page 7-431 for
details.)

The description in the following paragraph applies to
both functions.

The message authentication code for the 16-byte
message blocks (M1, M2, …, Mn) in operand 2 is
computed using the AES algorithm with the 128-bit
cryptographic key and the 128-bit chaining value.

The message authentication code, also called the
output chaining value (OCV), is stored in the initial-

Figure 7-282. MAC Computation Using 192-bit TDEA Key

0
Initial Chaining Value (ICV)

8

16
Cryptographic Key (K)

24
0 63

Figure 7-283. Parameter Block for KMAC-AES-128

ICV

Parameter
Block in
Storage

CV <8>

M1 <8> M2 <8> M3 <8> ... Mn <8>
...

Operand 2
in Storage

DEA
K1 e

DEA
K1 e

DEA
K1 e

DEA
e

K1

K1 <8>

OCV

OCV

ICV

K2

K2 <8>

DEA
K2 d

DEA
K2 d

DEA
K2 d

DEA
K3 e

DEA
K3 e

DEA
K3 e

...

DEA
d

DEA
e

K1

K2

K3

K3

K3 <8>

0
Initial Chaining Value (ICV)

8

16 Encrypted Cryptographic Key
(WKa(K))24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)

40

48

56
0 63

Figure 7-284. Parameter Block for KMAC-Encrypted-AES-
128

7-226 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
E chaining-value field of the parameter block. The oper-

ation is shown in Figure 7-285.

KMAC-AES-192 (Function Code 19)

KMAC-Encrypted-AES-192 (Function
Code 27)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-267 on
page 7-220.

The parameter block used for the KMAC-AES-192
function has the following format:

For the KMAC-AES-192 function, the initial-chaining
value is in byte offsets 0-15 of the parameter block
and the cryptographic key is in byte offsets 16-39 of
the parameter block.

The parameter block used for the KMAC-Encrypted-
AES-192 function has the following format:

For the KMAC-Encrypted-AES-192 function, the con-
tents of byte offsets 40-71 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
parameter-block location remains unchanged, and
the operation is completed by setting condition code
1. If they match, byte offsets 0-15 of the parameter
block contain the initial chaining value, and the con-
tents of byte offsets 16-39 of the parameter block are
deciphered using the AES wrapping key to obtain the
192-bit cryptographic key, K. (See the section “Pro-
tection of Cryptographic Keys” on page 7-431 for
details.)

The description in the following paragraph applies to
both functions.

The message authentication code for the 16-byte
message blocks (M1, M2, …, Mn) in operand 2 is
computed using the AES algorithm with the 192-bit
cryptographic key and the 128-bit chaining value.

The message authentication code, also called the
output chaining value (OCV), is stored in the initial-

Figure 7-285. KMAC-AES-128

0
Initial Chaining Value (ICV)

8

16

Cryptographic Key (K)24

32
0 63

Figure 7-286. Parameter Block for KMAC-AES-192

M1 <16> M2 <16> M3 <16> ... Mn <16>
...Operand 2

in
Storage

AES
e

AES
e

AES
e

AES
e

OCV

ICV ...
<16>

K
<16>

...

0
Initial Chaining Value (ICV)

8

16
Encrypted Cryptographic Key

(WKa(K))
24

32

40
AES Wrapping-Key
Verification Pattern

(WKaVP)

48

56

64
0 63

Figure 7-287. Parameter Block for KMAC-Encrypted-AES-
192

General Instructions 7-227

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
Echaining-value field of the parameter block. The oper-

ation is shown in Figure 7-288.

KMAC-AES-256 (Function Code 20)

KMAC-Encrypted-AES-256 (Function
Code 28)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-267 on
page 7-220.

The parameter block used for the KMAC-AES-256
function has the following format:

For the KMAC-AES-256 function, the initial-chaining
value is in byte offsets 0-15 of the parameter block
and the cryptographic key is in byte offsets 16-47 of
the parameter block.

The parameter block used for the KMAC-Encrypted-
AES-256 function has the following format:

For the KMAC-Encrypted-AES-256 function, the con-
tents of byte offsets 48-79 of the parameter block are
compared with the contents of the AES wrapping-key
verification-pattern register. If they mismatch, the
parameter-block location remains unchanged, and
the operation is completed by setting condition code
1. If they match, byte offsets 0-15 of the parameter
block contain the initial chaining value, and the con-
tents of byte offsets 16-47 of the parameter block are
deciphered using the AES wrapping key to obtain the
256-bit cryptographic key, K. (See the section “Pro-
tection of Cryptographic Keys” on page 7-431 for
details.)

The description in the following paragraph applies to
both functions.

The message authentication code for the 16-byte
message blocks (M1, M2, …, Mn) in operand 2 is
computed using the AES algorithm with the 256-bit
cryptographic key and the 128-bit chaining value.

The message authentication code, also called the
output chaining value (OCV), is stored in the initial-

Figure 7-288. KMAC-AES-192

0
Initial Chaining Value (ICV)

8

16

Cryptographic Key (K)
24

32

40
0 63

Figure 7-289. Parameter Block for KMAC-AES-256

M1 <16> M2 <16> M3 <16> ... Mn <16>
...Operand 2

in
Storage

AES
e

AES
e

AES
e

AES
e

OCV

ICV ...
<16>

K
<24>

...

0
Initial Chaining Value (ICV)

8

16

Encrypted Cryptographic Key
(WKa(K))

24

32

40

48
AES Wrapping-Key
Verification Pattern

(WKaVP)

56

64

72
0 63

Figure 7-290. Parameter Block for KMAC-Encrypted-AES-
256

7-228 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 M

E
S

S
A

G
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

 C
O

D
E chaining-value field of the parameter block. The oper-

ation is shown in Figure 7-291.

Special Conditions

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. Bit 56 of general register 0 is not zero.

2. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

3. The R2 field designates an odd-numbered regis-
ter or general register 0.

4. The second-operand length is not a multiple of
the data block size of the designated function
(see Figure 7-266 on page 7-219 to determine
the data block size for COMPUTE MESSAGE
AUTHENTICATION CODE functions).

Resulting Condition Code:

0 Normal completion
1 Verification-pattern mismatch
2 --
3 Partial completion

Program Exceptions:

• Access (fetch, operand 2, cryptographic key, and
wrapping-key verification pattern; fetch and
store, chaining value)

• Operation (if the message-security assist is not
installed)

• Specification

• Transaction constraint

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. When condition code 3 is set, the second oper-
and address and length in general registers R2

and R2 + 1, respectively, and the initial-chaining-
value in the parameter block are usually updated
such that the program can simply branch back to
the instruction to continue the operation. For
unusual situations, the CPU protects against
endless reoccurrence for the no-progress case.

Figure 7-291. KMAC-AES-256

M1 <16> M2 <16> M3 <16> ... Mn <16>
...Operand 2

in
Storage

AES
e

AES
e

AES
e

AES
e

OCV

ICV ...
<16>

K
<32>

...

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint

8. Specification exception due to invalid function
code or invalid register number.

9. Specification exception due to invalid operand
length.

10. Condition code 0 due to second-operand length
originally zero.

11.A.1 Access exceptions for an access to the
parameter block.

11.A.2. Condition code 1 due to verification-pattern
mismatch.

11.B Access exceptions for an access to the
parameter block or second operand.

12. Condition code 0 due to normal completion
(second-operand length originally nonzero, but
stepped to zero).

13. Condition code 3 due to partial completion
(second-operand length still nonzero).

Figure 7-292. Priority of Execution: KMAC

General Instructions 7-229

C
O

N
V

E
R

T
 T

O
 B

IN
A

R
YThus, the program can safely branch back to the

instruction whenever condition code 3 is set with
no exposure to an endless loop.

3. If the length of the second operand is nonzero
initially and condition code 0 is set, the registers
are updated in the same manner as for condition
code 3; the initial chaining value in this case is
such that additional operands can be processed
as if they were part of the same chain.

4. Before processing the first part of a message,
the program must set the initial values for the ini-
tial-chaining-value field. To comply with ANSI
X9.9, ANSI X9.19, or Reference [17.] on page
xxx, the initial chaining value shall be set to all
binary zeros.

CONVERT TO BINARY

CVB R1,D2(X2,B2) [RX-a]

CVBY R1,D2(X2,B2) [RXY-a]

CVBG R1,D2(X2,B2) [RXY-a]

The second operand is changed from decimal to
binary, and the result is placed at the first-operand
location.

For CONVERT TO BINARY (CVB, CVBY), the sec-
ond operand occupies eight bytes in storage, and, for
CONVERT TO BINARY (CVBG), the second oper-
and occupies sixteen bytes in storage. The second
operand has the format of signed-packed-decimal
data, as described in Chapter 8, “Decimal Instruc-
tions.” It is checked for valid sign and digit codes, and
a general-operand data exception is recognized
when an invalid code is detected.

For CONVERT TO BINARY (CVB, CVBY), the result
of the conversion is a 32-bit signed binary integer,
which is placed in bit positions 32-63 of general reg-
ister R1. Bits 0-31 of the register remain unchanged.

The maximum positive number that can be converted
and still be contained in 32 bit positions is
2,147,483,647; the maximum negative number (the
negative number with the greatest absolute value)
that can be converted is -2,147,483,648.

For any decimal number outside this range, the oper-
ation is completed by placing the 32 rightmost bits of
the binary result in the register, and a fixed-point-
divide exception is recognized.

For CONVERT TO BINARY (CVBG), the result of the
conversion is a 64-bit signed binary integer, which is
placed in bit positions 0-63 of general register R1.
The maximum positive number that can be converted
and still be contained in a 64-bit register is
9,223,372,036,854,775,807; the maximum negative
number (the negative number with the greatest abso-
lute value) that can be converted is
-9,223,372,036,854,775,808. For any decimal num-
ber outside this range, a fixed-point-divide exception
is recognized, and the operation is suppressed.

The displacement for CVB is treated as a 12-bit
unsigned binary integer. The displacement for CVBY
and CVBG is treated as a 20-bit signed binary inte-
ger.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC 0, general operand
• Fixed-point divide
• Operation (CVBY, if the long-displacement facility

is not installed)
• Transaction constraint

Programming Notes:

1. An example of the use of the CONVERT TO
BINARY instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. When the second operand is negative, the result
is in two’s-complement notation.

3. The storage-operand references for CONVERT
TO BINARY may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-125.)

'4F' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '06'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '0E'

0 8 12 16 20 32 40 47

7-230 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 T

O
 D

E
C

IM
A

L CONVERT TO DECIMAL

CVD R1,D2(X2,B2) [RX-a]

CVDY R1,D2(X2,B2) [RXY-a]

CVDG R1,D2(X2,B2) [RXY-a]

The first operand is changed from binary to decimal,
and the result is stored at the second-operand loca-
tion.

For CONVERT TO DECIMAL (CVD, CVDY), the first
operand is treated as a 32-bit signed binary integer,
and the result occupies eight bytes in storage. For
CONVERT TO DECIMAL (CVDG), the first operand
is treated as a 64-bit signed binary integer, and the
result occupies sixteen bytes in storage.

The result is in the format for signed-packed-decimal
data, as described in Chapter 8, “Decimal Instruc-
tions.” The rightmost four bits of the result represent
the sign. A positive sign is encoded as 1100; a nega-
tive sign is encoded as 1101.

The displacement for CVD is treated as a 12-bit
unsigned binary integer. The displacement for CVDY
and CVDG is treated as a 20-bit signed binary inte-
ger.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (CVDY, if the long-displacement facility

is not installed)
• Transaction constraint

Programming Notes:

1. An example of the use of the CONVERT TO
DECIMAL instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. For CVD and CVDY, the number to be converted
is a 32-bit signed binary integer obtained from a
general register. Since 15 decimal digits are
available for the result, and the decimal equiva-
lent of 31 bits requires at most 10 decimal digits,
an overflow cannot occur. Similarly, for CVDG, 31
decimal digits are available, the decimal equiva-
lent of 63 bits is at most 19 digits, and an over-
flow cannot occur.

3. The storage-operand references for CONVERT
TO DECIMAL may be multiple-access refer-
ences. (See “Storage-Operand Consistency” on
page 5-125.)

CONVERT UTF-16 TO UTF-32

CU24 R1,R2[,M3] [RRF-c]

The two-byte UTF-16 (Unicode) characters of the
second operand are converted to UTF-32 characters
and placed at the first-operand location. The UTF-32
characters are four bytes. The operation proceeds
until the end of the first or second operand is
reached, a CPU-determined number of characters
have been converted, or an invalid Unicode character
is encountered, whichever occurs first. The result is
indicated in the condition code.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and the second operand is designated by the con-
tents of general registers R1 and R2, respectively. In
the 24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and second-operand loca-
tions is specified by the contents of bit positions
32-63 of general registers R1 + 1 and R2 + 1, respec-
tively, and those contents are treated as 32-bit
unsigned binary integers. In the 64-bit addressing
mode, the number of bytes in the first-operand and
second-operand locations is specified by the entire
contents of general registers R1 + 1 and R2 + 1,
respectively, and those contents are treated as 64-bit
unsigned binary integers.

'4E' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '26'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '2E'

0 8 12 16 20 32 40 47

'B9B1' M3 / / / / R1 R2

0 16 20 24 28 31

General Instructions 7-231

C
O

N
V

E
R

T
 U

T
F

-1
6

T
O

 U
T

F
-3

2The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the

contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-293.

When the ETF3-enhancement facility is installed, the
M3 field has the following format:

The bits of the M3 field are defined as follows:

• Unassigned: Bits 0-2 are unassigned and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Enhanced Well-Formedness-Checking (W):
The W bit, bit 3 of the M3 field, controls whether
enhanced well-formedness checking of the Uni-
code characters is performed. When the W bit is
zero, enhanced checking is not performed. When
the W bit is one, enhanced checking is per-
formed, as described below.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-293. Register Contents for CONVERT UTF-16 TO UTF-32

/ / / W

0 3

7-232 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

T
F

-1
6

T
O

 U
T

F
-3

2 When the ETF3-enhancement facility is not installed,
the M3 field is ignored.

The characters of the second operand are selected
one by one for conversion, proceeding left to right.
The characters resulting from a conversion are
placed at the first-operand location, proceeding left to
right. The operation proceeds until the first-operand
or second-operand location is exhausted, a CPU-
determined number of second-operand characters
have been converted, or on some models when the
W bit of the M3 field is one, an invalid Unicode char-
acter is detected.

To show the method of converting a UTF-16 charac-
ter to a UTF-32 character, the bits of a Unicode char-
acter are identified by letters as follows:

In the case of a Unicode surrogate pair, which is a
character pair consisting of a character called a high
surrogate followed by a character called a low surro-
gate, the bits are identified by letters as follows:

A low surrogate (that is, a Unicode character in the
range of DC00 to DFFF hex) that is not immediately
preceded by a high surrogate (that is, a Unicode
character in the range of D800 to DBFF hex) is called
an isolated low surrogate.

Any Unicode character in the range 0000 to D7FF or
E000 to FFFF hex is converted to a four-byte UTF-32
character as follows:

On some models, an isolated low surrogate (that is, a
Unicode character in the range of DC00 to DFFF
hex) is also converted to a four-byte UTF-32 charac-

ter as shown above, regardless of whether the ETF3-
enhancement facility is installed and regardless of
the W bit of the M3 field. On other models, when the
ETF3-enhancement facility is installed, the W bit of
the M3 field is one, and the next Unicode character is
an isolated low surrogate, condition code 2 is set.

Any Unicode surrogate pair starting with a high sur-
rogate in the range D800 to DBFF hex is converted to
a four-byte UTF-32 character as follows:

When the ETF3-enhancement facility is not installed,
or when the W bit of the M3 field is zero, the first six
bits of an expected Unicode low surrogate are
ignored. When the ETF3-enhancement facility is
installed, and the W bit is one, the first six bits of the
Unicode low surrogate must contain 110111 binary;
otherwise, the Unicode low surrogate is invalid, and
condition code 2 is set.

The second-operand location is considered
exhausted when it does not contain at least two
remaining bytes or at least four remaining bytes
when the first two bytes are a Unicode high surro-
gate. The first-operand location is considered
exhausted when it does not contain at least four
remaining bytes.

When the second-operand location is exhausted,
condition code 0 is set. When the first-operand loca-
tion is exhausted, condition code 1 is set, except that
condition code 0 is set if the second-operand location
also is exhausted. When a CPU-determined number
of characters have been converted, condition code 3
is set.

When the conditions for setting condition codes 1
and 2 are both met, condition code 2 is set.

When the operation is completed, the contents of
general register R2 + 1 are decremented by the num-
ber of bytes converted, and the contents of general
register R2 are incremented by the same number.
Also, the contents of general register R1 + 1 are dec-
remented by the number of bytes placed at the first-
operand location, and the contents of general regis-
ter R1 are incremented by the same number. When
general registers R1 and R2 are updated in the 24-bit

Unicode Character Bit
Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters a b c d e f g h i j k l m n o p

Unicode High Surrogate
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 1 1 0 1 1 0 a b c d e f g h i j

Unicode Low Surrogate Bit
Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters 1 1 0 1 1 1 k l m n o p q r s t

Unicode
Character a b c d e f g h i j k l m n o p

UTF-32
Character

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a b c d e f g h i j k l m n o p

Unicode
Characters 1 1 0 1 1 0 a b c d e f g h i j 1 1 0 1 1 1 k l m n o p q r s t

UTF-32
Character

0 0 0 0 0 0 0 0 0 0 0 u v w x y e f g h i j k l m n o p q r s t

where uvwxy = abcd + 1

General Instructions 7-233

C
O

N
V

E
R

T
 U

N
IC

O
D

E
 T

O
 U

T
F

-8or 31-bit addressing mode, bits 32-39 of them, in the
24-bit mode, or bit 32, in the 31-bit mode, may be set
to zeros or may remain unchanged.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R2, and R2 + 1, always remain unchanged.

When condition code 2 is set, the following applies:

• When a Unicode high surrogate immediately pre-
cedes an invalid low surrogate, general register
R2 contains the address of the Unicode high sur-
rogate.

• When an isolated Unicode low surrogate is
detected, general register R2 contains the
address of the isolated low surrogate.

When condition code 3 is set, the registers have
been updated so that the instruction, when reexe-
cuted, resumes at the next byte locations to be pro-
cessed.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

When the R1 register is the same register as the R2

register, the results are unpredictable.

When the second operand overlaps the first operand,
the results are unpredictable.

Access exceptions for the portions of the operands to
the right of the last byte processed may or may not
be recognized. For an operand longer than 4K bytes,
access exceptions are not recognized for locations
more than 4K bytes beyond the last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd.

Resulting Condition Code:

0 Entire second operand processed
1 End of first operand reached
2 Invalid Unicode low surrogate
3 CPU-determined number of characters con-

verted

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the extended-translation facility 3 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the conversion. The program need not determine
the number of first-operand or second-operand
bytes that were processed.

2. The storage-operand references of CONVERT
UTF-16 TO UTF-32 may be multiple-access ref-
erences. (See “Storage-Operand Consistency”
on page 5-125.)

3. The CONVERT UTF-16 TO UTF-32 instruction
supports UTF-16 and UTF-32 characters only in
the big-endian encoding.

4. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

5. Determining that isolated Unicode low surro-
gates are invalid is a model-dependent behavior
that is not available on the IBM z13 and earlier
models.

CONVERT UTF-16 TO UTF-8
CONVERT UNICODE TO UTF-8

CU21 R1,R2[,M3] [RRF-c]
CUUTF R1,R2[,M3] [RRF-c]

The two-byte Unicode characters of the second oper-
and are converted to UTF-8 characters and placed at
the first-operand location. The UTF-8 characters are
one, two, three, or four bytes, depending on the Uni-
code characters that are converted. The operation
proceeds until the end of the first or second operand
is reached, a CPU-determined number of characters
have been converted, or an invalid Unicode character
is encountered in the second operand, whichever

'B2A6' M3 / / / / R1 R2

0 16 20 24 28 31

7-234 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

N
IC

O
D

E
 T

O
 U

T
F

-8 occurs first. The result is indicated in the condition
code.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and the second operand is designated by the con-
tents of general registers R1 and R2, respectively. In
the 24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and second-operand loca-
tions is specified by the contents of bit positions
32-63 of general registers R1 + 1 and R2 + 1, respec-
tively, and those contents are treated as 32-bit
unsigned binary integers. In the 64-bit addressing
mode, the number of bytes in the first-operand and
second-operand locations is specified by the entire

contents of general registers R1 + 1 and R2 + 1,
respectively, and those contents are treated as 64-bit
unsigned binary integers.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-294.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-294. Register Contents for CONVERT UTF-16 TO UTF-8

General Instructions 7-235

C
O

N
V

E
R

T
 U

N
IC

O
D

E
 T

O
 U

T
F

-8When the ETF3-enhancement facility is installed, the
M3 field has the following format:

The bits of the M3 field are defined as follows:

• Unassigned: Bits 0-2 are unassigned and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Enhanced Well-Formedness-Checking (W):
The W bit, bit 3 of the M3 field, controls whether
enhanced well-formedness checking of the Uni-
code characters is performed. When the W bit is
zero, enhanced checking is not performed. When
the W bit is one, enhanced checking is per-
formed, as described below.

When the ETF3-enhancement facility is not installed,
the M3 field is ignored. When the ETF3-enhancement
facility is installed in the z/Architecture architectural
mode, it is unpredictable whether the M3 field is
ignored in the ESA/390-compatibility mode.

The characters of the second operand are selected
one by one for conversion, proceeding left to right.
The bytes resulting from a conversion are placed at
the first-operand location, proceeding left to right.
The operation proceeds until the first-operand or sec-
ond-operand location is exhausted, a CPU-deter-
mined number of second-operand characters have
been converted, or an invalid Unicode character is
encountered in the second operand.

To show the method of converting a Unicode charac-
ter to a UTF-8 character, the bits of a Unicode char-
acter are identified by letters as follows:

In the case of a Unicode surrogate pair, which is a
character pair consisting of a character called a high

surrogate followed by a character called a low surro-
gate, the bits are identified by letters as follows:

A low surrogate (that is, a Unicode character in the
range of DC00 to DFFF hex) that is not immediately
preceded by a high surrogate (that is, a Unicode
character in the range of D800 to DBFF hex) is called
an isolated low surrogate.

Any Unicode character in the range 0000 to 007F
hex is converted to a one-byte UTF-8 character as
follows:

Any Unicode character in the range 0080 to 07FF
hex is converted to a two-byte UTF-8 character as
follows:

Any Unicode character in the range 0800 to D7FF or
E000 to FFFF hex is converted to a three-byte UTF-8
character as follows:

On some models, an isolated low surrogate (that is, a
Unicode character in the range of DC00 to DFFF
hex) is also converted to a three-byte UTF-8 charac-
ter as shown above, regardless of whether the ETF3-
enhancement facility is installed and regardless of
the W bit of the M3 field. On other models, when the
ETF3-enhancement facility is installed, the W bit of
the M3 field is one, and the next Unicode character is
an isolated low surrogate, condition code 2 is set.

/ / / W

0 3

Unicode Character Bit
Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters a b c d e f g h i j k l m n o p

Unicode High Surrogate
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 1 1 0 1 1 0 a b c d e f g h i j

Unicode Low Surrogate Bit
Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters 1 1 0 1 1 1 k l m n o p q r s t

Unicode
Character 0 0 0 0 0 0 0 0 0 j k l m n o p

UTF-8
Character

0 j k l m n o p

Unicode
Character 0 0 0 0 0 f g h i j k l m n o p

UTF-8
Character

1 1 0 f g h i j 1 0 k l m n o p

Unicode
Character a b c d e f g h i j k l m n o p

UTF-8
Character

1 1 1 0 a b c d 1 0 e f g h i j 1 0 k l m n o p

7-236 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

N
IC

O
D

E
 T

O
 U

T
F

-8 Any Unicode surrogate pair starting with a high sur-
rogate in the range D800 to DBFF hex is converted to
a four-byte UTF-8 character as follows:

When the ETF3-enhancement facility is not installed,
or when the W bit of the M3 field is zero, the first six
bits of an expected Unicode low surrogate are
ignored. When the ETF3-enhancement facility is
installed, and the W bit is one, the first six bits of the
Unicode low surrogate must contain 110111 binary;
otherwise, the Unicode low surrogate is invalid, and
condition code 2 is set.

The second-operand location is considered
exhausted when it does not contain at least two
remaining bytes or at least four remaining bytes
when the first two bytes are a Unicode high surro-
gate. The first-operand location is considered
exhausted when it does not contain at least the one,
two, three, or four remaining bytes required to contain
the UTF-8 character resulting from the conversion of
the next second-operand character or surrogate pair.

When the second-operand location is exhausted,
condition code 0 is set. When the first-operand loca-
tion is exhausted, condition code 1 is set, except that
condition code 0 is set if the second-operand location
also is exhausted. When a CPU-determined number
of characters have been converted, condition code 3
is set.

When the conditions for setting condition codes 1
and 2 are both met, condition code 2 is set.

When the operation is completed, the contents of
general register R2 + 1 are decremented by the num-
ber of bytes converted, and the contents of general
register R2 are incremented by the same number.
Also, the contents of general register R1 + 1 are dec-
remented by the number of bytes placed at the first-
operand location, and the contents of general regis-
ter R1 are incremented by the same number. When
general registers R1 and R2 are updated in the 24-bit
or 31-bit addressing mode, bits 32-39 of them, in the
24-bit mode, or bit 32, in the 31-bit mode, may be set
to zeros or may remain unchanged.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R2, and R2 + 1, always remain unchanged.

When condition code 2 is set, the following applies:

• When a Unicode high surrogate immediately pre-
cedes an invalid low surrogate, general register
R2 contains the address of the Unicode high sur-
rogate.

• When an isolated Unicode low surrogate is
detected, general register R2 contains the
address of the isolated low surrogate.

When condition code 3 is set, the registers have
been updated so that the instruction, when reexe-
cuted, resumes at the next byte locations to be pro-
cessed.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

When the R1 register is the same register as the R2

register, the results are unpredictable.

When the second operand overlaps the first operand,
the results are unpredictable.

Access exceptions for the portions of the operands to
the right of the last byte processed may or may not
be recognized. For an operand longer than 4K bytes,
access exceptions are not recognized for locations
more than 4K bytes beyond the last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd.

Resulting Condition Code:

0 Entire second operand processed
1 End of first operand reached
2 Invalid Unicode low surrogate
3 CPU-determined number of characters con-

verted

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)

Unicode
Characters 1 1 0 1 1 0 a b c d e f g h i j 1 1 0 1 1 1 k l m n o p q r s t

UTF-8
Character

1 1 1 1 0 u v w 1 0 x y e f g h 1 0 i j k l m n 1 0 o p q r s t

where uvwxy = abcd + 1

General Instructions 7-237

C
O

N
V

E
R

T
 U

T
F

-3
2

T
O

 U
T

F
-1

6• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the conversion. The program need not determine
the number of first-operand or second-operand
bytes that were processed.

2. The storage-operand references of CONVERT
UNICODE TO UTF-8 may be multiple-access
references. (See “Storage-Operand Consis-
tency” on page 5-125.)

3. The CONVERT UTF-16 TO UTF-8 (CONVERT
UNICODE TO UTF-8) instruction supports UTF-
16 characters only in the big-endian encoding.

4. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

5. Determining that isolated Unicode low surro-
gates are invalid is a model-dependent behavior
that is not available on the IBM z13 and earlier
models.

CONVERT UTF-32 TO UTF-16

CU42 R1,R2 [RRE]

The four-byte UTF-32 characters of the second oper-
and are converted to two-byte UTF-16 characters
and placed at the first-operand location. The opera-

tion proceeds until the end of the first or second oper-
and is reached, a CPU-determined number of
characters have been converted, or an invalid
UTF-32 character is encountered, whichever occurs
first. The result is indicated in the condition code.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and the second operand is designated by the con-
tents of general registers R1 and R2, respectively. In
the 24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and second-operand loca-
tions is specified by the contents of bit positions
32-63 of general registers R1 + 1 and R2 + 1, respec-
tively, and those contents are treated as 32-bit
unsigned binary integers. In the 64-bit addressing
mode, the number of bytes in the first-operand and
second-operand locations is specified by the entire
contents of general registers R1 + 1 and R2 + 1,
respectively, and those contents are treated as 64-bit
unsigned binary integers.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-295.

'B9B3' / / / / / / / / R1 R2

0 16 24 28 31

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

Figure 7-295. Register Contents for CONVERT UTF-32 TO UTF-16 (Part 1 of 2)

7-238 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

T
F

-3
2

T
O

 U
T

F
-1

6

The characters of the second operand are selected
one by one for conversion, proceeding left to right.
The bytes resulting from a conversion are placed at
the first-operand location, proceeding left to right.
The operation proceeds until the first-operand or sec-
ond-operand location is exhausted, a CPU-deter-
mined number of second-operand characters have
been converted, or an invalid UTF-32 character is
encountered in the second operand.

To show the method of converting a UTF-32 charac-
ter to a UTF-16 character, the bits of a UTF-32 char-
acter in the range 00000000 to 0000D7FF or
0000DC00 to 0000FFFF hex are identified by letters
as follows:

The bits of a UTF-32 character in the range
00010000 to 0010FFFF hex are identified by letters
as follows:

The bits of a UTF-16 character in the range 0000 to
D7FF or DC00 to FFFF hex are identified by letters
as follows:

In the case of a UTF-16 surrogate pair, which is a
character pair consisting of a character called a high

surrogate followed by a character called a low surro-

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-295. Register Contents for CONVERT UTF-32 TO UTF-16 (Part 2 of 2)

UTF-32
Character
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UTF-32
Character
Bit Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters a b c d e f g h i j k l m n o p

UTF-32
Character
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 0 0 0 0 0 0 0 0 0 0 0 u v w x y

UTF-32
Character
Bit Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters e f g h i j k l m n o p q r s t

UTF-16 Character
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters a b c d e f g h i j k l m n o p

General Instructions 7-239

C
O

N
V

E
R

T
 U

T
F

-3
2

T
O

 U
T

F
-1

6gate, the bits are identified by letters as follows:

When the contents of the UTF-32 characters are in
the range 00000000 to 0000D7FF or 0000E000 to
0000FFFF hex, the character is converted to a two-
byte UTF-16 character as follows:

On some models, when the contents of the UTF-32
character are in the range of 0000DC00 to
0000DFFF hex, the character is also converted to a
two-byte UTF-16 character as described above.

When the contents of a UTF-32 character are in the
range 00010000 to 0010FFFF hex, the character is
converted to two two-byte UTF-16 characters (a sur-
rogate pair) as follows:

The high order bit (z) produced by the subtract oper-
ation is necessarily zero and is ignored.

The second-operand location is considered
exhausted when it does not contain at least four
remaining bytes. The first-operand location is consid-
ered exhausted when it does not contain at least two
remaining bytes or at least four remaining bytes in
the case when a UTF-32 character in the range
00010000 to 0010FFFF hex is converted.

When the second-operand location is exhausted,
condition code 0 is set. When the first-operand loca-
tion is exhausted, condition code 1 is set, except that
condition code 0 is set if the second-operand location
also is exhausted. When a CPU-determined number

of characters have been processed, condition code 3
is set.

When the contents of the next UTF-32 character are
in the range 0000D800 to 0000DBFF or 00110000 to
FFFFFFFF hex, the character is invalid, and condi-
tion code 2 is set. On some models, when the con-
tents of the next UTF-32 character are in the range of
0000DC00 to 0000DFFF hex, the character is invalid,
and condition code 2 is set.

When the conditions for setting condition codes 1
and 2 are both met, condition code 2 is set.

When the operation is completed, the contents of
general register R2 + 1 are decremented by the num-
ber of bytes converted, and the contents of general
register R2 are incremented by the same number.
Also, the contents of general register R1 + 1 are dec-
remented by the number of bytes placed at the first-
operand location, and the contents of general regis-
ter R1 are incremented by the same number. When
general registers R1 and R2 are updated in the 24-bit
or 31-bit addressing mode, bits 32-39 of them, in the
24-bit mode, or bit 32, in the 31-bit mode, may be set
to zeros or may remain unchanged.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R2, and R2 + 1, always remain unchanged.

When condition code 2 is set, general register R2

contains the address of the invalid UTF-32 character.

When condition code 3 is set, the registers have
been updated so that the instruction, when reexe-
cuted, resumes at the next byte locations to be pro-
cessed.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

When the R1 register is the same register as the R2

register, the results are unpredictable.

When the second operand overlaps the first operand,
the results are unpredictable.

Access exceptions for the portions of the operands to
the right of the last byte processed may or may not
be recognized. For an operand longer than 4K bytes,

UTF-16 High Surrogate Bit
Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 1 1 0 1 1 0 a b c d e f g h i j

UTF-16 Low Surrogate Bit
Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters 1 1 0 1 1 1 k l m n o p q r s t

UTF-32
Character 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a b c d e f g h i j k l m n o p

UTF-16
Character

a b c d e f g h i j k l m n o p

UTF-32
Character 0 0 0 0 0 0 0 0 0 0 0 u v w x y e f g h i j k l m n o p q r s t

UTF-16
Characters

1 1 0 1 1 0 a b c d e f g h i j 1 1 0 1 1 1 k l m n o p q r s t

where zabcd = uvwxy - 1

7-240 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

T
F

-3
2

T
O

 U
T

F
-8 access exceptions are not recognized for locations

more than 4K bytes beyond the last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd.

Resulting Condition Code:

0 Entire second operand processed
1 End of first operand reached
2 Invalid UTF-32 character
3 CPU-determined number of characters pro-

cessed

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the extended-translation facility 3 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the conversion. The program need not determine
the number of first-operand or second-operand
bytes that were processed.

2. The storage-operand references of CONVERT
UTF-32 TO UTF-16 may be multiple-access ref-
erences. (See “Storage-Operand Consistency”
on page 5-125.)

3. The CONVERT UTF-32 TO UTF-16 instruction
supports UTF-16 and UTF-32 characters only in
the big-endian encoding.

4. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

5. Determining that UTF-32 characters in the range
of 0000DC00 to 0000DFFF are invalid is a
model-dependent behavior that is not available
on the IBM z13 and earlier models.

CONVERT UTF-32 TO UTF-8

CU41 R1,R2 [RRE]

The four-byte UTF-32 characters of the second oper-
and are converted to UTF-8 characters and placed at
the first-operand location. The UTF-8 characters are
one, two, three, or four bytes, depending on the Uni-
code characters that are converted. The operation
proceeds until the end of the first or second operand
is reached or a CPU-determined number of charac-
ters have been converted, whichever occurs first.
The result is indicated in the condition code.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and the second operand is designated by the con-
tents of general registers R1 and R2, respectively. In
the 24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and second-operand loca-
tions is specified by the contents of bit positions
32-63 of general registers R1 + 1 and R2 + 1, respec-
tively, and those contents are treated as 32-bit
unsigned binary integers. In the 64-bit addressing
mode, the number of bytes in the first-operand and
second-operand locations is specified by the entire
contents of general registers R1 + 1 and R2 + 1,
respectively, and those contents are treated as 64-bit
unsigned binary integers.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

'B9B2' / / / / / / / / R1 R2

0 16 24 28 31

General Instructions 7-241

C
O

N
V

E
R

T
 U

T
F

-3
2

T
O

 U
T

F
-8The contents of the registers just described are

shown in Figure 7-296.

The characters of the second operand are selected
one by one for conversion, proceeding left to right.
The bytes resulting from a conversion are placed at
the first-operand location, proceeding left to right.
The operation proceeds until the first-operand or sec-
ond-operand location is exhausted, a CPU-deter-
mined number of second-operand characters have
been converted, or on some models, until an invalid
Unicode character is detected.

To show the method of converting a UTF-32 charac-
ter to a UTF-8 character, the bits of a UTF-32 charac-
ter in the range 00000000 to 0000D7FF or

0000DC00 to 0000FFFF hex are identified by letters
as follows:

The bits of a UTF-32 character in the range
00010000 to 0010FFFF hex (UTF-16 surrogate pair)

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-296. Register Contents for CONVERT UTF-32 TO UTF-8

UTF-32
Character
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UTF-32
Character
Bit Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters a b c d e f g h i j k l m n o p

7-242 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

T
F

-3
2

T
O

 U
T

F
-8 are identified by letters as follows:

Any UTF-32 character in the range 00000000 to
0000007F hex is converted to a one-byte UTF-8
character as follows:

Any UTF-32 character in the range 00000080 to
000007FF hex is converted to a two-byte UTF-8
character as follows:

Any UTF-32 character in the range 00000800 to
0000D7FF or 0000E000 to 0000FFFF hex is con-
verted to a three-byte UTF-8 character as follows:

On some models, any UTF-32 character the range of
0000DC00 to 0000DFFF hex is converted to a three-
byte UTF-8 character as described above.

Any UTF-32 character in the range 00010000 to
0010FFFF hex is converted to a four-byte UTF-8
character as follows:

The second-operand location is considered
exhausted when it does not contain at least four

remaining bytes. The first-operand location is consid-
ered exhausted when it does not contain at least the
one, two, three, or four remaining bytes required to
contain the UTF-8 character resulting from the con-
version of the next second-operand character or sur-
rogate pair.

When the second-operand location is exhausted,
condition code 0 is set. When the first-operand loca-
tion is exhausted, condition code 1 is set, except that
condition code 0 is set if the second-operand location
also is exhausted. When a CPU-determined number
of characters have been converted, condition code 3
is set.

When the contents of the next UTF-32 character are
in the range 0000D800 to 0000DBFF or 00110000 to
FFFFFFFF hex, the character is invalid, and condi-
tion code 2 is set. On some models, when the con-
tents of the next UTF-32 character are in the range of
0000DC00 to 0000DFFF hex, the character is invalid,
and condition code 2 is set.

When the conditions for setting condition codes 1
and 2 are both met, condition code 2 is set.

When the operation is completed, the contents of
general register R2 + 1 are decremented by the num-
ber of bytes converted, and the contents of general
register R2 are incremented by the same number.
Also, the contents of general register R1 + 1 are dec-
remented by the number of bytes placed at the first-
operand location, and the contents of general regis-
ter R1 are incremented by the same number. When
general registers R1 and R2 are updated in the 24-bit
or 31-bit addressing mode, bits 32-39 of them, in the
24-bit mode, or bit 32, in the 31-bit mode, may be set
to zeros or may remain unchanged.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R2, and R2 + 1, always remain unchanged.

When condition code 2 is set, general register R2

contains the address of the invalid UTF-32 character.

When condition code 3 is set, the registers have
been updated so that the instruction, when reexe-
cuted, resumes at the next byte locations to be pro-
cessed.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may

UTF-32
Character
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 0 0 0 0 0 0 0 0 0 0 0 u v w x y

UTF-32
Character
Bit Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters e f g h i j k l m n o p q r s t

UTF-32
Character 0 j k l m n o p

UTF-8
Character

0 j k l m n o p

UTF-32
Character 0 f g h i j k l m n o p

UTF-8
Character

1 1 0 f g h i j 1 0 k l m n o p

UTF-32
Character 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a b c d e f g h i j k l m n o p

UTF-8
Character

1 1 1 0 a b c d 1 0 e f g h i j 1 0 k l m n o p

UTF-32
Character 0 0 0 0 0 0 0 0 0 0 0 u v w x y e f g h i j k l m n o p q r s t

UTF-8
Character

1 1 1 1 0 u v w 1 0 x y e f g h 1 0 i j k l m n 1 0 o p q r s t

General Instructions 7-243

C
O

N
V

E
R

T
 U

T
F

-8
 T

O
 U

N
IC

O
D

Ebe a different amount each time the instruction is
executed.

When the R1 register is the same register as the R2

register, the results are unpredictable.

When the second operand overlaps the first operand,
the results are unpredictable.

Access exceptions for the portions of the operands to
the right of the last byte processed may or may not
be recognized. For an operand longer than 4K bytes,
access exceptions are not recognized for locations
more than 4K bytes beyond the last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd.

Resulting Condition Code:

0 Entire second operand processed
1 End of first operand reached
2 Invalid UTF-32 character.
3 CPU-determined number of characters con-

verted

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the extended-translation facility 3 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the conversion. The program need not determine
the number of first-operand or second-operand
bytes that were processed.

2. The storage-operand references of CONVERT
UTF-32 TO UTF-8 may be multiple-access refer-
ences. (See “Storage-Operand Consistency” on
page 5-125.)

3. The CONVERT UTF-32 TO UTF-8 instruction
supports UTF-32 characters only in the big-
endian encoding.

4. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be

briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

5. Determining that UTF-32 characters in the range
of 0000DC00 to 0000DFFF are invalid is a
model-dependent behavior that is not available
on the IBM z13 and earlier models.

CONVERT UTF-8 TO UTF-16
CONVERT UTF-8 TO UNICODE

CU12 R1,R2[,M3] [RRF-c]
CUTFU R1,R2[,M3] [RRF-c]

The one-, two-, three-, or four-byte UTF-8 characters
of the second operand are converted to two-byte Uni-
code characters and placed at the first-operand loca-
tion. The operation proceeds until the end of the first
or second operand is reached, a CPU-determined
number of characters have been converted, or an
invalid UTF-8 character is encountered, whichever
occurs first. The result is indicated in the condition
code.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and the second operand is designated by the con-
tents of general registers R1 and R2, respectively. In
the 24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and second-operand loca-
tions is specified by the contents of bit positions
32-63 of general registers R1 + 1 and R2 + 1, respec-
tively, and those contents are treated as 32-bit
unsigned binary integers. In the 64-bit addressing
mode, the number of bytes in the first-operand and
second-operand locations is specified by the entire
contents of general registers R1 + 1 and R2 + 1,
respectively, and those contents are treated as 64-bit
unsigned binary integers.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-

'B2A7' M3 / / / / R1 R2

0 16 20 24 28 31

7-244 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

T
F

-8
 T

O
 U

N
IC

O
D

E tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions

0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-297.

When the ETF3-enhancement facility is installed, the
M3 field has the following format:

The bits of the M3 field are defined as follows:

• Unassigned: Bits 0-2 are unassigned and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Enhanced Well-Formedness-Checking (W):
The W bit, bit 3 of the M3 field, controls whether
enhanced well-formedness checking of the UTF-
8 characters is performed. When the W bit is
zero, enhanced checking is not performed. When
the W bit is one, enhanced checking is per-
formed, as described below.

When the ETF3-enhancement facility is not installed,
the M3 field is ignored. When the ETF3-enhancement
facility is installed in the z/Architecture architectural
mode, it is unpredictable whether the M3 field is
ignored in the ESA/390-compatibility mode.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-297. Register Contents for CONVERT UTF-8 TO UTF-16

/ / / W

0 3

General Instructions 7-245

C
O

N
V

E
R

T
 U

T
F

-8
 T

O
 U

N
IC

O
D

EThe characters of the second operand are selected
one by one for conversion, proceeding left to right.
The bytes resulting from a conversion are placed at
the first-operand location, proceeding left to right.
The operation proceeds until the first-operand or sec-
ond-operand location is exhausted, a CPU-deter-
mined number of second-operand characters have
been converted, or an invalid UTF-8 character is
encountered in the second operand.

To show the method of converting a UTF-8 character
to a Unicode character, the bits of a Unicode charac-
ter are identified by letters as follows:

In the case of a Unicode surrogate pair, which is a
character pair consisting of a character called a high
surrogate followed by a character called a low surro-
gate, the bits are identified by letters as follows:

Conversion of a UTF-8 character to a Unicode char-
acter is as follows:

1. When the contents of the first byte of a UTF-8
character are in the range 00 to 7F hex, the char-
acter is a one-byte character, and it is converted
to a two-byte Unicode character as follows:

2. When the contents of the first byte of the UTF-8
character are in the range 80 to BF hex, the char-
acter is invalid. When the ETF3-enhancement
facility is installed, the W bit of the M3 field is one,
and the contents of the first byte of the UTF-8
character are in the range C0 to C1 hex, the
character is also invalid.

3. When the ETF3-enhancement facility is not
installed or the W bit of the M3 field is zero, and

the contents of the first byte of the UTF-8 charac-
ter are in the range of C0 to DF hex; or when the
ETF3-enhancement facility is installed, the W bit
is one, and the contents of the first byte of the
UTF-8 character are in the range of C2 to DF
hex; the character is a two-byte character, and it
is converted to a two-byte Unicode character as
follows:

When the ETF3-enhancement facility is not
installed or when the W bit of the M3 field is zero,
the first two bits in the second byte of the UTF-8
character are ignored. When the ETF3-enhance-
ment facility is installed and the W bit of the M3

field is one, the contents of the second byte of
the UTF-8 character must be in the range 80 to
BF; otherwise the character is invalid.

4. When the contents of the first byte of a UTF-8
character are in the range E0 to EF hex, the
character is a three-byte character, and it is con-
verted to a two-byte Unicode character as fol-
lows:

When the ETF3-enhancement facility is not
installed or when the W bit of the M3 field is zero,
the first two bits in the second and third bytes of
the UTF-8 character are ignored.

When the ETF3-enhancement facility is installed
and the W bit of the M3 field is one, the contents
of the second and third bytes of the UTF-8 char-
acter must be as follows:

• When the first byte is E0 hex, the second
and third bytes must be in the ranges A0 to
BF and 80 to BF, respectively.

• When the first byte is in the range E1 to EC
hex or EE to EF, the second and third bytes
must both be in the range 80 to BF hex.

• When the first byte is ED hex, the second
and third bytes must be in the ranges 80 to
9F and 80 to BF, respectively.

 Otherwise, the character is invalid.

Unicode Character Bit
Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters a b c d e f g h i j k l m n o p

Unicode High Surrogate
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 1 1 0 1 1 0 a b c d e f g h i j

Unicode Low Surrogate Bit
Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters 1 1 0 1 1 1 k l m n o p q r s t

UTF-8
Character 0 j k l m n o p

Unicode
Character

0 0 0 0 0 0 0 0 0 j k l m n o p

UTF-8
Character 1 1 0 f g h i j 1 0 k l m n o p

Unicode
Character

0 0 0 0 0 f g h i j k l m n o p

UTF-8
Character 1 1 1 0 a b c d 1 0 e f g h i j 1 0 k l m n o p

Unicode
Character

a b c d e f g h i j k l m n o p

7-246 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

T
F

-8
 T

O
 U

N
IC

O
D

E 5. When the ETF3-enhancement facility is not
installed or the W bit of the M3 field is zero, and
the contents of the first byte of the UTF-8 charac-
ter are in the range of F0 to F7 hex; or when the
ETF3-enhancement facility is installed, the W bit
is one, and the contents of the first byte of the
UTF-8 character are in the range of F0 to F4 hex;
the character is a four-byte character, and it is
converted to two two-byte Unicode characters (a
surrogate pair) as follows:

When the ETF3-enhancement facility is not
installed or when the W bit of the M3 field is zero,
the first two bits in the second, third, and fourth
bytes of the UTF-8 character are ignored, and
the high order bit (z) produced by the subtract
operation should be zero but is ignored.

When the ETF3-enhancement facility is installed
and the W bit of the M3 field is one, the contents
of the second, third, and fourth bytes of the UTF-
8 character must be as follows:

• When the first byte is F0 hex, the second,
third, and fourth bytes must be in the ranges
90 to BF, 80 to BF, and 80 to BF, respectively.

• When the first byte is in the range F1 to F3,
the second, third, and fourth bytes must all
be in the range 80 to BF hex.

• When the first byte is F4 hex, the second,
third, and fourth bytes must be in the ranges
80 to 8F, 80 to BF, and 80 to BF, respectively.

 Otherwise, the character is invalid.

6. When the ETF3-enhancement facility is installed,
the W bit of the M3 field is one, and the contents
of the first byte of the UTF-8 character are in the
range of F5 to F7 hex, the character is invalid.

7. When the contents of the first byte of the UTF-8
character are in the range of F8-FF, the character
is invalid.

If an invalid character is encountered, condition code
2 is set, and general register R2 contains the address
of the first byte of the invalid UTF-8 character.

The second-operand location is considered
exhausted when it does not contain at least one
remaining byte or when it does not contain at least
the two, three, or four remaining bytes required to
contain the two-, three-, or four-byte UTF-8 character
indicated by the contents of the first remaining byte.
The first-operand location is considered exhausted
when it does not contain at least two remaining bytes
or at least four remaining bytes in the case when a
four byte UTF-8 character is to be converted.

When the second-operand location is exhausted,
condition code 0 is set. When the first-operand loca-
tion is exhausted, condition code 1 is set, except that
condition code 0 is set if the second-operand location
also is exhausted. When a CPU-determined number
of characters have been processed, condition code 3
is set.

When the conditions for setting condition codes 1
and 2 are both met, condition code 2 is set.

When the operation is completed, the contents of
general register R2 + 1 are decremented by the num-
ber of bytes converted, and the contents of general
register R2 are incremented by the same number.
Also, the contents of general register R1 + 1 are dec-
remented by the number of bytes placed at the first-
operand location, and the contents of general regis-
ter R1 are incremented by the same number. When
general registers R1 and R2 are updated in the 24-bit
or 31-bit addressing mode, bits 32-39 of them, in the
24-bit mode, or bit 32, in the 31-bit mode, may be set
to zeros or may remain unchanged.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R2, and R2 + 1, always remain unchanged.

When condition code 2 is set, general register R2

contains the address of the invalid UTF-8 character.

When condition code 3 is set, the registers have
been updated so that the instruction, when reexe-
cuted, resumes at the next byte locations to be pro-
cessed.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

UTF-8
Character 1 1 1 1 0 u v w 1 0 x y e f g h 1 0 i j k l m n 1 0 o p q r s t

Unicode
Characters

1 1 0 1 1 0 a b c d e f g h i j 1 1 0 1 1 1 k l m n o p q r s t

where zabcd = uvwxy - 1

General Instructions 7-247

C
O

N
V

E
R

T
 U

T
F

-8
 T

O
 U

T
F

-3
2When the R1 register is the same register as the R2

register, the results are unpredictable.

When the second operand overlaps the first operand,
the results are unpredictable.

Access exceptions for the portions of the operands to
the right of the last byte processed may or may not
be recognized. For an operand longer than 4K bytes,
access exceptions are not recognized for locations
more than 4K bytes beyond the last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd.

Resulting Condition Code:

0 Entire second operand processed
1 End of first operand reached
2 Invalid UTF-8 character
3 CPU-determined number of characters pro-

cessed

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the conversion. The program need not determine
the number of first-operand or second-operand
bytes that were processed.

2. When the ETF3-enhancement facility is not
installed, or when the W bit of the M3 operand is
zero, bits 0 and 1 of the continuation bytes of
multiple-byte UTF-8 characters are not checked
in order to improve the performance of the con-
version. Therefore, invalid continuation bytes are
not detected.

3. The storage-operand references of CONVERT
UTF-8 TO UTF-16 may be multiple-access refer-
ences. (See “Storage-Operand Consistency” on
page 5-125.)

4. The CONVERT UTF-8 TO UTF-16 (CONVERT
UTF-8 TO UNICODE) instruction supports UTF-
16 characters only in the big-endian encoding.

5. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

CONVERT UTF-8 TO UTF-32

CU14 R1,R2[,M3] [RRF-c]

The one-, two-, three-, or four-byte UTF-8 characters
of the second operand are converted to four-byte
UTF-32 characters and placed at the first-operand
location. The operation proceeds until the end of the
first or second operand is reached, a CPU-deter-
mined number of characters have been converted, or
an invalid UTF-8 character is encountered, whichever
occurs first. The result is indicated in the condition
code.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and the second operand is designated by the con-
tents of general registers R1 and R2, respectively. In
the 24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and second-operand loca-
tions is specified by the contents of bit positions
32-63 of general registers R1 + 1 and R2 + 1, respec-
tively, and those contents are treated as 32-bit
unsigned binary integers. In the 64-bit addressing
mode, the number of bytes in the first-operand and
second-operand locations is specified by the entire
contents of general registers R1 + 1 and R2 + 1,
respectively, and those contents are treated as 64-bit
unsigned binary integers.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions

'B9B0' M3 / / / / R1 R2

0 16 20 24 28 31

7-248 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

T
F

-8
 T

O
 U

T
F

-3
2 0-32 are ignored. In the 64-bit addressing mode, the

contents of bit positions 0-63 constitute the address.
The contents of the registers just described are
shown in Figure 7-298.

When the ETF3-enhancement facility is installed, the
M3 field has the following format:

The bits of the M3 field are defined as follows:

• Unassigned: Bits 0-2 are unassigned and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Enhanced Well-Formedness-Checking (W):
The W bit, bit 3 of the M3 field, controls whether
enhanced well-formedness checking of the UTF-

8 characters is performed. When the W bit is
zero, enhanced checking is not performed. When
the W bit is one, enhanced checking is per-
formed, as described below.

When the ETF3-enhancement facility is not installed,
the M3 field is ignored.

The characters of the second operand are selected
one by one for conversion, proceeding left to right.
The bytes resulting from a conversion are placed at
the first-operand location, proceeding left to right.
The operation proceeds until the first-operand or sec-
ond-operand location is exhausted, a CPU-deter-
mined number of second-operand characters have

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 7-298. Register Contents for CONVERT UTF-8 TO UTF32

/ / / W

0 3

General Instructions 7-249

C
O

N
V

E
R

T
 U

T
F

-8
 T

O
 U

T
F

-3
2been converted, or an invalid UTF-8 character is

encountered in the second operand.

To show the method of converting a UTF-8 character
to a UTF-32 character, the bits of a UTF-32 character
in the range 00000000 to 0000D7FF or 0000DC00 to
0000FFFF hex are identified by letters as follows:

The bits of a UTF-32 character in the range
00010000 0010FFFF hex (UTF-16 surrogate pair)
are identified by letters as follows:

Conversion of a UTF-8 character to a UTF-32 char-
acter is as follows:

1. When the contents of the first byte of a UTF-8
character are in the range 00 to 7F hex, the char-
acter is a one-byte character, and it is converted
to a four-byte UTF-32 character as follows:

2. When the contents of the first byte of the UTF-8
character are in the range 80 to BF hex, the char-
acter is invalid. When the ETF3-enhancement
facility is installed, the W bit of the M3 field is one,
and the contents of the first byte of the UTF-8
character are in the range C0 to C1 hex, the
character is also invalid.

3. When the ETF3-enhancement facility is not
installed or the W bit of the M3 field is zero, and
the contents of the first byte of the UTF-8 charac-
ter are in the range of C0 to DF hex; or when the
ETF3-enhancement facility is installed, the W bit
is one, and the contents of the first byte of the
UTF-8 character are in the range of C2 to DF
hex; the character is a two-byte character, and it
is converted to a four-byte UTF-32 character as
follows:

When the ETF3-enhancement facility is not
installed or when the W bit of the M3 field is zero,
the first two bits in the second byte of the UTF-8
character are ignored. When the ETF3-enhance-
ment facility is installed and the W bit of the M3

field is one, the contents of the second byte of
the UTF-8 character must be in the range 80 to
BF; otherwise the character is invalid.

4. When the contents of the first byte of a UTF-8
character are in the range E0 to EF hex, the
character is a three-byte character, and it is con-
verted to a four-byte UTF-32 character as fol-
lows:

When the ETF3-enhancement facility is not
installed or when the W bit of the M3 field is zero,
the first two bits in the second and third bytes of
the UTF-8 character are ignored.

When the ETF3-enhancement facility is installed
and the W bit of the M3 field is one, the contents
of the second and third bytes of the UTF-8 char-
acter must be as follows:

• When the first byte is E0 hex, the second
and third bytes must be in the ranges A0 to
BF and 80 to BF, respectively.

• When the first byte is in the range E1 to EC
hex or EE to EF, the second and third bytes
must both be in the range 80 to BF hex.

• When the first byte is ED hex, the second
and third bytes must be in the ranges 80 to
9F and 80 to BF, respectively.

UTF-32
Character
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UTF-32
Character
Bit Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters a b c d e f g h i j k l m n o p

UTF-32
Character
Bit Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Identifying Bit Letters 0 0 0 0 0 0 0 0 0 0 0 u v w x y

UTF-32
Character
Bit Numbers 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Identifying Bit Letters e f g h i j k l m n o p q r s t

UTF-8
Character 0 j k l m n o p

UTF-32
Character

0 j k l m n o p

UTF-8
Character 1 1 0 f g h i j 1 0 k l m n o p

UTF-32
Character

0 f g h i j k l m n o p

UTF-8
Character 1 1 1 0 a b c d 1 0 e f g h i j 1 0 k l m n o p

UTF-32
Character

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a b c d e f g h i j k l m n o p

7-250 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 U

T
F

-8
 T

O
 U

T
F

-3
2 Otherwise, the character is invalid.

5. When the ETF3-enhancement facility is not
installed or the W bit of the M3 field is zero, and
the contents of the first byte of the UTF-8 charac-
ter are in the range of F0 to F7 hex; or when the
ETF3-enhancement facility is installed, the W bit
is one, and the contents of the first byte of the
UTF-8 character are in the range of F0 to F4 hex;
the character is a four-byte character, and it is
converted to a four-byte UTF-32 character (a sur-
rogate pair) as follows:

When the ETF3-enhancement facility is not
installed or when the W bit of the M3 field is zero,
the first two bits in the second, third, and fourth
bytes of the UTF-8 character are ignored.

When the ETF3-enhancement facility is installed
and the W bit of the M3 field is one, the contents
of the second, third, and fourth bytes of the UTF-
8 character must be as follows:

• When the first byte is F0 hex, the second,
third, and fourth bytes must be in the ranges
90 to BF, 80 to BF, and 80 to BF, respectively.

• When the first byte is in the range F1 to F3,
the second, third, and fourth bytes must all
be in the range 80 to BF hex.

• When the first byte is F4 hex, the second,
third, and fourth bytes must be in the ranges
80 to 8F, 80 to BF, and 80 to BF, respectively.

 Otherwise, the character is invalid.

6. When the ETF3-enhancement facility is installed,
the W bit of the M3 field is one, and the contents
of the first byte of the UTF-8 character are in the
range of F5 to F7 hex, the character is invalid.

7. When the contents of the first byte of the UTF-8
character are in the range of F8-FF, the character
is invalid.

If an invalid character is encountered, condition code
2 is set, and general register R2 contains the address
of the first byte of the invalid UTF-8 character.

The second-operand location is considered
exhausted when it does not contain at least one

remaining byte or when it does not contain at least
the two, three, or four remaining bytes required to
contain the two-, three-, or four-byte UTF-8 character
indicated by the contents of the first remaining byte.
The first-operand location is considered exhausted
when it does not contain at least four remaining
bytes.

When the second-operand location is exhausted,
condition code 0 is set. When the first-operand loca-
tion is exhausted, condition code 1 is set, except that
condition code 0 is set if the second-operand location
also is exhausted. When a CPU-determined number
of characters have been processed, condition code 3
is set.

When the conditions for setting condition codes 1
and 2 are both met, condition code 2 is set.

When the operation is completed, the contents of
general register R2 + 1 are decremented by the num-
ber of bytes converted, and the contents of general
register R2 are incremented by the same number.
Also, the contents of general register R1 + 1 are dec-
remented by the number of bytes placed at the first-
operand location, and the contents of general regis-
ter R1 are incremented by the same number. When
general registers R1 and R2 are updated in the 24-bit
or 31-bit addressing mode, bits 32-39 of them, in the
24-bit mode, or bit 32, in the 31-bit mode, may be set
to zeros or may remain unchanged.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R2, and R2 + 1, always remain unchanged.

When condition code 2 is set, general register R2

contains the address of the invalid UTF-8 character.

When condition code 3 is set, the registers have
been updated so that the instruction, when reexe-
cuted, resumes at the next byte locations to be pro-
cessed.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

When the R1 register is the same register as the R2

register, the results are unpredictable.

UTF-8
Character 1 1 1 1 0 u v w 1 0 x y e f g h 1 0 i j k l m n 1 0 o p q r s t

UTF-32
Character

0 0 0 0 0 0 0 0 0 0 0 u v w x y e f g h i j k l m n o p q r s t

General Instructions 7-251

D
IV

ID
EWhen the second operand overlaps the first operand,

the results are unpredictable.

Access exceptions for the portions of the operands to
the right of the last byte processed may or may not
be recognized. For an operand longer than 4K bytes,
access exceptions are not recognized for locations
more than 4K bytes beyond the last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the R
field associated with that operand is odd.

Resulting Condition Code:

0 Entire second operand processed
1 End of first operand reached
2 Invalid UTF-8 character
3 CPU-determined number of characters pro-

cessed

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the extended-translation facility 3 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the conversion. The program need not determine
the number of first-operand or second-operand
bytes that were processed.

2. When the ETF3-enhancement facility is not
installed, or when the W bit of the M3 operand is
zero, bits 0 and 1 of the continuation bytes of
multiple-byte UTF-8 characters are not checked
in order to improve the performance of the con-
version. Therefore, invalid continuation bytes are
not detected.

3. The storage-operand references of CONVERT
UTF-8 TO UTF-32 may be multiple-access refer-
ences. (See “Storage-Operand Consistency” on
page 5-125.)

4. The CONVERT UTF-8 TO UTF-32 instruction
supports UTF-32 characters only in the big-
endian encoding.

5. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

COPY ACCESS

CPYA R1,R2 [RRE]

The contents of access register R2 are placed in
access register R1.

Condition Code: The code remains unchanged.

Program Exceptions:

• Transaction constraint

DIVIDE

Register-and-register format:

DR R1,R2 [RR]

Register-and-storage format:

D R1,D2(X2,B2) [RX-a]

The 64-bit first operand (the dividend) is divided by
the 32-bit second operand (the divisor), and the
32-bit remainder and quotient are placed at the first-
operand location.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

The dividend is treated as a 64-bit signed binary inte-
ger. The leftmost 32 bits of the dividend are in bit
positions 32-63 of general register R1, and the right-
most 32 bits are in bit positions 32-63 of general reg-
ister R1 + 1.

'B24D' / / / / / / / / R1 R2

0 16 24 28 31

'1D' R1 R2

0 8 12 15

'5D' R1 X2 B2 D2

0 8 12 16 20 31

7-252 The z/Architecture CPU Architecture

D
IV

ID
E

 L
O

G
IC

A
L The divisor, remainder, and quotient are treated as

32-bit signed binary integers. For DIVIDE (DR), the
divisor is in bit positions 32-63 of general register R2.
The remainder is placed in bit positions 32-63 of gen-
eral register R1, and the quotient is placed in bit posi-
tions 32-63 of general register R1 + 1. Bits 0-31 of the
registers remain unchanged.

The sign of the quotient is determined by the rules of
algebra, and the remainder has the same sign as the
dividend, except that a zero quotient or a zero
remainder is always positive.

When the divisor is zero, or when the magnitudes of
the dividend and divisor are such that the quotient
cannot be expressed by a 32-bit signed binary inte-
ger, a fixed-point-divide exception is recognized. This
includes the case of division of zero by zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of D only)
• Fixed-point divide
• Specification
• Transaction constraint

DIVIDE LOGICAL

Register-and-register formats:

DLR R1,R2 [RRE]

DLGR R1,R2 [RRE]

Register-and-storage formats:

DL R1,D2(X2,B2) [RXY-a]

DLG R1,D2(X2,B2) [RXY-a]

The 64-bit or 128-bit first operand (the dividend) is
divided by the 32-bit or 64-bit second operand (the
divisor), and the 32-bit or 64-bit remainder and quo-
tient are placed at the first-operand location.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

For DIVIDE LOGICAL (DLR, DL), the dividend is
treated as a 64-bit unsigned binary integer. The left-
most 32 bits of the dividend are in bit positions 32-63
of general register R1, and the rightmost 32 bits are
in bit positions 32-63 of general register R1 + 1.

The divisor, remainder, and quotient are treated as
32-bit unsigned binary integers. For DIVIDE LOGI-
CAL (DLR), the divisor is in bit positions 32-63 of
general register R2. The remainder is placed in bit
positions 32-63 of general register R1, and the quo-
tient is placed in bit positions 32-63 of general regis-
ter R1 + 1. Bits 0-31 of the registers remain
unchanged.

For DIVIDE LOGICAL (DLGR, DLG), the dividend is
treated as a 128-bit unsigned binary integer. The left-
most 64 bits of the dividend are in general register
R1, and the rightmost 64 bits are in general register
R1 + 1. The divisor, remainder, and quotient are
treated as 64-bit unsigned binary integers. The
remainder is placed in general register R1, and the
quotient is placed in general register R1 + 1.

When the divisor is zero, or when the magnitudes of
the dividend and divisor are such that the quotient
cannot be expressed as a 32-bit unsigned binary
integer for DIVIDE LOGICAL (DLR, DL), or a 64-bit
unsigned binary integer for DIVIDE LOGICAL
(DLGR, DLG), a fixed-point-divide exception is rec-
ognized. This includes the case of division of zero by
zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of DL or DLG only)
• Fixed-point divide
• Specification
• Transaction constraint

'B997' / / / / / / / / R1 R2

0 16 24 28 31

'B987' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '97'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '87'

0 8 12 16 20 32 40 47

General Instructions 7-253

E
X

C
L

U
S

IV
E

 O
RDIVIDE SINGLE

Register-and-register formats:

DSGR R1,R2 [RRE]

DSGFR R1,R2 [RRE]

Register-and-storage formats:

DSG R1,D2(X2,B2) [RXY-a]

DSGF R1,D2(X2,B2) [RXY-a]

The 64-bit contents of general register R1 + 1 (the
dividend) are divided by the 64-bit or 32-bit second
operand (the divisor), the 64-bit remainder is placed
in general register R1, and the 64-bit quotient is
placed in general register R1 + 1.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

The dividend, quotient, and remainder are treated as
64-bit signed binary integers. For DIVIDE SINGLE
(DSGR, DSG), the divisor is treated as a 64-bit
signed binary integer. For DIVIDE SINGLE (DSGFR,
DSGF), the divisor is treated as a 32-bit signed
binary integer. For DSGFR, the divisor is in bit posi-
tions 32-63 of general register R2.

The sign of the quotient is determined by the rules of
algebra, and the remainder has the same sign as the
dividend, except that a zero quotient or a zero
remainder is always positive.

When the divisor is zero, or when the magnitudes of
the dividend and divisor are such that the quotient
cannot be expressed by a 64-bit signed binary inte-

ger, a fixed-point-divide exception is recognized. This
includes the case of division of zero by zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of DSG and DSGF
only)

• Fixed-point divide
• Specification
• Transaction constraint

EXCLUSIVE OR

Register-and-register formats:

XR R1,R2 [RR]

XGR R1,R2 [RRE]

XRK R1,R2,R3 [RRF-a]

XGRK R1,R2,R3 [RRF-a]

Register-and-storage formats:

X R1,D2(X2,B2) [RX-a]

XY R1,D2(X2,B2) [RXY-a]

XG R1,D2(X2,B2) [RXY-a]

'B90D' / / / / / / / / R1 R2

0 16 24 28 31

'B91D' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '0D'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '1D'
0 8 12 16 20 32 40 47

'17' R1 R2

0 8 12 15

'B982' / / / / / / / / R1 R2

0 16 24 28 31

'B9F7' R3 / / / / R1 R2

0 16 20 24 28 31

'B9E7' R3 / / / / R1 R2

0 16 20 24 28 31

'57' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '57'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '82'

0 8 12 16 20 32 40 47

7-254 The z/Architecture CPU Architecture

E
X

C
L

U
S

IV
E

 O
R Storage-and-immediate formats:

XI D1(B1),I2 [SI]

XIY D1(B1),I2 [SIY]

Storage-and-storage format:

XC D1(L,B1),D2(B2) [SS-a]

For X, XC, XG, XGR, XI, XIY, XR, and XY, the
EXCLUSIVE OR of the first and second operands is
placed at the first-operand location. For XGRK and
XRK, the EXCLUSIVE OR of the second and third
operands is placed at the first-operand location.

The connective EXCLUSIVE OR is applied to the
operands bit by bit. The contents of a bit position in
the result are set to one if the bits in the correspond-
ing bit positions in the two operands are unlike; other-
wise, the result bit is set to zero.

For EXCLUSIVE OR (XC), each operand is pro-
cessed left to right. When the operands overlap, the
result is obtained as if the operands were processed
one byte at a time and each result byte were stored
immediately after fetching the necessary operand
bytes.

For EXCLUSIVE OR (XI, XIY), the first operand is
one byte in length, and only one byte is stored. When
the interlocked-access facility 2 is installed, the
update of the first operand appears to be an inter-
locked-update reference as observed by other CPUs
and channel programs, and a specific-operand-seri-
alization operation is performed.

For EXCLUSIVE OR (X, XR, XRK, and XY), the
operands are 32 bits, and for EXCLUSIVE OR (XG,
XGR, and XGRK), they are 64 bits.

The displacements for X, XI, and both operands of
XC are treated as 12-bit unsigned binary integers.
The displacement for XY, XIY, and XG is treated as a
20-bit signed binary integer.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Access (fetch, operand 2, X, XY, XG, and XC;
fetch and store, operand 1, XI, XIY, and XC)

• Operation (XY and XIY, if the long-displacement
facility is not installed; XGRK and XRK, if the dis-
tinct-operands facility is not installed)

• Transaction constraint (XC)

Programming Notes:

1. An example of the use of the EXCLUSIVE OR
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. EXCLUSIVE OR may be used to invert a bit, an
operation particularly useful in testing and setting
programmed binary switches.

3. A field EXCLUSIVE-ORed with itself becomes all
zeros.

4. For EXCLUSIVE OR (XR or XGR), the sequence
A EXCLUSIVE-OR B, B EXCLUSIVE-OR A, A
EXCLUSIVE-OR B results in the exchange of the
contents of A and B without the use of an addi-
tional general register.

5. Accesses to the first operand of EXCLUSIVE OR
(XC) – and, when the interlocked-access facility
2 is not installed, accesses to the first operand of
EXCLUSIVE OR (XI, XIY) – consist in fetching a
first-operand byte from storage and subsequently
storing the updated value. These fetch and store
accesses to a particular byte do not necessarily
occur one immediately after the other. Thus,
these instructions cannot be safely used to
update a location in storage if the possibility
exists that another CPU or a channel program
may also be updating the location. An example of
this effect is shown for OR (OI) in “Multiprogram-
ming and Multiprocessing Examples” on
page A-45.

When the interlocked-access facility 2 is
installed, EXCLUSIVE OR (XI, XIY) can be
safely used to update a location in storage, even
if the possibility exists that another CPU or a

'97' I2 B1 D1

0 8 16 20 31

'EB' I2 B1 DL1 DH1 '57'

0 8 16 20 32 40 47

'D7' L B1 D1 B2 D2

0 8 16 20 32 36 47

General Instructions 7-255

E
X

E
C

U
T

E
 R

E
L

A
T

IV
E

 L
O

N
Gchannel program may also be updating the loca-

tion.

EXCLUSIVE OR IMMEDIATE

XIHF R1,I2 [RIL-a]

XILF R1,I2 [RIL-a]

The second operand is EXCLUSIVE ORed with bits
of the first operand, and the result replaces those bits
of the first operand. The remainder of the first oper-
and remains unchanged.

For each instruction, the bits of the first operand that
are EXCLUSIVE ORed with the second operand and
then replaced are as follows:

The connective EXCLUSIVE OR is applied to the
operands bit by bit. The contents of a bit position in
the result are set to one if the bits in the correspond-
ing bit positions in the two operands are unlike; other-
wise, the result bit is set to zero.

The condition code is set based on the result of the
32-bit EXCLUSIVE OR operation.

Resulting Condition Code:

0 Result is zero
1 Result is not zero
2 --
3 --

Program Exceptions:

• Operation, if the extended-immediate facility is
not installed)

Programming Note: The setting of the condition
code is based only on the bits that are exclusive
ORed and replaced.

EXECUTE

EX R1,D2(X2,B2) [RX-a]

EXECUTE RELATIVE LONG

EXRL R1,RI2 [RIL-b]

The single instruction at the second-operand address
is modified by the contents of general register R1,
and the resulting instruction, called the target instruc-
tion, is executed.

When the R1 field is not zero, bits 8-15 of the instruc-
tion designated by the second-operand address are
ORed with bits 56-63 of general register R1. The
ORing does not change either the contents of gen-
eral register R1 or the instruction in storage, and it is
effective only for the interpretation of the instruction
to be executed. When the R1 field is zero, no ORing
takes place.

The target instruction may be two, four, or six bytes in
length. The execution and exception handling of the
target instruction are exactly as if the target instruc-
tion were obtained in normal sequential operation,
except for the instruction address and the instruction-
length code.

The instruction address in the current PSW is
increased by the length of the execute-type instruc-
tion (EXECUTE or EXECUTE RELATIVE LONG).
This updated address and the instruction-length
code of the execute-type instruction are used, for
example, as part of the link information when the tar-
get instruction is BRANCH AND LINK. When the tar-
get instruction is a successful branching instruction,
the instruction address in the current PSW is
replaced by the branch address specified by the tar-
get instruction.

When the target instruction is any of the following
instructions, an execute exception is recognized.

• Another execute-type instruction
• TRANSACTION ABORT
• TRANSACTION BEGIN

'C0' R1 '6' I2
0 8 12 16 47

'C0' R1 '7' I2
0 8 12 16 47

Instruction
Bits Exclusive ORed
and Replaced

XIHF 0-31

XILF 32-63

'44' R1 X2 B2 D2

0 8 12 16 20 31

'C6' R1 '0' RI2
0 8 12 16 47

7-256 The z/Architecture CPU Architecture

E
X

T
R

A
C

T
 A

C
C

E
S

S • TRANSACTION END

The effective address of EXECUTE must be even;
otherwise, a specification exception is recognized.

When the target instruction is two or three halfwords
in length but can be executed without fetching its sec-
ond or third halfword, it is unpredictable whether
access exceptions are recognized for the unused
halfwords. Access exceptions are not recognized for
the second-operand address when the address is
odd.

The second-operand address of an execute-type
instruction is an instruction address rather than a log-
ical address; thus, the target instruction is fetched
from the primary address space when in the primary-
space, secondary-space, or access-register mode.

For EXECUTE RELATIVE LONG, the contents of the
RI2 field are a signed binary integer specifying the
number of halfwords that is added to the address of
the instruction to generate the address of the target
instruction in storage.

Condition Code: The code may be set by the tar-
get instruction.

Program Exceptions:

• Access (fetch, target instruction)
• Execute
• Operation (EXRL, when the execute-extensions

facility is not installed)
• Specification (EX)
• Transaction constraint

Programming Notes:

1. An example of the use of the EXECUTE instruc-
tion is given in Appendix A, “Number Represen-
tation and Instruction-Use Examples.”

2. The ORing of eight bits from the general register
with the designated instruction permits the indi-
rect specification of the length, index, mask,
immediate-data, register, or extended-op-code
field.

3. The fetching of the target instruction is consid-
ered to be an instruction fetch for purposes of
program-event recording and for purposes of
reporting access exceptions.

4. An access or specification exception may be
caused by execute-type instructions or by the tar-
get instruction, except that EXECUTE RELATIVE
LONG cannot cause a specification exception
due to a misaligned target operand.

5. When an interruptible instruction is made the tar-
get of an execute-type instruction, the program
normally should not designate any register
updated by the interruptible instruction as the R1,
X2, or B2 register for EXECUTE or R1 register for
EXECUTE RELATIVE LONG. Otherwise, on
resumption of execution after an interruption, or if
the instruction is refetched without an interrup-
tion, the updated values of these registers will be
used in the execution of the execute-type instruc-
tion. Similarly, the program should normally not
let the destination field in storage of an interrupt-
ible instruction include the location of an execute-
type instruction, since the new contents of the
location may be interpreted when resuming exe-
cution.

6. Exception conditions that occur during the exe-
cution of EXECUTE or EXECUTE RELATIVE
LONG are recognized before exception condi-
tions for the target instruction.

EXTRACT ACCESS

EAR R1,R2 [RRE]

The contents of access register R2 are placed in bit
positions 32-63 of general register R1. Bits 0-31 of
general register R1 remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions: None.

EXTRACT CPU ATTRIBUTE

ECAG R1,R3,D2(B2) [RSY-a]

Information regarding the specified attribute of the
CPU or storage subsystem is placed into the first-
operand location. The first operand is 64 bits.

'B24F' / / / / / / / / R1 R2

0 16 24 28 31

'EB' R1 R3 B2 DL2 DH2 '4C'

0 8 12 16 20 32 40 47

General Instructions 7-257

E
X

T
R

A
C

T
 C

P
U

 A
T

T
R

IB
U

T
EThe second-operand address is not used to address

data; rather, the rightmost 24 bits of the address are
treated as a code specifying which attribute is
returned in general register R1.

The rightmost 24 bits of the second-operand address
are defined as follows:

Attribute-Set Indication (ASI): Bit positions 54-55
of the second-operand address contain a 2-bit
unsigned binary integer indicating the set of attri-
butes from which an attribute to be extracted is
selected. The attribute-set indications are:

0 Cache attributes

1 CPU attributes

All other attribute-set-indication values are reserved.

Cache-Attribute-Set Operation
The rightmost 24 bits of the second-operand address
are defined as follows:

The attribute, level, and type indications for the
cache-attribute set are as follows:

Attribute Indication (AI): Bit positions 56-59 of
the second-operand address contain a 4-bit
unsigned binary integer indicating the cache attribute
to be extracted, as follows:

Level Indication (LI): Bit positions 60-62 of the
second-operand address contain a 3-bit unsigned
binary integer indicating the level of the cache for
which the cache attribute is to be extracted, with 0
indicating the first-level cache, 1 indicating the sec-
ond-level cache and so forth. If a cache level is not

implemented on a model, its corresponding level indi-
cation is reserved.

Type Indication (TI): Bit 63 of the second-operand
address indicates the type of cache for which the
cache attribute is to be extracted, with 0 indicating
the data cache and 1 indicating the instruction cache.
When a cache level has a unified data and instruction
cache, the same result is returned regardless of the
type indication.

When the attribute indication is zero, the level indica-
tion (LI) and type indication (TI) are ignored.

CPU-Attribute-Set Operation
The rightmost 24 bits of the second-operand address
are defined as follows:

The attribute indication for the CPU-attribute set are
as follows:

Attribute Indication (AI): Bit positions 56-59 of
the second-operand address contain a 4-bit
unsigned binary integer indicating the CPU attribute
to be extracted, as follows:

0 Extract CPU speed

1-15 Reserved

Reserved: Bit positions 60-63 of the second-oper-
and address are reserved and ignored.

Common Operation
Bits 0-39 of the second-operand address are
ignored. Bits 40-53 of the second-operand address
are reserved and should contain zeros.

Bits 0-63 of general register R1 are set to ones if any
of the following apply:

• A reserved bit position in the second-operand
address contains one and is otherwise not spe-
cifically designated as ignored.

• A reserved ASI, AI, or, when applicable, LI value
is specified and is otherwise not specifically des-
ignated as ignored.

Reserved ASI ASI-Dependent

40 54 56 63

Reserved 0 0 AI LI TI

40 54 56 60 63

0 Extract topology summary

1 Extract line size of the cache, in bytes

2 Extract total size of the cache, in bytes

3 Extract set-associativity level of the cache

4-15 Reserved

Reserved 0 1 AI Rsvd.

40 54 56 60 63

7-258 The z/Architecture CPU Architecture

E
X

T
R

A
C

T
 C

P
U

 A
T

T
R

IB
U

T
E • The specified ASI and AI values and, when appli-

cable, the LI value are all valid, but the model
does not provide the data.

The contents of general register R3 are ignored, how-
ever the R3 field should specify register 0; otherwise,
the program may not operate compatibly in the
future.

Cache-Attribute Results (ASI = 0)
When the cache attribute indication is zero, a sum-
mary of each level of cache is returned in general
register R1. Each summary field is eight bits, where
bits 0-7 of the register contain the summary for the
first-level cache, bits 8-15 contain the summary for
the second-level cache, and so forth. The contents of
an eight-bit summary field are as follows:

When the cache attribute indication is one, two, or
three, the attribute value is returned in general regis-
ter R1, as a 64-bit unsigned integer.

CPU-Attribute Results (ASI = 1)

When the CPU attribute indication is zero, the CPU
speeds are returned in general register R1, specified
in the following format:

The fields are defined as follows:

Bits Meaning

0-31 Bit positions 0-31 (D) contain a 32-bit
unsigned binary integer whose value rep-
resents the dynamic CPU speed, encoded
as the approximate number of CPU cycles
per microsecond.

32-63 Bit positions 32-63 (S) contain a 32-bit
unsigned binary integer whose value rep-
resents the static CPU speed, encoded as
the approximate number of CPU cycles per
microsecond.

The dynamic CPU speed may or may not be the
same as the static CPU speed. The static CPU
speed reflects a CPU running at its nominal capacity
and corresponds to the particular model. The
dynamic CPU speed reflects a CPU running at a
changed capacity caused by, for example, a manual
control set to a power-save position.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (if the general-instructions-extension
facility is not installed)

• Transaction constraint

Programming Notes:

1. Knowledge of the cache line size is useful when
determining the placement of PREFETCH DATA
and PREFETCH DATA RELATIVE LONG instruc-
tions.

2. The value placed in the first-operand location is
model dependent and may differ significantly
from one model to another. For example, the size
of the data cache on one model may be smaller
or larger than the size of the data cache on
another model. To ensure compatible operation
across multiple models, the program should not
rely on any particular value being returned in the
first-operand location.

3. When the attribute-set indication is 00 binary and
the attribute indication is 0000 binary, bit posi-
tions 4-5 of each 8-bit field returned in general
register R1 contain a cache-scope indication.
When the cache-scope indication is 10 binary,
the cache may be shared by more than one CPU

Bits Meaning

0-3 Reserved, stored as zeros

4-5 Cache scope, as follows:

00 Cache does not exist at this level

01 Cache is private to the CPU

10 Cache may be shared by multiple CPUs

11 Reserved

6-7 When bit positions 4-5 contain a nonzero value, bit
positions 6-7 contain the cache type, as follows:

00 Separate instruction and data caches exist
at this level

01 Only an instruction cache exists at this level

10 Only a data cache exists at this level

11 A unified instruction and data cache exists at
this level

When bit positions 4-5 contain zeros, bit positions
6-7 also contain zeros.

Dynamic CPU Speed (D)
0 31

Static CPU Speed (S)
32 63

General Instructions 7-259

E
X

T
R

A
C

T
 C

P
U

 T
IM

Ein the configuration. The System Library publica-
tion for the model may provide further explana-
tion of cache topology.

4. When the attribute-set indication is 00 binary and
the attribute indication is 0000 binary, the sum-
mary indications are returned in contiguous 8-bit
fields in general register R1. Thus if the program
scans the resulting summary-indication fields
from left to right and encounters an 8-bit field
containing all zeros, no further meaningful fields
exist.

5. Cache information returned reflects the depth
specified by the level indication and the cache
information accessible from the issuing CPU.
The total sizes and associativity do not include
other, parallel cache structures accessible from
other CPUs of the configuration.

6. The static CPU speed (S) may be less than,
equal to, or greater than the dynamic CPU speed
(D), as follows:

• When the CPU is operating at nominal
capacity, the D and S values are equal.

• The sections “Capacity-Change Reason
(CCR)” on page 10-146 and “Capacity-
Adjustment Indication (CAI)” on page 10-147
describe various reasons why a CPU may
not be operating at nominal capacity, in
which case, D may be less than S.

• Under certain circumstances, D may be
greater than S.

7. Depending on the model, the dynamic CPU
speed (D) values may be different from one CPU
to another. Similarly, the static CPU speed values
may be different from one CPU to another.

8. In most cases, the dynamic CPU speed returned
for CPU-attribute-indicator zero is the same as
would be returned by the QUERY SAMPLING
INFORMATION (QSI) instruction of the CPU-
measurement facility. The value returned is also

subject to most of the same factors that affect the
value returned by QSI.

EXTRACT CPU TIME

ECTG D1(B1),D2(B2),R3 [SSF]

The value of the current CPU timer is subtracted from
the first operand, and the difference is placed in gen-
eral register 0. The second operand is placed
unchanged in general register 1. The eight bytes at
the third operand location replace the contents of
general register R3.

The first and second operands and the results in
general registers 0, 1, and R3 are treated as 64-bit
unsigned binary integers.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general register R3 constitute the
address of the third operand, and the contents of bit
positions 0-39 are ignored. In the 31-bit addressing
mode, the contents of bit positions 33-63 of the regis-
ter constitute the address, and the contents of bit
positions 0-32 are ignored. In the 64-bit addressing
mode, the contents of bit positions 0-63 constitute
the address. In the access-register mode, the con-
tents of access register R3 are used for accessing the
third operand.

All operands are fetched before any general register
is modified. If the R3 field designates general register
0, it is unpredictable whether the result placed in the
register is the first operand minus the CPU timer or
the third operand. If the R3 field designates general
register 1, it is unpredictable whether the result
placed in the register is the second operand or the
third operand.

The contents of the registers just described are
shown in Figure 7-299.

'C8' R3 '1' B1 D1 B2 D2

0 8 12 16 20 32 36 47

24-Bit Addressing Mode

R3 / Third-Operand Address
0 40 63

31-Bit Addressing Mode

R3 / Third-Operand Address
0 33 63

Figure 7-299. General Register Assignment for EXTRACT CPU TIME (Part 1 of 2)

7-260 The z/Architecture CPU Architecture

E
X

T
R

A
C

T
 P

S
W

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operands 1, 2, and 3)
• Operation (the extract-CPU-time facility is not

installed)
• Transaction constraint

EXTRACT PSW

EPSW R1,R2 [RRE]

Bits 0-11 and 13-31 of the current PSW are placed in
bit positions 32-43 and 45-63 of the first operand,
and bits 0-31 of the operand remain unchanged.
When the configuration is in the z/Architecture archi-
tectural mode, bit 44 of the first operand is set to
zero, and when the configuration is in the ESA/390-
compatibility mode, bit 44 of the first operand is set to
one.

Subsequently, bits 32-63 of the current PSW are
placed in bit positions 32-63 of the second operand,
and bits 0-31 of the operand remain unchanged. The
action associated with the second operand is not per-
formed if the R2 field is zero.

Bits 0-63 of the 128-bit PSW are illustrated in
Figure 4-2 on page 4-5.

Condition Code: The code remains unchanged.

Program Exceptions:

• Transaction constraint

EXTRACT TRANSACTION
NESTING DEPTH

ETND R1 [RRE]

The current transaction nesting depth is placed in
bits 48-63 of general register R1. Bits 0-31 of the reg-
ister remain unchanged, and bits 32-47 of the regis-
ter are set to zero, as illustrated below.

A special-operation exception is recognized and the
operation is suppressed if the transactional-execution
control, bit 8 of control register 0, is zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (transactional-execution facility not
installed)

• Special operation
• Transaction constraint

Programming Note: A transaction nesting depth of
zero indicates that the CPU is not in the transac-
tional-execution mode.

64-Bit Addressing Mode

R3 Third-Operand Address
0 63

On Completion

GR0 First Operand – Current CPU Timer
0 63

GR1 Second Operand
0 63

R3 Third Operand
0 63

Figure 7-299. General Register Assignment for EXTRACT CPU TIME (Part 2 of 2)

'B98D' / / / / / / / / R1 R2

0 16 24 28 31

'B2EC' / / / / / / / / R1 / / / /

0 16 24 28 31

/ /
0 16 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Transaction Nesting Depth
32 48 63

General Instructions 7-261

IN
S

E
R

T
 C

H
A

R
A

C
T

E
R

S
 U

N
D

E
R

 M
A

S
KFIND LEFTMOST ONE

FLOGR R1,R2 [RRE]

Bits 0-63 of general register R2 are scanned left to
right for the leftmost one bit. A 64-bit binary integer
designating the bit position of the leftmost one bit, or
64 if there is no one bit, is placed in general register
R1. When a one bit is found in the second operand,
the original contents of general register R2, with the
leftmost one bit set to zero, are placed in general reg-
ister R1 + 1. When a one bit is not found, the contents
of general register R1 + 1 are set to zeros.

The condition code indicates whether or not a one bit
was found in the second operand.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

Resulting Condition Code:

0 No one bit found
1 --
2 One bit found
3 --

Program Exceptions:

• Operation (if the extended-immediate facility is
not installed)

• Specification

Programming Notes:

1. An example of the use of the FIND LEFTMOST
ONE instruction is given in Appendix A, “Number
Representation and Instruction-Use Examples.”

2. When the R1 and R2 fields designate the same
register, the original contents of general register
R2 are replaced by the resulting bit-position
value, or 64 if no one bit was found.

3. When the R2 field designates general register
R1 + 1, the leftmost one bit (if any) of general
register R2 is set to zero; if no one bit is found,
the entire register is set to zero.

4. When the R2 field designates neither the even
nor the odd registers designated by the R1 field,
then general register R2 is not modified.

INSERT CHARACTER

IC R1,D2(X2,B2) [RX-a]

ICY R1,D2(X2,B2) [RXY-a]

The byte at the second-operand location is inserted
into bit positions 56-63 of general register R1. The
remaining bits in the register remain unchanged.

The displacement for IC is treated as a 12-bit
unsigned binary integer. The displacement for ICY is
treated as a 20-bit signed binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation (ICY, if the long-displacement facility is

not installed)

INSERT CHARACTERS UNDER
MASK

ICM R1,M3,D2(B2) [RS-b]

ICMY R1,M3,D2(B2) [RSY-b]

ICMH R1,M3,D2(B2) [RSY-b]

Bytes from contiguous locations beginning at the
second-operand address are inserted into general
register R1 under control of a mask.

'B983' / / / / / / / / R1 R2

0 16 24 28 31

'43' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '73'

0 8 12 16 20 32 40 47

'BF' R1 M3 B2 D2

0 8 12 16 20 31

'EB' R1 M3 B2 DL2 DH2 '81'

0 8 12 16 20 32 40 47

'EB' R1 M3 B2 DL2 DH2 '80'

0 8 12 16 20 32 40 47

7-262 The z/Architecture CPU Architecture

IN
S

E
R

T
 IM

M
E

D
IA

T
E The contents of the M3 field are used as a mask.

These four bits, left to right, correspond one for one
with four bytes, left to right, of general register R1. For
INSERT CHARACTERS UNDER MASK (ICM,
ICMY), the four bytes to which the mask bits corre-
spond are in the low-order half, bit positions 32-63 of
general register R1. For INSERT CHARACTERS
UNDER MASK (ICMH), the four bytes are in the
high-order half, bit positions 0-31, of the register. The
byte positions corresponding to ones in the mask are
filled, left to right, with bytes from successive storage
locations beginning at the second-operand address.
When the mask is not zero, the length of the second
operand is equal to the number of ones in the mask.
The bytes in the general register corresponding to
zeros in the mask remain unchanged. For ICM and
ICMY, bits 0-31 of the register remain unchanged,
and, for ICMH, bits 32-63 remain unchanged.

The resulting condition code is based on the mask
and on the value of the bits inserted. When the mask
is zero or when all inserted bits are zeros, the condi-
tion code is set to 0. When the inserted bits are not
all zeros, the code is set according to the leftmost bit
of the storage operand: if this bit is one, the code is
set to 1; if this bit is zero, the code is set to 2.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only for
the number of bytes specified by the mask. When the
mask is zero, access exceptions are recognized for
one byte at the second-operand address.

The displacement for ICM is treated as a 12-bit
unsigned binary integer. The displacement for ICMY
and ICMH is treated as a 20-bit signed binary integer.

Resulting Condition Code:

0 All inserted bits zeros, or mask bits all zeros
1 Leftmost inserted bit one
2 Leftmost inserted bit zero, and not all inserted

bits zeros
3 --

Program Exceptions:

• Access (fetch, operand 2)
• Operation (ICMY, if the long-displacement facility

is not installed)

Programming Notes:

1. Examples of the use of the INSERT CHARAC-
TERS UNDER MASK instruction are given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. The condition code for INSERT CHARACTERS
UNDER MASK (ICM, ICMY only) is defined such
that, when the mask is 1111, the instruction
causes the same condition code to be set as for
LOAD AND TEST (LTR only) Thus, the instruc-
tion may be used as a storage-to-register load-
and-test operation.

3. INSERT CHARACTERS UNDER MASK (ICM,
ICMY) with a mask of 1111 or 0001 performs a
function similar to that of a LOAD (L) or INSERT
CHARACTER (IC) instruction, respectively, with
the exception of the condition-code setting. How-
ever, the performance of INSERT CHARAC-
TERS UNDER MASK may be slower.

INSERT IMMEDIATE

IIHF R1,I2 [RIL-a]

IIHH R1,I2 [RI-a]

IIHL R1,I2 [RI-a]

IILF R1,I2 [RIL-a]

IILH R1,I2 [RI-a]

IILL R1,I2 [RI-a]

'C0' R1 '8' I2
0 8 12 16 47

'A5' R1 '0' I2
0 8 12 16 31

'A5' R1 '1' I2
0 8 12 16 31

'C0' R1 '9' I2
0 8 12 16 47

'A5' R1 '2' I2
0 8 12 16 31

'A5' R1 '3' I2
0 8 12 16 31

General Instructions 7-263

L
O

A
D

 R
E

L
A

T
IV

E
 L

O
N

GThe second operand is placed in bit positions of the
first operand. The remainder of the first operand
remains unchanged.

For each instruction, the bit positions of the first oper-
and that are loaded with the second operand are as
follows:

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (IIHF and IILF, if the extended-immedi-
ate facility is not installed)

INSERT PROGRAM MASK

IPM R1 [RRE]

The condition code and program mask from the cur-
rent PSW are inserted into bit positions 34 and 35
and 36-39, respectively, of general register R1. Bits
32 and 33 of the register are set to zeros; bits 0-31
and 40-63 are left unchanged.

Condition Code: The code remains unchanged.

Program Exceptions: None.

LOAD

Register-and-register formats:

LR R1,R2 [RR]

LGR R1,R2 [RRE]

LGFR R1,R2 [RRE]

Register-and-storage formats:

L R1,D2(X2,B2) [RX-a]

LY R1,D2(X2,B2) [RXY-a]

LG R1,D2(X2,B2) [RXY-a]

LGF R1,D2(X2,B2) [RXY-a]

LOAD IMMEDIATE

LGFI R1,I2 [RIL-a]

LOAD RELATIVE LONG

LRL R1,RI2 [RIL-b]

LGRL R1,RI2 [RIL-b]

LGFRL R1,RI2 [RIL-b]

Instruction
Bit Positions
Loaded

IIHF 0-31

IIHH 0-15

IIHL 16-31

IILF 32-63

IILH 32-47

IILL 48-63

'B222' / / / / / / / / R1 / / / /
0 16 24 28 31

'18' R1 R2

0 8 12 15

'B904' / / / / / / / / R1 R2

0 16 24 28 31

'B914' / / / / / / / / R1 R2

0 16 24 28 31

'58' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '58'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '04'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '14'
0 8 12 16 20 32 40 47

'C0' R1 '1' I2
0 8 12 16 47

'C4' R1 'D' RI2
0 8 12 16 47

'C4' R1 '8' RI2
0 8 12 16 47

'C4' R1 'C' RI2
0 8 12 16 47

7-264 The z/Architecture CPU Architecture

L
O

A
D

 A
C

C
E

S
S

 M
U

L
T

IP
L

E The second operand is placed unchanged at the first-
operand location, except that, for LOAD (LGFR,
LGF), LOAD IMMEDIATE (LGFI), and LOAD RELA-
TIVE LONG (LGFRL), it is sign extended.

For LOAD (LR, L, LY) and LOAD RELATIVE LONG
(LRL), the operands are 32 bits, and, for LOAD (LGR,
LG), and LOAD RELATIVE LONG (LGRL), the oper-
ands are 64 bits. For LOAD (LGFR, LGF), LOAD
IMMEDIATE (LGFI), and LOAD RELATIVE LONG
(LGFRL), the second operand is treated as a 32-bit
signed binary integer, and the first operand is treated
as a 64-bit signed binary integer.

The displacement for L is treated as a 12-bit
unsigned binary integer. The displacement for LY,
LG, and LGF is treated as a 20-bit signed binary inte-
ger.

For LOAD IMMEDIATE, the contents of the I2 field
form the second operand directly.

For LOAD RELATIVE LONG, the contents of the RI2
field are a signed binary integer specifying the num-
ber of halfwords that is added to the address of the
instruction to generate the address of the second
operand in storage. When DAT is on, the second
operand is accessed using the same addressing-
space mode as that used to access the instruction.
When DAT is off, the second operand is accessed
using a real address.

For LOAD RELATIVE LONG (LRL, LGFRL), the sec-
ond operand must be aligned on a word boundary,
and for LOAD RELATIVE LONG (LGRL), the second
operand must be aligned on a doubleword boundary;
otherwise, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of L, LY, LG, LGF, LRL,
LGRL, and LGFRL only)

• Operation (LY, if the long-displacement facility is
not installed; LGFI, if the extended-immediate
facility is not installed; LRL, LGRL, LGFRL, if the
general-instructions-extension facility is not
installed)

• Specification (LRL, LGFRL, LGRL only)

Programming Notes:

1. An example of the use of the LOAD instruction is
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. For LOAD RELATIVE LONG, the second oper-
and must be aligned on an integral boundary cor-
responding to the operand’s size.

3. When LOAD RELATIVE LONG is the target of an
execute-type instruction, the second-operand
address is relative to the target address.

LOAD ACCESS MULTIPLE

LAM R1,R3,D2(B2) [RS-a]

LAMY R1,R3,D2(B2) [RSY-a]

The set of access registers starting with access reg-
ister R1 and ending with access register R3 is loaded
from the locations designated by the second-operand
address.

The storage area from which the contents of the
access registers are obtained starts at the location
designated by the second-operand address and con-
tinues through as many storage words as the number
of access registers specified. The access registers
are loaded in ascending order of their register num-
bers, starting with access register R1 and continuing
up to and including access register R3, with access
register 0 following access register 15.

The displacement for LAM is treated as a 12-bit
unsigned binary integer. The displacement for LAMY
is treated as a 20-bit signed binary integer.

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

'9A' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '9A'

0 8 12 16 20 32 40 47

General Instructions 7-265

L
O

A
D

 A
D

D
R

E
S

S
 E

X
T

E
N

D
E

D• Operation (LAMY, if the long-displacement facility
is not installed)

• Specification
• Transaction constraint

LOAD ADDRESS

LA R1,D2(X2,B2) [RX-a]

LAY R1,D2(X2,B2) [RXY-a]

The address specified by the X2, B2, and D2 fields is
placed in general register R1. The address computa-
tion follows the rules for address arithmetic.

In the 24-bit addressing mode, the address is placed
in bit positions 40-63, bits 32-39 are set to zeros, and
bits 0-31 remain unchanged. In the 31-bit addressing
mode, the address is placed in bit positions 33-63, bit
32 is set to zero, and bits 0-31 remain unchanged. In
the 64-bit addressing mode, the address is placed in
bit positions 0-63.

The displacement for LA is treated as a 12-bit
unsigned binary integer. The displacement for LAY is
treated as a 20-bit signed binary integer.

No storage references for operands take place, and
the address is not inspected for access exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (LAY if the long-displacement facility is
not installed)

Programming Notes:

1. An example of the use of the LOAD ADDRESS
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. LOAD ADDRESS may be used to increment the
rightmost bits of a general register, other than
register 0, by the contents of the D2 field of the
instruction. LOAD ADDRESS (LAY) may also be
used to decrement the rightmost bits of a regis-

ter, other than register 0. The register to be incre-
mented should be designated by R1 and by either
X2 (with B2 set to zero) or B2 (with X2 set to zero).
The instruction increments 24 bits in the 24-bit
addressing mode, 31 bits in the 31-bit address-
ing mode, and 64 bits in the 64-bit addressing
mode.

LOAD ADDRESS EXTENDED

LAE R1,D2(X2,B2) [RX-a]

LAEY R1,D2(X2,B2) [RXY-a]

The address specified by the X2, B2, and D2 fields is
placed in general register R1. Access register R1 is
loaded with a value that depends on the current
value of the address-space-control bits, bits 16 and
17 of the PSW. If the address-space-control bits are
01 binary, the value placed in the access register
also depends on whether the B2 field is zero or non-
zero.

The address computation follows the rules for
address arithmetic. In the 24-bit addressing mode,
the address is placed in bit positions 40-63 of general
register R1, bits 32-39 are set to zeros, and bits 0-31
remain unchanged. In the 31-bit addressing mode,
the address is placed in bit positions 33-63, bit 32 is
set to zero, and bits 0-31 remain unchanged. In the
64-bit addressing mode, the address is placed in bit
positions 0-63.

The value placed in access register R1 is as shown in
the following table:

'41' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '71'

0 8 12 16 20 32 40 47

'51' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '75'

0 8 12 16 20 32 40 47

PSW Bits
16 and 17 Value Placed in Access Register R1

00 00000000 hex (zeros in bit positions 0-31)

10 00000001 hex (zeros in bit positions 0-30
and one in bit position 31)

01 If B2 field is zero: 00000000 hex (zeros in bit
positions 0-31)

If B2 field is nonzero: Contents of access
register B2

7-266 The z/Architecture CPU Architecture

L
O

A
D

 A
D

D
R

E
S

S
 R

E
L

A
T

IV
E

 L
O

N
G

However, when PSW bits 16 and 17 are 01 binary
and the B2 field is nonzero, bit positions 0-6 of access
register B2 must contain all zeros; otherwise, the
results in general register R1 and access register R1

are unpredictable.

The displacement for LAE is treated as a 12-bit
unsigned binary integer. The displacement for LAEY
is treated as a 20-bit signed binary integer.

No storage references for operands take place, and
the address is not inspected for access exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (LAEY; if the general-instructions-
extension facility is not installed)

• Transaction constraint

Programming Notes:

1. When DAT is on, the different values of the
address-space-control bits correspond to transla-
tion modes as follows:

2. In the access-register mode, the value 00000000
hex in an access register designates the primary
address space, and the value 00000001 hex
designates the secondary address space. The
value 00000002 hex designates the home
address space if the control program assigns
entry 2 of the dispatchable-unit access list as
designating the home address space and places
a zero access-list-entry sequence number
(ALESN) in that entry.

LOAD ADDRESS RELATIVE LONG

LARL R1,RI2 [RIL-b]

The address specified by the RI2 field is placed in
general register R1. The address computation follows
the rules for the branch address of BRANCH RELA-
TIVE ON CONDITION LONG and BRANCH RELA-
TIVE AND SAVE LONG.

In the 24-bit addressing mode, the address is placed
in bit positions 40-63, bits 32-39 are set to zeros, and
bits 0-31 remain unchanged. In the 31-bit addressing
mode, the address is placed in bit positions 33-63, bit
32 is set to zero, and bits 0-31 remain unchanged. In
the 64-bit addressing mode, the address is placed in
bit positions 0-63.

The contents of the RI2 field are a signed binary inte-
ger specifying the number of halfwords that is added
to the address of the instruction to generate the com-
puted address.

No storage references for operands take place, and
the address is not inspected for access exceptions.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes:

1. Only even addresses (halfword addresses) can
be generated. If an odd address is desired,
LOAD ADDRESS can be used to add one to an
address formed by LOAD ADDRESS RELATIVE
LONG.

2. When LOAD ADDRESS RELATIVE LONG is the
target of an execute-type instruction, the address
produced is relative to the location of the LOAD
ADDRESS RELATIVE LONG instruction, not of
the execute-type instruction. This is consistent
with the operation of the relative-branch instruc-
tions.

11 00000002 hex (zeros in bit positions 0-29
and 31, and one in bit position 30)

PSW Bits
16 and 17 Translation Mode

00 Primary-space mode

10 Secondary-space mode
01 Access-register mode

11 Home-space mode

PSW Bits
16 and 17 Value Placed in Access Register R1

'C0' R1 '0' RI2
0 8 12 16 47

General Instructions 7-267

L
O

A
D

 A
N

D
 A

D
D

 L
O

G
IC

A
LLOAD AND ADD

LAA R1,R3,D2(B2) [RSY-a]

LAAG R1,R3,D2(B2) [RSY-a]

The second operand is added to the third operand,
and the sum is placed at the second-operand loca-
tion. Subsequently, the original contents of the sec-
ond operand (prior to the addition) are placed
unchanged at the first-operand location.

For LAA, the operands are treated as being 32-bit
signed binary integers. For LAAG, the operands are
treated as being 64-bit signed binary integers.

All accesses to the second-operand location appear
to be a block-concurrent interlocked-update refer-
ence as observed by other CPUs and the I/O subsys-
tem. A specific-operand-serialization operation is
performed.

The displacement is treated as a 20-bit signed binary
integer.

The second operand of LAA must be designated on a
word boundary. The second operand of LAAG must
be designated on a doubleword boundary. Other-
wise, a specification exception is recognized.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch and store, operand 2)
• Fixed-point overflow
• Operation (if the interlocked-access facility 1 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. Except for the case where the R1 and R3 fields
designate the same register, general register R3

is unchanged.

2. The operation of LOAD AND ADD, LOAD AND
ADD LOGICAL, LOAD AND AND, LOAD AND
EXCLUSIVE OR, and LOAD AND OR may be
expressed as follows.

temp operand_2;
operand_2 temp OP operand_3;
operand_1 temp;

OP represents the arithmetic or logical operation
being performed by the instruction.

LOAD AND ADD LOGICAL

LAAL R1,R3,D2(B2) [RSY-a]

LAALG R1,R3,D2(B2) [RSY-a]

The second operand is added to the third operand,
and the sum is placed at the second-operand loca-
tion. Subsequently, the original contents of the sec-
ond operand (prior to the addition) are placed
unchanged at the first-operand location.

For LAAL, the operands are treated as being 32-bit
unsigned binary integers. For LAALG, the operands
are treated as being 64-bit unsigned binary integers.

All accesses to the second-operand location appear
to be a block-concurrent interlocked-update refer-
ence as observed by other CPUs and the I/O subsys-
tem. A specific-operand-serialization operation is
performed.

The displacement is treated as a 20-bit signed binary
integer.

The second operand of LAAL must be designated on
a word boundary. The second operand of LAALG
must be designated on a doubleword boundary. Oth-
erwise, a specification exception is recognized.

'EB' R1 R3 B2 DL2 DH2 'F8'
0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 'E8'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 'FA'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 'EA'

0 8 12 16 20 32 40 47

7-268 The z/Architecture CPU Architecture

L
O

A
D

 A
N

D
 A

N
D Resulting Condition Code:

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

Program Exceptions:

• Access (fetch and store, operand 2)
• Operation (if the interlocked-access facility 1 is

not installed)
• Specification
• Transaction constraint

Programming Note: See the programming notes for
LOAD AND ADD.

LOAD AND AND

LAN R1,R3,D2(B2) [RSY-a]

LANG R1,R3,D2(B2) [RSY-a]

The AND of the second operand and third operand is
placed at the second-operand location. Subse-
quently, the original contents of the second operand
(prior to the AND operation) are placed unchanged at
the first-operand location.

For LAN, the operands are 32 bits. For LANG, the
operands are 64 bits.

The connective AND is applied to the operands bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit positions in both oper-
ands contain ones; otherwise, the result bit is set to
zero.

All accesses to the second-operand location appear
to be a block-concurrent interlocked-update refer-
ence as observed by other CPUs and the I/O subsys-
tem. A specific-operand-serialization operation is
performed.

The displacement is treated as a 20-bit signed binary
integer.

The second operand of LAN must be designated on
a word boundary. The second operand of LANG must
be designated on a doubleword boundary. Other-
wise, a specification exception is recognized.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Access (fetch and store, operand 2)
• Operation (if the interlocked-access facility 1 is

not installed)
• Specification
• Transaction constraint

Programming Note: See the programming notes for
LOAD AND ADD.

LOAD AND EXCLUSIVE OR

LAX R1,R3,D2(B2) [RSY-a]

LAXG R1,R3,D2(B2) [RSY-a]

The EXCLUSIVE OR of the second operand and
third operand is placed at the second-operand loca-
tion. Subsequently, the original contents of the sec-
ond operand (prior to the EXCLUSIVE OR operation)
are placed unchanged at the first-operand location.

For LAX, the operands are 32 bits. For LAXG, the
operands are 64 bits.

The connective exclusive OR is applied to the oper-
ands bit by bit. The contents of a bit position in the
result are set to one if the bits in the corresponding
bit positions in the two operands are unlike; other-
wise, the result bit is set to zero.

All accesses to the second-operand location appear
to be a block-concurrent interlocked-update refer-
ence as observed by other CPUs and the I/O subsys-

'EB' R1 R3 B2 DL2 DH2 'F4'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 'E4'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 'F7'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 'E7'

0 8 12 16 20 32 40 47

General Instructions 7-269

L
O

A
D

 A
N

D
 T

E
S

Ttem. A specific-operand-serialization operation is
performed.

The displacement is treated as a 20-bit signed binary
integer.

The second operand of LAX must be designated on a
word boundary. The second operand of LAXG must
be designated on a doubleword boundary. Other-
wise, a specification exception is recognized.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Access (fetch and store, operand 2)
• Operation (if the interlocked-access facility 1 is

not installed)
• Specification
• Transaction constraint

Programming Note: See the programming notes for
LOAD AND ADD.

LOAD AND OR

LAO R1,R3,D2(B2) [RSY-a]

LAOG R1,R3,D2(B2) [RSY-a]

The OR of the second operand and third operand is
placed at the second-operand location. Subse-
quently, the original contents of the second operand
(prior to the OR operation) are placed unchanged at
the first-operand location.

For LAO, the operands are 32 bits. For LAOG, the
operands are 64 bits.

The connective OR is applied to the operands bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit position in one or both

operands contains a one; otherwise, the result bit is
set to zero.

All accesses to the second-operand location appear
to be a block-concurrent interlocked-update refer-
ence as observed by other CPUs and the I/O subsys-
tem. A specific-operand-serialization operation is
performed.

The displacement is treated as a 20-bit signed binary
integer.

The second operand of LAO must be designated on
a word boundary. The second operand of LAOG
must be designated on a doubleword boundary. Oth-
erwise, a specification exception is recognized.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Access (fetch and store, operand 2)
• Operation (if the interlocked-access facility 1 is

not installed)
• Specification
• Transaction constraint

Programming Note: See the programming notes for
LOAD AND ADD.

LOAD AND TEST

Register-and-register formats:

LTR R1,R2 [RR]

LTGR R1,R2 [RRE]

LTGFR R1,R2 [RRE]

'EB' R1 R3 B2 DL2 DH2 'F6'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 'E6'

0 8 12 16 20 32 40 47

'12' R1 R2

0 8 12 15

'B902' / / / / / / / / R1 R2

0 16 24 28 31

'B912' / / / / / / / / R1 R2

0 16 24 28 31

7-270 The z/Architecture CPU Architecture

L
O

A
D

 A
N

D
 T

R
A

P Register-and-storage formats:

LT R1,D2(X2,B2) [RXY-a]

LTG R1,D2(X2,B2) [RXY-a]

LTGF R1,D2(X2,B2) [RXY-a]

The second operand is placed unchanged at the first-
operand location, except that, for LTGF and LTGFR,
it is sign extended. The sign and magnitude of the
second operand, treated as a signed binary integer,
are indicated in the condition code.

For LT and LTR, the operands are 32 bits, and, for
LTG and LTGR, the operands are 64 bits. For LTGF
and LTGFR, the second operand is 32 bits, and the
first operand is treated as a 64-bit signed binary inte-
ger.

Resulting Condition Code:

0 Result zero
1 Result less than zero
2 Result greater than zero
3 --

Program Exceptions:

• Access (fetch, operand 2 of LT, LTG, and LTGF
only)

• Operation (LT and LTG, if the extended-immedi-
ate facility is not installed; LTGF, if the general-
instructions-extension facility is not installed)

Programming Note: For LOAD AND TEST (LTR and
LTGR) when the R1 and R2 fields designate the same
register, the operation is equivalent to a test without
data movement.

LOAD AND TRAP

LAT R1,D2(X2,B2) [RXY-a]

LGAT R1,D2(X2,B2) [RXY-a]

The second operand is placed unchanged at the first
operand location. If all zeros are placed at the first
operand location, a compare-and-trap-instruction
data exception is recognized.

For LAT, the second operand is treated as a 32-bit
signed integer and placed in bit positions 32-63 of
general register R1, and bit positions 0-31 remain
unchanged.

For LGAT, the second operand is treated as a 64-bit
signed integer and placed in bit positions 0-63 of
general register R1.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data
• Access (fetch, operand 2)
• Operation (if the load-and-trap facility is not

installed)

Programming Note: Possible uses of LOAD AND
TRAP include checking for pointers containing zero
(null pointer).

LOAD AND ZERO RIGHTMOST
BYTE

LZRF R1,D2(X2,B2) [RXY-a]

LZRG R1,D2(X2,B2) [RXY-a]

'E3' R1 X2 B2 DL2 DH2 '12'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '02'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '32'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '9F'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '85'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '3B'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '2A'

0 8 12 16 20 32 40 47

General Instructions 7-271

L
O

A
D

 C
O

M
P

L
E

M
E

N
TThe second operand, with the rightmost byte set to

zero, is placed at the first-operand location. For
LZRF, the first and second operands are 32 bits, and
for LZRG, the first and second operands are 64 bits.

The displacement is treated as a 20-bit signed binary
integer.

It is unpredictable whether an access exception is
recognized for the rightmost byte of the second oper-
and.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation (if the load-and-zero-rightmost-byte

facility is not installed)

LOAD BYTE

Register-and-register formats:

LBR R1,R2 [RRE]

LGBR R1,R2 [RRE]

Register-and-storage formats:

LB R1,D2(X2,B2) [RXY-a]

LGB R1,D2(X2,B2) [RXY-a]

The second operand is sign extended and placed at
the first-operand location. The second operand is
one byte in length and is treated as an eight-bit
signed binary integer. For LOAD BYTE (LB and
LGB), the second operand is a byte in storage. For
LOAD BYTE (LBR and LGBR), the second operand
is in bits 56-63 of general register R2.

For LOAD BYTE (LB and LBR), the first operand is
treated as a 32-bit signed binary integer. For LOAD
BYTE (LGB and LGBR), the first operand is treated
as a 64-bit signed binary integer.

The displacement for LB and LGB is treated as a
20-bit signed binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of LB and LGB)
• Operation (LB and LGB, if the long-displacement

facility is not installed; LBR and LGBR, if the
extended-immediate facility is not installed)

LOAD BYTE HIGH

LBH R1,D2(X2,B2) [RXY-a]

The second operand is sign extended and placed at
the first-operand location. The second operand is
one byte in length and is treated as an eight-bit
signed binary integer.

The first operand is treated as a 32-bit signed binary
integer in bits 0-31 of general register R1; bits 32-63
of the register are unchanged.

The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

• Operation (if the high-word facility is not installed)

LOAD COMPLEMENT

LCR R1,R2 [RR]

'B926' / / / / / / / / R1 R2

0 16 24 28 31

'B906' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '76'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '77'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 'C0'

0 8 12 16 20 32 40 47

'13' R1 R2

0 8 12 15

7-272 The z/Architecture CPU Architecture

L
O

A
D

 C
O

U
N

T
 T

O
 B

L
O

C
K

 B
O

U
N

D
A

R
Y LCGR R1,R2 [RRE]

LCGFR R1,R2 [RRE]

The two’s complement of the second operand is
placed at the first-operand location. For LOAD COM-
PLEMENT (LCR), the second operand and result are
treated as 32-bit signed binary integers. For LOAD
COMPLEMENT (LCGR), they are treated as 64-bit
signed binary integers. For LOAD COMPLEMENT
(LCGFR), the second operand is treated as a 32-bit
signed binary integer, and the result is treated as a
64-bit signed binary integer.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position, and condi-
tion code 3 is set. If the fixed-point-overflow mask is
one, a program interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow (LCR and LCGR only)

Programming Note: The operation complements all
numbers. Zero remains unchanged. For LCR or
LCGR, the maximum negative 32-bit number or
64-bit number, respectively, remains unchanged, and
an overflow condition occurs when the number is
complemented. LCGFR complements the maximum
negative 32-bit number without recognizing overflow.

LOAD COUNT TO BLOCK
BOUNDARY

LCBB R1,D2(X2,B2),M3 [RXE]

A 32-bit unsigned binary integer containing the num-
ber of bytes possible to load from the second oper-
and location without crossing a specified block
boundary, with a maximum of sixteen is placed in the
first operand. If the number of bytes is greater than
sixteen, sixteen is placed in the first operand.

The displacement is treated as a 12-bit unsigned
integer.

The second operand address is not used to address
data.

The M3 field specifies a code that is used to signal
the CPU as to the block boundary size to compute
the number of possible bytes loaded. If a reserved
value is specified then a specification exception is
recognized.

Resulting Condition Code:

0 Operand one is sixteen
1 --
2 --
3 Operand one is less than sixteen

Program Exceptions:

• Operation (if the vector facility for z/Architecture
is not installed)

• Specification

Programming Note: It is expected that LOAD
COUNT TO BLOCK BOUNDARY will be used in con-
junction with VECTOR LOAD TO BLOCK BOUND-
ARY to determine the number of bytes that were
loaded.

'B903' / / / / / / / / R1 R2

0 16 24 28 31

'B913' / / / / / / / / R1 R2

0 16 24 28 31

‘E7’ R1 X2 B2 D2 M3 / / / / ‘27’
0 8 12 16 20 32 36 40 47

Code Boundary

0 64 Byte

1 128 Byte

2 256 Byte

3 512 Byte

4 1 K-byte

5 2 K-Byte

6 4 K-Byte

7-15 Reserved

General Instructions 7-273

L
O

A
D

 L
O

G
IC

A
L

 A
N

D
 S

H
IF

T
 G

U
A

R
D

E
DLOAD GUARDED

LGG R1,D2(X2,B2) [RXY-a]

LOAD LOGICAL AND SHIFT
GUARDED

LLGFSG R1,D2(X2,B2) [RXY-a]

Note: See the section “Guarded-Storage Facility” on
page 4-65 for details on the terminology used below.

A 64-bit intermediate result is formed as follows:

• For LOAD GUARDED: The second operand is a
doubleword in storage. A specification exception
is recognized and the operation is suppressed if
the second-operand address is not on a double-
word boundary.

In the 24-bit addressing mode, the intermediate
result is formed from the concatenation of 40
binary zeros with bits 40-63 of the second oper-
and. In the 31-bit addressing mode, the interme-
diate result is formed from the concatenation of
33 binary zeros with bits 33-63 of the second
operand. In the 64-bit addressing mode, the
intermediate result is formed from the entire sec-
ond operand.

• For LOAD LOGICAL AND SHIFT GUARDED:
The second operand is a word in storage. A
specification exception is recognized and the
operation is suppressed if the second-operand
address is not on a word boundary.

When the guarded-storage facility is enabled (by
means of bit 59 of control register 2), the inter-
mediate result is formed using the guarded-load-
shift value (GLS, in bits 53-55 of the guarded-
storage-designation register). When the
guarded-storage facility is not enabled, the GLS
value is assumed to be zero.

In the 24-bit addressing mode, the intermediate
result is formed from the concatenation of 40
binary zeros, bits (8+GLS) through 31 of the sec-
ond operand, and GLS binary zeros. In the 31-bit
addressing mode, the intermediate result is
formed from the concatenation of 33 binary
zeros, bits (1+GLS) through 31 of the second
operand, and GLS binary zeros. In the 64-bit
addressing mode, the intermediate result is
formed from the concatenation of (32-GLS)
binary zeros, the entire 32-bit second operand,
and GLS binary zeros.

When the guarded-storage facility is enabled, the
intermediate result is used as described in “Guarded-
Storage-Event Detection” on page 4-70. If a
guarded-storage event is recognized, then general
register R1 is not modified, and the instruction is com-
pleted as described in “Guarded-Storage-Event Pro-
cessing” on page 4-71.

When either the guarded-storage facility is not
enabled, or the facility is enabled but a guarded-stor-
age event is not recognized, then the 64-bit interme-
diate result is placed into general register R1, and the
instruction is completed.

The displacement is treated as a 20-bit signed binary
integer.

The guarded-storage-event parameter list (GSEPL)
is only accessed when a guarded-storage event is
recognized. Store-type accesses apply to the entire
GSEPL.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, second operand; when a guarded-
storage-event is recognized, fetch and store,
GSEPL fields)

• Operation (guarded-storage facility not installed)

'E3' R1 X2 B2 DL2 DH2 '4C'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '48'

0 8 12 16 20 32 40 47

7-274 The z/Architecture CPU Architecture

L
O

A
D

 G
U

A
R

D
E

D
 S

T
O

R
A

G
E

 C
O

N
T

R
O

L
S • Specification

Programming Notes:

1. LOAD LOGICAL AND SHIFT GUARDED may be
useful in loading what are sometimes referred to
as compressed pointers in which some number
of rightmost bits of the pointer address are
absent in storage and assumed to be zeros.

2. When the guarded-storage facility is installed in a
configuration, the LOAD GUARDED and LOAD
LOGICAL AND SHIFT GUARDED instructions
can be executed regardless of the contents of
the guarded-storage-facility-enablement control
(GSFE, bit 59 of control register 2). However,
guarded-storage events are only recognized as a
result of executing LGG or LLGFSG when (a) the
GSFE control is one, and (b) the GSSM is non-
zero. The GSSM cannot be loaded without the
GSFE control being one.

3. A guarded-storage event is never recognized
when all 64 bits of the guarded-storage selection
mask (GSSM) are zero. The program can ensure
that guarded-storage events are not recognized
by either (a) not loading the guarded-storage
controls, in which case the GSSM will contain its
reset state of zeros, or (b) loading zeros into the
GSSM.

LOAD GUARDED STORAGE
CONTROLS

LGSC R1,D2(X2,B2) [RXY-a]

The contents of the guarded-storage control block
(GSCB) at the second-operand address are loaded
into the three guarded-storage registers. The format
of the guarded-storage control block is shown in
Figure 4-19 on page 4-67. The R1 field of the instruc-
tion is reserved and should contain zero; otherwise,
the program may not operate compatibly in the
future.

Access exceptions are recognized for all 32 bytes of
the GSCB.

The section “Guarded-Storage-Designation (GSD)
Register” on page 4-66 describes the valid values of
the GSD register. If either the GLS or GSC fields of
the GSD register being loaded contain invalid values,
or if reserved bit positions of the register do not con-
tain zeros the results are unpredictable. If the second
operand contains either (a) invalid GLS or GSC val-
ues, or (b) nonzero values in the reserved bit posi-
tions, then it is model dependent whether the CPU
replaces the invalid or nonzero values with corrected
values. Furthermore, it is unpredictable whether such
corrected values are subsequently stored by STORE
GUARDED STORAGE CONTROLS.

Special Conditions

A special-operation exception is recognized and the
operation is suppressed when the guarded-storage-
facility-enablement control, bit 59 of control register
2, is zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, second operand)
• Operation (if the guarded-storage facility is not

installed)
• Special operation
• Transaction constraint

Programming Notes:

1. If the GSC field of the GSD register contains an
invalid value, guarded-storage events may not
occur or erroneous guarded-storage events may
be detected.

2. If the GLS field of the GSD register contains an
invalid value, the intermediate result used by
LLGFSG may be formed from an unpredictable

1.-7. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

8. Access exceptions for the second operand in
storage.

9. Completion with no guarded-storage-event
recognized.

10. Side-effect access exceptions for the guarded-
storage-event parameter list.

11. Completion with a guarded-storage-event
recognized.

Figure 7-300. Priority of Execution: LGG and LLGFSG

'E3' R1 X2 B2 DL2 DH2 '4D'

0 8 12 16 20 32 40 47

General Instructions 7-275

L
O

A
D

 H
A

L
F

W
O

R
D

 R
E

L
A

T
IV

E
 L

O
N

Grange of bits in the second operand, shifted by an
unpredictable number of bits.

LOAD HALFWORD

Register-and-register formats:

LHR R1,R2 [RRE]

LGHR R1,R2 [RRE]

Register-and-storage formats:

LH R1,D2(X2,B2) [RX-a]

LHY R1,D2(X2,B2) [RXY-a]

LGH R1,D2(X2,B2) [RXY-a]

LOAD HALFWORD IMMEDIATE

LHI R1,I2 [RI-a]

LGHI R1,I2 [RI-a]

LOAD HALFWORD RELATIVE
LONG

LHRL R1,RI2 [RIL-b]

LGHRL R1,RI2 [RIL-b]

The second operand is sign extended and placed at
the first-operand location. The second operand is two
bytes in length and is treated as a 16-bit signed
binary integer. For LOAD HALFWORD (LH, LHY, and
LGH) and LOAD HALFWORD RELATIVE LONG, the
second operand is in storage. For LOAD HALF-
WORD (LHI and LGHI), the second operand is the
immediate field of the instruction. For LOAD HALF-
WORD (LHR and LGHR), the second operand is in
bits 48-63 of general register R2.

For LOAD HALFWORD (LH, LHR, and LHY), LOAD
HALFWORD IMMEDIATE (LHI), and LOAD HALF-
WORD RELATIVE LONG (LHRL), the first operand is
treated as a 32-bit signed binary integer. For LOAD
HALFWORD (LGH and LGHR), LOAD HALFWORD
IMMEDIATE (LGHI), and LOAD HALFWORD RELA-
TIVE LONG (LGHRL), the first operand is treated as
a 64-bit signed binary integer.

The displacement for LH is treated as a 12-bit
unsigned binary integer. The displacement for LHY
and LGH is treated as a 20-bit signed binary integer.

For LOAD HALFWORD RELATIVE LONG, the con-
tents of the RI2 field are a signed binary integer spec-
ifying the number of halfwords that is added to the
address of the instruction to generate the address of
the second operand in storage. When DAT is on, the
second operand is accessed using the same
addressing-space mode as that used to access the
instruction. When DAT is off, the second operand is
accessed using a real address.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of LH, LHY, LGH, LHRL
and LGHRL)

• Operation (LHY, if the long-displacement facility
is not installed; LHR and LGHR, if the extended-
immediate facility is not installed; LHRL and
LGHRL, if the general-instructions-extension
facility is not installed)

'B927' / / / / / / / / R1 R2

0 16 24 28 31

'B907' / / / / / / / / R1 R2

0 16 24 28 31

'48' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '78'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '15'

0 8 12 16 20 32 40 47

'A7' R1 '8' I2
0 8 12 16 31

'A7' R1 '9' I2
0 8 12 16 31

'C4' R1 '5' RI2
0 8 12 16 47

'C4' R1 '4' RI2
0 8 12 16 47

7-276 The z/Architecture CPU Architecture

L
O

A
D

 H
A

L
F

W
O

R
D

 H
IG

H Programming Notes:

1. An example of the use of the LOAD HALFWORD
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. For LOAD HALFWORD RELATIVE LONG, the
second operand is necessarily aligned on an
integral boundary corresponding to the operand’s
size.

3. When LOAD HALFWORD RELATIVE LONG is
the target of an execute-type instruction, the sec-
ond-operand address is relative to the target
address.

LOAD HALFWORD HIGH

LHH R1,D2(X2,B2) [RXY-a]

The second operand is sign extended and placed at
the first-operand location. The second operand is two
bytes in length and is treated as an 16-bit signed
binary integer.

The first operand is treated as a 32-bit signed binary
integer in bits 0-31 of general register R1; bits 32-63
of the register are unchanged.

The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

• Operation (if the high-word facility is not installed)

LOAD HALFWORD IMMEDIATE ON
CONDITION

LOCHI R1,I2,M3 [RIE-g]

LOCGHI R1,I2,M3 [RIE-g]

LOAD HALFWORD HIGH
IMMEDIATE ON CONDITION

LOCHHI R1,I2,M3 [RIE-g]

The second operand is sign extended and placed at
the first-operand location if the condition code has
one of the values specified by M3; otherwise, the first
operand remains unchanged.

For LOAD HALFWORD IMMEDIATE ON CONDI-
TION (LOCHI), the first operand is treated as a 32-bit
signed binary integer in bits 32-63 of general register
R1, and bits 0-31 of the register are unchanged. For
LOAD HALFWORD HIGH IMMEDIATE ON CONDI-
TION, the first operand is treated as a 32-bit signed
binary integer in bits 0-31 of general register R1, and
bits 32-63 of the register are unchanged. For LOAD
HALFWORD IMMEDIATE ON CONDITION
(LOCGHI), the first operand is treated as a 64-bit
signed binary integer in bits 0-63 of general register
R1.

The second operand is the two byte I2 field of the
instruction and is treated as a 16-bit signed binary
integer.

The M3 field is used as a four-bit mask. The four con-
dition codes (0, 1, 2, and 3) correspond, left to right,
with the four bits of the mask, as follows:

The current condition code is used to select the cor-
responding mask bit. If the mask bit selected by the
condition code is one, the load is performed. If the
mask bit selected is zero, the load is not performed.

Condition Code: The code remains unchanged.

Program Exceptions:

'E3' R1 X2 B2 DL2 DH2 'C4'

0 8 12 16 20 32 40 47

'EC' R1 M3 I2 / / / / / / / / '42'
0 8 12 16 32 40 47

'EC' R1 M3 I2 / / / / / / / / '46'

0 8 12 16 32 40 47

'EC' R1 M3 I2 / / / / / / / / '4E'

0 8 12 16 32 40 47

Condition Code 0 1 2 3

Instruction Bit Number of Mask 12 13 14 15

Mask Position Value 8 4 2 1

General Instructions 7-277

L
O

A
D

 L
O

G
IC

A
L

 R
E

L
A

T
IV

E
 L

O
N

G• Operation (if the load/store-on-condition facility 2
is not installed)

Programming Notes: See programming note 4 on
page 7-284 for details on extended mnemonics for
the instructions of the load/store-on-condition facili-
ties.

LOAD HIGH

LFH R1,D2(X2,B2) [RXY-a]

The second operand is placed unchanged at the first-
operand location. The second operand is 32 bits, and
the first operand is in bits 0-31 of general register R1;
bits 32-63 of the register are unchanged.

The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

• Operation (if the high-word facility is not installed)

LOAD HIGH AND TRAP

LFHAT R1,D2(X2,B2) [RXY-a]

The second operand is treated as a 32-bit signed
integer and placed unchanged in bit positions 0-31 of
general register R1, and bit positions 32-63 remain
unchanged. If all zeros are placed at the first operand
location, a compare-and-trap-instruction data excep-
tion is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data
• Access (fetch, operand 2)
• Operation (if the load-and-trap facility is not

installed)

Programming Note: Possible uses of LOAD HIGH
AND TRAP include checking for pointers containing
zero (null pointer).

LOAD LOGICAL

Register-and-register format:

LLGFR R1,R2 [RRE]

Register-and-storage format:

LLGF R1,D2(X2,B2) [RXY-a]

LOAD LOGICAL RELATIVE LONG

LLGFRL R1,RI2 [RIL-b]

The four-byte second operand is placed in bit posi-
tions 32-63 of general register R1, and zeros are
placed in bit positions 0-31 of general register R1.

For LOAD LOGICAL (LLGFR), the second operand
is in bit positions 32-63 of general register R2.

For LOAD LOGICAL RELATIVE LONG, the contents
of the RI2 field are a signed binary integer specifying
the number of halfwords that is added to the address
of the instruction to generate the address of the sec-
ond operand in storage. When DAT is on, the second
operand is accessed using the same addressing-
space mode as that used to access the instruction.
When DAT is off, the second operand is accessed
using a real address.

For LOAD LOGICAL RELATIVE LONG, the second
operand must be aligned on a word boundary; other-
wise, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

'E3' R1 X2 B2 DL2 DH2 'CA'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 'C8'

0 8 12 16 20 32 40 47

'B916' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '16'

0 8 12 16 20 32 40 47

'C4' R1 'E' RI2
0 8 12 16 47

7-278 The z/Architecture CPU Architecture

L
O

A
D

 L
O

G
IC

A
L

 A
N

D
 T

R
A

P • Access (fetch, operand 2 of LLGF and LLGFRL
only)

• Operation (LLGFRL, if the general-instructions-
extension facility is not installed)

• Specification (LLGFRL only)

LOAD LOGICAL AND TRAP

LLGFAT R1,D2(X2,B2) [RXY-a]

The four-byte second operand is placed unchanged
in bit positions 32-63 of general register R1, and
zeros are placed in bit positions 0-31. If all zeros are
placed at the first operand location, a compare-and-
trap-instruction data exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data
• Access (fetch, operand 2)
• Operation (if the load-and-trap facility is not

installed)

Programming Note: Possible uses of LOAD LOGI-
CAL AND TRAP include checking for pointers con-
taining zero (null pointer).

LOAD LOGICAL AND ZERO
RIGHTMOST BYTE

LLZRGF R1,D2(X2,B2) [RXY-a]

The four-byte second operand, with the rightmost
byte set to zero, is placed in bit positions 32-63 of
general register R1, and zeros are placed in bit posi-
tions 0-31 of the register.

The displacement is treated as a 20-bit signed binary
integer.

It is unpredictable whether an access exception is
recognized for the rightmost byte of the second oper-
and.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation (if the load-and-zero-rightmost-byte

facility is not installed)

LOAD LOGICAL CHARACTER

Register-and-register formats:

LLCR R1,R2 [RRE]

LLGCR R1,R2 [RRE]

Register-and-storage formats:

LLC R1,D2(X2,B2) [RXY-a]

LLGC R1,D2(X2,B2) [RXY-a]

The one-byte second operand is placed in bit posi-
tions 56-63 of general register R1. For LOAD LOGI-
CAL CHARACTER (LLGC, LLGCR), zeros are
placed in bit positions 0-55 of general register R1. For
LOAD LOGICAL CHARACTER (LLC, LLCR), zeros
are placed in bit positions 32-55 of general register
R1; bit positions 0-31 of general register R1 are
unchanged.

For LOAD LOGICAL CHARACTER (LLC, LLGC), the
second operand is in storage. For LOAD LOGICAL
CHARACTER (LLCR, LLGCR), the second operand
is in bits 56-63 of general register R2.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of LLC and LLGC)
• Operation (LLC, LLCR, and LLGCR, if the

extended-immediate facility is not installed)

'E3' R1 X2 B2 DL2 DH2 '9D'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '3A'

0 8 12 16 20 32 40 47

'B994' / / / / / / / / R1 R2

0 16 24 28 31

'B984' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '94'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '90'

0 8 12 16 20 32 40 47

General Instructions 7-279

L
O

A
D

 L
O

G
IC

A
L

 H
A

L
F

W
O

R
D

 R
E

L
A

T
IV

E
 L

O
N

GLOAD LOGICAL CHARACTER
HIGH

LLCH R1,D2(X2,B2) [RXY-a]

The one-byte second operand is placed in bit posi-
tions 24-31 of general register R1, and zeros are
placed in bit positions 0-23 of general register R1; bit
positions 32-63 of general register R1 are
unchanged.

The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

• Operation (if the high-word facility is not installed)

LOAD LOGICAL HALFWORD

Register-and-register formats:

LLHR R1,R2 [RRE]

LLGHR R1,R2 [RRE]

Register-and-storage formats:

LLH R1,D2(X2,B2) [RXY-a]

LLGH R1,D2(X2,B2) [RXY-a]

LOAD LOGICAL HALFWORD
RELATIVE LONG

LLHRL R1,RI2 [RIL-b]

LLGHRL R1,RI2 [RIL-b]

The two-byte second operand is placed in bit posi-
tions 48-63 of general register R1. For LOAD LOGI-
CAL HALFWORD (LLGH, LLGHR) and LOAD
LOGICAL HALFWORD RELATIVE LONG
(LLGHRL), zeros are placed in bit positions 0-47 of
general register R1. For LOAD LOGICAL HALF-
WORD (LLH, LLHR) and LOAD LOGICAL HALF-
WORD RELATIVE LONG (LLHRL), zeros are placed
in bit positions 32-47 of general register R1; bit posi-
tions bits 0-31 of general register R1 are unchanged.

For LOAD LOGICAL HALFWORD (LLGH, LLH) and
LOAD LOGICAL HALFWORD RELATIVE LONG, the
second operand is in storage. For LOAD LOGICAL
HALFWORD (LLGHR, LLHR), the second operand is
in bits 48-63 of general register R2.

For LOAD LOGICAL HALFWORD RELATIVE LONG,
the contents of the RI2 field are a signed binary inte-
ger specifying the number of halfwords that is added
to the address of the instruction to generate the
address of the second operand in storage. When
DAT is on, the second operand is accessed using the
same addressing-space mode as that used to
access the instruction. When DAT is off, the second
operand is accessed using a real address.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of LLGH, LLH, LLHRL,
and LLGHRL)

• Operation (LLGHR, LLH, and LLHR, if the
extended-immediate facility is not installed;
LLHRL and LLGHRL, if the general-instructions-
extension facility is not installed)

'E3' R1 X2 B2 DL2 DH2 'C2'

0 8 12 16 20 32 40 47

'B995' / / / / / / / / R1 R2

0 16 24 28 31

'B985' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '95'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '91'

0 8 12 16 20 32 40 47

'C4' R1 '2' RI2
0 8 12 16 47

'C4' R1 '6' RI2
0 8 12 16 47

7-280 The z/Architecture CPU Architecture

L
O

A
D

 L
O

G
IC

A
L

 H
A

L
F

W
O

R
D

 H
IG

H Programming Notes:

1. For LOAD LOGICAL HALFWORD RELATIVE
LONG, the second operand is necessarily
aligned on an integral boundary corresponding to
the operand’s size.

2. When LOAD LOGICAL HALFWORD RELATIVE
LONG is the target of an execute-type instruc-
tion, the second-operand address is relative to
the target address.

LOAD LOGICAL HALFWORD HIGH

LLHH R1,D2(X2,B2) [RXY-a]

The two-byte second operand is placed in bit posi-
tions 16-31 of general register R1, and zeros are
placed in bit positions 0-15 of general register R1; bit
positions 32-63 of general register R1 are
unchanged.

The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

• Operation (if the high-word facility is not installed)

LOAD LOGICAL IMMEDIATE

LLIHF R1,I2 [RIL-a]

LLIHH R1,I2 [RI-a]

LLIHL R1,I2 [RI-a]

LLILF R1,I2 [RIL-a]

LLILH R1,I2 [RI-a]

LLILL R1,I2 [RI-a]

The second operand is placed in bit positions of the
first operand. The remainder of the first operand is
set to zeros.

For each instruction, the bit positions of the first oper-
and that are loaded with the second operand are as
follows:

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (LLIHF and LLILF, if the extended-
immediate facility is not installed)

LOAD LOGICAL THIRTY ONE BITS

Register-and-register format:

LLGTR R1,R2 [RRE]

'E3' R1 X2 B2 DL2 DH2 'C6'
0 8 12 16 20 32 40 47

'C0' R1 'E' I2
0 8 12 16 47

'A5' R1 'C' I2
0 8 12 16 31

'A5' R1 'D' I2
0 8 12 16 31

'C0' R1 'F' I2
0 8 12 16 47

'A5' R1 'E' I2
0 8 12 16 31

'A5' R1 'F' I2
0 8 12 16 31

Instruction
Bit Positions
Loaded

LLIHF 0-31

LLIHH 0-15

LLIHL 16-31

LLILF 32-63

LLILH 32-47

LLILL 48-63

'B917' / / / / / / / / R1 R2

0 16 24 28 31

General Instructions 7-281

L
O

A
D

 M
U

L
T

IP
L

ERegister-and-storage format:

LLGT R1,D2(X2,B2) [RXY-a]

For LLGTR, bits 33-63 of general register R2, with 33
zeros appended on the left, are placed in general
register R1. For LLGT, bits 1-31 of the four bytes at
the second-operand location, with 33 zeros
appended on the left, are placed in general register
R1.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of LLGT only)

LOAD LOGICAL THIRTY ONE BITS
AND TRAP

LLGTAT R1,D2(X2,B2) [RXY-a]

Bits 1-31 of the four bytes at the second operand
location are placed unchanged in bit positions 33-63
of general register R1, and zeros are placed in bit
positions 0-32. If all zeros are placed at the first oper-
and location, a compare-and-trap-instruction data
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data
• Access (fetch, operand 2)
• Operation (if the load-and-trap facility is not

installed)

Programming Note: Possible uses of LOAD LOGI-
CAL THIRTY ONE BITS AND TRAP include check-
ing for pointers containing zero (null pointer).

LOAD MULTIPLE

LM R1,R3,D2(B2) [RS-a]

LMY R1,R3,D2(B2) [RSY-a]

LMG R1,R3,D2(B2) [RSY-a]

Bit positions of the set of general registers starting
with general register R1 and ending with general reg-
ister R3 are loaded from storage beginning at the
location designated by the second-operand address
and continuing through as many locations as
needed.

For LOAD MULTIPLE (LM, LMY), bit positions 32-63
of the general registers are loaded from successive
four-byte fields beginning at the second-operand
address, and bits 0-31 of the registers remain
unchanged. For LOAD MULTIPLE (LMG), bit posi-
tions 0-63 of the general registers are loaded from
successive eight-byte fields beginning at the second-
operand address.

The general registers are loaded in the ascending
order of their register numbers, starting with general
register R1 and continuing up to and including gen-
eral register R3, with general register 0 following gen-
eral register 15.

The displacement for LM is treated as a 12-bit
unsigned binary integer. The displacement for LMY
and LMG is treated as a 20-bit signed binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation (LMY, if the long-displacement facility

is not installed)

Programming Note: All combinations of register
numbers specified by R1 and R3 are valid. When the
register numbers are equal, only four bytes, for LM or

'E3' R1 X2 B2 DL2 DH2 '17'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '9C'

0 8 12 16 20 32 40 47

'98' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '98'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '04'

0 8 12 16 20 32 40 47

7-282 The z/Architecture CPU Architecture

L
O

A
D

 M
U

L
T

IP
L

E
 D

IS
JO

IN
T LMY or eight bytes, for LMG, are transmitted. When

the number specified by R3 is less than the number
specified by R1, the register numbers wrap around
from 15 to 0.

LOAD MULTIPLE DISJOINT

LMD R1,R3,D2(B2),D4(B4) [SS-e]

Bit positions 0-31 of the set of general registers start-
ing with general register R1 and ending with general
register R3 are loaded from storage beginning at the
location designated by the second-operand address
and continuing through as many locations as
needed. Bit positions 32-63 of the same registers are
similarly loaded from storage beginning at the loca-
tion designated by the fourth-operand address.

The general registers are loaded in the ascending
order of their register numbers, starting with general
register R1 and continuing up to and including gen-
eral register R3, with general register 0 following gen-
eral register 15.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operands 2 and 4)
• Transaction constraint

Programming Notes:

1. All combinations of register numbers specified by
R1 and R3 are valid. When the register numbers
are equal, only eight bytes are transmitted. When
the number specified by R3 is less than the num-
ber specified by R1, the register numbers wrap
around from 15 to 0.

2. The second-operand and fourth-operand
addresses are computed before the contents of
any register are changed.

3. The combination of a LOAD MULTIPLE instruc-
tion and a LOAD MULTIPLE HIGH instruction
provides equal or better performance than a
LOAD MULTIPLE DISJOINT instruction for the
same register range. LOAD MULTIPLE DIS-

JOINT is for use when the second or fourth oper-
and must be addressed by means of one of the
registers loaded.

LOAD MULTIPLE HIGH

LMH R1,R3,D2(B2) [RSY-a]

The high-order halves, bit positions 0-31, of the set of
general registers starting with general register R1

and ending with general register R3 are loaded from
storage beginning at the location designated by the
second-operand address and continuing through as
many locations as needed, that is, bit positions 0-31
are loaded from successive four-byte fields beginning
at the second-operand address. Bits 32-63 of the
registers remain unchanged.

The general registers are loaded in the ascending
order of their register numbers, starting with general
register R1 and continuing up to and including gen-
eral register R3, with general register 0 following gen-
eral register 15.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

Programming Note: All combinations of register
numbers specified by R1 and R3 are valid. When the
register numbers are equal, only four bytes are trans-
mitted. When the number specified by R3 is less than
the number specified by R1, the register numbers
wrap around from 15 to 0.

LOAD NEGATIVE

LNR R1,R2 [RR]

LNGR R1,R2 [RRE]

'EF' R1 R3 B2 D2 B4 D4

0 8 12 16 20 32 36 47

'EB' R1 R3 B2 DL2 DH2 '96'

0 8 12 16 20 32 40 47

'11' R1 R2

0 8 12 15

'B901' / / / / / / / / R1 R2

0 16 24 28 31

General Instructions 7-283

L
O

A
D

 H
IG

H
 O

N
 C

O
N

D
IT

IO
NLNGFR R1,R2 [RRE]

The two’s complement of the absolute value of the
second operand is placed at the first-operand loca-
tion. For LOAD NEGATIVE (LNR), the second oper-
and and result are treated as 32-bit signed binary
integers, and, for LOAD NEGATIVE (LNGR), they are
treated as 64-bit signed binary integers. For LOAD
NEGATIVE (LNGFR), the second operand is treated
as a 32-bit signed binary integer, and the result is
treated as a 64-bit signed binary integer.

Resulting Condition Code:

0 Result zero
1 Result less than zero
2 --
3 --

Program Exceptions: None.

Programming Note: The operation complements
positive numbers; negative numbers remain
unchanged. The number zero remains unchanged.

LOAD ON CONDITION

Register-and-register formats:

LOCR R1,R2,M3 [RRF-c]

LOCGR R1,R2,M3 [RRF-c]

Register-and-storage formats:

LOC R1,D2(B2),M3 [RSY-b]

LOCG R1,D2(B2),M3 [RSY-b]

LOAD HIGH ON CONDITION

LOCFHR R1,R2,M3 [RRF-c]

LOCFH R1,D2(B2),M3 [RSY-b]

The second operand is placed unchanged at the first-
operand location if the condition code has one of the
values specified by M3; otherwise, the first operand
remains unchanged.

For LOC, LOCFH, LOCFHR, and LOCR, the first and
second operands are 32 bits, and for LOCG and
LOCGR, the first and second operands are 64 bits.

For LOC and LOCR, the first operand is in bits 32-63
of general register R1, and bits 0-31 of the register
are unchanged. For LOCFH and LOCFHR, the first
operand is in bits 0-31 of general register R1, and bits
32-63 of the register are unchanged.

For LOCR, the second operand is in bits 32-63 of
general register R2, and bits 0-31 of the register are
ignored. For LOCFHR, the second operand is in bits
0-31 of general register R2, and bits 32-63 of the reg-
ister are ignored.

The M3 field is used as a four-bit mask. The four con-
dition codes (0, 1, 2, and 3) correspond, left to right,
with the four bits of the mask, as follows:

The current condition code is used to select the cor-
responding mask bit. If the mask bit selected by the
condition code is one, the load is performed. If the
mask bit selected is zero, the load is not performed.

The displacement for LOC, LOCFH, and LOCG is
treated as a 20-bit signed binary integer.

For LOC, LOCFH, and LOCG, when the condition
specified by the M3 field is not met (that is, the load
operation is not performed), it is model dependent
whether an access exception or a PER zero-address

'B911' / / / / / / / / R1 R2

0 16 24 28 31

'B9F2' M3 / / / / R1 R2

0 16 20 24 28 31

'B9E2' M3 / / / / R1 R2

0 16 20 24 28 31

'EB' R1 M3 B2 DL2 DH2 'F2'
0 8 12 16 20 32 40 47

'EB' R1 M3 B2 DL2 DH2 'E2'

0 8 12 16 20 32 40 47

'B9E0' M3 / / / / R1 R2

0 16 20 24 28 31

'EB' R1 M3 B2 DL2 DH2 'E0'

0 8 12 16 20 32 40 47

Condition Code 0 1 2 3

Mask Position Value 8 4 2 1

7-284 The z/Architecture CPU Architecture

L
O

A
D

 P
A

IR
 D

IS
JO

IN
T detection event is recognized for the second oper-

and.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of LOC, LOCFH, and
LOCG)

• Operation (LOC, LOCG, LOCGR, LOCR, if the
load/store-on-condition facility 1 is not installed;
LOCFH, LOCFHR, if the load/store-on-condition
facility 2 is not installed)

Programming Notes:

1. When the M3 field contain all zeros and no
exception condition exists, the instruction acts as
a NOP. When the M3 field contains all ones and
no exception condition exists, the load operation
is always performed. However, these are not the
preferred means of implementing a NOP or
unconditional load, respectively.

2. For LOC, LOCFH, and LOCG, when the condi-
tion specified by the M3 field is not met, it is
model dependent whether the second operand is
brought into the cache.

3. LOAD ON CONDITION provides a function simi-
lar to that of a separate BRANCH ON CONDI-
TION instruction followed by a LOAD instruction,
except that LOAD ON CONDITION does not pro-
vide an index register. For example, the following
two instruction sequences are equivalent.

On models that implement predictive branching,
the combination of the BRANCH ON CONDI-
TION and LOAD instructions may perform some-
what better than the LOAD ON CONDITION
instruction when the CPU is able to successfully
predict the branch condition. However, on mod-
els where the CPU is not able to successfully
predict the branch condition, such as when the
condition is more random, the LOAD ON CONDI-
TION instruction may provide significant perfor-
mance improvement.

4. The High-Level Assembler (HLASM) provides
the following extended-mnemonic suffixes for the

load/store-on-condition facilities’ instructions in
place of the M3 field.

Later versions of HLASM provide the following
extended-mnemonic suffixes for the load/store-
on-condition facilities’ instructions in place of the
M3 field.

When the extended mnemonic is coded, the M3

field must be omitted.

LOAD PAIR DISJOINT

LPD R3,D1(B1),D2(B2) [SSF]

LPDG R3,D1(B1),D2(B2) [SSF]

General register R3 designates the even numbered
register of an even/odd register pair.

The first operand is placed unchanged into the even-
numbered register of the third operand, and the sec-
ond operand is placed unchanged into odd-num-
bered register of the third operand. The condition
code indicates whether the first and second oper-

LOCG 15,256(7),8 BC 7,SKIP
LG 15,256(0,7)

SKIP DS 0H

Suffix Meaning
Effective
M3 Value

E Equal B'1000'

L Low B'0100'

H High B'0010'

NE Not equal B'0111'
NL Not low B'1011'

NH Not high B'1101'

Suffix Meaning
Effective
M3 Value

Z Zero B'1000'
M Minus or mixed B'0100'

P Plus B'0010'

O Overflow or ones B'0001'
NZ Not zero B'0111'

NM Not minus or not mixed B'1011'

NP Not plus B'1101'
NO Not overflow or not ones B'1110'

'C8' R3 '4' B1 D1 B2 D2

0 8 12 16 20 32 36 47

'C8' R3 '5' B1 D1 B2 D2

0 8 12 16 20 32 36 47

General Instructions 7-285

L
O

A
D

 P
A

IR
 F

R
O

M
 Q

U
A

D
W

O
R

Dands appear to be fetched by means of block-concur-
rent interlocked fetch.

For LPD, the first and second operands are words in
storage, and the third operand is in bits 32-63 of gen-
eral registers R3 and R3 + 1; bits 0-31 of the registers
are unchanged. For LPDG, the first and second oper-
ands are doublewords in storage, and the third oper-
and is in bits 0-63 of general registers R3 and R3 + 1.

When, as observed by other CPUs, the first and sec-
ond operands appear to be fetched by means of
block-concurrent interlocked fetch, condition code 0
is set. When the first and second operands do not
appear to be fetched by means of block-concurrent
interlocked update, condition code 3 is set. The third
operand is loaded regardless of the condition code.

The displacement of the first and second operands is
treated as a 12-bit unsigned binary integer.

The first and second operands of LPD must be desig-
nated on a word boundary. The first and second
operands of LPDG must be designated on a double-
word boundary. General register R3 must designate
the even numbered register. Otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Register pair loaded by means of interlocked
fetch

1 --
2 --
3 Register pair not loaded by means of interlocked

fetch

Program Exceptions:

• Access (fetch, operands 1 and 2)
• Operation (if the interlocked-access facility 1 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. The setting of the condition code is dependent
upon storage accesses by other CPUs in the
configuration.

2. When the resulting condition code is 3, the pro-
gram may branch back to re-execute the LOAD

PAIR DISJOINT instruction. However, after
repeated unsuccessful attempts to attain an
interlocked fetch, the program should use an
alternate means of serializing access to the stor-
age operands. It is recommended that the pro-
gram re-execute the LOAD PAIR DISJOINT no
more than 10 times before branching to the alter-
nate path.

3. The program should be able to accommodate a
situation where condition code 0 is never set.

LOAD PAIR FROM QUADWORD

LPQ R1,D2(X2,B2) [RXY-a]

The quadword second operand is loaded into the
first-operand location. The second operand appears
to be fetched with quadword concurrency as
observed by other CPUs. The left doubleword of the
quadword is loaded into general register R1, and the
right doubleword is loaded into general register
R1 + 1.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister. The second operand must be designated on a
quadword boundary. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Specification
• Transaction constraint

Programming Notes:

1. The LOAD MULTIPLE (LM or LMG) instruction
does not necessarily provide quadword-concur-
rent access.

2. The performance of LOAD PAIR FROM QUAD-
WORD on some models may be significantly
slower than that of LOAD MULTIPLE (LMG).
Unless quadword consistency is required, LMG
should be used instead of LPQ.

'E3' R1 X2 B2 DL2 DH2 '8F'
0 8 12 16 20 32 40 47

7-286 The z/Architecture CPU Architecture

L
O

A
D

 P
O

S
IT

IV
E LOAD POSITIVE

LPR R1,R2 [RR]

LPGR R1,R2 [RRE]

LPGFR R1,R2 [RRE]

The absolute value of the second operand is placed
at the first-operand location. For LOAD POSITIVE
(LPR), the second operand and result are treated as
32-bit signed binary integers, and, for LOAD POSI-
TIVE (LPGR), they are treated as 64-bit signed
binary integers. For LOAD POSITIVE (LPGFR), the
second operand is treated as a 32-bit signed binary
integer, and the result is treated as a 64-bit signed
binary integer.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position, and condi-
tion code 3 is set. If the fixed-point-overflow mask is
one, a program interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 --
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow (LPR and LPGR only)

Programming Note: The operation complements
negative numbers; positive numbers and zero remain
unchanged. For LPR or LPGR, an overflow condition
occurs when the maximum negative 32-bit number or
64-bit number, respectively, is complemented; the
number remains unchanged. LPGFR complements
the maximum negative 32-bit number without recog-
nizing overflow.

LOAD REVERSED

Register-and-register formats:

LRVR R1,R2 [RRE]

LRVGR R1,R2 [RRE]

Register-and-storage formats:

LRVH R1,D2(X2,B2) [RXY-a]

LRV R1,D2(X2,B2) [RXY-a]

LRVG R1,D2(X2,B2) [RXY-a]

The second operand is placed at the first-operand
location with the left-to-right sequence of the bytes
reversed.

For LOAD REVERSED (LRVH), the second operand
is two bytes, the result is placed in bit positions 48-63
of general register R1, and bits 0-47 of the register
remain unchanged.

For LOAD REVERSED (LRVR, LRV), the second
operand is four bytes, the result is placed in bit posi-
tions 32-63 of general register R1, and bits 0-31 of
the register remain unchanged. For LOAD
REVERSED (LRVR), the second operand is in bit
positions 32-63 of general register R2.

For LOAD REVERSED (LRVGR, LRVG), the second
operand is eight bytes.

Condition Code: The code remains unchanged.

Program Exceptions:

'10' R1 R2

0 8 12 15

'B900' / / / / / / / / R1 R2

0 16 24 28 31

'B910' / / / / / / / / R1 R2

0 16 24 28 31

'B91F' / / / / / / / / R1 R2

0 16 24 28 31

'B90F' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '1F'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '1E'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '0F'
0 8 12 16 20 32 40 47

General Instructions 7-287

M
O

N
IT

O
R

 C
A

L
L• Access (fetch, operand 2 of LRVH, LRV, LRVG

only)

Programming Notes:

1. The instruction can be used to convert two, four,
or eight bytes from a “little-endian” format to a
“big-endian” format, or vice versa. In the big-
endian format, the bytes in a left-to-right
sequence are in the order most significant to
least significant. In the little-endian format, the
bytes are in the order least significant to most
significant. For example, the bytes ABCD in the
big-endian format are DCBA in the little-endian
format.

2. LOAD REVERSED (LRVR) can be used with a
two-byte value already in a register as shown in
the following example. In the example, the two
bytes of interest are in bit positions 48-63 of the
R1 register.

The LOAD REVERSED instruction places the
two bytes of interest in bit positions 32-47 of the
register, with the order of the bytes reversed. The
SHIFT RIGHT SINGLE (SRA) instruction shifts
the two bytes to bit positions 48-63 of the register
and extends them on their left, in bit positions
32-47, with their sign bit. The instruction SHIFT
RIGHT SINGLE LOGICAL (SRL) should be
used, instead, if the two bytes of interest are
unsigned.

MONITOR CALL

MC D1(B1),I2 [SI]

Subject to the control of the monitor class and the
monitor masks, a monitor event may be recognized.
When the enhanced-monitor facility is not installed, a
monitor event results in a monitor-event program
interruption. When the enhanced-monitor facility is
installed, a monitor event results in either a monitor-
event program interruption or a monitor-event count-
ing operation.

Bit positions 12-15 of the instruction (bit positions 4-7
of the I2 field) contain a 4-bit unsigned binary number
specifying the monitor class. The monitor-mask bits
are in bit positions 48-63 of control register 8, which
correspond to monitor classes 0-15, respectively.

When the monitor-mask bit corresponding to the
specified monitor class is one, a monitor event
occurs. When the monitor-mask bit corresponding to
the specified monitor class is zero, no monitor-event
occurs, and the instruction is executed as a no-oper-
ation.

When the enhanced-monitor facility is installed, the
enhanced-monitor-mask bits are in bit positions
16-31 of control register 8, which correspond to mon-
itor classes 0-15 respectively. When a monitor event
occurs and either (a) the enhanced-monitor facility is
not installed, or (b) the facility is installed but the
enhanced-monitor-mask bit corresponding to the
monitor class is zero, then a monitor-event program
interruption occurs, as described below. When a
monitor event occurs and the enhanced-monitor-
mask bit corresponding to the monitor class is one, a
monitor-event counting operation is performed.

The first-operand address is not used to address
data; instead, the address specified by the B1 and D1

fields forms the monitor code. Address computation
follows the rules of address arithmetic; in the 24-bit
addressing mode, bits 0-39 are set to zeros; in the
31-bit addressing mode, bits 0-32 are set to zeros.

Monitor-Event Program Interruption
When a monitor-event program interruption occurs:

• The monitor code formed by the first-operand
address is placed in the doubleword at real loca-
tion 176.

• The contents of the I2 field are stored at real loca-
tion 149, with zeros stored at real location 148.

• Bit 9 of the program-interruption code is set to
one.

Monitor-Event Counting Operation
The monitor-event counting operation is described in
“Monitor-Event Counting” on page 5-109.

LRVR R1,R1
SRA R1,16

'AF' I2 B1 D1

0 8 16 20 31

7-288 The z/Architecture CPU Architecture

M
O

V
E Special Conditions

Bit positions 8-11 of the instruction must contain
zeros; otherwise, a specification exception is recog-
nized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Monitor event
• Specification
• Transaction constraint

Programming Notes:

1. The monitor-event program interruption provides
the capability for passing control to a monitoring
program when selected points are reached in the
monitored program. This is accomplished by
implanting MONITOR CALL instructions at the
desired points in the monitored program. This
function may be useful in performing various
measurement functions; specifically, tracing
information can be generated indicating which
programs were executed, counting information
can be generated indicating how often particular
programs were used, and timing information can
be generated indicating the amount of time a
particular program required for execution.

2. The monitor masks provide a means of disallow-
ing all monitor events or allowing monitor events
for all or selected classes.

3. When used to generate a monitor-event program
interruption, the monitor code provides a means
of associating descriptive information, in addition
to the class number, with each MONITOR CALL.

Without the use of a base register, up to 4,096
distinct monitor codes can be associated with a
monitor event. With the base register designated
by a nonzero value in the B1 field, each monitor-
ing interruption can be identified by a 24-bit,
31-bit, or 64-bit code, depending on the address-
ing mode.

4. A monitor-event counting operation can never
occur in the ESA/390-compatibility mode.

MOVE

Storage-and-storage format:

MVC D1(L,B1),D2(B2) [SS-a]

Storage-and-immediate formats:

MVHHI D1(B1),I2 [SIL]

MVHI D1(B1),I2 [SIL]

MVGHI D1(B1),I2 [SIL]

MVI D1(B1),I2 [SI]

MVIY D1(B1),I2 [SIY]

The second operand is placed at the first-operand
location.

For MOVE (MVC), each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one byte
at a time and each result byte were stored immedi-
ately after fetching the necessary operand byte.

For MOVE (MVI, MVIY), the first operand is one byte
in length, and only one byte is stored.

For MOVE (MVGHI, MVHHI, and MVHI), the second
operand is treated as a 16-bit signed integer, sign-
extended as necessary, and placed in the first-oper-
and location. The first operand is two, four, or eight
bytes for MVHHI, MVHI, and MVGHI, respectively.

'D2' L B1 D1 B2 D2

0 8 16 20 32 36 47

'E544' B1 D1 I2
0 16 20 32 47

'E54C' B1 D1 I2
0 16 20 32 47

'E548' B1 D1 I2
0 16 20 32 47

'92' I2 B1 D1

0 8 16 20 31

'EB' I2 B1 DL1 DH1 '52'
0 8 16 20 32 40 47

General Instructions 7-289

M
O

V
E

 L
O

N
GThe displacements for MVGHI, MVHHI, MVHI, MVI

and both operands of MVC are treated as 12-bit
unsigned binary integers. The displacement for MVIY
is treated as a 20-bit signed binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of MVC; store, operand
1, MVC, MVGHI, MVHHI, MVHI, MVI, and MVIY)

• Operation (MVIY, if the long-displacement facility
is not installed; MVGHI, MVHHI, and MVHI, if the
general-instructions-extension facility is not
installed)

• Transaction constraint (MVC)

Programming Notes:

1. Examples of the use of the MOVE instruction are
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. For MOVE (MVC), it is possible to propagate one
byte through an entire field by having the first
operand start one byte to the right of the second
operand.

MOVE INVERSE

MVCIN D1(L,B1),D2(B2) [SS-a]

The second operand is placed at the first-operand
location with the left-to-right sequence of the bytes
inverted.

The first-operand address designates the leftmost
byte of the first operand. The second-operand
address designates the rightmost byte of the second
operand. Both operands have the same length.

The result is obtained as if the second operand were
processed from right to left and the first operand from
left to right. The second operand may wrap around
from location 0 to location 224 - 1 in the 24-bit
addressing mode, to location 231 - 1 in the 31-bit
addressing mode, or to location 264 - 1 in the 64-bit
addressing mode. The first operand may wrap
around from location 224 - 1 to location 0 in the 24-bit
addressing mode, from location 231 - 1 to location 0

in the 31-bit addressing mode, or from location 264 - 1
to location 0 in the 64-bit addressing mode.

When the operands overlap by more than one byte,
the contents of the overlapped portion of the result
field are unpredictable.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Transaction constraint

Programming Notes:

1. An example of the use of the MOVE INVERSE
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. The contents of each byte moved remain
unchanged.

3. MOVE INVERSE is the only SS-format instruc-
tion for which the second-operand address des-
ignates the rightmost, instead of the leftmost,
byte of the second operand.

4. The storage-operand references for MOVE
INVERSE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-125)

MOVE LONG

MVCL R1,R2 [RR]

The second operand is placed at the first-operand
location, provided overlapping of operand locations
would not affect the final contents of the first-operand
location. The remaining rightmost byte positions, if
any, of the first-operand location are filled with pad-
ding bytes.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and second operand is designated by the contents of

'E8' L B1 D1 B2 D2

0 8 16 20 32 36 47

'0E' R1 R2

0 8 12 15

7-290 The z/Architecture CPU Architecture

M
O

V
E

 L
O

N
G general registers R1 and R2, respectively. The num-

ber of bytes in the first-operand and second-operand
locations is specified by unsigned binary integers in
bit positions 40-63 of general registers R1 + 1 and
R2 + 1, respectively. Bit positions 32-39 of general
register R2 + 1 contain the padding byte. The con-
tents of bit positions 0-39 of general register R1 + 1
and of bit positions 0-31 of general register R2 + 1
are ignored.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-301.

The result is obtained as if the movement starts at
the left end of both fields and proceeds to the right,
byte by byte. The operation is ended when the num-
ber of bytes specified by bits 40-63 of general regis-
ter R1 + 1 have been moved into the first-operand
location. If the second operand is shorter than the

first operand, the remaining rightmost bytes of the
first-operand location are filled with the padding byte.

As part of the execution of the instruction, the values
of the two length fields are compared for the setting
of the condition code, and a check is made for

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Pad Second-Operand Length
0 32 40 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 40 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Pad Second-Operand Length
0 32 40 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 / First-Operand Length
0 40 63

R2 Second-Operand Address
0 63

R2 + 1 / Pad Second-Operand Length
0 32 40 63

Figure 7-301. Register Contents for MOVE LONG

General Instructions 7-291

M
O

V
E

 L
O

N
Gdestructive overlap of the operands. Operands are

said to overlap destructively when the first-operand
location is used as a source after data has been
moved into it, assuming the inspection for overlap is
performed by the use of logical operand addresses.
When the operands overlap destructively, no move-
ment takes place, and condition code 3 is set.

Operands do not overlap destructively, and move-
ment is performed, if the leftmost byte of the first
operand does not coincide with any of the second-
operand bytes participating in the operation other
than the leftmost byte of the second operand. When
an operand wraps around from location 224 - 1 (or
231 - 1 or 264 - 1) to location 0, operand bytes in loca-
tions up to and including 224 - 1 (or 231 - 1 or 264 - 1)
are considered to be to the left of bytes in locations
from 0 up.

In the 24-bit addressing mode, wraparound is from
location 224 - 1 to location 0; in the 31-bit addressing
mode, wraparound is from location 231 - 1 to location
0; in the 64-bit addressing mode, wraparound is from
location 264 - 1 to location 0.

In the access-register mode, the contents of access
register R1 and access register R2 are compared. If
the R1 or R2 field is zero, 32 zeros are used rather
than the contents of access register 0. If all 32 bits of
the compared values are equal, then the destructive
overlap test is made. If all 32 bits of the compared
values are not equal, destructive overlap is declared
not to exist. If, for this case, the operands actually
overlap in real storage, it is unpredictable whether
the result reflects the overlap condition.

When the length specified by bits 40-63 of general
register R1 + 1 is zero, no movement takes place,
and condition code 0 or 1 is set to indicate the rela-
tive values of the lengths.

The execution of the instruction is interruptible. When
an interruption occurs, other than one that follows ter-
mination, the lengths in general registers R1 + 1 and
R2 + 1 are decremented by the number of bytes
moved, and the addresses in general registers R1

and R2 are incremented by the same number, so that
the instruction, when reexecuted, resumes at the
point of interruption. In the 24-bit or 31-bit addressing
mode, the leftmost bits which are not part of the
address in bit positions 32-63 of general registers R1

and R2 are set to zeros, and the contents of bit posi-
tions 0-31 remain unchanged. In any addressing
mode, the contents of bit positions 0-39 of general

registers R1 + 1 and R2 + 1 remain unchanged; and
the condition code is unpredictable. If the operation is
interrupted during padding, the length field in general
register R2 + 1 is 0, the address in general register R2

is incremented by the original length in general regis-
ter R2 + 1, and general registers R1 and R1 + 1 reflect
the extent of the padding operation.

When the first-operand location includes the location
of the instruction or of an execute-type instruction,
the instruction may be refetched from storage and
reinterpreted even in the absence of an interruption
during execution. The exact point in the execution at
which such a refetch occurs is unpredictable.

Padding byte values of B0 hex and B8 hex may be
used during the nonpadding part of the operation by
some models, in certain cases, as an indication of
whether the movement should be performed bypass-
ing the cache or using the cache, respectively. Thus,
a padding byte of B0 hex indicates no intention to ref-
erence the destination area after the move, and a
padding byte of B8 hex indicates an intention to refer-
ence the destination area.

For the nonpadding part of the operation when the
padding byte is not B1 hex, accesses to the oper-
ands for MOVE LONG may be multiple-access refer-
ences, and these accesses do not necessarily
appear to occur in a left-to-right direction as
observed by other CPUs and by the channel subsys-
tem. When the padding byte is B1 hex, accesses to
the operands are single-access references, and
these accesses appear to occur in a left-to-right
direction as observed by other CPUs and by the
channel subsystem. During the nonpadding part of
the operation, operands appear to be accessed dou-
bleword concurrent as observed by other CPUs, pro-
vided that both operands start on doubleword
boundaries, are an integral number of doublewords in
length, and do not overlap.

As observed by other CPUs and by the channel sub-
system, that portion of the first operand which is filled
with the padding byte is not necessarily stored into in
a left-to-right direction and may appear to be stored
into more than once. During the padding operation,
stores by other CPUs or by the channel subsystem
into that portion of the first operand which is filled
with the padding byte may cause unpredictable
results.

At the completion of the operation, the length in gen-
eral register R1 + 1 is decremented by the number of

7-292 The z/Architecture CPU Architecture

M
O

V
E

 L
O

N
G bytes stored at the first-operand location, and the

address in general register R1 is incremented by the
same amount. The length in general register R2 + 1
is decremented by the number of bytes moved out of
the second-operand location, and the address in
general register R2 is incremented by the same
amount. In the 24-bit or 31-bit addressing mode, the
leftmost bits which are not part of the address in bit
positions 32-63 of general registers R1 and R2 are set
to zeros, even when one or both of the original length
values are zeros or when condition code 3 is set. The
contents of bit positions 0-31 of the registers remain
unchanged. In any addressing mode, the contents of
bit positions 0-39 of general registers R1 + 1 and
R2 + 1 remain unchanged.

When condition code 3 is set, no exceptions associ-
ated with operand access are recognized. When the
length of an operand is zero, no access exceptions
for that operand are recognized. Similarly, when the
second operand is longer than the first operand,
access exceptions are not recognized for the part of
the second-operand field that is in excess of the first-
operand field. For operands longer than 2K bytes,
access exceptions are not recognized for locations
more than 2K bytes beyond the current location
being processed. Access exceptions are not recog-
nized for an operand if the R field associated with
that operand is odd. Also, when the R1 field is odd,
PER storage-alteration events are not recognized,
and no change bits are set.

Resulting Condition Code:

0 Operand lengths equal; no destructive overlap
1 First-operand length low; no destructive overlap
2 First-operand length high; no destructive overlap
3 No movement performed because of destructive

overlap

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Specification
• Transaction constraint

Programming Notes:

1. An example of the use of the MOVE LONG
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. MOVE LONG may be used for clearing storage
by setting the padding byte to zero and the sec-

ond-operand length to zero. However, the stores
associated with this clearing may be multiple-
access stores and should not be used to clear an
area if the possibility exists that another CPU or
a channel program will attempt to access and
use the area as soon as it appears to be zero.
For more details, see “Storage-Operand Consis-
tency” on page 5-125.

3. When the first-operand length is zero, the opera-
tion consists in setting the condition code and, in
the 24-bit or 31-bit addressing mode, of setting
the leftmost bits in bit positions 32-63 of general
registers R1 and R2 to zero.

4. When the contents of the R1 and R2 fields are the
same, the contents of the designated registers
are incremented or decremented only by the
number of bytes moved, not by twice the number
of bytes moved. Condition code 0 is set.

5. The following is a detailed description of those
cases in which movement takes place, that is,
where destructive overlap does not exist.

In the access-register mode, the contents of the
access registers used are called the effective
space designations. When the effective space
designations are not equal, destructive overlap is
declared not to exist and movement occurs.
When the effective space designations are the
same or when not in the access-register mode,
then the following cases apply.

Depending on whether the second operand
wraps around from location 224 - 1 (or 231 - 1 or
264 - 1, depending on the addressing mode) to
location 0, movement takes place in the following
cases:

a. When the second operand does not wrap
around, movement is performed if the left-
most byte of the first operand coincides with
or is to the left of the leftmost byte of the sec-
ond operand, or if the leftmost byte of the
first operand is to the right of the rightmost
second-operand byte participating in the
operation.

b. When the second operand wraps around,
movement is performed if the leftmost byte of
the first operand coincides with or is to the
left of the leftmost byte of the second oper-
and, and if the leftmost byte of the first oper-
and is to the right of the rightmost second-
operand byte participating in the operation.

General Instructions 7-293

M
O

V
E

 L
O

N
G

 E
X

T
E

N
D

E
DThe rightmost second-operand byte is deter-

mined by using the smaller of the first-operand
and second-operand lengths.

When the second-operand length is one or zero,
destructive overlap cannot exist.

6. Special precautions should be taken if MOVE
LONG is made the target of an execute-type
instruction. See the programming note concern-
ing interruptible instructions under EXECUTE.

7. Since the execution of MOVE LONG is interrupt-
ible, the instruction cannot be used for situations
where the program must rely on uninterrupted
execution of the instruction. Similarly, the pro-
gram should normally not let the first operand of
MOVE LONG include the location of the instruc-
tion or of an execute-type instruction because the
new contents of the location may be interpreted
for a resumption after an interruption, or the
instruction may be refetched without an interrup-
tion.

8. Further programming notes concerning interrupt-
ible instructions are included in “Interruptible
Instructions” in Chapter 5, “Program Execution.”

9. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

MOVE LONG EXTENDED

MVCLE R1,R3,D2(B2) [RS-a]

All or part of the third operand is placed at the first-
operand location. The remaining rightmost byte posi-
tions, if any, of the first-operand location are filled
with padding bytes. The operation proceeds until the

end of the first-operand location is reached or a
CPU-determined number of bytes have been placed
at the first-operand location, whichever occurs first.
The result is indicated in the condition code.

The R1 and R3 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and third operand is designated by the contents of
general registers R1 and R3, respectively. In the
24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and third-operand locations
is specified by the contents of bit positions 32-63 of
general registers R1 + 1 and R3 + 1, respectively, and
those contents are treated as 32-bit unsigned binary
integers. In the 64-bit addressing mode, the number
of bytes in the first-operand and third-operand loca-
tions is specified by the entire contents of general
registers R1 + 1 and R3 + 1, respectively, and those
contents are treated as 64-bit unsigned binary inte-
gers.

The handling of the addresses in general registers R1

and R3 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R3 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

The second-operand address is not used to address
data; instead, the rightmost eight bits of the second-
operand address, bits 56-63, are the padding byte.
Bits 0-55 of the second-operand address are
ignored.

'A8' R1 R3 B2 D2

0 8 12 16 20 31

7-294 The z/Architecture CPU Architecture

M
O

V
E

 L
O

N
G

 E
X

T
E

N
D

E
D The contents of the registers and address just

described are shown in Figure 7-302.

The result is obtained as if the movement starts at
the left end of both fields and proceeds to the right,
byte by byte. The operation is ended when the num-
ber of bytes specified in general register R1 + 1 have
been placed at the first-operand location or when a
CPU-determined number of bytes have been placed,
whichever occurs first. If the third operand is shorter
than the first operand, the remaining rightmost bytes
of the first-operand location are filled with the pad-
ding byte.

When the operation is completed because the end of
the first operand has been reached, the condition
code is set to 0 if the two operand lengths are equal,
it is set to 1 if the first-operand length is less than the
third-operand length, or it is set to 2 if the first-oper-
and length is greater than the third-operand length.
When the operation is completed because a CPU-
determined number of bytes have been moved with-
out reaching the end of the first operand, condition
code 3 is set.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R3 / Third-Operand Address
0 40 63

R3 + 1 / Third-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R3 / Third-Operand Address
0 33 63

R3 + 1 / Third-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R3 Third-Operand Address
0 63

R3 + 1 Third-Operand Length
0 63

All Addressing Modes

2nd Op
Addr.

/ Pad
0 56 63

Figure 7-302. Register Contents and Second-Operand Address for MOVE LONG EXTENDED

General Instructions 7-295

M
O

V
E

 L
O

N
G

 E
X

T
E

N
D

E
DNo test is made for destructive overlap, and the

results in the first-operand location are unpredictable
when destructive overlap exists. Operands are said
to overlap destructively when the first-operand loca-
tion is used as a source after data has been moved
into it.

Operands do not overlap destructively if the leftmost
byte of the first operand does not coincide with any of
the third-operand bytes participating in the operation
other than the leftmost byte of the third operand.
When an operand wraps around from location 224 - 1
(or 231 - 1 or 264 - 1) to location 0, operand bytes in
locations up to and including 224 - 1 (or 231 - 1 or
264 - 1) are considered to be to the left of bytes in
locations from 0 up.

In the 24-bit addressing mode, wraparound is from
location 224 - 1 to location 0; in the 31-bit addressing
mode, wraparound is from location 231 - 1 to location
0; and, in the 64-bit addressing mode, wraparound is
from location 264 - 1 to location 0.

When the length specified in general register R1 + 1
is zero, no movement takes place, and condition
code 0 or 1 is set to indicate the relative values of the
lengths.

Padding byte values of B0 hex and B8 hex may be
used during the nonpadding part of the operation by
some models, in certain cases, as an indication of
whether the movement should be performed bypass-
ing the cache or using the cache, respectively. Thus,
a padding byte of B0 hex indicates no intention to ref-
erence the destination area after the move, and a
padding byte of B8 hex indicates an intention to refer-
ence the destination area.

For the nonpadding part of the operation when the
padding byte is not B1 hex, accesses to the oper-
ands for MOVE LONG EXTENDED may be multiple-
access references, and these accesses do not nec-
essarily appear to occur in a left-to-right direction as
observed by other CPUs and by the channel subsys-
tem. When the padding byte is B1 hex, accesses to
the operands are single-access references, and
these accesses appear to occur in a left-to-right
direction as observed by other CPUs and by the
channel subsystem. During the nonpadding part of
the operation, operands appear to be accessed dou-
bleword concurrent as observed by other CPUs, pro-
vided that both operands start on doubleword
boundaries, are an integral number of doublewords in
length, and do not overlap.

As observed by other CPUs and by the channel sub-
system, that portion of the first operand which is filled
with the padding byte is not necessarily stored into in
a left-to-right direction and may appear to be stored
into more than once. During the padding operation,
stores by other CPUs or by the channel subsystem
into that portion of the first operand which is filled
with the padding byte may cause unpredictable
results.

At the completion of the operation, the length in gen-
eral register R1 + 1 is decremented by the number of
bytes stored at the first-operand location, and the
address in general register R1 is incremented by the
same amount. The length in general register R3 + 1
is decremented by the number of bytes moved out of
the third-operand location, and the address in gen-
eral register R3 is incremented by the same amount.

If the operation is completed because a CPU-deter-
mined number of bytes have been moved without
reaching the end of the first operand, the lengths in
general registers R1 + 1 and R3 + 1 are decremented
by the number of bytes moved, and the addresses in
general registers R1 and R3 are incremented by the
same number, so that the instruction, when reexe-
cuted, resumes at the next byte to be moved. If the
operation is completed during padding, the length
field in general register R3 + 1 is zero, the address in
general register R3 is incremented by the original
length in general register R3 + 1, and general regis-
ters R1 and R1 + 1 reflect the extent of the padding
operation.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R3, and R3 + 1, always remain unchanged.

The padding byte may be formed from D2(B2) multi-
ple times during the execution of the instruction, and
the registers designated by R1 and R3 may be
updated multiple times. Therefore, if B2 equals R1,
R1 + 1, R3, or R3 + 1 and is subject to change during
the execution of the instruction, the results are unpre-
dictable.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed. The maximum amount is approximately 4K
bytes of either operand.

7-296 The z/Architecture CPU Architecture

M
O

V
E

 L
O

N
G

 U
N

IC
O

D
E At the completion of the operation in the 24-bit or

31-bit addressing mode, the leftmost bits which are
not part of the address in bit positions 32-63 of gen-
eral registers R1 and R3 may be set to zeros or may
remain unchanged from their original values, even
when one or both of the original length values are
zeros.

When the length of an operand is zero, no access
exceptions for that operand are recognized. Similarly,
when the third operand is longer than the first oper-
and, access exceptions are not recognized for the
part of the third-operand field that is in excess of the
first-operand field. For operands longer than 4K
bytes, access exceptions are not recognized for loca-
tions more than 4K bytes beyond the current location
being processed. Access exceptions are not recog-
nized for an operand if the R field associated with
that operand is odd. Also, when the R1 field is odd,
PER storage-alteration events are not recognized,
and no change bits are set.

Resulting Condition Code:

0 All bytes moved, operand lengths equal
1 All bytes moved, first-operand length low
2 All bytes moved, first-operand length high
3 CPU-determined number of bytes moved without

reaching end of first operand

Program Exceptions:

• Access (fetch, operand 3; store, operand 1)
• Specification
• Transaction constraint

Programming Notes:

1. MOVE LONG EXTENDED is intended for use in
place of MOVE LONG when the operand lengths
are specified as 32-bit or 64-bit binary integers
and a test for destructive overlap is not required.
MOVE LONG EXTENDED sets condition code 3
in cases in which MOVE LONG would be inter-
rupted.

2. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the movement. The program need not determine
the number of bytes that were moved.

3. The function of not processing more than
approximately 4K bytes of either operand is
intended to permit software polling of a flag that

may be set by a program on another CPU during
long operations.

4. MOVE LONG EXTENDED may be used for
clearing storage by setting the padding byte to
zero and the third-operand length to zero. How-
ever, the stores associated with this clearing may
be multiple-access stores and should not be
used to clear an area if the possibility exists that
another CPU or a channel program will attempt
to access and use the area as soon as it appears
to be zero. For more details, see “Storage-Oper-
and Consistency” on page 5-125.

5. When the contents of the R1 and R3 fields are the
same, the contents of the designated registers
are incremented or decremented only by the
number of bytes moved, not by twice the number
of bytes moved. The condition code is finally set
to 0 after possible settings to 3.

6. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

MOVE LONG UNICODE

MVCLU R1,R3,D2(B2) [RSY-a]

All or part of the third operand is placed at the first-
operand location. The remaining rightmost positions,
if any, of the first-operand location are filled with one
or more padding bytes, alternating between the even
padding byte and the odd padding byte. The opera-
tion proceeds until the end of the first-operand loca-
tion is reached or a CPU-determined number of
bytes have been placed at the first-operand location,
whichever occurs first. The result is indicated in the
condition code.

The R1 and R3 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first operand
and third operand is designated by the contents of
general registers R1 and R3, respectively. In the
24-bit or 31-bit addressing mode, the number of
bytes in the first-operand and third-operand locations
is specified by the contents of bit positions 32-63 of

'EB' R1 R3 B2 DL2 DH2 '8E'

0 8 12 16 20 32 40 47

General Instructions 7-297

M
O

V
E

 L
O

N
G

 U
N

IC
O

D
Egeneral registers R1 + 1 and R3 + 1, respectively, and

those contents are treated as 32-bit unsigned binary
integers. In the 64-bit addressing mode, the number
of bytes in the first-operand and third-operand loca-
tions is specified by the contents of bit positions 0-63
of general registers R1 + 1 and R3 + 1, respectively,
and those contents are treated as 64-bit unsigned
binary integers.

On some models, the contents of general registers
R1 + 1 and R3 + 1 must specify an even number of
bytes; otherwise, a specification exception is recog-
nized.

The handling of the addresses in general registers R1

and R3 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R3 consti-

tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 of the registers consti-
tute the address.

The second-operand address is not used to address
data; instead, the rightmost 16 bits of the second-
operand address, bits 48-63, are the two padding
bytes; bits 48-55 are the even padding byte, and bits
56-63 are the odd padding byte. Bits 0-47 of the sec-
ond-operand address are ignored.

The contents of the registers and address just
described are shown in Figure 7-303.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R3 / Third-Operand Address
0 40 63

R3 + 1 / Third-Operand Length
0 32 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R3 / Third-Operand Address
0 33 63

R3 + 1 / Third-Operand Length
0 32 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R3 Third-Operand Address
0 63

R3 + 1 Third-Operand Length
0 63

Figure 7-303. Register Contents and Second-Operand Address for MOVE LONG UNICODE (Part 1 of 2)

7-298 The z/Architecture CPU Architecture

M
O

V
E

 L
O

N
G

 U
N

IC
O

D
E

The result is obtained as if the movement starts at
the left end of both fields and proceeds to the right,
byte by byte. The operation is ended when the num-
ber of bytes specified by the contents of general reg-
ister R1 + 1 have been placed at the first-operand
location or when a CPU-determined number of bytes
have been placed, whichever occurs first.

If the third operand is shorter than the first operand,
the remaining rightmost positions of the first-operand
location are filled with alternating padding bytes.
When the number of bytes remaining in the first-
operand location is an even number, the even pad-
ding byte is placed first; when the number of bytes
remaining in the first-operand location is odd, the odd
padding byte is placed first.

When the operation is completed because the end of
the first operand has been reached, the condition
code is set to 0 if the two operand lengths are equal,
it is set to 1 if the first-operand length is less than the
third-operand length, or it is set to 2 if the first-oper-
and length is greater than the third-operand length.
When the operation is completed because a CPU-
determined number of bytes have been moved with-
out reaching the end of the first operand, condition
code 3 is set.

No test is made for destructive overlap, and the
results in the first-operand location are unpredictable
when destructive overlap exists. Operands are said
to overlap destructively when the first-operand loca-
tion is used as a source after data has been moved
into it.

Operands do not overlap destructively if the leftmost
byte of the first operand does not coincide with any of
the third-operand bytes participating in the operation
other than the leftmost byte of the third operand.
When an operand wraps around from location 224 - 1
(or 231 - 1 or 264 - 1) to location 0, operand bytes in
locations up to and including 224 - 1 (or 231 - 1 or
264 - 1) are considered to be to the left of bytes in
locations from 0 up.

In the 24-bit addressing mode, wraparound is from
location 224 - 1 to location 0; in the 31-bit addressing

mode, wraparound is from location 231 - 1 to location
0; and, in the 64-bit addressing mode, wraparound is
from location 264 - 1 to location 0.

When the length specified in general register R1 + 1
is zero, no movement takes place, and condition
code 0 or 1 is set to indicate the relative values of the
lengths.

For the nonpadding part of the operation, accesses
to the operands for MOVE LONG UNICODE may be
multiple-access references. These accesses do not
necessarily appear to occur in a left-to-right direction
as observed by other CPUs and by channel pro-
grams. During the nonpadding part of the operation,
operands appear to be accessed doubleword concur-
rent as observed by other CPUs, provided that both
operands start on doubleword boundaries, are an
integral number of doublewords in length, and do not
overlap.

As observed by other CPUs and by he channel sub-
system, that portion of the first operand which is filled
with the padding bytes is not necessarily stored into
in a left-to-right direction and may appear to be
stored into more than once. During the padding oper-
ation, stores by other CPUs or by the channel sub-
system into that portion of the first operand which is
filled with the padding bytes may cause unpredict-
able results.

At the completion of the operation, the length in gen-
eral register R1 + 1 is decremented by the number of
bytes stored at the first-operand location, and the
address in general register R1 is incremented by the
same amount. The length in general register R3 + 1
is decremented by the number of bytes moved out of
the third-operand location, and the address in gen-
eral register R3 is incremented by the same amount.

If the operation is completed because a CPU-deter-
mined number of bytes have been moved without
reaching the end of the first operand, the lengths in
general registers R1 + 1 and R3 + 1 are decremented
by the number of bytes moved, and the addresses in
general registers R1 and R3 are incremented by the
same number, so that the instruction, when reexe-

All Addressing Modes

2nd Op
Addr.

/ /
Even

Padding Byte
Odd

Padding Byte
0 48 56 63

Figure 7-303. Register Contents and Second-Operand Address for MOVE LONG UNICODE (Part 2 of 2)

General Instructions 7-299

M
O

V
E

 L
O

N
G

 U
N

IC
O

D
Ecuted, resumes at the next byte to be moved. If the

operation is completed during padding, the length
field in general register R3 + 1 is zero, the address in
general register R3 is incremented by the number of
bytes moved from operand 3, and general registers
R1 and R1 + 1 reflect the extent of the padding opera-
tion.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
R2, and R2 + 1, always remain unchanged.

The padding bytes may be formed from D2(B2) multi-
ple times during the execution of the instruction, and
the registers designated by R1 and R3 may be
updated multiple times. Therefore, if B2 equals R1,
R1 + 1, R3, or R3 + 1 and is subject to change during
the execution of the instruction, the results are unpre-
dictable.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

At the completion of the operation in the 24-bit or
31-bit addressing mode, the leftmost bits which are
not part of the address in bit positions 32-63 of gen-
eral registers R1 and R3 may be set to zeros or may
remain unchanged from their original values, includ-
ing the case when one or both of the original length
values are zeros.

When the length of an operand is zero, no access
exceptions for that operand are recognized. Similarly,
when the third operand is longer than the first oper-
and, access exceptions are not recognized for the
part of the third-operand field that is in excess of the
first-operand field. For operands longer than 4K
bytes, access exceptions are not recognized for loca-
tions more than 4K bytes beyond the current location
being processed. Access exceptions are not recog-
nized for an operand if the R field associated with
that operand is odd. Also, when the R1 field is odd,
PER storage-alteration events are not recognized,
and no change bits are set. On models that recog-
nize a specification exception if the length associated
with an operand is odd, access exceptions and PER
storage-alteration events are not recognized and no
change bits are set if the length is odd.

Resulting Condition Code:

0 All bytes moved, operand lengths equal
1 All bytes moved, first-operand length low
2 All bytes moved, first-operand length high
3 CPU-determined number of bytes moved without

reaching end of first operand

Program Exceptions:

• Access (fetch, operand 3; store, operand 1)
• Operation (if the extended-translation facility 2 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. MOVE LONG UNICODE is intended for use in
place of MOVE LONG or MOVE LONG
EXTENDED when padding with double-byte
characters. The character may be a Unicode
character or any other double-byte character.
MOVE LONG UNICODE may set condition code
3 in cases in which MOVE LONG would be inter-
rupted.

2. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the movement. The program need not determine
the number of bytes that were moved.

3. MOVE LONG UNICODE may be used for filling
storage with padding bytes by placing the pad-
ding bytes in the second-operand address and
setting the third-operand length to zero. However,
the stores associated with this clearing may be
multiple-access stores and should not be used to
clear an area if the possibility exists that another
CPU or a channel program will attempt to access
and use the area as soon as it appears to be
zero. For more details, see “Storage-Operand
Consistency” on page 5-125.

4. When the contents of the R1 and R3 fields are the
same, the contents of the designated registers
are incremented or decremented only by the
number of bytes moved, not by two times the
number of bytes moved. The condition code is
finally set to 0 after possible settings to 3.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

7-300 The z/Architecture CPU Architecture

M
O

V
E

 N
U

M
E

R
IC

S 6. The padding bytes may be represented in the
displacement field of the instruction. The follow-
ing example illustrates padding with a Unicode
space character.

MVCLU 6,8,X'0020'

When the B2 field of the instruction designates
general register 0, and the long-displacement
facility is not installed, the padding bytes are lim-
ited to a character whose representation is less
than or equal to 0FFF hex.

7. MOVE LONG UNICODE is intended to be used
to move and pad pairs of bytes. Although some
models allow the first- and third-operand length
registers to designate an odd length, without rec-
ognizing a specification exception, the program
should always be coded to provide an even
length. This ensures that the program will oper-
ate compatibly in configurations that recognize a
specification exception for an odd length value.

MOVE NUMERICS

MVN D1(L,B1),D2(B2) [SS-a]

The rightmost four bits of each byte in the second
operand are placed in the rightmost bit positions of
the corresponding bytes in the first operand. The left-
most four bits of each byte in the first operand remain
unchanged.

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after fetch-
ing the necessary operand bytes.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store, oper-
and 1)

• Transaction constraint

Programming Notes:

1. An example of the use of the MOVE NUMERICS
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. MOVE NUMERICS moves the numeric portion of
a decimal-data field that is in the zoned format.
The zoned-decimal format is described in
Chapter 8, “Decimal Instructions.” The operands
are not checked for valid sign and digit codes.

3. Accesses to the first operand of MOVE NUMER-
ICS consist in fetching the leftmost four bits of
each byte in the first operand and subsequently
storing the updated value of the byte. These
fetch and store accesses to a particular byte do
not necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the possi-
bility exists that another CPU or a channel pro-
gram may also be updating the location. An
example of this effect is shown for OR (OI) in
“Multiprogramming and Multiprocessing Exam-
ples” in Appendix A, “Number Representation
and Instruction-Use Examples.”

MOVE RIGHT TO LEFT

MVCRL D1(B1),D2(B2) [SSE]

The second operand is placed at the first-operand
location by moving bytes in a right-to-left sequence,
beginning with the rightmost byte of each operand.

Both operand addresses designate the leftmost byte
of their respective operands. The displacements for
both operands are treated as 12-bit unsigned binary
integers.

The first and second operands are of the same
length, which is specified by bits 56-63 of general
register 0. Bits 32-55 of general register 0 should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future. Bits 0-31 of general reg-

'D1' L B1 D1 B2 D2

0 8 16 20 32 36 47

'E50A' B1 D1 B2 D2

0 16 20 32 36 47

General Instructions 7-301

M
O

V
E

 S
T

R
IN

Gister 0 are ignored. The contents of general register 0
are shown below:

L specifies the number of bytes to the right of the first
byte of each operand. Therefore, the length in bytes
of each operand is 1-256, corresponding to a length
code in L of 0-255.

The result is obtained as if both operands are pro-
cessed from right to left. However, as observed by
other CPUs and channel programs, the sequence of
accesses to the operands is undefined. Either oper-
and may wrap around from location 224 - 1 to 0 in the
24-bit addressing mode, from location 231 - 1 to 0 in
the 31-bit addressing mode, or from location 264 - 1
to 0 in the 64-bit addressing mode.

Destructive overlap occurs and results are unpredict-
able when the byte location designated by the sec-
ond-operand address (the leftmost byte of the
source) overlaps with any byte location of the first
operand, other than the byte location designated by
the first-operand address (the leftmost byte of the tar-
get).

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the miscellaneous-instruction-

extensions facility 3 is not installed)
• Transaction Constraint

Programming Notes:

1. MOVE RIGHT TO LEFT can be used to open a
hole in an array, for subsequent insertion of an
element, by moving the original element and all
higher elements to the right. The MVC instruc-
tion, which moves left to right, can not be used in
this case since it would destructively overwrite
array elements.

2. For most other instructions with more than one
storage operand, destructive overlap occurs
when the leftmost byte of the destination oper-

and lies within the source operand and the two
operands do not perfectly overlap. However, for
MOVE RIGHT TO LEFT, destructive overlap
occurs when the rightmost byte of the destination
operand lies within the source operand and does
not perfectly overlap the source operand. There-
fore, the scenario described in programming note
1 is not destructive overlap for MVCRL but would
be if MVC were used. If there is no overlap of any
type between the operands, MVC and MVCRL
perform similarly, as observed by this CPU,
except that the manner the length is specified is
different.

3. Since results are unpredictable if destructive
overlap exists on MOVE RIGHT TO LEFT, this
instruction can not be used to replicate data from
higher addresses to lower addresses. However,
MVC which has precisely defined left to right
behavior with destructive overlap, can be used
for the purpose of replicating data from lower
addresses to higher addresses.

MOVE STRING

MVST R1,R2 [RRE]

All or part of the second operand is placed in the first-
operand location. The operation proceeds until the
end of the second operand is reached or a CPU-
determined number of bytes have been moved,
whichever occurs first. The CPU-determined number
is at least one. The result is indicated in the condition
code.

The location of the leftmost byte of the first operand
and second operand is designated by the contents of
general registers R1 and R2, respectively.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode. In the
24-bit addressing mode, the contents of bit positions
40-63 of general registers R1 and R2 constitute the
address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the contents
of bit positions 33-63 of the registers constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 constitute the address.

/ /
0 8 16 24 31

/ L
32 40 48 56 63

'B255' / / / / / / / / R1 R2

0 16 24 28 31

7-302 The z/Architecture CPU Architecture

M
O

V
E

 W
IT

H
 O

F
F

S
E

T The end of the second operand is indicated by an
ending character in the last byte position of the oper-
and. The ending character to be used to determine
the end of the second operand is specified in bit posi-
tions 56-63 of general register 0. Bit positions 32-55
of general register 0 are reserved for possible future
extensions and must contain all zeros; otherwise, a
specification exception is recognized.

The operation proceeds left to right and ends as
soon as the second-operand ending character has
been moved or a CPU-determined number of sec-
ond-operand bytes have been moved, whichever
occurs first. The CPU-determined number is at least
one. When the ending character is in the first byte
position of the second operand, only the ending char-
acter is moved. When the ending character has been
moved, condition code 1 is set. When a CPU-deter-
mined number of second-operand bytes not including
an ending character have been moved, condition
code 3 is set. Destructive overlap is not recognized. If
the second operand is used as a source after it has
been used as a destination, the results are unpredict-
able.

When condition code 1 is set, the address of the end-
ing character in the first operand is placed in general
register R1, and the contents of general register R2

remain unchanged. When condition code 3 is set, the
address of the next byte to be processed in the first
and second operands is placed in general registers
R1 and R2, respectively. Whenever an address is
placed in a general register, bits 32-39 of the register,
in the 24-bit addressing mode, or bit 32, in the 31-bit
addressing mode, are set to zeros. Bits 0-31 of the
R1 and R2 registers always remain unchanged in the
24-bit or 31-bit mode.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

Access exceptions for the first and second operands
are recognized only for that portion of the operand
that is necessarily used in the operation.

The storage-operand-consistency rules are the same
as for the MOVE (MVC) instruction, except that
destructive overlap is not recognized.

Resulting Condition Code:

0 --
1 Entire second operand moved; general register

R1 updated with address of ending character in
first operand; general register R2 unchanged

2 --
3 CPU-determined number of bytes moved; gen-

eral registers R1 and R2 updated with addresses
of next bytes

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Specification
• Transaction constraint

Programming Notes:

1. An example of the use of the MOVE STRING
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the data movement. The program need not
determine the number of bytes that were moved.

3. R1 or R2 may be zero, in which case general reg-
ister 0 is treated as containing an address and
also the ending character.

4. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

5. If the second operand is used as a source after it
has been used as a destination, an ending char-
acter in the second operand may not be recog-
nized.

MOVE WITH OFFSET

MVO D1(L1,B1),D2(L2,B2) [SS-b]

The second operand is placed to the left of and adja-
cent to the rightmost four bits of the first operand.

The rightmost four bits of the first operand are
attached as the rightmost bits to the second operand,
the second-operand bits are offset by four bit posi-

'F1' L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

General Instructions 7-303

M
O

V
E

 Z
O

N
E

Stions, and the result is placed at the first-operand
location.

The result is obtained as if the operands were pro-
cessed right to left. When necessary, the second
operand is considered to be extended on the left with
zeros. If the first operand is too short to contain all of
the second operand, the remaining leftmost portion
of the second operand is ignored. Access exceptions
for the unused portion of the second operand may or
may not be indicated.

When the operands overlap, the result is obtained as
if the operands were processed one byte at a time,
as if each result byte were stored immediately after
fetching the necessary operand bytes, and as if the
left digit of each second-operand byte were to remain
available for the next result byte and need not be
refetched.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store, oper-
and 1)

• Transaction constraint

Programming Notes:

1. An example of the use of the MOVE WITH OFF-
SET instruction is given in Appendix A, “Number
Representation and Instruction-Use Examples.”

2. MOVE WITH OFFSET may be used to shift
packed decimal data by an odd number of digit
positions. The packed-decimal format is
described in Chapter 8, “Decimal Instructions.”
The operands are not checked for valid sign and
digit codes. In many cases, however, SHIFT AND
ROUND DECIMAL may be more convenient to
use.

3. Access to the rightmost byte of the first operand
of MOVE WITH OFFSET consists in fetching the
rightmost four bits and subsequently storing the
updated value of this byte. These fetch and store
accesses to the rightmost byte of the first oper-
and do not necessarily occur one immediately
after the other. Thus, this instruction cannot be
safely used to update a location in storage if the
possibility exists that another CPU or a channel
program may also be updating the location. An
example of this effect is shown for OR (OI) in

“Multiprogramming and Multiprocessing Exam-
ples” in Appendix A, “Number Representation
and Instruction-Use Examples.”

4. The storage-operand references for MOVE WITH
OFFSET may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-125.)

MOVE ZONES

MVZ D1(L,B1),D2(B2) [SS-a]

The leftmost four bits of each byte in the second
operand are placed in the leftmost four bit positions
of the corresponding bytes in the first operand. The
rightmost four bits of each byte in the first operand
remain unchanged.

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store, oper-
and 1)

• Transaction constraint

Programming Notes:

1. An example of the use of the MOVE ZONES
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. MOVE ZONES moves the zoned portion of a
decimal field in the zoned format. The zoned for-
mat is described in Chapter 8, “Decimal Instruc-
tions.” The operands are not checked for valid
sign and digit codes.

3. Accesses to the first operand of MOVE ZONES
consist in fetching the rightmost four bits of each
byte in the first operand and subsequently stor-
ing the updated value of the byte. These fetch
and store accesses to a particular byte do not
necessarily occur one immediately after the

'D3' L B1 D1 B2 D2

0 8 16 20 32 36 47

7-304 The z/Architecture CPU Architecture

M
U

L
T

IP
L

Y other. Thus, this instruction cannot be safely
used to update a location in storage if the possi-
bility exists that another CPU or a channel pro-
gram may also be updating the location. An
example of this effect is shown for the OR (OI)
instruction in “Multiprogramming and Multipro-
cessing Examples” in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

MULTIPLY

Register-and-register format:

MR R1,R2 [RR]

MGRK R1,R2,R3 [RRF-a]

Register-and-storage formats:

M R1,D2(X2,B2) [RX-a]

MFY R1,D2(X2,B2) [RXY-a]

MG R1,D2(X2,B2) [RXY-a]

For M, MFY, and MR, the 32-bit first operand (the
multiplicand) is multiplied by the 32-bit second-oper-
and (the multiplier), and the 64-bit product is placed
at the first-operand location. For MG, the 64-bit first
operand (the multiplicand) is multiplied by the 64-bit
second-operand (the multiplier), and the 128-bit
product is placed at the first-operand location. For
MGRK, the 64-bit third operand (the multiplicand) is
multiplied by the 64-bit second-operand (the multi-
plier), and the 128-bit product is placed at the first-
operand location.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-

ister; otherwise, a specification exception is recog-
nized.

The following applies to M, MFY, and MR:

• Both the multiplicand and multiplier are treated
as 32-bit signed binary integers.

• The multiplicand is in bit positions 32-63 of gen-
eral register R1 + 1.

• For MULTIPLY (MR), the multiplier is in bit posi-
tions 32-63 of general register R2. The contents
of general register R1 and of bit positions 0-31 of
general register R1 + 1 and, for MR, of general
register R2 are ignored.

For M and MY, the multiplier is at the second-
operand location in storage.

• The product is a 64-bit signed binary integer. Bits
0-31 of the product replace bits 32-63 of general
register R1. Bits 32-63 of the product replace bits
32-63 of general register R1 + 1. Bits 0-31 of gen-
eral registers R1 and R1 + 1 remain unchanged.

The following applies to MG and MGRK:

• Both the multiplicand and multiplier are treated
as 64-bit signed binary integers.

• For MG, the multiplicand is in bit positions 0-63 of
general register R1 + 1, and the contents of gen-
eral register R1 are ignored. For MGRK, the mul-
tiplicand is in bit positions 0-63 of general
register R3, and the contents of general registers
R1 and R1 + 1 are ignored.

• For MG, the multiplier is at the second-operand
location in storage. For MGRK, the multiplier is in
bit positions 0-63 of general register R2.

• For both MG and MGRK, the product is a 128-bit
signed binary integer. Bits 0-63 of the product
replace bits 0-63 of general register R1. Bits 64-
127 of the product replace bits 0-63 of general
register R1 + 1.

The sign of the product is determined by the rules of
algebra from the multiplier and multiplicand sign,
except that a zero result is always positive. An over-
flow cannot occur.

The displacement for M is treated as a 12-bit
unsigned binary integer. The displacement for MFY
and MG is treated as a 20-bit signed binary integer.

'1C' R1 R2

0 8 12 15

'B9EC' R3 / / / / R1 R2

0 16 20 24 28 31

'5C' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '5C'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '84'

0 8 12 16 20 32 40 47

General Instructions 7-305

M
U

L
T

IP
L

Y
 H

A
L

F
W

O
R

D
 IM

M
E

D
IA

T
ECondition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of M, MFY, and MG
only)

• Operation (MFY, if the general-instructions-
extension facility is not installed; MG, MGRK, if
the miscellaneous-instruction-extensions facility
2 is not installed)

• Specification

Programming Notes:

1. An example of the use of the MULTIPLY instruc-
tion is given in Appendix A, “Number Represen-
tation and Instruction-Use Examples.”

2. For M, MFY, and MR, the significant part of the
product usually occupies 62 bit positions or
fewer. Only when two maximum 32-bit negative
numbers are multiplied are 63 significant product
bits formed.

Similarly, for MG and MGRK, the significant part
of the product usually occupies 126 bit positions
or fewer. Only when two maximum 64-bit nega-
tive numbers are multiplied are 127 significant
product bits formed.

3. Care should be taken not to confuse the mne-
monic for MULTIPLY UNNORMALIZED (MY)
with the mnemonic for MULTIPLY (MFY).

MULTIPLY HALFWORD

MH R1,D2(X2,B2) [RX-a]

MHY R1,D2(X2,B2) [RXY-a]

MGH R1,D2(X2,B2) [RXY-a]

MULTIPLY HALFWORD IMMEDIATE

MHI R1,I2 [RI-a]

MGHI R1,I2 [RI-a]

The 32-bit or 64-bit first operand (the multiplicand) is
multiplied by the 16-bit second operand (the multi-
plier), and the rightmost 32 or 64 bits of the product
are placed at the first-operand location. The second
operand is two bytes in length and is treated as a
16-bit signed binary integer.

For MULTIPLY HALFWORD (MH, MHY) and MULTI-
PLY HALFWORD IMMEDIATE (MHI), the multipli-
cand is treated as a 32-bit signed binary integer in bit
positions 32-63 of general register R1, and it is
replaced by the rightmost 32 bits of the signed-
binary-integer product. The bits to the left of the 32
rightmost bits of the product are not tested for signifi-
cance; no overflow indication is given. Bits 0-31 of
general register R1 are ignored and remain
unchanged.

For MULTIPLY HALFWORD (MGH) and MULTIPLY
HALFWORD IMMEDIATE (MGHI), the multiplicand is
treated as a 64-bit signed binary integer in bit posi-
tions 0-63 of general register R1, and it is replaced by
the rightmost 64 bits of the signed-binary-integer
product. The bits to the left of the 64 rightmost bits of
the product are not tested for significance; no over-
flow indication is given.

The sign of the product is determined by the rules of
algebra from the multiplier and multiplicand sign,
except that a zero result is always positive.

The displacement for MH is treated as a 12-bit
unsigned binary integer. The displacement for MHY
and MGH is treated as a 20-bit signed binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of MH, MHY, and MGH
only)

'4C' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '7C'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '3C'

0 8 12 16 20 32 40 47

'A7' R1 'C' I2
0 8 12 16 31

'A7' R1 'D' I2
0 8 12 16 31

7-306 The z/Architecture CPU Architecture

M
U

L
T

IP
L

Y
 L

O
G

IC
A

L • Operation (MHY; if the general-instructions-
extension facility is not installed; MGH, if the mis-
cellaneous-instruction-extensions facility 2 is not
installed)

Programming Notes:

1. An example of the use of the MULTIPLY HALF-
WORD instruction is given in Appendix A, “Num-
ber Representation and Instruction-Use
Examples.”

2. For MH, MHY, and MHI, the significant part of the
product usually occupies 46 bit positions or
fewer. Only when two maximum negative num-
bers are multiplied are 47 significant product bits
formed. Since the rightmost 32 bits of the prod-
uct are placed unchanged at the first-operand
location, ignoring all bits to the left, the sign bit of
the result may differ from the true sign of the
product in the case of overflow. For a negative
product, the 32 bits placed in register R1 are the
rightmost part of the product in two's-comple-
ment notation.

Similarly, for MGH and MGHI, the significant part
of the product usually occupies 78 bit positions
or fewer, but may occupy 79 bits when two maxi-
mum negative numbers are multiplied. Since the
rightmost 64 bits of the product are placed
unchanged at the first-operand location, the sign
of the result may differ from the true sign of the
80-bit product in the case of overflow.

MULTIPLY LOGICAL

Register-and-register formats:

MLR R1,R2 [RRE]

MLGR R1,R2 [RRE]

Register-and-storage formats:

ML R1,D2(X2,B2) [RXY-a]

MLG R1,D2(X2,B2) [RXY-a]

The 32-bit or 64-bit first operand (the multiplicand) is
multiplied by the 32-bit or 64-bit second operand (the
multiplier), and the 64-bit or 128-bit product is placed
at the first-operand location.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

For MULTIPLY LOGICAL (MLR, ML), both the multi-
plicand and the multiplier are treated as 32-bit
unsigned binary integers. The multiplicand is in bit
positions 32-63 of general register R1 + 1. For MUL-
TIPLY LOGICAL (MLR), the multiplier is in bit posi-
tions 32-63 of general register R2. The contents of
general register R1 and of bit positions 0-31 of gen-
eral register R1 + 1 and, for MLR, of general register
R2 are ignored. The product is a 64-bit unsigned
binary integer. Bits 0-31 of the product replace bits
32-63 of general register R1, and bits 32-63 of the
product replace bits 32-63 of general register R1 + 1.
Bits 0-31 of general registers R1 and R1 + 1 remain
unchanged. An overflow cannot occur.

For MULTIPLY LOGICAL (MLGR, MLG), the multipli-
cand and the multiplier are treated as 64-bit unsigned
binary integers. The multiplicand is in general regis-
ter R1 + 1. The contents of general register R1 are
ignored. The product is a 128-bit unsigned binary
integer. Bits 0-63 of the product replace the contents
of general register R1, and bits 64-127 of the product
replace the contents of general register R1 + 1. An
overflow cannot occur.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of ML and MLG only)
• Specification

'B996' / / / / / / / / R1 R2

0 16 24 28 31

'B986' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '96'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '86'

0 8 12 16 20 32 40 47

General Instructions 7-307

M
U

L
T

IP
L

Y
 S

IN
G

L
E

 IM
M

E
D

IA
T

EMULTIPLY SINGLE

Register-and-register formats:

MSR R1,R2 [RRE]

MSRKC R1,R2,R3 [RRF-a]

MSGR R1,R2 [RRE]

MSGRKC R1,R2,R3 [RRF-a]

MSGFR R1,R2 [RRE]

Register-and-storage formats:

MS R1,D2(X2,B2) [RX-a]

MSC R1,D2(X2,B2) [RXY-a]

MSY R1,D2(X2,B2) [RXY-a]

MSG R1,D2(X2,B2) [RXY-a]

MSGC R1,D2(X2,B2) [RXY-a]

MSGF R1,D2(X2,B2) [RXY-a]

MULTIPLY SINGLE IMMEDIATE

MSFI R1,I2 [RIL-a]

MSGFI R1,I2 [RIL-a]

The multiplicand is multiplied by the second operand
(multiplier), and the rightmost 32 or 64 bits of the
product are placed at the first-operand location.
Depending on the instruction format, the multiplicand
is in either general register R1 or R3.

The following applies to MULTIPLY (MS, MSC, MSR,
MSRKC, MSY) and to MULTIPLY SINGLE IMMEDI-
ATE (MSFI) – that is, to those operations which pro-
duce a 32-bit result:

• The multiplicand is a 32-bit signed binary integer.
For MS, MSC, MSFI, MSR, and MSY, the multi-
plicand is in bit positions 32-63 of general regis-
ter R1. For MSRKC, the multiplicand is in bit
positions 32-63 of general register R3.

• The multiplier is a 32-bit signed binary integer.
For MSR and MSRKC, the multiplier is in bit posi-
tions 32-63 of general register R2. For MSFI, the
multiplier is in the I2 field of the instruction. For
MS, MSC, and MSY, the multiplier is at the sec-
ond-operand location in storage.

• The rightmost 32 bits of the signed-binary-inte-
ger product replace bits 32-63 of general register
R1, and bits 0-31 of the register remain
unchanged. For MS, MSFI, MSR, and MSY, the
bits to the left of the 32 rightmost bits of the prod-
uct are not tested for significance.

For MSC and MSRKC, an overflow condition
exists when the leftmost 33 bits of an intermedi-
ate 64-bit product are neither all zeros nor all
ones. Condition code 3 is set. If the fixed-point-
overflow mask in the PSW is one, a program
interruption for fixed-point overflow occurs.

'B252' / / / / / / / / R1 R2

0 16 24 28 31

'B9FD' R3 / / / / R1 R2

0 16 20 24 28 31

'B90C' / / / / / / / / R1 R2

0 16 24 28 31

'B9ED' R3 / / / / R1 R2

0 16 20 24 28 31

'B91C' / / / / / / / / R1 R2

0 16 24 28 31

'71' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '53'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '51'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '0C'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '83'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '1C'

0 8 12 16 20 32 40 47

'C2' R1 '1' I2
0 8 12 16 47

'C2' R1 '0' I2
0 8 12 16 47

7-308 The z/Architecture CPU Architecture

N
A

N
D The following applies to MULTIPLY SINGLE (MSG,

MSGC, MSGF, MSGFR, MSGR, MSGRKC) and to
MULTIPLY SINGLE IMMEDIATE (MSGFI) – that is, to
those operations which produce a 64-bit result:

• The multiplicand is a 64-bit signed binary integer.
For MSG, MSGC, MSGF, MSGFI, MSGR, and
MSGFR, the multiplicand is in bit positions 0-63
of general register R1. For MSGRKC, the multipli-
cand is in bit positions 0-63 of general register
R3.

• For MSGR and MSGRKC, the multiplier is a 64-
bit signed binary integer in bit positions 0-63 of
general register R2. For MSGFR, the multiplier is
a 32-bit signed-binary integer in bit positions 32-
63 of general register R2. For MSGFI, the multi-
plier is a 32-bit signed-binary integer in the I2
field of the instruction. For MSG and MSGC, the
multiplier is a 64-bit signed binary integer at the
second-operand location in storage. For MSGF,
the multiplier is a 32-bit signed binary integer at
the second-operand location in storage.

• The rightmost 64 bits of the signed-binary-inte-
ger product replace bits 0-63 of general register
R1. For MSG, MSGF, MSGFR, MSGR, MSGFI,
the bits to the left of the 64 rightmost bits of the
product are not tested for significance.

For MSGC and MSGRKC, an overflow condition
exists when the leftmost 65 bits of an intermedi-
ate 128-bit product are neither all zeros or all
ones. Condition code 3 is set. If the fixed-point-
overflow mask in the PSW is one, a program
interruption for fixed-point overflow occurs.

The sign of the product is determined by the rules of
algebra from the multiplier and multiplicand sign,
except that a zero result is always positive.

The displacement for MS is treated as a 12-bit
unsigned binary integer. The displacement for MSC,
MSG, MSGF, and MSY is treated as a 20-bit signed
binary integer.

Resulting Condition Code: For MSC, MSGC,
MSGRKC, and MSRKC, the condition code is set as
follows:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

For all other operations, the condition code remains
unchanged, and no overflow indication is provided.

Program Exceptions:

• Access (fetch, operand 2 of MS, MSC, MSG,
MSGC, MSGF, MSY only)

• Fixed-point overflow (MSC, MSGC, MSGRKC,
MSRKC only)

• Operation (MSY, if the long-displacement facility
is not installed; MSFI, MSGFI, if the general-
instructions-extension facility is not installed;
MSC, MSGC, MSGRKC, MSRKC, if the miscella-
neous-instruction-extensions facility 2 is not
installed.))

NAND

NNRK R1,R2,R3 [RRF-a]

NNGRK R1,R2,R3 [RRF-a]

The one’s complement of the AND of the second and
third operands is placed at the first-operand location.

The connective NAND is applied to the operands bit-
by-bit. The contents of a bit position in the result are
set to zero if the corresponding bit positions in both
source operands contain ones; otherwise, the result
bit is set to one.

For NNRK, the operands are 32 bits, and for
NNGRK, they are 64 bits.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Operation (if the miscellaneous-instruction-
extensions facility 3 is not installed)

'B974' R3 / / / / R1 R2

0 16 20 24 28 31

'B964' R3 / / / / R1 R2

0 16 20 24 28 31

General Instructions 7-309

N
E

X
T

 IN
S

T
R

U
C

T
IO

N
 A

C
C

E
S

S
 IN

T
E

N
TNEXT INSTRUCTION ACCESS

INTENT

NIAI I1,I2 [IE]

Note: In this instruction definition, the term primary-
access operand means the lowest numbered storage
operand of an instruction. Similarly, the term second-
ary-access operand means the next-lowest num-
bered storage operand of the instruction. These
terms do not have the same meaning as the terms
first operand and second operand, even though there
may be some correlation. For example, for the MOVE
instruction the first operand is the primary-access
operand and the second operand is the secondary-
access operand. However, for the LOAD MULTIPLE
DISJOINT instruction, the second operand is the pri-
mary-access operand and the fourth operand is the
secondary-access operand.

Subject to the controls in the I1 and I2 fields, the CPU
is signaled the future access intent for either or both
the primary-access and secondary-access operands
of the next-sequential instruction. The I1 field con-
tains a code to signal the CPU the access intent for
the primary-access operand of the next-sequential
instruction. The I2 field contains a code to signal the
CPU the access intent for the secondary-access
operand of the next-sequential instruction. When the
next-sequential instruction has only a single storage
operand, the I2 field is ignored.

The I1 and the I2 fields have the following format:

Access Intent (AI): Bits 0-3 of the I1 and I2 fields
contain an unsigned integer that is used as a code to
signal the CPU the access intent for the correspond-
ing operand of the next-sequential instruction as fol-
lows:

Reserved access-intent codes should not be speci-
fied; otherwise, the program may not operate com-
patibly in the future.

Depending on the model, the CPU may not recognize
all of the access intents for an operand. For access
intents that are not recognized by the CPU, the
instruction acts as a no-operation. If the instruction
has more than two storage operands, no access
intent is specified for the additional operands.

Depending on the model, the CPU may not recognize
access intents for a particular instruction. For such
cases, the instruction acts as a no-operation.

The NEXT INSTRUCTION ACCESS INTENT
instruction only affects subsequent instruction’s oper-
and accesses; it does not affect subsequent instruc-
tion fetches.

No references to storage are made.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (if the execution-hint facility is not
installed)

Programming Notes:

1. NEXT INSTRUCTION ACCESS INTENT signals
the CPU of the future access intent for the stor-
age operands of the next-sequential instruction,
but it does not guarantee that the CPU will nec-
essarily retain or use this information.

'B2FA' / / / / / / / / I1 I2
0 16 24 28 31

AI
0 3

Code Meaning

0 The corresponding operand of the next-sequential
instruction may or may not be accessed as an
instruction operand by subsequent instructions.

1 The corresponding operand of the next-sequential
instruction will be accessed by subsequent
instructions for operand store access, and may also
be accessed for operand fetch access.

2 The corresponding operand of the next-sequential
instruction will be accessed by subsequent
instructions for operand fetch access.

3 The corresponding operand of the next-sequential
instruction will not be accessed as an instruction
operand by subsequent instructions.

4-15 Reserved.

Code Meaning

7-310 The z/Architecture CPU Architecture

N
O

N
T

R
A

N
S

A
C

T
IO

N
A

L
 S

T
O

R
E 2. Specifying an incorrect access intent or an

access intent for a non-existent operand may
lead to performance degradation.

3. Caches are managed on a cache-line-size gran-
ularity. Therefore, when a corresponding storage
operand specifies any portion of a cache line, the
access intent is signaled for the entire cache line.
The cache line size can be determined by exe-
cuting the EXTRACT CPU ATTRIBUTE instruc-
tion.

4. When a corresponding storage operand speci-
fies crossing one or more cache-line boundaries,
it is model dependent whether the access intent
is signaled for one or multiple cache lines.

It is anticipated a program may use access-intent
values of one, two, or three, with corresponding
storage operands that may cross one or more
cache-line boundaries.

5. Specifying an access-intent value of three does
not signal the CPU to actively release the cache
line from the cache for the specified operand.
Instead, it signals the CPU that it should not
actively try to retain that line in the cache.

6. Specifying an access-intent value of zero to a
single operand instruction is not encouraged and
not necessary. However, in the case where an
instruction has two operands and access intent is
known for one operand, but not the other, the
access intent value of zero can be used for the
operand of unknown intent.

7. If an interruption occurs after the execution of
NEXT INSTRUCTION ACCESS INTENT and
before the execution of the next-sequential
instruction, NEXT INSTRUCTION ACCESS
INTENT acts as a no-operation and the specified
access intent is ignored.

8. If the next sequential instruction after NEXT
INSTRUCTION ACCESS INTENT is a
PREFETCH DATA (RELATIVE LONG) instruc-
tion, it is unpredictable what the CPU will do with
data prefetching.

9. When the next-sequential instruction after NEXT
INSTRUCTION ACCESS INTENT is an execute-
type instruction (EX or EXRL), the following
applies:

• Access-intent codes are not associated with
the execute-type instruction. The second

operand of an execute-type instruction corre-
sponds to an instruction fetch.

• Depending on the model, access-intent
codes may be associated with the target
instruction of the execute-type instruction.

NONTRANSACTIONAL STORE

NTSTG R1,D2(X2,B2) [RXY-a]

The 64-bit first operand is nontransactionally placed
unchanged at the second-operand location.

The displacement is treated as a 20-bit signed binary
integer.

The second operand must be aligned on a double-
word boundary; otherwise, a specification exception
is recognized and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, second operand)
• Operation (transactional-execution facility not

installed)
• Specification
• Transaction constraint

Programming Notes:

1. NONTRANSACTIONAL STORE provides a
means by which a program executing in the non-
constrained transactional-execution mode can
perform stores that will be retained, even if the
transaction aborts. This may facilitate debugging
of the transaction if it is aborted.

2. When the CPU is not in the transactional-execu-
tion mode, the operation of NONTRANSAC-
TIONAL STORE is identical to that of STORE
(STG), except that the second operand of NON-
TRANSACTIONAL STORE is required to be on a
doubleword boundary (regardless of transac-
tional-execution mode) whereas the second
operand of STG has no alignment requirements.

3. Depending on the model, the performance of
NONTRANSACTIONAL STORE may be slower
than that of STORE (STG).

'E3' R1 X2 B2 DL2 DH2 '25'

0 8 12 16 20 32 40 47

General Instructions 7-311

N
O

T
 E

X
C

L
U

S
IV

E
 O

R4. If a CPU makes transactional and non-transac-
tional stores to the same storage location within
a transaction, and the transaction then aborts,
the content of all storage locations altered by
either the transactional or nontransactional store
are unpredictable.

5. On some models, attempting to execute a non-
transactional store and a transactional store in a
transaction when both designate any locations
within the same cache line results in the transac-
tion being aborted with abort code 16 (cache
other condition) and condition code 3 set. This
occurs even if the nontransactional store does
not overlap the transactional store. The cache
line size may be determined by the EXTRACT
CPU ATTRIBUTES (ECAG) instruction.

NOR

NORK R1,R2,R3 [RRF-a]

NOGRK R1,R2,R3 [RRF-a]

The one’s complement of the OR of the second and
third operands is placed at the first-operand location.

The connective NOR is applied to the operands bit-
by-bit. The contents of a bit position in the result are
set to one if the corresponding bit positions in both
source operands contain zero; otherwise, the result
bit is set to zero.

For NORK, the operands are 32 bits, and for
NOGRK, they are 64 bits.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Operation (if the miscellaneous-instruction-
extensions facility 3 is not installed)

Programming Note: NOR can be used to provide
the functionality of a bit-wise NOT operation by spec-
ifying the same general register for R2 and R3. The
high-level assembler (HLASM) provides the
extended-mnemonic forms shown below.

Extended Mnemonics:

NOT EXCLUSIVE OR

NXRK R1,R2,R3 [RRF-a]

NXGRK R1,R2,R3 [RRF-a]

The one’s complement of the EXCLUSIVE OR of the
second and third operands is placed at the first-oper-
and location.

The connective EXCLUSIVE OR and complementa-
tion is applied to the operands bit-by-bit. The con-
tents of a bit position in the result are set to zero if the
bits in the corresponding bit positions in the two
source operands are unlike; otherwise, the result bit
is set to one.

For NXRK, the operands are 32 bits, and for NXGRK,
they are 64 bits

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Operation (if the miscellaneous-instruction-
extensions facility 3 is not installed)

'B976' R3 / / / / R1 R2

0 16 20 24 28 31

'B966' R3 / / / / R1 R2

0 16 20 24 28 31

Extended Mnemonic Base Mnemonic
NOTR R1,R2 NORK R1,R2,R2

NOTGR R1,R2 NOGRK R1,R2,R2

'B977' R3 / / / / R1 R2

0 16 20 24 28 31

'B967' R3 / / / / R1 R2

0 16 20 24 28 31

7-312 The z/Architecture CPU Architecture

O
R OR

Register-and-register formats:

OR R1,R2 [RR]

OGR R1,R2 [RRE]

ORK R1,R2,R3 [RRF-a]

OGRK R1,R2,R3 [RRF-a]

Register-and-storage formats:

O R1,D2(X2,B2) [RX-a]

OY R1,D2(X2,B2) [RXY-a]

OG R1,D2(X2,B2) [RXY-a]

Storage-and-immediate formats:

OI D1(B1),I2 [SI]

OIY D1(B1),I2 [SIY]

Storage-and-storage format:

OC D1(L,B1),D2(B2) [SS-a]

For O, OC, OG, OGR, OI, OIY, OR, and OY, the OR
of the first and second operands is placed at the first-
operand location. For OGRK and ORK, the OR of the
second and third operands is placed at the first-oper-
and location.

The connective OR is applied to the operands bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit position in one or both
operands contains a one; otherwise, the result bit is
set to zero.

For OR (OC), each operand is processed left to right.
When the operands overlap, the result is obtained as
if the operands were processed one byte at a time
and each result byte were stored immediately after
fetching the necessary operand bytes.

For OR (OI, OIY), the first operand is one byte in
length, and only one byte is stored. When the inter-
locked-access facility 2 is installed, the update of the
first operand appears to be an interlocked-update ref-
erence as observed by other CPUs and channel pro-
grams, and a specific-operand-serialization operation
is performed.

For OR (O, OR, ORK, and OY), the operands are 32
bits, and for OR (OG, OGR, and OGRK), they are 64
bits.

The displacements for O, OI, and both operands of
OC are treated as 12-bit unsigned binary integers.
The displacement for OY, OIY, and OG is treated as a
20-bit signed binary integer.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Access (fetch, operand 2, O, OY, OG, and OC;
fetch and store, operand 1, OI, OIY, and OC)

'16' R1 R2

0 8 12 15

'B981' / / / / / / / / R1 R2

0 16 24 28 31

'B9F6' R3 / / / / R1 R2

0 16 20 24 28 31

'B9E6' R3 / / / / R1 R2

0 16 20 24 28 31

'56' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '56'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '81'
0 8 12 16 20 32 40 47

'96' I2 B1 D1

0 8 16 20 31

'EB' I2 B1 DL1 DH1 '56'

0 8 16 20 32 40 47

'D6' L B1 D1 B2 D2

0 8 16 20 32 36 47

General Instructions 7-313

O
R

 IM
M

E
D

IA
T

E• Operation (OY and OIY, if the long-displacement
facility is not installed; OGRK and ORK, if the
distinct-operands facility is not installed)

• Transaction constraint (OC)

Programming Notes:

1. Examples of the use of the OR instruction are
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. OR may be used to set a bit to one.

3. Accesses to the first operand of OR (OC) – and,
when the interlocked-access facility 2 is not
installed, accesses to the first operand of OR (OI,
OIY) – consist in fetching a first-operand byte
from storage and subsequently storing the
updated value. These fetch and store accesses
to a particular byte do not necessarily occur one
immediately after the other. Thus, these instruc-
tions cannot be safely used to update a location
in storage if the possibility exists that another
CPU or a channel program may also be updating
the location. An example of this effect is shown in
“Multiprogramming and Multiprocessing Exam-
ples” on page A-45.

When the interlocked-access facility 2 is
installed, OR (OI, OIY) can be safely used to
update a location in storage, even if the possibil-
ity exists that another CPU or a channel program
may also be updating the location.

OR IMMEDIATE

OIHF R1,I2 [RIL-a]

OIHH R1,I2 [RI-a]

OIHL R1,I2 [RI-a]

OILF R1,I2 [RIL-a]

OILH R1,I2 [RI-a]

OILL R1,I2 [RI-a]

The second operand is ORed with bits of the first
operand, and the result replaces those bits of the first
operand. The remainder of the first operand remains
unchanged.

For each instruction, the bits of the first operand that
are ORed with the second operand and then
replaced are as follows:

The connective OR is applied to the operands bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit position in one or both
operands contains a one; otherwise, the result bit is
set to zero.

Resulting Condition Code:

0 Result is zero
1 Result is not zero
2 --
3 --

Program Exceptions:

• Operation (OIHF and OILF, if the extended-
immediate facility is not installed)

Programming Note: The setting of the condition
code is based only on the bits that are ORed and
replaced.

'C0' R1 'C' I2
0 8 12 16 47

'A5' R1 '8' I2
0 8 12 16 31

'A5' R1 '9' I2
0 8 12 16 31

'C0' R1 'D' I2
0 8 12 16 47

'A5' R1 'A' I2
0 8 12 16 31

'A5' R1 'B' I2
0 8 12 16 31

Instruction
Bits ORed
and Replaced

OIHF 0-31

OIHH 0-15

OIHL 16-31

OILF 32-63

OILH 32-47

OILL 48-63

7-314 The z/Architecture CPU Architecture

O
R

 W
IT

H
 C

O
M

P
L

E
M

E
N

T OR WITH COMPLEMENT

OCRK R1,R2,R3 [RRF-a]

OCGRK R1,R2,R3 [RRF-a]

The second operand is ORed with the bit-wise com-
plement of the third operand and the result is placed
in the first-operand location.

The connective OR is applied to the second operand
and bit-wise complemented third operand, bit by bit.
The contents of a bit position in the result are set to
zero if the corresponding bit positions in the second
and third operands contain zero and one, respec-
tively; otherwise, the result bit is set to one.

For OCRK, the operands are 32 bits, and for
OCGRK, they are 64 bits.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Operation (if the miscellaneous-instruction-
extensions facility 3 is not installed)

PACK

PACK D1(L1,B1),D2(L2,B2) [SS-b]

The format of the second operand is changed from
zoned to signed-packed-decimal, and the result is
placed at the first-operand location. The zoned and
signed-packed-decimal formats are described in
Chapter 8, “Decimal Instructions.”

The second operand is treated as having the zoned
format. The numeric bits of each byte are treated as

a digit. The zone bits are ignored, except the zone
bits in the rightmost byte, which are treated as a sign.

The sign and digits are moved unchanged to the first
operand and are not checked for valid codes. The
sign is placed in the rightmost four bit positions of the
rightmost byte of the result field, and the digits are
placed adjacent to the sign and to each other in the
remainder of the result field.

The result is obtained as if the operands were pro-
cessed right to left. When necessary, the second
operand is considered to be extended on the left with
zeros. If the first operand is too short to contain all
digits of the second operand, the remaining leftmost
portion of the second operand is ignored. Access
exceptions for the unused portion of the second
operand may or may not be indicated.

When the operands overlap, the result is obtained as
if each result byte were stored immediately after
fetching the necessary operand bytes. Two second-
operand bytes are needed for each result byte,
except for the rightmost byte of the result field, which
requires only the rightmost second-operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Transaction constraint

Programming Notes:

1. An example of the use of the PACK instruction is
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. PACK may be used to interchange the two hexa-
decimal digits in one byte by specifying a zero in
the L1 and L2 fields and the same address for
both operands.

3. To remove the zone bits of all bytes of a field,
including the rightmost byte, both operands
should be extended on the right with a dummy
byte, which subsequently should be ignored in
the result field.

4. The storage-operand references for PACK may
be multiple-access references. (See “Storage-
Operand Consistency” on page 5-125.)

'B975' R3 / / / / R1 R2

0 16 20 24 28 31

'B965' R3 / / / / R1 R2

0 16 20 24 28 31

'F2' L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

General Instructions 7-315

P
A

C
K

 A
S

C
IIPACK ASCII

PKA D1(B1),D2(L2,B2) [SS-f]

The format of the second operand is changed from
ASCII to signed-packed-decimal, and the result is
placed at the first-operand location. The signed-
packed-decimal format is described in Chapter 8,
“Decimal Instructions.”

The second-operand bytes are treated as containing
decimal digits, having the binary encoding
0000-1001 for 0-9, in their rightmost four bit posi-
tions. The leftmost four bit positions of a byte are
ignored. The second operand is considered to be
positive.

The implied positive sign (1100 binary) and the
source digits are placed at the first-operand location.
The source digits are moved unchanged and are not
checked for valid codes. The sign is placed in the
rightmost four bit positions of the rightmost byte of
the result field, and the digits are placed adjacent to
the sign and to each other in the remainder of the
result field.

The result is obtained as if the operands were pro-
cessed right to left. When necessary, the second
operand is considered to be extended on the left with
zeros.

The length of the first operand is 16 bytes.

The length of the second operand is designated by
the contents of the L2 field. The second-operand
length must not exceed 32 bytes (L2 must be less
than or equal to 31); otherwise, a specification excep-
tion is recognized.

When the length of the second operand is 32 bytes,
the leftmost byte is ignored.

The results are unpredictable if the first and second
operands overlap in any way.

As observed by other CPUs and by channel pro-
grams, the first-operand location is not necessarily
stored into in any particular order.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the extended-translation facility 2 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. Although PACK ASCII is primarily intended to
change the format of ASCII decimal digits, its use
is not restricted to ASCII since the leftmost four
bits of each byte are ignored.

2. The following example illustrates the use of the
instruction to pack ASCII digits:

3. The instruction can also be used to pack EBC-
DIC digits, which is especially useful when the
length of the second operand is greater than the
16-byte second-operand limit of PACK.

4. The storage-operand references for PACK ASCII
may be multiple-access references. (See “Stor-
age-Operand Consistency” on page 5-125.)

'E9' L2 B1 D1 B2 D2

0 8 16 20 32 36 47

ASDIGITS DS 0CL31
DC X'3132333435'
DC X'3637383930'
DC X'3132333435'
DC X'3637383930'
DC X'3132333435'
DC X'3637383930'
DC X'31'

PKDIGITS DS PL16

PKA PKDIGITS,ASDIGITS(31)

EBDIGITS DS 0CL31
DC X'F1F2F3F4F5'
DC X'F6F7F8F9F0'
DC X'F1F2F3F4F5'
DC X'F6F7F8F9F0'
DC X'F1F2F3F4F5'
DC X'F6F7F8F9F0'
DC X'F1'

PKDIGITS DS PL16

PKA PKDIGITS,EBDIGITS(31)

7-316 The z/Architecture CPU Architecture

P
A

C
K

 U
N

IC
O

D
E PACK UNICODE

PKU D1(B1),D2(L2,B2) [SS-f]

The format of the second operand is changed from
Unicode to signed-packed-decimal, and the result is
placed at the first-operand location. The signed-
packed-decimal format is described in Chapter 8,
“Decimal Instructions.”

The two-byte second-operand characters are treated
as Unicode Basic Latin characters containing deci-
mal digits, having the binary encoding 0000-1001 for
0-9, in their rightmost four bit positions. The leftmost
12 bit positions of a character are ignored. The sec-
ond operand is considered to be positive.

The implied positive sign (1100 binary) and the
source digits are placed at the first-operand location.
The source digits are moved unchanged and are not
checked for valid codes. The sign is placed in the
rightmost four bit positions of the rightmost byte of
the result field, and the digits are placed adjacent to
the sign and to each other in the remainder of the
result field.

The result is obtained as if the operands were pro-
cessed right to left. When necessary, the second
operand is considered to be extended on the left with
zeros.

The length of the first operand is 16 bytes.

The byte length of the second operand is designated
by the contents of the L2 field. The second-operand
length must not exceed 32 characters or 64 bytes,
and the byte length must be even (L2 must be less
than or equal to 63 and must be odd); otherwise, a
specification exception is recognized.

When the length of the second operand is 32 charac-
ters (64 bytes), the leftmost character is ignored.

The results are unpredictable if the first and second
operands overlap in any way.

As observed by other CPUs and by channel pro-
grams, the first-operand location is not necessarily
stored into in any particular order.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the extended-translation facility 2 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. The following example illustrates the use of
PACK UNICODE to pack European numbers:

2. Because the leftmost 12 bits of each character
are ignored, those Unicode decimal digits where
the digit zero has four rightmost zero bits can
also be packed by the instruction. For example,
for Thai digits:

3. The storage-operand references for PACK UNI-
CODE may be multiple-access references. (See
“Storage-Operand Consistency” on page 5-125.)

PERFORM CRYPTOGRAPHIC
COMPUTATION

PCC [RRE]

'E1' L2 B1 D1 B2 D2

0 8 16 20 32 36 47

UNDIGITS DS 0CL62
DC X'00310032003300340035'
DC X'00360037003800390030'
DC X'00310032003300340035'
DC X'00360037003800390030'
DC X'00310032003300340035'
DC X'00360037003800390030'
DC X'0031'

PKDIGITS DS PL16

PKU PKDIGITS,UNDIGITS(62)

UNDIGITS DS 0CL62
DC X'0E510E520E530E540E55'
DC X'0E560E570E580E590E50'
DC X'0E510E520E530E540E55'
DC X'0E560E570E580E590E50'
DC X'0E510E520E530E540E55'
DC X'0E560E570E580E590E50'
DC X'0E51'

PKDIGITS DS PL16

PKU PKDIGITS,UNDIGITS(62)

'B92C' / / / / / / / / / / / / / / / /
0 16 31

General Instructions 7-317

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

NA function specified by the function code in general
register 0 is performed.

Bits 16-31 of the instruction are ignored.

Bit positions 57-63 of general register 0 contain the
function code. Figure 7-304 on page 7-317 shows
the assigned function codes. All other function codes
are unassigned. Bit 56 of general register 0 must be
zero; otherwise, a specification exception is recog-
nized. All other bits of general register 0 are ignored.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

If the message-security-assist extension 9 is
installed, elliptic curve scalar multiply is supported in
PCC-Scalar-Multiply function codes 64, 65, 66, 72,
73, 80, and 81.

The function codes for PERFORM CRYP-
TOGRAPHIC COMPUTATION are as follows.

All other function codes are unassigned.

The query function provides the means of indicating
the availability of the other functions.

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 PCC-Query 16 —

1 PCC-Compute-Last-Block-CMAC-
Using-DEA

32 8

2 PCC-Compute-Last-Block-CMAC-
Using-TDEA-128

40 8

3 PCC-Compute-Last-Block-CMAC-
Using-TDEA-192

48 8

9 PCC-Compute-Last-Block-CMAC-
Using-Encrypted-DEA

56 8

10 PCC-Compute-Last-Block-CMAC-
Using-Encrypted-TDEA-128

64 8

Figure 7-304. Function Codes for PERFORM
CRYPTOGRAPHIC COMPUTATION (Part 1 of
2)

11 PCC-Compute-Last-Block-CMAC-
Using-Encrypted-TDEA-192

72 8

18 PCC-Compute-Last-Block-CMAC-
Using-AES-128

56 16

19 PCC-Compute-Last-Block-CMAC-
Using-AES-192

64 16

20 PCC-Compute-Last-Block-CMAC-
Using-AES-256

72 16

26 PCC-Compute-Last-Block-CMAC-
Using-Encrypted-AES-128

88 16

27 PCC-Compute-Last-Block-CMAC-
Using-Encrypted-AES-192

96 16

28 PCC-Compute-Last-Block-CMAC-
Using-Encrypted-AES-256A

104 16

50 PCC-Compute-XTS-Parameter-
Using-AES-128

80 16

52 PCC-Compute-XTS-Parameter-
Using-AES-256

96 16

58 PCC-Compute-XTS-Parameter-
Using-Encrypted-AES-128

112 16

60 PCC-Compute-XTS-Parameter-
Using-Encrypted-AES-256

128 16

64 PCC-Scalar-Multiply-P256 4096 —

65 PCC-Scalar-Multiply-P384 4096 —

66 PCC-Scalar-Multiply-P521 4096 —

72 PCC-Scalar-Multiply-Ed25519 4096 —

73 PCC-Scalar-Multiply-Ed448 4096 —

80 PCC-Scalar-Multiply-X25519 4096 —

81 PCC-Scalar-Multiply-X448 4096 —

Explanation:

— Not applicable

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

Figure 7-304. Function Codes for PERFORM
CRYPTOGRAPHIC COMPUTATION (Part 2 of
2)

7-318 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N Figure 7-305 shows the contents of general registers
0 and 1.

In the access-register mode, access register 1 speci-
fies the address space containing the parameter
block.

As observed by this CPU, other CPUs, and channel
programs, reference to the parameter block may be
multiple-access references, accesses to these stor-
age locations are not necessarily block-concurrent,
and the sequence of these accesses or references is
undefined.

Symbols Used in Function Descriptions

The following symbols are used in the subsequent
description of the PERFORM CRYPTOGRAPHIC
COMPUTATION functions. Further description of the
AES standard may be found in Reference [14.] on
page xxx. The XTS multiplication operation is the
same as the GCM (Galois/counter mode) multiplica-
tion operation. Further description of the GCM multi-
plication over GF(2128) may be found in Reference
[17.] on page xxx.

All Addressing Modes

GR0 / 0 FC
0 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

Figure 7-305. General Register Assignment for PCC

Figure 7-306. Symbol For Bit-Wise Exclusive OR

xor

A

C

B

C = A XOR B

Symbol Explanation:

 XTS multiplication operation over GF(2128)

Figure 7-307. Symbol For XTS Multiplication Operation

Over GF(2128)

Symbol Explanation
** XTS power operation over GF(2128)

Figure 7-308. Symbol For XTS Power Operation Over

GF(2128)

Z = X Y

Z <16>

X <16>

Y <16>

**

2j <16>

j <16>

2 <16>

General Instructions 7-319

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N

PCC-Query (Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-305 on
page 7-318.

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-309. Symbols for DEA Encryption and Decryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-310. Symbols for AES-128 Encryption and
Decryption

DEA

P <8>

C <8>

Symbol for DEA

K <8>

Encryption

e
DEA

C <8>

P <8>

Symbol for DEA

K <8>

Decryption

d

AES

P <16>

C <16>

Symbol for AES-128

K <16>

Encryption

e
AES

C <16>

P <16>

Symbol for AES-128

K <16>

Decryption

d

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-311. Symbols for AES-192 Encryption and
Decryption

Symbol Explanation
<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-312. Symbols for AES-256 Encryption and
Decryption

0
Status Word

8
0 63

Figure 7-313. Parameter Block for PCC-Query

AES

P <16>

C <16>

Symbol for AES-192

K <24>

Encryption

e
AES

C <16>

P <16>

Symbol for AES-192

K <24>

Decryption

d

AES

P <16>

C <16>

Symbol for AES-256

K <32>

Encryption

e
AES

C <16>

P <16>

Symbol for AES-256

K <32>

Decryption

d

7-320 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N codes 0-127, respectively, of the PCC instruction.
When a bit is one, the corresponding function is
installed; otherwise, the function is not installed.

Condition code 0 is set when execution of the PCC-
Query function completes; condition codes 1, 2, and
3 are not applicable to this function.

PCC-Compute-Last-Block-CMAC-Using-
DEA (Function Code 1)

PCC-Compute-Last-Block-CMAC-Using-
Encrypted-DEA (Function Code 9)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-305 on
page 7-318.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-DEA function has the fol-
lowing format:

For the PCC-Compute-Last-Block-CMAC-Using-DEA
function, the initial-chaining value is in byte offsets
16-23 of the parameter block and the cryptographic
key is in byte offsets 24-31 of the parameter block.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-Encrypted-DEA function
has the following format:

For the PCC-Compute-Last-Block-CMAC-Using-
Encrypted-DEA function, the contents of byte offsets
32-55 of the parameter block are compared with the
contents of the DEA wrapping-key verification-pat-
tern register. If they mismatch, the parameter-block
location remains unchanged, and the operation is
completed by setting condition code 1. If they match,
byte offsets 16-23 of the parameter block contain the
initial chaining value, and the contents of byte offsets
24-31 of the parameter block are deciphered using
the DEA wrapping key to obtain the 64-bit cryp-
tographic key, K. (See the section “Protection of
Cryptographic Keys” on page 7-431 for details.)

The description in the following paragraphs applies to
both functions.

The bit length of the message in byte offsets 8-15 of
the parameter block is specified by an 8-bit unsigned
binary integer in the message-length (ML) field at
byte offset 0. When the ML field contains a value
greater than 64, the operation is completed by setting
condition code 2. Otherwise, the ML field specifies
the number of leftmost bits in byte offsets 8-15 that
constitute the message. All other bits in byte offsets
8-15 are ignored.

When the ML field specifies a value of 0, a 64-bit
message block is formed by setting the leftmost bit to
one and all other bits to zero; when the ML field
specifies a value of 64, the contents of byte offsets 8-
15 form the 64-bit message block; when the ML field
specifies a value of 63, the leftmost 63 bits in byte
offsets 8-15 padded with a bit of one on the right form
the 64-bit message block; when the ML field speci-
fies a value in the range between 1 and 62, inclu-
sively, the specified number of leftmost bits in byte
offsets 8-15 padded on the right with a bit of one fol-
lowed by the necessary number of bits of zero form a
64-bit message block.

When the ML field specifies the value of 64, a 64-bit
subkey, Kx, is derived using the 64-bit cryptographic
key, K. When the ML field specifies a value in the
range between 0 and 63, inclusively, a different sub-
key, Ky, is derived using the 64-bit cryptographic key,

K. The subkey generation algorithm is shown in the

0 ML Reserved

8 Message

16 Initial Chaining Value (ICV)

24 Cryptographic Key (K)
0 63

Figure 7-314. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-DEA

0 ML Reserved

8 Message

16 Initial Chaining Value (ICV)

24 Encrypted Cryptographic Key (WKd(K))

32 DEA Wrapping-Key
Verification Pattern

(WKdVP)
40

48
0 63

Figure 7-315. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-Encrypted-DEA

General Instructions 7-321

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

Nfollowing figure.

When the ML field specifies the value of 64, the 64-
bit message block is exclusive-ORed with the subkey
Kx. The result of the exclusive-OR operation is then
exclusive-ORed with initial-chaining value. The result
of the second exclusive-OR operation is then enci-
phered using the 64-bit cryptographic key, K, and the
DEA encryption algorithm. The result of the encryp-
tion operation is the CMAC and is placed in byte off-
sets 16-23 of the parameter block.

When the ML field specifies a value in the range
between 0 and 63, inclusively, the 64-bit message
block is exclusive-ORed with the subkey Ky. The
result of the exclusive-OR operation is then exclu-
sive-ORed with initial-chaining value. The result of
the second exclusive-OR operation is then enci-
phered using the 64-bit cryptographic key, K, and the
DEA encryption algorithm. The result of the encryp-
tion operation is the CMAC and is placed in byte off-
sets 16-23 of the parameter block.

When the ML field specifies a value in the range
between 0 and 64, inclusively, condition code 0 is set
when execution of the function completes. Condition
code 3 is not applicable to either function; condition
code 1 is not applicable to the PCC-Compute-Last-
Block-CMAC-Using-DEA function.

PCC-Compute-Last-Block-CMAC-Using-
TDEA-128 (Function Code 2)

PCC-Compute-Last-Block-CMAC-Using-
Encrypted-TDEA-128 (Function Code 10)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-305 on
page 7-318.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-TDEA-128 function has the
following format:

For the PCC-Compute-Last-Block-CMAC-Using-
TDEA-128 function, the initial-chaining value is in
byte offsets 16-23 of the parameter block and the
cryptographic key is in byte offsets 24-39 of the
parameter block.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-Encrypted-TDEA-128 func-
tion has the following format:

For the PCC-Compute-Last-Block-CMAC-Using-
Encrypted-TDEA-128 function, the contents of byte
offsets 40-63 of the parameter block are compared
with the contents of the DEA wrapping-key verifica-
tion-pattern register. If they mismatch, the parameter-
block location remains unchanged, and the operation

Steps:

1. L = CIPHK(0)

2. If MSB (L) = 0, then KX = L << 1;
Else, KX = (L << 1) XOR (R64)

3. If MSB (KX) = 0, then KY = KX << 1;
Else KY = (KX << 1) XOR (R64)

Explanation:

CIPHK(0) Encryption of the value zero using a 64-bit key and
the DEA encryption algorithm.

MSB(A) Most significant (leftmost) bit of A
B<<1 The bit string that results from discarding the

leftmost bit of B and appending a '0' bit on the right.
XOR Bit-wise exclusive OR.
R64 A 64-bit value of 27.

Figure 7-316. Subkey Generation Algorithm

0 ML Reserved

8 Message

16 Initial Chaining Value (ICV)

24
Cryptographic Key (K)

32
0 63

Figure 7-317. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-TDEA-128

0 ML Reserved

8 Message

16 Initial Chaining Value (ICV)

24 Encrypted Cryptographic Key
(WKd(K))32

40 DEA Wrapping-Key
Verification Pattern

(WKdVP)
48

56
0 63

Figure 7-318. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-Encrypted-TDEA-128

7-322 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N is completed by setting condition code 1. If they
match, byte offsets 16-23 of the parameter block con-
tain the initial chaining value, and the contents of
byte offsets 24-39 of the parameter block are deci-
phered using the DEA wrapping key to obtain the
128-bit cryptographic key, K. (See the section “Pro-
tection of Cryptographic Keys” on page 7-431 for
details.)

The description in the following paragraphs applies to
both functions.

The bit length of the message in byte offsets 8-15 of
the parameter block is specified by an 8-bit unsigned
binary integer in the message-length (ML) field at
byte offset 0. When the ML field contains a value
greater than 64, the operation is completed by setting
condition code 2. Otherwise, the ML field specifies
the number of leftmost bits in byte offsets 8-15 that
constitute the message. All other bits in byte offsets
8-15 are ignored.

When the ML field specifies a value of 0, a 64-bit
message block is formed by setting the leftmost bit to
one and all other bits to zero; when the ML field
specifies a value of 64, the contents of byte offsets 8-
15 form the 64-bit message block; when the ML field
specifies a value of 63, the leftmost 63 bits in byte
offsets 8-15 padded with a bit of one on the right form
the 64-bit message block; when the ML field speci-
fies a value in the range between 1 and 62, inclu-
sively, the specified number of leftmost bits in byte
offsets 8-15 padded on the right with a bit of one fol-
lowed by the necessary number of bits of zero form a
64-bit message block.

When the ML field specifies the value of 64, a 64-bit
subkey, Kx, is derived using the 128-bit cryptographic
key, K. When the ML field specifies a value in the
range between 0 and 63, inclusively, a different sub-
key, Ky, is derived using the 128-bit cryptographic key,
K. The subkey generation algorithm is shown in the
following figure.

When the ML field specifies the value of 64, the 64-
bit message block is exclusive-ORed with the subkey
Kx. The result of the exclusive-OR operation is then
exclusive-ORed with initial-chaining value. The result
of the second exclusive-OR operation is then enci-
phered using the 128-bit cryptographic key, K, and
the TDEA-128 encryption algorithm. The result of the
encryption operation is the CMAC and is placed in
byte offsets 16-23 of the parameter block.

When the ML field specifies a value in the range
between 0 and 63, inclusively, the 64-bit message
block is exclusive-ORed with the subkey Ky. The
result of the exclusive-OR operation is then exclu-
sive-ORed with initial-chaining value. The result of
the second exclusive-OR operation is then enci-
phered using the 128-bit cryptographic key, K, and
the TDEA-128 encryption algorithm. The result of the
encryption operation is the CMAC and is placed in
byte offsets 16-23 of the parameter block.

When the ML field specifies a value in the range
between 0 and 64, inclusively, condition code 0 is set
when execution of the function completes. Condition
code 3 is not applicable to either function; condition
code 1 is not applicable to the PCC-Compute-Last-
Block-CMAC-Using-TDEA-128 function.

PCC-Compute-Last-Block-CMAC-Using-
TDEA-192 (Function Code 3)

PCC-Compute-Last-Block-CMAC-Using-
Encrypted-TDEA-192 (Function Code 11)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-305 on
page 7-318.

Steps:

1. L = CIPHK(0)

2. If MSB (L) = 0, then KX = L << 1;
Else, KX = (L << 1) XOR (R64)

3. If MSB (KX) = 0, then KY = KX << 1;
Else KY = (KX << 1) XOR (R64)

Figure 7-319. Subkey Generation Algorithm

Explanation:

CIPHK(0) Encryption of the value zero using a 128-bit key and
the TDEA-128 encryption algorithm.

MSB(A) Most significant (leftmost) bit of A
B<<1 The bit string that results from discarding the leftmost

bit of B and appending a '0' bit on the right.
XOR Bit-wise exclusive OR.
R64 A 64-bit value of 27.

Figure 7-319. Subkey Generation Algorithm (Continued)

General Instructions 7-323

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

NThe parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-TDEA-192 function has the
following format:

For the PCC-Compute-Last-Block-CMAC-Using-
TDEA-192 function, the initial-chaining value is in
byte offsets 16-23 of the parameter block and the
cryptographic key is in byte offsets 24-47 of the
parameter block.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-Encrypted-TDEA-192 func-
tion has the following format:

For the PCC-Compute-Last-Block-CMAC-Using-
Encrypted-TDEA-192 function, the contents of byte
offsets 48-71 of the parameter block are compared
with the contents of the DEA wrapping-key verifica-
tion-pattern register. If they mismatch, the parameter-
block location remains unchanged, and the operation
is completed by setting condition code 1. If they
match, byte offsets 16-23 of the parameter block con-
tain the initial chaining value, and the contents of
byte offsets 24-47 of the parameter block are deci-
phered using the DEA wrapping key to obtain the
192-bit cryptographic key, K. (See the section “Pro-

tection of Cryptographic Keys” on page 7-431 for
details.)

The description in the following paragraphs applies to
both functions.

The bit length of the message in byte offsets 8-15 of
the parameter block is specified by an 8-bit unsigned
binary integer in the message-length (ML) field at
byte offset 0. When the ML field contains a value
greater than 64, the operation is completed by setting
condition code 2. Otherwise, the ML field specifies
the number of leftmost bits in byte offsets 8-15 that
constitute the message. All other bits in byte offsets
8-15 are ignored.

When the ML field specifies a value of 0, a 64-bit
message block is formed by setting the leftmost bit to
one and all other bits to zero; when the ML field
specifies a value of 64, the contents of byte offsets 8-
15 form the 64-bit message block; when the ML field
specifies a value of 63, the leftmost 63 bits in byte
offsets 8-15 padded with a bit of one on the right form
the 64-bit message block; when the ML field speci-
fies a value in the range between 1 and 62, inclu-
sively, the specified number of leftmost bits in byte
offsets 8-15 padded on the right with a bit of one fol-
lowed by the necessary number of bits of zero form a
64-bit message block.

When the ML field specifies the value of 64, a 64-bit
subkey, Kx, is derived using the 192-bit cryptographic
key, K. When the ML field specifies a value in the
range between 0 and 63, inclusively, a different sub-
key, Ky, is derived using the 192-bit cryptographic key,
K. The subkey generation algorithm is shown in the
following figure.

0 ML Reserved

8 Message

16 Initial Chaining Value (ICV)

24

Cryptographic Key (K)32

40
0 63

Figure 7-320. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-TDEA-192

0 ML Reserved

8 Message

16 Initial Chaining Value (ICV)

24
Encrypted Cryptographic Key

(WKd(K))
32

40

48 DEA Wrapping-Key
Verification Pattern

(WKdVP)
56

64
0 63

Figure 7-321. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-Encrypted-TDEA-192 Steps:

1. L = CIPHK(0)

2. If MSB (L) = 0, then KX = L << 1;
Else, KX = (L << 1) XOR (R64)

3. If MSB (KX) = 0, then KY = KX << 1;
Else KY = (KX << 1) XOR (R64)

Figure 7-322. Subkey Generation Algorithm

7-324 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N

When the ML field specifies the value of 64, the 64-
bit message block is exclusive-ORed with the subkey
Kx. The result of the exclusive-OR operation is then
exclusive-ORed with initial-chaining value. The result
of the second exclusive-OR operation is then enci-
phered using the 192-bit cryptographic key, K, and
the TDEA-192 encryption algorithm. The result of the
encryption operation is the CMAC and is placed in
byte offsets 16-23 of the parameter block.

When the ML field specifies a value in the range
between 0 and 63, inclusively, the 64-bit message
block is exclusive-ORed with the subkey Ky. The
result of the exclusive-OR operation is then exclu-
sive-ORed with initial-chaining value. The result of
the second exclusive-OR operation is then enci-
phered using the 192-bit cryptographic key, K, and
the TDEA-192 encryption algorithm. The result of the
encryption operation is the CMAC and is placed in
byte offsets 16-23 of the parameter block.

When the ML field specifies a value in the range
between 0 and 64, inclusively, condition code 0 is set
when execution of the function completes. Condition
code 3 is not applicable to either function; condition
code 1 is not applicable to the PCC-Compute-Last-
Block-CMAC-Using-TDEA-192 function.

PCC-Compute-Last-Block-CMAC-Using-
AES-128 (Function Code 18)

PCC-Compute-Last-Block-CMAC-Using-
Encrypted-AES-128 (Function Code 26)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-305 on
page 7-318.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-AES-128 function has the
following format:

For the PCC-Compute-Last-Block-CMAC-Using-
AES-128 function, the initial-chaining value is in byte
offsets 24-39 of the parameter block and the cryp-
tographic key is in byte offsets 40-55 of the parame-
ter block.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-Encrypted-AES-128 func-
tion has the following format:

For the PCC-Compute-Last-Block-CMAC-Using-
Encrypted-AES-128 function, the contents of byte
offsets 56-87 of the parameter block are compared
with the contents of the AES wrapping-key verifica-
tion-pattern register. If they mismatch, the parameter-
block location remains unchanged, and the operation
is completed by setting condition code 1. If they
match, byte offsets 24-39 of the parameter block con-
tain the initial chaining value, and the contents of
byte offsets 40-55 of the parameter block are deci-

Explanation:

CIPHK(0) Encryption of the value zero using a 192-bit key and
the TDEA-192 encryption algorithm.

MSB(A) Most significant (leftmost) bit of A
B<<1 The bit string that results from discarding the leftmost

bit of B and appending a '0' bit on the right.
XOR Bit-wise exclusive OR.
R64 A 64-bit value of 27.

Figure 7-322. Subkey Generation Algorithm (Continued)

0 ML Reserved

8
Message

16

24
Initial Chaining Value (ICV)

32

40
Cryptographic Key (K)

48
0 63

Figure 7-323. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-AES-128

0 ML Reserved

8
Message

16

24
 Initial Chaining Value (ICV)

32

40 Encrypted Cryptographic Key
(WKa(K))48

56
AES Wrapping-Key
Verification Pattern

(WKaVP)

64

72

80
0 63

Figure 7-324. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-Encrypted-AES-128

General Instructions 7-325

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

Nphered using the AES wrapping key to obtain the
128-bit cryptographic key, K. (See the section “Pro-
tection of Cryptographic Keys” on page 7-431 for
details.)

The description in the following paragraphs applies to
both functions.

The bit length of the message in byte offsets 8-23 of
the parameter block is specified by an 8-bit unsigned
binary integer in the message-length (ML) field at
byte offset 0. When the ML field contains a value
greater than 128, the operation is completed by set-
ting condition code 2. Otherwise, the ML field speci-
fies the number of leftmost bits in byte offsets 8-23
that constitute the message. All other bits in byte off-
sets 8-23 are ignored.

When the ML field specifies a value of 0, a 128-bit
message block is formed by setting the leftmost bit to
one and all other bits to zero; when the ML field
specifies a value of 128, the contents of byte offsets
8-23 form the 128-bit message block; when the ML
field specifies a value of 127, the leftmost 127 bits in
byte offsets 8-23 padded with a bit of one on the right
form the 128-bit message block; when the ML field
specifies a value in the range between 1 and 126,
inclusively, the specified number of leftmost bits in
byte offsets 8-23 padded on the right with a bit of one
followed by the necessary number of bits of zero form
a 128-bit message block.

When the ML field specifies the value of 128, a 128-
bit subkey, Kx, is derived using the 128-bit cryp-
tographic key, K. When the ML field specifies a value
in the range between 0 and 127, inclusively, a differ-
ent subkey, Ky, is derived using the 128-bit cryp-
tographic key, K. The subkey generation algorithm is
shown in the following figure.

When the ML field specifies the value of 128, the
128-bit message block is exclusive-ORed with the
subkey Kx. The result of the exclusive-OR operation
is then exclusive-ORed with initial-chaining value.
The result of the second exclusive-OR operation is
then enciphered using the 128-bit cryptographic key,
K, and the AES-128 encryption algorithm. The result
of the encryption operation is the CMAC and is
placed in byte offsets 24-39 of the parameter block.

When the ML field specifies a value in the range
between 0 and 127, inclusively, the 128-bit message
block is exclusive-ORed with the subkey Ky. The
result of the exclusive-OR operation is then exclu-
sive-ORed with initial-chaining value. The result of
the second exclusive-OR operation is then enci-
phered using the 128-bit cryptographic key, K, and
the AES-128 encryption algorithm. The result of the
encryption operation is the CMAC and is placed in
byte offsets 24-39 of the parameter block.

When the ML field specifies a value in the range
between 0 and 128, inclusively, condition code 0 is
set when execution of the function completes. Condi-
tion code 3 is not applicable to either function; condi-
tion code 1 is not applicable to the PCC-Compute-
Last-Block-CMAC-Using-AES-128 function.

PCC-Compute-Last-Block-CMAC-Using-
AES-192 (Function Code 19)

PCC-Compute-Last-Block-CMAC-Using-
Encrypted-AES-192 (Function Code 27)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-305 on
page 7-318.

Steps:

1. L = CIPHK(0)

2. If MSB (L) = 0, then KX = L << 1;
Else, KX = (L << 1) XOR (R128)

3. If MSB (KX) = 0, then KY = KX << 1;
Else KY = (KX << 1) XOR (R128)

Figure 7-325. Subkey Generation Algorithm

Explanation:

CIPHK(0) Encryption of the value zero using a 128-bit key and
the AES-128 encryption algorithm.

MSB(A) Most significant (leftmost) bit of A
B<<1 The bit string that results from discarding the leftmost

bit of B and appending a '0' bit on the right.
XOR Bit-wise exclusive OR.
R128 A 128-bit value of 135.

Figure 7-325. Subkey Generation Algorithm (Continued)

7-326 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-AES-192 function has the
following format:

For the PCC-Compute-Last-Block-CMAC-Using-
AES-192 function, the initial-chaining value is in byte
offsets 24-39 of the parameter block and the cryp-
tographic key is in byte offsets 40-63 of the parame-
ter block.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-Encrypted-AES-192 func-
tion has the following format:

For the PCC-Compute-Last-Block-CMAC-Using-
Encrypted-AES-192 function, the contents of byte
offsets 64-95 of the parameter block are compared
with the contents of the AES wrapping-key verifica-
tion-pattern register. If they mismatch, the parameter-
block location remains unchanged, and the operation
is completed by setting condition code 1. If they
match, byte offsets 24-39 of the parameter block con-

tain the initial chaining value, and the contents of
byte offsets 40-63 of the parameter block are deci-
phered using the AES wrapping key to obtain the
192-bit cryptographic key, K. (See the section “Pro-
tection of Cryptographic Keys” on page 7-431 for
details.)

The description in the following paragraphs applies to
both functions.

The bit length of the message in byte offsets 8-23 of
the parameter block is specified by an 8-bit unsigned
binary integer in the message-length (ML) field at
byte offset 0. When the ML field contains a value
greater than 128, the operation is completed by set-
ting condition code 2. Otherwise, the ML field speci-
fies the number of leftmost bits in byte offsets 8-23
that constitute the message. All other bits in byte off-
sets 8-23 are ignored.

When the ML field specifies a value of 0, a 128-bit
message block is formed by setting the leftmost bit to
one and all other bits to zero; when the ML field
specifies a value of 128, the contents of byte offsets
8-23 form the 128-bit message block; when the ML
field specifies a value of 127, the leftmost 127 bits in
byte offsets 8-23 padded with a bit of one on the right
form the 128-bit message block; when the ML field
specifies a value in the range between 1 and 126,
inclusively, the specified number of leftmost bits in
byte offsets 8-23 padded on the right with a bit of one
followed by the necessary number of bits of zero form
a 128-bit message block.

When the ML field specifies the value of 128, a 128-
bit subkey, Kx, is derived using the 192-bit cryp-
tographic key, K. When the ML field specifies a value
in the range between 0 and 127, inclusively, a differ-
ent subkey, Ky, is derived using the 192-bit cryp-
tographic key, K. The subkey generation algorithm is
shown in the following figure.

0 ML Reserved

8
Message

16

24
Initial Chaining Value (ICV)

32

40

Cryptographic Key (K)48

56
0 63

Figure 7-326. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-AES-192

0 ML Reserved

8
Message

16

24
 Initial Chaining Value (ICV)

32

40
Encrypted Cryptographic Key

(WKa(K))
48

56

64
AES Wrapping-Key
Verification Pattern

(WKaVP)

72

80

88
0 63

Figure 7-327. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-Encrypted-AES-192

Steps:

1. L = CIPHK(0)

2. If MSB (L) = 0, then KX = L << 1;
Else, KX = (L << 1) XOR (R128)

3. If MSB (KX) = 0, then KY = KX << 1;
Else KY = (KX << 1) XOR (R128)

Figure 7-328. Subkey Generation Algorithm

General Instructions 7-327

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N

When the ML field specifies the value of 128, the
128-bit message block is exclusive-ORed with the
subkey Kx. The result of the exclusive-OR operation
is then exclusive-ORed with initial-chaining value.
The result of the second exclusive-OR operation is
then enciphered using the 192-bit cryptographic key,
K, and the AES-192 encryption algorithm. The result
of the encryption operation is the CMAC and is
placed in byte offsets 24-39 of the parameter block.

When the ML field specifies a value in the range
between 0 and 127, inclusively, the 128-bit message
block is exclusive-ORed with the subkey Ky. The
result of the exclusive-OR operation is then exclu-
sive-ORed with initial-chaining value. The result of
the second exclusive-OR operation is then enci-
phered using the 192-bit cryptographic key, K, and
the AES-192 encryption algorithm. The result of the
encryption operation is the CMAC and is placed in
byte offsets 24-39 of the parameter block.

When the ML field specifies a value in the range
between 0 and 128, inclusively, condition code 0 is
set when execution of the function completes. Condi-
tion code 3 is not applicable to either function; condi-
tion code 1 is not applicable to the PCC-Compute-
Last-Block-CMAC-Using-AES-192 function.

PCC-Compute-Last-Block-CMAC-Using-
AES-256 (Function Code 20)

PCC-Compute-Last-Block-CMAC-Using-
Encrypted-AES-256(Function Code 28)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-305 on
page 7-318.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-AES-256 function has the
following format:

For the PCC-Compute-Last-Block-CMAC-Using-
AES-256 function, the initial-chaining value is in byte
offsets 24-39 of the parameter block and the cryp-
tographic key is in byte offsets 40-71 of the parame-
ter block.

The parameter block used for the PCC-Compute-
Last-Block-CMAC-Using-Encrypted-AES-256 func-
tion has the following format:

For the PCC-Compute-Last-Block-CMAC-Using-
Encrypted-AES-256 function, the contents of byte
offsets 72-103 of the parameter block are compared
with the contents of the AES wrapping-key verifica-
tion-pattern register. If they mismatch, the parameter-

Explanation:

CIPHK(0) Encryption of the value zero using a 192-bit key and
the AES-192 encryption algorithm.

MSB(A) Most significant (leftmost) bit of A
B<<1 The bit string that results from discarding the leftmost

bit of B and appending a '0' bit on the right.
XOR Bit-wise exclusive OR.
R128 A 128-bit value of 135.

Figure 7-328. Subkey Generation Algorithm (Continued)

0 ML Reserved

8
Message

16

24
Initial Chaining Value (ICV)

32

40

Cryptographic Key (K)
48

56

64
0 63

Figure 7-329. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-AES-256

0 ML Reserved

8
Message

16

24
 Initial Chaining Value (ICV)

32

40

Encrypted Cryptographic Key
(WKa(K))

48

56

64

72
AES Wrapping-Key
Verification Pattern

(WKaVP)

80

88

96
0 63

Figure 7-330. Parameter Block for PCC-Compute-Last-
Block-CMAC-Using-Encrypted-AES-256

7-328 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N block location remains unchanged, and the operation
is completed by setting condition code 1. If they
match, byte offsets 24-39 of the parameter block con-
tain the initial chaining value, and the contents of
byte offsets 40-71 of the parameter block are deci-
phered using the AES wrapping key to obtain the
256-bit cryptographic key, K. (See the section “Pro-
tection of Cryptographic Keys” on page 7-431 for
details.)

The description in the following paragraphs applies to
both functions.

The bit length of the message in byte offsets 8-23 of
the parameter block is specified by an 8-bit unsigned
binary integer in the message-length (ML) field at
byte offset 0. When the ML field contains a value
greater than 128, the operation is completed by set-
ting condition code 2. Otherwise, the ML field speci-
fies the number of leftmost bits in byte offsets 8-23
that constitute the message. All other bits in byte off-
sets 8-23 are ignored.

When the ML field specifies a value of 0, a 128-bit
message block is formed by setting the leftmost bit to
one and all other bits to zero; when the ML field
specifies a value of 128, the contents of byte offsets
8-23 form the 128-bit message block; when the ML
field specifies a value of 127, the leftmost 127 bits in
byte offsets 8-23 padded with a bit of one on the right
form the 128-bit message block; when the ML field
specifies a value in the range between 1 and 126,
inclusively, the specified number of leftmost bits in
byte offsets 8-23 padded on the right with a bit of one
followed by the necessary number of bits of zero form
a 128-bit message block.

When the ML field specifies the value of 128, a 128-
bit subkey, Kx, is derived using the 256-bit cryp-
tographic key, K. When the ML field specifies a value
in the range between 0 and 127, inclusively, a differ-
ent subkey, Ky, is derived using the 256-bit cryp-
tographic key, K. The subkey generation algorithm is
shown in the following figure.

When the ML field specifies the value of 128, the
128-bit message block is exclusive-ORed with the
subkey Kx. The result of the exclusive-OR operation
is then exclusive-ORed with initial-chaining value.
The result of the second exclusive-OR operation is
then enciphered using the 256-bit cryptographic key,
K, and the AES-256 encryption algorithm. The result
of the encryption operation is the CMAC and is
placed in byte offsets 24-39 of the parameter block.

When the ML field specifies a value in the range
between 0 and 127, inclusively, the 128-bit message
block is exclusive-ORed with the subkey Ky. The
result of the exclusive-OR operation is then exclu-
sive-ORed with initial-chaining value. The result of
the second exclusive-OR operation is then enci-
phered using the 256-bit cryptographic key, K, and
the AES-256 encryption algorithm. The result of the
encryption operation is the CMAC and is placed in
byte offsets 24-39 of the parameter block.

When the ML field specifies a value in the range
between 0 and 128, inclusively, condition code 0 is
set when execution of the function completes. Condi-
tion code 3 is not applicable to either function; condi-
tion code 1 is not applicable to the PCC-Compute-
Last-Block-CMAC-Using-AES-256 function.

PCC-Compute-XTS-Parameter-Using-
AES-128 (Function Code 50)

PCC-Compute-XTS-Parameter-Using-
Encrypted-AES-128 (Function Code 58)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-305 on
page 7-318.

Steps:

1. L = CIPHK(0)

2. If MSB (L) = 0, then KX = L << 1;
Else, KX = (L << 1) XOR (R128)

3. If MSB (KX) = 0, then KY = KX << 1;
Else KY = (KX << 1) XOR (R128)

Figure 7-331. Subkey Generation Algorithm

Explanation:

CIPHK(0) Encryption of the value zero using a 256-bit key and
the AES-256 encryption algorithm.

MSB(A) Most significant (leftmost) bit of A
B<<1 The bit string that results from discarding the leftmost

bit of B and appending a '0' bit on the right.
XOR Bit-wise exclusive OR.
R128 A 128-bit value of 135.

Figure 7-331. Subkey Generation Algorithm (Continued)

General Instructions 7-329

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

NThe parameter block used for the PCC-Compute-
XTS-Parameter-Using-AES-128 function has the fol-
lowing format:

For the PCC-Compute-XTS-Parameter-Using-AES-
128 function, the cryptographic key is in byte offsets
0-15 of the parameter block; the 128-bit tweak value
(i) and the 128-bit block sequential number (j) are in
byte offsets 16-31 and 32-47, respectively, of the
parameter block. When the block sequential number
is zero, the contents of byte offsets 48-79 of the
parameter block are ignored, the encrypted tweak
value is placed in byte offsets 64-79 of the parameter
block, and the operation is completed by setting con-
dition code 0. When the block sequential number is
nonzero, byte offsets 48-63 of the parameter block
contain the index of the next bit in j to be processed.
In this case, if the contents of byte offsets 48-63 are
zero, then it is the initial execution of the computa-
tion, and the contents of byte offsets 64-79 of the
parameter block are ignored; if the contents of byte
offsets 48-63 are in the range between 1 and 127,
inclusively, then byte offsets 64-79 contain the partial
XTS parameter computed by a previous iteration; if
byte offsets 48-63 of the parameter block contain a
value greater than 127, the operation is completed by
setting condition code 2.

The parameter block used for the PCC-Compute-
XTS-Parameter-Using-Encrypted-AES-128 function
has the following format:

For the PCC-Compute-XTS-Parameter-Using-
Encrypted-AES-128 function, the contents of byte
offsets 16-47 of the parameter block are compared
with the contents of the AES wrapping-key verifica-
tion-pattern register. If they mismatch, the parameter-
block location remains unchanged, and the operation
is completed by setting condition code 1. If they
match, the contents of byte offsets 0-15 of the
parameter block are deciphered using the AES wrap-
ping key to obtain the 128-bit cryptographic key, K.
(See the section “Protection of Cryptographic Keys”
on page 7-431 for details.) The 128-bit tweak value
(i) and the 128-bit block sequential number (j) are in
byte offsets 48-63 and 64-79, respectively, of the
parameter block. When the block sequential number
is zero, the contents of byte offsets 80-111 of the
parameter block are ignored, the encrypted tweak
value is placed in byte offsets 96-111 of the parame-
ter block, and the operation is completed by setting
condition code 0. When the block sequential number
is nonzero, byte offsets 80-95 of the parameter block
contain the index of the next bit in j to be processed.
In this case, if the contents of byte offsets 80-95 are
zero, then it is the initial execution of the computa-
tion, and the contents of byte offsets 96-111 of the
parameter block are ignored; if the contents of byte
offsets 80-95 are in the range between 1 and 127,
inclusively, then byte offsets 96-111 contain the par-
tial XTS parameter computed by a previous iteration;

0
Cryptographic Key (K)

8

16
Tweak Value (i)

24

32
Block Sequential Number (j)

40

48
Intermediate Bit Index (t)

56

64
XTS Parameter

72
0 63

Figure 7-332. Parameter Block for PCC-Compute-XTS-
Parameter-Using-AES-128

0 Encrypted Cryptographic Key
(WKa(K))8

16
AES Wrapping-Key
Verification Pattern

(WKaVP)

24

32

40

48
Tweak Value (i)

56

64
Block Sequential Number (j)

72

80
Intermediate Bit Index (t)

88

96
 XTS Parameter

104
0 63

Figure 7-333. Parameter Block for PCC-Compute-XTS-
Parameter-Using-Encrypted-AES-128

7-330 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N if byte offsets 80-95 of the parameter block contain a
value greater than 127, the operation is completed by
setting condition code 2.

The following description applies to both functions.

The 128-bit XTS parameter is the result of multiplying
the encrypted tweak value by the value of 2 raised to
the power of the block sequential number (j). Both the
power and multiplication operations are performed
over GF(2128). The 128-bit tweak value (i) is
encrypted using the 128-bit cryptographic key and
the AES encryption algorithm. The operation is
shown in Figure 7-334.

The value of 2 raised to the power of j is computed as
follows: For each bit in j, the value of 2 raised to the
power of an exponent, that is a 128-bit unsigned
binary integer with an one in that bit and zeros in all
other bits, is pre-computed. To obtain the value of 2
raised to the power of j, the pre-computed values that
correspond to a bit of one in j are multiplied together.
The power and multiplication operations are per-
formed over GF(2128).

For a nonzero j, bits in j are processed from left to
right, with an index of 0 for the leftmost bit and an
index of 127 for the right most bit. The operation is
ended when all bits in j have been processed (called
normal completion) or when a CPU-determined num-
ber of bits that is less than the total number of bits in j
have been processed (called partial completion). The
CPU-determined number of bits depends on the
model, and may be a different number each time the
instruction is executed. The CPU-determined number
of bits is usually nonzero. In certain unusual situa-
tions, this number may be zero, and condition code 3
may be set with no progress. However, the CPU pro-
tects against endless reoccurrence of this no-prog-
ress case.

When the operation ends due to normal completion,
condition code 0 is set and the intermediate bit index
field (t) in the parameter block is set to 128. When the

operation ends due to partial completion, condition
code 3 is set and the intermediate bit index field (t) in
the parameter block is set to the index of the next bit
in j to be processed. For the Compute-XTS-Parame-
ter-Using-AES-128 function, the computed XTS
parameter or partial XTS parameter is placed in byte
offsets 64-79 of the parameter block. For the Com-
pute-XTS-Parameter-Using-Encrypted-AES-128
function, the computed XTS parameter or partial XTS
parameter is placed in byte offsets 96-111 of the
parameter block.

Condition code 1 is not applicable to the PCC-Com-
pute-XTS-Parameter-Using-AES-128 function.

PCC-Compute-XTS-Parameter-Using-
AES-256 (Function Code 52)

PCC-Compute-XTS-Parameter-Using-
Encrypted-AES-256 (Function Code 60)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-305 on
page 7-318.

The parameter block used for the PCC-Compute-
XTS-Parameter-Using-AES-256 function has the fol-
lowing format:

For the PCC-Compute-XTS-Parameter-Using-AES-
256 function, the cryptographic key is in byte offsets
0-31 of the parameter block; the 128-bit tweak value
(i) and the 128-bit block sequential number (j) are in
byte offsets 32-47 and 48-63, respectively, of the
parameter block. When the block sequential number

Figure 7-334. Compute XTS Parameter Using AES 128

**

j <16>

2 <16>

AES
e

i <16>

K <16>

0

Cryptographic Key (K)
8

16

24

32
Tweak Value (i)

40

48
Block Sequential Number (j)

56

64
Intermediate Bit Index (t)

72

80
XTS Parameter

88
0 63

Figure 7-335. Parameter Block for PCC-Compute-XTS-
Parameter-Using-AES-256

General Instructions 7-331

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

Nis zero, the contents of byte offsets 64-95 of the
parameter block are ignored, the encrypted tweak
value is placed in byte offsets 80-95 of the parameter
block, and the operation is completed by setting con-
dition code 0. When the block sequential number is
nonzero, byte offsets 64-79 of the parameter block
contain the index of the next bit in j to be processed.
In this case, if the contents of byte offsets 64-79 are
zero, then it is the initial execution of the computa-
tion, and the contents of byte offsets 80-95 of the
parameter block are ignored; if the contents of byte
offsets 64-79 are in the range between 1 and 127,
inclusively, then byte offsets 80-95 contain the partial
XTS parameter computed by a previous iteration; if
byte offsets 64-79 of the parameter block contain a
value greater than 127, the operation is completed by
setting condition code 2.

The parameter block used for the PCC-Compute-
XTS-Parameter-Using-Encrypted-AES-256 function
has the following format:

For the PCC-Compute-XTS-Parameter-Using-
Encrypted-AES-256 function, the contents of byte
offsets 32-63 of the parameter block are compared
with the contents of the AES wrapping-key verifica-
tion-pattern register. If they mismatch, the parameter-
block location remains unchanged, and the operation
is completed by setting condition code 1. If they
match, the contents of byte offsets 0-31 of the
parameter block are deciphered using the AES wrap-

ping key to obtain the 256-bit cryptographic key, K.
(See the section “Protection of Cryptographic Keys”
on page 7-431 for details.) The 128-bit tweak value
(i) and the 128-bit block sequential number (j) are in
byte offsets 64-79 and 80-95, respectively, of the
parameter block. When the block sequential number
is zero, the contents of byte offsets 96-127 of the
parameter block are ignored, the encrypted tweak
value is placed in byte offsets 112-127 of the param-
eter block, and the operation is completed by setting
condition code 0. When the block sequential number
is nonzero, byte offsets 96-111 of the parameter
block contain the index of the next bit in j to be pro-
cessed. In this case, if the contents of byte offsets
96-111 are zero, then it is the initial execution of the
computation, and the contents of byte offsets 112-
127 of the parameter block are ignored; if the con-
tents of byte offsets 96-111 are in the range between
1 and 127, inclusively, then byte offsets 112-127 con-
tain the partial XTS parameter computed by a previ-
ous iteration; if byte offsets 96-111 of the parameter
block contain a value greater than 127, the operation
is completed by setting condition code 2.

The following description applies to both functions.

The 128-bit XTS parameter is the result of multiplying
the encrypted tweak value by the value of 2 raised to
the power of the block sequential number (j). Both the
power and multiplication operations are performed
over GF(2128). The 128-bit tweak value (i) is
encrypted using the 256-bit cryptographic key and
the AES encryption algorithm. The operation is
shown in Figure 7-337.

The value of 2 raised to the power of j is computed as
follows: For each bit in j, the value of 2 raised to the
power of an exponent, that is a 128-bit unsigned
binary integer with an one in that bit and zeros in all
other bits, is pre-computed. To obtain the value of 2
raised to the power of j, the pre-computed values that
correspond to a bit of one in j are multiplied together.
The power and multiplication operations are per-
formed over GF(2128).

0 Encrypted
Cryptographic

Key
(WKa(K))

8

16

24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)

40

48

56

64
Tweak Value (i)

72

80
Block Sequential Number (j)

88

96
Intermediate Bit Index (t)

104

112
XTS Parameter

120
0 63

Figure 7-336. Parameter Block for PCC-Compute-XTS-
Parameter-Using-Encrypted-AES-256 Figure 7-337. Compute XTS Parameter Using AES 256

**

j <16>

2 <16>

AES
e

i <16>

K <32>

7-332 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N For a nonzero j, bits in j are processed from left to
right, with an index of 0 for the leftmost bit and an
index of 127 for the right most bit. The operation is
ended when all bits in j have been processed (called
normal completion) or when a CPU-determined num-
ber of bits that is less than the total number of bits in j
have been processed (called partial completion). The
CPU-determined number of bits depends on the
model, and may be a different number each time the
instruction is executed. The CPU-determined number
of bits is usually nonzero. In certain unusual situa-
tions, this number may be zero, and condition code 3
may be set with no progress. However, the CPU pro-
tects against endless reoccurrence of this no-prog-
ress case.

When the operation ends due to normal completion,
condition code 0 is set and the intermediate bit index
field (t) in the parameter block is set to 128. When the
operation ends due to partial completion, condition
code 3 is set and the intermediate bit index field (t) in
the parameter block is set to the index of the next bit
in j to be processed. For the Compute-XTS-Parame-
ter-Using-AES-256 function, the computed XTS
parameter or partial XTS parameter is placed in byte
offsets 80-95 of the parameter block. For the Com-
pute-XTS-Parameter-Using-Encrypted-AES-256
function, the computed XTS parameter or partial XTS
parameter is placed in byte offsets 112-127 of the
parameter block.

Condition code 1 is not applicable to the PCC-Com-
pute-XTS-Parameter-Using-AES-256 function.

PCC-Scalar-Multiply (Function Codes 64,
65, 66, 72, and 73)

Note: The description of the PCC-Scalar-Multiply
instruction assumes that the reader is familiar with
the Elliptic Curve Digital Signal Algorithm (ECDSA)
described in Reference [24.] on page xxx. This sec-
tion illustrates the operation for five PCC-Scalar-Mul-
tiply functions:

• PCC-Scalar-Multiply-P256 (function code 64)
• PCC-Scalar-Multiply-P384 (function code 65)
• PCC-Scalar-Multiply-P521 (function code 66)
• PCC-Scalar-Multiply-Ed25519 (function code 72)
• PCC-Scalar-Multiply-Ed448 (function code 73)

The three functions with P256, P384, and P521 use
NIST curves from Reference [24.] on page xxx. Also
see Reference [27.] on page xxx section 5.4 p.17-18
for algorithm details and see D.1.2.3-5 in Reference
[24.] on page xxx p.100 for the curve parameter val-
ues including the prime modulus, the order, the coef-
ficient, the base point x coordinate, and the base
point y coordinate used by these functions.

Two functions, PCC-Scalar-Multiply Ed25519 and
Ed448 use twisted Edwards Curves using the
EdDSA algorithm, see Reference [25.] on page xxx
for algorithm details and curve parameter values,
section 5.1 and 5.2 detail curve parameters for
Ed25519 and Ed448 respectively.

The PCC-Scalar-Multiply function implements a sca-
lar multiply of point on an elliptic curve as shown by
the following:

• (Xr, Yr) <= d * (Xs, Ys)

where the input point is represented by the coordi-
nates, Xs and Ys, is multiplied by a scalar, d, and
results in the point represented by the coordinates Xr
and Yr. The scalar multiply of a point can be accom-
plished by a series of point additions and point dou-
blings along the elliptic curve. The bits of d are
scanned from most significant to least significant. For
every bit equal to one in the scalar, d, a point addition
occurs and after each bit scanned a point doubling
occurs and terminates on the scanning of the least
significant bit and its possible point addition.

d equal to zero is a special case of point multiplica-
tion and results in infinity which can’t be represented
with the two (Affine) coordinates Xr and Yr and
instead is represented by setting condition code two
and leaving the result unchanged.

General Instructions 7-333

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

NThe parameter block for PCC-Scalar-Multiply-P256
and Ed25519 functions is shown in Figure 7-338,
below.

The parameter block for PCC-Scalar-Multiply-P384
function is shown in Figure 7-339, below.

The parameter block for PCC-Scalar-Multiply-P521
function is shown in Figure 7-340, below. The left

most 14 bytes of the source operands are ignored,
and for the result operands are not updated.

The parameter block for PCC-Scalar-Multiply-Ed448
function is shown in Figure 7-341, below. The left

most 8 bytes of each source operand is ignored and
of each result operand is not updated.

Offset

Dec Hex

00 00
Result X component(Xr)

32 20
Result Y component(Yr)

64 40
Source X component(Xs)

96 60
Source Y component(Ys)

128 80
Scalar(d)

160 A0 C RIBM

168

4088

A8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 7-338. Parameter Block for PCC-Scalar-Multiply-
P256 and Ed25519, Function

Offset

Dec Hex

00 00
Result X component(Xr)

48 30
Result Y component(Yr)

96 60
Source X component(Xs)

144 90
Source Y component(Ys)

192 C0
Scalar(d)

240 F0 C RIBM

248

4088

F8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 7-339. Parameter Block for PCC-Scalar-Multiply-
P384 Function

Offset

Dec Hex

00 00
Result X component(Xr)

80 50
Result Y component(Yr)

160 A0
Source X component(Xs)

240 F0
Source Y component(Ys)

320 140
Scalar(d)

400 190 C RIBM

408

4088

198

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 7-340. Parameter Block for PCC-Scalar-Multiply-
P521 Function

Offset

Dec Hex

00 00
Result X component(Xr)

64 40
Result Y component(Yr)

128 80
Source X component(Xs)

192 C0
Source Y component(Ys)

256 100
Scalar(d)

320 140 C RIBM

328

4088

148

FF8

Continuation State Buffer(CSB)

0 32 63

Figure 7-341. Parameter Block for PCC-Scalar-Multiply-
Ed448 Function

7-334 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N Note that all fields are considered to be multiple
bytes in width including Ed25519 and P521. The
operands are right aligned within these bytes. And
the most significant bits should be zero filled includ-
ing 1 bit for Ed25519 format and 7 bits for P521 for-
mat. If these bits in the source operands are non-
zero then the condition code is set to 1. The fields of
the parameter block for all PCC-Scalar-Multiply func-
tion are as follows:

Result X component (Xr): This is the X compo-
nent of the point on elliptic curve resulting from the
multiply of scalar times the source point on curve. It
is an integer greater than or equal to zero and less
than the prime of the function and right aligned in this
field. For P256, P384, and P521, are in Weierstrass
form and for Ed25519 and Ed448 this coordinate is
on an Edwards curve. Part of the result of PCC-Sca-
lar-Multiply is stored to this field in the parameter
block.

Result Y component (Yr): This is the Y compo-
nent of the point on elliptic curve resulting from the
multiply of scalar times the source point on curve. For
P256, P384, and P521 this coordinate is on a Weier-
strass curve and for Ed25519 and Ed448 this coordi-
nate is on an Edwards curve. It is an integer greater
than or equal to zero and less than the prime of the
function and is right aligned in this field. Part of the
result of PCC-Scalar-Multiply is stored to this field in
the parameter block.

Source X component (Xs): This is the X compo-
nent of the point on elliptic curve which is the source
of the scalar multiply. For P256, P384, and P521, are
in Weierstrass form and for Ed25519 and Ed448 this
coordinate is on an Edwards curve. Xs is right
aligned in this field and bytes to the left are ignored.
Xs is an integer greater than or equal to zero and
less than the prime of the function. For P256, P384,
P521, Ed25519, and Ed448, if Xs is greater than or
equal to the prime, the condition code is set to 1, or if
the point is not on the curve.

Source Y component (Ys): This is the Y compo-
nent of the point on elliptic curve which is the source
of the scalar multiply. For P256, P384, and P521 this
coordinate is in Weierstrass form, and for Ed25519
and Ed448 this coordinate is on an Edwards
curve.Ys is right aligned in this field and bytes to the
left are ignored and can be random values. Ys is an
integer less than the prime of the function. If it is
greater than or equal to the prime, the condition code
is set to 1, or if the point is not on the curve.

Scalar (d): This is the source scalar to PCC-Sca-
lar-Multiply function. d which is right aligned and
bytes to the left are ignored. d is an unsigned integer.
For P256, P384, and P521 the scalar has to be less
than the order of the curve otherwise the condition
code is set to 1. For Ed25519 the most significant bit
of the most significant byte must be zero, for P521
the most significant 7 bits of the most significant byte
must be zero otherwise the condition code is set to 1.
For Ed448 the scalar can have any value. If d equals
zero then the condition code is set to 2 to represent
infinity.

Reserved for IBM use (RIBM), informational Code
(C) and Continuation State Buffer (CSB): The C
and RIBM must be initialized to zero prior to the first
invocation of the instruction. The RIBM contains sta-
tus and control information and continuation state
buffer (CSB) is provided to hold intermediate results
for partial completion reported by setting the condi-
tion code equal to 3. The CSB should not be altered
by the programmer after partial completion and
before subsequent invocation, otherwise intermedi-
ate results may be discarded causing long execution
times. The CSB after a restart is cleared by the CPU
of any intermediate state. The informational code, C,
is reserved for future use.

Store-type access exceptions may be recognized for
any location in the parameter block, even though only
the Xr, Yr, RIBM, and CSB are stored by the instruc-
tion.

For P256, P384, P521, Ed25519, and Ed448 if Xs
and Ys are zero or greater than or equal to the prime
modulus, or not on the specified curve, or if P256,
P384, or P521 and d is greater than or equal to the
order of the curve, the condition code is set to 1 and
the result is not updated. If d is equal to zero, the
result is infinity which can not be represented with
two coordinates, so the condition code is set to 2 and
the result is not updated. Condition code 3 is set if
the operation ends in partial completion and the
parameter block may be updated. If none of these
cases, Xr and Yr are updated and the condition code
is set to 0.

PCC-Scalar-Multiply-Montgomery Form
(Function Codes 80 and 81)

Note: The description of the PCC-Scalar Multiply for
Montgomery Form function assumes that the reader

General Instructions 7-335

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

Nis familiar with the Elliptic Curve Diffie-Hellman key
exchange described in Reference [40.] on page xxxi.

This section illustrates the operation for two PCC-
Scalar-Multiply functions using the Montgomery form
of the curves:

• PCC-Scalar-Multiply-X25519 (function code 80)
• PCC-Scalar-Multiply-X448 (function code 81)

The two functions, PCC-Scalar-Multiply-X25519 and
PCC-Scalar-Multiply-X448 use the ECDH algorithm
and use curves defined in RFC-7748. Reference
[40.] on page xxxi gives algorithm details and curve
parameter values, section 4.1 and 4.2 gives curve
parameters for X25519 and X448 respectively, which
are used by these function codes. In Reference [40.]
on page xxxi point coordinates are given on a Mont-
gomery curve as (U, V) and on a twisted Edwards
curve as (X, Y). For the PCC-Scalar-Multiply-X25519
and X448 functions the source and result coordi-
nates are defined to be on the Montgomery form of
the curve which uses the U and V coordinate naming
in RFC-7748. The scalar multiplication function as
defined in RFC-7748 has as input the scalar, d, and
the U coordinate of a point, and the V coordinate is
implied. The result is the U coordinate of the point
produced. PCC-Scalar-Multiply-X25519 and X448
support this definition and the source and result V
components do not appear in the parameter block.
Also the source U component is assumed to be less
than prime of the field.

The PCC-Scalar-Multiply function implements a sca-
lar multiply of a point on an elliptic curve as shown by
the following:

• (Ur, Vr) <= d * (Us, Vs)

where the input point represented by the coordinates,
Us and Vs, is multiplied by a scalar, d, and results in
the point represented by the coordinates Ur and Vr,
where Vs and Vr are implied. The scalar multiply of a
point can be accomplished by a series of point addi-
tions and point doublings along the elliptic curve.
RFC-7748 gives a faster algorithm than using point
additions and point doublings for special values of d.
The scalar d must be of the form 2^254 + 8*k where k
is between 0 and 2^251 -1 inclusive for X25519, and
of the form 2^447 + 4*k where k is between 0 and
2^445 - 1 inclusive for X448. PCC-Scalar-Multiply-
X25519 and X448 are unpredictable if the scalar d is
not in this form or the U coordinate not less than the
prime.

The parameter block for PCC-Scalar-Multiply-
X25519 function is shown in Figure 7-342, below.

For X448 bytes 0 through 7 of the input operands are
ignored. For both X25519 and X448 if Us is zero or
greater than the prime modulus the condition code is
set to 1, and the result is not updated; otherwise, Ur
is updated and the condition code is set to 0.

The parameter block for PCC-Scalar-Multiply-X448
function is shown in Figure 7-343, below.

Note that all the fields are considered to be multiple
bytes in width including X25519 format. The most
significant bit in X25519 is considered significant and
should be zero otherwise the condition code is set to
1. The fields of the parameter block for all PCC-Sca-
lar-Multiply functions are as follows:

Offset

Dec Hex

00 00
Result U component(Ur)

32 20
Source U component(Us)

64 40
Scalar(d)

96 60 C RIBM

104

4088

68

FF8

Continuation State Buffer(CSB)

0 32 63

Figure 7-342. Parameter Block for PCC-Scalar-Multiply-
X25519 Function

Offset

Dec Hex

00 00
Result U component(Ur)

64 40
Source U component(Us)

128 80
Scalar(d)

192 C0 C RIBM

200

4088

C8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 7-343. Parameter Block for PCC-Scalar-Multiply-
X448 Function

7-336 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 C

O
M

P
U

T
A

T
IO

N Result U component (Ur): This is the U compo-
nent of the point on the Montgomery form of the ellip-
tic curve resulting from the multiply of scalar times
the source point on curve. It is an integer greater
than or equal to zero and less than the prime of the
functions and right aligned in this field. The result of
PCC-Scalar-Multiply is stored to this field in the
parameter block. For X448 bytes 0 through 7 are not
updated.

Source U component (Us): This is the U compo-
nent of the point on the Montgomery form of the ellip-
tic curve which is the source of the scalar multiply. Us
is right aligned in this field and bytes to the left are
ignored. Us is an integer less than the prime of the
functions. If Us is greater than or equal to the prime,
the condition code is set to 1. Note for X448 bytes 0
through 7 are ignored, though the most significant bit
of X25519 format is significant and should be zero
otherwise the condition code is set to 1.

Scalar (d): This is the source scalar to PCC-Sca-
lar-Multiply function. d which is an unsigned integer
and is right aligned and bytes to the left are ignored
and can be random values. Note for X448 bytes 0
through 7 are ignored. Results are unpredictable if d
is not of the form 2^254 + 8*k where k is between 0
and 2^251 -1 inclusive for X25519, and of the form
2^447 + 4*k where k is between 0 and 2^445 - 1
inclusive for X448. d should not be equal to zero.

Reserved for IBM use (RIBM), informational Code
(C), and Continuation State Buffer (CSB): The C
and RIBM must be initialized to zero prior to the first
invocation of the instruction. The RIBM contains sta-
tus and control information and continuation state
buffer (CSB) is provided to hold intermediate results
for partial completion reported by setting the condi-
tion code equal to 3. The parameter block should not
be altered by the programmer after partial completion
and before subsequent invocation, otherwise the
CPU may clear the CSB of intermediate status and
results and end in partial completion which will allow
a clean re-execution of the instruction. This results in
longer execution. The CSB after a restart is cleared
by the CPU of any intermediate state. The informa-
tional code (C) is reserved for future use on this
instruction.

If Us is greater than or equal to the prime, condition
code one is set and the result remains unchanged.
Condition code 3 is set if the operation results in par-
tial completion and the parameter block may be
updated. If none of the above conditions, the result is

updated and condition code zero is set. If d is not in
the proper form the results are unpredictable.

Store-type access exceptions may be recognized for
any location in the parameter block.

Special Conditions

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. Bit 56 of general register 0 is not zero.

2. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

Resulting Condition Code:

0 Normal completion
1 Verification-pattern mismatch or source operand

out of range
2 Invalid bit index or message length, or for Scalar

Multiply result is infinity for d equal to zero
3 Partial completion

Program Exceptions:

• Access (fetch, parameter block; fetch and store,
intermediate bit index, XTS parameter, initial
chaining value)

• Operation (if the message-security-assist exten-
sion 4 is not installed)

• Specification
• Transaction constraint

1.-6. Exceptions with the same priority as the
priority of program-interruption conditions for
the general case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint

8. Specification exception due to invalid function
code or bit 56 of general register 0 is not zero.

9. Condition code 0 due to message length
originally zero.

10. Access exceptions for an access to the
parameter block.

Figure 7-344. Priority of Execution: PCC

General Instructions 7-337

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

N

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. For the initial execution of a PCC Compute-XTS-
Parameter function, the contents of the interme-
diate-bit-index (t) field in the parameter block
shall be set to zeros.

Engineering Notes:

PERFORM LOCKED OPERATION

PLO R1,D2(B2),R3,D4(B4) [SS-e]

After the lock specified in general register 1 has been
obtained, the operation specified by the function
code in general register 0 is performed, and then the
lock is released. However, as observed by other
CPUs: (1) storage operands, including fields in a

parameter list that may be used, may be fetched, and
may be tested for store-type access exceptions if a
store at a tested location is possible, before the lock
is obtained, and (2) operands may be stored in the
parameter list after the lock has been released. If an
operand not in the parameter list is fetched before the
lock is obtained, it is fetched again after the lock has
been obtained.

The function code can specify any of six operations:
compare and load, compare and swap, double com-
pare and swap, compare and swap and store, com-
pare and swap and double store, or compare and
swap and triple store.

A test bit in general register 0 specifies, when one,
that a lock is not to be obtained and none of the six
operations is to be performed but, instead, the valid-
ity of the function code is to be tested. This will be
useful if additional function codes for additional oper-
ations are assigned in the future. This definition is
written as if the test bit is zero except when stated
otherwise.

If compare and load is specified, the first-operand
comparison value and the second operand are com-
pared. If they are equal, the fourth operand is placed
in the third-operand location. If the comparison indi-
cates inequality, the second operand is placed in the
first-operand-comparison-value location as a new
first-operand comparison value.

If compare and swap is specified, the first-operand
comparison value and the second operand are com-
pared. If they are equal, the first-operand replace-
ment value is stored at the second-operand location.
If the comparison indicates inequality, the second
operand is placed in the first-operand-comparison-
value location as a new first-operand comparison
value.

If double compare and swap is specified, the first-
operand comparison value and the second operand
are compared. If they are equal, the third-operand
comparison value and the fourth operand are com-
pared. If both comparisons indicate equality, the first-
operand and third-operand replacement values are
stored at the second-operand location and fourth-
operand location, respectively. If the first comparison
indicates inequality, the second operand is placed in
the first-operand-comparison-value location as a new
first-operand comparison value. If the first compari-
son indicates equality but the second does not, the
fourth operand is placed in the third-operand-com-

11.A Condition code 1 due to verification-pattern
mismatch or source point Us, Xs, Ys
coordinates out of range or (Xs,Ys) not on the
curve. For scalar-multiply P256, P384, or P521
and scalar (d) greater than or equal to the
order of the curve, condition code 1 is set. For
scalar-multiply Ed25519 if bit 0 of d is 1 then
condition code 1 is set.

11.B Condition code 2 due to invalid bit index or
message length.

12. Condition code 2 due to scalar (d) equal to
zero for scalar-multiply functions (infinity
case).

13. Condition code 0 due to normal completion
(message length originally nonzero, but
stepped to zero).

14. Condition code 3 due to partial completion
(message length still nonzero).

'EE' R1 R3 B2 D2 B4 D4

0 8 12 16 20 32 36 47

Figure 7-344. Priority of Execution: PCC (Continued)

7-338 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

N parison-value location as a new third-operand com-
parison value.

If compare and swap and store, double store, or triple
store is specified, the first-operand comparison value
and the second operand are compared. If they are
equal, the first-operand replacement value is stored
at the second-operand location, and the third oper-
and is stored at the fourth-operand location. Then, if
the operation is the double-store or triple-store oper-
ation, the fifth operand is stored at the sixth-operand
location, and, if it is the triple-store operation, the
seventh operand is stored at the eighth-operand
location. If the first-operand comparison indicates
inequality, the second operand is placed in the first-
operand-comparison-value location as a new first-
operand comparison value.

After any of the six operations, the result of the com-
parison or comparisons is indicated in the condition
code.

The function code (FC) is in bit positions 56-63 of
general register 0. The function code specifies not
only the operation to be performed but also the
length of the operands and whether the first-operand
comparison and replacement values and the third
operand or third-operand comparison and replace-
ment values, which are referred to collectively simply
as the first and third operands, are in general regis-
ters or a parameter list. The pattern of the function
codes is as follows:

• A function code that is a multiple of 4 (including
0) specifies a 32-bit length with the first and third
operands in bit positions 32-63 of general regis-
ters.

• A function code that is one more than a multiple
of 4 specifies a 64-bit length with the first and
third operands in a parameter list.

• A function code that is 2 more than a multiple of
4 specifies a 64-bit length with the first and third
operands in bit positions 0-63 of general regis-
ters.

• A function code that is 3 more than a multiple of
4 specifies a 128-bit length with the first and third
operands in a parameter list.

Figure 7-345 on page 7-338 shows the function
codes, operation names, and operand lengths, and
also symbols that may be used to refer to the opera-
tions in discussions. For example, PLO.DCS may be

used to mean PERFORM LOCKED OPERATION
with function code 8. In the symbols, the letter “G”
indicates a 64-bit operand length, the letter “R” indi-
cates that some or all 64-bit operands are in general
registers, and the letter “X” indicates a 128-bit oper-
and length.

In the z/Architecture architectural mode, the CPU can
perform all of the operations specified by the function
codes listed in Figure 7-345. Function codes specify-
ing operations that the CPU can perform are called
valid. Function codes that have not been assigned to
operations or that specify operations that the CPU
cannot perform because the operations are not
implemented (installed) are called invalid. In the
ESA/390-compatibility mode, it is unpredictable
whether the CPU can perform operations that are

Function
Code Operation

Operand
Length
(Bits)

Function
Symbol

0 Compare and load 32 CL

1 Same as 0 64 CLG

2 Same as 0 64 CLGR

3 Same as 0 128 CLX

4 Compare and swap 32 CS

5 Same as 4 64 CSG

6 Same as 4 64 CSGR

7 Same as 4 128 CSX

8 Double compare and swap 32 DCS

9 Same as 8 64 DCSG

10 Same as 8 64 DCSGR

11 Same as 8 128 DCSX

12 Compare and swap and
store

32 CSST

13 Same as 12 64 CSSTG

14 Same as 12 64 CSSTGR

15 Same as 12 128 CSSTX

16 Compare and swap and
double store

32 CSDST

17 Same as 16 64 CSDSTG

18 Same as 16 64 CSDSTGR

19 Same as 16 128 CSDSTX

20 Compare and swap and
triple store

32 CSTST

21 Same as 20 64 CSTSTG

22 Same as 20 64 CSTSTGR

23 Same as 20 128 CSTSTX

Figure 7-345. PERFORM LOCKED OPERATION Function
Codes and Operations

General Instructions 7-339

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

Nunique to the z/Architecture architectural mode (that
is, function codes 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22
and 23).

Bit 55 of general register 0 is the test bit (T). When bit
55 is zero, the function code in general register 0
must be valid; otherwise, a specification exception is
recognized. When bit 55 is one, the condition code is
set to 0 if the function code is valid or to 3 if the func-
tion code is invalid, and no other operation is per-
formed. When the test operation is performed in the
ESA/390-compatibility mode, function codes 2, 3, 6,
7, 10, 11, 14, 15, 18, 19, 22 and 23 result in condition
code 3 being set.

Bits 32-54 of general register 0 must be all zeros;
otherwise, a specification exception is recognized.

When bit 55 of the register is one, this is the only
exception that can be recognized. Bits 0-31 of gen-
eral register 0 are ignored.

The lock to be used is represented by a program lock
token (PLT) whose logical address is specified in
general register 1. In the 24-bit addressing mode, the
PLT address is bits 40-63 of general register 1, and
bits 0-39 of the register are ignored. In the 31-bit
addressing mode, the PLT address is bits 33-63 of
the register, and bits 0-32 of the register are ignored.
In the 64-bit addressing mode, the PLT address is
bits 0-63 of the register.

The contents of general registers 0 and 1 described
above are shown in Figure 7-346.

For the even-numbered function codes, including 0,
the first-operand comparison value is in general reg-
ister R1. For the even-numbered function codes
beginning with 4, the first-operand replacement value
is in general register R1 + 1, and R1 designates an
even-odd pair of registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized. For function codes 0 and 2,
R1 can be even or odd.

For function codes 0, 2, 12, and 14, the third operand
is in general register R3, and R3 can be even or odd.

For function codes 8 and 10, the third-operand com-
parison value is in general register R3, the third-oper-
and replacement value is in general register R3 + 1,
and R3 designates an even-odd pair of registers and
must designate an even-numbered register; other-
wise, a specification exception is recognized.

For all function codes, the B2 and D2 fields of the
instruction specify the second-operand address.

For function codes 0, 2, 8, 10, 12, and 14, the B4 and
D4 fields of the instruction specify the fourth-operand
address.

For function codes 1, 3, 5, 7, 9, 11, 13, 15, and
16-23, the B4 and D4 fields of the instruction specify
the address of a parameter list that is used by the
instruction, and this address is not called the fourth-
operand address. The parameter list contains odd-
numbered operands, including comparison and
replacement values, and addresses of even-num-
bered operands other than the second operand. In
the access-register mode, the parameter list also
contains access-list-entry tokens (ALETs) associated
with the even-numbered-operand addresses.

All Addressing Modes

GR0 / 0 T FC
0 32 55 56 63

24-Bit Addressing Mode

GR1 / PLT Address
0 40 63

31-Bit Addressing Mode

GR1 / PLT Address
0 33 63

64-Bit Addressing Mode

GR1 PLT Address
0 63

Figure 7-346. General Register Assignment for PLO

7-340 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

N In the access-register mode, for function codes that
cause use of a parameter list containing an ALET, R3

must not be zero; otherwise, a specification excep-
tion is recognized.

The rules about R1 and R3, and the use of the
address specified by B4 and D4, are summarized in
Figure 7-347 on page 7-340.

Figure 7-348 on page 7-341 shows the locations of
the operands (including operand comparison and
replacement values), operand addresses, and
parameter-list address used by the instruction.

Operand addresses in a parameter list, if used, are in
doublewords in the list. In the 24-bit addressing
mode, an operand address is bits 40-63 of a double-

word, and bits 0-39 of the doubleword are ignored. In
the 31-bit addressing mode, an operand address is
bits 33-63 of a doubleword, and bits 0-32 of the dou-
bleword are ignored. In the 64-bit addressing mode,
an operand address is bits 0-63 of a doubleword.

In the access-register mode, access register 1 speci-
fies the address space containing the program lock
token (PLT), access register B2 specifies the address
space containing the second operand, and access
register B4 specifies the address space containing a
fourth operand or a parameter list as shown in
Figure 7-348 on page 7-341. Also, for an operand
whose address is in the parameter list, an access-
list-entry token (ALET) is in the list along with the
address and is used in the access-register mode to
specify the address space containing the operand.

In the access-register mode, if an access exception
or PER storage-alteration event is recognized for an
operand whose address is in the parameter list, the
associated ALET in the parameter list is loaded into
access register R3 when the exception or event is
recognized. Then, during the resulting program inter-
ruption, if a value is due to be stored as the exception
access identification at real location 160 or the PER
access identification at real location 161, R3 is
stored. If the instruction execution is completed with-
out the recognition of an exception or event, the con-
tents of access register R3 are unpredictable. When
not in the access-register mode, or when a parame-
ter list containing an ALET is not used, the contents
of access register R3 remain unchanged.

Storage operand 2, and, when present, storage oper-
ands 4, 6, and 8 must be designated on an integral
boundary, which is a word boundary for function
codes that are a multiple of 4, a doubleword bound-
ary for function codes that are one or 2 more than a
multiple of 4, or a quadword boundary for function
codes that are 3 more than a multiple of 4. A parame-
ter list, if used, must be designated on a doubleword
boundary. Otherwise, a specification exception is rec-
ognized. The program-lock-token (PLT) address in
general register 1 does not have a boundary-align-
ment requirement.

All unused fields in a parameter list should contain all
zeros; otherwise, the program may not operate com-
patibly in the future.

A serialization function is performed immediately
after the lock is obtained and again immediately
before it is released. However, values fetched from

Function
Codes Operation R1 R3 D4(B4)

0 and 2 Compare and load EO EO Op4a

1 and 3 Compare and load - NZ PLa

4 and 6 Compare and swap E - -

5 and 7 Compare and swap - - PLa

8 and 10 Double compare and
swap

E E Op4a

9 and 11 Double compare and
swap

- NZ PLa

12 and 14 Compare and swap and
store

E EO Op4a

13 and 15 Compare and swap and
store

- NZ PLa

16 and 18 Compare and swap and
double store

E NZ PLa

17 and 19 Compare and swap and
double store

- NZ PLa

20 and 22 Compare and swap and
triple store

E NZ PLa

21 and 23 Compare and swap and
triple store

- NZ PLa

Explanation:

- Ignored.
E Must be even.
EO Can be even or odd.
NZ Must be nonzero in the access-register mode.

Ignored otherwise.
Op4a D4(B4) is operand-4 address.
PLa D4(B4) is parameter-list address.

Figure 7-347. Register Rules and D4(B4) Usage for
PERFORM LOCKED OPERATION

General Instructions 7-341

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

N

the parameter list before the lock is obtained are not
necessarily refetched. A serialization function is not
performed if the test bit, bit 55 of general register 0, is
one.

In the following figures showing the parameter lists
for the different function codes, the offsets shown on
the left are byte values.

Function Codes 0-3 (Compare and Load)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-348 on
page 7-341.

Function
Codes1 Operation Op1c Op1r Op2a

Op3
or

Op4a

Op5
and

Op6a

Op7
and

Op8a PLaOp3c Op3r

0 and 2 Compare and load R1 - D2(B2) R3 D4(B4) - - -

1 and 3 Compare and load PL - D2(B2) PL PL - - D4(B4)

4 and 6 Compare and swap R1 R1+1 D2(B2) - - - - -

5 and 7 Compare and swap PL PL D2(B2) - - - - D4(B4)

8 and 10 Double compare and
swap

R1 R1+1 D2(B2) R3 R3+1 D4(B4) - - -

9 and 11 Double compare and
swap

PL PL D2(B2) PL PL PL - - D4(B4)

12 and 14 Compare and swap and
store

R1 R1+1 D2(B2) R3 D4(B4) - - -

13 and 15 Compare and swap and
store

PL PL D2(B2) PL PL - - D4(B4)

16 and 18 Compare and swap and
double store

R1 R1+1 D2(B2) PL PL PL - D4(B4)

17 and 19 Compare and swap and
double store

PL PL D2(B2) PL PL PL - D4(B4)

20 and 22 Compare and swap and
triple store

R1 R1+1 D2(B2) PL PL PL PL D4(B4)

21 and 23 Compare and swap and
triple store

PL PL D2(B2) PL PL PL PL D4(B4)

Explanation:

1 For function codes that are a multiple of 4 (including 0) or one more than a multiple of 4, operands in general
registers are in bit positions 32-63 of the registers, and bits 0-31 of the registers are ignored and remain
unchanged. For function codes that are two more than a multiple of 4, operands in general registers are in bit
positions 0-63 of the registers.

- Operand, value, or address is not used in the operation.
OpNc Operand-N comparison value.
OpNr Operand-N replacement value.
OpNa Operand-N address.
PL Operand, value, or address is in the parameter list.
PLa Parameter-list address.

Figure 7-348. Operand and Address Locations for PERFORM LOCKED OPERATION

7-342 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

N The parameter list used for function code 1 has the
following format:

The parameter list used for function code 3 has the
following format:

The first-operand comparison value is compared to
the second operand. When the first-operand compar-
ison value is equal to the second operand, the third
operand is replaced by the fourth operand, and con-
dition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand com-

parison value is replaced by the second operand,
and condition code 1 is set.

Function Codes 4-7 (Compare and Swap)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-348 on
page 7-341.

The parameter list used for function code 5 has the
following format:

The parameter list used for function code 7 has the
following format:

The first-operand comparison value is compared to
the second operand. When the first-operand compar-
ison value is equal to the second operand, the first-
operand replacement value is stored at the second-
operand location, and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand com-
parison value is replaced by the second operand,
and condition code 1 is set.

Function Codes 8-11 (Double Compare
and Swap)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-348 on
page 7-341.

Parameter List for Function Code 1

0

8 Operand-1 Comparison Value

16

24

32

40 Operand 3

48

56

64 Operand-4 ALET

72 Operand-4 Address

Parameter List for Function Code 3

0 Operand-1 Comparison Value

8 Operand-1 Comparison Value (continued)

16

24

32 Operand 3

40 Operand 3 (continued)

48

56

64 Operand-4 ALET

72 Operand-4 Address

Parameter List for Function Code 5

0

8 Operand-1 Comparison Value

16

24 Operand-1 Replacement Value

Parameter List for Function Code 7

0 Operand-1 Comparison Value

8 Operand-1 Comparison Value (continued)

16 Operand-1 Replacement Value

24 Operand-1 Replacement Value (continued)

General Instructions 7-343

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

NThe parameter list used for function code 9 has the
following format:

The parameter list used for function code 11 has the
following format:

The first-operand comparison value is compared to
the second operand. When the first-operand compar-
ison value is equal to the second operand, the third-
operand comparison value is compared to the fourth
operand. When the third-operand comparison value
is equal to the fourth operand (after the first-operand
comparison value has been found equal to the sec-
ond operand), the first-operand replacement value is
stored at the second-operand location, the third-
operand replacement value is stored at the fourth-
operand location, and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand com-
parison value is replaced by the second operand,
and condition code 1 is set.

When the third-operand comparison value is not
equal to the fourth operand (after the first-operand
comparison value has been found equal to the sec-
ond operand), the third-operand comparison value is
replaced by the fourth operand, and condition code 2
is set.

Function Codes 12-15 (Compare and
Swap and Store)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-348 on
page 7-341.

The parameter list used for function code 13 has the
following format:

The parameter list used for function code 15 has the
following format:

The first-operand comparison value is compared to
the second operand. When the first-operand compar-
ison value is equal to the second operand, the first-
operand replacement value is stored at the second-

Parameter List for Function Code 9

0

8 Operand-1 Comparison Value

16

24 Operand-1 Replacement Value

32

40 Operand-3 Comparison Value

48

56 Operand-3 Replacement Value

64 Operand-4 ALET

72 Operand-4 Address

Parameter List for Function Code 11

0 Operand-1 Comparison Value

8 Operand-1 Comparison Value (continued)

16 Operand-1 Replacement Value

24 Operand-1 Replacement Value (continued)

32 Operand-3 Comparison Value

40 Operand-3 Comparison Value (continued)

48 Operand-3 Replacement Value

56 Operand-3 Replacement Value (continued)

64 Operand-4 ALET

72 Operand-4 Address

Parameter List for Function Code 13

0

8 Operand-1 Comparison Value

16

24 Operand-1 Replacement Value

32

40

48

56 Operand 3

64 Operand-4 ALET

72 Operand-4 Address

Parameter List for Function Code 15

0 Operand-1 Comparison Value

8 Operand-1 Comparison Value (continued)

16 Operand-1 Replacement Value

24 Operand-1 Replacement Value (continued)

32

40

48 Operand 3

56 Operand 3 (continued)

64 Operand-4 ALET

72 Operand-4 Address

7-344 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

N operand location, the third operand is stored at the
fourth-operand location, and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand com-
parison value is replaced by the second operand,
and condition code 1 is set.

Function Codes 16-19 (Compare and
Swap and Double Store)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-348 on
page 7-341.

The parameter list used for function code 16 has the
following format:

The parameter list used for function code 17 has the
following format:

The parameter list used for function code 18 has the
following format:

Parameter List for Function Code 16

0

8

16

24

32

40

48

56 Operand 3

64 Operand-4 ALET

72 Operand-4 Address

80

88 Operand 5

96 Operand-6 ALET

104 Operand-6 Address

Parameter List for Function Code 17

0

8 Operand-1 Comparison Value

16

24 Operand-1 Replacement Value

32

40

48

56 Operand 3

64 Operand-4 ALET

72 Operand-4 Address

80

88 Operand 5

96 Operand-6 ALET

104 Operand-6 Address

Parameter List for Function Code 18

0

8

16

24

32

40

48

56 Operand 3

64 Operand-4 ALET

72 Operand-4 Address

80

88 Operand 5

96 Operand-6 ALET

104 Operand-6 Address

General Instructions 7-345

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

NThe parameter list used for function code 19 has the
following format:

The first-operand comparison value is compared to
the second operand. When the first-operand compar-
ison value is equal to the second operand, the first-
operand replacement value is stored at the second-
operand location, the third operand is stored at the
fourth-operand location, the fifth operand is stored at
the sixth-operand location, and condition code 0 is
set.

When the first-operand comparison value is not
equal to the second operand, the first-operand com-
parison value is replaced by the second operand,
and condition code 1 is set.

Function Codes 20-23 (Compare and
Swap and Triple Store)
The locations of the operands and addresses used
by the instruction are as shown in Figure 7-348 on
page 7-341.

The parameter list used for function code 20 has the
following format:

Parameter List for Function Code 19

0 Operand-1 Comparison Value

8 Operand-1 Comparison Value (continued)

16 Operand-1 Replacement Value

24 Operand-1 Replacement Value (continued)

32

40

48 Operand 3

56 Operand 3 (continued)

64 Operand-4 ALET

72 Operand-4 Address

80 Operand 5

88 Operand 5 (continued)

96 Operand-6 ALET

104 Operand-6 Address

Parameter List for Function Code 20

0

8

16

24

32

40

48

56 Operand 3

64 Operand-4 ALET

72 Operand-4 Address

80

88 Operand 5

96 Operand-6 ALET

104 Operand-6 Address

112

120 Operand 7

128 Operand-8 ALET

136 Operand-8 Address

7-346 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

N The parameter list used for function code 21 has the
following format:

The parameter list used for function code 22 has the
following format:

Parameter List for Function Code 21

0

8 Operand-1 Comparison Value

16

24 Operand-1 Replacement Value

32

40

48

56 Operand 3

64 Operand-4 ALET

72 Operand-4 Address

80

88 Operand 5

96 Operand-6 ALET

104 Operand-6 Address

112

120 Operand 7

128 Operand-8 ALET

136 Operand-8 Address

Parameter List for Function Code 22

0

8

16

24

32

40

48

56 Operand 3

64 Operand-4 ALET

72 Operand-4 Address

80

88 Operand 5

96 Operand-6 ALET

104 Operand-6 Address

112

120 Operand 7

128 Operand-8 ALET

136 Operand-8 Address

General Instructions 7-347

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

NThe parameter list used for function code 23 has the
following format:

The first-operand comparison value is compared to
the second operand. When the first-operand compar-
ison value is equal to the second operand, the first-
operand replacement value is stored at the second-
operand location, the third operand is stored at the
fourth-operand location, the fifth operand is stored at
the sixth-operand location, the seventh operand is
stored at the eighth-operand location, and condition
code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand com-
parison value is replaced by the second operand,
and condition code 1 is set.

Locking

A lock is obtained at the beginning of the operation
and released at the end of the operation. The lock
obtained is represented by a program lock token
(PLT) whose logical address is specified in general
register 1 as already described.

A PLT is a value produced by a model-dependent
transformation of the PLT logical address. Depending
on the model, the PLT may be derived directly from

the PLT logical address or, when DAT is on, from the
real address that results from transformation of the
PLT logical address by DAT. If DAT is used, access-
register translation (ART) precedes DAT in the
access-register mode.

A PLT selects one of a model-dependent number of
locks within the configuration. Programs being exe-
cuted by different CPUs can be assured of specifying
the same lock only by specifying PLT logical
addresses that are the same and that can be trans-
formed to the same real address by the different
CPUs.

Since a model may or may not use ART and DAT
when forming a PLT, access-exception conditions
that can be encountered during ART and DAT may or
may not be recognized as exceptions. There is no
accessing of a location designated by a PLT, but an
addressing exception may be recognized for the
location. A protection exception is not recognized for
any reason during processing of a PLT logical
address.

The CPU can hold one lock at a time.

When PERFORM LOCKED OPERATION is exe-
cuted by this CPU and is to use a lock that is already
held by another CPU due to the execution of a PER-
FORM LOCKED OPERATION instruction by the
other CPU, the execution by this CPU is delayed until
the lock is no longer held. An excessive delay can be
caused only by a machine malfunction and is a
machine-check condition.

The order in which multiple requests for the same
lock are satisfied is undefined.

A nonrecoverable failure of a CPU while holding a
lock may result in a machine check, entry into the
check-stop state, or system check stop. The machine
check is processing backup if all operands are
undamaged or processing damage if register oper-
ands are damaged. If a machine check or the check-
stop state is the result, either no storage operands
have been changed or else all storage operands that
were due to be changed have been correctly
changed, and, in either case, the lock has been
released. If the storage operands are not in either
their correct original state or their correct final state,
the result is system check stop.

Storage-Operand References

Parameter List for Function Code 23

0 Operand-1 Comparison Value

8 Operand-1 Comparison Value (continued)

16 Operand-1 Replacement Value

24 Operand-1 Replacement Value (continued)

32

40

48 Operand 3

56 Operand 3 (continued)

64 Operand-4 ALET

72 Operand-4 Address

80 Operand 5

88 Operand 5 (continued)

96 Operand-6 ALET

104 Operand-6 Address

112 Operand 7

120 Operand 7 (continued)

128 Operand-8 ALET

136 Operand-8 Address

7-348 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

N The accesses to the even-numbered storage oper-
ands appear to be word concurrent, as observed by
other CPUs, for function codes that are a multiple of
4 or doubleword concurrent for function codes that
are one, 2, or 3 more than a multiple of 4. The
accesses to the doublewords in the parameter list
appear to be doubleword concurrent, as observed by
other CPUs, regardless of the function code.

As observed by other CPUs, all storage operands
may be tested for access exceptions before a lock is
obtained. (A channel program cannot observe a
lock.)

As observed by other CPUs, in all operations except
the compare-and-swap operation (which does not
have a fourth operand), the fourth operand is
accessed while the lock is held only if a comparison
of the first-operand comparison value to the second
operand while the lock is held has indicated equality.
In these operations, the fourth operand is accessed
before the lock is held only if a comparison of the
first-operand comparison value to the second oper-
and has indicated equality and only if, when DAT is
on, an INVALIDATE PAGE TABLE ENTRY instruction
executed by another CPU after the fetch of the sec-
ond operand will not be the cause of a page-transla-
tion exception recognized for the fourth operand,
which it will if it sets to one the page-invalid bit in the
page-table entry for the fourth operand when this
CPU does not have a TLB entry corresponding to
that page-table entry. In the compare-and-swap-and-
double-store and compare-and-swap-and-triple-store
operations, the sixth operand, and also the eighth
operand in the triple-store operation, are treated the
same as the fourth operand described above. The
reason for this specification about INVALIDATE
PAGE TABLE ENTRY is given in programming note
7.

Provided that accessing of an operand is not prohib-
ited as described in the preceding paragraph, store-
type access exceptions may be recognized for the
fourth, sixth, or eighth operands even when a store
does not occur because of the results of a compari-
son. A storage-alteration PER event is recognized,
and a change bit is set, only if a store occurs.

When a comparison is made between an operand
comparison value and an operand before the lock is
obtained and indicates inequality, the lock still is
obtained. The condition code is set only as a result of
a comparison made while the lock is held. When con-

dition code 1 or 2 is set, the first-operand comparison
value or third-operand comparison value is replaced
only by means of a fetch of the second operand or
fourth operand, respectively, made while the lock is
held, as observed by other CPUs.

In those cases when a store is performed to the sec-
ond-operand location and one or more of the fourth-,
sixth-, and eighth-operand locations, the store to the
second-operand location is always performed last, as
observed by other CPUs and by channel programs.

Stores into the parameter list may be performed
while the lock is held or after it has been released.

Access exceptions may be recognized for parameter-
list locations even when the locations are not
required in the operation. The locations are those
beginning at offset 0 and extending up through the
last location defined for the function code used.

For the compare-and-load and compare-and-swap
operations, the operation is suppressed on all
addressing and protection exceptions.

When a nonrecoverable failure of a CPU while hold-
ing a lock results in a machine check or entry into the
check-stop state, either no storage operands have
been changed or else all storage operands that were
due to be changed have been correctly changed.
The latter may be accomplished by repeating stores
that were performed successfully before the failure.
Therefore, there may be two single-access store ref-
erences (possibly the store part of an update refer-
ence and then a store reference) to the store-type
operands, with the first value stored equal to the sec-
ond value stored.

Resulting Condition Code:

When test bit is zero:

0 All comparisons equal; replacement value or val-
ues stored or loaded

1 First-operand comparison not equal; first-oper-
and comparison value replaced

2 -- (all operations except double compare and
swap)

2 First-operand comparison equal but third-oper-
and comparison not equal; third-operand com-
parison value replaced (double compare and
swap)

3 --

General Instructions 7-349

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

NWhen test bit is one:

0 Function code valid
1 --
2 --
3 Function code invalid

Program Exceptions:

• Access (for all function codes, fetch, except
addressing and protection for PLT location, pro-
gram lock token, model-dependent; for function
codes 0-3, fetch, operand 2; for function codes 4-
23, fetch and store, operand 2; for odd-numbered
function codes, fetch and store, parameter list;
for function codes 16, 18, 20, and 22, fetch,
parameter list; for function codes 0-3, fetch, oper-
and 4; for function codes 8-11, fetch and store,
operand 4; for function codes 12-23, store, oper-
and 4; for function codes 16-23, store, operand
6; for function codes 20-23, store, operand 8)

• Specification
• Transaction constraint

Programming Notes:

1. In configurations that support the transactional-
execution facility, a transaction may provide ben-
efits over the use of PERFORM LOCKED OPER-
ATION, as follows:

a. Transactional execution may provide
improved performance over an equivalent
code path that uses PLO.

b. Transactional execution does not require the
specification of a program lock token in gen-
eral register 1.

c. Transactional execution does not require the
use of a parameter list for more complex
operations.

d. Transactional execution provides a much
broader scope of operations that can be per-
formed, all of which appear to execute in a
block-concurrent manner as observed by
other CPUs and the channel subsystem.

e. The use of classic interlocked-access tech-
niques on one CPU can correctly coexist
with transactional execution on another CPU.
This coexistence is not possible using PLO,
as explained in programming note 4, below.

If a program that uses PLO is changed to use
transactional execution, then all occurrences of
PLO that designate the same storage locations
as the transaction should be changed to use
transactional accesses to those locations if pre-
dictable storage results are to be obtained.

2. An example of the use of the PERFORM
LOCKED OPERATION instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

3. When the contents of storage locations are
changed by PERFORM LOCKED OPERATION
instructions that are executed concurrently by dif-
ferent CPUs and that use the same lock, the
changes to operands not in the parameter list will
be completed by one of the CPUs before they
are begun by the other CPU, depending on
which CPU first obtains the lock.

4. The compare-and-swap functions of PERFORM
LOCKED OPERATION are not performed by
means of interlocked-update references. Concur-
rent store references by another CPU to the stor-
age operands, even if they are interlocked-
update references, will interfere unpredictably, in
terms of the resulting register and storage con-
tents, with the intended operation of PERFORM
LOCKED OPERATION. All changes to the con-
tents of the storage locations must be made by
PERFORM LOCKED OPERATION instructions
that use the same lock, if predictable storage
results are to be obtained.

5. Because a nonrecoverable failure of a CPU while
executing PERFORM LOCKED OPERATION
may cause two stores of the same value to a
store-type operand, a concurrent store made by
another CPU to the same operand but not by
executing PERFORM LOCKED OPERATION
may be lost.

6. When programs in different address spaces are
using the same lock when DAT is on, the pro-
grams must ensure that they are using PLT logi-
cal addresses that are the same and that will be
translated to the same real address regardless of
the address space in which a translation occurs.
Otherwise, the programs may in fact use different
locks.

7. The section “Storage-Operand References” on
page 7-347 contains a specification concerning
the INVALIDATE PAGE TABLE ENTRY (IPTE)
instruction. The need for the specification is

7-350 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 L

O
C

K
E

D
 O

P
E

R
A

T
IO

N shown by the following example that is possible
without the specification.

a. CPU 1 begins to execute a PERFORM
LOCKED OPERATION instruction with func-
tion code 8, which is referred to as
PLO.DCS. Operand 2 is a location, Qtail,
containing the address (the first-operand
comparison value) of the last element, ele-
ment X, on a queue, and operand 4 is a loca-
tion in that element containing the address
(0, the third-operand comparison value) of
the next (nonexisting) element on the queue.
The purpose of the PLO instruction is to
enqueue an element by placing the address
of the element (the first-operand and third-
operand replacement values) in both oper-
and 2 and operand 4. With the lock not held,
the PLO instruction fetches operand 2 and
compares it, with an equal result, to the first-
operand comparison value.

b. CPU 2 completely executes a PLO.DCS
instruction to dequeue element X, which is
the only element on the queue, from the
queue. The PLO instruction stores 0 in Qtail
and also in Qhead, which is a location con-
taining the address of the first element on the
queue. The program on CPU 2 processes
the dequeued element and then invokes the
freemain service of the control program to
deallocate the storage containing the ele-
ment. The freemain service uses IPTE to set
the page-invalid bit to one in the page-table
entry for the page containing element X. The
IPTE instruction immediately sets the page-
invalid bit to one, and then it waits for the sig-
nal that all other CPUs have cleared their
TLBs of entries corresponding to the page.

c. CPU 1 attempts to fetch operand 4. CPU 1
does not have a TLB entry for the operand-4
page. CPU 1 signals CPU 2 that the CPU 2
IPTE instruction may proceed.

d. CPU 2 completes its IPTE instruction. The
program on CPU 2 sets a software bit in the
page-table entry to one to indicate that the
page has been freemained and that, there-
fore, a reference to the page should result in
presentation by the control program of an
addressing exception to the program making
the reference.

e. CPU 1 attempts to do DAT for operand 4 and
sees that the page-invalid bit is one. CPU 1
performs a program interruption indicating a
page-translation exception. The exception
handler sees that the software bit indicating
freemained is one, and it presents an
addressing exception to the CPU 1 program,
which causes an abend of the program.

If CPU 1 had had a TLB entry for the page, its
PLO instruction would not have been interrupted,
and the comparison of the first-operand compari-
son value to the second operand while the lock
was held would indicate that CPU 2 had changed
the second operand. The PLO instruction would
set condition code 1. If CPU 1 did not have a TLB
entry but IPTE could not set the page-invalid bit
to one while CPU 1 was executing an instruction,
CPU 1 could successfully translate the oper-
and-4 address and, again, discover while the
lock was held that operand 2 had changed. The
case when operand 2 points to element X but the
freemained bit for the element-X page is one is a
programming error.

8. For functions that use a parameter list in the
access register mode, the value in the R3 field of
the instruction should be different from that of the
B2 and B4 fields. Because access register R3 is
modified as a result of an access exception, sub-
sequent re-execution of the instruction (for exam-
ple, following the resolution of a page-translation
exception) may yield unpredictable results if the
R3 field designates the same access register as
that of the second operand or parameter list.

General Instructions 7-351

P
E

R
F

O
R

M
 P

R
O

C
E

S
S

O
R

 A
S

S
IS

T9. “Summary of PERFORM LOCKED OPERATION
Results” on page 7-351 summarizes the results
of the operation.

PERFORM PROCESSOR ASSIST

PPA R1,R2,M3 [RRF-c]

The M3 field contains a 4-bit unsigned binary integer
function code specifying the processor-assist func-

tion to be performed. The function codes for PER-
FORM PROCESSOR ASSIST are as follows.

The operation of each assist function, and the regis-
ters used by the function are as follows:

Transaction-Abort Assist: When the function
code in the M3 field is 1 and the processor-assist
facility is installed, the processor is requested to
assist following an aborted nonconstrained transac-
tion.

Op1c=Op2 Op3c=Op4
Cond
Code Action

Function Codes 0-3 (Compare and Load)

No - 1 Op2 Op1c
Yes - 0 Op4 Op3

Function Codes 4-7 (Compare and Swap)

No - 1 Op2 Op1c
Yes - 0 Op1r Op2

Function Codes 8-11 (Double Compare and Swap)

No - 1 Op2 Op1c
Yes No 2 Op4 Op3c

Yes Yes 0 Op1r Op2 Op3r Op4

Function Codes 12-15 (Compare and Swap and Store)
No - 1 Op2 Op1c

Yes - 0 Op1r Op2 Op3 Op4

Function Codes 16-19 (Compare and Swap and Double Store)
No - 1 Op2 Op1c

Yes - 0 Op1r Op2 Op3 Op4

Op5 Op6
Function Codes 20-23 (Compare and Swap and Triple Store)

No - 1 Op2 Op1c

Yes - 0 Op1r Op2 Op3 Op4
Op5 Op6

Op7 Op8

Explanation:

- Not applicable.
OpNc Operand-N comparison value.
OpNr Operand-N replacement value.

Figure 7-349. Summary of PERFORM LOCKED OPERATION Results

'B2E8' M3 / / / / R1 R2

0 16 20 24 28 31

Code Meaning
0 Reserved
1 Transaction-abort assist
2-14 Reserved
15 In-order-execution assist

7-352 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

N The program is expected to provide an unsigned 32-
bit binary integer in bits 32-63 of general register R1,
specifying the number of times the nonconstrained
transaction has been repeatedly aborted. Depending
on the value of this integer, the processor may take
escalating actions to increase the likelihood of suc-
cessful completion of the transaction in a subsequent
execution.

Bits 0-31 of general register R1 are ignored, and bits
32-63 of the register are unchanged. General regis-
ter R2 is ignored, however the R2 field of the instruc-
tion should contain zeros; otherwise, the program
may not operate compatibly in the future.

In-order-execution assist: When the function
code in the M3 field is 15 and the PPA-in-order facility
is installed, the processor is requested to complete
processing all instructions prior to this PPA instruc-
tion, as observed by this CPU, before attempting
storage-operand references for any instruction after
this PPA instruction.

The R1 and R2 fields are ignored and the instruction
is executed as a no-operation.

The in-order-execution assist does not necessarily
perform any of the steps for architectural serialization
described in the section “CPU Serialization” on
page 5-130.

Reserved: Reserved function codes should not be
specified; otherwise, the program may not operate
compatibly in the future.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (neither the PPA-in-order facility nor
the processor-assist facility is installed)

• Transaction constraint

Programming Notes:

1. For the transaction-abort-assist function, a larger
value in general register R1 does not necessarily
guarantee successful completion when the trans-
action is reexecuted, and it may unnecessarily
delay the CPU. Therefore, the program should
provide an accurate count of the number of times
a transaction has been aborted in the register.

A value of one in bits 32-63 of general register R1

means that the transaction has been aborted
once, a value of two means the transaction has
been aborted twice, and so forth.

2. An example of the use of PERFORM PROCES-
SOR ASSIST is shown in programming note 2 on
page 5-106.

3. The processor-assist facility is indicated by facil-
ity bit 49.

4. The in-order-execution assist is designed to be
used to prevent the out of order execution of con-
ditional paths.

PERFORM RANDOM NUMBER
OPERATION

PRNO R1,R2 [RRE]
PPNO R1,R2 [RRE]

A function specified by the function code in general
register 0 is performed.

Bits 16-23 of the instruction are reserved and should
contain zeros; otherwise, the instruction may not
operate compatibly in the future.

Bit positions 57-63 of general register 0 contain the
function code. Figure 7-350 shows the assigned
function codes for PERFORM RANDOM NUMBER
OPERATION. All other function codes are unas-
signed.

'B93C' / / / / / / / / R1 R2

0 16 24 28 31

Code Function
Parameter Block

Size (bytes)

0 PRNO Query 16

3 PRNO-SHA-512-DRNG 240

112 PRNO-TRNG-Query-Raw-
to-Conditioned-Ratio

8

114 PRNO-TRNG —

Explanation:

— Not applicable to the function.
DRNG Deterministic random-number generation.
TRNG True random-number generation.

Figure 7-350. Function Codes for PERFORM RANDOM
NUMBER OPERATION

General Instructions 7-353

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

NIf bits 57-63 of general register 0 designate an unas-
signed or uninstalled function code, a specification
exception is recognized.

The PRNO-query function provides the means of
indicating the availability of the other functions.

For the PRNO-SHA-512-DRNG function, bit 56 of
general register 0 is the modifier bit. When the modi-
fier bit is zero, a generate operation is performed,
and when the modifier bit is one, a seed operation is
performed. The modifier bit is ignored for all other
functions. All other bits of general register 0 are
ignored.

Depending on the function, a parameter block, first
operand, and second operand in storage may be
accessed by the instruction. When applicable, gen-
eral register 1 contains the address of the leftmost
byte of the parameter block in storage. When appli-
cable, general registers R1 and R2 designate an
even-odd pair of general registers corresponding to
the first and second operands, respectively. The
even-numbered register contains the address of the
operand in storage, and the odd-numbered register
contains the length of the operand. The storage loca-
tion corresponding to an operand is only accessed
when the length of the corresponding operand is
nonzero.

All general registers that contain an address are sub-
ject to the current addressing mode. In the 24-bit
addressing mode, the contents of bit positions 40-63
of the register constitute the address of the storage
location, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the contents
of bit positions 33-63 of the register constitute the
address of the storage location, and the contents of
bit positions 0-32 are ignored. In the 64-bit address-
ing mode, the contents of bit positions 0-63 of the
register constitute the address of the storage loca-
tion. In the access register mode, general register 1,
R1, and R2 specifies the address space containing
the parameter block, first operand, and second oper-
and, respectively.

The odd-numbered registers containing an operand’s
length are also subject to the current addressing
mode. In either the 24- or 31-bit addressing mode,
the contents of bit positions 32-63 of the register form
a 32-bit unsigned binary integer which specifies the

number of bytes in the storage operand, and bit posi-
tions 0-31 are ignored. In the 64-bit addressing
mode, the contents of bit positions 0-63 of the regis-
ter form a 64-bit unsigned binary integer which spec-
ifies the number of bytes in the storage operand.

For the PRNO-SHA-512-DRNG function’s generate
operation, the first-operand length is updated in gen-
eral register R1 + 1 at the completion of the instruc-
tion. The first-operand address in general register R1

is not updated by the PRNO-SHA-512-DRNG func-
tion; however in the 24-bit addressing mode, bits 32-
39 may be set to zero or remain unchanged, and in
the 31-bit addressing mode, bit 32 may be set to zero
or remain unchanged, regardless of the first-operand
length.

For the PRNO-TRNG function, the first-operand
address, first-operand length, second-operand
address, and second-operand length in general reg-
isters R1, R1 + 1, R2, and R2 + 1, respectively, are
updated at the completion of the instruction. In the
24-bit addressing mode, bits 40-63 of the even-num-
bered register are incremented by the number of
bytes processed for the respective operand, bits 0-31
of the register remain unchanged, and regardless of
the operand’s length, bits 32-39 of the register may
be set to zero or may remain unchanged. In the 31-
bit addressing mode, bits 33-63 of the even-num-
bered register are incremented by the number of
bytes processed for the respective operand, bits 0-31
of the register remain unchanged, and regardless of
the operand’s length, bit 32 of the register may be set
to zero or may remain unchanged. In the 64-bit
addressing mode, bits 0-63 of the even-numbered
register are incremented by the number of bytes pro-
cessed for the respective operand. In either the 24-
or 31-bit addressing mode, bits 32-63 of the odd-
numbered register are decremented by the number
of bytes processed for the respective operand, and
bits 0-31 of the register remain unchanged. In the 64-
bit addressing mode, bits 0-63 of the odd-numbered
register are decremented by the number of bytes pro-
cessed for the respective operand.

Figure 7-351 shows the contents of the general reg-
isters just described.

Depending on the function code in general register 0,
one or more registers designating the parameter
block, first operand, or second operand may not be

7-354 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

N All Addressing Modes

GR0 / M FC
0 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Explanation:

FC Function code.
M Modifier bit determining whether a seed or generate operation is performed.

Figure 7-351. General Register Assignment for PERFORM RANDOM NUMBER OPERATION

General Instructions 7-355

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

Nused by the function. Figure 7-352 summarizes the
registers that are used by the various functions.

When the parameter block overlaps any portion of
the storage operands, the results are unpredictable.

When the R1 or R2 field is not applicable to a function
(as shown in Figure 7-352), any storage location des-
ignated by the respective operand is not accessed,
and access exceptions and PER zero-address-
detection events are not recognized for the location.
When an applicable storage-operand length is zero,
access exceptions for the storage-operand location
are not recognized. However, for functions that

access the parameter block, the parameter block is
accessed even when the storage-operand length is
zero.

As observed by other CPUs and the I/O subsystem,
references to the parameter block and storage oper-
ands may be multiple-access references, accesses
to these locations are not necessarily block-concur-
rent, and the sequence of these accesses or refer-
ences is undefined.

A PER storage-alteration event is recognized only for
the portion of the parameter block that is stored. For
functions that store to the first- or second-operand
locations, when a PER storage-alteration event is
recognized, fewer than 4K additional bytes are stored
into the respective locations before the event is
reported. When a PER storage-alteration event is
recognized for any combination of the first-operand
location, the second-operand location, and the por-
tion of the parameter block that is stored, it is unpre-
dictable which of these locations is indicated in the
PER access identification (PAID) and PER ASCE ID
(AI). Similarly, when a PER zero-address-detection
event is recognized for any combination of the first-
operand location, the second-operand location, and
the parameter block, it is unpredictable which of
these locations is identified in the PAID and AI.

PRNO-Query (PRNO Function Code 0)
The contents of general registers R1, R1 + 1, R2, and
R2 + 1 are ignored by the query function.

The locations of the operands and addresses used
by the instruction are as shown in Figure 7-351 on
page 7-354.

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the PERFORM RAN-
DOM NUMBER OPERATION instruction. When a bit
is one, the corresponding function is installed; other-
wise, the function is not installed.

Function (Operation) GR1 R1 R1 + 1 R2 R2 + 1

PRNO_Query PBA
(S)

— — — —

PRNO-SHA-512-DRNG
(Seed)

PBA
(F,S)

— —
O2A
(F)

O2L

PRNO-SHA-512-DRNG
(Generate)

PBA
(F,S)

O1A
(S)

O1L
(D)

— —

PRNO-TRNG-Query_Raw-
to-Conditioned-Ratio

PBA
(S)

— — — —

PRNO-TRNG
—

O1A
(S,I)

O1L
(D)

O2A
(S,I)

O2L
(D)

Explanation:

— Not applicable to the function or operation. Storage location
not accessed; register not modified.

D The register is decremented by the number of bytes
processed by the instruction.

F Fetch access

I The register is incremented by the number of bytes
processed by the instruction. Note, general register R1 is
not incremented for PRNO-SHA-512-DRNG generate
operation.

O1A When the first-operand length is nonzero, the address of the
leftmost byte of the first operand; otherwise, not applicable.

O1L First-operand length.

O2A When the second-operand length is nonzero, the address of
the leftmost byte of the second operand; otherwise, not
applicable.

O2L Second-operand length.

PBA Address of the leftmost byte of the parameter block.

S Store access.

Figure 7-352. Summary of Register Usage for PRNO
Functions

0
Status Word

8
0 63

Figure 7-353. Parameter Block for PRNO-Query

7-356 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

N Condition code 0 is set when execution of the PRNO-
Query function completes; condition code 3 is not
applicable to this function.

PRNO-SHA-512-DRNG (PRNO Function
Code 3)
Depending on the modifier bit, bit 56 of general regis-
ter 0, the PRNO-SHA-512-DRNG function performs
either a deterministic pseudorandom-number gener-
ate operation or a deterministic pseudorandom-num-
ber seed operation using the 512-bit secure-hash
algorithm (SHA-512).

Deterministic pseudorandom-number generation,
also known as deterministic random-bit generation, is
defined in Reference [18.] on page xxx; refer to this
publication for further description on terms used in
this definition. Further description of the secure hash
algorithm may be found in Reference [15.] on page
xxx.

The locations of the operands and addresses used
by the instruction are as shown in Figure 7-351 on
page 7-354.

The parameter block used for the function represents
the internal state of a deterministic random-number
generator and has the following format:

The same parameter block format is used by both the
generate operation and the seed operation (including
instantiation and reseeding). A parameter block con-
taining all zeros is considered to be not instantiated.
The program should zero the parameter block prior to
issuing the seed operation to instantiate the parame-
ter block, and subsequently, the program should not
alter the contents of the parameter block except to
zero it; otherwise, unpredictable results may be pro-
duced by the instruction.

Reserved: Bytes 0-3, 16, and 128 of the parame-
ter block are reserved. As observed by other CPUs
and the I/O subsystem, the contents of byte 16 may
appear to change during the execution of the instruc-
tion; however, byte 16 will contain zero when the
instruction completes with condition code 0. As
observed by other CPUs and the I/O subsystem, the
contents of byte 128 may appear to change during
the execution of the seed operation, however, byte
128 will contain zero at the completion of the seed
operation.

Reseed Counter: Bytes 4-7 of the parameter block
contain a 32-bit unsigned binary integer indicating
the number of times that the instruction has com-
pleted with condition code 0 since the parameter
block was last instantiated or reseeded.

When the reseed counter contains zero, the parame-
ter block is considered to be not instantiated, and the
following applies:

• Execution of the seed operation causes the
parameter block to be instantiated with initial val-
ues, including setting the reseed counter to a
value of one.

• Execution of the generate operation results in a
general-operand data exception being recog-
nized.

When the reseed counter contains a nonzero value,
the parameter block is considered to be instantiated,
and the following applies:

• Execution of the seed operation causes the
parameter block to be reseeded, including reset-
ting the reseed counter to a value of one.

• Execution of a generate operation that results in
condition code 0 causes the reseed counter to
be incremented by one; any carry out of bit posi-
tion 0 of the reseed-counter field is ignored.

Stream Bytes: Bytes 8-15 of the parameter block
contain a 64-bit unsigned binary integer. The stream-
bytes field is set to zero by the execution of the seed
operation when instantiating the parameter block
(that is, when the reseed counter is zero); the field is
not changed by the execution of the seed operation
when the parameter block is already instantiated.

Partial or full completion of a generate operation
causes the contents of the stream-bytes field to be

0 Reserved Reseed Counter

8 Stream Bytes

16 Rsvd.

 V

128 Rsvd.

 C

232 .
0 8 32 63

Figure 7-354. Parameter Block for PRNO-SHA-512-DRNG
Function

General Instructions 7-357

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

Nincremented by the number of bytes stored into the
first operand; any carry out of bit position 0 of the
stream-bytes field is ignored.

Value (V): Bytes 17-127 of the parameter block
contains an 888-bit value indicating the internal state
of the random-number generator represented by the
parameter block. V is initialized by the execution of
the seed operation when instantiating the parameter
block. V is updated by either (a) the execution of the
seed operation when the reseed counter is nonzero,
or (b) the execution of the generate operation that
ends in condition code 0.

Constant (C): Bytes 129-239 of the parameter
block contain an 888-bit value indicating the internal
state of the random-number generator represented
by the block. C is initialized by the execution of the
seed operation, and inspected by the generate oper-
ation.

PRNO-SHA-512-DRNG Seed Operation

The PRNO-SHA-512-DRNG seed operation instanti-
ates or reseeds a deterministic-pseudorandom-num-
ber-generation parameter block using the 512-bit
secure-hash algorithm.

Depending on whether the reseed counter in bytes
4-7 of the parameter block is zero or nonzero, an
instantiation or reseeding operation is performed,
respectively.

• For the instantiation operation, the second oper-
and in storage contains entropy input, nonce,
and an optional personalization string, used to
form seed material.

• For the reseed operation, the second operand in
storage contains entropy input and optional addi-
tional input, used to form the seed material.

See Reference [18.] on page xxx for the definition
and usage of entropy input, nonce, personalization
string, and additional input, and for details on the
algorithms used. The length of the second operand in
general register R2 + 1 must not exceed 512 bytes,
otherwise, a specification exception is recognized.

When performing an instantiation operation, seed
material is formed using only the second operand.
When performing a reseeding operation, seed mate-
rial is formed from a concatenation of the value 01

hex, the V field of the parameter block, and the sec-
ond operand. The formation of the seed material is
illustrated in Figure 7-355.

For either the instantiation or reseeding operation, a
new value field (Vnew) is formed as follows: A one byte
counter, four-byte value of 888, the seed material,
and padding are used as input to the SHA-512 algo-
rithm. The padding consists of a value of 80 hex,
concatenated with 0-127 bytes of zeros, concate-
nated with a 16-byte binary integer designating the
length in bits of the input to the SHA-512 algorithm
not including the padding (that is, the length of the
one-byte counter, four-byte value of 888, and the
seed material). The SHA-512 algorithm is invoked
twice to form two 64-bit hashed results; the one-byte
counter contains the value 1 for the first invocation of
the SHA-512 algorithm, and it contains the value 2
for the second invocation. The two 64-byte hashed
results are concatenated together, and the leftmost
111 bytes of the 128-byte concatenation form the

Explanation:

<#> Length of field in bytes
R2+1 Length of operand 2 in storage in the range of 0-512 bytes.

Figure 7-355. PRNO-SHA-512-DRNG Function’s Seed
Operation Generation of Seed Material

Seed Material

Entropy Input, Nonce,

Operand 2 in Storage

 Personalization String

<R2+1>

Formation of Seed Material for Instantiation

Seed Material

Entropy Input,

Operand 2 in Storage

 Additional Input

1

<1> <111> <R2+1>

Formation of Seed Material for Reseeding

Reseed Ctr.
Stream Bytes

V

C

Parameter Block in Storage

7-358 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

N new value field (Vnew) in the parameter block. The
generation of Vnew is illustrated in Figure 7-356.

Similar to the formation of the Vnew field, the new con-
stant field (Cnew) is formed during both the instantia-
tion or reseeding operation. A one byte counter, four-
byte value of 888, one byte value of zero, the Vnew

field, and padding are concatenated to form input to
the SHA-512 algorithm. The padding consists of a
value of 80 hex, concatenated with 122 bytes of
zeros, concatenated with a 16-byte binary integer
designating the length in bits of the input to the SHA-
512 algorithm not including the padding (that is, the
length of the one-byte counter, four-byte value of
888, one-byte value of zero, and the Vnew field). The
SHA-512 algorithm is invoked twice to form two 64-
bit hashed results; the one-byte counter contains the

value 1 for the first invocation of the SHA-512 algo-
rithm, and it contains the value 2 for the second invo-
cation. The two 64-byte hashed results are
concatenated together, and the leftmost 111 bytes of
the 128-byte concatenation form the new constant
field (Cnew) in the parameter block.

For either the instantiate or reseeding operation, the
reseed-counter field in the parameter block is set to a
value of one. For the instantiate operation only, the
stream-bytes field in the parameter block is set to
zeros; the stream-bytes field remains unchanged by
a reseeding operation.

Explanation:

#bits 32-bit count of bits to be produced by the SHA-512 algorithm: 888 bits (378 hex)
<#> Length of the field in bytes.
<x #> Length of the field is a multiple of # bytes.
ct 8-bit counter used by the hash-derivation function (hash_df, defined in Reference [18.] on page xxx).
ICV Initial chaining value used for the SHA-512 algorithm (initial chaining values are described in programming note 6 for KLMD on

page 7-199.
Pad Variable number of pad bytes, beginning with 80 hex, followed by 0-127 bytes of zeros, followed by a 16-byte binary integer representing

the length in bits of the input to the SHA-512 algorithm not including the padding. An appropriate number of zero bytes are inserted such
that the length of the input to the SHA-512 algorithm is a multiple of 128 bytes.

Figure 7-356. PRNO-SHA-512-DRNG Function’s Seed Operation Formation of New Value (Vnew)

Seed Material

1

<1>

Seed Material

#bits Padct

888

<4>

Seed Material

<1>

#bits Padct

<4>

SHA-512

<x 128>

SHA-512

<x 128>

SHA-512 Result 1 SHA-512 Result 2

<64><64>

<Leftmost 111 bytes>

2 Seed Material888

ICV ICV
<64> <64>

Reseed Ctr.
Stream Bytes

Vnew

C

Parameter Block in Storage

General Instructions 7-359

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

NThe generation of Cnew and the initialization of the
reseed-counter and stream-bytes fields is illustrated
in Figure 7-357.

Condition code 0 is set when execution of the PRNO-
SHA-512-DRNG function’s seed operation com-
pletes; condition code 3 is not applicable to the seed
operation.

PRNO-SHA-512-DRNG Generate Operation

If the reseed counter in the parameter block is zero, a
general-operand data exception is recognized and
the operation is suppressed.

General register R1 contains the address of the left-
most byte of the first operand. When the first-oper-
and length in general register R1 + 1 is nonzero, the
first operand is formed in right-to-left order in units of
64-byte blocks, except that the rightmost block may
contain fewer than 64 bytes. The number of blocks to
be stored, including any partial rightmost block, is
determined by rounding the first-operand length in
general register R1 + 1 up to a multiple of 64 and
dividing this value by 64. The blocks of the first oper-

Explanation:

#bits 32-bit count of bits to be produced by the SHA-512 algorithm: 888 bits (378 hex)
<#> Length of field in bytes.
ct 8-bit counter used by the hash-derivation function (hash_df, defined in Reference [18.] on page xxx).
ICV Initial chaining value used for the SHA-512 algorithm (initial chaining values are described in programming note 6 for KLMD on

page 7-199.
Pad Pad bytes, beginning with 80 hex, followed 122 bytes of zeros, followed by a 16-byte binary integer representing the length of the input to

the SHA-512 algorithm not including the padding.
z 8-bit field of zeros.

Figure 7-357. PRNO-SHA-512-DRNG Function’s Seed Operation Formation of New Constant (Cnew) and Initialization of the
Reseed-Counter and Stream-Bytes Fields

Vnew

1

<1>

#bits Padct

888

<4>

SHA-512

<256>

SHA-512

<256>

SHA-512 Result 1 SHA-512 Result 2

<64><64>

<Leftmost 111 bytes>

ICV ICV

0

<1>

z Vnew

2

<1>

#bits Padct

888

<4>

0

<1>

z

Zeros

<4>
1

<8>
(instantiate operation only)

<64> <64>

Reseed Ctr.
Stream Bytes

Vnew

Cnew

Parameter Block in Storage

7-360 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

N and are numbered from left to right as 0 to n–1,
where n–1 represents the rightmost block. The fol-
lowing procedure is performed for each block of the
first-operand location, beginning with the rightmost
(n–1) block and proceeding to the left.

1. The value (V) from the parameter block is added
to the block number being processed, with any
overflow from the addition ignored.

2. The 111-byte sum of this addition, concatenated
with 17 bytes of padding, are used as input to the
SHA-512 algorithm, resulting in a 64-byte
hashed value. The 17-byte padding provided to
the SHA-512 algorithm consists of a value of 80
hex followed by a 16-byte binary integer value of
888 (the length of V in bits).

3. If the first-operand length in general register
R1 + 1 is a multiple of 64, then the resulting 64-
byte hashed value is stored in the respective
block of the first-operand location, and the length
in general register R1 + 1 is decremented by 64.

If the first-operand length is not a multiple of 64,
then the leftmost m bytes of the resulting 64-byte
hashed value is stored in the rightmost partial

block of the first operand, where m represents
the remainder of the first-operand length divided
by 64. In this case, the length in general register
R1 + 1 is decremented by m.

4. Regardless of whether a full or partial block is
stored, the stream-bytes field in bytes 8-15 of the
parameter block is incremented by the number of
bytes stored into the first-operand location.

The above process is repeated until either the first-
operand length in general register R1 + 1 is zero
(called normal completion) or a CPU-determined
number of blocks has been processed (called partial
completion). The CPU-determined number of blocks
depends on the model, and may be a different num-
ber each time the instruction is executed. The CPU-
determined number of blocks is usually nonzero. In
certain unusual situations, this number may be zero,
and condition code 3 may be set with no progress.
However, the CPU protects against endless reoccur-
rence of this no-progress case.

The process of generating the deterministic pseudo-
random numbers in the first operand is shown in
Figure 7-358.

Figure 7-358. PRNO-SHA-512-DRNG Function’s Generate Operation Generation of Deterministic Pseudorandom
Numbers (Part 1 of 2)

V+(n–1) Pad

SHA-512

<128>

<64>
ICV

Hn–1

<64>

V+(n–1)

<111>

+n–1

<111>

Reseed Ctr.
Stream Bytes

V

C

Parameter Block in Storage

+ #_bytes_stored

V Pad

SHA-512

<128>

<64>
ICV

H0

<64>

V

<111>

–1

<111>

…

…

…

…

…

V+1 Pad

SHA-512

<128>

<64>
ICV

H1

<64>

V+1

<111>

–1

<111>

V+(n-2) Pad

SHA-512

<128>

<64>
ICV

Hn-2

<64>

V+(n-2)

<111>

–1

<111>

<111>

General Instructions 7-361

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

N

When the first-operand length in general register
R1 + 1 is initially zero, normal completion occurs with-
out storing into the first-operand location; however,
the parameter block is updated as described below.

When the pseudorandom-number-generation pro-
cess ends due to normal completion, the parameter
block is updated as described below.

1. A one byte value of 03 hex, 111-byte value (V)
from the parameter block, and 144 bytes of pad-
ding are used as input to the SHA-512 algorithm,
resulting in a 64-byte hashed value. The padding
consists of a value of 80 hex, concatenated with
127 bytes of zeros, concatenated with a 16-byte
binary integer designating the length in bits of the
input to the SHA-512 algorithm not including the
padding (that is, the length of the one-byte value
of 03 hex and the V field). The values of the 4-
byte reseed-counter field and the 111-byte value
(V) and constant (C) fields in the parameter
block, and the 64-byte hashed value (from the
above computation) are added. For the purposes
of this addition, each value is treated as an
unsigned binary integer, extended to the left with
zeros as necessary. Any overflow from the addi-
tion is ignored, and the resulting 111-byte sum
replaces the value field in the parameter block
(Vnew).

2. The 4-byte reseed-counter field in the parameter
block is incremented by one.

3. Condition code 0 is set.

Steps 1 and 2 of the normal completion processing
are illustrated in Figure 7-359.

When the pseudorandom-number-generation pro-
cess ends due to partial completion, the first-operand
length in general register R1 + 1 contains a nonzero
multiple of 64, the reseed-counter and value (V)
fields in the parameter block are not updated, and
condition code 3 is set.

Explanation:

<#> Length of field in bytes.
Hn 64-byte hashed value stored in the first-operand location; the rightmost value (Hn–1) may contain fewer than 64 bytes.
ICV Initial chaining value used for the SHA-512 algorithm (initial chaining values are described in programming note 6 for KLMD on

page 7-199.
n Number of 64-byte blocks in the first operand; n is equal to the integer quotient of ((length in general register R1 + 1) + 63) 64.
Pad Pad bytes, beginning with 80 hex, followed by a 16-byte unsigned binary integer representing the length of V in bits: 888 (378 hex).

Figure 7-358. PRNO-SHA-512-DRNG Function’s Generate Operation Generation of Deterministic Pseudorandom
Numbers (Part 2 of 2)

Explanation:

<#> Length of field in bytes
ICV Initial chaining value used for the SHA-512 algorithm (initial

chaining values are described in programming note 6 for
KLMD on page 7-199.

Pad Pad bytes, beginning with 80 hex, followed 127 bytes of
zeros, followed by a 16-byte unsigned binary integer
representing the length of the input to the SHA-512
algorithm not including the padding.

Figure 7-359. PRNO-SHA-512-DRNG Function’s Generate
Operation Normal Completion

V

3

<1>

Pad

SHA-512

<256>

<64>

ICV
<64>

Reseed Ctr.
Stream Bytes

V

C

Parameter Block in Storage

+

<111> <144>

<111>
<111>

<4>

Vnew<111>

7-362 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

N For a generate operation, access exceptions may be
reported for a larger portion of the first operand than
is processed in a single execution of the instruction.
However, access exceptions are not recognized for
locations that do not encompass the first operand nor
for locations more than 4K bytes from the current
location being processed.

For a generate operation, when the operation ends
due to normal completion, condition code 0 is set and
the resulting value in general register R1 + 1 is zero.
When the operation ends due to partial completion,
condition code 3 is set and the resulting value in gen-
eral register R1 + 1 is nonzero.

PRNO-TRNG-Query-Raw-to-Conditioned
Ratio (PRNO Function Code 112)
The PRNO-TRNG-query-raw-to-conditioned ratio
function may be used to determine the ratio of raw to
conditioned entropy produced when both types of
entropy are requested by the PRNO-TRNG function.
See Reference [19.] on page xxx for a description of
these terms.

The parameter block is stored with two 32-bit
unsigned binary integers indicating the ratio of raw
entropy to conditioned entropy produced by the
PRNO-TRNG function.

The locations of the operands and addresses used
by the instruction are as shown in Figure 7-351 on
page 7-354. The contents of general registers R1,
R1 + 1, R2, and R2 + 1 are ignored by the function.

The parameter block used for the function has the fol-
lowing format:

The fields of the parameter block are as follows:

Raw Entropy: The numerator in a fraction desig-
nating the ratio of raw entropy to conditioned entropy
produced by the PRNO-TRNG function.

Conditioned Entropy: The denominator in a frac-
tion designating the ratio of raw entropy to condi-
tioned entropy produced by the PRNO-TRNG
function.

The raw-entropy to conditioned-entropy ratio indi-
cates the relative sizes of the first and second oper-
ands stored by the PRNO-TRNG function when the
operands contain a proportionate number of raw and
conditioned bits.

Condition code 0 is set when execution of the PRNO-
TRNG-query-raw-to-conditioned function completes;
condition code 3 is not applicable to this function.

PRNO-TRNG (PRNO Function Code 114)
A series of hardware-generated random numbers is
stored at either or both the first- and second-operand
locations. The locations of the operands and
addresses used by the instruction are as shown in
Figure 7-351 on page 7-354. A parameter block is
not used by the PRNO-TRNG function, and general
register 1 is ignored.

The R1 field designates an even-odd pair of general
registers. The even-numbered register contains the
address of the leftmost byte of the first operand, and
the odd-numbered register contains the length of the
first operand. The first operand comprises random
numbers in the form of raw entropy, produced directly
by a hardware source.

The R2 field designates an even-odd pair of general
registers. The even-numbered register contains the
address of the leftmost byte of the second operand,
and the odd-numbered register contains the length of
the second operand. The second operand comprises
random numbers extracted from the raw entropy
source and then conditioned by an approved algo-
rithm (section 6.4.2 of Reference [19.] on page xxx
describes approved algorithms).

The ratio of raw-entropy bits needed to produce con-
ditioned-entropy bits can be determined by the
PRNO-TRNG-query-raw-to-conditioned-ratio func-
tion. When the lengths of both the first and second
operands are nonzero, the raw and conditioned
entropy are stored at the first- and second-operand
locations, respectively, in the raw-to-conditioned
ratio. The number of bytes stored in a single unit of
operation is model dependent, and may vary from
one execution of the instruction to another.

When the length of the first operand is nonzero but
the length of the second operand is zero, the process
continues with storing the raw entropy in the first
operand only. Similarly, when the length of the sec-
ond operand is nonzero but the length of the first

0 Raw-Entropy Conditioned-Entropy
0 32 63

Figure 7-360. Parameter Block for PRNO-TRNG-Query-
Raw-to-Conditioned Ratio

General Instructions 7-363

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

Noperand is zero, the process continues with storing
the conditioned entropy in the second operand only.

Access exceptions may be reported for a larger por-
tion of the first and second operands than is pro-
cessed in a single execution of the instruction.
However, access exceptions are not recognized for
locations that do not encompass the first or second
operand nor for locations more than 4K bytes from
the current location being processed.

The process continues either until both operand
lengths are zero (called normal completion), or until a
CPU-determined number of bytes have been stored
(called partial completion), whichever occurs first.
When the operation ends due to normal completion,
condition code 0 is set. When the operation ends due
to partial completion, condition code 3 is set. The
CPU-determined number of bytes depends on the
model, and may be a different number each time the
instruction is executed. The CPU-determined number
of bytes is usually nonzero. In certain unusual situa-
tions, this number may be zero, and condition code 3
may be set with no progress. However, the CPU pro-
tects against endless recurrence of this no-progress
case.

Regardless of whether the operation ends due to
normal or partial completion, general registers R1

and R1 + 1 are incremented and decremented,
respectively, by the number of bytes stored into the
first operand, and general registers R2 and R2 + 1 are
incremented and decremented, respectively, by the
number of bytes stored into the second operand.

If the first and second operands overlap, the results
are unpredictable.

Special Conditions

A specification exception is recognized and no other
action is taken if any of the following conditions exist:

1. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

2. The R1 or R2 fields designate an odd-numbered
register or general register 0. This exception is
recognized regardless of the function code.

3. For the PRNO-SHA-512-DRNG function’s seed
operation, the length in general register R2 + 1 is
greater than 512.

For the PRNO-SHA-512-DRNG function’s generate
operation, a general-operand data exception is rec-
ognized if the reseed counter in the parameter block
is zero.

Condition Code:

0 Normal completion
1 --
2 --
3 Partial completion

Program Exceptions:

• Access (store, operand 1; fetch and store, oper-
and 2 and parameter block)

• Data with DXC 0, general operand
• Operation (if the message-security-assist exten-

sion 5 is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. With the advent of the message-security-assist
extension 7, the instruction is capable of produc-
ing both true and deterministic random numbers.
Thus, the former PERFORM PSEUDORANDOM
NUMBER OPERATION (PPNO) instruction is
renamed to PERFORM RANDOM NUMBER
OPERATION (PRNO) to encompass both types
of numbers. Although it is now deprecated, the
mnemonic PPNO is retained for compatibility.

3. The following considerations apply to the PRNO-
SHA-512-DRNG function:

a. For the generate operation, when condition
code 3 is set, the first operand length in gen-
eral register R1 + 1 is updated such that the
program can simply branch back to the
instruction to continue the operation.

7-364 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 R

A
N

D
O

M
 N

U
M

B
E

R
 O

P
E

R
A

T
IO

N b. The seed operation (instantiation and
reseeding) and generate operation corre-
spond to the following algorithm specifica-
tions in Reference [19.] on page xxx:

• Section 10.1.1.2: Instantiation of
Hash_DRBG

• Section 10.1.1.3: Reseeding a
Hash_DRBG Instantiation

• Section 10.1.1.4: Generating Pseudo-
random Bits Using Hash_DRBG (steps
3–7)

c. If a carry out of bit position 0 of the reseed-
counter field occurs during a generate opera-
tion, then the counter wraps around to zero;
in this case, the parameter block is consid-
ered not to be instantiated. Unless a seed
operation is performed to reinstantiate the
parameter block, a subsequent generate
operation will result in a general-operand
data exception being recognized.

d. The PRNO-SHA-512-DRNG function does
not implement the testing and uninstantiation
functions described in Reference [19.] on
page xxx. As the parameter block exists in
program storage, the program can effect the
testing function by directly inspecting the
parameter block; similarly, the program can
effect the uninstantiation function by zeroing
the parameter block.

e. The program is responsible for reseeding the
parameter block depending on policy and
pseudorandom-number-generation state.
For example, reseeding may be required
after each generate operation if prediction
resistance is required. Reseeding may be
appropriate after a preset number of stream
bytes is produced. See Reference [18.] on
page xxx for further explanation.

f. Even though the generate operation pro-
cesses the blocks of the first operand in right
to left order, it is the address of the leftmost
byte of the operand in general register R1

that is used for PER zero-address detection.
If the first-operand address is nonzero, and
length of the operand is such that the oper-
and wraps around to location zero, stores to
the first-operand location – including stores
to location zero – will not result in the recog-

nition of a PER zero-address-detection
event.

g. The length in bits of the input to the SHA-512
algorithm is implicitly determined by the
instruction; this length is described as occu-
pying the rightmost 16 bytes of the padding
field. This differs from the KLMD-SHA-512
function of the COMPUTE LAST MESSAGE
DIGEST instruction where the message-bit
length (mbl) is explicitly specified in the
parameter block, and the padding (p) and
mbl are described separately.

h. The initial chaining value (ICV) is described
as the initial-hash value (IHV) in Reference
[18.] on page xxx.

i. The program may issue a seed operation
with the second-operand length in general
register R2 + 1 set to zero. However, the
results in this case will always be determinis-
tic.

4. The following considerations apply to the PRNO-
TRNG function:

a. Depending on the model, significant perfor-
mance degradation may be experienced
either by requesting excessively large results
or by frequently-repeated executions of the
instruction.

b. The PRNO-TRNG function may be useful
when implementing a hybrid random-number
generator, using the conditioned entropy
source from PRNO-TRNG to periodically
reseed a deterministic random-number gen-
eration (such as that provided by the PRNO-
SHA-512-DRNG function).

c. The conditioned entropy provided by the
PRNO-TRNG function may be shared by
multiple, independently-seeded determinis-
tic random number generators. Indepen-
dence may be achieved by a unique
program-supplied entropy, nonce, or person-
alization string when seeding a deterministic
random number generator.

d. The raw entropy provided by the first oper-
and is intended for use by diagnostic pro-
grams that test the quality of entropy
provided by the function. It is recommended
that for normal usage, the first-operand
length be set to zero.

General Instructions 7-365

P
R

E
F

E
T

C
H

 D
A

T
Ae. The ratio of raw-to-conditioned entropy pro-

vided by the function is constant across all
processors of the same model type. There-
fore, once the program has determined the
ratio, it need not re-execute the PRNO-
TRNG-query-raw-to-conditioned-ratio func-
tion unless it is relocated to another model
type.

f. Although entropy is produced by the PRNO-
TRNG function in the raw-to-conditioned
ratio reported by the PRNO-TRNG-query-
raw-to-conditioned-ratio function, the pro-
gram is in no way obliged to request raw and
conditioned entropy in that ratio.

5. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in a location defined to be stored
for a particular function. See the section “Effects
of CPU Retry” on page 11-3 for further details.

 POPULATION COUNT

POPCNT R1,R2[,M3] [RRF-c]

A count of the number of bits in the second operand
containing a value of one, is placed into the first oper-
and.

When the miscellaneous-instruction-extensions facil-
ity 3 is not installed or bit 0 of the M3 field is zero, a
count of the number of one bits in each of the eight
bytes of general register R2 is placed into the corre-
sponding byte of general register R1. Each byte of
general register R1 is an 8-bit binary integer in the
range of 0-8.

When the miscellaneous-instruction-extensions facil-
ity 3 is installed and bit 0 of the M3 field is one, a
count of the total number of one bits in the 64-bit
general register R2 is placed into general register R1.
The result is a 64-bit unsigned integer in the range 0
to 64.

Bits 1-3 of the M3 field are reserved and should con-
tain zeros; otherwise, the program may not operate
compatibly in the future. If the miscellaneous-instruc-
tion-extensions facility 3 is not installed, bit 0 of the
M3 field should also contain zero.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

Program Exceptions:

• Operation (if the population-count facility is not
installed)

Programming Notes:

1. The condition code is set based on all 64 bits of
general register R1.

2. If the miscellaneous-instruction-extensions facil-
ity 3 is installed, bit 0 of the M3 field should be set
to one to compute the total number of one bits in
a general register. If the facility is not installed,
the total number of one bits in a general register
can be computed as shown below. In this exam-
ple, general register 15 contains the bits to be
counted; the result containing the total number of
one bits in general register 15 is placed in gen-
eral register 8. (General register 9 is used as a
work register and contains residual values on
completion.)

POPCNT 8,15
AHHLR 8,8,8
SLLG 9,8,16
ALGR 8,9
SLLG 9,8,8
ALGR 8,9
SRLG 8,8,56

If there is a high probability that the results of the
POPCNT instruction are zero, a conditional
branch instruction may be inserted to skip the
adding and shifting operations based on the con-
dition code set by POPCNT.

3. Using techniques similar to that shown in pro-
gramming note 2, the number of one bits in a
word, halfword, or discontiguous bytes of the
second operand may be determined.

PREFETCH DATA

PFD M1,D2(X2,B2) [RXY-b]

'B9E1' M3 / / / / R1 R2

0 16 24 28 31

'E3' M1 X2 B2 DL2 DH2 '36'

0 8 12 16 20 32 40 47

7-366 The z/Architecture CPU Architecture

P
R

E
F

E
T

C
H

 D
A

T
A

 R
E

L
A

T
IV

E
 L

O
N

G PREFETCH DATA RELATIVE LONG

PFDRL M1,RI2 [RIL-c]

Note: In this instruction definition, the name
“PREFETCH DATA (RELATIVE LONG)” refers to
both the PREFETCH DATA instruction and the
PREFETCH DATA RELATIVE LONG instruction.

Subject to the controls specified in the M1 field, the
CPU is signaled to perform one of the following oper-
ations:

• Prefetch the second operand into a cache line.
• Release a cache line containing the second

operand.

The second operand designates a logical address.

The M1 field contains a 4-bit unsigned binary integer
that is used as a code to signal the CPU as to the
intended use of the second operand. The codes are
as follows:

All other codes are reserved. Depending on the
model, the CPU may not implement all of the
prefetch functions. For functions that are not imple-
mented by the CPU, and for reserved functions, the
instruction acts as a no-op. Code 0 always acts as a
no-op.

No access exceptions or PER storage-alteration
events are recognized for the second operand.

 Code 2 has no effect on the change bit for the sec-
ond operand. For all codes, it is model dependent
whether any TLB entry is formed for the data that is
prefetched.

For PREFETCH DATA, the displacement is treated
as a 20-bit signed binary integer.

For PREFETCH DATA RELATIVE LONG, the con-
tents of the RI2 field are signed binary integer speci-
fying the number of halfwords that is added to the
address of the instruction to generate the address of
the second operand. When DAT is on, the second
operand is accessed using the same addressing-
space mode as that used to access the instruction.
When DAT is off, the second operand is accessed
using a real address.

When PREFETCH DATA (RELATIVE LONG) is
attempted in a nonconstrained transaction, and the
code in the M1 field is 6 or 7, it is model dependent
whether the instruction is restricted; if the instruction
is not restricted, it is unpredictable whether the trans-
action is aborted due to abort code 16. When
PREFETCH DATA (RELATIVE LONG) is attempted
in a constrained transaction, a transaction-constraint
program interruption is recognized, and the transac-
tion is aborted with abort code 4.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (if the general-instructions-extension
facility is not installed)

• Transaction constraint

Programming Notes:

1. PREFETCH DATA (RELATIVE LONG) signals
the CPU to perform the specified operation, but it
does not guarantee that the CPU will necessarily
honor the request.

2. There is no guarantee that storage location will
still be in the cache when a subsequent instruc-
tion references the location. Likewise, there is no
guarantee that when a cache line is released,
that the CPU will not subsequently refetch it
(independent of any prefetching operations).
Rather, PREFETCH DATA (RELATIVE LONG)
simply provides hints as to the program’s antici-
pated use of storage areas.

3. If an exception condition would otherwise be rec-
ognized when accessing the second operand,
PREFETCH DATA (RELATIVE LONG) is com-
pleted with no indication of the exception pro-
vided to the program, however, the performance

'C6' M1 '2' RI2
0 8 12 16 47

Code Function Performed
1 Prefetch the data at the second-operand

address into a cache line for fetch access.
2 Prefetch the data at the second-operand

address into a cache line for store access.
6 Release the cache line containing the sec-

ond operand from store access; retain the
data in the cache line for fetch access.

7 Release the cache line containing the sec-
ond operand from all accesses

General Instructions 7-367

R
O

T
A

T
E

 L
E

F
T

 S
IN

G
L

E
 L

O
G

IC
A

Lof PREFETCH DATA (RELATIVE LONG) may be
significantly slower than if the exception condi-
tion did not exist.

4. A significant delay may be experienced if a stor-
age location has been prefetched and then
released, and then a subsequent instruction ref-
erences the same storage location. Similarly, a
delay may be experienced if a storage location
has been prefetched for fetch access, and then a
subsequent instruction references the same
location for storing.

5. On models that implement a unified data and
instruction cache, the function performed may
affect both subsequent operand accesses and
instruction fetches from the second-operand
location. On such models, a significant delay
may be experienced if the code 7 is used to
release data in a cache line from which an
instruction is subsequently fetched.

6. On models that implement separate data and
instruction caches, codes 1 and 2 cause the sec-
ond operand to be prefetched into the data
cache. Similarly, on such models, codes 6 and 7
cause the second operand to be released from
the data cache. However, on certain models with
separate data and instruction caches, code 7
may also cause the second operand to be
released from the instruction cache, in addition to
being released from the data cache.

7. On models that implement separate data and
instruction caches, the use of code 2 to prefetch
(for storing) a cache line from which instructions
will subsequently be fetched may cause signifi-
cant delays. Similar delays may be experienced
for any store operation into a cache line from
which instructions are subsequently fetched.

8. The use of PREFETCH DATA (RELATIVE
LONG) to prefetch operands that are frequently
updated in a multiprocessing environment may
actually degrade performance by causing unnec-
essary contention for the cache line.

9. A prefetch operation consists of fetching a cache
line on an integral boundary. The cache line size
(and corresponding integral boundary) may be
determined by executing EXTRACT CPU ATTRI-
BUTE.

10. The second operand is fetched into the cache
line in model-dependent units, on an integral
boundary, the minimum size of which is a double-

word. Thus, at least the rightmost three bits of
the second-operand address are assumed to
contain zeros, regardless of what is specified by
the program.

11. On most models, the unit directly addressed by
the second-operand address is prefetched first.
The order in which the remaining units of the
cache line are prefetched is also model depen-
dent.

12. When PREFETCH DATA RELATIVE LONG is
the target of an execute-type instruction, the sec-
ond-operand address is relative to the target
address.

ROTATE LEFT SINGLE LOGICAL

RLL R1,R3,D2(B2) [RSY-a]

RLLG R1,R3,D2(B2) [RSY-a]

The 32-bit or 64-bit third operand is rotated left the
number of bits specified by the second-operand
address, and the result is placed at the first-operand
location. Except for when the R1 and R3 fields desig-
nate the same register, the third operand remains
unchanged in general register R3. For ROTATE LEFT
SINGLE LOGICAL (RLL), bits 0-31 of general regis-
ters R1 and R3 remain unchanged.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of bit
positions to be rotated. The remainder of the address
is ignored.

For RLL, the first and third operands are in bit posi-
tions 32-63 of general registers R1 and R3, respec-
tively. For RLLG, the operands are in bit positions
0-63 of the registers.

All 32 or 64 bits of the third operand participate in a
left shift. Each bit shifted out of the leftmost bit posi-
tion of the operand is placed in the rightmost bit posi-
tion of the operand.

Condition Code: The code remains unchanged.

'EB' R1 R3 B2 DL2 DH2 '1D'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '1C'

0 8 12 16 20 32 40 47

7-368 The z/Architecture CPU Architecture

R
O

T
A

T
E

 T
H

E
N

 A
N

D
 S

E
L

E
C

T
E

D
 B

IT
S Program Exceptions: None.

ROTATE THEN AND SELECTED
BITS

RNSBG R1,R2,I3,I4[,I5] [RIE-f]

ROTATE THEN EXCLUSIVE OR
SELECTED BITS

RXSBG R1,R2,I3,I4[,I5] [RIE-f]

ROTATE THEN OR SELECTED BITS

ROSBG R1,R2,I3,I4[,I5] [RIE-f]

The second operand is rotated left by the number of
bits specified in the fifth operand. Each bit shifted out
of the leftmost bit position of the operand is placed in
the rightmost bit position of the operand. Depending
on the instruction, the selected bits of the rotated
second operand are logically ANDed, exclusive
ORed, or ORed with the corresponding bits of the
first operand, and the results of the logical operation
may replace the selected bits of the first operand.
The result is indicated by the condition code.

The second operand remains unchanged in general
register R2.

Bits 2-7 of the I3 field (bits 18-23 of the instruction)
contain an unsigned binary integer specifying the
starting bit position of the selected range of bits in the
first operand and in the second operand after rota-
tion. Bits 2-7 of the I4 field (bits 26-31 of the instruc-
tion) contain an unsigned binary integer specifying
the ending bit position (inclusive) of the selected
range of bits. When the ending bit position is less
than the starting bit position, the range of bits wraps
around from bit 63 to bit 0.

Bits 2-7 of the I5 field (bits 34-39 of the instruction)
contain an unsigned binary integer specifying the
number of bits that the second operand is rotated to
the left.

Bit 0 of the I3 field (bit 16 of the instruction) contains
the test-results control (T). When the T bit is zero, the
results of the logical operation replace the selected
bits of the first operand, and the remaining bits of the
first operand are unchanged. When the T bit is one,
the entire first operand is unchanged.

The condition code is set based on the results of the
logical operation, regardless of the setting of the T
bit. Only the selected range of bits is used to deter-
mine the condition code.

The immediate fields just described are as follows:

Bit 1 of the I3 field and bits 0-1 of the I4 field (bits 17
and 24-25 of the instruction) are reserved and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future. Bits 0-1 of the I5 field
(bits 32-33 of the instruction) are ignored.

Resulting Condition Code:

0 Result is zero
1 Result is not zero
2 --
3 --

Program Exceptions:

• Operation (if the general-instructions-extension
facility is not installed)

Programming Notes:

1. Although the bits 2-7 of the I5 field are defined to
contain an unsigned binary integer specifying the
number of bits that the second operand is rotated
to the left, a negative value may be coded which
effectively specifies a rotate-right amount.

2. The first operand is always used in its unrotated
form. When the R1 and R2 fields designate the
same register, the contents of the register are
first rotated, and then the selected bits of the

'EC' R1 R2 I3 I4 I5 '54'
0 8 12 16 24 32 40 47

'EC' R1 R2 I3 I4 I5 '57'
0 8 12 16 24 32 40 47

'EC' R1 R2 I3 I4 I5 '56'

0 8 12 16 24 32 40 47

I3 Field I4 Field I5 Field

T /
Starting Bit

Position
/ /

Ending Bit
Position

Rotate Amount

0 1 2 7 0 2 7 0 2 7

General Instructions 7-369

R
O

T
A

T
E

 T
H

E
N

 IN
S

E
R

T
 S

E
L

E
C

T
E

D
 B

IT
Srotated value logically operate upon the corre-

sponding bits of the unrotated register contents.

3. Examples of the use of ROTATE THEN EXCLU-
SIVE OR SELECTED BITS, and ROTATE THEN
OR SELECTED BITS are given in “Number Rep-
resentation and Instruction-Use Examples” on
page A-1.

4. In the assembler syntax, the I5 operand contain-
ing the rotate amount is considered to be
optional. When the I5 field is not coded, a rotate
amount of zero is implied.

5. The I3 field contains both the test-results control
(in bit 0) and the starting bit position value (in bits
2-7). For example, to AND bits 40-43 of register 5
with the corresponding bits of register 7 (no rota-
tion) and simply test the results, the programmer
might code:

RNSBG R5,R7,X'80'+40,43,0

The X‘80’ represents the test-results control
which is added to the starting-bit position to form
the I3 field.

The high-level assembler (HLASM) provides
alternative mnemonics for the test versions of
these instructions, as shown below:

RNSBGT R5,R7,40,43,0

The “T” suffix to the mnemonic indicates that the
specified I3 field is ORed with a value of X’80’
when generating the object code. The T mne-
monic suffix also applies to ROSBG and
RXSBG.

6. The High-Level Assembler implements various
high-word logical operations by providing
extended-mnemonics for the RNSBG, ROSBG,
and RXSBG instructions, as shown in
Figure 7-361.

ROTATE THEN INSERT SELECTED
BITS

RISBG R1,R2,I3,I4[,I5] [RIE-f]

RISBGN R1,R2,I3,I4[,I5] [RIE-f]

The second operand is rotated left by the number of
bits specified in the fifth operand. Each bit shifted out
of the leftmost bit position of the operand is placed in
the rightmost bit position of the operand. The
selected bits of the rotated second operand replace

the contents of the corresponding bit positions of the
first operand. For RISBG, the result is indicated by
the condition code.

The second operand remains unchanged in general
register R2.

Bits 2-7 of the I3 field (bits 18-23 of the instruction)
contain an unsigned binary integer specifying the
starting bit position of the selected range of bits in the
first operand and in the second operand after rota-
tion. Bits 2-7 of the I4 field (bits 26-31 of the instruc-
tion) contain an unsigned binary integer specifying
the ending bit position (inclusive) of the selected
range of bits. When the ending bit position is less
than the starting bit position, the range of bits wraps
around from bit 63 to bit 0.

Instruction Name Extended-Mnemonic Syntax RxSBG Equivalent
AND HIGH (HIGH HIGH) NHHR R1,R2 RNSBG R1,R2,0,31

AND HIGH (HIGH LOW) NHLR R1,R2 RNSBG R1,R2,0,31,32
AND HIGH (LOW HIGH) NLHR R1,R2 RNSBG R1,R2,32,63,32

EXCLUSIVE OR HIGH (HIGH HIGH) XHHR R1,R2 RXSBG R1,R2,0,31

EXCLUSIVE OR HIGH (HIGH LOW) XHLR R1,R2 RXSBG R1,R2,0,31,32
EXCLUSIVE OR HIGH (LOW HIGH) XLHR R1,R2 RXSBG R1,R2,32,63,32

OR HIGH (HIGH HIGH) OHHR R1,R2 ROSBG R1,R2,0,31

OR HIGH (HIGH LOW) OHLR R1,R2 ROSBG R1,R2,0,31,32
OR HIGH (LOW HIGH) OLHR R1,R2 ROSBG R1,R2,32,63,32

Figure 7-361. Extended-Mnemonics Formed Using RNSBG, RXSBG, and ROSBG

'EC' R1 R2 I3 I4 I5 '55'

0 8 12 16 24 32 40 47

'EC' R1 R2 I3 I4 I5 '59'

0 8 12 16 24 32 40 47

7-370 The z/Architecture CPU Architecture

R
O

T
A

T
E

 T
H

E
N

 IN
S

E
R

T
 S

E
L

E
C

T
E

D
 B

IT
S Bits 2-7 of the I5 field (bits 34-39 of the instruction)

contain an unsigned binary integer specifying the
number of bits that the second operand is rotated to
the left.

Bit 0 of the I4 field (bit 24 of the instruction) contains
the zero-remaining-bits control (Z). The Z bit controls
how the remaining bits of the first operand are set
(that is, those bits, if any, that are outside of the spec-
ified range). When the Z bit is zero, the remaining bits
of the first operand are unchanged. When the Z bit is
one, the remaining bits of the first operand are set to
zeros.

The immediate fields just described are as follows:

Bits 0-1 of the I3 field and bit 1 of the I4 field (bits 16-
17 and 25 of the instruction) are reserved and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future. Bits 0-1 of the I5 field
(bits 32-33 of the instruction) are ignored.

For the purposes of setting the condition code for
RISBG, the result in general register R1 is treated as
being a 64-bit signed binary integer.

Resulting Condition Code:

For RISBG, the condition code is set as follows:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

For RISBGN, the condition code remains
unchanged.

Program Exceptions:

• Operation (RISBG, if the general-instructions-
extension facility is not installed; RISBGN, if the
miscellaneous-instruction-extensions facility 1 is
not installed)

Programming Notes:

1. Although the bits 2-7 of the I5 field are defined to
contain an unsigned binary integer specifying the
number of bits that the second operand is rotated
to the left, a negative value may be coded which
effectively specifies a rotate-right amount.

2. When used with the zero-remaining-bits control,
ROTATE THEN INSERT SELECTED BITS pro-
vides a means of effecting a shift operation.

3. When the R1 and R2 fields designate the same
register and the Z bit is one, ROTATE THEN
INSERT SELECTED BITS may be used to zero a
selected range of bits in a register. Note, this
technique cannot be used to zero all 64 bits of
the register.

4. The first operand is always used in its unrotated
form. When the R1 and R2 fields designate the
same register, the contents of the register are
first rotated, and then the selected bits of the
rotated value are inserted into the corresponding
bits of the unrotated register contents.

5. Examples of the use of ROTATE THEN INSERT
SELECTED BITS are given in “Number Repre-
sentation and Instruction-Use Examples” on
page A-1.

6. In the assembler syntax, the I5 operand contain-
ing the rotate amount is considered to be
optional. When the I5 field is not coded, a rotate
amount of zero is implied.

7. The I4 field contains both the zero-remaining-bits
control (in bit 0) and the ending bit position value
(in bits 2-7). For example, to insert bits 40-43 of
register 7 into the corresponding bits of register 5
(no rotation) and zero the remaining bits in regis-
ter 5, the programmer might code:

RISBG R5,R7,40,X'80'+43,0
RISBGN R5,R7,40,X'80'+43,0

The X‘80’ represents the zero-remaining-bits
control which is added to the ending-bit position
to form the I4 field.

The high-level assembler (HLASM) provides an
alternative mnemonic for the zero-remaining-bits
versions of the instruction, as shown below:

RISBGZ R5,R7,40,43,0
RISBGNZ R5,R7,40,43,0

I3 Field I4 Field I5 Field

/ /
Starting Bit

Position
Z /

Ending Bit
Position

Rotate Amount

0 2 7 0 1 2 7 0 2 7

General Instructions 7-371

R
O

T
A

T
E

 T
H

E
N

 IN
S

E
R

T
 S

E
L

E
C

T
E

D
 B

IT
S

 L
O

WThe “Z” suffix to the mnemonic indicates that the
specified I4 field is ORed with a value of X’80’
when generating the object code.

 ROTATE THEN INSERT SELECTED
BITS HIGH

RISBHG R1,R2,I3,I4[,I5] [RIE-f]

ROTATE THEN INSERT SELECTED
BITS LOW

RISBLG R1,R2,I3,I4[,I5] [RIE-f]

The 64-bit second operand is rotated left by the num-
ber of bits specified in the fifth operand. Each bit
shifted out of the leftmost bit position of the operand
is placed in the rightmost bit position of the operand.
The selected bits of the rotated second operand
replace the contents of the corresponding bit posi-
tions of the first operand.

For ROTATE THEN INSERT SELECTED BITS HIGH,
the first operand is in bits 0-31 of general register R1,
and bits 32-63 of the register are unchanged. For
ROTATE THEN INSERT SELECTED BITS LOW, the
first operand is in bits 32-63 of general register R1,
and bits 0-31 of the register are unchanged.

The second operand remains unchanged in general
register R2.

For ROTATE THEN INSERT SELECTED BITS HIGH,
bits 3-7 of the I3 and I4 fields (bits 19-23 and 27-31 of
the instruction, respectively), with a binary zero
appended on the left of each, form six-bit unsigned
binary integers specifying the starting and ending bit
positions (inclusive) of the selected range of bits in
the first operand and in the second operand after
rotation. When the ending bit position is less than the
starting bit position, the range of selected bits wraps
around from bit 31 to bit 0. Thus, the starting and
ending bit positions of the selected range of bits are
always between 0 and 31.

For ROTATE THEN INSERT SELECTED BITS LOW,
bits 3-7 of the I3 and I4 fields, with a binary one
appended on the left of each, form six-bit unsigned
binary integers specifying the starting and ending bit
positions (inclusive) of the selected range of bits in
the first operand and in the second operand after
rotation. When the ending bit position is less than the
starting bit position, the range of selected bits wraps
around from bit 63 to bit 32. Thus, the starting and
ending bit positions of the selected range of bits are
always between 32 and 63.

Bits 2-7 of the I5 field (bits 34-39 of the instruction)
contain an unsigned binary integer specifying the
number of bits that the second operand is rotated to
the left.

Bit 0 of the I4 field (bit 24 of the instruction) contains
the zero-remaining-bits control (Z). The Z bit controls
how the remaining bits of the first operand are set
(that is, those bits, if any, that are outside of the spec-
ified range). When the Z bit is zero, the remaining bits
of the first operand are unchanged. When the Z bit is
one, the remaining bits of the first operand are set to
zeros.

The immediate fields just described are as follows:

Bits 0-2 of the I3 field and bits 1-2 of the I4 field (bits
16-19 and 25-26 of the instruction) are reserved and
should contain zeros; otherwise, the program may
not operate compatibly in the future. Bits 0-1 of the I5
field (bits 32-33 of the instruction) are ignored.

Condition Code: The code remains unchanged

Program Exceptions:

• Operation (if the high-word facility is not installed)

Programming Notes:

1. Although the bits 2-7 of the I5 field are defined to
contain an unsigned binary integer specifying the
number of bits that the second operand is rotated
to the left, a negative value may be coded which
effectively specifies a rotate-right amount.

'EC' R1 R2 I3 I4 I5 '5D'
0 8 12 16 24 32 40 47

'EC' R1 R2 I3 I4 I5 '51'
0 8 12 16 24 32 40 47

I3 Field I4 Field I5 Field

/ / /
Starting Bit

Position
Z / /

Ending Bit
Position

Rotate Amount

0 3 7 0 1 3 7 0 2 7

7-372 The z/Architecture CPU Architecture

S
E

A
R

C
H

 S
T

R
IN

G 2. The first operand is always used in its unrotated
form. When the R1 and R2 fields designate the
same register, the value contained in the register
is first rotated, and then the selected bits of the
rotated value are inserted into the corresponding
bits of the unrotated register contents.

3. In the assembler syntax, the I5 operand contain-
ing the rotate amount is considered to be
optional. When the I5 field is not coded, a rotate
amount of zero is implied.

4. The I4 field contains both the zero-remaining-bits
control (in bit 0) and the ending bit position value
(in bits 2-7). For example, to insert bits 40-43 of
register 7 into the corresponding bits of register 5
(no rotation) and zero the remaining bits in the
right half of register 5, the programmer might
code:

RISBLG R5,R7,40,X'80'+43,0

The X‘80’ represents the zero-remaining-bits
control which is added to the ending-bit position
to form the I4 field.

The High-Level Assembler (HLASM) provides
alternative mnemonics for the zero-remaining-

bits versions of RISBHG and RISBLG in the form
of RISBHGZ and RISBLGZ, respectively. The “Z”
suffix to the mnemonic indicates that the speci-
fied I4 field is ORed with a value of X’80’ when
generating the object code.

An equivalent to the example shown above using
the Z-suffixed mnemonic is as follows:

RISBLGZ R5,R7,40,43,0

5. On some models, improved performance of
RISBHG and RISBLG may be realized by setting
the zero-remaining-bits control to one (or using
the Z mnemonic suffix).

6. Unlike ROTATE THEN INSERT SELECTED
BITS which sets the condition code, ROTATE
THEN INSERT SELECTED BITS HIGH and
ROTATE THEN INSERT SELECTED BITS LOW
do not set the condition code.

7. The High-Level Assembler implements various
high-word logical operations by providing
extended-mnemonics for the RISBHG and RIS-
BLG instructions, as shown in Figure 7-362.

SEARCH STRING

SRST R1,R2 [RRE]

The second operand is searched until a specified
character is found, the end of the second operand is
reached, or a CPU-determined number of bytes have
been searched, whichever occurs first. The CPU-
determined number is at least 256. The result is indi-
cated in the condition code.

The location of the first byte of the second operand is
designated by the contents of general register R2.
The location of the first byte after the second operand
is designated by the contents of general register R1.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode. In the
24-bit addressing mode, the contents of bit positions
40-63 of general registers R1 and R2 constitute the
address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the contents
of bit positions 33-63 of the registers constitute the
address, and the contents of bit positions 0-32 are

Instruction Name Extended-Mnemonic Syntax RISBHG / RISBLG Equivalent
LOAD (HIGH HIGH) LHHR R1,R2 RISBHGZ R1,R2,0,31

LOAD (HIGH LOW) LHLR R1,R2 RISBHGZ R1,R2,0,31,32

LOAD (LOW HIGH) LLHFR R1,R2 RISBLGZ R1,R2,0,31,32
LOAD LOGICAL HALFWORD (HIGH HIGH) LLHHHR R1,R2 RISBHGZ R1,R2,16,31

LOAD LOGICAL HALFWORD (HIGH LOW) LLHHLR R1,R2 RISBHGZ R1,R2,16,31,32

LOAD LOGICAL HALFWORD (LOW HIGH) LLHLHR R1,R2 RISBLGZ R1,R2,16,31,32
LOAD LOGICAL CHARACTER (HIGH HIGH) LLCHHR R1,R2 RISBHGZ R1,R2,24,31

LOAD LOGICAL CHARACTER (HIGH LOW) LLCHLR R1,R2 RISBHGZ R1,R2,24,31,32

LOAD LOGICAL CHARACTER (LOW HIGH) LLCLHR R1,R2 RISBLGZ R1,R2,24,31,32

Figure 7-362. Extended Mnemonics Formed Using RISBHG and RISBLG

'B25E' / / / / / / / / R1 R2

0 16 24 28 31

General Instructions 7-373

S
E

A
R

C
H

 S
T

R
IN

Gignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 constitute the address.

In the access-register mode, the address space con-
taining the second operand is specified only by
means of access register R2. The contents of access
register R1 are ignored.

The character for which the search occurs is speci-
fied in bit positions 56-63 of general register 0. Bit
positions 32-55 of general register 0 are reserved for
possible future extensions and must contain all
zeros; otherwise, a specification exception is recog-
nized.

The operation proceeds left to right and ends as
soon as the specified character has been found in
the second operand, the address of the next second-
operand byte to be examined equals the address in
general register R1, or a CPU-determined number of
second-operand bytes have been examined, which-
ever occurs first. The CPU-determined number is at
least 256. When the specified character is found,
condition code 1 is set. When the address of the next
second-operand byte to be examined equals the
address in general register R1, condition code 2 is
set. When a CPU-determined number of second-
operand bytes have been examined, condition code
3 is set. When the CPU-determined number of sec-
ond-operand bytes have been examined and the
address of the next second-operand byte is in gen-
eral register R1, it is unpredictable whether condition
code 2 or 3 is set.

When condition code 1 is set, the address of the
specified character found in the second operand is
placed in general register R1, and the contents of
general register R2 remain unchanged. When condi-
tion code 3 is set, the address of the next byte to be
processed in the second operand is placed in gen-
eral register R2, and the contents of general register
R1 remain unchanged. When condition code 2 is set,
the contents of general registers R1 and R2 remain
unchanged. Whenever an address is placed in a gen-
eral register, bits 32-39 of the register, in the 24-bit
addressing mode, or bit 32, in the 31-bit addressing
mode, are set to zeros. Bits 0-31 of the R1 and R2

registers always remain unchanged in the 24-bit or
31-bit mode.

When the address in general register R1 equals the
address in general register R2, condition code 2 is set
immediately, and access exceptions are not recog-
nized. When the address in general register R1 is

less than the address in general register R2, condi-
tion code 2 can be set only if the operand wraps
around from the top of storage to location 0.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

Access exceptions for the second operand are rec-
ognized only for that portion of the operand that is
necessarily examined.

The storage-operand-consistency rules are
described in the section “Storage-Operand Consis-
tency” on page 5-125.

Resulting Condition Code:

0 --
1 Specified character found; general register R1

updated with address of character; general regis-
ter R2 unchanged

2 Specified character not found in entire second
operand; general registers R1 and R2 unchanged

3 CPU-determined number of bytes searched;
general register R1 unchanged; general register
R2 updated with address of next byte

Program Exceptions:

• Access (fetch, operand 2)
• Specification
• Transaction constraint

Programming Notes:

1. Examples of the use of the SEARCH STRING
instruction are given in Appendix A, “Number
Representation and Instruction-Use Examples.”

2. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the search. The program need not determine the
number of bytes that were searched.

3. The R1 or R2 fields may designate general regis-
ter 0, in which case general register 0 is treated
as containing an address and also the specified
character.

However, if the program branches back to the
SEARCH STRING instruction following condi-
tion code 3, specifying R2 as register 0 is imprac-

7-374 The z/Architecture CPU Architecture

S
E

A
R

C
H

 S
T

R
IN

G
 U

N
IC

O
D

E tical. This is because bits 32-55 of the register
will have been altered to a nonzero value, thus
resulting in a specification exception on the sub-
sequent execution. The search character in bit
positions 56-63 of the register also may have
been altered.

4. When it is desired to search a string of unknown
length for its ending character, and assuming
that the specified character in general register 0
need not be preserved, then the R1 field can des-
ignate general register 0 in order to have
SEARCH STRING use only two general registers
instead of three. In this case, the rightmost por-
tion of general register 0 containing the required
zeros and the 8-bit search character is also used
to form the address of the first byte after the sec-
ond operand.

5. If the program branches back to the SEARCH
STRING instruction when condition code 3 is set,
and a subsequent execution results in condition
code 1 or 2, general register R2 will have
changed from its initial value, even though the
definition states that the register is unchanged
when the character is found.

6. If the length of the string (as determined by the
difference between the addresses in general reg-
isters R1 and R2) is 255 characters or less, condi-
tion code 3 will never be set, and branching on
that condition is not necessary. However, if the
length of the string is 256 or more characters,
condition code 3 may be set – even if condition
code 2 also applies.

SEARCH STRING UNICODE

SRSTU R1,R2 [RRE]

The second operand is searched until a specified
two-byte character is found, the end of the second
operand is reached, or a CPU-determined number of
two-byte characters have been searched, whichever
occurs first. The CPU-determined number is at least
256 two-byte characters. The result is indicated in the
condition code.

The location of the first two-byte character of the sec-
ond operand is designated by the contents of general
register R2. When the contents of bit position 63 of

general registers R1 and R2 are identical (that is,
when both addresses are even or both addresses are
odd), the location of the first two-byte character after
the second operand is designated by the contents of
general register R1. When the contents of bit position
63 of general registers R1 and R2 differ (that is, when
one address is even and the other is odd), the loca-
tion of the first two-byte character after the second
operand is one more than the contents of general
register R1.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode. In the
24-bit addressing mode, the contents of bit positions
40-63 of general registers R1 and R2 constitute the
address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the contents
of bit positions 33-63 of the registers constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 constitute the address.

In the access-register mode, the address space con-
taining the second operand is specified only by
means of access register R2. The contents of access
register R1 are ignored.

The two-byte character for which the search occurs is
specified in bit positions 48-63 of general register 0.
Bit positions 32-47 of general register 0 are reserved
for possible future extensions and must contain all
zeros; otherwise, a specification exception is recog-
nized.

Except for the case when the address in general reg-
ister R1 equals the address in general register R2, the
operation proceeds from left to right in steps of two
bytes and ends as soon as the specified two-byte
character has been found in the second operand, the
address of the next second-operand two-byte char-
acter to be examined (excluding the first two-byte
character) is equal to the address of the first two-byte
character after the second operand (as designated
by general register R1), or a CPU-determined num-
ber of second-operand two-byte characters have
been examined, whichever occurs first. The CPU-
determined number is at least 256. When the speci-
fied two-byte character is found, condition code 1 is
set. When the address of the next second-operand
two-byte character to be examined (excluding the
first two-byte character) is equal to the address of the
first two-byte character after the second operand,
condition code 2 is set. When a CPU-determined
number of second-operand two-byte characters have

'B9BE' / / / / / / / / R1 R2

0 16 24 28 31

General Instructions 7-375

S
E

A
R

C
H

 S
T

R
IN

G
 U

N
IC

O
D

Ebeen examined, condition code 3 is set, except that
condition code 2 is set if the conditions for setting it
also apply.

When condition code 1 is set, the address of the
specified two-byte character found in the second
operand is placed in general register R1, and the con-
tents of general register R2 remain unchanged. When
condition code 3 is set, the address of the next two-
byte character to be processed in the second oper-
and is placed in general register R2, and the contents
of general register R1 remain unchanged. When con-
dition code 2 is set, the contents of general registers
R1 and R2 remain unchanged. Whenever an address
is placed in a general register, bits 32-39 of the regis-
ter, in the 24-bit addressing mode, or bit 32, in the
31-bit addressing mode, are set to zeros. Bits 0-31 of
the R1 and R2 registers always remain unchanged in
the 24-bit or 31-bit mode.

When the address in general register R1 equals the
address in general register R2, condition code 2 is set
immediately, and access exceptions are not recog-
nized. When the address in general register R1 is
less than the address in general register R2, condi-
tion code 2 can be set only if the operand wraps
around from the top of storage to location 0.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

Access exceptions for the second operand are rec-
ognized only for that portion of the operand that is
necessarily examined.

The storage-operand-consistency rules are
described in the section “Storage-Operand Consis-
tency” on page 5-125.

Resulting Condition Code:

0 --
1 Specified two-byte character found; general reg-

ister R1 updated with address of character; gen-
eral register R2 unchanged

2 Specified two-byte character not found in entire
second operand; general registers R1 and R2

unchanged
3 CPU-determined number of two-byte characters

searched; general register R1 unchanged; gen-

eral register R2 updated with address of next two-
byte character

Program Exceptions:

• Access (fetch, operand 2)
• Operation (if the extended-translation facility 3 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the search. The program need not determine the
number of two-byte characters that were
searched.

2. The R1 or R2 fields may designate general regis-
ter 0, in which case general register 0 is treated
as containing an address and also the specified
character.

However, if the program branches back to the
SEARCH STRING UNICODE instruction follow-
ing condition code 3, specifying R2 as register 0
is impractical. This is because bits 32-47 of the
register may have been altered to a nonzero
value, thus resulting in a specification exception
on the subsequent execution. The search char-
acter in bit positions 48-63 of the register also
may have been altered.

3. When it is desired to search a string of unknown
length for its ending two-byte character, and
assuming that the specified two-byte character in
general register 0 need not be preserved, then
the R1 field can designate general register 0 in
order to have SEARCH STRING UNICODE use
only two general registers instead of three. In this
case, the rightmost portion of general register 0
containing the required zeros and the 16-bit
search character is also used to form the
address of the first byte after the second oper-
and.

4. If the program branches back to the SEARCH
STRING UNICODE instruction when condition
code 3 is set, and a subsequent execution
results in condition code 1 or 2, general register
R2 will have changed from its initial value, even
though the definition states that the register is
unchanged when the two-byte character is found.

7-376 The z/Architecture CPU Architecture

S
E

L
E

C
T 5. If the length of the string (as determined by the

difference between the addresses in general reg-
isters R1 and R2) is 256 two-byte characters or
less, condition code 3 will never be set, and
branching on that condition is not necessary.
However, if the length of the string is 257 or more
two-byte characters, condition code 3 may be
set.

SELECT

SELR R1,R2,R3,M4 [RRF-a]

SELGR R1,R2,R3,M4 [RRF-a]

SELECT HIGH

SELFHR R1,R2,R3,M4 [RRF-a]

The second operand is placed unchanged at the first-
operand location if the condition code has one of the
values specified by M4; otherwise, the third operand
is placed unchanged at the first operand location.

For SELR, all operands are in bits 32-63 in their
respective general registers; bits 0-31 of general reg-
ister R1 are unchanged. For SELGR, all operands are
in bits 0-63 in their respective general registers. For
SELFHR, all operands are in bits 0-31 in their
respective general registers; bits 32-63 of general
register R1 are unchanged.

The M4 field is used as a four-bit mask. The four con-
dition codes (0, 1, 2, and 3) correspond, left to right,
with the four bits of the mask, as follows:

The current condition code is used to select the cor-
responding mask bit. If the mask bit selected by the
condition code is one, the second operand is loaded.
If the mask bit selected is zero, the third operand is
loaded.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (if the miscellaneous-instruction-
extensions facility 3 is not installed)

Programming Notes:

1. SELECT may be used to provide better perfor-
mance when it is difficult for the CPU to predict
the branch condition and also uses fewer instruc-
tions. For example, the following two instruction
sequences are equivalent.

2. The High-Level Assembler (HLASM) provides
the following extended-mnemonic suffixes for the
SELECT instructions in place of the M4 field.

When the extended mnemonic is coded, the M4

field must be omitted.

'B9F0' R3 M4 R1 R2

0 16 20 24 28 31

'B9E3' R3 M4 R1 R2

0 16 20 24 28 31

'B9C0' R3 M4 R1 R2

0 16 20 24 28 31

Condition
Code

Mask
Position

Value
0 8

1 4
2 2

3 1

SELR 4,5,6,7 BRC 7,REG5
LR 4,6
BRC 15,FIN

REG5 LR 4,5
FIN DS 0H

Suffix Meaning
Effective
M4 Value

E Equal B'1000'

L Low B'0100'
H High B'0010'

NE Not equal B'0111'

NL Not low B'1011'
NH Not high B'1101'

Z Zero B'1000'

M Minus or mixed B'0100'
P Plus B'0010'

O Overflow or ones B'0001'

NZ Not zero B'0111'
NM Not minus or not mixed B'1011'

NP Not plus B'1101'

NO Not overflow or not ones B'1110'

General Instructions 7-377

S
E

T
 A

D
D

R
E

S
S

IN
G

 M
O

D
ESET ACCESS

SAR R1,R2 [RRE]

The contents of bit positions 32-63 of general register
R2 are placed in access register R1.

Condition Code: The code remains unchanged.

Program Exceptions:

• Transaction constraint

SET ADDRESSING MODE

SAM24 [E]

SAM31 [E]

SAM64 [E]

The addressing mode is set by setting the extended-
addressing-mode bit, bit 31 of the current PSW, and
the basic-addressing-mode bit, bit 32 of the current
PSW, as follows:

The instruction address in the PSW is updated under
the control of the new addressing mode, as follows.
The value 2 (the instruction length) is added to the
contents of bit positions 64-127 of the PSW, or the
value 4 is added if the instruction is the target of
EXECUTE, or the value 6 is added if the instruction is

the target of EXECUTE RELATIVE LONG. In any
case, a carry out of bit position 0 is ignored. Then bits
64-103 of the PSW are set to zeros if the new
addressing mode is the 24-bit mode, or bits 64-96
are set to zeros if the new addressing mode is the
31-bit mode.

The instruction is completed only if the new address-
ing mode and the unupdated instruction address in
the PSW are a valid combination. When the new
addressing mode is to be the 24-bit mode, bits
64-103 of the unupdated PSW must be all zeros, or,
when the new addressing mode is to be the 31-bit
mode, bits 64-96 of the unupdated PSW must be all
zeros; otherwise, a specification exception is recog-
nized.

In the ESA/390-compatibility mode, it is unpredict-
able whether SAM64 is supported. If not supported,
attempted execution of SAM64 results in an opera-
tion exception.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (SAM64, in the ESA/390-compatibility
mode)

• Specification (SAM24 and SAM31 only)
• Trace
• Transaction constraint

Programming Note: Checking the unupdated
instruction address prevents completion in two major
cases: the instruction is located at address 224 or
above and the new addressing mode is to be the
24-bit mode, or the instruction is located at address
231 or above and the new addressing mode is to be
the 24-bit or 31-bit mode. In these cases, if the
instruction were completed, the updating of the
instruction address under the control of the new
addressing mode would cause one or more leftmost
bits of the address to be set to zeros, which would
cause the next instruction to be fetched from other
than the next sequential location. This action is
sometimes called a “wild branch.” A wild branch still
can occur if the instruction is located at 224 - 2 or
231 - 2, or at 224 - 4 or 231 - 4 if EXECUTE or EXE-
CUTE RELATIVE LONG is used, or at 224 - 6 or
231 - 6 if EXECUTE RELATIVE LONG is used.

'B24E' / / / / / / / / R1 R2

0 16 24 28 31

'010C'
0 15

'010D'
0 15

'010E'
0 15

Instruction
PSW
Bit 31

PSW
Bit 32

Resulting Addressing
Mode

SAM24 0 0 24-bit

SAM31 0 1 31-bit

SAM64 1 1 64-bit

7-378 The z/Architecture CPU Architecture

S
E

T
 P

R
O

G
R

A
M

 M
A

S
K SET PROGRAM MASK

SPM R1 [RR]

The first operand is used to set the condition code
and the program mask of the current PSW.

Bits 34 and 35 of general register R1 replace the con-
dition code, and bits 36-39 replace the program
mask. Bits 0-33 and 40-63 of general register R1 are
ignored.

Resulting Condition Code:

The code is set as specified by bits 34 and 35 of gen-
eral register R1.

Program Exceptions: None.

Programming Notes:

1. Bits 34-39 of the general register may have been
loaded from the PSW by execution of BRANCH
AND LINK in the 24-bit addressing mode or by
execution of INSERT PROGRAM MASK in any
addressing mode.

2. SET PROGRAM MASK permits setting of the
condition code and the mask bits in either the
problem state or the supervisor state.

3. The program should take into consideration that
the setting of the program mask can have a sig-
nificant effect on subsequent execution of the
program. Not only do the four mask bits control
whether the corresponding interruptions occur,
but the HFP-exponent-underflow and HFP-signif-
icance masks also determine the result which is
obtained.

SHIFT LEFT DOUBLE

SLDA R1,D2(B2) [RS-a]

The 63-bit numeric part of the signed first operand is
shifted left the number of bits specified by the sec-
ond-operand address, and the result is placed at the
first-operand location. The first operand consists of

bits 32-63 of general register R1 followed on the right
by bits 32-63 of general register R1 + 1.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

The first operand is treated as a 64-bit signed binary
integer. The sign bit of the first operand, bit 32 of the
even-numbered register, remains unchanged. Bit
position 32 of the odd-numbered register contains a
numeric bit, which participates in the shift in the
same manner as the other numeric bits. Zeros are
supplied to the vacated bit positions on the right. Bits
0-31 of general registers R1 and R1 + 1 remain
unchanged.

If one or more bits unlike the sign bit are shifted out
of bit position 33 of the even-numbered register, an
overflow occurs, and condition code 3 is set. If the
fixed-point-overflow mask bit is one, a program inter-
ruption for fixed-point overflow occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow
• Specification

Programming Notes:

1. An example of the use of the SHIFT LEFT DOU-
BLE instruction is given in Appendix A, “Number
Representation and Instruction-Use Examples.”

2. The eight shift instructions that are in both
ESA/390 and z/Architecture provide the following
three pairs of alternatives for 32 bits in one gen-
eral register or, for double, in each of two general
registers: left or right, single or double, and
signed or logical. The four additional shift instruc-
tions in z/Architecture provide left or right, signed

'04' R1 / / / /
0 8 12 15

'8F' R1 / / / / B2 D2

0 8 12 16 20 31

General Instructions 7-379

S
H

IF
T

 L
E

F
T

 S
IN

G
L

Eor logical shifts of 64 bits in one general register.
The signed shifts differ from the logical shifts in
that, in the signed shifts, overflow is recognized,
the condition code is set, and the leftmost bit par-
ticipates as a sign.

3. A zero shift amount in the two signed double-shift
operations provides a double-length sign and
magnitude test.

4. The base register participating in the generation
of the second-operand address permits indirect
specification of the shift amount by means of
placement of the shift amount in the base regis-
ter. A zero in the B2 field indicates the absence of
indirect shift specification.

SHIFT LEFT DOUBLE LOGICAL

SLDL R1,D2(B2) [RS-a]

The 64-bit first operand is shifted left the number of
bits specified by the second-operand address, and
the result is placed at the first-operand location. The
first operand consists of bits 32-63 of general register
R1 followed on the right by bits 32-63 of general reg-
ister R1 + 1.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

All 64 bits of the first operand participate in the shift.
Bits shifted out of bit position 32 of the even-num-
bered register are not inspected and are lost. Zeros
are supplied to the vacated bit positions on the right.
Bits 0-31 of general registers R1 and R1 + 1 remain
unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Specification

SHIFT LEFT SINGLE

SLA R1,D2(B2) [RS-a]

SLAK R1,R3,D2(B2) [RSY-a]

SLAG R1,R3,D2(B2) [RSY-a]

For SLA, the 31-bit numeric part of the signed first
operand is shifted left the number of bits specified by
the second-operand address, and the result is placed
at the first-operand location. Bits 0-31 of general reg-
ister R1 remain unchanged.

For SLAK, the 31-bit numeric part of the signed third
operand is shifted left the number of bits specified by
the second-operand address, and the result, with the
sign bit of the third operand appended on its left, is
placed at the first-operand location. Bits 0-31 of gen-
eral register R1 remain unchanged. Except for when
the R1 and R3 fields designate the same register, the
third operand remains unchanged in general register
R3.

For SLAG, the 63-bit numeric part of the signed third
operand is shifted left the number of bits specified by
the second-operand address, and the result, with the
sign bit of the third operand appended on its left, is
placed at the first-operand location. Except for when
the R1 and R3 fields designate the same register, the
third operand remains unchanged in general register
R3.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

For SLA, the first operand is treated as a 32-bit
signed binary integer in bit positions 32-63 of general
register R1. The sign of the first operand remains
unchanged. All 31 numeric bits of the operand partic-
ipate in the left shift.

'8D' R1 / / / / B2 D2

0 8 12 16 20 31

'8B' R1 / / / / B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 'DD'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '0B'

0 8 12 16 20 32 40 47

7-380 The z/Architecture CPU Architecture

S
H

IF
T

 L
E

F
T

 S
IN

G
L

E
 L

O
G

IC
A

L For SLAK, the first and third operands are treated as
32-bit signed binary integers in bit positions 32-63 of
general registers R1 and R3, respectively. The sign of
the first operand is set equal to the sign of the third
operand. All 31 numeric bits of the third operand par-
ticipate in the left shift.

For SLAG, the first and third operands are treated as
64-bit signed binary integers in bit positions 0-63 of
general registers R1 and R3, respectively. The sign of
the first operand is set equal to the sign of the third
operand. All 63 numeric bits of the third operand par-
ticipate in the left shift.

For SLA, SLAG, or SLAK, zeros are supplied to the
vacated bit positions on the right.

If one or more bits unlike the sign bit are shifted out
of bit position 33, for SLA or SLAK, or 1, for SLAG, an
overflow occurs, and condition code 3 is set. If the
fixed-point-overflow mask bit is one, a program inter-
ruption for fixed-point overflow occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow
• Operation (SLAK, if the distinct-operands facility

is not installed)

Programming Notes:

1. An example of the use of the SHIFT LEFT SIN-
GLE instruction is given in Appendix A, “Number
Representation and Instruction-Use Examples.”

2. For SHIFT LEFT SINGLE (SLA and SLAK), for
numbers with a value greater than or equal to
-230 and less than 230, a left shift of one bit posi-
tion is equivalent to multiplying the number by 2.
For SHIFT LEFT SINGLE (SLAG), the compara-
ble values are -262 and 262.

3. For SHIFT LEFT SINGLE (SLA and SLAK), shift
amounts from 31 to 63 cause the entire numeric
part to be shifted out of the register, leaving a
result of the maximum negative number or zero,
depending on whether or not the initial contents

were negative. For SHIFT LEFT SINGLE
(SLAG), a shift amount of 63 causes the same
effect.

SHIFT LEFT SINGLE LOGICAL

SLL R1,D2(B2) [RS-a]

SLLK R1,R3,D2(B2) [RSY-a]

SLLG R1,R3,D2(B2) [RSY-a]

For SLL, the 32-bit first operand is shifted left the
number of bits specified by the second-operand
address, and the result is placed at the first-operand
location. Bits 0-31 of general register R1 remain
unchanged.

For SLLK, the 32-bit third operand is shifted left the
number of bits specified by the second-operand
address, and the result is placed at the first-operand
location. Bits 0-31 of general register R1 remain
unchanged. Except for when the R1 and R3 fields
designate the same register, the third operand
remains unchanged in general register R3.

For SLLG, the 64-bit third operand is shifted left the
number of bits specified by the second-operand
address, and the result is placed at the first-operand
location. Except for when the R1 and R3 fields desig-
nate the same register, the third operand remains
unchanged in general register R3.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

For SLL, the first operand is in bit positions 32-63 of
general register R1. All 32 bits of the operand partici-
pate in the left shift.

For SLLK, the first and third operands are in bit posi-
tions 32-63 of general registers R1 and R3, respec-

'89' R1 / / / / B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 'DF'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '0D'

0 8 12 16 20 32 40 47

General Instructions 7-381

S
H

IF
T

 R
IG

H
T

 D
O

U
B

L
E

 L
O

G
IC

A
Ltively. All 32 bits of the third operand participate in the

left shift.

For SLLG, the first and third operands are in bit posi-
tions 0-63 of general registers R1 and R3, respec-
tively. All 64 bits of the third operand participate in the
left shift.

For SLL, SLLG, or SLLK, zeros are supplied to the
vacated bit positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (SLLK, if the distinct-operands facility
is not installed)

Programming Note: The rightmost six bits of the
second-operand address are treated as a 6-bit
unsigned binary integer specifying the number of bit
positions to be shifted to the left. Thus, the number of
bit positions to be shifted is the value of the second-
operand address, modulo 64.

When the number of bit positions to be shifted is
between 32 and 63, SLL and SLLK can be used to
zero the rightmost 32 bits of the result in general reg-
ister R1. However, because of the modulo 64 behav-
ior, it is not true that any second-operand-address
value greater than 32 produces a result of zero.

Because the number of shifted bit positions is limited
to 63, SLLG cannot be used to zero all 64 bits of the
result.

SHIFT RIGHT DOUBLE

SRDA R1,D2(B2) [RS-a]

The 63-bit numeric part of the signed first operand is
shifted right the number of bits specified by the sec-
ond-operand address, and the result is placed at the
first-operand location. The first operand consists of
bits 32-63 of general register R1 followed on the right
by bits 32-63 of general register R1 + 1.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-

ister; otherwise, a specification exception is recog-
nized.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

The first operand is treated as a 64-bit signed binary
integer. The sign bit of the first operand, bit 32 of the
even-numbered register, remains unchanged. Bit
position 32 of the odd-numbered register contains a
numeric bit, which participates in the shift in the
same manner as the other numeric bits. Bits shifted
out of bit position 63 of the odd-numbered register
are not inspected and are lost. Bits equal to the sign
are supplied to the vacated bit positions on the left.
Bits 0-31 of general registers R1 and R1 + 1 remain
unchanged.

Resulting Condition Code:

0 Result zero
1 Result less than zero
2 Result greater than zero
3 --

Program Exceptions:

• Specification

SHIFT RIGHT DOUBLE LOGICAL

SRDL R1,D2(B2) [RS-a]

The 64-bit first operand is shifted right the number of
bits specified by the second-operand address, and
the result is placed at the first-operand location. The
first operand consists of bits 32-63 of general register
R1 followed on the right by bits 32-63 of general reg-
ister R1 + 1.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of bit

'8E' R1 / / / / B2 D2

0 8 12 16 20 31

'8C' R1 / / / / B2 D2

0 8 12 16 20 31

7-382 The z/Architecture CPU Architecture

S
H

IF
T

 R
IG

H
T

 S
IN

G
L

E positions to be shifted. The remainder of the address
is ignored.

All 64 bits of the first operand participate in the shift.
Bits shifted out of bit position 63 of the odd-num-
bered register are not inspected and are lost. Zeros
are supplied to the vacated bit positions on the left.
Bits 0-31 of general registers R1 and R1 + 1 remain
unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Specification

SHIFT RIGHT SINGLE

SRA R1,D2(B2) [RS-a]

SRAK R1,R3,D2(B2) [RSY-a]

SRAG R1,R3,D2(B2) [RSY-a]

For SRA, The 31-bit numeric part of the signed first
operand is shifted right the number of bits specified
by the second-operand address, and the result is
placed at the first-operand location. Bits 0-32 of gen-
eral register R1 remain unchanged.

For SRAK, the 31-bit numeric part of the signed third
operand is shifted right the number of bits specified
by the second-operand address, and the result, with
the sign bit of the third operand appended on its left,
is placed at the first-operand location. Bits 0-31 of
general register R1 remain unchanged. Except for
when the R1 and R3 fields designate the same regis-
ter, the third operand remains unchanged in general
register R3.

For SHIFT RIGHT SINGLE (SRAG), the 63-bit
numeric part of the signed third operand is shifted
right the number of bits specified by the second-oper-
and address, and the result, with the sign bit of the
third operand appended on its left, is placed at the

first-operand location. Except for when the R1 and R3

fields designate the same register, the third operand
remains unchanged in general register R3.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

For SRA, The first operand is treated as a 32-bit
signed binary integer in bit positions 32-63 of general
register R1. The sign of the first operand remains
unchanged. All 31 numeric bits of the operand partic-
ipate in the right shift.

For SRAK, the first and third operands are treated as
32-bit signed binary integers in bit positions 32-63 of
general registers R1 and R3, respectively. The sign of
the first operand is set equal to the sign of the third
operand. All 31 numeric bits of the third operand par-
ticipate in the right shift.

For SRAG, the first and third operands are treated as
64-bit signed binary integers in bit positions 0-63 of
general registers R1 and R3, respectively. The sign of
the first operand is set equal to the sign of the third
operand. All 63 numeric bits of the third operand par-
ticipate in the right shift.

For SRA, SRAG, or SRAK, bits shifted out of bit posi-
tion 63 are not inspected and are lost. Bits equal to
the sign are supplied to the vacated bit positions on
the left.

Resulting Condition Code:

0 Result zero
1 Result less than zero
2 Result greater than zero
3 --

Program Exceptions:

• Operation (SRAK, if the distinct-operands facility
is not installed)

Programming Notes:

1. A right shift of one bit position is equivalent to
division by 2 with rounding downward. When an
even number is shifted right one position, the
result is equivalent to dividing the number by 2.
When an odd number is shifted right one posi-
tion, the result is equivalent to dividing the next

'8A' R1 / / / / B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 'DC'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '0A'

0 8 12 16 20 32 40 47

General Instructions 7-383

S
T

O
R

Elower number by 2. For example, +5 shifted right
by one bit position yields +2, whereas -5 yields
-3.

2. For SRA and SRAK, shift amounts from 31 to 63
cause the entire numeric part to be shifted out of
the register, leaving a result of -1 or zero,
depending on whether or not the initial contents
were negative. For SHIFT RIGHT SINGLE
(SRAG), a shift amount of 63 causes the same
effect.

SHIFT RIGHT SINGLE LOGICAL

SRL R1,D2(B2) [RS-a]

SRLK R1,R3,D2(B2) [RSY-a]

SRLG R1,R3,D2(B2) [RSY-a]

For SRL, the 32-bit first operand is shifted right the
number of bits specified by the second-operand
address, and the result is placed at the first-operand
location. Bits 0-31 of general register R1 remain
unchanged.

For SRLK, the 32-bit third operand is shifted right the
number of bits specified by the second-operand
address, and the result is placed at the first-operand
location. Bits 0-31 of general register R1 remain
unchanged. Except for when the R1 and R3 fields
designate the same register, the third operand
remains unchanged in general register R3.

For SRLG, the 64-bit third operand is shifted right the
number of bits specified by the second-operand
address, and the result is placed at the first-operand
location. Except for when the R1 and R3 fields desig-
nate the same register, the third operand remains
unchanged in general register R3.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of bit

positions to be shifted. The remainder of the address
is ignored.

For SRL, the first operand is in bit positions 32-63 of
general register R1. All 32 bits of the operand partici-
pate in the right shift.

For SRLK, the first and third operands are in bit posi-
tions 32-63 of general registers R1 and R3, respec-
tively. All 32 bits of the third operand participate in the
right shift.

For SRLG, the first and third operands are in bit posi-
tions 0-63 of general registers R1 and R3, respec-
tively. All 64 bits of the third operand participate in the
right shift.

For SRL, SRLG, or SRLK, bits shifted out of bit posi-
tion 63 are not inspected and are lost. Zeros are sup-
plied to the vacated bit positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (SRLK, if the distinct-operands facility
is not installed)

Programming Note: The rightmost six bits of the
second-operand address are treated as a 6-bit
unsigned binary integer specifying the number of bit
positions to be shifted to the right. Thus, the number
of bit positions to be shifted is the value of the sec-
ond-operand address, modulo 64.

When the number of bit positions to be shifted is
between 32 and 63, SRL and SRLK can be used to
zero the rightmost 32 bits of the result in general reg-
ister R1. However, because of the modulo 64 behav-
ior, it is not true that any second-operand-address
value greater than 32 produces a result of zero.

Because the number of shifted bit positions is limited
to 63, SRLG cannot be used to zero all 64 bits of the
result.

STORE

ST R1,D2(X2,B2) [RX-a]

'88' R1 / / / / B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 'DE'
0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '0C'
0 8 12 16 20 32 40 47

'50' R1 X2 B2 D2

0 8 12 16 20 31

7-384 The z/Architecture CPU Architecture

S
T

O
R

E
 R

E
L

A
T

IV
E

 L
O

N
G STY R1,D2(X2,B2) [RXY-a]

STG R1,D2(X2,B2) [RXY-a]

STORE RELATIVE LONG

STRL R1,RI2 [RIL-b]

STGRL R1,RI2 [RIL-b]

The first operand is placed unchanged at the second-
operand location.

For STORE (ST, STY) and STORE RELATIVE LONG
(STRL), the operands are 32 bits, and, for STORE
(STG) and STORE RELATIVE LONG (STGRL), the
operands are 64 bits.

The displacement for ST is treated as a 12-bit
unsigned binary integer. The displacement for STY
and STG is treated as a 20-bit signed binary integer.

For STORE RELATIVE LONG, the contents of the
RI2 field are a signed binary integer specifying the
number of halfwords that is added to the address of
the instruction to generate the address of the second
operand in storage. When DAT is on, the second
operand is accessed using the same addressing-
space mode as that used to access the instruction.
When DAT is off, the second operand is accessed
using a real address.

For STORE RELATIVE LONG (STRL), the second
operand must be aligned on a word boundary, and for
STORE RELATIVE LONG (STGRL), the second
operand must be aligned on a doubleword boundary;
otherwise, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (STY, if the long-displacement facility

is not installed; STRL and STGRL, if the general-
instructions-extension facility is not installed)

• Specification (STRL, STGRL only)

Programming Notes:

1. For STORE RELATIVE LONG, the second oper-
and must be aligned on an integral boundary cor-
responding to the operand’s size.

2. When STORE RELATIVE LONG is the target of
an execute-type instruction, the second-operand
address is relative to the target address.

3. Significant delay may be incurred if the program
stores into the same cache line as that contain-
ing the storing instruction or into the cache line
from which a subsequent instruction may be
fetched. The EXTRACT CPU ATTRIBUTE
instruction may be used to determine the cache-
line size.

STORE ACCESS MULTIPLE

STAM R1,R3,D2(B2) [RS-a]

STAMY R1,R3,D2(B2) [RSY-a]

The contents of the set of access registers starting
with access register R1 and ending with access regis-
ter R3 are stored at the locations designated by the
second-operand address.

The storage area where the contents of the access
registers are placed starts at the location designated
by the second-operand address and continues
through as many storage words as the number of
access registers specified. The contents of the
access registers are stored in ascending order of
their register numbers, starting with access register
R1 and continuing up to and including access register
R3, with access register 0 following access register
15. The contents of the access registers remain
unchanged.

'E3' R1 X2 B2 DL2 DH2 '50'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '24'

0 8 12 16 20 32 40 47

'C4' R1 'F' RI2
0 8 12 16 47

'C4' R1 'B' RI2
0 8 12 16 47

'9B' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '9B'

0 8 12 16 20 32 40 47

General Instructions 7-385

S
T

O
R

E
 C

H
A

R
A

C
T

E
R

S
 U

N
D

E
R

 M
A

S
KThe displacement for STAM is treated as a 12-bit

unsigned binary integer. The displacement for
STAMY is treated as a 20-bit signed binary integer.

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (STAMY, if the long-displacement facil-

ity is not installed)
• Specification

STORE CHARACTER

STC R1,D2(X2,B2) [RX-a]

STCY R1,D2(X2,B2) [RXY-a]

Bits 56-63 of general register R1 are placed
unchanged at the second-operand location. The sec-
ond operand is one byte in length.

The displacement for STC is treated as a 12-bit
unsigned binary integer. The displacement for STCY
is treated as a 20-bit signed binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (STCY, if the long-displacement facility

is not installed)

STORE CHARACTER HIGH

STCH R1,D2(X2,B2) [RXY-a]

Bits 24-31 of general register R1 are placed
unchanged at the second-operand location. The sec-
ond operand is one byte in length.

The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (if the high-word facility is not installed)

STORE CHARACTERS UNDER
MASK

STCM R1,M3,D2(B2) [RS-b]

STCMY R1,M3,D2(B2) [RSY-b]

STCMH R1,M3,D2(B2) [RSY-b]

Bytes selected from general register R1 under control
of a mask are placed at contiguous byte locations
beginning at the second-operand address.

The contents of the M3 field are used as a mask.
These four bits, left to right, correspond one for one
with four bytes, left to right, of general register R1. For
STORE CHARACTERS UNDER MASK (STCM,
STCMY), the four bytes to which the mask bits corre-
spond are in bit positions 32-63 of general register
R1. For STORE CHARACTERS UNDER MASK
(STCMH), the four bytes are in the high-order half, bit
positions 0-31, of the register. The bytes correspond-
ing to ones in the mask are placed in the same order
at successive and contiguous storage locations
beginning at the second-operand address. When the
mask is not zero, the length of the second operand is
equal to the number of ones in the mask. The con-
tents of the general register remain unchanged.

'42' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '72'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 'C3'

0 8 12 16 20 32 40 47

'BE' R1 M3 B2 D2

0 8 12 16 20 31

'EB' R1 M3 B2 DL2 DH2 '2D'
0 8 12 16 20 32 40 47

'EB' R1 M3 B2 DL2 DH2 '2C'
0 8 12 16 20 32 40 47

7-386 The z/Architecture CPU Architecture

S
T

O
R

E
 C

L
O

C
K When the mask is not zero, exceptions associated

with storage-operand accesses are recognized only
for the number of bytes specified by the mask.

When the mask is zero, the single byte designated by
the second-operand address remains unchanged.
However, on some models, an access exception may
be recognized for the location. If accessible, (a) a
PER zero-address-detection event may be recog-
nized for the location, and (b) the contents may be
fetched and subsequently stored back unchanged at
the same storage location; this update appears to be
an interlocked-update reference as observed by
other CPUs.

The displacement for STCM is treated as a 12-bit
unsigned binary integer. The displacement for
STCMY and STCMH is treated as a 20-bit signed
binary integer.

When STORE CHARACTERS UNDER MASK
(STCMH) is attempted in a nonconstrained transac-
tion, the M3 field is 0, and the code in the R1 field is 6
or 7, it is model dependent whether the instruction is
restricted; if the instruction is not restricted, it is
unpredictable whether the transaction is aborted due
to abort code 16. When STORE CHARACTER
UNDER MASK (STCMH) is attempted in a con-
strained transaction and the M3 field is 0, a transac-
tion-constraint program interruption is recognized,
and the transaction is aborted with abort code 4.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (STCMY, if the long-displacement

facility is not installed)
• Transaction constraint (STCMH)

Programming Notes:

1. An example of the use of the STORE CHARAC-
TERS UNDER MASK instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. STORE CHARACTERS UNDER MASK (STCM,
STCMY), with a mask of 0111 binary may be
used to store a three-byte address, for example,
in modifying the address in a format-0 CCW.

3. STORE CHARACTERS UNDER MASK (STCM,
STCMY) with a mask of 1111, 0011, or 0001
binary performs the same function as STORE
(ST), STORE HALFWORD, or STORE CHARAC-
TER, respectively.

4. Using STORE CHARACTERS UNDER MASK
with a zero mask may cause any of the following
to occur for the byte designated by the second-
operand address: a PER storage-alteration event
may be recognized; access exceptions may be
recognized; and, provided no access exceptions
exist, the change bit may be set to one. Because
the contents of storage remain unchanged, the
change bit may or may not be one when a PER
storage-alteration event is recognized.

5. On certain models, STORE CHARACTERS
UNDER MASK with mask field that specifies dis-
contiguous bytes may perform slower than when
the mask specifies contiguous bytes.

STORE CLOCK

STCK D2(B2) [S]

STORE CLOCK FAST

STCKF D2(B2) [S]

The current value of bits 0-63 of the TOD clock is
stored in the eight-byte field designated by the sec-
ond-operand address, provided the clock is in the
set, stopped, or not-set state.

When the clock is stopped, zeros are stored in posi-
tions to the right of the rightmost bit position that is
incremented when the clock is running. For STORE
CLOCK, when the value of a running clock is stored,
nonzero values may be stored in positions to the right
of the rightmost incremented bit; this is to ensure that
a unique value is stored. For STORE CLOCK FAST,
when the value of a running clock is stored, bits to
the right of the rightmost bit that is incremented are
stored as zeros.

'B205' B2 D2

0 16 20 31

'B27C' B2 D2

0 16 20 31

General Instructions 7-387

S
T

O
R

E
 C

L
O

C
K

 E
X

T
E

N
D

E
DZeros are stored at the operand location when the

clock is in the error state or the not-operational state.

The quality of the clock value stored by the instruc-
tion is indicated by the resultant condition-code set-
ting.

For STORE CLOCK, a serialization function is per-
formed before the value of the clock is fetched and
again after the value is placed in storage.

Resulting Condition Code:

0 Clock in set state
1 Clock in not-set state
2 Clock in error state
3 Clock in stopped state or not-operational state

Program Exceptions:

• Access (store, operand 2)
• Operation (STCKF, if the store-clock-fast facility

is not installed)
• Transaction constraint

Programming Notes:

1. Bit position 31 of the clock is incremented every
1.048576 seconds; hence, for timing applications
involving human responses, the leftmost clock
word may provide sufficient resolution.

2. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in elapsed-
time measurements and as a valid time-of-day
and calendar indication. Condition code 1 indi-
cates that the clock value is the elapsed time
since the power for the clock was turned on. In
this case, the value may be used in elapsed-time
measurements but is not a valid time-of-day indi-
cation. Condition codes 2 and 3 mean that the
value provided by STORE CLOCK cannot be
used for time measurement or indication.

3. Condition code 3 indicates that the clock is in
either the stopped state or the not-operational
state. These two states can normally be distin-
guished because an all-zero value is stored
when the clock is in the not-operational state.

4. If a problem program written for z/Architecture is
to be executed also on a system in the Sys-
tem/370 mode, then the program should take into
account that, in the System/370 mode, the value

stored when the condition code is 2 is not neces-
sarily zero.

5. Two executions of STORE CLOCK FAST, or an
execution of STORE CLOCK FAST and STORE
CLOCK, either on the same or different CPUs,
do not necessarily return different values of the
clock if the clock is running. Similarly, an execu-
tion of STORE CLOCK FAST and STORE
CLOCK EXTENDED, either on the same or dif-
ferent CPUs, do not necessarily return different
values of TOD clock bits 0-63 if the clock is run-
ning.

Two executions of STORE CLOCK FAST, an exe-
cution of STORE CLOCK FAST and STORE
CLOCK, or an execution of STORE CLOCK
FAST and STORE CLOCK EXTENDED on differ-
ent CPUs, may produce results that make it
appear that the TOD clock is running backwards
(see Figure 4-13 on page 4-51 for details).

6. When the TOD-clock-steering facility is installed,
and assuming a valid operating system, then, for
the problem program, the TOD clock is always in
the set state and there is no need to test the con-
dition code after issuing STORE CLOCK or
STORE CLOCK FAST.

7. Using the standard epoch beginning January 1,
1900, the TOD clock provided by STORE
CLOCK and STORE CLOCK FAST will wrap
around to zero on September 17, 2042 at
23:53:57.370496 TAI. When the multiple-epoch
facility is installed, the STORE CLOCK
EXTENDED instruction provides an extended
result that does not wrap around to zero at the
end of an epoch.

STORE CLOCK EXTENDED

STCKE D2(B2) [S]

Provided that the clock is in the set, stopped, or not-
set state, the following are stored into the 16-byte
second operand:

• When the multiple-epoch facility (MEF) is not
installed in the configuration, it is unpredictable
whether the epoch index or zeros are stored in
byte position 0. When the multiple epoch facility

'B278' B2 D2

0 16 20 31

7-388 The z/Architecture CPU Architecture

S
T

O
R

E
 C

L
O

C
K

 E
X

T
E

N
D

E
D is installed in the configuration, the epoch index

is stored in byte position 0.

• The current value of the TOD clock is stored in
byte positions 1-13.

• The TOD programmable field, bits 16-31 of the
TOD programmable register, is stored in byte
positions 14 and 15.

The operand just described has the following format:

When the clock is stopped, zeros are stored in the
clock value in positions to the right of the rightmost
bit position that is incremented when the clock is run-
ning. The programmable field still is stored.

When the value of a running clock is stored, the value
in bit positions 64-103 of the clock (bit positions
72-111 of the storage operand) is always nonzero;
this ensures that values stored by STORE CLOCK
EXTENDED are unique when compared with values
stored by STORE CLOCK and extended with zeros.

Zeros are stored at the operand location when the
clock is in the error state or the not-operational state.

The quality of the clock value stored by the instruc-
tion is indicated by the resultant condition-code set-
ting.

A serialization function is performed before the value
of the clock is fetched and again after the value is
placed in storage.

Resulting Condition Code:

0 Clock in set state
1 Clock in not-set state
2 Clock in error state
3 Clock in stopped state or not-operational state

Program Exceptions:

• Access (store, operand 2)
• Transaction constraint

1. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in elapsed-

time measurements and as a valid time-of-day
and calendar indication. Condition code 1 indi-
cates that the clock value is the elapsed time
since the power for the clock was turned on. In
this case, the value may be used in elapsed-time
measurements but is not a valid time-of-day indi-
cation. Condition codes 2 and 3 mean that the
value provided by STORE CLOCK EXTENDED
cannot be used for time measurement or indica-
tion.

2. When the TOD-clock-steering facility is installed,
and assuming a valid operating system, then, for
the problem program, the TOD clock is always in
the set state and there is no need to test the con-
dition code after issuing STORE CLOCK
EXTENDED.

3. Programming notes 7-9 beginning on page 4-53
show hex values related to the value of the TOD
clock as it is stored by the STORE CLOCK
instruction. Notes 4-6, below, are repetitions of
those notes except with the text and hex values
adjusted so they apply to bits 0-71 of the value
stored by STORE CLOCK EXTENDED.

4. The following chart shows the time interval
between instants at which various bits of the
TOD-clock value stored by STORE CLOCK
EXTENDED are stepped. This time value may
also be considered as the weighted time value
that the bit, when one, represents. The bit num-
bers are those of the STORE CLOCK
EXTENDED operand.

Epoch
Index

TOD Clock
Programmable

Field

0 8 112 127

STCKE Bit
Stepping Interval

Days Hours Min. Seconds
59 0.000 001

55 0.000 016

51 0.000 256

47 0.004 096

43 0.065 536
39 1.048 576

35 16.777 216
31 4 28.435 456

27 1 11 34.967 296

23 19 5 19.476 736
19 12 17 25 11.627 776

15 203 14 43 6.044 416

11 3257 19 29 36.710 656

General Instructions 7-389

S
T

O
R

E
 F

A
C

IL
IT

Y
 L

IS
T

 E
X

T
E

N
D

E
D5. The following chart shows the setting of bits 0-63

of the STORE CLOCK EXTENDED operand for
00:00:00 (0 am), UTC time, for several dates:
January 1, 1900, January 1, 1972, and for that
instant in time just after each of the 27 leap sec-
onds that will have occurred through January,
2017. Each of these leap seconds is inserted in
the UTC time scale beginning at 23:59:60 UTC
of the day previous to the one listed and ending
at 00:00:00 UTC of the day listed.

6. The stepping value of TOD-clock bit position 63,
if implemented, is 2-12 microseconds, or approxi-
mately 244 picoseconds. This value is called a
clock unit.

The following chart shows various time intervals
in clock units expressed in hexadecimal notation.
The chart shows the values stored in bit posi-
tions 0-71 of the STORE CLOCK EXTENDED

operand. Bit 71 of the operand represents a
clock unit.

STORE FACILITY LIST EXTENDED

STFLE D2(B2) [S]

A list of bits providing information about facilities is
stored beginning at the doubleword specified by the
second operand address.

For the leftmost doublewords in which facility bits are
assigned, the reserved bits are stored as zeros. Dou-
blewords to the right of the doubleword in which the
highest-numbered facility bit is assigned for a model
may or may not be stored. Access exceptions and
PER events are not recognized for doublewords that
are not stored.

The size of the second operand, in doublewords, is
one more than the value specified in bits 56-63 of
general register 0. The remaining bits of general reg-
ister 0 are unassigned and should contain zeros; oth-
erwise, the program may not operate compatibly in
the future.

When the size of the second operand is large enough
to contain all of the facility bits assigned for a model,
then the complete facility list is stored in the second
operand location, bits 56-63 of general register 0 are
updated to contain one less than the number of dou-

Year Month Day
Leap
Sec.

STCKE Value (Hex)
Bits 0-63

1900 1 1 0000 0000 0000 0000
1972 1 1 0081 26D6 0E46 0000
1972 7 1 1 0082 0BA9 811E 2400
1973 1 1 2 0082 F300 AEE2 4800
1974 1 1 3 0084 BDE9 7114 6C00
1975 1 1 4 0086 88D2 3346 9000
1976 1 1 5 0088 53BA F578 B400
1977 1 1 6 008A 1FE5 9520 D800
1978 1 1 7 008B EACE 5752 FC00
1979 1 1 8 008D B5B7 1985 2000
1980 1 1 9 008F 809F DBB7 4400
1981 7 1 10 0092 305C 0FCD 6800
1982 7 1 11 0093 FB44 D1FF 8C00
1983 7 1 12 0095 C62D 9431 B000
1985 7 1 13 0099 5D40 F517 D400
1988 1 1 14 009D DA69 A557 F800
1990 1 1 15 00A1 717D 063E 1C00
1991 1 1 16 00A3 3C65 C870 4000
1992 7 1 17 00A5 EC21 FC86 6400
1993 7 1 18 00A7 B70A BEB8 8800
1994 7 1 19 00A9 81F3 80EA AC00
1996 1 1 20 00AC 3433 6FEC D000
1997 7 1 21 00AE E3EF A402 F400
1999 1 1 22 00B1 962F 9305 1800
2006 1 1 23 00BE 2510 9797 3C00
2009 1 1 24 00C3 870C B9BB 6000
2012 7 1 25 00C9 CC9A 704D 8400
2015 7 1 26 00CF 2D54 B4FB A800
2017 1 1 27 00D1 E0D6 8173 CC00

Interval
Clock Units (Hex)

Bits 0-71
1 microsecond 0010 00
1 millisecond 3E80 00
1 second 00F4 2400 00
1 minute 3938 7000 00
1 hour 000D 693A 4000 00
1 day 0141 DD76 0000 00
365 days 0001 CAE8 C13E 0000 00
366 days 0001 CC2A 9EB4 0000 00
1,461 days* 0007 2CE4 E26E 0000 00
* Number of days in four years, including a leap

year. Note that the year 1900 was not a leap year.
Thus, the four-year span starting in 1900 has only
1,460 days.

'B2B0' B2 D2

0 16 20 31

7-390 The z/Architecture CPU Architecture

S
T

O
R

E
 G

U
A

R
D

E
D

 S
T

O
R

A
G

E
 C

O
N

T
R

O
L

S blewords needed to contain all of the facility bits
assigned for the model, and condition code 0 is set.

When the size of the second operand is not large
enough to contain all of the facility bits assigned for a
model, then only the number of doublewords speci-
fied by the second-operand size are stored, bits 56-
63 of general register 0 are updated to contain one
less than the number of doublewords needed to con-
tain all of the facility bits assigned for the model, and
condition code 3 is set.

Figure 4-36, “Assigned Facility Bits” on page 4-99
shows the meanings of the assigned facility bits.

Special Conditions

The second operand must be designated on a dou-
bleword boundary; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Complete facility list stored
1 --
2 --
3 Incomplete facility list stored

Program Exceptions:

• Access (store, second operand)
• Operation (if the store-facility-list-extended facil-

ity is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. The performance of STORE FACILITY LIST
EXTENDED may be significantly slower than that
of simply testing a byte in storage. Programs that
need to frequently test for the presence of a facil-
ity — for example, dual-path code in which the
facility is used in one path but not another —
should execute the STORE FACILITY LIST
EXTENDED instruction once during initialization.
Subsequently, the program may test for the pres-
ence of the facility by examining the stored result,
using an instruction such as TEST UNDER
MASK.

2. When condition code 0 is set, bits 56-63 of gen-
eral register 0 are updated to contain a value that

is one less than the number of doublewords
stored. If the program chooses to ignore the
results in general register 0, then it should
ensure that the entire second operand in storage
is set to zero prior to executing STORE FACILITY
LIST EXTENDED.

STORE GUARDED STORAGE
CONTROLS

STGSC R1,D2(X2,B2) [RXY-a]

The contents of the three guarded-storage registers
are stored at the second-operand location. The sec-
ond operand has the format of a guarded-storage
control block (GSCB), as shown in Figure 4-19 on
page 4-67.

Access exceptions are recognized for all 32 bytes of
the GSCB.

The R1 field of the instruction is reserved and should
contain zero; otherwise, the program may not oper-
ate compatibly in the future.

Special Conditions

A special-operation exception is recognized and the
instruction is suppressed if the guarded-storage-facil-
ity-enablement control, bit 59 of control register 2, is
zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, second operand)
• Operation (if the guarded-storage facility is not

installed)
• Special operation
• Transaction constraint

STORE HALFWORD

STH R1,D2(X2,B2) [RX-a]

'E3” R1 X2 B2 DL2 DH2 '49'
0 8 12 16 20 32 40 47

'40' R1 X2 B2 D2

0 8 12 16 20 31

General Instructions 7-391

S
T

O
R

E
 H

IG
HSTHY R1,D2(X2,B2) [RXY-a]

STORE HALFWORD RELATIVE
LONG

STHRL R1,RI2 [RIL-b]

Bits 48-63 of general register R1 are placed
unchanged at the second-operand location. The sec-
ond operand is two bytes in length.

The displacement for STH is treated as a 12-bit
unsigned binary integer. The displacement for STHY
is treated as a 20-bit signed binary integer.

For STORE HALFWORD RELATIVE LONG, the con-
tents of the RI2 field are a signed binary integer spec-
ifying the number of halfwords that is added to the
address of the instruction to generate the address of
the second operand in storage. When DAT is on, the
second operand is accessed using the same
addressing-space mode as that used to access the
instruction. When DAT is off, the second operand is
accessed using a real address.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 2)

Operation (STHY if the long-displacement facility is
not installed; STHRL, if the general-instructions-
extension facility is not installed.)

Programming Notes:

1. For STORE HALFWORD RELATIVE LONG, the
second operand is necessarily aligned on an
integral boundary corresponding to the operand’s
size.

2. When STORE HALFWORD RELATIVE LONG is
the target of an execute-type instruction, the sec-

ond-operand address is relative to the target
address.

3. Significant delay may be incurred if the program
stores into the same cache line as that contain-
ing the storing instruction. The EXTRACT CPU
ATTRIBUTE instruction may be used to deter-
mine the cache-line size.

STORE HALFWORD HIGH

STHH R1,D2(X2,B2) [RXY-a]

Bits 16-31 of general register R1 are placed
unchanged at the second-operand location. The sec-
ond operand is two bytes in length.

The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (if the high-word facility is not installed)

STORE HIGH

STFH R1,D2(X2,B2) [RXY-a]

The first operand is placed unchanged at the second-
operand location. The first operand is in bits 0-31 of
general register R1, and the second operand is 32
bits in storage.

The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (if the high-word facility is not installed)

'E3' R1 X2 B2 DL2 DH2 '70'

0 8 12 16 20 32 40 47

'C4' R1 '7' RI2
0 8 12 16 47

'E3' R1 X2 B2 DL2 DH2 'C7'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 'CB'

0 8 12 16 20 32 40 47

7-392 The z/Architecture CPU Architecture

S
T

O
R

E
 M

U
L

T
IP

L
E STORE MULTIPLE

STM R1,R3,D2(B2) [RS-a]

STMY R1,R3,D2(B2) [RSY-a]

STMG R1,R3,D2(B2) [RSY-a]

The contents of bit positions of the set of general reg-
isters starting with general register R1 and ending
with general register R3 are placed in the storage
area beginning at the location designated by the sec-
ond-operand address and continuing through as
many locations as needed.

For STORE MULTIPLE (STM, STMY), the contents
of bit positions 32-63 of the general registers are
stored in successive four-byte fields beginning at the
second-operand address. For STORE MULTIPLE
(STMG), the contents of bit positions 0-63 of the gen-
eral registers are stored in successive eight-byte
fields beginning at the second-operand address.

The general registers are stored in the ascending
order of their register numbers, starting with general
register R1 and continuing up to and including gen-
eral register R3, with general register 0 following gen-
eral register 15.

The displacement for STM is treated as a 12-bit
unsigned binary integer. The displacement for STMY
and STMG is treated as a 20-bit signed binary inte-
ger.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (STMY, if the long-displacement facil-

ity is not installed)

Programming Note: An example of the use of the
STORE MULTIPLE instruction is given in

Appendix A, “Number Representation and Instruc-
tion-Use Examples.”

STORE MULTIPLE HIGH

STMH R1,R3,D2(B2) [RSY-a]

The contents of the high-order halves, bit positions
0-31, of the set of general registers starting with gen-
eral register R1 and ending with general register R3

are placed in the storage area beginning at the loca-
tion designated by the second-operand address and
continuing through as many locations as needed,
that is, the contents of bit positions 0-31 are stored in
successive four-byte fields beginning at the second-
operand address. Bits 32-63 of the registers are
ignored.

The general registers are stored in the ascending
order of their register numbers, starting with general
register R1 and continuing up to and including gen-
eral register R3, with general register 0 following gen-
eral register 15.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)

Programming Note: All combinations of register
numbers specified by R1 and R3 are valid. When the
register numbers are equal, only four bytes are trans-
mitted. When the number specified by R3 is less than
the number specified by R1, the register numbers
wrap around from 15 to 0.

STORE ON CONDITION

STOC R1,D2(B2),M3 [RSY-b]

STOCG R1,D2(B2),M3 [RSY-b]

'90' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '90'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '24'

0 8 12 16 20 32 40 47

'EB' R1 R3 B2 DL2 DH2 '26'

0 8 12 16 20 32 40 47

'EB' R1 M3 B2 DL2 DH2 'F3'

0 8 12 16 20 32 40 47

'EB' R1 M3 B2 DL2 DH2 'E3'

0 8 12 16 20 32 40 47

General Instructions 7-393

S
T

O
R

E
 P

A
IR

 T
O

 Q
U

A
D

W
O

R
DSTORE HIGH ON CONDITION

STOCFH R1,D2(B2),M3 [RSY-b]

The first operand is placed unchanged at the second-
operand location if the condition code has one of the
values specified by M3; otherwise, the second oper-
and remains unchanged.

For STOC and STOCFH, the first and second oper-
ands are 32 bits, and for STOCG, the first and sec-
ond operands are 64 bits. For STOC, the first
operand is in bits 32-63 of general register R1, and
bits 0-31 of the register are ignored. For STOCFH,
the first operand is in bits 0-31 of general register R1,
and bits 32-63 of the register are ignored.

The M3 field is used as a four-bit mask. The four con-
dition codes (0, 1, 2, and 3) correspond, left to right,
with the four bits of the mask, as follows:

The current condition code is used to select the cor-
responding mask bit. If the mask bit selected by the
condition code is one, the store is performed. If the
mask bit selected is zero, the store is not performed.

The displacement is treated as a 20-bit signed binary
integer.

When the condition specified by the M3 field is not
met (that is, store operation is not performed), it is
model dependent whether any or all of the following
occur for the second operand: (a) an access excep-
tion is recognized, (b) the change bit is set, or (c) a
PER storage-alteration or zero-address-detection
event is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation (if the load/store-on-condition facility 1

is not installed; STOCFH, if the load/store-on-
condition facility 2 is not installed)

Programming Notes:

1. When the M3 field contain all zeros and no
exception condition exists, the instruction acts as
a NOP. When the M3 field contains all ones and
no exception condition exists, the store operation
is always performed. However, these are not the
preferred means of implementing a NOP or
unconditional store, respectively.

2. When the condition specified by the M3 field is
not met, it is model dependent whether the sec-
ond operand is brought into the cache.

3. STORE ON CONDITION provides a function
similar to that of a separate BRANCH ON CON-
DITION instruction followed by a STORE instruc-
tion, except that STORE ON CONDITION does
not provide an index register. For example,
assuming the storage location is accessible, the
following two instruction sequences are equiva-
lent.

On models that implement predictive branching,
the combination of the BRANCH ON CONDI-
TION and STORE instructions may perform
somewhat better than the STORE ON CONDI-
TION instruction when the CPU is able to suc-
cessfully predict the branch condition. However,
on models where the CPU is not able to success-
fully predict the branch condition, such as when
the condition is more random, the STORE ON
CONDITION instruction may provide significant
performance improvement.

4. See programming note 4 on page 7-284 for
details on extended mnemonics for the instruc-
tions of the load/store-on-condition facilities.

STORE PAIR TO QUADWORD

STPQ R1,D2(X2,B2) [RXY-a]

The quadword first operand is stored at the second-
operand location. The store at the second-operand
location appears to be quadword concurrent as
observed by other CPUs. The left doubleword of the

'EB' R1 M3 B2 DL2 DH2 'E1'
0 8 12 16 20 32 40 47

Condition Code 0 1 2 3

Instruction Bit Number of Mask 12 13 14 15

Mask Position Value 8 4 2 1

STOCG 15,256(7),8 BC 7,SKIP
STG 15,256(0,7)

SKIP DS 0H

'E3' R1 X2 B2 DL2 DH2 '8E'

0 8 12 16 20 32 40 47

7-394 The z/Architecture CPU Architecture

S
T

O
R

E
 R

E
V

E
R

S
E

D first operand is in general register R1, and the right
doubleword is in general register R1 + 1.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister. The second operand must be designated on a
quadword boundary. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Specification
• Transaction constraint

Programming Notes:

1. The STORE MULTIPLE (STM or STMG) instruc-
tion does not necessarily provide quadword-con-
current access.

2. The performance of STORE PAIR TO QUAD-
WORD on some models may be significantly
slower than that of STORE MULTIPLE (STMG).
Unless quadword consistency is required, STMG
should be used instead of STPQ.

STORE REVERSED

STRVH R1,D2(X2,B2) [RXY-a]

STRV R1,D2(X2,B2) [RXY-a]

STRVG R1,D2(X2,B2) [RXY-a]

The first operand is placed at the second-operand
location with the left-to-right sequence of the bytes
reversed.

For STORE REVERSED (STRVH), the first operand
is two bytes in bit positions 48-63 of general register

R1. For STORE REVERSED (STRV), the first oper-
and is four bytes in bit positions 32-63 of general reg-
ister R1. For STORE REVERSED (STRVG), the first
operand is eight bytes in bit positions 0-63 of general
register R1.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)

Programming Notes:

1. The instruction can be used to convert two, four,
or eight bytes from a “little-endian” format to a
“big-endian” format, or vice versa. In the big-
endian format, the bytes in a left-to-right
sequence are in the order most significant to
least significant. In the little-endian format, the
bytes are in the order least significant to most
significant. For example, the bytes ABCD in the
big-endian format are DCBA in the little-endian
format.

SUBTRACT

Register-and-register formats:

SR R1,R2 [RR]

SGR R1,R2 [RRE]

SGFR R1,R2 [RRE]

SRK R1,R2,R3 [RRF-a]

SGRK R1,R2,R3 [RRF-a]

'E3' R1 X2 B2 DL2 DH2 '3F'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '3E'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '2F'
0 8 12 16 20 32 40 47

'1B' R1 R2

0 8 12 15

'B909' / / / / / / / / R1 R2

0 16 24 28 31

'B919' / / / / / / / / R1 R2

0 16 24 28 31

'B9F9' R3 / / / / R1 R2

0 16 20 24 28 31

'B9E9' R3 / / / / R1 R2

0 16 20 24 28 31

General Instructions 7-395

S
U

B
T

R
A

C
T

 H
A

L
F

W
O

R
DRegister-and-storage formats:

S R1,D2(X2,B2) [RX-a]

SY R1,D2(X2,B2) [RXY-a]

SG R1,D2(X2,B2) [RXY-a]

SGF R1,D2(X2,B2) [RXY-a]

For S, SG, SGF, SGFR, SGR, SR, and SY, the sec-
ond operand is subtracted from the first operand, and
the difference is placed at the first-operand location.
For SGRK and SRK, the third operand is subtracted
from the second operand, and the difference is
placed at the first-operand location.

For S, SR, SRK, and SY, the operands and the differ-
ence are treated as 32-bit signed binary integers. For
SG, SGR, and SGRK, they are treated as 64-bit
signed binary integers. For SGFR and SGF, the sec-
ond operand is treated as a 32-bit signed binary inte-
ger, and the first operand and the difference are
treated as 64-bit signed binary integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position, and condi-
tion code 3 is set. If the fixed-point-overflow mask is
one, a program interruption for fixed-point overflow
occurs.

The displacement for S is treated as a 12-bit
unsigned binary integer. The displacement for SY,
SG, and SGF is treated as a 20-bit signed binary
integer.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2 of S, SY, SG, and SGF
only)

• Fixed-point overflow
• Operation (SY, if the long-displacement facility is

not installed; SRK, SGRK, if the distinct-oper-
ands facility is not installed)

Programming Notes:

1. For SR and SGR, when R1 and R2 designate the
same register, subtracting is equivalent to clear-
ing the register.

2. Subtracting a maximum negative number from
itself gives a zero result and no overflow.

SUBTRACT HALFWORD

SH R1,D2(X2,B2) [RX-a]

SHY R1,D2(X2,B2) [RXY-a]

SGH R1,D2(X2,B2) [RXY-a]

The second operand is subtracted from the first oper-
and, and the difference is placed at the first-operand
location. The second operand is two bytes in length
and is treated as a 16-bit signed binary integer. The
first operand and the difference are treated as 32-bit
signed binary integers. For SGH, the first operand
and the difference are treated as 64-bit signed binary
integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position, and condi-
tion code 3 is set. If the fixed-point-overflow mask is
one, a program interruption for fixed-point overflow
occurs.

The displacement for SH is treated as a 12-bit
unsigned binary integer. The displacement for SGH
and SHY is treated as a 20-bit signed binary integer.

'5B' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '5B'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '09'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '19'

0 8 12 16 20 32 40 47

'4B' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '7B'
0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '39'
0 8 12 16 20 32 40 47

7-396 The z/Architecture CPU Architecture

S
U

B
T

R
A

C
T

 H
IG

H Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2)
• Fixed-point overflow
• Operation (SHY, if the long-displacement facility

is not installed; SGH, if the miscellaneous-
instruction-extensions facility 2 is not installed)

Programming Note: The function of a SUBTRACT
HALFWORD IMMEDIATE instruction, which is an
instruction not provided, can be obtained by using an
ADD HALFWORD IMMEDIATE instruction with a
negative I2 field.

SUBTRACT HIGH

SHHHR R1,R2,R3 [RRF-a]

SHHLR R1,R2,R3 [RRF-a]

The third operand is subtracted from the second
operand, and the difference is placed at the first-
operand location. The operands and the difference
are treated as 32-bit signed binary integers.

The first and second operands are in bits 0-31 of
general registers R1 and R2, respectively; bits 32-63
of general register R1 are unchanged, and bits 32-63
of general register R2 are ignored. For SHHHR, the
third operand is in bits 0-31 of general register R3;
bits 32-63 of the register are ignored. For SHHLR,
the third operand is in bits 32-63 of general register
R3; bits 0-31 of the register are ignored.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position, and condi-
tion code 3 is set. If the fixed-point-overflow mask is
one, a program interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow
• Operation (if the high-word facility is not installed)

SUBTRACT LOGICAL

Register-and-register formats:

SLR R1,R2 [RR]

SLGR R1,R2 [RRE]

SLGFR R1,R2 [RRE]

SLRK R1,R2,R3 [RRF-a]

SLGRK R1,R2,R3 [RRF-a]

Register-and-storage formats:

SL R1,D2(X2,B2) [RX-a]

SLY R1,D2(X2,B2) [RXY-a]

'B9C9' R3 / / / / R1 R2

0 16 20 24 28 31

'B9D9' R3 / / / / R1 R2

0 16 20 24 28 31

'1F' R1 R2

0 8 12 15

'B90B' / / / / / / / / R1 R2

0 16 24 28 31

'B91B' / / / / / / / / R1 R2

0 16 24 28 31

'B9FB' R3 / / / / R1 R2

0 16 20 24 28 31

'B9EB' R3 / / / / R1 R2

0 16 20 24 28 31

'5F' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '5F'

0 8 12 16 20 32 40 47

General Instructions 7-397

S
U

B
T

R
A

C
T

 L
O

G
IC

A
L

 H
IG

HSLG R1,D2(X2,B2) [RXY-a]

SLGF R1,D2(X2,B2) [RXY-a]

SUBTRACT LOGICAL IMMEDIATE

SLFI R1,I2 [RIL-a]

SLGFI R1,I2 [RIL-a]

For SUBTRACT LOGICAL (SL, SLG, SLGF, SLGFR,
SLGR, SLR, SLY) and for SUBTRACT LOGICAL
IMMEDIATE, the second operand is subtracted from
the first operand, and the difference is placed at the
first-operand location. For SUBTRACT LOGICAL
(SLGRK and SLRK), the third operand is subtracted
from the second operand, and the difference is
placed at the first-operand location.

For SUBTRACT LOGICAL (SL, SLR, SLRK, and
SLY) and for SUBTRACT LOGICAL IMMEDIATE
(SLFI), the operands and the difference are treated
as 32-bit unsigned binary integers. For SUBTRACT
LOGICAL (SLG, SLGR, and SLGRK), they are
treated as 64-bit unsigned binary integers. For SUB-
TRACT LOGICAL (SLGFR, SLGF) and for SUB-
TRACT LOGICAL IMMEDIATE (SLGFI), the second
operand is treated as a 32-bit unsigned binary inte-
ger, and the first operand and the difference are
treated as 64-bit unsigned binary integers.

The displacement for SL is treated as a 12-bit
unsigned binary integer. The displacement for SLY,
SLG, and SLGF is treated as a 20-bit signed binary
integer.

Resulting Condition Code:

0 --
1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

Program Exceptions:

• Access (fetch, operand 2 of SL, SLY, SLG, and
SLGF only)

• Operation (SLY, if the long-displacement facility is
not installed; SLFI and SLGFI, if the extended-
immediate facility is not installed; SLRK and
SLGRK, if the distinct-operands facility is not
installed)

Programming Notes:

1. Logical subtraction is performed by adding the
one’s complement of the second operand and a
value of one to the first operand. The use of the
one’s complement and the value of one instead
of the two’s complement of the second operand
results in a carry when the second operand is
zero.

2. SUBTRACT LOGICAL differs from SUBTRACT
only in the meaning of the condition code and in
the absence of the interruption for overflow.

3. A zero difference is always accompanied by a
carry out of bit position 0 for 64-bit results or bit
position 32 for 32-bit results, and, therefore, no
borrow.

4. The condition-code setting for SUBTRACT LOG-
ICAL can also be interpreted as indicating the
presence or absence of a carry, as follows:

SUBTRACT LOGICAL HIGH

SLHHHR R1,R2,R3 [RRF-a]

SLHHLR R1,R2,R3 [RRF-a]

The third operand is subtracted from the second
operand, and the difference is placed at the first-
operand location. The operands and the difference
are treated as 32-bit unsigned binary integers.

'E3' R1 X2 B2 DL2 DH2 '0B'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '1B'

0 8 12 16 20 32 40 47

'C2' R1 '5' I2
0 8 12 16 47

'C2' R1 '4' I2
0 8 12 16 47

1 Result not zero; no carry

2 Result zero; carry

3 Result not zero; carry

'B9CB' R3 / / / / R1 R2

0 16 20 24 28 31

'B9DB' R3 / / / / R1 R2

0 16 20 24 28 31

7-398 The z/Architecture CPU Architecture

S
U

B
T

R
A

C
T

 L
O

G
IC

A
L

 W
IT

H
 B

O
R

R
O

W The first and second operands are in bits 0-31 of
general registers R1 and R2, respectively; bits 32-63
of general register R1 are unchanged, and bits 32-63
of general register R2 are ignored. For SLHHHR, the
third operand is in bits 0-31 of general register R3;
bits 32-63 of the register are ignored. For SLHHLR,
the third operand is in bits 32-63 of general register
R3; bits 0-31 of the register are ignored.

Resulting Condition Code:

0 --
1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

Program Exceptions:

• Operation (if the high-word facility is not installed)

SUBTRACT LOGICAL WITH
BORROW

Register-and-register formats:

SLBR R1,R2 [RRE]

SLBGR R1,R2 [RRE]

Register-and-storage formats:

SLB R1,D2(X2,B2) [RXY-a]

SLBG R1,D2(X2,B2) [RXY-a]

The second operand and the borrow are subtracted
from the first operand, and the difference is placed at
the first-operand location. For SUBTRACT LOGICAL
WITH BORROW (SLBR, SLB), the operands, the
borrow, and the difference are treated as 32-bit

unsigned binary integers. For SUBTRACT LOGICAL
WITH BORROW (SLBGR, SLBG), they are treated
as 64-bit unsigned binary integers.

Resulting Condition Code:

0 Result zero; borrow
1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

Program Exceptions:

• Access (fetch, operand 2 of SLB and SLBG only)

Programming Notes:

1. A borrow is represented by a zero value of bit 18
of the current PSW. Bit 18 is the leftmost bit of
the two-bit condition code in the PSW. Bit 18 is
set to zero by an execution of a SUBTRACT
LOGICAL or SUBTRACT LOGICAL WITH BOR-
ROW instruction that produces a borrow into the
leftmost bit position of the 32-bit or 64-bit result.

2. Logical subtraction with borrow is performed by
adding the one’s complement of the second
operand and bit 18 of the current PSW to the first
operand. Therefore, when bit 18 is one, indicat-
ing no borrow, the addition is the same as for
SUBTRACT LOGICAL.

3. Condition code zero is set for SUBTRACT LOGI-
CAL WITH BORROW (SLBR, SLB), when the
maximum 32-bit unsigned binary integer, 232 - 1,
is subtracted from zero when PSW bit 18 indi-
cates a borrow. For SUBTRACT LOGICAL WITH
BORROW (SLBGR, SLBG) condition code zero
is set when the maximum 64-bit unsigned binary
integer, 264 - 1, is subtracted from zero when
PSW bit 18 indicates a borrow.

4. SUBTRACT and SUBTRACT LOGICAL may pro-
vide better performance than SUBTRACT LOGI-
CAL WITH BORROW, depending on the model.

SUPERVISOR CALL

SVC I [I]

'B999' / / / / / / / / R1 R2

0 16 24 28 31

'B989' / / / / / / / / R1 R2

0 16 24 28 31

'E3' R1 X2 B2 DL2 DH2 '99'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '89'

0 8 12 16 20 32 40 47

'0A' I
0 8 15

General Instructions 7-399

T
E

S
T

 A
N

D
 S

E
TThe instruction causes a supervisor-call interruption,

with the I field of the instruction providing the right-
most byte of the interruption code.

Bits 8-15 of the instruction, with eight zeros
appended on the left, are placed in the supervisor-
call interruption code that is stored in the course of
the interruption. See “Supervisor-Call Interruption”
on page 6-57.

A serialization and checkpoint-synchronization func-
tion is performed.

Condition Code: The code remains unchanged
and is saved as part of the old PSW. A new condition
code is loaded as part of the supervisor-call interrup-
tion.

Program Exceptions:

• Transaction constraint

TEST ADDRESSING MODE

TAM [E]

The extended-addressing-mode bit and basic-
addressing-mode bit, bits 31 and 32 of the current
PSW, respectively, are tested, and the result is indi-
cated in the condition code.

Resulting Condition Code:

0 PSW bits 31 and 32 zeros (indicating 24-bit
addressing mode)

1 PSW bit 31 zero and bit 32 one (indicating 31-bit
addressing mode)

2 --
3 PSW bits 31 and 32 ones (indicating 64-bit

addressing mode)

Program Exceptions:

• Transaction constraint

Programming Note: The case when PSW bit 31 is
one and bit 32 is zero causes an early PSW specifi-
cation exception to be recognized.

TEST AND SET

TS D2(B2) [SI]

The leftmost bit (bit position 0) of the byte located at
the second-operand address is used to set the condi-
tion code, and then the byte is set to all ones.

Bits 8-15 of the instruction are ignored.

The byte in storage is set to all ones as it is fetched
for the testing of bit 0. This update appears to be an
interlocked-update reference as observed by other
CPUs.

A serialization function is performed before the byte
is fetched and again after the storing of all ones.

Resulting Condition Code:

0 Leftmost bit zero
1 Leftmost bit one
2 --
3 --

Program Exceptions:

• Access (fetch and store, operand 2)
• Transaction constraint

Programming Notes:

1. TEST AND SET may be used for controlled shar-
ing of a common storage area by programs oper-
ating on different CPUs. This instruction is
provided primarily for compatibility with programs
written for System/360. The instructions COM-
PARE AND SWAP and COMPARE DOUBLE
AND SWAP provide functions which are more
suitable for sharing among programs on a single
CPU or for programs that may be interrupted.
See the description of these instructions and the
associated programming notes for details.

2. TEST AND SET does not interlock against stor-
age accesses by channel programs. Therefore,
the instruction should not be used to update a
location into which a channel program may store,
since the channel-program data may be lost.

'010B'

0 15

'93' / / / / / / / / B2 D2

0 8 16 20 31

7-400 The z/Architecture CPU Architecture

T
E

S
T

 U
N

D
E

R
 M

A
S

K
 (

T
E

S
T

 U
N

D
E

R
 M

A
S

K
 H

IG
H

, T
E

S
T

 U
N

D
E

R
 M

A
S

K
 L

O
W

) TEST UNDER MASK (TEST UNDER
MASK HIGH, TEST UNDER MASK
LOW)

TM D1(B1),I2 [SI]

TMY D1(B1),I2 [SIY]

TMHH R1,I2 [RI-a]

TMHL R1,I2 [RI-a]

TMH R1,I2 [RI-a]
TMLH R1,I2 [RI-a]

TML R1,I2 [RI-a]
TMLL R1,I2 [RI-a]

A mask is used to select bits of the first operand, and
the result is indicated in the condition code.

TEST UNDER MASK is a new name of, and TMLH
and TMLL are new mnemonics for, the ESA/390
instructions TEST UNDER MASK HIGH (TMH) and
TEST UNDER MASK LOW (TML), respectively.

In TEST UNDER MASK (TM, TMY), the byte of
immediate data, I2, is used as an eight-bit mask. The
bits of the mask are made to correspond one for one
with the bits of the byte in storage designated by the
first-operand address.

A mask bit of one indicates that the storage bit is to
be tested. When the mask bit is zero, the storage bit
is ignored. When all storage bits thus selected are
zero, condition code 0 is set. Condition code 0 is also

set when the mask is all zeros. When the selected
bits are all ones, condition code 3 is set; otherwise,
condition code 1 is set.

Access exceptions associated with the storage oper-
and are recognized for one byte even when the mask
is all zeros.

In TEST UNDER MASK (TMHH, TMHL, TMLH,
TMLL), the contents of the I2 field are used as a
16-bit mask. For each instruction, the bits of the
mask are made to correspond one for one with 16
bits of the first operand as follows:

A mask bit of one indicates that the first-operand bit
is to be tested. When the mask bit is zero, the first-
operand bit is ignored. When all first-operand bits
thus selected are zero, condition code 0 is set. Con-
dition code 0 is also set when the mask is all zeros.
When the selected bits are mixed zeros and ones,
condition code 1 is set if the leftmost selected bit is
zero, or condition code 2 is set if the leftmost
selected bit is one. When the selected bits are all
ones, condition code 3 is set.

The displacement for TM is treated as a 12-bit
unsigned binary integer. The displacement for TMY
is treated as a 20-bit signed binary integer.

Resulting Condition Code:

0 Selected bits all zeros; or mask bits all zeros
1 Selected bits mixed zeros and ones (TM and

TMY only)
1 Selected bits mixed zeros and ones, and leftmost

is zero (TMHH, TMHL, TMLH, TMLL)
2 -- (TM and TMY only)
2 Selected bits mixed zeros and ones, and leftmost

is one (TMHH, TMHL, TMLH, TMLL)
3 Selected bits all ones

Program Exceptions:

• Access (fetch, operand 1, TM and TMY only)
• Operation (TMY, if the long-displacement facility

is not installed)

'91' I2 B1 D1

0 8 16 20 31

'EB' I2 B1 DL1 DH1 '51'
0 8 16 20 32 40 47

'A7' R1 '2' I2
0 8 12 16 31

'A7' R1 '3' I2
0 8 12 16 31

'A7' R1 '0' I2
0 8 12 16 31

'A7' R1 '1' I2
0 8 12 16 31

Instruction Bits Tested

TMHH 0-15

TMHL 16-31

TMLH (or TMH) 32-47

TMLL (or TML) 48-63

General Instructions 7-401

T
R

A
N

S
A

C
T

IO
N

 B
E

G
IN

 (
T

B
E

G
IN

)Programming Notes:

1. An example of the use of the TEST UNDER
MASK (TM) instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. When the mask for TMHH, TMHL, TMLH, or
TMLL selects exactly two bits, the two selected
bits effectively are loaded into the condition code.

TRANSACTION ABORT

TABORT D2(B2) [S]

If the CPU is in the nonconstrained transactional-exe-
cution mode, the transaction is aborted.

The second-operand address is not used to address
data; instead, the address specified by the B2 and D2

fields forms the transaction abort code which is
placed in the transaction diagnostic block during
abort processing. Address computation for the sec-
ond-operand address follows the rules of address
arithmetic; in the 24-bit addressing mode, bits 0-39
are set to zeros; in the 31-bit addressing mode, bits
0-32 are set to zeros.

Aborting of a transaction by the TABORT instruction
consists of performing steps 1-7 of the section
“Transaction Abort Processing” on page 5-102. The
condition code in the transaction-abort PSW is set to
either 2 or 3, depending on whether bit 63 of the sec-
ond-operand address is zero or one, respectively.

A serialization function is implicitly performed by the
abort processing.

When TRANSACTION ABORT is the target of an
execute-type instruction, the operation is suppressed
and an execute exception is recognized.

A specification exception is recognized and the oper-
ation is suppressed if the second-operand address is
between 0 and 255.

A special-operation exception is recognized and the
operation is suppressed if the CPU is not in the trans-
actional-execution mode at the beginning of the
instruction.

If the CPU is in the constrained transactional-execu-
tion mode, a transaction-constraint program excep-
tion condition is recognized.

Condition Code: The code remains unchanged.
However, the condition code of the transaction-abort
PSW will be set by the subsequent transaction-abort
processing.

Program Exceptions:

• Execute
• Operation (transactional-execution facility not

installed)
• Special-operation
• Specification
• Transaction constraint

Programming Notes:

1. If the transactional-execution control, bit 8 of con-
trol register 0, is zero, the CPU cannot be in the
transactional-execution mode; Attempted execu-
tion of a TRANSACTION ABORT in this case
results in a special-operation exception.

2. Abort codes 0-255 are reserved for transactions
that are implicitly aborted by the CPU. See
“Transaction Abort Conditions” on page 5-100 for
details.

3. Program interruptions are subject to the effective
program-interruption filtering control.

4. Execution of TABORT may result in significant
performance degradation, potentially causing
high contention which, in turn, can lead to other
abort conditions.

5. Following the TABORT instruction, program exe-
cution continues at the instruction designated by
the transaction-abort PSW.

TRANSACTION BEGIN (TBEGIN)

TBEGIN D1(B1),I2 [SIL]

Execution of the TRANSACTION BEGIN (TBEGIN)
instruction causes the CPU either to enter or to
remain in the nonconstrained transactional-execution
mode.

'B2FC' B2 D2

0 16 20 31

'E560' B1 D1 I2
0 16 20 32 47

7-402 The z/Architecture CPU Architecture

T
R

A
N

S
A

C
T

IO
N

 B
E

G
IN

 (
T

B
E

G
IN

) When the B1 field is nonzero, the following applies;

• When the transaction nesting depth is initially
zero, the first-operand address designates the
location of the 256-byte transaction diagnostic
block, called the TBEGIN-specified TDB, into
which various diagnostic information may be
stored if the transaction is aborted (see “Transac-
tion Diagnostic Block (TDB)” on page 5-93).
When the CPU is in the primary-space mode or
access-register mode, the first-operand address
designates a location in the primary address
space. When the CPU is in the secondary-space
or home-space mode, the first-operand address
designates a location in the secondary or home
address space, respectively. When DAT is off, the
TDBA designates a location in real storage.

Store accessibility to the first operand is deter-
mined. If accessible, the logical address of the
operand is placed into the transaction-diagnos-
tic-block address (TDBA), and the TDBA is valid.

• When the CPU is already in the nonconstrained
transactional-execution mode, the TDBA is not
modified, and it is unpredictable whether the first
operand is tested for accessibility.

When the B1 field is zero, no access exceptions are
detected for the first operand, and, for the outermost
TBEGIN instruction, the TDBA is invalid.

The I2 field contains various controls for the instruc-
tion and has the following format:

The bits of the I2 field are defined as follows:

General Register Save Mask (GRSM): Bits 0-7 of
the I2 field contain the general register save mask
(GRSM). Each bit of the GRSM represents an even-
odd pair of general registers, where bit 0 represents
registers 0 and 1, bit 1 represents registers 2 and 3,
and so forth. When a bit in the GRSM of the outer-
most TBEGIN instruction is zero, the corresponding
register pair is not saved. When a bit in the GRSM of
the outermost TBEGIN instruction is one, the corre-
sponding register pair is saved in a model-dependent
location that is not directly accessible by the pro-
gram.

If the transaction aborts, saved register pairs are
restored to their contents when the outermost
TBEGIN instruction was executed. The contents of
all other (unsaved) general registers are not restored
when a transaction aborts.

The general register save mask is ignored on all
TBEGINs except for the outermost one.

Allow AR Modification (A): The A control, bit 12
of the I2 field, controls whether the transaction is
allowed to modify an access register. The effective
allow-AR-modification control is the logical AND of
the A control in the TBEGIN instruction for the current
nesting level and for all outer levels.

If the effective A control is zero, the transaction will
be aborted with abort code 11 (restricted instruction)
if an attempt is made to modify any access register. If
the effective A control is one, the transaction will not
be aborted if an access register is modified (absent
of any other abort condition).

Allow Floating-Point Operation (F): The F con-
trol, bit 13 of the I2 field, controls whether the transac-
tion is allowed to execute any floating-point
instruction (that is, any instruction defined in Chap-
ters 9, 18, 19, or 20) or any vector instruction (that is,
any instruction defined in Chapters 21, 22, 23, 24, or
25). The effective allow-floating-point-operation con-
trol is the logical AND of the F control in the TBEGIN
instruction for the current nesting level and for all
outer levels.

If the effective F control is zero, then (a) the transac-
tion will be aborted with abort code 11 (restricted
instruction) if an attempt is made to execute a float-
ing-point or vector instruction, and (b) the data-
exception code (DXC) in byte 2 of the floating-point
control register (FPCR) will not be set by any data-
exception program-exception condition. If the effec-
tive F control is one, then (a) the transaction will not
be aborted if an attempt is made to execute a float-
ing-point or vector instruction (absent any other abort
condition), and (b) the DXC or VXC in the FPCR may
be set by a data-exception or vector-exception pro-
gram-exception condition.

Program-Interruption-Filtering Control (PIFC):
Bits 14-15 of the I2 field are the program-interruption-
filtering control (PIFC). The PIFC controls whether
certain classes of program-exception conditions that
occur while the CPU is in the transactional-execution
mode result in an interruption. See “Program-Inter-

GRSM / / / / A F
PI
FC

0 8 12 13 14 15

General Instructions 7-403

T
R

A
N

S
A

C
T

IO
N

 B
E

G
IN

 (
T

B
E

G
IN

)ruption Filtering on a Transaction Abort” on
page 5-104 for a description of these classes.

The effective PIFC is the highest value of the PIFC in
the TBEGIN instruction for the current nesting level
and for all outer levels. When the effective PIFC is
zero, all program-exception conditions result in an
interruption. When the effective PIFC is one, pro-
gram-exception conditions having a transactional-
execution class of 1 and 2 result in an interruption.
When the effective PIFC is two, program-exception
conditions having a transactional-execution class of 1
result in an interruption. A PIFC of 3 is reserved.

Bits 8-11 of the I2 field (bits 40-43 of the instruction)
are reserved and should contain zeros; otherwise,
the program may not operate compatibly in the
future.

TRANSACTION BEGIN (TBEGIN) Processing

Execution of the TRANSACTION BEGIN (TBEGIN)
instruction consists of the following steps: Note,
exception checking does not necessarily need to
occur in the order listed below. See Figure 7-363 on
page 7-404 for the precise ordering requirements for
exception checking.

1. A serialization function is performed.

2. A special-operation exception is recognized and
the operation is suppressed if the transactional-
execution control, bit 8 of control register 0, is
zero.

3. A specification exception is recognized and the
operation is suppressed if either of the following
is true.

a. The program-interruption-filtering control,
bits 14-15 of I2 field of the instruction, con-
tains the value 3.

b. The first-operand address does not desig-
nate a doubleword boundary. It is model
dependent whether a specification exception
is recognized when the first-operand address
does not designate a doubleword boundary if
either the B1 field is zero or the transaction-
nesting depth is nonzero.

4. If the CPU is in the constrained transactional-
execution mode, then a transaction-constraint-
exception program exception is recognized and
the operation is suppressed.

5. When the B1 field is nonzero, the following
applies:

• If the CPU is not in the transactional-execu-
tion mode (that is, the transaction nesting
depth is zero), then the following occurs:

– Store accessibility to the first operand is
determined. If the first operand cannot
be accessed for stores, then an access
exception is recognized and the opera-
tion is either nullified, suppressed, or ter-
minated, depending on the specific
access-exception condition.

– Any PER storage-alteration or zero-
address-detection event for the first
operand is recognized.

• If the CPU is already in the transactional-
execution mode, it is unpredictable whether
(a) store accessibility to the first operand is
determined, and (b) PER storage-alteration
or zero-address-detection events are
detected for the first operand.

If the B1 field is zero, then the first operand is not
accessed.

6. If the transaction nesting depth, when incre-
mented by one, would exceed a model-depen-
dent maximum transaction nesting depth, the
transaction is aborted with abort code 13. See
“Transaction Abort Processing” on page 5-102
for details on the handling of a transaction abort.

7. If the CPU is not in the transactional-execution
mode, the following occurs:

a. If the B1 field is nonzero, the first-operand
address is placed in the transaction-diagnos-
tic-block address, and the transaction-diag-
nostic-block address is valid. If the B1 field is
zero, the transaction-diagnostic-block
address is invalid.

b. The transaction-abort PSW is set from the
contents of the current PSW. The instruction
address of the transaction-abort PSW desig-
nates the next-sequential instruction (that is,
the instruction following the outermost
TBEGIN).

8. An effective value of the allow-AR-modification
(A) control, bit 12 of the I2 field of the instruction,
is determined. The effective A control is the logi-

7-404 The z/Architecture CPU Architecture

T
R

A
N

S
A

C
T

IO
N

 B
E

G
IN

 (
T

B
E

G
IN

) cal AND of the A control in the TBEGIN instruc-
tion for the current level and for all outer levels.

9. An effective value of the allow-floating-point-
operation (F) control, bit 13 of the I2 field of the
instruction, is determined. The effective F control
is the logical AND of the F control in the TBEGIN
instruction for the current level and for all outer
levels.

10. An effective value of the program-interruption-fil-
tering control (PIFC), bits 14-15 of the I2 field of
the instruction, is determined. The effective PIFC
value is highest value in the TBEGIN instruction
for the current level and for all outer levels.

11. If the CPU is not in the transactional-execution
mode, the contents of the general register pairs
designated by the general-register save mask
are saved in a model-dependent location that is
not directly accessible by the program.

12. A value of one is added to the transaction nest-
ing depth, and the instruction completes by set-
ting condition code 0. If the transaction nesting
depth transitions from zero to one, the CPU
enters the nonconstrained transactional-execu-
tion mode; otherwise, the CPU remains in the
nonconstrained transactional-execution mode.

When TBEGIN is the target of an execute-type
instruction, the operation is suppressed and an exe-
cute exception is recognized.

See “Event-Suppression Control (ES)” on page 4-28
for additional details on the recognition of PER
instruction-fetching events during the execution of
TRANSACTION BEGIN.

Resulting Condition Code:

0 Transaction initiation successful
1 – (see programming notes 3 and 4)
2 – (see programming notes 3 and 4)
3 – (see programming notes 3 and 4)

Program Exceptions:

• Access (store, first operand)
• Execute
• Operation (transactional-execution facility not

installed)
• Special operation
• Specification
• Transaction constraint

Programming Notes:

1. When the B1 field is nonzero, the following
applies:

• An accessible transaction diagnostic block
(TDB) must be provided when an outermost
transaction is initiated – even if the transac-
tion never aborts.

• Since it is unpredictable whether accessibil-
ity of the TDB is tested for nested transac-
tions, an accessible TDB should be provided
for any nested TBEGIN instruction.

• The performance of any TBEGIN in which
the B1 field is nonzero, and the performance
of any abort processing that occurs for a
transaction that was initiated by an outer-
most TBEGIN in which the B1 field is non-
zero, may be slower than when the B1 field is
zero.

2. Registers designated to be saved by the general
register save mask are only restored if the trans-
action aborts, not when the transaction ends nor-
mally by means of TRANSACTION END. Only
the registers designated by the GRSM of the out-
ermost TRANSACTION BEGIN instruction are
restored on abort.

The I2 field should designate all register pairs
that provide input values that are changed by the
transaction. Thus, if the transaction is aborted,
the input register values will be restored to their

1.-7 Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

8.A Specification exception due to reserved PIFC
value.

8.B Specification exception due to first-operand
address not on a doubleword boundary.

8.C Access exception (when B1 field is nonzero).

8.D Abort due to exceeding maximum transaction
nesting depth.

9 Condition code 0 due to normal completion.

Figure 7-363. Priority of Execution: TRANSACTION BEGIN
(TBEGIN)

General Instructions 7-405

T
R

A
N

S
A

C
T

IO
N

 B
E

G
IN

 (
T

B
E

G
IN

)original contents when the abort handler is
entered.

3. The TRANSACTION BEGIN (TBEGIN) instruc-
tion is expected to be followed by a conditional
branch instruction that will determine whether the
transaction was successfully initiated. See pro-
gramming note 3 on page 5-103 for a complete
explanation of each condition code.

4. If a transaction is aborted due to conditions that
do not result in an interruption, the instruction
designated by the transaction-abort PSW
receives control (that is, the instruction following
the outermost TRANSACTION BEGIN
[TBEGIN]). In addition to the condition code set
by the TRANSACTION BEGIN (TBEGIN) instruc-
tion, condition codes 1-3 are also set when a
transaction aborts.

Therefore, the instruction sequence following the
outermost TRANSACTION BEGIN (TBEGIN)
instruction should be able to accommodate all
four condition codes, even though the TBEGIN
instruction only sets code 0. See the explanation
of abort condition codes in programming note 3
on page 5-103.

5. On most models, improved performance may be
realized, both on TRANSACTION BEGIN and
when a transaction aborts, by specifying the min-
imum number of registers needed to be saved
and restored in the general-register save mask.

6. While in the nonconstrained transactional-execu-
tion mode, a program may call a service function
which may alter access registers, floating-point
registers (including the floating-point control reg-
ister), or vector registers. Although such a ser-
vice routine may save the altered registers on
entry and restore them at exit, the transaction
may be aborted prior to normal exit of the rou-
tine. If the calling program makes no provision for
preserving these registers while the CPU is in
the nonconstrained transactional-execution
mode, it may not be able to tolerate the service
function’s alteration of the registers.

To prevent inadvertent alteration of access regis-
ters while in the nonconstrained transactional-
execution mode, the program can set the allow-
AR-modification control, bit 12 of the I2 field of
the TRANSACTION BEGIN instruction, to zero.
Similarly, to prevent the inadvertent alteration of
the floating-point registers or vector registers, the
program can set the allow-floating-point-opera-

tion control, bit 13 of the I2 field of the TBEGIN
instruction, to zero.

7. Program-interruption conditions recognized
during the execution of TRANSACTION BEGIN
(TBEGIN) instruction are subject to the effective
program-interruption filtering control set by any
outer TBEGIN instructions. Program-interruption
conditions recognized during the execution of the
outermost TBEGIN instruction are not subject to
filtering.

8. In order to update multiple storage locations in a
serialized manner, conventional code sequences
may employ a lock word (semaphore). If
(a) transactional execution is used to implement
updates of multiple storage locations, (b) the pro-
gram also provides a “fall-back” path to be
invoked if the transaction aborts, and (c) the fall-
back path employs a lock word, then the transac-
tional-execution path should also test for the
availability of the lock, and, if the lock is unavail-
able, end the transaction by means of the
TRANSACTION END instruction and branch to
the fall-back path. This ensures consistent
access to the serialized resources, regardless of
whether they are updated transactionally.

Alternatively, the program could abort if the lock
is unavailable, however the abort processing may
be significantly slower than simply ending the
transaction via TEND.

9. If the effective program-interruption filtering con-
trol (PIFC) is greater than zero, the CPU filters
most data-exception program interruptions. If the
effective allow-floating-point-operation (F) control
is zero, the data-exception code (DXC) will not
be set in the floating-point control register as a
result of an abort due to a data-exception pro-
gram-exception condition. In this scenario (filter-
ing applies and the effective F control is zero),
the only location in which the DXC can be
inspected is in the TBEGIN-specified TDB. If the
program’s abort handler needs to inspect the
DXC in such a situation, general register B1

should be nonzero, such that a valid transaction-
diagnostic-block address (TDBA) is set.

10. If a PER storage-alteration or zero-address-
detection condition exists for the TBEGIN-speci-
fied TDB of the outermost TBEGIN instruction,
and PER event suppression does not apply, the
PER event will be recognized during the execu-
tion of the instruction, thus causing the transac-

7-406 The z/Architecture CPU Architecture

T
R

A
N

S
A

C
T

IO
N

 B
E

G
IN

 (
T

B
E

G
IN

C
) tion to be aborted immediately, regardless of

whether any other abort condition exists.

TRANSACTION BEGIN (TBEGINC)

TBEGINC D1(B1),I2 [SIL]

Execution of the TRANSACTION BEGIN (TBEGINC)
instruction causes the CPU to enter the constrained
transactional-execution mode or remain in the non-
constrained transactional-execution mode.

The first-operand address is not used to access stor-
age. The B1 field, bits 16-19 of the instruction, must
contain zeros; otherwise, a specification exception is
recognized.

The I2 field contains various controls for the instruc-
tion and has the following format:

The bits of the I2 field are defined as follows:

General Register Save Mask (GRSM): Bits 0-7 of
the I2 field contain the general register save mask
(GRSM). Each bit of the GRSM represents an even-
odd pair of general registers, where bit 0 represents
registers 0 and 1, bit 1 represents registers 2 and 3,
and so forth. When a bit in the GRSM is zero, the cor-
responding register pair is not saved. When a bit in
the GRSM is one, the corresponding register pair is
saved in a model-dependent location that is not
directly accessible by the program.

If the transaction aborts, saved register pairs are
restored to their contents when the outermost
TRANSACTION BEGIN instruction was executed.
The contents of all other (unsaved) general registers
are not restored when a constrained transaction
aborts.

When TBEGINC is used to continue execution in the
nonconstrained transactional-execution mode, the
general register save mask is ignored.

Allow AR Modification (A): The A control, bit 12
of the I2 field, controls whether the transaction is
allowed to modify an access register. The effective

allow-AR-modification control is the logical AND of
the A control in the TBEGINC instruction for the cur-
rent nesting level and for any outer TBEGIN or
TBEGINC instructions.

If the effective A control is zero, the transaction will
be aborted with abort code 11 (restricted instruction)
if an attempt is made to modify any access register. If
the effective A control is one, the transaction will not
be aborted if an access register is modified (absent
of any other abort condition).

Bits 8-11 and 13-15 of the I2 field (bits 40-43 and 45-
47 of the instruction) are reserved and should con-
tain zeros; otherwise, the program may not operate
compatibly in the future.

TRANSACTION BEGIN (TBEGINC) Processing

Execution of the TRANSACTION BEGIN (TBEGINC)
instruction consists of the following steps: Note,
exception checking does not necessarily need to
occur in the order listed below. See Figure 7-364 on
page 7-407 for the precise ordering requirements for
exception checking.

1. A serialization function is performed.

2. A special-operation exception is recognized and
the operation is suppressed if the transactional-
execution control, bit 8 of control register 0, is
zero.

3. A specification exception is recognized and the
operation is suppressed if the B1 field, bits 16-19
of the instruction, is nonzero.

4. If the CPU is already in the constrained transac-
tional-execution mode, then a transaction-con-
straint-exception program exception is
recognized and the operation is suppressed.

5. If the transaction nesting depth, when incre-
mented by one, would exceed a model-depen-
dent maximum transaction nesting depth, the
transaction is aborted with abort code 13. See
“Transaction Abort Processing” on page 5-102
for details on the handling of a transaction abort.

6. If the transaction nesting depth is zero, then the
following is performed:

a. The transaction-diagnostic-block address is
considered to be invalid.

'E561' B1 D1 I2
0 16 20 32 47

GRSM / / / / A / / /
0 8 12 13 14 15

General Instructions 7-407

T
R

A
N

S
A

C
T

IO
N

 B
E

G
IN

 (
T

B
E

G
IN

C
)b. The transaction-abort PSW is set from the

contents of the current PSW, except that the
instruction address of the transaction-abort
PSW designates the TBEGINC instruction
(rather than the next-sequential instruction).

c. The contents of the general register pairs
designated by the general-register save
mask are saved in a model-dependent loca-
tion that is not directly accessible by the pro-
gram.

7. An effective value of the allow-AR-modification
(A) control, bit 12 of the I2 field of the instruction,
is determined. The effective A control is the logi-
cal AND of the A control in the TBEGINC instruc-
tion for the current level and for any outer
TRANSACTION BEGIN instructions.

8. If the transaction nesting depth is zero, then it is
set to one, and the CPU enters the constrained
transactional-execution mode. The effective
allow-floating-point-operation and program-inter-
ruption-filtering controls (F and PIFC, respec-
tively) are set to zero.

If the transaction nesting depth is nonzero, then it
is incremented by one, and the CPU remains in
the nonconstrained transactional-execution
mode. In this case, the effective value of the
allow-floating-point-operation control is set to
zero, and the effective value of the program-inter-
ruption-filtering control is unchanged. See “Allow
Floating-Point Operation (F)” on page 7-402 and
“Program-Interruption-Filtering Control (PIFC)”
on page 7-402 for a description of these controls.

9. The instruction completes by setting condition
code 0.

When TBEGINC is the target of an execute-type
instruction, the operation is suppressed and an exe-
cute exception is recognized.

See “Event-Suppression Control (ES)” on page 4-28
for additional details on the recognition of PER
instruction-fetching events during the execution of
TRANSACTION BEGIN.

Resulting Condition Code:

0 Transaction initiation successful
1 –
2 –
3 –

Program Exceptions:

• Execute
• Operation (constrained transactional-execution

facility not installed)
• Special operation
• Specification
• Transaction constraint

Programming Notes:

1. Registers designated to be saved by the general
register save mask are only restored if the trans-
action aborts, not when the transaction ends nor-
mally by means of TRANSACTION END. Only
the registers designated by the GRSM of the out-
ermost TRANSACTION BEGIN instruction are
restored on abort.

The I2 field should designate all register pairs
that provide input values that are changed by a
constrained transaction. Thus, if the transaction
is aborted, the input register values will be
restored to their original contents when con-
strained transaction is reexecuted.

2. On most models, improved performance may be
realized, both on TRANSACTION BEGIN and
when a transaction aborts, by specifying the min-
imum number of registers needed to be saved
and restored in the general-register save mask.

3. Figure 7-365 on page 7-408 illustrates the
results of the TRANSACTION BEGIN instruction
(both TBEGIN and TBEGINC) based on the cur-
rent transaction nesting depth and, when the
TND is nonzero, whether the CPU is in the non-

1.-7 Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

8.A Specification exception due to the B1 field
containing a nonzero value.

8.B Abort due to exceeding transaction nesting
depth.

9 Condition code 0 due to normal completion.

Figure 7-364. Priority of Execution: TRANSACTION BEGIN
(TBEGINC)

7-408 The z/Architecture CPU Architecture

T
R

A
N

S
A

C
T

IO
N

 E
N

D constrained or constrained transactional-execu-
tion mode.

TRANSACTION END

TEND [S]

If the CPU is in the transactional-execution mode, the
transaction nesting depth is decremented. If the
transactional nesting depth is zero following the dec-
rementing, all store accesses made by the transac-
tion are committed, the CPU leaves the
transactional-execution mode, and the instruction
completes.

The effective allow-floating-point-operation (F) con-
trol, allow-AR-modification (A) control, and program-
interruption-filtering control (PIFC) are reset to their
respective values prior to the TRANSACTION BEGIN
instruction that initiated the level being ended.

If the CPU is in the transactional-execution mode at
the beginning the operation, the condition code is set
to 0; otherwise, the condition code is set to 2.

A serialization function is performed at the comple-
tion of the operation.

When TRANSACTION END is the target of an exe-
cute-type instruction, the operation is suppressed
and an execute exception is recognized.

A special-operation exception is recognized and the
operation is suppressed if the transactional-execution
control, bit 8 of control register 0, is zero.

Resulting Condition Code:

0 CPU in the transactional-execution mode at the
beginning of the operation

1 –
2 CPU not in the transactional-execution mode at

the beginning of the operation
3 –

Program Exceptions:

• Execute
• Operation (transactional-execution facility not

installed)
• Special operation

Programming Notes:

1. If the transactional-execution control, bit 8 of con-
trol register 0, is zero, the CPU cannot be in the
transactional-execution mode. Attempted execu-
tion of a TRANSACTION END in this case
results in a special-operation exception.

2. PER instruction-fetching and transaction-end
events that are recognized at the completion of
the outermost TRANSACTION END instruction
do not result in the transaction being aborted.
See “Event-Suppression Control (ES)” on
page 4-28 for additional details on the recogni-
tion of PER instruction-fetching events during the
execution of TRANSACTION END.

TRANSLATE

TR D1(L,B1),D2(B2) [SS-a]

The bytes of the first operand are used as eight-bit
arguments to reference a list designated by the sec-
ond-operand address. Each function byte selected
from the list replaces the corresponding argument in
the first operand.

Instruction TND = 0
TND > 0

NTX Mode CTX Mode
TBEGIN Enter the

nonconstrained
transactional-
execution mode

Continue in the
nonconstrained
transactional-
execution mode

Transaction-
constraint
exception

TBEGINC Enter the
constrained
transactional-
execution mode

Continue in the
nonconstrained
transactional-
execution mode

Transaction-
constraint
exception

Explanation:

CTX CPU is in the constrained transactional-execution
mode

NTX CPU is in the nonconstrained transactional-execution
mode

TND Transaction nesting depth at the beginning of the
instruction

Figure 7-365. Operation of TRANSACTION BEGIN based on
Transaction Nesting Depth and Transactional-Execution
Mode

'B2F8' / / / / / / / / / / / / / / / /
0 16 31

'DC' L B1 D1 B2 D2

0 8 16 20 32 36 47

General Instructions 7-409

T
R

A
N

S
L

A
T

E
 A

N
D

 T
E

S
TThe L field specifies the length of only the first oper-

and.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. Each
argument byte is added to the initial second-operand
address. The addition is performed following the
rules for address arithmetic, with the argument byte
treated as an eight-bit unsigned binary integer and
extended with zeros on the left. The sum is used as
the address of the function byte, which then replaces
the original argument byte.

The operation proceeds until the first-operand field is
exhausted. The list is not altered unless an overlap
occurs.

When the operands overlap, the result is obtained as
if each result byte were stored immediately after
fetching the corresponding function byte.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store, oper-
and 1)

• Transaction constraint

Programming Notes:

1. An example of the use of the TRANSLATE
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. TRANSLATE may be used to convert data from
one code to another code.

3. The instruction may also be used to rearrange
data. This may be accomplished by placing a
pattern in the destination area, by designating
the pattern as the first operand of TRANSLATE,
and by designating the data that is to be rear-
ranged as the second operand. Each byte of the
pattern contains an eight-bit number specifying
the byte destined for this position. Thus, when
the instruction is executed, the pattern selects
the bytes of the second operand in the desired
order.

4. Because each eight-bit argument byte is added
to the initial second-operand address to obtain
the address of a function byte, the list may con-
tain 256 bytes. In cases where it is known that
not all eight-bit argument values will occur, it is
possible to reduce the size of the list.

5. Significant performance degradation is possible
when the second-operand address of TRANS-
LATE designates a location that is less than 256
bytes to the left of a 4 K-byte boundary. This is
because the machine may perform a trial execu-
tion of the instruction to determine if the second
operand actually crosses the boundary.

6. The fetch and subsequent store accesses to a
particular byte in the first-operand field do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the possi-
bility exists that another CPU or a channel pro-
gram may also be updating the location. An
example of this effect is shown for OR (OI) in
“Multiprogramming and Multiprocessing Exam-
ples” in Appendix A, “Number Representation
and Instruction-Use Examples.”

7. The storage-operand references of TRANSLATE
may be multiple-access references. (See “Stor-
age-Operand Consistency” on page 5-125.)

TRANSLATE AND TEST

TRT D1(L,B1),D2(B2) [SS-a]

The bytes of the first operand are used as eight-bit
arguments to select function bytes from a list desig-
nated by the second-operand address. The first non-
zero function byte is inserted in general register 2,
and the related argument address in general register
1.

The L field specifies the length of only the first oper-
and.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. The first
operand remains unchanged in storage. Calculation
of the address of the function byte is performed as in
the TRANSLATE instruction. The function byte
retrieved from the list is inspected for a value of zero.

'DD' L B1 D1 B2 D2

0 8 16 20 32 36 47

7-410 The z/Architecture CPU Architecture

T
R

A
N

S
L

A
T

E
 A

N
D

 T
E

S
T

 E
X

T
E

N
D

E
D When the function byte is zero, the operation pro-

ceeds with the next byte of the first operand. When
the first-operand field is exhausted before a nonzero
function byte is encountered, the operation is com-
pleted by setting condition code 0. The contents of
general registers 1 and 2 remain unchanged.

When the function byte is nonzero, the operation is
completed by inserting the function byte in general
register 2 and the related argument address in gen-
eral register 1. This address points to the argument
byte last translated. The function byte replaces bits
56-63 of general register 2, and bits 0-55 of this reg-
ister remain unchanged. In the 24-bit addressing
mode, the address replaces bits 40-63 of general
register 1, and bits 0-39 of this register remain
unchanged. In the 31-bit addressing mode, the
address replaces bits 33-63 of general register 1, bit
32 of this register is set to zero, and bits 0-31 of the
register remain unchanged. In the 64-bit addressing
mode, the address replaces bits 0-63 of general reg-
ister 1.

When the function byte is nonzero, either condition
code 1 or 2 is set, depending on whether the argu-
ment byte is the rightmost byte of the first operand.
Condition code 1 is set if one or more argument
bytes remain to be translated. Condition code 2 is set
if no more argument bytes remain.

The contents of access register 1 always remain
unchanged.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required. Access exceptions are not recognized for
those bytes in the first operand which are to the right
of the first byte for which a nonzero function byte is
obtained.

Resulting Condition Code:

0 All function bytes zero
1 Nonzero function byte; first-operand field not

exhausted
2 Nonzero function byte; first-operand field

exhausted
3 --

Program Exceptions:

• Access (fetch, operands 1 and 2)
• Transaction constraint

Programming Notes:

1. An example of the use of the TRANSLATE AND
TEST instruction is given in Appendix A, “Num-
ber Representation and Instruction-Use Exam-
ples.”

2. TRANSLATE AND TEST may be used to scan
the first operand for characters with special
meaning. The second operand, or list, is set up
with all-zero function bytes for those characters
to be skipped over and with nonzero function
bytes for the characters to be detected.

TRANSLATE AND TEST
EXTENDED

TRTE R1,R2[,M3] [RRF-c]

TRANSLATE AND TEST REVERSE
EXTENDED

TRTRE R1,R2[,M3] [RRF-c]

The argument characters of the first operand are
used to select function codes from a function-code
table designated by general register 1. For TRANS-
LATE AND TEST EXTENDED, the argument charac-
ters are processed in a left-to-right direction; for
TRANSLATE AND TEST REVERSE EXTENDED,
the argument characters are processed in a right-to-
left direction. When a nonzero function code is
selected, it is inserted in general register R2, the
related argument address is placed in general regis-
ter R1, and the first-operand length in general register
R1 + 1 is decremented by the number of bytes pro-
cessed. The operation proceeds until a nonzero func-
tion code is encountered, the end of the first operand
is reached, or a CPU-determined number of charac-
ters have been processed, whichever occurs first.
The result is indicated in the condition code.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

'B9BF' M3 / / / / R1 R2

0 16 20 24 28 31

'B9BD' M3 / / / / R1 R2

0 16 20 24 28 31

General Instructions 7-411

T
R

A
N

S
L

A
T

E
 A

N
D

 T
E

S
T

 R
E

V
E

R
S

E
 E

X
T

E
N

D
E

DGeneral register R1 + 1 contains the length of the first
operand in bytes.

Operation of the instruction is subject to controls
specified in the M3 field, bits 16-19 of the instruction.
The M3 field has the following format:

The bits of the M field are defined as follows:

• Argument-Character Control (A): The A bit, bit
0 of the M3 field, controls the size of the argu-
ment characters in the first operand. When the A
bit is zero, the argument characters are one byte
in length. When the A bit is one, the argument
characters are two bytes in length.

When the A bit is one, the first-operand length in
general register R1 + 1 must specify an even
number of bytes; otherwise, a specification
exception is recognized.

• Function-Code Control (F): The F bit, bit 1 of
the M3 field, controls the size of the function
codes in the function-code table designated by
general register 1. When the F bit is zero, a func-
tion code is one byte in length. When the F bit is
one, a function code is two bytes in length.

• Argument-Character Limit (L): The L bit, bit 2
of the M3 field, controls whether argument char-
acters with a value greater than 255 are used to
select function codes. When the L bit is zero,
argument character values are unlimited. When
the L bit is one, an argument character with a
value greater than 255 is not used to select a
function code; rather, the function code is
assumed to contain zeros.

When the A bit of the M3 field is zero, the L bit is
ignored.

• Unassigned: Bit 3 of the M3 field is unassigned
and should contain zero; otherwise, the program
may not operate compatibly in the future.

Figure 7-366 summarizes the size of the function-
code table based on the A, F, and L bits.

The location of the first argument character in the
first operand is designated by the contents of general
register R1. The location of the leftmost byte of the
function-code table is designated by the contents of

general register 1. In the 24-bit or 31-bit addressing
mode, the number of bytes in the first-operand loca-
tion is specified by the contents of bit positions 32-63
of general register R1 + 1, and those contents are
treated as a 32-bit unsigned binary integer. In the 64-
bit addressing mode, the number of bytes in the first-
operand location is specified by the entire contents of
general register R1 + 1, and those contents are
treated as a 64-bit unsigned binary integer.

The handling of the argument-character address in
general register R1 is dependent on the addressing
mode. In the 24-bit addressing mode, the contents of
bit positions 40-63 of the register constitute the
address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the contents
of bit positions 33-63 of the register constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 constitute the address.

The function-code table is treated as being on a dou-
bleword boundary. The handling of the function-code-
table address in general register 1 is dependent on
the addressing mode. In the 24-bit addressing mode,
the contents of bit positions 40-60 of the register con-
stitute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-60 of the register consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-60 of the register consti-
tute the address. In all addressing modes, bit posi-
tions 61-63 are reserved and should contain zeros;
otherwise, the program may not operate compatibly
in the future.

When a nonzero function code is selected, it is
inserted into either bits 56-63 or bits 48-63 of general
register R2, depending on whether the F bit of the M3

A F L /
0 1 2 3

A bit F bit L bit
Table Size

(bytes)
0 0 – 256
0 1 – 512

1 0 0 65,536

1 1 0 131,072

1 0 1 256
1 1 1 512

Explanation:

– Not applicable

Figure 7-366. Function-Code Table Size

7-412 The z/Architecture CPU Architecture

T
R

A
N

S
L

A
T

E
 A

N
D

 T
E

S
T

 R
E

V
E

R
S

E
 E

X
T

E
N

D
E

D field is zero or one, respectively. In the 24-bit or 31-bit
addressing mode, bits 0-31 of general register R2 are
unchanged, and bits 32-55 (F=0) or 32-47 (F=1) of
the register are set to zero. In the 64-bit addressing
mode, bits 0-55 (F=0) or 0-47 (F=1) are set to zero.

The contents of the registers just described are
shown in Figure 7-367.

The argument characters of the first operand are
selected one by one for processing, proceeding in a
left-to-right direction for TRANSLATE AND TEST
EXTENDED, or in a right-to-left direction for TRANS-
LATE AND TEST REVERSE EXTENDED. Depend-
ing on the A bit of the M3 field, the argument
characters are treated as either eight-bit or sixteen-
bit unsigned binary integers, extended with zeros on
the left.

When the F bit of the M3 field is zero, the argument
character is added to the function-code-table
address in general register 1 to form the address of
the selected 8-bit function code. When the F bit is
one, the argument character, extended on the right
with a binary 0, is added to the function-code-table
address in general register 1 to form the address of
the selected 16-bit function code. These additions
follow the rules for address arithmetic.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Function Code
0 32 N 63

GR1 / Function-Code Table Address
0 40 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Function Code
0 32 N 63

GR1 / Function-Code Table Address
0 33 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 0 Function Code
0 N 63

GR1 Function-Code Table Address
0 63

Explanation:

N 56 when the F-bit = 0; 48 when the F-bit = 1

Figure 7-367. Register Contents for TRANSLATE AND TEST EXTENDED and TRANSLATE AND TEST REVERSE
EXTENDED

General Instructions 7-413

T
R

A
N

S
L

A
T

E
 A

N
D

 T
E

S
T

 R
E

V
E

R
S

E
 E

X
T

E
N

D
E

DWhen both the A and L bits are one, and the value of
the argument character is greater than 255, then the
function-code table is not accessed. The function
code is assumed to contain zero in this case.

When the selected function code contains zero, or
when the function code is assumed to contain zero,
processing continues with the next argument charac-
ter in the first operand. The operation proceeds until
a nonzero function code is selected, the first-operand
location is exhausted, or a CPU-determined number
of first-operand bytes have been processed.

When the first-operand location is exhausted without
having selected a nonzero function code, general
register R1 is either incremented or decremented by
the first operand length in general register R1 + 1;
general register R1 + 1 is set to zero; general register
R2 is set as though a function code of zero was
selected; and condition code 0 is set. For TRANS-
LATE AND TEST EXTENDED, general register R1 is
incremented by the first operand length; for TRANS-
LATE AND TEST REVERSE EXTENDED, general
register R1 is decremented by the first operand
length. In the 24-bit or 31-bit addressing mode, bits
0-31 of general register R2 are unchanged, and bits
32-63 of the register are set to zeros; in the 64-bit
addressing mode, bits 0-63 of general register R2 are
set to zeros.

When a nonzero function code is selected, the func-
tion code replaces bits 56-63 or bits 48-63 of general
register R2, depending on whether the F bit is zero or
one, respectively; depending on the addressing
mode, the remaining bits in general register R2 are
set to zeros; the address of the argument character
used to select the nonzero function code is placed in
general register R1; general register R1 + 1 is decre-
mented by the number of first-operand bytes pro-
cessed prior to selecting the nonzero function byte;
and condition code 1 is set. In the 24-bit or 31-bit
addressing mode, bits 0-31 of general register R2 are
unchanged, and bits 32-55 (F=0) or 32-47 (F=1) are
set to zero; in the 64-bit addressing mode, bits 0-55
(F=0) or 0-47 (F=1) are set to zeros.

When a CPU-determined number of bytes have been
processed, general register R1 is either incremented
or decremented by the number of bytes in the first
operand that were processed, general register R1 + 1
is decremented by this number, and condition code 3
is set. For TRANSLATE AND TEST EXTENDED,
general register R1 is incremented by the number of
bytes processed; for TRANSLATE AND TEST

REVERSE EXTENDED, general register R1 is decre-
mented by the number of bytes processed. Condition
code 3 may be set even when the first-operand loca-
tion is exhausted or when the next argument charac-
ter to be processed selects a nonzero function byte.
In these cases, condition code 0 or 1 will be set when
the instruction is executed again.

When the R2 field designates the same register as
register R1, the updated first-operand address is
placed in the register. When the R2 field designates
the same register as register R1+1, the updated first-
operand length is placed in the register.

When general register R1 is updated in the 24-bit or
31-bit addressing mode, bits 32-39, in the 24-bit
mode, or bit 32, in the 31-bit mode, may be set to
zeros or may remain unchanged from their original
values.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1, R1 + 1,
and R2 always remain unchanged.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

Access exceptions for the portion of the first operand
beyond the last byte processed may or may not be
recognized. For an operand longer than 4K bytes,
access exceptions are not recognized for locations
more than 4K bytes beyond the last byte processed.
When the length of the first operand is zero, no
access exceptions for the first operand are recog-
nized.

Access exceptions for any byte of the function-code
table specified by general register 1 may be recog-
nized, even if not all bytes are used.

Special Conditions

A specification exception is recognized for any of the
following conditions:

1. The R1 field designates an odd-numbered regis-
ter.

2. The A bit of the M3 field is one and the first oper-
and length in general register R1 + 1 is odd.

7-414 The z/Architecture CPU Architecture

T
R

A
N

S
L

A
T

E
 A

N
D

 T
E

S
T

 R
E

V
E

R
S

E
 E

X
T

E
N

D
E

D Resulting Condition Code:

0 Entire first operand processed without selecting
a nonzero function code

1 Nonzero function code selected
2 --
3 CPU-determined number of bytes processed

Program Exceptions:

• Access (fetch, operand 1 and the function-code
table)

• Operation (if the parsing-enhancement facility is
not installed)

• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
processing. The program need not determine the
number of bytes that were processed.

2. The storage-operand references of TRANS-
LATE AND TEST EXTENDED and TRANSLATE
AND TEST REVERSE EXTENDED may be mul-
tiple-access references. (See “Storage-Operand
Consistency” on page 5-125.)

3. The following example illustrates the use of
TRANSLATE AND TEST EXTENDED to parse a
buffer of 16-bit Unicode argument characters for
delimiters such as those used in common
markup languages. Because the Unicode repre-
sentation of such delimiters is in the range of
0000 - 00FF hex, a limited function-code table is
used (the L bit of the M3 field is one).

In this example, the variable BUFFER is used to
hold the 16-bit characters to be parsed. If a
delimiting character is not found, control passes
to the label NOTFND. If a delimiting character is
found, the function code placed in general regis-
ter R2 is used as an index to the branch table that

passes control to a specific processing routine
(not shown).

Note, the branch to label NOT_FND does not
result from a function-code-table entry of zeros.
Rather, the branch is taken when the first oper-
and is exhausted without selecting a nonzero
function-code-table entry.

4. As an alternative to treating the selected func-
tion-code value as a table index (as shown in
programming note 3, above), the function-code
value may be used directly as a branch offset.

5. The performance of TRANSLATE AND TEST
EXTENDED and TRANSLATE AND TEST
REVERSE EXTENDED may be significantly
slower if the program modifies the function-code
table prior to execution of the instruction.

6. In the assembler syntax, the M3 operand is con-
sidered to be optional. When the M3 field is not
coded, it is considered to contain zeros by the
assembler.

LARL 1,TABLE Point to func-code table.
LARL 2,BUFFER Point to buffer.
LAY 3,L'BUFFER Load length of buffer.

RETRY TRTE 2,15,B'1010' Parse the buffer.
BO RETRY Retry on CC3.
B BR_TBL(15) Br. based on func. code:

BR_TBL B NOT_FND - 00 (CC0, not found).
B NULL - 04
B DOUBLE_QUOTE - 08
B AMPERSAND - 0C
B SINGLE_QUOTE - 10
B SLASH - 14
B LESS_THAN - 18
B EQUALS - 1C
B GREATER_THAN - 20
B QUESTION_MARK- 24
...

NOT_FND DS 0H No delimiters found.
...
DC X'04,00,00,00,00,00,00,00' 00-07
DC X'00,00,00,00,00,00,00,00' 08-0F
DC X'00,00,00,00,00,00,00,00' 10-17
DC X'00,00,00,00,00,00,00,00' 18-1F
DC X'00,00,08,00,00,00,0C,10' 20-27
DC X'00,00,00,00,00,00,00,14' 28-2F
DC X'00,00,00,00,00,00,00,00' 30-37
DC X'00,00,00,00,18,1C,20,24' 38-3F
DC 192X'00' 40-FF

BUFFER DS CL8192 Buffer of 16-bit chars.

General Instructions 7-415

T
R

A
N

S
L

A
T

E
 E

X
T

E
N

D
E

DTRANSLATE AND TEST REVERSE

TRTR D1(L,B1),D2(B2) [SS-a]

The bytes of the first operand are used as eight-bit
arguments to select function bytes from a list desig-
nated by the second-operand address. The first-
operand address designates the rightmost byte of
the first operand. The first nonzero function byte is
inserted in general register 2, and the related argu-
ment address in general register 1.

The L field specifies the length of only the first oper-
and.

The bytes of the first operand are selected one by
one for translation, proceeding from right to left. The
first operand remains unchanged in storage. Calcula-
tion of the address of the function byte is performed
as in the TRANSLATE instruction. The function byte
retrieved from the list is inspected for a value of zero.

When the function byte is zero, the operation pro-
ceeds with the preceding byte of the first operand.
When the first-operand field is exhausted before a
nonzero function byte is encountered, the operation
is completed by setting condition code 0. The con-
tents of general registers 1 and 2 remain unchanged.

When the function byte is nonzero, the operation is
completed by inserting the function byte in general
register 2 and the related argument address in gen-
eral register 1. This address points to the argument
byte last translated. The function byte replaces bits
56-63 of general register 2, and bits 0-55 of this reg-
ister remain unchanged. In the 24-bit addressing
mode, the address replaces bits 40-63 of general
register 1, and bits 0-39 of this register remain
unchanged. In the 31-bit addressing mode, the
address replaces bits 33-63 of general register 1,
and bits 0-32 of this register remain unchanged. In
the 64-bit addressing mode, the address replaces
bits 0-63 of general register 1.

When the function byte is nonzero, either condition
code 1 or 2 is set, depending on whether the argu-
ment byte is the leftmost byte of the first operand.
Condition code 1 is set if one or more argument
bytes remain to be translated. Condition code 2 is set
if no more argument bytes remain.

The contents of access register 1 always remain
unchanged.

Access exceptions can be recognized for any byte in
either the first or in the second operand.

Resulting Condition Code:

0 All function bytes zero
1 Nonzero function byte; first-operand field not

exhausted
2 Nonzero function byte; first-operand field

exhausted
3 --

Program Exceptions:

• Access (fetch, operands 1 and 2)
• Operation (if the extended-translation facility 3 is

not installed)
• Transaction constraint

Programming Note:

TRANSLATE AND TEST REVERSE may be used to
scan the first operand for characters with special
meaning. The second operand, or list, is set up with
all-zero function bytes for those characters to be
skipped over and with nonzero function bytes for the
characters to be detected.

TRANSLATE EXTENDED

TRE R1,R2 [RRE]

The bytes of the first operand are compared to a test
byte in general register 0 and, unless an equal com-
parison occurs, are used as eight-bit arguments to
reference a 256-byte translation table designated by
the second-operand address. Each function byte
selected from the second operand replaces the cor-
responding argument in the first operand. The opera-
tion proceeds until a first-operand byte equal to the
test byte is encountered, the end of the first operand
is reached, or a CPU-determined number of bytes
have been processed, whichever occurs first. The
result is indicated in the condition code.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-

'D0' L B1 D1 B2 D2

0 8 16 20 32 36 47

'B2A5' / / / / / / / / R1 R2

0 16 24 28 31

7-416 The z/Architecture CPU Architecture

T
R

A
N

S
L

A
T

E
 E

X
T

E
N

D
E

D ister; otherwise, a specification exception is recog-
nized.

The location of the leftmost byte of the first operand
and second operand is designated by the contents of
general registers R1 and R2, respectively. In the
24-bit or 31-bit addressing mode, the number of
bytes in the first-operand location is specified by the
contents of bit positions 32-63 of general register
R1 + 1, and those contents are treated as a 32-bit
unsigned binary integer. In the 64-bit addressing
mode, the number of bytes in the first-operand loca-
tion is specified by the entire contents of general reg-
ister R1 + 1, and those contents are treated as a
64-bit unsigned binary integer.

The handling of the addresses in general registers R1

and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 consti-
tute the address, and the contents of bit positions
0-39 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-63 of the registers consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-63 constitute the address.

The test byte is in bit positions 56-63 of general reg-
ister 0, and the contents of bit positions 0-55 of this
register are ignored.

The contents of the registers just described are
shown in Figure 7-368.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. Each
argument byte is first compared to the test byte in

general register 0. If the result is an equal compari-
son, the operation is completed. If the argument byte
is not equal to the test byte, the argument byte is

All Addressing Modes

GR0 / Test
0 56 63

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

Figure 7-368. Register Contents for TRANSLATE EXTENDED

General Instructions 7-417

T
R

A
N

S
L

A
T

E
 E

X
T

E
N

D
E

Dadded to the initial second-operand address. The
addition is performed following the rules for address
arithmetic, with the argument byte treated as an
eight-bit unsigned binary integer and extended with
zeros on the left. The sum is used as the address of
the function byte, which then replaces the original
argument byte. The second operand is not altered
unless an overlap occurs.

The operation proceeds until a first-operand byte
equal to the test byte is encountered, the first-oper-
and location is exhausted, or a CPU-determined
number of first-operand bytes have been processed.

When the first-operand location is exhausted without
finding a byte equal to the test byte, condition code 0
is set. When a first-operand byte equal to the test
byte is encountered, condition code 1 is set. When a
CPU-determined number of bytes have been pro-
cessed, condition code 3 is set. Condition code 3
may be set even when the first-operand location is
exhausted or when the next byte to be processed is
equal to the test byte. In these cases, condition code
0 or 1, respectively, will be set when the instruction is
executed again.

If the operation is completed with condition code 0,
the contents of general register R1 are incremented
by the contents of general register R1 + 1, and then
the contents of general register R1 + 1 are set to
zero. If the operation is completed with condition
code 1, the contents of general register R1 + 1 are
decremented by the number of bytes processed
before the first-operand byte equal to the test byte
was encountered, and the contents of general regis-
ter R1 are incremented by the same number, so that
general register R1 contains the address of the equal
byte. If the operation is completed with condition
code 3, the contents of general register R1 + 1 are
decremented by the number of bytes processed, and
the contents of general register R1 are incremented
by the same number, so that the instruction, when
reexecuted, resumes at the next byte to be pro-
cessed. When general register R1 is updated in the
24-bit or 31-bit addressing mode, bits 32-39 of it, in
the 24-bit mode, or bit 32, in the 31-bit mode, may be
set to zeros or may remain unchanged from their
original values.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R1 and
R1 + 1 always remain unchanged.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

When the R2 register is the same register as the R1

or R1 + 1 register, the results are unpredictable.

When R1 or R2 is zero, the results are unpredictable.

When the second operand overlaps the first operand,
the results are unpredictable.

Access exceptions for the portion of the first operand
to the right of the last byte processed may or may not
be recognized. For an operand longer than 4K bytes,
access exceptions are not recognized for locations
more than 4K bytes beyond the last byte processed.

Access exceptions for all 256 bytes of the second
operand may be recognized, even if not all bytes are
used.

Access exceptions are not recognized if the R1 field
is odd. When the length of the first operand is zero,
no access exceptions for the first operand are recog-
nized.

Resulting Condition Code:

0 Entire first operand processed without finding a
byte equal to the test byte

1 First-operand byte is equal to the test byte
2 --
3 CPU-determined number of bytes processed

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Specification
• Transaction constraint

Programming Notes:

1. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the translation. The program need not determine
the number of bytes that were translated.

2. The instruction can improve performance by
being used in place of a TRANSLATE AND TEST
instruction that locates an escape character, fol-

7-418 The z/Architecture CPU Architecture

T
R

A
N

S
L

A
T

E
 O

N
E

 T
O

 O
N

E lowed by a TRANSLATE instruction that trans-
lates the bytes preceding the escape character.

3. The storage-operand references of TRANSLATE
EXTENDED may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-125.)

TRANSLATE ONE TO ONE

TROO R1,R2[,M3] [RRF-c]

TRANSLATE ONE TO TWO

TROT R1,R2[,M3] [RRF-c]

TRANSLATE TWO TO ONE

TRTO R1,R2[,M3] [RRF-c]

TRANSLATE TWO TO TWO

TRTT R1,R2[,M3] [RRF-c]

The characters of the second operand are used as
arguments to select function characters from a trans-
lation table designated by the address in general reg-
ister 1.

When the ETF2-enhancement facility is not installed,
or when the test-character-comparison control is
zero, each function character selected from the trans-
lation table is compared to a test character in general
register 0, and, unless an equal comparison occurs,
is placed at the first-operand location. The operation
proceeds until a selected function character equal to
the test character is encountered, the end of the sec-
ond operand is reached, or a CPU-determined num-
ber of characters have been processed, whichever
occurs first.

When the ETF2-enhancement facility is installed and
the test-character-comparison control is one, test-
character comparison is not performed. Each func-
tion character selected from the translation table is
placed at the first operation location. The operation
proceeds until the end of the second operand is
reached, or a CPU-determined number of characters
have been processed, whichever occurs first.

The result is indicated in the condition code.

When the ETF2-enhancement facility is installed, the
M3 field has the following format:

The bits of the M3 field are defined as follows:

• Unassigned: Bits 0-2 are unassigned and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Test-Character-Comparison Control (C): The
C bit, bit 3 of the M3 field, controls test-character
comparison. When the C bit is zero, test-charac-
ter comparison is performed. When the C bit is
one, test-character comparison is not performed.

When the ETF2-enhancement facility is not installed,
the M3 field is ignored. When the ETF2-enhancement
facility is installed in the z/Architecture architectural
mode, it is unpredictable whether the M3 field is
ignored in the ESA/390-compatibility mode.

The lengths of the operand and test characters are
as follows:

• For TRANSLATE ONE TO ONE, the second-
operand, first-operand, and test characters are
single bytes.

• For TRANSLATE ONE TO TWO, the second-
operand characters are single bytes, and the
first-operand and test characters are double
bytes.

• For TRANSLATE TWO TO ONE, the second-
operand characters are double bytes, and the
first-operand and test characters are single
bytes.

'B993' M3 / / / / R1 R2

0 16 20 24 28 31

'B992' M3 / / / / R1 R2

0 16 20 24 28 31

'B991' M3 / / / / R1 R2

0 16 20 24 28 31

'B990' M3 / / / / R1 R2

0 16 20 24 28 31

/ / / C

0 3

General Instructions 7-419

T
R

A
N

S
L

A
T

E
 T

W
O

 T
O

 T
W

O• For TRANSLATE TWO TO TWO, the second-
operand, first-operand, and test characters are
double bytes.

For TRANSLATE ONE TO ONE and TRANSLATE
TWO TO ONE, the test character is in bit positions
56-63 of general register 0. For TRANSLATE ONE
TO TWO and TRANSLATE TWO TO TWO, the test
character is in bit positions 48-63 of general register
0.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister; otherwise, a specification exception is recog-
nized.

The location of the leftmost byte of the first operand
and second operand is designated by the contents of
general registers R1 and R2, respectively. In the
24-bit or 31-bit addressing mode, the number of
bytes in the second-operand location is specified by
the contents of bit positions 32-63 of general register
R1 + 1, and those contents are treated as a 32-bit
unsigned binary integer. In the 64-bit addressing
mode, the number of bytes in the second-operand
location is specified by the contents of bit positions
0-63 of general register R1 + 1, and those contents
are treated as a 64-bit unsigned binary integer. The
length of the first-operand location is considered to
be the same as that of the second operand for
TRANSLATE ONE TO ONE and TRANSLATE TWO
TO TWO, twice that for TRANSLATE ONE TO TWO,
and one half that for TRANSLATE TWO TO ONE.

For TRANSLATE TWO TO ONE and TRANSLATE
TWO TO TWO, the length in general register R1 + 1
must be an even number of bytes; otherwise, a spec-
ification exception is recognized.

The translation table is treated as being on a double-
word boundary for TRANSLATE ONE TO ONE and
TRANSLATE ONE TO TWO. For TRANSLATE TWO
TO ONE and TRANSLATE TWO TO TWO, the trans-
lation table is treated as follows:

• When the ETF2-enhancement facility is not
installed, the translation table is treated as being
on a 4 K-byte boundary.

• When the ETF2-enhancement facility is installed,
the translation table is treated as being on a dou-
bleword boundary.

The rightmost bits of the register that are not used to
form the address, which are bits 61-63 in the double-
word case and bits 52-63 in the 4 K-byte case, are
ignored but should contain zeros; otherwise, the pro-
gram may not operate compatibly in the future.

The handling of the addresses in general registers
R1, R2, and 1 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R1 and R2 and
40-60 or 40-51 of 1 constitute the address, and the
contents of bit positions 0-39 are ignored. In the
31-bit addressing mode, the contents of bit positions
33-63 of registers R1 and R2 and 33-60 or 33-51 of 1
constitute the address, and the contents of bit posi-
tions 0-32 are ignored. In the 64-bit addressing
mode, the contents of bit positions 0-63 of registers
R1 and R2 and 0-60 or 0-51 of 1 constitute the
address.

The contents of the registers just described are
shown in Figure 7-369.

For TRANSLATE ONE TO ONE and TRANSLATE TWO TO ONE

GR01 / Test
0 56 63

For TRANSLATE ONE TO TWO and TRANSLATE TWO TO TWO

GR01 / Test
0 48 63

Figure 7-369. Register Contents for TRANSLATE ONE TO ONE, TRANSLATE ONE TO TWO, TRANSLATE TWO TO ONE,
and TRANSLATE TWO TO TWO (Part 1 of 2)

7-420 The z/Architecture CPU Architecture

T
R

A
N

S
L

A
T

E
 T

W
O

 T
O

 T
W

O

In the access-register mode, the contents of access
registers R1, R2, and 1 are used for accessing the
first operand, second operand, and translation table,
respectively.

The length of the translation table designated by the
address contained in general register 1 is as follows:

• For TRANSLATE ONE TO ONE, the translation-
table length is 256 bytes; each of the 256 func-
tion characters is a single byte.

• For TRANSLATE ONE TO TWO, the translation-
table length is 512 bytes; each of the 256 func-
tion characters is a double byte.

• For TRANSLATE TWO TO ONE, the translation-
table length is 65,536 (64K) bytes; each of the
64K function characters is a single byte.

• For TRANSLATE TWO TO TWO, the translation-
table length is 131,072 (128K) bytes; each of the
64K function characters is a double byte.

24-Bit Addressing Mode

R1 / First-Operand Address
0 40 63

R1 + 1 / Second-Operand Length
0 32 63

R2 / Second-Operand Address
0 40 63

GR1 / Translation-Table Address / / / / / / / / / / / /
0 40 N 63

31-Bit Addressing Mode

R1 / First-Operand Address
0 33 63

R1 + 1 / Second-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

GR1 / Translation-Table Address / / / / / / / / / / / /
0 33 N 63

64-Bit Addressing Mode

R1 First-Operand Address
0 63

R1 + 1 Second-Operand Length
0 63

R2 Second-Operand Address
0 63

GR1 Translation-Table Address / / / / / / / / / / / /
0 N 63

Explanation:

1 When the ETF2-enhancement facility is not installed, or when the C bit, bit 3 of the M3 field, is zero, test-character comparison is
performed. When the ETF2-enhancement facility is installed and the C bit is one, test-character comparison is not performed, and general
register 0 is ignored.

N When the ETF2-enhancement facility is not installed, N is 61 for TRANSLATE ONE TO ONE and TRANSLATE ONE TO TWO, and N is 52
for TRANSLATE TWO TO ONE and TRANSLATE TWO TO TWO. When the ETF2-enhancement facility is installed, N is 61.

Figure 7-369. Register Contents for TRANSLATE ONE TO ONE, TRANSLATE ONE TO TWO, TRANSLATE TWO TO ONE,
and TRANSLATE TWO TO TWO (Part 2 of 2)

General Instructions 7-421

T
R

A
N

S
L

A
T

E
 T

W
O

 T
O

 T
W

OThe characters of the second operand are selected
one by one for translation, proceeding left to right.
Each argument character is added to the initial trans-
lation-table address. The addition is performed fol-
lowing the rules for address arithmetic, with the
argument character treated as follows:

• For TRANSLATE ONE TO ONE, the argument
character is treated as an eight-bit unsigned
binary integer extended on the left with 56 zeros.

• For TRANSLATE ONE TO TWO, the argument
character is treated as an eight-bit unsigned
binary integer extended on the right with a zero
and on the left with 55 zeros.

• For TRANSLATE TWO TO ONE, the argument
character is treated as a 16-bit unsigned binary
integer extended on the left with 48 zeros.

• For TRANSLATE TWO TO TWO, the argument
character is treated as a 16-bit unsigned binary
integer extended on the right with a zero and on
the left with 47 zeros.

The rightmost bits of the translation-table address
that are ignored (61-63 or 52-63) are treated as zeros
during this addition.

The sum is used as the address of the function char-
acter.

When the ETF2-enhancement facility is not installed,
or when the test-character-comparison control is
zero, processing is as follows. Each function charac-
ter selected as described above is first compared to
the test character in general register 0. If the result is
an equal comparison, the operation is completed. If
the function character is not equal to the test charac-
ter, the function character is placed in the next avail-
able character position in the first operand, that is,
the first function character is placed at the beginning
of the first-operand location, and each successive
function character is placed immediately to the right
of the preceding character. The second operand and
the translation table are not altered unless an overlap
occurs.

The operation proceeds until a selected function
character equal to the test character is encountered,
the second-operand location is exhausted, or a CPU-
determined number of second-operand characters
have been processed.

When the ETF2-enhancement facility is installed and
the test-character-comparison control is one, pro-
cessing is as described above, except that no test-
character comparison is performed.

When a selected function character equal to the test
character is encountered, condition code 1 is set.
When the second-operand location is exhausted
without finding a selected function character equal to
the test character, condition code 0 is set. When a
CPU-determined number of characters have been
processed, condition code 3 is set. Condition code 3
may be set even when the next character to be pro-
cessed results in a function character equal to the
test character or when the second-operand location
is exhausted. In these cases, condition code 1 or 0,
respectively, will be set when the instruction is exe-
cuted again. When the ETF2-enhancement facility is
installed and the test-character-comparison control is
one, condition code 1 does not apply.

If the operation is completed with condition code 0,
the contents of general register R2 are incremented
by the contents of general register R1 + 1, and the
contents of general register R1 are incremented as
follows:

• For TRANSLATE ONE TO ONE and TRANS-
LATE TWO TO TWO, the same as for general
register R2.

• For TRANSLATE ONE TO TWO, by twice the
amount for general register R2.

• For TRANSLATE TWO TO ONE, by one half the
amount for general register R2.

The contents of general register R1 + 1 are then set
to zero.

If the operation is completed with condition code 1,
the contents of general register R1 + 1 are decre-
mented by the number of second-operand bytes pro-
cessed before the character that selected a function
character equal to the test character was encoun-
tered, and the contents of general register R2 are
incremented by the same number, so that general
register R2 contains the address of the character that
selected a function character equal to the test char-
acter. The contents of general register R1 are incre-
mented by the same, twice, or one half the number,
as described above for condition code 0.

7-422 The z/Architecture CPU Architecture

T
R

A
N

S
L

A
T

E
 T

W
O

 T
O

 T
W

O If the operation is completed with condition code 3,
the contents of general register R1 + 1 are decre-
mented by the number of second-operand bytes pro-
cessed, and the contents of general register R2 are
incremented by the same number, so that the instruc-
tion, when reexecuted, contains the address of the
next character to be processed. The contents of gen-
eral register R1 are incremented by the same, twice,
or one half the number, as described above for condi-
tion code 0.

When general registers R1 and R2 are updated in the
24-bit or 31-bit addressing mode, the bits in bit posi-
tions 32-39 of them that are not part of the address
may be set to zeros or may remain unchanged from
their original values. In the 24-bit or 31-bit addressing
mode, the contents of bit positions 0-31 of general
registers R1, R1 + 1, and R2 always remain
unchanged.

The contents of general registers 0 and 1 remain
unchanged.

The amount of processing that results in the setting
of condition code 3 is determined by the CPU on the
basis of improving system performance, and it may
be a different amount each time the instruction is
executed.

When any of the following conditions are true, the
results are unpredictable:

• Either the R1 or R1 + 1 registers are the same
register as the R2 register.

• The R1 register is register 0,

• The R2 register is register 0, and either the
ETF2-enhancement facility is not installed, or the
facility is installed and the C bit is zero.

• The R2 register is register 1.

• Any of the first and second operands and the
translation table overlaps another of them.

Access exceptions for the portion of the first or sec-
ond operand to the right of the last character pro-
cessed may or may not be recognized. For an
operand longer than 4K bytes, access exceptions are
not recognized for locations more than 4K bytes
beyond the last character processed.

Access exceptions for all characters of the translation
table may be recognized even if not all characters are
used.

Access exceptions are not recognized if the R1 field
is odd. When the length of the second operand is
zero, no access exceptions for the first or second
operand are recognized, and access exceptions for
the translation table may or may not be recognized.

Resulting Condition Code:

0 Entire second operand processed; if test-charac-
ter comparison was performed, no resulting func-
tion character was equal to the test character

1 Second-operand character found resulting in a
function character equal to the test character
(applicable only when test-character comparison
is performed)

2 --
3 CPU-determined number of characters pro-

cessed

Program Exceptions:

• Access (fetch, operand 2 and translation table;
store, operand 1)

• Operation (if the extended-translation facility 2 is
not installed)

• Specification
• Transaction constraint

Programming Notes:

1. These instructions differ from the TRANSLATE
EXTENDED instruction by having the following
attributes:

• Depending on the instruction used, the sets
of argument characters and function charac-
ters each can contain single-byte or double-
byte characters.

• The test character is compared to a resulting
function character instead of to an argument
character.

• The argument (source) and function (desti-
nation) operands are different operands.

2. When condition code 3 is set, the program can
simply branch back to the instruction to continue
the translation. The program need not determine
the number of characters that were translated.

General Instructions 7-423

U
N

P
A

C
K

 A
S

C
II3. The storage operand references of these instruc-

tions may be multiple-access references. (See
“Storage-Operand Consistency” on page 5-125.)

4. As observed by this CPU, other CPUs, and the
I/O subsystem, inconsistent results may be
briefly stored in the first-operand location. See
the section “Effects of CPU Retry” on page 11-3
for further details.

UNPACK

UNPK D1(L1,B1),D2(L2,B2) [SS-b]

The format of the second operand is changed from
signed-packed-decimal to zoned, and the result is
placed at the first-operand location. The signed-
packed-decimal and zoned formats are described in
Chapter 8, “Decimal Instructions.”

The second operand is treated as having the signed-
packed-decimal format. Its digits and sign are placed
unchanged in the first-operand location, using the
zoned format. Zone bits with coding of 1111 are sup-
plied for all bytes except the rightmost byte, the zone
of which receives the sign of the second operand.
The sign and digits are not checked for valid codes.

The result is obtained as if the operands were pro-
cessed right to left. When necessary, the second
operand is considered to be extended on the left with
zeros. If the first-operand field is too short to contain
all digits of the second operand, the remaining left-
most portion of the second operand is ignored.
Access exceptions for the unused portion of the sec-
ond operand may or may not be indicated.

When the operands overlap, the result is obtained as
if the operands were processed one byte at a time
and as if the first result byte were stored immediately
after fetching the first operand byte. The entire right-
most second-operand byte is used in forming the first
result byte. For the remainder of the field, information
for two result bytes is obtained from a single second-
operand byte, and execution proceeds as if the left-
most four bits of the byte were to remain available for
the next result byte and need not be refetched. Thus,
the result is as if two result bytes were to be stored
immediately after fetching a single operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Transaction constraint

Programming Notes:

1. An example of the use of the UNPACK instruc-
tion is given in Appendix A, “Number Represen-
tation and Instruction-Use Examples.”

2. A field that is to be unpacked can be destroyed
by improper overlapping. To save storage space
for unpacking by overlapping the operands, the
rightmost byte of the first operand must be to the
right of the rightmost byte of the second operand
by the number of bytes in the second operand
minus 2. If only one or two bytes are to be
unpacked, the rightmost bytes of the two oper-
ands may coincide.

3. The storage-operand references of UNPACK
may be multiple-access references. (See “Stor-
age-Operand Consistency” on page 5-125.)

UNPACK ASCII

UNPKA D1(L1,B1),D2(B2) [SS-a]

The format of the second operand is changed from
signed-packed-decimal to ASCII, and the result is
placed at the first-operand location. The signed-
packed-decimal format is described in Chapter 8,
“Decimal Instructions.”

The second operand is treated as having the signed-
packed-decimal format. Its digits are converted to
ASCII characters by extending them on the left with
0011 binary, and the ASCII characters are then
placed at the first operand location. The digits are not
checked for valid codes.

The sign of the second operand is not transferred to
the first operand but is checked for validity and deter-
mines the condition code. If the sign is 1010, 1100,
1110 or 1111 binary (plus), condition code 0 is set. If
the sign is 1011 or 1101 binary (minus), condition
code 1 is set. If the sign is not one of the codes for
plus or minus, condition code 3 is set.

'F3' L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

'EA' L1 B1 D1 B2 D2

0 8 16 20 32 36 47

7-424 The z/Architecture CPU Architecture

U
N

P
A

C
K

 U
N

IC
O

D
E The converted last digit is placed in the rightmost

byte position of the result field, and the other con-
verted digits are placed adjacent to the last and to
each other in the remainder of the result field.

The result is obtained as if the operands were pro-
cessed right to left.

The length of the second operand is 16 bytes. The
second operand consists of 31 digits and a sign.

The length of the first operand is designated by the
contents of the L1 field. The first-operand length must
not exceed 32 bytes (L1 must be less than or equal to
31); otherwise, a specification exception is recog-
nized.

If the first operand is too short to contain all digits of
the second operand, the remaining leftmost portion
of the second operand is ignored. Access exceptions
for the unused portion of the second operand may or
may not be indicated.

When the length of the first operand is 32 bytes, the
leftmost byte is set to ASCII zero, 30 hex.

The results are unpredictable if the first and second
operands overlap in any way.

As observed by other CPUs and by channel pro-
grams, the first operand is not necessarily stored into
in any particular order.

Resulting Condition Code:

0 Sign is plus
1 Sign is minus
2 --
3 Sign is invalid

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the extended-translation facility 2 is

not installed)
• Specification
• Transaction constraint

Programming Note:

1. The following example illustrates the use of the
instruction to unpack to ASCII digits:

2. The storage-operand references of UNPACK
ASCII may be multiple-access references. (See
“Storage-Operand Consistency” on page 5-125.)

3. The UNPACK ASCII and UNPACK UNICODE
instructions set condition code 0 to indicate a
positive sign, and these instructions provide no
indication of a zero result. In all other instructions
that indicate a signed result, condition code 0
indicates a result of zero, and condition code 2
indicates a positive result.

UNPACK UNICODE

UNPKU D1(L1,B1),D2(B2) [SS-a]

The format of the second operand is changed from
signed-packed-decimal to Unicode Basic Latin, and
the result is placed at the first-operand location. The
signed-packed-decimal format is described in
Chapter 8, “Decimal Instructions.”

The second operand is treated as having the signed-
packed-decimal format. Its digits are converted to
two-byte Unicode characters by extending them on
the left with 000000000011 binary (003 hex), and the
Unicode characters are then placed at the first oper-
and location. The digits are not checked for valid
codes. The sign of the second operand is not trans-
ferred to the first operand but is checked for validity
and determines the condition code. If the sign is
1010, 1100, 1110 or 1111 binary (plus), condition
code 0 is set. If the sign is 1011 or 1101 binary
(minus), condition code 1 is set. If the sign is not one
of the codes for plus or minus, condition code 3 is
set.

The converted last digit is placed in the rightmost
character position of the result field, and the other

ASDIGITS DS CL31
PKDIGITS DS 0PL16

DC X'1234567890'
DC X'1234567890'
DC X'1234567890'
DC X'1C'

UNPKA ASDIGITS(31),PKDIGITS

'E2' L1 B1 D1 B2 D2

0 8 16 20 32 36 47

General Instructions 7-425

U
P

D
A

T
E

 T
R

E
Econverted digits are placed adjacent to the last and

to each other in the remainder of the result field.

The result is obtained as if the operands were pro-
cessed right to left.

The length of the second operand is 16 bytes; the
second operand consists of 31 digits and a sign.

The length of the first operand is designated by the
contents of the L1 field. The first-operand length must
not exceed 32 characters or 64 bytes (L1 must be
less than or equal to 63 and must be odd); otherwise
a specification exception is recognized.

If the first operand is too short to contain all digits of
the second operand, the remaining leftmost portion
of the second operand is ignored. Access exceptions
for the unused portion of the second operand may or
may not be indicated.

When the length of the first operand is 32 characters,
the leftmost character is set to Unicode Basic Latin
zero, 0030 hex.

The results are unpredictable if the first and second
operands overlap in any way.

As observed by other CPUs and by channel pro-
grams, the first operand is not necessarily stored into
in any particular order.

Resulting Condition Code:

0 Sign is plus
1 Sign is minus
2 --
3 Sign is invalid

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the extended-translation facility 2 is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. The following example illustrates the use of the
instruction to unpack to European numbers:

2. The storage-operand references of UNPACK
UNICODE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-125.)

3. The UNPACK ASCII and UNPACK UNICODE
instructions set condition code 0 to indicate a
positive sign, and these instructions provide no
indication of a zero result. In all other instructions
that indicate a signed result, condition code 0
indicates a result of zero, and condition code 2
indicates a positive result.

UPDATE TREE

UPT [E]

The nodes of a tree in storage are examined succes-
sively on a path toward the base of the tree, and con-
tents of general register 0, conceptually followed on
the right by contents of general register 1, are condi-
tionally interchanged with the contents of the nodes
so as to give a unique maximum logical value in gen-
eral register 0. The first half of a node and general
register 0 contain a codeword, which is for use in
sort/merge algorithms.

If the codeword in general register 0 equals the code-
word in a node, the contents of the node are placed
in general registers 2 and 3.

General register 4 contains the base address of the
tree, and general register 5 contains the index of a
node whose parent node will be examined first.

In the access-register mode, access register 4 speci-
fies the address space containing the tree.

UNDIGITS DS CL62
PKDIGITS DS 0PL16

DC X'1234567890'
DC X'1234567890'
DC X'1234567890'
DC X'1C'
UNPKU UNDIGITS(62),PKDIGITS

'0102'
0 15

7-426 The z/Architecture CPU Architecture

U
P

D
A

T
E

 T
R

E
E This instruction may be interrupted between units of

operation. The condition code is unpredictable if the
instruction is interrupted.

The size of a node, the size of a codeword, and the
participation of bits 0-31 of general registers 1-5 in
the operation depend on the addressing mode. In the
24-bit or 31-bit addressing mode, a node is eight
bytes, a codeword is four bytes, and bits 0-31 are
ignored and remain unchanged. In the 64-bit
addressing mode, a node is 16 bytes, a codeword is
eight bytes, and bits 0-31 are used in and may be
changed by the operation.

Operation in the 24-Bit or 31-Bit Addressing
Mode

In the 24-bit or 31-bit addressing mode, the double-
word nodes of a tree in storage are examined suc-
cessively on a path toward the base of the tree, and
the contents of bit positions 32-63 of general register
0, conceptually followed on the right by the contents
of bit positions 32-63 of general register 1, are condi-
tionally interchanged with the contents of the nodes
so as to give a unique maximum logical value in bit
positions 32-63 of general register 0.

Bit positions 32-63 of general register 4 contain the
base address of the tree, and bit positions 32-63 of
general register 5 contain the index of a node whose
parent node will be examined first. The base address
is eight less than the address of the root node of the
tree. The initial contents of bit positions 32-63 of gen-
eral registers 4 and 5 must be a multiple of 8; other-
wise, a specification exception is recognized.

A unit of operation begins by shifting the contents of
bit positions 32-63 of general register 5 right logically
one position and then setting bit 61 to zero. However,
bits 32-63 of general register 5 remain unchanged if
the execution of a unit of operation is nullified or sup-
pressed. If after shifting and setting bit 61 to zero, bits
32-63 of general register 5 are all zeros, the instruc-
tion is completed, and condition code 1 is set; other-
wise, the unit of operation continues.

Bit 32 of general register 0 is tested. If bit 32 of gen-
eral register 0 is one, the instruction is completed,
and condition code 3 is set.

If bit 32 of general register 0 is zero, the sum of bits
32-63 of general registers 4 and 5 is used as the

intermediate value for normal operand address gen-
eration. The generated address is the address of a
node in storage.

Bits 32-63 of general register 0 are logically com-
pared with the contents of the first word of the cur-
rently addressed node. If the register operand is low,
the contents of bit positions 32-63 of general regis-
ters 0 and 1 are interchanged with those of the node,
and a unit of operation is completed. If the register
operand is high, no additional action is taken, and the
unit of operation is completed. If the compare values
are equal, bit positions 32-63 of general register 2,
conceptually followed on the right by bit positions
32-63 of general register 3, are loaded from the cur-
rently addressed node, the instruction is completed,
and condition code 0 is set.

In those cases when the value in the first word of the
node is less than or equal to the value in bit positions
32-63 of the register, the contents of the node remain
unchanged. However, in some models, these con-
tents may be fetched and subsequently stored back.

Operation in the 64-Bit Addressing Mode

In the 64-bit addressing mode, the quadword nodes
of a tree in storage are examined successively on a
path toward the base of the tree, and the contents of
general register 0, conceptually followed on the right
by the contents of general register 1, are condition-
ally interchanged with the contents of the nodes so
as to give a unique maximum logical value in general
register 0.

General register 4 contains the base address of the
tree, and general register 5 contain the index of a
node whose parent node will be examined first. The
base address is 16 less than the address of the root
node of the tree. The initial contents of general regis-
ters 4 and 5 must be a multiple of 16; otherwise, a
specification exception is recognized.

A unit of operation begins by shifting the contents of
general register 5 right logically one position and
then setting bit 60 to zero. However, general register
5 remains unchanged if the execution of a unit of
operation is nullified or suppressed. If after shifting
and setting bit 60 to zero, the contents of general reg-
ister 5 are zero, the instruction is completed, and
condition code 1 is set; otherwise, the unit of opera-
tion continues.

General Instructions 7-427

U
P

D
A

T
E

 T
R

E
EBit 0 of general register 0 is tested. If bit 0 of general

register 0 is one, the instruction is completed, and
condition code 3 is set.

If bit 0 of general register 0 is zero, the sum of the
contents of general registers 4 and 5 is used as the
intermediate value for normal operand address gen-
eration. The generated address is the address of a
node in storage.

The contents of general register 0 are logically com-
pared with the contents of the first doubleword of the
currently addressed node. If the register operand is
low, the contents of general registers 0 and 1 are
interchanged with those of the node, and a unit of
operation is completed. If the register operand is
high, no additional action is taken, and the unit of
operation is completed. If the compare values are
equal, general registers 2 and 3 are loaded from the
currently addressed node, the instruction is com-
pleted, and condition code 0 is set.

In those cases when the value in the first doubleword
of the node is less than or equal to the value in the
register, the contents of the node remain unchanged.
However, in some models, these contents may be
fetched and subsequently stored back.

Specifications Independent of Addressing Mode

Access exceptions are recognized only for one node
at a time. Access exceptions, change-bit action, and
PER storage alteration do not occur for subsequent
nodes until the previous node has been successfully
compared and updated, and they also do not occur if
a specification-exception condition exists.

Resulting Condition Code:

0 Equal compare values at currently addressed
node

1 No equal compare values found on path, or no
comparison made

2 --
3 In 24-bit or 31-bit mode, bits 32-63 of general

register 5 nonzero and bits 32-63 of general reg-
ister 0 negative; in 64-bit mode, general register
5 nonzero and general register 0 negative

Program Exceptions:

• Access (fetch and store, nodes of tree)
• Specification
• Transaction constraint

Programming Notes:

1. An example of the use of UPDATE TREE is given
in “Sorting Instructions” in Appendix A, “Number
Representation and Instruction-Use Examples.”

2. For use in sorting in the 24-bit or 31-bit address-
ing mode, when equal compare values have
been found, the contents of bit positions 32-63 of
general registers 1 and 3 can be appropriate
(depending on the contents of the tree) for the
subsequent execution of COMPARE AND FORM
CODEWORD. The contents of bit positions
32-63 of general register 2, shifted right 16 bit
positions, can be similarly appropriate, and they
can provide for minimal recomparison of partially
equal keys. The same applies in the 64-bit
addressing mode except to the contents of bit
positions 0-63 of the registers and with the con-
tents of bit positions 0-63 of general register 2
shifted right 48 bit positions. Refer to “Sorting
Instructions” on page A-53 for a discussion of
trees and their use in sorting.

3. The program should avoid placing a nonzero
value in bit positions 32-38 of general register 5
when in the 24-bit addressing mode. If any bit in
bit positions 32-38 is a one, the nodes of the tree
will not be examined successively.

4. When bits 32-63 of general register 0 are nega-
tive in the 24-bit or 31-bit addressing mode, or
when bits 0-63 are negative in the 64-bit mode,
and provided that the tree has been updated
properly previously, the node represented by
general registers 0 and 1 either is the node or is
equal to the node (equal keys) that would be
selected if the unit of operation continued. In this
case, ending the unit of operation and setting
condition code 3 is a faster means of selecting
an appropriate node because it does not require
further examination and updating of the tree.

5. Setting condition code 3 provides improved per-
formance when the replacement record is equal
to the old winner and, more importantly (since
the first case can be detected by means of the
condition code of CFC), when the update path
contains a negative codeword, indicating equality
with the old winner.

6. In those cases when the codeword in the node is
less than or equal to the codeword in general
register 0, depending on the model, the contents
of the node may be fetched and subsequently

7-428 The z/Architecture CPU Architecture

U
P

D
A

T
E

 T
R

E
E stored back. As a result, any of the following may

occur for the storage location containing the
node: a PER storage-alteration event may be
recognized; a protection exception for storing
may be recognized; and, provided no access
exceptions exist, the change bit may be set to
one. Because the contents of storage remain
unchanged, the change bit may or may not be
one when a PER storage-alteration event is rec-
ognized.

7. Special precautions should be taken when
UPDATE TREE is made the target of an execute-
type instruction. See the programming note con-

cerning interruptible instructions under EXE-
CUTE.

8. Further programming notes concerning interrupt-
ible instructions are included in “Interruptible
Instructions” on page 5-24.

9. The storage-operand references for UPDATE
TREE may be multiple-access references. (See
“Storage-Operand Consistency” on page 5-125.)

10. Figure 7-370 on page 7-429 is a summary of the
operation of UPDATE TREE in the 24-bit or
31-bit addressing mode, and Figure 7-371 on
page 7-430 is a summary of the operation in the
64-bit addressing mode.

General Instructions 7-429

U
P

D
A

T
E

 T
R

E
E

Figure 7-370. Execution of UPDATE TREE in the 24-Bit or 31-Bit Addressing Mode

Bits 61-63
of GR4 and GR5

all zeros

TEMPWORD1 = 0?

TEMPWORD1 GR5 shifted right

Bit 61 of TEMPWORD1 0

GR2 TEMPWORD2

GR5 0

Condition code 1

Compare
GR0 and

TEMPWORD2

Specification
exception

Unit-of-
operation
boundary

No

No

* Only bits 32-63 of a GR
participate when no bits

one position

Bit 32 of GR0 one?

Yes

Yes
GR5 TEMPWORD1

Condition code 3

*

*

TEMPADDRESS GR4 + TEMPWORD1

Fetch doubleword from location in

TEMPWORD2 Bits 0-31

storage designated by TEMPADDRESS;

TEMPWORD3 Bits 32-63

GR5 TEMPWORD1

GR3 TEMPWORD3

Condition code 0

Store contents of GR0 and GR1 in
doubleword designated by TEMPADDRESS

GR0 TEMPWORD2

GR1 TEMPWORD3

Yes

No

GR0 high GR0 equal

GR0 low

*

*

*

*

*

*

*

*
are mentioned.

End operation

*

7-430 The z/Architecture CPU Architecture

Figure 7-371. Execution of UPDATE TREE in the 64-Bit Addressing Mode

Bits 60-63
of GR4 and GR5

all zeros

TEMPDWRD1 = 0?

TEMPDWRD1 GR5 shifted right

Bit 60 of TEMPDWRD1 0

GR2 TEMPDWRD2

GR5 0

Condition code 1

Compare
GR0 and

TEMPDWRD2

Specification
exception

Unit-of-
operation
boundary

No

No

* Bits 0-63 of a GR
participate when no

one position

Bit 0 of GR0 one?

Yes

Yes
GR5 TEMPDWRD1

Condition code 3

*

*

TEMPADDRESS GR4 + TEMPDWRD1

Fetch quadword from location in

TEMPDWRD2 Bits 0-63

storage designated by TEMPADDRESS;

TEMPDWRD3 Bits 64-127

GR5 TEMPDWRD1

GR3 TEMPDWRD3

Condition code 0

Store contents of GR0 and GR1 in
quadword designated by TEMPADDRESS

GR0 TEMPDWRD2

GR1 TEMPDWRD3

Yes

No

GR0 high GR0 equal

GR0 low

*

*

*

*

*

*

*

*
bits are mentioned.

End operation

*

General Instructions 7-431

Protection of Cryptographic Keys

When the message-security-assist extension 3 is
installed, two wrapping-key registers and two wrap-
ping-key-verification-pattern registers are provided
for each configuration. The two wrapping-key regis-
ters consist of a 192-bit DES wrapping-key (WKd)
register and a 256-bit AES wrapping-key (WKa) regis-
ter. The two wrapping-key-verification-pattern regis-
ters consist of a 192-bit DES wrapping-key-
verification-pattern (WKdVP) register and a 256-bit
AES wrapping-key-verification-pattern (WKaVP) reg-
ister.

WKd is used to protect user DES or TDES keys, and
WKdVP is used to verify the value of WKd. WKa is
used to protect user AES keys, and WKaVP is used
to verify the value of WKa. Whenever the contents of
the WKd or WKa register are changed, the contents of
the corresponding verification-pattern register are
also changed.

When the message-security-assist extension 9 is
installed, the 256-bit AES wrapping key (WKa) regis-
ter and the 256-bit AES wrapping-key-verification-
pattern (WKeVP) register are also used to protect
ECC keys.

Each time a clear reset is performed, a new set of
wrapping keys and their associated verification pat-
terns are generated. The contents of the two wrap-
ping-key registers are kept internal to the model so
that no program, including the operating system, can
directly observe their clear value.

The following instructions provide functions support-
ing encrypted cryptographic keys:

• CIPHER MESSAGE
• CIPHER MESSAGE WITH AUTHENTICATION
• CIPHER MESSAGE WITH CHAINING
• CIPHER MESSAGE WITH CIPHER FEEDBACK
• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH OUTPUT FEED-

BACK
• COMPUTE DIGITAL SIGNATURE AUTHENTI-

CATION
• COMPUTE MESSAGE AUTHENTICATION

CODE
• PERFORM CRYPTOGRAPHIC COMPUTATION

For each of these instructions, a program-specified
DES or AES wrapping-key-verification-pattern in the
parameter block is compared with the respective
wrapping-key-verification-pattern register. the
instruction completes with condition code 1 if the two
do not match.

A privileged program may use the PERFORM CRYP-
TOGRAPHIC KEY MANAGEMENT OPERATION
(PCKMO) instruction to encrypt DES or TDES keys
using WKd or to encrypt AES or ECC keys using
WKa. A privileged program may also use PCKMO to
inspect the current DES or AES wrapping-key-verifi-
cation pattern used to encrypt the respective key.

Programming Notes:

1. Upon condition code 1, the program should re-
import the cryptographic key for encrypting it
under the appropriate wrapping key before the
operation is resumed.

2. Even though the architecture defines that a new
set of wrapping keys are generated upon a clear
reset, condition code 1 could occur at any time
for message-security-assist functions using an
encrypted key because the application may be
relocated to another system with a different set of
wrapping keys.

3. The sections “Protection of DES Keys” on
page 7-432, “Protection of AES Keys” on page 7-
434, and “Protection of ECC Keys” on page 7-
436 illustrate encryption and decryption algo-
rithms in support of encrypted cryptographic
keys. The encryption algorithms are used by the
PERFORM CRYPTOGRAPHIC KEY MANAGE-
MENT OPERATION instruction when encrypting
a cryptographic key, and the decryption algo-
rithms are used by the various message-secu-
rity-assist instructions that support the use of
encrypted keys.

Symbols Used in Subsequent Descriptions

The following symbols are used in the subsequent
description. For data-encryption-algorithm (DEA)
functions, the DEA-key-parity bit in each byte of the
DEA key is ignored, and the operation proceeds nor-
mally, regardless of the DEA-key parity of the key.

Further description of the data-encryption algorithm
may be found in Reference [13.] on page xxx. Further

7-432 The z/Architecture CPU Architecture

description of the AES standard may be found in Ref-
erence [14.] on page xxx.

Protection of DES Keys

When the message-security-assist extension 3 is
installed, user DEA or TDEA keys may be protected
under the 192-bit DEA wrapping key.

Figure 7-374 illustrates encryption of a 64-bit DEA
key, a 128-bit TDEA key, and a 192-bit TDEA key,
each encryption using the 192-bit DEA wrapping key.

Figure 7-375 on page 7-434 illustrates decryption of
an encrypted 64-bit DEA key, an encrypted 128-bit

Explanation:

<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-372. Symbols for DEA Encryption and Decryption

DEA

P <8>

C <8>

Symbol for DEA

K <8>

Encryption

e
DEA

C <8>

P <8>

Symbol for DEA

K <8>

Decryption

d

Explanation:

<n> Length of item in bytes
C Ciphertext
K Key value
P Plaintext

Figure 7-373. Symbols for AES-256 Encryption and
Decryption

AES

P <16>

C <16>

Symbol for AES-256

K <32>

Encryption

e
AES

C <16>

P <16>

Symbol for AES-256

K <32>

Decryption

d

General Instructions 7-433

TDEA key, and an encrypted 192-bit TDEA key, each
decryption using the 192-bit DEA wrapping key.

64-Bit DEA Key 128-Bit TDEA Key 192-Bit TDEA Key

Explanation:

Bitwise exclusive OR.
<n> Length of item in bytes
K An unencrypted 64-bit DEA key, K1 || K2 (an unencrypted 128-bit TDEA key), or K1 || K2 || K3 (an unencrypted 192-bit TDEA key).
WKd WK1d || WK2d || WK3d.
WKd(K) An encrypted 64-bit DEA key, C1 || C2 (an encrypted 128-bit TDEA key), or C1 || C2 || C3 (an encrypted 192-bit TDEA key).

Figure 7-374. Encryption of DEA or TDEA Key Using WKd

W
K

d <24>

DEA
e

DEA
d

DEA
e

WKd(K) <8>

W
K3

d <8>

K <8>

W
K2

d <8>
W

K1
d <8>

DEA
e

DEA
d

DEA
e

DEA
e

DEA
d

DEA
e

C1 <8> C2 <8>

W
K3

d <8>

K1 <8> K2 <8>

W
K2

d <8>
W

K1
d <8>

K<16>

WKd(K)<16>

W
K

d <24>

K<24>

DEA
e

DEA
e

DEA
d

DEA
e

DEA
e

DEA
d

DEA
e

C1 <8> C2 <8> C3 <8>

DEA
e

DEA
d

DEA
e

WKd(K)<24>

W
K3

d <8>

K1 <8> K2 <8> K3 <8>

W
K2

d <8>
W

K1
d <8>

W
K

d <24>

7-434 The z/Architecture CPU Architecture

Protection of AES Keys

When the message-security-assist extension 3 is
installed, user AES keys may be protected under the
256-bit AES wrapping key.

Figure 7-376 on page 7-435 shows the encryption of
a 128-bit AES key, a 192-bit AES key, and a 256-bit

AES key, each encryption using the 256-bit AES
wrapping key.

Figure Figure 7-377 on page 7-436 shows the
decryption of an encrypted 128-bit AES key, an
encrypted 192-bit AES key, and an encrypted AES
256-bit key, each decryption using the 256-bit AES
wrapping key.

 64-Bit DEA Key 128-Bit TDEA Key 192-Bit TDEA Key

Explanation:

Bitwise exclusive OR.
<n> Length of item in bytes
K An unencrypted 64-bit DEA key, K1 || K2 (an unencrypted 128-bit TDEA key), or K1 || K2 || K3 (an unencrypted 192-bit TDEA key).
WKd WK1d || WK2d || WK3d.
WKd(K) An encrypted 64-bit DEA key, C1 || C2 (an encrypted 128-bit TDEA key), or C1 || C2 || C3 (an encrypted 192-bit TDEA key).

Figure 7-375. Decryption of DEA or TDEA Key Using WKd

W
K d<

24
>

DEA
d

DEA
e

DEA
d

K <8>

W
K3

d <
8>

WKd(K) <8>

W
K2

d <
8>

W
K1

d <
8> DEA

d

DEA
e

DEA
d

DEA
d

DEA
e

DEA
d

K1 <8> K2 <8>

W
K3

d <
8>

C1 <8> C2 <8>

W
K2

d <
8>

W
K1

d <
8>

WKd(K)<16>

K<16>

W
K d<

24
>

WKd(K)<24>

DEA
e

DEA
d

DEA
e

DEA
d

DEA
d

DEA
e

DEA
d

K1 <8> K2 <8> K3 <8>

DEA
d

DEA
e

DEA
d

K<24>

W
K3

d <
8>

C1 <8> C2 <8> C3 <8>

W
K2

d <
8>

W
K1

d <
8>

W
K d<

24
>

General Instructions 7-435

128-Bit AES Key 192-Bit AES Key 256-Bit AES Key

Explanation:

Bitwise exclusive OR.
<n> Length of item in bytes
K An unencrypted 128-bit AES key, K1 || K2 (an unencrypted 192-bit AES key), or K1 || K2 || K3 (an unencrypted 256-bit AES key).
Pad A 64-bit value of binary zeros.
WKd(K) An encrypted 128-bit AES key, C1 || C2 (an encrypted 192-bit AES key), or C1 || C2 || C3 (an encrypted 256-bit AES key).

Figure 7-376. Encryption of AES Keys Using WKd

W
K a <

32
>

AES
e

K <16>

WKd(K) <16>

WKa(K) <24>

K <24>

W
K a <

32
>

K1 <16> Pad <8>K2 <8>

 C1<8>

AES
e

C2 <16>

<8><8>

AES
e

WKa(K) <32>

K <32>

W
K a <

32
>

K1 <16>

AES
e

C2 <16>

AES
e

K2 <16>

C1 <16>

7-436 The z/Architecture CPU Architecture

Protection of ECC Keys

When the message-security-assist extension 9 is
installed, user ECC keys may be protected using the
256-bit AES wrapping key. ECC keys and any neces-
sary padding are encrypted together.

Figure 7-378 on page 7-437 shows the encryption
and decryption for ECC P256 and Ed25519 keys. On
the left hand side of the figure encryption of a 256-bit
(P256), or 255-bit key and 1 bit zero pad (Ed25519)
is encrypted to a 256-bit encrypted key. On the right
hand side decryption of the 256-bit key is shown.
Encryption and decryption uses the 256-bit AES
wrapping key. The Ed25519 key is right aligned in the
256-bit field and padded with 1 bit zero on the left.

128-Bit AES Key 192-Bit AES Key 256-Bit AES Key

Explanation:

Bitwise exclusive OR.
<n> Length of item in bytes
K An unencrypted 128-bit AES key, K1 || K2 (an unencrypted 192-bit AES key), or K1 || K2 || K3 (an unencrypted 256-bit AES key).
WKd(K) An encrypted 128-bit AES key, C1 || C2 (an encrypted 192-bit AES key), or C1 || C2 || C3 (an encrypted 256-bit AES key).

Figure 7-377. Decryption of AES Keys Using WKd

W
K a <

32
>

AES
d

K <16>

WKd(K) <16>

K <24>

WKa(K) <24>

W
K a <

32
>

AES
d

K1 <16> K2 <8>

 C1<8>

AES
d

C2 <16>

<8><8>

<8><8>

K <32>

WKa(K) <32>

C2 <16>C1 <16>

AES
d

AES
d

K2 <16>K1 <16>

W
K a <

32
>

General Instructions 7-437

Figure 7-379 on page 7-438 shows the encryption of
an ECC P384 384-bit key using the 256-bit AES
wrapping key. It also shows decryption of an

encrypted 384-bit P348 key, decryption using the
256-bit AES wrapping key.

Explanation:

Bitwise exclusive OR.
<n> Length of item in bytes
K An unencrypted 256-bit ECC key, K1 || K2 (an unencrypted 256-bit for P256 or 255-bit ECC key and 1 bit pad on the left for Ed25519)
P Note K1 has 1 bit of padding on the left for Ed25519
WKa(K) An encrypted 256-bit key, C1 || C2 (an encrypted 256-bit ECC key).

Figure 7-378. Encryption and Decryption of ECC Keys for P256 and Ed25519 Using WKa

K <32>

WKa(K) <32>

C2 <16>C1 <16>

AES
d

AES
d

K2 <16>P K1 <16>

W
K a <

32
>

WKa(K) <32>

K <32>
W

K a <
32

>

P K1 <16>

AES
e

C2 <16>

AES
e

K2 <16>

C1 <16>

7-438 The z/Architecture CPU Architecture

Explanation:

Bitwise exclusive OR.
<n> Length of item in bytes
K An unencrypted 384-bit ECC key, K1 || K2 || K3 (an unencrypted 384-bit ECC key)
WKa(K) An encrypted 384-bit key, C1 || C2 || C3 (an encrypted 384-bit ECC key).

Figure 7-379. Encryption and Decryption of ECC Keys for P384 Using WKa

K <48>

WKa(K) <48>

C2 <16>C1 <16>

AES
d

AES
d

K2 <16>K1 <16>

W
K a <

32
>

WKa(K) <48>

K <48>

W
K a <

32
>

K1 <16>

AES
e

C2 <16>

AES
e

K2 <16>

C1 <16> C3 <16>

AES
e

K3 <16>
C3 <16>

AES
d

K3 <16>

General Instructions 7-439

Figure 7-380 on page 7-439 shows the encryption
and decryption of the ECC Ed448 448-bit key using
the 256-bit AES wrapping key. On the left hand side
the encryption is shown. The right-aligned 448-bit
key with a 64-bit padding is encrypted to 512-bit
encrypted key. On the right hand side of the figure,
decryption of the 512-bit encrypted key to a 448-bit
key right aligned with a 64-bit padding to the left is
shown also using the 256-bit AES wrapping key. The
padding can take on any value.

Figure 7-381 on page 7-440 shows the decryption
and encryption of the ECC P521 521-bit key using
the 256-bit AES wrapping key. On the left hand side
the encryption is shown. The key is padded on the
left side to create an 80 byte field from the 521-bit
key. The 80 bytes are encrypted using the 256-bit
AES wrapping key to create and 80 byte encrypted
key. On the right hand side of the figure the 80 byte
key is decrypted using the 256-bit AES wrapping key
to form the 521-bit P521 key and 7 bits of zero pad-
ding and 112 bits of padding.

Explanation:

Bitwise exclusive OR.
<n> Length of item in bytes
K An unencrypted 448-bit ECC key, K1 || K2 || K3 || K4 (an unencrypted 448-bit ECC key)
P Padding
WKa(K) An encrypted 512-bit key, C1 || C2 || C3 || C4 (an encrypted 512-bit ECC key).

Figure 7-380. Encryption and Decryption of ECC Keys for Ed448 Using WKa

K <56>

WKa(K) <64>

AES
d

AES
d

W
K a <

32
>

WKa(K) <64>

K <56>

W
K a <

32
>

K2 <16>

AES
e

AES
e

AES
e

AES
d

K3 <16> K4 <16>P <8> K1 <8>

C1 <16> C2 <16> C3 <16> C4 <16>

AES
e

C1 <16> C2 <16> C3 <16> C4 <16>

AES
d

K2 <16> K3 <16> K4 <16>P <8> K1 <8>

7-440 The z/Architecture CPU Architecture

Explanation:

Bitwise exclusive OR.
<n> Length of item in bytes
{m} Length of item in bits
K An unencrypted 521-bit ECC key, K1 || K2 || K3 || K4 || K5 (an unencrypted 521-bit ECC key)
P Padding
WKa(K) An encrypted 640-bit key, C1 || C2|| C3 || C4 || C5 (an encrypted 640-bit ECC key).

Figure 7-381. Encryption and Decryption of ECC Keys for P521 Using WKa

K {521}

WKa(K) <80>

AES
d

AES
d

W
K a <

32
>

WKa(K) <80>

K {521}

W
K a <

32
>

K2 <16>

AES
e

AES
e

P{119} K3 <16> K4 <16> K5 <16>K1{9}

C1 <16> C2 <16> C3 <16> C4 <16> C5 <16>

AES
e

AES
e

AES
e

C1 <16> C2 <16> C3 <16> C4 <16> C5 <16>

AES
d

AES
d

AES
d

K2 <16>P{119} K3 <16> K4 <16> K5 <16>K1{9}

Decimal Instructions 8-1© Copyright IBM Corp. 2000, 2019

Chapter 8. Decimal Instructions

Decimal-Number Formats 8-1
Zoned Format . 8-1
Packed-Decimal Formats 8-1

Signed-Packed-Decimal Format 8-2
Unsigned-Packed-Decimal Format 8-2

Decimal Codes . 8-2
Decimal Operations . 8-3

Decimal-Arithmetic Instructions 8-3
Editing Instructions . 8-4
Execution of Decimal Instructions 8-4
Other Instructions for Decimal Operands 8-4
General-Operand Data Exception 8-5

Instructions . 8-5
ADD DECIMAL . 8-6
COMPARE DECIMAL. 8-7
DIVIDE DECIMAL . 8-7
EDIT . 8-8
EDIT AND MARK . 8-11
MULTIPLY DECIMAL 8-12
SHIFT AND ROUND DECIMAL 8-12
SUBTRACT DECIMAL 8-13
TEST DECIMAL . 8-14
ZERO AND ADD. 8-14

The decimal instructions of this chapter perform
arithmetic and editing operations on decimal data.
Additional operations on decimal data are also pro-
vided by several instructions in Chapter 7, “General
Instructions,” several instructions in Chapter 20,
“Decimal-Floating-Point Instructions,” and several
instructions in Chapter 25, “Vector Decimal Instruc-
tions.” Generally, decimal operands reside in storage.
For some of the instructions described in Chapter 20,
decimal operands may reside in a general register or
general register pair. For some of the instructions
described in Chapter 25, decimal operands may
reside in a vector register. The storage fields for deci-
mal operands residing in storage may start on any
byte boundary and may have variable lengths. The
decimal operands residing in general registers and
vector registers have fixed lengths.

Decimal-Number Formats

Decimal numbers may be represented in several for-
mats, including zoned, signed-packed-decimal and
unsigned-packed-decimal. These formats are of vari-
able length; most instructions used to operate on
these formats specify the length of their operands
and results. Each byte of a format consists of a pair
of four-bit codes; the four-bit codes include decimal-
digit codes, sign codes, and a zone code.

Zoned Format

In the zoned format, the rightmost four bits of a byte
are called the numeric bits (N) and normally consist
of a code representing a decimal digit. The leftmost
four bits of a byte are called the zone bits (Z), except
for the rightmost byte of a decimal operand, where
these bits may be treated either as a zone or as a
sign (S).

Decimal digits in the zoned format may be part of a
larger character set, which includes also alphabetic
and special characters. The zoned format is, there-
fore, suitable for input, editing, and output of numeric
data in human-readable form. There are no decimal-
arithmetic instructions which operate directly on deci-
mal numbers in the zoned format; such numbers
must first be converted to the signed-packed-decimal
format or one of the DFP formats.

The editing instructions produce a result of up to 256
bytes; each byte may be a decimal digit in the zoned
format, a message byte, or a fill byte.

Packed-Decimal Formats

There are two packed-decimal formats, signed-
packed, and unsigned-packed.

Z N Z N Z N Z/S N
/

/

8-2 The z/Architecture CPU Architecture

Signed-Packed-Decimal Format

In the signed-packed-decimal format, each byte con-
tains two decimal digits (D), except for the rightmost
byte, which contains a sign (S) to the right of a deci-
mal digit. Decimal arithmetic is performed with oper-
ands in the signed-packed-decimal format and
generates results in the signed-packed-decimal for-
mat.

The signed-packed-decimal operands and results of
decimal-arithmetic instructions may be up to 16 bytes
(31 digits and sign), except that the maximum length
of a multiplier or divisor is eight bytes (15 digits and
sign). In division, the sum of the lengths of the quo-
tient and remainder may be from two to 16 bytes. The
editing instructions can fetch as many as 256 deci-
mal digits from one or more decimal numbers of vari-
able length, each in the signed-packed-decimal
format. CONVERT FROM PACKED and CONVERT
TO PACKED may have signed-packed-decimal oper-
ands up to 18 bytes (34 digits and sign).

Unsigned-Packed-Decimal Format

In the unsigned-packed-decimal format, each byte
contains two decimal digits (D) and there is no sign.
The unsigned-packed-decimal format can be used as
the source operand of the editing instructions, as the
second operand of MOVE WITH OFFSET, and is
also used by the decimal floating-point (DFP) instruc-
tions CONVERT FROM PACKED, CONVERT FROM
UNSIGNED PACKED, CONVERT TO PACKED, and
CONVERT TO UNSIGNED PACKED.

Decimal Codes

The decimal digits 0-9 have the binary encoding
0000-1001.

The preferred sign codes are 1100 for plus and 1101
for minus. These are the sign codes generated for
the results of the decimal-arithmetic instructions and
the CONVERT TO DECIMAL instruction. The instruc-
tions PACK ASCII and PACK UNICODE supply an
implied positive sign (1100 binary). The DFP instruc-
tions CONVERT TO PACKED, CONVERT TO
SIGNED PACKED, and CONVERT TO ZONED

include a plus sign-code selection bit. The plus sign
can be encoded as either 1100 or 1111. The sign
codes generated for vector decimal instruction
results are either preferred sign codes 1100 for posi-
tive and 1101 for negative or can be forced to positive
with sign code 1111.

Alternate sign codes are also recognized as valid in
the sign position: 1010, 1110, and 1111 are alternate
codes for plus, and 1011 is an alternate code for
minus. Alternate sign codes are accepted for any
decimal source operand, but are not generated in the
completed result of a decimal-arithmetic instruction ,
vector decimal-arithmetic instruction, CONVERT TO
DECIMAL, or VECTOR CONVERT TO DECIMAL.
This is true even when an operand remains other-
wise unchanged, such as when adding zero to a
number. An alternate sign code is, however, left
unchanged by MOVE NUMERICS, MOVE WITH
OFFSET, MOVE ZONES, PACK, UNPACK, VECTOR
PACK ZONED and VECTOR UNPACK ZONED.

When an invalid sign or digit code is detected, a gen-
eral-operand data exception is recognized. For CON-
VERT TO BINARY, the decimal-arithmetic
instructions, the decimal floating-point instructions
CONVERT FROM PACKED, CONVERT FROM
SIGNED PACKED, CONVERT FROM UNSIGNED
PACKED, and CONVERT FROM ZONED, the vector
decimal-arithmetic instructions, and the vector deci-
mal instruction VECTOR CONVERT TO BINARY, the
operation is suppressed.

For the editing instructions EDIT and EDIT AND
MARK, an invalid sign code is not recognized. It is
model dependent whether the operation is sup-
pressed or terminated for a general-operand data
exception due to an invalid digit code. No validity
checking is performed by MOVE NUMERICS, MOVE
WITH OFFSET, MOVE ZONES, PACK, PACK ASCII,
PACK UNICODE, and UNPACK. The instructions
UNPACK ASCII and UNPACK UNICODE do not
check for invalid digit codes; invalid sign codes are
recognized, but are not reported as a general-oper-
and data exception, instead condition code 3 is set.

The zone code 1111 is generated in the left four bit
positions of each byte representing a zone and a
decimal digit in zoned-format results. Zoned-format
results are produced by EDIT, EDIT AND MARK, and
UNPACK. For EDIT and EDIT AND MARK, each
result byte representing a zoned-format decimal digit
contains the zone code 1111 in the left four bit posi-
tions and the decimal-digit code in the right four bit

D D D D D D D S

D D D D D D D D

/

/

/

/

Decimal Instructions 8-3

positions. For UNPACK, zone bits with a coding of
1111 are supplied for all bytes except the rightmost
byte, the zone of which receives the sign.

The zone code 0011 is generated in the leftmost four
bit positions of each byte representing a zone for a
decimal digit in ASCII format. ASCII formats are pro-
duced by CONVERT TO ZONED when the zone-
control bit is one and by UNPACK ASCII.

The meaning of the decimal codes is summarized in
Figure 8-1.

Programming Note: Since 1111 is both the zone
code and an alternate code for plus, unsigned (posi-
tive) decimal numbers may be represented in the
zoned format with 1111 zone codes in all byte posi-
tions. The result of the PACK instruction converting
such a number to the signed-packed-decimal format
may be used directly as an operand for decimal
instructions.

Decimal Operations

The decimal instructions in this chapter consist of two
classes, the decimal-arithmetic instructions and the
editing instructions.

Decimal-Arithmetic Instructions

The decimal-arithmetic instructions perform addition,
subtraction, multiplication, division, comparison, and
shifting.

Operands of the decimal-arithmetic instructions are
in the signed-packed-decimal format and are treated
as signed decimal integers. A decimal integer is rep-
resented in true form as an absolute value with a
separate plus or minus sign. It contains an odd num-
ber of decimal digits, from one to 31, and the sign;
this corresponds to an operand length of one to 16
bytes.

A decimal zero normally has a plus sign, but multipli-
cation, division, and overflow may produce a zero
value with a minus sign. Such a negative zero is a
valid operand and is treated as equal to a positive
zero by COMPARE DECIMAL.

The lengths of the two operands specified in the
instruction need not be the same. If necessary, the
shorter operand is considered to be extended with
zeros on the left. Results, however, cannot exceed
the first-operand length as specified in the instruc-
tion.

When a carry or leftmost nonzero digits of the result
are lost because the first-operand field is too short,
the result is obtained by ignoring the overflow digits,
condition code 3 is set, and, if the decimal-overflow
mask bit is one, a program interruption for decimal
overflow occurs. The operand lengths alone are not
an indication of overflow; nonzero digits must have
been lost during the operation.

The operands of decimal-arithmetic instructions
should not overlap at all or should have coincident
rightmost bytes. In ZERO AND ADD, the operands
may also overlap in such a manner that the rightmost
byte of the first operand (which becomes the result)
is to the right of the rightmost byte of the second
operand. For these cases of proper overlap, the
result is obtained as if operands were processed
right to left. Because the codes for digits and signs
are verified during the performance of the arithmetic,
improperly overlapping operands are recognized as
general-operand data exceptions. However, in ZERO
AND ADD when the rightmost byte of the first oper-
and is to the left of the rightmost byte of the second
operand, the entire second operand may be fetched,
depending on the model, before any storing occurs,

Code
(Binary)

Recognized As
Digit Sign

0000 0 Invalid
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid *
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
0111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid Plus
1011 Invalid Minus
1100 Invalid Plus (preferred)
1101 Invalid Minus (preferred)
1110 Invalid Plus
1111 Invalid Plus (zone)

Explanation:

* The zone code 0011 binary is generated in the
leftmost four bit positions of each byte
representing a decimal digit in the ASCII format.

Figure 8-1. Summary of Digit and Sign Codes

8-4 The z/Architecture CPU Architecture

which will cause a general-operand data exception
not to be recognized. See “Interlocks within a Single
Instruction” on page 5-116 for how overlap is
detected in the access-register mode.

Programming Note: A signed-packed-decimal num-
ber in storage may be designated as both the first
and second operand of ADD DECIMAL, COMPARE
DECIMAL, DIVIDE DECIMAL, MULTIPLY DECIMAL,
SUBTRACT DECIMAL, or ZERO AND ADD. Thus, a
decimal number may be added to itself, compared
with itself, and so forth; SUBTRACT DECIMAL may
be used to set a decimal field in storage to zero; and,
for MULTIPLY DECIMAL, a decimal number may be
squared in place. In these cases, the lengths of the
two operands are not necessarily equal and may,
depending on the instruction, be prohibited from
being equal.

Editing Instructions

The editing instructions are EDIT and EDIT AND
MARK. For these instructions, only the first operand
(the pattern) has an explicitly specified length. The
second operand (the source) is considered to have
as many digits as necessary for the completion of the
operation.

Overlapping operands for the editing instructions
yield unpredictable results.

Execution of Decimal Instructions

During the execution of a decimal instruction, all
bytes of the operands are not necessarily accessed
concurrently, and the fetch and store accesses to a
single location do not necessarily occur one immedi-
ately after the other. Furthermore, for decimal
instructions, data in source fields may be accessed
more than once, and intermediate values may be
placed in the result field that may differ from the origi-
nal operand and final result values. (See “Storage-
Operand Consistency” on page 5-125.) Thus, in a
multiprocessing configuration, an instruction such as
ADD DECIMAL cannot be safely used to update a
shared storage location when the possibility exists
that another CPU may also be updating that location.

Other Instructions for Decimal
Operands

In addition to the decimal-arithmetic instructions in
this chapter, (which operate on decimal numbers in
the signed-packed-decimal format) several other
instructions are provided for operating on decimal
data in the zoned, signed-packed-decimal, or
unsigned-packed-decimal format.

The editing instructions (described in this chapter)
convert decimal numbers in either the signed-
packed-decimal or unsigned-packed-decimal format
to the zoned format. Zoned results of up to 256 bytes
in length can be produced.

CONVERT TO DECIMAL and CONVERT TO
BINARY (described in Chapter 7) provide conversion
between signed-binary-integer formats and decimal
numbers in the signed-packed-decimal format.
Signed-packed-decimal operands of up to 16 bytes in
length (31 digits and a sign) can be processed.

CONVERT TO SIGNED PACKED and CONVERT
FROM SIGNED PACKED (described in Chapter 20)
provide conversion between decimal floating point
(DFP) formats and the signed-packed-decimal for-
mat. Signed-packed-decimal operands of up to 16
bytes in length (31 digits and a sign) can be pro-
cessed.

CONVERT TO UNSIGNED PACKED and CONVERT
FROM UNSIGNED PACKED (described in Chapter
20) provide conversion between decimal floating
point (DFP) formats and the unsigned-packed-deci-
mal format. Unsigned-packed-decimal operands of
up to 16 bytes in length (32 digits) can be processed.

MOVE WITH OFFSET (described in Chapter 7) oper-
ates on data in the packed format. (The first operand
is treated as signed-packed decimal and the second
operand as unsigned-packed decimal.) Operands
are not checked for valid codes. Signed-packed-deci-
mal operands of up to 16 bytes in length (31 digits
and a sign) can be processed.

PACK, UNPACK, PACK ASCII, UNPACK ASCII,
PACK UNICODE, and UNPACK UNICODE provide
conversion between zoned or character data and
signed-packed-decimal data. Operands are not
checked for valid codes. Signed-packed-decimal
operands of up to 16 bytes in length (31 digits and a
sign) can be processed.

Decimal Instructions 8-5

MOVE NUMERICS and MOVE ZONES (described in
Chapter 7) operate on data in the zoned format.
Operands are not checked for valid codes. Zoned
operands of up to 256 bytes in length can be pro-
cessed.

The vector decimal instructions (described in Chap-
ter 25) provide register-to-register decimal-arithme-
tic operations of addition, subtraction, multiplication,
division, comparison, and shifting of data in the
packed-decimal format.

VECTOR CONVERT TO BINARY and VECTOR
CONVERT TO DECIMAL (described in Chapter 25)
provide register-to-register conversion between
signed-packed-decimal format and binary-integer
(signed and unsigned) format numbers. Signed-
packed-decimal operands of up to 16 bytes in length
(31 digits and a sign) can be processed.

VECTOR PACK ZONED and VECTOR UNPACK
ZONED (described in Chapter 25) provide conver-
sion between a zoned format storage operand and a
signed-packed-decimal format register operand.
Operands are not checked for valid codes. Signed-
packed-decimal operands of up to 16 bytes in length
(31 digits and a sign) can be processed.

General-Operand Data Exception

A general-operand data exception is recognized
when any of the following is true:

1. The sign or digit codes are invalid in the oper-
ands of the decimal instructions, vector decimal-
arithmetic instructions, or in CONVERT TO
BINARY (described in Chapter 7, “General
Instructions”), in CONVERT FROM PACKED,
CONVERT FROM SIGNED PACKED, CON-
VERT FROM UNSIGNED PACKED, and CON-
VERT FROM ZONED (described in Chapter 20,
“Decimal-Floating-Point Instructions”), or in VEC-
TOR CONVERT TO BINARY (described in
Chapter 25, “Vector Decimal Instructions”).

2. The operand fields in ADD DECIMAL, COM-
PARE DECIMAL, DIVIDE DECIMAL, MULTIPLY
DECIMAL, and SUBTRACT DECIMAL overlap in
a way other than with coincident rightmost bytes;
or operand fields in ZERO AND ADD overlap,
and the rightmost byte of the second operand is

to the right of the rightmost byte of the first oper-
and. On some models, the improper overlap of
operands for ZERO AND ADD is not recognized
as a general-operand data exception; instead,
the operation is performed as if the entire second
operand were fetched before any byte of the
result is stored.

3. The multiplicand in MULTIPLY DECIMAL has an
insufficient number of leftmost zeros.

4. COMPRESSION CALL encounters errors in its
dictionaries.

5. The reseed counter is zero for a PERFORM
RANDOM NUMBER OPERATION instruction’s
PRNO-SHA-512-DRNG generate operation.

A general-operand data exception causes the opera-
tion to be suppressed, except that, for EDIT and
EDIT AND MARK, and COMPRESSION CALL, the
operation may be suppressed or terminated. In the
case of EDIT and EDIT AND MARK, and COM-
PRESSION CALL, an invalid sign code cannot occur.

Note: In earlier versions of the architecture, the gen-
eral-operand data exception was known as the deci-
mal-operand data exception.

Instructions

The decimal instructions and their mnemonics, for-
mats, and operation codes are listed in Figure 8-2 on
page 8-6. The figure also indicates when the condi-
tion code is set, the instruction fields that designate
access registers, and the exceptional conditions in
operand designations, data, or results that cause a
program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the assembler language are
shown with each instruction. For ADD DECIMAL, for
example, AP is the mnemonic and
D1(L1,B1),D2(L2,B2) the operand designation.

Programming Note: The decimal instruction TEST
DECIMAL is available when the extended-translation
facility 2 is installed.

8-6 The z/Architecture CPU Architecture

A
D

D
 D

E
C

IM
A

L

ADD DECIMAL

AP D1(L1,B1),D2(L2,B2) [SS-b]

The second operand is added to the first operand,
and the resulting sum is placed at the first-operand
location. The operands and result are in the signed-
packed-decimal format.

Addition is algebraic, taking into account the signs
and all digits of both operands. All sign and digit
codes are checked for validity.

If the first operand is too short to contain all leftmost
nonzero digits of the sum, decimal overflow occurs.
The operation is completed. The result is obtained by
ignoring the overflow digits, and condition code 3 is
set. If the decimal-overflow mask is one, a program
interruption for decimal overflow occurs.

The sign of the sum is determined by the rules of
algebra. In the absence of overflow, the sign of a zero
result is made positive. If overflow occurs, a zero
result is given either a positive or negative sign, as
determined by what the sign of the correct sum
would have been.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2; fetch and store, oper-
and 1)

• Data with DXC 0, general operand
• Decimal overflow
• Transaction constraint

Name
Mne-

monic Characteristics
Op

Code Page

ADD DECIMAL AP SS-b C ¤9 A Dg DF ST B1 B2 FA 8-6

COMPARE DECIMAL CP SS-b C ¤9 A Dg B1 B2 F9 8-7

DIVIDE DECIMAL DP SS-b ¤9 A SP Dg DK ST B1 B2 FD 8-7

EDIT ED SS-a C ¤9 A Dg ST B1 B2 DE 8-8

EDIT AND MARK EDMK SS-a C ¤9 A Dg G1 ST B1 B2 DF 8-11

MULTIPLY DECIMAL MP SS-b ¤9 A SP Dg ST B1 B2 FC 8-12

SHIFT AND ROUND DECIMAL SRP SS-c C ¤9 A Dg DF ST B1 B2 F0 8-12

SUBTRACT DECIMAL SP SS-b C ¤9 A Dg DF ST B1 B2 FB 8-13

TEST DECIMAL TP RSL-a C E2 ¤9 A B1 B2 EBC0 8-14

ZERO AND ADD ZAP SS-b C ¤9 A Dg DF ST B1 B2 F8 8-14

Explanation:

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.
A Access exceptions for logical addresses.
B1 B1 field designates an access register in the access-register mode.
B2 B2 field designates an access register in the access-register mode.
C Condition code is set.
DF Decimal-overflow exception.
Dg General-operand data exception.
DK Decimal-divide exception.
E2 Extended-translation facility 2.
G1 Instruction execution includes the implied use of general register 1.
RSL RSL instruction format.
SP Specification exception.
SS SS instruction format.
ST PER storage-alteration event.

Figure 8-2. Summary of Decimal Instructions

'FA' L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Decimal Instructions 8-7

D
IV

ID
E

 D
E

C
IM

A
LProgramming Note: An example of the use of the

ADD DECIMAL instruction is given in Appendix A,
“Number Representation and Instruction-Use Exam-
ples.”

COMPARE DECIMAL

CP D1(L1,B1),D2(L2,B2) [SS-b]

The first operand is compared with the second oper-
and, and the result is indicated in the condition code.
The operands are in the signed-packed-decimal for-
mat.

Comparison is algebraic and follows the procedure
for decimal subtraction, except that both operands
remain unchanged. When the difference is zero, the
operands are equal. When a nonzero difference is
positive or negative, the first operand is high or low,
respectively.

Overflow cannot occur because the difference is dis-
carded.

All sign and digit codes are checked for validity.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

Program Exceptions:

• Access (fetch, operands 1 and 2)
• Data with DXC 0, general operand
• Transaction constraint

Programming Notes:

1. An example of the use of the COMPARE DECI-
MAL instruction is given in Appendix A, “Number
Representation and Instruction-Use Examples.”

2. The preferred and alternate sign codes for a par-
ticular sign are treated as equivalent for compari-
son purposes.

3. A negative zero and a positive zero compare
equal.

DIVIDE DECIMAL

DP D1(L1,B1),D2(L2,B2) [SS-b]

The first operand (the dividend) is divided by the sec-
ond operand (the divisor). The resulting quotient and
remainder are placed at the first-operand location.
The operands and results are in the signed-packed-
decimal format.

The quotient is placed leftmost in the first-operand
location. The number of bytes in the quotient field is
equal to the difference between the dividend and
divisor lengths (L1 - L2). The remainder is placed
rightmost in the first-operand location and has a
length equal to the divisor length. Together, the quo-
tient and remainder fields occupy the entire first oper-
and; therefore, the address of the quotient is the
address of the first operand.

The divisor length cannot exceed 15 digits and sign
(L2 not greater than seven) and must be less than the
dividend length (L2 less than L1); otherwise, a specifi-
cation exception is recognized.

The dividend, divisor, quotient, and remainder are
each signed decimal integers in the signed-packed-
decimal format and are right-aligned in their fields. All
sign and digit codes of the dividend and divisor are
checked for validity.

The sign of the quotient is determined by the rules of
algebra from the dividend and divisor signs. The sign
of the remainder has the same value as the dividend
sign. These rules hold even when the quotient or
remainder is zero.

Overflow cannot occur. If the divisor is zero or the
quotient is too large to be represented by the number
of digits specified, a decimal-divide exception is rec-
ognized. This includes the case of division of zero by
zero. The decimal-divide exception is indicated only if
the sign codes of both the dividend and divisor are
valid, and only if the digit or digits used in establish-
ing the exception are valid.

Condition Code: The code remains unchanged.

Program Exceptions:

'F9' L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

'FD' L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

8-8 The z/Architecture CPU Architecture

E
D

IT • Access (fetch, operand 2; fetch and store, oper-
and 1)

• Data with DXC 0, general operand
• Decimal divide
• Specification
• Transaction constraint

Programming Notes:

1. An example of the use of the DIVIDE DECIMAL
instruction is given in Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

2. The dividend cannot exceed 31 digits and sign.
Since the remainder cannot be shorter than one
digit and sign, the quotient cannot exceed 29 dig-
its and sign.

3. The condition for a decimal-divide exception can
be determined by a trial comparison. The left-
most digit of the divisor is aligned one digit to the
right of the leftmost dividend digit, with rightmost
zeros appended up to the length of the dividend.
When the divisor, so aligned, is less than or
equal to the dividend, ignoring signs, a divide
exception is indicated.

4. If a general-operand data exception does not
exist, a decimal-divide exception occurs when
the leftmost dividend digit is not zero.

EDIT

ED D1(L,B1),D2(B2) [SS-a]

The second operand (the source), which normally
contains one or more decimal numbers in the signed-
packed-decimal or unsigned-packed-decimal format,
is changed to the zoned format and modified under
the control of the first operand (the pattern). The
edited result replaces the first operand.

The length field specifies the length of the first oper-
and, which may contain bytes of any value.

The length of the source is determined by the opera-
tion according to the contents of the pattern. The
source normally consists of one or more decimal
numbers, each in the signed-packed-decimal or
unsigned-packed-decimal format. The leftmost four
bits of each source byte must specify a decimal-digit

code (0000-1001); a sign code (1010-1111) is recog-
nized as a general-operand data exception. The
rightmost four bits may specify either a sign code or a
decimal-digit code. Access and data exceptions and
PER zero-address-detection events are recognized
only for those bytes in the second operand which are
actually required.

The result is obtained as if both operands were pro-
cessed left to right one byte at a time. Overlapping
pattern and source fields give unpredictable results.

During the editing process, each byte of the pattern
is affected in one of three ways:

1. It is left unchanged.

2. It is replaced by a source digit expanded to the
zoned format.

3. It is replaced by the first byte in the pattern,
called the fill byte.

Which of the three actions takes place is determined
by one or more of the following: the type of the pat-
tern byte, the state of the significance indicator, and
whether the source digit examined is zero.

Pattern Bytes: There are four types of pattern
bytes: digit selector, significance starter, field separa-
tor, and message byte. Their coding is as follows:

The detection of either a digit selector or a signifi-
cance starter in the pattern causes an examination to
be made of the significance indicator and of a source
digit. As a result, either the expanded source digit or
the fill byte, as appropriate, is selected to replace the
pattern byte. Additionally, encountering a digit selec-
tor or a significance starter may cause the signifi-
cance indicator to be changed.

The field separator identifies individual fields in a
multiple-field editing operation. It is always replaced
in the result by the fill byte, and the significance indi-
cator is always off after the field separator is encoun-
tered.

'DE' L B1 D1 B2 D2

0 8 16 20 32 36 47

Name

Code

(Binary) (Hex)

Digit Selector 0010 0000 20

Significance starter 0010 0001 21

Field separator 0010 0010 22

Message byte Any other Any other

Decimal Instructions 8-9

E
D

ITMessage bytes in the pattern are either replaced by
the fill byte or remain unchanged in the result,
depending on the state of the significance indicator.
They may thus be used for padding, punctuation, or
text in the significant portion of a field or for the inser-
tion of sign-dependent symbols.

Fill Byte: The first byte of the pattern is used as the
fill byte. The fill byte can have any code and may con-
currently specify a control function. If this byte is a
digit selector or significance starter, the indicated
editing action is taken after the code has been
assigned to the fill byte.

Source Digits: Each time a digit selector or signifi-
cance starter is encountered in the pattern, a new
source digit is examined for placement in the pattern
field. Either the source digit is disregarded, or it is
expanded to the zoned format, by appending the
zone code 1111 on the left, and stored in place of the
pattern byte.

Execution is as if the source digits were selected one
byte at a time. The leftmost four bits of each byte are
examined first, and the rightmost four bits, when they
represent a decimal-digit code, remain available for
the next pattern byte that calls for a digit examination.
When the leftmost four bits contain an invalid digit
code, a general-operand data exception is recog-
nized, and the operation is either suppressed or ter-
minated.

At the time the left digit of a source byte is examined,
the rightmost four bits are checked for the existence
of a sign code. When a sign code is encountered in
the rightmost four bit positions, these bits are not
treated as a decimal-digit code, and a new source
byte is fetched from storage when the next pattern
byte calls for a source-digit examination.

When the pattern contains no digit selector or signifi-
cance starter, no source bytes are fetched and exam-
ined.

Significance Indicator: The significance indicator
is turned on or off to indicate the significance or non
significance, respectively, of subsequent source dig-
its or message bytes. Significant source digits
replace their corresponding digit selectors or signifi-
cance starters in the result. Significant message
bytes remain unchanged in the result.

The significance indicator, by its on or off state, indi-
cates also the negative or positive value, respec-

tively, of a completed source field and is used as one
factor in the setting of the condition code.

The significance indicator is set to off at the start of
the editing operation, after a field separator is
encountered, or after a source byte is examined that
has a plus code in the rightmost four bit positions.

The significance indicator is set to on when a signifi-
cance starter is encountered whose source digit is a
valid decimal digit, or when a digit selector is encoun-
tered whose source digit is a nonzero decimal digit,
provided that in both instances the source byte does
not have a plus code in the rightmost four bit posi-
tions.

In all other situations, the significance indicator is not
changed. A minus sign code has no effect on the sig-
nificance indicator.

Result Bytes: The result of an editing operation
replaces and is equal in length to the pattern. It is
composed of pattern bytes, fill bytes, and zoned
source digits.

If the pattern byte is a message byte and the signifi-
cance indicator is on, the message byte remains
unchanged in the result. If the pattern byte is a field
separator or if the significance indicator is off when a
message byte is encountered in the pattern, the fill
byte replaces the pattern byte in the result.

If the digit selector or significance starter is encoun-
tered in the pattern with the significance indicator off
and the source digit zero, the source digit is consid-
ered nonsignificant, and the fill byte replaces the pat-
tern byte. If the digit selector or significance starter is
encountered either with the significance indicator on
or with a nonzero decimal source digit, then the
source digit (a) is considered significant, (b) is
changed to the zoned format, and (c) replaces the
pattern byte in the result. Examination of the signifi-
cance indicator occurs prior to the processing of the
source digit (which might change the significance
indicator).

Condition Code: The sign and magnitude of the
last field edited are used to set the condition code.
The term “last field” refers to those source digits, if
any, in the second operand selected by digit selec-
tors or significance starters after the last field separa-
tor; if the pattern contains no field separator, there is
only one field, which is considered to be the last field.

8-10 The z/Architecture CPU Architecture

E
D

IT If no such source digits are selected, the last field is
considered to be of zero length.

Condition code 0 is set when the last field edited is
zero or of zero length.

Condition code 1 is set when the last field edited is
nonzero and the significance indicator is on. (This
indicates a result less than zero if the last source
byte examined contained a sign code in the rightmost
four bits.)

Condition code 2 is set when the last field edited is
nonzero and the significance indicator is off. (This
indicates a result greater than zero if the last source

byte examined contained a sign code in the rightmost
four bits.)

For the purposes of setting condition code 2, the sig-
nificance indicator is examined after the processing
of the last source digit.

Figure 8-3 on page 8-10 summarizes the functions of
the EDIT and EDIT AND MARK operations. The left-
most four columns list all the significant combinations
of the four conditions that can be encountered in the
execution of an editing operation. The rightmost two
columns list the action taken for each case — the
type of byte placed in the result field and the new set-
ting of the significance indicator.

Resulting Condition Code:

0 Last field zero or zero length
1 Last field less than zero
2 Last field greater than zero
3 --

Program Exceptions:

• Access (fetch, operand 2; fetch and store, oper-
and 1)

• Data with DXC 0, general operand
• Transaction constraint

Programming Notes:

1. Examples of the use of the EDIT instruction are
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

Conditions Results

Pattern Byte

Previous State of
Significance

Indicator Source Digit
Right Four Source
Bits Are Plus Code Result Byte

State of Significance
Indicator at End of
Digit Examination

Digit selector

Off

0 * Fill byte Off

1-9
No Source digit# On

Yes Source digit# Off

On 0-9
No Source digit On

Yes Source digit Off

Significance starter

Off

0
No Fill byte On

Yes Fill byte Off

1-9
No Source digit# On

Yes Source digit# Off

On 0-9
No Source digit On

Yes Source digit Off

Field separator * ** ** Fill byte Off

Message byte
Off ** ** Fill byte Off

On ** ** Message byte On

Explanation:

* No effect on result byte or on new state of significance indicator.
** Not applicable because source is not examined.
For EDIT AND MARK only, the address of the rightmost such result byte is placed in general register 1.

Figure 8-3. Summary of Editing Functions

Decimal Instructions 8-11

E
D

IT
 A

N
D

 M
A

R
K2. Editing includes sign and punctuation control,

and the suppression of leading zeros by replac-
ing them with blanks, or the protection of leading
zeros from malicious alteration by replacing them
with asterisks or other characters. It also facili-
tates programmed blanking of all-zero fields.
Several fields may be edited in one operation,
and numeric information may be combined with
text.

3. In most cases, the source is shorter than the pat-
tern because each four-bit source digit produces
an eight-bit byte in the result.

4. The total number of digit selectors and signifi-
cance starters in the pattern always equals the
number of source digits edited.

5. If the fill byte is a blank, if no significance starter
exists in the pattern, and if the source digit exam-
ined for each digit selector is zero, the editing
operation blanks the result field.

6. The resulting condition code indicates whether or
not the last field is all zeros and, if nonzero,
reflects the state of the significance indicator.
The significance indicator reflects the sign of the
source field only if the last source byte examined
contains a sign code in the rightmost four bits.
For multiple-field editing operations, the condition
code reflects the sign and value only of the field
following the last field separator.

7. Significant performance degradation is possible
when the second-operand address of an EDIT
instruction designates a location that is closer to
the left of an access boundary than the length of
the first operand of that instruction (for the pur-
poses of this discussion, an access boundary is
4 K-bytes, except when fetch-protection override
applies in which case it is 2 K-bytes). This is
because the machine may perform a trial execu-
tion of the instruction to determine if the second
operand actually crosses the boundary. The sec-
ond operand of EDIT, while normally shorter than
the first operand, can in the extreme case have
the same length as the first.

EDIT AND MARK

EDMK D1(L,B1),D2(B2) [SS-a]

The second operand (the source), which normally
contains one or more decimal numbers in the signed-
packed-decimal or unsigned-packed-decimal format,
is changed to the zoned format and modified under
the control of the first operand (the pattern). The
address of the first significant result byte of the right-
most (or only) field is inserted in general register 1.
The edited result replaces the pattern.

EDIT AND MARK is identical to EDIT, except for the
additional function of inserting the address of the
result byte in general register 1 if the result byte is a
zoned source digit and the significance indicator was
off before the examination of the source bytes. If no
result byte meets the criteria, general register 1
remains unchanged; if more than one result byte
meets the criteria, the address of the rightmost such
result byte is inserted.

In the 24-bit addressing mode, the address replaces
bits 40-63 of general register 1, and bits 0-39 of the
register are not changed. In the 31-bit addressing
mode, the address replaces bits 33-63 of general
register 1, bit 32 of the register is set to zero, and bits
0-31 of the register remain unchanged. In the 64-bit
addressing mode, the address replaces bits 0-63 of
general register 1.

The contents of access register 1 remain unchanged.

See Figure 8-3 on page 8-10 for a summary of the
EDIT and EDIT AND MARK operations.

Resulting Condition Code:

0 Last field zero or zero length
1 Last field less than zero
2 Last field greater than zero
3 --

Program Exceptions:

• Access (fetch, operand 2; fetch and store, oper-
and 1)

• Data
• Transaction constraint

Programming Notes:

1. Examples of the use of the EDIT AND MARK
instruction are given Appendix A, “Number Rep-
resentation and Instruction-Use Examples.”

'DF' L B1 D1 B2 D2

0 8 16 20 32 36 47

8-12 The z/Architecture CPU Architecture

M
U

L
T

IP
L

Y
 D

E
C

IM
A

L 2. EDIT AND MARK facilitates the programming of
floating currency-symbol insertion. Using appro-
priate source and pattern data, the address
inserted in general register 1 is one greater than
the address where a floating currency-sign would
be inserted.

3. No address is inserted in general register 1 when
the significance indicator is turned on as a result
of encountering a significance starter with the
corresponding source digit zero. To ensure that
general register 1 contains a proper address
when this occurs, the address of the pattern byte
that immediately follows the appropriate signifi-
cance starter could be placed in the register
beforehand.

4. When multiple fields are edited with one execu-
tion of the EDIT AND MARK instruction, the
address, if any, inserted in general register 1
applies to the rightmost field edited for which the
criteria were met.

5. See also the programming note under EDIT
regarding performance degradation due to a pos-
sible trial execution.

MULTIPLY DECIMAL

MP D1(L1,B1),D2(L2,B2) [SS-b]

The product of the first operand (the multiplicand)
and the second operand (the multiplier) is placed at
the first-operand location. The operands and result
are in the signed-packed-decimal format.

The multiplier length cannot exceed 15 digits and
sign (L2 not greater than seven) and must be less
than the multiplicand length (L2 less than L1); other-
wise, a specification exception is recognized.

The multiplicand must have at least as many bytes of
leftmost zeros as the number of bytes in the multi-
plier; otherwise, a general-operand data exception is
recognized. This restriction ensures that no product
overflow occurs.

The multiplicand, multiplier, and product are each
signed decimal integers in the signed-packed-deci-
mal format and are right-aligned in their fields. All

sign and digit codes of the multiplicand and multiplier
are checked for validity. The sign of the product is
determined by the rules of algebra from the multiplier
and multiplicand signs, even if one or both operands
are zeros.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store, oper-
and 1)

• Data with DXC 0, general operand
• Specification
• Transaction constraint

Programming Notes:

1. An example of the use of the MULTIPLY DECI-
MAL instruction is given Appendix A, “Number
Representation and Instruction-Use Examples.”

2. The product cannot exceed 31 digits and sign.
The leftmost digit of the product is always zero.

SHIFT AND ROUND DECIMAL

SRP D1(L1,B1),D2(B2),I3 [SS-c]

The first operand is shifted in the direction and for the
number of decimal-digit positions specified by the
second-operand address, and, when shifting to the
right is specified, the absolute value of the first oper-
and is rounded by the rounding digit, I3. The first
operand and the result are in the signed-packed-dec-
imal format.

The first operand is considered to be in the signed-
packed-decimal format. Only its digit portion is
shifted; the sign position does not participate in the
shifting. Zeros are supplied for the vacated digit posi-
tions. The result replaces the first operand. Nothing
is stored outside of the specified first-operand loca-
tion.

The second-operand address, specified by the B2

and D2 fields, is not used to address data; bits 58-63
of that address are the shift value, and the leftmost
bits of the address are ignored.

'FC' L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

'F0' L1 I3 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Decimal Instructions 8-13

S
U

B
T

R
A

C
T

 D
E

C
IM

A
LThe shift value is a six-bit signed binary integer, indi-

cating the direction and the number of decimal-digit
positions to be shifted. Positive shift values specify
shifting to the left. Negative shift values, which are
represented in two’s complement notation, specify
shifting to the right. The following are examples of the
interpretation of shift values:

For a right shift, the I3 field, bits 12-15 of the instruc-
tion, is used as a decimal rounding digit. The first
operand, which is treated as positive by ignoring the
sign, is rounded by decimally adding the rounding
digit to the leftmost of the digits to be shifted out and
by propagating the carry, if any, to the left. The result
of this addition is then shifted right. Except for validity
checking and the participation in rounding, the digits
shifted out of the rightmost decimal-digit position are
ignored and are lost.

If one or more nonzero digits are shifted out during a
left shift, decimal overflow occurs. The operation is
completed. The result is obtained by ignoring the
overflow digits, and condition code 3 is set. If the dec-
imal-overflow mask is one, a program interruption for
decimal overflow occurs. Overflow cannot occur for a
right shift, with or without rounding, or when no shift-
ing is specified.

In the absence of overflow, the sign of a zero result is
made positive. If overflow occurs, the sign of the
result is the same as the original sign but with the
preferred sign code.

A general-operand data exception is recognized
when the first operand does not have valid sign and
digit codes or when the rounding digit is not a valid
digit code. The validity of the first-operand codes is
checked even when no shift is specified, and the
validity of the rounding digit is checked even when no
addition for rounding takes place.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow

3 Overflow

Program Exceptions:

• Access (fetch and store, operand 1)
• Data with DXC 0, general operand
• Decimal overflow
• Transaction constraint

Programming Notes:

1. Examples of the use of the SHIFT AND ROUND
DECIMAL instruction are given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. SHIFT AND ROUND DECIMAL can be used for
shifting up to 31 digit positions left and up to 32
digit positions right. This is sufficient to clear all
digits of any decimal number even with rounding.

3. For right shifts, the rounding digit 5 provides con-
ventional rounding of the result. The rounding
digit 0 specifies truncation without rounding.

4. When the B2 field is zero, the six-bit shift value is
obtained directly from bits 42-47 of the instruc-
tion.

SUBTRACT DECIMAL

SP D1(L1,B1),D2(L2,B2) [SS-b]

The second operand is subtracted from the first oper-
and, and the resulting difference is placed at the first-
operand location. The operands and result are in the
signed-packed-decimal format.

SUBTRACT DECIMAL is executed the same as ADD
DECIMAL, except that the second operand is consid-
ered to have a sign opposite to the sign in storage.
The second operand in storage remains unchanged.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

Shift Value (Binary) Amount and Direction
011111 31 digits to the left

000001 One digit to the left

000000 No shift
111111 One digit to the right

100000 32 digits to the right

'FB' L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

8-14 The z/Architecture CPU Architecture

T
E

S
T

 D
E

C
IM

A
L • Access (fetch, operand 2; fetch and store, oper-

and 1)
• Data with DXC 0, general operand
• Decimal overflow
• Transaction constraint

TEST DECIMAL

TP D1(L1,B1) [RSL-a]

The first operand is tested for valid decimal digits and
a valid sign code, and the result is indicated in the
condition code. The operand is in the signed-packed-
decimal format.

Resulting Condition Code:

0 All digit codes and the sign valid
1 All digit codes valid and sign invalid
2 At least one digit code invalid and sign valid
3 At least one digit code invalid and sign invalid

Program Exceptions:

• Access (fetch, operand 1)
• Operation (if the extended-translation facility 2 is

not installed)
• Transaction constraint

ZERO AND ADD

ZAP D1(L1,B1),D2(L2,B2) [SS-b]

The second operand is placed at the first-operand
location. The operation is equivalent to an addition to
zero. The operand and result are in the signed-
packed-decimal format.

Only the second operand is checked for valid sign
and digit codes. Extra zeros are supplied on the left
for the shorter operand if needed.

If the first operand is too short to contain all leftmost
nonzero digits of the second operand, decimal over-
flow occurs. The operation is completed. The result is
obtained by ignoring the overflow digits, and condi-
tion code 3 is set. If the decimal-overflow mask is
one, a program interruption for decimal overflow
occurs.

In the absence of overflow, the sign of a zero result is
made positive. If overflow occurs, a zero result is
given the sign of the second operand but with the
preferred sign code.

The two operands may overlap, provided the right-
most byte of the first operand is coincident with or to
the right of the rightmost byte of the second operand.
In this case, the result is obtained as if the operands
were processed right to left. When the operands
overlap and the rightmost byte of the first operand is
to the left of the rightmost byte of the second oper-
and, then, depending on the model, either a general-
operand data exception is recognized or the result is
obtained as if the entire second operand were
fetched before any byte of the result is stored.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Data with DXC 0, general operand
• Decimal overflow
• Transaction constraint

Programming Note: An example of the use of the
ZERO AND ADD instruction is given in Appendix A,
“Number Representation and Instruction-Use Exam-
ples.”

'EB' L1 / / / / B1 D1 / / / / / / / / 'C0'

0 8 12 16 20 32 40 47

'F8' L1 L2 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Floating-Point Overview and Support Instructions 9-1© Copyright IBM Corp. 2000, 2019

Chapter 9. Floating-Point Overview and Support
Instructions

Sign Bit . 9-2
Finite Floating-Point Numbers 9-2
Infinities . 9-2

Not-A-Number (NaN) . 9-2
Signaling and Quiet NaNs 9-2
Payload . 9-2
Propagation of NaNs 9-3
Default QNaN . 9-3

Floating-Point Number Representations 9-3
Hexadecimal-Floating-Point (HFP) 9-3
Binary Floating-Point (BFP) 9-4
Decimal Floating-Point (DFP) 9-4

Canonical DFP Data 9-4
Comparison of Floating-Point Number

Representations . 9-5
Floating-Point Number Ranges 9-5
Equivalent Floating-Point Number

Representations. 9-5
Effective Width. 9-7

Floating-Point Data in Storage. 9-8
Registers And Controls . 9-8

Floating-Point Registers 9-8
Additional Floating-Point (AFP) Registers . . 9-9
Valid Floating-Point-Register Designations . 9-9

Floating-Point-Control (FPC) Register. 9-9
IEEE Masks and Flags 9-10
FPC DXC Byte. 9-10
Operations on the FPC Register 9-10

AFP-Register-Control Bit 9-11
IEEE Computational Operations 9-11

Intermediate Values. 9-12
Precise Intermediate Value 9-12
Precision-Rounded Value 9-12
Denormalized Value 9-12
Functionally-Rounded Value 9-12
Rounded Intermediate Value 9-12
Scaled Value . 9-12
Scale Factor () . 9-12
Unsigned Scaling Exponent () 9-12
Signed Scaling Exponent () 9-13

IEEE Rounding . 9-13
Permissible Set . 9-13
Selection of Candidates. 9-13
Ties . 9-13

Voting Digit and Common-Rounding- Point
View . 9-13

Rounding Methods 9-14
Explicit Rounding Methods 9-17
Summary of Rounding Action 9-17

IEEE Exceptions . 9-18
Concurrent IEEE Exceptions. 9-18
IEEE Invalid Operation 9-19
IEEE Division-By-Zero 9-19
IEEE Overflow. 9-19
IEEE Underflow. 9-20
IEEE Inexact . 9-20
Quantum Exception. 9-21

Suppression of Certain IEEE Exceptions 9-23
IEEE Same-Radix Format Conversion 9-23
IEEE Comparison . 9-24
Condition Codes for IEEE Instructions 9-24

Instructions . 9-24
CONVERT BFP TO HFP 9-27
CONVERT HFP TO BFP 9-28
COPY SIGN . 9-30
EXTRACT FPC . 9-30
LOAD . 9-31
LOAD COMPLEMENT 9-31
LOAD FPC . 9-31
LOAD FPC AND SIGNAL 9-32
LOAD FPR FROM GR 9-34
LOAD GR FROM FPR 9-34
LOAD NEGATIVE . 9-34
LOAD POSITIVE. 9-34
LOAD ZERO . 9-35
PERFORM FLOATING-POINT OPERATION. 9-35
SET BFP ROUNDING MODE. 9-47
SET DFP ROUNDING MODE 9-47
SET FPC. 9-47
SET FPC AND SIGNAL 9-48
STORE . 9-48
STORE FPC . 9-49

Summary of All Floating-Point Instructions 9-49
Impacts on ESA/390 and ESA/390-

Compatibility Mode . 9-52
Impacts of the Decimal-Floating-Point Facility 9-52
Impacts of the Floating-Point Extension

Facility. 9-53

Floating-point instructions are used to perform calcu-
lations on operands having a wide range of magni-

tude and to obtain results scaled to preserve
precision.

9-2 The z/Architecture CPU Architecture

Floating-point operands have formats based on three
radixes: 2, 10, or 16. These radix values lead to the
terminology “binary,” “decimal,” and “hexadecimal”
floating point (BFP, DFP, and HFP), respectively. The
formats are also based on three operand lengths:
short (32 bits), long (64 bits), and extended (128
bits). Short operands require less storage than long
or extended operands. On the other hand, long and
extended operands permit greater precision in com-
putation.

Sign Bit
All floating-point data have a sign bit. The sign bit is
zero for plus and one for minus.

Finite Floating-Point Numbers
A finite floating-point number has three components:
a sign bit, an exponent, and a significand. The mag-
nitude (an unsigned value) of the number is the prod-
uct of the significand and the radix raised to the
power of the exponent. The number is positive or
negative depending on whether the sign bit is zero or
one, respectively.

The significand consists of a string of digits, where
each digit is an integral value from zero to one less
than the radix (2, 10, or 16). (Thus, a BFP digit is one
bit, an HFP digit is four bits, and a DFP digit is a
value from zero to nine.) The number of digit posi-
tions in the significand is called the precision of the
floating-point number. The significand has an implied
radix point, which, depending on the view, may be
considered to be on the left, to the right of the left-
most digit, on the right, or elsewhere.

The exponent, a signed value, is represented as an
unsigned binary value by adding a bias; the result, for
BFP and DFP, is called the biased exponent; for HFP,
it is called the characteristic. The value of the bias
depends on the view. In the fraction view, the radix
point is considered to be the left of the significand. In
the left-units view, the radix point is considered to be
to the right of the leftmost digit. In the right-units view,
the radix point is considered to be on the right of the
significand. By choosing the appropriate bias, any
finite floating-point number can be considered in any
of these views, or even in another view. For the first
three of these views, the bias is called the fraction-
view bias, left-units-view bias, and right-units-view
bias, respectively. Except where otherwise indicated,
HFP is defined in terms of the fraction view, BFP
terms of the left-units view, and DFP in terms of the
right-units view.

For HFP, the significand is considered to be a fraction
with the implied radix point on the left. In this view,
the significand is referred to as the fraction. For BFP,
the significand consists of an implicit unit digit to the
left of an implied radix point and an explicit fraction
field to the right. For DFP, the significand is consid-
ered to be an integer with the implied radix point on
the right.

Infinities
BFP and DFP data include an infinite numeric datum,
called infinity. Infinities can participate in most arith-
metic operations and give a consistent result, usually
infinity. An infinity has a sign bit. In comparisons,
infinities of the same sign compare equal, + com-
pares greater than any finite number, and - com-
pares less than any finite number.

Not-A-Number (NaN)

BFP and DFP data types include a nonnumeric
datum, called not-a-number (or NaN). A NaN is pro-
duced in place of a numeric result after an invalid
operation when there is no IEEE trap action. NaNs
may also be used by the program to flag special
operands, such as the contents of an uninitialized
storage area. A NaN has a sign bit, a NaN-type bit,
and a payload.

Signaling and Quiet NaNs
There are two types of NaNs, signaling and quiet. A
signaling NaN (SNaN) is distinguished from the cor-
responding quiet NaN (QNaN) by the NaN-type bit.

For BFP, the NaN-type bit is the leftmost bit of the
fraction field, and is called the QNaN bit: a BFP NaN
is an SNaN, or a QNaN, depending on whether the
QNaN bit is zero, or one, respectively. For DFP, the
NaN-type bit is in bit position 6 in all three formats,
and is called the SNaN bit: a DFP NaN is a QNaN, or
an SNaN, depending on whether the SNaN bit is
zero, or one, respectively.

Payload
NaNs include diagnostic information called the pay-
load. For BFP, the payload has two fewer bits than
the precision and is considered to be a left-aligned
bit-reversed binary integer. For DFP, the payload has
one fewer digit than the precision and is considered
to be a right-aligned decimal integer.

Floating-Point Overview and Support Instructions 9-3

For both BFP and DFP the payload of a NaN is con-
sidered to be an unsigned integer. Let p represent
the precision, in digits, of a particular format. For
DFP, bit 6 of the format is called the SNaN bit and the
p-1 digits in the trailing significand field are the
numeric value of the payload. For BFP, the leftmost
bit in the fraction field is called the QNaN bit and the
remaining p-2 bits of the fraction field are the numeric
value of the payload.

The numeric value of the BFP NaN payload is bit-
reversed. That is, the first bit to the right of the QNaN
bit is considered to have a value of one, the next bit a
value of two, and so on, with each bit having a value
of twice the value of the bit to its left.

Propagation of NaNs
Normally, QNaNs are just propagated during compu-
tations so that they will remain visible at the end;
while an SNaN operand causes an IEEE-invalid-
operation exception. If the IEEE-invalid-operation
mask (FPC 0.0) is zero, the result is the correspond-
ing QNaN, which is produced by inverting the NaN-
type bit, and setting the IEEE-invalid-operation flag
(FPC 1.0) is set to one. If the IEEE-invalid-operation
mask (FPC 0.0) is one, the operation is suppressed,
and a data exception for IEEE-invalid operation
occurs.

Where applicable, the propagation of NaNs is illus-
trated in the action figure for an instruction.

Default QNaN
A special QNaN is supplied as the default result for
an IEEE-invalid-operation exception; it has a plus
sign and a payload of zeros.

Programming Notes:

1. The program can generate and assign values to
the payload of a NaN. The CPU propagates
those values unchanged, except that an SNaN is
changed to the corresponding QNaN if the IEEE-
invalid-operation mask bit is zero, and conversion
to a narrower format truncates digits from the
payload. For BFP, bits are truncated on the right;
for DFP, digits are truncated on the left. For the
PFPO-convert-floating-point-radix operation,
payloads are preserved, except that payloads
larger than the capacity of the target format are
replaced by the default QNaN (payload zero).

2. Depending on the application, the program may
or may not desire that an SNaN signal the IEEE
invalid-operation exception. The sign-handling
instructions LOAD COMPLEMENT, LOAD NEG-
ATIVE, and LOAD POSITIVE do not signal the
invalid-operation exception but, instead, treat
SNaNs like any other data. LOAD AND TEST
signals the invalid-operation exception when the
operand is an SNaN. This instruction, in conjunc-
tion with the above instructions, gives the pro-
gram the choice of either option.

3. The instructions LOAD LENGTHENED and
LOAD ROUNDED change the precision of a
floating-point datum. The BFP versions of these
instructions signal the invalid-operation exception
when the operand is an SNaN. The DFP instruc-
tions have a modifier bit to control whether the
exception is signaled.

Floating-Point Number
Representations

Hexadecimal-Floating-Point (HFP)

Hexadecimal-floating-point (HFP) operands have for-
mats which provide for exponents that specify pow-
ers of the radix 16 and significands that are
hexadecimal numbers. The exponent range is the
same for the short, long, and extended formats.

The results of most operations on HFP data are trun-
cated to fit into the target format, but there are
instructions available to round the result when con-
verting to a narrower format. Additionally, the PER-
FORM FLOATING POINT OPERATION instruction
provides rounding methods when converting to an
HFP format from BFP or DFP.

For HFP operands, the implicit unit digit of the signifi-
cand is always zero. Since the value of the signifi-
cand and fraction are the same, HFP operations are
described in terms of the fraction, and the term sig-
nificand is not used.

Either normalized or unnormalized numbers may be
used as operands for any HFP or DFP operation,
where, for HFP, a normalized number is one having a
nonzero leftmost fraction digit, or, for DFP, a normal-
ized number is one having a nonzero leftmost signifi-
cand digit. Most HFP instructions generate

9-4 The z/Architecture CPU Architecture

normalized results for greatest precision. HFP add
and subtract instructions that generate unnormalized
results are also available. When the HFP-unnormal-
ized-extensions facility is installed, the MULTIPLY
UNNORMALIZED and MULTIPLY AND ADD UNNO-
RMALIZED instructions also generate unnormalized
results.

Binary Floating-Point (BFP)

Binary-floating-point (BFP) operands have formats
which provide for exponents that specify powers of
the radix 2 and significands that are binary numbers.
The exponent range differs for different formats, the
range being greater for the longer formats. In the
long and extended formats, the exponent range is
significantly greater for BFP data than for HFP data.

The results of operations performed on BFP data are
rounded automatically to fit into the target format.
The manner of rounding is determined by a program-
settable BFP rounding mode; however, explicit
rounding modes may be specified in various BFP
instructions.

There are no unnormalized operands for BFP opera-
tions. For normal BFP numbers, the implicit unit digit
of the significand is one. For values too small in mag-
nitude to be represented in normalized form, the
implicit unit digit is zero. These numbers are called
subnormal numbers.1 Unlike the HFP and DFP for-
mats, where the same value can have multiple repre-
sentations in a given format because of the
possibility of unnormalized numbers, the BFP format
does not allow such redundancy.

Decimal Floating-Point (DFP)

Decimal-floating-point (DFP) operands have formats
which provide for exponents that specify powers of
the radix 10 and significands that are decimal num-
bers. The exponent range differs for different formats,
the range being greater for the longer formats. The
exponent range is greater for DFP data than for BFP
data.

The results of operations performed on DFP data are
rounded automatically to fit into the target format.
The manner of rounding is determined by a program-
settable DFP rounding mode; however, explicit

rounding modes may be specified in various DFP
instructions.

Like HFP, DFP numbers can be normalized or unnor-
malized. Either normalized or unnormalized numbers
may be used as operands for any DFP operation. For
DFP, a normalized number is one having a nonzero
leftmost significand digit. Because of the possibility of
unnormalized numbers, the same value can have
multiple representations in a given DFP format. The
representations having the same value are called
members of a cohort. Unlike HFP, DFP instructions
generate normalized results for greater precision
only when the result is inexact. When the result is
exact, most DFP instructions produce a value in the
form that preserves information called the quantum.

Canonical DFP Data
A canonical DFP number has only canonical declets,
that is, the digits in the trailing-significand field are
encoded using only the preferred DPD codes.

A canonical DFP infinity has bit 6 and all bits to the
right of this in the format set to zeros.

A canonical DFP NaN has zeros in all bits to the right
of the NaN-type bit in the combination field and only
canonical declets in the trailing significand field.

Noncanonical DFP numbers, infinities, and NaNs are
accepted as source operands, but all DFP results are
canonical.

Comparison of Floating-Point
Number Representations

Floating-Point Number Ranges
Figure 9-1 shows the range of numbers, in decimal
form, that can be represented in different floating-
point formats.

1. Subnormal numbers were previously called denormalized numbers.

Type Short Long Extended

Nmax

HFP 7.210+75 7.210+75 7.210+75

BFP 3.410+38 1.810+308 1.210+4932

DFP 1.010+97 1.010+385 1.010+6145

Figure 9-1. Decimal Approximations of Number Ranges for
HFP, BFP, and DFP Formats

Floating-Point Overview and Support Instructions 9-5

Equivalent Floating-Point Number
Representations
The exponent of an HFP number is represented in
the format as an unsigned seven-bit binary integer
called the characteristic. The characteristic is
obtained by adding 64 to the exponent value (excess-
64 notation). The range of the characteristic is 0 to
127, which corresponds to an exponent range of -64
to +63.

The exponent of a BFP or DFP datum is represented
in the format as an unsigned binary integer called the

biased exponent. The biased exponent is obtained by
adding a bias to the exponent value. The number of
bit positions containing the biased exponent, the
value of the bias, and the exponent range depend on
the data format (short, long, or extended) and are
shown for the three formats in Figure 19-4 on
page 19-3 and the three DFP formats in Figure 20-3
on page 20-6. Biased exponents are similar to the
characteristics of the HFP format, except that, for
BFP, special meanings are attached to biased expo-
nents of all zeros and all ones. This is discussed in
the section “Classes of BFP Data” on page 19-4.

In each of the three BFP or HFP formats, the binary
or hexadecimal point of a number, respectively, is
considered to be to the left of the leftmost fraction
digit. To the left of the point there is an implied unit
digit, which is considered to be zero for HFP num-
bers or, for BFP numbers, one for normal numbers
and zero for zeros and subnormal numbers.

Figure 9-2 on page 9-6 and Figure 9-3 on page 9-7
give examples of the closest representation of the
same numbers in the BFP, DFP, and HFP formats,
with BFP and DFP values being rounded to nearest
and HFP values being truncated.

The figures do not necessarily show the results of
conversions exactly. Rounding errors may make a
small difference. Also, Figure 9-2 on page 9-6 shows
corresponding rounded short-format numbers, not
the long HFP results of conversion from short BFP
operands.

Nmin

HFP 5.410-79 5.410-79 5.410-79

BFP 1.210-38 2.210-308 3.410-4932

DFP 1.010-95 1.010-383 1.010-6143

Dmin

HFP 5.110-85 1.210-94 1.710-111

BFP 1.410-45 4.910-324 6.510-4966

DFP 1.010-101 1.010-398 1.010-6176

Explanation:

Dmin Smallest (in magnitude) representable subnormal (BFP or
DFP) or nonzero unnormalized (HFP) number.

Nmax Largest (in magnitude) representable number.
Nmin Smallest (in magnitude) representable normal (BFP or

DFP) or normalized (HFP) number.

Values are decimal approximations for all of the HFP, BFP, and DFP
formats.

Type Short Long Extended

Figure 9-1. Decimal Approximations of Number Ranges for
HFP, BFP, and DFP Formats

9-6 The z/Architecture CPU Architecture

Value S BE or C Trailing Significand

1.0
B 0 011 1111 1 000 0000 0000 0000 0000 0000
H 0 100 0001 0001 0000 0000 0000 0000 0000
D 0 010 0010 0100 0000 0000 0000 0001 0000 [1010-1]

0.5
B 0 011 1111 0 000 0000 0000 0000 0000 0000
H 0 100 0000 1000 0000 0000 0000 0000 0000
D 0 010 0010 0100 0000 0000 0000 0000 0000 0101 [510-1]

1/64

B 0 011 1100 1 000 0000 0000 0000 0000 0000
H 0 011 1111 0100 0000 0000 0000 0000 0000
D 0 010 0001 1111 0000 0101 0111 0010 0101 [1562510-6]

+0
B 0 000 0000 0 000 0000 0000 0000 0000 0000
H 0 000 0000 0000 0000 0000 0000 0000 0000
D 0 010 0010 0101 0000 0000 0000 0000 0000 [+0100]

-0
B 1 000 0000 0 000 0000 0000 0000 0000 0000
H 1 000 0000 0000 0000 0000 0000 0000 0000
D 1 010 0010 0101 0000 0000 0000 0000 0000 [-0100]

-15.0
B 1 100 0001 0 111 0000 0000 0000 0000 0000
H 1 100 0001 1111 0000 0000 0000 0000 0000
D 1 010 0010 0100 0000 0000 0000 1101 0000 [-15010-1]

20/7

B 0 100 0000 0 011 0110 1101 1011 0110 1110
H 0 100 0001 0010 1101 1011 0110 1101 1011
D 0 010 1001 1111 1101 0111 0100 1100 0011 [285714310-6]

2-126
B 0 000 0000 1 000 0000 0000 0000 0000 0000
H 0 010 0001 0100 0000 0000 0000 0000 0000
D 0 000 0111 1001 0011 1101 0110 0101 1010 [117549410-44]

2-149
B 0 000 0000 0 000 0000 0000 0000 0000 0001
H 0 001 1011 1000 0000 0000 0000 0000 0000
D 0 000 0111 0010 1000 0000 0101 0101 1110 [140129810-51]

2128F
F=1-2-24

B 0 111 1111 0 111 1111 1111 1111 1111 1111
H 0 110 0000 1111 1111 1111 1111 1111 1111
D 0 100 1100 0101 1000 0000 1001 0010 1101 [340282310+32]

2-260
B Zero (number too small)
H 0 000 0000 0001 0000 0000 0000 0000 0000
D 0 001 0101 0000 0111 1110 1111 0000 0101 [539760510-85]

2248F
F=1-2-24

B Not representable
H 0 111 1110 1111 1111 1111 1111 1111 1111
D 0 101 0010 1001 1010 1000 1100 1010 1000 [452312810+68]

Explanation:

B BFP.
BE or C Biased exponent of BFP number, combination field of DFP number, or characteristic of HFP number.
D DFP.
H HFP.
S Sign.

Figure 9-2. Examples of Floating-Point Numbers in Short Format

Floating-Point Overview and Support Instructions 9-7

Effective Width
The resolution of a floating-point format may be
described in terms of the spacing between adjacent
representable numbers in the format. This is called
an ulp (unit in the last place). Thus, for example,
when rounding to nearest, the maximum error is 1/2
ulp. The magnitude of an ulp is directly related to the
precision of the format. Another way to measure the
resolution of the format in the vicinity of a particular

value is in terms of relative spacing, which is simply
the value of an ulp divided by the value of the num-
ber. Relative spacing may be converted to a form
called effective width, which is very similar to preci-
sion. The effective width (Wx) for any particular nor-
malized floating-point value, v, is defined as:

Wx(v) = logx(v/u)

Value S BE or C Trailing Significand

1.0
B 0 011 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
H 0 100 0001 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
D 0 010 0010 0011 01 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 [1010-1]

0.5
B 0 011 1111 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
H 0 100 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
D 0 010 0010 0011 01 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 [510-1]

1/64

B 0 011 1111 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
H 0 011 1111 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
D 0 010 0010 0010 00 00 0000 0000 0000 0000 0000 0000 0000 0000 0101 0111 0010 0101 [1562510-6]

+0
B 0 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
H 0 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
D 0 010 0010 0011 10 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 [+0100]

-0
B 1 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
H 1 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
D 1 010 0010 0011 10 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 [-0100]

-15.0
B 1 100 0000 0010 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
H 1 100 0001 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
D 1 010 0010 0011 01 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1101 0000 [-15010-1]

20/7

B 0 100 0000 0000 0110 1101 1011 0110 1101 1011 0110 1101 1011 0110 1101 1011 0111
H 0 100 0001 0010 1101 1011 0110 1101 1011 0110 1101 1011 0110 1101 1011 0110 1101
D 0 010 1001 1111 11 11 0101 1101 0011 0000 1011 0101 1101 0011 0000 1011 0101 1101 [285714285714285710-15]

2-1022
B 0 000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
H Zero (number too small)
D 0 000 1001 0010 11 01 0010 0101 0001 1100 1110 0011 1110 1010 0001 1101 0000 0001 [222507385850720110-323]

2-1074
B 0 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001
H Zero (number too small)
D 0 001 0000 1110 11 00 1100 1100 1101 0101 1010 0101 1000 1000 0100 1010 0110 0101 [494065645841246510-339]

21024xF
F=1-2-53

B 0 111 1111 1110 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
H Not representable
D 0 100 0110 1100 11 11 1111 1011 1100 1110 1100 1011 0100 0101 1011 0001 1001 0110 [179769313486231610+293]

2-260
B 0 010 1111 1011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
H 0 000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
D 0 011 0100 1100 00 01 1111 1011 1100 0001 0101 1100 0110 1010 1111 0000 0010 1000 [539760534693410-94]

2248xF
F=1-2-56

B 0 100 1111 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
H 0 111 1110 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
D 0 011 0011 0010 01 10 1010 0011 0010 1010 0010 0100 1011 0100 1111 0011 0110 0100 [452312848583266410+59]

Explanation:

B BFP.
BE or C Biased exponent of BFP number, combination field of DFP number, or characteristic of HFP number.
D DFP.
H HFP.
S Sign.

Figure 9-3. Examples of Floating-Point Numbers in Long Format

9-8 The z/Architecture CPU Architecture

Where:

u Value of a unit in the last position (ulp).
v Value of the number.
Wx Effective width represented in base x.
x Any arbitrary base.

When effective width is measured using the native
base for a particular format, it differs from the preci-
sion (p) of the format as shown in the following rela-
tion:

p-1 Wb p

Where:

b Native base of a particular format.
p Precision of the format.
Wb Effective width for any normalized value repre-

sented in the native base b of the format.

The following figure shows the maximum and mini-
mum values of the effective width for normalized
numbers for all supported floating-point formats.

Programming Note: The following example using a
3-digit decimal significand, may be helpful in under-
standing the concept of effective width and the maxi-
mum and minimum values. Consider the three
adjacent representable numbers, Va, Vb, and Vc, as
shown in the following figure:

The distance between points Va and Vb (Vb-Va) rep-
resents a resolution of one part in a thousand;
whereas, the distance between points Vb and Vc
(Vc-Vb) represents a resolution of one part in a hun-
dred. In the first case, the effective width is three dig-
its; in the second case, it is only two digits. For other
values in the format, the effective width lies between
these two extremes.

Floating-Point Data in Storage

All floating-point data formats appear in storage in
the same left-to-right sequence as all other data for-
mats. Bits of a data format that are numbered 0-7
constitute the byte in the leftmost (lowest-numbered)
byte location in storage, bits 8-15 form the byte in the
next sequential location, and so on. (See also the
section “Storage Addressing” on page 3-2.)

Most of the floating-point instructions are defined in
detail in this publication in Chapter 18, “Hexadecimal-
Floating-Point Instructions,” Chapter 19, “Binary-
Floating-Point Instructions,” and Chapter 20, “Deci-
mal-Floating-Point Instructions.” This chapter,
Chapter 9, defines in detail instructions called float-
ing-point-support (FPS) instructions. The FPS
instructions either have operands that may be in any
floating-point format or have the function of convert-
ing between formats. This chapter also provides
summary information about all of the floating-point
instructions.

Registers And Controls

Floating-Point Registers

All floating-point instructions (FPS, BFP, DFP, and
HFP) use the same 16 floating-point registers. The
floating-point registers are identified by the numbers
0-15 and are designated by a four-bit R field in float-

Length Radix
W2 W10

Max Min Max Min

Short

HFP 24.00 20.00 7.22 6.02

BFP 24.00 23.00 7.22 6.92
DFP 23.25 19.93 7.00 6.00

Long

HFP 56.00 52.00 16.86 15.65

BFP 53.00 52.00 15.95 15.65
DFP 53.15 49.83 16.00 15.00

Extended

HFP 112.00 108.00 33.72 32.51

BFP 113.00 112.00 34.02 33.72
DFP 112.95 109.62 34.00 33.00

Explanation:

W2 effective width represented in base 2.
W10 effective width represented in base 10.

Figure 9-4. Maximum and Minimum Effective Width

Symbol or
Formula Value

Va 9.99

Vb 10.0

Vc 10.1

Vb-Va 0.01
Vc-Vb 0.1

Floating-Point Overview and Support Instructions 9-9

ing-point instructions. Each floating-point register is
64 bits long and can contain either a short (32-bit) or
a long (64-bit) floating-point operand.

A short floating-point datum requires only the left-
most 32 bit positions of a floating-point register. The
rightmost 32 bit positions of the register are ignored
when the register is the source of an operand in the
short format, and they remain unchanged when a
short result is placed in the register.

A datum in the extended (128-bit) format occupies a
register pair. Register pairs are formed by coupling
the 16 registers as follows: 0 and 2, 4 and 6, 8 and
10, 12 and 14, 1 and 3, 5 and 7, 9 and 11, and 13
and 15.

Each of the eight pairs is referred to by the number of
the lower-numbered register of the pair.

Additional Floating-Point (AFP)
Registers
Floating-point registers 0, 2, 4, and 6 are ones that
were originally available on ESA/390 models. The
remaining 12 floating-point registers (1, 3, 5, and 7-
15) were added to ESA/390 and are referred to as
the additional floating-point (AFP) registers. The AFP
registers can be used only if bit 45 of control register
0, the AFP-register-control bit, is one. Attempting to
use an AFP register when the AFP-register-control
bit is zero results in an AFP-register data exception
(DXC 1).

Valid Floating-Point-Register
Designations
Any installed register may be designated by an
instruction to specify the register location of a short
or long floating-point operand.

An instruction specifying a floating-point operand in
the extended format must designate register 0, 1, 4,
5, 8, 9, 12, or 13; otherwise, a specification exception
is recognized.

Floating-Point-Control (FPC)
Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and two rounding-mode fields. An
overview of the FPC register is shown in Figure 9-5.

Details are shown in Figure 9-6 and in Figure 9-8. (In
Figure 9-6, the abbreviations “IM” and “SF” are
based on the terms “interruption mask” and “status
flag,” respectively.)

The bits of the FPC register are often referred to as,
for example, FPC 1.0, meaning bit 0 of byte 1 of the
register.

 masks flags DXC

I
M
i

I
M
z

I
M
o

I
M
u

I
M
x

I
M
q

0 0
S
F
i

S
F
z

S
F
o

S
F
u

S
F
x

S
F
q

0 0 i z o u x
y
/
q

0 DRM 0 BRM

 Byte 0 Byte 1 Byte 2 Byte 3

Figure 9-5. FPC Register Overview

Byte Bit(s) Name Abbr.

0 0 IEEE-invalid-operation mask IMi

0 1 IEEE-division-by-zero mask IMz

0 2 IEEE-overflow mask IMo

0 3 IEEE-underflow mask IMu

0 4 IEEE-inexact mask IMx

0 5 Quantum-exception mask IMq

0 6-7 (Unassigned) 0

1 0 IEEE-invalid-operation flag SFi

1 1 IEEE-division-by-zero flag SFz

1 2 IEEE-overflow flag SFo

1 3 IEEE-underflow flag SFu

1 4 IEEE-inexact flag SFx

1 5 Quantum-exception flag SFq

1 6-7 (Unassigned) 0

2 0-7 Data-exception code DXC

3 0 (Unassigned) 0

3 1-3 DFP rounding mode DRM

3 4 (Unassigned) 0

3 5-7 BFP rounding mode BRM

Figure 9-6. FPC-Register Bit Assignments

9-10 The z/Architecture CPU Architecture

IEEE Masks and Flags
When the floating-point extension facility is installed,
the FPC register contains six IEEE mask bits and six
IEEE flag bits that each correspond to one of the six
IEEE exceptions that may be recognized when an
IEEE computational instruction is executed. When
the floating-point extension facility is not installed, the
quantum exception is not recognized; the mask bit
FPC 0.5 and the status flag bit FPC 1.5 correspond-
ing to the quantum exception are unsupported and
are zeros.

The mask bits, when one, in the FPC register cause
an interruption to occur if an exception is recognized.
If the mask bit for an exception is zero, the recogni-
tion of the exception causes the corresponding flag

bit to be set to one. Thus, a flag bit indicates whether
the corresponding exception has been recognized at
least once since the program last set the flag bit to
zero. Except for PFPO, the mask bits are ignored,
and the flag bits remain unchanged, when exceptions
are recognized for floating-point-support (FPS) and
HFP instructions.

The IEEE flag bits in the FPC register are set to zero
only by explicit program action, initial CPU reset,
clear reset, or power-on reset.

Note: The quantum exception is not part of the IEEE
Standard 754-2008 (see Reference [20.] on page
xxx). However, since this data exception with its
mask and status flag in the FPC is handled very
much like the five IEEE exceptions, this architecture
lists the quantum exception among the IEEE excep-
tions.

FPC DXC Byte
Byte 2 of the FPC register contains the data-excep-
tion code (DXC), which is an eight-bit code indicating
the specific cause of a data exception. When the
AFP-register-control bit, bit 45 of control register 0, is
one and a program interruption causes the DXC to
be placed at real location 147, the DXC is also
placed in the DXC field of the FPC register. The DXC
field in the FPC register remains unchanged when
the AFP-register-control bit is zero or when any other
program exception is reported. The DXC is described
in “Data-Exception Code (DXC)” on page 6-17.

The DXC is a code, meaning it should be treated as
an integer rather than as individual bits. However,
when bits 6 and 7 are zero, bits 0-5 are bit significant;
bits 0-4 (i, z, o, u, and x) are trap flags and corre-
spond to the same bits in bytes 0 and 1 of the FPC
register (IEEE masks and IEEE flags), and bit 5 (y) is
used in conjunction with bit 4, inexact (x), to indicate
that the result has been incremented in magnitude.
When the floating-point extension facility is installed,
DXC bit 5 (q) is also the quantum-exception trap flag.
The trap flag for an exception, instead of the IEEE
flag, is set to one when an interruption for the excep-
tion is enabled by the corresponding IEEE mask bit.

Operations on the FPC Register
The following unprivileged instructions allow prob-
lem-state programs to operate on the FPC register:

EXTRACT FPC (DXC 2)
LOAD FPC (DXC 2)

FPC Byte 3
Bits 1-3 Rounding Method

000 Round to nearest with ties to even

001 Round toward 0

010 Round toward +

011 Round toward -

100 Round to nearest with ties away from 0

101 Round to nearest with ties toward 0

110 Round away from 0

111 Round to prepare for shorter precision

Figure 9-7. DFP Rounding Mode

FPC Byte 3

Rounding Method
Bits
6-71

Bits
5-72

00 000 Round to nearest with ties to even

01 001 Round toward 0

10 010 Round toward +

11 011 Round toward -

— 100 Reserved / Invalid

— 101 Reserved / Invalid

— 110 Reserved / Invalid

— 111 Round to prepare for shorter precision

Explanation:

1 Used when the floating-point extension facility is not

installed.
2 Used when the floating-point extension facility is installed.

However, bits 5-7 may be used by the other architecture
mode of the configuration. (See the section, “Impacts on
ESA/390 and ESA/390-Compatibility Mode”, for details.)

— Does not apply

Figure 9-8. BFP Rounding Mode

Floating-Point Overview and Support Instructions 9-11

LOAD FPC AND SIGNAL (DXC 3)
SET BFP ROUNDING MODE (DXC 2)
SET DFP ROUNDING MODE (DXC 3)
SET FPC (DXC 2)
SET FPC AND SIGNAL (DXC 3)
STORE FPC (DXC 2)

These instructions are subject to the AFP-register-
control bit, bit 45 of control register 0. An attempt to
execute any of the above instructions when the AFP-
register-control bit is zero results in a data exception.
The term (DXC 2) or (DXC 3) after the name indi-
cates the type of exception: that is, BFP-instruction
data exception, (DXC 2), or DFP-instruction data
exception, (DXC 3), respectively.

Programming Note: The use of DXC 2 and DXC 3
for these floating-point-support (FPS) instructions is
rather arbitrary, but assuming a valid operating sys-
tem, these exceptions are never reported to the user,
as the operating system will set bit 45 of control reg-
ister 0 to one and re-issue the instruction.

AFP-Register-Control Bit

Bit 45 of control register 0 is the AFP-register-control
bit. The AFP registers, the BFP instructions, the DFP
instructions, and PFPO can be used successfully
only when the AFP-register-control bit is one.
Attempting to use one of the 12 additional floating-
point registers or executing PFPO when the AFP-
register-control bit is zero results in an AFP-register
data exception (DXC 1). Attempting to execute any
BFP instruction when the AFP-register-control bit is
zero results in a BFP-instruction data exception
(DXC 2). Attempting to execute any DFP instruction
when the AFP-register-control bit is zero results in a
DFP-instruction data exception (DXC 3).

DXC 2 and 3 are mutually exclusive and are of higher
priority than any other DXC. Thus, for example, DXC
2 (BFP instruction) takes precedence over any IEEE
exception; and DXC 3 (DFP instruction) takes prece-
dence over any IEEE exception. As another example,
if the conditions for both DXC 3 (DFP instruction) and
DXC 1 (AFP register) exist, DXC 3 is reported.

If the conditions for both a data exception and a
specification exception exist, it is unpredictable which
exception is reported.

The initial value of the AFP-register-control bit is
zero.

IEEE Computational Operations

Notes:

1. The following section primarily discusses the
BFP and DFP formats, however the topics on
rounding also discuss the HFP format, as indi-
cated in the text.

2. The description of binary-floating-point opera-
tions in this document is based on the original
IEEE Standard for Binary Floating-Point Arithme-
tic (IEEE Std. 754-1985). The current IEEE Stan-
dard for Floating-Point Arithmetic (see Reference
[20.] on page xxx), which encompasses both
binary and decimal floating point operations,
made various terminology changes from the orig-
inal standard, as follows:

• The term subnormal replaces the term
denormalized.

• The term exception functionally replaces the
former term trap. The term default handling
(or default non-stop execution handling) cor-
respond to the former nontrap action. and
the term alternate exception handling
encompasses the former trap action, as well
as other actions.

• The term loss (as in loss of accuracy or
denormalization loss) is no longer used.

Because of their pervasive use in the original
description of binary floating point, the terms
denormalized, trap, and nontrap still appear in
this document. It is understood that they refer to
the equivalent newer terms. A program-exception
condition represents the only IEEE-defined alter-
nate exception handling.

Instructions which operate on BFP or DFP source
operands or produce BFP or DFP results and recog-
nize IEEE exceptions are called IEEE computational
operations, and the associated operands and results
are sometimes referred to as IEEE operands and
IEEE results, respectively.

Execution of IEEE computational operations normally
follows a certain pattern. Source operands are first
tested for special cases and then processed to form
a result. The priority for testing of special cases is
SNaN, QNaN, infinity, and then finite number.

9-12 The z/Architecture CPU Architecture

If a source operand is an SNaN, an IEEE-invalid-
operation exception is recognized; and, in the non-
trap case, the result is set to the corresponding
QNaN.

In the absence of a source SNaN, if a source oper-
and is a QNaN the result is set to that QNaN.

Handling of the case when more than one source
operand is a NaN is covered in the individual instruc-
tion descriptions.

In the absence of a NaN, if an operand is an infinity,
special “infinity arithmetic” rules are followed to pro-
duce the result.

Programming Note: PERFORM FLOATING-POINT
OPERATION is an IEEE computational operation.

Intermediate Values

In the normal case (when all source operands are
finite numbers), first, a precise intermediate value is
produced, then a rounded intermediate value. In the
absence of trapped overflow and trapped underflow,
the rounded intermediate value is used as the deliv-
ered value. For trapped overflow and trapped under-
flow, the rounded intermediate value is divided by a
scale factor to produce a scaled value, which is used
as the delivered value. Finally, the delivered value is
placed in the target location. For DFP, since the
cohort for the delivered value may have multiple
members, one member from the cohort must be
selected. Selection is performed by choosing the
member having a quantum closest to the preferred
quantum (or for trapped overflow and trapped under-
flow, a scaled preferred quantum.

Precise Intermediate Value
Every IEEE computational operation producing a
numeric result computes a value called the precise
intermediate value. This is the value that would have
been computed were both the precision and expo-
nent range unbounded.

Precision-Rounded Value
Except when otherwise specified, the precise inter-
mediate value is rounded to the precision of the tar-
get format, but with unbounded exponent range. This
process is called target-precision-constrained round-
ing, and the value selected by this type of rounding is
called the precision-rounded value.

Denormalized Value
For IEEE targets, when the IEEE-underflow trap is
disabled and the tininess condition exists, the precise
intermediate value is rounded to fit in the destination
format (that is, with both precision and exponent
range of the target format). This process is called
denormalization rounding and the value selected by
this type of rounding is called the denormalized
value.

Functionally-Rounded Value
The instructions CONVERT TO FIXED, LOAD FP
INTEGER, QUANTIZE, and REROUND, as an inte-
gral part of the function, take a source operand and
modify it to fit in a subset of the destination format.
This process is called functionally-constrained round-
ing and the value selected by this type of rounding is
called the functionally-rounded value.

Rounded Intermediate Value
In any particular instance, only one of the three
rounding processes is performed and the value
selected (precision-rounded value, denormalized
value, or functionally-rounded value) is generically
referred to as the rounded intermediate value.

Scaled Value
For both overflow and underflow when the associated
trap is enabled, the precision-rounded value is scaled
to bring it into the representable exponent range of
the target. This is called the scaled value and is
derived as explained in the next section.

Scale Factor ()
IEEE-overflow trap action and IEEE-underflow trap
action produce a scaled value using a scale factor.
The scaled value (z) is computed from the precision-
rounded value (g) using the scale factor () as fol-
lows:

z = g

Unsigned Scaling Exponent ()
For BFP and DFP instructions, the scale factor () is
computed using the unsigned scaling exponent ()
and different formulas are used for overflow and
underflow.

For overflow:
 = b+

For underflow:
 = b-

Floating-Point Overview and Support Instructions 9-13

where b is the radix of the target (2 for BFP and 10
for DFP). The unsigned scaling exponent ()
depends on the type of operation and operand for-
mat.

For all BFP operations except LOAD ROUNDED,
depends on the target format and is 192 for short,
1536 for long, and 24576 for extended. For BFP
LOAD ROUNDED, depends on the source format,
and is 512 for long and 8192 for extended.

For all DFP operations except LOAD ROUNDED,
depends on the target format and is 576 for long and
9216 for extended. For DFP LOAD ROUNDED,
depends on the source format, and is 192 for long
and 3072 for extended.

Signed Scaling Exponent ()
For PFPO convert floating-point radix, the scale fac-
tor () is computed using the signed scaling expo-
nent () and the formula for the scale factor () is
the same for overflow and underflow:

 = b

Where b is the radix (2, 10, and 16) for BFP, DFP and
HFP, respectively. Thus, for overflow, the signed scal-
ing exponent () is a positive value, and for under-
flow it is a negative value.

IEEE Rounding

Rounding takes an input value, and, using the effec-
tive rounding method, selects a value from a permis-
sible set. The input value, considered to be infinitely-
precise, may be an operand of an instruction or the
numeric output from an arithmetic operation. The
effective rounding method may be the current round-
ing method specified in the BFP-rounding-mode or
DFP-rounding-mode field of the FPC register; or, for
some instructions, an explicit rounding method is
specified by a modifier field. For the PFPO-convert-
floating-point-radix operation, rounding is specified
by a field in an implicit register.

For target-precision-constrained rounding and denor-
malization rounding, the input is the precise interme-
diate value. For functionally-constrained rounding,
the input is a source operand.

Permissible Set
Rounding selects a value from the permissible set. A
permissible set is a set of values, and not representa-
tions; thus, for DFP, the selection of a member from
the cohort is considered to be performed after round-
ing. A permissible set differs from the values repre-
sentable in a particular format in the following ways:

1. A permissible set does not include infinity. Infinity
is handled as a special case.

2. For target-precision-constrained rounding, the
permissible set is considered to have an
unbounded exponent range.

3. For denormalization rounding, the permissible
set is limited to the values representable in a par-
ticular format.

4. For LOAD FP INTEGER, the permissible set
contains only integral values.

5. For QUANTIZE, the permissible set is similar to
LOAD FP INTEGER, containing only those val-
ues which are integral multiples of the requested
quantum.

6. For REROUND, the permissible set contains only
those values which can be represented within
the requested precision.

Selection of Candidates
If a member of the permissible set is equal in value to
the input value, then that member is selected; other-
wise, two adjacent candidates with the same sign as
the input value are chosen from the permissible set.
One candidate, called TZ (toward zero), is the mem-
ber of the permissible set nearest to and smaller in
magnitude than the input value; the other candidate,
called AZ (away from zero), is the member of the per-
missible set nearest to and larger in magnitude than
the input value. Which of the two candidates is
selected depends on the rounding method.

Ties
Three rounding methods depend on a condition
called a “tie.” This condition exists when the two can-
didates are equidistant from the input value.

Voting Digit and Common-Rounding-
Point View
Two rounding methods depend on the value of the
voting digit of each candidate. (Each “digit” is an inte-
gral value from zero to one less than the radix. Thus,

9-14 The z/Architecture CPU Architecture

a BFP digit is one bit, an HFP digit is four bits, and a
DFP digit is a value from zero to nine.) The voting
digit is the units digit of the significand when consid-
ered in the common-rounding-point view.

Without changing the value of a floating-point num-
ber, the significand may be viewed with the implied
radix point in different positions, provided a corre-
sponding adjustment is made to the exponent. In the
common-rounding-point view, an implied radix point
(called the common rounding point) and an associ-
ated exponent are selected for the input value and
the two candidates, TZ and AZ. The common-round-
ing point is selected to satisfy the following require-
ments:

1. The input value and the two candidates all have
the same exponent.

2. The significand of TZ is equal to the significand
of the input value truncated at the rounding point.

3. The significand of AZ is one greater in magnitude
than the significand of TZ.

Rounding Methods
Figure 9-8 and Figure 9-7 on page 9-10 show the
implicit rounding methods available for BFP and DFP
operations respectively. The section “Explicit Round-
ing Methods” on page 9-17 describes rounding meth-
ods that may be explicitly specified in an instruction,
overriding the implicit rounding method. The round-
ing methods are as follows:

Round to nearest with ties to even: The candi-
date nearest to the input value is selected. In case of
a tie, the candidate selected is the one whose voting
digit has an even value.

Round toward 0: The candidate that is smaller in
magnitude is selected.

Round toward +: The candidate that is algebra-
ically greater is selected.

Round toward -: The candidate that is algebra-
ically less is selected.

Round to nearest with ties away from 0: The
candidate nearest to the input value is selected. In
case of a tie, the candidate selected is the one that is
larger in magnitude.

Round to nearest with ties toward 0: The candi-
date nearest to the input value is selected. In case of
a tie, the candidate selected is the one that is smaller
in magnitude.

Round away from 0: The candidate that is greater
in magnitude is selected.

Round to prepare for shorter precision: For a
BFP or HFP permissible set, the candidate selected
is the one whose voting digit has an odd value. For a
DFP permissible set, the candidate that is smaller in
magnitude is selected, unless its voting digit has a
value of either 0 or 5; in that case, the candidate that
is greater in magnitude is selected.

Programming Notes:

1. The two candidates are defined as: “nearest to
and smaller” and “nearest to and larger”. Note
that the simpler definition, “the two closest val-
ues,” is incorrect, as it is possible that the two
closest values to the input value can be on the
same side (toward zero). To illustrate this,
Figure 9-9 on page 9-15 gives an example of
rounding the integer value 10,000,003 to DFP
short. Several members in the permissible set
near this value are shown in three views: left-
units view, right-units view, and integer view. The
fourth column shows the distance of each mem-
ber from the input value. In this example, the four
closest members are all smaller in magnitude
than the input value. Although the example is
shown using DFP, corresponding examples can
be shown for both BFP and HFP. In the extreme
case, the number of members in the permissible
set which are closer than candidate AZ, is 2, 10,
and 16, for BFP, DFP, and HFP, respectively.

2. Except for rounding methods using the voting
digit, rounding can normally be considered to be
performed using values independent of the rep-
resentation and the view. Figure 9-10 on
page 9-16 is an example, using the instruction
LOAD FP INTEGER, to illustrate the concepts of
different representations, views, rounding point,
common-rounding-point view, and voting digit. In
the example, the input value (source operand) is
29.5 and the two candidates are 29 and 30. The
figure shows all three of these values using the
left-units, right-units, and common-rounding-
point views in both decimal and binary represen-
tations. Note that as shown in the left-units and
right-units view columns, the rightmost digit is

Floating-Point Overview and Support Instructions 9-15

odd for both TZ and AZ. (But as represented in
all BFP formats, these values would have an
even rightmost digit; and as represented in DFP
formats, these values could have an even or odd
rightmost digit, depending on the quantum.) The
voting digit can be identified in the common-
rounding-point view as the digit to the immediate
left of the rounding point. In both the decimal and
binary representations, candidate TZ has an odd
voting digit and candidate AZ has an even voting
digit.

LOAD FP INTEGER produces consistent results
between decimal and binary for five of the six
rounding methods currently supported by the
BFP instruction; for the round-to-prepare-for-
shorter-precision rounding method, this is not
always the case. Figure 9-11 on page 9-16
shows results of LOAD FP INTEGER for several
input values for all eight rounding methods. Only
in the round-to-prepare-for-shorter-precision
method are the results different for decimal and
binary.

3. An example of LOAD ROUNDED (long to short
DFP) is shown in Figure 9-12 on page 9-16 In
this example, the integer 99,999,995 is rounded
from DFP long to DFP short. The cohort for can-
didate TZ in this case, has only one member and
is odd. The cohort of candidate AZ has seven
members, one of which is odd and the other six
are even. The common-rounding-point view
makes it clear that in this case, candidate AZ
should be considered to be even.

4. The rightmost digit and the voting digit of a candi-
date are not necessarily the same digit.
Figure 9-13 on page 9-16 and Figure 9-14 on
page 9-17 give two examples using the instruc-
tion REROUND (long DFP). In both examples,
the requested significance is one (Result Dig-
its=1). The input value is 95 in the first example
and 150 in the second example. Note that candi-
date AZ in the first example is the same value as
candidate TZ in the second example. In the first
example, this member is considered to be even,
and in the second example it is considered to be
odd.

Value in Permissible Set Distance
from

10000003 NotesLeft-Units View Right-Units View Integer View

9.999996106 9999996100 9999996 -7

9.999997106 9999997100 9999997 -6 *

9.999998106 9999998100 9999998 -5 *

9.999999106 9999999100 9999999 -4 *

1.000000107 1000000101 10000000 -3 TZ

1.000001107 1000001101 10000010 +7 AZ

1.000002107 1000002101 10000020 +17

Explanation:

* Closer than AZ.
AZ Selected as candidate AZ (away from zero).
TZ Selected as candidate TZ (toward zero).

Figure 9-9. Choosing Candidates (short DFP)

9-16 The z/Architecture CPU Architecture

Participant

Decimal Binary1

Left-Units
View

Right-Units
View

Common-
Rounding-
Point View

Left-Units
View

Right-Units
View

Common-
Rounding-
Point View

Input Value 2.95101 29510-1 29.5100 1.1101124 1110112-1 11101.120

Candidate TZ 2.9101 29100 29.0100 1.110124 1110120 11101.020

Candidate AZ 3.0101 3101 30.0100 1.11124 111121 11110.020

Explanation:

1 Significand is shown in binary, exponent in decimal.

Figure 9-10. LOAD FP INTEGER - Decimal and Binary

Input
Value

Result When Effective Rounding Method Is

RNTE RZ RP RM RNTA RNTZ RA

RFS

Dec Bin

-9.5 -10 -9 -9 -10 -10 -9 -10 -9 -9

-5.5 -6 -5 -5 -6 -6 -5 -6 -6 -5

-2.5 -2 -2 -2 -3 -3 -2 -3 -2 -3

-1.5 -2 -1 -1 -2 -2 -1 -2 -1 -1

-0.5 -0 -0 -0 -1 -1 -0 -1 -1 -1

+0.5 +0 +0 +1 +0 +1 +0 +1 +1 +1

+1.5 +2 +1 +2 +1 +2 +1 +2 +1 +1

+2.5 +2 +2 +3 +2 +3 +2 +3 +2 +3

+5.5 +6 +5 +6 +5 +6 +5 +6 +6 +5

+9.5 +10 +9 +10 +9 +10 +9 +10 +9 +9

Explanation:

RNTE Round to nearest with ties to even
RZ Round toward 0
RP Round toward +
RM Round toward -
RNTA Round to nearest with ties away from 0
RNTZ Round to nearest with ties toward 0
RA Round away from 0
RFS Round to prepare for shorter precision

Figure 9-11. LOAD FP INTEGER Examples for All Rounding Methods

Participant
Left-Units

View
Right-Units

View

Common-
Rounding-
Point View

Input Value 9.9999995107 99999995100 9999999.5101

Candidate TZ 9.999999107 9999999100 9999999.0101

Candidate AZ 1.0108 1108 10000000.0101

Figure 9-12. LOAD ROUNDED (long to short DFP)

Participant
Left-Units

View
Right-Units

View

Common-
Rounding-
Point View

Input Value 9.5101 95100 9.5101

Candidate TZ 9.0101 9101 9.0101

Candidate AZ 1.0102 1102 10.0101

Figure 9-13. REROUND (long DFP), Result Digits=1, Input
Value=95

Floating-Point Overview and Support Instructions 9-17

Explicit Rounding Methods
The floating-point-support instruction CONVERT
HFP TO BFP includes an M3 modifier field which can
specify any of six rounding methods. One HFP
instruction (CONVERT TO FIXED); three BFP
instructions (CONVERT TO FIXED, DIVIDE TO
INTEGER, and LOAD FP INTEGER); and five DFP
instructions (CONVERT TO FIXED, LOAD FP INTE-
GER, LOAD ROUNDED, QUANTIZE, and
REROUND) also include either an M3 modifier field
or a similar M4 modifier field. When the floating-point
extension facility is installed, four more BFP instruc-
tions (CONVERT FROM FIXED, CONVERT FROM
LOGICAL, CONVERT TO LOGICAL, and LOAD
ROUNDED) and seven more DFP instructions (ADD,
CONVERT FROM FIXED, CONVERT FROM LOGI-
CAL, CONVERT TO LOGICAL, DIVIDE, MULTIPLY,
and SUBTRACT) also include an M3 or M4 modifier
field.

The handling of an M3 or M4 value of zero depends
on the type of instruction. For BFP instructions, an M3

or M4 value of zero causes rounding to be performed
according to the current BFP rounding mode speci-
fied in the FPC register. For DFP instructions, an M3

or M4 value of zero causes rounding to be performed
according to the current DFP rounding mode speci-
fied in the FPC register. The floating-point-support
instruction CONVERT HFP TO BFP and the HFP
instruction CONVERT TO FIXED treat an M3 value of
zero the same as five; that is, round toward zero.

For PERFORM FLOATING POINT OPERATION
(PFPO), any of the rounding methods described in
this section may be explicitly specified, or the pro-
gram may specify the current BFP or DFP rounding
method (in the floating-point-control register). The
program-specified rounding method is used by PFPO
regardless of whether the target-operand format is
BFP, DFP or HFP.

Summary of Rounding Action
Figure 9-15 on page 9-17 summarizes the rounding
action for floating-point-support (FPS), BFP, DFP,
and HFP instructions.

Participant
Left-Units

View
Right-Units

View

Common-
Rounding-
Point View

Input Value 1.5102 15101 1.5102

Candidate TZ 1.0102 1102 1.0102

Candidate AZ 2.0102 2102 2.0102

Figure 9-14. REROUND (long DFP), Result Digits=1, Input
Value=150 Instruction

Rounding Action For

FPS
Inst.

HFP
Inst.

BFP
Inst.

DFP
Inst.

ADD — — CBRM MDD

ADD NORMALIZED — GD — —

ADD UNNORMALIZED — GD — —

CONVERT BFP TO HFP E — — —

CONVERT FROM FIXED — RTZ MBB MDD

CONVERT FROM LOGICAL — — MA MD

CONVERT HFP TO BFP MC — — —

CONVERT TO FIXED — M MB MD

CONVERT TO LOGICAL — — MA MD

DIVIDE — RTZ CBRM MDD

DIVIDE TO INTEGER — — MB —

HALVE — RTZ — —

LOAD FP INTEGER — RTZ MB MD

LOAD ROUNDED — RNTA MBB MD

MULTIPLY — RTZ CBRM MDD

MULTIPLY AND ADD — RTZ CBRM —

MULTIPLY AND ADD
UNNORMALIZED

— RTZ — —

MULTIPLY AND SUBTRACT — RTZ CBRM —

MULTIPLY UNNORMALIZED — RTZ — —

PERFORM FLOATING-POINT
OPERATION

MBD — — —

QUANTIZE — — — MD

REROUND — — — MD

SQUARE ROOT — RNTA CBRM —

SUBTRACT — — CBRM MDD

SUBTRACT NORMALIZED — GD — —

SUBTRACT UNNORMALIZED — GD — —

Explanation:

CBRM Rounded according to current BFP rounding mode.

E Result is exact, no rounding is required.

GD Round using a guard digit; see the instruction definition.
This is almost, but not quite, round toward 0.

M Rounding is specified by a modifier field in the instruction.
Five rounding methods are supported.

Figure 9-15. Comparison of Rounding Action (Part 1 of 2)

9-18 The z/Architecture CPU Architecture

IEEE Exceptions

This section defines handling of IEEE exceptions for
most IEEE computational operations. For some
instructions the action may differ from the general
rules; including, for example, a special controls to
suppress recognition of certain IEEE exceptions.
These differences are described in the individual
instruction descriptions.

The action taken for each IEEE exception is con-
trolled by a mask bit in the FPC register. When an
IEEE exception is recognized, one of two actions is
taken:

• If the corresponding mask bit in the FPC register
is zero, a default action, called IEEE nontrap
action, is taken, as specified for each condition,
and the corresponding flag bit in the FPC register
is set to one. Program execution then continues
normally.

• If the corresponding mask bit in the FPC register
is one, an action, called IEEE trap action, is
taken for that exception, a program interruption
for a data exception occurs, and the operation is
suppressed or completed, depending on the
exception, and the data-exception code (DXC)
assigned for that exception is provided. For
PFPO, a control bit in GR0 can select alternate
exception handling, where overflow or underflow
can be reflected by completion with a distin-
guished condition code, avoiding the interruption.

Concurrent IEEE Exceptions
IEEE-overflow or IEEE-underflow exception, IEEE-
inexact exception, and quantum exception can coin-
cide concurrently.

When the action for IEEE overflow (or underflow) is a
nontrap action, the IEEE-overflow (or IEEE-under-
flow) flag bit in the FPC register is set to one and
then the action for IEEE inexact (which could be a
nontrap or trap action) occurs.

When the action for IEEE overflow (or underflow) is a
trap action, the inexact exception is not recognized
and not reported directly; instead, the DXC is set to
indicate whether the result is exact, inexact and trun-
cated, or inexact and incremented.

When the action for all concurrent IEEE exceptions,
except the quantum exception, is a nontrap action,
the flag bits in the FPC register corresponding to
these nontrap concurrent exceptions are set to one,
and then the action for the quantum exception (which
could be a nontrap or trap action) occurs.

When the action for any concurrent IEEE exception,
except the quantum exception, is a trap action, the
quantum exception is not recognized, not reported
directly, and not indicated in the DXC.

MA Rounding is specified by a modifier field in the instruction.
Six rounding methods are supported; current BFP
rounding mode can also be specified.

MB Rounding is specified by a modifier field in the instruction.
When the floating-point extension facility is not installed,
five rounding methods are supported; when the floating-
point extension facility is installed, six rounding modes are
supported; current BFP rounding mode can also be
specified.

MBB When the floating-point extension facility is not installed,
rounding is specified by the current BFP rounding mode;
four rounding modes are supported. When the floating-
point extension facility is installed, rounding is specified
by a modifier field in the instruction; six rounding modes
are supported; current BFP rounding mode can also be
specified.

MBD Rounding is specified by a field in general register 0. Eight
rounding methods are supported; current BFP rounding
mode and current DFP rounding mode can also be
specified.

MC Rounding is specified by a modifier field in the instruction.
When the floating-point extension facility is not installed,
five rounding methods are supported; when the floating-
point extension facility is installed, six rounding modes are
supported; current BFP rounding mode cannot be
specified.

MD Rounding is specified by a modifier field in the instruction.
Eight rounding methods are supported; current DFP
rounding mode can also be specified.

MDD When the floating-point extension facility is not installed,
rounding is specified by the current DFP rounding mode.
When the floating-point extension facility is installed,
rounding is specified by a modifier field in the instruction;
eight rounding modes are supported; current DFP
rounding mode can also be specified.

RNTA Round to nearest with ties away from 0.

RTZ Round toward 0.

Instruction

Rounding Action For

FPS
Inst.

HFP
Inst.

BFP
Inst.

DFP
Inst.

Figure 9-15. Comparison of Rounding Action (Part 2 of 2)

Floating-Point Overview and Support Instructions 9-19

IEEE Invalid Operation
An IEEE-invalid-operation exception is recognized
when, in the execution of an IEEE computational
operation, any of the following occurs:

1. An SNaN is encountered in an IEEE computa-
tional operation.

2. A QNaN is encountered in an unordered-signal-
ing comparison (COMPARE AND SIGNAL with a
QNaN operand).

3. An IEEE difference is undefined (addition of infin-
ities of opposite sign, or subtraction of infinities of
like sign).

4. An IEEE product is undefined (zero times infin-
ity).

5. An IEEE quotient is undefined (DIVIDE instruc-
tion with both operands zero or both operands
infinity).

6. A BFP remainder is undefined (DIVIDE TO INTE-
GER with a dividend of infinity or a divisor of
zero).

7. A BFP square root is undefined (negative non-
zero operand).

8. Any other IEEE computational operation whose
result is either undefined or not representable in
the target format.

Even though an invalid-operation condition exists, the
exception is not recognized if recognition of the
exception is suppressed by means of an IEEE-
invalid-operation-exception control (XiC).

IEEE-Invalid-Operation Nontrap Action: IEEE-
invalid-operation nontrap action occurs when the
IEEE-invalid-operation exception is recognized and
the IEEE-invalid-operation mask bit in the FPC regis-
ter is zero. The operation is completed and the IEEE-
invalid-operation flag bit in the FPC register is set to
one. The result of the operation depends on the type
of operation and the operands.

If the instruction performs a comparison, the compar-
ison result is unordered.

If the instruction is one that produces an IEEE result
and none of the operands is a NaN, the result is the
default QNaN.

If the instruction is one that produces an IEEE result
and one of the operands is a NaN, that operand
becomes the result unchanged, except that an SNaN
is first converted to the corresponding QNaN and, for
DFP, NaNs are canonicalized.

IEEE-Invalid-Operation Trap Action: IEEE-
invalid-operation trap action occurs when the IEEE-
invalid-operation exception is recognized and the
IEEE-invalid-operation mask bit in the FPC register is
one. The operation is suppressed, and the exception
is reported as a program interruption for a data
exception with DXC 80 hex.

IEEE Division-By-Zero
An IEEE-division-by-zero exception is recognized
when in IEEE division the divisor is zero and the divi-
dend is a nonzero finite number.

IEEE-Division-By-Zero Nontrap Action: IEEE-
division-by-zero nontrap action occurs when the
IEEE-division-by-zero exception is recognized and
the IEEE-division-by-zero mask bit in the FPC regis-
ter is zero. The operation is completed and the IEEE-
division-by-zero flag bit in the FPC register is set to
one. The result is set to an infinity with a sign that is
the exclusive or of the dividend and divisor signs.

IEEE-Division-By-Zero Trap Action: IEEE-divi-
sion-by-zero trap action occurs when the IEEE-divi-
sion-by-zero exception is recognized and the IEEE-
division-by-zero mask bit in the FPC register is one.
The operation is suppressed, and the exception is
reported as a program interruption for a data excep-
tion with DXC 40 hex.

IEEE Overflow
An IEEE-overflow exception is recognized for an
IEEE target when the precision-rounded value of an
IEEE computational operation is greater in magni-
tude than the largest finite number (Nmax) represent-
able in the target format.

IEEE-Overflow Nontrap Action: IEEE-overflow
nontrap action occurs when the IEEE-overflow
exception is recognized and the IEEE-overflow mask
bit in the FPC register is zero.

The operation is completed and the IEEE-overflow
flag bit in the FPC register is set to one. The result of
the operation depends on the sign of the precise
intermediate value and on the effective rounding
method:

9-20 The z/Architecture CPU Architecture

1. For all round-to-nearest methods and round-
away-from-0, the result is infinity with the sign of
the precise intermediate value.

2. For round-toward-0 and round-to-prepare-for-
shorter-precision, the result is the largest finite
number of the format, with the sign of the precise
intermediate value.

3. For round toward +, the result is +. if the sign
is plus, or it is the negative finite number with the
largest magnitude if the sign is minus.

4. For round toward -, the result is the largest pos-
itive finite number if the sign is plus or -. if the
sign is minus.

IEEE-Overflow Trap Action: IEEE-overflow trap
action occurs when the IEEE-overflow exception is
recognized and the IEEE-overflow mask bit in the
FPC register is one.

The operation is completed by setting the result to
the scaled value and the exception is reported as a
program interruption for a data exception with DXC
20, 28, or 2C hex, depending on whether the deliv-
ered value is exact, inexact and truncated, or inexact
and incremented, respectively.

The result of the operation is derived from the preci-
sion-rounded value, the scale factor, and, for DFP, on
the scaled preferred quantum. The value of the scale
factor depends on the type of operation and operand
format. The scaled preferred quantum for a particular
operation is equal to the preferred quantum for that
operation divided by the scale factor for that opera-
tion.

The delivered value is equal to the precision-rounded
value divided by the scale factor. For DFP targets,
the cohort member with the quantum nearest to the
scaled preferred quantum is selected.

IEEE Underflow
An IEEE-underflow exception is recognized for an
IEEE target when the tininess condition exists and
either: (1) the IEEE-underflow mask bit in the FPC
register is zero and the result value is inexact, or (2)
the IEEE-underflow mask bit in the FPC register is
one.

The tininess condition exists when the precise inter-
mediate value of an IEEE computational operation is
nonzero and smaller in magnitude than the smallest

normal number (Nmin) representable in the target
format.

The result value is inexact if it is not equal to the pre-
cise intermediate value.

IEEE-Underflow Nontrap Action: IEEE-under-
flow nontrap action occurs when the IEEE-underflow
exception is recognized and the IEEE-underflow
mask bit in the FPC register is zero.

The operation is completed and the IEEE-underflow
flag bit in the FPC register is set to one. The result is
set to the denormalized value or Nmin. For DFP tar-
gets, the cohort member with the smallest quantum
is selected.

IEEE-Underflow Trap Action: IEEE-underflow
trap action occurs when the IEEE-underflow excep-
tion is recognized and the IEEE-underflow mask bit
in the FPC register is one.

The operation is completed by setting the result to
the scaled value and the exception is reported as a
program interruption for a data exception with DXC
10, 18, or 1C hex, depending on whether the deliv-
ered value is exact, inexact and truncated, or inexact
and incremented, respectively.

The result of the operation is derived from the preci-
sion-rounded value, the scale factor and, for DFP, on
the scaled preferred quantum. The value of the scale
factor depends on the type of operation and operand
format. The scaled preferred quantum for a particular
operation is equal to the preferred quantum for that
operation divided by the scale factor for that opera-
tion.

The result is set to the precision-rounded value
divided by the scale factor. For DFP targets, the
cohort member with the quantum nearest to the
scaled preferred quantum is selected.

IEEE Inexact
An IEEE-inexact exception is recognized when, for
an IEEE computational operation, an inexact condi-
tion exists, recognition of the exception is not sup-
pressed, and neither IEEE-overflow trap action nor
IEEE-underflow trap action occurs.

In the absence of an IEEE-invalid-operation condi-
tion, an inexact condition exists when the rounded
intermediate value differs from the precise intermedi-

Floating-Point Overview and Support Instructions 9-21

ate value. The condition also exists when IEEE-over-
flow nontrap action occurs. When the inexact
condition exists, the delivered value and the result
are said to be inexact.

Even though an inexact condition exists, the IEEE-
inexact exception is not recognized if recognition of
the exception is suppressed by means of an IEEE-
inexact-exception control (XxC) or if IEEE overflow or
IEEE underflow trap action occurs. When an inexact
condition exists and the conditions for an IEEE-over-
flow trap action or IEEE-underflow trap action also
apply, the trap action takes precedence and the inex-
act condition is reported in the DXC.

IEEE-Inexact Nontrap Action: IEEE-inexact non-
trap action occurs when the IEEE-inexact exception
is recognized and the IEEE-inexact mask bit in the
FPC register is zero.

In the absence of another IEEE nontrap action, the
operation is completed using the rounded intermedi-
ate value and the IEEE-inexact flag bit in the FPC
register is set to one. For DFP targets, except for
QUANTIZE and REROUND, the cohort member with
the smallest quantum is selected.

When an IEEE-inexact nontrap action and another
IEEE nontrap action coincide, the operation is com-
pleted using the result specified for the other excep-
tion and the flag bits for both exceptions are set to
one.

IEEE-Inexact Trap Action: IEEE-inexact trap
action occurs when the IEEE-inexact exception is
recognized and the IEEE-inexact mask bit in the FPC
register is one. The operation is completed and the
exception is reported as a program interruption for a
data exception with DXC 08 or 0C hex, depending on
whether the result is inexact and truncated or inexact
and incremented, respectively.

In the absence of a coincident IEEE nontrap action,
the delivered value is set to the rounded intermediate
value. For DFP targets, the cohort member with the
smallest quantum is selected.

When the IEEE-inexact trap action coincides with an
IEEE nontrap action, the operation is completed
using the result specified for the IEEE nontrap action,
the flag bit for the nontrap exception is set to one,
and the IEEE-inexact trap action takes place.

Quantum Exception
A quantum exception is recognized when floating-
point extension facility is installed and when, for an
IEEE computational operation, a quantum-exception
condition exists, recognition of the exception is not
suppressed, and none of IEEE-overflow trap action,
IEEE-underflow trap action, and IEEE-inexact trap
action occurs.

For computational operations except DIVIDE, LOAD
FP INTEGER, PERFORM FLOATING-POINT
OPERATION, QUANTIZE, and REROUND, a quan-
tum-exception condition exists when the delivered
DFP result is inexact, or when the delivered DFP
result is exact and finite, but the delivered quantum is
different from the preferred quantum.

For DIVIDE, a quantum-exception condition exists (1)
when the delivered DFP result is inexact, or (2) when
the dividend is a finite number and the divisor is an
infinity, or (3) when the delivered DFP result is exact
and is a finite number, the delivered quantum is the
maximum quantum and is not the preferred quantum,
and the rightmost significand digit is zero, or (4) when
the delivered DFP result is exact and is a finite num-
ber, the delivered quantum is the minimum quantum
and is greater than the preferred quantum. Note that
the maximum quantum is the value of 1 x 10Qmax and
the minimum quantum is the value of 1 x 10Qmin,
where Qmax and Qmin are the maximum and mini-
mum right-units-view exponents, respectively.

For LOAD FP INTEGER, QUANTIZE, and
REROUND, a quantum-exception condition exists
when the delivered DFP result is a finite number, but
the delivered quantum is different from the quantum
of the source operand (the second operand for LOAD
FP INTEGER, and the third operand for QUANTIZE
and REROUND).

For PERFORM FLOATING-POINT OPERATION, a
quantum-exception condition exists when the deliv-
ered quantum exceeds the preferred quantum of 1.

When floating-point extension facility is not installed,
no quantum exception is recognized by executing
any instruction.

Even though a quantum-exception condition exists,
the exception is not recognized if recognition of the
exception is suppressed or if IEEE-overflow, IEEE-
underflow, or IEEE-inexact trap action occurs. When
a quantum-exception condition exists and the condi-
tions for an IEEE-overflow, IEEE-underflow, or IEEE-

9-22 The z/Architecture CPU Architecture

inexact trap action also apply, the trap action takes
precedence and the quantum-exception condition is
not reported.

Quantum-Exception Nontrap Action: Quantum-
exception nontrap action occurs when the quantum
exception is recognized and the quantum-exception
mask bit in the FPC register is zero.

In the absence of another IEEE nontrap action, the
operation is completed using the rounded intermedi-
ate value and the quantum-exception flag bit in the
FPC register is set to one. The delivered result, if it is
a finite number, is the cohort member with the quan-
tum closest to the preferred quantum.

When a quantum-exception nontrap action and other
concurrent IEEE nontrap actions coincide, the opera-
tion is completed using the result specified for the
other exceptions and the flag bits for all exceptions
are set to one.

Quantum-Exception Trap Action: Quantum-
exception trap action occurs when the quantum-
exception is recognized and the quantum-exception
mask bit in the FPC register is one. The operation is
completed and the exception is reported as a pro-
gram interruption for a data exception with DXC 04
hex.

In the absence of a coincident IEEE nontrap action,
the delivered value is set to the rounded intermediate
value, and the delivered result, if it is a finite number,
is the cohort member with the quantum closest to the
preferred quantum.

When the quantum-exception trap action coincides
with other IEEE nontrap actions, the operation is
completed using the result specified for the other
IEEE nontrap actions, the flag bits for the other IEEE
nontrap exceptions are set to one, and the quantum-
exception trap action takes place.

Programming Notes:

1. IEEE traps are reported by means of a program
interruption for a data exception with a data-
exception code.1 The use of data exception pro-
vides the application program with a convenient
interface since this exception is one of the origi-
nal 15 exceptions in the System/360 architecture

and is supported by most control programs that
support the z/Architecture.

2. ANSI/IEEE Standard 754-2008 includes recom-
mendations for the trap handler (see Reference
[20.] on page xxx). When a system traps, the trap
handler should be able to determine:

a. Which exception(s) were recognized on this
operation.

b. The kind of operation that was being per-
formed.

c. The destination's format.

d. For overflow, underflow, and inexact excep-
tions, the correctly rounded result, including
information that might not fit in the destina-
tion's format.

e. For invalid-operation and divide-by-zero
exceptions, the operand values.

Items a and d are supplied as part of the inter-
ruption action. Items b, c, and e can be obtained
starting with the instruction address in the old
PSW and from this finding the instruction (which
indicates the operation and format) and then the
operands.

3. The description of underflow is one of the most
difficult parts of the standard to understand. This
is because:

a. For tininess, ANSI/IEEE Standard 754-2008
provides two options for detection for BFP
formats: “after rounding” or “before round-
ing”. For DFP formats, tininess detection
occurs before rounding.

b. Implementation of the trap is optional.

c. The conditions to signal underflow are differ-
ent depending on whether or not the trap is
taken.

 Each of the above items is discussed below.

a. Detection of tininess after or before rounding
differs only for the case when “rounding”
would increase the magnitude of the result to
exactly Nmin. It must be noted, however,
that the action which ANSI/IEEE Standard
754-2008 here calls “rounding” is not the
rounding to produce the delivered result but

1. PFPO provides an option for trap action without the program interruption.

Floating-Point Overview and Support Instructions 9-23

rounding to compute an intermediate value
having the precision of the result but “as
though the exponent range were
unbounded”. In fact, it is possible that the
delivered result may not be tiny even though
the intermediate value “after rounding” is tiny.

The option selected in the z/Architecture
(and the Power architecture) is to detect tini-
ness before rounding.

b. Although ANSI/IEEE Standard 754-2008
does not require traps to be implemented for
underflow or the other IEEE exceptions, it
does state that “with each exception should
be associated a trap under user control”.
Since it also defines “should” as “that which
is strongly recommended as being in keep-
ing with the intent of the standard”, the
z/Architecture provides traps by means of
program interruptions.

c. When the underflow trap is enabled, under-
flow is to be signaled when tininess is
detected regardless of loss of accuracy.
When the underflow trap is not enabled, the
underflow flag bit is to be set only when both
tininess and loss of accuracy have been
detected. Add and subtract can result in tiny
or inexact results, but not both. Thus, when
underflow is disabled, add and subtract
never set the underflow flag bit.

Suppression of Certain IEEE
Exceptions

For IEEE-invalid-operation exception, IEEE-inexact
exception, and quantum exception, a special control
may be provided for an IEEE computational opera-
tion to control whether recognition of the exception is
suppressed. These controls are called IEEE-invalid-
operation-exception control (XiC), IEEE-inexact-
exception control (XxC), and quantum-exception
control (XqC), respectively.

When a special control is zero, recognition of the
designated exception is not suppressed, and normal
handling of the exception is performed. And, when
the exception is recognized, it further depends on the
mask bit in the FPC register to determine if a trap
action occurs.

When a special control is one, recognition of the des-
ignated exception is suppressed, and no trap or non-
trap action for the exception occurs. This suppression
affects only recognition of the exception for setting
the status flag or for causing the trap action. For
example, the IEEE-inexact-exception control (XxC)
has no effect on the DXC; that is, the DXC for IEEE-
overflow or IEEE-underflow exceptions along with the
detail for exact, inexact and truncated, or inexact and
incremented, is reported according to the actual con-
dition. Also, it has no effect on recognition of a quan-
tum exception, which may depend on the actual
inexact condition regardless of the setting of IEEE-
inexact-exception control.

Multiple exception controls may be provided to a sin-
gle IEEE computational operation. In this case, the
effect and setting of each control is independent of
other controls. The specific exception controls that
are provided are described in the individual instruc-
tion descriptions.

IEEE Same-Radix Format
Conversion

The instructions LOAD LENGTHENED and LOAD
ROUNDED perform conversions of data between the
short, long, and extended formats, where the source
and target operands are in the same radix. (For
mixed-radix conversions, see PFPO.) For BFP and
DFP formats, same-radix conversion involves adjust-
ments to both the significand and the biased expo-
nent. Conversion to a narrower format requires
rounding of the significand and an IEEE-inexact
exception may result.

When converting to a narrower format, adjustment of
the biased exponent causes IEEE underflow if the
resultant left-units-view (LUV) exponent would be
less than the minimum LUV exponent (Emin), or
IEEE overflow if the resultant LUV exponent would
be greater than the maximum LUV exponent (Emax)
for the new format.

Programming Notes:

1. When a NaN is converted to a narrower format,
for BFP the appropriate number of payload bits
on the right (or for DFP, the appropriate number
of payload digits on the left) are simply dropped
with no indication. This is unlike the conversion of
nonzero numbers, where the loss of nonzero sig-

9-24 The z/Architecture CPU Architecture

nificand digits causes an IEEE-inexact exception.
Thus, programs which encode NaN payloads for
specific purposes must ensure that the distin-
guishing bits (or digits) are placed in the left part
of the payload for BFP and in the right part of the
payload for DFP.

2. For BFP, converting a NaN to a narrower format
cannot turn the NaN into an infinity because an
SNaN either causes an interruption or turns into
a QNaN, and all QNaNs have a leftmost fraction
bit of one.

IEEE Comparison

Comparisons are always exact and cannot cause
IEEE-overflow or IEEE-underflow exceptions.

Comparison ignores the sign of zero, that is, +0
equals -0.

Infinities with like sign compare equal, that is, +.
equals +, and -. equals -.

A NaN compares as unordered with any other oper-
and, whether a finite number, an infinity, or another
NaN, including itself.

Two sets of instructions are provided: COMPARE and
COMPARE AND SIGNAL. In the absence of QNaNs,
these instructions work the same. These instructions
work differently only when both of the following are
true:

• Neither operand of the instruction is an SNaN

• At least one operand of the instruction is a QNaN

In this case, COMPARE simply sets condition code 3,
but COMPARE AND SIGNAL recognizes the IEEE-
invalid-operation exception. If any operand is an
SNaN, both instructions recognize the IEEE-invalid-
operation exception.

The action when the IEEE-invalid-operation excep-
tion is recognized depends on the IEEE-invalid-oper-
ation mask bit in the FPC register. If the mask bit is
zero, then the instruction execution is completed by
setting condition code 3, and the IEEE-invalid-opera-
tion flag in the FPC register is set to one. If the mask
bit is one, then the exception is reported as a pro-
gram interruption for a data exception with DXC 80
hex (IEEE invalid operation).

Programming Note: A compiler can select either
COMPARE or COMPARE AND SIGNAL for a com-
parison, depending on whether it is desired that a
QNaN to be recognized as an exception.

Condition Codes for IEEE
Instructions

For those operations which set the condition code to
indicate the value of an IEEE result, condition codes
0, 1, and 2 are set to indicate that the result is a zero
of either sign, less than zero, or greater than zero,
respectively. The condition-code setting depends
only on an inspection of the rounded result. For com-
parison operations, condition codes 0, 1, and 2 indi-
cate equal, low, or high, respectively. These settings
are the same as for the HFP instructions.

Condition code 3 can also be set. After an arithmetic
operation, condition code 3 indicates a NaN result of
either sign. After a comparison, it indicates that a
NaN was involved in the comparison (the unordered
condition). See Figure 9-16.

Instructions

The floating-point-support instructions and their mne-
monics and operation codes are listed in Figure 9-17
on page 9-25. The figure indicates, in the column
labeled “Characteristics”, the instruction format,
when the condition code is set, the instruction fields
that designate access registers, and the exceptional
conditions in operand designations, data, or results
that cause a program interruption.

All floating-point-support instructions are subject to
the AFP-register-control bit, bit 45 of control register
0. The AFP-register-control bit must be one when an
AFP register is specified as an operand location; oth-
erwise, an AFP-register data exception, DXC 1, is
recognized.

CC Arithmetic Comparison
0 0 Equal

1 <0 Low

2 >0 High
3 NaN Unordered

Figure 9-16. Condition Codes

Floating-Point Overview and Support Instructions 9-25

Mnemonics for the floating-point instructions have an
R as the last letter when the instruction is in the RR,
RRE, or RRF format. Certain letters are used for
floating-point instructions to represent operand-for-
mat length, as follows:

D Long
E Short
X Extended

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the assembler language are
shown with each instruction. For a register-to-register
operation using LOAD (short), for example, LER is
the mnemonic and R1,R2 the operand designation.

Programming Notes:

1. The following additional floating-point-support
instruction is available when the decimal-floating-
point facility is installed:

• SET DFP ROUNDING MODE (SRNMT)

2. The following additional floating-point-support
instructions are available when the floating-point-
support-sign-handling facility is installed:

• COPY SIGN (CPSDR)
• LOAD COMPLEMENT (LCDFR)
• LOAD NEGATIVE (LNDFR)
• LOAD POSITIVE (LPDFR)

3. The following additional floating-point-support
instructions are available when the FPR-GR-
transfer facility is installed:

• LOAD FPR FROM GR (LDGR)
• LOAD GR FROM FPR (LGDR)

4. The following additional floating-point-support
instructions are available when the IEEE-excep-
tion-simulation facility is installed:

• LOAD FPC AND SIGNAL (LFAS)
• SET FPC AND SIGNAL (SFASR)

5. The following additional floating-point-support
instructions are available when the long-dis-
placement facility is installed:

• LOAD (LDY, LEY)
• STORE (STDY, STEY)

6. The following additional floating-point-support
instruction is available when the PFPO facility is
installed:

• PERFORM FLOATING POINT OPERATION
(PFPO)

7. The following additional floating-point-support
instruction and features are available when the
floating-point extension facility is installed:

• A new floating-point-support instruction, SET
BFP ROUNDING MODE (SRNMB), is
added.

• A new exception, the quantum exception, is
defined for some computational operations.

• Bit 5 of the floating-point-control (FPC) regis-
ter is assigned to the quantum-exception
mask

• Bit 13 of the FPC register is assigned to the
quantum-exception flag.

• Data-exception code (DXC) 04 (hex) is
assigned to the quantum exception.

• DXC 07 (hex) is assigned to the simulated
quantum exception.

• The BFP-rounding-mode field in the FPC
register is changed to 3 bits to support one
additional BFP rounding mode, round to pre-
pare for shorter precision.

• One new value of the effective rounding
method field is assigned to support the round
to prepare for shorter precision rounding
method for CONVERT HFP TO BFP.

• For PFPO with a DFP result, bit 58 of gen-
eral register 0 is assigned to be the DFP
quantum-permission control.

Name
Mne-

monic Characteristics
Op

Code Page

CONVERT BFP TO HFP (long) THDR RRE C ¤7,9 Da B359 9-27

CONVERT BFP TO HFP (short to long) THDER RRE C ¤7,9 Da B358 9-27

CONVERT HFP TO BFP (long) TBDR RRF-e C ¤7,9 SP Da B351 9-28

CONVERT HFP TO BFP (long to short) TBEDR RRF-e C ¤7,9 SP Da B350 9-28

COPY SIGN (long) CPSDR RRF-b FS ¤7,9 Da B372 9-30

Figure 9-17. Summary of Floating-Point-Support Instructions (Part 1 of 3)

9-26 The z/Architecture CPU Architecture

EXTRACT FPC EFPC RRE ¤7,9 Db B38C 9-30

LOAD (extended) LXR RRE ¤7,9 SP Da B365 9-31

LOAD (long) LDR RR ¤7,9 Da 28 9-31

LOAD (long) LD RX-a ¤7,9 A Da B2 68 9-31

LOAD (long) LDY RXY-a LD ¤7,9 A Da B2 ED65 9-31

LOAD (short) LER RR ¤7,9 Da 38 9-31

LOAD (short) LE RX-a ¤7,9 A Da B2 78 9-31

LOAD (short) LEY RXY-a LD ¤7,9 A Da B2 ED64 9-31

LOAD COMPLEMENT (long) LCDFR RRE FS ¤7,9 Da B373 9-31

LOAD FPC LFPC S ¤7,9 A SP Db B2 B29D 9-31

LOAD FPC AND SIGNAL LFAS S XF ¤7,9 A SP Dt Xg B2 B2BD 9-32

LOAD FPR FROM GR (64 to long) LDGR RRE FG ¤7,9 Da B3C1 9-34

LOAD GR FROM FPR (long to 64) LGDR RRE FG ¤7,9 Da B3CD 9-34

LOAD NEGATIVE (long) LNDFR RRE FS ¤7,9 Da B371 9-34

LOAD POSITIVE (long) LPDFR RRE FS ¤7,9 Da B370 9-34

LOAD ZERO (extended) LZXR RRE ¤7,9 SP Da B376 9-35

LOAD ZERO (long) LZDR RRE ¤7,9 Da B375 9-35

LOAD ZERO (short) LZER RRE ¤7,9 Da B374 9-35

PERFORM FLOATING-POINT OPERATION PFPO E PF ¤7,8,9 SP Da Xi Xo GM Xu Xx Xq 010A 9-35

SET BFP ROUNDING MODE (2 bit) SRNM S ¤7,9 Db B299 9-47

SET BFP ROUNDING MODE (3 bit) SRNMB S F ¤7,9 SP Db B2B8 9-47

SET DFP ROUNDING MODE SRNMT S TR ¤7,9 Dt B2B9 9-47

SET FPC SFPC RRE ¤7,9 SP Db B384 9-47

SET FPC AND SIGNAL SFASR RRE XF ¤7,9 SP Dt Xg B385 9-48

STORE (long) STD RX-a ¤7,9 A Da ST B2 60 9-48

STORE (long) STDY RXY-a LD ¤7,9 A Da ST B2 ED67 9-49

STORE (short) STE RX-a ¤7,9 A Da ST B2 70 9-48

STORE (short) STEY RXY-a LD ¤7,9 A Da ST B2 ED66 9-49

STORE FPC STFPC S ¤7,9 A Db ST B2 B29C 9-49

Explanation:

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤8 May be restricted from transactional execution depending on machine conditions.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.

A Access exceptions for logical addresses.

B2 B2 field designates an access register in the access-register mode.

C Condition code is set.

Da AFP-register data exception.

Db BFP-instruction data exception.

Dt DFP-instruction data exception.

F Floating-point extension facility.

FG FPR-GR-transfer facility.

FS Floating-point-support-sign-handling facility.

GM Instruction execution includes the implied use of general registers 0 and 1.

LD Long-displacement facility.

PF PFPO facility.

RR RR instruction format.

RRE RRE instruction format.

Name
Mne-

monic Characteristics
Op

Code Page

Figure 9-17. Summary of Floating-Point-Support Instructions (Part 2 of 3)

Floating-Point Overview and Support Instructions 9-27

C
O

N
V

E
R

T
 B

F
P

 T
O

 H
F

P

CONVERT BFP TO HFP

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
THDER 'B358' Short BFP operand, long HFP result
THDR 'B359' Long BFP operand, long HFP result

The second operand (the source operand) is con-
verted from the binary-floating-point (BFP) format to
the hexadecimal-floating-point (HFP) format, and the
normalized result is placed at the first-operand loca-
tion. The sign and magnitude of the source operand
are tested to determine the setting of the condition
code.

For numeric operands, the sign of the result is the
sign of the source operand. If the source operand
has a sign bit of one and all other operand bits are
zeros, the result also is a one followed by all zeros.

When, for THDR, the characteristic of the result
would be negative, the result is made all zeros but
with the same sign as that of the source operand,
and condition code 1 or 2 is set to indicate the sign of
the source operand.

When, for THDR, the characteristic of the hexadeci-
mal intermediate result is too large to fit into the tar-
get format, the result is set to all ones (that is, the
largest-in-magnitude representable finite number) but
with the same sign as that of the source operand,
and condition code 3 is set.

See Figure 9-18 for a detailed description of the
results of this instruction.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

Program Exceptions:

• Data with DXC 1, AFP register
• Transaction constraint

Programming Notes:

1. The BFP-to-HFP conversion instructions are
summarized in Figure 9-19.

2. CONVERT BFP TO HFP (THDER) converts BFP
operands in the short format to HFP operands in
the long format, rather than converting short to
short, to retain full precision. Using this long HFP

RRF RRF instruction format.

RX RX instruction format.

RXY RXY instruction format.

SP Specification exception.

ST PER storage-alteration event.

TR Decimal-floating-point-rounding facility.

XF IEEE-exception-simulation facility.

Xg Simulated IEEE exception.

Xi IEEE invalid-operation exception.

Xo IEEE overflow exception.

Xq Quantum exception, if the floating-point extension facility is installed.

Xu IEEE underflow exception.

Xx IEEE inexact exception.

Name
Mne-

monic Characteristics
Op

Code Page

Figure 9-17. Summary of Floating-Point-Support Instructions (Part 3 of 3)

Op Code / / / / / / / / R1 R2

0 16 24 28 31

9-28 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 H

F
P

 T
O

 B
F

P result subsequently as a short operand requires
no extra conversion steps.

CONVERT HFP TO BFP

Mnemonic R1,M3,R2 [RRF-e]

Mnemonic Op Code Operands
TBEDR 'B350' Long HFP operand, short BFP result
TBDR 'B351' Long HFP operand, long BFP result

The second operand (the source operand) is con-
verted from the hexadecimal-floating-point (HFP) for-
mat to the binary-floating-point (BFP) format, and the
result rounded according to the rounding method
specified by the M3 field is placed at the first-operand
location. The sign and magnitude of the source oper-
and are tested to determine the setting of the condi-
tion code.

Source Operand (a) Results

- a < -Hmax T(-Hmax), cc3

-Hmax a -Hmin T(r), cc1

-Hmin < a < 0 T(-0)1, cc1

-0 T(-0), cc0

+0 T(+0), cc0

0 < a < +Hmin T(+0)2, cc2

+Hmin a +Hmax T(r), cc2

+Hmax < a + T(+Hmax), cc3

NaN T(+Hmax), cc3

Explanation:

1 Condition code 1 is set to indicate the
source was less than zero.

2 Condition code 2 is set to indicate the
source was greater than zero.

ccn Condition code is set to n.
r The value derived when the BFP source

value a is converted to the HFP format.
This result is always exact.

Hmax Largest (in magnitude) representable
number in the target HFP format.

Hmin Smallest (in magnitude) representable
normalized number in the target HFP
format.

T(x) The value x is placed at the target operand
location.

Figure 9-18. Results: CONVERT BFP TO HFP

Instruction Mnemonic

Source Target Overflow,
Underflow
PossibleFormat

Significant
Bits Format

Significant
Bits Result

CONVERT BFP TO HFP THDER BFP short 24 HFP long 53-56 Exact No
THDR BFP long 53 HFP long 53-56 Exact Yes

CONVERT HFP TO BFP TBEDR HFP long 53-56 BFP short 24 Rounded Yes
TBDR HFP long 53-56 BFP long 53 Rounded No

Figure 9-19. Summary of BFP-to/from-HFP Conversion Instructions

Op Code M3 / / / / R1 R2

0 16 20 24 28 31

Floating-Point Overview and Support Instructions 9-29

C
O

N
V

E
R

T
 H

F
P

 T
O

 B
F

PThe M3 field contains a modifier specifying a round-
ing method, as follows:

M3 Effective Rounding Method
0 Round toward 0
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

A modifier other than 0, 1, or 3-7 is invalid. If the float-
ing-point extension facility is not installed, an M3 mod-
ifier of 3 is also invalid.

The sign of the result is the sign of the second oper-
and. If the second operand has a sign bit of one and
all other operand bits are zeros, the result also is a
one followed by all zeros.

See Figure 9-20 on page 9-29 for a detailed descrip-
tion of the results of this instruction.

If the M3 field designates any of the following invalid
modifier values: 2 and 8-15, then a specification
exception is recognized. When the floating-point
extension facility is not installed, if the M3 field desig-
nates the invalid value 3, it is undefined whether a
specification exception is recognized or an unpredict-
able rounding method is performed.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Overflow

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 1, AFP register
• Specification
• Transaction constraint

Programming Notes:

1. The HFP-to-BFP conversion instructions are
summarized in Figure 9-19 on page 9-28.

2. Conversion to short BFP data requires HFP
operands in the long format; a short HFP oper-
and should be extended to long by ensuring that
the right half of the register is cleared. Thus, the
entire register should be cleared before loading a
short HFP operand into it for conversion to BFP.
This avoids unrepeatable rounding errors in the
BFP result due to data left over from previous
use.

Precision Rounded
Source Operand (g) Results

g < -Nmax See Part 2 of this figure.

-Nmax g -Nmin T(r), cc1

-Nmin < g -Dmin T(d*), cc1

-Dmin < g < 0 T(d)1, cc1

-0 T(-0), cc0

+0 T(+0), cc0

0 < g < +Dmin T(d)2, cc2

+Dmin g < +Nmin T(d*), cc2

+Nmin g +Nmax T(r), cc2

+Nmax < g See Part 2 of this figure.

Figure 9-20. (Part 1 of 2) Results: CONVERT HFP to BFP

Precision
Rounded
Source

Operand
(g)

Results for Rounding Method Specified in M3

Round to
Nearest with

Ties away from
0

Round to
Nearest with
Ties to Even

Round to
Prepare for

Shorter
Precision

Round toward
0

Round toward
+

Round toward
-

g < -Nmax T(-), cc3 T(-), cc3 T(-Nmax), cc3 T(-Nmax), cc3 T(-Nmax), cc3 T(-), cc3

+Nmax < g T(+), cc3 T(+), cc3 T(+Nmax), cc3 T(+Nmax), cc3 T(+), cc3 T(+Nmax), cc3

Figure 9-20. (Part 2 of 2) Results: CONVERT HFP to BFP

9-30 The z/Architecture CPU Architecture

C
O

P
Y

 S
IG

N

COPY SIGN

CPSDR R1,R3,R2 [RRF-b]

The second operand is placed at the first-operand
location with the sign bit set to the sign of the third
operand. The first, second, and third operands are
each in a 64-bit floating-point register. The sign bit of
the second operand and bits 1-63 of the third oper-
and are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• Operation (if the floating-point-support-sign-han-

dling facility is not installed)
• Transaction constraint

Programming Notes:

1. COPY SIGN is radix independent and can be
used to operate on HFP, BFP, or DFP operands
or even to copy the sign between operands hav-
ing different radixes.

2. Since the sign is in the same bit position (the left-
most bit) in all widths for all radixes, the third
operand can be a short, long, or extended for-
mat.

3. COPY SIGN can be used in conjunction with
LOAD (LDR) to copy the sign of an operand in
the extended format.

EXTRACT FPC

EFPC R1 [RRE]

The contents of the FPC (floating-point-control) reg-
ister are placed in bit positions 32-63 of the general
register designated by R1. Bit positions 0-31 of the
general register remain unchanged.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 2, BFP instruction
• Transaction constraint

Explanation:

1 Condition code 1 is set for this case, even when the rounded result is zero.
2 Condition code 2 is set for this case, even when the rounded result is zero.
* The rounded value, in the extreme case, may be Nmin.
ccn Condition code is set to n.
d The denormalized value derived when the HFP source value a is rounded to the format of the target using the

rounding method specified in the M3 field.
g The precision-rounded value. The value derived when the HFP source value is rounded to the precision of the

target, but assuming an unbounded exponent range.
r The value derived when the HFP source value is rounded to the format of the target using the rounding method

specified in the M3 field.
Dmin Smallest (in magnitude) representable subnormal number in the target BFP format.
Nmax Largest (in magnitude) representable finite number in the target BFP format.
Nmin Smallest (in magnitude) representable normal number in the target BFP format.
T(x) The value x is placed at the target operand location.

Precision
Rounded
Source

Operand
(g)

Results for Rounding Method Specified in M3

Round to
Nearest with

Ties away from
0

Round to
Nearest with
Ties to Even

Round to
Prepare for

Shorter
Precision

Round toward
0

Round toward
+

Round toward
-

Figure 9-20. (Part 2 of 2) Results: CONVERT HFP to BFP

'B372' R3 / / / / R1 R2

0 16 20 24 28 31

'B38C' / / / / / / / / R1 / / / /

0 16 24 28 31

Floating-Point Overview and Support Instructions 9-31

L
O

A
D

 F
P

CLOAD

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
LER '38' Short
LDR '28' Long

Mnemonic2 R1,R2 [RRE]

Mnemonic2 Op Code Operands
LXR 'B365' Extended

Mnemonic3 R1,D2(X2,B2) [RX-a]

Mnemonic3 Op Code Operands
LE '78' Short
LD '68' Long

Mnemonic4 R1,D2(X2,B2) [RXY-a]

Mnemonic4 Op Code Operands
LEY 'ED64' Short
LDY 'ED65' Long

The second operand is placed unchanged at the first-
operand location.

The operation is performed without inspecting the
contents of the second operand; no arithmetic excep-
tions are recognized.

For LXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

The displacement for LE and LD is treated as a 12-bit
unsigned binary integer. The displacement for LEY
and LDY is treated as a 20-bit signed binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of LE, LD, LEY, and
LDY)

• Data with DXC 1, AFP register
• Operation (LEY and LDY, if the long-displace-

ment facility is not installed)
• Specification (LXR only)
• Transaction constraint

Programming Note: Data can be loaded into the
vector registers from the little endian format using the
extended mnemonics LERV and LDRV for the VLLE-
BRZ instruction (see page 21-8).

LOAD COMPLEMENT

LCDFR R1,R2 [RRE]

The second operand is placed at the first-operand
location with the sign bit inverted. Both the first and
second operands are each in a 64-bit floating-point
register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• Operation (if the floating-point-support-sign-han-

dling facility is not installed)
• Transaction constraint

Programming Notes:

1. LOAD COMPLEMENT (LCDFR) is radix inde-
pendent and can be used to operate on HFP,
BFP, or DFP operands.

2. LOAD COMPLEMENT (LCDFR) can be used in
conjunction with LOAD (LDR) to set the sign of
an operand in the extended format.

LOAD FPC

LFPC D2(B2) [S]

The four-byte second operand in storage is loaded
into the FPC (floating-point-control) register.

Op Code R1 R2

0 8 12 15

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2

0 8 12 16 20 31

Op Code R1 X2 B2 DL2 DH2 Op Code
0 8 12 16 20 32 40 47

'B373' / / / / / / / / R1 R2

0 16 24 28 31

'B29D' B2 D2

0 16 20 31

9-32 The z/Architecture CPU Architecture

L
O

A
D

 F
P

C
 A

N
D

 S
IG

N
A

L Bits corresponding to unsupported bit positions in the
FPC register must be zero; otherwise, a specification
exception is recognized. For purposes of this check-
ing, a bit position is considered to be unsupported
only if it is either unassigned or assigned to a facility
which is not installed in any architectural mode of the
configuration.

When the floating-point extension facility is installed,
the bits corresponding to the BFP rounding mode
must specify a valid rounding mode; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC 2, BFP instruction
• Specification
• Transaction constraint

Programming Notes:

1. When the architectural mode of a CPU is
changed without resetting the FPC register (by
means of the set architecture signal-processor
order, for example) the entire contents of the
FPC register are preserved. This is true even
when some of these bits are associated with a
facility which is not available in both architectural
modes. Checking for unsupported bit positions of
the FPC register is performed independently of
the current architectural mode of the CPU; thus,
it is always safe to restore the FPC register from
a value previously saved on this CPU, even after
the architectural mode has changed.

2. When the floating-point extension facility is
installed, bits 29-31 of the second operand must
specify a valid BFP rounding mode and bits 6-7,
14-15, 24, and 28 must be zero; otherwise, a
specification exception is recognized.

3. When the floating-point extension facility is not
installed, bits 5-7, 13-15, 24, and 28-29 are
unassigned and must be zero; otherwise, a spec-
ification exception is recognized.

LOAD FPC AND SIGNAL

LFAS D2(B2) [S]

First, flags of byte 1 of the floating-point-control
(FPC) register at the beginning of the operation are
preserved to be used as signaling flags. Next, the
contents of the source operand are placed in the
FPC register; then the flags in the FPC register are
set to the logical OR of the signaling flags and the
source flags. Finally, the conditions for simulated-
IEEE-exception trap action are examined.

The source operand is the second operand in stor-
age.

If any signaling flag is one and the corresponding
source mask is also one, simulated-IEEE-exception
trap action occurs. The data-exception code (DXC) in
the FPC register is updated to indicate the specific
cause of the interruption and a data-exception pro-
gram interruption occurs at completion of the instruc-
tion execution. The DXC for the interruption is shown
in Figure 9-21.

If no signaling flag is enabled, the DXC in the FPC
register remains as loaded from the source and
instruction execution completes with no trap action.

See Figure 9-22 for a detailed description of the
result of this instruction.

Bits in the source operand that correspond to unsup-
ported bit positions in the FPC register must be zero;
otherwise, a specification exception is recognized.
For purposes of this checking, a bit position is con-
sidered to be unsupported only if it is either unas-
signed or assigned to a facility which is not installed
in any architectural mode of the configuration.

When the floating-point extension facility is installed,
the bits corresponding to the BFP rounding mode
must specify a valid rounding mode; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC 3, DFP instruction

'B2BD' B2 D2

0 16 20 31

Floating-Point Overview and Support Instructions 9-33

L
O

A
D

 F
P

C
 A

N
D

 S
IG

N
A

L• Data with DXC for simulated IEEE exception
• Operation (if the IEEE-exception-simulation facil-

ity is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. When the floating-point extension facility is
installed, bits 29-31 of the second operand must
specify a valid BFP rounding mode and bits 6-7,
14-15, 24, and 28 must be zero; otherwise, a
specification exception is recognized.

2. When the floating-point extension facility is not
installed, bits 5-7, 13-15, 24, and 28-29 are
unassigned and must be zero; otherwise, a spec-
ification exception is recognized.

3. The IEEE-exception-simulation instructions
(LOAD FPC AND SIGNAL and SET FPC AND
SIGNAL) are provided to facilitate program simu-
lation of IEEE operations not provided directly in
the machine. These instructions permit the simu-
lation routine to restore the caller's masks, flags,
and rounding modes; and, when appropriate, to
simulate IEEE exceptions, including traps when
enabled.

4. On entry, the simulation routine should first save
the FPC register contents (containing the caller's
masks, flags, and rounding modes), disable all
traps, clear all flags, establish appropriate round-
ing modes, and then perform the necessary float-
ing-point operations. Finally, the routine should
set the current flags (called signaling flags)
appropriately, and invoke either LOAD FPC AND
SIGNAL or SET FPC AND SIGNAL.

5. When a program interruption for a data exception
occurs, and both bit 6 and 7 of the DXC are
ones, it indicates to the trap handler that the
interruption was caused by a simulated-IEEE-
exception trap action. The remaining bits of the
DXC indicate the type of IEEE exception. Addi-
tional information required by the trap handler
can be determined by the contents of a trap-
information block, located by convention, at a
fixed offset from the location where the instruc-
tion causing the trap resides.

The following shows an example of this scheme.
The block and the code below are inserted at an
appropriate place where a trap can occur. In this
example, the LOAD FPC AND SIGNAL instruc-
tion is used, and the caller's FPC register con-
tents are at the location, SAVEDFPC.

The trap information block can contain the designa-
tion of floating-point registers and general registers
containing the information (or addresses of the infor-
mation) for the following types of items:

Enabled1 Signaling Flags Bit
0 1 2 3 4 5 DXC (Binary)

1 – – – – – 1000 0011

0 1 – – – – 0100 0011

0 0 1 – – – 0010 w011

0 0 0 1 – – 0001 w011

0 0 0 0 1 – 0000 1011

0 0 0 0 0 1 0000 01112

Explanation:

1 The logical AND of the corresponding bit in the source
masks and the signaling flags.

2 Is only supported when the floating-point extension facility
is installed.

– Don't care.
w Bit 4 of the signaling flags.

Figure 9-21. DXC for Simulated-IEEE-Exception Trap
Action

Trap

Resulting FPC Register Contents

Masks Flags DXC DRM BRM

No S OR S S S

Yes S OR Xg S S

Explanation:

BRM BFP rounding mode
DRM DFP rounding mode
DXC Data-exception code
OR Set to the logical OR of signaling flags and source flags.
S Set to the contents of the corresponding field in the source

operand.
Trap Simulated-IEEE-exception trap action. This action occurs

when the logical AND of the signaling flags and source
masks is nonzero.

Xg DXC for simulated IEEE exception. See Figure 9-21

Figure 9-22. Result: LFAS and SFASR
BC 15,LOADPFC

Trap
Information

Block

LOADFPC LFAS SAVEDFPC

9-34 The z/Architecture CPU Architecture

L
O

A
D

 F
P

R
 F

R
O

M
 G

R a. The operation being simulated

b. Format and values of source operands

c. Format and value of the result

d. Any additional information useful to the trap
handler.

LOAD FPR FROM GR

LDGR R1,R2 [RRE]

The second operand is placed at the first-operand
location. The second operand is in a general register,
and the first operand is in a floating-point register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• Operation (if the FPR-GR-transfer facility is not

installed)
• Transaction constraint

LOAD GR FROM FPR

LGDR R1,R2 [RRE]

The second operand is placed at the first-operand
location. The second operand is in a floating-point
register, and the first operand is in a general register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• Operation (if the FPR-GR-transfer facility is not

installed)
• Transaction constraint

LOAD NEGATIVE

LNDFR R1,R2 [RRE]

The second operand is placed at the first-operand
location with the sign bit set to one. Both the first and
second operands are each in a 64-bit floating-point
register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• Operation (if the floating-point-support-sign-han-

dling facility is not installed)
• Transaction constraint

Programming Notes:

1. LOAD NEGATIVE (LNDFR) is radix independent
and can be used to operate on HFP, BFP, or DFP
operands.

2. LOAD NEGATIVE (LNDFR) can be used in con-
junction with LOAD (LDR) to set the sign of an
operand in the extended format.

LOAD POSITIVE

LPDFR R1,R2 [RRE]

The second operand is placed at the first-operand
location with the sign bit set to zero. Both the first and
second operands are each in a 64-bit floating-point
register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• Operation (if the floating-point-support-sign-han-

dling facility is not installed)
• Transaction constraint

'B3C1' / / / / / / / / R1 R2

0 16 24 28 31

'B3CD' / / / / / / / / R1 R2

0 16 24 28 31

'B371' / / / / / / / / R1 R2

0 16 24 28 31

'B370' / / / / / / / / R1 R2

0 16 24 28 31

Floating-Point Overview and Support Instructions 9-35

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
NProgramming Notes:

1. LOAD POSITIVE (LPDFR) is radix independent
and can be used to operate on HFP, BFP, or DFP
operands.

2. LOAD POSITIVE (LPDFR) can be used in con-
junction with LOAD (LDR) to set the sign of an
operand in the extended format.

LOAD ZERO

Mnemonic R1 [RRE]

Mnemonic Op Code Operands
LZER 'B374' Short
LZDR 'B375' Long
LZXR 'B376' Extended

All bits of the first operand are set to zeros.

For LZXR, The R1 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• Specification (LZXR only)
• Transaction constraint

Programming Note: LOAD ZERO sets all bits of a
register to zeros, which produces a positive zero
value in the BFP, DFP, and HFP formats. For DFP,
addition of an all-zero value to any normal value, X,
normalizes X.

PERFORM FLOATING-POINT
OPERATION

PFPO [E]

The operation specified by the function code in gen-
eral register 0 is performed and the condition code is

set to indicate the result. When there are no excep-
tional conditions, condition code 0 is set. When an
IEEE nontrap exception is recognized, condition
code 1 is set. When an IEEE trap exception with
alternate action is recognized, condition code 2 is
set. In the absence of suppression, a 32-bit return
code is placed in bits 32-63 of general register 1; bits
0-31 of general register 1 remain unchanged.

The PERFORM FLOATING-POINT OPERATION
(PFPO) instruction is subject to the AFP-register-
control bit, bit 45 of control register 0. For PFPO to be
executed successfully, the AFP-register-control bit
must be one; otherwise, an AFP-register data excep-
tion, DXC 1, is recognized.

Bit 32 of general register 0 is the test bit. When bit 32
is zero, the function specified by bits 33-63 of general
register 0 is performed; each field in bits 33-63 must
be valid and the combination must be a valid and
installed function; otherwise a specification exception
is recognized. When bit 32 is one, the function speci-
fied by bits 33-63 is not performed; rather, the condi-
tion code is set to indicate whether these bits specify
a valid and installed function; the condition code is
set to 0 if the function is valid and installed, or to 3 if
the function is invalid or not installed. This definition
is written as if the test bit is zero except when stated
otherwise.

Bits 33-39 of GR0 specify the operation type. Only
one operation type is currently defined: 01, hex, is
the PFPO-convert-floating-point-radix operation.

For the PFPO-convert-floating-point-radix operation,
other fields in general register 0 include first-operand
format, second operand format, control flags, and
rounding method. The second operand is converted
to the format of the first operand and placed at the
first-operand location, a return code is placed in bits
32-63 of general register 1, and the condition code is
set to indicate whether an exceptional condition was
recognized. Alternatively, an exceptional condition
may be indicated by the recognition of a data excep-
tion resulting in either completion or suppression.

The first and second operands are in implicit floating-
point registers. The first operand is in floating-point
register 0 (paired with floating-point register 2 for
extended). The second operand is in floating-point
register 4 (paired with floating-point register 6 for
extended).

Op Code / / / / / / / / R1 / / / /
0 16 24 28 31

'010A'
0 15

9-36 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
N General Register 0 (GR0)

Figure 9-23 illustrates the contents of general regis-
ter 0; bits 0-31 of the register are ignored.

Figure 9-24 illustrates the contents of the PFPO-
operation-type code in bits 33-32 of general register
0.

Figure 9-25 illustrates the contents of the PFPO-
operand-format codes for the first and second oper-
ands (in bits 40-47 and 48-55 of general register 0,
respectively).

Figure 9-26 illustrates the contents of the PFPO-tar-
get-radix-dependent controls in bits 58-59 of general
register 0.

GR0 / T OTC
OFC

(operand 1)
OFC

(operand 2)
I
S

A
E

TR RM

0 32 33 40 48 56 57 58 60 63

Explanation:

/ Ignored
T Test bit (bit 32)
OTC PFPO-operation-type code (bits 33-39)
OFC PFPO-operand format code (bits 40-47 for operand 1, bits 48-55 for operand 2)
IS Inexact-suppression control (bit 56)
AE Alternate-exception-action control (bit 57)
TR Target-radix-dependent controls (bits 58-59)
RM PFPO rounding method (bits 60-63)

Figure 9-23. General Register 0 for PERFORM FLOATING POINT OPERATION

Op Type
Code
(hex) Operation

00 Reserved/Invalid

01 PFPO Convert Floating-Point Radix
02-7F Reserved/Invalid

Figure 9-24. PFPO-Operation-Type Code (GR0 bits 33-39)

Code
(hex) Format

00 HFP short

01 HFP long
02 HFP extended

03 Reserved/Invalid

04 Reserved/Invalid
05 BFP short

06 BFP long

07 BFP extended
08 DFP short

09 DFP long

0A DFP extended

0B-FF Reserved/Invalid

Figure 9-25. PFPO-Operand-Format Codes (GR0 bits
40-47 and 48-55)

Radix
of

Target
GR0
Bit Meaning

HFP 58 HFP-overflow control

HFP 59 HFP-underflow control
BFP 58 Reserved, must be zero

BFP 59 Reserved, must be zero

DFP 58 Reserved, must be zero when the
floating-point extension facility is not
installed; it is the DFP quantum-
permission control (DQPC) when the
facility is installed.

DFP 59 DFP preferred-quantum control (DPQC)

Figure 9-26. PFPO-Target-Radix-Dependent Controls
(GR0, bits 58-59)

Floating-Point Overview and Support Instructions 9-37

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
NFigure 9-27 illustrates the PFPO-rounding-method

codes in bits 60-63 of general register 0.

Figure 9-28 shows the basic PFPO functions. PFPO
basic functions comprise the set of combinations of
the operation-type, first-operand-format, and second-
operand-format fields which are valid when the
PFPO instruction is installed. Other combinations of
operation type and format are not valid and will result
in either a specification exception being recognized
(when the test bit is zero) or condition code 3 (when
the test bit is one).

In the detailed descriptions that follow there are many
references to quantum exceptions. Those apply only
when the floating-point extension facility is installed,
and bit 58 of general register 0 is one.

Inexact-Suppression Control: Bit 56 of general
register 0 is the inexact-suppression control. When
the inexact-suppression control is zero, IEEE-inexact
exceptions are recognized and reported in the nor-
mal manner. When the inexact-suppression control is
one, IEEE-inexact exceptions are not recognized,
and no trap or nontrap action for the exceptions

Value Method*
0 According to current DFP rounding mode in bits 25-27 of

the floating-point-control register
1 According to current BFP rounding mode in bits 29-31 of

the floating-point-control register

2-7 Reserved/Invalid
8 Round to nearest with ties to even

9 Round toward 0

10 Round toward +
11 Round toward -

12 Round to nearest with ties away from 0

13 Round to nearest with ties toward 0
14 Round away from 0

15 Round to prepare for shorter precision

* All rounding methods, other than those listed as reserved,
are valid for any conversion function, regardless of the
radix of the result.

Figure 9-27. PFPO-Rounding Method (GR0 bits 60-63)

GR0
bits

33-55
(hex) Function Exceptions

010500 Convert HFP short to BFP short SP Da Xo Xu Xx
010600 Convert HFP short to BFP long SP Da
010700 Convert HFP short to BFP extended SP Da
010800 Convert HFP short to DFP short SP Da Xx Xq
010900 Convert HFP short to DFP long SP Da Xx Xq
010A00 Convert HFP short to DFP extended SP Da Xx Xq
010501 Convert HFP long to BFP short SP Da Xo Xu Xx
010601 Convert HFP long to BFP long SP Da Xx
010701 Convert HFP long to BFP extended SP Da
010801 Convert HFP long to DFP short SP Da Xx Xq
010901 Convert HFP long to DFP long SP Da Xx Xq
010A01 Convert HFP long to DFP extended SP Da Xx Xq
010502 Convert HFP extended to BFP short SP Da Xo Xu Xx
010602 Convert HFP extended to BFP long SP Da Xx
010702 Convert HFP extended to BFP extended SP Da
010802 Convert HFP extended to DFP short SP Da Xx Xq
010902 Convert HFP extended to DFP long SP Da Xx Xq
010A02 Convert HFP extended to DFP extended SP Da Xx Xq

Figure 9-28. Basic PFPO Functions (GR0 bits 33-55)

010005 Convert BFP short to HFP short SP Da Xi Xx
010105 Convert BFP short to HFP long SP Da Xi
010205 Convert BFP short to HFP extended SP Da Xi
010805 Convert BFP short to DFP short SP Da Xi Xx Xq
010905 Convert BFP short to DFP long SP Da Xi Xx Xq
010A05 Convert BFP short to DFP extended SP Da Xi Xx Xq
010006 Convert BFP long to HFP short SP Da Xi Xo Xu Xx
010106 Convert BFP long to HFP long SP Da Xi Xo Xu Xx
010206 Convert BFP long to HFP extended SP Da Xi Xo Xu Xx
010806 Convert BFP long to DFP short SP Da Xi Xo Xu Xx Xq
010906 Convert BFP long to DFP long SP Da Xi Xx Xq
010A06 Convert BFP long to DFP extended SP Da Xi Xx Xq
010007 Convert BFP extended to HFP short SP Da Xi Xo Xu Xx
010107 Convert BFP extended to HFP long SP Da Xi Xo Xu Xx
010207 Convert BFP extended to HFP extended SP Da Xi Xo Xu Xx
010807 Convert BFP extended to DFP short SP Da Xi Xo Xu Xx Xq
010907 Convert BFP extended to DFP long SP Da Xi Xo Xu Xx Xq
010A07 Convert BFP extended to DFP extended SP Da Xi Xx Xq
010008 Convert DFP short to HFP short SP Da Xi Xo Xu Xx
010108 Convert DFP short to HFP long SP Da Xi Xo Xu Xx
010208 Convert DFP short to HFP extended SP Da Xi Xo Xu Xx
010508 Convert DFP short to BFP short SP Da Xi Xo Xu Xx
010608 Convert DFP short to BFP long SP Da Xi Xx
010708 Convert DFP short to BFP extended SP Da Xi Xx
010009 Convert DFP long to HFP short SP Da Xi Xo Xu Xx
010109 Convert DFP long to HFP long SP Da Xi Xo Xu Xx
010209 Convert DFP long to HFP extended SP Da Xi Xo Xu Xx
010509 Convert DFP long to BFP short SP Da Xi Xo Xu Xx
010609 Convert DFP long to BFP long SP Da Xi Xo Xu Xx
010709 Convert DFP long to BFP extended SP Da Xi Xx
01000A Convert DFP extended to HFP short SP Da Xi Xo Xu Xx
01010A Convert DFP extended to HFP long SP Da Xi Xo Xu Xx
01020A Convert DFP extended to HFP extended SP Da Xi Xo Xu Xx
01050A Convert DFP extended to BFP short SP Da Xi Xo Xu Xx
01060A Convert DFP extended to BFP long SP Da Xi Xo Xu Xx
01070A Convert DFP extended to BFP extended SP Da Xi Xo Xu Xx

Explanation:

Da AFP-register data exception.
SP Specification exception due to invalid PFPO rounding method;

for BFP target, specification exception due to nonzero target-
radix-dependent controls; for DFP target, specification
exception due to nonzero DFP-quantum-permission control
when the floating-point-extension facility is not installed.

Xi IEEE-invalid-operation exception.
Xo IEEE-overflow exception.
Xq Quantum exception, if the floating-point extension facility is

installed.
Xu IEEE-underflow exception.
Xx IEEE-inexact exception.

GR0
bits

33-55
(hex) Function Exceptions

Figure 9-28. Basic PFPO Functions (GR0 bits 33-55)

9-38 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
N occurs. The inexact-suppression control has no

effect on the DXC; that is, the DXC for IEEE-overflow
or IEEE-underflow exceptions along with the detail
for exact, inexact and truncated, or inexact and incre-
mented, is reported according to the actual condition.

Alternate-Exception-Action Control: Bit 57 of
general register 0 is the alternate-exception-action
control. The setting of this control affects the action
taken for IEEE-overflow and IEEE-underflow trap
exceptions.

When the alternate-exception-action control is zero,
IEEE-overflow and IEEE-underflow trap exceptions
are reported in the normal manner. That is, the
appropriate data exception code (DXC) is placed in
byte 2 of the floating-point control register, the opera-
tion is completed, and a program interruption for a
data exception occurs. (As part of the program inter-
ruption, the DXC is stored at location 147.) This is
called an IEEE trap exception with normal action.

When the alternate-exception-action control is one,
the DXC is placed in byte 2 of the floating-point con-
trol register, the operation is completed, condition
code 2 is set, and program execution continues with
the next sequential instruction. (There is no program
interruption and the DXC is not stored at location
147.) This is called an IEEE trap exception with alter-
nate action.

Target-Radix-Dependent Controls: Bits 58 and
59 comprise controls for a target (first) operand hav-
ing either the HFP or DFP format, as described
below. When the operand-format control for the first
operand designates the BFP format, both bits 58 and
59 must contain zeros; otherwise, a specification
exception is recognized (when the test bit is zero) or
condition code 3 is set (when the test bit is one).

HFP-Overflow Control: Bit 58 of general register 0 is
the HFP-overflow control. When the HFP-overflow
control is zero, an HFP-overflow condition is reported
as an IEEE-invalid-operation exception and is subject
to the IEEE-invalid-operation mask. When the HFP-
overflow control is one, an HFP-overflow condition is
reported as an IEEE-overflow exception and is sub-
ject to the IEEE-overflow mask.

HFP-Underflow Control: For HFP targets, bit 59 of
general register 0 is the HFP alternate underflow
control. When the HFP-underflow control is zero,
HFP underflow causes the result to be set to a true
zero with the same sign as the source and underflow

is not reported. (The result in this case is inexact and
subject to the inexact-suppression control.) When the
HFP-underflow control is one, the condition is
reported as an IEEE-underflow exception and is sub-
ject to the IEEE-underflow mask.

DFP Quantum-Permission Control (DQPC):
When the floating-point extension facility is installed,
for DFP targets, bit 58 of general register 0 is the
DFP quantum-permission control (DQPC). If this
control is zero, recognition of the quantum exception
is suppressed so that no trap or nontrap action for the
exception occurs; if the control is one, recognition of
the quantum exception is not suppressed.

DFP Preferred Quantum Control (DPQC): For DFP
targets, bit 59 of general register 0 is the DFP pre-
ferred quantum control (DPQC). For radix conversion
with DFP targets, if the delivered value is inexact, the
cohort member with the smallest quantum is
selected; if the delivered value is exact, selection
depends on the value of bit 59 of general register 0,
the DFP preferred quantum control (DPQC). When
the delivered value is exact and the DPQC bit is zero,
the cohort member with the largest quantum is
selected. When the delivered value is exact and the
DPQC bit is one, the preferred quantum is one and
the cohort member with the quantum closest to one
is selected.

Return Code
Regardless of what condition code is set, and inde-
pendent of whether the test bit is one, a 32-bit return
code is placed in bits 32-63 of general register 1; bits
0-31 of general register 1 remain unchanged. A
return code is also placed in general register 1 when
a program interruption occurs for an IEEE trap
exception that completes; general register 1 is not
updated when a program interruption occurs for an
IEEE trap exception that suppresses. Thus, general
register 1 is updated on a program interruption for
IEEE-overflow, IEEE-underflow, IEEE-inexact, and
quantum-exception trap exceptions, but is not
updated on a program interruption for an IEEE-
invalid-operation trap exception.

Except where otherwise specified, the return code is
a value of zero.

Sign Preservation
For PFPO convert floating-point radix, the sign of the
result is the same as the sign of the source. The only
exception to this is when the source is a NaN and the

Floating-Point Overview and Support Instructions 9-39

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
Ntarget is HFP; in this case, the result is the largest

representable number in the target HFP format
(Hmax) with the sign set to plus.

Preferred Quantum
For radix conversion with DFP targets, the handling
of the quantum is described in “DFP Preferred Quan-
tum Control (DPQC)” on page 9-38.

NaN Conversion
When converting between DFP and BFP, the sign of
the NaN is always preserved, and the value of the
payload is preserved, when possible. If the value of
the source payload exceeds the maximum value of
the target payload, the target is set to the default
QNaN, but with the same sign as the source.

When traps are disabled, an SNaN is converted to
the corresponding QNaN, and the payload is pre-
served, when possible; that is, SNaN(x) is converted
to QNaN(x), where x is the value of the payload. See
the section “Propagation of NaNs” on page 9-3 for
additional details.

For DFP, both QNaN(0) and SNaN(0) can be repre-
sented; but in BFP, there is a representation for
QNaN(0), but not for SNaN(0).

Scaled Value and Signed Scaling
Exponent () for PFPO
When, for the PFPO-convert-floating-point-radix
operation, IEEE-overflow trap action or IEEE-under-
flow trap action occurs, the scaled value is computed
using the following steps:

 = b
z = g

Where is the signed scaling exponent, b is the tar-
get radix (2, 10, or 16), is the scale factor, g is the
precision-rounded value, and z is the scaled value.

The signed scaling exponent () is selected to make
the magnitude of the value of the scaled result (z) lie
in the range:

1 |z| < b.

The value of the signed scaling exponent (), treated
as a 32-bit signed binary integer, is placed in bits 32-
63 of general register 1; bits 0-31 of general register
1 remain unchanged.

The scaled value is used as the delivered value and
is placed in the result location. For DFP targets, the
cohort member with the quantum nearest to the
scaled preferred quantum is selected. (But it should
be noted that for all currently supported conversions
where scaling is required, the result is always inex-
act, so the cohort member with the smallest quantum
is selected.) For BFP targets, there are no redundant
representations, there is only one member in a
cohort. For HFP targets, the result is normalized.

HFP Values
Unnormalized HFP values are accepted on input, but
all HFP results are normalized. If an HFP result
would be less than the smallest (in magnitude) repre-
sentable normalized number, an HFP underflow con-
dition exists.

HFP Zero Result
For PFPO-convert-BFP-to-HFP or PFPO-convert-
DFP-to-HFP functions, if the source operand is zero,
the result has the same sign as that of the source
operand, and has all zeros in fraction and character-
istic.

HFP Overflow and Underflow for PFPO
For an HFP target of a PFPO-convert-floating-point-
radix operation, the handling of overflow and under-
flow conditions is controlled by the HFP-overflow
control and the HFP-underflow control, respectively.

HFP Overflow: An HFP-overflow condition exists
when an HFP target precision's largest number
(Hmax) is exceeded in magnitude by the precision-
rounded value. That is, when the characteristic of a
normalized HFP result would exceed 127 and the
fraction is not zero.

When the HFP-overflow control is zero, HFP-overflow
is reported as an IEEE-invalid-operation exception
and is subject to the IEEE-invalid-operation mask in
the FPC register. This is called an HFP-overflow-as-
IEEE-invalid-operation condition.

When the HFP-overflow control is one, HFP overflow
is reported as an IEEE-overflow exception and is
subject to the IEEE-overflow mask in the FPC regis-
ter. This is called an HFP-overflow-as-IEEE-overflow
condition.

HFP Underflow: An HFP-underflow condition
exists when the precision-rounded value is nonzero
and less in magnitude than the HFP target preci-

9-40 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
N sion's smallest normalized number, Hmin. That is,

when the characteristic of a normalized HFP result
would be less than zero and the fraction is not zero.
Reporting of the HFP-underflow condition is subject
to the HFP-underflow control. The result in this case,
however, is inexact and is subject to the controls for
that condition.

When the HFP-underflow control is zero, the HFP-
underflow condition is not reported. The result is set
to a true zero with the same sign as the source.

When the HFP-underflow control is one, HFP under-
flow is reported as an IEEE-underflow exception and
is subject to the IEEE-underflow mask (IMu) in the
FPC register. This is called an HFP-underflow-as-
IEEE-underflow condition. When IMu is zero, the
result is set to a true zero with the same sign as the
source, and the return code in general register 1 is
zero; when IMu is one, the result is set to a scaled
value, and the return code is nonzero.

IEEE Exceptions for PFPO
Except where otherwise stated, the following sec-
tions on IEEE exceptions apply to both BFP and DFP.

IEEE Invalid Operation: An IEEE-invalid-opera-
tion exception is recognized when any of the follow-
ing occurs:

1. An SNaN is encountered in an IEEE source.

2. In an IEEE-to-HFP conversion, a NaN (QNaN or
SNaN) or an infinity is encountered in the IEEE
source.

3. An HFP-overflow-as-IEEE-invalid-operation con-
dition exists.

IEEE-invalid-operation exceptions are recognized as
either IEEE-invalid-operation nontrap exceptions or
IEEE-invalid-operation trap exceptions.

IEEE-Invalid-Operation Nontrap Action: IEEE-invalid-
operation nontrap action occurs when an IEEE-
invalid-operation exception is recognized and the
IEEE-invalid-operation mask bit in the FPC register is
zero. The operation is completed, the IEEE-invalid-
operation flag bit in the FPC register is set to one,
and condition code 1 is set. The result is as follows:

• When the target is IEEE and the source is an
IEEE SNaN, the result is the source NaN con-

verted to the corresponding canonical QNaN in
the target format.

• When the target is HFP and the source is an
IEEE NaN, the result is the largest representable
number in the target HFP format (Hmax) with the
sign set to plus.

• When the target is HFP and the source is an
IEEE infinity, the result is Hmax with the same
sign as the source.

• When an HFP-overflow-as-IEEE-invalid-opera-
tion condition exists, the result is Hmax with the
same sign as the source.

IEEE-Invalid-Operation Trap Action: IEEE-invalid-
operation trap action occurs when an IEEE-invalid-
operation exception is recognized and the IEEE-
invalid-operation mask bit in the FPC register is one.
The operation is suppressed, and the exception is
reported as a program interruption for a data excep-
tion with DXC 80 hex.

IEEE Overflow: For IEEE targets, an IEEE-over-
flow exception is recognized when the precision-
rounded value is greater in magnitude than the larg-
est finite number (Nmax) representable in the target
format. For HFP targets, an IEEE-overflow exception
is recognized when the HFP-overflow condition exists
and the HFP-overflow control is one.

IEEE-Overflow Nontrap Action: IEEE-overflow non-
trap action occurs when the IEEE-overflow exception
is recognized and the IEEE-overflow mask bit in the
FPC register is zero.

The operation is completed and the IEEE-overflow
flag bit in the FPC register is set to one. For IEEE tar-
gets, the result of the operation depends on the sign
of the precise intermediate value and on the effective
rounding method:

1. For all round-to-nearest methods and round-
away-from-0, the result is infinity with the sign of
the precise intermediate value.

2. For round-toward-0 and round-to-prepare-for-
shorter-precision, the result is the largest finite
number of the format, with the sign of the precise
intermediate value.

3. For round toward +, the result is + if the sign
is plus, or it is the negative finite number with the
largest magnitude if the sign is minus.

Floating-Point Overview and Support Instructions 9-41

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
N4. For round toward -, the result is the largest pos-

itive finite number if the sign is plus or - if the
sign is minus.

For HFP targets, the result is set to the largest repre-
sentable number in the target HFP format (Hmax)
with the same sign as the source.

Additional action depends on whether there is also
an IEEE-inexact exception or a quantum exception.

When IEEE-overflow nontrap action occurs, and nei-
ther IEEE-inexact exception nor quantum exception
has been recognized, the IEEE-overflow flag bit in
the FPC register is set to one and condition code 1 is
set.

When an IEEE-overflow nontrap action occurs
together with an IEEE-inexact nontrap action, or with
a quantum-exception nontrap action, or with nontrap
actions for both IEEE-inexact and quantum-excep-
tion, the IEEE flag bits in the FPC register for all the
recognized exceptions are set to ones and condition
code 1 is set.

When IEEE-overflow nontrap action and IEEE-inex-
act trap action occur, the condition code is not set,
the IEEE-overflow flag bit in the FPC register is set to
one, and the IEEE-inexact exception is reported as a
program interruption for a data exception with DXC
08 or 0C hex, depending on whether the result is
inexact and truncated (rounded toward zero) or inex-
act and incremented, respectively.

When IEEE-overflow nontrap action and quantum-
exception trap action occur, the condition code is not
set, the IEEE-overflow flag bit in the FPC register is
set to one, and the quantum exception is reported as
a program interruption for a data exception with DXC
04 hex. When in addition an IEEE-inexact nontrap
action occurs, the IEEE-inexact flag bit in the FPC
register is set to one.

IEEE-Overflow Trap Action: IEEE-overflow trap
action occurs when the IEEE-overflow exception is
recognized and the IEEE-overflow mask bit in the
FPC register is one.

The operation is completed by setting the result to
the scaled value; placing the value of the signed scal-
ing exponent (), treated as a 32-bit signed binary
integer in bits 32-63 of general register 1; and setting
DXC 20, 28, or 2C hex, depending on whether the

delivered value is exact, inexact and truncated
(rounded toward zero), or inexact and incremented,
respectively. When the precise intermediate result is
rounded to an infinity, it is considered to be an incre-
mented result.

For DFP targets, the delivered value is always inex-
act and the cohort member with the smallest quan-
tum is selected.

Additional action depends on the value of the alter-
nate-exception-action control.

When the alternate-exception-action control is zero,
the condition code is not set and the exception is
reported as a program interruption for a data excep-
tion.

When the alternate-exception-action control is one,
condition code 2 is set and no program interruption
occurs.

IEEE Underflow: For IEEE targets, an IEEE-
underflow exception is recognized when the tininess
condition exists and either: (1) the IEEE-underflow
mask bit in the FPC register is zero and the result
value is inexact, or (2) the IEEE-underflow mask bit in
the FPC register is one.

The tininess condition exists when the precise inter-
mediate value of an IEEE computational operation is
nonzero and smaller in magnitude than the smallest
normal number (Nmin) representable in the target
format.

The result value is inexact if it is not equal to the pre-
cise intermediate value.

For HFP targets, an IEEE-underflow exception is rec-
ognized when the HFP-underflow condition exists
and the HFP-underflow control is one.

IEEE-Underflow Nontrap Action: IEEE-underflow
nontrap action occurs when the IEEE-underflow
exception is recognized and the IEEE-underflow
mask bit in the FPC register is zero.

The operation is completed and the IEEE-underflow
flag bit in the FPC register is set to one.

For IEEE targets, the result is rounded to the denor-
malized value or Nmin. For DFP targets, the cohort
member with the smallest quantum is selected.

9-42 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
N For HFP targets, the result is set to a true zero with

the same sign as the source.

Additional action depends on whether there is also
an IEEE-inexact exception or a quantum exception.

When IEEE-underflow nontrap action occurs, and
neither IEEE-inexact exception nor quantum excep-
tion has been recognized, the IEEE-underflow flag bit
in the FPC register is set to one and condition code 1
is set.

When an IEEE-underflow nontrap action occurs
together with an IEEE-inexact nontrap action, or with
a quantum-exception nontrap action, or with nontrap
actions for both IEEE-inexact and quantum-excep-
tion, the IEEE flag bits in the FPC register for all the
recognized exceptions are set to ones and condition
code 1 is set.

When IEEE-underflow nontrap action and IEEE-inex-
act trap action occur, the condition code is not set,
the IEEE-underflow flag bit in the FPC register is set
to one, and the IEEE-inexact trap exception is
reported as a program interruption for a data excep-
tion with DXC 08 or 0C hex, depending on whether
the result is inexact and truncated (rounded toward
zero) or inexact and incremented, respectively.

When IEEE-underflow nontrap action and quantum-
exception trap action occur, the condition code is not
set, the IEEE-underflow flag bit in the FPC register is
set to one, and the quantum exception is reported as
a program interruption for a data exception with DXC
04 hex. When in addition an IEEE-inexact nontrap
action occurs, the IEEE-inexact flag bit in the FPC
register is set to one.

IEEE-Underflow Trap Action: IEEE-underflow trap
action occurs when the IEEE-underflow exception is
recognized and the IEEE-underflow mask bit in the
FPC register is one.

The operation is completed by setting the result to
the scaled value; placing the value of the signed scal-
ing exponent (), treated as a 32-bit signed binary
integer in bits 32-63 of general register 1; and setting
DXC 10, 18, or 1C hex, depending on whether the
result is exact, inexact and truncated (rounded
toward zero), or inexact and incremented, respec-
tively.

For DFP targets, the delivered value is always inex-
act and the cohort member with the smallest quan-
tum is selected.

Additional action depends on the value of the alter-
nate-exception-action control.

When the alternate-exception-action control is zero,
the condition code is not set and the exception is
reported as a program interruption for a data excep-
tion.

When the alternate-exception-action control is one,
condition code 2 is set and no program interruption
occurs.

IEEE Inexact: An IEEE-inexact exception is recog-
nized when, for a PFPO-convert-floating-point-radix
operation, an inexact condition exists, recognition of
the exception is not suppressed, and neither IEEE-
overflow trap action nor IEEE-underflow trap action
occurs.

In the absence of an IEEE-invalid-operation condi-
tion, an inexact condition exists when the rounded
intermediate value differs from the precise intermedi-
ate value. The condition also exists when IEEE-over-
flow nontrap action occurs.

Even though an inexact condition exists, the IEEE-
inexact exception is not recognized if the inexact-
suppression control is one or if IEEE overflow or
IEEE underflow trap action occurs. When an inexact
condition exists and the conditions for an IEEE-over-
flow trap action or IEEE-underflow trap action also
apply, the trap action takes precedence and the inex-
act condition is reported in the DXC.

IEEE-Inexact Nontrap Action: IEEE-inexact nontrap
action occurs when the IEEE-inexact exception is
recognized and the IEEE-inexact mask bit in the FPC
register is zero.

In the absence of another IEEE nontrap action, the
operation is completed using the rounded intermedi-
ate value, condition code 1 is set, and the IEEE-inex-
act flag bit in the FPC register is set to one. For DFP
targets, the cohort member with the smallest quan-
tum is selected.

When an IEEE-inexact nontrap action and an IEEE-
overflow or IEEE-underflow nontrap action coincide,
the operation is completed using the result specified
for the other exception and the flag bits for both

Floating-Point Overview and Support Instructions 9-43

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
Nexceptions are set to one, and condition code 1 is

set. When in addition, a quantum-exception nontrap
action occurs, the quantum-exception flag bit in the
FPC register is also set to one.

IEEE-Inexact Trap Action: IEEE-inexact trap action
occurs when the IEEE-inexact exception is recog-
nized and the IEEE-inexact mask bit in the FPC reg-
ister is one. The operation is completed, the
condition code is not set, and the exception is
reported as a program interruption for a data excep-
tion with DXC 08 or 0C hex, depending on whether
the result is inexact and truncated (rounded toward
zero) or inexact and incremented, respectively. When
the precise intermediate result is rounded to an infin-
ity, it is considered to be an incremented result.

In the absence of a coincident IEEE nontrap action,
the delivered value is set to the rounded intermediate
value. For DFP targets, the cohort member with the
smallest quantum is selected.

When the IEEE-inexact trap action coincides with an
IEEE nontrap action, the operation is completed
using the result specified for the IEEE nontrap action,
the flag bit for the nontrap exception is set to one,
and the IEEE-inexact trap action takes place.

Quantum Exception: A quantum exception is rec-
ognized when the floating-point extension facility is
installed, and when a quantum-exception condition
exists, recognition of the exception is not suppressed
(DQPC = 1), and none of IEEE-overflow trap action,
IEEE-underflow trap action, and IEEE-inexact trap
action occurs.

For a PFPO-convert-floating-point-radix operation
with DFP result, a quantum-exception condition
exists when the delivered DFP result is inexact, or
when the delivered DFP result is exact and finite, but
the delivered quantum exceeds the preferred quan-
tum of 1. (See programming note 6.)

When the floating-point extension facility is not
installed, no quantum exception is recognized.

Even though a quantum-exception condition exists,
the quantum exception is not recognized if recogni-
tion of the exception is suppressed (DQPC = 0), or if
IEEE-overflow, IEEE-underflow, or IEEE-inexact trap
action occurs. When a quantum-exception condition
exists, and the conditions for an IEEE-overflow,
IEEE-underflow, or IEEE-inexact trap action also
apply, the trap action takes precedence and the

quantum exception is not reported in status flag or
DXC.

Quantum-Exception Nontrap Action: Quantum-
exception nontrap action occurs when the quantum
exception is recognized and the quantum-exception
mask bit in the FPC register is zero.

In the absence of another IEEE nontrap action, the
operation is completed using the rounded intermedi-
ate value, condition code 1 is set, and the quantum-
exception flag bit in the FPC register is set to one.

When a quantum-exception nontrap action and
another one or two IEEE nontrap actions coincide,
the operation is completed using the result specified
for the other exceptions and the flag bits for all two or
three exceptions are set to one, and condition code 1
is set.

Quantum-Exception Trap Action: Quantum-excep-
tion trap action occurs when the quantum exception
is recognized and the quantum-exception mask bit in
the FPC register is one. The operation is completed,
the condition code is not set, and the exception is
reported as a program interruption for a data excep-
tion with DXC 04 hex.

In the absence of a coincident IEEE nontrap action,
the delivered value is set to the rounded intermediate
value.

When the quantum-exception trap action coincides
with other IEEE nontrap actions, the operation is
completed using the result specified for the other
IEEE nontrap actions, the flag bits for the nontrap
exceptions are set to one, and the quantum-excep-
tion trap action takes place.

Resulting Condition Code (when test bit is zero):

0 Normal result
1 Nontrap exception
2 Trap exception with alternate action
3 --

Resulting Condition Code (when test bit is one):

0 Function is valid
1 --
2 --
3 Function is invalid

IEEE Exceptions:

9-44 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
N • Invalid operation

• Overflow
• Underflow
• Inexact
• Quantum (if the floating-point extension facility is

installed)

Program Exceptions:

• Data with DXC 1, AFP register
• Data with DXC for IEEE exception
• Operation (if the PFPO facility is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. The PFPO-convert-floating-point-radix operation
performs “correct rounding”; that is, the result is
accurately obtained from the precise intermedi-
ate value using the effective rounding method.
This is in contrast to some radix conversion pro-
grams, which may produce results with larger
rounding errors.

2. Note that a value of zero in the rounding-method
field (GR0 bits 60-63) specifies rounding accord-
ing to the current DFP rounding mode (FPC 3.1-
3) regardless of whether the target is DFP, BFP,
or HFP. Similarly, a value of one in the rounding-
method field specifies rounding according to the
current BFP rounding mode (FPC 3.5-7), regard-
less of the target format.

3. If the program does not supply a default QNaN
(payload = zero) as a source, then its presence
as a result indicates that the machine either cre-
ated a new QNaN or the program attempted to
convert a payload which was too large for this
format.

If the program restricts payloads to values within
the smallest payload capacity of any first-oper-
and format, then payloads are preserved across
radix conversions.

4. In the absence of suppression, bits 32-63 of gen-
eral register 1 are always set to a return code,
even though, in most cases, the return code is
zero. Future extensions of PFPO may make
more use of nonzero return codes. With the cur-
rent definition, the only nonzero return codes are
set for IEEE-overflow trap exceptions and IEEE-
underflow trap exceptions. In this case, the value
of the signed scaling exponent (), is placed in

bits 32-63 of general register 1. For IEEE-inexact
trap exceptions, the return code is set to zero,
thus indicating that no scaling has occurred.

5. To display a value in scientific notation, many
programming languages, calculators, and spread
sheets use the letter e (or E) to separate the sig-
nificand from the exponent. This is referred to as
e-form notation. In this document, e-form nota-
tion, along with other forms of conventional
numeric notation, is used to represent a value
without regard to quantum. To indicate that both
value and quantum are being represented, a
variation of e-form notation, called q-form nota-
tion, is used. In q-form notation, the letter q
replaces the letter e and the value shown after q
is the right-units-view exponent, that is, the base
10 logarithm of the quantum. Thus, for example,
the seven members of the cohort for the value
1e6 in the DFP short format are: 1q6, 10q5,
100q4, 1000q3, 10000q2, 100000q1, and
1000000q0.

As an example of the distinction between e-form
and q-form notation, consider the representation
of the members of the cohort of zero. The DFP
short format, for example, can represent 198
exact powers of 10, ranging in value from 1e-101
to 1e96; but can represent only 192 values for a
quantum, ranging from 1e-101 to 1e90. Thus, the
192 members of the cohort for zero range from
0q-101 to 0q90.

The effect of the DFP preferred quantum control
is shown in Figure 9-29.

Rounded
Intermediate

Value
Result If
Inexact

Result If
Exact and
DPQC = 0

Result If
Exact and
DPQC = 1

0 0q-101 0q90 0q0
0.125 1250000q-7 125q-3 125q-3

1 1000000q-6 1q0 1q0
10 1000000q-5 1q1 10q0

100 1000000q-4 1q2 100q0
1000 1000000q-3 1q3 1000q0
9999 9999000q-3 9999q0 9999q0

10000 1000000q-2 1q4 10000q0
10001 1000100q-2 10001q0 10001q0

1e5 1000000q-1 1q5 100000q0
1e6 1000000q0 1q6 1000000q0

1e10 1000000q4 1q10 1000000q4
1e15 1000000q9 1q15 1000000q9

Figure 9-29. Effect of DPQC on DFP Short Results

Floating-Point Overview and Support Instructions 9-45

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
N6. When the floating-point extension facility is

installed, for a PFPO-convert-floating-point-radix
operation with DFP result, if DPQC is zero and
the DFP result is finite and exact, no quantum
exception is recognized. This is because the
operation always delivers the DFP result with the
preferred quantum in this case.

7. The test bit (bit 32 of general register 0) provides
a means of determining whether any future

extensions to the operation-type code, operand-
format code, target-radix-dependent controls,
rounding method, and various combinations
thereof are supported by the CPU.

PFPO Actions
Figure 9-30 summarizes the actions performed by
the PFPO-convert-floating-point-radix operation for
various target formats.

Condition Response

Source Rx Rq Csx Caa Cho DQPC Chu IMi IMo IMu IMx IMq Action
CC /
PI SFi SFo SFu SFx SFq

DXC
(binary)

Actions for PFPO Binary-Floating-Point Targets
Normal N Complete CC0
Normal Y 0 0 Complete CC1 1
Normal Y 0 1 Complete PI 00001y00
Normal Y 1 Complete CC0

Xu Y 1 0 Complete CC1 1
Xu Y 0 0 0 Complete CC1 1 1
Xu Y 0 0 1 Complete PI 1 00001y00
Xu N 0 1 Scaled PI 00010000
Xu Y 0 1 Scaled PI 0001xy00
Xu N 1 1 Scaled CC2 00010000
Xu Y 1 1 Scaled CC2 0001xy00
Xo Y' 1 0 Complete CC1 1
Xo Y' 0 0 0 Complete CC1 1 1
Xo Y' 0 0 1 Complete PI 1 00001y00
Xo N 0 1 Scaled PI 00100000
Xo Y 0 1 Scaled PI 0010xy00
Xo N 1 1 Scaled CC2 00100000
Xo Y 1 1 Scaled CC2 0010xy00

Infinity N' Can.Inf CC0
QNaN N' QNaN CC0
SNaN N' 0 QNaN CC1 1
SNaN N' 1 Suppress PI 10000000

Actions for PFPO Decimal-Floating-Point Targets
Normal N N Complete CC0
Normal N Y 1 0 Complete CC1 1
Normal N Y 1 1 Complete PI 00000100
Normal N Y 0 Complete CC0
Normal Y Y' 0 1 0 0 Complete CC1 1 1
Normal Y Y' 0 0 0 Complete CC1 1
Normal Y Y' 1 1 0 Complete CC1 1
Normal Y Y' 1 0 Complete CC0
Normal Y Y' 0 1 0 1 Complete PI 1 00000100
Normal Y Y' 1 1 1 Complete PI 00000100
Normal Y N' 0 1 Complete PI 00001y00

Xu Y Y' 1 0 0 Complete CC1 1
Xu Y Y' 0 0 0 0 Complete CC1 1 1
Xu Y Y' 1 1 0 0 Complete CC1 1 1
Xu Y Y' 0 1 0 0 0 Complete CC1 1 1 1
Xu Y Y' 0 1 0 0 1 Complete PI 1 1 00000100
Xu Y Y' 1 1 0 1 Complete PI 1 00000100
Xu Y N' 0 0 1 Complete PI 1 00001y00
Xu N N' 0 1 Scaled PI 00010000
Xu Y N' 0 1 Scaled PI 0001xy00
Xu N N' 1 1 Scaled CC2 00010000
Xu Y N' 1 1 Scaled CC2 0001xy00

Figure 9-30. Actions for Various PERFORM FLOATING POINT Conditions (Part 1 of 2)

9-46 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 F

L
O

A
T

IN
G

-P
O

IN
T

 O
P

E
R

A
T

IO
N

Xo Y' Y' 1 0 0 Complete CC1 1
Xo Y' Y' 0 0 0 0 Complete CC1 1 1
Xo Y' Y' 1 1 0 0 Complete CC1 1 1
Xo Y' Y' 0 1 0 0 0 Complete CC1 1 1 1
Xo Y' Y 0 1 0 0 1 Complete PI 1 1 00000100
Xo Y' Y' 1 1 0 1 Complete PI 1 00000100
Xo Y' N' 0 0 1 Complete PI 1 00001y00
Xo N N' 0 1 Scaled PI 00100000
Xo Y N' 0 1 Scaled PI 0010xy00
Xo N N' 1 1 Scaled CC2 00100000
Xo Y N' 1 1 Scaled CC2 0010xy00

Infinity N' Can.Inf CC0
QNaN N' QNaN CC0
SNaN N' 0 QNaN CC1 1
SNaN N' 1 Suppress PI 10000000

Actions for PFPO Hexadecimal-Floating-Point Targets
Normal N Complete CC0
Normal Y 1 Complete CC0
Normal Y 0 0 Complete CC1 1
Normal Y 0 1 Complete PI 00001y00

Ho 0 0 Hmax CC1 1
Ho 0 1 Supp. PI 10000000
Ho Y' 1 1 0 Hmax CC1 1
Ho Y' 0 1 0 0 Hmax CC1 1 1
Ho Y' 0 1 0 1 Hmax PI 1 00001000
Ho 0 1 1 Scaled PI 0010xy00
Ho 1 1 1 Scaled CC2 0010xy00
Hu Y' 1 0 TZ CC0
Hu Y' 0 0 0 TZ CC1 1
Hu Y' 0 0 1 TZ PI 00001000
Hu Y' 1 1 0 TZ CC1 1
Hu Y' 0 1 0 0 TZ CC1 1 1
Hu Y' 0 1 0 1 TZ PI 1 00001000
Hu 0 1 1 Scaled PI 0001xy00
Hu 1 1 1 Scaled CC2 0001xy00

Infinity 0 Hmax CC1 1
Infinity 1 Supp. PI 10000000
NaN 0 +Hmax CC1 1
NaN 1 Supp. PI 10000000

Explanation:

Condition Response

Source Rx Rq Csx Caa Cho DQPC Chu IMi IMo IMu IMx IMq Action
CC /
PI SFi SFo SFu SFx SFq

DXC
(binary)

Figure 9-30. Actions for Various PERFORM FLOATING POINT Conditions (Part 2 of 2)

Caa Alternate-exception-action control (GR0.57)
Cho HFP-overflow control (GR0.58 for HFP targets)
Chu HFP-underflow control (GR0.59 for HFP targets)
Csx Inexact-suppression control (GR0.56)
DQPC DFP quantum-permission control (GR0.58 for DFP targets)
DXC Data-Exception Code (shown in binary)
Hmax The largest (in magnitude) representable number in this HFP format with the

same sign as the source.
+Hmax Hmax with a plus sign
Ho HFP-overflow condition
Hu HFP-underflow condition
IMi IEEE-invalid-operation mask (FPC.0)
IMo IEEE-overflow mask (FPC.2)
IMq Quantum-exception mask (FPC.5)
IMu IEEE-underflow mask (FPC.3)
IMx IEEE-inexact mask (FPC.4)
N No

N' No (true by virtue of other conditions in this row)
PI Program interruption
Rq Quantum-exception condition
Rx Inexact-result condition
SFi IEEE-invalid-operation flag (FPC.8)
SFo IEEE-overflow flag (FPC.10)
SFq Quantum-exception flag (FPC.13)
SFu IEEE-underflow flag (FPC.11)
SFx IEEE-inexact flag (FPC.12)
Tz True zero with the same sign as the source.
x Inexact result (bit 4 of the DXC)
Xi IEEE-invalid-operation exception
Xo IEEE-overflow exception
Xu IEEE-underflow exception
y Inexact result was incremented in magnitude (bit 5 of the DXC)
Y Yes
Y' Yes (true by virtue of other conditions in this row)

Floating-Point Overview and Support Instructions 9-47

S
E

T
 F

P
CSET BFP ROUNDING MODE

Mnemonic D2(B2) [S]

Mnemonic Op Code Operands
SRNM 'B299' 2-bit BFP rounding mode
SRNMB 'B2B8' 3-bit BFP rounding mode

The BFP rounding-mode bits in the FPC register are
set from the second-operand address.

For SRNM, the second-operand address is not used
to address data; instead, bits 30-31 of the FPC regis-
ter are set to bits 62 and 63, respectively, of the
address. Bits other than 62 and 63 of the second-
operand address are ignored. When the floating-
point extension facility is installed, bit 29 of the FPC
register is set to zero.

For SRNMB, the second-operand address is not
used to address data; instead, bits 29-31 of the FPC
register are set to bits 61-63, respectively, of the
address. Bits 0-55 of the second-operand address
are ignored, bits 56-60 must be zero, and bits 61-63
must designate a valid rounding mode; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 2, BFP instruction
• Operation (SRNMB only if the floating-point

extension facility is not installed)
• Specification (SRNMB only)
• Transaction constraint

Programming Note: SRNMB is a complete superset
of the functionality of SRNM. It is recommended that
newly developed software use the SRNMB instruc-
tion exclusively.

SET DFP ROUNDING MODE

SRNMT D2(B2) [S]

The DFP rounding-mode bits are set from the sec-
ond-operand address.

The second-operand address is not used to address
data; instead, the DFP rounding-mode bits in the
FPC register are set with bits 61-63 of the address.

Bits other than 61-63 of the second-operand address
are ignored.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the decimal-floating-point-rounding

facility is not installed)
• Transaction constraint

SET FPC

SFPC R1 [RRE]

The contents of bit positions 32-63 of the general
register designated by R1 are placed in the FPC
(floating-point-control) register.

All of bits 32-63 corresponding to unsupported bit
positions in the FPC register must be zero; other-
wise, a specification exception is recognized. For
purposes of this checking, a bit position is considered
to be unsupported only if it is either unassigned or
assigned to a facility which is not installed in any
architectural mode of the configuration. Bits 0-31 of
the general register are ignored.

When the floating-point extension facility is installed,
the bits corresponding to the BFP rounding mode
must specify a valid rounding mode; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 2, BFP instruction

Op Code B2 D2

0 16 20 31

'B2B9' B2 D2

0 16 20 31

'B384' / / / / / / / / R1 / / / /

0 16 24 28 31

9-48 The z/Architecture CPU Architecture

S
E

T
 F

P
C

 A
N

D
 S

IG
N

A
L • Specification

• Transaction constraint

Programming Notes:

1. When the architectural mode of a CPU is
changed without resetting the FPC register (by
means of the set architecture signal-processor
order, for example) the entire contents of the
FPC register are preserved. This is true even
when some of these bits are associated with a
facility which is not available in both architectural
modes. Checking for unsupported bit positions of
the FPC register is performed independently of
the current architectural mode of the CPU; thus,
it is always safe to restore the FPC register from
a value previously saved on this CPU, even after
the architectural mode has changed.

2. See also the programming notes under LOAD
FPC.

SET FPC AND SIGNAL

SFASR R1 [RRE]

First, bits 0-4 of byte 1 of the floating-point-control
(FPC) register at the beginning of the operation are
preserved to be used as signaling flags. Next, the
contents of the source operand are placed in the
FPC register; then the flags in the FPC register are
set to the logical OR of the signaling flags and the
source flags. Finally, the conditions for simulated-
IEEE-exception trap action are examined.

The source operand is in bits 32-63 of the general
register designated by R1; bits 0-31 of the general
register are ignored.

If any signaling flag is one and the corresponding
source mask is also one, simulated-IEEE-exception
trap action occurs. The data-exception code (DXC) in
the FPC register is updated to indicate the specific
cause of the interruption and a data-exception pro-
gram interruption occurs at completion of the instruc-
tion execution. The DXC for the interruption is shown
in Figure 9-21 on page 9-33.

If no signaling flag is enabled, the DXC in the FPC
register remains as loaded from the source and
instruction execution completes with no trap action.

See Figure 9-22 on page 9-33 for a detailed descrip-
tion of the result of this instruction.

Bits in the source operand that correspond to unsup-
ported bit positions in the FPC register must be zero;
otherwise, a specification exception is recognized.
For purposes of this checking, a bit position is con-
sidered to be unsupported only if it is either unas-
signed or assigned to a facility which is not installed
in any architectural mode of the configuration.

When the floating-point extension facility is installed,
the bits corresponding to the BFP rounding mode
must specify a valid rounding mode; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for simulated IEEE exception
• Operation (if the IEEE-exception-simulation facil-

ity is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. See also the programming notes under LOAD
FPC AND SIGNAL.

2. Bits 0-31 of the general register designated by
the R1 field are reserved for future extension and
should be set to zeros.

STORE

Mnemonic R1,D2(X2,B2) [RX-a]

Mnemonic Op Code Operands
STE '70' Short
STD '60' Long

'B385' / / / / / / / / R1 / / / /
0 16 24 28 31

Op Code R1 X2 B2 D2

0 8 12 16 20 31

Floating-Point Overview and Support Instructions 9-49

Mnemonic2 R1,D2(X2,B2) [RXY-a]

Mnemonic2 Op Code Operands
STEY 'ED66' Short
STDY 'ED67' Long

The first operand is placed unchanged in storage at
the second-operand location.

The displacement for STE and STD is treated as a
12-bit unsigned binary integer. The displacement for
STEY and STDY is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC 1, AFP register
• Operation (STEY and STDY, if the long-displace-

ment facility is not installed)
• Transaction constraint

Programming Note: Data can be stored from the
vector registers to the little endian format using the
extended mnemonics STERV and STDRV for the
VSTEBRF and VSTEBRG instructions (see
page 21-22).

STORE FPC

STFPC D2(B2) [S]

The contents of the FPC (floating-point-control) reg-
ister are placed in storage at the second-operand
location.

The operand is four bytes in length. All 32 bits of the
FPC register are stored.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Access (store, operand 2)

• Data with DXC 2, BFP instruction
• Transaction constraint

Summary of All Floating-Point
Instructions

Figures 9-31 through 9-37 on the following pages
show mnemonics for all floating-point instructions
(except for PFPO) arranged in various categories of
operand format and type of operation. Figure 9-31
shows those instructions which operate on the FPC
register. Figure 9-32 on page 9-50 shows the float-
ing-point instructions which have all operands in the
same format (same radix and same length), including
those FPS (floating-point support) instructions which
operate on floating-point operands in a radix-inde-
pendent manner. Figure 9-33 on page 9-51 and
Figure 9-34 on page 9-51 show the floating-point
instructions in which all operands are in the same
radix but not all of the same length. Figure 9-35 on
page 9-51 and Figure 9-36 on page 9-52 show the
floating-point instructions in which the source or the
result is in a general register. Figure 9-37 on
page 9-52 shows the floating-point instructions other
than PFPO which perform radix conversion.

Op Code R1 X2 B2 DL2 DH2 Op Code

0 8 12 16 20 32 40 47

'B29C' B2 D2

0 16 20 31

Instruction Name Mnemonic Type
EXTRACT FPC EFPC BFP
LOAD FPC LFPC BFP
LOAD FPC AND SIGNAL LFAS DFP
SET BFP ROUNDING MODE SRNM,

SRNMB1
BFP

SET DFP ROUNDING MODE SRNMT DFP
SET FPC SFPC BFP
SET FPC AND SIGNAL SFASR DFP
STORE FPC STFPC BFP

Explanation:

Mnemonics in bold indicate a register-and-storage
operation.

1 The instruction is only available if the floating-point
extension facility is installed.

BFP The instruction is considered to be part of the BFP facility.
An attempt to execute this instruction when the AFP-
register-control bit is zero results in a BFP-instruction data
exception, DXC 2.

DFP The instruction is considered to be part of the DFP facility.
An attempt to execute this instruction when the AFP-
register-control bit is zero results in a DFP-instruction data
exception, DXC 3.

Figure 9-31. Floating-Point-Control-Register Instructions

9-50 The z/Architecture CPU Architecture

Instruction Name
FPS HFP BFP DFP

Short Long Ext. Short Long Ext. Short Long Ext. Short Long Ext.
ADD (NORMALIZED) AER AE ADR AD AXR AEBR

AEB
ADBR
ADB

AXBR ADTR(A) AXTR(A)

ADD UNNORMALIZED AUR AU AWR AW
COMPARE CER CE CDR CD CXR CEBR

CEB
CDBR
CDB

CXBR CDTR CXTR

COMPARE AND SIGNAL KEBR
KEB

KDBR
KDB

KXBR KDTR KXTR

COMPARE BIASED EXPONENT CEDTR CEXTR
COPY SIGN CPSDR
DIVIDE DER DE DDR DD DXR DEBR

DEB
DDBR
DDB

DXBR DDTR(A) DXTR(A)

DIVIDE TO INTEGER DIEBR DIDBR
HALVE HER HDR
LOAD LER LE

LEY
LDR LD

LDY
LXR

LOAD AND TEST LTER LTDR LTXR LTEBR LTDBR LTXBR LTDTR LTXTR
LOAD COMPLEMENT LCDFR LCER LCDR LCXR LCEBR LCDBR LCXBR
LOAD FP INTEGER FIER FIDR FIXR FIEBR(A) FIDBR(A) FIXBR(A) FIDTR FIXTR
LOAD NEGATIVE LNDFR LNER LNDR LNXR LNEBR LNDBR LNXBR
LOAD POSITIVE LPDFR LPER LPDR LPXR LPEBR LPDBR LPXBR
LOAD ZERO LZER LZDR LZXR
MULTIPLY MEER

MEE
MDR MD MXR MEEBR

MEEB
MDBR
MDB

MXBR MDTR(A) MXTR(A)

MULTIPLY AND ADD MAER
MAE

MADR
MAD

MAEBR
MAEB

MADBR
MADB

MULTIPLY AND ADD
UNNORMALIZED

MAYHR
MAYH
MAYLR
MAYL

MULTIPLY AND SUBTRACT MSER
MSE

MSDR
MSD

MSEBR
MSEB

MSDBR
MSDB

MULTIPLY UNNORMALIZED MYHR
MYH

MYLR
MYL

QUANTIZE QADTR QAXTR
REROUND RRDTR RRXTR
SHIFT SIGNIFICAND LEFT SLDT SLXT
SHIFT SIGNIFICAND RIGHT SRDT SRXT
SQUARE ROOT SQER

SQE
SQDR
SQD

SQXR SQEBR
SQEB

SQDBR
SQDB

SQXBR

STORE STE
STEY

STD
STDY

SUBTRACT (NORMALIZED) SER SE SDR SD SXR SEBR
SEB

SDBR
SDB

SXBR SXTR(A) SDTR(A)

SUBTRACT UNNORMALIZED SUR SU SWR SW
TEST DATA CLASS TCEB TCDB TCXB TDCET TDCDT TDCXT
TEST DATA GROUP TDGET TDGDT TDGXT

Explanation:

Mnemonics in bold indicate a register-and-storage operation.

When the last letter of mnemonic is A, the instruction is an alternate instruction, which uses additional modifier fields not available to the
original instruction.

Figure 9-32. Floating-Point Instructions: All Operands Same Format

Floating-Point Overview and Support Instructions 9-51

Instruction Name

HFP BFP DFP
Short to

Long
Long to

Ext.
Short to

Ext.
Short to

Long
Long to

Ext.
Short to

Ext.
Short to

Long
Long to

Ext.
LOAD LENGTHENED LDER LDE LXDR LXD LXER LXE LDEBR

LDEB
LXDBR
LXDB

LXEBR
LXEB

LDETR LXDTR

MULTIPLY MDER MDE MXDR MXD MDEBR
MDEB

MXDBR
MXDB

MULTIPLY AND ADD
UNNORMALIZED

MAYR MAY

MULTIPLY UNNORMALIZED MYR MY

Explanation:

Mnemonics in bold indicate a register-and-storage operation.

Figure 9-33. Floating-Point Instructions: Result Longer than Source

Instruction Name

HFP BFP DFP
Long to
Short

Ext. to
Long

Ext. to
Short

Long to
Short

Ext. to
Long

Ext. to
Short

Long to
Short

Ext. to
Long

LOAD ROUNDED LEDR LDXR LEXR LEDBR(A) LDXBR(A) LEXBR(A) LEDTR LDXTR

Figure 9-34. Floating-Point Instructions: Result Shorter than Source

Instruction Name

Source
GR Size

(bits)

Result
FPS HFP BFP DFP
Long Short Long Ext. Short Long Ext. Long Ext.

CONVERT FROM FIXED 32 CEFR CDFR CXFR CEFBR(A) CDFBR(A) CXFBR(A) CDFTR CXFTR
CONVERT FROM FIXED 64 CEGR CDGR CXGR CEGBR(A) CDGBR(A) CXGBR(A) CDGTR(A) CXGTR(A)
CONVERT FROM LOGICAL 32 CELFBR CDLFBR CXLFBR CDLFTR CXLFTR
CONVERT FROM LOGICAL 64 CELGBR CDLGBR CXLGBR CDLGTR CXLGTR
CONVERT FROM SIGNED PACKED 64 CDSTR
CONVERT FROM SIGNED PACKED 128 CXSTR
CONVERT FROM UNSIGNED
PACKED

64 CDUTR

CONVERT FROM UNSIGNED
PACKED

128 CXUTR

INSERT BIASED EXPONENT 64 IEDTR IEXTR
LOAD FPR FROM GR 64 LDGR

Figure 9-35. Floating-Point Instructions: General Register Source

9-52 The z/Architecture CPU Architecture

Impacts on ESA/390 and ESA/390-
Compatibility Mode

When the decimal-floating-point facility or the float-
ing-point extension facility is installed in the z/Archi-

tecture architectural mode, the behavior of some
instructions in the ESA/390 mode and ESA/390-com-
patibility mode deviates from the definition in the
ESA/390 architecture.

The following summarizes the different behavior of
affected ESA/390 instructions caused by those two
facilities in the z/Architecture architectural mode.

Impacts of the Decimal-Floating-
Point Facility

When the decimal-floating-point facility is installed in
the z/Architectural architecture mode, it causes the
following deviations from the ESA/390 architecture.

• For LOAD FPC (LFPC) and SET FPC (SFPC), if
bits 25-27 of the source operand contain a non-
zero value, it is unpredictable whether a specifi-
cation exception is recognized or the
corresponding bits in the FPC register are set to
this nonzero value.

Instruction Name

Result
GR Size

(bits)

Result
FPS HFP BFP DFP
Long Short Long Ext. Short Long Ext. Long Ext.

CONVERT TO FIXED 32 CFER CFDR CFXR CFEBR(A) CFDBR(A) CFXBR(A) CFDTR CFXTR
CONVERT TO FIXED 64 CGER CGDR CGXR CGEBR(A) CGDBR(A) CGXBR(A) CGDTR(A) CGXTR(A)
CONVERT TO LOGICAL 32 CLFEBR CLFDBR CLFXBR CLFDTR CLFXTR
CONVERT TO LOGICAL 64 CLGEBR CLGDBR CLGXBR CLGDTR CLGXTR
CONVERT TO SIGNED PACKED 64 CSDTR
CONVERT TO SIGNED PACKED 128 CSXTR
CONVERT TO UNSIGNED PACKED 64 CUDTR
CONVERT TO UNSIGNED PACKED 128 CUXTR
EXTRACT BIASED EXPONENT 64 EEDTR EEXTR
EXTRACT SIGNIFICANCE 64 ESDTR ESXTR
LOAD GR FROM FPR 64 LGDR

Figure 9-36. Floating-Point Instructions: General Register Result

Instruction Name Source

Result
HFP
Long

BFP
Short Long

CONVERT BFP TO HFP BFP Short THDER
CONVERT BFP TO HFP BFP Long THDR
CONVERT HFP TO BFP HFP Long TBEDR TBDR

Figure 9-37. Floating-Point Instructions (other than PFPO): Radix Conversion

Instruction Name Source
DFP Result

Long Extended
CONVERT FROM ZONED Zoned CDZT CXZT

Figure 9-38. Floating-Point Instructions: Zoned Conversion
with Storage Source

Instruction Name
DFP Source

ResultLong Extended
CONVERT TO ZONED CZDT CZXT Zoned

Figure 9-39. Floating-Point Instructions: Zoned Conversion
with Storage Result

Floating-Point Overview and Support Instructions 9-53

Impacts of the Floating-Point
Extension Facility

When the floating-point extension facility is installed
in the z/Architectural architecture mode, it causes the
following deviations from the ESA/390 architecture.

1. For LOAD FPC (LFPC) and SET FPC (SFPC), if
either or both bit 5 and bit 13 of the source oper-
and are one, it is unpredictable whether a specifi-
cation exception is recognized or the
corresponding bit in the FPC register is set to
one; if bits 29-31 of the source operand contain
all ones, is unpredictable whether a specification
exception is recognized or the corresponding bits
in the FPC register are set to all ones.

2. For CONVERT HFP TO BFP (TBEDR, TBDR), if
the M3 field designates the value 3, it is unpre-
dictable whether a specification exception is rec-
ognized or an undefined rounding method is
performed.

3. For BFP CONVERT TO FIXED (CFEBR,
CFDBR, CFXBR), if the M3 field designates the
value 3, it is unpredictable whether a specifica-
tion exception is recognized or an undefined
rounding method is performed. In addition, if bits
20-23 of the instruction contain a nonzero value,
it is unpredictable whether recognition of IEEE-
inexact exception is suppressed.

4. For BFP CONVERT FROM FIXED (CEFBR,
CDFBR, CXFBR), if bits 16-19 of the instruction
contain a nonzero value, it is unpredictable

whether a specification exception is recognized
or an undefined rounding method is performed.
In addition, if bits 20-23 of the instruction contain
a nonzero value, it is unpredictable whether rec-
ognition of IEEE-inexact exception is sup-
pressed.

5. For BFP DIVIDE TO INTEGER (DIEBR, DIDBR),
if the M3 field designates the value 3, it is unpre-
dictable whether a specification exception is rec-
ognized or an undefined rounding method is
performed.

6. For BFP LOAD FP INTEGER (FIEBR, FIDBR,
FIXBR), if the M3 field designates the value 3, it is
unpredictable whether a specification exception
is recognized or an undefined rounding method
is performed. In addition, if bits 20-23 of the
instruction contain a nonzero value, it is unpre-
dictable whether recognition of IEEE-inexact
exception is suppressed.

7. For BFP LOAD ROUNDED (LEDBR, LDXBR,
LEXBR), if bits 16-19 of the instruction contain a
nonzero value, it is unpredictable whether a
specification exception is recognized or an unde-
fined rounding method is performed. In addition,
if bits 20-23 of the instruction contain a nonzero
value, it is unpredictable whether recognition of
IEEE-inexact exception is suppressed.

9-54 The z/Architecture CPU Architecture

Control Instructions 10-1© Copyright IBM Corp. 2000, 2019

Chapter 10. Control Instructions

BRANCH AND SET AUTHORITY 10-7
BRANCH AND STACK 10-11
BRANCH IN SUBSPACE GROUP 10-13
COMPARE AND REPLACE DAT TABLE

ENTRY . 10-17
COMPARE AND SWAP AND PURGE 10-21
DIAGNOSE . 10-23
EXTRACT AND SET EXTENDED

AUTHORITY . 10-24
 EXTRACT PRIMARY ASN 10-24
EXTRACT PRIMARY ASN AND INSTANCE 10-24
EXTRACT SECONDARY ASN 10-24
EXTRACT SECONDARY ASN AND

INSTANCE . 10-25
EXTRACT STACKED REGISTERS 10-25
EXTRACT STACKED STATE 10-26
INSERT ADDRESS SPACE CONTROL . . . 10-29
INSERT PSW KEY 10-30
INSERT REFERENCE BITS MULTIPLE. . . 10-30
INSERT STORAGE KEY EXTENDED 10-30
INSERT VIRTUAL STORAGE KEY. 10-31
INVALIDATE DAT TABLE ENTRY 10-32
INVALIDATE PAGE TABLE ENTRY 10-37
LOAD ADDRESS SPACE PARAMETERS . 10-41
LOAD CONTROL . 10-50
LOAD PAGE TABLE ENTRY ADDRESS . . 10-50
LOAD PSW . 10-54
LOAD PSW EXTENDED 10-55
LOAD REAL ADDRESS 10-56
LOAD USING REAL ADDRESS 10-60
MODIFY STACKED STATE 10-61
MOVE PAGE . 10-62
MOVE TO PRIMARY. 10-65
MOVE TO SECONDARY 10-65
MOVE WITH DESTINATION KEY. 10-67
MOVE WITH KEY . 10-67
MOVE WITH OPTIONAL SPECIFICATIONS10-69
MOVE WITH SOURCE KEY 10-72
PAGE IN . 10-73
PAGE OUT . 10-74
PERFORM CRYPTOGRAPHIC KEY

MANAGEMENT OPERATION. 10-75
PERFORM FRAME MANAGEMENT

FUNCTION . 10-80

PERFORM TIMING FACILITY FUNCTION . 10-83
PERFORM TOPOLOGY FUNCTION 10-92
PROGRAM CALL . 10-93
PROGRAM RETURN 10-106
PROGRAM TRANSFER 10-110
PROGRAM TRANSFER WITH INSTANCE 10-110
PURGE ALB . 10-119
PURGE TLB . 10-119
RESET REFERENCE BIT EXTENDED . . . 10-119
RESET REFERENCE BITS MULTIPLE . . . 10-120
RESUME PROGRAM 10-120
SET ADDRESS SPACE CONTROL. 10-123
SET ADDRESS SPACE CONTROL FAST. 10-123
SET CLOCK . 10-124
SET CLOCK COMPARATOR. 10-125
SET CLOCK PROGRAMMABLE FIELD. . . 10-126
SET CPU TIMER . 10-126
SET PREFIX . 10-126
SET PSW KEY FROM ADDRESS 10-127
SET SECONDARY ASN. 10-128
SET SECONDARY ASN WITH INSTANCE 10-128
SET STORAGE KEY EXTENDED 10-133
SET SYSTEM MASK 10-136
SIGNAL PROCESSOR. 10-136
STORE CLOCK COMPARATOR 10-138
STORE CONTROL 10-138
STORE CPU ADDRESS. 10-139
STORE CPU ID . 10-139
STORE CPU TIMER. 10-141
STORE FACILITY LIST 10-141
STORE PREFIX . 10-142
STORE REAL ADDRESS. 10-142
STORE SYSTEM INFORMATION 10-143
STORE THEN AND SYSTEM MASK 10-167
STORE THEN OR SYSTEM MASK 10-167
STORE USING REAL ADDRESS 10-168
TEST ACCESS . 10-168
TEST BLOCK . 10-170
TEST PENDING EXTERNAL

INTERRUPTION. 10-172
TEST PROTECTION 10-173
TRACE . 10-176
TRAP . 10-177

This chapter includes all privileged and semiprivi-
leged instructions described in this publication,
except the input/output instructions, which are
described in “I/O Instructions” on page 14-1.

Privileged instructions may be executed only when
the CPU is in the supervisor state. An attempt to exe-
cute a privileged instruction in the problem state gen-
erates a privileged-operation exception.

10-2 The z/Architecture CPU Architecture

The semiprivileged instructions are those instruc-
tions that can be executed in the problem state when
certain authority requirements are met. An attempt to
execute a semiprivileged instruction in the problem
state when the authority requirements are not met
generates a privileged-operation exception or some
other program-interruption condition depending on
the particular requirement which is violated. Those
requirements which cause a privileged-operation
exception to be generated in the problem state are
not enforced when execution is attempted in the
supervisor state.

The control instructions and their mnemonics, for-
mats, and operation codes are listed in Figure 10-1
on page 10-3. The figure also indicates which
instructions are new in z/Architecture as compared to
ESA/390, when the condition code is set, the instruc-
tion fields that designate access registers, and the
exceptional conditions in operand designations, data,
or results that cause a program interruption.

The instructions that are new in z/Architecture are
indicated in Figure 10-1 by “N.”

When the operands of an instruction are 32-bit oper-
ands, the mnemonic for the instruction does not
include a letter indicating the operand length. If there
is an instruction with the same name but with 64-bit
operands, its mnemonic includes the letter “G.” In
Figure 10-1, when there is an instruction with 32-bit
operands and another instruction with the same
name but with “G” added in its mnemonic, the first
instruction has “(32)” after its name, and the other
instruction has “(64)” after its name.

For those control instructions which have special
rules regarding the handling of exceptional situa-
tions, a section called “Special Conditions” is
included. This section indicates the type of ending
(suppression, nullification, or completion) only for
those exceptions for which the ending may vary.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the assembler language are
shown with each instruction. For LOAD PSW, for
example, LPSW is the mnemonic and D2(B2) the
operand designation.

Programming Notes:

1. The following additional control instructions are
available when the DAT-enhancement facility is
installed:

• COMPARE AND SWAP AND PURGE
(CSPG)

• INVALIDATE DAT TABLE ENTRY

CSPG operates on a doubleword in storage, in
contrast to the previously existing instruction
COMPARE AND SWAP AND PURGE (CSP),
which operates on a word in storage.

2. The long-displacement facility uses new instruc-
tion formats, named RSY, RXY, and SIY, to pro-
vide 20-bit signed displacements. In connection
with the long-displacement facility, all previously
existing control instructions of the RSE or RXE
format are changed to be of format RSY or RXY,
respectively, where the new formats differ from
the old by using a previously unused byte, now
named DH, in the instructions. When the long-
displacement facility is installed, the displace-
ment for an instruction operand address is
formed by appending DH on the left of the previ-
ous displacement field, now named DL, of the
instruction. When the long-displacement facility
is not installed, eight zero bits are appended on
the left of DL, and DH is ignored.

The following additional control instruction is
available when the long-displacement facility is
installed:

• LOAD REAL ADDRESS (LRAY)

3. The following additional control instructions are
available when the ASN-and-LX-reuse facility is
installed:

• EXTRACT PRIMARY ASN AND INSTANCE
• EXTRACT SECONDARY ASN AND

INSTANCE
• PROGRAM TRANSFER WITH INSTANCE
• SET SECONDARY ASN WITH INSTANCE

4. The LOAD PAGE TABLE ENTRY ADDRESS
control instruction is available when the DAT-
enhancement facility 2 is installed.

5. The PERFORM TIMING FACILITY FUNCTION
control instruction is available when the TOD-
clock-steering facility is installed.

Control Instructions 10-3

6. The MOVE WITH OPTIONAL SPECIFICATIONS
control instruction is available when the move-
with-optional-specifications facility is installed.

7. The PERFORM TOPOLOGY FUNCTION control
instruction is available when the configuration-
topology facility is installed.

8. The PERFORM CRYPTOGRAPHIC KEY MAN-
AGEMENT OPERATION control instruction is
available when the message-security-assist
extension 3 is installed.

9. The RESET REFERENCE BITS MULTIPLE con-
trol instruction is available when the reset-refer-
ence-bits-multiple facility is installed.

10. The COMPARE AND REPLACE DAT TABLE
ENTRY instruction is available when the
enhanced-DAT facility 2 is installed.

11. The INSERT REFERENCE BITS MULTIPLE
control instruction is available when the insert-
reference-bits-multiple facility is installed.

12. The TEST PENDING EXTERNAL INTERRUP-
TION control instruction is available when the
test-pending-external-interruption facility is
installed.

Name
Mne-

monic Characteristics
Op-

code Page

BRANCH AND SET AUTHORITY BSA RRE Q A1* SO T B B25A 10-7

BRANCH AND STACK BAKR RRE ¤1 A1* Z5 T B ST B240 10-11

BRANCH IN SUBSPACE GROUP BSG RRE ¤1 A1* SO T B R2 B258 10-13

COMPARE AND REPLACE DAT TABLE ENTRY CRDTE RRF-b ED2 P A1 SP $ B98F 10-17

COMPARE AND SWAP AND PURGE (32) CSP RRE C P A1 SP $ ST R2 B250 10-21

COMPARE AND SWAP AND PURGE (64) CSPG RRE C DE P A1 SP $ ST R2 B98A 10-21

DIAGNOSE — DM P DM MD 83 10-23

EXTRACT AND SET EXTENDED AUTHORITY ESEA RRE N P B99D 10-24

EXTRACT PRIMARY ASN EPAR RRE Q SO B226 10-24

EXTRACT PRIMARY ASN AND INSTANCE EPAIR RRE RA Q SO B99A 10-24

EXTRACT SECONDARY ASN ESAR RRE Q SO B227 10-24

EXTRACT SECONDARY ASN AND INSTANCE ESAIR RRE RA Q SO B99B 10-25

EXTRACT STACKED REGISTERS (32) EREG RRE ¤1 A1* SE U1 U2 B249 10-25

EXTRACT STACKED REGISTERS (64) EREGG RRE N ¤1 A1* SE U1 U2 B90E 10-25

EXTRACT STACKED STATE ESTA RRE C ¤1 A1* SP SE B24A 10-26

INSERT ADDRESS SPACE CONTROL IAC RRE C Q SO B224 10-29

INSERT PSW KEY IPK S Q G2 B20B 10-30

INSERT REFERENCE BITS MULTIPLE IRBM RRE IM P A1* B9AC 10-30

INSERT STORAGE KEY EXTENDED ISKE RRE P A1* B229 10-30

INSERT VIRTUAL STORAGE KEY IVSK RRE Q A1* SO R2 B223 10-31

INVALIDATE DAT TABLE ENTRY IDTE RRF-b U DE P A1 SP $ B98E 10-32

INVALIDATE PAGE TABLE ENTRY IPTE RRF-a P A1 SP $ B221 10-37

LOAD ADDRESS SPACE PARAMETERS LASP SSE C P A1 SP SO B1 E500 10-41

LOAD CONTROL (32) LCTL RS-a P A SP B2 B7 10-50

LOAD CONTROL (64) LCTLG RSY-a N P A SP B2 EB2F 10-50

LOAD PAGE TABLE ENTRY ADDRESS LPTEA RRF-b C D2 P A1* SP SO R2 B9AA 10-50

LOAD PSW LPSW SI L P A SP ¢ B2 82 10-54

LOAD PSW EXTENDED LPSWE S L N P A SP ¢ B2 B2B2 10-55

LOAD REAL ADDRESS (32) LRA RX-a C P A1* SO BP B1 10-56

LOAD REAL ADDRESS (32) LRAY RXY-a C LD P A1* SO BP E313 10-56

LOAD REAL ADDRESS (64) LRAG RXY-a C N P A1* BP E303 10-56

LOAD USING REAL ADDRESS (32) LURA RRE P A1 SP B24B 10-60

LOAD USING REAL ADDRESS (64) LURAG RRE N P A1 SP B905 10-60

MODIFY STACKED STATE MSTA RRE ¤1 A1* SP SE ST B247 10-61

MOVE PAGE MVPG RRE C Q A SP OP ¢4 G0 K ST R1 R2 B254 10-62

Figure 10-1. Summary of Control Instructions (Part 1 of 5)

10-4 The z/Architecture CPU Architecture

MOVE TO PRIMARY MVCP SS-d C Q A SO ¢ ST DA 10-65

MOVE TO SECONDARY MVCS SS-d C Q A SO ¢ ST DB 10-65

MOVE WITH DESTINATION KEY MVCDK SSE Q A GM ST B1 B2 E50F 10-67

MOVE WITH KEY MVCK SS-d C Q A ST B1 B2 D9 10-67

MOVE WITH OPTIONAL SPECIFICATIONS MVCOS SSF C MO Q A SO G0 ST B† B‡ C80 10-69

MOVE WITH SOURCE KEY MVCSK SSE Q A GM ST B1 B2 E50E 10-72

PAGE IN PGIN RRE C ES P A1 ¢ B22E 10-73

PAGE OUT PGOUT RRE C ES P A1 ¢ B22F 10-74

PERFORM CRYPTO. KEY MGMT. OPERATION PCKMO RRE M3 P A SP GM ST B928 10-75

PERFORM FRAME MANAGEMENT FUNCTION PFMF RRE ED1 P A1 SP II ¢3 K B9AF 10-80

PERFORM TIMING FACILITY FUNCTION PTFF E C TS Q A SP GM ST 0104 10-83

PERFORM TOPOLOGY FUNCTION PTF RRE C CT P SP B9A2 10-92

PROGRAM CALL PC S Q A1* Z1 T ¢ GM B ST B218 10-93

PROGRAM RETURN PR E L ¤1 A1* SP Z4 T ¢2 B ST 0101 10-106

PROGRAM TRANSFER PT RRE Q A1* SP Z2 T ¢ B B228 10-110

PROGRAM TRANSFER WITH INSTANCE PTI RRE RA Q A1* SP Z6 T ¢ B B99E 10-110

PURGE ALB PALB RRE P $ B248 10-119

PURGE TLB PTLB S P $ B20D 10-119

RESET REFERENCE BIT EXTENDED RRBE RRE C P A1* B22A 10-119

RESET REFERENCE BITS MULTIPLE RRBM RRE RB P A1* B9AE 10-120

RESUME PROGRAM RP S L Q A SP WE T B B2 B277 10-120

SET ADDRESS SPACE CONTROL SAC S Q SP SW ¢ B219 10-123

SET ADDRESS SPACE CONTROL FAST SACF S Q SP SW B279 10-123

SET CLOCK SCK S C P A SP B2 B204 10-124

SET CLOCK COMPARATOR SCKC S P A SP B2 B206 10-125

SET CLOCK PROGRAMMABLE FIELD SCKPF E P SP G0 0107 10-126

SET CPU TIMER SPT S P A SP B2 B208 10-126

SET PREFIX SPX S P A SP $ B2 B210 10-126

SET PSW KEY FROM ADDRESS SPKA S Q B20A 10-127

SET SECONDARY ASN SSAR RRE ¤1 A1* Z3 T ¢ B225 10-128

SET SECONDARY ASN WITH INSTANCE SSAIR RRE RA ¤1 A1* Z7 T ¢ B99F 10-128

SET STORAGE KEY EXTENDED SSKE RRF-c C1 P A1* II ¢ K B22B 10-133

SET SYSTEM MASK SSM SI P A SP SO B2 80 10-136

SIGNAL PROCESSOR SIGP RS-a C P $ AE 10-136

STORE CLOCK COMPARATOR STCKC S P A SP ST B2 B207 10-138

STORE CONTROL (32) STCTL RS-a P A SP ST B2 B6 10-138

STORE CONTROL (64) STCTG RSY-a N P A SP ST B2 EB25 10-138

STORE CPU ADDRESS STAP S P A SP ST B2 B212 10-139

STORE CPU ID STIDP S P A SP ST B2 B202 10-139

STORE CPU TIMER STPT S P A SP ST B2 B209 10-141

STORE FACILITY LIST STFL S N3 P B2B1 10-141

STORE PREFIX STPX S P A SP ST B2 B211 10-142

STORE REAL ADDRESS (64) STRAG SSE N P A1 SP ST B1 BP E502 10-142

STORE SYSTEM INFORMATION STSI S C P A SP GM ST B2 B27D 10-143

STORE THEN AND SYSTEM MASK STNSM SI P A ST B1 AC 10-167

STORE THEN OR SYSTEM MASK STOSM SI P A SP ST B1 AD 10-167

STORE USING REAL ADDRESS (32) STURA RRE P A1 SP SU B246 10-168

STORE USING REAL ADDRESS (64) STURG RRE N P A1 SP SU B925 10-168

TEST ACCESS TAR RRE C ¤1 A1* U1 B24C 10-168

TEST BLOCK TB RRE C P A1* II $ G0 K B22C 10-170

Name
Mne-

monic Characteristics
Op-

code Page

Figure 10-1. Summary of Control Instructions (Part 2 of 5)

Control Instructions 10-5

TEST PENDING EXTERNAL INTERRUPTION TPEI RRE C TE P B9A1 10-172

TEST PROTECTION TPROT SSE C P A1* B1 E501 10-173

TRACE (32) TRACE RS-a P A SP T ¢ B2 99 10-176

TRACE (64) TRACG RSY-a N P A SP T ¢ B2 EB0F 10-176

TRAP TRAP2 E ¤1 A* SO T B ST 01FF 10-177

TRAP TRAP4 S ¤1 A* SO T B ST B2FF 10-177

Explanation:

¢ Causes serialization and checkpoint synchronization.

¢2 Causes serialization and checkpoint synchronization when the state entry to be unstacked is a program-call state entry.

¢3 Causes serialization and checkpoint synchronization when the set-key control is one.

¢4 Causes serialization and checkpoint synchronization when the KFC value is 4 or 5.

$ Causes serialization.

¤1 Restricted from transactional execution.

* PER zero-address-detection not recognized.

A Access exceptions for logical addresses.

A1 Access exceptions; not all access exceptions may occur; see instruction description for details.

B PER branch event.

B1 B1 field designates an access register in the access-register mode.

B2 B2 field designates an access register in the access-register mode.

BP B2 field designates an access register when PSW bits 16 and 17 have the value 01 binary.

B† B1 field designates an access register when bit 47 of GR0 is zero, and bits 16-17 of the current PSW are 01 binary; or when bit 47 of GR0 is one, and bits
40-41 of GR0 are 01 binary.

B‡ B2 field designates an access register when bit 63 of GR0 is zero, and bits 16-17 of the current PSW are 01 binary; or when bit 63 of GR0 is one, and bits
56-57 of GR0 are 01 binary.

C Condition code is set.

C1 Condition code is set when the conditional-SSKE facility is installed, and either or both of the MR and MC bits are one.

CT Configuration-topology facility.

DE DAT-enhancement facility.

DM Depending on the model, DIAGNOSE may generate various program exceptions and may change the condition code.

D2 DAT-enhancement facility 2.

E E instruction format.

ED1 Enhanced-DAT facility 1.

ED2 Enhanced-DAT facility 2.

ES Expanded-storage facility.

FC Designation of access registers depends on the function code of the instruction.

G0 Instruction execution includes the implied use of general register 0.

G2 Instruction execution includes the implied use of general register 2.

GM Instruction execution includes the implied use of multiple general registers:
General registers 0 and 1 for MOVE WITH DESTINATION KEY, MOVE WITH SOURCE KEY, PERFORM CRYPTOGRAPHIC KEY MANAGEMENT
OPERATION, PERFORM TIMING FACILITY FUNCTION, and STORE SYSTEM INFORMATION.

General registers 3, 4, and 14, and, when the ASN-and-LX-reuse facility is installed, general register 15 for PROGRAM CALL.

II Interruptible instruction (for SSKE, the instruction is interruptible when the multiple-block control is one).

IM Insert-reference-bits--multiple facility.

K PER storage-key-alteration event.

L New condition code is loaded.

Name
Mne-

monic Characteristics
Op-

code Page

Figure 10-1. Summary of Control Instructions (Part 3 of 5)

10-6 The z/Architecture CPU Architecture

LD Long-displacement facility.

MD Designation of access registers in the access-register mode is model-dependent.

MO Move-with-optional-specifications facility.

M3 Message-security assist extension 3.

N Instruction is new in z/Architecture as compared to ESA/390.

N3 Instruction is new in z/Architecture and has been added to ESA/390.

OP Operand exception

P Privileged-operation exception; also, restricted from transactional execution.

Q Privileged-operation exception for semiprivileged instructions also, restricted from transactional execution.

R1 R1 field designates an access register in the access-register mode.

R2 R2 field designates an access register in the access-register mode.

RA Reusable-ASN-and-LX facility.

RB Reset-reference-bits-multiple facility.

RRE RRE instruction format.

RRF RRF instruction format.

RS RS instruction format.

RSY RSY instruction format.

RX RX instruction format.

RXY RXY instruction format.

S S instruction format.

SE Special-operation, stack-empty, stack-specification, and stack-type exceptions.

SF Special-operation, stack-full, and stack-specification exceptions.

SI SI instruction format.

SO Special-operation exception.

SP Specification exception.

SS SS instruction format.

SSE SSE instruction format.

SSF SSF instruction format.

ST PER storage-alteration event.

SU PER store-using-real-address event.

SW Special-operation exception and space-switch event.

T Trace exceptions (which include trace table, addressing, and low-address protection).

TE Test-pending-external-interruption facility

TS TOD-clock-steering facility.

U Condition code is unpredictable.

U1 R1 field designates an access register unconditionally.

U2 R2 field designates an access register unconditionally.

WE Space-switch event.

Z1 Additional exceptions and events for PROGRAM CALL (which include ASX-translation, EX-translation, LFX-translation, LSTE-sequence, LSX-translation,
LX-translation, PC-translation-specification, special-operation, stack-full, stack-specification and subspace-replacement exceptions and space-switch
event).

Z2 Additional exceptions and events for PROGRAM TRANSFER (which include AFX-translation, ASX-translation, primary-authority, special-operation, and
subspace-replacement exceptions and space-switch event).

Name
Mne-

monic Characteristics
Op-

code Page

Figure 10-1. Summary of Control Instructions (Part 4 of 5)

Control Instructions 10-7

B
R

A
N

C
H

 A
N

D
 S

E
T

 A
U

T
H

O
R

IT
Y

BRANCH AND SET AUTHORITY

BSA R1,R2 [RRE]

If the dispatchable unit is in the base-authority state
and the 24-bit or 31-bit addressing mode: bits 32 and
97-127 of the current PSW, the basic-addressing-
mode bit and bits 33-63 of the updated instruction
address, are saved in the dispatchable-unit control
table (DUCT); the PSW-key mask (PKM), PSW key,
and problem-state bit also are saved in the DUCT;
the PKM and PSW key are replaced using the con-
tents of general register R1; the problem-state bit is
set to one; bits 32 and 97-127 of the PSW are
replaced using the contents of general register R2;
and the dispatchable unit is placed in the reduced-
authority state. In the 64-bit addressing mode, the
action is the same except that bits 64-127 of the cur-
rent PSW are saved in the DUCT and replaced from
general register R2, and bit 32 of the PSW is neither
saved nor replaced.

If the dispatchable unit is in the reduced-authority
state and the 24-bit or 31-bit addressing mode: bits
32 and 97-127 of the current PSW are saved in gen-
eral register R1 if R1 is not zero; bits 32 and 97-127 of
the PSW and the PKM, PSW key, and problem-state
bit are replaced by values saved in the DUCT; and
the dispatchable unit is placed in the base-authority
state. In the 64-bit addressing mode, the action is the
same except that bits 64-127 of the current PSW are
saved in general register R1 if R1 is not zero, those
bits in the PSW are replaced from the DUCT, and bit
32 of the PSW is neither saved nor replaced.

Words 5, 8, and 9 of the DUCT are used by this
instruction. The contents of those words are as fol-
lows:

In the 24-Bit or 31-Bit Addressing Mode

In the 64-Bit Addressing Mode

The fields in words 5, 8, and 9 of the DUCT are allo-
cated as follows:

PSW-Key Mask: Bit positions 0-15 of word 5 con-
tain the PSW-key mask (PKM), bits 32-47 of control
register 3, saved by BRANCH AND SET AUTHOR-
ITY executed in the base-authority state. The PKM is
restored to control register 3 by BRANCH AND SET
AUTHORITY executed in the reduced-authority state.

PSW Key: Bit positions 24-27 of word 5 contain the
PSW key, bits 8-11 of the PSW, saved by BRANCH
AND SET AUTHORITY executed in the base-author-
ity state. The PSW key is restored to the PSW by
BRANCH AND SET AUTHORITY executed in the
reduced-authority state.

Z3 Additional exceptions for SET SECONDARY ASN (which include AFX translation, ASX translation, secondary authority, special operation and subspace
replacement).

Z4 Additional exceptions and events for PROGRAM RETURN (which include AFX-translation, ASTE-instance, ASX-translation, secondary-authority, special-
operation, stack-empty, stack-operation, stack-specification, stack-type, and subspace-replacement exceptions and space-switch event).

Z5 Additional exceptions for BRANCH AND STACK (which include special operation, stack full, and stack specification)

Z6 Additional exceptions and events for PROGRAM TRANSFER WITH INSTANCE (which include AFX-translation, ASTE-instance, ASX-translation, primary-
authority, special-operation, and subspace-replacement exceptions and space-switch event).

Z7 Additional exceptions for SET SECONDARY ASN WITH INSTANCE (which include AFX translation, ASTE instance, ASX translation, secondary authority,
special operation, and subspace replacement).

Name
Mne-

monic Characteristics
Op-

code Page

Figure 10-1. Summary of Control Instructions (Part 5 of 5)

'B25A' / / / / / / / / R1 R2

0 16 24 28 31
5

PSW-Key Mask
PSW
Key

R
A

P

0 16 24 28 31

8 All Zeros
0 31

9 B
A

Bits 33-63 of Return Address

32 33 63

8 Bits 0-31 of Return Address
0 31

9 Bits 32-63 of Return Address
32 63

10-8 The z/Architecture CPU Architecture

B
R

A
N

C
H

 A
N

D
 S

E
T

 A
U

T
H

O
R

IT
Y Reduced Authority (RA): Bit 28 of word 5 indi-

cates, when zero, that the dispatchable unit associ-
ated with the DUCT is in the base-authority state or,
when one, that the dispatchable unit is in the
reduced-authority state. Bit 28 is set to one by
BRANCH AND SET AUTHORITY executed in the
base-authority state, and it is set to zero by BRANCH
AND SET AUTHORITY executed in the reduced-
authority state.

Problem State (P): Bit position 31 of word 5 con-
tains the problem-state bit, bit 15 of the PSW, saved
by BRANCH AND SET AUTHORITY executed in the
base-authority state. The problem-state bit is
restored to the PSW by BRANCH AND SET
AUTHORITY executed in the reduced-authority state.

Basic Addressing Mode (BA): In the 24-bit or
31-bit addressing mode, bit position 0 of word 9 con-
tains the basic-addressing-mode bit, bit 32 of the
PSW, saved by BRANCH AND SET AUTHORITY
executed in the base-authority state. The basic-
addressing-mode bit is restored to the PSW from the
DUCT by BRANCH AND SET AUTHORITY executed
in the reduced-authority state.

Return Address: In the 24-bit or 31-bit addressing
mode, bit positions 1-31 of word 9 contain bits 33-63
of the updated instruction address, bits 97-127 of the
PSW, saved by BRANCH AND SET AUTHORITY
executed in the base-authority state. Bits 1-31 of
word 9 of the DUCT are restored to bit positions
97-127 of the PSW by BRANCH AND SET
AUTHORITY executed in the reduced-authority state.
In the 64-bit addressing mode, words 8 and 9 contain
the updated instruction address saved by BRANCH
AND SET AUTHORITY executed in the base-author-
ity state. The contents of words 8 and 9 are restored
to bit positions 64-127 of the PSW by BRANCH AND
SET AUTHORITY executed in the reduced-authority
state.

In the 24-bit or 31-bit addressing mode, all zeros are
stored in word 8 when saving occurs in the base-
authority state. In any addressing mode, all zeros are
stored in bit positions 16-23, 29, and 30 of word 5
when saving occurs in the base-authority state.

All other fields in words 5, 8, and 9 remain
unchanged when bit 28 of word 5 is set to zero in the
reduced-authority state.

The fetch, store, and update references to the DUCT
are single-access references and appear to be word

concurrent as observed by other CPUs. The words of
the DUCT are accessed in no particular order.

Base-Authority Operation

When BRANCH AND SET AUTHORITY is executed
in the base-authority state, as indicated by the
reduced-authority bit (RA) in the DUCT being zero,
R2 must be nonzero; otherwise, a special-operation
exception is recognized. R1 may be zero or nonzero.

The contents of bit positions 32-63 of general register
R1 and of general register R2 when the execution of
the instruction begins in the base-authority state are
as follows:

In the 24-Bit or 31-Bit Addressing Mode

In the 64-Bit Addressing Mode

In any addressing mode, the contents of bit positions
0-31 of general register R1 are ignored. In the 24-bit
or 31-bit addressing mode, the contents of bit posi-
tions 0-31 of general register R2 are ignored.

In the 24-bit or 31-bit addressing mode, PSW bits 32
and 97-127 are saved in word 9 of the DUCT, and
zeros are stored in word 8. In the 64-bit addressing
mode, PSW bits 64-127 are saved in words 8 and 9
of the DUCT. In any addressing mode, the PKM, the
PSW key, and the problem-state bit are saved in
word 5 of the DUCT, the RA bit in word 5 is set to
one, and bits 16-23, 29, and 30 of word 5 are set to
zeros.

Bits 56-59 of general register R1 are placed in bit
positions 8-11 of the PSW as the new PSW key. In
the problem state, the new PSW key must be autho-
rized by the PKM; otherwise, if the new PSW key is

R1 Key Mask Key
32 48 56 60 63

R2 Ignored
0 31

B
A

Bits 33-63 of Branch Address

32 33 63

R2 Bits 0-31 of Branch Address
0 31

Bits 32-63 of Branch Address
32 63

Control Instructions 10-9

B
R

A
N

C
H

 A
N

D
 S

E
T

 A
U

T
H

O
R

IT
Ynot authorized, a privileged-operation exception is

recognized.

After the new PSW key has been placed in the PSW,
bits 32-47 of general register R1 are ANDed with the
PKM in control register 3, and the result replaces the
PKM in control register 3.

The problem-state bit in the PSW is set to one.

In the 24-bit or 31-bit addressing mode, bit 32 of gen-
eral register R2 is placed in bit position 32 of the PSW
as the new basic-addressing-mode bit. A branch
address is generated from bits 33-63 of general reg-
ister R2 under the control of the new basic address-
ing mode, and the result is placed in bit positions
64-127 of the PSW as the new instruction address.

In the 64-bit addressing mode, a branch address is
generated from bits 0-63 of general register R2 and is
placed in bit positions 64-127 of the PSW as the new
instruction address. Bit 32 of the PSW remains
unchanged.

Bits 48-55 and 60-63 of general register R1 may be
used for future extensions and should be zeros; oth-
erwise, the program may not operate compatibly in
the future.

Reduced-Authority Operation

When BRANCH AND SET AUTHORITY is executed
in the reduced-authority state, as indicated by the
reduced-authority (RA) bit in the DUCT being one, R2

must be zero; otherwise, a special-operation excep-
tion is recognized. R1 may be zero or nonzero. The
initial contents of general registers R1 and R2 are
ignored.

If R1 is nonzero in the 24-bit or 31-bit addressing
mode, bits 32 and 97-127 of the current PSW, the
basic-addressing-mode bit and bits 33-63 of the
updated instruction address, are placed in bit posi-
tions 32 and 33-63, respectively, of general register
R1, and bits 0-31 of the register remain unchanged. If
R1 is nonzero in the 64-bit addressing mode, bits
64-127 of the current PSW are placed in bit positions
0-63 of general register R1. If R1 is zero, general reg-
ister 0 remains unchanged.

In the 24-bit or 31-bit addressing mode, bit 0 of word
9 of the DUCT is placed in PSW bit position 32, and
bits 1-31 of word 9, with 33 leftmost zeros appended,
are placed in PSW bit positions 64-127.

In the 64-bit addressing mode, the contents of words
8 and 9 of the DUCT are placed in PSW bit positions
64-127, and bit 32 of the PSW remains unchanged.

In any addressing mode, the PKM, the PSW key, and
the problem-state bit are restored from the DUCT,
and the RA bit is set to zero, as previously described.
There is no test for whether the restored PSW key is
authorized by the restored PKM.

Special Conditions

R2 must be nonzero in the base-authority state and
zero in the reduced-authority state. If either of these
rules is violated, a special-operation exception is rec-
ognized, and the operation is suppressed.

In the problem state, the execution of the instruction
in the base-authority state is subject to control by the
PSW-key mask in control register 3. When the bit in
the PSW-key mask corresponding to the PSW-key
value to be set is one, the instruction is executed suc-
cessfully. When the selected bit in the PSW-key
mask is zero, a privileged-operation exception is rec-
ognized. In the supervisor state, any value for the
PSW key is valid.

Key-controlled protection does not apply to any
access made during the operation. Low-address pro-
tection does apply.

In the 24-bit or 31-bit addressing mode, the contents
of word 9 of the DUCT are not checked for validity
before they are loaded into the PSW. If the newly-
loaded PSW contains a zero in bit position 32 and
the contents of bit positions 97-103 are not zeros,
then (a) the instruction is completed, (b) the resulting
instruction-length code is 0, (c) a specification-excep-
tion is recognized, and (d) a program interruption
occurs. The specification exception, which in this
case is listed as a program exception in this instruc-
tion, is described in “Early Exception Recognition” on
page 6-9.

In the ESA/390-compatibility mode, either (a) an
operation exception is recognized, or (b) a special-
operation exception is recognized when bit 47 of con-
trol register 0 is zero. It is unpredictable which excep-
tion is recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

10-10 The z/Architecture CPU Architecture

B
R

A
N

C
H

 A
N

D
 S

E
T

 A
U

T
H

O
R

IT
Y Program Exceptions:

• Addressing (dispatchable-unit control table)
• Operation (in the ESA/390-compatibility mode)
• Privileged operation (selected PSW-key-mask bit

is zero in the problem state, base-authority oper-
ation only)

• Protection (low-address; dispatchable-unit con-
trol table)

• Special operation
• Specification
• Trace
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-2 on
page 10-10.

Programming Notes:

1. BRANCH AND SET AUTHORITY can improve
performance by replacing to-current-primary
forms of PROGRAM TRANSFER (PT-cp) and
basic (nonstacking) PROGRAM CALL (PC-cp)
instructions. PT-cp and PC-cp are often used
(within a single address space) to reduce the
authority of the PSW-key mask (PKM) or change
from supervisor state to problem state during a
calling linkage made by PT-cp and then to
restore the PKM authority or supervisor state
during a return linkage made by PC-cp. Also, the
PSW-key-setting operations of BRANCH AND
SET AUTHORITY can be substituted for SET
PSW KEY FROM ADDRESS instructions, and,
since BRANCH AND SET AUTHORITY com-
bines branching with PSW-key setting, it can be
used to change the PSW key when branching
from or to a fetch-protected program.

2. Only one base-authority state and one reduced-
authority state are available to a dispatchable
unit. Nested use of BRANCH AND SET
AUTHORITY, that is, use within different subrou-
tine levels, is not possible. The requirement that
R2 must be nonzero in the base-authority state
and zero in the reduced-authority state provides
detection of an attempt to use BRANCH AND
SET AUTHORITY in the base-authority state
when the dispatchable unit is already in the
reduced-authority state because of a previous
use of the instruction in the base-authority state.

3. BRANCH AND SET AUTHORITY in the base
authority-state does not save an indication in the
DUCT of whether the current addressing mode is
the extended (64-bit) addressing mode or a basic
(24-bit or 31-bit) addressing mode. The instruc-
tion, in either the base-authority state or the
reduced-authority state, does not cause a switch
between the extended addressing mode and a
basic addressing mode. In the reduced-authority
state, the contents of words 8 and 9 of the DUCT
are interpreted based only on the current
addressing mode. If saving occurs in the 31-bit
addressing mode and then restoring occurs in
the 64-bit addressing mode, bit 0 of word 9 of the
DUCT will be used as an address bit instead of
as the basic-addressing-mode bit. If saving
occurs in the 64-bit addressing mode and then
restoring occurs in the 24-bit addressing mode,
an early specification exception may be recog-
nized, after the instruction execution is com-

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Transaction constraint.

7.C Operation exception (ESA/390-compatibility
mode only)

7.D Special-operation exception due to bit 47 of
control register 0 being zero (ESA/390-
compatibility mode only)

8.A Trace exceptions.

8.B Protection exception (low-address protection) for
access to dispatchable-unit control table.

8.C.1 Addressing exception for access to dispatchable-
unit control table.

8.C.2 Special-operation exception due to R2 being zero
in the base-authority state or R2 being nonzero in
the reduced-authority state.

8.C.3 Privileged-operation exception due to selected
PSW-key-mask bit being zero (base-authority
operation only).

9. Specification exception due to bit 32 of the newly
loaded PSW being zero when bits 97-103 are not
all zeros (reduced-authority operation only).

Figure 10-2. Priority of Execution: BRANCH AND SET
AUTHORITY

Control Instructions 10-11

B
R

A
N

C
H

 A
N

D
 S

T
A

C
Kpleted, because bits 97-103 of the PSW may be

nonzero when bit 32 is zero.

4. The instruction may be referred to as BSA-ba or
BSA-ra depending on whether it is executed in
the base-authority state or the reduced-authority
state, respectively.

BRANCH AND STACK

BAKR R1,R2 [RRE]

A linkage-stack branch state entry is formed, and the
current PSW, except with an unpredictable PER
mask and with the addressing-mode bits and instruc-
tion address replaced from the first operand, is
placed in the state entry. Subsequently, the updated
instruction address in the current PSW is replaced
from the second operand. Indications of the current
addressing-mode bits and the new instruction
address are placed in the state entry, and the PSW-
key mask, PASN, SASN, EAX, and contents of gen-
eral registers 0-15 and access registers 0-15 also are
placed in the state entry. When the ASN-and-LX-
reuse facility is installed and the ASN-and-LX-reuse
control in control register 0 is one, the PASTEIN and
SASTEIN also are placed in the state entry. The
action associated with an operand is not performed if
the R field designating the operand is zero.

When the R1 field is nonzero, the contents of general
register R1 specify an address referred to as the
return address.

When R1 is nonzero and bit 63 of general register R1

is zero, the return address is generated from the con-
tents of the register under the control of the basic
addressing mode specified by bit 32 of the register:
24-bit mode if bit 32 is zero, or 31-bit mode if bit 32 is
one. Bit 32 of the register and the return address are
substituted for the basic-addressing-mode bit, bit 32,
and the updated instruction address, respectively, in
the current PSW when the contents of that PSW are
placed in the state entry. The extended-addressing-
mode bit, bit 31, is set to zero in the PSW that is
placed in the state entry. The contents of the current
PSW are not changed.

When R1 is nonzero and bit 63 of general register R1

is one, the return address is generated from the con-

tents of the register under the control of the 64-bit
addressing mode. Bits 0-62 of the return address,
with a zero appended on the right, are substituted for
the updated instruction address in the current PSW
when the contents of that PSW are placed in the
state entry. Bits 31 and 32 are set to one in the PSW
that is placed in the state entry. The contents of the
current PSW are not changed.

When the R1 field is zero, the current PSW is placed
in the state entry without any change except for an
unpredictable PER mask.

Subsequently, when the R2 field is nonzero, the
instruction address in the current PSW is replaced by
the branch address. The branch address is gener-
ated from the contents of general register R2 under
the control of the current addressing mode. When the
R2 field is zero, the operation is performed without
branching.

The branch state entry is formed and information is
placed in it as described in “Stacking Process” on
page 5-84.

In the 24-bit or 31-bit addressing mode, bits 33-63 of
the branch address (or of the updated instruction
address if the operation is performed without branch-
ing) are placed in bit positions 33-63 of bytes
144-151 in the state entry, bit 32 of the current PSW
is placed in bit position 32 of those bytes, and zeros
are placed in bit positions 0-31 of the bytes.

In the 64-bit addressing mode, bits 0-62 of the
branch address (or of the updated instruction
address if the operation is performed without branch-
ing) are placed in bit positions 0-62 of bytes 144-151
in the state entry, and a one is placed in bit position
63 of those bytes.

The entry-type code in the state entry is 0001100
binary.

Key-controlled protection does not apply to accesses
to the linkage stack, but low-address and DAT protec-
tion do apply.

Special Conditions

The CPU must be in the primary-space mode or
access-register mode; otherwise, a special-operation
exception is recognized.

'B240' / / / / / / / / R1 R2

0 16 24 28 31

10-12 The z/Architecture CPU Architecture

B
R

A
N

C
H

 A
N

D
 S

T
A

C
K A stack-full or stack-specification exception may be

recognized during the stacking process.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch or store, except for key-controlled
protection, linkage-stack entry)

• Special operation
• Stack full
• Stack specification
• Trace
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-3 on
page 10-12.

Programming Notes:

1. Examples of the use of the BRANCH AND
STACK instruction are given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. In no case does BRANCH AND STACK change
the current addressing mode.

3. The effect when the R1 field is zero is that the
return address, which would otherwise be speci-
fied by the R1 general register, is the address of
the next sequential instruction. In this case,
BRANCH AND STACK provides a program-link-
age function that is comparable to the function of
BRANCH AND SAVE.

4. BRANCH AND STACK with a nonzero R1 field is
intended for use at or near the entry point of a
called program. The program may be called by
means of BRANCH AND LINK (BALR) or
BRANCH AND SAVE (BAS or BASR) from a pro-
gram being executed in the 24-bit or 31-bit
addressing mode, by means of BRANCH AND
SAVE AND SET MODE from a program being
executed in any addressing mode, or by means
of a BRANCH AND SET MODE instruction
located in a “glue module” and being executed in
any addressing mode. In all of these cases when
the nonzero R1 field of the calling instruction is
the same as the R1 field of BRANCH AND
STACK, and even when the addressing mode
was changed during the calling linkage,
BRANCH AND STACK correctly saves the
addressing mode and return address of the call-
ing program so that the subsequent execution of

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Special-operation exception due to DAT being off
or the CPU being in secondary-space mode or
home-space mode.

7.C Transaction constraint.

8.A Trace exceptions (only if R2 is nonzero).

8.B.1 Access exceptions (fetch) for entry descriptor of
the current linkage-stack entry.

Note: Exceptions 8.B.2-8.B.7 can occur only if
there is not enough remaining free space in the
current linkage-stack section.

8.B.2 Stack-specification exception due to remaining-
free-space value in current linkage-stack entry
not being a multiple of 8.

8.B.3 Access exceptions (fetch) for second word of the
trailer entry of the current section. The entry is
presumed to be a trailer entry; its entry-type field
is not examined.

8.B.4 Stack-full exception due to forward-section
validity bit in the trailer entry being zero.

Figure 10-3. Priority of Execution: BRANCH AND STACK
(Part 1 of 2)

8.B.5 Access exceptions (fetch) for entry descriptor of
the header entry of the next section. This entry is
presumed to be a header entry; its entry-type
field is not examined.

8.B.6 Stack-specification exception due to not enough
remaining free space in the next section.

8.B.7 Access exceptions (store) for second word of the
header entry of the next section. If there is no
exception, the header is now called the current
entry.

8.B.8 Access exceptions (store) for entry descriptor of
the current entry and for the new state entry.

Figure 10-3. Priority of Execution: BRANCH AND STACK
(Part 2 of 2)

Control Instructions 10-13

B
R

A
N

C
H

 IN
 S

U
B

S
P

A
C

E
 G

R
O

U
PPROGRAM RETURN will return correctly to the

calling program.

BRANCH IN SUBSPACE GROUP

BSG R1,R2 [RRE]

Provided that the current primary address space is in
the subspace group, if any, associated with the cur-
rent dispatchable unit, the access-list-entry token
(ALET) in access register R2 is translated by means
of a special form of access-register translation (ART)
to locate a destination ASN-second-table entry
(DASTE). If the DASTE specifies the base space of
the subspace group, the primary ASCE (PASCE) in
control register 1 is replaced by the ASCE in the
DASTE. If the DASTE specifies a subspace of the
group, bits 0-55 and 58-63 of the PASCE are
replaced by the same bits of the ASCE in the
DASTE. In either case, the following actions also
occur.

In the 24-bit or 31-bit addressing mode, bits 32 and
97-127 of the current PSW, the basic-addressing-
mode bit and bits 33-63 of the updated instruction
address, are saved in bit positions 32 and 33-63,
respectively, of general register R1, and bits 0-31 of
the register remain unchanged. Subsequently, the
basic-addressing-mode bit and bits 33-63 of the
instruction address in the current PSW are replaced
from bit positions 32-63 of general register R2, and
bits 0-31 of the register are ignored.

In the 64-bit addressing mode, bits 64-127 of the cur-
rent PSW, the updated instruction address, are
saved in bit positions 0-63 of general register R1.
Subsequently, the instruction address in the current
PSW is replaced from bit positions 0-63 of general
register R2. Bit 32 of the PSW remains unchanged.

In any addressing mode, general register 0 remains
unchanged if the R1 field is zero.

The secondary ASCE (SASCE) in control register 7
is set equal to the new PASCE in control register 1.
Also, the secondary ASN (SASN), bits 48-63 of con-
trol register 3, is set equal to the primary ASN
(PASN), bits 48-63 of control register 4. If the ASN-
and-LX-reuse facility is installed and is enabled by
the ASN-and-LX-reuse control in control register 0,

the secondary ASTEIN (SASTEIN), bits 0-31 of con-
trol register 3, is set equal to the primary ASTEIN
(PASTEIN), bits 0-31 of control register 4

The current primary address space is in the sub-
space group for the dispatchable unit if the current
primary-ASTE origin (PASTEO), bits 33-57 of control
register 5, designates the ASTE for the base space
of the group. The PASTEO designates the base-
space ASTE if the PASTEO is equal to the base-
ASTE origin (BASTEO), bits 1-25 of word 0 of the
dispatchable-unit control table (DUCT). For determin-
ing whether the PASTEO equals the BASTEO, either
the PASTEO may be compared to the BASTEO or
the entire contents of bit positions 32-63 of control
register 5 may be compared to the entire contents of
word 0 of the DUCT.

Ordinary ART is described in “Access-Register-
Translation Process” on page 5-59. The special ART
performed by this instruction is contrasted to ordinary
ART as follows:

1. The special ART is performed regardless of
whether the CPU is in the access-register mode.

2. If the ALET being translated is 00000000 hex,
called ALET 0, the DASTE is the ASTE for the
base space. Bit 0 of the DASTE is ignored.

3. If the ALET is 00000001 hex, called ALET 1, the
DASTE is the ASTE for the last subspace
entered by the dispatchable unit by means of
BRANCH IN SUBSPACE GROUP. That ASTE is
designated by the subspace-ASTE origin (SSAS-
TEO), bits 1-25 of word 1 of the DUCT. A special-
operation exception is recognized if a subspace
has not previously been entered, as indicated by
an SSASTEO of all zeros. An ASTE-validity
exception is recognized if bit 0 of the DASTE is
one. An ASTE-sequence exception is recognized
if the ASTE sequence number (ASTESN) in the
DASTE does not equal the subspace ASTESN
(SSASTESN) in word 3 of the DUCT. The
DASTE located because of ALET 1 is considered
to specify a subspace even if, due to an error, the
DASTE is the ASTE for the base space. That is,
there is no comparison of the SSASTEO to the
BASTEO.

4. If the ALET is other than ALET 0 and ALET 1, an
ASTE is located by obtaining its origin from an
access-list entry (ALE) in a way similar to ordi-
nary ART, and the DASTE is that located ASTE.
In this case, as in ordinary ART:

'B258' / / / / / / / / R1 R2

0 16 24 28 31

10-14 The z/Architecture CPU Architecture

B
R

A
N

C
H

 IN
 S

U
B

S
P

A
C

E
 G

R
O

U
P • An ALET-specification exception is recog-

nized if bits 0-6 of the ALET are not zeros.

• An ALEN-translation exception is recognized
if the ALE is outside the effective access list
or bit 0 of the ALE is one.

• An ASTE-validity exception is recognized if
bit 0 of the DASTE is one.

• An ASTE-sequence exception is recognized
if the ASTE sequence number (ASTESN) in
the DASTE does not equal the ASTESN in
the ALE.

The operation differs from ordinary ART in that
the ALE sequence number (ALESN) in the ALE
is not compared to the ALESN in the ALET, and
the private bit in the ALE is treated as zero. Thus,
ALE-sequence and extended-authority excep-
tions cannot occur.

The fetch-only bit in the ALE is ignored.

When the ALET is other than ALET 0 and ALET 1,
the special ART may be performed by using the ART-
lookaside buffer (ALB).

The DASTE located due to an ALET other than ALET
0 and ALET 1 may be the ASTE for the base space
of the subspace group associated with the dispatch-
able unit. The DASTE is the base-space ASTE if the
DASTE origin (DASTEO) obtained from an ALE by
ART equals the BASTEO in the DUCT. For determin-
ing whether the DASTEO equals the BASTEO, either
the DASTEO may be compared to the BASTEO, or
the DASTEO with one leftmost and six rightmost
zeros appended may be compared to the entire con-
tents of word 0 of the DUCT. If the DASTE is not the
base-space ASTE, the DASTE is treated as the
ASTE for a subspace of the dispatchable unit’s sub-
space group provided that (1) the subspace-group
bit, bit 54, in the ASCE in the DASTE is one, and
(2) the DASTE does not specify the base space of
another subspace group. The DASTE specifies the
base space of another subspace group if the base-
space bit, bit 31 of word 0 of the DASTE, is one. A
special-operation exception is recognized if either of
those two provisions is not met.

If the DASTE specifies the base space of the sub-
space group, the PASCE in control register 1 is
replaced by the ASCE in the DASTE. If the DASTE
specifies a subspace, bits 0-55 and 58-63 of the
PASCE are replaced by the same bits of the ASCE in

the DASTE, and bits 56 and 57 of the PASCE, the
storage-alteration-event bit and space-switch-event-
control bit, remain unchanged.

If R1 is nonzero in the 24-bit or 31-bit addressing
mode, bits 32 and 97-127 of the current PSW, the
basic-addressing-mode bit and bits 33-63 of the
updated instruction address, are placed in bit posi-
tions 32 and 33-63, respectively, of general register
R1, and bits 0-31 of the register remain unchanged. If
R1 is nonzero in the 64-bit addressing mode, bits
64-127 of the current PSW, the updated instruction
address, are placed in bit positions 0-63 of general
register R1. If R1 is zero, general register 0 remains
unchanged.

Whether R2 is nonzero or zero, in the 24-bit or 31-bit
addressing mode, bits 32-63 of general register R2

specify the new basic addressing mode and desig-
nate the branch address. Bit 32 of the register speci-
fies the new basic addressing mode and replaces bit
32 of the current PSW, and the branch address is
generated from the contents of bit positions 33-63 of
the register under the control of the new basic
addressing mode.

When R2 is nonzero or zero in the 64-bit addressing
mode, the contents of general register R2 designate
the branch address. The branch address is gener-
ated from the contents of the register under the con-
trol of the 64-bit addressing mode. Bit 32 of the PSW
remains unchanged.

Regardless of the addressing mode, the new value
for the PSW is computed before general register R1

is changed.

The secondary ASCE (SASCE) in control register 7
is set equal to the new PASCE in control register 1.
The secondary ASN (SASN), bits 48-63 of control
register 3, is set equal to the primary ASN (PASN),
bits 48-63 of control register 4. If the ASN-and-LX-
reuse facility is installed and is enabled by a one
value of the ASN-and-LX-reuse control, bit 44 of con-
trol register 0, the secondary ASTEIN (SASTEIN),
bits 0-31 of control register 3, is set equal to the pri-
mary ASTEIN (PASTEIN), bits 0-31 of control regis-
ter 4.

If the DASTE specifies the base space, the sub-
space-active bit, bit 0 of word 1 of the DUCT, is set to
zero, and bits 1-31 of word 1 remain unchanged. If
the DASTE specifies a subspace by means of ALET
1, then (1) the subspace-active bit is set to one,

Control Instructions 10-15

B
R

A
N

C
H

 IN
 S

U
B

S
P

A
C

E
 G

R
O

U
P(2) the SSASTEO in bit positions 1-25 of word 1

remains unchanged, and (3) bits 26-31 of word 1
either are set to zeros or remain unchanged. If the
DASTE specifies a subspace by means of an ALET
other than ALET 1, then (1) the subspace-active bit is
set to one, (2) the DASTEO is stored in bit positions
1-25 of word 1 as the SSASTEO, (3) zeros are stored
in bit positions 26-31 of word 1, and (4) the ASTESN
in the DASTE is stored in word 3 of the DUCT as the
SSASTESN.

The fetch, store, and update references to the DUCT
are single-access references and appear to be word
concurrent as observed by other CPUs. The words
of the DUCT are accessed in no particular order.

The operation, since it changes a translation parame-
ter in control register 1, causes all copies of
prefetched instructions to be discarded, except when
in the home-space mode.

Special Conditions

DAT must be on; otherwise, a special-operation
exception is recognized. A special-operation excep-
tion is also recognized if the current primary address
space is not in a subspace group associated with the
current dispatchable unit, if the ALET in access regis-
ter R2 is ALET 1 but a subspace has not previously
been entered by the dispatchable unit by means of
BRANCH IN SUBSPACE GROUP, or if the ALET
used is other than ALET 0 and ALET 1 and the desti-
nation ASTE does not specify the base space or a
subspace of the subspace group.

The primary space-switch-event-control bit, bit 57 of
control register 1 either before or after the operation,
does not cause a space-switch-event program inter-
ruption to occur.

Key-controlled protection does not apply to any
access made during the operation. Low-address pro-
tection does apply.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (dispatchable-unit control table,
effective access-list designation, access-list
entry, destination ASN-second-table entry)

• ALET specification
• ALEN translation
• ASTE sequence
• ASTE validity
• Protection (low-address; dispatchable-unit con-

trol table)
• Special operation
• Trace
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in the Figure 10-4.

1.-6. Exceptions with the same priority as the
priority of program-interruption conditions for
the general case.

7.A Access exceptions for second instruction
halfword.

7.B Special-operation exception due to DAT being
off.

7.C Transaction constraint.

8.A Trace exceptions.

8.B Protection exception (low-address protection)
for access to dispatchable-unit control table.

8.C.1 Addressing exception for access to
dispatchable-unit control table.

8.C.2 Special-operation exception due to current
primary address space not being in a
subspace group associated with the current
dispatchable unit (primary-ASTE origin in
control register 5 not equal to base-ASTE
origin in dispatchable-unit control table).

Note: Exception 8.C.3.A can occur only if the
access-list-entry token (ALET) in access
register R2 is ALET 0.

8.C.3.A Addressing exception for access to base
ASTE (ASTE designated by base-ASTE origin
in dispatchable-unit control table).

Note: Exceptions 8.C.3.B.1-8.C.3.B.4 can
occur only if the access-list-entry token
(ALET) in access register R2 is ALET 1.

8.C.3.B.1 Special-operation exception due to subspace-
ASTE origin in dispatchable-unit control table
being zero.

8.C.3.B.2 Addressing exception for access to subspace
ASTE.

Figure 10-4. Priority of Execution: BRANCH IN SUBSPACE
GROUP (Part 1 of 2)

10-16 The z/Architecture CPU Architecture

B
R

A
N

C
H

 IN
 S

U
B

S
P

A
C

E
 G

R
O

U
P

Programming Notes:

1. See the discussion of BRANCH IN SUBSPACE
GROUP in “Subroutine Linkage without the Link-
age Stack” on page 5-14. It is intended that there
be a separate ASN-second-table entry (ASTE)
for each of the base space and each subspace of
a subspace group. The ASTEs for the subspaces
can be “pseudo” ASTEs as described in the pro-
gramming note in “Address-Space Number” on

page 3-23. A subspace can contain a subset of
the storage in the base space by having the DAT
tables for the subspace designate a subset of the
pages that are designated by the DAT tables for
the base space. A dispatchable unit has access
to a subspace if an access-list entry designating
the ASTE for the subspace is in the primary-
space or dispatchable-unit access list of the dis-
patchable unit.

2. BRANCH IN SUBSPACE GROUP can be used
to give control from the base space to a sub-
space, from a subspace to another subspace,
and from a subspace to the base space. The
instruction can also be used to give control from
the base space to the base space or from a sub-
space to the same subspace.

3. Since BRANCH IN SUBSPACE GROUP sets the
secondary address-space-control element
(ASCE) in control register 7 equal to the new pri-
mary ASCE in control register 1 (along with set-
ting the secondary ASN in control register 3
equal to the primary ASN in control register 4),
the program in an address space given control by
BRANCH IN SUBSPACE GROUP does not have
access to the calling program’s address space by
means of that address space being the second-
ary address space.

4. When a dispatchable unit has used BRANCH IN
SUBSPACE GROUP to enter a subspace and
has not subsequently used BRANCH IN SUB-
SPACE GROUP to return to the base space, the
dispatchable unit is said to be “subspace active.”
When LOAD ADDRESS SPACE PARAMETERS,
PROGRAM CALL, PROGRAM RETURN, PRO-
GRAM TRANSFER, PROGRAM TRANSFER
WITH INSTANCE, SET SECONDARY ASN, or
SET SECONDARY ASN WITH INSTANCE
places an ASCE in control register 1 as the pri-
mary ASCE or in control register 7 as the sec-
ondary ASCE, and if (1) the ASCE has the
subspace-group bit on in it, (2) the dispatchable
unit is subspace active, and (3) the ASCE was
obtained from the ASN-second-table entry
(ASTE) for the base space of the current dis-
patchable unit, then the instruction (any of the
seven named instructions) replaces bits 0-55 and
58-63 of the ASCE in the control register with the
same bits of the ASCE in the ASTE for the sub-
space in which the dispatchable unit last had
control. Further details about the effects of the
subspace-group facility on the seven named
instructions are given in “Subspace-Replace-

8.C.3.B.3 ASTE-validity exception due to bit 0 in
subspace ASTE being one.

8.C.3.B.4 ASTE-sequence exception due to ASTE
sequence number in subspace ASTE not
being equal to subspace-ASTE sequence
number in dispatchable-unit control table.

Note: Exceptions 8.C.3.C.1-8.C.3.C.9 can
occur only if the access-list-entry token
(ALET) in access register R2 is other than
ALET 0 and ALET 1.

8.C.3.C.1 ALET-specification exception due to bits 0-6 of
ALET not being all zeros.

8.C.3.C.2 Addressing exception for access to effective
access-list designation.

8.C.3.C.3 ALEN-translation exception due to access-list
entry being outside the list.

8.C.3.C.4 Addressing exception for access to access-list
entry.

8.C.3.C.5 ALEN-translation exception due to I bit in
access-list entry being one.

8.C.3.C.6 Addressing exception for access to
destination ASTE.

8.C.3.C.7 ASTE-validity exception due to bit 0 in
destination ASTE being one.

8.C.3.C.8 ASTE-sequence exception due to ASTE
sequence number (ASTESN) in access-list
entry not being equal to ASTESN in
destination ASTE.

8.C.3.C.9 Special-operation exception due to
destination-ASTE origin not equal to base-
ASTE origin in dispatchable-unit control table
and (1) subspace-group bit, bit 54 in address-
space-control element in destination ASTE
being zero or (2) base-space bit 31, in
destination ASTE being one.

Figure 10-4. Priority of Execution: BRANCH IN SUBSPACE
GROUP (Part 2 of 2)

Control Instructions 10-17

C
O

M
P

A
R

E
 A

N
D

 R
E

P
L

A
C

E
 D

A
T

 T
A

B
L

E
 E

N
T

R
Yment Operations” on page 5-70 and in the defini-

tions of the instructions.

5. The use of BRANCH IN SUBSPACE GROUP
(BSG) along with PROGRAM CALL (PC) and
either PROGRAM TRANSFER (PT) (or PRO-
GRAM TRANSFER WITH INSTANCE) or PRO-
GRAM RETURN (PR) can produce results that
may be unexpected. Consider the following
sequence of operations:

a. Start in the base space

b. BSG to a subspace

c. PC (the first PC) to an address space that is
not in the subspace group.

d. PC (the second PC) to the base space.
Since the dispatchable unit is subspace
active, control is given to the subspace.

e. BSG back to the base space.

f. PT or PR (paired with the second PC) back
to the address space that is not in the sub-
space group.

g. PT or PR (paired with the first PC) back to
the subspace group. Since the dispatchable
unit is no longer subspace active, control is
given to the base space even though the first
PC was issued in the subspace.

6. BRANCH IN SUBSPACE GROUP does not per-
form the serialization or checkpoint-synchroniza-
tion functions, but it does cause all copies of
prefetched instructions to be discarded except
when in the home-space mode.

7. Unlike the RR-format branch instructions, a value
of zero in the R2 field for BRANCH IN SUB-
SPACE GROUP designates general register 0,
and branching occurs.

8. When the R2 field designates access register 0,
the access register is treated as containing ALET
0 regardless of the contents of the access regis-
ter.

COMPARE AND REPLACE DAT
TABLE ENTRY

CRDTE R1,R3,R2[,M4] [RRF-b]

Note: The term “specified CPU or CPUs” has the fol-
lowing meaning for scope of TLBs affected by this
instruction:

• When the local-clearing (LC) control in the M4

field is zero, the term “specified CPU or CPUs”
means all of the CPUs in the configuration.

• When the LC control in the M4 field is one, the
term “specified CPU or CPUs” means only the
CPU executing the COMPARE AND REPLACE
DAT TABLE ENTRY instruction (the local CPU).
The TLBs in all other CPUs in the configuration
may not be affected.

The first and second operands are compared. If they
are equal, the contents of general register R1 + 1 are
stored at the second-operand location, and the spec-
ified CPU or CPUs in the configuration are cleared of
(1) all TLB table entries of the designated type
formed through the use of the replaced entry in stor-
age, and (2) all lower-level TLB table entries formed
through the use of the cleared higher-level TLB table
entries. The TLB entries cleared may optionally be
limited to entries formed to translate addresses in a
specified address space.

If the first and second operands are unequal, the
second operand is loaded at the first-operand loca-
tion. However, on some models, the second operand
may be fetched and subsequently stored back
unchanged at the second-operand location. This
update appears to be a block-concurrent interlocked-
update reference as observed by other CPUs. The
result of the comparison is indicated by the condition
code.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The first operand is called the compare value and is
contained in bit positions 0-63 of general register R1.

'B98F' R3 M4 R1 R2

0 16 20 24 28 31

10-18 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 R
E

P
L

A
C

E
 D

A
T

 T
A

B
L

E
 E

N
T

R
Y Bit positions 0-63 of general register R1 + 1 are

called the replacement value.

The second operand is a doubleword in storage des-
ignated by general registers R2 and R2 + 1. Bits 59-
61 of general register R2 are the designated-table
type (DTT), specifying the bits in general register R2

that form the origin of a table in storage; the DTT also
specifies the bits in general register R2 + 1 that are
used as the effective index into the table to locate the
second operand, as follows:

When the DTT is 000 binary, the contents of bit posi-
tions 0-52 of general register R2, with eleven zeros
appended on the right, form the table origin, and bits
53-58, 62, and 63 of the register are ignored. When
the DTT is 100-111 binary, the contents of bit posi-
tions 0-51 of general register R2, with twelve zeros
appended on the right, form the table origin, and bits

52-58, 62, and 63 of the register are ignored. DTT
values of 001, 010, and 011 binary are invalid; a
specification exception is recognized if the DTT is
invalid.

Bits 0-51 of general register R2 + 1 have the format of
the region index, segment index, and page index of a
virtual address. The part of bits 0-51 normally used
by DAT to select an entry in the type of table desig-
nated by the DTT is called the effective index. The
part of bits 0-51 of general register R2 + 1 to the right
of the effective index is ignored. Bit positions 52-53
are reserved for IBM use and must contain zeros;
otherwise, results are unpredictable. Bit positions 54-
63 of general register R2 + 1 are reserved and must
contain zeros; otherwise, a specification exception is
recognized.

If R3 is nonzero, the contents of general register R3

have the format of an address-space-control element
with only the table origin, bits 0-51, and designation-
type control (DT), bits 60 and 61, used. These con-
tents are used to select TLB entries to be cleared.
Bits 52-59, 62, and 63 of general register R3 are
ignored. If R3 is zero, the entire contents of general
register 0 are ignored, and TLB entries are cleared
regardless of the ASCE used to form them.

The contents of the general registers just described
are shown in Figure 10-5.

DTT
(bits 59-61 of
Reg. R2) Table Type

Table Origin
Bits in
Reg. R2

Effective
Index Bits
in Reg. R2 + 1

000 Page 0-52 44-51

001-011 — — —

100 Segment 0-51 33-43

101 Region third 0-51 22-32

110 Region second 0-51 11-21

111 Region first 0-51 0-10

R1 Compare Value
0 63

R1 + 1 Replacement Value
0 63

R2 Page-Table Origin (when DTT = 000 binary) / / / / / / DTT / /
0 53 59 62 63

R2 Region-Table, or Segment-Table Origin (when DTT = 100-111 binary) / / / / / / / DTT / /
0 52 59 62 63

R2 + 1
Region-First Index Region-Second Index Region-Third Index Segment Index Page Index

R
I

R
I

0 0 0 0 0 0 0 0 0 0

0 11 22 33 44 52 53 54 63

Note: Used only if R3 is nonzero.

R3 Region-Table or Segment-Table Origin of the ASCE used for Clearing / / / / / / / / DT / /
0 52 60 62 63

Figure 10-5. Register Contents for COMPARE AND REPLACE DAT TABLE ENTRY

Control Instructions 10-19

C
O

M
P

A
R

E
 A

N
D

 R
E

P
L

A
C

E
 D

A
T

 T
A

B
L

E
 E

N
T

R
YThe M4 field has the following format:

The bits of the M4 field are defined as follows:

• Reserved: Bits 0-2 are reserved. Reserved bit
positions of the M4 field are ignored but should
contain zeros; otherwise, the program may not
operate compatibly in the future.

• Local-Clearing Control (LC): The LC bit, bit 3 of
the M4 field controls whether only the TLB in the
local CPU is cleared, or whether the TLBs in all
CPUs of the configuration are cleared.

When the first and second operands are equal, the
contents of general register R1 + 1 are stored at the
second-operand location, and the translation-loo-
kaside buffers (TLBs) in the specified CPUs in the
configuration are cleared of (1) all TLB table entries
of the designated type formed through the use of the
original contents of the second operand in storage
(that is, the contents of the second operand before it
is replaced with the replacement value), and (2) all
lower-level TLB table entries formed through the use
of the cleared higher-level TLB table entries. The
TLB entries cleared may optionally be limited to
entries formed to translate addresses in a specified
address space.

Depending on the table type, the table origin in gen-
eral register R2 and effective index in general register
R2 + 1 designate a table entry in accordance with the
rules in “Lookup in a Table Designated by an
Address-Space-Control Element” on page 3-57, or
“Page-Table Lookup” on page 3-61, except that a
carry from bit position 0 of the resulting address is
always ignored, and the index is not checked against
a table-length field. The table origin is treated as a
64-bit address, and the addition is performed by
using the rules for 64-bit address arithmetic, regard-
less of the current addressing mode specified by bits
31 and 32 of the current PSW. The address formed
from these two components is a real or absolute
address. The contents of the table entry are not
examined for validity, and no exception conditions are
recognized due to the contents of the table entry.

The fetch and store of the table entry are performed
as a block-concurrent interlocked update. The fetch

access to the entry is subject to key-controlled pro-
tection, and the store access is subject to key-con-
trolled protection and low-address protection.

A serialization function is performed before the oper-
ation begins and again after the operation is com-
pleted. As is the case for all serialization operations,
this serialization applies only to this CPU; other
CPUs are not necessarily serialized.

When the first and second operands are equal, this
CPU clears selected entries from its TLB. In addition
to the clearing of the local CPU, if the LC bit in the M4

field is zero, all other CPUs in the configuration are
signaled to clear selected entries from their TLBs.
Each TLB is cleared of at least those entries for
which all of the following conditions are met:

• The effective index in general register R2 + 1
matches the corresponding index in the TLB
table entry of type designated by the DTT field in
bits 59-61 of general register R2. If the model
implements a composite TLB entry that includes
the index designated by the DTT field, bits to the
left of the effective index in general register
R2 + 1 also match any corresponding bits pro-
vided in the designated TLB table entry.

• Either the R3 field is zero , or the table-origin and
designation-type fields in general register R3

match the table-origin and designation-type
fields in the address-space-control element
(ASCE) used to form the TLB table entry.

If the R3 field is zero, then the condition
described in this step does not apply.

• If EDAT-1 applies and the entry replaced in stor-
age is a segment-table entry, or if EDAT-2 applies
and the entry replaced in storage is a region-
third-table entry, the format control in the
replaced entry matches that of the TLB entry.

• If the replaced entry in storage designates a
lower-level translation table, the lower-level table
origin in the entry matches the table-origin field in
the TLB table entry.

• If EDAT-1 applies and the entry replaced in stor-
age is a segment-table entry in which the format
control is one, or if EDAT-2 applies and the entry
replaced in storage is a region-third-table entry in
which the format control is one, the segment-
frame absolute address or region-frame absolute
address, respectively, in the replaced entry
matches that of the TLB entry.

/ / /
L
C

0 1 2 3

10-20 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 R
E

P
L

A
C

E
 D

A
T

 T
A

B
L

E
 E

N
T

R
Y Each affected TLB is also cleared of at least any

lower-level TLB table entries for which all of the fol-
lowing conditions are met:

• The lower-level TLB table entry was formed
through use of the replaced entry in storage or
through use of a higher-level TLB table entry
formed through use of either the replaced entry
in storage or a TLB entry cleared in this process.

• Either the R3 field is zeroor the table-origin and
designation-type fields in general register R3

match the table-origin and designation-type
fields in the address-space-control element
(ASCE) used to form the lower-level TLB table
entry. This ASCE may be one that attached a
translation path containing a higher-level table
entry that attached the lower-level table entry in
storage from which the lower-level TLB table
entry was formed, or it may be one that made
usable a higher-level TLB table entry that
attached the lower-level table entry in storage
from which the lower-level TLB table entry was
formed. See “Formation of TLB Entries” on
page 3-63 for the meaning of the terminology
used here.

If the R3 field is zero,, then the condition
described in this step does not apply.

• If EDAT-1 applies and the entry replaced in stor-
age is a segment-table entry, or if EDAT-2 applies
and the entry replaced in storage is a region-
third-table entry, the format control in the
replaced entry matches that of the TLB entry.

• If the entry in storage designates a lower-level
translation table, the lower-level table origin in
the entry matches the table-origin field in the TLB
table entry.

When the first and second operands are equal, the
execution of COMPARE AND REPLACE DAT TABLE
ENTRY is not completed on the CPU which executes
it until the following occurs:

1. All entries meeting the criteria specified above
have been cleared from the TLB of this CPU.
When the LC control in the M4 field is one, execu-
tion of COMPARE AND REPLACE DAT TABLE
ENTRY is complete, and the following step is not
performed.

2. When the LC control in the M4 field is zero, all
other CPUs in the configuration have completed

any storage accesses, including the updating of
the change and reference bits.

The operation does not necessarily have any effect
on TLB real-space entries.

Special Conditions

A specification exception is recognized, and the
operation is suppressed if any of the following is true:

• Either the R1 or R2 field is odd.

• The DTT field, bit positions 59-61 of general reg-
ister R2, contain 001, 010, or 011 binary.

• Bit positions 54-63 of general register R2 + 1
contain nonzero values.

 It is unpredictable whether a specification exception
is recognized if bits 52-53 of general register R2 + 1
contain non-zero values.

The operation is suppressed on all addressing and
protection exceptions.

Resulting Condition Code:

0 First and second operands equal, second oper-
and replaced by contents of general register
R1 + 1

1 First and second operands unequal, first operand
replaced by second operand

2 --
3 --

Program Exceptions:

• Addressing
• Operation (if the enhanced-DAT facility 2 is not

installed)
• Privileged operation
• Protection (fetch and store, region-, segment-, or

page-table entry, key-controlled protection and
low-address protection)

• Specification
• Transaction constraint

Programming Notes:

1. The selective clearing of TLB entries may be
implemented in different ways, depending on the
model, and, in general, more entries may be
cleared than the minimum number required.

Control Instructions 10-21

C
O

M
P

A
R

E
 A

N
D

 S
W

A
P

 A
N

D
 P

U
R

G
E2. When clearing TLB entries associated with com-

mon segments, note that these entries may have
been formed through use of address-space-con-
trol elements containing many different table ori-
gins.

3. The M4 field of the instruction is considered to be
optional, as indicated by the field being con-
tained within brackets [] in the assembler syntax.
When the M4 field is not specified, the assembler
places zeros in that field of the instruction.

4. The local-clearing control should be specified as
one only when either of the following are true;
otherwise, unpredictable results, including the
presentation of a delayed-access-exception
machine check, may occur.

• The program is running in a uniprocessor
configuration.

• The program is assigned to run on a single
CPU and the affinity between the program
and that CPU is maintained.

On some models, use of COMPARE AND
REPLACE DAT TABLE ENTRY specifying clear-
ing of only the local TLB for the cases listed
above may result in significant performance
improvements.

COMPARE AND SWAP AND
PURGE

CSP R1,R2 [RRE]

CSPG R1,R2 [RRE]

The first and second operands are compared. If they
are equal, contents of general register R1 + 1 are
stored at the second-operand location, and a purging
operation is performed. If they are unequal, the sec-
ond operand is loaded at the first-operand location.
The result of the comparison is indicated in the con-
dition code.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg-

ister; otherwise, a specification exception is recog-
nized.

For COMPARE AND SWAP AND PURGE (CSP), the
first operand is the contents of bit positions 32-63 of
general register R1. The second operand is a word in
storage.

For COMPARE AND SWAP AND PURGE (CSPG),
the first operand is the contents of bit positions 0-63
of general register R1. The second operand is a dou-
bleword in storage.

For both CSP and CSPG, the location of the leftmost
byte of the second operand is designated by contents
of general register R2.

The purging operation applies to ART-lookaside buf-
fers (ALBs) and translation-lookaside buffers (TLBs)
in all CPUs in the configuration. Either ALBs or TLBs,
or both ALBs and TLBs, may be selected for purging.
All entries are cleared from the selected buffers.

The purging operation is specified by means of bits
62 and 63 of general register R2. When bit 62 is one,
entries are cleared from ALBs. When bit 63 is one,
entries are cleared from TLBs. When bits 62 and 63
both are ones, entries are cleared from ALBs and
TLBs. When bits 62 and 63 both are zeros, no entries
are cleared.

The handling of the address in general register R2 is
dependent on the addressing mode. For CSP in the
24-bit addressing mode, the contents of bit positions
40-61 of general register R2, with two zeros
appended on the right, constitute the address, and
the contents of bit positions 0-39 are ignored. In the
31-bit addressing mode, the contents of bit positions
33-61 of the register, with two zeros appended on the
right, constitute the address, and the contents of bit
positions 0-32 are ignored. In the 64-bit addressing
mode, the contents of bit positions 0-61 of the regis-
ter, with two zeros appended on the right, constitute
the address.

For CSPG in the 24-bit addressing mode, the con-
tents of bit positions 40-60 of general register R2,
with three zeros appended on the right, constitute the
address, and the contents of bit positions 0-39 and
61 are ignored. In the 31-bit addressing mode, the
contents of bit positions 33-60 of the register, with
three zeros appended on the right, constitute the
address, and the contents of bit positions 0-32 and
61 are ignored. In the 64-bit addressing mode, the

'B250' / / / / / / / / R1 R2

0 16 24 28 31

'B98A' / / / / / / / / R1 R2

0 16 24 28 31

10-22 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 S
W

A
P

 A
N

D
 P

U
R

G
E contents of bit positions 0-60 of the register, with

three zeros appended on the right, constitute the
address, and the contents of bit position 61 are
ignored.

The contents of the registers just described are
shown in Figure 10-6 on page 10-22 and Figure 10-7
on page 10-22. When an equal comparison occurs,

the contents of bit positions 32-63 of general register
R1 + 1 for CSP, or of bit positions 0-63 for CSPG, are
stored at the second-operand location. The fetch of
the second operand for purposes of comparison and
the store into the second-operand location appear to
be a block-concurrent interlocked-update reference
as observed by other CPUs.

When the result of the comparison is unequal, the
second-operand is loaded at the first-operand loca-
tion, bits 0-31 of general register R1 remain
unchanged for CSP only, and the second-operand
location remains unchanged. However, on some
models, the second operand may be fetched and
subsequently stored back unchanged at the second-

operand location. This update appears to be a block-
concurrent interlocked-update reference as observed
by other CPUs.

A serialization function is performed before the oper-
and is fetched and again after the operation is com-
pleted.

R1 / First Operand
0 32 63

R1 + 1 / Swap Value
0 32 63

24-Bit Addressing Mode

R2 / Second-Operand Address A T
0 40 62 63

31-Bit Addressing Mode

R2 / Second-Operand Address A T
0 33 62 63

64-Bit Addressing Mode

R2 Second-Operand Address A T
0 62 63

Figure 10-6. Register Contents for COMPARE AND SWAP AND PURGE (CSP)

R1 First Operand
0 63

R1 + 1 Swap Value
0 63

24-Bit Addressing Mode

R2 / Second-Operand Address / A T
0 40 61 62 63

31-Bit Addressing Mode

R2 / Second-Operand Address / A T
0 33 61 62 63

64-Bit Addressing Mode

R2 Second-Operand Address / A T
0 61 62 63

Figure 10-7. Register Contents for COMPARE AND SWAP AND PURGE (CSPG)

Control Instructions 10-23

D
IA

G
N

O
S

EWhen an equal comparison occurs, this CPU clears
entries from its ALB and TLB, as specified by bits 62
and 63 of general register R2, and signals all CPUs in
the configuration to clear the same specified entries
from their ALBs and TLBs. The ALB entries that are
cleared are all ALB access-list designations, access-
list entries, ASN-second-table entries, and authority-
table entries. The TLB entries that are cleared are all
region-first-table entries, region-second-table entries,
region-third-table entries, segment-table entries,
page-table entries, and real-space entries.

Before the TLB purging operation, when bits 62 or 63
of general register R2 are one, any active transac-
tions on other CPUs in the configuration are aborted
with abort code 255, condition code 2.

The execution of COMPARE AND SWAP AND
PURGE is not completed on the CPU which executes
it until (1) all specified entries have been cleared
from the ALB and TLB of this CPU and (2) all other
CPUs in the configuration have completed any stor-
age accesses, including the updating of the change
and reference bits, by using the specified ALB and
TLB entries.

Special Conditions

The R1 field must designate an even register; other-
wise, a specification exception is recognized.

Resulting Condition Code:

0 First and second operands equal, second oper-
and replaced by contents of general register
R1 + 1

1 First and second operands unequal, first operand
replaced by second operand

2 --
3 --

Program Exceptions:

• Access (fetch and store, operand 2)
• Operation (if DAT-enhancement facility is not

installed, CSPG only)
• Privileged operation
• Specification
• Transaction constraint

Programming Note: COMPARE AND SWAP AND
PURGE provides a broadcast form of the PURGE
ALB and PURGE TLB instructions, thus making it
possible to avoid uses of SIGNAL PROCESSOR.

DIAGNOSE

The CPU performs built-in diagnostic functions, or
other model-dependent functions. The purpose of
the diagnostic functions is to verify proper functioning
of equipment and to locate faulty components. Other
model-dependent functions may include disabling of
failing buffers, reconfiguration of CPUs, storage, and
channel paths, and modification of control storage.

Bits 8-31 may be used as in the SI or RS formats, or
in some other way, to specify the particular diagnostic
function. The use depends on the model.

The execution of the instruction may affect the state
of the CPU and the contents of a register or storage
location, as well as the progress of an I/O operation.
Some diagnostic functions may cause the test indica-
tor to be turned on.

Resulting Condition Code: The code is unpredict-
able.

Program Exceptions:

• Privileged operation
• Transaction constraint
• Depending on the model, other exceptions may

be recognized.

Programming Notes:

1. Since the instruction is not intended for problem-
state-program or control-program use, DIAG-
NOSE has no mnemonic.

2. DIAGNOSE, unlike other instructions, does not
follow the rule that programming errors are distin-
guished from equipment errors. Improper use of
DIAGNOSE may result in false machine-check
indications or may cause actual machine mal-
functions to be ignored. It may also alter other
aspects of system operation, including instruc-
tion execution and channel-program operation, to
an extent that the operation does not comply with
that specified in this publication. As a result of
the improper use of DIAGNOSE, the system may
be left in such a condition that the power-on reset
or initial-microprogram-loading (IML) function
must be performed. Since the function performed

'83'

0 8 31

10-24 The z/Architecture CPU Architecture

E
X

T
R

A
C

T
 A

N
D

 S
E

T
 E

X
T

E
N

D
E

D
 A

U
T

H
O

R
IT

Y by DIAGNOSE may differ from model to model
and between versions of a model, the program
should avoid issuing DIAGNOSE unless the pro-
gram recognizes the model number stored by
STORE CPU ID.

EXTRACT AND SET EXTENDED
AUTHORITY

ESEA R1 [RRE]

The extended authorization index (EAX), bits 32-47
of control register 8, is saved in bit positions 32-47 of
the first operand, and then the EAX in control register
8 is replaced by the contents of bit positions 48-63 of
the first operand. Bits 0-31 of the first operand are
ignored, and bits 0-31 and 48-63 of the operand
remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation
• Transaction constraint

 EXTRACT PRIMARY ASN

EPAR R1 [RRE]

EXTRACT PRIMARY ASN AND
INSTANCE

EPAIR R1 [RRE]

The 16-bit PASN, bits 48-63 of control register 4, is
placed in bit positions 48-63 of general register R1.
Bits 32-47 of the general register are set to zeros.

In the EXTRACT PRIMARY ASN AND INSTANCE
operation, the PASTEIN, bits 0-31 of control register
4, is placed in bit positions 0-31 of general register

R1. In the EXTRACT PRIMARY ASN operation, bits
0-31 of general register R1 remain unchanged.

Special Conditions

The instruction must be executed with DAT on; other-
wise, a special-operation exception is recognized.

In the problem state, the extraction-authority control,
bit 36 of control register 0, must be one; otherwise, a
privileged-operation exception is recognized. In the
supervisor state, the extraction-authority-control bit is
not examined.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (if the ASN-and-LX-reuse facility is not
installed, EPAIR only)

• Privileged operation (extraction-authority control
is zero in the problem state)

• Special operation
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-8.

EXTRACT SECONDARY ASN

ESAR R1 [RRE]

'B99D' / / / / / / / / R1 / / / /
0 16 24 28 31

'B226' / / / / / / / / R1 / / / /

0 16 24 28 31

'B99A' / / / / / / / / R1 / / / /

0 16 24 28 31

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B.1 Operation exception if the ASN-and-LX-reuse
facility is not installed (EPAIR only).

7.B.2 Special-operation exception due to DAT being
off.

7.C Transaction constraint.

8. Privileged-operation exception due to extraction-
authority control, bit 36 of control register 0,
being zero in problem state.

Figure 10-8. Priority of Execution: EXTRACT PRIMARY
ASN (AND INSTANCE)

'B227' / / / / / / / / R1 / / / /

0 16 24 28 31

Control Instructions 10-25

E
X

T
R

A
C

T
 S

T
A

C
K

E
D

 R
E

G
IS

T
E

R
SEXTRACT SECONDARY ASN AND

INSTANCE

ESAIR R1 [RRE]

The 16-bit SASN, bits 48-63 of control register 3, is
placed in bit positions 48-63 of general register R1.
Bits 32-47 of the general register are set to zeros.

In the EXTRACT SECONDARY ASN AND
INSTANCE operation, the SASTEIN, bits 0-31 of con-
trol register 3, is placed in bit positions 0-31 of gen-
eral register R1. In the EXTRACT SECONDARY ASN
operation, bits 0-31 of general register R1 remain
unchanged.

Special Conditions

The instruction must be executed with DAT on; other-
wise, a special-operation exception is recognized.

In the problem state, the extraction-authority control,
bit 36 of control register 0, must be one; otherwise, a
privileged-operation exception is recognized. In the
supervisor state, the extraction-authority-control bit is
not examined.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation (if the ASN-and-LX-reuse facility is not
installed, ESAIR only)

• Privileged operation (extraction-authority control
is zero in the problem state)

• Special operation
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-9.

EXTRACT STACKED REGISTERS

EREG R1,R2 [RRE]

EREGG R1,R2 [RRE]

Contents of a set of general registers and a set of
access registers that were saved in the last state
entry in the linkage stack are restored to the regis-
ters. Each set of registers begins with register R1 and
ends with register R2.

For EXTRACT STACKED REGISTERS (EREG), the
contents of bit positions 32-63 of the general regis-
ters are restored, and the contents of bit positions
0-31 of the registers remain unchanged. For
EXTRACT STACKED REGISTERS (EREGG), the
contents of bit positions 0-63 of the general registers
are restored. In either case, the contents of bit posi-
tions 0-31 of the access registers are restored.

For each of the general registers and the access reg-
isters, the registers are loaded in ascending order of
their register numbers, starting with register R1 and
continuing up to and including register R2, with regis-
ter 0 following register 15. The bit positions of each
register are loaded from the position in the state
entry where the contents of the bit positions were
saved when the state entry was created. The con-
tents of the state entry remain unchanged.

The last state entry is located as described in
“Unstacking Process” on page 5-86. The state entry

'B99B' / / / / / / / / R1 / / / /

0 16 24 28 31

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

Figure 10-9. Priority of Execution: EXTRACT
SECONDARY ASN (AND INSTANCE) (Part 1 of
2)

7.B.1 Operation exception if the ASN-and-LX-reuse
facility is not installed (ESAIR only).

7.B.2 Special-operation exception due to DAT being
off.

7.C Transaction constraint.

8. Privileged-operation exception due to extraction-
authority control, bit 36 of control register 0,
being zero in problem state.

'B249' / / / / / / / / R1 R2

0 16 24 28 31

'B90E' / / / / / / / / R1 R2

0 16 24 28 31

Figure 10-9. Priority of Execution: EXTRACT
SECONDARY ASN (AND INSTANCE) (Part 2 of
2)

10-26 The z/Architecture CPU Architecture

E
X

T
R

A
C

T
 S

T
A

C
K

E
D

 S
T

A
T

E remains in the linkage stack, and the linkage-stack-
entry address in control register 15 remains
unchanged.

Key-controlled protection does not apply to refer-
ences to the linkage stack.

Special Conditions

The CPU must be in the primary-space mode,
access-register mode, or home-space mode; other-
wise, a special-operation exception is recognized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the unstacking
process.

The operation is suppressed on all addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, except for protection, linkage-
stack entry)

• Special operation
• Stack empty
• Stack specification
• Stack type
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-10.

EXTRACT STACKED STATE

ESTA R1,R2 [RRE]

Sixty-four or 128 bits of status information in the last
state entry in the linkage stack are placed in the pair
of general registers designated by the R1 field. The
condition code is set to indicate whether the state
entry is a branch state entry or a program-call state
entry.

The R1 field designates the even-numbered register
of an even-odd pair of general registers.

Bits 56-63 of general register R2 are an unsigned
binary integer that is used as a code to select the
state-entry byte positions, or byte and bit positions,

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Special-operation exception due to DAT being off
or the CPU being in secondary-space mode.

7.C Transaction constraint.

Figure 10-10. Priority of Execution: EXTRACT STACKED
REGISTERS (Part 1 of 2)

8. Access exceptions (fetch) for entry descriptor of
the current linkage-stack entry.

9. Stack-type exception due to current entry not
being a state entry or header entry.

Note: Exceptions 10-14 can occur only if the
current entry is a header entry.

10. Access exceptions (fetch) for second word of the
header entry.

11. Stack-empty exception due to backward stack-
entry validity bit in the header entry being zero.

12. Access exceptions (fetch) for entry descriptor of
preceding entry, which is the entry designated by
the backward stack-entry address in the current
(header) entry.

13. Stack-specification exception due to preceding
entry being a header entry.

14. Stack-type exception due to preceding entry not
being a state entry.

15. Access exceptions (fetch) for the selected
contents of the state entry.

'B24A' / / / / / / / / R1 R2

0 16 24 28 31

Figure 10-10. Priority of Execution: EXTRACT STACKED
REGISTERS (Part 2 of 2)

Control Instructions 10-27

E
X

T
R

A
C

T
 S

T
A

C
K

E
D

 S
T

A
T

Efrom which information is to be extracted, as shown
in Figure 10-11.

For a code of 0, 2, or 3 in bit positions 56-63 of gen-
eral register R2, the contents of the leftmost four
bytes of the eight bytes of status information are
placed in bit positions 32-63 of general register R1,
and the contents of the rightmost four bytes of the
status information are placed in bit positions 32-63 of
general register R1 + 1. The contents of bit positions
0-31 of general registers R1 and R1 + 1 remain
unchanged.

For a code of 1 in bit positions 56-63 of general regis-
ter R2, the contents of bytes 136-139 of the state
entry, which are bits 0-31 of the PSW in the state
entry, are placed in bit positions 32-63 of general reg-
ister R1; the contents of bit position 0 of byte 140 of
the entry, which is bit 32 of that PSW, are placed in
bit position 32 of general register R1 + 1; and the
contents of bit positions 33-63 of bytes 168-175 of
the entry, which are bits 97-127 of the PSW, are
placed in bit positions 33-63 of general register
R1 + 1. However, bit 44 of general register R1, which
corresponds to bit 12 of the PSW in the state entry, is
set to one, indicating the extracted PSW is of the
short-PSW format (as shown in Figure 4-3 on
page 4-8). Also, if bits 0-32 of bytes 168-175 of the
state entry are not all zeros, bit 63 of general register
R1 + 1 is set to one; otherwise, bit 63 remains with

the value loaded from bit position 63 of bytes
168-175 of the state entry. The contents of bit posi-
tions 0-31 of general registers R1 and R1 + 1 remain
unchanged.

For a code of 4 in bit positions 56-63 of general regis-
ter R2, the contents of bytes 136-143 of the state
entry, which are bits 0-63 of the PSW in the state
entry, are placed in bit positions 0-63 of general reg-
ister R1, and the contents of bytes 168-175 of the
state entry, which are bits 64-127 of that PSW, are
placed in bit positions 0-63 of general register R1 + 1.

Code 5 in bit positions 56-63 of general register R2 is
valid only if the ASN-and-LX-reuse facility is installed.
For code 5, the contents of the leftmost four bytes of
the eight bytes of status information are placed in bit
positions 0-31 of general register R1, and the con-
tents of the rightmost four bytes of the status informa-
tion are placed in bit positions 0-31 of general
register R1 + 1. The contents of bit positions 32-63 of
general registers R1 and R1 + 1 remain unchanged.

The format of byte positions 128-183 of the state
entry is as follows:

In a Branch State Entry Made in 24-Bit or 31-Bit Mode

In a Branch State Entry Made in 64-Bit Mode

In a Program-Call State Entry Made When Resulting Mode
Is 24 Bit or 31 Bit

Code
(Bits 56-63 of

GR R2) State-Entry Content

State-Entry Byte, or
Byte and Bit Positions,

Selected
0 PKM, SASN, EAX, and

PASN
128-135

1 PSW bits 0-32 and
97-127

136-139, 140.0, and
168-175.33-63 (see text)

2 Branch address or called
space and PC number

144-151

3 Modifiable area 152-159

4 PSW bits 0-127 136-143 and 168-175
5 Secondary and primary

ASTEIN
176-183

Figure 10-11. EXTRACT STACKED STATE Codes and
Extracted State-Entry Fields

PKM SASN EAX PASN
128 130 132 134 135

PSW Bits 0-63
136 143

A Bits 33-63 of Branch Address

144 148 151

Bits 0-62 of Branch Address 1

144 151

Called-Space Id. 0 Numeric Part of PC Number

144 148 151

10-28 The z/Architecture CPU Architecture

E
X

T
R

A
C

T
 S

T
A

C
K

E
D

 S
T

A
T

E In a Program-Call State Entry Made When Resulting Mode
Is 64 Bit

If ASN-and-LX Reuse Is Enabled; otherwise Unpredictable

The contents of the state entry remain unchanged.

The last state entry is located as described in
“Unstacking Process” on page 5-86. The state entry
remains in the linkage stack, and the linkage-stack-
entry address in control register 15 remains
unchanged.

When the entry-type code in the entry descriptor of
the state entry is 0001100 binary, indicating a branch
state entry, the condition code is set to 0. When the
entry-type code is 0001101 binary, indicating a pro-
gram-call state entry, the condition code is set to 1.

Key-controlled protection does not apply to refer-
ences to the linkage stack.

Bits 0-55 of general register R2 are ignored.

Special Conditions

A specification exception is recognized when R1 is
odd or the code in bit positions 56-63 of general reg-
ister R2 is greater than 4 when the ASN-and-LX-
reuse facility is not installed or is greater than 5 when
the facility is installed.

The CPU must be in the primary-space mode,
access-register mode, or home-space mode; other-
wise, a special-operation exception is recognized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the unstacking
process.

The operation is suppressed on all addressing
exceptions.

Resulting Condition Code:

0 Branch state entry
1 Program-call state entry
2 --
3 --

Program Exceptions:

• Access (fetch, except for protection, linkage-
stack entry)

• Special operation
• Specification
• Stack empty
• Stack specification
• Stack type
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-12.

Called-Space Id. 1 Numeric Part of PC Number

144 148 151

Modifiable Area

152 159

All Zeros

160 167

PSW Bits 64-127

168 175

Secondary ASTEIN Primary ASTEIN

176 180 183

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Special-operation exception due to DAT being off
or the CPU being in secondary-space mode.

7.C Transaction constraint.

8.A Specification exception due to R1 being odd or
bits 56-63 of general register R2 having a value
greater than 4 when the ASN-and-LX-reuse
facility is not installed or greater than 5 when the
facility is installed.

8.B.1 Access exceptions (fetch) for entry descriptor of
the current linkage-stack entry.

8.B.2 Stack-type exception due to current entry not
being a state entry or header entry.

Note: Exceptions 8.B.3-8.B.7 can occur only if
the current entry is a header entry.

8.B.3 Access exceptions (fetch) for second word of the
header entry.

8.B.4 Stack-empty exception due to backward stack-
entry validity bit in the header entry being zero.

Figure 10-12. Priority of Execution: EXTRACT STACKED
STATE (Part 1 of 2)

Control Instructions 10-29

IN
S

E
R

T
 A

D
D

R
E

S
S

 S
P

A
C

E
 C

O
N

T
R

O
L

Programming Note: The results for a code of 1 in bit
positions 56-63 of general register R2 are intended to
provide compatibility with ESA/390. However, the
resulting values in bits 32-63 of general registers R1

correspond to bits 0-31 of the short PSW (shown in
Figure 4-3 on page 4-8); that is, the extracted values
can indicate a stacked PSW with the extended-
addressing control (bit 31) set to one, whereas an
ESA/390-format PSW cannot. (It may be that only
values of bits in bit positions 0-31 of the PSW are
required.) Bit 63 of general register R1 + 1 is set to
one if the instruction address in the PSW in the state
entry is larger than a 31-bit address.

INSERT ADDRESS SPACE
CONTROL

IAC R1 [RRE]

The address-space-control bits, bits 16 and 17 of the
current PSW, are placed in reversed order in bit posi-
tions 54 and 55 of general register R1; that is, bit 16 is
placed in bit position 55, and bit 17 is placed in bit
position 54. Bits 48-53 of the register are set to
zeros, and bits 0-47 and 56-63 of the register remain
unchanged. The address-space-control bits are also
used to set the condition code.

Special Conditions

The instruction must be executed with DAT on; other-
wise, a special-operation exception is recognized.

In the problem state, the extraction-authority control,
bit 36 of control register 0, must be one; otherwise, a

privileged-operation exception is recognized. In the
supervisor state, the extraction-authority-control bit is
not examined.

Resulting Condition Code:

0 PSW bits 16 and 17 zeros (indicating primary-
space mode)

1 PSW bit 16 one and bit 17 zero (indicating sec-
ondary-space mode)

2 PSW bit 16 zero and bit 17 one (indicating
access-register mode)

3 PSW bits 16 and 17 ones (indicating home-
space mode)

Program Exceptions:

• Privileged operation (extraction-authority control
is zero in the problem state)

• Special operation
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-13.

Programming Notes:

1. Bits 48-53 of general register R1 are reserved for
expansion for use with possible future facilities.
The program should not depend on these bits
being set to zeros.

2. INSERT ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL are defined to
operate on the seventh byte of a general register
so that the address-space-control bits can be
saved in the same general register as the PSW

8.B.5 Access exceptions (fetch) for entry descriptor of
preceding entry, which is the entry designated by
the backward stack-entry address in the current
(header) entry.

8.B.6 Stack-specification exception due to preceding
entry being a header entry.

8.B.7 Stack-type exception due to preceding entry not
being a state entry.

8.B.8 Access exceptions (fetch) for the selected
contents of the state entry.

'B224' / / / / / / / / R1 / / / /
0 16 24 28 31

Figure 10-12. Priority of Execution: EXTRACT STACKED
STATE (Part 2 of 2)

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Special-operation exception due to DAT being
off.

7.C Transaction constraint.

8. Privileged-operation exception due to extraction-
authority control, bit 36 of control register 0,
being zero in problem state.

Figure 10-13. Priority of Execution: INSERT ADDRESS
SPACE CONTROL

10-30 The z/Architecture CPU Architecture

IN
S

E
R

T
 P

S
W

 K
E

Y key, which is placed in the eighth byte of general
register 2 by INSERT PSW KEY.

INSERT PSW KEY

IPK [S]

The four-bit PSW-key, bits 8-11 of the current PSW, is
inserted in bit positions 56-59 of general register 2,
and bits 60-63 of that register are set to zeros. Bits
0-55 of general register 2 remain unchanged.

Special Conditions

In the problem state, the extraction-authority control,
bit 36 of control register 0, must be one; otherwise, a
privileged-operation exception is recognized. In the
supervisor state, the extraction-authority-control bit is
not examined.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation (extraction-authority control
is zero in the problem state)

• Transaction constraint

INSERT REFERENCE BITS
MULTIPLE

IRBM R1,R2 [RRE]

Beginning with the block designated by the address
in general register R2, the reference bits in the stor-
age keys of the 64 consecutive 4 K-byte blocks are
inspected. For each of the 64 blocks, the reference
bit is placed in an ascending bit position of general
register R1, beginning with bit position 0 of the regis-
ter.

General register R2 designates the first of 64 blocks
in absolute storage on a 64-block (256 K-byte)
boundary. In the 24-bit addressing mode, bits 40-45
of the register, with six binary zeros appended on the

right, designate the first block, and bits 0-39 and
46-63 of the register are ignored. In the 31-bit
addressing mode, bits 33-45 of the register, with six
binary zeros appended on the right, designate the
first block, and bits 0-32 and 46-63 of the register are
ignored. In the 64-bit addressing mode, bits 0-45 of
the register, with six binary zeros appended on the
right, designate the first block, and bits 46-63 of the
register are ignored.

Because it is an absolute address, the address des-
ignating the first storage block is not subject to
dynamic address translation or prefixing. The refer-
ences to the storage keys are not subject to protec-
tion exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (address specified by general regis-
ter R2)

• Operation (insert-reference-bits-multiple facility
not installed)

• Privileged operation
• Transaction constraint

Programming Note: The reference bits provided by
the INSERT REFERENCE BITS MULTIPLE instruc-
tion provide the control program with a substantially
accurate census of the reference bits inspected by
the instruction. However, depending on the model,
the results returned by the instruction may differ from
those provided by the RESET REFERENCE BITS
MULTIPLE instruction for the same blocks of storage.
Similarly, the results returned by INSERT REFER-
ENCE BITS MULTIPLE may differ from those pro-
vided by a series of 64 INSERT STORAGE KEY
EXTENDED or RESET REFERENCE BIT
EXTENDED instructions for the same blocks of stor-
age.

INSERT STORAGE KEY
EXTENDED

ISKE R1,R2 [RRE]

'B20B' / / / / / / / / / / / / / / / /

0 16 31

'B9AC' / / / / / / / / R1 R2

0 16 24 28 31

'B229' / / / / / / / / R1 R2

0 16 24 28 31

Control Instructions 10-31

IN
S

E
R

T
 V

IR
T

U
A

L
 S

T
O

R
A

G
E

 K
E

YThe storage key for the block that is addressed by the
contents of general register R2 is inserted in general
register R1.

In the 24-bit addressing mode, bits 40-51 of general
register R2 designate a 4 K-byte block in real storage,
and bits 0-39 and 52-63 of the register are ignored. In
the 31-bit addressing mode, bits 33-51 of general
register R2 designate a 4 K-byte block in real storage,
and bits 0-32 and 52-63 of the register are ignored. In
the 64-bit addressing mode, bits 0-51 of general reg-
ister R2 designate a 4 K-byte block in real storage,
and bits 52-63 of the register are ignored.

The address designating the storage block, being a
real address, is not subject to dynamic address
translation. The reference to the storage key is not
subject to a protection exception.

The seven-bit storage key is inserted in bit positions
56-62 of general register R1, and bit 63 is set to zero.
The contents of bit positions 0-55 of the register
remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (address specified by general regis-
ter R2)

• Privileged operation
• Transaction constraint

Programming Note: See the programming note for
INSERT REFERENCE BITS MULTIPLE on
page 10-30 for a discussion of differing reference bits
that may be returned by IRBM, ISKE, RRBE, and
RRBM for the same block of storage.

INSERT VIRTUAL STORAGE KEY

IVSK R1,R2 [RRE]

The storage key for the location designated by the
virtual address in general register R2 is inserted in
general register R1.

Selected bits of general register R2 are used as a vir-
tual address. In the 24-bit addressing mode, the
address is specified by bits 40-63 of the register, and

bits 0-39 are ignored. In the 31-bit addressing mode,
the address is specified by bits 33-63, and bits 0-32
is ignored. In the 64-bit addressing mode, the
address is specified by bits 0-63 of the register.

The address is a virtual address and is subject to the
address-space-control bits, bits 16 and 17 of the cur-
rent PSW. The address is treated as a primary virtual
address in the primary-space mode, as a secondary
virtual address in the secondary-space mode, as an
AR-specified virtual address in the access-register
mode, or as a home virtual address in the home-
space mode. The reference to the storage key is not
subject to a protection exception.

Bits 0-4 of the storage key, which are the access-con-
trol bits and the fetch-protection bit, are placed in bit
positions 56-60 of general register R1, with bits 61-63
set to zeros. The contents of bit positions 0-55 of the
register remain unchanged. The change and refer-
ence bits in the storage key are not inspected. The
change bit is not affected by the operation. The refer-
ence bit, depending on the model, may or may not be
set to one as a result of the operation.

The following diagram shows the storage key and the
register positions just described.

Special Conditions

The instruction must be executed with DAT on; other-
wise, a special-operation exception is recognized.

In the problem state, the extraction-authority control,
bit 36 of control register 0, must be one; otherwise, a
privileged-operation exception is recognized. In the
supervisor state, the extraction-authority-control bit is
not examined.

Condition Code: The code remains unchanged.

'B223' / / / / / / / / R1 R2

0 16 24 28 31

Storage Key for
the Location

R1

Zeros

0 56 60 63

ACC F

ACC

R C

F 000
/
/

10-32 The z/Architecture CPU Architecture

IN
V

A
L

ID
A

T
E

 D
A

T
 T

A
B

L
E

 E
N

T
R

Y Program Exceptions:

• Access (except for protection, address specified
by general register R2)

• Privileged operation (extraction-authority control
is zero in the problem state)

• Special operation
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-14.

Programming Notes:

1. Since all bytes in a 4 K-byte block are associated
with the same page and the same storage key,
bits 52-63 of general register R2 essentially are
ignored. Similarly, since all bytes in a 1 M-byte
block are associated with the same segment, bits
44-63 of general register R2 may be ignored
when EDAT-1 applies and the STE-format and
ACCF-validity controls are both one. Since all
bytes in a 2 G-byte block are associated with the
same region, bits 33-63 of general register R2

may be ignored when EDAT-2 applies and the
RTTE-format and ACCF-validity controls are both
one.

2. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

INVALIDATE DAT TABLE ENTRY

IDTE R1,R3,R2[,M4] [RRF-b]

Note: The term “specified CPU or CPUs” has the fol-
lowing meaning for scope of TLBs affected by this
instruction:

• When the local-TLB-clearing facility is not
installed, or when the facility is installed and the
local-clearing-control (LC) bit in the M4 field is
zero, the term “specified CPU or CPUs” means
all of the CPUs in the configuration.

• When the local-TLB-clearing facility is installed
and the LC bit in the M4 field is one, the term
“specified CPU or CPUs” means only the CPU
executing the IDTE instruction (the local CPU).
The TLBs in all other CPUs in the configuration
may not be affected.

When the clearing-by-ASCE-option bit, bit 52 of gen-
eral register R2, is zero, an operation called the inval-
idation-and-clearing operation is performed, as
follows. The designated region-table entry or seg-
ment-table entry in storage, or a range of entries
beginning with the designated entry, is invalidated,
and the translation-lookaside buffers (TLBs) in the
specified CPU or CPUs in the configuration are
cleared of (1) all TLB table entries of the designated
type formed through the use of the invalidated entry
or entries in storage, and (2) all lower-level TLB table
entries formed through the use of the cleared higher-
level TLB table entries. The TLB entries cleared may
optionally be limited to entries formed to translate
addresses in a specified address space.

When the clearing-by-ASCE-option bit is one, an
operation called the clearing-by-ASCE operation is
performed, as follows. The operation does not per-
form any invalidation of DAT-table entries in storage,
but it does clear, from the TLBs in all CPUs in the
configuration, all region-first-table entries, region-
second-table entries, region-third-table entries, seg-
ment-table entries and page-table entries formed to
translate addresses in a specified address space.

The two operations are described separately below,
before the section “Common Operation.”

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Special-operation exception due to DAT being
off.

7.C Transaction constraint.

8. Privileged-operation exception due to extraction-
authority control, bit 36 of control register 0,
being zero.

9. Access exceptions (except for protection) for
address specified by general register R2.

Figure 10-14. Priority of Execution: INSERT VIRTUAL
STORAGE KEY

'B98E' R3 M4 R1 R2

0 16 20 24 28 31

Control Instructions 10-33

IN
V

A
L

ID
A

T
E

 D
A

T
 T

A
B

L
E

 E
N

T
R

YThe M4 field has the following format:

The bits of the M4 field are defined as follows:

• Reserved: Bits 0-1 of the M4 field are ignored but
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Format-Control Summary (FS): When EDAT-2
applies, bit 2 of the M4 field is the format-control
summary (FS) for the invalidation-and-clearing
operation. Bit 2 of the M4 field is ignored for the
clearing-by-ASCE operation and when EDAT-2
does not apply.

The format-control summary applies when the
designation type (DT), bits 60-61 of the general
register R1, is 00 or 01 binary; when the DT in
general register R1 is 10 or 11 binary, the format-
control summary is ignored. The meaning of the
FS bit is as follows:

• Local-Clearing Control (LC): When the local-
TLB-clearing facility is installed, the LC bit, bit 3
of the M4 field, controls whether only the TLB in
the local CPU is cleared or whether the TLBs in
all CPUs of the configuration are cleared. When
the local-TLB-clearing facility is not installed, bit
3 of the M4 field is ignored.

Invalidation-and-Clearing Operation

When bit 52 of general register R2, the clearing-by-
ASCE-option bit, is zero, the invalidation-and-clear-
ing operation is specified.

The contents of general register R1 have the format
of an address-space-control element with only the
table origin, bits 0-51, and designation-type control
(DT), bits 60 and 61, used. The table origin desig-

nates the DAT table in which one or more entries are
to be invalidated, and DT specifies the type of that
table.

Bits 52-59, 62, and 63 of general register R1 are
ignored.

Bits 0-43 of general register R2 have the format of the
region index and segment index of a virtual address.
The part of bits 0-43 normally used by DAT to select
an entry in the type of table designated by general
register R1 is called the effective invalidation index.

Bits 60 and 61 of general register R1 specify a table
type and an effective invalidation index as follows:

The part of bits 0-43 of general register R2 to the left
(if any) and to the right of the effective invalidation
index is ignored.

The table origin in general register R1 and the effec-
tive invalidation index designate a DAT-table entry to
be invalidated. Bits 53-63 of general register R2 are
an unsigned binary integer specifying the number of
additional table entries to be invalidated. Therefore,
the number of entries to be invalidated is 1-2,048,
corresponding to a value of bits 53-63.

Bits 44-49 of general register R2 must be zeros; oth-
erwise, a specification exception is recognized. It is
unpredictable if a specification exception is recog-
nized if bits 50 and 51 of general register R2 contain
non-zero values.

If R3 is nonzero, the contents of general register R3

have the format of an address-space-control element
with only the table origin, bits 0-51, and designation-
type control (DT), bits 60 and 61, used. These con-
tents are used to select TLB entries to be cleared.
Bits 52-59, 62, and 63 of general register R3 are

/ /
F
S

L
C

0 1 2 3

Value Meaning

0 The format control is not known to be one in all
of the table entries designated by the effective
invalidation index and additional-entry count.

1 The format control is one in all of the table
entries designated by the effective invalidation
index and additional-entry count.

Bits 60
and 61
of Reg.

R1 Table Type
Effective Invalidation

Index in Reg. R2

11 Region first table Region first index
(bits 0-10)

10 Region second
table

Region second index
(bits 11-21)

01 Region third table Region third index
(bits 22-32)

00 Segment table Segment index
(bits 33-43)

10-34 The z/Architecture CPU Architecture

IN
V

A
L

ID
A

T
E

 D
A

T
 T

A
B

L
E

 E
N

T
R

Y ignored. If R3 is zero, the entire contents of general
register 0 are ignored, and TLB entries are cleared
regardless of the ASCE used to form them.

The contents of the general registers just described
are shown in Figure 10-15.

The table origin in general register R1 and effective
invalidation index in general register R2 designate a
table entry in accordance with the rules in “Lookup in
a Table Designated by an Address-Space-Control
Element” on page 3-57, except that a carry from bit
position 0 of the resulting address is always ignored,
and the index is not checked against a table-length
field. The table origin is treated as a 64-bit address,
and the addition is performed by using the rules for
64-bit address arithmetic, regardless of the current
addressing mode specified by bits 31 and 32 of the
current PSW. The address formed from these two
components is a real or absolute address. The invalid
bit, bit 58, of this doubleword is set to one. During this
procedure, the entry is not checked for a format error
or for whether the origin, in the entry, of the next-
lower-level table would cause an addressing excep-
tion. The table-type field in the entry is ignored. If the
DT field in bits 60-61 of general register R1 desig-
nates a segment-table entry, the common-segment
bit in the entry is ignored. If EDAT-2 applies and the
DT field designates a region-third-table entry, the
common-region bit in the entry is ignored.

The entire table entry is fetched concurrently from
storage. Subsequently, the byte containing the invalid
bit is stored. The fetch access to the entry is subject
to key-controlled protection, and the store access is
subject to key-controlled protection and low-address
protection.

If bits 53-63 of general register R2 are not all zeros,
the setting of the invalid bit to one in a region-table or
segment-table entry is repeated by adding one to the
previously used value of the effective invalidation

index, and this is done as many times as are speci-
fied by bits 53-63. A carry out of the leftmost bit posi-
tion of the effective invalidation index is ignored, and
wraparound in the table occurs in this case. The con-
tents of general register R2 remain unchanged.

A serialization function is performed before the oper-
ation begins and again after the operation is com-
pleted. As is the case for all serialization operations,
this serialization applies only to this CPU; other
CPUs are not necessarily serialized.

After it has set an invalid bit to one, this CPU clears
selected entries from its TLB. Then if the local-TLB-
clearing facility is not installed, or if the facility is
installed and LC bit in the M4 field is zero, this CPU
signals all other CPUs in the configuration to clear
selected entries from their TLBs. Each affected TLB
is cleared of at least those entries for which all of the
following conditions are met:

• The effective invalidation index in general regis-
ter R2 matches the corresponding index in the
TLB table entry of type designated by the DT
field in bits 60-61 of general register R1. If the
model implements a composite TLB entry that
includes the index designated by the DT field,
bits to the left of the effective index in general
register R2 also match any corresponding bits
provided in the designated TLB table entry. Note
that when multiple table entries are invalidated
due to bits 53-63 of general register R2, then the
effective invalidation index is incremented, a
carry out of the leftmost bit position of the index
is lost, and TLB region- or segment-table entries

R1 Region-Table or Segment-Table Origin for Invalidation / / / / / / / / DT / /
0 52 60 62 63

Note: The effective invalidation index is specified by DT in register R1.

R2 Region-First Index Region-Second Index Region-Third Index Segment Index 0 0 0 0 0 0
R
I

R
I

0 Additional Entries

0 11 22 33 44 50 51 52 53 63

Note: Used only if R3 is nonzero.

R3 Region-Table or Segment-Table Origin for Clearing / / / / / / / / DT / /
0 52 60 62 63

Figure 10-15. Register Contents for INVALIDATE DAT TABLE ENTRY Invalidation-and-Clearing Operation (Bit 52 of GR R2
Is Zero)

Control Instructions 10-35

IN
V

A
L

ID
A

T
E

 D
A

T
 T

A
B

L
E

 E
N

T
R

Yare cleared for each value of the index so
obtained.

• Either the R3 field is zero, or the table-origin and
designation-type fields in general register R3

match the table-origin and designation-type
fields in the address-space-control element
(ASCE) used to form the TLB table entry.

If the R3 field is zero, then the condition
described in this step does not apply.

• If the entry invalidated in storage designates a
lower-level translation table, the lower-level table
origin in the invalidated entry matches the table-
origin field in the TLB table entry.

Each affected TLB is also cleared of at least any
lower-level TLB table entries for which all of the fol-
lowing conditions are met:

• The lower-level TLB table entry was formed
through use of an entry invalidated in storage or
through use of a higher-level TLB table entry
formed through use of either an entry invalidated
in storage or a TLB entry cleared in this process.

• Either the R3 field is zero or the table-origin and
designation-type fields in general register R3

match the table-origin and designation-type
fields in the address-space-control element
(ASCE) used to form the lower-level TLB table
entry. This ASCE may be one that attached a
translation path containing a higher-level table
entry that attached the lower-level table entry in
storage from which the lower-level TLB table
entry was formed, or it may be one that made
usable a higher-level TLB table entry that
attached the lower-level table entry in storage
from which the lower-level TLB table entry was
formed. See “Formation of TLB Entries” on
page 3-63 for the meaning of the terminology
used here.

If the R3 field is zero, then the condition
described in this step does not apply.

• If the entry invalidated in storage designates a
lower-level translation table, the lower-level table
origin in the invalidated entry matches the table-
origin field in the TLB table entry.

Programming Notes:

1. Setting the format-control summary to one may
provide improved performance on certain mod-
els.

2. When the designation type (DT), bits 60-61 of
general register R1, is 00 binary, the format-con-
trol summary applies to the segment-table
entries being invalidated. When the DT in gen-
eral register R1 is 01 binary, the format-control
summary applies to the region-third-table entries
being invalidated.

3. The program should only set the format-control
summary to one if it can ensure that format con-
trol (bit 53 of the table entry) is one in all of the
table entries being invalidated. If the format-con-
trol summary is set to one, but the format control
is not one in all of the table entries being invali-
dated, incomplete purging of the TLB may occur,
resulting in unpredictable results from DAT.

4. The M4 field of the instruction is considered to be
optional, as indicated by the field being con-
tained within brackets [] in the assembler syntax.
When the M4 field is not specified, the assembler
places zeros in that field of the instruction.

Storing in the region- or segment-table entry and the
clearing of TLB entries may or may not occur if the
invalid bit is already one in the region- or segment-
table entry.

When multiple entries are invalidated, clearing of
TLB entries may be delayed until all entries have
been invalidated.

Clearing-by-ASCE Operation

When bit 52 of general register R2, the clearing-by-
ASCE-option bit, is one, the clearing-by-ASCE oper-
ation is specified.

The contents of general register R3 have the format
of an address-space-control element with only the
table origin, bits 0-51, and designation-type control
(DT), bits 60 and 61, used. These contents are used
to select TLB entries to be cleared. Bits 52-59, 62,
and 63 of general register R3 are ignored. R3 may be
zero or nonzero, that is, any general register, includ-
ing register 0, may be designated.

Bits 44-49 of general register R2 must be zeros; oth-
erwise, a specification exception is recognized. It is

10-36 The z/Architecture CPU Architecture

IN
V

A
L

ID
A

T
E

 D
A

T
 T

A
B

L
E

 E
N

T
R

Y unpredictable if a specification exception is recog-
nized if bits 50 and 51 of general register R2 do not
contain zero values.

The contents of general register R1 and of bit posi-
tions 0-43 and 53-63 of general register R2 are
ignored.

The contents of the general registers just described
are shown in Figure 10-16.

The TLBs of the specified CPU or CPUs in the con-
figuration are cleared at all levels of at least those
entries for which the table-origin and designation-
type fields in general register R3 match the table-ori-
gin and designation-type fields in the address-space-
control element (ASCE) used to form the entry. This
ASCE is the one used in the translation during which
the entry was formed. See “Formation of TLB
Entries” on page 3-63 for the meaning of the termi-
nology used here.

When the clearing-by-ASCE-option bit (bit 52 of gen-
eral register R2) is one, the format-control summary
bit (bit 2 of the M4 field) is ignored.

Common Operation

The execution of INVALIDATE DAT TABLE ENTRY is
not completed on the CPU which executes it until the
following occur:

1. All entries meeting the criteria specified above
have been cleared from the TLB of this CPU.
When the local-TLB-clearing facility is installed
and the LC bit in the M4 field is one, execution of
INVALIDATE DAT TABLE ENTRY is complete at
this point and the following step is not performed.

2. When the local-TLB-clearing facility is not
installed, or when the facility is installed and the
LC bit in the M4 field is zero, all other CPUs in the
configuration have completed any storage
accesses, including the updating of the change

and reference bits, by using TLB entries corre-
sponding to the specified parameters.

Before the TLB purging operation, transactional exe-
cution by other CPUs in the configuration is aborted
with abort code 255, condition code 2. The aborting
of transactional execution affects at least those CPUs
accessing the locations (transactionally or nontrans-
actionally) for which TLB entries are being cleared. It
is unpredictable whether some or all other CPUs are
affected as well.

The operations do not necessarily have any effect on
TLB real-space entries.

Special Conditions

Bits 44-49 of general register R2 must be zeros; oth-
erwise, a specification exception is recognized.

It is unpredictable whether a specification exception
is recognized if bits 44-49 of general register R2 con-
tain non-zero values.

The operation is suppressed on all addressing and
protection exceptions (invalidation-and-clearing oper-
ation only).

Resulting Condition Code: The code is unpredict-
able.

Program Exceptions:

R1 /
0 63

R2 / 0 0 0 0 0 0
R
I

R
I

1 / / / / / / / / / / /

0 44 50 51 52 53 63

Note: Used if R3 is zero or nonzero.

R3 Region-Table or Segment-Table Origin for Clearing / / / / / / / / DT / /
0 52 60 62 63

Figure 10-16. Register Contents for INVALIDATE DAT TABLE ENTRY Clearing-by-ASCE Operation (Bit 52 of GR R2 Is
One)

Control Instructions 10-37

IN
V

A
L

ID
A

T
E

 P
A

G
E

 T
A

B
L

E
 E

N
T

R
Y• Addressing (invalidated region- or segment-table

entry, invalidation-and-clearing operation only).
• Operation (if the DAT-enhancement facility is not

installed)
• Privileged operation
• Protection (fetch and store, region- or segment-

table entry, key-controlled protection and low-
address protection; invalidation-and-clearing
operation only).

• Specification
• Transaction constraint

Programming Notes:

1. The selective clearing of TLB entries may be
implemented in different ways, depending on the
model, and, in general, more entries may be
cleared than the minimum number required.
When the invalidation-and-clearing operation is
performed, some models may clear all TLB
entries when the effective invalidation index is
not a segment index or may clear an entry
regardless of the page-table origin in the entry.
When that operation or the clearing-by-ASCE
operation is performed, some models may clear
a TLB entry regardless of the designation-type
field in general register R3. When either opera-
tion is performed, other models may clear pre-
cisely the minimum number of entries required.
Therefore, in order for a program to operate on
all models, the program should not take advan-
tage of any properties obtained by a less selec-
tive clearing on a particular model.

2. When using the clearing-by-ASCE operation to
clear TLB entries associated with common seg-
ments, note that these entries may have been
formed through use of address-space-control
elements containing many different table origins.

The following notes apply when the invalidation-and-
clearing operation is specified.

3. The clearing of TLB entries may make use of the
page-table origin in a segment-table entry.
Therefore, if the segment-table entry, when in the
attached state, ever contained a page-table ori-
gin that is different from the current value, copies
of entries containing the previous values may
remain in the TLB.

4. INVALIDATE DAT TABLE ENTRY cannot be
safely used to update a shared location in main
storage if the possibility exists that another CPU

or a channel program may also be updating the
location.

5. The address of the DAT-table entry for INVALI-
DATE DAT TABLE ENTRY is a 64-bit address,
and the address arithmetic is performed by fol-
lowing the normal rules for 64-bit address arith-
metic, with wraparound at 264 - 1. Also, offset and
length fields are not used. Contrast this with
implicit translation and the translations for LOAD
REAL ADDRESS and STORE REAL ADDRESS,
all of which may result either in wraparound or in
an addressing exception when a carry occurs out
of bit position 0 and which indicate an exception
condition when the designated entry does not lie
within its table. Accordingly, the DAT tables
should not be specified to wrap from maximum
storage locations to location 0, and the first des-
ignated entry and all additional entries specified
by bits 53-63 of general register R2 should lie
within the designated table.

6. When the local-TLB-clearing facility is installed,
the local-clearing control should be specified as
one when the ASCE used to form the TLB
entries being cleared has been attached only to
the CPU on which the IDTE instruction is exe-
cuted (for example, if the program is running on a
uniprocessor). Otherwise, unpredictable results,
including the presentation of a delayed-access-
exception machine check, may occur.

On some models, use of INVALIDATE DAT
TABLE ENTRY specifying clearing of only the
local TLB for the cases listed above may result in
significant performance improvements.

7. The M4 field of the instruction is considered to be
optional, as indicated by the field being con-
tained within brackets [] in the assembler syntax.
When the M4 field is not specified, the assembler
places zeros in that field of the instruction.

INVALIDATE PAGE TABLE ENTRY

IPTE R1,R2[,R3[,M4]] [RRF-a]

Note: The term “specified CPU or CPUs” has the fol-
lowing meaning for scope of TLBs affected by this
instruction:

'B221' R3 M4 R1 R2

0 16 20 24 28 31

10-38 The z/Architecture CPU Architecture

IN
V

A
L

ID
A

T
E

 P
A

G
E

 T
A

B
L

E
 E

N
T

R
Y • When the local-TLB-clearing facility is not

installed, or when the facility is installed and the
local-clearing-control (LC) bit in the M4 field is
zero, the term “specified CPU or CPUs” means
all of the CPUs in the configuration.

• When the local-TLB-clearing facility is installed
and the LC bit in the M4 field is one, the term
“specified CPU or CPUs” means only the CPU
executing the IPTE instruction (the local CPU).
The TLBs in all other CPUs in the configuration
may not be affected.

The designated page-table entries are invalidated,
and the translation-lookaside buffers (TLBs) in the
specified CPU or CPUs in the configuration are
cleared of the associated entries.

The contents of general register R1 have the format
of a segment-table entry, with only the page-table ori-
gin used. The contents of general register R2 have
the format of a virtual address, with only the page
index used. The contents of fields that are not part of
the page-table origin or page index are ignored.

When the IPTE-range facility is not installed, or when
the R3 field is zero, the single page-table entry desig-
nated by the first and second operands is invalidated.

When the IPTE-range facility is installed and the R3

field is nonzero, bits 56-63 of general register R3 con-
tain an unsigned binary integer specifying the count
of additional page-table entries to be invalidated.
Therefore, the number of page-table entries to be
invalidated is 1-256, corresponding to a value of
0-255 in bits 56-63 of the register. Bits 0-55 of the
register should be set to zero; otherwise, the program
may not operate compatibly in the future.

When the IPTE-range facility is installed in the
z/Architecture architectural mode, it is unpredictable
whether it is installed in the ESA/390-compatibility
mode.

The contents of the general registers just described
are shown in Figure 10-17 .

When the IPTE-range facility is not installed, the R3

field is ignored but should contain zeros; otherwise,
the program may not operate compatibly in the
future.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Reserved: Bits 0-2 are reserved. Reserved bit
positions of the M4 field are ignored but should
contain zeros; otherwise, the program may not
operate compatibly in the future.

• Local-Clearing Control (LC): When the local-
TLB-clearing facility is installed, the LC bit, bit 3
of the M4 field, controls whether only the TLB in
the local CPU is cleared or whether the TLBs in
all CPUs of the configuration are cleared. When
the local-TLB-clearing facility is not installed, bit
3 of the M4 field is reserved.

The page-table origin and the page index designate
a page-table entry, following the dynamic-address-
translation rules for page-table lookup. In the z/Archi-
tecture architectural mode, the page-table origin is
treated as a 64-bit address, and the addition is per-
formed by using the rules for 64-bit address arithme-
tic, regardless of the current addressing mode, which
is specified by bits 31 and 32 of the current PSW. A
carry out of bit position 0 as a result of the addition of
the page index and page-table origin cannot occur. In
the ESA/390-compatibility mode, it is unpredictable

R1 Page-Table Origin / / / / / / / / / / /
0 53 63

R2 / Page Index / / / / / / / / / / / /
0 44 52 63

R3 / Additional Entries
56 63

Figure 10-17. Register Contents for INVALIDATE PAGE TABLE ENTRY

/ / /
L
C

0 1 2 3

Control Instructions 10-39

IN
V

A
L

ID
A

T
E

 P
A

G
E

 T
A

B
L

E
 E

N
T

R
Ywhether the page-table origin and page index are

treated as in the z/Architecture architectural mode, or
the page-table origin is treated as a 31-bit address
and the page-table index is multiplied by four (as in
the ESA/390 architectural mode). The address
formed from these two components is a real or abso-
lute address.

The page-invalid bit of this page-table entry is set to
one. During this procedure, the page-table entry is
not inspected for whether the page-invalid bit is
already one or for format errors. Additionally, the
page-frame real address contained in the entry is not
checked for an addressing exception. In the z/Archi-
tecture architectural mode, the page-invalid bit is bit
53 of the doubleword PTE. In the ESA/390-compati-
bility mode, it is unpredictable whether the page
invalid bit is bit 53 of the doubleword PTE or bit 21 of
the word PTE.

When the IPTE-range facility is installed and the R3

field is nonzero, the instruction is interruptible, and
processing is as follows:

1. The invalidation process described above is
repeated for each subsequent entry in the page
table until either the number of additional entries
specified in bits 56-63 of general register R3 have
been invalidated or an interruption occurs.

2. The page-index in bits 44-51 of general register
R2 is incremented by the number of page-table
entries that were invalidated; a carry out of bit
position 44 of general register R2 is ignored.

3. The additional-entry count in bits 56-63 of gen-
eral register R3 is decremented by the number of
page-table entries that were invalidated.

Therefore, whenthe IPTE-range facility is installed,
the R3 field is nonzero, and an interruption occurs
(other than one that causes termination), general
registers R2 and R3 have been updated, so that the
instruction, when reexecuted, resumes at the point of
interruption.

When the IPTE-range facility is not installed, or when
the R3 field is zero, the contents of registers R2, and
R3 remain unchanged.

For each page-table entry that is invalidated, the
entire page-table entry appears to be fetched concur-
rently from storage as observed by other CPUs. Sub-
sequently, the byte containing the page-invalid bit is

stored. The fetch access to each page-table entry is
subject to key-controlled protection, and the store
access is subject to key-controlled protection and
low-address protection.

A serialization function is performed before the oper-
ation begins and again after the operation is com-
pleted. As is the case for all serialization operations,
this serialization applies only to this CPU; other
CPUs are not necessarily serialized.

If no exceptions are recognized, this CPU clears
selected entries from its TLB. Then if the local-TLB-
clearing facility is not installed, or if the facility is
installed and LC bit in the M4 field is zero, this CPU
signals all CPUs in the configuration to clear selected
entries from their TLBs. For each page-table entry
invalidated, each affected TLB is cleared of at least
those entries that have been formed using all of the
following:

• The page-table origin specified by general regis-
ter R1

• The page index specified by general register R2

• The page-frame real address contained in the
designated page-table entry

When the local-TLB-clearing facility is installed in the
z/Architecture architectural mode, it is unpredictable
whether the facility is installed in the ESA/390-com-
patibility mode.

The execution of INVALIDATE PAGE TABLE ENTRY
is not completed on the CPU which executes it until
the following occur:

1. All page-table entries corresponding to the spec-
ified parameters have been invalidated.

2. All entries corresponding to the specified param-
eters have been cleared from the TLB of this
CPU. When the local-TLB-clearing facility is
installed and the LC bit in the M4 field is one, the
execution of INVALIDATE PAGE TABLE entry is
complete at this point and the following step is
not performed.

3. When the local-TLB-clearing facility is not
installed, or when the facility is installed and LC
bit in the M4 field is zero, all other CPUs in the
configuration have completed any storage
accesses, including the updating of the change

10-40 The z/Architecture CPU Architecture

IN
V

A
L

ID
A

T
E

 P
A

G
E

 T
A

B
L

E
 E

N
T

R
Y and reference bits, by using TLB entries corre-

sponding to the specified parameters.

Before the TLB purging operation, transactional exe-
cution by other CPUs in the configuration is aborted
with abort code 255, condition code 2. The aborting
of transactional execution affects at least those CPUs
accessing the locations (transactionally or nontrans-
actionally) for which TLB entries are being cleared. It
is unpredictable whether some or all other CPUs are
affected as well.

Special Conditions

When the IPTE-range facility is installed, the R3 field
is nonzero, and the page index in general register R2

plus the additional-entry count in general register R3

is greater than 255, a specification exception is rec-
ognized.

The unit of operation is suppressed on all addressing
and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (page-table entry)
• Privileged operation
• Protection (fetch and store, page-table entry,

key-controlled protection, and low-address pro-
tection)

• Specification
• Transaction constraint

Programming Notes:

1. The selective clearing of entries may be imple-
mented in different ways, depending on the
model, and, in general, more entries may be
cleared than the minimum number required.
Some models may clear all entries which contain
the page-frame real addresses obtained from the
page-table entries in storage. Others may clear
all entries which contain the designated page
index (or indices), and some implementations
may clear precisely the minimum number of
entries required. Therefore, in order for a pro-
gram to operate on all models, the program
should not take advantage of any properties
obtained by a less selective clearing on a partic-
ular model.

2. The clearing of TLB entries may make use of the
page-frame real addresses in the page-table
entries. Therefore, if the page-table entries,
when in the attached state, ever contained page-
frame real addresses that are different from the
current values, copies of entries containing the
previous values may remain in the TLB.

3. INVALIDATE PAGE TABLE ENTRY cannot be
safely used to update a shared location in main
storage if the possibility exists that another CPU
or a channel program may also be updating the
location.

4. When the IPTE-range facility is installed and the
R3 field is nonzero, the following applies:

a. All of the page-table entries to be invalidated
must reside in the same page table. A speci-
fication exception is recognized if the page
index in general register R1 plus the addi-
tional-entry count in general register R3 is
greater than the maximum page index of
255.

b. The number of page-table entries that are
invalidated by INVALIDATE PAGE TABLE
ENTRY may vary from one execution to
another.

c. The instruction cannot be used for situations
where the program must rely on uninter-
rupted execution of the instruction. Similarly,
the program should normally not use INVALI-
DATE PAGE TABLE ENTRY to invalidate a
page-table entry, the page-frame-real
address of which designates the 4 K-byte
block containing the instruction or of an exe-
cute-type instruction that executes the IPTE.

d. Further programming notes concerning inter-
ruptible instructions are included in “Inter-
ruptible Instructions” on page 5-24.

5. When the local-TLB-clearing facility is installed,
the local-clearing control should be specified as
one when the ASCE used to form the TLB
entries being cleared has been attached only to
the CPU on which the IPTE instruction is exe-
cuted (for example, if the program is running on a
uniprocessor). Otherwise, unpredictable results,
including the presentation of a delayed-access-
exception machine check, may occur.

Control Instructions 10-41

L
O

A
D

 A
D

D
R

E
S

S
 S

P
A

C
E

 P
A

R
A

M
E

T
E

R
SOn some models, use of INVALIDATE PAGE

TABLE ENTRY specifying clearing of only the
local TLB for the cases listed above may result in
significant performance improvements.

6. The R3 and M4 fields of the instruction are con-
sidered to be optional, as indicated by the fields
being contained within brackets [] in the assem-
bler syntax. When either field is not specified, the
assembler places zeros in the corresponding
field of the instruction. When the M4 field is
coded but the R3 field is not required, a zero
should be coded to designate the place of the
third operand.

LOAD ADDRESS SPACE
PARAMETERS

LASP D1(B1),D2(B2) [SSE]

The first operand contains values to be loaded into
control registers 3 and 4, including a secondary ASN
(SASN) and a primary ASN (PASN), and, possibly, a
secondary ASTE instance number (SASTEIN) and a
primary ASTE instance number (PASTEIN). Execu-
tion of the instruction consists in performing four
major steps: PASN translation, SASN translation,
SASN authorization, and control-register loading.
Each of these steps may or may not be performed,
depending on the outcome of certain tests and on
the setting of bits 61-63 of the second-operand
address. The first three of these steps, when per-
formed and successful, obtain additional values, that
are loaded into control registers 1, 5, and 7. When
the first three steps are not successful when per-
formed, no control registers are changed, and the
reason is indicated in the condition code.

When the ASN-and-LX-reuse facility is not installed,
or is installed but is not enabled by a one value of the
ASN-and-LX-reuse control, bit 44 of control register
0, the first operand is a doubleword containing a
PSW-key mask (PKM), a SASN, an authorization
index (AX), and a PASN. When the ASN-and-LX-
reuse facility is installed and enabled, the first oper-
and is two consecutive doublewords containing those
four values and also a SASTEIN and a PASTEIN.

The primary ASN may be translated by means of the
ASN-translation tables to obtain a primary-ASTE
(PASTE) origin (PASTEO) and, from the PASTE, a
primary ASCE (PASCE). The secondary ASN may
be translated by means of the ASN-translation tables
to obtain a secondary ASCE (SASCE). If the first
operand is two doublewords and PASN or SASN
translation occurs, the ASTEIN in the located ASTE
is checked for being equal to the PASTEIN or SAS-
TEIN, respectively, in the first operand. An authority
check for ensuring that the new AX is authorized to
establish the new SASN can be prevented when
SASN translation occurs, or it can be required and
cause SASN translation even when SASN translation
would not otherwise occur. The new AX, which is
placed in a control register and is used in SASN
authorization if that occurs, is the old AX if PASN
translation has not occurred or is the AX in the
located PASTE otherwise. However, in either of these
cases, the new AX may be the AX specified in the
first operand.

A doubleword first operand has the following format:

First Operand if ASN-and-LX Reuse Is Not Enabled

A two-doubleword first operand has the following for-
mat:

First Operand if ASN-and-LX Reuse Is Enabled

The “d” stands for designated value and is used to
distinguish these fields from other fields with similar
names which are referred to in the definition. The
current contents of the corresponding fields in the
control registers are referred to as SASTEIN-old,
PKM-old, SASN-old, etc. The updated contents of
the control registers are referred to as SASTEIN-
new, PKM-new, SASN-new, etc.

The second-operand address is not used to address
data; instead, the rightmost three bits are used to
control portions of the operation. The remainder of

'E500' B1 D1 B2 D2

0 16 20 32 36 47

PKM-d SASN-d AX-d PASN-d
0 16 32 48 63

SASTEIN-d PKM-d SASN-d
0 32 48 63

PASTEIN-d AX-d PASN-d
64 96 112 127

10-42 The z/Architecture CPU Architecture

L
O

A
D

 A
D

D
R

E
S

S
 S

P
A

C
E

 P
A

R
A

M
E

T
E

R
S the second-operand address is ignored. Bits 61-63 of

the second-operand address are used as follows:

The operation of LOAD ADDRESS SPACE PARAM-
ETERS is depicted in Figure 10-21 on page 10-49.

Note: In the following sections, the actions involving
the PASTEIN and SASTEIN occur only if the ASN-
and-LX-reuse facility is installed and is enabled by
the ASN-and-LX-reuse control in control register 0.

PASN Translation and Related Processing

In the PASN-translation process, the PASN-d is
translated by means of the ASN first table and the
ASN second table. The PASTEO resulting from
PASN translation replaces the PASTEO in control
register 5. The ASCE in the located ASTE replaces
the PASCE in control register 1. When bit 62 of the
second-operand address is zero, the AX in the ASTE
replaces the AX in control register 4. When bit 62 is
one, AX-d replaces the AX in the control register.
When ASN-and-LX reuse is enabled, PASTEIN-d is
compared to the ASTEIN in the ASTE, and, when
equal, replaces the PASTEIN in control register 4.

When bit 61 of the second-operand address is one,
PASN translation is always performed. When bit 61 is
zero, PASN translation is performed only if PASN-d is
not equal to PASN-old. When bit 61 is zero and
PASN-d is equal to PASN-old, the PASCE-old, PAS-
TEO-old, and PASTEIN-old are left unchanged in the
control registers and become the PASCE-new, PAS-

TEO-new, and PASTEIN-new, respectively. In this
case, if bit 62 is zero, then the AX-old is left
unchanged in the control register and becomes the
AX-new, or, if bit 62 is one, AX-new is set equal to
AX-d.

The PASN translation follows the normal rules for
ASN translation, except that the invalid bits, bit 0 in
the ASN-first-table entry and bit 0 in the ASTE, when
ones, do not result in an ASN-translation exception.
When either of the invalid bits is one, condition code
1 is set. Condition code 1 is also set if PASN transla-
tion occurs, the ASN-and-LX-reuse facility is
enabled, and PASTEIN-d is not equal to the ASTEIN
in the ASTE. When a reason for setting condition
code 1 does not exist and either the current primary
space-switch-event-control bit in control register 1 is
one or the space-switch-event-control bit in the ASTE
is one, a space-switch event does not occur; instead,
condition code 3 is set. When condition code 1 or 3 is
set, the control registers remain unchanged.

The contents of the AX, ASCE, and ASTEIN fields in
the ASTE which is accessed as a result of the PASN
translation are referred to as AX-p, ASCE-p, and
ASTEIN-p, respectively. The origin of the ASTE is
referred to as PASTEO-p.

The description in this paragraph applies to use of
the subspace-group facility. After ASCE-p has been
obtained, if (1) the subspace-group-control bit, bit 54
in ASCE-p, is one, (2) the dispatchable unit is sub-
space active, and (3) PASTEO-p designates the
ASTE for the base space of the dispatchable unit,
then a copy of ASCE-p, called ASCE-rp, is made,
and bits 0-55 and 58-63 of ASCE-rp are replaced by
the same bits of the ASCE in the ASTE for the sub-
space in which the dispatchable unit last had control.
Further details are in “Subspace-Replacement Oper-
ations” on page 5-70. If bit 0 in the subspace ASTE is
one, or if the ASTE sequence number (ASTESN) in
the subspace ASTE does not equal the subspace
ASTESN in the dispatchable-unit control table, an
exception is not recognized; instead, condition code
1 is set, and the control registers remain unchanged.

SASN Translation and Related Processing

In the SASN-translation process, the SASN-d is
translated by means of the ASN first table and the
ASN second table. The ASCE field obtained from the
ASTE subsequently replaces the secondary ASCE
(SASCE) in control register 7. When ASN-and-LX
reuse is enabled, SASTEIN-d is compared to the

Bit

Function Specified in Second-Operand Address

When Bit Is Zero When Bit Is One

61 ASN translation per-
formed only when new
ASN and old ASN are
different.

ASN translation per-
formed.*

62 AX associated with new
PASN used.

AX in first operand used.

63 SASN authorization
performed.*

SASN authorization not
performed.

Explanation:

* SASN translation and SASN authorization are
performed only when SASN-d is not equal to
PASN-d. When SASN-d is equal to PASN-d, the
SASCE is set equal to the PASCE, the
SASTEIN is set equal to the PASTEIN (if ASN-
and-LX reuse is enabled), and no authorization
is performed.

Control Instructions 10-43

L
O

A
D

 A
D

D
R

E
S

S
 S

P
A

C
E

 P
A

R
A

M
E

T
E

R
SASTEIN in the ASTE, and, when equal, replaces the

SASTEIN in control register 3.

SASN translation is performed only when, but not
necessarily when, SASN-d is not equal to PASN-d.
When SASN-d is equal to PASN-d, SASCE-new and
SASTEIN-new are set equal to PASCE-new and
PASTEIN-new, respectively. In this case, there is not
a test of whether SASTEIN-d is equal to PASTEIN-d;
SASTEIN-d is ignored. When SASN-d is not equal to
PASN-d and is equal to SASN-old, bit 61 (force ASN
translation) is zero, and bit 63 (skip SASN authoriza-
tion) is one, SASN translation is not performed, and
SASCE-old and SASTEIN-old become SASCE-new
and SASTEIN-new, respectively. In this case, there is
not a test of whether SASTEIN-d is equal to SAS-
TEIN-old; SASTEIN-d is ignored.

SASN translation is performed in each of the follow-
ing cases:

• SASN-d is not equal to PASN-d or SASN-old.

• SASN-d is not equal to PASN-d but is equal to
SASN-old, and either bit 61 (force ASN transla-
tion) of the second-operand address is one or bit
63 (skip secondary authority test) of that address
is zero. (The translation must be performed when
bit 63 is zero in order to obtain the ATO and ATL
from the SASTE.)

The SASN translation follows the normal rules for
ASN translation, except that the invalid bits, bit 0 in
the ASN-first-table entry and bit 0 in the ASTE, when
ones, do not result in an ASN-translation exception.
When either of the invalid bits is one, condition code
2 is Condition code 2 is also set if SASN translation
occurs, the ASN-and-LX-reuse facility is enabled,
and SASTEIN-d is not equal to the ASTEIN in the
ASTE. When condition code 2 is set, the control reg-
isters remain unchanged.

The contents of the ASCE, ATO, ATL and ASTEIN
fields in the ASTE which is accessed as a result of
the SASN translation are referred to as ASCE-s,
ATO-s, ATL-s, and ASTEIN-s, respectively. The origin
of the ASTE is referred to as SASTEO-s.

The description in this paragraph applies to use of
the subspace-group facility. After ASCE-s has been
obtained, if (1) the subspace-group-control bit, bit 54
in ASCE-s, is one, (2) the dispatchable unit is sub-
space active, and (3) SASTEO-s designates the
ASTE for the base space of the dispatchable unit,

then a copy of ASCE-s, called ASCE-rs, is made, and
bits 0-55 and 58-63 of ASCE-rs are replaced by the
same bits of the ASCE in the ASTE for the subspace
in which the dispatchable unit last had control. Fur-
ther details are in “Subspace-Replacement Opera-
tions” on page 5-70. If bit 0 in the subspace ASTE is
one, or if the ASTE sequence number (ASTESN) in
the subspace ASTE does not equal the subspace
ASTESN in the dispatchable-unit control table, an
exception is not recognized; instead, condition code
2 is set, and the control registers remain unchanged.

SASN Authorization

SASN authorization is performed when bit 63 of the
second-operand address is zero and SASN-d is not
equal to PASN-d; it is performed in this case regard-
less of whether SASN-d is equal to SASN-old. When
SASN-d is equal to PASN-d or when bit 63 of the
second-operand address is one, SASN authorization
is not performed.

SASN authorization is performed by using ATO-s,
ATL-s, and the intended value for AX-new. When bit
62 of the second-operand address is zero and PASN
translation was performed, the intended value for
AX-new is AX-p. When bit 62 of that address is zero
and PASN translation was not performed, the AX is
not changed, and AX-new is the same as AX-old.
When bit 62 of that address is one, the intended
value for AX-new is AX-d. SASN authorization fol-
lows the rules for secondary authorization as
described in “ASN-Authorization Process” on
page 3-36. If the SASN is not authorized (that is, the
authority-table length is exceeded, or the selected bit
is zero), condition code 2 is set, and none of the con-
trol registers is updated.

Control-Register Loading

When the PASN-translation and SASN-translation
functions and related functions, and the SASN-
authorization functions and subspace-replacement
operations, if called for in the instruction execution,
are performed without encountering any exceptions
or exception conditions, the execution is completed
by replacing the contents of control registers 1, 3, 4,
5, and 7 with the new values, and condition code 0 is
set. The control registers are loaded as follows.

The PSW-key-mask, bits 32-47, and SASN, bits
48-63, in control register 3 are replaced by the con-
tents of the PKM-d and SASN-d fields of the first
operand.

10-44 The z/Architecture CPU Architecture

L
O

A
D

 A
D

D
R

E
S

S
 S

P
A

C
E

 P
A

R
A

M
E

T
E

R
S If ASN-and-LX reuse is enabled, the SASTEIN, bits

0-31, in control register 3 is replaced as follows:

• When SASN translation is performed, by SAS-
TEIN-d.

• When SASN translation is not performed
because SASN-d is equal to PASN-d, by
PASTEIN-new.

• When SASN translation is not performed
because (1) SASN-d is not equal to PASN-d but
is equal to SASN-old, (2) bit 61 (force ASN trans-
lation) of the second-operand address is zero,
and (3) bit 63 (skip secondary authority test) of
the second-operand address is one, the SAS-
TEIN remains unchanged.

When ASN-and-LX reuse is not enabled, bits 0-31 of
control register 3 always remain unchanged.

The PASN, bits 48-63 of control register 4, is
replaced by the PASN-d of the first operand. If ASN-
and-LX reuse is enabled, the PASTEIN, bits 0-31 of
control register 4, is replaced by the PASTEIN-d of
the first operand; otherwise, bits 0-31 of the register
remain unchanged.

The authorization index, bits 32-47 of control register
4, is replaced as follows:

• When bit 62 of the second-operand address is
one, by AX-d.

• When bit 62 of the second-operand address is
zero and PASN translation is performed, by AX-p.

• When bit 62 of the second-operand address is
zero and PASN translation is not performed, the
authorization index remains unchanged.

The primary address-space-control element
(PASCE) in control register 1 and the primary-ASN-
second-table-entry origin (PASTEO) in control regis-
ter 5 are replaced as follows:

• When PASN translation is performed, the PASCE
in control register 1 is replaced by the ASCE-p
obtained as a result of PASN translation, except
that it is replaced by ASCE-rp if a subspace-
replacement operation was performed on
ASCE-p. Also, the PASTEO in control register 5
is replaced by PASTEO-p.

The PASTEO-p is placed in bit positions 33-57 of
control register 5, and zeros are placed in bit
positions 32 and 58-63. Bits 0-31 of the register
remain unchanged.

• When PASN translation is not performed, the
contents of control registers 1 and 5 remain
unchanged.

The secondary address-space-control element
(SASCE) in control register 7 is replaced as follows:

• When SASN-d equals PASN-d, by the new con-
tents of control register 1, the PASCE. The new
contents may be PASCE-old, ASCE-p, or
ASCE-rp.

• When SASN translation is performed, by
ASCE-s, or by ASCE-rs if a subspace-replace-
ment operation was performed on ASCE-s.

When SASN-d does not equal PASN-d and SASN
translation is not performed, the SASCE remains
unchanged.

Other Condition-Code Settings

When PASN translation is called for and cannot be
completed because bit 0 is one in either the ASN-
first-table entry or the ASTE, or if it can be completed
but (1) ASN-and-LX reuse is enabled and PASTEIN-
d does not equal the ASTEIN in the ASTE or (2) a
subspace-replacement-exception condition exists
due to bit 0 or the ASTE sequence number in the
subspace ASTE during a subspace-replacement
operation on the ASCE-p, condition code 1 is set,
and the control registers are not changed.

When PASN translation is called for and completed
and any required PASTEIN-d comparison and sub-
space-replacement operations on the ASCE-p are
also completed, and then either (1) the current pri-
mary space-switch-event-control bit, bit 57 of control
register 1, is one or (2) the space-switch-event-con-
trol bit in the ASTE designated by PASTEO-p is one,
condition code 3 is set, and the control registers are
not changed.

When SASN translation is called for and the transla-
tion cannot be completed because bit 0 is one in
either the ASN-first-table entry or the ASTE, or if it
can be completed but (1) ASN-and-LX reuse is
enabled and SASTEIN-d does not equal the ASTEIN
in the ASTE, (2) a subspace-replacement-exception

Control Instructions 10-45

L
O

A
D

 A
D

D
R

E
S

S
 S

P
A

C
E

 P
A

R
A

M
E

T
E

R
Scondition exists due to bit 0 or the ASTE sequence

number in the subspace ASTE during a subspace-
replacement operation on the ASCE-s, or (3) SASN
authorization is called for and the SASN is not autho-
rized, or condition code 2 is set, and the control reg-
isters are not changed.

Special Conditions

The instruction can be executed only when the ASN-
translation control, bit 44 of control register 14, is
one. If the ASN-translation-control bit is zero, a spe-
cial-operation exception is recognized.

The first operand must be designated on a double-
word boundary; otherwise, a specification exception
is recognized.

In the ESA/390-compatibility mode, one of the follow-
ing exceptions is recognized: (a) an operation excep-
tion, (b) a privileged-operation exception when the
CPU is in the problem state, (c) a special-operation
exception when bit 44 of control register 14 is zero, or
(d) a specification exception when the first operand is
not on a doubleword boundary. It is unpredictable
which exception is recognized.

The operation is suppressed on all addressing and
protection exceptions.

Figure 10-20 on page 10-48 and Figure 10-18 on
page 10-45 summarize the functions of the instruc-
tion.

Resulting Condition Code:

0 Translation and authorization complete; parame-
ters loaded

1 Primary ASN or subspace not available; parame-
ters not loaded

2 Secondary ASN not available or not authorized,
or secondary subspace not available; parame-
ters not loaded

3 Space-switch event specified; parameters not
loaded

Program Exceptions:

• Access (fetch, operand 1)
• Addressing (ASN-first-table entry, ASN-second-

table entry, authority-table entry, dispatchable-
unit control table)

• Operation (in the ESA/390-compatibility mode)
• Privileged operation
• Special operation
• Specification
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-18.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second and third
instruction halfwords.

7.B.1 Privileged-operation exception.

7.B.2 Special-operation exception due to the ASN-
translation control, bit 44 of control register 14,
being zero.

7.C Transaction constraint.

7.D Operation exception (in the ESA/390-
compatibility mode)

8. Specification exception.

9. Access exceptions for the first operand.

10. PASN translation and related processing (when
performed).

10.1 Addressing exception for access to ASN-first-
table entry.

10.2 Condition code 1 due to I bit (bit 0) in ASN-first-
table entry being one.

10.3 Addressing exception for access to ASN-second-
table entry.

10.4 Condition code 1 due to (1) I bit (bit 0) in ASN-
second-table entry (ASTE) being one or (2)
ASN-and-LX reuse enabled and primary ASTE
instance number (PASTEIN) in first operand not
being equal to ASTEIN in ASTE.

10.5 Addressing exception for access to dispatchable-
unit control table.

Figure 10-18. Priority of Execution: LOAD ADDRESS
SPACE PARAMETERS (Part 1 of 2)

10-46 The z/Architecture CPU Architecture

L
O

A
D

 A
D

D
R

E
S

S
 S

P
A

C
E

 P
A

R
A

M
E

T
E

R
S Programming Notes:

1. Bits 61 and 63 in the second-operand address
are intended primarily to provide improved per-
formance for those cases where the associated
action is unnecessary.

When bit 61 is set to zero, the action of the
instruction is based on the assumption that the
current values for PASCE-old, PASTEO-old, and
AX-old are consistent with PASN-old and that
SASCE-old is consistent with SASN-old. When
this is not the case, bit 61 should be set to one.

Bit 63, when one, eliminates the SASN-authori-
zation test. The program may be able to deter-
mine in certain cases that the SASN is
authorized, either because of prior use or
because the AX being loaded is authorized to
access all address spaces.

2. The SASN-translation and SASN-authorization
steps are not performed when SASN-d is equal
to PASN-d. This is consistent with the action in
SET SECONDARY ASN to current primary
(SSAR-cp), which does not perform the transla-
tion or ASN authorization.

3. The storage-operand references for LOAD
ADDRESS SPACE PARAMETERS may be multi-
ple-access references. (See “Storage-Operand
Consistency” on page 5-125.)

4. See Figure 10-19 on page 10-46 for a listing of
abbreviations used in this instruction description.

10.6 Addressing exception for access to subspace
ASN-second-table entry.

10.7 Condition code 1 due to I bit (bit 0) in subspace
ASN-second-table entry being one.

10.8 Condition code 1 due to subspace ASN-second-
table-entry sequence number (SSASTESN) in
dispatchable-unit control table not being equal to
ASTESN in subspace ASN-second-table entry.

10.9 Condition code 3 due to either the old or new
space-switch-event-control bit being one.

11. SASN translation and related processing (when
performed).

11.1 Addressing exception for access to ASN-first-
table entry.

11.2 Condition code 2 due to I bit (bit 0) in ASN-first-
table entry being one.

11.3 Addressing exception for access to ASN-second-
table entry.

11.4 Condition code 2 due to (1) I bit (bit 0) in ASN-
second-table entry (ASTE) being one or (2)
ASN-and-LX reuse enabled and secondary
ASTE instance number (SASTEIN) in first
operand not being equal to ASTEIN in ASTE.

12.A Execution of secondary authorization (when
performed).

12.A.1 Condition code 2 due to authority-table entry
being outside table.

12.A.2 Addressing exception for access to authority-
table entry.

12.A.3 Condition code 2 due to S bit in authority-table
entry being zero.

12.B.1 Addressing exception for access to dispatchable-
unit control table.

12.B.2 Addressing exception for access to subspace
ASN-second-table entry.

12.B.3 Condition code 2 due to I bit (bit 0) in subspace
ASN-second-table entry being one.

12.B.4 Condition code 2 due to subspace ASN-second-
table-entry sequence number (SSASTESN) in
dispatchable-unit control table not being equal to
ASTESN in subspace ASN-second-table entry.

Figure 10-18. Priority of Execution: LOAD ADDRESS
SPACE PARAMETERS (Part 2 of 2)

First-Operand Bit
Positions when ASN-and-

LX Reuse Not Enabled Abbreviation
0-15 PKM-d
16-31 SASN-d
32-47 AX-d
48-63 PASN-d

Figure 10-19. Summary of Abbreviations for LOAD
ADDRESS SPACE PARAMETERS (Part 1 of 2)

Control Instructions 10-47

L
O

A
D

 A
D

D
R

E
S

S
 S

P
A

C
E

 P
A

R
A

M
E

T
E

R
SFirst-Operand Bit

Positions when ASN-and-
LX Reuse Enabled Abbreviation

0-31 SASTEIN-d
32-47 PKM-d
48-63 SASN-d
64-95 PASTEIN-d
96-111 AX-d

112-127 PASN-d

Control-Register
Number.Bit

Abbreviation for
Previous
Contents

Subsequent
Contents

1.0-63 PASCE-old PASCE-new
3.0-31 SASTEIN-old SASTEIN-new

3.32-47 PKM-old PKM-new
3.48-63 SASN-old SASN-new
4.0-31 PASTEIN-old PASTEIN-new

4.32-47 AX-old AX-new
4.48-63 PASN-old PASN-new
5.33-57 PASTEO-old PASTEO-new
7.0-63 SASCE-old SASCE-new

Field in ASN-
Second-Table

Entry

Abbreviation Used for the Field
When Accessed as Part of
PASN

Translation
 SASN

Translation
1-29 - ATO-s

32-47 AX-p -
48-59 - ATL-s
64-127 ASCE-p1 ASCE-s1

352-383 ASTEIN-p ASTEIN-s

Explanation:

- The field is not used in this case.
1 ASCE-rp is formed from ASCE-p, and ASCE-rs

is formed from ASCE-s, by a subspace-
replacement operation.

Figure 10-19. Summary of Abbreviations for LOAD
ADDRESS SPACE PARAMETERS (Part 2 of 2)

10-48 The z/Architecture CPU Architecture

L
O

A
D

 A
D

D
R

E
S

S
 S

P
A

C
E

 P
A

R
A

M
E

T
E

R
S

PASN-d
Equals
PASN-

old

Second-
Operand-
Address

Bits1

PASN
Translation
Performed

Result Field

61 62
PASCE-
new

AX-
new

PASTEO-
new

PKM-
new

SASN-
new

PASN-
new

PASTEIN-
new

Yes 0 0 No PASCE-old AX-old PASTEO-old PKM-d SASN-d PASN-d PASTEIN-old
Yes 0 1 No PASCE-old AX-d PASTEO-old PKM-d SASN-d PASN-d PASTEIN-old
Yes 1 0 Yes ASCE-p2 AX-p PASTEO-p PKM-d SASN-d PASN-d PASTEIN-d
Yes 1 1 Yes ASCE-p2 AX-d PASTEO-p PKM-d SASN-d PASN-d PASTEIN-d
No - 0 Yes ASCE-p2 AX-p PASTEO-p PKM-d SASN-d PASN-d PASTEIN-d
No - 1 Yes ASCE-p2 AX-d PASTEO-p PKM-d SASN-d PASN-d PASTEIN-d

Figure 10-20. Summary of Actions: LOAD ADDRESS
SPACE PARAMETERS (Part 1 of 2).

SASN-d
Equals
PASN-d

SASN-d
Equals

SASN-old

Second-Operand-
Address Bits1

SASN
Translation
Performed

SASN
Authorization
Performed3

Result Field

61 63 SASCE-new
SASTEIN-

new
Yes - - - No No PASCE-new PASTEIN-new
No Yes 0 1 No No SASCE-old SASTEIN-old
No Yes 1 1 Yes No ASCE-s4 SASTEIN-d
No Yes - 0 Yes Yes ASCE-s4 SASTEIN-d
No No - 1 Yes No ASCE-s4 SASTEIN-d
No No - 0 Yes Yes ASCE-s4 SASTEIN-d

Explanation:

- Action in this case is the same regardless of the outcome of this comparison or of the setting of this bit.
1 Second-operand-address bits:

61: Force ASN translation.
62: Use AX from first operand.
63: Skip secondary authority test.

2 PASCE-new is ASCE-rp (a copy of ASCE-p except with bits 0-55 and 58-63 replaced from the ASCE in the
subspace ASTE), if subspace replacement is performed.

3 SASN authorization is performed using ATO-s, ATL-s, and AX-new.
4 SASCE-new is ASCE-rs (a copy of ASCE-s except with bits 0-55 and 58-63 replaced from the ASCE in the

subspace ASTE), if subspace replacement is performed.

Figure 10-20. Summary of Actions: LOAD ADDRESS
SPACE PARAMETERS (Part 2 of 2).

Control Instructions 10-49

L
O

A
D

 A
D

D
R

E
S

S
 S

P
A

C
E

 P
A

R
A

M
E

T
E

R
S

Figure 10-21. Execution of LOAD ADDRESS SPACE PARAMETERS

Begin

PASCE-new PASCE-tmp
PASTEO-new PASTEO-tmp

SASCE-new SASCE-tmp
PASTEIN-new PASTEIN-tmp
SASTEIN-new SASTEIN-tmp

PKM-new PKM-d
SASN-new SASN-d
PASN-new PASN-d

SASN-d = SASN-old
& Op-2-addr. bit 61 = 0
& Op-2-addr. bit 63 = 1

?

PASN-d =
PASN-old & Op-2-
addr. bit 61 = 0?

SASCE-tmp PASCE-tmp
SASTEIN-tmp PASTEIN-tmp

AX-new AX-d

SASN-d =
PASN-d?

Op-2-addr.
bit 62 = 1

AX-new AX-tmp

PASCE-tmp PASCE-old
PASTEO-tmp PASTEO-old

AX-tmp AX-old
PASTEIN-tmp PASTEIN-old

PASN Translation

ASN available &
PASTEIN-d = ASTEIN-p &

subspace available
(if required)

Either old or new
space-switch-event-control

bit = 1?

PASCE-tmp ASCE-p
PASTEO-tmp PASTEO-p

AX-tmp AX-p
PASTEIN-tmp PASTEIN-d

SASN Translation

ASN available &
SASTEIN-d = ASTEIN-s &

subspace available
(if required)

SASCE-tmp ASCE-s
SASTEIN-tmp SASTEIN-d

Op-2-addr.
bit 63 = 1?

SASN Authorization

Authorized?

Fetch op-1 doubleword
or two doublewords

Cond Code 1

SASCE-tmp SASCE-old
SASTEIN-tmp SASTEIN-old

Cond Code 2

Cond Code 2

Cond Code 0
Explanation:
* PASCE-tmp is ASCE-rp if subspace replacement occurred.
** SASCE-tmp is ASCE-rs if subspace replacement occurred.
Note: Actions involving PASTEIN and SASTEIN occur only if ASN-and-LX reuse is enabled.

*

**

No

Yes

No

Yes No

Yes

No

Yes

Yes No

No

Yes

No

Yes

Yes

No

No

Yes

Cond Code 3

10-50 The z/Architecture CPU Architecture

L
O

A
D

 C
O

N
T

R
O

L LOAD CONTROL

LCTL R1,R3,D2(B2) [RS-a]

LCTLG R1,R3,D2(B2) [RSY-a]

Bit positions of the set of control registers starting
with control register R1 and ending with control regis-
ter R3 are loaded from storage beginning at the loca-
tion designated by the second-operand address and
continuing through as many locations as needed.

For LOAD CONTROL (LCTL), bit positions 32-63 of
the control registers are loaded from successive
words beginning at the second-operand address,
and bits 0-31 of the registers remain unchanged. For
LOAD CONTROL (LCTLG), bit positions 0-63 of the
control registers are loaded from successive double-
words beginning at the second-operand address.
The control registers are loaded in ascending order
of their register numbers, starting with control regis-
ter R1 and continuing up to and including control reg-
ister R3, with control register 0 following control
register 15.

The information loaded into the control registers
becomes active when instruction execution has
ended.

The displacement for LCTL is treated as a 12-bit
unsigned binary integer. The displacement for
LCTLG is treated as a 20-bit signed binary integer.

Special Conditions

The second operand must be designated on a word
boundary for LCTL or on a doubleword boundary for
LCTLG; otherwise, a specification exception is recog-
nized.

Attempted execution of LCTLG in the ESA/390-com-
patibility mode results in an operation exception
being recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation (LCTLG, in the ESA/390-compatibility

mode)
• Privileged operation
• Specification
• Transaction constraint

Programming Notes:

1. To ensure that existing programs operate cor-
rectly if and when new facilities using additional
control-register positions are defined, only zeros
should be loaded in unassigned control-register
positions.

2. Loading of control registers on some models
may require a significant amount of time. This is
particularly true for changes in significant param-
eters.

For example, the TLB may be cleared of entries
as a result of changing or enabling the program-
event-recording parameters in control registers
9-11. Where possible, the program should avoid
unnecessary loading of control registers. In load-
ing control registers 9-11, most models attempt
to optimize for the case when the bits of control
register 9 are zeros.

LOAD PAGE TABLE ENTRY
ADDRESS

LPTEA R1,R3,R2,M4 [RRF-b]

General register R2 contains a virtual address that is
processed by means of dynamic address translation
to locate a page-table entry, the 64-bit real or abso-
lute address of which is returned in general register
R1. The M4 field contains a value designating the
effective address-space-control element (ASCE) that
is used by DAT, as shown in the following table:

'B7' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '2F'

0 8 12 16 20 32 40 47

'B9AA' R3 M4 R1 R2

0 16 20 24 28 31

M4 Field
(binary)

Effective Address-Space-Control
Element Used by DAT

0000 Contents of control register 1

Control Instructions 10-51

L
O

A
D

 P
A

G
E

 T
A

B
L

E
 E

N
T

R
Y

 A
D

D
R

E
S

S

When the M4 field contains 0001 binary, or when the
M4 field contains 0100 binary and bits 16-17 of the
PSW contain 01 binary, then access-register transla-
tion precedes, as is normal, the dynamic address
translation.

The R3 field is ignored but should be zero to permit
possible future extensions.

The virtual address specified by the R2 field is trans-
lated by means of dynamic-address translation,
regardless of whether DAT is on or off. ART and DAT
may be performed with the use of the ART-lookaside
buffer (ALB) and translation-lookaside buffer (TLB),
respectively. The DAT process completes upon locat-
ing the page-table entry. The contents of the page-
table entry are not examined for format errors, the I
bit is not examined to determine whether the page is
invalid, and the page-frame real address is not
fetched.

Virtual address computation is performed according
to the addressing mode specified by bits 31 and 32 of
the current PSW.

The addresses of the region-table entry or entries, if
used, and of the segment-table entry and page-table
entry are treated as 64-bit addresses, regardless of
the current addressing mode. It is unpredictable
whether the addresses of these entries are treated
as real or absolute addresses.

If the DAT process successfully locates the page-
table entry, the 64-bit real or absolute address of the
entry is placed in general register R1, and the condi-
tion code is set as follows:

• When EDAT-1 does not apply, the condition code
is set based on the DAT-protection bit (P) of the

segment-table entry used in the translation. Con-
dition code 0 is set when the P bit is zero; condi-
tion code 1 is set when the P bit is one.

• When EDAT-1 applies, the condition code is set
based on all of the DAT-protection bits encoun-
tered in the translation. If the DAT-protection bit is
zero in the segment-table entry and the DAT-pro-
tection bits are zero in any and all region-table
entries used in the translation, condition code 0
is set. If the DAT-protection bit is one in any
region- or segment-table entry used in the trans-
lation, condition code 1 is set.

When EDAT-1 applies and the DAT process success-
fully locates a valid segment-table entry in which the
STE-format control is one, bits 0-60 of the segment-
table entry address are placed in bit positions 0-60 of
general register R1, bit 61 of the register is set to the
logical OR of the DAT-protection bit in the segment-
table entry and any region-table entries used in the
translation, bits 62-63 of the register are set to zeros,
and the instruction completes by setting condition
code 2.

When EDAT-2 applies and the DAT process success-
fully locates a valid region-third-table entry in which
the RTTE-format control is one, bits 0-60 of the
region-third-table entry address are placed in bit
positions 0-60 of general register R1, bit 61 of the
register is set to the logical OR of the DAT-protection
bit in the region-third-table entry and any higher-level
region-table entries used in the translation, bits 62-63
of the register are set to zeros, and the instruction
completes by setting condition code 2.

When a condition exists that would normally cause
one of the exceptions shown in Figure 10-22, pro-
cessing is as follows:

1. General register R1 is updated as follows:

a. Bits 0-60 of the table-entry address are
placed in bit positions 0-60 of the register.

b. When EDAT-1 does not apply, bit 61 of the
register is set to zero. When enhanced DAT
applies, bit 61 is set to the logical OR of the
DAT-protection bits in all valid region-table
entries used in the translation; if the DAT pro-
cess does not require region-table entries, or
if no valid region-table entries are encoun-
tered, bit 61 is set to zero.

0001 The address-space-control element
obtained by applying the access-register-
translation (ART) process to the access
register designated by the R2 field.

0010 Contents of control register 7

0011 Contents of control register 13

0100 The address-space-control element
corresponding to the current address-
space-control bits, bits 16 and 17 of the
PSW.

M4 Field
(binary)

Effective Address-Space-Control
Element Used by DAT

10-52 The z/Architecture CPU Architecture

L
O

A
D

 P
A

G
E

 T
A

B
L

E
 E

N
T

R
Y

 A
D

D
R

E
S

S c. The expected table-type bits are placed in bit
positions 62-63 of the register. When the
region table or segment table containing the
invalid entry is directly designated by the
address-space-control element, then the
expected table-type bits are those contained
in the designation-type control (DT) in the
ASCE. Otherwise, the expected table-type
bits are one less than the value of those bits
in the next-higher-level table.

2. The instruction is completed by setting condition
code 2.

When a condition exists that would normally cause
one of the exceptions shown in Figure 10-23, (1) the
interruption code assigned to the exception is placed
in bit positions 48-63 of general register R1, and bits

0-47 of the register are set to zeros; and (2) the
instruction is completed by setting condition code 3.

Special Conditions

If the M4 field contains any value other than
0000-0100 binary, a specification exception is recog-
nized.

The address-space-control element used in the
translation must not be a real-space designation; oth-
erwise, a special-operation exception is recognized.
The exception due to the address-space-control ele-
ment has priority 9 in Figure 6-8 on page 6-52.

Exception
Name Cause

Code
(hex)

Expected
TT Bits

Region first
translation

Invalid bit is one in the
region-first-table entry
selected by the RFX
portion of the virtual
address.

0039 11

Region
second
translation

Invalid bit is one in the
region-second-table entry
selected by the RSX
portion of the virtual
address.

003A 10

Region third
translation

Invalid bit is one in the
region-third-table entry
selected by the RTX
portion of the virtual
address.

003B 01

Segment
translation

Invalid bit is one in the
segment-table entry
selected by the SX
portion of the virtual
address.

0010 00

Figure 10-22. LPTEA Exception Conditions Causing CC2

Exception
Name Cause

Code
(hex)

ALET
specification

ALET bits 0-6 not all zeros. 0028

ALEN
translation

ALE outside list or I bit is one. 0029

ALE
sequence

ALESN in ALET not equal to ALESN
in ALE.

002A

ASTE
validity

ASTE I bit is one. 002B

ASTE
sequence

ASTESN in ALE not equal to
ASTESN in ASTE.

002C

Extended
authority

ALE P bit not zero, ALEAX not equal
to EAX, and secondary bit selected
by EAX either outside authority table
or zero.

002D

ASCE type ASCE is a region-second-table
designation, and bits 0-10 of virtual
address not all zeros; ASCE is a
region-third-table designation, and
bits 0-21 of virtual address not all
zeros; or ASCE is a segment-table
designation, and bits 0-32 of virtual
address not all zeros.

0038

Region first
translation

Region-first-table entry selected by
RFX portion of virtual address
outside table.

0039

Region
second
translation

Region-second-table entry selected
by RSX portion of virtual address
outside table.

003A

Region third
translation

Region-third-table entry selected by
RTX portion of virtual address
outside table.

003B

Segment
translation

Segment-table entry selected by SX
portion of virtual address outside
table.

0010

Figure 10-23. LPTEA Exception Conditions Causing CC3

Control Instructions 10-53

L
O

A
D

 P
A

G
E

 T
A

B
L

E
 E

N
T

R
Y

 A
D

D
R

E
S

SAn addressing exception is recognized when the
address used by ART to fetch the effective access-
list designation, the access-list entry, the address-
space-second-table entry, or the authority-table entry
designates a location which is not available in the
configuration. An addressing exception is also recog-
nized when the address used by DAT to fetch a
region-table entry or the segment-table entry desig-
nates a location which is not available in the configu-
ration.

A carry out of bit position 0 as a result of the addition
done to compute the address of a region-table entry
or the segment-table entry may be ignored or may
result in an addressing exception.

A translation-specification exception is recognized if
an accessed region-table entry or the segment-table
entry has a zero I bit and a format error.

The operation is suppressed on all addressing
exceptions.

In the ESA/390-compatibility mode, an operation
exception is recognized.

Resulting Condition Code:

0 PTE address returned; P bit is 0 in all DAT-table
entries examined

1 PTE address returned; P bit is 1 in any DAT-table
entry examined

2 Invalid bit is one in the region- or segment-table
entry; EDAT-1 applies, a valid STE was located,
and STE FC is 1; or EDAT-2 applies, a valid
RTTE was located, and RTTE FC is 1

3 Exception condition exists

Program Exceptions:

• Addressing (effective access-list designation,
access-list entry, ASN-second-table entry,
authority-table entry, region-table entry, or seg-
ment-table entry)

• Operation (DAT-enhancement facility 2 not
installed or in the ESA/390-compatibility mode)

• Privileged operation
• Special operation
• Specification
• Transaction constraint
• Translation specification

Programming Notes:

1. An addressing exception is not recognized if the
page-table-entry address returned in general
register R1 is not available in the configuration.

2. When EDAT-1 applies, the STE-format control is
one, and no other exception conditions apply, the
address of the segment-table entry is placed in
general register R1, and condition code 2 is set.
This effectively performs a load-segment-table-
entry-address function, although no such instruc-
tion is defined.

However, because condition code 2 is also used
to indicate an invalid region-table entry or seg-
ment-table entry, all of the following conditions
must exist in order to assume that the located
table entry is a valid STE:

a. Bit positions 62-63 of general register R1

must contain 00 binary.

b. Bit position 58 of the table entry designated
by bits 0-60 of general register R1 must con-
tain zero (indicating a valid table entry).

c. The table-type field in bit positions 60-61 of
the table entry designated by bits 0-60 of
general register R1 must contain 00 binary
(designating a segment-table entry).

The following program fragment illustrates this
determination when only EDAT-1 applies. If no
branch is taken, then the address in general reg-
ister 1 is that of a segment-table entry in which
the STE-format control is one:

3. When EDAT-2 applies, the RTTE-format control
is one, and no other exception conditions apply,
the address of the region-third-table entry is
placed in general register R1, and condition code
2 is set. This effectively performs a load-region-
third-table-entry-address function, although no
such instruction is defined.

LPTEA 1,0,2,4
BRC 8,PTE_WITH_NEITHER_STE_NOR_RTE_PROT
BRC 4,PTE_WITH_PROTECTED_STE_OR_RTE
BRC 1,EXCEPTION_EXISTS
TMLL 1,X'0003'
JNZ EXCEPTION_EXISTS
NILL 1,X'FFF8'
LURAG 10,1
TMLL 10,X'0020'
JO EXCEPTION_EXISTS

10-54 The z/Architecture CPU Architecture

L
O

A
D

 P
S

W However, because condition code 2 is also used
to indicate an invalid region-table entry, all of the
following conditions must exist in order to
assume that the located table entry is a valid
RTTE:

a. Bit positions 62-63 of general register R1

must contain 00 binary.

b. Bit position 58 of the table entry designated
by bits 0-60 of general register R1 must con-
tain zero (indicating a valid table entry).

c. The table-type field in bit positions 60-61 of
the table entry designated by bits 0-60 of
general register R1 must contain 01 binary
(designating a region-third-table entry).

The following program fragment continues the
fragment in programming note 2, illustrating this
determination when EDAT-2 applies. If no branch
is taken, then the address in general register 1 is
that of a region-third-table entry in which the
RTTE-format control is one:

4. When condition code 2 is set as a result of locat-
ing a valid segment-table entry in which the STE-
format control is one, bit 61 of general register R1

indicates whether DAT protection applies to the
segment. Similarly, when condition code 2 is set
as a result of locating a valid region-third-table
entry in which the RTTE-format control is one, bit
61 of general register R1 indicates whether DAT
protection applies to the region.

5. When EDAT-1 does not apply, only the STE is
examined in determining whether condition code
0 or 1 is set. When EDAT applies, all DAT-table
entries used in the translation may be examined
in determining whether condition code 0 or 1 is to
be set.

LOAD PSW

LPSW D2(B2) [SI]

The current PSW is replaced by a 16-byte PSW
formed from the contents of the doubleword at the
location designated by the second-operand address.
Figure 4-3 on page 4-8 illustrates the contents of the
second operand.

Bits 8-15 of the instruction are reserved and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future.

Bit 12 of the doubleword must be one; otherwise,
depending on the model, a specification exception
may be recognized and the operation suppressed.

Bits 0-11, 13-32, and 33-63 of the doubleword are
placed in bit positions 0-11, 13-32, and 97-127 of the
current PSW, respectively. Bits 33-96 of the current
PSW are set to zeros.

Bit 12 of the doubleword is inverted and then placed
in bit 12 of the current PSW. This applies in the
z/Architecture architectural mode and in the
ESA/390-compatibility mode.

A serialization and checkpoint-synchronization func-
tion is performed before or after the operand is
fetched and again after the operation is completed.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is rec-
ognized. A specification exception may be recog-
nized if bit 12 of the operand is zero, depending on
the model.

The PSW fields which are to be loaded by the
instruction are not checked for validity before they are
loaded, except for the optional checking of bit 12.
However, immediately after loading, a specification
exception is recognized, and a program interruption
occurs, when any of the following is true for the newly
loaded PSW:

• Any of bits 0, 2-4, 12, or 25-30 is a one.

• In the ESA/390-compatibility mode, bit 5 of the
PSW is one.

• Bit 24 is one (recognition of this condition is
optional)

• Bits 31 and 32 are both zero, and bits 97-103 are
not all zeros.

* Further check for EDAT-2
TMLL 10,X'000C
JZ VALID_F1_STE

* Must be valid F1 RTTE

'82' / / / / / / / / B2 D2

0 16 20 31

Control Instructions 10-55

L
O

A
D

 P
S

W
 E

X
T

E
N

D
E

D• Bits 31 and 32 are one and zero, respectively.

• In the ESA/390-compatibility mode, bit 31 is one
(recognition of this condition is unpredictable).

In these cases, the operation is completed, and the
resulting instruction-length code is 0.

The test for a specification exception after the PSW
is loaded is described in “Early Exception Recogni-
tion” on page 6-9.

The operation is suppressed on all addressing and
protection exceptions.

Resulting Condition Code: The code is set as
specified in the new PSW loaded.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification
• Transaction constraint

Programming Note: The second operand of LOAD
PSW has the short-PSW format (shown in Figure 4-3
on page 4-8), which is similar to that of an ESA/390-
mode PSW (that is, bit 12 of the operand must be 1).
When bit 12 of the second operand is zero, a specifi-
cation exception is recognized, either during the exe-
cution of the instruction, or when the instruction
completes and the new PSW becomes active.

However, unlike the ESA/390-format PSW in which
bit 31 must be zero, bit 31 of the short PSW may be
either zero or one in the z/Architecture architectural
mode. In the ESA/390-compatibility mode, bit 5 must
be zero and it is unpredictable whether bit 31 must be
zero.

LOAD PSW EXTENDED

LPSWE D2(B2) [S]

The current PSW is replaced by the contents of the
16-byte second operand. Figure 4-2 on page 4-5
illustrates the contents of the second operand.

Note: Bit 12 of the second operand is placed
unchanged into bit 12 of the current PSW. This
applies in the z/Architecture architecture mode and in
the ESA/390-compatibility mode.

A serialization and checkpoint-synchronization func-
tion is performed before or after the operand is
fetched and again after the operation is completed.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is rec-
ognized.

It is unpredictable whether LOAD PSW EXTENDED
is supported in the ESA/390-compatibility mode. If
the instruction is not supported, attempted execution
results in an operation exception being recognized.

The value which is to be loaded by the instruction is
not checked for validity before it is loaded. However,
immediately after loading, a specification exception is
recognized, and a program interruption occurs, when
any of the following is true for the newly loaded PSW:

• Any of the unassigned bits (0, 2-4, 25-30, or
33-63) is a one.

• In the ESA/390-compatibility mode, bit 5 of the
PSW is one.

• Bit 12 is a one.

• Bit 24 is one (recognition of this condition is
optional)

• Bits 31 and 32 are zero and one, respectively,
and bits 64-96 are not all zeros.

• Bits 31 and 32 are both zero, and bits 64-103 are
not all zeros.

• Bits 31 and 32 are one and zero, respectively.

• In the ESA/390-compatibility mode, bit 31 is one
(recognition of this condition is unpredictable).

In these cases, the operation is completed, and the
resulting instruction-length code is zero.

The test for a specification exception after the PSW
is loaded is described in “Early Exception Recogni-
tion” on page 6-9.

'B2B2' B2 D2

0 16 20 31

10-56 The z/Architecture CPU Architecture

L
O

A
D

 R
E

A
L

 A
D

D
R

E
S

S The operation is suppressed on all addressing and
protection exceptions.

Resulting Condition Code: The code is set as
specified in the new PSW loaded.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification
• Transaction constraint

LOAD REAL ADDRESS

LRA R1,D2(X2,B2) [RX-a]

LRAY R1,D2(X2,B2) [RXY-a]

LRAG R1,D2(X2,B2) [RXY-a]

For LOAD REAL ADDRESS (LRA, LRAY) in the
24-bit or 31-bit addressing mode, if bits 0-32 of the
64-bit real or absolute address corresponding to the
second-operand virtual address are all zeros, bits
32-63 of the real or absolute address are placed in bit
positions 32-63 of general register R1, and bits 0-31
of the register remain unchanged. If bits 0-32 of the
real address or absolute are not all zeros, a special-
operation exception is recognized.

For LRA or LRAY in the 64-bit addressing mode, and
for LOAD REAL ADDRESS (LRAG) in any address-
ing mode, the 64-bit real or absolute address corre-
sponding to the second-operand virtual address is
placed in general register R1.

When EDAT-1 does not apply, or when EDAT-1
applies but the second operand is translated by
means of a segment-table entry in which the STE-
format control is zero, the address placed in general
register R1 is real. When EDAT-1 applies and the sec-
ond operand is translated by means of a segment-
table entry in which the STE-format control is one, or
when EDAT-2 applies and the second operand is

translated by means of a region-third-table entry in
which the RTTE-format control is one, the address
placed in general register R1 is absolute.

The virtual address specified by the X2, B2, and D2

fields is translated by means of the dynamic-address-
translation facility, regardless of whether DAT is on or
off.

The displacement for LRA is treated as a 12-bit
unsigned binary integer. The displacement for LRAY
and LRAG is treated as a 20-bit signed binary inte-
ger.

DAT is performed by using an address-space-control
element that depends on the current value of the
address-space-control bits, bits 16 and 17 of the
PSW, as shown in Figure 10-24.

ART and DAT may be performed with the use of the
ART-lookaside buffer (ALB) and translation-lookaside
buffer (TLB), respectively.

The virtual-address computation is performed
according to the current addressing mode, specified
by bits 31 and 32 of the current PSW.

The addresses of the region-table entry or entries, if
used, and of the segment-table entry and page-table
entry, if used, are treated as 64-bit addresses regard-
less of the current addressing mode. It is unpredict-
able whether the addresses of these entries are
treated as real or absolute addresses.

Condition code 0 is set when both ART, if applicable,
and DAT can be completed and a special-operation
exception is not recognized, that is, when an
address-space-control element can be obtained, the
entry in each DAT table lies within the table and has a
zero I bit, and, for LRA or LRAY in the 24-bit or 31-bit
addressing mode, bits 0-32 of the resulting real or
absolute address are zeros. The translated address

'B1' R1 X2 B2 D2

0 8 12 16 20 31

'E3' R1 X2 B2 DL2 DH2 '13'

0 8 12 16 20 32 40 47

'E3' R1 X2 B2 DL2 DH2 '03'

0 8 12 16 20 32 40 47

PSW Bits
16 and 17

Address-Space-Control Element
Used by DAT

00 Contents of control register 1
01 The address-space-control element

obtained by applying the access-register-
translation (ART) process to the access
register designated by the B2 field

10 Contents of control register 7
11 Contents of control register 13

Figure 10-24. Address-Space Control used by LOAD REAL
ADDRESS

Control Instructions 10-57

L
O

A
D

 R
E

A
L

 A
D

D
R

E
S

Sis not inspected for boundary alignment or for
addressing or protection exceptions.

When PSW bits 16 and 17 are 01 binary and an
address-space-control element cannot be obtained
because of a condition that would normally cause
one of the exceptions shown in Figure 10-25, (1) the
interruption code assigned to the exception is placed
in bit positions 48-63 of general register R1, bit 32 of
this register is set to one, bits 33-47 are set to zeros,
and bits 0-31 remain unchanged, and (2) the instruc-
tion is completed by setting condition code 3.

When ART is completed normally, the operation is
continued through the performance of DAT.

When the segment-table entry is outside the table
and bits 0-32 of the real or absolute address of the
entry are all zeros, bits 32-63 of the entry address
are placed in bit positions 32-63 of general register
R1, bits 0-31 of the register remain unchanged, and
the instruction completes by setting condition code 3.
If bits 0-32 of the address are not all zeros, the result
is as described in the section “DAT-Related Excep-
tions for LOAD REAL ADDRESS” on page 10-57.

When the I bit in the segment-table entry is one, the
following applies:

• For LRA or LRAY in the 64-bit addressing mode
or for LRAG in any addressing mode, the 64-bit
real or absolute address of the segment-table
entry is placed in general register R1, and the

instruction is completed by setting condition code
1.

• For LRA or LRAY in the 24-bit or 31-bit address-
ing mode, the following applies:

– If bits 0-32 of the address of the segment-
table entry are all zeros, bits 32-63 of the real
or absolute address of the segment-table
entry are placed in bits 32-63 of general reg-
ister R1, bits 0-31 of the register remain
unchanged, and the instruction is completed
by setting condition code 1.

– If bits 0-32 of the address of the segment-
table entry are not all zeros, the result is as
described in the section “DAT-Related
Exceptions for LOAD REAL ADDRESS”,
below.

When the I bit in the page-table entry is one, the fol-
lowing applies:

• For LRA or LRAY in the 64-bit addressing mode
or for LRAG in any addressing mode, the 64-bit
real or absolute address of the page-table entry
is placed in general register R1, and the instruc-
tion is completed by setting condition code 2.

• For LRA or LRAY in the 24-bit or 31-bit address-
ing mode, the following applies:

– If bits 0-32 of the address of the page-table
entry are all zeros, bits 32-63 of the real or
absolute address of the page-table entry are
placed in bits 32-63 of general register R1,
bits 0-31 of the register remain unchanged,
and the instruction is completed by setting
condition code 2.

– If bits 0-32 of the address of the page-table
entry are not all zeros, the result is as
described in the section “DAT-Related
Exceptions for LOAD REAL ADDRESS”,
below.

A segment-table-entry or page-table-entry address
placed in general register R1 is real or absolute in
accordance with the type of address that was used
during the attempted translation.

DAT-Related Exceptions for LOAD REAL
ADDRESS
If a condition exists that would normally cause one of
the exceptions shown in the Figure 10-26, (1) the

Exception
Name Cause

Code
(Hex)

ALET
specification

Access-list-entry-token (ALET) bits
0-6 not all zeros

0028

ALEN
translation

Access-list entry (ALE) outside list
or invalid (bit 0 is one)

0029

ALE
sequence

ALE sequence number (ALESN) in
ALET not equal to ALESN in ALE

002A

ASTE
validity

ASN-second-table entry (ASTE)
invalid (bit 0 is one)

002B

ASTE
sequence

ASTE sequence number
(ASTESN) in ALE not equal to
ASTESN in ASTE

002C

Extended
authority

ALE private bit not zero, ALE
authorization index (ALEAX) not
equal to extended authorization
index (EAX), and secondary bit
selected by EAX either outside
authority table or zero

002D

Figure 10-25. Handling of ART-Related Exceptions for
LOAD REAL ADDRESS

10-58 The z/Architecture CPU Architecture

L
O

A
D

 R
E

A
L

 A
D

D
R

E
S

S interruption code assigned to the exception is placed
in bit positions 48-63 of general register R1, bit 32 of
this register is set to one, bits 33-47 are set to zeros,
and bits 0-31 remain unchanged, and (2) the instruc-
tion is completed by setting condition code 3.

Special Conditions

In the ESA/390-compatibility mode, an operation
exception is recognized.

A special-operation exception is recognized when,
for LRA or LRAY in the 24-bit or 31-bit addressing

mode, bits 0-32 of the resultant 64-bit real address
are not all zeros.

An addressing exception is recognized when the
address used by ART to fetch the effective access-
list designation or the ALE, ASTE, or authority-table
entry designates a location which is not available in
the configuration or when the address used to fetch
the region-table entry or entries, if any, segment-
table entry, or page-table entry designates a location
which is not available in the configuration.

A translation-specification exception is recognized
when an accessed region-table entry or the seg-
ment-table entry or page-table entry has a zero I bit
and a format error, that is, when any of the reasons
1-5 listed in “Translation-Specification Exception” on
page 6-46 applies.

A carry out of bit position 0 as a result of the addition
done to compute the address of a region-table entry
or the segment-table entry may be ignored or may
result in an addressing exception.

The operation is suppressed on all addressing
exceptions.

Resulting Condition Code:

0 Translation available
1 Segment-table entry invalid (I bit one) for LRAG,

or for LRA and LRAY in 64-bit addressing mode,
or for LRA and LRAY in 24-bit or 31-bit address-
ing mode and bits 0-32 of the entry address are
all zeros

2 Page-table entry invalid (I bit one) for LRAG, or
for LRA and LRAY in 64-bit addressing mode, or
for LRA and LRAY in 24-bit or 31-bit addressing
mode and bits 0-32 of the entry address are all
zeros

3 Address-space-control element not available,
region-table entry outside table or invalid (I bit
one), segment-table entry outside table, or, for
LRA and LRAY only, and only in 24-bit or 31-bit
addressing mode when bits 0-32 of entry
address not all zeros, segment-table entry or
page-table entry invalid (I bit one)

Program Exceptions:

• Addressing (effective access-list designation,
access-list entry, ASN-second-table entry,
authority-table entry, region-table entry, seg-
ment-table entry, or page-table entry)

Exception
Name Cause

Code
(Hex)

ASCE type Address-space-control element
(ASCE) being used is a region-
second-table designation, and bits
0-10 of virtual address not all
zeros; ASCE is a region-third-table
designation, and bits 0-21 of virtual
address not all zeros; or ASCE is a
segment-table designation, and
bits 0-32 of virtual address not all
zeros.

0038

Region first
translation

Region-first-table entry selected by
region-first-index portion of virtual
address outside table or invalid.

0039

Region
second
translation

Region-second-table entry
selected by region-second-index
portion of virtual address outside
table or invalid.

003A

Region third
translation

Region-third-table entry selected
by region-third-index portion of
virtual address outside table or
invalid.

003B

Segment
translation

Segment-table entry selected by
segment-index portion of virtual
address outside table (for all
instructions and all addressing
modes, but only when bits 0-32 of
entry address not all zeros); or
segment-table entry invalid (LRA
and LRAY only, and only in 24-bit
or 31-bit addressing mode when
bits 0-32 of entry address not all
zeros).

0010

Page
translation

Page-table entry selected by page-
index portion of virtual address
invalid (LRA and LRAY only, and
only in 24-bit or 31-bit addressing
mode when bits 0-32 of entry
address not all zeros).

0011

Figure 10-26. Handling of DAT-Related Exceptions for
LOAD REAL ADDRESS

Control Instructions 10-59

L
O

A
D

 R
E

A
L

 A
D

D
R

E
S

S• Operation (LRAY, if the long-displacement facility
is not installed; LRA, LRAY, LRAG, in the
ESA/390-compatibility mode)

• Privileged operation
• Special operation (LRA, LRAY only)
• Transaction constraint
• Translation specification

Programming Notes:

1. Caution must be exercised in the use of LOAD
REAL ADDRESS in a multiprocessing configura-
tion. Since INVALIDATE DAT TABLE ENTRY or
INVALIDATE PAGE TABLE ENTRY may set I bits
in storage to one before causing the correspond-
ing entries in TLBs of other CPUs to be cleared,
the simultaneous execution of LOAD REAL
ADDRESS on this CPU and either INVALIDATE
DAT TABLE ENTRY or INVALIDATE PAGE
TABLE ENTRY on another CPU may produce
inconsistent results. Because LOAD REAL
ADDRESS may access the tables in storage, the

region-table entries, segment-table entry or
page-table entry may appear to be invalid (condi-
tion codes 3, 1, or 2, respectively) even though
the corresponding TLB entry has not yet been
cleared, and the TLB entry may remain in the
TLB until the completion of INVALIDATE DAT
TABLE ENTRY or INVALIDATE PAGE TABLE
ENTRY on the other CPU. There is no guaran-
teed limit to the number of instructions which
may be executed between the completion of
LOAD REAL ADDRESS and the TLB being
cleared of the entry.

The above cautions for using LOAD REAL
ADDRESS also apply when COMPARE AND
SWAP AND PURGE or COMPARE AND
REPLACE DAT TABLE ENTRY is used to explic-
itly set the invalid bit in a DAT-table entry.

2. Figure 10-27 on page 10-59 summarizes the
resulting contents of general register R1 and the
condition code.

Exception/Cause/
Entry-Address Size
or
Resultant-Real-
Address Size

General Register R1 Contents and Condition Code

LRA or LRAY in 24-Bit or
31-Bit Addressing Mode

LRA or LRAY in 64-Bit Addr. Mode
or LRAG in Any Addressing Mode

0-31 32 33-47 48-63 CC 0-31 32 33-47 48-63 CC

ALET specification U 1 0s 0028 3 U 1 0s 0028 3

ALEN translation U 1 0s 0029 3 U 1 0s 0029 3

ALE sequence U 1 0s 002A 3 U 1 0s 002A 3

ASTE validity U 1 0s 002B 3 U 1 0s 002B 3

ASTE sequence U 1 0s 002C 3 U 1 0s 002C 3

Extended authority U 1 0s 002D 3 U 1 0s 002D 3

ASCE type U 1 0s 0038 3 U 1 0s 0038 3

Region first trans. U 1 0s 0039 3 U 1 0s 0039 3

Region second trans. U 1 0s 003A 3 U 1 0s 003A 3

Region third trans. U 1 0s 003B 3 U 1 0s 003B 3

Segment translation/
entry outside table/
entry address < 2GB

U 0 EA3 EA4 3 U 0 EA3 EA4 3

Segment translation/
entry outside table/
entry address >= 2GB

U 1 0s 0010 3 U 1 0s 0010 3

Segment translation/
I bit one/
entry address < 2GB

U 0 EA3 EA4 1 EA1 EA2 EA3 EA4 1

Segment translation/
I bit one/
entry address >= 2GB

U 1 0s 0010 3 EA1 EA2 EA3 EA4 1

Figure 10-27. Summary of Results: LOAD REAL ADDRESS

10-60 The z/Architecture CPU Architecture

L
O

A
D

 U
S

IN
G

 R
E

A
L

 A
D

D
R

E
S

S

3. When the instruction completes with condition
code 3, the following applies:

– Only the rightmost 32 bits of general register
R1 are meaningful, regardless of the
addressing mode or instruction executed.
The program can determine whether the
rightmost bits of general register R1 contain
the address of a DAT-table entry or a pro-
gram-interruption code based on whether bit
32 of the register is zero or one, respectively.

– In order to correctly use a DAT-table-entry
address returned in general register R1 in the
64-bit addressing mode, the leftmost 32 bits
of the register must be set to zeros.

LOAD USING REAL ADDRESS

LURA R1,R2 [RRE]

LURAG R1,R2 [RRE]

For LOAD USING REAL ADDRESS (LURA), the
word at the real-storage location addressed by the
contents of general register R2 is placed in bit posi-
tions 32-63 of general register R1, and the contents
of bit positions 0-31 remain unchanged. For LOAD
USING REAL ADDRESS (LURAG), the doubleword
at that real-storage location is placed in bit positions
0-63 of general register R1.

In the 24-bit addressing mode, bits 40-63 of general
register R2 designate the real-storage location, and
bits 0-39 of the register are ignored. In the 31-bit
addressing mode, bits 33-63 of general register R2

designate the real-storage location, and bits 0-32 of
the register are ignored. In the 64-bit addressing
mode, bits 0-63 of general register R2 designate the
real-storage location.

Because it is a real address, the address designating
the storage word or doubleword is not subject to
dynamic address translation.

Page translation/
I bit one/
entry address < 2GB

U 0 EA3 EA4 2 EA1 EA2 EA3 EA4 2

Page translation/
I bit one/
entry address >= 2GB

U 1 0s 0011 3 EA1 EA2 EA3 EA4 2

Real Address < 2GB U 0 RA3 RA4 0 RA1 RA2 RA3 RA4 0

Real Address >= 2GB Special-Operation Exception RA1 RA2 RA3 RA4 0

Explanation:

EA1 Bits 0-31 of the entry address.
EA2 Bit 32 of the entry address.
EA3 Bits 33-47 of the entry address.
EA4 Bits 48-63 of the entry address.
RA1 Bits 0-31 of the resultant real address.
RA2 Bit 32 of the resultant real address.
RA3 Bits 33-47 of the resultant real address.
RA4 Bits 48-63 of the resultant real address.
U Unchanged.

Exception/Cause/
Entry-Address Size
or
Resultant-Real-
Address Size

General Register R1 Contents and Condition Code

LRA or LRAY in 24-Bit or
31-Bit Addressing Mode

LRA or LRAY in 64-Bit Addr. Mode
or LRAG in Any Addressing Mode

0-31 32 33-47 48-63 CC 0-31 32 33-47 48-63 CC

Figure 10-27. Summary of Results: LOAD REAL ADDRESS

'B24B' / / / / / / / / R1 R2

0 16 24 28 31

'B905' / / / / / / / / R1 R2

0 16 24 28 31

Control Instructions 10-61

M
O

D
IF

Y
 S

T
A

C
K

E
D

 S
T

A
T

ESpecial Conditions

The contents of general register R2 must designate a
location on a word boundary for LURA or on a dou-
bleword boundary for LURAG; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (address specified by general regis-
ter R2)

• Privileged operation
• Protection (fetch, operand 2, key-controlled pro-

tection)
• Specification
• Transaction constraint

MODIFY STACKED STATE

MSTA R1 [RRE]

The contents of bit positions 32-63 of the pair of gen-
eral registers designated by the R1 field are placed in
the modifiable area, byte positions 152-159, of the
last state entry in the linkage stack.

The R1 field designates the even-numbered register
of an even-odd pair of general registers.

The last state entry is located as described in
“Unstacking Process” on page 5-86. The state entry
remains in the linkage stack, and the linkage-stack-
entry address in control register 15 remains
unchanged.

Key-controlled protection does not apply to the refer-
ences to the linkage stack, but low-address and DAT
protection do apply.

Special Conditions

A specification exception is recognized when R1 is
odd.

The CPU must be in the primary-space mode,
access-register mode, or home-space mode; other-
wise, a special-operation exception is recognized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the unstacking
process.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-28 on
page 10-61.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch and store, except for key-controlled
protection, linkage-stack entry)

• Special operation
• Specification
• Stack empty
• Stack specification
• Stack type
• Transaction constraint

'B247' / / / / / / / / R1 / / / /

0 16 24 28 31 1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Special-operation exception due to DAT being off
or the CPU being in secondary-space mode.

7.C Transaction constraint.

8.A Specification exception due to R1 being odd.

8.B.1 Access exceptions (fetch) for entry descriptor of
the current linkage-stack entry.

8.B.2 Stack-type exception due to current entry not
being a state entry or header entry.

Note: Exceptions 8.B.3-8.B.7 can occur only if
the current entry is a header entry.

8.B.3 Access exceptions (fetch) for second word of the
header entry.

8.B.4 Stack-empty exception due to backward stack-
entry validity bit in the header entry being zero.

Figure 10-28. Priority of Execution: MODIFY STACKED
STATE (Part 1 of 2)

10-62 The z/Architecture CPU Architecture

M
O

V
E

 P
A

G
E

Programming Note: The modifiable area can be
obtained from the last linkage-stack state entry by
means of EXTRACT STACKED STATE.

MOVE PAGE

MVPG R1,R2 [RRE]

The first operand is replaced by the second operand
and, optionally, the storage key associated with the
4K-byte block of storage designated by the first oper-
and is set. The first and second operands both are
4K bytes on 4 K-byte boundaries. The results are
indicated in the condition code. The accesses to the
first-operand location or the second-operand loca-
tion, but not to both locations, may be performed by
using the key specified in general register 0; other-
wise, the accesses to an operand location are per-
formed by using the PSW key.

The location of the leftmost byte of the first operand
and second operand is designated by the contents of
general registers R1 and R2, respectively.

The handling of the addresses in general registers R1

and R2 depends on the addressing mode. In the
24-bit addressing mode, the contents of bit positions
40-51 of a general register, with 12 rightmost zeros
appended, are the address, and bits 0-39 and 52-63
in the register are ignored. In the 31-bit addressing
mode, the contents of bit positions 33-51 of a general
register, with 12 rightmost zeros appended, are the
address, and bits 0-32 and 52-63 in the register are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-51 of a general register, with 12

rightmost zeros appended, are the address, and bits
52-63 in the register are ignored.

Bits 51-53 of general register 0 contain the key-func-
tion control (KFC) which is used to determine how
the supplied storage key in bits 56-62 will be used or
set.

When the move-page-and-set-key facility is not
installed, KFC values of 4 and 5 are also reserved. If
a reserved value is specified, a specification excep-
tion is recognized.

Bit 54 of general register 0 is a destination-reference-
intention bit, and bit 55 is a condition-code-option bit.
Bits 48-50 of general register 0 must be zeros; other-

8.B.5 Access exceptions (fetch) for entry descriptor of
preceding entry, which is the entry designated by
the backward stack-entry address in the current
(header) entry.

8.B.6 Stack-specification exception due to preceding
entry being a header entry.

8.B.7 Stack-type exception due to preceding entry not
being a state entry.

8.B.8 Access exceptions (store) for the modifiable area
of the state entry.

'B254' / / / / / / / / R1 R2

0 16 24 28 31

Figure 10-28. Priority of Execution: MODIFY STACKED
STATE (Part 2 of 2)

KFC Meaning

0 The PSW key is used for accessing both operands.
The reference (R) and change (C) bits of the
storage key associated with the 4K-byte block of
storage designated by the first operand are set.

1 The PSW key is used for store accesses to the first
operand and the supplied ACC key (bits 56-59 of
general register 0) is used for fetch accesses to the
second operand. The reference (R) and change (C)
bits of the storage key associated with the 4K-byte
block of storage designated by the first operand are
set.

2 The supplied ACC key (bits 56-59 of general
register 0) is used for store accesses to the first
operand and the PSW key is used for fetch
accesses to the second operand. The reference (R)
and change (C) bits of the storage key associated
with the 4K-byte block of storage designated by the
first operand are set.

3 Reserved

4 Key-controlled protection does not apply to the first
operand. The PSW key is used for fetch accesses
to the second operand. The storage key associated
with the 4K-byte block of storage designated by the
first operand is set to the full key supplied in bits 56-
62 of general register 0.

5 Key-controlled protection does not apply to the first
operand. The PSW key is used for fetch accesses
to the second operand. The storage key associated
with the 4K-byte block of storage designated by the
first operand is set as follows: the access-control
bits (ACC) and fetch-protection bit (F) are copied
from the storage key of the second operand and the
reference bit (R) and change bit (C) use the value
supplied in bits 61-62 of general register 0.

6-7 Reserved

Control Instructions 10-63

M
O

V
E

 P
A

G
Ewise, a specification exception is recognized. Bits

0-47 and 63 of general register 0 are ignored. When
the move-page-and-set-key facility is not installed,
bits 60-62 are also ignored.

The contents of the registers just described are
shown in Figure 10-29.

When 4K bytes have been moved, condition code 0
is set.

When a page-translation-exception condition exists,
the exception is not recognized if the condition-code-
option bit, bit 55 in general register 0, is one; instead,
condition code 1 or 2 is set. Condition code 1 is set if
a page-translation-exception condition exists for the
first operand and not for the second operand. Condi-
tion code 2 is set if a page-translation-exception con-
dition exists for the second operand, regardless of
whether the condition exists for the first operand.

When the KFC value is 4 or 5 and the real or abso-
lute addresses (possibly after DAT) of the first and
second operands are the same, it is model depen-
dent if an operand exception is recognized.

When an access exception can be recognized for
both operands, it is unpredictable for which operand
an exception is recognized. If one of the exceptions is
a page-translation exception that would cause condi-
tion code 1 or 2 to be set, it is unpredictable whether
the access exception for the other operand is recog-
nized or condition code 1 or 2 is set.

When the instruction completes by setting condition
codes 1 or 2, and a PER zero-address-detection con-
dition also exists for either the first or second oper-
and, it is unpredictable whether the zero-address-
detection condition is recognized.

The references to main storage are not necessarily
single-access references and are not necessarily

All Addressing Modes

GR0
/ 0 0 0 KFC

D
R
I

C
C
O

Key
/

ACC F R C

0 48 51 54 55 56 63

24-Bit Addressing Mode

R1 / First-Operand Address / / / / / / / / / / / /
0 40 52 63

R2 / Second-Operand Address / / / / / / / / / / / /
0 40 52 63

31-Bit Addressing Mode

R1 / First-Operand Address / / / / / / / / / / / /
0 33 52 63

R2 / Second-Operand Address / / / / / / / / / / / /
0 33 52 63

64-Bit Addressing Mode

R1 First-Operand Address / / / / / / / / / / / /
0 52 63

R2 Second-Operand Address / / / / / / / / / / / /
0 52 63

Explanation:

CCO Condition-code-option bit.
DRI Destination-reference-intention bit.
Key Specified access key.
KFC Key-function control.

Figure 10-29. Register Contents for MOVE PAGE

10-64 The z/Architecture CPU Architecture

M
O

V
E

 P
A

G
E performed in a left-to-right direction, as observed by

other CPUs and by channel programs.

When the storage key is set on the first operand
block (KFC values of 4 or 5), a quiescing operation is
not necessarily performed. See “Storage-Key
Accesses” on page 5-120 for a discussion of the
effects of quiescing on key-setting instructions, and
see “Quiescing” on page 5-133 for details on the qui-
escing operation.

When the KFC value is 4 or 5, serialization and
checkpoint-synchronization functions are performed
before the operation begins and again after the oper-
ation is completed.

Special Conditions

In the problem state, when the KFC value is 1 or 2,
the operation is performed only if the access key
specified in general register 0 is valid, that is, if the
corresponding PSW-key-mask bit in control register 3
is one. Otherwise, a privileged-operation exception is
recognized. In the supervisor state, any value for the
specified access key is valid.

When the KFC value is 0, the access key in general
register 0 is not tested for validity and a priviliged-
operation exception is not recognized. In the problem
state, when the move-page-and-set-key facility is
installed and the KFC value is 4 or 5, a privleged-
operation exception is recognized.

In the problem state, when the KFC value is 3 and
the access key in general register 0 is not permitted
by the PSW-key mask, it is unpredictable whether a
specification exception or a privileged-operation
exception is recognized.

KFC values of 6 or 7 always result in a specification
exception.

In the ESA/390-compatibility mode, an operation
exception is recognized when the configuration is not
also operating in the ESA/extended-configuration
(ESA/XC) mode . See Reference [12.] on page xxx
for details on ESA/XC.

Resulting Condition Code:

0 Data moved and, optionally, key is set
1 Condition-code-option bit one, page-table entry

for first operand invalid, and page-table entry for
second operand valid

2 Condition-code-option bit one and page-table
entry for second operand invalid

3 --

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operand
• Operation (in the ESA/390 compatibility mode

when not in ESA/XC mode)
• Privileged operation (access key specified, and

selected PSW-key-mask bit is zero in the prob-
lem state; KFC values of 4 or 5 in the problem
state)

• Specification
• Transaction constraint

Programming Notes:

1. MOVE PAGE, or a loop of MOVE PAGE instruc-
tions that moves multiple pages, may provide, on
most models, better performance than a MOVE
LONG instruction or a loop of MOVE (MVC)
instructions that performs the same function.
Whether MOVE PAGE provides better perfor-
mance depends on control-program specifica-
tions and the method by which the control
program handles page-translation exceptions.

2. The destination-reference-intention bit should be
set to one when there is an intention to reference
the first operand by means of an instruction other
than MOVE PAGE. The bit may allow the control
program to process a page-translation exception
more efficiently.

3. On most models where the move-page-and-set-
key facility is installed and it is desired to both
move a page of data and copy or set its key, then
using MVPG with KFC values of 4 or 5 will pro-
vide better performance compared to a separate
move operation followed by a SET STORAGE
KEY EXTENDED or PERFORM FRAME MAN-
AGE FUNCTION.

4. When KFC values of 4 or 5 are used, another
CPU might briefly observe the reference and

Control Instructions 10-65

M
O

V
E

 T
O

 S
E

C
O

N
D

A
R

Ychange bits being set to one for the first operand
block, before being set to their final value by the
key setting operation.

5. The condition code set by the instruction nor-
mally need not be examined if the condition-
code-option bit is zero or if DAT is off.

6. See the definitions of real locations 162 and
168-175 under “Assigned Storage Locations” in
Chapter 3, “Storage” for a description of informa-
tion stored during a program interruption due to a
DAT-related translation exception recognized by
MOVE PAGE.

MOVE TO PRIMARY

MVCP D1(R1,B1),D2(B2),R3 [SS-d]

MOVE TO SECONDARY

MVCS D1(R1,B1),D2(B2),R3 [SS-d]

The first operand is replaced by the second operand.
One operand is in the primary address space, and
the other is in the secondary address space. The
accesses to the operand in the primary space are
performed by using the PSW key; the accesses to
the operand in the secondary space are performed
by using the key specified by the third operand.

The addresses of the first and second operands are
virtual, one operand address being translated by
means of the primary address-space-control element
and the other by means of the secondary address-
space-control element. Operand-address translation
is performed in the same way when the address-
space-control bits in the current PSW specify either
the primary-space mode or the secondary-space
mode.

For MOVE TO PRIMARY, movement is to the primary
space from the secondary space. The first-operand
address is translated by using the primary address-
space-control element, and the second-operand
address is translated by using the secondary
address-space-control element.

For MOVE TO SECONDARY, movement is to the
secondary space from the primary space. The first-
operand address is translated by using the second-
ary address-space-control element, and the second-
operand address is translated by using the primary
address-space-control element.

Bit positions 56-59 of general register R3 are used as
the secondary-space access key. Bit positions 0-55
and 60-63 of the register are ignored.

General register R1 contains an unsigned binary inte-
ger called the true length. In the 24-bit or 31-bit
addressing mode, the true length is in bit positions
32-63 of the register, and the contents of bit positions
0-31 of the register are ignored. In the 64-bit
addressing mode, the true length is in bit positions
0-63 of the register.

The contents of the general registers just described
are shown in Figure 10-30.

The first and second operands are the same length,
called the effective length. The effective length is

equal to the true length or 256, whichever is less.
Access exceptions for the first and second operands

'DA' R1 R3 B1 D1 B2 D2

0 8 12 16 20 32 36 47

'DB' R1 R3 B1 D1 B2 D2

0 8 12 16 20 32 36 47

24-Bit or 31-Bit Addressing Mode

R1 / True Length
0 32 63

64-Bit Addressing Mode

R1 True Length
0 63

All Addressing Modes

R3 / Key / / / /
0 56 60 63

Figure 10-30. Register Contents of MOVE TO PRIMARY and MOVE TO SECONDARY

10-66 The z/Architecture CPU Architecture

M
O

V
E

 T
O

 S
E

C
O

N
D

A
R

Y are recognized only for that portion of the operand
within the effective length. When the effective length
is zero, no access exceptions are recognized for the
first and second operands, and no movement takes
place.

Each storage operand is processed left to right. The
storage-operand-consistency rules are the same as
for MOVE (MVC), except that when the operands
overlap in real storage, the use of the common real-
storage locations is not necessarily recognized.

As part of the execution of the instruction, the value
of the true length is used to set the condition code. If
the true length is 256 or less, including zero, the true
length and effective length are equal, and condition
code 0 is set. If the true length is greater than 256,
the effective length is 256, and condition code 3 is
set.

For both MOVE TO PRIMARY and MOVE TO SEC-
ONDARY, a serialization and checkpoint-synchroni-
zation function is performed before the operation
begins and again after the operation is completed.

Special Conditions

Since the secondary space is accessed, the opera-
tion is performed only when the secondary-space
control, bit 37 of control register 0, is one and DAT is
on. When either the secondary-space control is zero
or DAT is off, a special-operation exception is recog-
nized. A special-operation exception is also recog-
nized when the address-space-control bits in the
current PSW specify the access-register or home-
space mode.

In the problem state, the operation is performed only
if the secondary-space access key is valid, that is, if
the corresponding PSW-key-mask bit in control regis-
ter 3 is one. Otherwise, a privileged-operation excep-
tion is recognized. In the supervisor state, any value
for the secondary-space access key is valid.

Resulting Condition Code:

0 True length less than or equal to 256
1 --
2 --
3 True length greater than 256

Program Exceptions:

• Access (fetch, primary virtual address, operand
2, MVCS; fetch, secondary virtual address, oper-
and 2, MVCP; store, secondary virtual address,
operand 1, MVCS; store, primary virtual address,
operand 1, MVCP)

• Privileged operation (selected PSW-key-mask bit
is zero in the problem state)

• Special operation
• Transaction constraint

The priority of the recognition of exceptions and con-
dition codes is shown in Figure 10-31.

Programming Notes:

1. MOVE TO PRIMARY and MOVE TO SECOND-
ARY can be used in a loop to move a variable
number of bytes of any length. See the program-
ming note under MOVE WITH KEY.

2. MOVE TO PRIMARY and MOVE TO SECOND-
ARY should be used only when movement is
between different address spaces. The perfor-
mance of these instructions on most models may
be significantly slower than that of MOVE WITH
KEY, MOVE (MVC), or MOVE LONG. In addition,
the definition of overlapping operands for MOVE
TO PRIMARY and MOVE TO SECONDARY is
not compatible with the more precise definitions
for MOVE (MVC), MOVE WITH KEY, and MOVE
LONG.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second and third
instruction halfwords.

7.B Special-operation exception due to the
secondary-space control, bit 37 of control
register 0, being zero, to DAT being off, or to the
CPU being in the access-register or home-space
mode.

7.C Transaction constraint.

8. Privileged-operation exception due to selected
PSW-key-mask bit being zero in the problem
state.

9. Completion due to length zero.

10. Access exceptions for operands.

Figure 10-31. Priority of Execution: MOVE TO PRIMARY
and MOVE TO SECONDARY

Control Instructions 10-67

M
O

V
E

 W
IT

H
 K

E
YMOVE WITH DESTINATION KEY

MVCDK D1(B1),D2(B2) [SSE]

The first operand is replaced by the second operand.
The accesses to the destination-operand location are
performed by using the key specified in general reg-
ister 1, and the accesses to the source-operand loca-
tion are performed by using the PSW key.

The first and second operands are of the same
length, which is specified by bits 56-63 of general
register 0. Bits 0-55 of general register 0 are ignored.

Bits 56-59 of general register 1 are used as the spec-
ified access key. Bits 0-55 and 60-63 of general reg-
ister 1 are ignored.

The contents of general registers 0 and 1 are shown
in Figure 10-32.

L specifies the number of bytes to the right of the first
byte of each operand. Therefore, the length in bytes
of each operand is 1-256, corresponding to a length
code in L of 0-255.

The fetch accesses to the second-operand location
are performed by using the PSW key, and the store
accesses to the first-operand location are performed
by using the key specified in general register 1.

Each of the operands is processed left to right. When
the operands overlap destructively in real storage,
the results in the first-operand location are unpredict-
able. Except for this unpredictability in the case of
destructive overlap, the storage-operand-consistency
rules are the same as for the MOVE (MVC) instruc-
tion.

Special Conditions

In the problem state, the operation is performed only
if the access key specified in general register 1 is
valid, that is, if the corresponding PSW-key-mask bit
in control register 3 is one. Otherwise, a privileged-
operation exception is recognized. In the supervisor
state, any value for the specified access key is valid.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)

• Privileged operation (selected PSW-key-mask bit
is zero in the problem state)

• Transaction constraint

Programming Note: See the programming notes for
the MOVE WITH SOURCE KEY instruction.

MOVE WITH KEY

MVCK D1(R1,B1),D2(B2),R3 [SS-d]

The first operand is replaced by the second operand.
The fetch accesses to the second-operand location
are performed by using the key specified in the third
operand, and the store accesses to the first-operand
location are performed by using the PSW key.

Bit positions 56-59 of general register R3 are used as
the source access key. Bit positions 0-55 and 60-63
of the register are ignored.

General register R1 contains an unsigned binary inte-
ger called the true length. In the 24-bit or 31-bit
addressing mode, the true length is in bit positions
32-63 of the register, and the contents of bit positions
0-31 of the register are ignored. In the 64-bit
addressing mode, the true length is in bit positions
0-63 of the register.

'E50F' B1 D1 B2 D2

0 16 20 32 36 47

GR0 / L
0 56 63

GR1 / Key / / / /
0 56 60 63

Figure 10-32. Register Contents of MOVE WITH DESTINATION KEY

'D9' R1 R3 B1 D1 B2 D2

0 8 12 16 20 32 36 47

10-68 The z/Architecture CPU Architecture

M
O

V
E

 W
IT

H
 K

E
Y The contents of the general registers just described

are shown in Figure 10-33.

The first and second operands are of the same
length, called the effective length. The effective
length is equal to the true length or 256, whichever is
less. Access exceptions for the first and second oper-
ands are recognized only for that portion of the oper-
and within the effective length. When the effective
length is zero, no access exceptions are recognized
for the first and second operands, and no movement
takes place.

Each storage operand is processed left to right.
When the storage operands overlap, the result is
obtained as if the operands were processed one byte
at a time and each result byte were stored immedi-
ately after the necessary operand byte was fetched.
The storage-operand-consistency rules are the same
as for the MOVE (MVC) instruction.

As part of the execution of the instruction, the value
of the true length is used to set the condition code. If
the true length is 256 or less, including zero, the true
length and effective length are equal, and condition
code 0 is set. If the true length is greater than 256,
the effective length is 256, and condition code 3 is
set.

Special Conditions

In the problem state, the operation is performed only
if the source access key is valid, that is, if the corre-
sponding PSW-key-mask bit in control register 3 is
one. Otherwise, a privileged-operation exception is
recognized. In the supervisor state, any value for the
source access key is valid.

Resulting Condition Code:

0 True length less than or equal to 256
1 --
2 --
3 True length greater than 256

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Privileged operation (selected PSW-key-mask bit

is zero in the problem state)
• Transaction constraint

The priority of the recognition of exceptions and con-
dition codes is shown in Figure 10-34.

24-Bit or 31-Bit Addressing Mode

R1 / True Length
0 32 63

64-Bit Addressing Mode

R1 True Length
0 63

All Addressing Modes

R3 / Key / / / /
0 56 60 63

Figure 10-33. Register Contents of MOVE WITH KEY

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second and third
instruction halfwords.

7.B Transaction constraint.

8. Privileged-operation exception due to selected
PSW-key-mask bit being zero in the problem
state.

9. Completion due to length zero.

10. Access exceptions for operands.

Figure 10-34. Priority of Execution: MOVE WITH KEY

Control Instructions 10-69

M
O

V
E

 W
IT

H
 O

P
T

IO
N

A
L

 S
P

E
C

IF
IC

A
T

IO
N

SProgramming Notes:

1. MOVE WITH KEY can be used in a loop to move
a variable number of bytes of any length, as fol-
lows:

The above program is for execution in the 24-bit
or 31-bit addressing mode. In the 64-bit address-
ing mode, AGHI instructions should be substi-
tuted for the AHI instructions.

2. The performance of MOVE WITH KEY on most
models may be significantly slower than that of
the MOVE (MVC) and MOVE LONG instructions.
Therefore, MOVE WITH KEY should not be used
if the keys of the source and the target are the
same.

MOVE WITH OPTIONAL
SPECIFICATIONS

MVCOS D1(B1),D2(B2),R3 [SSF]

The first operand is replaced by the second operand.
Bits in general register 0 determine the address-
space-control modes and protection keys that are
used to access the first and second operands.

The addresses of the first and second operands are
virtual.

Bits 32-47 of general register 0 contain the operand-
access control for the first operand (OAC1), and bits
48-63 of general register 0 contain the operand-

access control for the second operand (OAC2). The
operand-access control has the following format.

Specified-Access Key (Key): Bits positions 0-3
contain the specified-access key that is used to
access the operand if the specified-access-key valid-
ity bit (K) is one; otherwise, the specified-access key
is ignored.

Specified-Address-Space Control (AS): Bit posi-
tions 8-9 contain the address-space control that is
used to access the operand when the specified-
address-space-control validity bit (A) is one; other-
wise, the specified-address-space control is ignored.
The meaning of bits 8-9 is identical to that of the
address-space control in bits 16-17 of the PSW.

Specified-Access-Key Validity Bit (K): Bit 14
controls whether the PSW key or the specified-
access key is used to access the operand. When the
K bit is zero, the PSW key is used. When the K bit is
one, the specified-access key is used.

Specified-Address-Space-Control Validity Bit
(A): Bit 15 controls whether the address-space
control in the current PSW or the address-space con-
trol in the specified-ASC is used to access the oper-
and. When the A bit is zero, the address-space
control in the current PSW is used. When the A bit is
one, the specified-address-space control is used.

Bits 0-31 of general register 0 are ignored. Bits 4-7
and 10-14 of both operand-access controls (that is,
bits 36-39, 42-45, 52-55, and 58-61 of general regis-
ter 0) are reserved and should contain zeros; other-
wise, the program may not operate compatibly in the
future.

General register R3 contains an unsigned binary inte-
ger called the true length. In the 24-bit or 31-bit
addressing mode, the true length is in bit positions
32-63 of the register, and the contents of bit positions
0-31 of the register are ignored. In the 64-bit
addressing mode, the true length is in bit positions 0-
63 of the register.

LOOP MVCK D1(R1,B1),D2(B2),R3
BC 8,END
AHI B1,256
AHI B2,256
AHI R1,-256
B LOOP

END [Any instruction]

'C8' R3 '0' B1 D1 B2 D2

0 8 12 16 20 32 36 47

Key / / / / AS / / / / K A

0 4 8 10 14 15

10-70 The z/Architecture CPU Architecture

M
O

V
E

 W
IT

H
 O

P
T

IO
N

A
L

 S
P

E
C

IF
IC

A
T

IO
N

S The contents of the general registers just described
are shown in Figure 10-35.

The first and second operands are the same length,
called the effective length. The effective length is
equal to the true length or 4,096, whichever is less.
Access exceptions for the first and second operands
are recognized only for that portion of the operand
within the effective length. When the effective length
is zero, no access exceptions are recognized for the
first and second operands, and no movement takes
place.

As part of the execution of the instruction, the value
of the true length is used to set the condition code. If
the true length is 4,096 or less, including zero, then
the true length and effective length are equal, and
condition code 0 is set. If the true length is greater
than 4,096, then the effective length is 4,096, and
condition code 3 is set.

No test is made for destructive overlap, and the
results in the first-operand location are unpredictable
when destructive overlap exists. Operands are said
to overlap destructively when the first-operand real
location is used as a source after data has been
moved into it.

Operands do not overlap destructively if the leftmost
byte of the first operand does not coincide with any of
the second-operand bytes participating in the opera-
tion other than the leftmost byte of the second oper-
and. When an operand wraps around from location
224 - 1 (or 231 - 1 or 264 - 1) to location 0, operand
bytes in locations up to and including 224 - 1 (or
231 - 1 or 264 - 1) are considered to be to the left of
bytes in locations from 0 up.

In the 24-bit addressing mode, wraparound is from
location 224 - 1 to location 0; in the 31-bit addressing

mode, wraparound is from location 231 - 1 to location
0; and, in the 64-bit addressing mode, wraparound is
from location 264 - 1 to location 0.

Special Conditions

A special-operation exception is recognized for any
of the following conditions:

• DAT is off.

• The address-space control in OAC1 designates
the home-space mode, the address-space-con-
trol validity bit in OAC1 is one, and the current
PSW is in the problem state (that is, bits 40-41 of
general register 0 are 11 binary, bit 47 of the reg-
ister is one, and bit 15 of the current PSW is
one).

• The secondary-space control, bit 37 of control
register 0, is zero, and either of the following is
true:

– The A bit of the OAC for either operand is
zero, and bits 16-17 of the current PSW are
10 binary.

– The A bit of the OAC for either operand is
one, and the AS bits in the same OAC are 10
binary.

The secondary-space control is not examined for
an operand that is accessed in the secondary-
space mode as a result of access-register trans-
lation (that is, DAT is on, bits 16-17 of the current
PSW are 01 binary, and the access register cor-
responding to the operand's base register con-
tains an ALET of 00000001 hex).

All Addressing Modes

GR0 / OAC1 OAC2

0 32 48 63

24-Bit or 31-Bit Addressing Mode

R3 / True Length
0 32 63

64-Bit Addressing Mode

R3 True Length
0 63

Figure 10-35. Register Contents for MOVE WITH OPTIONAL SPECIFICATIONS

Control Instructions 10-71

M
O

V
E

 W
IT

H
 O

P
T

IO
N

A
L

 S
P

E
C

IF
IC

A
T

IO
N

SWhen MOVE WITH OPTIONAL SPECIFICATIONS is
executed in the problem state, and either the first or
second operand’s specified-access key (from GR0)
or the implied-access key (from the PSW) is invalid, a
privileged-operation exception is recognized. The
validity of an access key is determined as follows:

• The specified-access key in OAC1 is invalid if the
specified-access-key control, bit 46 of general
register 0, is one; and the specified-access key,
bits 32-35 of the register, designates a PSW-key-
mask (PKM) bit position in control register 3 that
contains zero.

• The specified-access key in OAC2 is invalid if the
specified-access-key control, bit 62 of general
register 0, is one; and the specified-access key,
bits 48-51 of the register, designates a PKM bit
position that contains zero.

• The implied-access key is invalid if both of the
following conditions are true:

– Either or both bits 46 and 62 of general regis-
ter 0 are zero.

– The PSW key, bits 8-11 of the PSW, desig-
nates a PKM bit position that contains zero.

In the supervisor state, any value for the implied- or
specified-access key is valid.

Resulting Condition Code:

0 True length less than or equal to 4,096
1 --
2 --
3 True length greater than 4,096

Program Exceptions:

• Access (fetch, second operand; store first oper-
and)

• Operation (if the move-with-optional-specifica-
tions facility is not installed)

• Privileged operation (selected PSW-key-mask bit
is zero in the problem state)

• Special operation
• Transaction constraint

The priority of the recognition of exceptions and con-
dition codes is shown in Figure 10-36.

Programming Notes:

1. MOVE WITH OPTIONAL SPECIFICATIONS can
be used in a loop to move a variable number of
bytes of any length.

2. An example of moving 16 K-bytes to the home
address space from the secondary address
space is shown below. The first operand is
accessed using the PSW key, and the second
operand is accessed using key 5.

In the 64-bit addressing mode, AGHI instructions
should be substituted for the AHI instructions.

3. The performance of MOVE WITH OPTIONAL
SPECIFICATIONS may be significantly slower
than that of individual MOVE (MVC) instructions.

4. When bits 46-47 and 62-63 of general register 0
are all zero, MOVE WITH OPTIONAL SPECIFI-
CATIONS uses the key and address-space con-
trol in the current PSW to access both the first
and second operands.

5. In the MVCDK, MVCK, MVCP, MVCS, and
MVCSK instructions, one operand is accessed
using an implied key from the PSW, and the
other operand is accessed using a specified key

1.-7.B Exceptions with the same priority as the
priority of program-interruption conditions for
the general case.

7.C.1 Operation exception.

7.C.2 Special-operation exception.

7.C.3 Privileged-operation exception.

7.D Transaction constraint.

8. Completion due to length zero.

9. Access exceptions for operands.

Figure 10-36. Priority of Execution: MOVE WITH
OPTIONAL SPECIFICATIONS

LA 3,OPERAND1
LA 5,OPERAND2
LHI 7,16384
LLILF 0,X'00C15083'

LOOP MVCOS 0(3),0(5),7
AHI 3,4096
AHI 5,4096
AHI 7,–4096
BP LOOP

10-72 The z/Architecture CPU Architecture

M
O

V
E

 W
IT

H
 S

O
U

R
C

E
 K

E
Y in a register. In the problem state, only the speci-

fied key is checked for validity in the PSW-key
mask (PKM).

When MVCOS is executed in the problem state,
the access keys for the first and second oper-
ands are both checked for validity in the PKM,
regardless of whether the keys are implied or
specified.

MOVE WITH SOURCE KEY

MVCSK D1(B1),D2(B2) [SSE]

The first operand is replaced by the second operand.
The accesses to the source-operand location are
performed by using the key specified in general reg-
ister 1, and the accesses to the destination-operand
location are performed by using the PSW key.

The first and second operands are of the same
length, which is specified by bits 56-63 of general
register 0. Bits 0-55 of general register 0 are ignored.

Bits 56-59 of general register 1 are used as the spec-
ified access key. Bits 0-55 and 60-63 of general reg-
ister 1 are ignored.

The contents of general registers 0 and 1 are shown
in Figure 10-37.

L specifies the number of bytes to the right of the first
byte of each operand. Therefore, the length in bytes
of each operand is 1-256, corresponding to a length
code in L of 0-255.

The fetch accesses to the second-operand location
are performed by using the key specified in general
register 1, and the store accesses to the first-oper-
and location are performed by using the PSW key.

Each of the operands is processed left to right. When
the operands overlap destructively in real storage,
the results in the first-operand location are unpredict-
able. Except for this unpredictability in the case of
destructive overlap, the storage-operand-consistency
rules are the same as for the MOVE (MVC) instruc-
tion.

Special Conditions

In the problem state, the operation is performed only
if the access key specified in general register 1 is
valid, that is, if the corresponding PSW-key-mask bit
in control register 3 is one. Otherwise, a privileged-
operation exception is recognized. In the supervisor
state, any value for the specified access key is valid.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Privileged operation (selected PSW-key-mask bit

is zero in the problem state)
• Transaction constraint

Programming Notes:

1. When data is to be moved alternately in both
directions between two storage areas that are
fetch protected by means of different keys, then
MOVE WITH SOURCE KEY and MOVE WITH
DESTINATION KEY can be used while leaving
the PSW key unchanged; and this may be, on
most models, significantly faster than using
MOVE WITH KEY along with SET PSW KEY
FROM ADDRESS to change the PSW key.

2. MOVE WITH SOURCE KEY and MOVE WITH
DESTINATION KEY should be used only when
movement is between storage areas having dif-
ferent keys. The performance of these instruc-
tions on most models may be significantly slower
than that of the MOVE (MVC) instruction.

3. MOVE WITH SOURCE KEY or MOVE WITH
DESTINATION KEY can be used in a loop to
move a variable number of bytes as shown in the
following example. In the example, the specified

'E50E' B1 D1 B2 D2

0 16 20 32 36 47

GR0 / L
0 56 63

GR1 / Key / / / /
0 56 60 63

Figure 10-37. Register Contents of MOVE WITH SOURCE KEY

Control Instructions 10-73

P
A

G
E

 IN

access key, the first-operand address, the sec-
ond-operand address, and the length of each
operand are assumed to be in general registers
1-4, respectively, at the beginning of the exam-
ple. The length of each operand is treated as a
32-bit signed value, and a negative value is
treated as zero.

PAGE IN

PGIN R1,R2 [RRE]

A page-in operation is performed which transfers a
4 K-byte block to the real-storage location designated
by general register R1 from the expanded-storage
block designated by general register R2.

Bits 32-63 of general register R2 are a 32-bit
unsigned binary integer called the expanded-stor-
age-block number. This number designates the
4 K-byte block of expanded storage which is to be
transferred. If the expanded-storage-block number
designates an inaccessible block in expanded stor-
age, condition code 3 is set.

The contents of general register R1 are a real
address which designates a 4 K-byte block in main
storage. In the 24-bit-addressing mode, bits 40-51
designate the block, and bits 0-39 are ignored. In the
31-bit-addressing mode, bits 33-51 designate the
block, and bits 0-32 are ignored. In the 64-bit-
addressing mode, bits 0-51 designate the block. In all
modes, bits 52-63 of the address are ignored.

Because it is a real address, the address designating
the main-storage block is not subject to dynamic
address translation. PAGE IN is not subject to key-

controlled storage protection, but low-address pro-
tection does apply. PAGE IN is not subject to pro-
gram-event recording for storage alteration.

A serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed.

If the page-in operation is completed with no errors,
condition code 0 is set.

If the page-in operation encounters an expanded-
storage data error, condition code 1 is set. For an
expanded-storage data-error condition, the contents
of the entire 4 K-byte block in real storage is unpre-
dictable, but this condition does not result in the gen-
eration of invalid checking-block codes in real
storage.

If the expanded-storage block is not available, that is,
the block is not provided or is not currently in the con-
figuration, then condition code 3 is set, and no other
action is taken.

Operation of PAGE IN in a Multiple-CPU Configu-
ration

The accesses to main storage and to expanded stor-
age by PAGE IN are not necessarily single-access
references and are not necessarily performed in a
left-to-right direction, as observed by other CPUs and
by channel programs.

See also the description under PAGE OUT.

Resulting Condition Code:

0 Page-in operation completed
1 Expanded-storage data error
2 --
3 Expanded-storage block not available

Program Exceptions:

• Addressing (block designated by general register
R1)

• Operation (if the expanded-storage facility is not
installed)

• Privileged operation
• Protection (block designated by general register

R1; low-address protection)
• Transaction constraint

LTR 4,4
BC 12,END
AHI 4,-256
BC 12,LAST
LA 0,255

LOOP MVCSK 0(2),0(3)
LA 2,256(2)
LA 3,256(3)
AHI 4,-256
BC 2,LOOP

LAST LA 0,255(4)
MVCSK 0(2),0(3)

END [Any instruction]

'B22E' / / / / / / / / R1 R2

0 16 24 28 31

10-74 The z/Architecture CPU Architecture

P
A

G
E

 O
U

T PAGE OUT

PGOUT R1,R2 [RRE]

A page-out operation is performed which transfers a
4 K-byte block from the real-storage location desig-
nated by general register R1 to the expanded-storage
block designated by general register R2.

Bits 32-63 of general register R2 are a 32-bit
unsigned binary integer called the expanded-stor-
age-block number. This number designates the
4 K-byte block of expanded storage which is to be
replaced. If the expanded-storage-block number des-
ignates an inaccessible block in expanded storage,
condition code 3 is set.

The contents of general register R1 are a real
address which designates a 4 K-byte block in main
storage. In the 24-bit-addressing mode, bits 40-51
designate the block, and bits 0-39 are ignored. In the
31-bit-addressing mode, bits 33-51 designate the
block, and bits 0-32 is ignored. In the 64-bit-address-
ing mode, bits 0-51 designate the block. In all modes,
bits 52-63 of the address are ignored.

Because it is a real address, the address designating
the main-storage block is not subject to dynamic
address translation. PAGE OUT is not subject to key-
controlled protection.

A serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed.

Depending on the model, after the data has been
written to the expanded-storage block, a read-back-
check operation may be performed to determine
whether the data was written correctly. If the read-
back-check operation determines that the data has
been written correctly, condition code 0 is set. If the
read-back-check operation encounters an expanded-
storage data error, condition code 1 is set.

Most models do not perform the read-back-check
operation, and, after the page-out operation is com-
pleted, condition code 0 is set.

Regardless of whether condition code 0 or condition
code 1 is set, the entire 4 K-byte block is written.

Errors, if any, in the block after the block is written are
preserved. Thus, if a subsequent execution of PAGE
IN addresses the same expanded-storage block, the
expanded-storage data error will be detected and
condition code 1 will be indicated.

If the expanded-storage block is not available, that is,
the block is not provided or is not currently in the con-
figuration, then condition code 3 is set, and no other
action is taken.

Operation of PAGE OUT in a Multiple-CPU Config-
uration

The accesses to main storage and to expanded stor-
age by PAGE OUT are not necessarily single-access
references and are not necessarily performed in a
left-to-right direction, as observed by other CPUs and
by channel programs.

If two or more CPUs issue PAGE IN or PAGE OUT
instructions at approximately the same instant in
time, depending on the model, the operations may be
performed one at a time, or the operations may be
performed concurrently. Concurrent operation may
occur even if the instructions address the same
expanded-storage block.

When two or more PAGE OUT instructions address-
ing the same expanded-storage block are executed
concurrently, the resulting values in the expanded-
storage block for each group of bytes transferred may
be from any of the instructions being executed simul-
taneously. The number of bytes transferred as a
group depends on the model.

Similarly, for concurrent execution of a PAGE IN and
a PAGE OUT instruction for the same expanded-stor-
age block, the resulting values for each group of
bytes transferred as a result of the execution of the
PAGE IN instruction may be either the old or new val-
ues from the expanded-storage block.

Concurrent operation of paging instructions does not
result in expanded-storage data errors.

Resulting Condition Code:

0 Page-out operation completed
1 Expanded-storage data error
2 --
3 Expanded-storage block not available

'B22F' / / / / / / / / R1 R2

0 16 24 28 31

Control Instructions 10-75

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 K

E
Y

 M
A

N
A

G
E

M
E

N
T

 O
P

E
R

A
T

IO
NProgram Exceptions:

• Addressing (block designated by general register
R1)

• Operation (if the expanded-storage facility is not
installed)

• Privileged operation
• Transaction constraint

PERFORM CRYPTOGRAPHIC KEY
MANAGEMENT OPERATION

PCKMO [RRE]

A function specified by the function code in general
register 0 is performed.

Bits 16-31 of the instruction are ignored.

Bit positions 57-63 of general register 0 contain the
function code. Figure 10-38 on page 10-75 shows
the assigned function codes. All other function codes
are unassigned. Bit 56 of general register 0 must be
zero; otherwise, a specification exception is recog-
nized. All other bits of general register 0 are ignored.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

The function codes for PERFORM CRYP-
TOGRAPHIC KEY MANAGEMENT OPERATION are
as follows.

All other function codes are unassigned.

The query function provides the means of indicating
the availability of the other functions.

Figure 10-39 shows the contents of general registers
0 and 1.

In the access-register mode, access register 1 speci-
fies the address space containing the parameter
block.

As observed by other CPUs and channel programs,
reference to the parameter block may be multiple-
access references, accesses to these storage loca-
tions are not necessarily block-concurrent, and the
sequence of these accesses or references is unde-
fined.

PCKMO-Query (Function Code 0)
The locations of the operands and addresses used
by the instruction are as shown in Figure 10-39 on

page 10-76.

'B928' / / / / / / / / / / / / / / / /
0 16 31

Code Function

Parm.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 PCKMO-Query 16 —

1 PCKMO-Encrypt-DEA-Key 32 8

2 PCKMO-Encrypt-TDEA-128-Key 40 8

3 PCKMO-Encrypt-TDEA-192-Key 48 8

18 PCKMO-Encrypt-AES-128-Key 48 16

19 PCKMO-Encrypt-AES-192-Key 56 16

20 PCKMO-Encrypt-AES-256-Key 64 16

32 PCKMO-Encrypt-ECC-P256-Key 64 16

33 PCKMO-Encrypt-ECC-P384-Key 80 16

34 PCKMO-Encrypt-ECC-P521-Key 112 16

40 PCKMO-Encrypt-ECC-Ed25519-
Key

64 16

41 PCKMO-Encrypt-ECC-Ed448-Key 96 16

Explanation:

— Not applicable

Figure 10-38. Function Codes for PERFORM
CRYPTOGRAPHIC KEY MANAGEMENT
OPERATION

10-76 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 K

E
Y

 M
A

N
A

G
E

M
E

N
T

 O
P

E
R

A
T

IO
N

The parameter block used for the function has the fol-
lowing format:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the PCKMO instruction.
When a bit is one, the corresponding function is
installed; otherwise, the function is not installed.

PCKMO-Encrypt-DEA-Key (Function
Code 1)
The locations of the operands and addresses used
by the instruction are as shown in Figure 10-39 on
page 10-76.

The parameter block used for the function has the fol-
lowing format:

The 8-byte cryptographic key, K, in byte offsets 0-7 of
the parameter block is encrypted using the DEA

wrapping key. (See the section “Protection of Cryp-
tographic Keys” on page 7-431 for the encryption
algorithm.) The result is placed back in byte offsets 0-
7 of the parameter block. The contents of the DEA
wrapping-key verification-pattern register are placed
in byte offsets 8-31 of the parameter block.

PCKMO-Encrypt-TDEA-128-Key
(Function Code 2)
The locations of the operands and addresses used
by the instruction are as shown in Figure 10-39 on
page 10-76.

The parameter block used for the function has the fol-
lowing format:

The 16-byte cryptographic key, K, in byte offsets 0-15
of the parameter block is encrypted using the DEA
wrapping key. (See the section “Protection of Cryp-
tographic Keys” on page 7-431 for the encryption
algorithm.) The result is placed back in byte offsets 0-
15 of the parameter block. The contents of the DEA
wrapping-key verification-pattern register are placed
in byte offsets 16-39 of the parameter block.

All Addressing Modes

GR0 / 0 FC
0 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

Figure 10-39. General Register Assignment for PCKMO

0
Status Word

8
0 63

Figure 10-40. Parameter Block for PCKMO-Query

0 Cryptographic Key (K)

8 DEA Wrapping-Key
Verification Pattern

(WKdVP)24
0 63

Figure 10-41. Parameter Block for PCKMO-Encrypt-DEA-
Key

0 Cryptographic

8 Key (K)

16 DEA Wrapping-Key
Verification Pattern

(WKdVP)32
0 63

Figure 10-42. Parameter Block for PCKMO-Encrypt-TDEA-
128-Key

Control Instructions 10-77

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 K

E
Y

 M
A

N
A

G
E

M
E

N
T

 O
P

E
R

A
T

IO
NPCKMO-Encrypt-TDEA-192-Key

(Function Code 3)
The locations of the operands and addresses used
by the instruction are as shown in Figure 10-39 on
page 10-76.

The parameter block used for the function has the fol-
lowing format:

The 24-byte cryptographic key, K, in byte offsets 0-23
of the parameter block is encrypted using the DEA
wrapping key. (See the section “Protection of Cryp-
tographic Keys” on page 7-431 for the encryption
algorithm.) The result is placed back in byte offsets 0-
23 of the parameter block. The contents of the DEA
wrapping-key verification-pattern register are placed
in byte offsets 24-47 of the parameter block.

PCKMO-Encrypt-AES-128-Key (Function
Code 18)
The locations of the operands and addresses used
by the instruction are as shown in Figure 10-39 on
page 10-76.

The parameter block used for the function has the fol-
lowing format:

The 16-byte cryptographic key, K, in byte offsets 0-15
of the parameter block is encrypted using the AES
wrapping key. (See the section “Protection of Cryp-
tographic Keys” on page 7-431 for the encryption
algorithm.) The result is placed back in byte offsets 0-
15 of the parameter block. The contents of the AES
wrapping-key verification-pattern register are placed
in byte offsets 16-47 of the parameter block.

PCKMO-Encrypt-AES-192-Key (Function
Code 19)
The locations of the operands and addresses used
by the instruction are as shown in Figure 10-39 on
page 10-76.

The parameter block used for the function has the fol-
lowing format:

The 24-byte cryptographic key, K, in byte offsets 0-23
of the parameter block is encrypted using the AES
wrapping key. (See the section “Protection of Cryp-
tographic Keys” on page 7-431 for the encryption
algorithm.) The result is placed back in byte offsets 0-
23 of the parameter block. The contents of the AES
wrapping-key verification-pattern register are placed
in byte offsets 24-55 of the parameter block.

PCKMO-Encrypt-AES-256-Key (Function
Code 20)
The locations of the operands and addresses used
by the instruction are as shown in Figure 10-39 on
page 10-76.

0
Cryptographic Key

(K)
8

16

24 DEA Wrapping-Key
Verification Pattern

(WKdVP)40
0 63

Figure 10-43. Parameter Block for PCKMO-Encrypt-TDEA-
192-Key

0 Cryptographic

8 Key (K)

16
AES Wrapping-Key
Verification Pattern

(WKaVP)
40

0 63

Figure 10-44. Parameter Block for PCKMO-Encrypt-AES-
128-Key

0
Cryptographic Key

(K)
8

16

24
AES Wrapping-Key
Verification Pattern

(WKaVP)
48

0 63

Figure 10-45. Parameter Block for PCKMO-Encrypt-AES-
192-Key

10-78 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 K

E
Y

 M
A

N
A

G
E

M
E

N
T

 O
P

E
R

A
T

IO
N The parameter block used for the function has the fol-

lowing format:

The 32-byte cryptographic key, K, in byte offsets 0-31
of the parameter block is encrypted using the AES
wrapping key. (See the section “Protection of Cryp-
tographic Keys” on page 7-431 for the encryption
algorithm.) The result is placed back in byte offsets 0-
31 of the parameter block. The contents of the AES
wrapping-key verification-pattern register are placed
in byte offsets 32-63 of the parameter block.

PCKMO-Encrypt-ECC-P256-Key
(Function Code 32)
This function is available only when message-secu-
rity-assist extension 9 is installed. The locations of
the operands and addresses used by the instruction
are as shown in Figure 10-39 on page 10-76.

The parameter block used for the function has the fol-
lowing format:

The 32-byte cryptographic key, K, in byte offsets 0-31
of the parameter block is encrypted using the AES
wrapping key. (See the section “Protection of Cryp-
tographic Keys” on page 7-431 for the encryption
algorithm.) The result is placed back in byte offsets 0-
31 of the parameter block. The contents of the AES
wrapping-key verification-pattern register are placed
in byte offsets 32-63 of the parameter block.

PCKMO-Encrypt-ECC-P384-Key
(Function Code 33)
This function is available only when message-secu-
rity-assist extension 9 is installed. The locations of
the operands and addresses used by the instruction
are as shown in Figure 10-39 on page 10-76.

The parameter block used for the function has the fol-
lowing format:

The 48-byte cryptographic key, K, in byte offsets 0-47
of the parameter block is encrypted using the AES
wrapping key. (See the section “Protection of Cryp-
tographic Keys” on page 7-431 for the encryption
algorithm.) The result is placed back in byte offsets 0-
47 of the parameter block. The contents of the AES
wrapping-key verification-pattern register are placed
in byte offsets 48-79 of the parameter block.

PCKMO-Encrypt-ECC-P521-Key
(Function Code 34)
This function is available only when message-secu-
rity-assist extension 9 is installed. The locations of
the operands and addresses used by the instruction
are as shown in Figure 10-39 on page 10-76.

0

8 Cryptographic

16 Key (K)

24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)
56

0 63

Figure 10-46. Parameter Block for PCKMO-Encrypt-AES-
256-Key

0
Cryptographic Key

(K)
24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)
56

0 63

Figure 10-47. Parameter Block for PCKMO-Encrypt-ECC-
P256-Key

0
Cryptographic Key

(K)
40

48
AES Wrapping-Key
Verification Pattern

(WKaVP)
72

 0 63

Figure 10-48. Parameter Block for PCKMO-Encrypt-ECC-
P384-Key

Control Instructions 10-79

P
E

R
F

O
R

M
 C

R
Y

P
T

O
G

R
A

P
H

IC
 K

E
Y

 M
A

N
A

G
E

M
E

N
T

 O
P

E
R

A
T

IO
NThe parameter block used for the function has the fol-

lowing format:

The 521 bit cryptographic key, K, is right aligned in
byte offsets 14-79 of the parameter block with pad-
ding in bytes 0 to 13 and part of byte 14. The pro-
grammer must pad with zeros in byte 14 or
unpredictable results are possible when using this
key. Bytes 0 to 79 are encrypted using the AES wrap-
ping key. (See the section “Protection of Cryp-
tographic Keys” on page 7-431 for the encryption
algorithm.) The result is placed back in byte offsets 0-
79 of the parameter block. The contents of the AES
wrapping-key verification-pattern register are placed
in byte offsets 80-111 of the parameter block.

PCKMO-Encrypt-ECC-Ed25519-Key
(Function Code 40)
This function is available only when message-secu-
rity-assist extension 9 is installed. The locations of
the operands and addresses used by the instruction
are as shown in Figure 10-39 on page 10-76.

The parameter block used for the function has the fol-
lowing format:

The 255 bit cryptographic key, K, is right aligned in
byte offsets 0-31 of the parameter block and has a 1

bit zero pad. The programmer must use a zero for the
padding or unpredictable results are possible when
using this key. The whole 32 byte field is encrypted
using the AES wrapping key. (See the section “Pro-
tection of Cryptographic Keys” on page 7-431 for the
encryption algorithm.) The result is placed back in
byte offsets 0-31 of the parameter block. The con-
tents of the AES wrapping-key verification-pattern
register are placed in byte offsets 32-63 of the
parameter block.

PCKMO-Encrypt-ECC-Ed448-Key
(Function Code 41)
This function is available only when message-secu-
rity-assist extension 9 is installed. The locations of
the operands and addresses used by the instruction
are as shown in Figure 10-39 on page 10-76.

The parameter block used for the function has the fol-
lowing format:

Bytes 0 to 63 of the paramater block are encrypted
using the AES wrapping key. (See the section “Pro-
tection of Cryptographic Keys” on page 7-431 for the
encryption algorithm.) The 56-byte cryptographic key,
K, is in byte offsets 8-63 of the parameter block and
padding is in bytes 0-7. The result is placed back in
byte offsets 0-63 of the parameter block. The con-
tents of the AES wrapping-key verification-pattern
register are placed in byte offsets 64-95 of the
parameter block.

Special Conditions

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. Bit 56 of general register 0 is not zero.

2. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

0
Cryptographic Key

(K)
72

80
AES Wrapping-Key
Verification Pattern

(WKaVP)
104

0 63

Figure 10-49. Parameter Block for PCKMO-Encrypt-ECC-
P521-Key

0
Cryptographic Key

(K)
24

32
AES Wrapping-Key
Verification Pattern

(WKaVP)
56

0 63

Figure 10-50. Parameter Block for PCKMO-Encrypt-ECC-
Ed25519-Key

0
Cryptographic Key

(K)
56

64
AES Wrapping-Key
Verification Pattern

(WKaVP)
88

0 63

Figure 10-51. Parameter Block for PCKMO-Encrypt-ECC-
Ed448-Key

10-80 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 F

R
A

M
E

 M
A

N
A

G
E

M
E

N
T

 F
U

N
C

T
IO

N Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, parameter block; store, parameter
block)

• Operation (if the message-security-assist exten-
sion 3 is not installed)

• Privileged operation
• Specification
• Transaction constraint

Programming Note: Each set of PCKMO-Encrypt-
DEA-Key functions, PCKMO-Encrypt-AES-Key func-
tions, and PCKMO-Encrypt-ECC-Key functions can
be independently disabled by an external means.
When a set is disabled, functions in the set appear as
if they were not installed.

PERFORM FRAME MANAGEMENT
FUNCTION

PFMF R1,R2 [RRE]

Subject to the controls in the first-operand register, a
frame-management function is performed for the
storage frame designated by the second-operand
address.

The contents of general register R1 are as follows:

Frame-management function indications: Bit
positions 44-47 of general register R1 contain the
frame-management function indications (FMFI), as
follows:

Reserved: Bits 44 and 45 are reserved and must
contain zeros; otherwise, a specification exception is
recognized.

Set-Key Control (SK): Bit 46 controls whether the
storage key for each 4 K-byte block in the frame is
set from bits 56-62 of general register R1. When the
SK control is zero, the keys are not set; when the SK
control is one, the keys are set.

Clear-Frame Control (CF): Bit 47 controls whether
the frame is set to zeros. When the CF control is
zero, no clearing operation is performed. When the
CF control is one, the frame is cleared to zeros.

Usage Indication (UI): Bit position 48 of general
register R1 contains the usage indication (UI). When
bit 48 is zero, it indicates that the program does not
anticipate immediate usage of the frame. When bit
48 is one, it indicates that program anticipates usage
of the frame in the near future.

Frame-Size Code (FSC): Bits 49-51 of general
register R1 contain the frame-size code (FSC), as fol-
lows:

Reference-Bit Update Mask (MR): When the set-
key control, bit 46 of general register R1, is one, bit 53
of general register R1 controls whether updates to
the reference bit in the storage key may be bypassed,
as described below. When the set-key control is zero,
bit 53 of general register R1 is ignored.

Change-Bit Update Mask (MC): When the set-key
control, bit 46 of general register R1, is one, bit 54 of
general register R1 controls whether updates to the
change bit in the storage key may be bypassed.
When the set-key control is zero, bit 54 of general
register R1 is ignored.

When the conditional-SSKE facility is installed, the
handling of the MR and MC bits is identical to the
handling of the corresponding bits of the M3 field of
the SET STORAGE KEY EXTENDED instruction
(described on page 10-133), except that general reg-
ister R1 is not updated with the contents of the previ-
ous key, and the condition code is not changed.
When the conditional-SSKE facility is not installed,
the MR and MC bits are ignored.

Key: When the set-key control, bit 46 of general
register R1, is one, bits 56-62 of the register contain
the storage key to be set for each 4 K-byte block in
the frame, with the access-protection bits, fetch-pro-
tection bit, reference bit, and change bit in bit posi-
tions 56-59, 60, 61, and 62, respectively. When the
set-key control is zero, bits 56-62 of general register
R1 are ignored.

Bit positions 0-31 general register R1 are ignored. Bit
positions 32-45, 55, and 63 of general register R1 are

'B9AF' / / / / / / / / R1 R2

0 16 24 28 31

FSC Meaning

0 4 K-byte frame

1 1 M-byte frame

2 2 G-byte frame

3-7 Reserved

Control Instructions 10-81

P
E

R
F

O
R

M
 F

R
A

M
E

 M
A

N
A

G
E

M
E

N
T

 F
U

N
C

T
IO

Nreserved and must contain zeros. When the nonqui-
escing key-setting facility is not installed, bit position
52 of general register R1 is also reserved and must
contain zero. If any reserved bit position in general
register R1 does not contain zeros, a specification
exception is recognized. When the nonquiescing key-
setting facility is installed, bit position 52 of general
register R1 is ignored.

General register R2 contains the real or absolute
address of the storage frame upon which the frame-
management function is to be performed. When the
frame-size code designates a 4 K-byte block, the
second-operand address is real; when the frame-size
code designates a 1 M-byte or 2 G-byte block the
second-operand address is absolute. The handling of

the address in general register R2 depends on the
addressing mode. In the 24-bit addressing mode, the
contents of bit positions 40-51 of the register, with 12
rightmost zeros appended, are the address, and bits
0-39 and 52-63 in the register are ignored. In the
31-bit addressing mode, the contents of bit positions
33-51 of the register, with 12 rightmost zeros
appended, are the address, and bits 0-32 and 52-63
in the register are ignored. In the 64-bit addressing
mode, the contents of bit positions 0-51 of the regis-
ter, with 12 rightmost zeros appended, are the
address, and bits 52-63 in the register are ignored.

The contents of the registers just described are
shown in Figure 10-52.

When the frame-size code is 0, the specified frame-
management functions are performed for the
4 K-byte frame specified by the second operand.
General register R2 is unmodified in this case.

When the frame-size code is 1, the specified frame-
management functions are performed for one or
more 4 K-byte blocks within the 1 M-byte frame,
beginning with the block specified by the second-
operand address, and continuing to the right with

In All Addressing Modes:

R1

/ 0 0 0 0 0 0 0 0 0 0 0 0
FMFI

U
I

FSC 0
M
R

M
C

0
Key

0
0 0

S
K

C
F

ACC F R C

0 32 44 46 47 48 49 52 53 54 55 56 60 61 62 63

24-Bit Addressing Mode

R2 / Second-Operand Address / / / / / / / / / / / /
0 40 52 63

31-Bit Addressing Mode

R2 / Second-Operand Address / / / / / / / / / / / /
0 33 52 63

64-Bit Addressing Mode

R2 Second-Operand Address / / / / / / / / / / / /
0 52 63

Explanation:

ACC Access-protection bits of the storage key
C Change bit of the storage key
CF Clear-frame control
F Fetch-protection bit of the storage key
FMFI Frame-management function indication
FSC Frame-size code
MC Change-bit-update mask
MR Reference-bit-update mask
R Reference bit of the storage key
SK Set-key control
UI Usage indication

Figure 10-52. Register Contents for PERFORM FRAME-MANAGEMENT FUNCTION

10-82 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 F

R
A

M
E

 M
A

N
A

G
E

M
E

N
T

 F
U

N
C

T
IO

N each successive block up to the next 1 M-byte
boundary.

When the enhanced-DAT facility 2 is installed and the
frame-size code is 2, the specified frame-manage-
ment functions are performed for one or more 4 K-
byte blocks within the 2 G-byte frame, beginning with
the block specified by the second-operand address,
and continuing to the right with each successive
block up to the next 2 G-byte boundary. When the
enhanced-DAT facility 2 is not installed, a frame-size
code of 2 is reserved.

PERFORM FRAME MANAGEMENT FUNCTION is
interruptible. When the frame-size code is 1 or 2, an
interruption may occur between the processing of
successive 4 K-byte blocks. When both the clear-
frame and set-key controls are one, an interruption
may also occur between the clearing and key-setting
operations for an individual 4 K-byte block.

When the frame-size code is 1 or 2, processing is as
follows:

• When both the clear-frame and set-key functions
are specified, both functions are completed for a
4 K-byte block before proceeding to the next
block.

• When an interruption occurs (other than one that
follows termination), the second-operand
address in general register R2 is updated by the
number of 4 K-byte blocks completely pro-
cessed, so the instruction, when reexecuted,
resumes at the point of interruption.

• When the instruction completes without interrup-
tion, the second-operand address in general reg-
ister R2 is updated to the next 1 M-byte boundary
(FSC=1) or 2 G-byte boundary (FSC=2).

• In any of the above cases, bit 52-63 of general
register R2 are unchanged.

When the CPU is in the 24-bit addressing mode and
the frame-size code is 1, bits positions 32-39 of gen-
eral register R2 are set to zeros and bits 0-31 of the
register are unchanged. When the CPU is in the 24-
bit addressing mode and the frame-size code is 2, a
specification exception is recognized.

When the CPU is in the 31-bit addressing mode, and
the frame-size code is either 1 or 2, bit position 32 of
general register R2 is set to zero and bits 0-31 of gen-
eral register R2 are unchanged.

When the clear-frame control is one, references to
main storage within the second operand may be mul-
tiple-access references and are not necessarily per-
formed in a left-to-right direction as observed by
other CPUs and by channel programs. The clear
operation is not subject to key-controlled protection;
however low-address protection applies regardless of
whether the frame-size code designates a 4 K-byte,
1 M-byte, or 2 G-byte frame (that is, regardless of
whether the second-operand address is real or abso-
lute).

When the set-key control is one, the operation for
each 4 K-byte block is similar to that described in
“SET STORAGE KEY EXTENDED” on page 10-133,
except that when the keys for multiple blocks are set,
the condition code and the contents of general regis-
ter R1 are unchanged.

A serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed, except that
when the seven bits of all storage keys to be set are
the same as bits 56-62 of general register R1, or
when the MR and MC bits allow all the storage keys
to remain unchanged, it is unpredictable whether the
serialization and checkpoint-synchronization func-
tions are performed after the operation completes.
See “SET STORAGE KEY EXTENDED” on
page 10-133 for details on the cases where setting of
the key may be bypassed.

When the set-key control is one, and the nonquiesc-
ing key-setting facility is not installed, a quiescing
operation is performed. When the set-key control is
one, and the nonquiescing key-setting facility is
installed, a quiescing operation is not necessarily
performed. See “Storage-Key Accesses” on
page 5-120 for a discussion of the effects of quiesc-
ing on key-setting instructions, and see “Quiescing”
on page 5-133 for details on the quiescing operation.

Provided that there is no other access to the storage
by other CPUs or the channel subsystem, the final
results of the instruction reflect the specified key
value, including the specified R and C values when
MR and MC are zero, respectively. Subject to this
constraint, it is unpredictable whether the clear-frame
or the set-key operation is performed first when both
of the respective controls are one. When both the
clear-frame and set-key controls are one, and either
the MR or MC bit is also one, and the clear operation
is performed first, the storage key that is compared
with bits 56-62 of general register R1 in the set-key

Control Instructions 10-83

P
E

R
F

O
R

M
 T

IM
IN

G
 F

A
C

IL
IT

Y
 F

U
N

C
T

IO
Noperation is the key following the clear operation (that

is, both the R and C bits will have been set to one by
the clear operation).

Before a quiescing key-setting operation is per-
formed, transactional execution by other CPUs in the
configuration is aborted with abort code 255, condi-
tion code 2. The aborting of transactional execution
affects at least those CPUs accessing the locations
(transactionally or nontransactionally) for which stor-
age keys are being set. It is unpredictable whether
some or all other CPUs are affected as well.

Special Conditions

A specification exception is recognized and the oper-
ation is suppressed for any of the following condi-
tions:

• Bits 32-45, 55, or 63 of general register R1 are
not zero.

• When the nonquiescing key-setting facility is not
installed, bit 52 of general register R1 is not zero.

• The frame-size code specifies a reserved value.

• The CPU is in the 24-bit addressing mode and
the frame-size code is 2.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, low-address-protection only, oper-
and 2, when the clear-frame control is one)

• Addressing (operand 2)
• Operation (enhanced-DAT facility not installed)
• Privileged operation
• Specification
• Transaction constraint

Programming Notes:

1. When PFMF is issued with the set-key control
set to one, the program must ensure that no
other CPU or channel subsystem is simultane-
ously accessing the storage designated by gen-
eral register R2. Otherwise, unpredictable results
may be observed by the other CPUs and channel
subsystem, including the alteration of the block
designated by general register R2. See the pro-
gramming note on page 5-122 for more informa-
tion.

2. Access exceptions may be recognized for the
second operand, even when the clear-frame and
set-key controls are both zero.

3. When the move-page-and-set-key facility is
installed, some models also implement a perfor-
mance enhancement for simultaneously clearing
a frame and setting its storage key. This is likely
to be the fastest way to perform this combined
operation. Even though these two functions are
combined, another CPU may observe the refer-
ence and change bits being set to one, before
being set to their final value by the key setting
operation. The CPU can invoke this mode of
operation for PERFORM FRAME MANAGE-
MENT FUNCTION when all of the following con-
ditions are met:

• The set-key control (SK in R1 bit 46) and the
clear-frame control (CF in R1 bit 47) are both
one.

• The usage indication (UI) is zero. (R1 bit 48).

• The reference-bit update mask (MR in R1 bit
53) and the change-bit update mask (MC in
R1 bit 54) are both zero.

PERFORM TIMING FACILITY
FUNCTION

PTFF [E]

A timing facility function specified by the function
code in general register 0 is performed. The condi-
tion code is set to indicate the outcome of the func-
tion. General register 1 contains the address of a
parameter block in storage. PTFF query functions
place information in the parameter block; PTFF con-
trol functions use information obtained from the
parameter block.

As observed by other CPUs and channel programs,
references to the parameter block may be multiple-
access references, accesses to these storage loca-
tions are not necessarily block-concurrent, and the
sequence of these accesses or references is unde-
fined.

Bit positions 57-63 of general register 0 contain the
function code. Figure 10-54 on page 10-84 shows

'0104'

0 15

10-84 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 T

IM
IN

G
 F

A
C

IL
IT

Y
 F

U
N

C
T

IO
N the assigned function codes. Bit 56 of general regis-

ter 0 must be zero; otherwise, a specification excep-
tion is recognized. All other bits of general register 0
are ignored.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In

the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

Figure 10-53 shows the contents of the general reg-
isters just described.

In the access-register mode, access register 1 speci-
fies the address space containing the parameter
block.

The function codes for PERFORM TIMING FACILITY
FUNCTION are as follows.

All other function codes are unassigned.

The PTFF-QAF (Query Available Functions) function
provides the means of indicating the availability of the
other functions.

All Addressing Modes

GR0 / 0 FC
0 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

Figure 10-53. General Register Assignment for PERFORM TIMING FACILITY FUNCTION

Code

Function

Parm.
Block
Size

(bytes) Availability Hex Dec

00 0 PTFF-QAF 16 U

01 1 PTFF-QTO 32 U

02 2 PTFF-QSI 56 U

03 3 PTFF-QPT 8 U

04 4 PTFF-QUI 256 U

05 5 PTFF-QTOU 40 U

0A 10 PTFF-QSIE 96 U

0D 13 PTFF-QTOUE 80 U

Figure 10-54. Function Codes for PERFORM TIMING
FACILITY FUNCTION

41 65 PTFF-STO 8 P

45 69 PTFF-STOU 8 P

49 73 PTFF-STOE 16 P

4D 77 PTFF-STOUE 16 P

Explanation:

P Privileged: Available only in the supervisor state.

U Unprivileged: Available in both the problem state
and the supervisor state

Code

Function

Parm.
Block
Size

(bytes) Availability Hex Dec

Figure 10-54. Function Codes for PERFORM TIMING
FACILITY FUNCTION

Control Instructions 10-85

P
E

R
F

O
R

M
 T

IM
IN

G
 F

A
C

IL
IT

Y
 F

U
N

C
T

IO
NFunction 0: PTFF-QAF (Query Available

Functions)
The parameter block used for the function has the fol-
lowing format:

A 128-bit field is stored in the parameter block. Bits
0-127 of this field correspond to function codes
0-127, respectively, of the PTFF instruction. When a
bit is one, the corresponding function is installed; oth-
erwise, the function is not installed. The availability of
an installed function is indicated by the condition
code returned by the attempted execution of the
function.

Function 1: PTFF-QTO (Query TOD
Offset)
The parameter block used for the function has the fol-
lowing format:

When the STP-hardware-based-TOD-clock-steering
facility is not installed, the 64-bit physical-clock value
returned (pb.Tu) is the value of the physical clock at
the most recent TOD-offset-update event. When the
STP-hardware-based-TOD-clock-steering facility is
installed, the 64-bit physical-clock value returned is
the current physical clock.

The TOD offset returned is a 64-bit signed binary
integer (pb.d) that indicates the value of the TOD-off-
set (d). This value indicates the amount of steering

that has been applied (actually in the case of offset-
based TOD-clock steering, or conceptually in the
case of hardware-based TOD-clock steering) to the
physical clock to form the system TOD clock. The
TOD epoch difference is not included in this value.

The 64-bit logical-TOD-offset value returned (pb.dl)
indicates the current value of the difference between
the TOD clock and the physical clock. The value
includes the TOD epoch difference. Depending on
the TOD clock resolution capability of the model, a
model dependent number of the low order bits of bits
32:63 may be set to zero by the machine.

The 64-bit TOD epoch difference value returned
(pb.ed) is the TOD epoch difference (includes both
the user-specified epoch difference and the sync-
check offset). Depending on the TOD clock resolution
capability of the model, a model dependent number
of the low order bits of bits 32:63 may be set to zero
by the machine.

Function 2: PTFF-QSI (Query Steering
Information)
The parameter block used for the function has the fol-
lowing format:

When the STP-hardware-based-TOD-clock-steering
facility is not installed, the 64-bit physical-clock value
returned (pb.Tu) is the value of the physical clock at
the most recent TOD-offset-update event. When the
STP-hardware-based-TOD-clock-steering facility is
installed, the 64-bit physical-clock value returned is
the current physical clock.

Hex Dec
00 0 Status Bits 0-31 pb.w1
04 4 Status Bits 32-63 pb.w2
08 8 Status Bits 64-95 pb.w3
0C 12 Status Bits 95-127 pb.w4

0 31

Figure 10-55. Parameter Block for PTFF-QAF (Query
Available Functions)

Hex Dec
00 0 Physical Clock (0:31)

pb.Tu
04 4 Physical Clock (32:63)
08 8 TOD Offset (0:31)

pb.d
0C 12 TOD Offset (32:63)
10 16 Logical TOD Offset (0:31)

pb.dl
14 20 Logical TOD Offset (32:63)
18 24 TOD Epoch Difference (0:31)

pb.ed
1C 28 TOD Epoch Difference (32:63)

0 31

Figure 10-56. Parameter Block for PTFF-QTO (Query TOD
Offset)

Hex Dec
00 0 Physical Clock (0:31)

pb.Tu
04 4 Physical Clock (32:63)
08 8 Old Episode Start Time (0:31)

pb.old.s
0C 12 Old Episode Start Time (32:63)
10 16 Old Episode Base Offset (0:31)

pb.old.b
14 20 Old Episode Base Offset (32:63)
18 24 Old Episode Fine-Steering Rate pb.old.f
1C 28 Old Episode Gross-Steering Rate pb.old.g
20 32 New Episode Start Time (0:31)

pb.new.s
24 36 New Episode Start Time (32:63)
28 40 New Episode Base Offset (0:31)

pb.new.b
2C 44 New Episode Base Offset (32:63)
30 48 New Episode Fine-Steering Rate pb.new.f
34 52 New Episode Gross-Steering Rate pb.new.g

0 31

Figure 10-57. Parameter Block for PTFF-QSI (Query
Steering Information)

10-86 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 T

IM
IN

G
 F

A
C

IL
IT

Y
 F

U
N

C
T

IO
N The remaining fields are the values of the old-epi-

sode and new-episode registers.

Function 3: PTFF-QPT (Query Physical
Clock)
The parameter block used for the function has the fol-
lowing format:

The 64-bit physical-clock value returned (pb.Tr) is the
current value of the physical clock. Zeros are stored
for the rightmost bit positions that are not provided by
the physical clock. When the clock is running, two
executions of PTFF-QPT, either on the same or dif-
ferent CPUs, do not necessarily return different val-
ues of the clock.

Function 4: PTFF-QUI (Query UTC
Information)
The parameter block used for the function has the fol-
lowing format:

The UIB is described in “UTC Information Block
(UIB)” on page 4-58.

Function 5: PTFF-QTOU (Query TOD
Offset User)
The parameter block used for the function has the fol-
lowing format:

Bytes 0-31 are as defined for the PTFF query-TOD-
offset function.

The 64-bit TOD user specified epoch difference value
returned is the user-specified portion of the guest
epoch difference for the current level of CPU execu-
tion. It does not include the sync-check offset portion
of the guest epoch difference. When executed at the
basic-machine or LPAR hypervisor level, this value is
zero. When executed at the guest 1 level, this value
is the guest epoch difference excluding the guest 1
sync-check offset portion of the guest 1 epoch differ-
ence. When executed at the guest 2 level, this value
is the guest epoch difference excluding the guest 2
sync-check offset portion of the guest 2 epoch differ-
ence.

Hex Dec
00 0 Physical Clock (0:31)

pb.Tr
04 4 Physical Clock (32:63)

0 31

Figure 10-58. Parameter Block for PTFF-QPT (Query
Physical Clock)

Hex Dec
00

FC

0

252

UTC Information Block (UIB)

0 31

Figure 10-59. Parameter Block for PTFF-QUI (Query UTC
Information)

Hex Dec
00 0 Physical Clock (0:31)

pb.Tu
04 4 Physical Clock (32:63)
08 8 TOD Offset (0:31)

pb.d
0C 12 TOD Offset (32:63
10 16 Logical TOD Offset (0:31)

pb.dl
14 20 Logical TOD Offset (32:63)
18 24 TOD Epoch Difference (0:31)

pb.ed
1C 28 TOD Epoch Difference (32:63)
20 32 TOD User Specified Epoch Difference (0:31)

pb.edu
24 36 TOD User Specified Epoch Difference (32:63)

0 31

Figure 10-60. Parameter Block for PTFF-QTOU (Query
TOD Offset User)

Control Instructions 10-87

P
E

R
F

O
R

M
 T

IM
IN

G
 F

A
C

IL
IT

Y
 F

U
N

C
T

IO
NFunction 10: PTFF-QSIE (Query Steering

Information Extended)
The parameter block used for the function has the fol-
lowing format:

The PTFF-QSIE function is analogous to the PTFF-
QSI function, except that the physical-clock, old-epi-
sode-start-time, old-episode-base-offset, new-epi-
sode-start-time, and new-episode-base-offset fields
each contain 128 bits, rather than 64 bits.

The physical-clock, old-episode-start-time, and new-
episode-start-time fields each contain a 72-bit
unsigned binary integer in the rightmost bits and
zeros in the leftmost 56 bits. The old-episode-base-
offset and new-episode-base-offset fields each con-
tain a 72-bit signed binary integer in the rightmost
bits, and the sign bit in bit 56 is extended to the left
56 bits to form a 128-bit signed binary integer.

Programming Note: The PTFF-QSIE function is
available when the multiple-epoch facility is installed
in the configuration.

Function 13: PTFF-QTOUE (Query TOD
Offset User Extended)
The parameter block used for the function has the fol-
lowing format:

The PTFF-QTOUE function is analogous to the
PTFF-QTOU function, except each field is 128 bits,
rather than 64 bits.

The physical-clock field contains a 72-bit unsigned
binary integer in the rightmost bits, and bits 0-55 are
stored as zeros. The TOD-offset, logical-TOD-offset,
TOD-epoch-difference, and TOD-user-specified-
epoch-difference fields each contain a 72-bit signed
binary integer in the rightmost bits. The sign bit in bit
56 is extended to the left 56 bits to form a 128-bit
signed binary integer.

Programming Note: The PTFF-QTOUE function is
available when the multiple-epoch facility is installed
in the configuration.

Hex Dec
00 0 Physical Clock (0:31)

pb.Tu
04 4 Physical Clock (32:63)
08 8 Physical Clock (64:95)
0C 12 Physical Clock (96:127)
10 16 Old Episode Start Time (0:31)

pb.old.s
14 20 Old Episode Start Time (32:63)
18 24 Old Episode Start Time (64:95)
1C 28 Old Episode Start Time (96:127)
20 32 Old Episode Base Offset (0:31)

pb.old.b
24 36 Old Episode Base Offset (32:63)
28 40 Old Episode Base Offset (64:95)
2C 44 Old Episode Base Offset (96:127)
30 48 Old Episode Fine-Steering Rate pb.old.f
34 52 Old Episode Gross-Steering Rate pb.old.g
38 56 New Episode Fine-Steering Rate pb.new.f
3C 60 New Episode Gross-Steering Rate pb.new.g
40 64 New Episode Start Time (0:31)

pb.new.s
44 68 New Episode Start Time (32:63)
48 72 New Episode Start Time (64:95)
4C 76 New Episode Start Time (96:127)
50 80 New Episode Base Offset (0:31)

pb.new.b
54 84 New Episode Base Offset (32:63)
58 88 New Episode Base Offset (64:95)
5C 92 New Episode Base Offset (96:127)

0 31

Figure 10-61. Parameter Block for PTFF-QSIE (Query
Steering Information Extended)

Hex Dec
00 0 Physical Clock (0:31)

pb.Tu
04 4 Physical Clock (32:63)
08 8 Physical Clock (64:96)
0C 12 Physical Clock (96:127)
10 16 TOD Offset (0:31)

pb.d
14 20 TOD Offset (32:63
18 24 TOD Offset (64:95)
1C 28 TOD Offset (96:127)
20 32 Logical TOD Offset (0:31)

pb.dl
24 36 Logical TOD Offset (32:63)
28 40 Logical TOD Offset (64:95)
2C 44 Logical TOD Offset (96:127)
30 48 TOD Epoch Difference (0:31)

pb.ed
34 52 TOD Epoch Difference (32:63)
38 56 TOD Epoch Difference (64:95)
3C 60 TOD Epoch Difference (96:127)
40 64 TOD User Specified Epoch Difference (0:31)

pb.edu
44 68 TOD User Specified Epoch Difference (32:63)
48 72 TOD User Specified Epoch Difference (64:95)
4C 76 TOD User Specified Epoch Difference (96:127)

0 31

Figure 10-62. Parameter Block for PTFF-QTOUE (Query
TOD Offset User Extended)

10-88 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 T

IM
IN

G
 F

A
C

IL
IT

Y
 F

U
N

C
T

IO
N Function 65: PTFF-STO (Set TOD Offset)

The parameter block used for the function has the fol-
lowing format:

The function specifies a value that is to replace the
TOD epoch difference; no new episode is scheduled
and the change takes effect immediately. The func-
tion operates only on the TOD epoch difference (D),
and the change takes place immediately. The func-
tion operates on the combined TOD-epoch difference
(D = SCO + Du) and does not modify the sync-check
offset. If the sync-check offset is nonzero, a subse-
quent sync-check-offset correction will modify the
TOD epoch difference to reflect the amount of the
correction. Depending on the TOD clock resolution
capability of the model, a model dependent number
of the contiguous rightmost bits of bits 32-63 may be
ignored by the machine and treated as if they were
zeros.

Programming Note: When the multiple-epoch facil-
ity is installed, the PTFF-STO function is deprecated,
and the PTFF-STOE function should be used.

PTFF-STO provides no means by which an epoch
index can be set. When the multiple-epoch facility is
installed, the use of PTFF-STO may result in incon-
sistent values stored by SET CLOCK EXTENDED if
the epoch index was previously set to a nonzero
value.

At some future date, the PTFF-STO function may be
removed from the architecture.

Function 69: PTFF-STOU (Set TOD Offset
User)
The parameter block used for the function has the fol-
lowing format:

The function specifies a value that is to replace the
user-specified portion of the TOD epoch difference;
no new episode is scheduled and the change takes
effect immediately. Depending on the TOD clock res-
olution capability of the model, a model dependent
number of the low order bits of bits 32:63 may be
ignored by the machine and treated as if they were
zeros.

When the multiple-epoch facility is installed, the
PTFF-STOU function is deprecated, and the PTFF-
STOUE function should be used.

Programming Note: At some future date, the PTFF-
STOU function may be removed from the architec-
ture.

Function 73: PTFF-STOE (Set TOD Offset
Extended)
The parameter block used for the function has the fol-
lowing format:

The PTFF-STOE function is analogous to the PTFF-
STO function, except that the new-TOD-epoch-differ-
ence field is 128 bits for PTFF-STOE.

The new-TOD-epoch-difference field contains a 72-
bit signed binary in the rightmost bits. Bits 0-56 of the
field should contain either all zeros or all ones corre-

Hex Dec
00 0 New TOD Epoch Difference (0:31)

pb.d
04 4 New TOD Epoch Difference (32:63)

0 31

Figure 10-63. Parameter Block for PTFF-STO (Set TOD
Offset)

Hex Dec
00 0 New TOD User Specified Epoch Difference

(0:31)
pb.du

04 4 New TOD User Specified Epoch
Difference(32:63)
0 31

Figure 10-64. Parameter Block for PTFF-STOU (Set TOD
Offset User)

Hex Dec
00 0 New TOD Epoch Difference (0:31)

pb.ed
04 4 New TOD Epoch Difference (32:63)
08 8 New TOD Epoch Difference (64:95)
0C 12 New TOD Epoch Difference (96:127)

0 31

Figure 10-65. Parameter Block for PTFF-STOE (Set TOD
Offset Extended)

Control Instructions 10-89

P
E

R
F

O
R

M
 T

IM
IN

G
 F

A
C

IL
IT

Y
 F

U
N

C
T

IO
Nsponding to the sign of the new TOD epoch differ-

ence in bit 56, thus forming a 128-bit signed binary
integer in the field. If a mixture of zeros and ones
appear in bits 0-56, the results are unpredictable.

The function specifies a value that is to replace the
TOD epoch difference; no new episode is scheduled
and the change takes effect immediately. The func-
tion operates only on the TOD epoch difference (D);
no new episode is scheduled, and the change takes
place immediately. The function operates on the
combined TOD-epoch difference (D = SCO + Du)
and does not modify the sync-check offset. If the
sync-check offset is nonzero, a subsequent sync-
check-offset correction will modify the TOD epoch
difference to reflect the amount of the correction.

Bit 127 of the new-TOD-epoch-difference field corre-
sponds to a clock unit. Depending on the TOD-clock-
resolution capability of the model, a model depen-
dent number of the contiguous rightmost bits of bits
96-127 may be ignored by the machine and treated
as if they were zeros.

Programming Note: The PTFF-STOE function is
available when the multiple-epoch facility is installed
in the configuration.

Function 77: PTFF-STOUE (Set TOD
Offset User Extended)
The parameter block used for the function has the fol-
lowing format:

The PTFF-STOUE function is analogous to the
PTFF-STOU function, except that the new-TOD-
epoch-difference field is 128 bits for PTFF-STOUE.

The new-user-specified-TOD-epoch-difference field
contains a 72-bit signed binary in the rightmost bits.
Bits 0-56 of the field should contain either all zeros or
all ones corresponding to the sign of the new user-
specified TOD epoch difference in bit 56, thus form-

ing a 128-bit signed binary integer in the field. If a
mixture of zeros and ones appear in bits 0-56, the
results are unpredictable.

The function specifies a value that is to replace the
user-specified portion of the TOD epoch difference;
no new episode is scheduled and the change takes
effect immediately.

Bit 127 of the new-user-specified TOD-epoch-differ-
ence field corresponds to a clock unit. Depending on
the TOD clock resolution capability of the model, a
model dependent number of the contiguous right-
most bits of bits 96-127 may be ignored by the
machine and treated as if they were zeros.

Programming Note: The PTFF-STOUE function is
available when the multiple-epoch facility is installed
in the configuration.

Special Conditions

A privileged operation exception is recognized if a
PTFF control function is issued in the problem state.

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. Bit 56 of general register 0 is not zero.

2. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

Resulting Condition Code:

0 Requested function performed
1 --
2 --
3 Requested function not available

Program Exceptions:

• Access (fetch, parameter block for control func-
tions; store, parameter block for query functions)

• Operation (if the TOD-clock-steering facility
instruction is not installed)

• Privileged operation (attempt to execute a PTFF
control function in the problem state)

• Specification
• Transaction constraint

Hex Dec
00 0 New User-Specified TOD Epoch Diff. (0:31)

pb.ed
04 4 New User-Specified TOD Epoch Diff. (32:63)
08 8 New User-Specified TOD Epoch Diff. (64:95)
0C 12 New User-Specified TOD Epoch Diff. (96:127)

0 31

Figure 10-66. Parameter Block for PTFF-STOUE (Set TOD
Offset User Extended)

10-90 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 T

IM
IN

G
 F

A
C

IL
IT

Y
 F

U
N

C
T

IO
N The priority of execution for the PTFF instruction is

shown in Figure 10-67.

Programming Notes:

1. When the STP-hardware-based-TOD-clock-
steering facility is not installed, the physical time
(pb.Tu) returned in the parameter block for PTFF-
QTO, PTFF-QTOU, and PTFF-QSI is the current
value of the physical clock, but with zeros in posi-
tions to the right of the bit position incremented
concurrently with each TOD-offset-update event.
This value is not necessarily unique. The same
value may be returned if the PTFF instruction is
issued multiple times on the same CPU or issued
at approximately the same time on different
CPUs.

2. When the STP-hardware-based-TOD-clock-
steering facility is not installed, the 64-bit value of
the physical clock at the most recent TOD-offset-
update event (pb.Tu) returned by PTFF-QTO,
PTFF-QTOU, and PTFF-QSI may be used by the
program to ensure that all events during a short
routine occurred with no intervening TOD-offset-
update events. This can be accomplished by
issuing one of these queries at the beginning of
the routine and the other at the end and reiterat-
ing if the value of pb.Tu before and the value of
pb.Tu after are different.

3. When the STP-hardware-based-TOD-clock-
steering facility is installed, there are no TOD-off-
set-update events, and pb.Tu reports the current
value of the physical clock. Steering episode
changes are reflected in the old and new episode
start times.

4. For Query Steering Information, pb.Tu can be
used to determine whether the machine is oper-
ating in the old or new episode. When pb.new.s
pb.Tu, the machine is operating in the new epi-
sode, and none of the information returned by
the query has changed since the most recent
TOD-offset-update event. When pb.new.s >
Pb.Tr, the machine is operating in the old epi-
sode, a new episode has been scheduled and
has not yet taken effect. The program should
avoid any dependency on the new episode val-
ues returned in this case, as it is possible the val-
ues may change again before the new episode
takes effect.

5. Two or more executions of PTFF-QPT within a
short period of time, either on the same or differ-
ent CPUs, do not appear to step backwards, but
are not necessarily unique. Thus, it is not always
possible to use the values to determine the
sequence of execution.

6. The Network Time Protocol (NTP) is used exten-
sively in the Internet. A description of NTP may
be found in Request for Comments (RFC) 1305.
Figure 10-69 on page 10-92 shows the value of
the TOD clock and NTP timestamp for 00:00:00
(0 am), UTC time, for several dates: January 1,
1900, January 1, 1972, and for that instant in
time just after each of the 27 leap seconds that
will have occurred through January, 2017. Each
of these leap seconds is inserted in the UTC time
scale beginning at 23:59:60 UTC of the day pre-
vious to the one listed and ending at 00:00:00
UTC of the day listed. Also included are values
for the beginning of each year since the most
recent leap second. Figure 10-68 on page 10-91
shows the values of the TOD clock and NTP
timestamp for those instants just after the left-
most bit of one or the other has changed. For
instants in the future, the number of leap sec-

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Operation exception.

7.B Transaction constraint.

8. Specification exception due to bit 56 of general
register 0 being one or bits 57-63 of general
register 0 specifying an unassigned or
uninstalled function code.

9. Privileged-operation exception due to attempt to
issue PTFF control function in the problem state.

10. Condition code 3 due to a control function not
available in supervisor state.

11. Access exceptions for an access to the
parameter block.

12. Condition code 0 indicating successful
completion.

Figure 10-67. Priority of Execution: PERFORM TIMING
FACILITY FUNCTION (PTFF)

Control Instructions 10-91

P
E

R
F

O
R

M
 T

IM
IN

G
 F

A
C

IL
IT

Y
 F

U
N

C
T

IO
Nonds must be applied and this value is not yet

known.

YYYY MM DD hh mm ss TOD Clock (Hex) NTP Timestamp (Hex)
1968 01 20 03:14:08.000000 7A12 0000 0000 0000 8000 0000 0000 0000
1971 05 11 11:56:53.685248 8000 0000 0000 0000 8637 BD05 AF6C 69B5*
2036 02 07 06:28:16.000000 F424 0000 0000 0000+ 0000 0000 0000 0000
2042 09 17 23:53:47.370496– 0000 0000 0000 0000 0C6F 7A0B 5ED8 D36B*–

Explanation:

* Value is not exact.
+ Leap seconds must be added to this value.
– Leap seconds must be subtracted from this value.

Figure 10-68. TOD Clock and NTP Timestamps When a Leftmost Bit Changes

10-92 The z/Architecture CPU Architecture

P
E

R
F

O
R

M
 T

O
P

O
L

O
G

Y
 F

U
N

C
T

IO
N

PERFORM TOPOLOGY FUNCTION

PTF R1 [RRE]

The contents of general register R1 specify a function
code in bit positions 56-63, as illustrated in
Figure 10-70.

Year Month Day
Leap
Sec. TOD Clock (Hex) NTP Timestamp (Hex)

1900 1 1 0000 0000 0000 0000 0000 0000 0000 0000
1972 1 1 8126 D60E 4600 0000 876C E580 0000 0000
1972 7 1 1 820B A981 1E24 0000 885C D680 0000 0000
1973 1 1 2 82F3 00AE E248 0000 894F 6A80 0000 0000
1974 1 1 3 84BD E971 146C 0000 8B30 9E00 0000 0000
1975 1 1 4 8688 D233 4690 0000 8D11 D180 0000 0000
1976 1 1 5 8853 BAF5 78B4 0000 8EF3 0500 0000 0000
1977 1 1 6 8A1F E595 20D8 0000 90D5 8A00 0000 0000
1978 1 1 7 8BEA CE57 52FC 0000 92B6 BD80 0000 0000
1979 1 1 8 8DB5 B719 8520 0000 9497 F100 0000 0000
1980 1 1 9 8F80 9FDB B744 0000 9679 2480 0000 0000
1981 7 1 10 9230 5C0F CD68 0000 994A 4900 0000 0000
1982 7 1 11 93FB 44D1 FF8C 0000 9B2B 7C80 0000 0000
1983 7 1 12 95C6 2D94 31B0 0000 9D0C B000 0000 0000
1985 7 1 13 995D 40F5 17D4 0000 A0D0 6880 0000 0000
1988 1 1 14 9DDA 69A5 57F8 0000 A585 6380 0000 0000
1990 1 1 15 A171 7D06 3E1C 0000 A949 1C00 0000 0000
1991 1 1 16 A33C 65C8 7040 0000 AB2A 4F80 0000 0000
1992 7 1 17 A5EC 21FC 8664 0000 ADFB 7400 0000 0000
1993 7 1 18 A7B7 0ABE B888 0000 AFDC A780 0000 0000
1994 7 1 19 A981 F380 EAAC 0000 B1BD DB00 0000 0000
1996 1 1 20 AC34 336F ECD0 0000 B581 9380 0000 0000
1997 7 1 21 AEE3 EFA4 02F4 0000 B674 2780 0000 0000
1999 1 1 22 B196 2F93 0518 0000 BA36 8E80 0000 0000
2000 1 1 22 B361 1854 4318 0000 BC17 C200 0000 0000
2001 1 1 22 B52D 42F2 F718 0000 BDFA 4700 0000 0000
2002 1 1 22 B6F8 2BB4 3518 0000 BFDB 7A80 0000 0000
2003 1 1 22 B8C3 1475 7318 0000 C1BC AE00 0000 0000
2004 1 1 22 BA8D FD36 B118 0000 C39D E180 0000 0000
2005 1 1 22 BC5A 27D5 6518 0000 C580 6680 0000 0000
2006 1 1 23 BE25 1097 973C 0000 C761 9A00 0000 0000
2009 1 1 24 C387 0CB9 BB60 0000 CD06 8600 0000 0000
2012 7 1 25 C9CC 9A70 4D84 0000 D39A 1180 0000 0000
2015 7 1 26 CF2D 54B4 FBA8 0000 D93D AC00 0000 0000
2017 1 1 27 D1E0 D681 73CC 0000 DC12 C500 0000 0000

Figure 10-69. TOD Clock and NTP Timestamps

'B9A2' / / / / / / / / R1 / / / /
0 16 24 28 31

Reserved
0 31

Reserved RC FC
32 48 56 63

Figure 10-70. General-Register R1 Format

Control Instructions 10-93

P
R

O
G

R
A

M
 C

A
L

LThe defined function codes are as follows:

Undefined function codes in the range 0-255 are
reserved for future extensions.

Upon completion, if condition code 2 is set, a reason
code is stored in bit positions 48-55 of general regis-
ter R1.

Bits 16-23 and 28-31 of the instruction are ignored.

Operation of Function Codes 0 and 1
When no exceptional conditions are detected, a pro-
cess is initiated to place all CPUs in the configuration
into the polarization specified by the function code,
and condition code 0 is set. Completion of the pro-
cess is asynchronous with respect to execution of the
instruction and may or may not be completed when
execution of the instruction completes.

Execution completes with condition code 2, and the
reason code is set, for any of the following reasons:

Operation of Function Code 2:
The topology-change-report-pending condition is
checked. When a topology-change-report is not
pending, condition code 0 is set. When a topology-
change report is pending, condition code 1 is set.

A topology change is any alteration such that the
contents of a SYSIB 15.1.2 would be different from
the contents of the SYSIB 15.1.2 prior to the topology
change.

A topology-change-report-pending condition is cre-
ated when a topology-change process completes. A
topology-change-report-pending condition is cleared
for the configuration when any of the following is per-
formed:

• Execution of PERFORM TOPOLOGY FUNC-
TION specifies function-code 2 that completes
with condition code 1.

• Subsystem reset is performed.

Special Conditions

A specification exception is recognized for either of
the following conditions:

• Bit positions 0-55 of general register R1 are not
zeros.

• An undefined function code is specified.

Resulting Condition Code: When the function
code is 0 or 1, the condition code is set as follows:

0 Topology-change initiated
1 --
2 Request rejected
3 --

When the function code is 2, the condition code is set
as follows:

0 Topology-change-report not pending
1 Topology-change report pending
2 --
3 --

Program Exceptions:

• Operation (configuration-topology facility is not
installed)

• Privileged operation
• Specification
• Transaction constraint

Programming Note: Further information on configu-
ration topology may be found in “SYSIB 15.1.2 -
15.1.6 (Configuration Topology)” on page 10-159.

PROGRAM CALL

PC D2(B2) [S]

A program-call number specified by the second-oper-
and address is used in a two-level or three-level
lookup to locate an entry-table entry (ETE). The pro-

FC Meaning

0 Request horizontal polarization.

1 Request vertical polarization.

2 Check topology-change status.

RC Reason

0 No reason specified.

1 The configuration is already polarized as specified
by the function code.

2 A topology change is already in process

'B218' B2 D2

0 16 20 31

10-94 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 C

A
L

L gram is authorized to use the ETE when the AND of
the PSW-key mask in control register 3 and the
authorization key mask in the ETE is nonzero or
when the CPU is in the supervisor state.

When the PC-type bit, bit 128 of the ETE, is zero, an
operation called basic PROGRAM CALL is per-
formed. When the PC-type bit is one, an operation
called stacking PROGRAM CALL is performed.

Basic PROGRAM CALL, in the 24-bit or 31-bit
addressing mode, loads the basic-addressing-mode
bit, bits 33-62 of the updated instruction address, and
the problem-state bit from the PSW into bit positions
32-63 of general register 14, and it leaves bits 0-31 of
this register unchanged. In the 64-bit addressing
mode, bits 0-62 of the updated instruction address
and the problem-state bit are placed in bit positions
0-63 of general register 14. In any addressing mode,
the PSW-key mask and PASN are placed in bit posi-
tions 32-63 of general register 3, and bits 0-31 of this
register remain unchanged.

Stacking PROGRAM CALL places the entire PSW
contents, except with an unpredictable PER mask,
and also the PSW-key mask, PASN, SASN, and EAX
in a linkage-stack program-call state entry that it
forms. A called-space identification, an indication of
whether the resulting addressing mode is the 64-bit
mode, the numeric part of the program-call number,
and the contents of general registers 0-15 and
access registers 0-15 also are placed in the state
entry. If the ASN-and-LX-reuse facility is installed and
enabled, the PASTEIN and SASTEIN also are placed
in the state entry.

For basic PROGRAM CALL, the extended-address-
ing-mode bit, bit 31 of the PSW, must have the same
value as the entry-extended-addressing-mode bit, bit
129 of the ETE; otherwise, a special-operation
exception is recognized. Basic PROGRAM CALL
does not change bit 31 of the PSW and, therefore,
does not switch between a basic addressing mode
(the 24-bit or 31-bit mode) and the extended
addressing mode (the 64-bit mode). In the 24-bit or
31-bit addressing mode, basic PROGRAM CALL
sets the basic-addressing-mode bit, bit 32 of the
PSW, with the value of the entry-basic-addressing-
mode bit, bit 32 of the ETE, and, thus, it may switch
between the 24-bit and 31-bit addressing modes. In
the 64-bit addressing mode, bit 32 of the PSW
remains unchanged.

Stacking PROGRAM CALL, when bit 129 of the ETE
is zero, sets bit 31 of the PSW to zero and sets bit 32
of the PSW with the value of bit 32 of the ETE. When
bit 129 of the ETE is one, stacking PROGRAM CALL
sets bits 31 and 32 of the PSW to one. Thus, stack-
ing PROGRAM CALL can set the 24-bit, 31-bit, or
64-bit addressing mode.

When the resulting addressing mode is the 24-bit or
31-bit mode, both basic and stacking PROGRAM
CALL place bits 33-62 of the entry instruction
address in the ETE, which are bits 33-62 of the ETE,
with 33 leftmost and one rightmost zeros appended,
in bit positions 64-127 of the PSW as the new
instruction address, and they place the entry-prob-
lem-state bit, bit 63 of the ETE, in bit position 15 of
the PSW as the new problem-state bit. Bits 32-63 of
the entry parameter in the ETE are placed in bit posi-
tions 32-63 of general register 4, and bits 0-31 of this
register remain unchanged.

When the resulting addressing mode is the 64-bit
mode, both basic and stacking PROGRAM CALL
place bits 0-62 of the entry instruction address, bits
0-62 of the ETE, with one rightmost zero appended,
in bit positions 64-127 of the PSW, and they place bit
63 of the ETE in bit position 15 of the PSW. Bits 0-63
of the entry parameter in the ETE are placed in gen-
eral register 4.

Basic PROGRAM CALL ORs the entry key mask
from the ETE into the PSW-key mask in control regis-
ter 3. Stacking PROGRAM CALL does the same, or it
replaces the PSW-key mask with the entry key mask,
as determined by the PSW-key-mask control in the
ETE.

Stacking PROGRAM CALL optionally replaces the
PSW key in the PSW and the EAX in control register
8 from the ETE, and it sets the address-space-con-
trol bits in the PSW, as determined by control bits in
the ETE.

The ETE causes a space-switching operation to
occur if it contains a nonzero ASN. When the ETE
contains a zero ASN, the operation is called PRO-
GRAM CALL to current primary (PC-cp); when the
ETE contains a nonzero ASN, the operation is called
PROGRAM CALL with space switching (PC-ss).
When space switching is specified, the new PASN is
loaded into control register 4 from the ETE, and a
new primary-ASTE origin (PASTEO) is loaded into
control register 5, also from the ETE. From the
PASTE, a new primary ASCE (PASCE) and AX are

Control Instructions 10-95

P
R

O
G

R
A

M
 C

A
L

Lloaded into control registers 1 and 4, respectively. If
ASN-and-LX reuse is enabled, a new primary ASTE
instance number (PASTEIN) is loaded into control
register 4, also from the PASTE.

In both PC-cp and PC-ss, the SASN and secondary
ASCE (SASCE) are set equal to the original PASN
and PASCE, respectively, and, if ASN-and-LX reuse
is enabled, the secondary ASTE instance number
(SASTEIN) in control register 3 is set equal to the
original PASTEIN. However, the space-switching
stacking PROGRAM CALL operation may instead set
the SASN and SASCE equal to the new PASN and
PASCE, respectively, and, if ASN-and-LX reuse is
enabled, set the SASTEIN equal to the new
PASTEIN, as determined by a control bit in the ETE.

In a PC-ss to the base space of the dispatchable unit
when the dispatchable unit is subspace active, bits
0-55 and 58-63 of the new PASCE are replaced by
the same bits of the ASCE in the ASTE for the sub-
space in which the dispatchable unit last had control.
This occurs before the possible setting of the SASCE
equal to the PASCE.

PROGRAM CALL PC-Number Translation

The second-operand address is not used to address
data; instead, the rightmost 20 or 32 bits of the
address are used as a PC number divided into two
fields: a linkage index (LX) and an entry index (EX).
The entry index is always the rightmost eight bits of
the PC number. When the ASN-and-LX-reuse is not
installed or is not enabled by a one value of the ASN-
and-LX-reuse control, bit 44 of control register 0, the
PC number is 20 bits, and the leftmost 12 bits of the
number are the linkage index. In this case, the sec-
ond-operand address has the following format:

Bit 44 of the effective address has no special mean-
ing and may be zero or one.

When the ASN-and-LX-reuse facility is installed and
enabled, referred to simply by saying that ASN-and-
LX reuse is enabled, the linkage index is further
divided into a linkage first index (LFX) and a linkage

second index (LSX). The linkage second index is
always the five bits immediately on the left of the
entry index. The size and format of the linkage first
index depend on whether the PC number is 20 bits or
32 bits, which in turn depends on whether bit 44 of
the second-operand address is zero or one, respec-
tively. In these cases, the second-operand address
has the following formats:

When ASN-and-LX reuse is enabled and bit 44 of the
second-operand address is zero, the PC number is
20 bits, and the linkage first index is bits 44-50, or
bits 45-50 (LFX2) with a zero appended on the left.
Thus, the linkage first index is seven bits of which the
leftmost bit is always zero. When bit 44 is one, the
PC number is 32 bits, and the linkage first index is
bits 45-50 (LFX2) with bits 32-43 (LFX1) appended
on the left, or 18 bits, and bit 44 is not a numeric part
of the PC number. However, a linkage first table can
contain at most 16,384 entries, and, therefore, the
leftmost four bits of the linkage first index, bits 32-35
of the second-operand address, must always be
zeros; otherwise, an LFX-translation exception is rec-
ognized.

Linkage Index (LX): When ASN-and-LX reuse is
not enabled, bits 44-55 of the second-operand
address are the linkage index and are used to select
an entry from the linkage table designated by the
linkage-table designation in the primary ASTE.

Second-Operand Address when ASN-and-LX Reuse Is
Not Enabled

0 31

LX EX
32 44 56 63

Second-Operand Address when ASN-and-LX Reuse Is
Enabled and Bit 44 Is Zero

0 31

LX

LFX

0 LFX2 LSX EX
32 44 45 51 56 63

Second-Operand Address when ASN-and-LX Reuse Is
Enabled and Bit 44 Is One

0 31

LX

LFX

LFX1 1 LFX2 LSX EX
32 44 45 51 56 63

10-96 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 C

A
L

L Linkage First Index (LFX): When ASN-and-LX re-
use is enabled and bit 44 of the second-operand
address is zero, bits 44-50 of the second-operand
address are the linkage first index. When ASN-and-
LX reuse is enabled and bit 44 of the second-oper-
and address is one, bits 45-50 with bits 32-43
appended on the left are the linkage first index. In
either case, the linkage first index is used to select an
entry from the linkage first table designated by the
linkage-first-table designation in the primary ASTE.

Linkage Second Index (LSX): When ASN-and-LX
reuse is enabled, bits 51-55 of the second-operand
address are the linkage second index and are used
to select an entry from the linkage second table des-
ignated by the linkage-first-table entry.

Entry Index (EX): Bits 56-63 of the second-oper-
and address are the entry index and are used to
select an entry from the entry table designated by the
linkage-table entry or the linkage-second-table entry.

When the PC number is 20 bits, bits 32-43 of the sec-
ond-operand address are ignored. Bits 0-31 of the
second-operand address are always ignored.

When ASN-and-LX reuse is enabled, the second
word of the linkage-second-table entry used contains
a linkage-second-table-entry sequence number
(LSTESN). When this LSTESN is nonzero, it must be
equal to an LSTESN specified in bit positions 0-31 of
general register 15; otherwise, an LSTE-sequence
exception is recognized. When ASN-and-LX reuse is
not enabled (including when it is not installed) or the
LSTESN in the linkage-second-table entry is zero,
bits 0-31 of general register 15 are ignored.

The 32-byte entry-table entry (ETE) has the following
format:

For basic PROGRAM CALL in the 24-bit or 31-bit
addressing mode when bit 32 of the ETE (A) is zero
(specifying the 24-bit mode), and for stacking PRO-
GRAM CALL when bits 32 (A) and 129 (G) are zeros
(specifying the 24-bit mode), bits 33-39 must be
zeros; otherwise, a PC-translation-specification
exception is recognized.

After the ETE has been fetched, if the current PSW
specifies the problem state, the current PSW-key
mask in control register 3 is tested against the AKM
field in the ETE to determine whether the program is
authorized to access this entry. The AKM and PSW-
key mask are ANDed, and, if the result is zero, a priv-
ileged-operation exception is recognized. The PSW-
key mask in control register 3 remains unchanged.
When PROGRAM CALL is executed in the supervi-
sor state, the AKM field is ignored.

If the result of the AND of the AKM and the PSW-key
mask is not zero, or if the CPU is in the supervisor
state, the execution of the instruction continues.

If bit 128 of the ETE (T) is zero, the basic PROGRAM
CALL operation is specified. If bit 128 of the ETE is
one, the stacking PROGRAM CALL operation is
specified.

Basic PROGRAM CALL

The following operations are performed when basic
PROGRAM CALL is specified.

Bit 31 of the current PSW (the extended-addressing-
mode bit) must equal bit 129 (G) of the ETE; other-
wise, a special-operation exception is recognized.

When Resulting Addressing Mode Is the 24-Bit or 31-Bit
Mode

0 31

A Entry Instruction Address P
32 33 63

When Resulting Addressing Mode Is the 64-Bit Mode

Entry Instruction Address (Part 1)
0 31

Entry Instruction Address (Part 2) P
32 63

Remaining fields (independent of addressing mode)

Authorization Key Mask ASN
64 80 95

Entry Key Mask
96 112 127

T G
R
I

K M E C S EK EEAX

128 136 140 144 159

ASTE Origin
160 186 191

Entry Parameter (Part 1)
192 223

Entry Parameter (Part 2)
224 255

Control Instructions 10-97

P
R

O
G

R
A

M
 C

A
L

LIn the 24-bit or 31-bit addressing mode, bits 97-126
of the PSW (bits 33-62 of the updated instruction
address) are placed in bit positions 33-62 of general
register 14, bit 32 of the PSW (the basic-addressing-
mode bit) is placed in bit position 32 of the register,
and bit 15 of the PSW (the problem-state bit) is
placed in bit position 63 of the register. Bits 0-31 of
the register remain unchanged.

In the 64-bit addressing mode, bits 64-126 of the
PSW (bits 0-62 of the updated instruction address)
are placed in bit positions 0-62 of general register 14,
and bit 15 of the PSW (the problem-state bit) is
placed in bit position 63 of the register.

In the 24-bit or 31-bit addressing mode, bits 32 and
33-62 of the ETE (A and the EIA), with a zero
appended on the right of bits 33-62, are placed in
PSW bit positions 32 and 97-127, respectively (the
basic-addressing-mode bit and bits 33-63 of the
instruction address). In the 64-bit addressing mode,
bits 0-62 of the ETE, with a zero appended on the
right, are placed in PSW bit positions 64-127 (the
instruction address), and PSW bit 32 remains
unchanged. In any addressing mode, bit 63 of the
ETE (P) is placed in PSW bit position 15 (the prob-
lem-state bit).

The PSW-key mask, bits 32-47 of control register 3,
is placed in bit positions 32-47 of general register 3,
and the current PASN, bits 48-63 of control register
4, is placed in bit positions 48-63 of general register
3. Bits 0-31 of general register 3 remain unchanged.

Bits 96-111 of the ETE (the EKM) are ORed with the
PSW-key mask, bits 32-47 of control register 3, and
the result replaces the PSW-key mask in control reg-
ister 3.

In the 24-bit or 31-bit addressing mode, bits 224-255
of the ETE (bits 32-63 of the entry parameter) are
loaded into bit positions 32-63 of general register 4,
and bits 0-31 of the register remain unchanged. In
the 64-bit addressing mode, bits 192-255 of the ETE
(the entry parameter), are loaded into bit positions
0-63 of general register 4.

Stacking PROGRAM CALL

The following operations are performed when stack-
ing PROGRAM CALL is specified.

The stacking process is performed to form a linkage-
stack program-call state entry and place the following

information in the state entry: current PSW (with an
unpredictable PER mask), PSW-key mask, PASN,
SASN, EAX, called-space identification, an indication
of whether the resulting addressing mode is the
64-bit mode, numeric part of the program-call num-
ber, contents of general registers 0-15, and contents
of access registers 0-15, and, if ASN-and-LX reuse is
enabled, PASTEIN and SASTEIN. This is described
in “Stacking Process” on page 5-84. The entry-type
code in the state entry is 0001101 binary.

When bit 129 of the ETE (G) is zero, bit 31 of the
PSW (the extended-addressing-mode bit) is set to
zero, and bit 32 of the ETE (A) is placed in bit posi-
tion 32 of the PSW (the basic-addressing-mode bit).
(The addressing mode is set to the 24-bit mode if bit
32 is zero or to the 31-bit mode if bit 32 is one.) When
bit 129 of the ETE is one, bits 31 and 32 of the PSW
are set to one. (The 64-bit addressing mode is set.)

When the resulting addressing mode is the 24-bit or
31-bit mode, bits 33-62 of the ETE (the EIA), with 33
leftmost and one rightmost zeros appended, are
placed in PSW bit positions 64-127 (the instruction
address). When the resulting addressing mode is the
64-bit mode, bits 0-62 of the ETE (the EIA), with one
rightmost zero appended, are placed in PSW bit
positions 64-127.

Bit 63 of the ETE (P) is placed in PSW bit position 15
(the problem-state bit).

When bit 131 of the ETE (K) is zero, bits 8-11 of the
PSW (the PSW key) remain unchanged. When bit
131 of the ETE is one, bits 136-139 of the ETE (the
EK) replace the PSW key in the PSW.

When bit 132 of the ETE (M) is zero, bits 96-111 of
the ETE (the EKM) are ORed with the PSW-key
mask, bits 32-47 of control register 3, and the result
replaces the PSW-key mask in control register 3.
When bit 132 of the ETE is one, bits 96-111 of the
ETE replace the PSW-key mask in control register 3.

When bit 133 of the ETE (E) is zero, the EAX, bits
32-47 of control register 8, remains unchanged.
When bit 133 of the ETE is one, bits 144-159 of the
ETE (the EEAX) replace the EAX in control register
8.

10-98 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 C

A
L

L When bit 134 of the ETE (C) is zero, bits 16 and 17 of
the PSW (the address-space-control bits) are set to
00 binary (primary-space mode). When bit 134 of the
ETE is one, the address-space-control bits in the
PSW are set to 01 binary (access-register mode).

When the resulting addressing mode is the 24-bit or
31-bit mode, bits 224-255 of the ETE (bits 32-63 of
the entry parameter) are loaded into bit positions
32-63 of general register 4, and bits 0-31 of this reg-
ister remain unchanged. When the resulting address-
ing mode is the 64-bit mode, bits 192-255 of the ETE
(the entry parameter), are loaded into bit positions
0-63 of general register 4.

Key-controlled protection does not apply to refer-
ences to the linkage stack, but low-address and DAT
protection do apply.

PROGRAM CALL to Current Primary (PC-cp)

If bits 80-95 of the ETE (the ASN), are zeros, PRO-
GRAM CALL to current primary (PC-cp) is specified,
and the execution of the instruction is completed after
the operations described in “PROGRAM CALL PC-
Number Translation” and either “Basic PROGRAM
CALL” or “Stacking PROGRAM CALL” have been
performed and the following operations have been
performed.

The current PASN, bits 48-63 of control register 4, is
placed in bit positions 48-63 of control register 3 to
become the current SASN.

The current PASCE in control register 1 is placed in
control register 7 to become the current SASCE.

If ASN-and-LX reuse is enabled, the current
PASTEIN, bits 0-31 of control register 4, is placed in
bit positions 0-31 of control register 3 to become the
current SASTEIN.

The basic PC-cp operation is depicted in parts 1-3 of
Figure 10-72 on page 10-102. The stacking PC-cp
operation is depicted in parts 1, 4, and 5 of the figure.

PROGRAM CALL with Space Switching (PC-ss)

If the ASN in the ETE is nonzero, PROGRAM CALL
with space switching (PC-ss) is specified, and the
execution of the instruction is completed after the
operations described in “PROGRAM CALL PC-Num-
ber Translation” and either “Basic PROGRAM CALL”

or “Stacking PROGRAM CALL” have been performed
and the following operations have been performed.

Bits 80-95 of the ETE (the ASN) are placed in bit
positions 48-63 of control register 4 as the new
PASN.

Bits 161-185 of the ETE, with six zeros appended on
the right, are used as the real address of the ASTE
designated by the new PASN. An ASX-translation
exception is recognized if bit 0 of the ASTE is one.

Bits 64-127 of the ASTE (the ASCE) are placed in
control register 1 as the new PASCE.

Bits 32-47 of the ASTE (the AX) are placed in bit
positions 32-47 of control register 4 as the new
authorization index.

If ASN-and-LX reuse is enabled, bits 352-383 of the
ASTE (the ASTEIN) are placed in bit positions 0-31
of control register 4 as the new PASTEIN.

Bits 33-57 of the ASTE address are placed in bit
positions 33-57 of control register 5 as the new pri-
mary-ASTE origin, and zeros are placed in bit posi-
tions 32 and 58-63. Bits 0-31 of the register remain
unchanged.

In basic PROGRAM CALL, or in stacking PROGRAM
CALL when bit 135 of the ETE (S) is zero, the PASN
existing before the PASN is replaced from the ETE is
placed in bit positions 48-63 of control register 3 to
become the current SASN, and the PASCE existing
before the PASCE is replaced from the ASTE is
placed in control register 7 to become the current
SASCE. If ASN-and-LX reuse is enabled, the
PASTEIN existing before the PASTEIN is replaced
from the ASTE is placed in bit positions 0-31 of con-
trol register 3 to become the current SASTEIN. (The
SASN and SASCE are set equal to the old PASN and
PASCE, respectively, and, if ASN-and-LX reuse is
enabled, the SASTEIN is set equal to the old
PASTEIN.)

In stacking PROGRAM CALL when bit 135 of the
ETE (S) is one, the SASN is replaced by the PASN
after the PASN is replaced from the ETE, and the
SASCE is replaced by the PASCE after the PASCE is
replaced from the ASTE. If ASN-and-LX reuse is
enabled, the SASTEIN is replaced by the PASTEIN
after the PASTEIN is replaced from the ASTE. (The
SASN and SASCE are set equal to the new PASN
and PASCE, respectively, and, if ASN-and-LX reuse

Control Instructions 10-99

P
R

O
G

R
A

M
 C

A
L

Lis enabled, the SASTEIN is set equal to the new
PASTEIN.)

The description in this paragraph applies to use of
the subspace-group facility. After the new PASCE
has been placed in control register 1 and the new pri-
mary-ASTE origin has been placed in control register
5, if (1) the subspace-group-control bit, bit 54, in the
PASCE is one, (2) the dispatchable unit is subspace
active, and (3) the primary-ASTE origin designates
the ASTE for the base space of the dispatchable unit,
then bits 0-55 and 58-63 of the PASCE are replaced
by the same bits of the ASCE in the ASTE for the
subspace in which the dispatchable unit last had con-
trol. This replacement occurs before a replacement
of the SASCE in control register 7 by the PASCE.
Further details are in “Subspace-Replacement Oper-
ations” on page 5-70.

The PC-ss operation is depicted in parts 1 and 4-6 of
Figure 10-72 on page 10-102.

PROGRAM CALL Serialization

For both the PC-cp and PC-ss operations, a serial-
ization and checkpoint-synchronization function is
performed before the operation begins and again
after the operation is completed. However, it is unpre-
dictable whether or not a store into a trace-table entry
or linkage-stack entry from which a subsequent
instruction is fetched will be observed by the CPU
that performed the store.

Special Conditions

The basic PROGRAM CALL operation can be per-
formed successfully only when (1) the CPU is in the
primary-space mode at the beginning of the opera-
tion, (2) the subsystem-linkage control, bit 0 of the
linkage-table designation or linkage-first-table desig-
nation in the current primary ASN-second-table entry,
is one, and (3) the extended-addressing-mode bit, bit
31 of the current PSW, equals the entry-extended-
addressing-mode bit, bit 129 of the entry-table entry.
Stacking PROGRAM CALL can be performed suc-
cessfully only when the CPU is in the primary-space
mode or access-register mode at the beginning of
the operation and the subsystem-linkage control is
one. In addition, PC-ss can be performed success-
fully only when the ASN-translation control, bit 44 of

control register 14, is one. If any of these rules is vio-
lated, a special-operation exception is recognized.

When ASN-and-LX reuse is enabled and the
LSTESN in the linkage-second-table entry is non-
zero, that LSTESN must be equal to the LSTESN
specified in bit positions 0-31 of general register 15;
otherwise, an LSTE-sequence exception is recog-
nized.

A stack-full or stack-specification exception may be
recognized during the stacking process.

When, for PC-ss, the primary space-switch-event-
control bit, bit 57 of control register 1, is one either
before or after the execution of the instruction, a
space-switch-event program interruption occurs after
the operation is completed. A space-switch-event
program interruption also occurs after the completion
of a PC-ss operation if a PER event is reported.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch or store, except for key-controlled
protection, linkage-stack entry)

• Addressing (linkage-table or linkage-first-table
designation in primary ASN-second-table entry;
linkage-table entry; linkage-first-table entry; link-
age-second-table entry, entry-table entry; ASN-
second-table entry, PC-ss only)

• ASX translation (PC-ss only)
• EX translation
• LFX translation
• LSTE sequence
• LSX translation
• LX translation
• PC-translation specification
• Privileged operation (AND of AKM and PSW-key

mask is zero in the problem state)
• Space-switch event (PC-ss only)
• Special operation
• Stack full (stacking PC only)
• Stack specification (stacking PC only)
• Subspace replacement (PC-ss only)
• Trace
• Transaction constraint

10-100 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 C

A
L

L The priority of recognition of program exceptions for
the instruction is shown in Figure 10-71.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Special-operation exception due to DAT being off
or the CPU being in secondary-space mode or
home-space mode.

7.C Transaction constraint.

8.A Trace exceptions.

8.B.1 Addressing exception for access to linkage-table
designation or linkage-first-table designation in
primary ASN-second-table entry.

8.B.2 Special-operation exception due to subsystem-
linkage control in linkage-table designation or
linkage-first-table designation being zero.

Note: The LFX-translation, LSX-translation, and
LSTE-sequence exceptions can be recognized
only if ASN-and-LX reuse is enabled, and the
LX-translation exception cannot be recognized in
that case.

8.B.3 LX-translation or LFX-translation exception due
to linkage-table or linkage-first-table entry,
respectively, being outside table.

8.B.4 Addressing exception for access to linkage-table
or linkage-first-table entry.

8.B.5 LX-translation or LFX-translation exception due
to I bit (bit 0) in linkage-table or linkage-first-table
entry, respectively, being one.

8.B.6 Addressing exception for access to linkage-
second-table entry.

8.B.7 LSX-translation exception due to I bit (bit 0) in
linkage-second-table entry being one.

8.B.8 LSTE-sequence exception due to LSTE
sequence number in linkage-second-table entry
being nonzero and not equal to bits 0-31 of
general register 15.

8.B.9 EX-translation exception due to entry-table entry
being outside table.

8.B.10 Addressing exception for access to entry-table
entry.

Figure 10-71. Priority of Execution: PROGRAM CALL
(Part 1 of 4)

8.B.11 Special-operation exception due to the CPU
being in access-register mode or extended-
addressing-mode bit, bit 31 of PSW, not being
equal to entry-extended-addressing-mode bit, bit
129 of entry-table entry (basic PC only).

8.B.12 PC-translation-specification exception due to
invalid combination (bits 33-39 not zeros when
resulting addressing mode is 24 bit) in entry-
table entry.

8.B.13 Privileged-operation exception due to zero result
from ANDing PSW-key mask and AKM in the
problem state.

8.B.14 Special-operation exception due to ASN-
translation control, bit 44 of control register 14,
being zero (PC-ss only).

8.B.15 Addressing exception for access to ASN-second-
table entry (PC-ss only).

8.B.16 ASX-translation exception due to I bit (bit 0) in
ASN-second- table entry being one (PC-ss only).

Note: Subspace-replacement exceptions, which
are not shown in detail in this figure, can occur
with any priority after 8.B.16 and before 9.

8.B.17 Access exceptions (fetch) for entry descriptor of
the current linkage-stack entry (stacking PC
only).

Note: Exceptions 8.B.18-8.B.23 can occur only if
there is not enough remaining free space in the
current linkage-stack section.

8.B.18 Stack-specification exception due to remaining-
free-space value in current linkage-stack entry
not being a multiple of 8.

8.B.19 Access exceptions (fetch) for second word of the
trailer entry of the current section. The entry is
presumed to be a trailer entry; its entry-type field
is not examined (stacking PC only).

8.B.20 Stack-full exception due to forward-section
validity bit in the trailer entry being zero (stacking
PC only).

8.B.21 Access exceptions (fetch) for entry descriptor of
the header entry of the next section (stacking PC
only). This entry is presumed to be a header
entry; its entry-type field is not examined.

Figure 10-71. Priority of Execution: PROGRAM CALL
(Part 2 of 4)

Control Instructions 10-101

P
R

O
G

R
A

M
 C

A
L

L

Programming Note: The effective address from
which a PC number is derived is subject to the
addressing mode in the current PSW. Therefore, bits
0-39 of the effective address in the 24-bit addressing
mode, and bits 0-32 in the 31-bit addressing mode,
are treated as containing zeros.

8.B.22 Stack-specification exception due to not enough
remaining free space in the next section
(stacking PC only).

8.B.23 Access exceptions (store) for second word of the
header entry of the next section. If there is no
exception, the header is now called the current
entry.

8.B.24 Access exceptions (store) for entry descriptor of
the current entry and for the new state entry
(stacking PC only).

Figure 10-71. Priority of Execution: PROGRAM CALL
(Part 3 of 4)

9. Space-switch event (PC-ss only).

Figure 10-71. Priority of Execution: PROGRAM CALL
(Part 4 of 4)

10-102 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 C

A
L

L

Figure 10-72. Execution of PROGRAM CALL (Part 1 of 5).

T=0

AND

E=0

No

NoYes

Entry-Table Entry

AKM ASN EKM T G EP 32-63ASTE Address
/

/

P

PSW
after

E A 0IA 0-62

EIA PA

Shown again below

(with 33 zeros on left)

GR4
EP 32-6332-63

after

AKM ASN EKM

From above

Privileged-Op.
Exception if Zero in
Problem State

PKM SASN
CR3
32-63
before

OR

PKM SASN

PKM PASN
GR3
32-63
after

AX PASN

PASCECR1
before

SASCECR7
after

ASN
= 0
?

PC-cp
Instruction
Complete

PC-ss
Operations
on ASTE

(see part 5)

E=0

P

PSW
before

E A 0IA 0-62

IA 33-62A P
GR14
32-63
after

IA 33-62

Special-Op.
Exception=0?

Basic PC-cp and PC-ss in 24-Bit or 31-Bit Addressing Mode

SASTEIN*

PASTEIN*CR4
before

CR3
after

* If ASN-and-LX-Reuse Enabled

Control Instructions 10-103

P
R

O
G

R
A

M
 C

A
L

L

Figure 10-72. Execution of PROGRAM CALL (Part 2 of 5).

T=0

AND

E=1 A=1

No

NoYes

Entry-Table Entry

AKM ASN EKM T G EPASTE Address
/

/

P

PSW
after

E A 0IA 0-62

EIA P

Shown again below

AKM ASN EKM

From above

Privileged-Op.
Exception if Zero in
Problem State

PKM SASN
CR3
32-63
before

OR

PKM SASN

PKM PASN
GR3
32-63
after

AX PASN

PASCECR1
before

SASCECR7
after

ASN
= 0
?

PC-cp
Instruction
Complete

PC-ss
Operations
on ASTE

(see part 5)

E=1 A=1

P

PSW
before

E A 0IA 0-62

IA 0-62 P

Special-Op.
Exception=1?

Basic PC-cp and PC-ss in 64-Bit Addressing Mode

SASTEIN*

PASTEIN*CR4
before

CR3
after

EPGR4
after

GR14
after

* If ASN-and-LX-Reuse Enabled

10-104 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 C

A
L

L

Figure 10-72. Execution of PROGRAM CALL (Part 3 of 5).

AND

NoYes

Entry-Table Entry

T G EPASTE Adr.

PSW
after

E A 0

EIA P

Shown again below

From above

Privileged-Op.
Exception if Zero in
Problem State

PKM SASN

OR

PKM SASN

AX PASN

PASCECR1
before

SASCECR7
after

ASN
= 0
?

PC-cp
Instruction
Complete

PC-ss
Operations
on ASTE

(see part 5)

PSW
before

Stacking PC-cp and PC-ss from 24-Bit or 31-Bit Addressing Mode to 64-Bit Addressing Mode

SASTEIN*

PASTEIN*CR4
before

CR3
after

EPGR4
after

K M E SC EK EEAXEKMASNAKM

EKMASNAKM

0 C
/

/
P IA 0-62

/

/
Key

/

/

/

/

1 1

EAX
CR8
32-63
after

EAX
CR8
32-63
before

SASTEIN*
CR3
before

M=0

M=1

LS

LS
LS

LS LSLS

LS

/

/

K=1

E=1

PC-cp, or
PC-ss and
S=0 **

PC-cp, or
PC-ss and
S=0 **

PC-cp, or
PC-ss and
S=0 **

T=1
G=1

*: Operations on the ASTE instance number performed if ASN-and-LX-reuse enabled
**: If PC=ss and S-1, SASN is replaced by new PASN, SASCE is replaced by new PASCE,

and, if ASN-and-LX reuse is enabled, SASTEIN is replaced by new PASTEIN
***: Resulting PKM selected from output of OR operation (M=0) or EKM (M=1)

Control Instructions 10-105

P
R

O
G

R
A

M
 C

A
L

L

Figure 10-72. Execution of PROGRAM CALL (Part 4 of 5).

AND

NoYes

Entry-Table Entry

T G EP 32-63ASTE Adr.

PSW
after

E A 0

EIA P

Shown again below

From above

Privileged-Op.
Exception if Zero in
Problem State

PKM SASN

OR

PKM SASN

AX PASN

PASCECR1
before

SASCECR7
after

ASN
= 0
?

PC-cp
Instruction
Complete

PC-ss
Operations
on ASTE

(see part 5)

PSW
before

Stacking PC-cp and PC-ss from 64-Bit Addressing Mode to 24-Bit or 31-Bit Addressing Mode

SASTEIN*

PASTEIN*CR4
before

CR3
after

K M E SC EK EEAXEKMASNAKM

EKMASNAKM

0 C
/

/
P IA 0-62

/

/
Key

/

/

/

/

0

EAX
CR8
32-63
after

EAX
CR8
32-63
before

SASTEIN*
CR3
before

M=0

M=1

LS

LS
LS

LS LSLS

LS

/

/

PC-cp, or
PC-ss and
S=0 **

PC-cp, or
PC-ss and
S=0 **

PC-cp, or
PC-ss and
S=0 **

A

(with 33 zeros on left)

Key set when K=1

EAX set when E=1

T=1
G=0

EP 32-63
GR4
32-63
after

*: Operations on the ASTE instance number performed if ASN-and-LX-reuse enabled
**: If PC=ss and S-1, SASN is replaced by new PASN, SASCE is replaced by new PASCE,

and, if ASN-and-LX reuse is enabled, SASTEIN is replaced by new PASTEIN
***: Resulting PKM selected from output of OR operation (M=0) or EKM (M=1)

10-106 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 R

E
T

U
R

N

PROGRAM RETURN

PR [E]

The PSW, except for the PER-mask bit, saved in the
last linkage-stack state entry is restored as the cur-
rent PSW. The PER mask in the current PSW
remains unchanged. The contents of general regis-
ters 2-14 and access registers 2-14 also are restored
from the state entry. When the entry-type code in the
entry descriptor of the state entry is 0001101 binary,
indicating a program-call state entry, (1) the primary
ASN (PASN), secondary ASN (SASN), PSW-key

mask (PKM), and extended authorization index
(EAX) in the control registers also are restored from
the state entry and (2) if the ASN-and-LX-reuse facil-
ity is installed and is enabled by a one value of the
ASN-and-LX-reuse control, bit 44 of control register
0, the primary ASTE instance number (PASTEIN)
and secondary ASTE instance number (SASTEIN) in
the control registers also are restored from the state
entry. When the entry-type code is 0001100 binary,
indicating a branch state entry, the current PASN,
SASN, PKM, EAX, PASTEIN, and SASTEIN remain
unchanged.

The last state entry is located, and information in it is
restored, as described in “Unstacking Process” on
page 5-86. The state entry is logically deleted from

Figure 10-72. Execution of PROGRAM CALL (Part 5 of 5).

Entry-Table Entry

T G EPASTE Adr.EIA P

AX

PASN

ASCE

PASCECR1
after

Operations on ASN-Second-Table-Entry for PC-ss

PASTEIN****

K M E SC EK EEAXEKMASNAKM
/

/

R: Address is real
*: First word and A of ETE are bits 0-32 of EIA if resulting addressing mode is the 64-bit mode.

**: ASTE is 64 bytes; selected fields and the last 16 bytes are not shown.

A

***: Bits 0-55 and 58-63 of PASCE may be replaced from a subspace ASCE

ATL R
A

C
AATO BI ASTEIN****

/

/

/

/

AXCR4
after

**

*

PASTEO
CR5
32-63
after

0 000000

ASN-Second-Table Entry

R

****: Operations on the ASTE instance number performed if ASN-and-LX-reuse enabled

'0101'
0 15

Control Instructions 10-107

P
R

O
G

R
A

M
 R

E
T

U
R

Nthe linkage stack, and the linkage-stack-entry
address in control register 15 is replaced by the
address of the next preceding state or header entry.
This also is described in “Unstacking Process”.

When the state entry is a program-call state entry, it
causes a space-switching operation to occur if it con-
tains a PASN that is not equal to the current PASN.
When the state entry contains a PASN that is equal
to the current PASN, the operation is called PRO-
GRAM RETURN to current primary (PR-cp); when
the state entry contains a PASN that is not equal to
the current PASN, the operation is called PROGRAM
RETURN with space switching (PR-ss). PASN trans-
lation occurs in PR-ss. SASN translation and authori-
zation may occur in either PR-cp or PR-ss. The terms
PR-cp and PR-ss do not apply when the state entry
is a branch state entry.

When the ASN-and-LX-reuse facility is installed and
enabled and PASN or SASN translation occurs, the
PASTEIN or SASTEIN, respectively, saved in the
state entry is compared to the ASTEIN in the located
ASTE.

Key-controlled protection does not apply to accesses
to the linkage stack, but low-address and DAT protec-
tion do apply.

The sections “PASN Translation,” “SASN Translation,”
“SASN Authorization,” and “PROGRAM RETURN
Serialization” apply only when the unstacked state
entry is a program-call state entry. The functions
described in those sections are not performed when
the state entry is a branch state entry.

The actions involving the PASTEIN and SASTEIN
occur only when ASN-and-LX reuse is enabled by
the ASN-and-LX reuse control in control register 0.

PASN Translation

If the new PASN is equal to the old PASN in bit posi-
tions 48-63 of control register 4, PASN translation is
not performed, the PASTEIN in control register 4
remain as restored from the state entry, and the
PASCE in control register 1 and primary-ASTE origin
(PASTEO) in control register 5 are not changed. In
this case, there is not a test of whether the new
PASTEIN is equal to the old PASTEIN.

If the new PASN is not equal to the old PASN, the
new PASN replaces the PASN in bit positions 48-63
of control register 4 and is translated to locate a

64-byte ASTE. The ASN table-lookup process is
described in “ASN Translation” on page 3-30. The
exceptions associated with ASN translation are col-
lectively called ASN-translation exceptions. These
exceptions and their priority are described in
Chapter 6, “Interruptions.”

If ASN-and-LX reuse is enabled, the PASTEIN saved
in bytes 180-183 of the state entry must equal the
ASTEIN in bit positions 352-383 of the located ASTE;
otherwise, an ASTE-instance exception is recog-
nized.

Bits 64-127 of the ASTE are placed in control register
1 as the new PASCE.

Bits 32-47 of the ASTE are placed in bit positions
32-47 of control register 4 as the new AX. The PASN
and PASTEIN in control register 4 remain as restored
from the state entry.

Bits 33-57 of the ASTE address are placed in bit
positions 33-57 of control register 5 as the new pri-
mary-ASTE origin, and zeros are placed in bit posi-
tions 32 and 58-63. Bits 0-31 of this register remain
unchanged.

The description in this paragraph applies to use of
the subspace-group facility when PASN translation
has occurred. If (1) the subspace-group-control bit,
bit 54, in the new PASCE is one, (2) the dispatchable
unit is subspace active, and (3) the new primary-
ASTE origin designates the ASTE for the base space
of the dispatchable unit, then bits 0-55 and 58-63 of
the new PASCE in control register 1 are replaced by
the same bits of the ASCE in the ASTE for the sub-
space in which the dispatchable unit last had control.
This replacement occurs, in the case when the new
SASN is equal to the new PASN, before the SASCE
is set equal to the PASCE. Further details are in
“Subspace-Replacement Operations” on page 5-70.

SASN Translation

If the new SASN is equal to the new PASN, the
SASCE in control register 7 is set equal to the new
PASCE in control register 1. The SASTEIN, PKM,
and SASN in control register 3 remain as restored
from the state entry. In this case, there is not a test of
whether the new SASTEIN is equal to the new
PASTEIN.

If the new SASN is not equal to the new PASN, the
new SASN is translated to locate a 64-byte ASTE.

10-108 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 R

E
T

U
R

N If ASN-and-LX reuse is enabled, the SASTEIN saved
in bytes 176-179 of the state entry must equal the
ASTEIN in bit positions 352-383 of the located ASTE;
otherwise, an ASTE-instance exception is recog-
nized.

Bits 64-127 of the ASTE are placed in control register
7 as the new SASCE.

Control register 3 remains as restored from the state
entry.

SASN Authorization

If the new SASN is not equal to the new PASN, the
authority-table origin (ATO) from the ASTE for the
new SASN is used as the base for a third table
lookup. The new authorization index, bits 32-47 of
control register 4, is used, after it has been checked
against the authority-table length, as the index to
locate the entry in the authority table. The authority-
table lookup is described in “ASN Authorization” on
page 3-35.

The description in this paragraph applies to use of
the subspace-group facility when SASN translation
and authorization have occurred. If (1) the subspace-
group-control bit, bit 54, in the new SASCE is one,
(2) the dispatchable unit is subspace active, and
(3) the ASTE origin obtained by SASN translation
designates the ASTE for the base space of the dis-
patchable unit, then bits 0-55 and 58-63 are replaced
by the same bits of the ASCE of the ASCE in the
ASTE for the subspace in which the dispatchable unit
last had control. Further details are in “Subspace-
Replacement Operations” on page 5-70.

PROGRAM RETURN Serialization

When the unstacked state entry is a program-call
state entry, a serialization and checkpoint-synchroni-
zation function is performed before the operation
begins and again after the operation is completed.
However, it is unpredictable whether or not a store
into a trace-table entry or linkage-stack entry from
which a subsequent instruction is fetched will be
observed by the CPU that performed the store.

Special Conditions

The instruction can be executed successfully only
when the CPU is in the primary-space mode or
access-register mode at the beginning of the opera-

tion. In addition, if ASN-translation is required for
either the PASN or the SASN, it can only be per-
formed when the ASN-translation control, bit 44 of
control register 14, is one. If either of these rules is
violated, a special-operation exception is recognized.

A stack-empty, stack-operation, stack-specification,
or stack-type exception may be recognized during
the unstacking process.

If ASN-and-LX reuse is enabled, the restored
PASTEIN must equal the ASTEIN in the located
ASTE if PASN translation is performed, and the
restored SASTEIN must equal the ASTEIN in the
located ASTE if SASN translation is performed; oth-
erwise, an ASTE-instance exception is recognized.

When, for PR-ss, the primary space-switch-event
control, bit 57 of control register 1, is one either
before or after the execution of the instruction, a
space-switch-event program interruption occurs after
the operation is completed. A space-switch-event
program interruption also occurs after the completion
of a PR-ss operation if a PER event is reported.

The PSW which is to be loaded by the instruction is
not checked for validity before it is loaded. However,
after loading, a specification exception is recognized,
and a program interruption occurs, if any of bits 0,
2-4, 12, 24-30, and 33-63 of the PSW is a one, if bits
31 and 32 are zero and one, respectively, and bits
64-96 are not all zeros, if bits 31 and 32 are both zero
and bits 64-103 are not all zeros, or if bits 31 and 32
are one and zero, respectively. In these cases, the
operation is completed, and the resulting instruction-
length code is 0. The specification exception, which
in this case is listed as a program exception in this
instruction, is described in “Early Exception Recogni-
tion” on page 6-9.

If a space-switch event is indicated and the PSW that
was loaded by the instruction is invalid because of a
reason described in the preceding paragraph, it is
unpredictable whether the resulting instruction-length
code is 0 or 1, or 0 or 2 if EXECUTE was used, or 0
or 3 if EXECUTE RELATIVE LONG was used.

The operation is suppressed on all addressing and
protection exceptions.

Control Instructions 10-109

P
R

O
G

R
A

M
 R

E
T

U
R

NResulting Condition Code: The code is set as
specified in the new PSW loaded.

Program Exceptions:

• Access (fetch and store, except key-controlled
protection, linkage-stack entry)

• Addressing (authority-table entry, if SASN trans-
lation occurs)

• ASN translation (if PASN or SASN translation
occurs)

• ASTE instance (if ASN-and-LX reuse is enabled
and PASN or SASN translation occurs)

• Secondary authority (if SASN translation occurs)
• Space-switch event
• Special operation
• Specification
• Stack empty
• Stack operation
• Stack specification
• Stack type
• Subspace replacement (if PASN or SASN trans-

lation occurs)
• Trace
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-73.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Special-operation exception due to DAT being off
or the CPU being in secondary-space mode or
home-space mode.

7.B Transaction constraint.

8.A Trace exceptions.

8.B.1 Access exceptions (fetch) for entry descriptor of
the current linkage-stack entry.

8.B.2 Stack-type exception due to current entry not
being a state entry or header entry.

Note: Exceptions 8.B.3-8.B.7 can occur only if
the current entry is a header entry.

8.B.3 Stack-operation exception due to unstack-
suppression bit in the header entry being one.

8.B.4 Access exceptions (fetch) for second word of the
header entry.

Figure 10-73. Priority of Execution: PROGRAM RETURN
(Part 1 of 3)

8.B.5 Stack-empty exception due to backward stack-
entry validity bit in the header entry being zero.

8.B.6 Access exceptions (fetch) for entry descriptor of
preceding entry, which is the entry designated by
the backward stack-entry address in the current
(header) entry.

8.B.7 Stack-specification exception due to preceding
entry being a header entry.

8.B.8 Stack-type exception due to preceding entry not
being a state entry.

8.B.9 Stack-operation exception due to unstack-
suppression bit being one in the state entry.

8.B.10 Access exceptions (fetch) for the state entry, and
access exceptions (store) for entry descriptor of
the entry preceding the state entry.

Note: Exceptions 8.B.11-8.B.15 and the event 9
can occur only if the state entry is a program-call
state entry.

8.B.11 Special-operation exception due to the ASN-
translation control, bit 44 of control register 14,
being zero (if PASN or SASN translation occurs).

8.B.12 ASN-translation exceptions (if PASN translation
occurs).

8.B.13 ASTE-instance exception due to new PASTEIN
not being equal to ASTEIN in ASN-second-table
entry located by PASN translation (if ASN-and-
LX reuse enabled).

Note: Subspace-replacement exceptions for
replacement of bits in the PASCE, which are not
shown in detail in this figure, can occur with any
priority after 8.B.13 and before 9.

8.B.14 ASN-translation exceptions (if SASN translation
occurs).

8.B.15 ASTE-instance exception due to new SASTEIN
not being equal to ASTEIN in ASN-second-table
entry located by SASN translation (if ASN-and-
LX reuse enabled).

Note: Subspace-replacement exceptions for
replacement of bits in the SASCE, which are not
shown in detail in this figure, can occur with any
priority after 8.B.15 and before 9.

8.B.16 Secondary-authority exception due to authority-
table entry being outside table (if SASN
translation occurs).

Figure 10-73. Priority of Execution: PROGRAM RETURN
(Part 2 of 3)

10-110 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 T

R
A

N
S

F
E

R

Programming Note: Because PROGRAM CALL
cannot be executed successfully in the secondary-
space or home-space mode, PROGRAM RETURN is
not intended to load a PSW specifying one of these
translation modes. PROGRAM RETURN, unlike SET
ADDRESS SPACE CONTROL and SET ADDRESS
SPACE CONTROL FAST, does not recognize a
space-switch event because of loading a PSW that
specifies the home-space mode.

PROGRAM TRANSFER

PT R1,R2 [RRE]

PROGRAM TRANSFER WITH
INSTANCE

PTI R1,R2 [RRE]

Note: In this instruction definition, the name “PRO-
GRAM TRANSFER (WITH INSTANCE)” refers to the
PROGRAM TRANSFER instruction and the PRO-
GRAM TRANSFER WITH INSTANCE instruction.

Bits 32-47 of general register R1 are used to update
the PSW key mask, and bits 48-63 of the register are
used as the new SASN and may be used as the new
PASN. Bits 32-63 or 0-63 of general register R2,
depending on the current addressing mode, are used
as the new values for the problem-state bit, basic-
addressing-mode bit, and instruction address in the
current PSW. In the PROGRAM TRANSFER WITH
INSTANCE operation, bits 0-31 of general register R1

are an ASTEIN and are compared against the new
value of the PASTEIN if the PASN is changed. In the
PROGRAM TRANSFER operation, bits 0-31 of gen-
eral register R1 are ignored.

The format of general registers R1 and R2 are shown
in Figure 10-74.

When the contents of bit positions 48-63 of general
register R1 are equal to the current PASN, the opera-
tion is called PROGRAM TRANSFER (WITH
INSTANCE) to current primary (PT-cp or PTI-cp);
when the fields are not equal, the operation is called

PROGRAM TRANSFER (WITH INSTANCE) with
space switching (PT-ss or PTI-ss).

The contents of general register R2 are used to
update the problem-state bit and the instruction
address in the current PSW and, in the 24-bit or

8.B.17 Addressing exception for access to authority-
table entry (if SASN translation occurs).

8.B.18 Secondary-authority exception due to S bit in
authority-table entry being zero (if SASN
translation occurs).

9. Space-switch event (PR-ss only).

10. Specification exception due to any PSW error of
the type that causes an immediate interruption.

'B228' / / / / / / / / R1 R2

0 16 24 28 31

Figure 10-73. Priority of Execution: PROGRAM RETURN
(Part 3 of 3)

'B99E' / / / / / / / / R1 R2

0 16 24 28 31

For PROGRAM TRANSFER

R1 / PSW-Key Mask ASN
0 32 48 63

For PROGRAM TRANSFER WITH INSTANCE

R1 ASTEIN PSW-Key Mask ASN
0 32 48 63

In 24-Bit or 31-Bit Addressing Mode

R2 / A Instruction Address P
0 32 33 63

In 64-Bit Addressing Mode

R2 Instruction Address P
0 63

Figure 10-74. Register Contents for PROGRAM TRANSFER (WITH INSTANCE)

Control Instructions 10-111

P
R

O
G

R
A

M
 T

R
A

N
S

F
E

R
 W

IT
H

 IN
S

T
A

N
C

E31-bit addressing mode, also the basic-addressing-
mode bit in the current PSW. Bit 63 of general regis-
ter R2 is placed in the problem-state bit position,
PSW bit position 15, unless the operation would
cause PSW bit 15 to change from one to zero (prob-
lem state to supervisor state). If such a change would
occur, a privileged-operation exception is recognized.

In the 24-bit or 31-bit addressing mode, bit 32 of gen-
eral register R2 replaces the basic-addressing-mode
bit, bit 32 of the current PSW, and bits 33-62 of the
register, with one rightmost zero appended, replace
bits 33-63 of the instruction address in the PSW, bits
97-127 of the PSW. In the 64-bit addressing mode,
bits 0-62 of general register R2, with one rightmost
zero appended, replace the instruction address, and
the basic-addressing-mode bit remains unchanged.

Bits 32-47 of general register R1 are ANDed with the
PSW-key mask, bits 32-47 of control register 3, and
the result replaces the PSW-key mask.

In any of the PT-cp, PTI-cp, PT-ss, and PTI-ss opera-
tions, the ASN specified by bits 48-63 of general reg-
ister R1 replaces the SASN in control register 3, and
the SASCE in control register 7 is replaced by the
final contents of control register 1.

In the PROGRAM TRANSFER operation, if the ASN-
and-LX-reuse facility is installed and is enabled by a
one value of the ASN-and-LX-reuse control, bit 44 of
control register 0, the SASTEIN in control register 3
is replaced by the final value of the PASTEIN in con-
trol register 4. This replacement occurs in the PRO-
GRAM TRANSFER WITH INSTANCE operation
regardless of the value of the ASN-and-LX-reuse
control.

PROGRAM TRANSFER (WITH INSTANCE) to Cur-
rent Primary (PT-cp or PTI-cp)

The PT-cp operation is depicted in part 1 of
Figure 10-76 on page 10-115. The PTI-cp operation
is depicted in part 1 of Figure 10-77 on page 10-117.
The PT-cp or PTI-cp operation is completed when the
common portion of the PROGRAM TRANSFER
(WITH INSTANCE) operation, described above, is
completed. The PASTEIN, authorization index, ASN,
primary ASCE, and contents of control register 5 (pri-
mary-ASN-second-table-entry origin) are not
changed by PT-cp or PTI-cp. In this case in the PTI-
cp operation, there is not a test of whether the cur-
rent PASTEIN equals the ASTEIN specified in bit

positions 0-31 of general register R1; the ASTEIN is
ignored.

PROGRAM TRANSFER (WITH INSTANCE) with
Space Switching (PT-ss or PTI-ss)

If the ASN in bit positions 48-63 of general register
R1 is not equal to the current PASN, a PROGRAM
TRANSFER (WITH INSTANCE) with space switching
(PT-ss or PTI-ss) operation is specified, and the ASN
is translated by means of a two-level table lookup.

The PT-ss operation is depicted in parts 1 and 2 of
Figure 10-76 on page 10-115. The PTI-ss operation
is depicted in parts 1 and 2 of Figure 10-77 on
page 10-117. The PT-ss or PTI-ss operation is com-
pleted as follows.

In PT-ss or PTI-ss, the contents of bit positions 48-63
of general register R1 are used as an ASN, which is
translated by means of a two-level table lookup.

Bits 48-57 of general register R1 are a 10-bit AFX
that is used to select an entry from the ASN first
table. Bits 58-63 are a six-bit ASX that is used to
select an entry from the ASN second table. The ASN
table-lookup process is described in “ASN Transla-
tion” on page 3-30. The exceptions associated with
ASN translation are collectively called “ASN-transla-
tion exceptions.” These exceptions and their priority
are described in Chapter 6, “Interruptions.”

In PT-ss if the ASN-and-LX-reuse facility is installed
and is enabled by a one value of the ASN-and-LX-
reuse control, bit 44 of control register 0, the reus-
able-ASN bit, bit 63, in the located ASN-second-table
entry (ASTE) must be zero; otherwise, a special-
operation exception is recognized. In PTI-ss, regard-
less of the ASN-and-LX-reuse control, the controlled-
ASN bit, bit 62, in the ASTE must be zero if the CPU
is in the problem state at the beginning of the opera-
tion; otherwise, a special-operation exception is rec-
ognized. Also in PTI-ss, and regardless of the ASN-
and-LX-reuse control and the reusable-ASN bit, the
ASTEIN in bit positions 0-31 of general register R1

must equal the ASTEIN in bit positions 352-383 of
the ASTE; otherwise, an ASTE-instance exception is
recognized.

The authority-table origin from the ASN-second-table
entry (ASTE) is used as the base for a third table
lookup. The current authorization index, bits 32-47 of
control register 4, is used, after it has been checked
against the authority-table length, as the index to

10-112 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 T

R
A

N
S

F
E

R
 W

IT
H

 IN
S

T
A

N
C

E locate the entry in the authority table. The authority-
table lookup is described in “ASN Authorization” on
page 3-35.

The PT-ss or PTI-ss operation is completed by plac-
ing bits 64-127 of the ASTE in control register 1 as
the new PASCE and in control register 7 as the new
SASCE. The contents of bit positions 32-47 of the
ASTE replace the authorization index in bit positions
32-47 of control register 4. Bits 33-57 of the ASTE
address are placed in bit positions 33-57 of control
register 5 as the new primary-ASTE origin, and zeros
are placed in bit positions 32 and 58-63. Bits 0-31 of
this register remain unchanged. The ASN, bits 48-63
of general register R1, replaces the SASN and PASN
in bit positions 48-63 of control registers 3 and 4. In
PT-ss if ASN-and-LX reuse is enabled, and in PTI-ss
regardless of that enablement, the ASTEIN in the
ASTE replaces the SASTEIN and PASTEIN in bit
positions 0-31 of control registers 3 and 4.

The description in this paragraph applies to use of
the subspace-group facility. After the new PASCE
has been placed in control register 1 and the new pri-
mary-ASTE origin has been placed in control register
5, if (1) the subspace-group-control bit, bit 54, in the
PASCE is one, (2) the dispatchable unit is subspace
active, and (3) the primary-ASTE origin designates
the ASTE for the base space of the dispatchable unit,
then bits 0-55 and 58-63 of the PASCE in control reg-
ister 1 are replaced by the same bits of the ASCE in
the ASTE for the subspace in which the dispatchable
unit last had control. This replacement occurs before
a replacement of the SASCE in control register 7 by
the PASCE. Further details are in “Subspace-
Replacement Operations” on page 5-70.

PROGRAM TRANSFER (WITH INSTANCE) Serial-
ization

For any of the PT-cp, PTI-cp, PT-ss, and PTI-ss oper-
ations, a serialization and checkpoint-synchroniza-
tion function is performed before the operation
begins and again after the operation is completed.
However, it is unpredictable whether or not a store
into a trace-table entry from which a subsequent
instruction is fetched will be observed by the CPU
that performed the store.

Special Conditions

The instruction can be executed only when the CPU
is in the primary-space mode and the subsystem-
linkage control, bit 0 of the linkage-table designation,

or linkage-first-table designation in the current pri-
mary ASN-second-table entry, is one. If the CPU is in
the real mode, secondary-space mode, access-reg-
ister mode, or home-space mode, or if the subsys-
tem-linkage control is zero, a special-operation
exception is recognized.

In PT-ss when ASN-and-LX reuse is enabled, the
reusable-ASN bit in the ASN-second-table entry
(ASTE) must be zero; otherwise, a special-operation
exception is recognized. In PTI-ss, regardless of the
ASN-and-LX-reuse control, a special-operation
exception is recognized if the controlled-ASN bit in
the ASTE is one and the CPU is in the problem state
at the beginning of the operation, and an ASTE-
instance exception is recognized if the ASTEIN in
general register R1 is not equal to the ASTEIN in the
ASTE.

Bit 63 of general register R2 is placed in the problem-
state bit position, PSW bit position 15, unless the
operation would cause PSW bit 15 to change from
one to zero (problem state to supervisor state). If
such a change would occur, a privileged-operation
exception is recognized.

In the 24-bit or 31-bit addressing mode, the instruc-
tion is completed only if bits 32-39 of general register
R2 specify a valid combination of PSW bits 32 and
97-103. If bit 32 of general register R2 is zero and bits
33-39 are not all zeros, a specification exception is
recognized.

In addition to the above requirements, when a PT-ss
or PTI-ss instruction is specified, the ASN-translation
control, bit 44 of control register 14, must be one;
otherwise, a special-operation exception is recog-
nized.

When, for PT-ss or PTI-ss, the primary space-switch-
event-control bit, bit 57 of register 1, is one either
before or after the execution of the instruction, a
space-switch-event program interruption occurs after
the operation is completed. A space-switch-event
program interruption also occurs after the completion
of a PT-ss or PTI-ss operation if a PER event is
reported.

The operation is suppressed on all addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Control Instructions 10-113

P
R

O
G

R
A

M
 T

R
A

N
S

F
E

R
 W

IT
H

 IN
S

T
A

N
C

E• Addressing (linkage-table or linkage-first-table
designation in primary ASN-second-table entry;
authority-table entry, PT-ss and PTI-ss only)

• ASN translation (PT-ss and PTI-ss only)
• ASTE instance (PTI-ss only)
• Operation (if ASN-and-LX-reuse facility is not

installed, PTI only)
• Primary authority (PT-ss and PTI-ss only)
• Privileged operation (attempt to set the supervi-

sor state when in the problem state)
• Space-switch event (PT-ss and PTI-ss only)
• Special operation
• Specification
• Subspace replacement (PT-ss and PTI-ss only)
• Trace
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-75.

Programming Notes:

1. The operation of PROGRAM TRANSFER (PT) is
such that it may be used to restore the CPU to
the state saved by a previous basic PROGRAM
CALL operation. This restoration is accom-
plished by issuing PT 3,14. Though general reg-
isters 3 and 14 are not restored to their original
values, the PASN, PSW-key mask, problem-state
bit, and instruction address are restored, and the
authorization index, PASCE, and primary-ASN-
second-table-entry origin are made consistent
with the restored PASN. In the 24-bit or 31-bit
addressing mode, the basic-addressing-mode bit
also is restored. If ASN-and-LX reuse is enabled,
the PASTEIN also is made consistent with the
restored PASN. Note that the SASN is not saved
by PROGRAM CALL or restored by PROGRAM
TRANSFER; PROGRAM TRANSFER sets the

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B.1 Operation exception (PTI only, if the ASN-and-
LX-reuse facility is not installed).

7.B.2 Special-operation exception due to DAT being off
or the CPU being in secondary-space mode,
access-register mode, or home-space mode.

7.C Transaction constraint.

8.A Trace exceptions.

8.B.1 Addressing exception for access to linkage-table
designation or linkage-first-table designation in
primary ASN-second-table entry.

8.B.2 Special-operation exception due to subsystem-
linkage control in linkage-table designation or
linkage-first-table designation being zero.

8.B.3 Privileged-operation exception due to attempt to
set the supervisor state when in the problem
state.

8.B.4 Specification exception due to invalid
combination (bit 32 is zero and bits 33-39 not
zeros) in general register R2 in 24-bit or 31-bit
addressing mode.

Figure 10-75. Priority of Execution: PROGRAM
TRANSFER (WITH INSTANCE) (Part 1 of 2)

8.B.5 Special-operation exception due to the ASN-
translation control, bit 44 of control register 14,
being zero (PT-ss or PTI-ss only).

8.B.6 ASN-translation exceptions (PT-ss and PTI-ss
only).

8.B.7 Special-operation exception due to ASN-and-LX
reuse enabled and reusable-ASN bit in ASN-
second-table entry being one (PT-ss only).

8.B.8 Special-operation exception due to controlled-
ASN bit in ASN-second-table entry being one
and CPU being in problem state at the beginning
of the operation (PTI-ss only).

8.B.9 ASTE-instance exception due to ASTEIN in
general register R1 not being equal to ASTEIN in
ASN-second-table entry (PTI-ss only).

Note: Subspace-replacement exceptions, which
are not shown in detail in this figure, can occur
with any priority after 8.B.9 and before 9.

8.B.10 Primary-authority exception due to authority-
table entry being outside table (PT-ss and PTI-ss
only).

8.B.11 Addressing exception for access to authority-
table entry (PT-ss and PTI-ss only).

8.B.12 Primary-authority exception due to P bit in
authority-table entry being zero (PT-ss and PTI-
ss only).

9. Space-switch event (PT-ss and PTI-ss only).

Figure 10-75. Priority of Execution: PROGRAM
TRANSFER (WITH INSTANCE) (Part 2 of 2)

10-114 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 T

R
A

N
S

F
E

R
 W

IT
H

 IN
S

T
A

N
C

E SASN equal to the restored PASN. PROGRAM
TRANSFER WITH INSTANCE is the same as
PROGRAM TRANSFER except that the
PASTEIN is made consistent regardless of ASN-
and-LX-reuse enablement.

2. With proper authority, and while being executed
in a common area, PROGRAM TRANSFER
(WITH INSTANCE) may be used to change the
primary address space to any desired space.
The secondary address space is also changed to
be the same as the new primary address space.

3. Unlike the RR-format branch instructions, a value
of zero in the R2 field for PROGRAM TRANSFER
(WITH INSTANCE) designates general register
0, and branching occurs.

4. A program given control by a basic PROGRAM
CALL operation can use EXTRACT SECOND-
ARY ASN AND INSTANCE to obtain the ASTEIN
to be used by PROGRAM TRANSFER WITH
INSTANCE to return to the calling program or by
SET SECONDARY ASN WITH INSTANCE to
restore its secondary address space after a
change of that space. This EXTRACT SECOND-
ARY ASN AND INSTANCE instruction should be
executed while the original secondary space
remains continuously the secondary space; oth-
erwise, depending on actions by the control pro-
gram, EXTRACT SECONDARY ASN AND
INSTANCE may return an ASTEIN that allows
return to or use of a conceptually incorrect sec-
ondary space for which the ASTEIN has been
changed.

Control Instructions 10-115

P
R

O
G

R
A

M
 T

R
A

N
S

F
E

R
 W

IT
H

 IN
S

T
A

N
C

E

Figure 10-76. Execution of PROGRAM TRANSFER (Part 1 of 2).

E=0

NoYes

P E A 0IA 0-62

IA 33-62 PA

CR3
32-63
before

PASCECR1
before

SASCECR7
after

R1.ASN
= PASN

?

PT-cp
Instruction
Complete

PT-ss
(see part 2)

PT-cp and PT-ss

SASTEINCR3
after

R1 R2/ / / /'B228'

ASN
R1
32-63

AND

PKM

SASNPKM

SASNPKM

PASTEINCR4
before PASNAX

R2
32-63

In 24-Bit or
31-Bit Mode

PROGRAM TRANSFER
Instruction

PIA 0-62

P E A 0IA 0-62

In 64-Bit Mode

E=1 A=1

(PT-cp only and ASN-
and-LX reuse enabled)

R2

(with 33 zeros on left)

(PT-cp only)

/

/

PSW
after

/

PSW
after

/

/

/

/

/

/

/

/

/

10-116 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 T

R
A

N
S

F
E

R
 W

IT
H

 IN
S

T
A

N
C

E

Figure 10-76. Execution of PROGRAM TRANSFER (Part 2 of 2).

PKM ASN

See Part 1

AX PASN

PASCE

SASCE

PT-ss

SASTEIN***

PASTEIN***
CR4
after

CR3
after

AFTOCR14
32-63 T

ASXAFX

+

ASTOI

+

AX ATL R
A

C
AATO BI ASTEIN***

/

/

/

/
*

ASN-Second-Table

AX PASN
CR4
32-63
before

P S

+

R: Address is real
*: ASTE is 64 bytes; selected fields and the last 16 bytes are not shown.

**: Bits 0-55 and 58-63 of PASCE and SASCE may be replaced from a subspace ASCE
***: Operations on the ASTE instance number performed if ASN-and-LX-reuse enabled

PASTEO
CR5
32-63
after

0 000000

Authority
Table

R

R

CR1
after
**

CR7
after
**

ASN First Table

R

(x4096)

(x64)(x4)

(x4)

(x64)

(x1/4)

Special-operation exception if ASN-and-LX
reuse enabled and RA is one.

Primary-authority exception if P bit is zero or table length exceeded

R1
32-63

ASCE

Control Instructions 10-117

P
R

O
G

R
A

M
 T

R
A

N
S

F
E

R
 W

IT
H

 IN
S

T
A

N
C

E

Figure 10-77. Execution of PROGRAM TRANSFER WITH INSTANCE (Part 1 of 2).

E=0

NoYes

P E A 0IA 0-62

IA 33-62 PA

CR3
32-63
before

PASCECR1
before

SASCECR7
after

R1.ASN
= PASN

?

PTI-cp
Instruction
Complete

PTI-ss
(see part 2)

PTI-cp and PTI-ss

SASTEINCR3
after

R1 R2/ / / /'B99E'

ASNR1

AND

PKM

SASNPKM

SASNPKM

PASTEINCR4
before PASNAX

R2
32-63

In 24-Bit or
31-Bit Mode

PROGRAM TRANSFER
WITH INSTANCE Instruction

PIA 0-62

P E A 0IA 0-62

In 64-Bit Mode

E=1 A=1

(PTI-cp only)

R2

(with 33 zeros on left)

(PTI-cp only)

/

/

PSW
after

/

PSW
after

/

/

/

/

/

/

/

/

/

ASTEIN

10-118 The z/Architecture CPU Architecture

P
R

O
G

R
A

M
 T

R
A

N
S

F
E

R
 W

IT
H

 IN
S

T
A

N
C

E

Figure 10-77. Execution of PROGRAM TRANSFER WITH INSTANCE (Part 2 of 2).

PKM ASN

See Part 1

AX PASN

PASCE

SASCE

PTI-ss

SASTEIN

PASTEIN
CR4
after

CR3
after

AFTOCR14
32-63 T

ASXAFX

+

ASTOI

+

ASN-Second-Table

AX PASN
CR4
32-63
before

P S

+

R: Address is real
*: ASTE is 64 bytes; selected fields and the last 16 bytes are not shown.

**: Bits 0-55 and 58-63 of PASCE and SASCE may be replaced from a subspace ASCE

PASTEO
CR5
32-63
after

0 000000

Authority
Table

R

R

CR1
after
**

CR7
after
**

ASN First Table

R

(x4096)

(x64)(x4)

(x4)

(x64)

(x1/4)

Special-operation exception if CA

at beginning of operation

Primary-authority exception if P bit is zero or table length exceeded

ASTEINR1

= ?

is one and CPU in problem state

ASTE-

exception
instanceNo

AX ATL R
A

C
AATO BI ASTEIN*** *ASCE

/

/

/

/

Control Instructions 10-119

R
E

S
E

T
 R

E
F

E
R

E
N

C
E

 B
IT

 E
X

T
E

N
D

E
DPURGE ALB

PALB [RRE]

The ART-lookaside buffer (ALB) of this CPU is
cleared of entries. No change is made to the con-
tents of addressable storage or registers.

The ALB appears cleared of its original contents
beginning with the execution of the next sequential
instruction. The operation is not signaled to any other
CPU.

A serialization function is performed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation
• Transaction constraint

PURGE TLB

PTLB [S]

The translation-lookaside buffer (TLB) of this CPU is
cleared of entries. No change is made to the con-
tents of addressable storage or registers.

The TLB appears cleared of its original contents
beginning with the fetching of the next sequential
instruction. The operation is not signaled to any other
CPU.

A serialization function is performed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation
• Transaction constraint

RESET REFERENCE BIT
EXTENDED

RRBE R1,R2 [RRE]

The reference bit in the storage key for the 4 K-byte
block that is addressed by the contents of general
register R2 is set to zero. The contents of general
register R1 are ignored.

In the 24-bit addressing mode, bits 40-51 of general
register R2 designate a 4 K-byte block in real storage,
and bits 0-39 and 52-63 of the register are ignored. In
the 31-bit addressing mode, bits 33-51 of general
register R2 designate a 4 K-byte block in real storage,
and bits 0-32 and 52-63 of the register are ignored. In
the 64-bit addressing mode, bits 0-51 of general reg-
ister R2 designate a 4 K-byte block in real storage,
and bits 52-63 of the register are ignored.

Because it is a real address, the address designating
the storage block is not subject to dynamic address
translation. The reference to the storage key is not
subject to a protection exception.

The remaining bits of the storage key, including the
change bit, are not affected.

The condition code is set to reflect the state of the
reference and change bits before the reference bit is
set to zero.

Resulting Condition Code:

0 Reference bit zero; change bit zero
1 Reference bit zero; change bit one
2 Reference bit one; change bit zero
3 Reference bit one; change bit one

Program Exceptions:

• Addressing (address specified by general regis-
ter R2)

• Privileged operation
• Transaction constraint

Programming Note: See the programming note for
INSERT REFERENCE BITS MULTIPLE on
page 10-30 for a discussion of differing reference bits

'B248' / / / / / / / / / / / / / / / /
0 16 31

'B20D' / / / / / / / / / / / / / / / /
0 16 31

'B22A' / / / / / / / / R1 R2

0 16 24 28 31

10-120 The z/Architecture CPU Architecture

R
E

S
E

T
 R

E
F

E
R

E
N

C
E

 B
IT

S
 M

U
L

T
IP

L
E that may be returned by IRBM, ISKE, RRBE, and

RRBM for the same block of storage.

RESET REFERENCE BITS
MULTIPLE

RRBM R1,R2 [RRE]

Beginning with the block designated by the address
in general register R2, the reference bits in the stor-
age keys of the 64 consecutive 4 K-byte blocks are
inspected and reset. For each of the 64 blocks, the
reference bit is placed in an ascending bit position of
general register R1, beginning with bit position 0 of
the register. Subsequent to the inspection of each
reference bit, the reference bit in the storage key is
reset to zero.

General register R2 designates the first of 64 blocks
in absolute storage on a 64-block (256 K-byte)
boundary. In the 24-bit addressing mode, bits 40-45
of the register, with six binary zeros appended on the
right, designate the first block, and bits 0-39 and
46-63 of the register are ignored. In the 31-bit
addressing mode, bits 33-45 of the register, with six
binary zeros appended on the right, designate the
first block, and bits 0-32 and 46-63 of the register are
ignored. In the 64-bit addressing mode, bits 0-45 of
the register, with six binary zeros appended on the
right, designate the first block, and bits 46-63 of the
register are ignored.

Because it is an absolute address, the address des-
ignating the first storage block is not subject to
dynamic address translation or prefixing. The refer-
ences to the storage keys are not subject to protec-
tion exceptions.

The remaining bits of the storage keys are not
affected.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (address specified by general regis-
ter R2)

• Operation (reset-reference-bits-multiple facility
not installed)

• Privileged operation

• Transaction constraint

Programming Note: See the programming note for
INSERT REFERENCE BITS MULTIPLE on
page 10-30 for a discussion of differing reference bits
that may be returned by IRBM, ISKE, RRBE, and
RRBM for the same block of storage.

RESUME PROGRAM

RP D2(B2) [S]

Certain contents of the current PSW and of access
register and general register B2 are replaced from
three or four corresponding fields in the second oper-
and. The size of the PSW field in the second oper-
and, the size or number of general-register fields in
the second operand, and the offsets of the fields in
the second operand are specified in a parameter list
that immediately follows the instruction in the instruc-
tion address space.

The instruction address space is the address space
from which instructions are fetched. It is composed of
real addresses if DAT is off.

The first 64 bits of the parameter list have the follow-
ing format:

In the z/Architecture architectural mode, bits 13-15 of
the parameter list further qualify the contents of the
second operand, as described below. In the
ESA/390-compatibility mode, if any of bits 13-15 of
the parameter list is not zero, it is unpredictable
whether a specification exception is recognized, or
whether these bits operate as in the z/Architecture-
architectural-mode definition.

When bits 14 (R) and 15 (D) of the parameter list are
both one, the list is an additional 16 bits in length, as
follows:

'B9AE' / / / / / / / / R1 R2

0 16 24 28 31

'B277' B2 D2

0 16 20 31

0 0 0 0 0 0 0 0 0 0 0 0 0 P R D Offset of PSW Field
0 13 14 15 16 31

Offset of AR Field Offset of GR Field 1
32 48 63

Offset of GR Field 2
64 79

Control Instructions 10-121

R
E

S
U

M
E

 P
R

O
G

R
A

MBit 13 of the parameter list (P) specifies the size of
the PSW field in the second operand. The field is
eight bytes if bit 13 is zero or 16 bytes if bit 13 is one.

Bits 14 and 15 of the parameter list (R and D) provide
specifications about one or two general-register
fields in the second operand, as follows:

• When bit 14 is zero, then bit 15 is ignored, the
general-register field 1 in the second operand is
four bytes, from which bits 32-63 of general reg-
ister B2 will be replaced, there is not a general-
register field 2 in the second operand, and bits
0-31 of general register B2 will remain
unchanged.

• When bit 14 is one and bit 15 is zero, then the
general-register field 1 is eight bytes, from which
bits 0-63 of general register B2 will be replaced,
and there is not a general-register field 2.

• When bits 14 and 15 are both one, then the gen-
eral-register fields 1 and 2 are both four bytes,
bits 32-63 of general register B2 will be replaced
from field 1, and bits 0-31 of the register will be
replaced from field 2. (The letter “D” stands for
disjoint.)

Bits 16-31 of the parameter list are an unsigned
binary integer that is the offset in bytes from the
beginning of the second operand to a field that has
the format of an eight-byte or 16-byte PSW, depend-
ing on bit 13, and from which fields in the current
PSW will be replaced. Bits 32-47 similarly are an off-
set to a four-byte field from which the contents of
access register B2 will be replaced. Bits 48-63 simi-
larly are an offset to a four-byte or eight-byte field,
depending on bits 14 and 15, from which bits 32-63
or 0-63, respectively, of general register B2 will be
replaced. If bits 64-79 of the parameter list exist, they
similarly are an offset to a four-byte field from which
bits 0-31 of general register B2 will be replaced.

Bits 0-12 of the parameter list must be zeros; other-
wise, a specification exception is recognized.

Fields in the current PSW are replaced from the cor-
responding fields in the PSW field in the second
operand. The format of a short (eight-byte) PSW is
shown in Figure 4-3 on page 4-8, and the format of a
16-byte PSW is shown in Figure 4-2 on page 4-5.

The PSW fields that are replaced are shown in
Figure 10-78, below.

There is no test for whether bit 31 is zero in an eight-
byte PSW.

Fields in the current PSW are replaced from the cor-
responding fields in the PSW field in the second
operand. The PSW fields that are replaced are as fol-
lows:

The remaining fields in the PSW field in the second
operand are ignored. Specifically, there is no test for
whether bit 12 is one in an eight-byte PSW or zero in
a 16-byte PSW.

Unassigned fields in the PSW may be assigned in
the future and may then be among those restored by
RESUME PROGRAM. Therefore, these fields in the
PSW field in the second operand should contain
zeros; otherwise, the program may not operate com-
patibly in the future.

When PSW bits 64-127 are replaced from an eight-
byte PSW field in the second operand, they are
replaced with bits 33-63 of the field, with 33 zeros
appended on the left.

The fields in the second operand are fetched before
the contents of access register B2 and general regis-
ter B2 are changed.

PSW Bits Field Name

16 and 17 Address-space control (AS)

18 and 19 Condition code (CC)

20-23 Program mask

31 Extended addressing mode (EA)

32 Basic addressing mode (BA)

64-127 Instruction address

Figure 10-78. PSW Bits Replaceable by RESUME
PROGRAM

PSW Bits Field Name

16 and 17 Address-space control (AS)

18 and 19 Condition code (CC)

20-23 Program mask

31 Extended addressing mode (EA)

32 Basic addressing mode (BA)

64-127 Instruction address

10-122 The z/Architecture CPU Architecture

R
E

S
U

M
E

 P
R

O
G

R
A

M When RESUME PROGRAM is the target of an exe-
cute-type instruction, the parameter list immediately
follows the RESUME PROGRAM instruction, not the
execute-type instruction.

The references to the parameter list are storage-
operand fetches, not instruction fetches.

Special Conditions

The instruction is completed only if the bits 31, 32,
and 64-127 that are to be placed in the current PSW
are valid for placement in the PSW. If bits 31 and 32
are both zero and bits 64-103 are not all zeros, if bits
31 and 32 are zero and one, respectively, and bits
64-96 are not all zeros, if bits 31 and 32 are one and
zero, respectively, or if bit 127 is one, a specification
exception is recognized. A specification exception
may or may not result when bit 24 in the second
operand is one.

In the ESA/390-compatibility mode, the following
applies:

• It is unpredictable whether a specification excep-
tion is recognized when any of bits 13-15 of the
parameter list is not zero.

• It is unpredictable whether a specification excep-
tion is recognized when bit 31 of the PSW in the
second operand is one.

The CPU must be in the supervisor state when the
operation is to set the home-space mode; otherwise,
a privileged-operation exception is recognized. When
DAT is off, the values of bits 16 and 17 of the PSW
field in the second operand are not tested.

When the CPU is in the home-space mode either
before or after the operation, but not both before and
after the operation, a space-switch-event program
interruption occurs after the operation is completed if
any of the following is true: (1) the primary space-
switch-event control, bit 57 of the primary address-
space-control element (ASCE) in control register 1, is
one; (2) the home space-switch-event control, bit 57
of the home ASCE in control register 13, is one; or
(3) a PER event is to be indicated.

The operation is suppressed on all addressing and
protection exceptions.

Resulting Condition Code: The code is set as
specified by the new condition code loaded.

Program Exceptions:

• Access (fetch, parameter list and operand 2)
• Privileged operation (attempt to set the home-

space mode when in the problem state)
• Space-switch event
• Specification
• Trace
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-79.

Programming Notes:

1. As described in “Instruction Fetching” on
page 5-118, the bytes of an instruction may be
fetched piecemeal, and the instruction may be
fetched multiple times for a single execution.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Transaction constraint.

8.A Trace exceptions.

8.B.1 Access exceptions for bits 0-63 of parameter list.

8.B.2 Specification exception due to bits 0-12 of
parameter list not being all zeros.

8.B.3 Access exceptions for bits 64-79 of parameter
list, if these bits exist.

8.B.4 Access exceptions for second operand.

8.B.5 Privileged-operation exception due to attempt to
set the home-space mode when in the problem
state.

8.B.6.a Specification exception due to invalid values in
bit positions 31, 32, and 64-127 of PSW in
second operand.

8.B.6.b Specification exception may or may not occur
due to a one in bit position 24 of PSW in second
operand.

9. Space-switch event.

Figure 10-79. Priority of Execution: RESUME PROGRAM

Control Instructions 10-123

S
E

T
 A

D
D

R
E

S
S

 S
P

A
C

E
 C

O
N

T
R

O
L

 F
A

S
TTherefore, the results are unpredictable when

instructions are fetched for execution from stor-
age that is being changed by another CPU or a
channel program. This warning is particularly
applicable when RESUME PROGRAM is the tar-
get of an execute-type instruction since the exe-
cute-type instruction may be refetched in order to
generate, from its second operand, the address
of the parameter list used by RESUME PRO-
GRAM. If the execute-type instruction is
refetched, there is not necessarily a test for
whether storage still contains either the execute-
type instruction or the RESUME PROGRAM
instruction.

2. The storage-operand references for RESUME
PROGRAM may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-125.)

SET ADDRESS SPACE CONTROL

SAC D2(B2) [S]

SET ADDRESS SPACE CONTROL
FAST

SACF D2(B2) [S]

Bits 52-55 of the second-operand address are used
as a code to set the address-space-control bits in the
PSW. The second-operand address is not used to
address data; instead, bits 52-55 form the code. Bits
0-51 and 56-63 of the second-operand address are
ignored. Bits 52 and 53 of the second-operand
address must be zeros; otherwise, a specification
exception is recognized.

The following figure summarizes the operation of
SET ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST:

The CPU must be in the supervisor state when the
operation is to set the home-space mode; otherwise,
a privileged-operation exception is recognized.

For SET ADDRESS SPACE CONTROL, a serializa-
tion and checkpoint-synchronization function is per-
formed before the operation begins and again after
the operation is completed. This function is not per-
formed for SET ADDRESS SPACE CONTROL FAST.

Special Conditions

For SET ADDRESS SPACE CONTROL, the opera-
tion is performed only when the secondary-space
control, bit 37 of control register 0, is one and DAT is
on. When either the secondary-space control is zero
or DAT is off, a special-operation exception is recog-
nized. The same rules apply also to SET ADDRESS
SPACE CONTROL FAST, except that whether the
secondary-space control is tested is unpredictable.

When the CPU is in the home-space mode either
before or after the operation, but not both before and
after the operation, a space-switch-event program
interruption occurs after the operation is completed if
any of the following is true: (1) the primary space-
switch-event control, bit 57 of the primary address-
space-control element (ASCE) in control register 1, is
one; (2) the home space-switch-event control, bit 57
of the home ASCE in control register 13, is one; or
(3) a PER event is to be indicated.

Condition Code: The code remains unchanged.

Program Exceptions:

'B219' B2 D2

0 16 20 31

'B279' B2 D2

0 16 20 31

Second-Operand Address

/ /
0 31

/ Code / / / / / / / /
32 52 56 63

Code Name of Mode
Result in PSW
Bits 16 and 17

0000 Primary space 00
0001 Secondary space 10
0010 Access register 01
0011 Home space 11
All others Invalid

10-124 The z/Architecture CPU Architecture

S
E

T
 C

L
O

C
K • Privileged operation (attempt to set the home-

space mode in the problem state)
• Space-switch event
• Special operation
• Specification
• Transaction constraint

The priority of recognition of program exceptions for
the instructions is shown in Figure 10-80.

Programming Notes:

1. SET ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST are defined
in such a way that the mode to be set can be
placed directly in the displacement field of the
instruction or can be specified from the same bit
positions of a general register as those in which
the mode is saved by INSERT ADDRESS
SPACE CONTROL.

2. SET ADDRESS SPACE CONTROL FAST may
provide better performance than SET ADDRESS
SPACE CONTROL, depending on the model.

3. Because SET ADDRESS SPACE CONTROL
FAST does not perform the serialization function,

it does not cause copies of prefetched instruc-
tions to be discarded. To ensure predictable
results after SET ADDRESS SPACE CONTROL
FAST is used to switch to or from the home-
space mode, the program must cause prefetched
instructions to be discarded before an instruction
is executed in a location that does not contain the
same instruction in both the primary and home
address spaces. The operations that cause
prefetched instructions to be discarded are
described in “Instruction Fetching” on
page 5-118.

4. If a program stores into the instruction stream at
a location following a subsequent SET
ADDRESS SPACE CONTROL FAST instruction,
and the SET ADDRESS SPACE CONTROL
FAST instruction changes the translation mode
either from or to either the access-register mode
or the home-space mode, a copy of a prefetched
instruction may be executed instead of the value
that was stored. To avoid this situation, either
SET ADDRESS SPACE CONTROL must be
used instead of SET ADDRESS SPACE CON-
TROL FAST or some other means must be used
to cause prefetched instructions to be discarded
after the conceptual store occurs.

SET CLOCK

SCK D2(B2) [S]

The current value of the TOD clock is replaced by the
contents of the doubleword designated by the sec-
ond-operand address, and the clock enters the
stopped state.

The doubleword operand replaces the contents of
the clock, as determined by the resolution of the
clock. Only those bits of the operand are set in the
clock that correspond to the bit positions which are
updated by the clock; the contents of the remaining
rightmost bit positions of the operand are ignored
and are not preserved in the clock. In some models,
starting at or to the right of bit position 52, the right-
most bits of the second operand are ignored, and the
corresponding positions of the clock which are imple-
mented are set to zeros. Zeros are also placed in
positions to the right of bit position 63 of the clock.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Special-operation exception due to DAT being
off.

7.C Special-operation exception due to the
secondary-space control, bit 37 of control
register 0, being zero. May be omitted for SET
ADDRESS SPACE CONTROL FAST.

7.D Transaction constraint.

8. Privileged-operation exception due to attempt to
set home-space mode when in problem state.

9. Specification exception due to nonzero value in
bit positions 52 and 53 of second-operand
address.

10. Space-switch event.

Figure 10-80. Priority of Execution: SET ADDRESS
SPACE CONTROL and SET ADDRESS SPACE
CONTROL FAST

'B204' B2 D2

0 16 20 31

Control Instructions 10-125

S
E

T
 C

L
O

C
K

 C
O

M
P

A
R

A
T

O
RAfter the clock value is set, the clock enters the

stopped state. The clock leaves the stopped state to
enter the set state and resume incrementing under
control of the TOD-clock-sync control, bit 34 of con-
trol register 0, of the CPU which most recently
caused the clock to enter the stopped state. When
the bit is zero, the clock enters the set state at the
completion of the instruction. When the bit is one, the
clock remains in the stopped state until the bit is set
to zero or until another CPU executes a SET CLOCK
instruction affecting the clock. If an external time ref-
erence (ETR) is installed, a signal from the ETR may
be used to set the set state from the stopped state.
When the system is not in the interpretive-execution
mode, and an external time reference (ETR) is not
attached to the configuration, the TOD-clock-sync
control is treated as being zero, regardless of its
actual value; in this case, the clock enters the set
state and resumes incrementing upon completion of
the instruction.

The value of the clock is changed and the clock is
placed in the stopped state only if the manual TOD-
clock control of any CPU in the configuration is set to
the enable-set position or the TOD-clock-control-
override control, bit 42 of control register 14, is one. If
the TOD-clock control of all CPUs is set to the secure
position and the TOD-clock-control-override control is
zero, the value and state of the clock are not
changed. Whether the clock is set or remains
unchanged is distinguished by condition codes 0 and
1, respectively.

When the clock is not operational, the value and
state of the clock are not changed, regardless of the
settings of the TOD-clock control and the TOD-clock-
control-override control, and condition code 3 is set.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is rec-
ognized.

Resulting Condition Code:

0 Clock value set
1 Clock value secure
2 --
3 Clock in not-operational state

Program Exceptions:

• Access (fetch, operand 2)

• Privileged operation
• Specification
• Transaction constraint

Programming Notes:

1. When the TOD-clock-steering facility is installed,
the use of the SET CLOCK instruction is depre-
cated. In this case, PTFF control functions can
be used to provide equivalent function to SET
CLOCK.

The SET CLOCK instruction provides no means
by which an epoch index can be set. When the
multiple-epoch facility is installed, the use of SET
CLOCK may result in inconsistent values stored
by STORE CLOCK EXTENDED if the epoch
index was previously set to a nonzero value. In
this case, the PTFF control function PTFF-STOE
(set TOD offset extended) should be used rather
than SET CLOCK.

At some future date, the SET CLOCK instruction
may be removed from the architecture.

2. SET CLOCK should be issued only while all
other activity on all CPUs in the configuration has
been suspended. This activity should not be
resumed until after the TOD clock has entered
the set state.

SET CLOCK COMPARATOR

SCKC D2(B2) [S]

The current value of the clock comparator is replaced
by the contents of the doubleword designated by the
second-operand address.

Only those bits of the operand are set in the clock
comparator that correspond to the bit positions to be
compared with the TOD clock; the contents of the
remaining rightmost bit positions of the operand are
ignored and are not preserved in the clock compara-
tor.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is rec-
ognized.

'B206' B2 D2

0 16 20 31

10-126 The z/Architecture CPU Architecture

S
E

T
 C

L
O

C
K

 P
R

O
G

R
A

M
M

A
B

L
E

 F
IE

L
D The operation is suppressed on all addressing and

protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification
• Transaction constraint

SET CLOCK PROGRAMMABLE
FIELD

SCKPF [E]

Bits 48-63 of general register 0 are placed in bit posi-
tions 16-31 of the TOD programmable register. Zeros
are placed in bit positions 0-15 of the TOD program-
mable register.

Special Conditions

Bits 32-47 of general register 0 must be zeros; other-
wise, a specification exception is recognized. Bits
0-31 of general register 0 are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation
• Specification
• Transaction constraint

Programming Note: The values in the TOD pro-
grammable registers of a configuration should be the
same and should be unique within a multiple-configu-
ration system.

SET CPU TIMER

SPT D2(B2) [S]

The current value of the CPU timer is replaced by the
contents of the doubleword designated by the sec-
ond-operand address.

Only those bits of the operand are set in the CPU
timer that correspond to the bit positions to be
updated; the contents of the remaining rightmost bit
positions of the operand are ignored and are not pre-
served in the CPU timer.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is rec-
ognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification
• Transaction constraint

SET PREFIX

SPX D2(B2) [S]

The word at the second-operand location is fetched,
and selected bits of the operand are used to form the
address of an area that is tested for accessibility. If
accessible, the selected bits of the second operand
replace contents of the prefix register, and the ART-
lookaside buffer (ALB) and translation-lookaside buf-
fer (TLB) of this CPU are cleared of entries.

Operation in the z/Architecture
Architectural Mode
Bits 1-18 of the operand with 13 zeros appended on
the right and 33 zeros appended on the left are used
as an absolute address of the 8 K-byte new prefix
area in storage. The contents of bit positions 0 and
19-31 of the second operand are ignored. The two
4 K-byte blocks within the new prefix area are
accessed; if either is not available in the configura-
tion, an addressing exception is recognized, and the

'0107'
0 15

'B208' B2 D2

0 16 20 31

'B210' B2 D2

0 16 20 31

Control Instructions 10-127

S
E

T
 P

S
W

 K
E

Y
 F

R
O

M
 A

D
D

R
E

S
Soperation is suppressed. The accesses to the blocks

are not subject to protection; however, the accesses
may cause the reference bits for the blocks to be set
to ones.

Assuming no access exception is recognized, the
contents of bit positions 33-50 of the prefix register
are replaced by the contents of bit positions 1-18 of
the word at the location designated by the second-
operand address.

Operation in the ESA/390-Compatibility
Mode
Bits 1-19 of the operand with 12 zeros appended on
the right and 33 zeros appended on the left are used
as an absolute address of the 4 K-byte new prefix
area in storage. The contents of bit positions 0 and
20-31 of the second operand are ignored. The
4 K-byte block within the new prefix area is
accessed; if it is not available in the configuration, an
addressing exception is recognized, and the opera-
tion is suppressed. The access to the block is not
subject to protection; however, the access may cause
the reference bit for the block to be set to one.

Assuming no access exception is recognized, the
contents of bit positions 33-51 of the prefix register
are replaced by the contents of bit positions 1-19 of
the word at the location designated by the second-
operand address.

Common Operation
The address of the prefix area is treated as a 64-bit
address regardless of the addressing mode specified
by the current PSW.

If the operation is completed, the new prefix is used
for any interruptions following the execution of the
instruction and for the execution of subsequent
instructions.

The ART-lookaside buffer (ALB) and translation-loo-
kaside buffer (TLB) are cleared of entries. The ALB
and TLB appear cleared of their original contents,
beginning with the fetching of the next sequential
instruction.

A serialization function is performed before or after
the second operand is fetched and again after the
operation is completed.

Special Conditions

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Addressing (new prefix area)
• Privileged operation
• Specification
• Transaction constraint

SET PSW KEY FROM ADDRESS

SPKA D2(B2) [S]

The four-bit PSW key, bits 8-11 of the current PSW, is
replaced by bits 56-59 of the second-operand
address.

The second-operand address is not used to address
data; instead, bits 56-59 of the address form the new
PSW key. Bits 0-55 and 60-63 of the second-operand
address are ignored.

Special Conditions

In the problem state, the execution of the instruction
is subject to control by the PSW-key mask in control
register 3. When the bit in the PSW-key mask corre-
sponding to the PSW-key value to be set is one, the
instruction is executed successfully. When the
selected bit in the PSW-key mask is zero, a privi-
leged-operation exception is recognized. In the
supervisor state, any value for the PSW key is valid.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation (selected PSW-key-mask bit
is zero in the problem state)

• Transaction constraint

'B20A' B2 D2

0 16 20 31

10-128 The z/Architecture CPU Architecture

S
E

T
 S

E
C

O
N

D
A

R
Y

 A
S

N Programming Notes:

1. The format of SET PSW KEY FROM ADDRESS
permits the program to set the PSW key either
from the general register designated by the B2

field or from the D2 field in the instruction itself.

2. When one program requests another program to
access a location designated by the requesting
program, SET PSW KEY FROM ADDRESS can
be used by the called program to verify that the
requesting program is authorized to make this
access, provided the storage location of the
called program is not protected against fetching.
The called program can perform the verification
by replacing the PSW key with the requesting-
program PSW key before making the access and
subsequently restoring the called-program PSW
key to its original value. Caution must be exer-
cised, however, in handling any resulting protec-
tion exceptions since such exceptions may cause
the operation to be terminated. See TEST PRO-
TECTION and the associated programming
notes for an alternative approach to the testing of
addresses passed by a calling program.

SET SECONDARY ASN

SSAR R1 [RRE]

SET SECONDARY ASN WITH
INSTANCE

SSAIR R1 [RRE]

Note: In this instruction definition, the name “SET
SECONDARY ASN (WITH INSTANCE)” refers to the
SET SECONDARY ASN instruction and the SET
SECONDARY ASN WITH INSTANCE instruction.

The ASN specified in bit positions 48-63 of general
register R1 replaces the secondary ASN in control
register 3, and the address-space-control element
corresponding to that ASN replaces the SASCE in
control register 7.

The contents of bit positions 48-63 of general register
R1 are called the new ASN. For SET SECONDARY
ASN WITH INSTANCE, bits 0-31 of the register are
an STEIN and are compared against the new SAS-
TEIN if the SASTEIN is not set equal to the
PASTEIN, and bits 32-47 of the register are ignored.
For SET SECONDARY ASN, bits 0-47 of the register
are ignored.

When the new ASN is equal to the current PASN, the
operation is called SET SECONDARY ASN (WITH
INSTANCE) to current primary (SSAR-cp or SSAIR-
cp); when the fields are not equal, the operation is
called SET SECONDARY ASN (WITH INSTANCE)
with space switching (SSAR-ss or SSAIR-ss). The
SSAR-cp and SSAR-ss operations are depicted in
Figure 10-82 on page 10-131. The SSAIR-cp and
SSAIR-ss operations are depicted in Figure 10-83 on
page 10-132.

SET SECONDARY ASN (WITH INSTANCE) to Cur-
rent Primary (SSAR-cp or SSAIR-cp)

In the SSAR-cp or SSAIR-cp operation, the new ASN
is equal to the PASN. The new ASN replaces the
SASN, bits 48-63 of control register 3; the PASCE in
control register 1 replaces the SASCE in control reg-
ister 7.

In SSAR-cp, if the ASN-and-LX-reuse facility is
installed and is enabled by a one value of the ASN-
and-LX-reuse control, bit 44 of control register 0, the
SASTEIN in bit positions 0-31 of control register 3 is
replaced by the PASTEIN in bit positions 0-31 of con-
trol register 4. This replacement occurs in SSAIR-cp
regardless of the value of the ASN-and-LX-reuse
control. In SSAIR-cp, there is not a test of whether
the current PASTEIN equals the ASTEIN in bit posi-
tions 0-31 of general register R1; the ASTEIN is
ignored. The operation is completed.

SET SECONDARY ASN (WITH INSTANCE) with
Space Switching (SSAR-ss or SSAIR-ss)

In the SSAR-ss or SSAIR-ss operation, the new ASN
is not equal to the PASN, and the new ASN is trans-
lated by means of a two-level table lookup. Bits 0-9 of
the new ASN (bits 48-57 of the register) are a 10-bit
AFX which is used to select an entry from the ASN
first table. Bits 10-15 of the new ASN (bits 58-63 of
the register) are a six-bit ASX which is used to select
an entry from the ASN second table. The two-level
lookup is described in “ASN Translation” on
page 3-30. The exceptions associated with ASN

'B225' / / / / / / / / R1 / / / /
0 16 24 28 31

'B99F' / / / / / / / / R1 / / / /
0 16 24 28 31

Control Instructions 10-129

S
E

T
 S

E
C

O
N

D
A

R
Y

 A
S

N
 W

IT
H

 IN
S

T
A

N
C

Etranslation are collectively called “ASN-translation
exceptions.” These exceptions and their priority are
described in Chapter 6, “Interruptions.”

In SSAR-ss, if the ASN-and-LX-reuse facility is
installed and is enabled by the ASN-and-LX-reuse
control in control register 0, the reusable-ASN bit, bit
63, in the located ASN-second-table entry (ASTE)
must be zero; otherwise, a special-operation excep-
tion is recognized. In SSAIR-ss, regardless of the
ASN-and-LX-reuse control, the controlled-ASN bit,
bit 62, in the ASTE must be zero in the problem state;
otherwise, a special-operation exception is recog-
nized. Also in SSAIR-ss, and regardless of the ASN-
and-LX-reuse control and the reusable-ASN bit, the
ASTEIN in bit positions 0-31 of general register R1

must equal the ASTEIN in bit positions 352-383 of
the ASTE; otherwise, an ASTE-instance exception is
recognized.

The ASN-second-table entry (ASTE) obtained as a
result of the second lookup contains the address-
space-control element and the authority-table origin
and length associated with the ASN.

The authority-table origin from the ASTE is used as a
base for a third table lookup. The current authoriza-
tion index, bits 32-47 of control register 4, is used,
after it has been checked against the authority-table
length, as the index to locate the entry in the author-
ity table. The authority-table lookup is described in
“ASN Authorization” on page 3-35.

The new ASN, bits 48-63 of general register R1,
replaces the SASN, bits 48-63 of control register 3.
The address-space-control element in the ASTE
replaces the SASCE in control register 7. In SSAR-ss
if ASN-and-LX reuse is enabled, and in SSAIR-ss
regardless of that enablement, the ASTEIN in the
ASTE replaces the SASTEIN in bit positions 0-31 of
control register 3.

The description in this paragraph applies to use of
the subspace-group facility. After the new SASCE
has been placed in control register 7, if (1) the sub-
space-group-control bit, bit 54, in the SASCE is one,
(2) the dispatchable unit is subspace active, and
(3) the ASTE obtained by ASN translation is the
ASTE for the base space of the dispatchable unit,
then bits 0-55 and 58-63 of the SASCE are replaced
by the same bits of the ASCE in the ASTE for the
subspace in which the dispatchable unit last had con-

trol. Further details are in “Subspace-Replacement
Operations” on page 5-70.

SET SECONDARY ASN (WITH INSTANCE) Serial-
ization

For any of the SSAR-cp, SSAIR-cp, SSAR-ss, and
SSAIR-ss operations, a serialization and checkpoint-
synchronization function is performed before the
operation begins and again after the operation is
completed. However, it is unpredictable whether or
not a store into a trace-table entry from which a sub-
sequent instruction is fetched will be observed by the
CPU that performed the store.

Special Conditions

The operation is performed only when the ASN-
translation control, bit 44 of control register 14, is one
and DAT is on. When either the ASN-translation-con-
trol bit is zero or DAT is off, a special-operation
exception is recognized.

In SSAR-ss when ASN-and-LX reuse is enabled, the
reusable-ASN bit in the ASN-second-table entry
(ASTE) must be zero; otherwise, a special-operation
exception is recognized. In SSAIR-ss, regardless of
the ASN-and-LX-reuse control, a special-operation
exception is recognized if the controlled-ASN bit in
the ASTE is one and the CPU is in the problem state,
and an ASTE-instance exception is recognized if the
ASTEIN in general register R1 is not equal to the
ASTEIN in the ASTE.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (authority-table entry, SSAR-ss and
SSAIR-ss only)

• ASN translation (SSAR-ss and SSAIR-ss only)
• ASTE instance (SSAIR-ss only)
• Operation (if ASN-and-LX-reuse facility is not

installed, SSAIR only)
• Secondary authority (SSAR-ss and SSAIR-ss

only)
• Special operation
• Subspace replacement (SSAR-ss and SSAIR-ss

only)
• Trace
• Transaction constraint

10-130 The z/Architecture CPU Architecture

S
E

T
 S

E
C

O
N

D
A

R
Y

 A
S

N
 W

IT
H

 IN
S

T
A

N
C

E The priority of recognition of program exceptions for
the instruction is shown in Figure 10-81 on
page 10-130.

Programming Note: A program given control by a
basic PROGRAM CALL operation can use
EXTRACT SECONDARY ASN AND INSTANCE to
obtain the ASTEIN to be used by PROGRAM
TRANSFER WITH INSTANCE to return to the calling
program or by SET SECONDARY ASN WITH
INSTANCE to restore its secondary address space
after a change of that space. This EXTRACT SEC-
ONDARY ASN AND INSTANCE instruction should
be executed while the original secondary space
remains continuously the secondary space; other-
wise, depending on actions by the control program,
EXTRACT SECONDARY ASN AND INSTANCE may
return an ASTEIN that allows return to or use of a
conceptually incorrect secondary space for which the
ASTEIN has been changed.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B.1 Operation exception (SSAIR only, if the ASN-
and-LX-reuse facility is not installed).

7.B.2 Special-operation exception due to DAT being
off, or the ASN-translation control, bit 44 of
control register 14, being zero.

7.C Transaction constraint.

8.A Trace exceptions.

8.B.1 ASN-translation exceptions (SSAR-ss and
SSAIR-ss only).

8.B.2 Special-operation exception due to ASN-and-LX
reuse enabled and reusable-ASN bit in ASN-
second-table entry being one (SSAR-ss only).

8.B.3 Special-operation exception due to controlled-
ASN bit in ASN-second-table entry being one in
the problem state (SSAIR-ss only).

8.B.4 ASTE-instance exception due to ASTEIN in
general register R1 not being equal to ASTEIN in
ASN-second-table entry (SSAIR-ss only).

Figure 10-81. Priority of Execution: SET SECONDARY
ASN (WITH INSTANCE) (Part 1 of 2)

Note: Subspace-replacement exceptions, which
are not shown in detail in this figure, can occur
with any priority after 8.B.4.

8.B.5 Secondary-authority exception due to authority-
table entry being outside table (SSAR-ss and
SSAIR-ss only).

8.B.6 Addressing exception for access to authority-
table entry (SSAR-ss and SSAIR-ss only).

8.B.7 Secondary-authority exception due to S bit in
authority-table entry being zero (SSAR-ss and
SSAIR-ss only).

Figure 10-81. Priority of Execution: SET SECONDARY
ASN (WITH INSTANCE) (Part 2 of 2)

Control Instructions 10-131

S
E

T
 S

E
C

O
N

D
A

R
Y

 A
S

N
 W

IT
H

 IN
S

T
A

N
C

E

Figure 10-82. Execution of SET SECONDARY ASN

ASN

AX PASN

PASCE

SASCE SASTEIN

PASTEINCR4
before

CR3
after

AFTOCR14
32-63 T

ASXAFX

+

ASTOI

+

ASN-Second-Table

PKM PASN
CR3
32-63
before

P S

+

R: Address is real
*: ASTE is 64 bytes; selected fields and the last 16 bytes are not shown.

**: For SSAR-ss only, bits 0-55 and 58-63 of SASCE may be replaced from a subspace ASCE

Authority Table
(Accessed for

R

R

CR1
before

CR7
after
**

ASN First Table

R

(x4096)

(x64)(x4)

(x4)

(x64)

(x1/4)

Special-operation exception if

RA is one (SSAR-ss only)

Secondary-authority exception if S bit is zero

ASN-and-LX reuse enabled and

/

/

/

/

R1 / // / / /'B225'

SET SECONDARY ASN
Instruction

PKM SASN

or if table length exceeded (SSAR-ss only)

(SSAR-cp
only and

(Accessed for SSAR-ss only)

SSAR-ss only)

(Accessed for SSAR-ss only)
ASN

= ?

SSAR-cp SSAR-ss

NoYes

R1
32-63

ASN-and-LX
reuse enabled)

(SSAR-ss
only and
ASN-and-LX
reuse enabled)

(SSAR-cp
only)

(SSAR-ss
only)

I ATO B AX ATL C
A

R
A ASCE ASTEIN *

10-132 The z/Architecture CPU Architecture

S
E

T
 S

E
C

O
N

D
A

R
Y

 A
S

N
 W

IT
H

 IN
S

T
A

N
C

E

Figure 10-83. Execution of SET SECONDARY ASN WITH INSTANCE

ASN

AX PASN

PASCE

SASCE SASTEIN

PASTEINCR4
before

CR3
after

AFTOCR14
32-63 T

ASXAFX

+

ASTOI

+

ASN-Second-Table

PKM PASN
CR3
32-63
before

P S

+

R: Address is real
*: ASTE is 64 bytes; selected fields and the last 16 bytes are not shown.

**: For SSAIR-ss only, bits 0-55 and 58-63 of SASCE may be replaced from a subspace ASCE

Authority Table
(Accessed for

R

R

CR1
before

CR7
after
**

ASN First Table

R

(x4096)

(x64)(x4)

(x4)

(x64)

(x1/4)

Special-operation exception if

(SSAIR-ss only)

Secondary-authority exception if S bit is zero

ASTEINR1

= ?

CA is one in problem state

ASTE-

exception
instance

No

AX ATL R
A

C
AATO BI ASTEIN *ASCE

/

/

/

/

R1 / // / / /'B99F'

SET SECONDARY ASN
WITH INSTANCE Instruction

PKM SASN

or if table length exceeded (SSAIR-ss only)

(SSAIR-ss
only)

(SSAIR-cp
only)

(Accessed for SSAIR-ss only)

SSAIR-ss only)

(Accessed for SSAIR-ss only)

(SSAIR-cp
only)

(SSAIR-ss
only)

ASN

= ?

SSAIR-cp SSAIR-ss

NoYes
(SSAIR-ss only)

Control Instructions 10-133

S
E

T
 S

T
O

R
A

G
E

 K
E

Y
 E

X
T

E
N

D
E

DSET STORAGE KEY EXTENDED

SSKE R1,R2[,M3] [RRF-c]

The storage key for one or more 4 K-byte blocks is
replaced by the value in the first-operand register.
When the conditional-SSKE facility is installed, cer-
tain functions of the key-setting operation may be
bypassed.

When the conditional-SSKE facility is not installed, or
when the conditional-SSKE facility is installed and
both the MR and MC bits of the M3 field are zero, the
storage key for the 4 K-byte block that is addressed
by the contents of general register R2 is replaced by
bits from general register R1. The instruction com-
pletes without changing the condition code.

When the conditional-SSKE facility is installed and
either or both of the MR and MC bits are one, the
access-control bits, fetch-protection bit, and, option-
ally, the reference bit and change bit of the storage
key that is addressed by the contents of general reg-
ister R2 are compared with corresponding bits in gen-
eral register R1. If the compared bits are equal, then
no change is made to the key; otherwise, selected
bits of the key are replaced by the corresponding bits
in general register R1. The storage key prior to any
modification is inserted in general register R1, and
the result is indicated by the condition code.

When the enhanced-DAT facility 1 is installed, the
above operations may be repeated for the storage
keys of multiple 4 K-byte blocks within the same 1MB
block, subject to the control of the multiple-block con-
trol, described below.

The M3 field has the following format:

The bits of the M3 field are defined as follows:

• Nonquiescing Control (NQ): The NQ bit, bit 0
of the M3 field, controls whether a quiescing
operation is performed, as described below.

• Reference-Bit-Update Mask (MR): The MR bit,
bit 1 of the M3 field, controls whether updates to
the reference bit in the storage key may be
bypassed, as described below.

• Change-Bit-Update Mask (MC): The MC bit, bit
2 of the M3 field, controls whether updates to the
change bit in the storage key may be bypassed,
as described below.

• Multiple-Block Control (MB): The MB bit, bit 3
of the M3 field, controls whether the storage keys
for multiple 4 K-byte blocks of storage may be
set, as described in “Setting Storage Keys in
Multiple 4 K-byte Blocks” on page 10-135.

When the nonquiescing key-setting facility is not
installed, bit 0 of the M3 field is ignored. When the
conditional-SSKE facility is not installed, bit positions
1 and 2 of the M3 field are ignored. When the
enhanced-DAT facility 1 is not installed, bit position 3
of the M3 field is ignored.

When the conditional-SSKE facility is installed, pro-
cessing is as follows:

1. When both the MR and MC bits, bits 1 and 2 of
the M3 field, are zero, the instruction completes
as though the conditional-SSKE facility was not
installed. The storage key for the 4 K-byte block
that is addressed by the contents of general reg-
ister R2 is replaced by bits from general register
R1, and the instruction completes without chang-
ing the condition code.

2. When either or both the MR and MC bits are one,
processing is as follows:

a. Prior to any modification, the contents of the
storage key for the 4 K-byte block that is
addressed by general register R2 are placed
in bit positions 48-54 of general register R1,
and bit 55 of general register R1 is set to
zero. Bits 0-47 and 56-63 of the register
remain unchanged.

If an invalid checking-block code (CBC) is
detected when fetching the storage key, then
(a) the entire storage key for the 4 K-byte
block is replaced by bits 56-62 of general
register R1, (b) the contents of bit positions
48-55 of general register R1 are unpredict-
able, and (c) the instruction completes by
setting condition code 3.

'B22B' M3 / / / / R1 R2

0 16 20 24 28 31

N
Q

M
R

M
C

M
B

0 1 2 3

10-134 The z/Architecture CPU Architecture

S
E

T
 S

T
O

R
A

G
E

 K
E

Y
 E

X
T

E
N

D
E

D b. The access-control bits and fetch-protection
bit of the storage key for the designated
4 K-byte block are compared with the corre-
sponding fields in bits 56-60 of general regis-
ter R1. If the respective fields are not equal,
the entire storage key for the 4 K-byte block
is replaced by bits from general register R1,
and the instruction completes by setting con-
dition code 1.

When the access-control and fetch-protec-
tion bits in the storage key are equal to the
respective bits in general register R1, pro-
cessing continues as described below.

c. When both the MR and MC bits are one, the
instruction completes by setting condition
code 0. The storage key remains unchanged
in this case.

d. When the MR bit is zero and the MC bit is
one, then the reference bit of the storage key
for the designated 4 K-byte block is com-
pared with bit 61 of general register R1. If the
bits are equal, the instruction completes by
setting condition code 0. The storage key
remains unchanged in this case.

If the bits are not equal, then either (a) the
entire storage key for the designated
4 K-byte block is replaced by the bits in gen-
eral register R1, and the instruction com-
pletes by setting condition code 1; or (b) the
reference bit for the storage key is replaced
by bit 61 of general register R1, the change
bit for the key is unpredictable, and the
instruction completes by setting condition
code 2. It is unpredictable whether condition
code 1 or 2 is set.

e. When the MC bit is zero and the MR bit is
one, then the change bit of the storage key
for the designated 4 K-byte block is com-
pared with bit 62 of general register R1. If the
bits are equal, the instruction completes by
setting condition code 0. The storage key
remains unchanged in this case, except that
the reference bit is unpredictable.

If the bits are not equal, then either (a) the
entire storage key for the designated
4 K-byte block is replaced by the bits in gen-
eral register R1, and the instruction com-
pletes by setting condition code 1; or (b) the

change bit for the storage key is replaced by
bit 62 of general register R1, the reference bit
for the key is unpredictable, and the instruc-
tion completes by setting condition code 2. It
is unpredictable whether condition code 1 or
2 is set.

When the enhanced-DAT facility 1 is not installed, or
when the facility is installed but the multiple-block
control is zero, general register R2 contains a real
address. When the enhanced-DAT facility 1 is
installed and the multiple-block control is one, gen-
eral register R2 contains an absolute address.

In the 24-bit addressing mode, bits 40-51 of general
register R2 designate a 4 K-byte block in real or abso-
lute storage, and bits 0-39 and 52-63 of the register
are ignored. In the 31-bit addressing mode, bits
33-51 of general register R2 designate a 4 K-byte
block in real or absolute storage, and bits 0-32 and
52-63 of the register are ignored. In the 64-bit
addressing mode, bits 0-51 of general register R2

designate a 4 K-byte block in real or absolute stor-
age, and bits 52-63 of the register are ignored.

Because it is a real or absolute address, the address
designating the storage block is not subject to
dynamic address translation. The reference to the
storage key is not subject to a protection exception.

The new seven-bit storage-key value, or selected bits
thereof, is obtained from bit positions 56-62 of gen-
eral register R1. The contents of bit positions 0-55
and 63 of the register are ignored. When the condi-
tional-SSKE facility is installed, and either or both the
MR and MC bits are one, bit position 63 should con-
tain a zero; otherwise, the program may not operate
compatibly in the future.

A serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed, except that
when the conditional-SSKE facility is installed and
the resulting condition code is 0, it is unpredictable
whether a serialization and checkpoint-synchroniza-
tion function is performed after the operation com-
pletes.

When the nonquiescing key-setting facility is not
installed, or when the facility is installed and the non-
quiescing control (NQ) is zero, the following applies:

• A quiescing operation is performed.

Control Instructions 10-135

S
E

T
 S

T
O

R
A

G
E

 K
E

Y
 E

X
T

E
N

D
E

D• For any store access, by any CPU or channel
program, completed to the designated 4 K-byte
block either before or after the setting of the key
by this instruction, the associated setting of the
reference and change bits to one in the storage
key for the block also is completed before or
after, respectively, the execution of this instruc-
tion.

When the nonquiescing key-setting facility is installed
and the NQ control is one, a quiescing operation is
not necessarily performed. See “Storage-Key
Accesses” on page 5-120 for a discussion the effects
of quiescing on key-setting instructions, and see
“Quiescing” on page 5-133 for details on the quiesc-
ing operation.

Setting Storage Keys in Multiple 4 K-byte
Blocks
When the enhanced-DAT facility 1 is not installed, or
when the facility is installed, but the multiple-block
control is zero, the storage key for a single 4 K-byte
block is set, as described above.

When the enhanced-DAT facility 1 is installed, and
the multiple-block control is one, the storage keys for
multiple 4 K-byte blocks within a 1 M-byte block may
be set, beginning with the block specified by the sec-
ond-operand address, and continuing to the right with
each successive block up to the next 1 M-byte
boundary. In this case, SET STORAGE KEY
EXTENDED is interruptible, and processing is as fol-
lows:

• When an interruption occurs (other than one that
follows termination), the leftmost bits of general
register R2 comprising the 4 K-byte block
address have been updated so the instruction,
when reexecuted, resumes at the point of inter-
ruption. If either or both the MR or MC bits are
one, the condition code is unpredictable; other-
wise, the condition code is unchanged.

• When the instruction completes without interrup-
tion, the leftmost bits of general register R2 com-
prising the 4 K-byte block address have been
updated to the next 1 M-byte boundary. If either
or both the MR or MC bits are one, condition
code 3 is set; otherwise, the condition code is
unchanged.

In either of the above two cases, the following
applies:

• Bits 52-63 of general register R2 remain
unchanged.

• When either or both the MR or MC bits are one,
bits 48-55 of general register R1 are unpredict-
able.

When multiple-block processing occurs and the R1

and R2 fields designate the same register, the sec-
ond-operand address is placed in the register. When
multiple-block processing occurs in the 24-bit or 31-
bit addressing modes, the leftmost bits which are not
part of the address in bit positions 32-63 of general
register R2 are set to zeros; bits 0-31 of the register
are unchanged.

Before a quiescing key-setting operation is per-
formed, transactional execution by other CPUs in the
configuration is aborted with abort code 255, condi-
tion code 2. The aborting of transactional execution
affects at least those CPUs accessing the locations
(transactionally or nontransactionally) for which stor-
age keys are being set. It is unpredictable whether
some or all other CPUs are affected as well.

Resulting Condition Code:

When the conditional-SSKE facility is not installed, or
when both the MR and MC bits of the M3 field are
zero, the condition code remains unchanged.

When the conditional-SSKE facility is installed, and
either or both of the MR and MC bits are one, the
condition code is set as follows:

0 Storage key not set
1 Entire storage key set
2 Partial storage key set
3 Entire storage key set; bits 48-55 of general reg-

ister R1 are unpredictable.

Program Exceptions:

• Addressing (address specified by general regis-
ter R2)

• Privileged operation
• Transaction constraint

Programming Notes:

1. The M3 field of the instruction is considered to be
optional, as indicated by the field being con-
tained within brackets [] in the assembler syntax.

10-136 The z/Architecture CPU Architecture

S
E

T
 S

Y
S

T
E

M
 M

A
S

K When the M3 field is not specified, the assembler
places zeros in that field of the instruction.

2. When setting multiple storage keys within the
same 1 M-byte block to the same value, use of
the multiple-block control (MB, bit 3 of the M3

field) may yield better performance than execut-
ing separate SSKE instructions for each 4 K-byte
block in the megabyte.

3. If the program does not rely on the setting of the
reference bit, it may set the MR bit of the M3 field
to one, regardless of whether or not the condi-
tional-SSKE facility is installed. Similarly, if the
program does not rely on the setting of the
change bit, it may set the MC bit of the M3 field to
one, regardless of whether or not the conditional-
SSKE facility is installed. In these cases, the pro-
gram cannot rely on the condition code or the key
value returned in general register R1. Conversely,
if the program depends on accurate setting of the
reference or change bit, then the MR and MC
bits should be set to zero, such that reference
and change bit recording are properly main-
tained when the conditional-SSKE facility is
installed.

4. When SSKE is issued, the program must ensure
that no channel subsystem is simultaneously
altering the storage designated by general regis-
ter R2. The program also must ensure that no
other CPU or channel subsystem is accessing
the storage designated by general register R2

when the nonquiescing (NQ) control is one. Oth-
erwise, unpredictable results may be observed
by the other CPUs and channel subsystem,
including the alteration of the block designated
by general register R2.

5. Even when the enhanced-DAT facility 2 is
installed, the multiple-block control is limited to
setting keys in a 1 M-byte block; no provision is
made for setting keys in a 2 G-byte block with
SSKE. PERFORM FRAME MANAGEMENT
FUNCTION with a set-key control of 1 and
frame-size code of 2 may be used to set the keys
of a 2 G-byte block. See “PERFORM FRAME
MANAGEMENT FUNCTION” on page 10-80 for
additional details.

6. See the programming note on page 5-122 for
restrictions on the use of the nonquiescing con-
trol.

SET SYSTEM MASK

SSM D2(B2) [SI]

Bits 0-7 of the current PSW are replaced by the byte
at the location designated by the second-operand
address.

Bits 8-15 of the instruction are reserved and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future.

Special Conditions

When the SSM-suppression-control bit, bit 33 of con-
trol register 0, is one and the CPU is in the supervisor
state, a special-operation exception is recognized.

The value to be loaded into the PSW is not checked
for validity before loading. However, immediately after
loading, a specification exception is recognized, and
a program interruption occurs, if either (a) the con-
tents of bit positions 0 and 2-4 of the PSW are not all
zeros, or (b) in the ESA/390-compatibility mode, bit
position 5 of the PSW does not contain zero. In either
of these cases, the instruction is completed, and the
instruction-length code is set to 2 or 3. The specifica-
tion exception, which is listed as a program exception
for this instruction, is described in “Early Exception
Recognition” on page 6-9.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Special operation
• Specification
• Transaction constraint

SIGNAL PROCESSOR

SIGP R1,R3,D2(B2) [RS-a]

'80' / / / / / / / / B2 D2

0 8 16 20 31

'AE' R1 R3 B2 D2

0 8 12 16 20 31

Control Instructions 10-137

S
IG

N
A

L
 P

R
O

C
E

S
S

O
RAn eight-bit order code and, if called for, a 64-bit

parameter are transmitted to the CPU designated by
the CPU address contained in the third operand. The
result is indicated by the condition code and may be
detailed by status assembled in bit positions 32-63 of
the first-operand location.

The second-operand address is not used to address
data; instead, bits 56-63 of the address contain the
eight-bit order code. Bits 0-55 of the second-operand
address are ignored. The order code specifies the
function to be performed by the addressed CPU. The
assignment and definition of order codes appear in
“CPU Signaling and Response” on page 4-85.

The 16-bit binary number contained in bit positions
48-63 of general register R3 forms the CPU address.
Bits 0-47 of the register are ignored. When the speci-
fied order is the set-architecture or set multithreading
order, the CPU address is ignored; all CPUs in the
configuration are considered to be addressed. See
“CPU-Address Identification” on page 4-84 for details
on the CPU address.

The general register containing the 64-bit parameter
in bit positions 0-63 is R1 or R1+1, whichever is the
odd-numbered register. It depends on the order code
whether a parameter is provided and for what pur-
pose it is used.

The operands just described have the following for-
mats:

General register designated by R1:

General register designated by R1 or R1 + 1, which-
ever is the odd-numbered register:

General register designated by R3:

Second-operand address:

A serialization function is performed before the oper-
ation begins and again after the operation is com-
pleted.

When the order code is accepted and no nonzero
status is returned, condition code 0 is set. When sta-
tus information is generated by this CPU or returned
by the addressed CPU, the status is placed in bit
positions 32-63 of general register R1, bits 0-31 of the
register remain unchanged, and condition code 1 is
set.

When the access path to the addressed CPU is busy,
or the addressed CPU is operational but in a state
where it cannot respond to the order code, condition
code 2 is set.

When the addressed CPU is not operational (that is,
it is not provided in the installation, it is not in the con-
figuration, it is in any of certain customer-engineer
test modes, or its power is off), condition code 3 is
set.

Resulting Condition Code:

0 Order code accepted
1 Status stored
2 Busy
3 Not operational

Program Exceptions:

• Privileged operation
• Transaction constraint

/ /
0 31

Status
32 63

Parameter
0 31

Parameter (continued)
32 63

/ /
0 31

/ / / / / / / / / / / / / / / / CPU Address
32 48 63

/ /
0 31

/ Order Code
32 56 63

10-138 The z/Architecture CPU Architecture

S
T

O
R

E
 C

L
O

C
K

 C
O

M
P

A
R

A
T

O
R Programming Notes:

1. A more detailed discussion of the condition-code
settings for SIGNAL PROCESSOR is contained
in “CPU Signaling and Response” on page 4-85.

2. To ensure that presently written programs will be
executed properly when new facilities using addi-
tional bits are installed, only zeros should appear
in the unused bit positions of the second-oper-
and address and in bit positions 32-47 of general
register R3.

3. Certain SIGNAL PROCESSOR orders are pro-
vided with the expectation that they will be used
primarily in special circumstances. Such orders
may be implemented with the aid of an auxiliary
maintenance or service processor, and, thus, the
execution time may take several seconds. Unless
all of the functions provided by the order are
required, combinations of other orders, in con-
junction with appropriate programming support,
can be expected to provide a specific function
more rapidly. The following orders are the only
orders which are intended for frequent use:

• Conditional emergency signal
• Emergency-signal
• External-call
• Sense
• Sense-running-status

The following orders are intended for infrequent
use, and performance therefore may be much
slower than for frequently used orders:

• CPU reset
• Initial CPU reset
• Restart
• Set architecture
• Set multithreading
• Set prefix
• Store additional status at address
• Store status at address
• Start
• Stop
• Stop and store status

An alternative to the set-prefix order, for faster
performance when the receiving CPU is not
already stopped, is the use of the emergency-
signal or external-call order, followed by the exe-
cution of a SET PREFIX instruction on the
addressed CPU. Clearing the TLB of entries is
ordinarily accomplished more rapidly through the
use of the emergency-signal or external-call

order, followed by execution of the PURGE TLB
instruction on the addressed CPU, than by use of
the set-prefix order.

STORE CLOCK COMPARATOR

STCKC D2(B2) [S]

The current value of the clock comparator is stored at
the doubleword location designated by the second-
operand address.

Zeros are provided for the rightmost bit positions of
the clock comparator that are not compared with the
TOD clock.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification
• Transaction constraint

STORE CONTROL

STCTL R1,R3,D2(B2) [RS-a]

STCTG R1,R3,D2(B2) [RSY-a]

Bits of the set of control registers starting with control
register R1 and ending with control register R3 are
stored at the locations designated by the second-
operand address.

For STORE CONTROL (STCTL), bits 32-63 of the
control registers are stored in successive words

'B207' B2 D2

0 16 20 31

'B6' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '25'

0 8 12 16 20 32 40 47

Control Instructions 10-139

S
T

O
R

E
 C

P
U

 ID

beginning at the second-operand address, and bits
0-31 of the registers are ignored. For STORE CON-
TROL (STCTG), bits 0-63 of the control registers are
stored in successive doublewords beginning at the
second-operand address.

The storage area where the contents of the control
registers are placed starts at the location designated
by the second-operand address and continues
through as many storage words, for STCTL, or dou-
blewords, for STCTG, as the number of control regis-
ters specified. The contents of the control registers
are stored in ascending order of their register num-
bers, starting with control register R1 and continuing
up to and including control register R3, with control
register 0 following control register 15. The contents
of the control registers remain unchanged.

The displacement for STCTL is treated as a 12-bit
unsigned binary integer. The displacement for
STCTG is treated as a 20-bit signed binary integer.

Special Conditions

The second operand must be designated on a word
boundary for STCTL or on a doubleword boundary
for STCTG; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification
• Transaction constraint

STORE CPU ADDRESS

STAP D2(B2) [S]

The CPU address by which this CPU is identified in a
multiprocessing configuration is stored at the half-
word location designated by the second-operand
address.

Special Conditions

The operand must be designated on a halfword
boundary; otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification
• Transaction constraint

STORE CPU ID

STIDP D2(B2) [S]

Information identifying (a) the execution environment,
(b) the system serial number, (c) the machine type,
and (d) the format of the response is stored at the
doubleword location designated by the second-oper-
and address. Depending on the format of the
response, the CPU address, logical partition identifi-
cation, or both may also be stored.

The information stored has the following format:

Environment: Bit positions 0-7 contain an indica-
tion of the environment in which the instruction was
executed, as follows:

• For a program being executed by an IBM
machine in a level-1 configuration (the basic
machine), or for a program being executed by a
level-2 configuration (in a logical partition), the
environment field contains 00 hex.

• For a program being executed natively by the
System z Personal-Development Tool (that is,
when not executed in a virtual machine running
on the zPDT), the environment field contains
either C1 hex or D3 hex. (See programming note
6 on page 10-141).

'B212' B2 D2

0 16 20 31

'B202' B2 D2

0 16 20 31

Environment Configuration Identification
0 8 31

Machine-Type Number F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 48 49 63

10-140 The z/Architecture CPU Architecture

S
T

O
R

E
 C

P
U

 ID

• For a program being executed by a level-3 con-
figuration (a virtual machine), the environment
field contains FF hex.

Configuration Identification: Bit positions 8-31
contain six hexadecimal digits. Depending on the
environment, the rightmost of these digits may be
(a) selected from some or all of the machine’s physi-
cal serial number, (b) derived from either the zPDT
token or the zPDT unique-identification-manager
(UIM) server, or (c) assigned by the virtual machine
definition.

• When executed by a level-1 configuration, bits 8-
31 are stored as follows:

– When the format bit (bit 48 of the response)
is zero, bit positions 8-11 (A) contain the
rightmost hexadecimal digit of the physical
CPU address. When the format bit is one, bit
positions 8-11 contain zeros.

– Bit positions 12-31 (nnnnn) contain the right-
most five hexadecimal digits of the machine’s
physical serial number.

• When executed by a level-2 configuration, and
the format bit is zero, bits 8-31 are stored as fol-
lows:

– Bit positions 8-11 (L) contain the rightmost
hexadecimal digit of the logical CPU
address.

– Bit positions 12-15 (P) contain a hexadeci-
mal digit identifying the logical partition.

– Bit positions 16-31 (nnnn) contain the right-
most four hexadecimal digits of the
machine’s physical serial number.

• When executed by a level-2 configuration, and
the format bit is one, bits 8-31 are stored as fol-
lows:

– Bit positions 8-15 contains a two hexadeci-
mal digit user-partition identifier (UPID)
which is bound to the logical partition.

– Bit positions 16-31 (nnnn) contains the right-
most four hexadecimal digits of the system’s
serial number.

• When executed by a zPDT configuration, the
results are similar to those defined for a level-2
configuration when the format bit is one. See pro-
gramming note 6 for further details.

• When executed by a level-3 configuration, the
results are similar to those defined for a level-2
configuration. However, the hypervisor can sup-
ply alternate configuration identification.

Machine-Type Number: Bit positions 32-47 con-
tain an unsigned packed-decimal number identifying
the machine type of the CPU.

Format Indication (F): Bit position 48 specifies the
format of the first two hexadecimal digits of the con-
figuration-identification field, as described above.

Reserved: Bit positions 49-63 are reserved and
stored as zeros.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification
• Transaction constraint

Programming Notes:

1. The STORE SYSTEM INFORMATION (STSI)
instruction provides more comprehensive and
complete information identifying the machine,
logical partition, and CPU on which the program
is executing. In order to ensure world-wide
unique identification of the configuration of the
issuing CPU, the STSI instruction specifying
SYSIB 1.1.1, 1.2.1, 2.2.1, or 3.2.2 should be
used.

A n n n n n
8 12 31

L P n n n n
8 12 16 31

UPID n n n n
8 16 31

Control Instructions 10-141

S
T

O
R

E
 F

A
C

IL
IT

Y
 L

IS
T2. The program should allow for the possibility that

the configuration-identification field may contain
the hexadecimal digits A-F as well as the digits
0-9.

3. The format bit is stored as one beginning with the
IBM eServer zSeries 990 and in newer models.

4. Except when executed in a level-3 configuration
(that is, except when executed by a virtual
machine), the value of the rightmost four or five
hexadecimal digits of the configuration-identifica-
tion field are equivalent to the value of the corre-
sponding rightmost EBCDIC characters stored in
the sequence-code field of the SYSIB 1.1.1
stored by STSI. When executed in a level-3 con-
figuration, the hypervisor may provide a means
by which an alternate configuration identification
can be specified; however, the sequence code
reported in the SYSIB 1.1.1 is that of the real
machine, even when executed by a virtual
machine.

Except when executed in a level-3 configuration,
the content of the machine-type-number field
stored by STIDP is equivalent to the EBCDIC
type field of the SYSIB 1.1.1 stored by STSI.
When executed in a level-3 configuration, hyper-
visor features such as live guest relocation may
alter machine-type number stored by STIDP to
reflect the machine type corresponding to a vir-
tual architecture level. However, the type field
reported in the SYSIB 1.1.1 is that of the real
machine, even when executed by a virtual
machine.

5. In previous versions of the architecture, bit posi-
tions 0-7 were called the version code. Prior to
z/Architecture, a nonzero version code was usu-
ally indicative of the model number and number
of CPUs contained in the model.

In previous versions of the architecture, bit posi-
tions 8-31 were called the CPU-identification
number. This has been renamed the configura-
tion-identification field to more accurately repre-
sent its z/Architecture content.

6. The following applies to execution of STIDP on
the System z Personal-Development Tool (zPDT)
or Rational Development and Test Environment
for System z (RD&T; for brevity the term zPDT
also applies to RD&T):

• The user-partition identifier (UPID) is associ-
ated with the Linux zPDT instance number.

The zPDT instance-number field contains a
value from 1-255, derived from either the
zPDT token or from the unique-identification-
manager (UIM) server.

• The rightmost four hex digits of the configu-
ration-identification field (called the serial
number in zPDT documentation) contain a
16-bit binary value from 1-65,535 that is
derived from the UIM server.

STORE CPU TIMER

STPT D2(B2) [S]

The current value of the CPU timer is stored at the
doubleword location designated by the second-oper-
and address.

Zeros are provided for the rightmost bit positions that
are not updated by the CPU timer.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification
• Transaction constraint

STORE FACILITY LIST

STFL D2(B2) [S]

A list of bits providing information about facilities is
stored in the word at real address 200. The mean-
ings of the bits are identical to the first 32 bits stored
by STORE FACILITY LIST EXTENDED. Figure 4-36,

'B209' B2 D2

0 16 20 31

'B2B1' B2 D2

0 16 20 31

10-142 The z/Architecture CPU Architecture

S
T

O
R

E
 P

R
E

F
IX “Assigned Facility Bits” on page 4-99 shows the

meanings of the assigned facility bits.

The second-operand address is ignored but should
be zero to permit possible future extensions.

Key-controlled and low-address protection do not
apply.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation
• Transaction constraint

Programming Note: STORE FACILITY LIST stores
only a 32-bit indication of facilities. STORE FACILITY
LIST EXTENDED may be used to store the entire list
of installed facilities.

STORE PREFIX

STPX D2(B2) [S]

In the z/Architecture architectural mode, the contents
of bit positions 33-50 of the prefix register are stored
in bit positions 1-18 of the word location designated
by the second-operand address, and zeros are
stored in bit positions 0 and 19-31 of the word.

In the ESA/390-compatibility mode, the contents of
bit positions 33-51 of the prefix register are stored in
bit positions 1-19 of the word location designated by
the second-operand address, and zeros are stored in
bit positions 0 and 20-31 of the word.

Special Conditions

The operand must be designated on a word bound-
ary; otherwise, a specification exception is recog-
nized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification

• Transaction constraint

STORE REAL ADDRESS

STRAG D1(B1),D2(B2) [SSE]

The 64-bit real address corresponding to the second-
operand virtual address is stored in the doubleword
at the location designated by the first-operand
address.

The virtual address specified by the B2 and D2 fields
is translated by means of the dynamic-address-trans-
lation facility, regardless of whether DAT is on or off.

DAT is performed by using an address-space-control
element that depends on the current value of the
address-space-control bits, bits 16 and 17 of the
PSW, as shown in the following table:

ART and DAT may be performed with the use of the
ART-lookaside buffer (ALB) and translation-lookaside
buffer (TLB), respectively.

The resultant 64-bit real address is stored at the first-
operand location.

The translated address is not inspected for boundary
alignment or for addressing or protection exceptions.

The address computations for the operands are per-
formed according to the current addressing mode,
specified by bits 31 and 32 of the current PSW.

The addresses of the region-table entry or entries, if
used, and of the segment-table entry and page-table
entry are treated as 64-bit addresses regardless of
the current addressing mode. It is unpredictable

'B211' B2 D2

0 16 20 31

'E502' B1 D1 B2 D2

0 16 20 32 36 47

PSW
Bits 16
and 17

Address-Space-Control Element
Used by DAT

00 Contents of control register 1

10 Contents of control register 7

01 The address-space-control element
obtained by applying the access-register-
translation (ART) process to the access
register designated by the B2 field

11 Contents of control register 13

Control Instructions 10-143

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
Nwhether the addresses of these entries are treated

as real or absolute addresses.

Special Conditions

The first operand must be designated on a double-
word boundary; otherwise, a specification exception
is recognized.

In the ESA/390-compatibility mode, an operation
exception is recognized.

The operation is suppressed on all addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2, except for an address-
ing or protection exception for the designated
location; store, operand 1)

• Operation (in the ESA/390-compatibility mode)
• Privileged operation
• Specification
• Transaction constraint

Programming Note: STORE REAL ADDRESS is
contrasted to LOAD REAL ADDRESS as follows:

• In the 24-bit or 31-bit addressing mode, LOAD
REAL ADDRESS (LRA) loads bits 33-63 of the
real address if bits 0-32 of the address are all
zeros or recognizes a special-operation excep-
tion if bits 0-32 are not all zeros. LRA in the 64-bit
addressing mode, and LOAD REAL ADDRESS
(LRAG) in any addressing mode, loads bits 0-63
of the real address. STORE REAL ADDRESS
stores bits 0-63 of the real address in any
addressing mode.

• LOAD REAL ADDRESS, for most access-excep-
tion conditions, does not recognize the condi-
tions as exceptions but instead sets the condition
code to indicate the occurrence of the conditions.
STORE REAL ADDRESS recognizes all access-
exception conditions as exceptions, resulting in a
program interruption.

STORE SYSTEM INFORMATION

STSI D2(B2) [S]

Depending on a function code in general register 0,
either an identification of the level of the configuration
executing the program is placed in general register 0
or information about a component or components of
a configuration is stored in a system-information
block (SYSIB). When information about a component
or components is requested, the information is speci-
fied by further contents of general register 0 and by
contents of general register 1. The SYSIB, if any, is
designated by the second-operand address.

The machine is considered to provide one, two, or
three levels of configuration. The levels are:

1. The basic machine, which is the machine as if it
were operating in the basic mode.

2. A logical partition, which is provided if the
machine is operating in the logically partitioned
(LPAR) mode. A logical partition is provided by
the LPAR hypervisor, which is a part of the
machine. Basic-machine configuration informa-
tion is provided even when the machine is oper-
ating in the LPAR mode.

3. A virtual machine, which is provided by a virtual-
machine (VM) control program that is executed
either by the basic machine or in a logical parti-
tion. A virtual machine may itself execute a VM
control program that provides a higher-level
(more removed from the basic machine) virtual
machine, which also is considered a level-3 con-
figuration.

The terms basic mode, LPAR mode, logical partition,
hypervisor, and virtual machine, and any other terms
related specifically to those terms, are not defined in
this publication; they are defined in the machine
manuals.

A program being executed by a level-1 configuration
(the basic machine) can request information about
that configuration. A program being executed by a
level-2 configuration (in a logical partition) can
request information about the logical partition and
about the underlying basic machine. A program
being executed by a level-3 configuration (a virtual

'B27D' B2 D2

0 16 20 31

10-144 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N machine) can request information about the virtual

machine and about the one or two underlying levels;
a basic machine is always underlying, and a logical
partition may or may not be between the basic
machine and the virtual machine. When information
about a virtual machine is requested, information is
provided about the configuration executing the pro-
gram and about any underlying level or levels of vir-
tual machine.

The function code determining the operation is an
unsigned binary integer in bit positions 32-35 of gen-
eral register 0 and is as follows:

Invalid Function Code

The level of the configuration executing the program
is called the current level. The configuration level
specified by a nonzero function code (other than 15)
is called the specified level. When the specified level
is numbered higher than the current level, then the
function code is called invalid, the condition code is
set to 3, and no other action (including checking) is
performed. Function code 15 is invalid when the con-
figuration-topology facility is not installed.

Valid Function Code

When the function code is equal to or less than the
number of the current level, or 15, it is called valid. In
this case, bits 36-55 of general register 0 and bits
32-47 of general register 1 must be zero; otherwise,
a specification exception is recognized. Bits 0-31 of
general registers 0 and 1 always are ignored.

When the function code is 0, an unsigned binary inte-
ger identifying the current configuration level (1 for
basic machine, 2 for logical partition, or 3 for virtual
machine) is placed in bit positions 32-35 of general
register 0, the condition code is set to 0, and no fur-
ther action is performed.

When the function code is valid and nonzero, general
registers 0 and 1 contain additional specifications
about the information requested, as follows:

• Bit positions 56-63 of general register 0 contain
an unsigned binary integer, called selector 1, that
specifies a component or components of the
specified configuration.

• Bit positions 48-63 of general register 1 contain
an unsigned binary integer, called selector 2, that
specifies the type of information requested.

The contents of general registers 0 and 1 are as fol-
lows:

When the function code is valid and nonzero, infor-
mation may be stored in a system-information block
(SYSIB) beginning at the second-operand location.
The SYSIB is 4K bytes and must begin at a 4 K-byte
boundary; otherwise, a specification exception may
be recognized, depending on selector 1 and selector
2 and on whether access exceptions are recognized
due to references to the SYSIB (see “Special Condi-
tions”).

Selector 1 can have values as follows:

When selector 1 is 1, selector 2 can have values as
follows:

Function
Code Information Requested

0 Current-configuration-level number
1 Information about level 1 (the basic machine)
2 Information about level 2 (a logical partition)
3 Information about level 3 (a virtual machine)

4-14 None; codes are reserved
15 Current-configuration-level information

General Register 0

/ /
0 31

FC 0 Selector 1
32 36 56 63

General Register 1

/ /
0 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Selector 2
32 48 63

Selector 1 Information Requested
0 None; selector is reserved
1 Information about the configuration level

specified by the function code.
2 Information about one or more CPUs in the

specified configuration level
3-255 None; selectors are reserved

Selector 2
when

Selector 1
Is 1 Information Requested
0 None; selector is reserved
1 Information about the specified configuration

level

Control Instructions 10-145

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N

When selector 1 is 2, selector 2 can have values as
follows:

Only certain combinations of the function code,
selector 1, and selector 2 are valid, as shown in
Figure 10-84.

When the specified function-code, selector-1, and
selector-2 combination is invalid (is other than as
shown in Figure 10-84), or if it is valid but the
requested information is not available because the
specified level does not implement or does not fully
implement the instruction or because a necessary

part of the level is uninstalled or not initialized, and
provided that an exception is not recognized (see
“Special Conditions”), the condition code is set to 3.
When the function code is nonzero, the combination
is valid, the requested information is available, and
there is no exception, the requested information is
stored in a system-information block (SYSIB) at the
second-operand address.

Some or all of the SYSIB may be fetched before it is
stored.

A SYSIB may be identified in references by means of
“SYSIB fc.s1.s2,” where “fc,” “s1,” and “s2” are the
values of a function code, selector 1, and selector 2,
respectively.

Following sections describe the defined SYSIBs by
means of figures and related text. In the figures, the
offsets shown on the left are word values. “The con-
figuration” refers to the configuration level specified
by the function code (the configuration level about
which information is requested).

Note: In the descriptions of the system-information
block (SYSIB) stored by STSI, the term “CPU or
core” (or briefly, “CPU/core”) indicates the applicabil-
ity of the text. When the multithreading facility is not
installed at the selected configuration level, certain
STSI functions store information relevant to logical or
physical CPU attributes. When the multithreading
facility is installed at the selected configuration level,
these STSI functions store information relevant to
logical or physical core attributes.

SYSIB 1.1.1 (Basic-Machine
Configuration)
SYSIB 1.1.1 is illustrated in Figure 10-85:

2-6 Topology information about the specified
configuration level

7-65,535 None; selectors are reserved

Selector 2
when

Selector 1 Is
2 Information Requested
0 None; selector is reserved
1 Information about the CPU executing the

program in the specified configuration level
2 Information about all CPUs in the specified

configuration level
3-65,535 None; selectors are reserved

Func-
tion

Code
Selec-
tor 1

Selec-
tor 2 Information Requested about

0 - – Current-configuration-level number

1 1 1 Basic-machine configuration
1 2 1 Basic-machine CPU
1 2 2 Basic-machine CPUs

2 2 1 Logical-partition CPU
2 2 2 Logical-partition CPUs

3 2 2 Virtual-machine CPUs

15 1 2-6 Topology information of current
configuration

Explanation:

– Ignored.

Figure 10-84. Valid Function-Code, Selector-1, and
Selector-2 Combinations for STORE SYSTEM
INFORMATION

Selector 2
when

Selector 1
Is 1 Information Requested

0 P Reserved MT RIBM CCR CAI
1

Reserved

6
Licensed Internal Code Identifier

7
8

Manufacturer

12 Type
13

Reserved

0 7 8 1
6

2
4

3
1

Figure 10-85. Format of the SYSIB 1.1.1 (Part 1 of 2)

10-146 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N

Reserved: The contents of bits 1-5 of word 0,
words 1-5, words 13-15, bits 8-31 of word 41, bits 16-
31 of word 45, and words 46-63 are reserved and are
stored as zeros. The contents of words 64-65, bits
16-31 of word 66, and words 67-1023 are reserved
and may be stored as zeros or may remain
unchanged.

Word 0, Byte 0: Byte 0 of word 0 contains the fol-
lowing bit definitions:

Bit Meaning

0 When bit 0 of byte 0 (P) is one, the type-percent-
age bytes, located in words 40-41, are valid.
When P is zero, the bytes are stored as zeros,
but have no meaning.

1-5 Bits 1-5 of byte 0 are reserved and stored as
zeros.

6 When bit 6 of byte 0 (M) is zero, the multithread-
ing facility is not installed in the basic machine
configuration. When M is one, the multithreading
facility is installed in the basic machine configura-
tion.

7 Bit 7 of byte 0 (T), when one, indicates that the
condition represented by the CCR and CAI fields
is relatively transient.

Reserved for IBM Use (RIBM): Byte 1 of word 0 ,
bytes 0-1 of word 45, and bytes 0-1 of word 66 are
assigned to IBM internal use.

Capacity-Change Reason (CCR): When the CAI
byte is nonzero, the content of byte 2 of word 0 is an
8-bit unsigned integer whose value indicates one of
the following reasons which is associated with the
present values contained in SYSIB 1.1.1.

CCR Capacity-Change Reason

0 Machine is running at nominal capacity.

1 The capacity change is due solely to the set-
ting of a manual control, such as intentional
power-save.

2 The capacity change is due to a machine-
exception condition, such as detection of
overheating.

3 The capacity change is due to a non-excep-
tion machine condition, such as concurrent
service.

4 The capacity change is due to an exception
condition external to the machine, such as
detection of supplied power or cooling falling
outside required tolerances.

5-255 Reserved.

When the CAI byte is zero, the CCR field is unde-
fined, and stored as zero.

When multiple capacity-change reasons exist, CCR
is set according to the following priority:

1a. Machine-exception condition, CCR=2.

1b. External-exception condition, CCR=4.

2. Non-exception machine condition, CCR=3.

3. Manual control, CCR=1.

16
Model-Capacity Identifier

20
Sequence Code

24 Plant of Manufacture
25

Model

29
Model-Permanent-Capacity Identifier

33
Model-Temporary-Capacity Identifier

37 Model-Capacity Rating
38 Model-Permanent-Capacity Rating
39 Model-Temporary-Capacity Rating
40 Type 1 Perctg. Type 2 Pctg. Type 3 Pctg. Type 4 Pctg.
41 Type 5 Pctg. Reserved
42 Nominal Model-Capacity Rating
43 Nominal Model-Permanent-Capacity Rating
44 Nominal Model-Temporary-Capacity Rating
45 Reserved for IBM Use Reserved
46

Reserved
65
66 Reserved for IBM Use Reserved
67

Reserved
1023

0 7 8 1
6

2
4

3
1

Figure 10-85. Format of the SYSIB 1.1.1 (Part 2 of 2)

Control Instructions 10-147

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
NCapacity-Adjustment Indication (CAI): Byte 3 of

word 0, when nonzero, is an 8-bit unsigned integer
whose value is in the range 1-100 and represents the
aggregate position of model-dependent controls.
Temporary capacity changes that affect machine per-
formance are not included; such changes include
those caused by capacity-backup (CBU), on/off-
capacity-on-demand (OOCoD), and capacity-
planned-event (CPE) features. When zero, the indi-
cation is not reported. When in the range 1-99, some
amount of reduction is indicated. When 100, the
machine is operating at its normal capacity.

Primary CPUs and all secondary-type CPUs are sim-
ilarly affected.

The model-capacity rating is not affected. A change
in the CAI may also reflect a change in CPU-capabil-
ity fields of SYSIB 1.2.2.

Licensed Internal Code (LIC) Identifier: Words 6-
7, when nonzero, indicate information about currently
installed internal code. The definition of the informa-
tion conveyed is model dependent. The internal
code, to which the information applies, is model
dependent.

Manufacturer: Words 8-11 contain the 16-charac-
ter (0-9 or uppercase A-Z) EBCDIC name of the
manufacturer of the configuration. The name is left
justified with trailing blanks if necessary.

Type: Word 12 contains the four-character (0-9)
EBCDIC type number of the configuration. (This is
called the machine-type number in the definition of
STORE CPU ID.)

Model-Capacity Identifier (C): Words 16-19 con-
tain the 16-character (0-9 or uppercase A-Z) EBC-
DIC model-capacity identifier of the configuration.
The model-capacity identifier is left justified with trail-
ing blanks if necessary.

Sequence Code: Words 20-23 contain the 16-char-
acter (0-9 or uppercase A-Z) EBCDIC sequence
code of the configuration. The sequence code is right
justified with leading EBCDIC zeros if necessary.

Plant of Manufacture: Word 24 contains the four-
character (0-9 or uppercase A-Z) EBCDIC code that
identifies the plant of manufacture for the configura-
tion. The code is left justified with trailing blanks if
necessary.

Model: When word 25 is not binary zeros, words
25-28 contain the 16-character (0-9 or uppercase A-
Z) EBCDIC model identification of the configuration.
The model identification is left justified with trailing
blanks if necessary. (This is called the model number
in programming note 5 on page 10-141 of STORE
CPU ID.) When word 25 is binary zeros, the contents
of words 16-19 represent both the model-capacity
identifier and the model.

Model-Permanent-Capacity Identifier (P): When
nonzero, words 29-32 contain the 16-character (0-9
or uppercase A-Z) EBCDIC model-permanent-
capacity identifier of the configuration. The identifier
is left justified with trailing blanks if necessary.

Model-Temporary-Capacity Identifier (T): When
nonzero, words 33-36 contain the 16-character (0-9
or uppercase A-Z) EBCDIC model-temporary-capac-
ity identifier of the configuration. The identifier is left
justified with trailing blanks if necessary.

Model-Capacity Rating (CR): When nonzero, word
37 contains a 32-bit unsigned integer whose value is
associated with the model capacity as identified by
the model-capacity identifier. There is no formal
description of the algorithm used to generate this
integer.

Model-Permanent-Capacity Rating (PR): When
nonzero, word 38 contains a 32-bit unsigned integer
whose value is associated with the model-permanent
capacity as identified by the model-permanent-
capacity identifier. There is no formal description of
the algorithm used to generate this integer.

Model-Temporary-Capacity Rating (TR): When
nonzero, word 39 contains a 32-bit unsigned integer
whose value is associated with the model-temporary
capacity as identified by the model-temporary-capac-
ity identifier. There is no formal description of the
algorithm used to generate this integer.

Type N Pctg. Each of the byte fields in words 40-41
that is designated as a type-N percentage contains
an 8-bit unsigned binary integer whose value is in the
range 0-100 and represents a percentage. When
nonzero, the percentage may be used to affect the
use and allowed utilization of the secondary-CPUs
whose CPU type corresponds to the particular byte.
When a byte in this range contains a value of zero,
use rules of the corresponding secondary-CPU type
are not overridden. The reserved bytes in word 41

10-148 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N are reserved for the potential addition of new second-

ary CPU types.

Nominal Model-Capacity Rating (NCR): When
nonzero, word 42 contains a 32-bit unsigned integer
whose value is associated with the nominal model
capacity as identified by the model-capacity identifier.
There is no formal description of the algorithm used
to generate this integer. The NCR value equals the
CR value when the CAI byte contains a value of 100.
When the CAI byte is less than 100, the CR value is
less than the NCR value.

Nominal Model-Permanent-Capacity Rating
(NPR): When nonzero, word 43 contains a 32-bit
unsigned integer whose value is associated with the
nominal model-permanent capacity as identified by
the model-permanent-capacity identifier. There is no
formal description of the algorithm used to generate
this integer. The NPR value equals the PR value
when the CAI byte contains a value of 100. When the
CAI byte is less than 100, the PR value is less than
the NPR value.

Nominal Model-Temporary-Capacity Rating
(NTR): When nonzero, word 44 contains a 32-bit
unsigned integer whose value is associated with the
nominal model-temporary capacity as identified by
the model-temporary-capacity identifier. There is no
formal description of the algorithm used to generate
this integer. The NTR value equals the TR value
when the CAI byte contains a value of 100. When the
CAI byte is less than 100, the TR value is less than
the NTR value.

Worldwide Unique Identification: Taken together,
the machine type, manufacturer, plant of manufac-
ture, and sequence code allow for worldwide unique
identification of the system.

Programming Notes:

1. The fields of the SYSIB 1.1.1 are similar to those
of the node descriptor described in the publica-
tion Common I/O-Device Commands and Self
Description, SA22-7204. However, the contents
of the SYSIB fields may not be identical to the
contents of the corresponding node-descriptor
fields because the SYSIB fields:

• Allow more characters.

• Are more flexible regarding the type of char-
acters allowed.

• Provide information that is justified differently
within the field.

• May not use the same method to determine
the contents of fields such as the sequence-
code field.

2. The model field in a node descriptor corresponds
to the content of the STSI model field and not the
STSI model-capacity-identifier field.

3. The model field specifies the model of the
machine (i.e., the physical model); the model-
capacity identifier field specifies a token that may
be used to locate a statement of capacity or per-
formance in the System Library publication for
the model.

4. Each of the three model-capacity-identifier fields
specifies a token that may be used to locate a
statement of capacity or performance in the Sys-
tem Library publication for the model.

5. Each of the three model-capacity-rating fields,
corresponding one-to-one with the three model-
capacity-identifier fields, specifies a numeric
value that may or may not represent the actual
capacity of the machine

6. The term capacity backup (CBU) represents a
methodology by which spare capacity in a CPC
can be used to replace capacity from another
CPC within an enterprise, normally for a rela-
tively limited period of time. Typically CBU is
used when another CPC of the enterprise has
failed, and the CPC operating under CBU rules is
making up for the missing CPC’s capacity. How-
ever, CBU can also indicate a capacity that
reflects a net reduction such that the current
capacity would be less than the permanent
capacity.

7. The term On/Off Capacity on Demand (On/Off
CoD) represents a methodology by which spare
capacity in a CPC can be made available to
increase the total capacity within an enterprise,
normally for a limited period of time. For exam-
ple, On/Off CoD may be used to acquire addi-
tional capacity in order to handle a workload
peak.

8. The content of the model-capacity identifier (C)
field corresponds to the current capacity at which
the central-processing complex (CPC) is operat-
ing.

Control Instructions 10-149

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N9. The content of the model-permanent-capacity

identifier (P) corresponds to the capacity of the
CPC exclusive of temporarily-available increased
capacity and temporarily-available replacement
capacity.

10. The content of the model-temporary-capacity
identifier (T) corresponds to the total of perma-
nent capacity and temporarily-available
increased capacity but exclusive of any tempo-
rarily-available replacement capacity.

11. When the T bit in byte 0 is one, the current
capacity values and indicators are in a relatively-
short period of transition and should be permitted
to stabilize, that is, a result where T is zero,
before any resultant action proceeds.

12. There is no facility indication defined to distin-
guish whether a model stores zeros, or informa-
tion pertaining to installed internal code, in the
licensed internal code identifier field. A program
may test the licensed internal code identifier field
stored, for a nonzero value, to recognize whether
or not a specific machine provides the informa-
tion requested.

SYSIB 1.2.1 (Basic-Machine CPU/Core)
SYSIB 1.2.1 is illustrated in Figure 10-86:

Reserved: The contents of words 0-19, bytes 0
and 1 of word 25, and words 26-63 are reserved and
are stored as zeros. The contents of words 64-1023
are reserved and may be stored as zeros or may
remain unchanged.

Sequence Code: Words 20-23 contain the 16-char-
acter (0-9 or uppercase A-Z) EBCDIC sequence
code of the configuration. The code is right justified
with leading EBCDIC zeros if necessary.

Plant of Manufacture: Word 24 contains the four-
character (0-9 or uppercase A-Z) EBCDIC code that
identifies the plant of manufacture for the configura-
tion. The code is left justified with trailing blanks if
necessary.

CPU Address: When the multithreading facility is
not installed in the machine, bytes 2 and 3 of word 25
contain the CPU address by which this CPU is identi-
fied in a multiprocessing configuration. The CPU
address is a 16-bit unsigned binary integer. The CPU
address is the same as is stored by STORE CPU
ADDRESS when the program is executed by a
machine operating in the basic mode.

Core Identification: When multithreading is
installed in the machine, bytes 2 and 3 of word 25
contain a 16-bit unsigned core identification, right
justified in the field. The core ID field contains the
core-ID portion of the value that would be stored by
STORE CPU ADDRESS when executed by a
machine operating in the basic mode; no thread ID is
included.

Worldwide Unique Identification: Taken together,
the machine type and manufacturer (from SYSIB
1.1.1) with the plant of manufacture and sequence
code allow for worldwide unique identification of the
system.

Programming Note: Multiple CPUs in the same con-
figuration have the same sequence code, and it is
necessary to use other information, such as the CPU
address, to establish a unique CPU identity. The
sequence code returned for a basic-machine CPU
and a logical-partition CPU are identical and have the
same value as the sequence code returned for the
basic-machine configuration.

SYSIB 1.2.2 (Basic-Machine CPUs)
The general format of the SYSIB 1.2.2 is illustrated in
Figure 10-87. Some fields may or may not be valid,
as indicated by the contents of the format field in byte
0 of word zero.

When the multithreading facility is not installed (as
indicated by bit 0 of word 1), fields labelled
“CPU/Core” apply to a CPU. When the multithreading

Word

0

Reserved

20

Sequence Code

24 Plant of Manufacture

25
Reserved

CPU Address /
Core Identification

26

Reserved

1023
0 16 31

Figure 10-86. Format of the SYSIB 1.2.1

10-150 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N facility is installed, fields labelled “CPU/Core” apply to

a core.

Reserved: The contents of byte 1 of word 0, bytes
2-3 of word 1, and words 2-3 are reserved and stored
as zeros. When the format field contains a value of
zero, bytes 2-3 of word 0 are reserved and stored as
zeros.

When fewer than 64 words are needed to contain the
information for all the CPUs or cores, the portion of
the SYSIB following the adjustment-factor list in a for-
mat-0 SYSIB, or the alternate-adjustment-factor list
in a format-1 SYSIB, up to and including word 63 are
reserved and are stored as zeros. The contents of
words 64-1023 are reserved and may be stored as
zeros or may remain unchanged.

When 64 or more words are needed to contain the
information for all the CPUs, the portion of the SYSIB
following the adjustment-factor list in a format-0
SYSIB or the alternate-adjustment-factor list in a for-
mat-1 SYSIB, up to and including word 1023 are
reserved and may be stored as zeros or may remain
unchanged.

Format: Byte 0 of word 0 contains an 8-bit
unsigned binary integer that specifies the format of
SYSIB 1.2.2.

Alternate-CPU/Core-Capability Offset: When the
format field has a value of one, bytes 2-3 of word 0
contain a 16-bit unsigned binary integer that speci-
fies the offset in bytes of the alternate-CPU-capability
field in the SYSIB. Zeros are stored in the rightmost
two bits of the ACC offset field, thus the ACC offset is
a multiple of four and designates word N in
Figure 10-87.

MT Installed: When bit 0 of the MT-installed field
(byte 0 of word 1) is zero, the remainder of the field
and the MT-general field are not meaningful and
stored as zeros. When bit 0 of the MT-installed field is
one, the remainder of the field and the MT-general
field are meaningful, as described below.

Bits Meaning

0 When zero, the multithreading facility is not
installed in the machine. When one, the mul-
tithreading facility is installed in the machine.

1-2 Reserved (stored as zeros).

3-7 A 5-bit unsigned integer whose value is the
highest supported thread identification (TID)
for a core in the machine. The value is in the
range 1-31, indicating a minimum of two and
a maximum of 32 CPUs per core. A specialty
core may operate with this thread count .

MT General: The contents of byte 1 of word 1 are
meaningful only when bit 0 of word 1 is one.

Bit Meaning

0-2 Reserved.

3-7 A 5-bit unsigned integer whose value is the
highest supported thread identification for a
core comprising general CPUs. The value is
in the range 0-31, indicating a minimum of
one and a maximum of 32 CPUs per core.

Word

0 Format Reserved ACC Offset (format-1 only)

1 MT Installed MT General Reserved

2
Reserved

3

4 Primary CPU Speed

5 Secondary CPU Speed

6 Nominal CPU/Core Capability*

7 Secondary CPU/Core Capability

8 CPU/Core Capability

9 Total CPU/Core Count* Configured CPU/Core Count*

10 Standby CPU/Core Count* Reserved CPU/Core Count*

11 Multiprocessing
CPU/Core-Capability
Adjustment Factors*

N Alternate CPU/Core Capability (format-1 only)

N+1 Alternate
Multiprocessing

CPU/Core Capability
Adjustment Factors

(format-1 only)*

1023

Reserved

0 8 16 31

Explanation:
* Field applies to general CPUs or to cores comprising general

CPUs.

Figure 10-87. Format of the SYSIB 1.2.2

Control Instructions 10-151

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
NThe value is less than or equal to the value in

bits 3-7 of the MT-installed field. A value of
zero indicates that multithreading is not avail-
able for a general core. For a sub-capacity
model, bits 3-7 of the MT-general field con-
tain zeros.

Primary CPU/Core Speed: When not zero, word 4
contains a 32-bit unsigned binary integer whose
value represents the dynamic speed of a primary
CPU, encoded as the approximate number of CPU
cycles per microsecond.

Secondary CPU/Core Speed: When not zero, word
5 contains a 32-bit unsigned binary integer whose
value represents the dynamic speed of a secondary
CPU, encoded as the approximate number of CPU
cycles per microsecond.

Nominal CPU/Core Capability: Word 6, when not
zero, is formatted and encoded the same as word 8,
CPU capability, including that a lower value indicates
a proportionally higher CPU capability.

When the CAI byte of SYSIB 1.1.1 is zero, the nomi-
nal CPU capability (word 6) is stored as zero. The
nonzero value equals the word-8 value when the CAI
byte of SYSIB 1.1.1 contains a value of 100. When
the CAI byte of SYSIB 1.1.1 is nonzero and less than
100, the word-6 value indicates a CPU speed greater
than the CPU speed indicated by the word-8 value.

Secondary CPU/Core Capability: Word 7, when
not zero, is formatted and encoded the same as word
8, CPU capability, including that a lower value indi-
cates a proportionally higher CPU capability, and
specifies a secondary capability that may be applied
to certain types of CPUs in the configuration.

There is no formal description of the algorithm used
to generate this value, except that it is the same as
the algorithm used to generate the CPU capability.
The value is used as an indication of the capability of
a CPU relative to the capability of other CPU models,
and also relative to the capability of other CPU types
within a model.

The capability value applies to each of the specialty
CPUs/cores of one or more applicable CPU/core
types in the configuration. That is, all CPUs in the
configuration of an applicable type or types have the
same capability. When the value is zero, all CPUs of
any CPU type in the configuration have the same
capability, as specified by the CPU capability.

The secondary CPU capability may or may not be the
same value as the CPU-capability value.

The multiprocessing-CPU-capability-adjustment fac-
tors are also applicable to CPUs whose capability is
specified by the secondary CPU capability.

CPU/Core Capability: Word 8 specifies the capa-
bility of one of the CPUs in the configuration.

If bits 0-8 of word 8 are zero, the word contains a
32-bit unsigned binary integer (I) in the range
1 I < 223. If bits 0-8 of word 8 are nonzero, the word
contains a 32-bit binary floating point short-format
number instead of an unsigned binary integer.

Regardless of encoding, the value represents the
capability of one of the CPUs in the configuration,
and a lower value indicates a proportionally higher
CPU capability. Beyond that, there is no formal
description of the algorithm used to generate this
value. The value is used as an indication of the capa-
bility of the CPU relative to the capability of other
CPU models.

The capability value applies to each of the general
CPUs in the configuration. That is, all non-secondary
CPUs in the configuration have the same capability.

Total CPU/Core Count: Bytes 0 and 1 of word 9
contain a 16-bit unsigned binary integer that speci-
fies the total number of general CPUs or cores com-
prising general CPUs in the configuration. This
number includes all general CPUs/cores in the con-
figured state, the standby state, or the reserved state.

Configured CPU/Core Count: Bytes 2 and 3 of
word 9 contain a 16-bit unsigned binary integer that
specifies the number of general CPUs or cores com-
prising general CPUs that are in the configured state.
A CPU/core is in the configured state when it is in the
configuration and available to be used to execute
programs.

Standby CPU/Core Count: Bytes 0 and 1 of word
10 contain a 16-bit unsigned binary integer that spec-
ifies the number of general CPUs or cores compris-
ing general CPUs that are in the standby state. A
CPU/core is in the standby state when it is in the con-
figuration, is not available to be used to execute pro-
grams, and can be made available by issuing
instructions to place it in the configured state.

10-152 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N Reserved CPU/Core Count: Bytes 2 and 3 of

word 10 contain a 16-bit unsigned binary integer that
specifies the number of general CPUs or cores com-
prising general CPUs that are in the reserved state.
A CPU/core is in the reserved state when it is in the
configuration, is not available to be used to execute
programs, and cannot be made available by issuing
instructions to place it in the configured state. (It may
be possible to place a reserved CPU in the standby
or configured state by means of manual actions.)

Multiprocessing CPU/Core-Capability Adjust-
ment Factors: Beginning with bytes 0 and 1 of
word 11, the SYSIB contains a series of contiguous
two-byte fields, each containing a nonzero 16-bit
unsigned binary integer used to form an adjustment
factor (fraction) for the value contained in the CPU-
capability field. Such a fraction is developed by using
the value (V) of the first two-byte field according to
one of the following methods:

• If V is in the range of 1 through 100, inclusive, a
denominator of 100 is indicated which produces
a fraction of V/100.

• If V is in the range of 101 through 255, inclusive,
a denominator of 255 is indicated which pro-
duces a fraction of V/255.

• If V is in the range of 256 through 65,535, inclu-
sive, a denominator of 65,535 is indicated which
produces a fraction of V/65,535.

Thus, the fraction represented by each two-byte field
is then developed by dividing the contents of a two-
byte field by the indicated denominator.

The number of adjustment-factor fields is one less
than the number of CPUs specified in the total-CPU-
count field. The adjustment-factor fields correspond
to configurations with increasing numbers of CPUs in
the configured state. The first adjustment-factor field
corresponds to a configuration with two CPUs in the
configured state. Each successive adjustment-factor
field corresponds to a configuration with a number of
CPUs in the configured state that is one more than
that for the preceding field.

Programming Note: The applicable MP adjustment
factor is an approximation that is sensitive to the par-
ticular workload.

Alternate CPU/Core Capability: When the format
field has a value of one, the location of word N is the

sum of the address of the SYSIB plus the byte-offset
value in the alternate-CPU-capability-offset field. If
bits 0-8 of word N are zero, the word contains a 32-bit
unsigned binary integer (I) in the range 0 I < 223

that specifies the announced capability of one of the
CPUs in the configuration. If bits 0-8 of word N are
nonzero, the word contains a 32-bit binary floating
point short-format number instead of a 32-bit
unsigned binary integer.

Regardless of encoding, a lower value indicates a
proportionally higher CPU capacity. Beyond that,
there is no formal description of the algorithm used to
generate this value. The value is used as an indica-
tion of the announced capability of the CPU relative
to the announced capability of other CPU models.

The alternate-capability value applies to each of the
general CPUs or cores comprising general CPUs in
the configuration. That is, all general CPUs/cores in
the configuration have the same alternate capability.

Alternate Multiprocessing CPU/Core-Capability
Adjustment Factors: When the format field has a
value of one, the location of word N + 1 is the sum of
the address of the SYSIB plus the byte-offset value in
the alternate-CPU-capability-offset field plus four.
Beginning with bytes 0 and 1 of word N + 1, the
SYSIB contains a series of contiguous two-byte
fields, each containing a nonzero 16-bit unsigned
binary integer used to form an adjustment factor
(fraction) for the value contained in the alternate-
CPU-capability field. Such a fraction is developed by
using the value (V) of the first two-byte field accord-
ing to one of the following methods:

• If V is in the range of 1 through 100, inclusive, a
denominator of 100 is indicated which produces
a fraction of V/100.

• If V is in the range of 101 through 255, inclusive,
a denominator of 255 is indicated which pro-
duces a fraction of V/255.

• If V is in the range of 256 through 65,535, inclu-
sive, a denominator of 65,535 is indicated which
produces a fraction of V/65,535.

Thus, the fraction represented by each two-byte field
is then developed by dividing the contents of a two-
byte field by the indicated denominator.

The number of alternate-adjustment-factor fields is
one less than the number of CPUs specified in the

Control Instructions 10-153

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
Ntotal-CPU-count field. The alternate-adjustment-fac-

tor fields correspond to configurations with increasing
numbers of CPUs in the configured state. The first
alternate-adjustment-factor field corresponds to a
configuration with two CPUs in the configured state.
Each successive alternate-adjustment-factor field
corresponds to a configuration with a number of
CPUs in the configured state that is one more than
that for the preceding field.

SYSIB 2.2.1 (Logical-Partition CPU/Core)
SYSIB 2.2.1 is illustrated in Figure 10-88.

Reserved: The contents of words 0-19 and 26-63
are reserved and are stored as zeros. The contents
of words 64-1023 are reserved and may be stored as
zeros or may remain unchanged.

Sequence Code: Words 20-23 contain the 16-char-
acter (0-9 or uppercase A-Z) EBCDIC sequence
code of the configuration. The code is right justified
with leading EBCDIC zeros if necessary.

Plant of Manufacture: Word 24 contains the four-
character (0-9 or uppercase A-Z) EBCDIC code that
identifies the plant of manufacture for the configura-
tion. The code is left justified with trailing blanks if
necessary.

Logical-CPU ID: Bytes 0 and 1 of word 25 contain
a 16-bit unsigned binary integer that can be used in
conjunction with the logical-CPU address to distin-
guish the logical CPU from the other logical CPUs
provided by the same LPAR hypervisor.

Logical-CPU Address: When the multithreading
facility is not enabled in the level-2 configuration,
bytes 2 and 3 of word 25 contain the logical-CPU
address by which this logical CPU is identified within
the level-2 configuration. The logical-CPU address is
a 16-bit unsigned binary integer. The logical-CPU-
address field contains the same information as is
stored by STORE CPU ADDRESS when the
machine is operating in the LPAR mode.

Logical-Core Identification: When the multi-
threading facility is enabled in the level-2 configura-
tion, bytes 2 and 3 of word 25 contain a 16-bit
unsigned core identification by which the core is
identified within the configuration, right justified in the
field.

Worldwide Unique Identification: Taken together,
the machine type and manufacturer (from SYSIB
1.1.1) with the plant of manufacture and sequence
code allow for worldwide unique identification of the
system.

Programming Note: Multiple logical CPUs in the
same level-2 configuration have the same logical-
CPU sequence code, and it is necessary to use other
information, such as the logical-CPU address, to
establish a unique logical-CPU identity. The
sequence code returned for a basic-machine CPU
and a logical-partition CPU are identical and have the
same value as the sequence code returned for the
basic-machine configuration.

SYSIB 2.2.2 (Logical-Partition CPUs /
Cores)
SYSIB 2.2.2 is illustrated in Figure 10-89.

When the multithreading facility is not enabled (as
indicated by the PSMTID field), fields labeled with an
asterisk (*) apply to a primary CPU. When the multi-
threading facility is enabled, fields labeled with an
asterisk apply to a core comprising primary CPUs.

Word

0

Reserved

20

Sequence Code

24 Plant of Manufacture

25
LCPU ID

LCPU Address /
Logical Core Identification

26

1023
Reserved

0 16 31

Figure 10-88. Format of the SYSIB 2.2.1

Word

0

Reserved

8
LPAR Number Reserved

Logical
CPU/Core

Characteristics
0 8 16 24 31

Figure 10-89. Format of the SYSIB 2.2.2 (Part 1 of 2)

10-154 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N

Reserved: The contents of words 0-7, byte 2 of
word 8, byte 3 of word 16, word 17, bytes 0-2 of word
19, and words 24-63 are reserved and are stored as
zeros. When virtual-server information is not pro-
vided, the contents of byte 3 of word 19 and words
20-23 are reserved and stored as zeros, and the con-
tents of words 64-127 are reserved and may be
stored as zeros or may remain unchanged. The con-
tents of words 128-1023 are reserved and may be
stored as zeros or may remain unchanged.

Logical-Partition Number: Bytes 0 and 1 of word
8 contain a 16-bit unsigned binary integer which is
the number of the level-2 configuration. This number
distinguishes the configuration from all other level-2
configurations provided by the same LPAR hypervi-
sor.

Logical-CPU/Core Characteristics: The contents
of byte 3 of word 8 describe the characteristics of the
logical CPUs/cores that are provided for the level-2
configuration. The bits and their meanings are as fol-
lows:

Bit Meaning

0 Dedicated: When one, bit 0 indicates that one or
more of the logical CPUs/cores for this level-2
configuration are provided using level-1
CPUs/cores that are dedicated to this level-2
configuration and are not used to provide logical
CPUs/cores for any other level-2 configuration.
The number of logical CPUs/cores that are pro-
vided using dedicated level-1 CPUs/cores is
specified by the dedicated-LCPU-count value in
bytes 0 and 1 of word 18.

When zero, bit 0 indicates that none of the logical
CPUs/cores for this level-2 configuration are pro-
vided using level-1 CPUs/cores that are dedi-
cated to this level-2 configuration.

1 Shared: When one, bit 1 indicates that one or
more of the logical CPUs/cores for this level-2
configuration are provided using level-1
CPUs/cores that can be used to provide logical
CPUs/cores for other level-2 configurations. The
number of logical CPUs/cores that are provided
using shared level-1 CPUs/cores is specified by
the shared-LCPU-count value in bytes 2 and 3 of
word 18.

When zero, bit 1 indicates that none of the logical
CPUs/cores for this level-2 configuration are pro-
vided using shared level-1 CPUs/cores.

2 Utilization Limit: When one, bit 2 indicates that
the amount of use of the level-1 CPUs/cores that
are used to provide the logical CPUs/cores for
this level-2 configuration is limited.

When zero, bit 2 indicates that the amount of use
of the level-1 CPUs/cores that are used to pro-
vide the logical CPUs/cores for this level-2 con-
figuration is unlimited.

3-7 Reserved.

Total Logical-CPU/Core Count: Bytes 0 and 1 of
word 9 contain a 16-bit unsigned binary integer that
specifies the total number of primary logical
CPUs/cores that are provided for this level-2 configu-
ration. This number includes all of the logical

9
Total Logical CPU/Core Count*

Configured Logical CPU/Core
Count*

10 Standby Logical CPU/Core
Count*

Reserved Logical CPU/Core
Count*

11
Logical-Partition Name

12

13 Logical-Partition CAF

14 Model-Dependent Data

15

16 MT Installed MT General PSMTID Reserved

17 Reserved

18 Dedicated Logical CPU/Core
Count*

Shared Logical CPU/Core
Count*

19 Reserved VSNE

20

23

Virtual-Server Identification

24

63

Reserved

64

127

Virtual-Server Name

128

1,023

Reserved

Word

0 8 16 24 31

Figure 10-89. Format of the SYSIB 2.2.2 (Part 2 of 2)

Control Instructions 10-155

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
NCPUs/cores that are in the configured state, the

standby state, or the reserved state.

Configured Logical-CPU/Core Count: Bytes 2
and 3 of word 9 contain a 16-bit unsigned binary inte-
ger that specifies the number of primary logical
CPUs/cores for this level-2 configuration that are in
the configured state.

A logical CPU/core is in the configured state when it
is in the level-2 configuration and is available to be
used to execute programs.

Standby Logical-CPU/Core Count: Bytes 0 and 1
of word 10 contain a 16-bit unsigned binary integer
that specifies the number of primary logical
CPUs/cores for this level-2 configuration that are in
the standby state.

A logical CPU/core is in the standby state when it is
in the level-2 configuration, is not available to be used
to execute programs, and can be made available by
issuing instructions to place it in the configured state.

Reserved Logical-CPU/Core Count: Bytes 2 and
3 of word 10 contain a 16-bit unsigned binary integer
that specifies the number of primary logical
CPUs/cores for this level-2 configuration that are in
the reserved state.

A logical CPU/core is in the reserved state when it is
in the level-2 configuration, is not available to be used
to execute programs, and cannot be made available
by issuing instructions to place it in the configured
state. (It may be possible to place the reserved
CPU/core in the standby or configured state through
manual actions.)

Logical-Partition Name: Words 11-12 contain the
8-character EBCDIC name of this level-2 configura-
tion. The name is left justified with trailing blanks if
necessary.

Logical-Partition Capability Adjustment Factor
(CAF): Word 13 contains a 32-bit unsigned binary
integer, called an adjustment factor, with a value of
1000 or less. The adjustment factor specifies the
amount of the underlying level-1-configuration capa-
bility that is allowed to be used for this level-2 config-
uration by the LPAR hypervisor. The fraction of
level-1-configuration capability is determined by
dividing the CAF value by 1000.

MT Installed: When bit 0 of the MT-installed field
(byte 0 of word 16) is zero, the remainder of the field
and the MT-general and PSMTID fields are not
meaningful and stored as zeros. When bit 0 of the
MT-installed field is one, the remainder of the field
and the MT-general and PSMTID fields are meaning-
ful, as described below.

Bits Meaning

0 When zero, the multithreading facility is not
installed in the level-2 configuration. When
one, the multithreading facility is installed in
the level-2 configuration.

1-2 Reserved (stored as zeros).

3-7 A 5-bit unsigned integer whose value is the
highest supported thread identification (TID)
for a core of the level-2 configuration. The
value is in the range 1-31, indicating a mini-
mum of two and a maximum of 32 CPUs per
core. A specialty core may operate with this
thread count .

MT General: The contents of byte 1 of word 16 are
meaningful only when bit 0 the MT-installed field is
one.

Bit Meaning

0-2 Reserved.

3-7 A 5-bit unsigned integer whose value is the
highest supported thread identification for a
core comprising general CPUs. The value is
in the range 0-31, indicating a minimum of
one and a maximum of 32 CPUs per core.
The value is less than or equal to the value in
bits 3-7 of the MT-installed field. A value of
zero indicates that multithreading is not avail-
able for a general core. For a sub-capacity
model, bits 3-7 of the MT-general field con-
tain zeros.

Program-Specified Maximum TID (PSMTID):
The contents of byte 2 of word 16 are meaningful
only when bit 0 of word 16 is one.

Bits Meaning

0-2 Reserved (stored as zeros).

3-7 When the multithreading facility is enabled in
the level-2 configuration, bit positions 3-7
contain the program-specified maximum
thread identification as set by the SIGNAL

10-156 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N PROCESSOR set-multithreading order; the

value is copied from bit positions 59-63 of
the SIGP parameter register. When the mul-
tithreading facility is not enabled in the level-
2 configuration, bit positions 3-7 contain
zeros.

Dedicated Logical-CPU Count/Core: Bytes 0 and
1 of word 18 contain a 16-bit unsigned binary integer
that specifies the number of configured-state primary
logical CPUs/cores for this level-2 configuration that
are provided using dedicated level-1 CPUs/cores.
(See the description of bit 0 of the logical-CPU-char-
acteristics field.)

Shared Logical-CPU/Core Count: Bytes 2 and 3
of word 18 contain a 16-bit unsigned binary integer
that specifies the number of configured-state primary
logical CPUs/cores for this level-2 configuration that
are provided using shared level-1 CPUs/cores. (See
the description of bit 1 of the logical-CPU-character-
istics field.)

Virtual-Server-Name Encoding (VSNE): Byte 3
of word 19 contains an 8-bit unsigned integer indicat-
ing whether virtual-server information is provided,
and if so, the encoding of the virtual-server-name
field in words 64-127, as follows:

Virtual-Server Identification: When virtual-server
information is provided, words 20-23 contain a 128-
bit binary universally-unique identification (UUID,
also known as a handle) of the virtual server for this
configuration. When virtual-server information is not
provided, words 20-23 are stored as zeros.

Virtual-Server Name: When virtual-server infor-
mation is provided, words 64-127 contain a 256-byte
name of the virtual server for this configuration. The
virtual-server name is left justified in the field; if the
name is less than 256 bytes, the field is padded on
the right with zeros. The VSNE field, byte 3 of word
19, indicates the encoding of the virtual-server-name
field.

When virtual-server information is not provided,
words 64-127 are reserved and may be stored as
zeros or may remain unchanged.

SYSIB 3.2.2 (Virtual-Machine CPUs /
Cores)
SYSIB 3.2.2 is illustrated in Figure 10-90:

Reserved: The contents of words 0-6, bits 0-27 of
word 7, and all portions of SYSIB words 8–1,023 that
do not contain virtual-machine description blocks or
extended virtual-machine-name blocks are reserved
and are stored as zeros.

Description-Block Count (DBCT): Bits 28-31 of
word 7 contain a four-bit unsigned binary integer that
specifies the number (up to eight) of virtual-machine
description blocks and extended-virtual-machine-
name blocks that are stored in the SYSIB beginning
at words 8 and 512, respectively.

Value Meaning

0 Virtual-server information is not provided.

1 EBCDIC

2 UTF-8

3-255 Reserved.

Word

0
Reserved

7 Reserved DBCT

8
Virtual-Machine Description Block N

24
Virtual-Machine Description Block N–1

40

120
Virtual-Machine Description Block N–7

136

Reserved

512
Extended VM Name N

576
Extended VM Name N–1

640

960
Extended VM Name N–7

1,023
0 28 31

Figure 10-90. Format of the SYSIB 3.2.2

Control Instructions 10-157

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
NVirtual-Machine Description Blocks: Depending

on the number of nested level-3 configurations (if
any) and their processing characteristics, from one to
eight 64-byte virtual-machine description blocks are
stored, beginning at word 8. The contents of the
VMDB are described in the section “Virtual-Machine
Description Block” on page 10-158.

When a level-3 configuration is provided by a virtual-
machine control program and the control program is
being executed by a level-3 configuration provided by
another virtual-machine control program, the level-3
configurations are said to be “nested.” Level-3 config-
urations can be nested in this way for several levels.

The collection of nested level-3 configurations that is
in the path between a program being executed by a
level-3 configuration and the basic machine is called
a “level-3-configuration stack.” The level-3 configura-
tions in a stack are consecutively numbered. The
level-3 configuration provided by a virtual-machine
control program being executed by either a level-2
configuration or a level-1 configuration is the lowest-
numbered (0) level-3 configuration in the stack. The
level-3 configuration that is executing the program
containing this instruction is the highest numbered
(N) level-3 configuration in the stack.

If more than one virtual-machine description block is
stored in words 8-135 of the SYSIB, the blocks are
stored according to the following rules:

• The collection of level-3 configurations described
is a contiguous subset of the total collection of
level-3 configurations in the level-3-configuration
stack. The subset always includes the highest-
numbered level-3 configuration in the stack. One
or more level-3 configurations at the bottom of
the stack may not be described because the limit
of eight description blocks would be exceeded.

• The highest-numbered level-3 configuration in
the level-3-configuration stack is always
described by the first description block in the
SYSIB. The lowest-numbered level-3 configura-
tion in the stack, of those that are included in the
subset that is described, is described by the last
description block in the SYSIB.

Extended VM Name(s): For each VMDB, there is
a corresponding extended-VM-name field in the
SYSIB 3.2.2, as shown below:

The extended-VM-name-encoding (EVMNE) field of
a VMDB indicates the encoding of the corresponding
extended VM name. When the EVMNE field of a
VMDB is zero, the corresponding extended-VM-
name field is stored as zeros.

The extended VM name is left justified in the field; if
the name is less than 256 bytes, the field is padded
on the right with zeros. If the leftmost byte of the
extended-VM-name field contains zeros, no
extended VM name is provided for that nesting level,
regardless of whether the corresponding EVMNE is
nonzero.

Programming Note: The highest-numbered configu-
ration in the level-3-configuration stack that does not
provide an extended VM name effectively delimits the
array of extended VM names.

For example, if VMDBs for nested levels 3, 2, 1, and
0 are stored in the SYSIB, but only levels 3, 2, and 0
provide extended VM names, then extended VM
names will be stored only for levels 3 and 2 (begin-
ning at words 512 and 576, respectively). Even
though the EVMNE field of the VMDB at nesting level
0 may designate a valid nonzero encoding, the
extended-VM-name field for nesting-level 0 (begin-
ning at word 704) will contain zeros.

If the configuration is not capable of providing an
extended VM name, then it is assumed that the con-
figuration is also not capable of managing extended
VM names for lower-numbered nesting levels.

Nesting Level
SYSIB 3.2.2 Word Offset

VMDB Extended VM Name
N 8 512

N–1 24 576
N–2 40 640
N–3 56 704
N–4 72 768
N–5 88 832
N–6 104 896
N–7 120 960

Figure 10-91. SYSIB 3.2.2 Offset of VMDB and
Corresponding Extended-VM Name

10-158 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N

Virtual-Machine Description Block

The virtual-machine description block is illustrated in
Figure 10-92 .

Reserved: The contents of word 0, bytes 0-2 of
word 10, and word 11 are reserved and are stored as
zeros.

Total Logical-CPU/Core Count: Bytes 0 and 1 of
word 1 contain a 16-bit unsigned binary integer that
specifies the total number of primary logical
CPUs/cores that are provided for this level-3 configu-
ration. This number includes all of the primary logical
CPUs/cores that are in the configured state, the
standby state, and the reserved state.

Configured Logical-CPU/Core Count: Bytes 2
and 3 of word 1 contain a 16-bit unsigned binary inte-
ger that specifies the number of primary logical
CPUs/cores for this level-3 configuration that are in
the configured state.

A logical CPU/core is in the configured state when it
is in the level-3 configuration and is available to be
used to execute programs.

Standby Logical-CPU/Core Count: Bytes 0 and 1
of word 2 contain a 16-bit unsigned binary integer
that specifies the number of primary logical
CPUs/cores for this level-3 configuration that are in
the standby state.

A logical CPU/core is in the standby state when it is
in the level-3 configuration, is not available to be used
to execute programs, and can be made available by
issuing instructions to place it in the configured state.

Reserved Logical-CPU/Core Count: Bytes 2 and
3 of word 2 contain a 16-bit unsigned binary integer
that specifies the number of primary logical
CPUs/cores for this level-3 configuration that are in
the reserved state.

A logical CPU/core is in the reserved state when it is
in the level-3 configuration, is not available to be used
to execute programs, and cannot be made available
by issuing instructions to place it in the configured
state. (It may be possible to place the logical
CPU/core in the standby or configured state through
manual actions.)

Virtual-Machine Name: Words 3-4 contain the
eight-character EBCDIC name of this level-3 configu-
ration. The name is left justified with trailing blanks if
necessary.

Virtual-Machine Capability Adjustment Factor
(CAF): Word 5 contains a 32-bit unsigned binary
integer, called an adjustment factor, with a value of
1000 or less. The adjustment factor specifies the
amount of the underlying level-1-, level-2-, or
level-3-configuration capability that is allowed to be
used for this level-3 configuration by the virtual-
machine control program. The fraction of the underly-
ing capability is determined by dividing the CAF
value by 1000.

Control-Program Identifier: Words 6-9 contain
the 16-character EBCDIC identifier of the virtual-
machine control program that provides this level-3
configuration. This identifier may include qualifiers
such as version number and release level. The iden-
tifier is left justified with trailing blanks if necessary.

Extended VM-Name Encoding (EVMNE): Byte 3
of word 10 contains an 8-bit unsigned integer indicat-

Word

0 Reserved

1 Total LCPU Count* Configured LCPU Count*

2 Standby LCPU Count* Reserved LCPU Count*

3
Virtual-Machine Name

4

5 Virtual-Machine CAF

6

Control-Program Identifier
7

8

9

10 Reserved EVMNE

11 Reserved

12

Universally-Unique Identification (UUID)
13

14

15

0 8 16 20 24 30 31

Explanation:

* Field applies to a primary CPU. The CPUs may either be
general or specialty CPUs.

Figure 10-92. Virtual-Machine Descriptor Block

Control Instructions 10-159

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
Ning whether a corresponding extended virtual-

machine name is provided, and if so, the encoding of
the extended-virtual-machine-name field, as follows:

When byte 3 of word 10 is zero, an extended virtual-
machine name is not provided for this configuration.

Programming Note: Even if the EVMNE field is non-
zero, an extended-VM name is not provided when the
leftmost byte of the corresponding extended-VM-
name field is zero.

Universally-Unique Identification (UUID): When
the 128-bit binary value formed by words 12-15 is
nonzero, the value comprises a universally-unique
identification (UUID, also known as a handle) of the
configuration. When words 12-15 contain all zeros,
no UUID is provided.

SYSIB 15.1.2 - 15.1.6 (Configuration
Topology)
SYSIBs 15.1.2 through 15.1.6 are illustrated in each
have the following format:

Selector 2 specifies the MNest value to which the
response is limited. STSI completes with condition
code 3 for the following cases:

1. If the maximum-MNest facility is installed and
selector 2 exceeds the nonzero model-depen-
dent maximum-selector-2 value.

2. If the maximum-MNest facility is not installed and
selector 2 is not specified as two.

Reserved: The contents of bytes 0-1 of word 0,
byte 2 of word 2, and word 3 are reserved and are
stored as zeros. The contents of words N-1023 are
reserved and may be stored as zeros or may remain
unchanged.

Length: Bytes 2-3 of word 0 contain a 16-bit
unsigned binary integer whose value is the count of
bytes of the entire SYSIB 15.1.2. The length of just
the topology list is determined by subtracting 16 from
the length value in bytes 2-3 of word 0. N in
Figure 10-94 is determined by evaluating the formula
N=Length/4.

Mag1-6: Word 1 and bytes 0-1 of word 2 constitute
six one-byte fields where the content of each byte
indicates the maximum number of container-type
topology-list entries (TLE) or CPU-type TLEs at the
corresponding nesting level. CPU-type TLEs are
always found only at the Mag1 level. Additionally, the
Mag1 value also specifies the maximum number of
CPUs that may be represented by a container-type
TLE of the Mag2 level. When the value of the nesting
level is greater than one, containing nesting levels
above the Mag1 level are occupied only by container-
type TLEs. A dynamic change to the topology may
alter the number of TLEs and the number of CPUs at
the Mag1 level, but the limits represented by the val-
ues of the Mag1-6 fields do not change within a
model family of machines.

The topology is a structured list of entries where an
entry defines one or more CPUs or else is involved
with the nesting structure. The following illustrates
the meaning of the magnitude fields:

• When all CPUs of the machine are peers and no
containment organization exists, other than the
entirety of the central-processing complex itself,
the value of the nesting level is 1, Mag1 is the
only nonzero magnitude field, and the number of
CPU-type TLEs stored does not exceed the
Mag1 value.

• When all CPUs of the machine are subdivided
into peer groups such that one level of contain-
ment exists, the value of the nesting level is 2,

Value Meaning

0 Extended virtual-machine name is not provided

1 EBCDIC

2 UTF-8

3-255 Reserved.

Word

0 Reserved Length

1 Mag6 Mag5 Mag4 Mag3

2 Mag2 Mag1 Reserved MNest

3 Reserved

4

N-1

Topology List

N

1023
Reserved

0 8 16 24 31

Figure 10-93. Format of the SYSIB 15.1.2 - 15.1.6

10-160 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N Mag1 and Mag2 are the only nonzero magnitude

fields, the number of container-type TLEs stored
does not exceed the Mag2 value, and the num-
ber of CPU-type TLEs stored within each con-
tainer does not exceed the Mag1 value.

• The Mag3-6 bytes similarly become used (pro-
ceeding in a right-to-left direction) when the
value of the nesting level falls in the range 3-6.

MNest: When the maximum-MNest facility is not
installed, byte 3 of word 2 specifies the nesting level
of the topology to which the configuration may be
extended without requiring a re-IPL. The maximum
MNest value is model dependent in the range 2-6;
the minimum is one. If MNest is one, there is no
actual TLE nesting structure, Mag1 is the only non-
zero field in the Mag1-6 range, and only CPU-type
TLEs are represented in the topology list. The MNest
value indicates the number of nonzero magnitude
values beginning with the magnitude field at byte 1 of
word 2 (Mag1), proceeding left when MNest is
greater than one, and with the remaining magnitude
fields stored as zeros.

The value of MNest is the maximum possible nesting.
No dynamic configuration change exceeds this limit.

When the maximum-MNest facility is installed, the
maximum possible nesting is indicated by other
means and the MNest value in byte 3 of word 2
reflects both the requested selector-2 value and the
number of nonzero magnitude values beginning with
the magnitude field at byte 1 of word 2 (Mag1).

Topology List: Words of Figure 10-94 in the range
4 through N-1 specify a list of one or more topology-
list entries (TLE). Each TLE is an eight-byte or six-
teen-byte field; thus N is an even number of words,
and a corollary is that a TLE always starts on a dou-
bleword boundary.

Topology-List Entries: The first TLE in the topol-
ogy list begins at a nesting level equal to MNest-1.
The entire topology list represents the configuration
of the issuer of the STSI instruction specifying SYSIB
15.1.x; no outermost container TLE entry is used as
it would be redundant with the entire list, and the
entire configuration. Therefore, the highest nesting
level may have more than a single peer container.

Figure 10-94 illustrates the container type of TLE,
and Figure 10-95 illustrates the CPU type of TLC.

Nesting Level (NL): Byte 0 of word 0 specifies the
TLE nesting level.

Sibling TLEs have the same value of nesting level
which is equivalent to either the value of the nesting
level minus one of the immediate parent TLE, or the
value of MNest minus one, because the immediate
parent is the topology list rather than a TLE.

Reserved, 0: For a container-type TLE, bytes 1-3
of word 0 and bytes 0-2 of word 1 are reserved and
stored as zeros. For a CPU-type TLE, bytes 1-3 of
word 0 and bits 0-4 of word 1 are reserved and
stored as zeros.

Container ID: Byte 3 of word 1 of a container-type
TLE specifies an 8-bit unsigned nonzero binary inte-
ger whose value is the identifier of the container. The
container ID for a TLE is unique within the same par-
ent container.

Fields Specific to a CPU-type TLE

Word

0 NL>0 Reserved

1 0 0 0 0 0 0 0 0 Reserved Container ID
0 8 16 31

Figure 10-94. Container-Type Topology-List Entry

Word

0 NL=0 Reserved

1 0 0 0 0 0 D P P CPU Type CPU Address Origin

2
CPU Mask

3
0 5 6 8 16 31

Figure 10-95. CPU-Type Topology-List Entry

NL Meaning

00 The TLE is a CPU-type TLE.

01-05 The TLE is a container-type TLE. The first
container-type TLE stored in a topology list or a
parent container has a container-ID in the range 1-
255. If sibling containers exist within the same
parent, they proceed in an ascending order of
container IDs, that may or may not be consecutive,
to a maximum value of 255.

06-FF Reserved

Control Instructions 10-161

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
NThe remaining fields described below are specific to

a CPU-type TLE. When the multithreading facility is
not installed, or when it the facility is installed but not
enabled, these fields describe one or more CPUs in
the configuration having common topology attributes.
When the multithreading facility is installed and
enabled, these fields describe one or more cores in
the configuration having common topology attributes;
each core comprises a set of CPUs that have the
same topology attributes.

Dedicated (D): Bit 5 of word 1 of a CPU-type TLE,
when one, indicates that the one or more CPUs rep-
resented by the TLE are dedicated. When D is zero,
the one or more CPUs of the TLE are not dedicated.

Polarization (PP): Bits 6-7 of word 1 of a CPU-
type TLE specify the polarization value and, when
polarization is vertical, the degree of vertical polar-
ization also called entitlement (high, medium, low) of
the corresponding CPU(s) represented by the TLE.
The following values are used:

Polarization is only significant in a logical and virtual
multiprocessing configuration that uses shared host
processors and addresses how the resource
assigned to a configuration is applied across the
CPUs of the configuration. When horizontal polariza-
tion is in effect, each CPU of a configuration is guar-
anteed approximately the same amount of resource.
When vertical polarization is in effect, CPUs of a con-
figuration are classified into three levels of resource
entitlement: high, medium, and low.

Both subsystem reset and successful execution of
the SIGP set-architecture order specifying ESA/390
mode place a configuration and all of its CPUs into
horizontal polarization. The CPUs immediately
affected are those that are in the configured state.
When a CPU in the standby state is configured, it
acquires the current polarization of the configuration
and causes a topology change of that configuration
to be recognized.

A dedicated CPU is either horizontally or vertically
polarized. When a dedicated CPU is vertically polar-
ized, entitlement is always high. Thus, when D is one,
PP is either 00 binary or 11 binary.

CPU Type: Byte 1 of word 1 of a CPU-type TLE
specifies an 8-bit unsigned binary integer whose
value is the CPU type of the one or more CPUs rep-
resented by the TLE. The CPU-type value specifies
either a primary-CPU type or any one of the possible
secondary-CPU types.

When the multithreading facility is installed and
enabled, the TLE represents one or more cores,
each CPU of which has the same CPU type.

CPU-Address Origin: When the multithreading
facility is not installed, or when the facility is installed
but not enabled, bytes 2-3 of word 1 of a CPU-type
TLE specify a 16-bit unsigned binary integer whose
value is the CPU address of the first CPU in the
range of CPUs represented by the CPU mask, and
whose presence is represented by the value of bit
position 0 in the CPU mask. The value of a CPU-
address origin is the same as that stored by the
STORE CPU ADDRESS (STAP) instruction when
executed on the CPU represented by bit position 0 in
the CPU mask.

When the multithreading facility is installed and
enabled. bytes 2-3 of word 1 specify a right-justified
16-bit unsigned binary integer whose value is the first
core identification in the range of cores represented
by the CPU mask, and whose presence is repre-
sented by the value of bit position 0 in the CPU mask.

The CPU-address origin is evenly divisible by 64.

CPU Mask: Words 2-3 of a CPU-type TLE specify
a 64-bit mask where each bit position represents a
CPU or core. When the multithreading facility is not
installed, or when the facility is installed but not
enabled, the following applies:

• The value of the CPU-address origin field plus a
bit position in the CPU mask equals the CPU
address for the corresponding CPU.

• When a CPU-mask bit is zero, the corresponding
CPU is not represented by the TLE. Either the
CPU is not in the configuration, or else it must be
represented by another CPU-type TLE.

PP Meaning

0 The one or more CPUs represented by the TLE are
horizontally polarized.

1 The one or more CPUs represented by the TLE are
vertically polarized. Entitlement is low.

2 The one or more CPUs represented by the TLE are
vertically polarized. Entitlement is medium.

3 The one or more CPUs represented by the TLE are
vertically polarized. Entitlement is high.

10-162 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N • When a CPU mask bit is one, the corresponding

CPU has the modifier-attribute values specified
by the TLE, is in the topology of the configura-
tion, and is not present in any other TLE of the
topology.

When the multithreading facility is installed and
enabled, the following applies:

• The value of the CPU-address origin field plus a
bit position in the CPU mask equals the core ID
for the corresponding core.

• When a CPU-mask bit is zero, the corresponding
core is not represented by the TLE. Either the
core is not in the configuration or else must be
represented by another CPU-type TLE.

• When a CPU-mask bit is one, the corresponding
core and each of its CPUs has the modifier-attri-
bute values specified by the TLE, is in the topol-
ogy of the configuration, and is not present in any
other TLE of the topology.

Programming Notes:

1. The following example applies when the multi-
threading facility is not installed, or when the
facility is installed but disabled: If the CPU-
address origin is a value of 64, and bit position
15 of the CPU mask is one, CPU 79 is in the con-
figuration and has the CPU type, polarization,
entitlement, and dedication as specified by the
TLE.

2. The following examples apply when the multi-
threading facility is installed and enabled:

A CPU-address-origin value of 0000 hex rep-
resents a set of core IDs in the range 0 to 63,
0040 hex represents a set of core IDs in the
range 64 to 127, as so forth.

If the CPU-address origin is a value of 64, and bit
position 15 of the CPU mask is one, core ID 79 is
in the configuration and has the CPU type, polar-
ization, entitlement, and dedication as specified
by the TLE.

In this example, if multithreading had been
enabled with a program-specified maximum
thread identification of three (that is, with four
threads per core, thus a TID width of 2 bits), the
CPU addresses of any CPU in the core can be
determined by multiplying the core ID by four
(that is, shifting it left TID-width bit positions), and

adding the thread ID. Thus, the CPU addresses
for core 79 are 316 - 319 (013C-013F hex).

TLE Ordering: The modifier attributes that apply to
a CPU-type TLE are CPU type, polarization, entitle-
ment, and dedication. Polarization and entitlement
(for vertical polarization) are taken as a single attri-
bute, albeit with four possible values (horizontal, ver-
tical-high, vertical-medium, and vertical-low).

A single CPU TLE is sufficient to represent as many
as 64 CPUs or cores that all have the same modifier-
attribute values.

When more than 64 CPUs or cores exist, or the
entire range of CPU addresses are not covered by a
single CPU-address origin, and the modifier attri-
butes are constant, a separate sibling CPU TLE is
stored for each CPU-address origin, as necessary, in
ascending order of CPU-address origin. Each such
TLE stored has at least one CPU or core repre-
sented. The collection of one or more such CPU
TLEs is called a CPU-TLE set.

When multiple CPU types exist, a separate CPU-TLE
set is stored for each, in ascending order of CPU
type.

When multiple polarization-and-entitlement values
exist, a separate CPU-TLE set is stored for each, in
descending order of polarization value and degree
(vertical high, medium, low, then horizontal). When
present, all polarization CPU-TLE sets of a given
CPU type are stored before the first CPU-TLE set of
the next CPU type.

When both dedicated and not-dedicated CPUs exist,
a separate CPU-TLE set is stored for each, dedi-
cated appearing before not-dedicated.

All TLEs are ordered assuming a depth-first traversal
where the sort order from major to minor is as fol-
lows:

1. CPU type

a. Lowest CPU-type value

b. Highest CPU-type value

2. Polarization-Entitlement

a. Vertical high

b. Vertical medium

Control Instructions 10-163

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
Nc. Vertical low

d. Horizontal

3. Dedication (when applicable)

a. Dedicated

b. Not dedicated

The ordering by CPU-address origin and modifier
attributes of sibling CPU TLEs within a parent con-
tainer is done according to the following list, which
proceeds from highest to lowest.

1. CPU-TLE set of lowest CPU-type value, vertical
high, dedicated

2. CPU-TLE set of lowest CPU-type value, vertical
high, not-dedicated

3. CPU-TLE set of lowest CPU-type value, vertical
medium, not-dedicated

4. CPU-TLE set of lowest CPU-type value, vertical
low, not-dedicated

5. CPU-TLE set of lowest CPU-type value, horizon-
tal, dedicated

6. CPU-TLE set of lowest CPU-type value, horizon-
tal, not-dedicated

7. CPU-TLE set of highest CPU-type value, vertical
high, dedicated

8. CPU-TLE set of highest CPU-type value, vertical
high, not-dedicated

9. CPU-TLE set of highest CPU-type value, vertical
medium, not-dedicated

10. CPU-TLE set of highest CPU-type value, vertical
low, not-dedicated

11. CPU-TLE set of highest CPU-type value, hori-
zontal, dedicated

12. CPU-TLE set of highest CPU-type value, hori-
zontal, not-dedicated

Other TLE Rules :

1. A container-type TLE is located at nesting levels
in the range 1-5.

2. A CPU-type TLE is located at nesting level 0.

3. The number of sibling container-type TLEs in a
topology list or a given parent container does not
exceed the value of the magnitude byte (Mag2-6)
of the nesting level corresponding to the siblings.

4. The number of CPUs represented by the one or
more CPU-type TLEs of the parent container
does not exceed the value of the Mag1 magni-
tude byte.

5. The content of a TLE is defined as follows:

• If a TLE is a container-type TLE, the content
is a list that immediately follows the parent
TLE, comprised of one or more child TLEs,
and each child TLE has a nesting level of
one less than the nesting level of the parent
TLE or topology-list end.

• If a TLE is a CPU-type TLE, the content is
one or more CPUs, as identified by the other
fields of a CPU TLE.

6. When the first TLE at a nesting level is a CPU
entry, the maximum nesting level 0 has been
reached.

CPU Topology Overview
With the advent of the IBM System z9 Enterprise
Class and subsequent models, and even previously,
machine organization into nodal structures has
resulted in a non-uniform memory access (NUMA)
behavior, sometimes also called “lumpiness”. The
purpose of the SYSIB 15.1.2 and the PERFORM
TOPOLOGY FUNCTION (PTF) instruction is to pro-
vide additional machine topology awareness to the
program so that certain optimizations can be per-
formed to improve cache-hit ratios and thereby
improve overall performance.

The amount of host-CPU resource assigned to a
multiprocessing (MP) guest configuration has gener-
ally been spread evenly across the number of config-
ured guest CPUs. Such an even spread implies that
no particular guest CPU or CPUs are entitled to any
extra host-CPU provisioning than any other, arbi-
trarily-determined guest CPUs. This condition of the
guest configuration, affecting all CPUs of the configu-
ration, is called horizontal polarization.

Under horizontal polarization, assignment of a host
CPU to a guest CPU is approximately the same
amount of provisioning for each guest CPU. When
the provisioning is not dedicated, the same host
CPUs provisioning the guest CPUs also may be used

10-164 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N to provision guest CPUs of another guest, or even

other guest CPUs of the same guest configuration.
When the other guest configuration is a different logi-
cal partition, a host CPU, when active in each parti-
tion, typically must access main storage more
because the cache-hit ratio is reduced by having to
share the caches across multiple relocation zones. If
host-CPU provisioning can alter the balance such
that some host CPUs are mostly, or even exclusively,
assigned to a given guest configuration, and that
becomes the normal behavior, then cache-hit ratios
improve, as does performance. Such an uneven
spread implies that one or more guest CPUs are enti-
tled to extra host-CPU provisioning versus other,
arbitrarily-determined guest CPUs that are entitled to
less host-CPU provisioning. This condition of the
guest configuration, affecting all CPUs of the configu-
ration, is called vertical polarization.

The architecture categorizes vertical polarization into
three levels of entitlement of provisioning, high,
medium, and low:

• High entitlement guarantees approximately
100% of a host CPU being assigned to a logi-
cal/virtual CPU, and the affinity is maintained as
a strong correspondence between the two. With
respect to provisioning of a logical partition,
when vertical polarization is in effect, the entitle-
ment of a dedicated CPU is defined to be high.

• Medium entitlement guarantees an unspecified
amount of host CPU resource (one or more host
CPUs) being assigned to a logical/virtual CPU,
and any remaining capacity of the host CPU is
considered to be slack that may be assigned
elsewhere. The best case for the available slack
would be to assign it as local slack if that is pos-
sible. A less-beneficial result occurs if that avail-
able slack is assigned as remote slack. (See
“CPU Slack” on page 10-164 for descriptions of
the two slack terms.) It is also the case that the
resource percentage assigned to a logical CPU
of medium entitlement is a much softer approxi-
mation as compared to the 100% approximation
of a high-entitlement setting.

• Low entitlement guarantees approximately 0% of
a host CPU being assigned to a logical/virtual
CPU. However, if slack is available, such a logi-
cal/virtual CPU may still receive some CPU
resource.

A model of nested containers using polarization is
intended to provide a level of intelligence about the
machine's nodal structure as it applies to the
requesting configuration, so that, generally, clusters
of host CPUs can be assigned to clusters of guest
CPUs, thereby improving as much as possible the
sharing of storage and the minimizing of different
configurations essentially colliding on the same host
CPUs.

Polarization and entitlement indicate the relationship
of physical CPUs to logical CPUs or logical CPUs to
virtual CPUs in a guest configuration, and how the
capacity assigned to the guest configuration is
apportioned across the CPUs that comprise the con-
figuration. Historically, a guest configuration has
been horizontally polarized. For however many guest
CPUs were defined to the configuration, the host-
CPU resource assigned was spread evenly across all
of the guest CPUs in an equitable, non-entitled man-
ner. It can be said that the weight of a single logical
CPU in a logical partition when horizontal polariza-
tion is in effect is approximately equal to the total
configuration weight divided by the number of CPUs.
However, with the introduction of the 2097 and family
models, it becomes imperative to be able to spread
the host-CPU resource in a different manner, which
is called vertical polarization of a configuration, and
then the degree of provisioning of guest CPUs with
host CPUs being indicated as high, medium, or low
entitlement. High entitlement is in effect when a logi-
cal/virtual CPU of a vertically-polarized configuration
is entirely backed by the same host CPU. Medium
entitlement is in effect when a logical/virtual CPU of a
vertically-polarized configuration is partially backed
by a host CPU. Low entitlement is in effect when a
logical/virtual CPU of a vertically-polarized configura-
tion is not guaranteed any host-CPU resource, other
than what might become available due to slack
resource becoming available.

CPU Slack
Regarding slack CPU resource, there are two kinds:

• Local slack becomes available when a logical/vir-
tual CPU of a configuration is not using all the
resource to which it is entitled and such slack is
then used within the configuration of that CPU.
Local slack is preferred over remote slack as bet-
ter hit ratios on caches are expected when the
slack is used within the configuration.

• Remote slack becomes available when a logi-
cal/virtual CPU of a configuration is not using all

Control Instructions 10-165

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
Nthe resource to which it is entitled and such slack

is then used outside the configuration of that
CPU. Remote slack is expected to exhibit lower
hit ratios on caches, but it is still better than not
running a logical/virtual CPU at all.

The goal is to maximize the CPU cache hit ratios.

For a logical partition, the amount of physical-CPU
resource is determined by the overall system weight-
ings that determine the CPU resource assigned to
each logical partition. For example, in a logical 3-way
MP that is assigned physical-CPU resource equiva-
lent to a single CPU, and is horizontally polarized,
each logical CPU would be dispatched independently
and thus receive approximately 33% physical-CPU
resource. If the same configuration were to be verti-
cally polarized, only a single logical CPU would be
run and would receive approximately 100% of the
assigned physical-CPU resource (high entitlement)
while the remaining two logical CPUs would not nor-
mally be dispatched (low entitlement). Such resource
assignment is normally an approximation. Even a
low-entitlement CPU may receive some amount of
resource if only to help ensure that a program does
not get stuck on such a CPU.

By providing a means for a control program to indi-
cate that it understands polarization, and to receive
an indication for each CPU of its polarization and, if
vertical polarization, the degree of entitlement, the
control program can make more-intelligent use of
data structures that are generally thought to be local
to a CPU vs. available to all CPUs of a configuration.
Also, such a control program can avoid directing work
to any low-entitlement CPU.

The actual physical-CPU resource assigned might
not constitute an integral number of CPUs, so there
is also the possibility of one or more CPUs in an MP
vertically-polarized configuration being entitled but
not to a high degree, thereby resulting in such CPUs
having either medium or low vertical entitlement.

It is possible for any remaining low-entitlement CPUs
to receive some amount of host-CPU resource. For
example, this may occur when such a CPU is tar-
geted, such as via a SIGP order and slack host-CPU
resource is available. Otherwise, such a logical/vir-
tual CPU might remain in an undispatched state,
even if it is otherwise capable of being dispatched.

A 2-bit polarization field is defined for the CPU-type
topology-list entry (TLE) of the STORE SYSTEM
INFORMATION (STSI) instruction. The degree of
vertical-polarization entitlement for each CPU is indi-
cated as high, medium, or low. The assignment is not
a precise percentage but rather is somewhat fuzzy
and heuristic.

In addition to vertical polarization as a means of
reassigning weighting to guest CPUs, another con-
cept exists, which is the creation and management of
slack capacity (also called “white space”). Slack
capacity is created under the following circum-
stances:

• A high-vertical CPU contributes to slack when its
average utilization (AU) falls below 100 percent
(100-AU).

• A medium-vertical CPU that has an assigned
provisioning of M percent of a host CPU contrib-
utes to slack when its average utilization (AU)
falls below M percent (M-AU > 0).

• A low-vertical CPU does not contribute to slack.

• A high-vertical CPU is not a consumer of slack.

• A medium-vertical CPU may or may not be a
consumer of slack.

• A low-vertical CPU is only a consumer of slack.

Depending upon its utilization and pattern of being
dispatched, a horizontally-polarized CPU can be
either a contributor to slack or a consumer of it.

Programming Note: A possible examination pro-
cess of a topology list is described. Before an exam-
ination of a topology list is begun, the current-TLE
pointer is initialized to reference the first or top TLE in
the topology list, the prior-TLE pointer is initialized to
null, and then TLEs are examined in a top-to-bottom
order.

As a topology-list examination proceeds, the current-
TLE pointer is advanced by incrementing the current-
TLE pointer by the size of the current TLE to which it
points. A container-type TLE is advanced by adding
eight to the current-TLE pointer. A CPU-type TLE is
advanced by adding sixteen to the current-TLE
pointer. The process of advancing the current-TLE
pointer includes saving its value as the prior-TLE
pointer just before it is incremented. TLE examination
is not performed if the topology list has no TLEs.

10-166 The z/Architecture CPU Architecture

S
T

O
R

E
 S

Y
S

T
E

M
 IN

F
O

R
M

A
T

IO
N The examination process is outlined in the following

steps:

1. If the current-TLE nesting level is zero, and the
prior-TLE nesting level is null or one, the current
TLE represents the first CPU-type TLE of a
group of one or more CPU-type TLEs. The pro-
gram should perform whatever action is appropri-
ate for when a new group of one or more CPUs is
first observed. Go to step 5.

2. If the current-TLE nesting level is zero, and the
prior-TLE nesting level is zero, the current TLE
represents a subsequent CPU-type TLE of a
group of CPU-type TLEs that represent siblings
of the CPUs previously observed in steps 1 or 2.
The program should perform whatever action is
appropriate for when the size of an existing sib-
ling group of one or more CPUs is increased. Go
to step 5.

3. If the current-TLE nesting level is not zero, and
the prior-TLE nesting level is zero, the prior TLE
represents a last or only CPU-type TLE of a
group of one or more CPU-type TLEs. The pro-
gram should perform whatever action is appropri-
ate for when an existing group of one or more
CPUs is completed. Go to step 5.

4. Go to step 5.

By elimination, this would be the case where the
current-TLE nesting level is not zero, and the
prior-TLE nesting level is not zero. If the current-
TLE nesting level is less than the prior-TLE nest-
ing level, the direction of topology-list traversal is
toward a CPU-type TLE. If the current-TLE nest-
ing level is greater than the prior-TLE nesting
level, the direction of topology-list traversal is
away from a CPU-type TLE. Container-type
TLEs are being traversed leading to either (1)
another group of CPU-type TLEs that are a sepa-
rate group in the overall topology, or (2) the end
of the topology list. In either case, no particular
processing is required beyond advancing to the
next TLE.

5. Advance to the next TLE position based upon the
type of the current TLE. If the advanced current-
TLE pointer is equivalent to the end of the topol-
ogy list:

a. No more TLEs of any type exist.

b. If the prior-TLE nesting level is zero, the pro-
gram should perform whatever action is
appropriate for when an existing group of
one or more CPUs is completed.

c. The examination is complete.

Otherwise go to step 1.

Special Conditions

The condition code is set to 3 if the function code in
bit positions 32-35 of general register 0 is greater
than the current-level number.

Bits 36-55 of general register 0 and 32-47 of general
register 1 must be zero; otherwise, a specification
exception is recognized.

When the function code is valid and nonzero, the fol-
lowing special conditions apply in an unpredictable
order:

• The second operand must be designated on a
4 K-byte boundary; otherwise, a specification
exception is recognized.

• If the function-code, selector-1, and selector-2
combination is invalid, or if it is valid but the
requested information is not available, the condi-
tion code is set to 3.

Resulting Condition Code:

0 Requested configuration-level number placed in
general register 0 or requested SYSIB informa-
tion stored

1 --
2 --
3 Requested SYSIB information not available

Program Exceptions:

• Access (store, operand 2, only if function code
nonzero)

• Privileged operation
• Specification
• Transaction constraint

Control Instructions 10-167

S
T

O
R

E
 T

H
E

N
 O

R
 S

Y
S

T
E

M
 M

A
S

KThe priority of the recognition of exceptions and con-
dition codes is shown in Figure 10-96.

Programming Note: The storage-operand refer-
ences for STORE SYSTEM INFORMATION may be
multiple-access references. (See “Storage-Operand
Consistency” on page 5-125.)

STORE THEN AND SYSTEM MASK

STNSM D1(B1),I2 [SI]

Bits 0-7 of the current PSW are stored at the first-
operand location. Then the contents of bit positions
0-7 of the current PSW are replaced by the logical
AND of their original contents and the second oper-
and.

Special Conditions

The operation is suppressed on addressing and pro-
tection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 1)
• Privileged operation
• Transaction constraint

Programming Note: STORE THEN AND SYSTEM
MASK permits the program to set selected bits in the
system mask to zeros while retaining the original
contents for later restoration. For example, it may be
necessary that a program, which has no record of the
present status, disable program-event recording for a
few instructions.

STORE THEN OR SYSTEM MASK

STOSM D1(B1),I2 [SI]

Bits 0-7 of the current PSW are stored at the first-
operand location. Then the contents of bit positions
0-7 of the current PSW are replaced by the logical
OR of their original contents and the second oper-
and.

Special Conditions

The value to be loaded into the PSW is not checked
for validity before loading. However, immediately after
loading, a specification exception is recognized, and
a program interruption occurs, if either (a) the con-
tents of bit positions 0 and 2-4 of the PSW are not all
zeros, or (b) in the ESA/390-compatibility mode, bit
position 5 of the PSW does not contain zero. In either
of these cases, the instruction is completed, and the
instruction-length code is set to 2 or 3. The specifica-
tion exception, which is listed as a program exception
for this instruction, is described in “Early Exception
Recognition” on page 6-9.

The operation is suppressed on addressing and pro-
tection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Privileged-operation exception for privileged
instruction.

7.C Transaction constraint.

8. Condition code 3 due to function code greater
than current-level number.

9. Specification exception due to bits 36-55 of
general register 0 or bits 32-47 of general
register 1 not zero.

10. Condition code 0 due to function code 0.

11.A Specification exception due to second-operand
address not designating a 4 K-byte boundary.

11.B Condition code 3 due to invalid function-code,
selector-1, and selector-2 combination or
requested information not available.

12. Access exceptions (store) for system-information
block.

13. Condition code 0 due to information stored in
system-information block.

Figure 10-96. Priority of Execution: STORE SYSTEM
INFORMATION

'AC' I2 B1 D1

0 8 16 20 31

'AD' I2 B1 D1

0 8 16 20 31

10-168 The z/Architecture CPU Architecture

S
T

O
R

E
 U

S
IN

G
 R

E
A

L
 A

D
D

R
E

S
S • Access (store, operand 1)

• Privileged operation
• Specification
• Transaction constraint

Programming Note: STORE THEN OR SYSTEM
MASK permits the program to set selected bits in the
system mask to ones while retaining the original con-
tents for later restoration. For example, the program
may enable the CPU for I/O interruptions without
having available the current status of the external-
mask bit.

STORE USING REAL ADDRESS

STURA R1,R2 [RRE]

STURG R1,R2 [RRE]

For STORE USING REAL ADDRESS (STURA), bits
32-63 of general register R1 are stored in the word at
the real-storage location addressed by the contents
of general register R2. For STORE USING REAL
ADDRESS (STURG), bits 0-63 of general register R1

are stored in the doubleword at that real-storage
location.

In the 24-bit addressing mode, bits 40-63 of general
register R2 designate the real-storage location, and
bits 0-39 of the register are ignored. In the 31-bit
addressing mode, bits 33-63 of general register R2

designate the real-storage location, and bits 0-32 of
the register are ignored. In the 64-bit addressing
mode, bits 0-63 of general register R2 designate the
real-storage location.

Because it is a real address, the address designating
the storage word or doubleword is not subject to
dynamic address translation.

Special Conditions

The contents of general register R2 must designate a
location on a word boundary for STURA or on a dou-

bleword boundary for STURG; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (address specified by general regis-
ter R2)

• Privileged operation
• Protection (store, operand 2, key-controlled pro-

tection and low-address protection)
• Specification
• Transaction constraint

TEST ACCESS

TAR R1,R2 [RRE]

Note: In the ESA/390-compatibility mode when ESA
extended-configuration (ESA/XC) applies, the behav-
ior of TEST ACCESS is described in Reference [12.]
on page xxx, except that it is unpredictable whether a
special-operation exception is recognized when bit
position 47 of control register 0 contains zero.

The access-list-entry token (ALET) in access register
R1 is tested for exceptions recognized during access-
register translation (ART). The extended authoriza-
tion index (EAX) used is bits 32-47 of general register
R2. The ALET is also tested for whether it designates
the dispatchable-unit access list or the primary-
space access list and for whether it is 00000000 or
00000001 hex.

When R1 is 0, the actual contents of access register
0 are used in ART, instead of the 00000000 hex that
is usually used.

Bits 0-31 and 48-63 of general register R2 are
ignored.

The operation does not depend on the translation
mode — bits 5, 16, and 17 of the PSW are ignored.

When the ALET specified by means of the R1 field is
other than 00000000 or 00000001 hex, the ART pro-
cess is applied to the ALET. The EAX specified by
means of the R2 field is called the effective EAX, and
it is the EAX which is used by ART. When a condition

'B246' / / / / / / / / R1 R2

0 16 24 28 31

'B925' / / / / / / / / R1 R2

0 16 24 28 31

'B24C' / / / / / / / / R1 R2

0 16 24 28 31

Control Instructions 10-169

T
E

S
T

 A
C

C
E

S
Sexists that would normally cause one of the excep-

tions shown in the following table, the instruction is
completed by setting condition code 3.

When ART is completed without one of the above
conditions being present, the instruction is completed
by setting condition code 1 or 2, depending on
whether the effective access list is the dispatchable-
unit access list or the primary-space access list,
respectively. The effective access list is the dispatch-
able-unit access list if bit 7 of the ALET is zero, or it is
the primary-space access list if bit 7 is one. ART,
including the obtaining of the effective access-list
designation, is described in “Access-Register-Trans-
lation Process” on page 5-59.

When the ALET is 00000000 hex, the instruction is
completed by setting condition code 0. When the
ALET is 00000001 hex, the instruction is completed
by setting condition code 3.

Special Conditions

An addressing exception is recognized when the
address used by ART to fetch the effective access-
list designation or the ALE, ASTE, or authority-table
entry designates a location which is not available in
the configuration.

In the ESA/390-compatibility mode, it is unpredict-
able whether a special-operation exception is recog-
nized when bit position 47 of control register 0
contains zero.

The operation is suppressed on all addressing
exceptions.

Resulting Condition Code:

0 Access-list-entry token (ALET) is 00000000 hex
1 ALET designates the dispatchable-unit access

list and does not cause exceptions in access-
register translation (ART)

2 ALET designates the primary-space access list
and does not cause exceptions in ART

3 ALET is 00000001 hex or causes exceptions in
ART

Program Exceptions:

• Addressing (effective access-list designation,
access-list entry, ASN-second-table entry, or
authority-table entry)

• Special operation (in the ESA/390-compatibility
mode)

• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-97.

Exception Name Cause

ALET specification ALET bits 0-6 not all zeros

ALEN translation Access-list entry (ALE) outside
list or invalid (bit 0 is one)

ALE sequence ALE sequence number
(ALESN) in ALET not equal to
ALESN in ALE

ASTE validity ASN-second-table entry
(ASTE) invalid (bit 0 is one)

ASTE sequence ASTE sequence number
(ASTESN) in ALE not equal to
ASTESN in ASTE

Extended authority ALE private bit not zero, ALE
authorization index (ALEAX)
not equal to effective EAX, and
secondary bit selected by
effective EAX either outside
authority table or zero

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Transaction constraint.

8. Condition code 0 due to access-list-entry-token
(ALET) being 00000000 hex.

9. Condition code 3 due to ALET being 00000001
hex or ALET bits 0-6 not being all zeros.

10. Addressing exception for access to effective
access-list designation.

11. Condition code 3 due to access-list entry (ALE)
being outside the list.

12. Addressing exception for access to ALE.

13. Condition code 3 due to ALE being invalid (bit 0
is 1) or access-list-entry sequence number
(ALESN) in the ALET not being equal to the
ALESN in the ALE.

14. Addressing exception for access to ASN-second-
table entry (ASTE).

Figure 10-97. Priority of Execution: TEST ACCESS (Part 1
of 2)

10-170 The z/Architecture CPU Architecture

T
E

S
T

 B
L

O
C

K

Programming Notes:

1. TEST ACCESS permits a called program to
check whether an ALET passed from the calling
program is authorized for use by means of the
calling program’s EAX. The calling program’s
EAX can be obtained from the last linkage-stack
state entry by means of EXTRACT STACKED
STATE. The called program can thus avoid per-
forming an operation for the calling program,
through the use of the called program’s EAX,
which the calling program is not authorized to
perform by means of its own EAX.

2. When an ALET equal to 00000000 hex is passed
during a program linkage performed by PRO-
GRAM CALL with space switching (PC-ss), and
the ALET conceptually designates the calling
program’s primary address space and the called
program’s secondary address space, the ALET
must be changed to 00000001 hex before it is
used by the called program. Condition code 0 of
TEST ACCESS indicates a 00000000 hex ALET
so that the ALET can be changed to 00000001
hex by the called program.

3. PROGRAM CALL to current primary (PC-cp)
sets the secondary address space equal to the
primary address space. PC-ss sets the second-
ary address space equal to the calling program’s
primary address space, except that stacking PC-
ss sets it equal to the called program’s primary
address space when the secondary-ASN control
in the entry-table entry used is one. In all these

cases, a passed 00000001 hex ALET that con-
ceptually designates the calling program’s sec-
ondary address space is not usable by the called
program, even after any transformation (unless
the operation was PC-cp and the calling pro-
gram’s PASN and SASN are equal). This is why
TEST ACCESS sets condition code 3 when the
tested ALET is 00000001 hex.

4. After a PC-ss, a passed ALET that conceptually
designates an entry in the primary-space access
list of the calling program is not usable by the
called program. This is why TEST ACCESS sets
condition code 2, instead of condition code 1,
when the tested ALET designates the primary-
space access list.

5. The control program may manage the ASN-sec-
ond-table entry in a way that causes a correct-
able ASTE-validity or ASTE-sequence exception
situation to exist; that is, a situation which, if it
were to cause a program interruption during
access-register translation, would be corrected
by the control program so that access-register
translation could be completed successfully. In
this case, the program should not use TEST
ACCESS directly but should instead use a con-
trol-program service that uses TEST ACCESS
and that corrects the situation, if possible, when
condition code 3 is set. MVS/ESA provides the
TESTART macro instruction for use instead of
the direct use of TEST ACCESS.

TEST BLOCK

TB R1,R2 [RRE]

The storage locations and storage key of a 4 K-byte
block are tested for usability, and the result of the test
is indicated in the condition code. The test for usabil-
ity is based on the susceptibility of the block to the
occurrence of invalid checking-block code.

The block tested is addressed by the contents of
general register R2. The contents of general register
R1 are ignored.

A complete testing operation is necessarily per-
formed only when the initial contents of bit positions
32-63 of general register 0 are zero in the 24-bit or
31-bit addressing mode, or the initial contents of bit

15. Condition code 3 due to ASTE being invalid (bit 0
is one) or ASTE sequence number (ASTESN) in
the ALE not being equal to the ASTESN in the
ASTE.

16. Condition code 3 due to authority-table entry
being outside table.

17. Addressing exception for access to authority-
table entry.

18. Condition code 3 due to ALE private bit not being
zero, ALE authorization index (ALEAX) not being
equal to effective extended authorization index
(EAX), and secondary bit selected by effective
EAX being zero.

19. Condition code 1 if ALET bit 7 is zero; otherwise,
condition code 2.

Figure 10-97. Priority of Execution: TEST ACCESS (Part 2
of 2)

'B22C' / / / / / / / / R1 R2

0 16 24 28 31

Control Instructions 10-171

T
E

S
T

 B
L

O
C

Kpositions 0-63 of that register are zero in the 64-bit
addressing mode. In the 24-bit or 31-bit addressing
mode, the contents of bit positions 32-63 of general
register 0 are set to zero at the completion of the
operation, and bits 0-31 of the register always are
ignored and remain unchanged. In the 64-bit
addressing mode, the contents of bit positions 0-63
of the register are set to zero at the completion of the
operation.

If the block is found to be usable, the 4K bytes of the
block are cleared to zeros, the contents of the stor-
age key are unpredictable, and condition code 0 is
set. If the block is found to be unusable, the data and
the storage key are set, as far as is possible by the
model, to a value such that subsequent fetches to the
area do not cause a machine-check condition, and
condition code 1 is set.

In the 24-bit addressing mode, bits 40-51 of general
register R2 designate a 4 K-byte block in real storage,
and bits 0-39 and 52-63 of the register are ignored. In
the 31-bit addressing mode, bits 33-51 of the register
designate the block, and bits 0-32 and 52-63 are
ignored. In the 64-bit addressing mode, bits 0-51 of
the register designate the block, and bits 52-63 are
ignored.

The address of the block is a real address, and the
accesses to the block designated by the second-
operand address are not subject to access-list-con-
trolled, DAT, instruction-execution, or key-controlled
protection. Low-address protection does apply. The
operation is terminated on addressing and protection
exceptions. If termination occurs, the condition code
and the contents of bit positions 32-63 of general
register 0 are unpredictable in the 24-bit or 31-bit
addressing mode, or the condition code and bits 0-63
of the register are unpredictable in the 64-bit
addressing mode. The contents of the storage block
and its associated storage key are not changed when
these exceptions occur.

Depending on the model, the test for usability may be
performed (1) by alternately storing and reading out
test patterns to the data and storage key in the block
or (2) by reference to an internal record of the usabil-
ity of the blocks which are available in the configura-
tion, or (3) by using a combination of both
mechanisms.

In models in which an internal record is used, the
block is indicated as unusable if a solid failure has

been previously detected, or if intermittent failures in
the block have exceeded the threshold implemented
by the model. In such models, depending on the cri-
teria, attempts to store may or may not occur. Thus, if
block 0 is not usable, and no store occurs, low-
address protection may or may not be indicated.

In models in which test patterns are used, TEST
BLOCK may be interruptible. When an interruption
occurs after a unit of operation, other than the last
one, the condition code is unpredictable, and the
contents of bit positions 32-63 of general register 0
may contain a record of the state of intermediate
steps in the 24-bit or 31-bit addressing mode, or the
contents of bit positions 0-63 may contain that record
in the 64-bit addressing mode. When execution is
resumed after an interruption, the condition code is
ignored, but the record in general register 0 may be
used to determine the resumption point.

If (1) TEST BLOCK is executed with an initial value
other than zero in bit positions 32-63 of general regis-
ter 0 in the 24-bit or 31-bit addressing mode or bit
positions 0-63 in the 64-bit addressing mode, or
(2) the interrupted instruction is resumed after an
interruption with a value in bit positions 32-63 or 0-63
(depending on the addressing mode) of general reg-
ister 0 or a value in the storage block or its associ-
ated storage key other than the corresponding value
which was present at the time of the interruption, or
(3) the block or its associated storage key is
accessed by another CPU or by the channel subsys-
tem during the execution of the instruction, then the
contents of the storage block, its associated storage
key, and bit positions 32-63 or 0-63 of general regis-
ter 0 are unpredictable, along with the resultant con-
dition-code setting.

Invalid checking-block-code errors initially found in
the block or encountered during the test do not nor-
mally result in machine-check conditions. The test-
block function is implemented in such a way that the
frequency of machine-check interruptions due to the
instruction execution is not significant. However, if,
during the execution of TEST BLOCK for an unus-
able block, that block is accessed by another CPU (or
by the channel subsystem), error conditions may be
reported both to this CPU and to the other CPU (or to
the channel subsystem).

A serialization function is performed before the block
is accessed and again after the operation is com-
pleted (or partially completed).

10-172 The z/Architecture CPU Architecture

T
E

S
T

 P
E

N
D

IN
G

 E
X

T
E

R
N

A
L

 IN
T

E
R

R
U

P
T

IO
N Resulting Condition Code:

0 Block usable
1 Block not usable
2 --
3 --

Program Exceptions:

• Addressing (fetch and store, operand 2)
• Privileged operation
• Protection (store, operand 2, low-address protec-

tion only)
• Transaction constraint

The priority of the recognition of exceptions and con-
dition codes is shown in Figure 10-98.

Programming Notes:

1. The execution of TEST BLOCK on most models
is significantly slower than that of the MOVE
LONG instruction with padding; therefore, the
instruction should not be used for the normal
case of clearing storage.

2. The program should use TEST BLOCK at initial
program loading and as part of the vary-storage-

online procedure to determine if blocks of stor-
age exist which should not be used.

3. The program should use TEST BLOCK when an
uncorrected error is reported in either the data or
storage key of a block. This is because in the
execution of TEST BLOCK the attempt is made,
as far as is possible on the model, to leave the
contents of a block in a state such that subse-
quent prefetches or unintended references to the
block do not cause machine-check conditions.
The program may use the resulting condition
code in this case to determine if the block can be
reused. (The block could be indicated as usable
if, for example, the error were an externally gen-
erated error or an indirect storage error.) This
procedure should be followed regardless of
whether the indirect-storage-error indication is
reported.

4. The model may or may not be successful in
removing the errors from a block when TEST
BLOCK is executed. The program therefore
should take every reasonable precaution to avoid
referencing an unusable block. For example, the
program should not place the page-frame real
address of an unusable block in an attached and
valid page-table entry.

5. On some models, machine checks may be
reported for a block even though the block is not
referenced by the program. When a machine
check is reported for a storage-key error in a
block which has been marked as unusable by the
program, it is possible that SET STORAGE KEY
EXTENDED may be more effective than TEST
BLOCK in validating the storage key.

6. The storage-operand references for TEST
BLOCK may be multiple-access references. (See
“Storage-Operand Consistency” on page 5-125.)

TEST PENDING EXTERNAL
INTERRUPTION

TPEI R1,R2 [RRE]

General register R2 contains a mask representing
one or more external-interruption subclasses to be
tested for pending interruptions. The bit positions
representing tested subclasses are shown in
Figure 10-99. All other bits in general register R2 are

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Privileged-operation exception.

7.C Transaction constraint.

8. Addressing exception due to block not being
available in the configuration.*

9.A Condition code 1, block not usable.

9.B Protection exception due to low-address
protection.*

10. Condition code 0, block usable and set to zeros.

Explanation:

* The operation is terminated on addressing and
protection exceptions, and the condition code
may be unpredictable.

Figure 10-98. Priority of Execution: TEST BLOCK

'B9A1' / / / / / / / / R1 R2

0 16 24 28 31

Control Instructions 10-173

T
E

S
T

 P
R

O
T

E
C

T
IO

Nreserved and should contain zeros; otherwise, the
program may not operate compatibly in the future.

For the purposes of this instruction, an interruption is
considered to be pending for a subclass regardless
of whether the subclass is enabled in control register
0 and regardless of PSW bit 7. If an external interrup-
tion is pending for a designated subclass, the corre-
sponding bit in general register R1 is set to one;
otherwise, the corresponding bit in general register
R1 is set to zero. All other bit positions in general reg-
ister R1 are set to zeros.

When any resulting bit position in general register R1

contains a one, the instruction completes by setting
condition code 1; otherwise, the instruction com-
pletes by setting condition code 0.

Resulting Condition Code:

0 None of the tested subclasses of external inter-
ruptions are pending, or no subclasses were
tested.

1 One or more of the tested subclasses of external
interruptions are pending

2 --
3 --

Program Exceptions:

• Operation (test-pending-external-interruption
facility not installed)

• Privileged operation
• Transaction constraint

Programming Note: Unlike the TEST PENDING
INTERRUTION (TPI) instruction which is subject to
the I/O-interruption subclass-mask bits in control reg-
ister 6, TEST PENDING EXTERNAL INTERRUP-
TION does not take subclass enablement into
consideration.

TEST PROTECTION

TPROT D1(B1),D2(B2) [SSE]

The location designated by the first-operand address
is tested for protection exceptions by using the
access key specified by bits 56-59 of the second-
operand address.

The second-operand address is not used to address
data; instead, bits 56-59 of the address form the
access key to be used in testing. Bits 0-55 and 60-63
of the second-operand address are ignored.

The first-operand address is a logical address. When
the CPU is in the access-register mode (when DAT is
on and PSW bits 16 and 17 are 01 binary), the first-
operand address is subject to translation by means
of both the access-register-translation (ART) and the
dynamic-address-translation (DAT) processes. ART
applies to the access register designated by the B1

field, and it obtains the address-space-control ele-
ment to be used by DAT. When DAT is on but the
CPU is not in the access-register mode, the first-
operand address is subject to translation by DAT. In
this case, DAT uses the address-space-control ele-
ment contained in control register 1, 7, or 13 when
the CPU is in the primary-space, secondary-space,
or home-space mode, respectively. When DAT is off,
the first-operand address is a real address not sub-
ject to translation by either ART or DAT.

When the CPU is in the access-register mode and an
address-space-control element cannot be obtained
by ART because of a condition that would normally
cause one of the exceptions shown in the following

Bit External Interruption Subclass

30 Warning track

48 Malfunction alert

49 Emergency signal

50 External call

Figure 10-99. External-Interruption Subclasses and
Corresponding Bit Positions in General Registers
R1 and R2.

'E501' B1 D1 B2 D2

0 16 20 32 36 47

10-174 The z/Architecture CPU Architecture

T
E

S
T

 P
R

O
T

E
C

T
IO

N table, the instruction is completed by setting condi-
tion code 3.

When the access register contains 00000000 hex or
00000001 hex, ART obtains the address-space-con-
trol element from control register 1 or 7, respectively,
without accessing the access list. When the B1 field
designates access register 0, ART treats the access
register as containing 00000000 hex and does not
examine the actual contents of the access register.

When ART is completed successfully, the operation
is continued through the performance of DAT.

When DAT is on and the first-operand address can-
not be translated because of a condition that would
normally cause one of the exceptions shown in the

following table, the instruction is completed by setting
condition code 3.

When translation of the first-operand address can be
completed, or when DAT is off, the storage key for the
block designated by the first-operand address is
tested against the access key specified in bit posi-
tions 56-59 of the second-operand address, and the
condition code is set to indicate whether store and
fetch accesses are permitted, taking into consider-
ation all applicable protection mechanisms except for
instruction-execution protection. Thus, for example, if
low-address protection is active and the first-operand
effective address is in the range 0-511 or 4096-4607,
then a store access is not permitted. Access-list-con-
trolled protection, DAT protection, storage-protection
override, and fetch-protection override also are taken
into account; instruction-execution protection is not
considered.

When EDAT-1 does not apply, when EDAT-1 applies
but the STE-format control is zero, or when EDAT-2
applies but the RTTE-format control is zero, bits 0-4
of the storage key for the 4 K-byte block correspond-
ing to the virtual address in the first operand are
examined to determine the condition code. When
EDAT-1 applies and both the STE-format and AV
controls in the STE are one, it is unpredictable
whether bits 0-4 of the storage key or bits 48-52 of
the segment-table entry used in the translation of the

Exception Name Cause

ALET specification Access-list-entry-token (ALET) bits
0-6 not all zeros

ALEN translation Access-list entry (ALE) outside list
or invalid (bit 0 is one)

ALE sequence ALE sequence number (ALESN) in
ALET not equal to ALESN in ALE

ASTE validity ASN-second-table entry (ASTE)
invalid (bit 0 is one)

ASTE sequence ASTE sequence number
(ASTESN) in ALE not equal to
ASTESN in ASTE

Extended authority ALE private bit not zero, ALE
authorization index (ALEAX) not
equal to extended authorization
index (EAX), and secondary bit
selected by EAX either outside
authority table or zero

Exception Name Cause

ASCE type Address-space-control
element (ASCE) being used is
a region-second-table
designation, and bits 0-10 of
first-operand address not all
zeros; ASCE is a region-third-
table designation, and bits
0-21 of first-operand address
not all zeros; or ASCE is a
segment-table designation,
and bits 0-32 of first-operand
address not all zeros.

Region first translation Region-first-table entry outside
table or invalid.

Region second translation Region-second-table entry
outside table or invalid.

Region third translation Region-third-table entry
outside table or invalid.

Segment translation Segment-table entry outside
table or invalid

Page translation Page-table entry invalid

Control Instructions 10-175

T
E

S
T

 P
R

O
T

E
C

T
IO

Nfirst operand are examined to determine the condi-
tion code. When EDAT-2 applies and both the RTTE-
format and AV controls in the RTTE are one, it is
unpredictable whether bits 0-4 of the storage key or
bits 48-52 of the region-third-table entry used in the
translation of the first operand are examined to deter-
mine the condition code.

The contents of storage, including the change bit, are
not affected. Depending on the model, the reference
bit for the first-operand address may be set to one,
even for the case in which the location is protected
against fetching.

Special Conditions

When the CPU is in the access-register mode, an
addressing exception is recognized when the
address used by ART to fetch the effective access-
list designation or the ALE, ASTE, or authority-table
entry designates a location which is not available in
the configuration.

When DAT is on, an addressing exception is recog-
nized when the address of the region-table entry or
entries, segment-table entry, or page-table entry or
the operand real address after translation designates
a location which is not available in the configuration.
Also, a translation-specification exception is recog-
nized when a region-table entry or the segment-table
entry or page-table entry has a format error, that is,
when any of the reasons 1-5 listed in “Translation-
Specification Exception” on page 6-46 applies. When
DAT is off, only the addressing exception due to the
operand real address applies.

For all of the above cases, the operation is sup-
pressed.

Resulting Condition Code:

0 Fetching permitted; storing permitted
1 Fetching permitted; storing not permitted
2 Fetching not permitted; storing not permitted
3 Translation not available

Program Exceptions:

• Addressing (effective access-list designation,
access-list entry, ASN-second-table entry,
authority-table entry, region-table entry, seg-
ment-table entry, page-table entry, or operand 1)

• Privileged operation
• Translation specification

• Transaction constraint

Programming Notes:

1. TEST PROTECTION permits a program to deter-
mine the protection attributes of an address
passed from a calling program without incurring
program exceptions. The instruction sets a con-
dition code to indicate whether fetching or storing
is permitted at the location designated by the
first-operand address of the instruction. The
instruction takes into consideration all of the pro-
tection mechanisms in the machine: access-list
controlled, DAT, key-controlled, and low-address
protection, storage-protection override, and
fetch-protection override. Additionally, since
ASCE-type, region-translation, segment-transla-
tion, and page-translation-exception conditions
may be a program substitute for a protection vio-
lation, these conditions are used to set the condi-
tion code rather than cause a program exception.

When the CPU is in the access-register mode,
TEST PROTECTION additionally permits the
program to check the usability of an access-list-
entry token (ALET) in an access register without
incurring program exceptions. The ALET is
checked for validity (absence of an ALET-specifi-
cation, ALEN-translation, and ALE-sequence-
exception condition) and for being authorized for
use by the program (absence of an ASTE-valid-
ity, ASTE-sequence, and extended-authority-
exception condition).

2. See the programming notes under SET PSW
KEY FROM ADDRESS for more details and for
an alternative approach to testing the key-con-
trolled protection attributes of addresses passed
by a calling program. The approach using TEST
PROTECTION has the advantage of a test which
does not result in interruptions; however, the test
and use are separated in time and may not be
accurate if the possibility exists that the storage
key of the location in question can change
between the time it is tested and the time it is
used.

3. In the handling of dynamic address translation,
TEST PROTECTION is similar to LOAD REAL
ADDRESS in that the instructions do not cause
ASCE-type, region-translation, segment-transla-
tion, and page-translation exceptions. Instead,
these exception conditions are indicated by
means of a condition-code setting. Similarly,
access-register translation sets a condition code

10-176 The z/Architecture CPU Architecture

T
R

A
C

E for certain exception conditions when performed
during either of the two instructions. Conditions
which result in condition codes 1, 2, and 3 for
LOAD REAL ADDRESS result in condition code
3 for TEST PROTECTION. The instructions also
differ in several other respects. The first-operand
address of TEST PROTECTION is a logical
address and thus is not subject to dynamic
address translation when DAT is off. The second-
operand address of LOAD REAL ADDRESS is a
virtual address which is always translated.

Access-register translation applies to TEST
PROTECTION only when the CPU is in the
access-register mode (DAT is on), whereas it
applies to LOAD REAL ADDRESS when PSW
bits 16 and 17 are 01 binary regardless of
whether DAT is on or off. When condition code 3
is set because of an exception condition in
access-register translation, LOAD REAL
ADDRESS, but not TEST PROTECTION, returns
in a general register the program-interruption
code assigned to the exception.

4. Condition code 3 does not necessarily indicate
that the first-operand location will always be inac-
cessible to the program; rather it merely indicates
that the current conditions prevent the instruction
from determining the protection attributes of the
operand. For example, in a virtual storage envi-
ronment, condition code 3 may be set if the stor-
age location has been paged out by the
operating system. If the program attempts to
access the location, the operating system may
resolve the page-translation exception and sub-
sequently make the location accessible to the
program.

Similarly, condition code 1 does not necessarily
indicate that the address cannot ever be stored
into. In an operating system that implements a
Posix fork function, DAT protection is used to
alert the operating system of a copy-on-write
event (as described in Programming Note 1 on
page 3-19). Following the operating-system res-
olution of the copy-on-write event, the program
may be given store access to the location.

TRACE

TRACE R1,R3,D2(B2) [RS-a]

TRACG R1,R3,D2(B2) [RSY-a]

When explicit tracing is on (bit 63 of control register
12 is one), the second operand, which is a 32-bit
word in storage, is fetched, and bit 0 of the word is
examined. If bit 0 of the second operand is zero, a
trace entry is formed at the real-storage location des-
ignated by control register 12.

If explicit tracing is off (bit 63 of control register 12 is
zero), or if bit 0 of the second operand is one, no
trace entry is formed, and no trace exceptions are
recognized.

The displacement for TRACE is treated as a 12-bit
unsigned binary integer. The displacement for
TRACG is treated as a 20-bit signed binary integer.

The trace entry is composed of an entry-type identi-
fier, a count of the number of general registers whose
partial or entire contents are placed in the entry, a
field whose contents indicate whether the entry was
formed by TRACE (TRACE) or TRACE (TRACG),
selected bits of the TOD clock, the second operand,
and the partial or entire contents of a range of gen-
eral registers. For TRACE (TRACE), bits 16-63 of the
TOD clock and bits 32-63 of the general registers are
placed in the trace entry. For TRACE (TRACG), bits
1-7 of the epoch index, bits 0-79 of the clock, and bits
0-63 of the registers are placed in the entry. See
“Trace Entries” on page 4-15 for further details.

The general registers are stored in ascending order
of their register numbers, starting with general regis-
ter R1 and continuing up to and including general reg-
ister R3, with general register 0 following general
register 15. The trace table and the trace-entry for-
mats are described in “Tracing” on page 4-12.

'99' R1 R3 B2 D2

0 8 12 16 20 31

'EB' R1 R3 B2 DL2 DH2 '0F'

0 8 12 16 20 32 40 47

Control Instructions 10-177

T
R

A
PWhen a trace entry is made, a serialization and

checkpoint-synchronization function is performed
before the operation begins and again after the oper-
ation is completed. However, it is unpredictable
whether or not a store into a trace-table entry from
which a subsequent instruction is fetched will be
observed by the CPU that performed the store. Addi-
tionally, when the store-clock-fast facility is installed
and the TRACE TOD-clock control in bit 32 of control
register 0 is one, it is unpredictable whether explicit
tracing causes serialization to be performed.

Special Conditions

A privileged-operation exception is recognized in the
problem state, even when explicit tracing is off or bit 0
of the second operand is one.

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized. It is unpredictable whether the specification
exception is recognized when explicit tracing is off.

It is unpredictable whether access exceptions or PER
zero-address-detection events are recognized for the
second operand when explicit tracing is off.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification
• Trace
• Transaction constraint

Programming Notes:

1. Bits 1-15 of the second operand are reserved for
model-dependent functions and should there-
fore be set to zeros.

2. When the store-clock-fast facility is not installed,
or when the TOD-clock-control in bit 32 of control
register 0 is zero, the entire 32-bit TRACE oper-
and is stored in bits 64-95 of the trace entry for
TRACE (TRACE) and in bits 96-127 of the trace
entry for TRACE (TRACG).

3. When the store-clock-fast facility is installed and
the TRACE TOD-clock control in bit 32 of control
register 0 is one, the following conditions apply:

• Two executions of the instruction do not nec-
essarily store different values in the TOD-
clock bits of the trace entry.

• The value of the TOD clock bits stored in the
trace entry does not necessarily indicate the
order of operations among multiple CPUs.

• The contents of bit positions 16-31 of the
TRACE operand are stored in bits 80-95 of
the trace entry for TRACE (TRACE) and in
bits 112-127 of the trace entry for TRACE
(TRACG).

• Bits 64-79 of the trace entry for TRACE
(TRACE) and bits 96-111 of the trace entry
for TRACE (TRACG) are set to a model-
dependent value.

TRAP

TRAP2 [E]

TRAP4 D2(B2) [S]

A trap operation is performed if the CPU is in the pri-
mary-space or access-register mode and the TRAP-
enabled bit in byte 47 of the dispatchable-unit control
table (DUCT) is one. Otherwise, a special-operation
exception is recognized.

The trap operation obtains a trap-control-block
address from the DUCT and then a trap-save-area
address and a trap-program address from the trap
control block. State information is stored in the trap
save area. Then the trap-control-block address is
loaded into general register 15. Finally, the current
PSW is updated by setting the basic-addressing-
mode bit to one (which will leave the addressing
mode as either the 31-bit mode or the 64-bit mode or
will change the addressing mode from the 24-bit
mode to the 31-bit mode) and the address-space-
control bits to zeros (primary-space mode) and by
replacing the instruction address with the trap-pro-
gram address. Compatibility with the ESA/390 opera-
tion of TRAP optionally is provided.

'01FF'

0 15

'B2FF' B2 D2

0 16 20 31

10-178 The z/Architecture CPU Architecture

T
R

A
P For TRAP4, the second-operand address is not used

to address data; instead, bits 33-63 of the address
are stored in the trap save area.

Dispatchable-Unit Control Table

Bytes 44-47 (word 10) of the dispatchable-unit-con-
trol table (DUCT) are used by this instruction. The
contents of those bytes are as follows:

DUCT Bytes 44-47

The fields in bytes 44-47 of the DUCT are allocated
as follows:

Trap-Control-Block Address: Bits 1-28, with
three zeros appended on the right, form the 31-bit
home virtual address of the trap control block. This
address is treated as a 31-bit home virtual address
regardless of the current addressing mode and
regardless of the current value of the address-space-
control bits. This address, with a zero appended on
the left, is placed in bit positions 32-63 of general
register 15 after the contents of that register have
been saved in the trap save area. If the current
addressing mode is the 64-bit mode, bits 0-31 of gen-
eral register 15 are set to zeros.

TRAP-Enabled Bit (E): Bit 31 specifies, when one,
that the trap operation is to be performed. TRAP rec-
ognizes a special-operation exception if bit 31 is zero.

Bits 0, 29, and 30 of bytes 44-47 are ignored, but
they should be zeros to permit possible future exten-
sions.

Trap Control Block

The trap control block is 64 bytes aligned on a dou-
bleword boundary. The format of the trap control
block is:

The fields in the trap control block are allocated as
follows:

PSW Control (P): Bit 13 of bytes 0-3 controls the
allowed value of bit 31 of the current PSW and how
bits 12 and 33-127 of the current PSW are stored in
the PSW-values field in the trap save area. When bit
13 is zero:

• Bit 31 of the current PSW, the extended-address-
ing-mode bit, must be zero; otherwise, a special-
operation exception is recognized.

• A one is stored in bit position 12 of the PSW-val-
ues field even though bit 12 of the current PSW
is zero.

• Bits 97-127 of the current PSW are stored in bit
positions 33-63 of the PSW-values field, bits
33-96 of the current PSW are not stored, and
zeros are stored in bit positions 64-127 of the
PSW-values field.

When bit 13 is one:

• Bit 31 of the current PSW may be zero or one.

• Bit 12 of the current PSW is stored in bit position
12 of the PSW-values field.

• Bits 64-127 of the current PSW are stored in bit
positions 64-127 of the PSW-values field.

General-Registers Control (R): Bit 14 of bytes 0-3
controls how the contents of the general registers are

Trap-Control-Block Address E
0 1 29 31

Hex Dec

0 0 PR

4 4

8 8

C 12 Trap-Save-Area Address

10 16

14 20 Trap-Program Address

18 24 /

1C 28 /

20

3C

32

60

0 13 14 31

Control Instructions 10-179

T
R

A
Pstored in the general-registers 0-15 field in the trap

save area. When R is zero, bits 32-63 of the general
registers are stored in consecutive four-byte loca-
tions beginning at the beginning of the general-regis-
ters 0-15 field, bits 0-31 of the registers are not
stored, and the last 64 bytes of the general-registers
0-15 field remain unchanged. When R is one, bits
0-63 of the general registers are stored in consecu-
tive eight-byte locations in the general-registers 0-15
field.

Trap-Save-Area Address: Bits 1-28 of bytes
12-15, with three zeros appended on the right, form
the 31-bit home virtual address of the trap save area.
This address is treated as a 31-bit home virtual
address regardless of the current addressing mode
and regardless of the current value of the address-
space-control bits. Bits 0 and 29-31 of bytes 12-15
are ignored.

Trap-Program Address: Bits 1-31 of bytes 20-23
form the 31-bit primary virtual address of the trap
program. This address is treated as a 31-bit primary
virtual address regardless of the current addressing
mode.

Bit positions 0-12 and 15-31 of bytes 0-3 and bytes
4-11, 16-19, and 32-63 of the trap control block are
reserved and should contain zeros. Bytes 24-31 are
available for use by programming.

Trap Save Area

The trap save area is 256 bytes aligned on a double-
word boundary.

The trap operation stores information into the trap
save area as follows:

The fields in the trap save area are allocated as fol-
lows:

Trap Flags: Information identifying the instruc-
tion(s) causing the trap operation is stored in byte
positions 0-3. The detailed format of bytes 0-3 is as
follows:

Bit 0 of bytes 0-3 is set to one if TRAP was the target
of an execute-type instruction (EXECUTE or EXE-
CUTE RELATIVE LONG).

Bit 1 of bytes 0-3 is set to one if TRAP is TRAP4 (not
TRAP2).

Bits 13 and 14 are the instruction-length code (ILC)
that specifies the length of the TRAP instruction, or
the length of the execute-type instruction if TRAP
was the target of an execute-type instruction.

Hex Dec

0 0 Trap Flags

4 4 Reserved (Zeros Stored)

8 8 Bits 33-63 of Second-Op Address of TRAP4

C 12 Access Register 15

10 16
PSW Values

20 32

General Registers 0-15

A0 160 /

A4 164 /

A8

FC

168

252

Reserved (Unchanged)

0 31

Flag
Bits Meaning
0 TRAP was target of an execute-type instruction

1 TRAP is TRAP4 (not TRAP2)

2-12 Reserved, zeros stored
13-14 Instruction-length code (ILC)

15-31 Reserved, zeros stored

10-180 The z/Architecture CPU Architecture

T
R

A
P Bits 2-12 and 15-31 are reserved and are stored as

zeros.

Bits 33-63 of Second-Operand Address of
TRAP4: For TRAP4, bits 33-63 of the second-oper-
and address, generated under the control of the cur-
rent addressing mode and with a zero appended on
the left, are stored in byte positions 8-11. Only bits
33-63 of the second-operand address are stored
even when the current addressing mode is the 64-bit
mode. For TRAP2, all zeros are stored in byte posi-
tions 8-11.

Access Register 15: The contents of access reg-
ister 15 are stored in byte positions 12-15.

PSW Values: The following description applies
when the PSW control, bit 13 of bytes 0-3 of the trap
control block, is one.

Certain information from the current PSW is stored in
byte positions 16-31. The PSW has the following for-
mat:

Bits 0-127 of bytes 16-31 correspond one-to-one with
bits 0-127 of the PSW. For some bit positions of
bytes 16-31, the corresponding PSW bits are stored.
For the other bit positions of bytes 16-31, unpredict-
able values are stored. Information is stored in bytes
16-31 as follows:

In summary, bits 0, 2-4, 12, 24-30, and 33-63 are
zero, bits 1, 5-11, and 13 are unpredictable, and the
other bits are set with variable information from the
PSW.

The wait-state, problem-state, address-space-con-
trol, condition-code, program-mask, extended-
addressing-mode, and basic-addressing-mode val-
ues specify the state of the CPU before the TRAP
instruction was executed. The instruction-address
value is the updated instruction address, which is the
address of the instruction following TRAP, or the
address of the instruction following the execute-type
instruction if TRAP was the target of an execute-type
instruction.

When the PSW control in the trap control block is
zero, the operation is as described above except as
follows:

• Bit 31 of the current PSW must be zero; other-
wise, a special-operation exception is recog-
nized.

• A one is stored in bit position 12 of bytes 16-31.

• Bits 97-127 of the current PSW are stored in bit
positions 33-63 of bytes 16-31, bits 33-96 of the
current PSW are not stored, and zeros are stored
in bit positions 64-127 of bytes 16-31 (bytes
24-31).

In this case, bytes 16-23 have the format of an
ESA/390 PSW, which is as follows:

General Registers 0-15: Contents of general reg-
isters 0-15 are stored in byte positions 32-159 as

0 R 0 0 0 T
I
O

E
X

Key 0 MW P AS CC
Prog.
Mask

R
I

0 0 0 0 0 0
E
A

0 1 2 5 6 7 8 12 13 14 15 16 18 20 24 25 31

B
A

0 0

32 33 63

Instruction Address
64 95

Instruction Address (Continued)
96 127

Bits Value
0 Zero

1 Unpredictable

2-4 Zero

5-11 Unpredictable
12 Zero

13 Unpredictable

14 Wait state (W)
15 Problem state (P)

16-17 Address-space control (AS)

18-19 Condition code (CC)

20-23 Program mask
25-30 Zero

31 Extended addressing mode (EA)

32 Basic addressing mode (BA)

33-63 Zero
64-127 Instruction address

0 R 0 0 0 T
I
O

E
X

Key 1 M W P AS CC
Prog.
Mask

0 0 0 0 0 0 0 0

0 1 2 5 6 7 8 12 13 14 15 16 18 20 24 31

A Instruction Address
32 33 63

Bits Value

Control Instructions 10-181

T
R

A
Pdescribed in “General-Registers Control (R)” on

page 10-178. When bits 32-63 or 0-63 of the general
registers are stored, they are stored in ascending
order of register numbers, starting with register 0 and
continuing up to and including register 15.

Bytes 160-255 always remain unchanged. Bytes
168-255 are reserved. Bytes 160-167 are available
for use by programming.

Special Conditions

The CPU must be in the primary-space mode or
access-register mode, and bit 31 in bytes 44-47 of
the dispatchable-unit control table must be one; oth-
erwise, a special-operation exception is recognized.
A special-operation exception is also recognized if
the PSW control, bit 13 of bytes 0-3 of the trap con-
trol block is zero and bit 31 of the current PSW, the
extended-addressing-mode bit, is one.

All protection mechanisms apply in the usual way to
the accesses to the trap control block and trap save
area. Access exceptions may or may not be recog-
nized for sections of the trap control block and trap
save area that are not referenced by the TRAP
instruction.

The trap-program address in the trap control block is
not tested before it replaces the instruction address
in the PSW. An odd address will cause a specifica-
tion exception to be recognized as part of the execu-
tion of the next instruction.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, trap control block; store, trap save
area)

• Addressing (dispatchable-unit control table)
• Special operation
• Trace
• Transaction constraint

The priority of recognition of program exceptions for
the instruction is shown in Figure 10-100.

Programming Notes:

1. It is intended that TRAP instructions will overlay
instructions in an application program in order to
give control to a trap program, which might be a
program for performing fix-ups of data used by
the application program, such as dates that may
be a “Year-2000” problem. TRAP2 can overlay a
two-byte instruction, and TRAP4 can overlay a
four-byte instructions or the first four bytes of a
six-byte instruction. The trap program is to simu-
late the overlaid instruction and perform fix-ups
as appropriate, and it is then to return control to
the application program.

2. The trap program can use the RESUME PRO-
GRAM instruction to return control to the applica-
tion program. For example, the trap program can
restore the contents of all registers except
access and general registers 15, and then, using
those registers (or at least the general register)
to address the trap save area, can restore the
contents of those registers and also PSW fields
from the trap save area. RESUME PROGRAM

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword (TRAP4 only).

7.B Special-operation exception due to the CPU not
being in the primary-space mode or access-
register mode.

7.C.1 Addressing exception for access to dispatchable-
unit control table.

7.C.2 Special-operation exception due to bit 31 in
bytes 44-47 of dispatchable-unit control table
being zero.

7.D Transaction constraint.

8.A Trace exceptions.

8.B.1 Access exceptions (fetch) for trap control block.

8.B.2 Special-operation exception due to PSW control
in trap control block being zero and PSW bit 31
being one.

8.B.3 Access exceptions (store) for trap save area.

Figure 10-100. Priority of Execution: TRAP

10-182 The z/Architecture CPU Architecture

T
R

A
P has control bits in its parameter list that allow it to

restore PSW fields from a field having either the
short format (as shown in Figure 4-3 on
page 4-8) or the 16-byte format (as shown in
Figure 4-2 on page 4-5) and to restore either bits
32-63 or 0-63 of a general register.

3. The trap control block and trap save area are in
the home address space, and the trap program is
in the primary address space. The trap-control-
block address placed in general register 15 by
TRAP can be useful to the trap program if (1) the
primary address space and home address space

are the same address space, (2) the trap control
block and trap save area are at the same loca-
tions in the primary address space as in the
home address space, or (3) the trap program can
use access registers to access the home
address space.

4. The storage-operand references for TRAP may
be multiple-access references. (See “Storage-
Operand Consistency” on page 5-125.)

Machine-Check Handling 11-1© Copyright IBM Corp. 2000, 2019

Chapter 11. Machine-Check Handling

Machine-Check Detection 11-2
Correction of Machine Malfunctions 11-2

Error Checking and Correction 11-3
CPU Retry . 11-3

Effects of CPU Retry 11-3
Checkpoint Synchronization 11-4
Handling of Machine Checks during

Checkpoint Synchronization 11-4
Checkpoint-Synchronization Operations . . 11-4
Checkpoint-Synchronization Action 11-5

Channel-Subsystem Recovery 11-5
Unit Deletion . 11-5

Handling of Machine Checks. 11-5
Validation. 11-6
Invalid CBC in Storage 11-7

Programmed Validation of Storage 11-7
Invalid CBC in Storage Keys 11-8
Invalid CBC in Registers 11-9

Check-Stop State . 11-10
System Check Stop 11-10

Machine-Check Interruption 11-10
Exigent Conditions. 11-11
Repressible Conditions 11-11
Interruption Action . 11-12

Interruption Action in the z/Architecture
Architectural Mode. 11-12

Interruption Action in the ESA/390-
Compatibility Mode 11-12

Interruption Action: Common Actions . . . 11-13
Point of Interruption 11-14

Machine-Check-Interruption Code. 11-15
Subclass . 11-16

System Damage 11-16
Instruction-Processing Damage. 11-16
System Recovery. 11-16
Timing-Facility Damage 11-16
External Damage 11-17
Degradation . 11-17
Warning . 11-17
Channel Report Pending 11-17
Service-Processor Damage. 11-18
Channel-Subsystem Damage 11-18

Subclass Modifiers. 11-18
Backed Up . 11-18
Delayed Access Exception 11-18
Ancillary Report . 11-18

Synchronous Machine-Check-Interruption
Conditions . 11-18
Processing Backup 11-19
Processing Damage 11-19

Storage Errors. 11-19
Storage Error Uncorrected 11-20
Storage Error Corrected 11-20
Storage-Key Error Uncorrected. 11-20
Storage Degradation 11-20
Indirect Storage Error 11-20

Machine-Check Interruption-Code Validity
Bits . 11-21
PSW-MWP Validity 11-21
PSW Mask and Key Validity 11-21
PSW Program-Mask and Condition-Code

Validity . 11-21
PSW-Instruction-Address Validity 11-21
Failing-Storage-Address Validity. 11-21
Vector Register Validity. 11-21
External-Damage-Code Validity 11-21
Floating-Point-Register Validity. 11-22
General-Register Validity 11-22
Control-Register Validity 11-22
Storage Logical Validity. 11-22
Access-Register Validity 11-22
Guarded-Storage-Registers Validity 11-22
TOD-Programmable-Register Validity. . . . 11-22
Floating-Point-Control-Register Validity . . 11-22
CPU-Timer Validity 11-23
Clock-Comparator Validity 11-23

Machine-Check Extended Interruption
Information . 11-23
Register-Save Areas. 11-23
External-Damage Code 11-24
Failing-Storage Address 11-25
Machine-Check Extended Save Area

(MCESA). 11-25
Machine-Check Extended Save Area in the

z/Architecture Architectural Mode 11-25
Machine-Check Extended Save Area in the

ESA/390 Compatibility Mode 11-25
Handling of Machine-Check Conditions 11-26

Floating Interruption Conditions 11-26
Floating Machine-Check-Interruption

Conditions . 11-26
Floating I/O Interruptions. 11-26

Machine-Check Masking. 11-27
Channel-Report-Pending Subclass Mask . 11-27
Recovery Subclass Mask 11-27
Degradation Subclass Mask 11-27
External-Damage Subclass Mask 11-27
Warning Subclass Mask 11-27

Machine-Check Logout 11-27

11-2 The z/Architecture CPU Architecture

Summary of Machine-Check Masking 11-28

The machine-check-handling mechanism provides
extensive equipment-malfunction detection to ensure
the integrity of system operation and to permit auto-
matic recovery from some malfunctions. Equipment
malfunctions and certain external disturbances are
reported by means of a machine-check interruption
to assist in program-damage assessment and recov-
ery. The interruption supplies the program with infor-
mation about the extent of the damage and the
location and nature of the cause. Equipment mal-
functions, errors, and other situations which can
cause machine-check interruptions are referred to as
machine checks.

Machine-Check Detection

Machine-check-detection mechanisms may take
many forms, especially in control functions for arith-
metic and logical processing, addressing, sequenc-
ing, and execution. For program-addressable
information, detection is normally accomplished by
encoding redundancy into the information in such a
manner that most failures in the retention or trans-
mission of the information result in an invalid code.
The encoding normally takes the form of one or more
redundant bits, called check bits, appended to a
group of data bits. Such a group of data bits and the
associated check bits are called a checking block.
The size of the checking block depends on the
model.

The inclusion of a single check bit in the checking
block allows the detection of any single-bit failure
within the checking block. In this arrangement, the
check bit is sometimes referred to as a “parity bit.” In
other arrangements, a group of check bits is included
to permit detection of multiple errors, to permit error
correction, or both.

For checking purposes, the contents of the entire
checking block, including the redundancy, are called
the checking-block code (CBC). When a CBC com-
pletely meets the checking requirements (that is, no
failure is detected), it is said to be valid. When both
detection and correction are provided and a CBC is
not valid but satisfies the checking requirements for
correction (the failure is correctable), it is said to be
near-valid. When a CBC does not satisfy the check-

ing requirements (the failure is uncorrectable), it is
said to be invalid.

Correction of Machine
Malfunctions

Four mechanisms may be used to provide recovery
from machine-detected malfunctions: error checking
and correction, CPU retry, channel-subsystem recov-
ery, and unit deletion.

Machine failures which are corrected successfully
may or may not be reported as machine-check inter-
ruptions. If reported, they are system-recovery condi-
tions, which permit the program to note the cause of
CPU delay and to keep a log of such incidents.

Error Checking and Correction

When sufficient redundancy is included in circuitry or
in a checking block, failures can be corrected. For
example, circuitry can be triplicated, with a voting cir-
cuit to determine the correct value by selecting two
matching results out of three, thus correcting a single
failure. An arrangement for correction of failures of
one order and for detection of failures of a higher
order is called error checking and correction (ECC).
Commonly, ECC allows correction of single-bit fail-
ures and detection of double-bit failures.

Depending on the model and the portion of the
machine in which ECC is applied, correction may be
reported as system recovery, or no report may be
given.

Uncorrected errors in storage and in the storage key
may be reported, along with a failing-storage
address, to indicate where the error occurred.
Depending on the situation, these errors may be
reported along with system recovery or with the dam-
age or backup condition resulting from the error.

CPU Retry

In some models, information about some portion of
the state of the machine is saved periodically. The

Machine-Check Handling 11-3

point in the processing at which this information is
saved is called a checkpoint. The information saved
is referred to as the checkpoint information. The
action of saving the information is referred to as
establishing a checkpoint. The action of discarding
previously saved information is called invalidation of
the checkpoint information. The length of the interval
between establishing checkpoints is model-depen-
dent. Checkpoints may be established at the begin-
ning of each instruction or several times within a
single instruction, or checkpoints may be established
less frequently.

Subsequently, this saved information may be used to
restore the machine to the state that existed at the
time when the checkpoint was established. After
restoring the appropriate portion of the machine
state, processing continues from the checkpoint. The
process of restoring to a checkpoint and then con-
tinuing is called CPU retry.

CPU retry may be used for machine-check recovery,
to effect nullification and suppression of instruction
execution when certain program interruptions occur,
and in other model-dependent situations.

Effects of CPU Retry
CPU retry is, in general, performed so that there is no
effect on the program. However, change bits which
have been changed from zeros to ones are not nec-
essarily set back to zeros. As a result, change bits
may appear to be set to ones for blocks which would
have been accessed if restoring to the checkpoint
had not occurred. If the path taken by the program is
dependent on information that may be changed by
another CPU or by a channel program or if an inter-
ruption occurs, then the final path taken by the pro-
gram may be different from the earlier path;
therefore, change bits may be ones because of
stores along a path apparently never taken.

During the execution of the following instructions,
CPU retry may result in condition code 3 being set
with possibly incorrect data having been stored in the
first operand location at or to the right of the location
designated by the final address in general register
R1.

• COMPRESSION CALL
• CONVERT UTF-16 TO UTF-32
• CONVERT UTF-16 TO UTF-8
• CONVERT UTF-32 TO UTF-16
• CONVERT UTF-32 TO UTF-8

• CONVERT UTF-8 TO UTF-16
• CONVERT UTF-8 TO UTF-32
• CIPHER MESSAGE
• CIPHER MESSAGE WITH AUTHENTICATION
• CIPHER MESSAGE WITH CHAINING
• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH CIPHER FEEDBACK
• CIPHER MESSAGE WITH OUTPUT FEED-

BACK
• DEFLATE CONVERSION CALL (see below for

additional information)
• TRANSLATE ONE TO ONE
• TRANSLATE ONE TO TWO
• TRANSLATE TWO TO ONE
• TRANSLATE TWO TO TWO

During the execution of the PERFORM RANDOM
NUMBER OPERATION instruction’s generate opera-
tion, CPU retry may result in condition code 3 being
set with possibly incorrect data having been stored in
the first operand location at or to the left of the right-
most byte of the first operand (that is, to the left of the
location designated by the combination of general
registers R1 and R1 + 1).

During the execution of DEFLATE CONVERSION
CALL when the specified function is DFLTCC-CMPR
or DFLTCC-XPND and the history-buffer type is cir-
cular, CPU retry may result with possibly incorrect
data stored to the third-operand location.

The amount of data stored depends on the operation
and the point in time at which CPU retry occurred.
The amount of incorrect data stored will not exceed
the minimum of (a) the length of the first operand,
(b) the length of the second operand (for instructions
having a second operand), and (c) the data pro-
cessed in a single unit of operation of the instruction.
In all cases, the storing will occur again, with correct
data stored, if the instruction is executed again to
continue processing the same operands.

Checkpoint Synchronization
Checkpoint synchronization consists in the following
steps.

1. The CPU operation is delayed until all conceptu-
ally previous accesses by this CPU to storage
have been completed, both for purposes of
machine-check detection and as observed by
other CPUs and by channel programs.

2. All previous checkpoints, if any, are invalidated.

11-4 The z/Architecture CPU Architecture

3. Optionally, a new checkpoint is established.

The CPU operation is delayed until all of these
actions appear to be completed, as observed by
other CPUs and by channel programs.

Handling of Machine Checks during
Checkpoint Synchronization
When, in the process of completing all previous
stores as part of the checkpoint-synchronization
action, the machine is unable to complete all stores
successfully but can successfully restore the
machine to a previous checkpoint, processing
backup is reported.

When, in the process of completing all stores as part
of the checkpoint-synchronization action, the
machine is unable to complete all stores successfully
and cannot successfully restore the machine to a
previous checkpoint, the type of machine-check-
interruption condition reported depends on the origin
of the store. Failure to successfully complete stores
associated with instruction execution may be
reported as instruction-processing damage, or some
less critical machine-check-interruption condition
may be reported with the storage-logical-validity bit
set to zero. A failure to successfully complete stores
associated with the execution of an interruption,
other than program or supervisor call, is reported as
system damage.

When the machine check occurs as part of a check-
point-synchronization action before the execution of
an instruction, the execution of the instruction is nulli-
fied. When it occurs before the execution of an inter-
ruption, the interruption condition, if the interruption
is external, I/O, or restart, is held pending. If the
checkpoint-synchronization operation was a
machine-check interruption, then along with the origi-
nating condition, either the storage-logical-validity bit
is set to zero or instruction-processing damage is
also reported. Program interruptions, if any, are lost.

Checkpoint-Synchronization Operations
All interruptions and the execution of certain instruc-
tions cause a checkpoint-synchronization action to
be performed. The operations which cause a check-
point-synchronization action are called checkpoint-
synchronization operations and include:
• CPU reset
• All interruptions: external, I/O, machine check,

program, restart, and supervisor call

• The BRANCH ON CONDITION (BCR) instruc-
tion with the M1 and R2 fields containing all ones
and all zeros, respectively

• The instructions LOAD PSW, LOAD PSW
EXTENDED, SET STORAGE KEY EXTENDED,
and SUPERVISOR CALL

• All I/O instructions
• The instructions MOVE TO PRIMARY, MOVE TO

SECONDARY, PROGRAM CALL, PROGRAM
TRANSFER, SET ADDRESS SPACE CON-
TROL, and SET SECONDARY ASN, and PRO-
GRAM RETURN when the state entry to be
unstacked is a program-call state entry

• The four trace functions: branch tracing, ASN
tracing, mode tracing, and explicit tracing, except
that when the store-clock-fast facility is installed
and the TRACE TOD-clock control in bit 32 of
control register 0 is one, then it is unpredictable
whether explicit tracing causes a checkpoint-syn-
chronization action.

• PAGE IN and PAGE OUT

Programming Note: The instructions which are
defined to cause the checkpoint-synchronization
action invalidate checkpoint information but do not
necessarily establish a new checkpoint. Additionally,
the CPU may establish a checkpoint between any
two instructions or units of operation, or within a sin-
gle unit of operation. Thus, the point of interruption
for the machine check is not necessarily at an
instruction defined to cause a checkpoint-synchroni-
zation action.

Checkpoint-Synchronization Action
For all interruptions except I/O interruptions, a check-
point-synchronization action is performed at the com-
pletion of the interruption. For I/O interruptions, a
checkpoint-synchronization action may or may not be
performed at the completion of the interruption. For
all interruptions except program, supervisor-call, and
exigent machine-check interruptions, a checkpoint-
synchronization action is also performed before the
interruption. The fetch access to the new PSW may
be performed either before or after the first check-
point-synchronization action. The store accesses
and the changing of the current PSW associated with
the interruption are performed after the first check-
point-synchronization action and before the second.

For all checkpoint-synchronization instructions
except BRANCH ON CONDITION (BCR), I/O
instructions, and SUPERVISOR CALL, checkpoint-
synchronization actions are performed before and

Machine-Check Handling 11-5

after the execution of the instruction. For BCR, only
one checkpoint-synchronization action is necessarily
performed, and it may be performed either before or
after the instruction address is updated. For SUPER-
VISOR CALL, a checkpoint-synchronization action is
performed before the instruction is executed, includ-
ing the updating of the instruction address in the
PSW. The checkpoint-synchronization action taken
after the supervisor-call interruption is considered to
be part of the interruption action and not part of the
instruction execution. For I/O instructions, a check-
point-synchronization action is always performed
before the instruction is executed and may or may not
be performed after the instruction is executed.

The four trace functions — branch tracing, ASN trac-
ing, mode tracing, and explicit tracing — cause
checkpoint-synchronization actions to be performed
before the trace action and after completion of the
trace action, except that when the store-clock-fast
facility is installed and the TRACE TOD-clock control
in bit 32 of control register 0 is one, then it is unpre-
dictable whether checkpoint-synchronization actions
are performed for explicit tracing.

Channel-Subsystem Recovery

When errors are detected in the channel subsystem,
the channel subsystem attempts to analyze and
recover the internal state associated with the various
channel-subsystem functions and the state of the
channel subsystem and various subchannels. This
process, which is called channel-subsystem recov-
ery, may result in a complete recovery or may result
in the termination of one or more I/O operations and
the clearing of the affected subchannels. Special
channel-report-pending machine-check-interruption
conditions may be generated to indicate to the pro-
gram the status of the channel-subsystem recovery.

Malfunctions associated with the I/O operations,
depending on the severity of the malfunction, may be
reported by means of the I/O-interruption mechanism
or by means of the channel-report-pending and
channel-subsystem-damage machine-check-inter-
ruption conditions.

Unit Deletion

In some models, malfunctions in certain units of the
system can be circumvented by discontinuing the
use of the unit. Examples of cases where unit dele-

tion may occur include the disabling of all or a portion
of a cache or of a translation-lookaside buffer (TLB).
Unit deletion may be reported as a degradation
machine-check-interruption condition.

Handling of Machine Checks

A machine check is caused by a machine malfunc-
tion and not by data or instructions. This is ensured
during the power-on sequence by initializing the
machine controls to a valid state and by placing valid
CBC in the CPU registers, in the storage keys, and in
main storage.

Designation of an unavailable component, such as a
storage location, subchannel, or I/O device, does not
cause a machine-check indication. Instead, such a
condition is indicated by the appropriate program or
I/O interruption or condition-code setting. In particu-
lar, an attempt to access a storage location which is
not in the configuration, or which has power off at the
storage unit, results in an addressing exception when
detected by the CPU and does not generate a
machine-check condition, even though the storage
location or its associated storage key has invalid
CBC. Similarly, if the channel subsystem attempts to
access such a location, an I/O-interruption condition
indicating program check is generated rather than a
machine-check condition.

A machine check is indicated whenever the result of
an operation could be affected by information with
invalid CBC or when any other malfunction makes it
impossible to establish reliably that an operation can
be, or has been, performed correctly. When informa-
tion with invalid CBC is fetched but not used, the con-
dition may or may not be indicated, and the invalid
CBC is preserved.

When a machine malfunction is detected, the action
taken depends on the model, the nature of the mal-
function, and the situation in which the malfunction
occurs. Malfunctions affecting operator-facility
actions may result in machine checks or may be indi-
cated to the operator. Malfunctions affecting certain
other operations such as SIGNAL PROCESSOR
may be indicated by means of a condition code or
may result in a machine-check-interruption condition.

A malfunction detected as part of an I/O operation
may cause a machine-check-interruption condition,
an I/O-error condition, or both. I/O-error conditions

11-6 The z/Architecture CPU Architecture

are indicated by an I/O interruption or by the appro-
priate condition-code setting during the execution of
an I/O instruction. When the machine reports a fail-
ing-storage location detected during an I/O opera-
tion, both I/O-error and machine-check conditions
may be indicated. The I/O-error condition is the pri-
mary indication to the program. The machine-check
condition is a secondary indication, which is pre-
sented as system recovery together with a failing-
storage address.

Certain malfunctions detected as part of I/O instruc-
tions and I/O operations are reported by means of
special machine-check conditions called I/O
machine-check conditions. Thus, malfunctions
detected as part of an operation which is I/O related
may be reported, depending on the error, in any of
three ways: I/O-error condition, I/O machine-check
condition, or non-I/O machine-check condition. In
some cases, the definition requires the error to be
reported by only one of these mechanisms; in other
cases, any one, or in some cases, more than one,
may be indicated.

Programming Note: Although the definition for
machine-check conditions is that they are caused by
machine malfunctions and not by data and instruc-
tions, there are certain unusual situations in which
machine-check conditions are caused by events
which are not machine malfunctions. Two examples
follow:

1. In some cases, the channel-report-pending
machine-check-interruption condition indicates a
non-error situation. For example, this condition is
generated at the completion of the function spec-
ified by RESET CHANNEL PATH.

2. Improper use of DIAGNOSE may result in
machine-check conditions.

Validation

Machine errors can be generally classified as solid or
intermittent, according to the persistence of the mal-
function. A persistent machine error is said to be
solid, and one that is not persistent is said to be inter-
mittent. In the case of a register or storage location, a
third type of error must be considered, called exter-
nally generated. An externally generated error is one
where no failure exists in the register or storage loca-
tion but invalid CBC has been introduced into the
location by actions external to the location. For exam-

ple, the value could be affected by a power transient,
or an incorrect value may have been introduced
when the information was placed at the location.

Invalid CBC is preserved as invalid when information
with invalid CBC is fetched or when an attempt is
made to update only a portion of the checking block.
When an attempt is made to replace the contents of
the entire checking block and the block contains
invalid CBC, it depends on the operation and the
model whether the block remains with invalid CBC or
is replaced. An operation which replaces the con-
tents of a checking block with valid CBC, while ignor-
ing the current contents, is called a validation
operation. Validation is used to place a valid CBC in a
register or at a location which has an intermittent or
externally generated error.

Validating a checking block does not ensure that a
valid CBC will be observed the next time the check-
ing block is accessed. If the failure is solid, validation
is effective only if the information placed in the check-
ing block is such that the failing bits are set to the
value to which they fail. If an attempt is made to set
the bits to the state opposite to that in which they fail,
then the validation will not be effective. Thus, for a
solid failure, validation is only useful to eliminate the
error condition, even though the underlying failure
remains, thereby reducing the exposure to additional
reports. The locations, however, cannot be used,
since invalid CBC will result from attempts to store
other values at the location. For an intermittent fail-
ure, however, validation is useful to restore a valid
CBC such that a subsequent partial store into the
checking block will be permitted. (A partial store is a
store into a checking block without replacing the
entire checking block.)

When a checking block consists of multiple bytes in
storage, or multiple bits in CPU registers, the invalid
CBC can be made valid only when all of the bytes or
bits are replaced simultaneously.

A register is automatically validated as part of the
machine-check-interruption sequence after the origi-
nal contents of the register are placed in the appro-
priate save area.

When an error occurs in a checking block, the origi-
nal information contained in the checking block
should be considered lost even after validation. Auto-
matic register validation leaves the contents unpre-
dictable.

Machine-Check Handling 11-7

Invalid CBC in Storage

The size of the checking block in storage depends on
the model but is never more than 4K bytes.

When invalid CBC is detected in storage, a machine-
check condition may occur; depending on the circum-
stances, the machine-check condition may be sys-
tem damage, instruction-processing damage, or
system recovery. If the invalid CBC is detected as
part of the execution of a channel program, the error
is reported as an I/O-error condition. When a CCW,
indirect-data-address word, modified-indirect-data-
address word, or data is prefetched from storage, is
found to have invalid CBC, but is not used in the
channel program, the condition is normally not
reported as an I/O-error condition. The condition may
or may not be reported as a machine-check-interrup-
tion condition. Invalid CBC detected during accesses
to storage for other than CPU-related accesses may
be reported as system recovery with storage error
uncorrected indicated, since the primary error indica-
tion is reported by some other means.

When the storage checking block consists of multiple
bytes and contains invalid CBC, special storage-vali-
dation procedures are generally necessary to restore
or place new information in the checking block. Vali-
dation of storage is provided with the manual load-
clear and system-reset-clear operations and is also
provided as a program function. Programmed stor-
age validation is done a block at a time, by executing
the privileged instruction TEST BLOCK. Manual stor-
age validation by clear reset validates all blocks
which are available in the configuration.

A checking block with invalid CBC is never validated
unless the entire contents of the checking block are
replaced. An attempt to store into a checking block
having invalid CBC, without replacing the entire
checking block, leaves the data in the checking block
(including the check bits) unchanged. Even when an
instruction or a channel-program-input operation
specifies that the entire contents of a checking block
are to be replaced, validation may or may not occur,
depending on the operation and the model.

Programming Note: Machine-check conditions may
be reported for prefetched and unused data.
Depending on the model, such situations may or may
not be successfully retried. For example, a BRANCH
AND LINK (BALR) instruction which specifies an R2

field of zero will never branch, but on some models a
prefetch of the location designated by register 0 may
occur. Access exceptions associated with this
prefetch will not be reported. However, if an invalid
checking-block code is detected, CPU retry may be
attempted. Depending on the model, the prefetch
may recur as part of the retry, and thus the retry will
not be successful. Even when the CPU retry is suc-
cessful, the performance degradation of such a retry
is significant, and system recovery may be pre-
sented, normally with a failing-storage address. To
avoid continued degradation, the program should ini-
tiate proceedings to eliminate use of the location and
to validate the location.

Programmed Validation of Storage
Provided that an invalid CBC does not exist in the
storage key associated with a 4 K-byte block, the
instruction TEST BLOCK causes the entire 4 K-byte
block to be set to zeros with a valid CBC, regardless
of the current contents of the storage. TEST BLOCK
thus removes an invalid CBC from a location in stor-
age which has an intermittent, or one-time, failure.
However, if a permanent failure exists in a portion of
the storage, a subsequent fetch may find an invalid
CBC.

Invalid CBC in Storage Keys

Depending on the model, each storage key may be
contained in a single checking block, or the access-
control and fetch-protection bits and the reference
and change bits may be in separate checking blocks.

Figure 11-1 on page 11-8 describes the action taken
when the storage key has invalid CBC. The figure
indicates the action taken for the case when the
access-control and fetch-protection bits are in one
checking block and the reference and change bits
are in a separate checking block. In machines where
both fields are included in a single checking block,
the action taken is the combination of the actions for
each field in error, except that completion is permit-
ted only if an error in all affected fields permits com-
pletion. References to main storage to which key-
controlled protection does not apply are treated as if
an access key of zero is used for the reference. This
includes such references as channel-program refer-
ences during initial program loading and implicit ref-
erences, such as interruption action and DAT-table
accesses.

11-8 The z/Architecture CPU Architecture

Type of Reference

Action Taken on Invalid CBC
For Access-Control and

Fetch-Protection Bits
For Reference and

Change Bits
SET STORAGE KEY EXTENDED Complete; validate. Complete; validate.

INSERT STORAGE KEY EXTENDED PD; preserve. PD; preserve.

RESET REFERENCE BIT EXTENDED PD or complete; preserve. PD; preserve.

INSERT VIRTUAL STORAGE KEY or TEST PROTECTION PD; preserve. CPF; preserve.

CPU prefetch (information not used) CPF; preserve. CPF; preserve.

Channel-program prefetch (information not used) IPF; preserve. IPF; preserve.

Fetch, nonzero access key MC; preserve. MC or complete; preserve.

Store1, nonzero access key MC2; preserve. MC and preserve; or
complete3 and correct.

Fetch, zero access key4 MC or complete; preserve. MC or complete; preserve.

Store1, zero access key2 MC or complete; preserve. MC and preserve; or
complete3 and correct.

Explanation:

1 CPU virtual- and logical-address store accesses are subject to DAT protection. When the DAT-protection bit is
one, the location will not be changed; however, the machine may indicate a machine-check condition if the
storage key or the data itself has invalid CBC.

2 The contents of the main-storage location are not changed.
3 The contents of the reference and change bits are set to ones if the “complete” action is taken.
4 The action shown for an access key of zero is also applicable to references to which key-controlled protection

does not apply.
Complete The condition does not cause termination of the execution of the instruction, and, unless an unrelated condition

prohibits it, the execution of the instruction is completed, ignoring the error condition. No machine- check-
damage conditions are reported, but system recovery may be reported.

Correct The reference and change bits are set to ones with valid CBC.
Preserve The contents of the entire checking block having invalid CBC are left unchanged.
Validate The entire key is set to the new value with valid CBC. When the conditional-SSKE facility is installed and either

or both the MR and MC bits of the M3 field are one, condition code 3 is set when the instruction completes.
CPF Invalid CBC in the storage key for a CPU prefetch which is unused, or for instructions which do not examine the

reference and change bits, may result in any of the following situations:
• The operation is completed; no machine-check condition is reported.
• The operation is completed; system recovery, with storage-key error uncorrected, is reported.
• Instruction-processing damage, with or without backup and with storage-key error uncorrected, is reported.

IPF Invalid CBC in the storage key for a channel-program prefetch which is unused may result in any of the following:
• The I/O operation is completed; no machine-check condition is reported.
• The I/O operation is completed; system recovery, with storage-key error uncorrected, is reported.

MC Same as PD for CPU references, but a channel-subsystem reference may result in the following combinations of
I/O-error conditions and machine-check conditions:

• An I/O-error condition is reported; no machine-check condition is reported.
• An I/O-error condition is reported; system recovery, with or without storage-key error uncorrected, is reported.

PD Instruction-processing damage, with or without backup and with or without storage-key error uncorrected, is
reported.

Note: When storage-key error uncorrected is reported, a failing storage address may or may not also be reported.

Figure 11-1. Invalid CBC in Storage Keys

Machine-Check Handling 11-9

Invalid CBC in Registers

When invalid CBC is detected in a CPU register, a
machine-check condition may be recognized. CPU
registers include the general, floating-point, floating-
point-control, access, control, vector, and TOD pro-
grammable registers, the current PSW, the prefix reg-
ister, the TOD clock, the CPU timer, and the clock
comparator.

When a machine-check interruption occurs, whether
or not it is due to invalid CBC in a CPU register, the
following actions affecting the CPU registers, other
than the prefix register and the TOD clock, are taken
as part of the interruption.

1. The contents of the registers are saved in
assigned storage locations. Any register which is
in error is identified by a corresponding validity
bit of zero in the machine-check-interruption
code. Malfunctions detected during register sav-
ing do not result in additional machine-check-
interruption conditions; instead, the correctness
of all the information stored is indicated by the
appropriate setting of the validity bits.

2. Registers with invalid CBC are then changed to
have valid CBC, their actual contents being
unpredictable, except that in the ESA/390-com-
patibility mode, bits 0-31 of all control registers
are predictably set to zeros.

The prefix register and the TOD clock are not stored
during a machine-check interruption, have no corre-
sponding validity bit, and are not validated. Invalid
CBC associated with the prefix register cannot safely
be reported by the machine-check interruption, since
the interruption itself requires that the prefix value be
applied to convert real addresses to the correspond-
ing absolute addresses. Invalid CBC in the prefix reg-
ister causes the CPU to enter the check-stop state
immediately.

Programming Note: Prior to the advent of z/Archi-
tecture, certain older models did not perform valida-
tion of registers during a machine-check interruption.
On such models, programmed validation of the regis-
ters during machine-check interruption handling was
necessary.

All z/Architecture-capable processors automatically
validate registers prior to presenting a machine-
check interruption to the program. Therefore, any

programmed validation of registers during machine-
check interruption handling is superfluous.

However, regardless of the automatic register valida-
tion that occurs as a result of a machine-check inter-
ruption, the contents of the access registers, clock-
comparator register, control registers, CPU-timer reg-
ister, floating-point registers, floating-point-control
register, general registers, guarded-storage-control
registers, TOD-programmable register, and vector
registers are unpredictable following a machine-
check interruption. Prior to using any of these regis-
ters or features that they control following a machine-
check interruption, the program should load the with
register with predictable contents.

Check-Stop State

In certain situations, it is impossible or undesirable to
continue operation when a machine error occurs. In
these cases, the CPU may enter the check-stop
state, which is indicated by the check-stop indicator.

In general, the CPU may enter the check-stop state
whenever an uncorrectable error or other malfunction
occurs and the machine is unable to recognize a spe-
cific machine-check-interruption condition.

The CPU always enters the check-stop state if any of
the following conditions exists:

• PSW bit 13 is zero, and an exigent machine-
check condition is generated.

• During the execution of an interruption due to
one exigent machine-check condition, another
exigent machine-check condition is detected.

• During a machine-check interruption, the
machine-check-interruption code cannot be
stored successfully, or the new PSW cannot be
fetched successfully.

• Invalid CBC is detected in the prefix register.

• A malfunction in the receiving CPU, which is
detected after accepting the order, prevents the
successful completion of a SIGNAL PROCES-
SOR order and the order was a reset, or the
receiving CPU cannot determine what the order
was. The receiving CPU enters the check-stop
state.

11-10 The z/Architecture CPU Architecture

There may be many other conditions for particular
models when an error may cause check stop.

When the CPU is in the check-stop state, instructions
and interruptions are not executed. The TOD clock is
normally not affected by the check-stop state. The
CPU timer may or may not run in the check-stop
state, depending on the error and the model. The
start key and stop key are not effective in this state.

The CPU may be removed from the check-stop state
by CPU reset.

In a multiprocessing configuration, a CPU entering
the check-stop state generates a request for a mal-
function-alert external interruption to all CPUs in the
configuration. Except for the reception of a malfunc-
tion alert, other CPUs and the I/O system are nor-
mally unaffected by the check-stop state in a CPU.
However, depending on the nature of the condition
causing the check stop, other CPUs may also be
delayed or stopped, and channel subsystem and I/O
activity may be affected.

System Check Stop
In a multiprocessing configuration, some errors, mal-
functions, and damage conditions are of such sever-
ity that the condition causes all CPUs in the
configuration to enter the check-stop state. This con-
dition is called a system check stop. The state of the
channel subsystem and I/O activity is unpredictable.

Machine-Check Interruption

A request for a machine-check interruption, which is
made pending as the result of a machine check, is
called a machine-check-interruption condition. There
are two types of machine-check-interruption condi-
tions: exigent conditions and repressible conditions.

Exigent Conditions

Exigent machine-check-interruption conditions are
those in which damage has or would have occurred
such that execution of the current instruction or inter-
ruption sequence cannot safely continue. Exigent
conditions include two subclasses: instruction-pro-
cessing damage and system damage. In addition to
indicating specific exigent conditions, system dam-

age is used to report any malfunction or error which
cannot be isolated to a less severe report.

Exigent conditions for instruction sequences can be
either nullifying exigent conditions or terminating exi-
gent conditions, according to whether the instructions
affected are nullified or terminated. Exigent condi-
tions for interruption sequences are terminating exi-
gent conditions. The terms “nullification” and
“termination” have the same meanings as those used
in Chapter 5, “Program Execution”, except that more
than one instruction may be involved. Thus, a nullify-
ing exigent condition indicates that the CPU has
returned to the beginning of a unit of operation prior
to the error. A terminating exigent condition means
that the results of one or more instructions may have
unpredictable values.

Repressible Conditions

Repressible machine-check-interruption conditions
are those in which the results of the instruction-pro-
cessing sequence have not been affected. Repressi-
ble conditions can be delayed, until the completion of
the current instruction or even longer, without affect-
ing the integrity of CPU operation. Repressible condi-
tions are of three groups: recovery, alert, and
repressible damage. Each group includes one or
more subclasses.

A malfunction in the CPU, storage, or operator facili-
ties which has been successfully corrected or cir-
cumvented internally without logical damage is called
a recovery condition. Depending on the model and
the type of malfunction, some or all recovery condi-
tions may be discarded and not reported. Recovery
conditions that are reported are grouped in one sub-
class, system recovery.

A machine-check-interruption condition not directly
related to a machine malfunction is called an alert
condition. The alert conditions are grouped in two
subclasses: degradation and warning.

A malfunction resulting in an incorrect state of a por-
tion of the system not directly affecting sequential
CPU operation is called a repressible-damage condi-
tion. Repressible-damage conditions are grouped in
five subclasses, according to the function affected:
timing-facility damage, external damage, channel
report pending, channel-subsystem damage, and
service-processor damage.

Machine-Check Handling 11-11

Programming Notes:

1. Even though repressible conditions are usually
reported only at normal points of interruption,
they may also be reported with exigent machine-
check conditions. Thus, if an exigent machine-
check condition causes an instruction to be
abnormally terminated and a machine-check
interruption occurs to report the exigent condi-
tion, any pending repressible conditions may also
be reported. The meaningfulness of the validity
bits depends on what exigent condition is
reported.

2. Classification of damage as either exigent or
repressible does not imply the severity of the
damage. The distinction is whether action must
be taken as soon as the damage is detected (exi-
gent) or whether the CPU can continue process-
ing (repressible). For a repressible condition, the
current instruction can be completed before tak-
ing the machine-check interruption if the CPU is
enabled for machine checks; if the CPU is dis-
abled for machine checks, the condition can
safely be kept pending until the CPU is again
enabled for machine checks.

For example, the CPU may be disabled for
machine-check interruptions because it is han-
dling an earlier instruction-processing-damage
interruption. If, during that time, an I/O operation
encounters a storage error, that condition can be
kept pending because it is not expected to inter-
fere with the current machine-check processing.
If, however, the CPU also makes a reference to
the area of storage containing the error before
re-enabling machine-check interruptions, another
instruction-processing-damage condition is cre-
ated, which is treated as an exigent condition
and causes the CPU to enter the check-stop
state.

3. A repressible condition may be a floating condi-
tion. A floating repressible condition is eligible to
cause an interruption on any CPU in the configu-
ration. At the point when a CPU performs an
interruption for a floating repressible condition,
the condition is no longer eligible to cause an
interruption on the remaining CPUs in the config-
uration.

Interruption Action

A machine-check interruption causes the following
actions to be taken, depending on the architectural
mode of the configuration.

Interruption Action in the z/Architecture
Architectural Mode
An architectural-mode identification with the value 01
hex is stored at real location 163. The PSW reflecting
the point of interruption is stored as the machine-
check old PSW in the quadword at real location 352.
The contents of other registers are stored in register-
save areas at real locations 4608-4863, 4892-4895,
4900-4911, 4913-4919, 4928-5119, and in a
machine-check extended save area designated by
the contents of real locations 4528-4535. After the
contents of the registers are stored in register-save
areas and extended save area, depending on the
model, the registers may be validated with the con-
tents being unpredictable. A machine-check-interrup-
tion code (MCIC) of eight bytes is stored at real
locations 232-239. An external-damage code may be
stored at real locations 244-247, and a failing-storage
address may be stored at real locations 248-255.
The new PSW is fetched from real locations 480-495.
In addition, a machine-check logout may have
occurred.

The machine-generated addresses used to access
the old and new PSW, the MCIC, extended interrup-
tion information, and the fixed-logout area are all real
addresses.

The fields in assigned storage locations that are
accessed during the machine-check interruption are
summarized in Figure 11-2.

Information Stored (Fetched)
Starting

Location*
Length

in Bytes
Architectural-mode identification 163 1

Old PSW 352 16
New PSW (fetched) 480 16

Machine-check-interruption code 232 8

Register-save areas
Floating-point registers 0-15 4608 128

General registers 0-15 4736 128

Floating-point control register 4892 4

TOD programmable register 4900 4
CPU timer 4904 8

Figure 11-2. Machine-Check-Interruption Locationsin the
z/Architecture Architectural Mode

11-12 The z/Architecture CPU Architecture

When certain facilities are installed, and the
machine-check-extended-save-area origin (begin-
ning at real location 4528) is nonzero, the contents of
the respective facilities’ registers may be stored in
the machine-check extended save area. See
“Machine-Check-Extended-Save-Area Designation
(MCESAD): During a machine check interruption,
additional information may be stored at the absolute
storage location designated by the doubleword at
locations 4528-4535. The leftmost bits of the double-
word, called the machine-check-extended-save-area
origin (MCESAO), appended on the right with binary
zeros, forms the address of the area.” on page 3-81
for a description of the contents of real locations
4528-4535.

The section “Machine-Check Extended Save Area
(MCESA)” on page 11-24 provides a description of
the contents of the area. Depending on the facilities
installed and the length of the extended save area,
the following additional registers may be stored:

• Vector registers
• Guarded-storage registers

Interruption Action in the ESA/390-
Compatibility Mode
An architectural-mode identification with an all zeros
value is stored at real location 163. The PSW reflect-
ing the point of interruption is stored as the short-for-
mat machine-check old PSW at real locations 48-55.
The contents of other registers are stored in register
save areas at real locations 216-231 and 288-511,
and in a machine-check extended save area desig-
nated by the contents of real locations 212-215. After
the contents of the registers are stored in register
save areas and the extended save area, depending

on the model, the registers may be validated with the
contents being unpredictable. A failing-storage
address may be stored at real locations 248-251, and
an external-damage code may be stored at real loca-
tions 244-247. A machine-check-interruption code
(MCIC) of eight bytes is stored at real locations 232-
239. The new short-format PSW is fetched from real
locations 112-119. In addition, a machine-check
logout may have occurred.

The machine-generated addresses used to access
the old and new PSW, the MCIC, extended interrup-
tion information, the locations containing the
extended-save-area address, and the fixed-logout
area are all real addresses. The extended-save-area
address is an absolute address.

The fields in assigned storage locations that are
accessed during the machine-check interruption are
summarized in Figure 11-3.

When the extended-save-area control, bit 34 of con-
trol register 14, is one, and bits 1-19 of the word at
real locations 212-215 are not all zeros, then other
fields are stored in the machine-check extended save
area. Figure 11-4 lists the fields that are stored, their

Clock comparator 4913 7
Access registers 0-15 4928 64

 Control registers 0-15 4992 128

Extended interruption information

External-damage code 244 4
Failing-storage address 248 8

Fixed-logout area 4864 16

Explanation:

* All locations are in real storage.

Information Stored (Fetched)
Starting

Location*
Length

in Bytes

Figure 11-2. Machine-Check-Interruption Locationsin the
z/Architecture Architectural Mode

Information Stored (Fetched)
Starting

Location*
Length in

Bytes
Old PSW 48 8
Architectural-mode identification 163 1

New PSW (fetched) 112 8

Extended-save-area address (fetched) 212 4
Machine-check-interruption code 232 8

Register-save areas

CPU timer 216 8
Clock comparator 224 8

Access registers 0-15 288 64

Floating-point registers 0, 2, 4, and 6 352 32
General registers 0-15 (bits 32-63) 384 64

Control registers 0-15 (bits 32-63) 448 64

Extended interruption information
External-damage code 244 4

Failing-storage address 248 8

Fixed-logout area 256 16

Explanation:

* All locations are in real storage.

Figure 11-3. Machine-Check-Interruption Locations in the
ESA/390-compatibility Mode

Machine-Check Handling 11-13

offsets within the area, and their lengths. Bytes 144-
4095 of the extended save area remain unchanged.

The address of the machine-check extended save
area is formed by appending 33 zeros to the left and
12 zeros to the right of bits 1-19 of the word at real
locations 212-215. This address is treated as a 64-bit
absolute address. If the 4096-byte block of storage at
the address is not available in the configuration, stor-
ing into the extended save area is not performed.

Interruption Action: Common Actions
If the machine-check-interruption code cannot be
stored successfully or the new PSW cannot be
fetched successfully, the CPU enters the check-stop
state.

A repressible machine-check condition can initiate a
machine-check interruption only if both PSW bit 13 is
one and the associated subclass mask bit, if any, in
control register 14 is also one. When it occurs, the
interruption does not terminate the execution of the
current instruction; the interruption is taken at a nor-
mal point of interruption, and no program or supervi-
sor-call interruptions are eliminated. If the machine
check occurs during the execution of a machine func-
tion, such as a CPU-timer update, the machine-
check interruption takes place after the machine
function has been completed.

When the CPU is disabled for a particular repressible
machine-check condition, the condition remains
pending. Depending on the model and the condition,
multiple repressible conditions may be held pending
for a particular subclass, or only one condition may
be held pending for a particular subclass, regardless
of the number of conditions that may have been
detected for that subclass.

When a repressible machine-check interruption
occurs because the interruption condition is in a sub-
class for which the CPU is enabled, pending condi-
tions in other subclasses may also be indicated by
the same interruption code, even though the CPU is

disabled for those subclasses. All indicated condi-
tions are then cleared.

If a machine check which is to be reported as a sys-
tem-recovery condition is detected during the execu-
tion of the interruption procedure due to a previous
machine-check condition, the system-recovery con-
dition may be combined with the other conditions,
discarded, or held pending.

An exigent machine-check condition can cause a
machine-check interruption only when PSW bit 13 is
one. When a nullifying exigent condition causes a
machine-check interruption, the interruption is taken
at a normal point of interruption. When a terminating
exigent condition causes a machine-check interrup-
tion, the interruption terminates the execution of the
current instruction and may eliminate the program
and supervisor-call interruptions, if any, that would
have occurred if execution had continued. Proper
execution of the interruption sequence, including the
storing of the old PSW and other information,
depends on the nature of the malfunction. When an
exigent machine-check condition occurs during the
execution of a machine function, such as a CPU-
timer update, the sequence is not necessarily com-
pleted.

If, during the execution of an interruption due to one
exigent machine-check condition, another exigent
machine check is detected, the CPU enters the
check-stop state. If an exigent machine check is
detected during an interruption due to a repressible
machine-check condition, system damage is
reported.

When PSW bit 13 is zero, an exigent machine-check
condition causes the CPU to enter the check-stop
state.

Machine-check-interruption conditions are handled in
the same manner regardless of whether the wait-
state bit in the PSW is one or zero: a machine-check
condition causes an interruption if the CPU is
enabled for that condition.

Machine checks which occur while the rate control is
set to the instruction-step position are handled in the
same manner as when the control is set to the pro-
cess position; that is, recovery mechanisms are
active, and machine-check interruptions occur when
allowed. Machine checks occurring during a manual
operation may be indicated to the operator, may gen-
erate a system-recovery condition, may result in sys-

Field Byte Offset
Length in

Bytes
Floating-point registers 0-15 0 128

Floating-point control register 128 4

Reserved (zeros stored) 132 12

Figure 11-4. Machine-Check Extended-Save-Area
Locations in the ESA/390-compatibility Mode

11-14 The z/Architecture CPU Architecture

tem damage, or may cause a check stop, depending
on the model.

Every reasonable attempt is made to limit the side
effects of any machine check and the associated
interruption. Normally, interruptions, as well as the
progress of I/O operations, remain unaffected. The
malfunction, however, may affect these activities,
and, if the currently active PSW has bit 13 set to one,
the machine-check interruption will indicate the total
extent of the damage caused, and not just the dam-
age which originated the condition.

Architecture Notes:

Point of Interruption

The point in the processing which is indicated by the
interruption and used as a reference point by the
machine to determine and indicate the validity of the
status stored is referred to as the point of interrup-
tion.

Because of the checkpoint capability in models with
CPU retry, the interruption resulting from an exigent
machine-check-interruption condition may indicate a
point in the CPU processing sequence which is logi-
cally prior to the error. Additionally, the model may
have some choice as to which point in the CPU pro-
cessing sequence the interruption is indicated, and,
in some cases, the status which can be indicated as
valid depends on the point chosen.

Only certain points in the processing may be used as
a point of interruption. For repressible machine-check
interruptions, the point of interruption must be after
one unit of operation is completed and any associ-
ated program or supervisor-call interruption is taken,
and before the next unit of operation is begun.

Exigent machine-check conditions for instruction
sequences are those in which damage has or would
have occurred to the instruction stream. Thus, the
damage can normally be associated with a point part
way through an instruction, and this point is called
the point of damage. In some cases, there may be
one or more instructions separating the point of dam-
age and the point of interruption, and the processing
associated with one or more instructions may be
damaged. When the point of interruption is a point
prior to the point of damage due to a nullifiable exi-
gent machine-check condition, the point of interrup-

tion can be only at the same points as for repressible
machine-check conditions.

In addition to the point of interruption permitted for
repressible machine-check conditions, the point of
interruption for a terminating exigent machine-check
condition may also be after the unit of operation is
completed but before any associated program or
supervisor-call interruption occurs. In this case, a
valid PSW instruction address is defined as that
which would have been stored in the old PSW for the
program or supervisor-call interruption. Since the
operation has been terminated, the values in the
result fields, other than the instruction address, are
unpredictable. Thus, the validity bits associated with
fields which are due to be changed by the instruction
stream are meaningless when a terminating exigent
machine-check condition is reported.

When the point of interruption and the point of dam-
age due to an exigent machine-check condition are
separated by a checkpoint-synchronization function,
the damage has not been isolated to a particular pro-
gram, and system damage is indicated.

When an exigent machine-check-interruption condi-
tion occurs, the point of interruption which is chosen
affects the amount of damage which must be indi-
cated. An attempt is made, when possible, to choose
a point of interruption which permits the minimum
indication of damage. In general, the preference is
the interruption point immediately preceding the
error.

When all the status information stored as a result of
an exigent machine-check-interruption condition
does not reflect the same point, an attempt is made,
when possible, to choose the point of interruption so
that the instruction address which is stored in the
machine-check old PSW is valid.

Machine-Check-Interruption Code

On all machine-check interruptions, a machine-
check-interruption code (MCIC) is stored in the dou-
bleword starting at real location 232. The code has
the format shown in Figure 11-5.

Bits in the MCIC which are not assigned or not imple-
mented by a particular model are stored as zeros.

Machine-Check Handling 11-15

Subclass

Bits 0-2 and 4-11 are the subclass bits which identify
the type of machine-check condition causing the
interruption. At least one of the subclass bits is

stored as a one. When multiple errors have occurred,
several subclass bits may be set to ones.

System Damage
Bit 0 (SD), when one, indicates that damage has
occurred which cannot be isolated to one or more of
the less severe machine-check subclasses. When
system damage is indicated, the ancillary-report bit,
bit 44, is meaningful, the remaining bits in the
machine-check-interruption code are not meaningful,
and information stored in the register-save areas and
machine-check extended-interruption fields is not
meaningful.

System damage is a terminating exigent condition
and has no subclass-mask bit.

Instruction-Processing Damage
Bit 1 (PD), when one, indicates that damage has
occurred to the instruction processing of the CPU.

The exact meaning of bit 1 depends on the setting of
the backed-up bit, bit 14. When the backed-up bit is
one, the condition is called processing backup. When
the backed-up bit is zero, the condition is called pro-
cessing damage. These two conditions are described
in “Synchronous Machine-Check-Interruption Condi-
tions” on page 11-18.

Instruction-processing damage can be a nullifying or
a terminating exigent condition and has no subclass-
mask bit.

System Recovery
Bit 2 (SR), when one, indicates that malfunctions
were detected but did not result in damage or have
been successfully corrected. Some malfunctions
detected as part of an I/O operation may result in a
system-recovery condition in addition to an I/O-error
condition. The presence and extent of the system-
recovery capability depend on the model.

System recovery is a repressible condition. It is
masked by the recovery subclass-mask bit, which is
in bit position 36 of control register 14.

S
D

P
D

S
R

0
C
D

E
D

0
D
G

W
C
P

S
P

C
K

0 0 B 0
S
E

S
C

K
E

D
S

W
P

M
S

P
M

I
A

F
A

V
R

E
C

F
P

G
R

C
R

R
I

S
T

I
E

A
R

D
A

0
G
S

0 0 0 0 0
P
R

F
C

A
P

0
C
T

C
C

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 4 5 7 8 9 10 11 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 42 43 44 46 47 48 63

Bit Name
 0 System damage (SD)
 1 Instruction-processing damage (PD)
 2 System recovery (SR)
 4 Timing-facility damage (CD)
 5 External damage (ED)
 7 Degradation (DG)
 8 Warning (W)
 9 Channel report pending (CP)

 10 Service-processor damage (SP)
 11 Channel-subsystem damage (CK)
 14 Backed up (B)
 16 Storage error uncorrected (SE)
 17 Storage error corrected (SC)
 18 Storage-key error uncorrected (KE)
 19 Storage degradation (DS)
 20 PSW-MWP validity (WP)
 21 PSW mask and key validity (MS)
 22 PSW program-mask and condition-code validity

(PM)
 23 PSW-instruction-address validity (IA)
 24 Failing-storage-address validity (FA)
25 Vector-register validity (VR)
 26 External-damage-code validity (EC)
 27 Floating-point-register validity (FP)
 28 General-register validity (GR)
 29 Control-register validity (CR)
 30 Reserved for IBM use
 31 Storage logical validity (ST)
 32 Indirect storage error (IE)
 33 Access-register validity (AR)
 34 Delayed-access exception (DA)
36 Guarded-storage-registers validity (GS)
42 TOD-programmable-register validity (PR)
 43 Floating-point-control-register validity (FC)
 44 Ancillary report (AP)
46 CPU-timer validity (CT)
 47 Clock-comparator validity (CC)

Note: All other bits of the MCIC are unassigned and
stored as zeros.

Figure 11-5. Machine-Check Interruption-Code Format

11-16 The z/Architecture CPU Architecture

Programming Notes:

1. System recovery may be used to report a failing-
storage address detected by a CPU prefetch or
by an I/O operation.

2. Unless the corresponding validity bits are ones,
the indication of system recovery does not imply
storage logical validity or that the fields stored as
a result of the machine-check interruption are
valid.

Timing-Facility Damage
Bit 4 (CD), when one, indicates that damage has
occurred to the TOD clock, CPU timer, clock compar-
ator, or TOD programmable register, or to the CPU-
timer or clock-comparator external-interruption condi-
tions. The timing-facility-damage machine-check
condition is set whenever any of the following occurs:

1. The TOD clock enters the error or not-opera-
tional state.

2. The CPU timer is damaged, and the CPU is
enabled for CPU-timer external interruptions. On
some models, this condition may be recognized
even when the CPU is not enabled for CPU-timer
interruptions. Depending on the model, the
machine-check condition may be generated only
as the CPU timer enters an error state. Or, the
machine-check condition may be continuously
generated whenever the CPU is enabled for
CPU-timer interruptions, until the CPU timer is
validated.

3. The clock comparator is damaged, and the CPU
is enabled for clock-comparator external interrup-
tions. On some models, this condition may be
recognized even when the CPU is not enabled
for clock-comparator interruptions.

Timing-facility damage may also be set along with
instruction-processing damage when an instruction
which accesses the TOD clock, CPU timer, or clock
comparator produces incorrect results. Depending on
the model, the TOD programmable register, CPU
timer, or clock comparator may be validated by the
interruption which reports the TOD programmable
register, CPU timer, or clock comparator as invalid.

Timing-facility damage is a repressible condition. It is
masked by the external-damage subclass-mask bit,
which is in bit position 38 of control register 14.

Timing-facility-damage conditions for the CPU timer
and the clock comparator are not recognized on most
models when these facilities are not in use. The facil-
ities are considered not in use when the CPU is dis-
abled for the corresponding external interruptions
(PSW bit 7, or the subclass-mask bits, bits 52 and 53
of control register 0, are zeros), and when the corre-
sponding set and store instructions are not executed.
Timing-facility-damage conditions that are already
pending remain pending, however, when the CPU is
disabled for the corresponding external interruption.

Timing-facility-damage conditions due to damage to
the TOD clock are always recognized.

With TOD-clock steering, damage to the TOD clock is
considered to be of such severity that it is undesir-
able to continue operation. When the TOD-clock-
steering facility is installed, and damage has
occurred to the TOD-clock-steering registers or the
TOD clock and the damage is limited to a single
CPU, then that CPU enters the check-stop state. If
the TOD clock is in the not-operational state or error
state, or when damage has occurred to the TOD-
clock-steering registers or the TOD clock, and the
damage affects all CPUs, then a system check stop
occurs.

External Damage
Bit 5 (ED), when one, indicates that damage has
occurred during operations not directly associated
with processing the current instruction.

When bit 5, external damage, is one and bit 26,
external-damage-code validity, is also one, the exter-
nal-damage code has been stored to indicate, in
more detail, the cause of the external-damage
machine-check interruption. When the external dam-
age cannot be isolated to one or more of the condi-
tions as defined in the external-damage code, or
when the detailed indication for the condition is not
implemented by the model, external damage is indi-
cated with bit 26 set to zero. The presence and
extent of reporting external damage depend on the
model.

External damage is a repressible condition. It is
masked by the external-damage subclass-mask bit,
which is in bit position 38 of control register 14.

Degradation
Bit 7 (DG), when one, indicates that continuous deg-
radation of system performance, more serious than

Machine-Check Handling 11-17

that indicated by system recovery, has occurred.
Degradation may be reported when system-recovery
conditions exceed a machine-preestablished thresh-
old or when unit deletion has occurred. The presence
and extent of the degradation-report capability
depend on the model.

Degradation is a repressible condition. It is masked
by the degradation subclass-mask bit, which is in bit
position 37 of control register 14.

Warning
Bit 8 (W), when one, indicates that damage is immi-
nent in some part of the system (for example, that
power is about to fail, or that a loss of cooling is
occurring). Whether warning conditions are recog-
nized depends on the model.

If the condition responsible for the imminent damage
is removed before the interruption request is honored
(for example, if power is restored), the request does
not remain pending, and no interruption occurs. Con-
versely, the request is not cleared by the interruption,
and, if the condition persists, more than one interrup-
tion may result from the same condition.

Warning is a repressible condition. It is masked by
the warning subclass-mask bit, which is in bit position
39 of control register 14.

Channel Report Pending
Bit 9 (CP), when one, indicates that a channel report,
consisting of one or more channel-report words, has
been made pending, and the contents of the chan-
nel-report words describe, in further detail, the effect
of the malfunction and the results of analysis or the
action performed. A channel report becomes pend-
ing when one of the following conditions has
occurred:

1. Channel-subsystem recovery has been com-
pleted. The channel-subsystem recovery may
have been initiated with no prior notice to the
program or may have been a result of a condition
previously reported to the program.

2. The function specified by RESET CHANNEL
PATH has been completed.

A channel report may also become pending under
other conditions.

The channel-report words which make up the chan-
nel report may be cleared, one at a time, by execu-

tion of the instruction STORE CHANNEL REPORT
WORD, which is described in “I/O Instructions” on
page 14-1.

Bit 9 is meaningless when channel-subsystem dam-
age is reported.

Channel report pending is a floating repressible con-
dition. It is masked by the channel-report-pending
subclass-mask bit, which is in bit position 35 of con-
trol register 14.

Service-Processor Damage
Bit 10 (SP), when one, indicates that damage has
occurred to the service processor. Service-processor
damage may be made pending at all CPUs in the
configuration, or it may be detected independently by
each CPU. The presence and extent of reporting ser-
vice-processor damage depend on the model.

Service-processor damage is a repressible condition
and has no subclass-mask bit.

Channel-Subsystem Damage
Bit 11 (CK), when one, indicates that an error or mal-
function has occurred in the channel subsystem, or
that the channel subsystem is in the check-stop
state. The channel subsystem enters the check-stop
state when a malfunction occurs which is so severe
that the channel subsystem cannot continue, or if
power is lost in the channel subsystem.

Channel-subsystem damage is a floating repressible
condition and has no subclass-mask bit.

Subclass Modifiers

Bits 14 (B), 34 (DA), and 44 (AP) of the machine-
check-interruption code act as modifiers to the sub-
class bits.

Backed Up
Bit 14 (B), when one, indicates that the point of inter-
ruption is at a checkpoint before the point of error.
This bit is meaningful only when the instruction-pro-
cessing-damage bit, bit 1, is also set to one. The
presence and extent of the capability to indicate a
backed-up condition depend on the model.

Delayed Access Exception
Bit 34 (DA), when one, indicates that an access
exception was detected during a storage access

11-18 The z/Architecture CPU Architecture

using DAT when no such exception was detected by
an earlier test for access exceptions.

Bit 34 is a modifier to instruction-processing damage
(bit 1) and is meaningful only when bit 1 of the
machine-check-interruption code is one. When bit 1
is zero, bit 34 has no meaning. The presence and
extent of reporting delayed access exception depend
on the model.

Programming Note: The occurrence of a delayed
access exception normally indicates that the program
is using an improper procedure to update the DAT
tables.

Ancillary Report
Bit 44 (AP), when one, indicates that a malfunction of
a system component has occurred which has been
recognized previously or which has affected the
activities of multiple system elements such as CPUs
and subchannels. When the malfunction affects the
activities of multiple elements, an ancillary-report
condition is recognized for all of the affected ele-
ments except one. This bit, when zero, indicates that
this malfunction of a system component has not been
recognized previously. This bit is meaningful for all
conditions indicated by either the machine-check-
interruption code or the external-damage code.

Depending on the model, recognition of an ancillary-
report condition may not be provided, or it may not be
provided for all system malfunctions. When ancillary-
report recognition is not provided, bit 44 is set to
zero.

Synchronous Machine-Check-
Interruption Conditions

The instruction-processing damage and backed-up
bits, bits 1 and 14 of the machine-check-interruption
code, identify, in combination, two conditions.

Processing Backup
The processing-backup condition indicates that the
point of interruption is prior to the point, or points, of
error. This is a nullifying exigent condition. When all
of the other CPU-related-damage subclasses and

modifiers of the machine-check-interruption code are
zero, and certain validity bits associated with CPU
status are indicated as valid, then the machine has
successfully returned to a checkpoint prior to the
malfunction, and no damage has yet occurred to the
CPU.

The subclass bits which must be zero for no damage
to have occurred are as follows:

The delayed-access-exception subclass-modifier bit,
MCIC bit 34, must be zero for no damage to have
occurred.

The validity bits in the machine-check-interruption
code which must be one for no damage to have
occurred are as follows:

Programming Note: The processing-backup condi-
tion is reported rather than system recovery to indi-
cate that a malfunction or failure stands in the way of
continued operation of the CPU. The malfunction has
not been circumvented, and damage would have
occurred if instruction processing had continued.

Bit 1 Bit 14 Name of Condition
1 0 Processing damage
1 1 Processing backup

MCIC
Bit Name

0 System damage

4 Timing-facility damage

MCIC
Bit Name

20 PSW MWP bits

21 PSW mask and key

22 PSW program mask and condition code

23 PSW instruction address

25 Vector registers

27 Floating-point registers

28 General registers

29 Control registers

31 Storage logical validity (result fields within current
checkpoint interval)

33 Access registers

42 TOD programmable register

43 Floating-point-control register

46 CPU timer

47 Clock comparator

Machine-Check Handling 11-19

Processing Damage
The processing-damage condition indicates that
damage has occurred to the instruction processing of
the CPU. The point of interruption is a point beyond
some or all of the points of damage. Processing dam-
age is a terminating exigent condition; therefore, the
contents of result fields may be unpredictable and
still indicated as valid.

Processing damage may include malfunctions in pro-
gram-event recording, monitor call, tracing, access-
register translation, and dynamic address translation.
Processing damage causes any supervisor-call-inter-
ruption condition and program-interruption condition
to be discarded. However, the contents of the old
PSW and interruption-code locations for these inter-
ruptions may be set to unpredictable values.

Storage Errors

Bits 16-18 of the machine-check-interruption code
are used to indicate an invalid CBC or a near-valid
CBC detected in main storage or an invalid CBC in a
storage key. Bit 19, storage degradation, may be indi-
cated concurrently with bit 17. The failing-storage-
address field, when indicated as valid, identifies a
location within the storage checking block containing
the error, or, for storage-key error uncorrected, within
the block associated with the storage key. Bit 32, indi-
rect storage error, may be set to one to indicate that
the location designated by the failing-storage
address is not the original source of the error.

The storage-error-uncorrected and storage-key-
error-uncorrected bits do not in themselves indicate
the occurrence of damage because the error
detected may not have affected a result. The portion
of the configuration affected by an invalid CBC is indi-
cated in the subclass field of the machine-check-
interruption code.

Storage errors detected for a channel program, when
indicated as I/O-error conditions, may also be
reported as system recovery. CBC errors that occur
in storage or in the storage key and that are detected
on prefetched or unused data for a CPU program
may or may not be reported, depending on the
model.

Storage Error Uncorrected
Bit 16 (SE), when one, indicates that a checking
block in main storage contained invalid CBC and that

the information could not be corrected. The contents
of the checking block in main storage have not been
changed. The location reported may have been
accessed or prefetched for this CPU or another CPU
or a channel program, or it may have been accessed
as the result of a model-dependent storage access.

Storage Error Corrected
Bit 17 (SC), when one, indicates that a checking
block in main storage contained near-valid CBC and
that the information has been corrected before being
used. Depending on the model, the contents of the
checking block in main storage may or may not have
been restored to valid CBC. The location reported
may have been accessed or prefetched for this CPU
or for another CPU or for a channel program, or it
may have been accessed as the result of a model-
dependent storage access. The presence and extent
of the storage-error-correction capability depend on
the model. This indication may or may not be accom-
panied by an indication of storage degradation, bit 19
(DS).

Storage-Key Error Uncorrected
Bit 18 (KE), when one, indicates that a storage key
contained invalid CBC and that the information could
not be corrected. The contents of the checking block
in the storage key have not been changed. The stor-
age key may have been accessed or prefetched for
this CPU or for another CPU or for a channel pro-
gram, or it may have been accessed as the result of a
model-dependent storage access.

Storage Degradation
Bit 19 (DS), when one, indicates that degradation of
the recovery characteristics has occurred for the
4 K-byte block reported by the failing-storage
address.

Storage degradation indicates that although the
associated storage error has been corrected, there
are solid failures associated with the storage block
(or with its associated key) that cause the correction
process to take a substantial amount of time, and
that if an additional error occurs in the block, the error
may not be correctable or may go undetected. Thus,
this bit indicates that use of the indicated block of
storage should be avoided, if possible.

The indication of storage degradation has meaning
only when failing-storage-address validity, MCIC bit
24, is also one. The presence and extent of reporting
storage degradation depend on the model.

11-20 The z/Architecture CPU Architecture

Because storage degradation is normally reported
with system recovery, the recovery subclass mask,
bit 36 of control register 14, should be set to one in
order for storage degradation to be indicated.

Indirect Storage Error
Bit 32 (IE), when one, indicates that the physical
main-storage location identified by the failing-storage
address is not the original source of the error.
Instead, the error originated in another level of the
storage hierarchy and has been propagated to the
current physical-storage portion of the storage hierar-
chy. Bit 32 is meaningful only when bit 16 or 18 (stor-
age error uncorrected or storage-key error
uncorrected) of the machine-check-interruption code
is one. When bits 16 and 18 are both zeros, bit 32
has no meaning.

For errors originating outside the storage hierarchy,
the attempt to store is rejected, and the appropriate
error indication is presented. When an error is
detected during implicit movement of information
inside the storage hierarchy, the action is not rejected
and reported in this manner because the movement
may be asynchronous and may be initiated as the
result of an attempt to access completely unrelated
information. Instead, errors in the contents of the
source during implicit moving of information from one
portion of the storage hierarchy to another may be
preserved in the target area by placing a special
invalid CBC in the checking block associated with the
target location. These propagated errors, when
detected later, are reported as indirect storage
errors. The original source of such an error may have
been in a cache associated with an I/O processor or
a CPU, or the error may have been the result of a
data-path failure in transmitting data from one portion
of the storage hierarchy to another. Additionally, a
propagated error may be generated during the move-
ment of data from one physical portion of storage to
another as the result of a storage-reconfiguration
action.

The presence and extent of reporting indirect storage
error depend on the model.

Programming Note: See the programming notes
under TEST BLOCK in Chapter 10, “Control Instruc-
tions” for the action which should be taken after stor-
age errors are reported.

Machine-Check Interruption-Code
Validity Bits

Bits 20-29, 31 33, 42, 43, 46, and 47 of the machine-
check-interruption code are validity bits. Each bit indi-
cates the validity of a particular field in storage. With
the exception of the storage-logical-validity bit (bit
31), each bit is associated with a field stored during
the machine-check interruption. When a validity bit is
one, it indicates that the saved value placed in the
corresponding storage field is valid with respect to
the indicated point of interruption and that no error
was detected when the data was stored.

When a validity bit is zero, one or more of the follow-
ing conditions may have occurred: the original infor-
mation was incorrect, the original information had
invalid CBC, additional malfunctions were detected
while storing the information, or none or only part of
the information was stored. Even though the informa-
tion is unpredictable, the machine attempts, when
possible, to place valid CBC in the storage field and
thus reduce the possibility of additional machine
checks being caused.

The validity bits for the floating-point registers, gen-
eral registers, control registers, access registers,
vector registers, TOD programmable register, float-
ing-point control register, CPU timer, and clock com-
parator indicate the validity of the saved value placed
in the corresponding save area. The information in
these registers after the machine-check interruption
is not necessarily correct even when the correct
value has been placed in the save area and the valid-
ity bit set to one. The use of the registers and the
operation of the facility associated with the control
registers, floating-point control register, TOD pro-
grammable register, CPU timer, and clock compara-
tor are unpredictable until these registers are
validated. (See “Invalid CBC in Registers” on
page 9.)

PSW-MWP Validity
Bit 20 (WP), when one, indicates that bits 12-15 of
the machine-check old PSW are correct.

PSW Mask and Key Validity
Bit 21 (MS), when one, indicates that the system
mask, PSW key, and miscellaneous bits of the
machine-check old PSW are correct. specifically, this
bit covers bits 0-11, 16, 17, 24-30, and 33-63 of the
PSW.

Machine-Check Handling 11-21

PSW Program-Mask and Condition-Code
Validity
Bit 22 (PM), when one, indicates that the program
mask and condition code of the machine-check old
PSW are correct.

PSW-Instruction-Address Validity
Bit 23 (IA), when one, indicates that the addressing-
mode and instruction-address bits, bits 31, 32, and
64-127, of the machine-check old PSW are correct.

Failing-Storage-Address Validity
Bit 24 (FA), when one, indicates that a correct failing-
storage address has been stored at real location
248-255 (in the z/Architecture architectural mode) or
real location 248-251 (in the ESA/390-compatibility
mode) after a storage-error-uncorrected, storage-
key-error-uncorrected, or storage-error-corrected
condition has occurred. The presence and extent of
the capability to identify the failing-storage location
depend on the model. When no such errors are
reported, that is, bits 16-18 of the machine-check-
interruption code are zeros, the failing-storage
address is meaningless, even though it may be indi-
cated as valid.

Vector Register Validity
Bit 25 (VR), when one, indicates that the contents of
locations 0-1023 of the machine-check extended
save area reflect the correct state of the vector regis-
ters 0-31 at the point of the interruption.

Bit 25 is zero when the vector facility for z/Architec-
ture is not installed or the machine-check extended
save area address formed from the contents of real
locations 4528-4535 is either invalid or all zeros.

External-Damage-Code Validity
Bit 26 (EC), when one, and provided that bit 5, exter-
nal damage, is also one, indicates that a valid exter-
nal-damage code has been stored in the word at real
location 244. When bit 5 is zero, bit 26 has no mean-
ing.

Floating-Point-Register Validity
In the z/Architecture architectural mode, bit 27 (FP),
when one, indicates that the contents of the floating-
point-register save area at real locations 4608-4735
reflect the correct state of the floating-point registers
at the point of interruption. In the ESA/390-compati-
bility mode, bit 27 (FP), when one, indicates that the
contents of the floating-point-register save area at

real locations 352-383 reflect the correct state of
floating-point registers 0, 2, 4, and 6 at the point of
interruption.

General-Register Validity
In the z/Architecture architectural mode, bit 28 (GR),
when one, indicates that the contents of the general-
register save area at real locations 4736-4863 reflect
the correct state of the general registers at the point
of interruption. In the ESA/390-compatibility mode,
bit 28 (GR), when one, indicates that the contents of
the general-register save area at real locations 384-
447 reflect the correct state of bits 32-63 of the gen-
eral registers at the point of interruption. `

Control-Register Validity
In the z/Architecture architectural mode, bit 29 (CR),
when one, indicates that the contents of the control-
register save area at real locations 4992-5119 reflect
the correct state of the control registers at the point of
interruption. In the ESA/390-compatibility mode, bit
29 (CR), when one, indicates that the contents of the
control-register save area at real locations 448-511
reflect the correct state of bits 32-63 of the control
registers at the point of interruption.

Storage Logical Validity
Bit 31 (ST), when one, indicates that the storage
locations, the contents of which are modified by the
instructions being executed, contain the correct infor-
mation relative to the point of interruption. That is, all
stores before the point of interruption are completed,
and all stores, if any, after the point of interruption are
suppressed. When a store before the point of inter-
ruption is suppressed because of an invalid CBC, the
storage-logical-validity bit may be indicated as one,
provided that the invalid CBC has been preserved as
invalid.

When instruction-processing damage is indicated but
processing backup is not indicated, the storage-logi-
cal-validity bit has no meaning.

Storage logical validity reflects only the instruction-
processing activity and does not reflect errors in the
state of storage as the result of either I/O operations
or the storing of the old PSW and other interruption
information.

Access-Register Validity
In the z/Architecture architectural mode, bit 33 (AR),
when one, indicates that the contents of the access-

11-22 The z/Architecture CPU Architecture

register save area at real locations 4928-4991 reflect
the correct state of the access registers at the point
of interruption. In the ESA/390-compatibility mode,
bit 33 (AR), when one, indicates that the contents of
the access-register save area at real locations 288-
351 reflect the correct state of the access registers at
the point of interruption.

Guarded-Storage-Registers Validity
Bit 36 (GS), when one, indicates that the contents of
locations 1024-1055 of the machine-check extended
save area reflect the correct state of the guarded-
storage registers at the point of the interruption. The
guarded-storage registers are stored in the same for-
mat as that of the guarded-storage control block as
shown in Figure 4-19 on page 4-67.

Bit 36 is zero when any of the following is true:

• The guarded-storage facility is not installed.

• The machine-check extended save area address
formed from the contents of real locations 4528-
4535 is either invalid or all zeros.

• The length characteristic (LC) in bits 60-63 of
real locations 4528-4535 specifies a reserved
value or a value less than 11.

TOD-Programmable-Register Validity
Bit 42 (PR), when one, indicates that the contents of
the TOD-programmable-register save area at real
locations 4900-4903 reflect the correct state of the
TOD programmable register at the point of interrup-
tion.

Floating-Point-Control-Register Validity
In the z/Architecture architectural mode, bit 43 (FC),
when one, indicates that the contents of the floating-
point-control-register save area at real locations
4892-4895 reflect the correct state of the floating-
point-control register at the point of interruption.

In the ESA/390-compatibility mode, bit 43 (XF), when
one, indicates that the contents of locations 0-143 of
the machine-check extended save area reflect the
correct state of floating-point registers 0-15 and the
floating-point-control register at the point of interrup-
tion. Bit 43 is zero when the extended-save-area con-
trol, bit 34 of control register 14, is zero, or the
machine-check extended-save-area address formed
from the contents of real locations 212-215 is either
invalid or all zeros.

CPU-Timer Validity
In the z/Architecture architectural mode, bit 46 (CT),
when one, indicates that the CPU timer is not in error
and that the contents of the CPU-timer save area at
real locations 4904-4911 reflect the correct state of
the CPU timer at the time the interruption occurred.
In the ESA/390-compatibility mode, bit 46 (CT), when
one, indicates that the CPU timer is not in error and
that the contents of the CPU-timer save area at real
location 216-223 reflect the correct state of the CPU
timer at the time the interruption occurred.

Clock-Comparator Validity
In the z/Architecture architectural mode, bit 47 (CC),
when one, indicates that the clock comparator is not
in error, that the contents of the clock-comparator
save area at real locations 4913-4919 reflect the cor-
rect state of the clock comparator at the time the
interruption occurred, and that zeros have been
stored at real location 4912. In the ESA/390-compati-
bility mode, bit 47 (CC), when one, indicates that the
clock comparator is not in error and that the contents
of the clock-comparator save area at real locations
224-231 reflect the correct state of the clock compar-
ator at the time the interruption occurred.

Programming Note: The validity bits must be used
in conjunction with the subclass bits and the backed-
up bit in order to determine the extent of the damage
caused by a machine-check condition. No damage
has occurred to the system when all of the following
are true:

• The four PSW-validity bits, the seven register-
validity bits, the two timing-facility-validity bits,
and the storage-logical-validity bit are all ones.

• Subclass bits 0, 4, 5, 10, and 11 are zeros.

• The instruction-processing-damage bit is zero or,
if one, the backed-up bit is also one.

• The delayed-access-exception bit is zero.

Machine-Check Extended
Interruption Information

As part of the machine-check interruption, in some
cases, extended interruption information is placed in
fixed areas assigned in storage. The contents of reg-
isters associated with the CPU are placed in register-
save areas. For external damage, additional informa-

Machine-Check Handling 11-23

tion is provided for some models by storing an exter-
nal-damage code. When storage error uncorrected,
storage error corrected, or storage-key error uncor-
rected is indicated, the failing-storage address is
saved.

Each of these fields has associated with it a validity
bit in the machine-check-interruption code. If, for any
reason, the machine cannot store the proper infor-
mation in the field, the associated validity bit is set to
zero.

Register-Save Areas

As part of the machine-check interruption, the current
contents of the CPU registers, except for the prefix
register and the TOD clock, are stored in register-
save areas assigned in storage. Each of these areas
has associated with it a validity bit in the machine-
check-interruption code. If, for any reason, the
machine cannot store the proper information in the
field, the associated validity bit is set to zero.

Figure 11-6 lists the eight sets of registers and the
real locations in storage where their contents are
saved during a machine-check interruption in the
z/Architecture architectural mode.

Figure 11-7 lists the six sets of registers and the real
locations in storage where their contents are saved
during a machine-check interruption in the ESA/390-
compatibility mode.

External-Damage Code

The word at real location 244 is the external-damage
code. This field, when implemented and indicated as
valid, describes the cause of external damage. The
field is valid only when the external-damage bit and
the external-damage-code-validity bit (bits 5 and 26
in the machine-check-interruption code) are both
ones. The presence and extent of reporting an exter-
nal-damage code depend on the model.

The external-damage code has the following format:

ETR Sync Check (SC): Bit 19, when one, indi-
cates that bits 32 through the rightmost incremented
bit of a running clock are not in synchronism with the
same bits of the ETR.

If the condition happens more than once before the
interruption occurs, the condition is generated only
once. The condition is generated for all CPUs in the
configuration, and the condition for a CPU is cleared
by the interruption taken by the CPU.

STP Sync Check (SS): Bit 24, when one, indi-
cates that an STP-sync-check has occurred. The
STP-sync-check condition is generated when the
configuration is in the STP-timing mode and the tim-
ing state changes from the synchronized state to the
unsynchronized or stopped state.

The machine-check condition is generated for all
CPUs in the configuration, and the condition for a
CPU is cleared by the interruption taken by the CPU.

Island Condition (IC): Bit 25, when one, indicates
that an island condition has been detected. The
island condition is generated when an attached
server attempts to communicate over an STP link
and both of the following conditions are detected:

• The servers have matching CTN IDs, and

Locations Registers
4608-4735 Floating-point registers 0-15
4736-4863 General registers 0-15
4892-4895 Floating-point-control register
4900-4903 TOD programmable register
4904-4911 CPU timer
4913-4919 Clock comparator
4928-4991 Access registers 0-15
4992-5119 Control registers 0-15

Figure 11-6. Register Save Areas in the z/Architecture
Architectural Mode.

Locations Registers
216-223 CPU timer
224-231 Clock comparator
288-351 Access registers 0-15
352-383 Floating-point registers 0, 2, 4, and 6

Figure 11-7. Register Save Areas in the ESA/390-
compatibility Mode.

384-447 General registers 0-15 (bits 32-63)
448-511 Control registers 0-15 (bits 32-63)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S
C

0 0 0 0
S
S

I
C

C
C

C
S

0 0 0 0

0 19 24 28 31

Locations Registers

Figure 11-7. Register Save Areas in the ESA/390-
compatibility Mode.

11-24 The z/Architecture CPU Architecture

• Both servers have valid stratum-1-configurations
and the configurations do not match.

The island condition indicates that two separate
CTNs may be operating with the same CTN ID.

The machine-check condition is generated for all
CPUs in the configuration, and the condition for a
CPU is cleared by the interruption taken by the CPU.

CTN Configuration Change (CC): Bit 26, when
one, indicates that a CTN-configuration-change has
occurred in the CTN. The conditions that cause the
CTN-configuration-change condition to be generated
include the following:

• A new node with a matching CTN ID has
attached to this node.

• An attached node that had a matching CTN ID is
no longer attached to this node

• The CTN ID for this node has changed.

• The stratum level of this node has changed, or a
change in the stratum-1 or alternate-stratum-1
for the network has changed.

• STP active or maximum version number has
changed.

The machine-check condition is generated for all
CPUs in the configuration, and the condition for a
CPU is cleared by the interruption taken by the CPU.

STP Clock Source Error (CS): Bit 27, when one,
indicates that an STP-clock-source error has
occurred. The STP-clock-source condition is gener-
ated when the configuration is in the STP-timing
mode and the STP-clock-source state changes from
the usable state to the not-usable state.

The machine-check condition is generated for all
CPUs in the configuration, and the condition for a
CPU is cleared by the interruption taken by the CPU.

Reserved: Bits 0-7, 10-16, 21-23, and 28-31 are
reserved for future expansion and are always set to
zero.

Failing-Storage Address

When storage error uncorrected, storage error cor-
rected, or storage-key error uncorrected is indicated

in the machine-check-interruption code, the associ-
ated address, called the failing-storage address, is
stored at real locations 248-255(in the z/Architecture
architectural mode) or 248-251 (in the ESA/390-com-
patibility mode). The field is valid only if the failing-
storage-address validity bit, bit 24 of the machine-
check-interruption code, is one.

In the case of storage errors, the failing-storage
address may designate any byte within the checking
block. For storage-key error uncorrected, the failing-
storage address may designate any address within
the block of storage associated with the storage key
that is in error. When an error is detected in more
than one location before the interruption, the failing-
storage address may designate any of the failing
locations. The address stored is an absolute
address; that is, the value stored is the address that
is used to reference storage after dynamic address
translation and prefixing have been applied.

Machine-Check Extended Save
Area (MCESA)

Machine-Check Extended Save Area in
the z/Architecture Architectural Mode
In the z/Architecture architectural mode, the
machine-check-extended-save-area designation
(MCESAD) at real locations 4528-4535 specifies the
location and size of the machine-check extended
save area (MCESA). See “Machine-Check-
Extended-Save-Area Designation (MCESAD):
During a machine check interruption, additional infor-
mation may be stored at the absolute storage loca-
tion designated by the doubleword at locations 4528-
4535. The leftmost bits of the doubleword, called the
machine-check-extended-save-area origin (MCE-
SAO), appended on the right with binary zeros, forms
the address of the area.” on page 3-81 for a descrip-
tion of the contents of the MCESAD field. When the
machine-check-extended-save-area origin (MCE-
SAO) is nonzero, the designated area is accessible,
and the length characteristic (LC) provides sufficient
length, the contents of various facilities’ registers are
stored in the save area. A facility’s registers are only
stored in the MCESA when the facility is installed.
The facilities accommodated by the MCESA include
the following:
• Vector facility for z/Architecture
• Guarded-storage facility

Machine-Check Handling 11-25

When the guarded-storage facility is not installed, the
length and alignment of the MCESA is 1024 bytes.
When the guarded-storage facility is installed, the
length characteristic (LC) in bits 60-63 of the
MCESAD specifies the length and alignment of the
MCESA as a power of two; an LC value of zero is
treated as 10. Figure 11-8 shows the contents of the
MCESA; reserved fields remain unmodified.

If the minimum length required to store a facility’s
registers is not specified in the length code, then
those registers are not stored in the MCESA.

The parameter register and additional-status-area
used by the SIGNAL PROCESSOR store-additional-
status-at-address order have formats identical to
those of the MCESAD and MCESA, respectively. See
“Store Additional Status at Address” on page 4-93 for
further details.

Machine-Check Extended Save Area in
the ESA/390 Compatibility Mode
In the ESA/390-compatibility mode, when the
extended-save-area control, bit 34 of control register
14, is one, and bits 1-19 of real locations 212-215 are
not all zeros, then, as part of a machine-check inter-
ruption, the current contents of floating-point regis-
ters 0-15 and the floating-point-control register are
stored in a machine-check extended save area. The
absolute address of the extended save area is
obtained by appending 33 bits of zeros to the left and
12 bits of zeros to the right of bits 1-19 of real loca-
tions 212-215. Storing does not occur if the address
is invalid.

The extended save area has associated with it a
validity bit, bit 43, in the machine-check-interruption
code. If, for any reason, the machine cannot store the

proper information in the area, the associated validity
bit is set to zero.

Figure 11-9 lists the fields that are stored, their off-
sets within the area, and their lengths. Bytes 144-
4095 of the extended save area remain unchanged.

Handling of Machine-Check
Conditions

Floating Interruption Conditions

An interruption condition which is made available to
any CPU in a multiprocessing configuration is called
a floating interruption condition. The first CPU that
accepts the interruption clears the interruption condi-
tion, and it is no longer available to any other CPU in
the configuration.

Floating interruption conditions include service-signal
external-interruption and I/O-interruption conditions.
Two machine-check-interruption conditions, channel
report pending and channel-subsystem damage, are
floating interruption conditions. Additionally, floating
interruption conditions include STP external-damage
machine-check conditions (STP Sync Check, STP
Island Condition, STP CTN Configuration Error, and
STP Clock Source Error) when STP machine-check
floating interruptions are enabled.

Depending on the model, some machine-check-inter-
ruption conditions associated with system recovery
and warning may also be floating interruption condi-
tions.

A floating interruption is presented to the first CPU in
the configuration which is enabled for the interruption
condition and can accept the interruption. A CPU
cannot accept the interruption when the CPU is in the
check-stop state, has an invalid prefix, is performing
an unending string of interruptions due to a PSW-for-
mat error of the type that is recognized early, or is in

Offset
Content

Minimum
LCHex Dec

000-1FF 0-511 Vector Registers 0-31
10

200-3FF 512-1023 Reserved
400-407 1024-1031 Zeros

11
408-40F 1032-1039 GSD Register
410-417 1040-1047 GSSM Register
418-41F 1048-1055 GSEPLA Register
420-7FF 1056-2047 Reserved
800-FFF 2048-4095 Reserved 12

Figure 11-8. Contents of the Machine-Check Extended
Save Area, Associated MCIC-Validity Bit, and
Minimum Length Characteristic Required

Field Byte Offset
Length in

Bytes
Floating-point registers 0-15 0 128
Floating-point control register 128 4

Reserved (zeros stored) 132 12

Figure 11-9. Machine-Check Extended-Save-Area
Locations in the ESA/390-compatibility Mode

11-26 The z/Architecture CPU Architecture

the stopped state. However, a CPU with the rate con-
trol set to instruction step can accept the interruption
when the start key is activated.

Programming Note: When a CPU enters the check-
stop state in a multiprocessing configuration, the pro-
gram on another CPU can determine whether a float-
ing interruption may have been reported to the failing
CPU and then lost. This can be accomplished if the
interruption program places zeros in the real storage
locations containing old PSWs and interruption
codes after the interruption has been handled (or has
been moved into another area for later processing).
After a CPU enters the check-stop state, the program
on another CPU can inspect the old-PSW and inter-
ruption-code locations of the failing CPU. A nonzero
value in an old PSW or interruption code indicates
that the CPU has been interrupted but the program
did not complete the handling of the interruption.

Floating Machine-Check-Interruption
Conditions
Floating machine-check-interruption conditions are
reset only by the manually initiated resets through
the operator facilities. When a machine check occurs
which prohibits completion of a floating machine-
check interruption, the interruption condition is no
longer considered a floating interruption condition,
and system damage is indicated.

Floating I/O Interruptions
The detection of a machine malfunction by the chan-
nel subsystem, while in the process of presenting an
I/O-interruption request for a floating I/O interruption,
may be reported as channel report pending or as
channel-subsystem damage. Detection of a machine
malfunction by a CPU, while in the process of accept-
ing a floating I/O interruption, is reported as system
damage.

Machine-Check Masking

All machine-check interruptions are under control of
the machine-check mask, PSW bit 13. In addition,
some machine-check conditions are controlled by
subclass masks in control register 14.

The exigent machine-check conditions (system dam-
age and instruction-processing damage) are con-
trolled only by the machine-check mask, PSW bit 13.
When PSW bit 13 is one, an exigent condition

causes a machine-check interruption. When PSW bit
13 is zero, the occurrence of an exigent machine-
check condition causes the CPU to enter the check-
stop state.

The repressible machine-check conditions, except
channel-subsystem damage and service-processor
damage, are controlled both by the machine-check
mask, PSW bit 13, and by five subclass-mask bits in
control register 14. If PSW bit 13 is one and one of
the subclass-mask bits is one, the associated condi-
tion initiates a machine-check interruption. If a sub-
class-mask bit is zero, the associated condition does
not initiate an interruption but is held pending. How-
ever, when a machine-check interruption is initiated
because of a condition for which the CPU is enabled,
those conditions for which the CPU is not enabled
may be presented along with the condition which ini-
tiates the interruption. All conditions presented are
then cleared.

Control register 14 contains mask bits that specify
whether certain conditions can cause machine-check
interruptions. It has the following format:

Bits 35-39 of control register 14 are the subclass
masks for repressible machine-check conditions. In
addition, bit 32 of control register 14 is initialized to
one but is otherwise ignored by the machine.

Programming Note: The program should avoid,
whenever possible, operating with PSW bit 13, the
machine-check mask, set to zero, since any exigent
machine-check condition which is recognized during
this situation will cause the CPU to enter the check-
stop state. In particular, the program should avoid
executing I/O instructions or allowing I/O interrup-
tions with PSW bit 13 zero.

Channel-Report-Pending Subclass Mask
Bit 35 (CM) of control register 14 controls channel-
report-pending interruption conditions. This bit is ini-
tialized to zero.

Recovery Subclass Mask
Bit 36 (RM) of control register 14 controls system-
recovery interruption conditions. This bit is initialized
to zero.

…
C
R

R
M

D
M

E
M

W
M

…

32 35 36 37 38 39 40

Machine-Check Handling 11-27

Degradation Subclass Mask
Bit 37 (DM) of control register 14 controls degrada-
tion interruption conditions. This bit is initialized to
zero.

External-Damage Subclass Mask
Bit 38 (EM) of control register 14 controls timing-facil-
ity-damage and external-damage interruption condi-
tions. This bit is initialized to one.

Warning Subclass Mask
Bit 39 (WM) of control register 14 controls warning
interruption conditions. This bit is initialized to zero.

Machine-Check Logout

As part of the machine-check interruption, some
models may place model-dependent information in
the fixed-logout area. In the z/Architecture architec-
tural mode, this area is 16 bytes in length and starts
at real location 4864. In the ESA/390-compatibility
mode, this area is 16 bytes in length and starts at
real location 256.

Summary of Machine-Check
Masking

A summary of machine-check masking is given in
Figure 11-10 and Figure 11-11.

Machine-Check Condition
 Sub-Class

Mask

Action when CPU
Disabled for

Subclass
MCIC
Bit Subclass
 0 System damage - Check stop
 1 Instruction-processing damage - Check stop
 2 System recovery RM Y
 4 Timing-facility damage EM P
 5 External damage EM P
 7 Degradation DM P
 8 Warning WM P
 9 Channel report pending CM P
 10 Service-processor damage - P
 11 Channel-subsystem damage - P

Explanation:

- The condition does not have a subclass mask.
P Indication is held pending.
Y Indication may be held pending or may be discarded.
CM Channel-report-pending subclass mask (bit 35 of CR14).
DM Degradation subclass mask (bit 37 of CR14).
EM External-damage subclass mask (bit 38 of CR14).
RM Recovery subclass mask (bit 36 of CR14).
WM Warning subclass mask (bit 39 of CR14).

Figure 11-10. Machine-Check-Condition Masking

 Bit Description

Control
Register 14
Bit Position

State of Bit
on Initial

CPU Reset
Channel-report-pending subclass mask 35 0
Recovery subclass mask 36 0
Degradation subclass mask 37 0

Figure 11-11. Machine-Check Control-Register Bits

11-28 The z/Architecture CPU Architecture

External-damage subclass mask 38 1
Warning subclass mask 39 0

Figure 11-11. Machine-Check Control-Register Bits

Operator Facilities 12-1© Copyright IBM Corp. 2000, 2019

Chapter 12. Operator Facilities

Manual Operation . 12-1
Basic Operator Facilities 12-1

Address-Compare Controls 12-1
Alter-and-Display Controls. 12-2
Architectural-Mode Indicator 12-2
Architectural-Mode-Selection Controls 12-3
Check-Stop Indicator 12-3
CPUs-per-Core Indicator 12-3
IML Controls . 12-3
Interrupt Key . 12-3
Load Indicator . 12-3
Load-Clear Key . 12-4
Load-Clear-List-Directed Key 12-4
Load-Normal Key. 12-4
Load-with-Dump Key 12-4

Load-Unit-Address Controls 12-4
Manual Indicator . 12-4
Power Controls . 12-4
Rate Control . 12-5
Restart Key . 12-5
Start Key . 12-5
Stop Key . 12-5
Store-Status Key. 12-5
System-Reset-Clear Key 12-6
System-Reset-Normal Key 12-6
Test Indicator . 12-6
TOD-Clock Control . 12-6
Wait Indicator . 12-6

Multiprocessing Configurations. 12-7
Multithreading Considerations 12-7

Manual Operation

The operator facilities provide functions for the man-
ual operation and control of the machine. The func-
tions include operator-to-machine communication,
indication of machine status, control over the setting
of the TOD clock, initial program loading, resets, and
other manual controls for operator intervention in nor-
mal machine operation. A model may not implement
all of the operator facilities described in this chapter.

A model may provide additional operator facilities
which are not described in this chapter. Examples
are the means to indicate specific error conditions in
the equipment, to change equipment configurations,
and to facilitate maintenance. Furthermore, controls
covered in this chapter may have additional settings
which are not described here. Such additional facili-
ties and settings may be described in the appropriate
System Library publication.

Most models provide, in association with the operator
facilities, a console device which may be used as an
I/O device for operator communication with the pro-
gram; this console device may also be used to imple-
ment some or all of the facilities described in this
chapter.

The operator facilities may be implemented on differ-
ent models in various technologies and configura-
tions. On some models, more than one set of

physical representations of some keys, controls, and
indicators may be provided, such as on multiple local
or remote operating stations, which may be effective
concurrently.

A machine malfunction that prevents a manual oper-
ation from being performed correctly, as defined for
that operation, may cause the CPU to enter the
check-stop state or give some other indication to the
operator that the operation has failed. Alternatively, a
machine malfunction may cause a machine-check-
interruption condition to be recognized

Basic Operator Facilities

Address-Compare Controls

The address-compare controls provide a way to stop
the CPU when a preset address matches the
address used in a specified type of main-storage ref-
erence.

One of the address-compare controls is used to set
up the address to be compared with the storage
address.

Another control provides at least two positions to
specify the action, if any, to be taken when the
address match occurs:

12-2 The z/Architecture CPU Architecture

1. The normal position disables the address-com-
pare operation.

2. The stop position causes the CPU to enter the
stopped state on an address match. When the
control is in this setting, the test indicator is on.
Depending on the model and the type of refer-
ence, pending I/O, external, and machine-check
interruptions may or may not be taken before
entering the stopped state.

A third control may specify the type of storage refer-
ence for which the address comparison is to be
made. A model may provide one or more of the fol-
lowing positions, as well as others:

1. The any position causes the address comparison
to be performed on all storage references.

2. The data-store position causes address compari-
son to be performed when storage is addressed
to store data.

3. The I/O position causes address comparison to
be performed when storage is addressed by the
channel subsystem to transfer data or to fetch a
channel-command or indirect-data-address
word. Whether references to the measurement
block, interruption-response block, channel-path-
status word, channel-report word, subchannel-
status word, subchannel-information block, and
operation-request block cause a match to be
indicated depends on the model.

4. The instruction-address position causes address
comparison to be performed when storage is
addressed to fetch an instruction. The rightmost
bit of the address setting may or may not be
ignored. The match is indicated only when the
first byte of the instruction is fetched from the
selected location (which includes fetching the tar-
get instruction of an execute-type instruction).

Depending on the model and the type of reference,
address comparison may be performed on virtual,
real, or absolute addresses, and it may be possible to
specify the type of address.

In a multiprocessing configuration, it depends on the
model whether the address setting applies to one or
all CPUs in the configuration and whether an address
match causes one or all CPUs in the configuration to
stop.

Depending on the model, the availability of address-
compare controls may be limited by the use of pro-
gram-event-recording (PER) controls; PER controls
include bit 1 of the PSW and all bits of control regis-
ters 9, 10, and 11. The address-compare-control lim-
itations are as follows:

• The setting of address-compare controls may be
inhibited when any PER control is nonzero. In a
multi-processing configuration, the setting of
address-compare controls may be inhibited on all
CPUs in the configuration when any PER control
is nonzero on any CPU in the configuration.

• If address-compare controls have been set on a
CPU, and any PER control is set to a nonzero
value, the address-compare controls may be dis-
abled; the address-compare controls may remain
disabled even if the respective PER controls are
all subsequently reset to zero. In a multi-process-
ing configuration, the address-compare controls
may be disabled on all CPUs in the configuration
if any PER control is set to a nonzero value in
any CPU in the configuration.

Alter-and-Display Controls

The operator facilities provide controls and proce-
dures to permit the operator to alter and display the
contents of locations in storage, the storage keys, the
general, floating-point, floating-point-control, vector,
access, and control registers, the prefix, and the
PSW.

Before alter-and-display operations may be per-
formed, the CPU must first be placed in the stopped
state. During alter-and-display operations, the man-
ual indicator may be turned off temporarily, and the
start and restart keys may be inoperative.

Addresses used to select storage locations for alter-
and-display operations are real addresses. The
capability of specifying logical, virtual, or absolute
addresses may also be provided.

Architectural-Mode Indicator

Depending on the model, the configuration may be
activated in the ESA/390 architectural mode, the
ESA/390 compatibility mode, or the z/Architecture
architectural mode.

Operator Facilities 12-3

The architectural-mode indicator shows the architec-
tural mode of operation (the ESA/390 mode,
ESA/390 compatibility mode, z/Architecture mode, or
some other mode) selected by the last architectural-
mode-selection operation and by the last SIGNAL
PROCESSOR set-architecture order or the last reset
that determined the mode.

When the configuration-z/Architecture-architectural-
mode (CZAM) facility is installed, the z/Architecture
architectural mode is indicated.

Architectural-Mode-Selection
Controls

The architectural-mode-selection controls provide for
the selection of the ESA/390 architectural mode of
operation, the ESA/390 compatibility mode of opera-
tion, the z/Architecture architectural mode of opera-
tion, or, possibly, some other architectural mode of
operation. (When a configuration is activated in either
the ESA/390 or ESA/390-compatibility mode, the
z/Architecture mode is selected from the ESA/390
mode by the SIGNAL PROCESSOR set-architecture
order.) Depending on the model, the architectural-
mode selection may be provided as part of the IML
operation or may be a separate operation.

As part of the architectural-mode-selection process,
all CPUs and the associated channel-subsystem
components in a particular configuration are placed
in the same architectural mode.

Check-Stop Indicator

The check-stop indicator is on when the CPU is in
the check-stop state. Reset operations normally
cause the CPU to leave the check-stop state and
thus turn off the indicator. The manual indicator may
also be on in the check-stop state.

CPUs-per-Core Indicator

When the multithreading facility is installed, the
CPUs-per-core indicator is provided. When the multi-
threading facility is not enabled, the value of this indi-
cator is one. When the multithreading facility is
enabled, the value of this indicator is one more than
value of the program-specified maximum thread
identification last set by the SIGNAL PROCESSOR
set-multithreading order.

Operation Note: Certain operator functions are
addressed to a specific CPU, designated by a CPU
address. When multithreading is enabled, the CPU
address includes a core identification and a thread
identification as described in “CPU-Address Identifi-
cation” on page 4-84. The CPUs-per-core indicator
can be used to determine which format of CPU
address is needed when selecting a CPU to which
operator functions are addressed.

IML Controls

The IML controls provided with some models perform
initial machine loading (IML), which is the loading of
licensed internal code into the machine.

When the IML operation is completed, the state of
the affected CPUs, channel subsystem, main stor-
age, and operator facilities is the same as if a power-
on reset had been performed, except that the value
and state of the TOD clock are not changed. The
contents of expanded storage may have been
cleared to zeros with valid checking-block code or
may have remained unchanged, depending on the
model.

The IML controls are effective while the power is on.

Interrupt Key

When the interrupt key is activated, an external-inter-
ruption condition indicating the interrupt key is gener-
ated. (See “Interrupt Key” on page 6-13.)

The interrupt key is effective when the CPU is in the
operating or stopped state. It depends on the model
whether the interrupt key is effective when the CPU is
in the load state.

Load Indicator

The load indicator is on during CCW-type initial pro-
gram loading, indicating that the CPU is in the load
state. The indicator goes on for a particular CPU
when the load-clear, load-clear-list-directed, load-
normal or load-with-dump key is activated for that
CPU and the corresponding operation is started. It
goes off after the new PSW is loaded successfully.
For details, see “Initial Program Loading” on
page 4-81 and “Initial Program Loading” on
page 17-16.

12-4 The z/Architecture CPU Architecture

Load-Clear Key

Activating the load-clear key causes a reset opera-
tion to be performed and CCW-type initial program
loading to be started by using the I/O device desig-
nated by the load-unit-address controls. Clear reset
is performed on the configuration. For details, see
“Resets” on page 4-74 and “Initial Program Loading”
on page 4-81.

The load-clear key is effective when the CPU is in the
operating, stopped, load, or check-stop state.

Load-Clear-List-Directed Key

Activating the load-clear-list-directed key causes a
reset operation to be performed and list-directed ini-
tial program loading to be started using the I/O
device designated by the list-directed IPL parame-
ters. Clear reset is performed on the configuration.
For details, see “Resets” on page 4-74 and “List-
Directed IPL” on page 17-19.

The load-clear-list-directed key is effective when the
CPU is in the operating, stopped, load, or check-stop
state.

Load-Normal Key

Activating the load-normal key causes a reset opera-
tion to be performed and CCW-type initial program
loading to be started by using the I/O device desig-
nated by the load-unit-address controls. Initial CPU
reset is performed on the CPU for which the load-
normal key was activated, CPU reset is propagated
to all other CPUs in the configuration, and a subsys-
tem reset is performed on the remainder of the con-
figuration. For details, see “Resets” on page 4-74
and “Initial Program Loading” on page 4-81.

The load-normal key is effective when the CPU is in
the operating, stopped, load, or check-stop state.

Load-with-Dump Key

Activating the load-with-dump key causes a reset
operation to be performed and list-directed initial pro-
gram loading to be started by using the I/O devices
designated by the list-directed IPL parameters. A
store-status operation followed by an initial CPU
reset is performed on the CPU for which the load-

with-dump key was activated, CPU reset is propa-
gated to all other CPUs in the configuration, and a
subsystem reset is performed on the remainder of
the configuration. For details, see “Resets” on
page 4-74 and “List-Directed IPL” on page 17-19.

The load-with-dump key is effective when the CPU is
in the operating, stopped, load, or check-stop state.

Load-Unit-Address Controls

The load-unit-address controls specify four hexadeci-
mal digits that provide the device number used for
CCW-type initial program loading. When the alter-
nate-subchannel-set-IPL-device facility is installed
the load-unit-address controls may specify an addi-
tional hexadecimal digit that provides the subchan-
nel-set ID for CCW-type initial program loading. For
details, see “Initial Program Loading” on page 4-81.

Manual Indicator

The manual indicator is on when the CPU is in the
stopped state. Some functions and several manual
controls are effective only when the CPU is in the
stopped state.

Power Controls

The power controls are used to turn the power on
and off.

The CPUs, storage, channel subsystem, operator
facilities, and I/O devices may all have their power
turned on and off by common controls, or they may
have separate power controls. When a particular unit
has its power turned on, that unit is reset. The
sequence is performed so that no instructions or I/O
operations are performed until explicitly specified.
The controls may also permit power to be turned on
in stages, but the machine does not become opera-
tional until power on is complete.

When the power is completely turned on, an IML
operation is performed on models which have an IML
function. A power-on reset is then initiated (see
“Resets” on page 4-74). It depends on the model
whether the architectural mode of operation can be
selected when the power is turned on, or whether the
mode-selection controls have to be used to change
the mode after the power is on.

Operator Facilities 12-5

Rate Control

A model may provide the rate control, the setting of
which determines the effect of the start function and
the manner in which instructions are executed.

When the rate control is provided, it has at least two
positions. The normal position is the process posi-
tion. Another position is the instruction-step position.
When the rate control is set to the process position
and the start function is performed, the CPU starts
operating at normal speed. When the rate control is
set to the instruction-step position and the wait-state
bit is zero, one instruction or, for interruptible instruc-
tions, one unit of operation is executed, and all pend-
ing allowed interruptions are taken before the CPU
returns to the stopped state. When the rate control is
set to the instruction-step position and the wait-state
bit is one, no instruction is executed, but all pending
allowed interruptions are taken before the CPU
returns to the stopped state. For details, see “CPU
States” on page 4-2.

The test indicator is on while the rate control is not
set to the process position.

If the setting of the rate control is changed while the
CPU is in the operating or load state, the results are
unpredictable.

When the rate control is not provided, the CPU oper-
ates as though the rate control was in the process
position, and instruction stepping is not available.

Restart Key

Activating the restart key initiates a restart interrup-
tion. (See “Restart Interruption” on page 6-56.)

The restart key is effective when the CPU is in the
operating or stopped state. The key is not effective
when the CPU is in the check-stop state. It depends
on the model whether the restart key is effective
when any CPU in the configuration is in the load
state.

The effect is unpredictable when the restart key is
activated while any CPU in the configuration is in the
load state. In particular, if the CPU performs a restart
interruption and enters the operating state while
another CPU is in the load state, operations such as
I/O instructions, the SIGNAL PROCESSOR instruc-

tion, and the INVALIDATE PAGE TABLE ENTRY
instruction may not operate according to the defini-
tions given in this publication

Start Key

Activating the start key causes the CPU to perform
the start function. (See “CPU States” on page 4-2.)

The start key is effective only when the CPU is in the
stopped state. The effect is unpredictable when the
stopped state has been entered by a reset.

Stop Key

Activating the stop key causes the CPU to perform
the stop function. (See “CPU States” on page 4-2.)

The stop key is effective only when the CPU is in the
operating state.

Operation Note: Activating the stop key has no
effect when:

• An unending string of certain program or external
interruptions occurs.

• The prefix register contains an invalid address.
• The CPU is in the load or check-stop state.

Store-Status Key

Activating the store-status key initiates a store-status
operation. (See “Store Status” on page 4-82.)

The store-status key is effective only when the CPU
is in the stopped state.

Operation Note: The store-status operation may be
used in conjunction with a standalone dump program
for the analysis of major program malfunctions. For
such an operation, the following sequence would be
called for:

1. Activation of the stop or system-reset-normal key

2. Activation of the store-status key (this step is
unnecessary if the standalone dump program is
loaded by activating the load-with-dump key)

3. Activation of the load-normal key to enter a
stand-alone dump program

12-6 The z/Architecture CPU Architecture

The system-reset-normal key must be activated in
step 1 when (1) the stop key is not effective because
a continuous string of interruptions is occurring,
(2) the prefix register contains an invalid address, or
(3) the CPU is in the check-stop state.

System-Reset-Clear Key

Activating the system-reset-clear key causes a clear-
reset operation to be performed on the configuration.
For details, see “Resets” on page 4-74.

The system-reset-clear key is effective when the
CPU is in the operating, stopped, load, or check-stop
state.

System-Reset-Normal Key

Activating the system-reset-normal key causes a
CPU-reset operation and a subsystem-reset opera-
tion to be performed. In a multiprocessing configura-
tion, a CPU reset is propagated to all CPUs in the
configuration. For details, see “Resets” on page 4-74.

The system-reset-normal key is effective when the
CPU is in the operating, stopped, load, or check-stop
state.

Test Indicator

The test indicator is on when a manual control for
operation or maintenance is in an abnormal position
that can affect the normal operation of a program.

Setting the address-compare controls to the stop
position or setting the rate control to the instruction-
step position turns on the test indicator.

The test indicator may be on when one or more diag-
nostic functions under the control of DIAGNOSE are
activated, or when other abnormal conditions occur.

The abnormal setting of a manual control causes the
test indicator of the affected CPU to be turned on;
however, in a multiprocessing configuration, the
operation of other CPUs may be affected even
though their test indicators are not turned on.

Depending on the model, if address-compare con-
trols have been disabled due to bit position 1 of the
PSW being set to one or any or all of control registers

9, 10, and 11 containing nonzero values, the test
indicator may remain on even though the address-
compare controls have been disabled.

Operation Note: If a manual control is left in a set-
ting intended for maintenance purposes, such an
abnormal setting may, among other things, result in
false machine-check indications or cause actual
machine malfunctions to be ignored. It may also alter
other aspects of machine operation, including
instruction execution, channel-subsystem operation,
and the functioning of operator controls and indica-
tors, to the extent that operation of the machine does
not comply with that described in this publication.

TOD-Clock Control

When the TOD-clock control is not activated, that is,
the control is set to the secure position, the state and
value of the TOD clock are protected against unau-
thorized or inadvertent change by not permitting the
instructions SET CLOCK or DIAGNOSE to change
the state or value.

When the TOD-clock control is activated, that is, the
control is set to the enable-set position, alteration of
the clock state or value by means of SET CLOCK or
DIAGNOSE is permitted. This setting is momentary,
and the control automatically returns to the secure
position.

If there is more than one physical representation of
the TOD-clock control, the TOD clock is secure only if
all TOD-clock controls in the configuration are set to
the secure position.

Wait Indicator

The wait indicator is on when the wait-state bit in the
current PSW is one. Instead of a wait indicator, a
model may have a means of indicating a time-aver-
aged value of the wait-state bit.

Multiprocessing Configurations

In a multiprocessing configuration, one of each of the
following keys and controls is provided for each CPU:

• Alter and display
• Interrupt

Operator Facilities 12-7

• Restart
• Start
• Stop
• Store status.

On some models, a rate control may also be pro-
vided.

On some models, the load-clear, load-clear-list-
directed, load-normal, load-with-dump, and load-unit-
address keys are provided for each primary CPU in
the configuration. On other models, a single load-
clear, load-clear-list-directed, load-normal, and load-
with-dump key are provided for the entire configura-
tion and apply to the lowest-numbered primary online
CPU that is not in the check-stop state.

There need not be more than one of each of the fol-
lowing keys and controls in a multiprocessing config-
uration: address compare, IML, power, system reset
clear, system reset normal, and TOD clock.

One check-stop, manual, test, and wait indicator may
be provided for each CPU. A load indicator is pro-
vided only on a primary CPU. Alternatively, a single
set of indicators may be switched to more than one
CPU.

There need not be more than one architectural-mode
and CPUs-per-core indicator in a multiprocessing
configuration.

In a system capable of reconfiguration, there must be
a separate set of keys, controls, and indicators in
each configuration.

Multithreading Considerations

A CPU address is used to identify the CPU to which
CPU-specific operator functions are directed. These
CPU-specific operator functions are enumerated in
the section “Multiprocessing Configurations”, above.
When multithreading is enabled (that is, when the
CPUs-per-core indicator is greater than one), the
CPU address comprises a core identification and a
thread identification, as described in “CPU-Address
Identification” on page 4-84.

Some models provide a control to select the primary
CPU to be started following a load operation. On
such a model, when the multithreading facility is
enabled prior to the load operation, the operator des-
ignates an expanded-format CPU address as
described in “CPU-Address Identification” on
page 4-84. However, only the core-identification por-
tion of the designated CPU address is meaningful;
the operation is always targeted to the CPU having
thread identification zero of the designated core.

On models that do not provide a control to select the
primary CPU to be started following a load operation,
the operation is targeted to the CPU having thread
identification zero in the lowest-numbered opera-
tional core.

In either case, the targeted CPU is (a) the one upon
which the initial-CPU reset is performed, and (b) the
CPU that is started after the load operation is com-
pleted

12-8 The z/Architecture CPU Architecture

I/O Overview 13-1© Copyright IBM Corp. 2000, 2019

Chapter 13. I/O Overview

Input/Output (I/O). 13-1
The Channel Subsystem 13-1

Subchannel Sets . 13-2
Subchannels . 13-2

Attachment of Input/Output Devices 13-3
Channel Paths . 13-3
Control Units . 13-4
I/O Devices . 13-5

I/O Addressing. 13-5
 Subchannel-Set Identifier 13-5
Channel-Path Identifier 13-5
Subchannel Number 13-5
Device Number . 13-6
Device Identifier . 13-6

Fibre-Channel Extensions 13-6
I/O-Command Words. 13-7

Transport Command Word (TCW) 13-7
Channel Program Organization 13-7

CCW Channel Program 13-7
TCW Channel Program. 13-8

Execution of I/O Operations 13-8
Start-Function Initiation 13-8

Subchannel Operation Modes. 13-9
Path Management. 13-9
Channel-Program Execution. 13-9
Conclusion of I/O Operations 13-10

Chaining When Using a CCW Channel
Program . 13-11

Chaining When Using a TCW Channel
Program . 13-12

Premature Conclusion of I/O Operations . 13-12
I/O Interruptions . 13-12

Input/Output (I/O)

The terms “input” and “output” are used to describe
the transfer of data between I/O devices and main
storage. An operation involving this kind of transfer is
referred to as an I/O operation. The facilities used to
control I/O operations are collectively called the
channel subsystem. (I/O devices and their control
units attach to the channel subsystem.) This chapter
provides a brief description of the basic components
and operation of the channel subsystem.

The Channel Subsystem

The channel subsystem directs the flow of informa-
tion between I/O devices and main storage. It
relieves CPUs of the task of communicating directly
with I/O devices and permits data processing to pro-
ceed concurrently with I/O processing. The channel
subsystem uses one or more channel paths as the
communication link in managing the flow of informa-
tion to or from I/O devices. As part of I/O processing,
the channel subsystem also performs a path-man-
agement operation by testing for channel-path avail-
ability, chooses an available channel path, and
initiates the performance of the I/O operation by the
device.

Within the channel subsystem are subchannels. One
subchannel is provided for and dedicated to each I/O
device accessible to the program through the chan-
nel subsystem.

The multiple-subchannel-set facility is an optional
facility. When it is installed, subchannels are parti-
tioned into multiple subchannel sets, and each sub-
channel set may provide one dedicated subchannel
to an I/O device. Depending on the model and the
interface used, some I/O devices may only be
allowed to be accessed via certain subchannel sets.

Each subchannel provides information concerning
the associated I/O device and its attachment to the
channel subsystem. The subchannel also provides
information concerning I/O operations and other
functions involving the associated I/O device. The
subchannel is the means by which the channel sub-
system provides information about associated I/O
devices to CPUs, which obtain this information by
executing I/O instructions. The actual number of sub-
channels provided depends on the model and the
configuration; the maximum addressability is
0-65,535 in each subchannel set.

I/O devices are attached through control units to the
channel subsystem by means of channel paths. Con-
trol units may be attached to the channel subsystem
by more than one channel path, and an I/O device
may be attached to more than one control unit. In all,

13-2 The z/Architecture CPU Architecture

an individual I/O device may be accessible to the
channel subsystem by as many as eight different
channel paths via a subchannel, depending on the
model and the configuration. The total number of
channel paths provided by a channel subsystem
depends on the model and the configuration; the
maximum addressability is 0-255.

The performance of a channel subsystem depends
on its use and on the system model in which it is
implemented. Channel paths are provided with differ-
ent data-transfer capabilities, and an I/O device
designed to transfer data only at a specific rate (a
magnetic-tape unit or a disk storage, for example)
can operate only on a channel path that can accom-
modate at least this data rate.

The channel subsystem contains common facilities
for the control of I/O operations. When these facilities
are provided in the form of separate, autonomous
equipment designed specifically to control I/O
devices, I/O operations are completely overlapped
with the activity in CPUs. The only main-storage
cycles required by the channel subsystem during I/O
operations are those needed to transfer data and
control information to or from the final locations in
main storage, along with those cycles that may be
required for the channel subsystem to access the
subchannels when they are implemented as part of
non-addressable main storage. These cycles do not
delay CPU programs, except when both the CPU and
the channel subsystem concurrently attempt to refer-
ence the same main-storage area.

Subchannel Sets

When the multiple-subchannel-set facility is installed,
subchannels are partitioned into multiple subchannel
sets. There may be up to four subchannel sets, each
identified by a subchannel-set identifier (SSID).
When the multiple-subchannel-set facility is not
installed, there is only one subchannel set with an
SSID of zero. When the multiple-subchannel-set
facility is not enabled, only subchannel set zero is
visible to the program. See “Multiple-Subchannel-Set
Facility” on page 17-33 for more information on the
multiple-subchannel-set facility.

Subchannels

A subchannel provides the logical appearance of a
device to the program and contains the information

required for sustaining a single I/O operation. The
subchannel consists of internal storage that contains
information in the form of a channel-program desig-
nation, channel-path identifier, device number, count,
status indications, and I/O-interruption-subclass
code, as well as information on path availability and
functions pending or being performed. I/O operations
are initiated with a device by the execution of I/O
instructions that designate the subchannel associ-
ated with the device.

Each device is accessible by means of one subchan-
nel in each channel subsystem to which it is
assigned during configuration at installation time.
The device may be a physically identifiable unit or
may be housed internal to a control unit. For exam-
ple, in certain disk-storage devices, each actuator
used in retrieving data is considered to be a device.
In all cases, a device, from the point of view of the
channel subsystem, is an entity that is uniquely asso-
ciated with one subchannel and that responds to
selection by the channel subsystem by using the
communication protocols defined for the type of
channel path by which it is accessible.

On some models, subchannels are provided in
blocks. On these models, more subchannels may be
provided than there are attached devices. Subchan-
nels that are provided but do not have devices
assigned to them are not used by the channel sub-
system to perform any function and are indicated by
storing the associated device-number-valid bit as
zero in the subchannel-information block of the sub-
channel.

The number of subchannels provided by the channel
subsystem is independent of the number of channel
paths to the associated devices. For example, a
device accessible through alternate channel paths
still is represented by a single subchannel. Each sub-
channel is addressed by using the following:

• a 16-bit binary subchannel number
• a two-bit SSID when the subchannel-set facility is

installed

After I/O processing at the subchannel has been
requested by the execution of START SUBCHAN-
NEL, the CPU is released for other work, and the
channel subsystem assembles or disassembles data
and synchronizes the transfer of data bytes between
the I/O device and main storage. To accomplish this,
the channel subsystem maintains and updates an
address and a count that describe the destination or

I/O Overview 13-3

source of data in main storage. Similarly, when an I/O
device provides signals that should be brought to the
attention of the program, the channel subsystem
transforms the signals into status information and
stores the information in the subchannel, where it
can be retrieved by the program.

Attachment of Input/Output
Devices

Channel Paths

The channel subsystem communicates with I/O
devices by means of channel paths between the
channel subsystem and control units. A control unit
may be accessible by the channel subsystem by
more than one channel path. Similarly, an I/O device
may be accessible by the channel subsystem
through more than one control unit, each having one
or more channel paths to the channel subsystem.

Devices that are attached to the channel subsystem
by multiple channel paths configured to a subchan-
nel, may be accessed by the channel subsystem
using any of the available channel paths. Similarly, a
device having the dynamic-reconnection feature and
operating in the multipath mode can be initialized to
operate such that the device may choose any of the
available channel paths configured to the subchan-
nel, when logically reconnecting to the channel sub-
system to continue a chain of I/O operations.

The channel subsystem may contain more than one
type of channel path. Examples of channel-path
types used by the channel subsystem are the
ESCON I/O interface, FICON I/O interface, FICON-
converted I/O interface, and IBM System/360 and
System/370 I/O interface. The term “serial-I/O inter-
face” is used to refer the ESCON I/O interface, the
FICON I/O interface, and the FICON-converted I/O
interface. The term “parallel-I/O interface” is used to
refer to the IBM System/360 and System/370 I/O
interface.

The ESCON I/O interface is described in the System
Library publication IBM Enterprise Systems Architec-
ture/390 ESCON I/O Interface, SA22-7202.

The FICON I/O interface is described in the ANSI
standards document Fibre Channel - Single-Byte
Command Code Sets-2 (FC-SB-2)

The IBM System/360 and System/370 I/O interface is
described in the System Library publication IBM Sys-
tem/360 and System/370 I/O Interface Channel to
Control Unit OEMI, GA22-6974.

Depending on the type of channel path, the facilities
provided by the channel path, and the I/O device, an
I/O operation may occur in one of three modes,
frame-multiplex mode, burst mode, or byte-multiplex
mode.

In the frame-multiplex mode, the I/O device may stay
logically connected to the channel path for the dura-
tion of the execution of a channel program. The facili-
ties of a channel path capable of operating in the
frame-multiplex mode may be shared by a number of
concurrently operating I/O devices. In this mode the
information required to complete an I/O operation is
divided into frames that may be interleaved with
frames from I/O operations for other I/O devices.
During this period, multiple I/O devices are consid-
ered to be logically connected to the channel path.

In the burst mode, the I/O device monopolizes a
channel path and stays logically connected to the
channel path for the transfer of a burst of information.
No other device can communicate over the channel
path during the time a burst is transferred. The burst
can consist of a few bytes, a whole block of data, a
sequence of blocks with associated control and sta-
tus information (the block lengths may be zero), or
status information that monopolizes the channel
path. The facilities of the channel path capable of
operating in the burst mode may be shared by a
number of concurrently operating I/O devices.

Some channel paths can tolerate an absence of data
transfer for about a half minute during a burst-mode
operation, such as occurs when a long gap on mag-
netic tape is read. An equipment malfunction may be
indicated when an absence of data transfer exceeds
the prescribed limit.

In the byte-multiplex mode, the I/O device stays logi-
cally connected to the channel path only for a short
interval of time. The facilities of a channel path capa-
ble of operating in the byte-multiplex mode may be
shared by a number of concurrently operating I/O
devices. In this mode, all I/O operations are split into
short intervals of time during which only a segment of
information is transferred over the channel path.
During such an interval, only one device and its
associated subchannel are logically connected to the
channel path. The intervals associated with the con-

13-4 The z/Architecture CPU Architecture

current operation of multiple I/O devices are
sequenced in response to demands from the
devices. The channel-subsystem facility associated
with a subchannel exercises its controls for any one
operation only for the time required to transfer a seg-
ment of information. The segment can consist of a
single byte of data, a few bytes of data, a status
report from the device, or a control sequence used
for the initiation of a new operation.

Ordinarily, devices with high data-transfer-rate
requirements operate with the channel path in the
frame-multiplex mode, slower devices operate in the
burst mode, and the slowest devices operate in the
byte-multiplex mode. Some control units have a man-
ual switch for setting the desired mode of operation.

An I/O operation that occurs on a parallel-I/O-inter-
face type of channel path may occur in either the
burst mode or the byte-multiplex mode depending on
the facilities provided by the channel path and the I/O
device. For improved performance, some channel
paths and control units are provided with facilities for
high-speed transfer and data streaming. See the
System Library publication IBM System/360 and Sys-
tem/370 I/O Interface Channel to Control Unit OEMI,
GA22-6974, for a description of those two facilities.

An I/O operation that occurs on a serial-I/O-interface-
type of channel path may occur in either the frame-
multiplex mode or the burst mode. For improved per-
formance, some control units attaching to the serial-
I/O interface provide the capability to provide sense
data to the program concurrent with the presentation
of unit-check status, if permitted to do so by the pro-
gram. (See“Concurrent Sense” on page 17-27.)

Depending on the control unit or channel subsystem,
access to a device through a subchannel may be
restricted to a single channel-path type.

The modes and features described above affect only
the protocol used to transfer information over the
channel path and the speed of transmission. No
effects are observable by CPU or channel programs
with respect to the way these programs are executed.

Control Units

A control unit provides the logical capabilities neces-
sary to operate and control an I/O device and adapts

the characteristics of each device so that it can
respond to the standard form of control provided by
the channel subsystem.

Communication between the control unit and the
channel subsystem takes place over a channel path.
The control unit accepts control signals from the
channel subsystem, controls the timing of data trans-
fer over the channel path, and provides indications
concerning the status of the device.

The I/O device attached to the control unit may be
designed to perform only certain limited operations,
or it may perform many different operations. A typical
operation is moving a recording medium and record-
ing data. To accomplish its operations, the device
needs detailed signal sequences peculiar to its type
of device. The control unit decodes the commands
received from the channel subsystem, interprets
them for the particular type of device, and provides
the signal sequence required for the performance of
the operation.

A control unit may be housed separately, or it may be
physically and logically integrated with the I/O device,
the channel subsystem, or a CPU. In the case of
most electromechanical devices, a well-defined inter-
face exists between the device and the control unit
because of the difference in the type of equipment
the control unit and the device require. These electro-
mechanical devices often are of a type where only
one device of a group attached to a control unit is
required to transfer data at a time (magnetic-tape
units or disk-access mechanisms, for example), and
the control unit is shared among a number of I/O
devices. On the other hand, in some electronic I/O
devices, such as the channel-to-channel adapter, the
control unit does not have an identity of its own.

From the programmer's point of view, most functions
performed by the control unit can be merged with
those performed by the I/O device. Therefore, this
publication normally makes no specific mention of
the control-unit function; the performance of I/O oper-
ations is described as if the I/O devices communi-
cated directly with the channel subsystem.
Reference is made to the control unit only when
emphasizing a function performed by it or when
describing how the sharing of the control unit among
a number of devices affects the performance of I/O
operations.

I/O Overview 13-5

I/O Devices

An input/output (I/O) device provides external stor-
age, a means of communication between data-pro-
cessing systems, or a means of communication
between a system and its environment. I/O devices
include such equipment as magnetic-tape units,
direct-access-storage devices (for example, disks),
display units, typewriter-keyboard devices, printers,
teleprocessing devices, and sensor-based equip-
ment. An I/O device may be physically distinct equip-
ment, or it may share equipment with other I/O
devices.

Most types of I/O devices, such as printers, or tape
devices, use external media, and these devices are
physically distinguishable and identifiable. Other
types are solely electronic and do not directly handle
physical recording media. The channel-to-channel
adapter, for example, provides for data transfer
between two channel paths, and the data never
reaches a physical recording medium outside main
storage. Similarly, communication controllers may
handle the transmission of information between the
data-processing system and a remote station, and its
input and output are signals on a transmission line.

In the simplest case, an I/O device is attached to one
control unit and is accessible from one channel path.
Switching equipment is available to make some
devices accessible from two or more channel paths
by switching devices among control units and by
switching control units among channel paths. Such
switching equipment provides multiple paths by
which an I/O device may be accessed. Multiple chan-
nel paths to an I/O device are provided to improve
performance or I/O availability, or both, within the
system. The management of multiple channel paths
to devices is under the control of the channel subsys-
tem and the device, but the channel paths may indi-
rectly be controlled by the program.

I/O Addressing

Four different types of I/O addressing are provided by
the channel subsystem for the necessary addressing
of the various components: channel-path identifiers,
subchannel numbers, device numbers, and, though
not visible to programs, addresses dependent on the
channel-path type. When the multiple-subchannel-

set facility is installed, the subchannel-set identifier
(SSID) is also used in I/O addressing.

 Subchannel-Set Identifier

The subchannel-set identifier (SSID) is a two-bit
value assigned to each provided subchannel set.

Channel-Path Identifier

The channel-path identifier (CHPID) is a system-
unique eight-bit value assigned to each installed
channel path of the system. A CHPID is used to
address a channel path. A CHPID is specified by the
second-operand address of RESET CHANNEL PATH
and used to designate the channel path that is to be
reset. The channel paths by which a device is acces-
sible are identified in the subchannel-information
block (SCHIB), each by its associated CHPID, when
STORE SUBCHANNEL is executed. The CHPID can
also be used in operator messages when it is neces-
sary to identify a particular channel path. A system
model may provide as many as 256 channel paths.
The maximum number of channel paths and the
assignment of CHPIDs to channel paths depends on
the system model.

Subchannel Number

A subchannel number is a 16-bit value used to
address a subchannel. This value is unique within a
subchannel set of a channel subsystem. The sub-
channel is addressed by eight I/O instructions: CAN-
CEL SUBCHANNEL, CLEAR SUBCHANNEL, HALT
SUBCHANNEL, MODIFY SUBCHANNEL, RESUME
SUBCHANNEL, START SUBCHANNEL, STORE
SUBCHANNEL, and TEST SUBCHANNEL. All I/O
functions relative to a specific I/O device are speci-
fied by the program by designating a subchannel
assigned to the I/O device. Subchannels in each sub-
channel set are always assigned subchannel num-
bers within a single range of contiguous numbers.
The lowest-numbered subchannel is subchannel 0.
The highest-numbered subchannel of the channel
subsystem has a subchannel number equal to one
less than the number of subchannels provided. A
maximum of 65,536 subchannels can be provided in
each subchannel set. Normally, subchannel numbers
are only used in communication between the CPU
program and the channel subsystem.

13-6 The z/Architecture CPU Architecture

Device Number

Each subchannel that has an I/O device assigned to
it also contains a parameter called the device num-
ber. The device number is a 16-bit value that is
assigned as one of the parameters of the subchannel
at the time the device is assigned to the subchannel.
The device number identifies a device to the program
and is unique within a subchannel set of a channel
subsystem.

The device number provides a means to identify a
device, independent of any limitations imposed by
the system model, the configuration, or channel-path
protocols. The device number is used in communica-
tions concerning the device that take place between
the system and the system operator. For example,
the device number is entered by the system operator
to designate the input device to be used for initial pro-
gram loading.

Programming Note: The device number is assigned
at device-installation time and may have any value.
However, the user must observe any restrictions on
device-number assignment that may be required by
the control program, support programs, or the partic-
ular control unit or I/O device.

Device Identifier

A device identifier is an address, not apparent to the
program, that is used by the channel subsystem to
communicate with I/O devices. The type of device
identifier used depends on the specific channel-path
type and the protocols provided. Each subchannel
contains one or more device identifiers.

For a channel path of the parallel-I/O-interface type,
the device identifier is called a device address and
consists of an eight-bit value. For the ESCON I/O
interface, the device identifier consists of a four-bit
control-unit address and an eight-bit device address.
For the FICON I/O interface, the device identifier con-
sists of an eight-bit control-unit-image ID and an
eight-bit device address. For the FICON-converted
I/O interface, the device identifier consists of a four-
bit control-unit address and an eight-bit device
address.

The device address identifies the particular I/O
device (and, on the parallel-I/O interface, the control
unit) associated with a subchannel. The device

address may identify, for example, a particular mag-
netic-tape drive, disk-access mechanism, or trans-
mission line. Any number in the range 0-255 can be
assigned as a device address.

For further information about the device identifier
used with a particular channel-path type, see the
appropriate publication for the channel-path type.

Fibre-Channel Extensions

The fibre-channel-extensions (FCX) facility is an
optional facility that provides for the formation of a
channel program that is composed of a transport-
control word (TCW) that designates a transport-com-
mand-control block (TCCB) and a transport-status
block (TSB). The TCCB includes a transport-com-
mand area (TCA) which contains a list of up to 30 I/O
commands that are in the form of device-command
words (DCWs).

The FCX-bidirectional-data-transfer facility is an addi-
tional and optional facility that provides support for
TCW channel programs that specify both read and
write operations. Whether a device recognizes bidi-
rectional data transfers is determined by device-
dependent means.

When a device does not recognize bidirectional data
transfers, a TCW and its TCCB may specify either
read or a write data transfers. When a device recog-
nizes bidirectional data transfers, a TCW and its
TCCB may, depending on the device, specify both
read and write data transfers. For interruptions, the
TSB contains the completion status and other infor-
mation related to the TCW channel program in addi-
tion to the information in the IRB.

For some devices, the list of DCWs may be extended
past what will fit in the TCA. For such devices, the
TCA extension (TCAX) is specified and transferred
as output data. Whether a device supports TCA
extensions is determined by device-dependent
means.

In addition to the IRB, the TSB contains the comple-
tion status and other information related to the TCW
channel program.

The FCX facility provides the ability to directly or indi-
rectly designate any or all of the TCCB, the input
data storage area, and the output data storage area.

I/O Overview 13-7

When a storage area is designated directly, the TCW
specifies the location of a single, contiguous block of
storage. When a storage area is designated indi-
rectly, the TCW designates the location of a list of
one or more transport-indirect-data-address words
(TIDAWs). TIDAW lists and the storage area desig-
nated by each TIDAW in a list are restricted from
crossing 4 K-byte boundaries

The FCX facility also provides an interrogate opera-
tion that may be initiated by the CANCEL SUBCHAN-
NEL instruction to determine the state of an I/O
operation.

I/O-Command Words

An I/O-command word specifies a command and
contains information associated with the command.
When the FCX facility is installed, there are two ele-
mental forms of I/O command words which are the
channel-command word (CCW) and the device-com-
mand word (DCW).

A CCW is 8-bytes in length and specifies the com-
mand to be executed. For commands that initiate cer-
tain operations the CCW also designates the storage
area associated with the operation, the count of data
bytes, the action to be taken when the command
completes, and other options. All I/O devices recog-
nize CCWs.

A DCW is 8-bytes in length and specifies the com-
mand to be executed. the count of data bytes, and
other options. I/O devices that support FCX recog-
nize DCWs.

Transport Command Word (TCW)

A TCW designates a transport-command-control
block (TCCB) which contains a list of commands to
be transported to and executed by an I/O device. The
TCW also designates the storage areas for the com-
mands in the TCCB as well as a transport-status
block (TSB) to contain the status of the I/O operation.

Channel Program Organization

When the FCX facility is not installed, there is a sin-
gle form of channel program which is the CCW chan-
nel program. When the FCX facility is installed, there

is an additional form of channel program which is the
TCW channel program. Both forms of channel pro-
grams are described below.

CCW Channel Program
A channel program that is composed of one or more
CCWs is called a CCW channel program (CCP).
Such a channel program contains one or more
CCWs that are logically linked and arranged for
sequential execution by the channel subsystem.

Figure 13-1 shows a conceptual example of a simple
CCW channel program in program storage. This
channel program contains 4 CCWs and specifies the
transfer of data to or from contiguous areas of stor-
age. The first CCW designates a control command
and the remaining CCWs designate the transfer of
data.

TCW Channel Program
A channel program that is composed of a single TCW
is called a TCW channel program. A TCW desig-
nates a transport-command-control block (TCCB)
that contains from 1 to 30 DCWs.

When DCWs within the TCCB are logically linked
and arranged for sequential execution. For DCWs
that specify control information, the TCCB also con-
tains the control information for those commands.
The TCW also designates the storage area or areas
for the DCWs that specify the transfer of data from or
to the device and the location of a transport-status
block (TSB) for completion status. The TCCB and the
storage areas for the transfer of data may be speci-
fied as either contiguous or noncontiguous storage.

Figure 13-1. CCW Channel Program Example

CCW 1

CCW 2

CCW 3

CCW 4

Data

Control Information

Data

Data

13-8 The z/Architecture CPU Architecture

Figure 13-2 shows a conceptual example of a TCW
channel programin program storage. This channel
program is similar to the CCW channel program in
Figure 13-1. This channel program is composed of a
TCW that designates a TCCB containing 4 DCWs, all
of which specify the transfer of data either to or from
contiguous areas of storage. The first DCW desig-
nates a control command and the remaining DCWs
designate the transfer of data. The TCW also desig-
nates a TSB for completion status.

Execution of I/O Operations

I/O operations are initiated and controlled by informa-
tion with four types of formats: the instruction START
SUBCHANNEL, transport-command words, I/O-com-
mand words, and orders. The START SUBCHANNEL
instruction is executed by a CPU and is part of the
CPU program that supervises the flow of requests for
I/O operations from other programs that manage or
process the I/O data.

When START SUBCHANNEL is executed, parame-
ters are passed to the target subchannel requesting
that the channel subsystem perform a start function
with the I/O device associated with the subchannel.
The channel subsystem performs the start function
by using information at the subchannel, including the
information passed during the execution of the
START SUBCHANNEL instruction, to find an acces-
sible channel path to the device. Once the device has
been selected, the execution of an I/O operation is

accomplished by the decoding and execution of a
CCW by the channel subsystem and the I/O device,
for CCW channel programs, or for TCW channel pro-
grams, by transporting the TCCB to the I/O device by
the channel subsystem and the decoding and execu-
tion of a DCW by the device. I/O-command words,
and transport-command words.are fetched from main
storage, although the modifier bits in the command
code of a CCW DCW may specify device-dependent
conditions for the execution of an operation at the
device.

Operations peculiar to a device, such as rewinding
tape or positioning the access mechanism on a disk
drive, are specified by orders that are decoded and
executed by I/O devices. Orders may be transferred
to the device as modifier bits in the command code of
a control command, may be transferred to the device
as data during a control or write operation, or may be
made available to the device by other means.

Start-Function Initiation

CPU programs initiate I/O operations with the instruc-
tion START SUBCHANNEL. This instruction passes
the contents of an operation-request block (ORB) to
the subchannel.

If the ORB specifies a CCW channel program, the
contents of the ORB include the subchannel key, the
address of the first CCW to be executed, and a spec-
ification of the format of the CCWs. The CCW speci-
fies the command to be executed and the storage
area, if any, to be used. If the ORB specifies a TCW
channel program, the contents of the ORB include
the subchannel key and the address of the TCW to
be executed. The TCW designates the TCCB which
contains the commands to be transported to the
device for execution,the storage area or areas, if any,
to be used for data transfer, and the TSB to contain
the status of the I/O operation.

When the ORB contents have been passed to the
subchannel, the execution of START SUBCHANNEL
is complete. The results of the execution of the
instruction are indicated by the condition code set in
the program-status word.

When facilities become available and the ORB speci-
fies a CCW channel program, the channel subsystem
fetches the first CCW and decodes it according to the
format bit specified in the ORB. If the format bit is
zero, format-0 CCWs are specified. If the format bit is

Figure 13-2. Example of TCW Channel Program Example
Designating I/O

Data

Data

Data

DCW 1

TCCB

Control Information

TSB

TCW

Status
Information

DCW 2

DCW 3

DCW 4

I/O Overview 13-9

one, format-1 CCWs are specified. Format-0 and for-
mat-1 CCWs contain the same information, but the
fields are arranged differently in the format-1 CCW so
that 31-bit addresses can be specified directly in the
CCW. When facilities become available and the ORB
specifies a TCW channel program, the channel sub-
system fetches the designated TCW and transports
the designated TCCB to the device. Storage areas
designated by the TCW for the transfer of data to or
from the device are 64-bit addresses.

Subchannel Operation Modes
There are two modes of subchannel operation. A
subchannel enters transport mode when the FCX
facility is installed and the start function is set at the
subchannel as the result of the execution of a START
SUBCHANNEL instruction that specifies a TCW
channel program. The subchannel remains in trans-
port mode until the start function is reset at the sub-
channel. At all other times, the subchannel is in
command mode.

Path Management

If ORB specifies a CCW channel program and the
first CCW passes certain validity tests and does not
have the suspend flag specified as one or if the ORB
specifies a TCW channel program and the desig-
nated TCW passes certain validity tests, the channel
subsystem attempts device selection by choosing a
channel path from the group of channel paths that
are available for selection. A control unit that recog-
nizes the device identifier connects itself logically to
the channel path and responds to its selection.

If the ORB specifies a CCW channel program, the
channel subsystem sends the command-code part of
the CCW over the channel path, and the device
responds with a status byte indicating whether the
command can be executed. The control unit may log-
ically disconnect from the channel path at this time,
or it may remain connected to initiate data transfer.

If the ORB specifies a TCW channel program, the
channel subsystem uses information in the desig-
nated TCW to transfer the TCCB to the control unit.
The contents of the TCCB are ignored by the channel
subsystem and only have meaning to the control unit
and I/O device.

If the attempted selection does not occur as a result
of either a busy indication or a path-not-operational
condition, the channel subsystem attempts to select

the device by an alternate channel path if one is
available. When selection has been attempted on all
paths available for selection and the busy condition
persists, the operation remains pending until a path
becomes free. If a path-not-operational condition is
detected on one or more of the channel paths on
which device selection was attempted, the program
is alerted by a subsequent I/O interruption. The I/O
interruption occurs either upon execution of the chan-
nel program (assuming the device was selected on
an alternate channel path) or as a result of the exe-
cution being abandoned because path-not-opera-
tional conditions were detected on all of the channel
paths on which device selection was attempted.

Channel-Program Execution

If the command is initiated at the device and com-
mand execution does not require any data to be
transferred to or from the device, the device may sig-
nal the end of the operation immediately on receipt of
the command code. In operations that involve the
transfer of data, the subchannel is set up so that the
channel subsystem will respond to service requests
from the device and assume further control of the
operation.

An I/O operation may involve the transfer of data to or
from one storage area, designated by a single CCW
or TCW or to or from a number of noncontiguous
storage areas. In the latter case, generally a list of
CCWs is used for the execution of the I/O operation,
with each CCW designating a contiguous storage
area and the CCWs are coupled by data chaining.
Data chaining is specified by a flag in the CCW and
causes the channel subsystem to fetch another CCW
upon the exhaustion or filling of the storage area des-
ignated by the current CCW. The storage area desig-
nated by a CCW fetched on data chaining pertains to
the I/O operation already in progress at the I/O
device, and the I/O device is not notified when a new
CCW is fetched.

Provision is made in the CCW format for the pro-
grammer to specify that, when the CCW is decoded,
the channel subsystem request an I/O interruption as
soon as possible, thereby notifying a CPU program
that chaining has progressed at least as far as that
CCW in the channel program.

To complement dynamic address translation in
CPUs, CCW indirect data addressing and modified
CCW indirect data addressing are provided.

13-10 The z/Architecture CPU Architecture

When the ORB specifies a CCW channel program
and CCW-indirect-data addressing is used, a flag in
the CCW specifies that an indirect-data-address list
is to be used to designate the storage areas for that
CCW. Each time the boundary of a block of storage is
reached, the list is referenced to determine the next
block of storage to be used. The ORB specifies
whether the size of each block of storage is 2K bytes
or 4K bytes.

When the ORB specifies a CCW channel program
and modified-CCW-indirect-data addressing is used,
a flag in the ORB and a flag in the CCW specify that
a modified-indirect-data-address list is to be used to
designate the storage areas for that CCW. Each time
the count of bytes specified for a block of storage is
reached, the list is referenced to determine the next
block of storage to be used. Unlike when indirect
data addressing is used, the block may be specified
on any boundary and length up to 4K, provided a
data transfer across a 4 K-byte boundary is not spec-
ified.

When the ORB specifies a TCW channel progr-
amand transport-indirect-data addressing is used,
flags in the TCW specify whether a transport-indirect-
data-address list is to be used to designate the stor-
age areas containing the TCCB and whether a trans-
port-indirect-data-address list is used to designate
the data storage areas associated with the DCWs in
the TCCB. Each time the count of bytes specified for
a block of storage is reached, the corresponding
transport-indirect-data-address list is referenced to
determine the next storage block to be used.

CCW indirect data addressing and modified CCW
indirect data addressing permit essentially the same
CCW sequences to be used for a program running
with dynamic address translation active in the CPU
as would be used if the CPU were operating with
equivalent contiguous real storage. CCW indirect
data addressing permits the program to designate
data blocks having absolute storage addresses up to
264-1independent of whether format-0 or format-1
CCWs have been specified in the ORB. Modified
CCW indirect data addressing permits the program
to designate data blocks having absolute storage
addresses up to 264-1, independent of whether for-
mat-0 or format-1 CCWs have been specified in the
ORB.

In general, the execution of an I/O operation or chain
of operations involves as many as three levels of par-
ticipation:

1. Except for effects due to the integration of CPU
and channel-subsystem equipment, a CPU is
busy for the duration of the execution of START
SUBCHANNEL, which lasts until the addressed
subchannel has been passed the ORB contents.

2. The subchannel is busy for a new START SUB-
CHANNEL from the receipt of the ORB contents
until the primary interruption condition is cleared
at the subchannel.

3. The I/O device is busy from the initiation of the
first operation at the device until either the sub-
channel becomes suspended or the secondary
interruption condition is placed at the subchan-
nel. In the case of a suspended subchannel, the
device again becomes busy when the execution
of the suspended channel program is resumed.

Conclusion of I/O Operations

The conclusion of an I/O operation normally is indi-
cated by two status conditions: channel end and
device end. The channel-end condition indicates that
the I/O device has received or provided all data asso-
ciated with the operation and no longer needs chan-
nel-subsystem facilities. This condition is called the
primary interruption condition, and the channel end
in this case is the primary status. Generally, the pri-
mary interruption condition is any interruption condi-
tion that relates to an I/O operation and that signals
the conclusion at the subchannel of the I/O operation
or chain of I/O operations.

The device-end signal indicates that the I/O device
has concluded execution and is ready to perform
another operation. This condition is called the sec-
ondary interruption condition, and the device end in
this case is the secondary status. Generally, the sec-
ondary interruption condition is any interruption con-
dition that relates to an I/O operation and that signals
the conclusion at the device of the I/O operation or
chain of operations. The secondary interruption con-
dition can occur concurrently with, or later than, the
primary interruption condition.

Concurrent with the primary or secondary interrup-
tion conditions, both the channel subsystem and the
I/O device can provide indications of unusual situa-
tions.

The conditions signaling the conclusion of an I/O
operation can be brought to the attention of the pro-
gram by I/O interruptions or, when the CPUs are dis-

I/O Overview 13-11

abled for I/O interruptions, by programmed
interrogation of the channel subsystem. In the former
case, these conditions cause storing of the I/O-inter-
ruption code, which contains information concerning
the interrupting source. In the latter case, the inter-
ruption code is stored as a result of the execution of
TEST PENDING INTERRUPTION.

When the primary interruption condition is recog-
nized, the channel subsystem attempts to notify the
program, by means of an interruption request, that a
subchannel contains information describing the con-
clusion of an I/O operation at the subchannel. For
command-mode interruptions, the information identi-
fies the last CCW used and may provide its residual
byte count, thus describing the extent of main stor-
age used. For transport-mode interruptions, the infor-
mation identifies the current TCW and the TSB
associated with the channel program that contains
additional status about the I/O operation, such as
residual byte count. In addition to information about
the channel program, both the channel subsystem
and the I/O device may provide additional indications
of unusual conditions as part of either the primary or
the secondary interruption condition. The information
contained at the subchannel may be stored by the
execution of TEST SUBCHANNEL or the execution
of STORE SUBCHANNEL. This information, when
stored, is called a subchannel-status word (SCSW).

Chaining When Using a CCW Channel
Program
When the ORB specifies a CCW channel program,
facilities are provided for the program to initiate the
execution of a chain of I/O operations with a single
START SUBCHANNEL instruction. When the current
CCW specifies command chaining and no unusual
conditions have been detected during the operation,
the receipt of the device-end signal causes the chan-
nel subsystem to fetch a new CCW. If the CCW
passes certain validity tests and the suspend flag is
not specified as a one in the new CCW, execution of
a new command is initiated at the device. If the CCW
fails to pass the validity tests, the new command is
not initiated, command chaining is suppressed, and
the status associated with the new CCW causes an
interruption condition to be generated. If the suspend
flag is specified as a one and this value is valid
because of a one value in the suspend control, bit 4
of word 1 of the associated ORB, execution of the
new command is not initiated, and command chain-
ing is concluded.

Execution of the new command is initiated by the
channel subsystem in the same way as in the previ-
ous operation. The ending signals occurring at the
conclusion of an operation caused by a CCW speci-
fying command chaining are not made available to
the program. When another I/O operation is initiated
by command chaining, the channel subsystem con-
tinues execution of the channel program. If, however,
an unusual condition has been detected, command
chaining is suppressed, the channel program is ter-
minated, an interruption condition is generated, and
the ending signals causing the termination are made
available to the program.

The suspend-and-resume function provides the pro-
gram with control over the execution of a channel
program. The initiation of the suspend function is
controlled by the setting of the suspend-control bit in
the ORB. The suspend function is signaled to the
channel subsystem during channel-program execu-
tion when the suspend-control bit in the ORB is one
and the suspend flag in the first CCW or in a CCW
fetched during command chaining is one.

Suspension occurs when the channel subsystem
fetches a CCW with the suspend flag validly
(because of a one value of the suspend-control bit in
the ORB) specified as one. The command in this
CCW is not sent to the I/O device, and the device is
signaled that the chain of commands is concluded. A
subsequent RESUME SUBCHANNEL instruction
informs the channel subsystem that the CCW that
caused suspension may have been modified and that
the channel subsystem must refetch the CCW and
examine the current setting of the suspend flag. If the
suspend flag is found to be zero in the CCW, the
channel subsystem resumes execution of the chain
of commands with the I/O device.

Chaining When Using a TCW Channel
Program
When the ORB specifies a TCW channel program,
facilities are also provided for the program to initiate
the execution of a chain of device operations with a
single START SUBCHANNEL instruction. Command
chaining may be specified for those DCWs desig-
nated by a single TCW. When the current DCW spec-
ifies command chaining and no unusual conditions
have been detected during the operation, recognition
of the successful execution of the DCW causes the
next DCW in the current TCCB to be processed.

13-12 The z/Architecture CPU Architecture

If the next DCW passes certain validity tests, execu-
tion of a new command is initiated at the device and
the DCW becomes the current DCW. If the DCW fails
to pass the validity tests, the new command is not ini-
tiated, command chaining is suppressed, the channel
program is terminated, and the status associated
with the new DCW causes an interruption condition
to be generated.

Execution of the new command is initiated in the
same way as in the previous operation. The ending
signals occurring at the conclusion of an operation
caused by a DCW that is not the last specified DCW
are not made available to the program. When
another I/O operation is initiated by command chain-
ing, execution of the channel program continues. If,
however, an unusual condition has been detected,
command chaining is suppressed, the channel pro-
gram is terminated, an interruption condition is gen-
erated, and status is made available to the program
that identifies the unusual condition.

Premature Conclusion of I/O Operations
Channel-program execution may be terminated pre-
maturely by CANCEL SUBCHANNEL, HALT SUB-
CHANNEL or CLEAR SUBCHANNEL. The execution
of CANCEL SUBCHANNEL causes the channel sub-
system to terminate the start function at the subchan-
nel if the channel program has not been initiated at
the device. When the start function is terminated by
the execution of CANCEL SUBCHANNEL, the chan-
nel subsystem sets condition code 0 in response to
the CANCEL SUBCHANNEL instruction. The execu-
tion of HALT SUBCHANNEL causes the channel
subsystem to issue the halt signal to the I/O device
and terminate channel-program execution at the sub-
channel. When channel-program execution is termi-
nated by the execution of HALT SUBCHANNEL, the
program is notified of the termination by means of an
I/O-interruption request. When the subchannel is in
command mode, the interruption request is gener-
ated when the device presents status for the termi-
nated operation. When the subchannel is in transport
mode, the interruption request is generated immedi-
ately.If, however, the halt signal was issued to the
device during command chaining after the receipt of
device end but before the next command was trans-
ferred to the device, the interruption request is gener-
ated after the device has been signaled. In the latter
case, the device-status field of the SCSW will contain
zeros. The execution of CLEAR SUBCHANNEL
clears the subchannel of indications of the channel
program in execution, causes the channel subsystem

to issue the clear signal to the I/O device, and causes
the channel subsystem to generate an I/O-interrup-
tion request to notify the program of the completion of
the clear function.

I/O Interruptions

Conditions causing I/O-interruption requests are
asynchronous to activity in CPUs, and more than one
condition can occur at the same time. For I/O inter-
ruptions associated with subchannels, the conditions
are preserved at the subchannels until cleared by
TEST SUBCHANNEL or CLEAR SUBCHANNEL, or
reset by an I/O-system reset.

When an I/O-interruption condition has been recog-
nized by the channel subsystem and indicated at the
subchannel, an I/O-interruption request is made
pending for the I/O-interruption subclass specified at
the subchannel. The I/O-interruption subclass for
which the interruption is made pending is under pro-
grammed control through the use of MODIFY SUB-
CHANNEL. A pending I/O interruption may be
accepted by any CPU that is enabled for interruptions
from its I/O-interruption subclass. Each CPU has
eight mask bits, in control register 6, that control the
enablement of that CPU for each of the eight I/O-
interruption subclasses, with the I/O mask, bit 6 in
the PSW, being the master I/O-interruption mask for
the CPU.

When an I/O interruption occurs at a CPU, the I/O-
interruption code is stored in real locations 184-195,
and the I/O-interruption request is cleared. For I/O
interruptions associated with subchannels, the I/O-
interruption code identifies the subchannel for which
the interruption was pending. The conditions causing
the generation of the interruption request associated
with the subchannel may then be retrieved from the
subchannel explicitly by TEST SUBCHANNEL or by
STORE SUBCHANNEL.

A pending I/O-interruption request may also be
cleared by TEST PENDING INTERRUPTION when
the corresponding I/O-interruption subclass is
enabled but the PSW has I/O interruptions disabled.
For I/O interruptions associated with subchannels, a
pending I/O interruption may also be cleared by
TEST SUBCHANNEL when the CPU is disabled for
I/O interruptions from the corresponding I/O-interrup-
tion subclass. A pending I/O-interruption request
associated with a subchannel may also be cleared by
CLEAR SUBCHANNEL. Both CLEAR SUBCHAN-

I/O Overview 13-13

NEL and TEST SUBCHANNEL clear the preserved
interruption condition at the subchannel as well.

Normally, unless the interruption request is cleared
by CLEAR SUBCHANNEL, the program issues

TEST SUBCHANNEL to obtain subchannel informa-
tion concerning the execution of the operation.

13-14 The z/Architecture CPU Architecture

14-1© Copyright IBM Corp. 2000, 2019

Chapter 14. I/O Instructions

I/O-Instruction Formats 14-2
I/O-Instruction Execution 14-2

Serialization . 14-2
Operand Access . 14-3
Condition Code . 14-3
Program Exceptions 14-3

Instructions . 14-3
CANCEL SUBCHANNEL. 14-4
CLEAR SUBCHANNEL 14-6
HALT SUBCHANNEL 14-7
MODIFY SUBCHANNEL 14-8

RESET CHANNEL PATH 14-10
RESUME SUBCHANNEL 14-11
SET ADDRESS LIMIT 14-13
SET CHANNEL MONITOR. 14-13
START SUBCHANNEL. 14-16
STORE CHANNEL PATH STATUS 14-17
STORE CHANNEL REPORT WORD 14-18
STORE SUBCHANNEL 14-19
TEST PENDING INTERRUPTION 14-20

I/O-Interruption Code 14-20
TEST SUBCHANNEL 14-21

All the I/O instructions described here are provided
for the control of channel-subsystem operations. The
I/O instructions are listed in Figure 14-1 on
page 14-3. All of the I/O instructions are privileged
instructions.

Several I/O instructions result in the channel subsys-
tem being signaled to perform functions asynchro-
nous to the execution of the instructions. The
description of each instruction of this type contains a
section, “Associated Functions,” that summarizes the
asynchronous functions.

I/O-Instruction Formats

I/O instructions use the S format:

The use of the second-operand address and general
registers 1 and 2 (as implied operands) depends on
the I/O instruction. Figure 14-1 on page 14-3 defines
which operands are used to execute each I/O instruc-
tion. In addition, detailed information regarding oper-
and usage appears in the description of each I/O
instruction.

All I/O instructions that reference a subchannel use
the contents of general register 1 as an implied oper-

and. For these I/O instructions, general register 1
contains the subsystem-identification word (SID).

When the multiple-subchannel set (MSS) facility is
installed, the format of the subsystem-identification
word is as follows:

Bit positions 0-31 are ignored. Bit positions
32-44must contain zeros and bit 47 must contain 1.
(Exception conditions are listed later in the section.)

Bit positions 45-46 of general register 1 contain the
subchannel-set identifier (SSID) uniquely identifying
a subchannel set (SS). When the multiple-subchan-
nel-set facility is not installed, the SSID must be
equal to zero. Bit positions 48-63 of general register
1 contain the binary number of the subchannel within
the specified subchannel set to be used for the func-
tion specified by the instruction.

(See “Multiple-Subchannel-Set Facility” on
page 17-33 for more information on SSID.)

The format of the subsystem-identification word
when the MSS facility is not installed is as follows:

Op Code B2 D2

0 16 20 31

/ /
0 31

0 0 0 0 0 0 0 0 0 0 0 0 0 SSID 1 Subchannel Number
32 45 47 48 63

14-2 The z/Architecture I/O Architecture

Bit positions 48-63 of general register 1 contain the
binary number of the subchannel to be used for the
function specified by the instruction. Bit positions
0-31 of general register 1 are ignored and bits 32-47
specify the binary number one.

I/O-Instruction Execution

Serialization

The execution of any I/O instruction causes a serial-
ization and checkpoint synchronization function to
occur. For a definition of the serialization of CPU
operations,see “CPU Serialization” on page 5-130
and “Channel-Program Serialization” on page 5-133.

Operand Access

During the execution of an I/O instruction, the order
in which fields of the operand and fields of the sub-
channel, if applicable, are accessed is unpredictable.
It is also unpredictable whether fetch accesses are
made to fields of an operand or the subchannel, as
applicable, when those fields are not needed to com-
plete the execution of the I/O instruction. (See “Rela-
tion between Operand Accesses” on page 5-129.)

Condition Code

During the execution of some I/O instructions, the
results of certain tests are used to set one of four
condition codes in the PSW. The I/O instructions for
which execution can result in the setting of the condi-
tion code are listed in Figure 14-1 on page 14-3. The
condition code indicates the result of the execution of
the I/O instruction. The general meaning of the condi-
tion code for I/O instructions is given below; the
meaning of the condition code for a specific instruc-
tion appears in the description of that instruction.

Condition Code 0: Instruction execution produced
the expected or most probable result. (See “Deferred

Condition Code (CC)” on page 16-9 for a description
of conditions that can be encountered subsequent to
the presentation of condition code 0 that result in a
nonzero deferred condition code.)

Condition Code 1: Instruction execution produced
the alternate or second-most-probable result, or sta-
tus conditions were present that may or may not have
prevented the expected result.

Condition Code 2: Instruction execution was inef-
fective because the designated subchannel or chan-
nel-subsystem facility was busy with a previously
initiated function.

Condition Code 3: Instruction execution was inef-
fective because the designated element was not
operational or because some condition precluded ini-
tiation of the normal function.

In situations where conditions exist that could cause
more than one nonzero condition code to be set, the
priority of the condition codes is as follows:

Condition code 3 has precedence over condition
codes 1 and 2.

Condition code 1 has precedence over condition
code 2.

Program Exceptions

The program exceptions that the I/O instructions can
encounter are access, operand, privileged-operation,
and specification exceptions. Figure 14-1 on
page 14-3 shows the exceptions that are applicable
to each of the I/O instructions. The execution of the
instruction is suppressed for privileged-operation,
operand, and specification exceptions. Except as
indicated otherwise in the section “Special Condi-
tions” for each instruction, the instruction ending for
access exceptions is as described in “Recognition of
Access Exceptions” on page 6-47).

Instructions

The mnemonics, format, and operation codes of the
I/O instructions are given in Figure 14-1 on
page 14-3. The figure also indicates the conditions
that can cause a program interruption and whether
the condition code is set.

/ /
0 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Subchannel Number
32 48 63

14-3

C
A

N
C

E
L

 S
U

B
C

H
A

N
N

E
LIn the detailed descriptions of the individual instruc-

tions, the mnemonic and the symbolic operand des-
ignation for the assembler language are shown with
each instruction. For START SUBCHANNEL, for

example, SSCH is the mnemonic and D2(B2) the
operand designation.

CANCEL SUBCHANNEL

XSCH [S]

The current start function, if any, is terminated at the
designated subchannel if CANCEL SUBCHANNEL is
applicable.

General register 1 contains a subsystem-identifica-
tion word that designates the subchannel for which
the current START FUNCTION, if any, is to be termi-
nated.

If the subchannel (1) is not subchannel active, (2) is
start pending, resume pending, or suspended, and
(3) is performing only the start function, then the start
function at the subchannel is terminated, and the
subchannel is made no longer start pending, resume
pending, or suspended, as appropriate. In addition,
internal indications of busy are reset for the subchan-
nel.

Condition code 0 is set to indicate that the actions
described above have been taken.

If an invalid ORB field or a no-path-available condi-
tion is present for a previously initiated start function
and the condition was not reported during the execu-

Name
Mne-

monic Characteristics
Op-

code Page
CANCEL SUBCHANNEL XSCH S C P OP ¢ GS B276 14-3
CLEAR SUBCHANNEL CSCH S C P OP ¢ GS B230 14-5
HALT SUBCHANNEL HSCH S C P OP ¢ GS B231 14-6
MODIFY SUBCHANNEL MSCH S C P A SP OP ¢ GS B2 B232 14-7
RESET CHANNEL PATH RCHP S C P B23B 14-9
RESUME SUBCHANNEL RSCH S C P OP ¢ GS B238 14-10
SET ADDRESS LIMIT SAL S P OP ¢ G1 B237 14-12
SET CHANNEL MONITOR SCHM S P OP ¢ GM B23C 14-13
START SUBCHANNEL SSCH S C P A SP OP ¢ GS B2 B233 14-15
STORE CHANNEL PATH STATUS STCPS S P A SP ¢ ST B2 B23A 14-16
STORE CHANNEL REPORT WORD STCRW S C P A SP ¢ ST B2 B239 14-17
STORE SUBCHANNEL STSCH S C P A SP OP ¢ GS ST B2 B234 14-18
TEST PENDING INTERRUPTION TPI S C P A1* SP ¢ ST B2 B236 14-19
TEST SUBCHANNEL TSCH S C P A SP OP ¢ GS ST B2 B235 14-21

Explanation:

* PER zero-address-detection not recognized
¢ Causes a serialization and checkpoint synchronization function.
A Access exceptions for logical addresses.
A1 When the effective address is zero, it is not used to access storage, and no access exceptions can occur, except that access exceptions may occur during

access-register translation.
B2 B2 field designates an access register in the access-register mode.
C Condition code is set.
G1 Instruction execution includes implied use of general register 1 as a parameter.
GM Instruction execution includes the implied use of multiple general registers:

• General registers 0 and 1 for SET CHANNEL MONITOR.
GS Instruction execution includes the implied use of general register 1 as the subsystem-identification word.
OP Operand exception.
P Privileged-operation exception; also, restricted from transactional execution.
S S instruction format.
SP Specification exception.
ST PER storage-alteration event.

Figure 14-1. Summary of I/O Instructions

'B276' / / / / / / / / / / / / / / / /
0 16 31

14-4 The z/Architecture I/O Architecture

C
A

N
C

E
L

 S
U

B
C

H
A

N
N

E
L tion of START SUBCHANNEL, condition code 0 may

be indicated for CANCEL SUBCHANNEL provided
that the subchannel is not yet status pending to
report the error condition; if condition code 0 is pre-
sented, no subsequent status is generated to indi-
cate the error condition.

During the execution of CANCEL SUBCHANNEL for
a transport-mode operation, the channel subsystem
may be signaled to asynchronously perform the inter-
rogate function.

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending with
any status.

Condition code 2 is set, and no other action is
taken, when CANCEL SUBCHANNEL is not applica-
ble and the subchannel is not status pending, or
when conditions exist that prevent immediate deter-
mination of internal conditions for the subchannel
and the CPU has determined to end the instruction.
CANCEL SUBCHANNEL is not applicable when the
subchannel (1) has no function specified, (2) has a
function other than the start function alone specified,
(3) is not resume pending, is not start pending, and is
not suspended, or (4) is subchannel active.

When the subchannel is operating in transport mode
and condition code 2 is set, the CPU may signal the
channel subsystem to asynchronously perform the
interrogate function, and end the instruction.

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
CANCEL SUBCHANNEL. A subchannel is not oper-
ational for CANCEL SUBCHANNEL when the sub-
channel is not provided by the channel subsystem,
has no valid device number assigned to it, or is not
enabled.

CANCEL SUBCHANNEL can encounter the program
exceptions described or listed below.

When the multiple-subchannel-set facility is not
installed, bits 32-47of general register 1 must contain
0001 hex; otherwise, an operand exception is recog-
nized.

When the multiple-subchannel-set facility is installed,
bits 32-44 of general register 1 must contain zeros,
bits 45-46 must contain a valid value, and bit 47 must

contain the value one; otherwise, an operand excep-
tion is recognized.

Resulting Condition Code:

0 Start function canceled
1 Status pending
2 CANCEL SUBCHANNEL not applicable
3 Not operational

Program Exceptions:

• Operand
• Privileged operation
• Transaction constraint

Programming Notes:

1. The actions taken by CANCEL SUBCHANNEL
are completed during the execution of the
instruction.

If condition code 0 is presented, there is no sub-
sequent I/O interruption resulting from the termi-
nated I/O operation. However, the device may
have signaled a busy condition while the can-
celed operation was start pending. In this case,
the device owes a no-longer-busy signal to the
channel subsystem. This may result in unsolic-
ited device-end status before the next operation
is initiated at the device.

Condition code 2 may be presented to indicate
that the CPU has determined to end the instruc-
tion because the internal conditions of the speci-
fied subchannel cannot be immediately
determined. Subsequent execution of STORE
SUBCHANNEL may store an SCSW indicating
that CANCEL SUBCHANNEL is applicable (i.e.,
the subchannel is performing the start function
alone, is start pending, resume pending, or sus-
pended, and is not subchannel-active). In such a
case, the program can either recognize that the
I/O operation has not been terminated and allow
the operation to start or the program can retry
CANCEL SUBCHANNEL in an attempt to termi-
nate the start function. However, retrying CAN-
CEL SUBCHANNEL does not guarantee that the
instruction will end with condition code 0.

In transport mode, condition code 2 may be pre-
sented to indicate that the CPU has determined
to asynchronously signal the channel subsystem
to perform the interrogate function, and end the

14-5

C
L

E
A

R
 S

U
B

C
H

A
N

N
E

Linstruction. The LPUM must contain a nonzero
value for the interrogate to be initiated.

2. Upon the completion of CANCEL SUBCHANNEL
with condition code 0, the subchannel is ready to
accept a new start function initiated by START
SUBCHANNEL.

CLEAR SUBCHANNEL

CSCH [S]

The designated subchannel is cleared, the current
start or halt function, if any, is terminated at the des-
ignated subchannel, and the channel subsystem is
signaled to asynchronously perform the clear func-
tion at the designated subchannel and at the associ-
ated device.

General register 1 contains a subsystem-identifica-
tion word (SID) that designates the subchannel to be
cleared.

If a start or halt function is in progress, it is termi-
nated at the subchannel.

The subchannel is made no longer status pending.
All activity, as indicated in the activity-control field of
the SCSW, is cleared at the subchannel, except that
the subchannel is made clear pending. Any functions
in progress, as indicated in the function-control field
of the SCSW, are cleared at the subchannel, except
for the clear function that is to be performed because
of the execution of this instruction.

The channel subsystem is signaled to asynchro-
nously perform the clear function. The clear function
is summarized below in the section “Associated
Functions” and is described in detail in “Clear Func-
tion” on page 15-14.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of CLEAR SUBCHAN-
NEL, the channel subsystem asynchronously per-

forms the clear function. If conditions allow, the
channel subsystem chooses a channel path and
attempts to issue the clear signal to the device to ter-
minate the I/O operation, if any. The subchannel then
becomes status pending. Conditions encountered by
the channel subsystem that preclude issuing the
clear signal to the device do not prevent the subchan-
nel from becoming status pending (see “Clear Func-
tion” on page 15-14).

When the subchannel becomes status pending as a
result of performing the clear function, data transfer,
if any, with the associated device has been termi-
nated. The SCSW stored when the resulting status is
cleared by TEST SUBCHANNEL has the clear-func-
tion bit stored as one. If the channel subsystem can
determine that the clear signal was issued to the
device, the clear-pending bit is stored as zero in the
SCSW. Otherwise, the clear-pending bit is stored as
one, and other indications are provided that describe
in greater detail the condition that was encountered.
(See “Interruption-Response Block” on page 16-6.)

Measurement data is not accumulated, and device-
connect time is not stored in the extended-status
word for the subchannel, for a start function that is
terminated by CLEAR SUBCHANNEL.

Special Conditions

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
CLEAR SUBCHANNEL. A subchannel is not opera-
tional for CLEAR SUBCHANNEL when the subchan-
nel is not provided in the channel subsystem, has no
valid device number assigned to it, or is not enabled.

CLEAR SUBCHANNEL can encounter the program
exceptions described or listed below.

When the multiple-subchannel-set facility is not
installed, bits 32-47 of general register 1 must con-
tain 0001 hex; otherwise, an operand exception is
recognized.

When the multiple-subchannel-set facility is installed,
bits 32-44 of general register 1 must contain zeros,
bits 45-46 must contain a valid value, and bit 47 must
contain the value one; otherwise, an operand excep-
tion is recognized.

'B230' / / / / / / / / / / / / / / / /
0 16 31

14-6 The z/Architecture I/O Architecture

H
A

L
T

 S
U

B
C

H
A

N
N

E
L Resulting Condition Code:

0 Function initiated
1 —
2 —
3 Not operational

Program Exceptions:

• Operand
• Privileged operation
• Transaction constraint

HALT SUBCHANNEL

HSCH [S]

The current start function, if any, is terminated at the
designated subchannel, and the channel subsystem
is signaled to asynchronously perform the halt func-
tion at the designated subchannel and at the associ-
ated device.

General register 1 contains a subsystem-identifica-
tion word that designates the subchannel to be
halted.

If a start function is in progress, it is terminated at the
subchannel.

The subchannel is made halt pending, and the halt
function is indicated at the subchannel.

When HALT SUBCHANNEL is executed and the des-
ignated subchannel is subchannel-and-device active
and status pending with intermediate status, the sta-
tus-pending indication is eliminated (see the discus-
sion of bits 24, 25, and 28 in “Activity Control (AC)”
on page 16-14). The status-pending condition is
reestablished as part of the halt function (see the
section “Associated Functions” below).

The channel subsystem is signaled to asynchro-
nously perform the halt function. The halt function is
summarized below in the section “Associated Func-
tions” and is described in detail in “Halt Function” on
page 15-16.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of HALT SUBCHAN-
NEL, the channel subsystem asynchronously per-
forms the halt function. If conditions allow, the
channel subsystem chooses a channel path and
attempts to issue the halt signal to the device to ter-
minate the I/O operation, if any. The subchannel then
becomes status pending.

When the subchannel becomes status pending as a
result of performing the halt function, data transfer, if
any, with the associated device has been terminated.
The SCSW stored when the resulting status is
cleared by TEST SUBCHANNEL has the halt-func-
tion bit stored as one. If the halt signal was issued to
the device, the halt-pending bit is stored as zero. Oth-
erwise, the halt-pending bit is stored as one, and
other indications are provided that describe in
greater detail the condition that was encountered.
(See “Interruption-Response Block” on page 16-6.
and “Halt Function” on page 15-16.)

On some models, path availability is tested as part of
the halt function instead of as part of the execution of
the instruction. In these models, when no channel
path is available for selection, the halt signal is not
issued, and the subchannel is made status pending.
When the status-pending condition is subsequently
cleared by TEST SUBCHANNEL, the halt-pending
bit is stored as one in the SCSW.

If a status-pending condition is eliminated during the
execution of HALT SUBCHANNEL, then this condi-
tion is reestablished along with the other status con-
ditions when the completion of the halt function is
indicated to the program.

The halt-pending condition may not be recognized by
the channel subsystem if a status-pending condition
has been generated. This situation could occur, for
example, when alert status is presented or generated
while the subchannel is already start pending or
resume pending, or when primary status is pre-
sented during the attempt to initiate the I/O operation
for the first command as specified by the start func-
tion or implied by the resume function. If recognition
of the status-pending condition by the channel sub-
system has occurred logically prior to recognition of
the halt-pending condition, the SCSW, when cleared
by TEST SUBCHANNEL, has the halt-pending bit
stored as one.

'B231' / / / / / / / / / / / / / / / /

0 16 31

14-7

M
O

D
IF

Y
 S

U
B

C
H

A
N

N
E

LIf measurement data is being accumulated when a
start function is terminated by HALT SUBCHANNEL,
the measurement data continues to be accumulated
for the subchannel and reflects the extent of sub-
channel and device usage required, if any, while per-
forming the currently terminated start function. The
measurement data, if any, is accumulated in the
measurement block for the subchannel or placed in
the extended-status word, as appropriate, when the
subchannel becomes status-pending with primary or
secondary status. (See “Channel-Subsystem Moni-
toring” on page 17-1.)

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending alone
or is status pending with any combination of alert, pri-
mary, or secondary status.

Condition code 2 is set, and no other action is
taken, when the subchannel is busy for HALT SUB-
CHANNEL. The subchannel is busy for HALT SUB-
CHANNEL when a halt function or clear function is
already in progress at the subchannel.

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
HALT SUBCHANNEL. A subchannel is not opera-
tional for HALT SUBCHANNEL when the subchannel
is not provided in the channel subsystem, has no
valid device number assigned to it, or is not enabled.
On some models, a subchannel is also not opera-
tional for HALT SUBCHANNEL when no channel
path is available for selection by the device. (See
“Channel-Path Availability” on page 15-13 for a
description of channel paths that are available for
selection.)

HALT SUBCHANNEL can encounter the program
exceptions described or listed below.

When the multiple-subchannel-set facility is not
installed, bits 32-47 of general register 1 must con-
tain 0001 hex; otherwise, an operand exception is
recognized.

When the multiple-subchannel-set facility is installed,
bits 32-44 of general register 1 must contain zeros,
bits 45-46 must contain a valid value, and bit 47 must
contain the value one; otherwise, an operand excep-
tion is recognized.

Resulting Condition Code:

0 Function initiated
1 Status pending with other than intermediate sta-

tus
2 Busy
3 Not operational

Program Exceptions:

• Operand
• Privileged operation
• Transaction constraint

Programming Note: After the execution of HALT
SUBCHANNEL, the status-pending condition indicat-
ing the completion of the halt function may be
delayed for an extended period of time, for example,
when the device is a magnetic-tape unit executing a
rewind command.

MODIFY SUBCHANNEL

MSCH D2(B2) [S]

The information contained in the subchannel-infor-
mation block (SCHIB) is placed in the program-modi-
fiable fields at the subchannel. As a result, the
program influences, for that subchannel, certain
aspects of I/O processing relative to the clear, halt,
resume, and start functions and certain I/O support
functions.

General register 1 contains a subsystem-identifica-
tion word (SID) that designates the subchannel that
is to be modified as specified by certain fields of the
SCHIB. The second-operand address is the logical
address of the SCHIB and must be designated on a
word boundary; otherwise, a specification exception
is recognized.

The channel-subsystem operations that may be influ-
enced due to placement of SCHIB information in the
subchannel are:

• I/O processing (E field)
• Interruption processing (interruption parameter

and ISC field)
• Path management (D, LPM, and POM fields)

'B232' B2 D2

0 16 20 31

14-8 The z/Architecture I/O Architecture

M
O

D
IF

Y
 S

U
B

C
H

A
N

N
E

L • Monitoring and address-limit checking (measure-
ment-block index, LM, and MM fields)

• Measurement-block-format control (F field)
• Extended-measurement-word-mode enable (X

field)
• Concurrent-sense facility (S field)
• Measurement-block address (MBA)

Bits 0, 1, 6, and 7 of word 1, and bits 0-28 of word 6
of the SCHIB operand must be zeros, and bits 9 and
10 of word 1 must not both be ones. When the
extended-I/O-measurement-block facility is installed
and a format-1 measurement block is specified, bits
26-31 of word 11 must be specified as zeros. When
the extended-I/O-measurement-block facility is not
installed, bit 29 of word 6 must be specified as zero;
otherwise, an operand exception is recognized.
When the extended-I/O-measurement-word facility is
not installed, or is installed but not enabled, bit 30 of
word 6 must be specified as zero; otherwise, an
operand exception is recognized. The remaining
fields of the SCHIB are ignored and do not affect the
processing of MODIFY SUBCHANNEL. (For further
details, see “Subchannel-Information Block” on
page 15-2.)

Condition code 0 is set to indicate that the informa-
tion from the SCHIB has been placed in the program-
modifiable fields at the subchannel, except that,
when the device-number-valid bit (V) at the desig-
nated subchannel is zero, then condition code 0 is
set, and the information from the SCHIB is not placed
in the program-modifiable fields.

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending. (See
“Status Control (SC)” on page 16-17.)

Condition code 2 is set, and no other action is
taken, when a clear, halt, or start function is in prog-
ress at the subchannel. (See “Function Control (FC)”
on page 16-13.)

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
MODIFY SUBCHANNEL. A subchannel is not opera-
tional for MODIFY SUBCHANNEL when the sub-
channel is not provided in the channel subsystem.

MODIFY SUBCHANNEL can encounter the program
exceptions described or listed below.

In word 1 of the SCHIB, bits 0, 1, 6, and 7 must be
zeros and, when the address-limit-checking facility is
installed, bits 9 and 10 must not both be ones. In
word 6 of the SCHIB, bits 0-28 must be zeros. Other-
wise an operand exception is recognized.

When the extended-I/O-measurement-block facility is
installed and a format-1 measurement block is speci-
fied, bits 26-31 of word 11 must be specified as
zeros; otherwise, an operand exception is recog-
nized. When the extended-I/O-measurement-block
facility is not installed, bit 29 of word 6 must be speci-
fied as zero; otherwise, an operand exception is rec-
ognized. When the extended-I/O-measurement-word
facility is not installed, or is installed but not enabled,
bit 30 of word 6 must be specified as zero; otherwise,
an operand exception is recognized.

When the multiple-subchannel-set facility is not
installed, bits 32-47 of general register 1 must con-
tain 0001 hex; otherwise, an operand exception is
recognized.

When the multiple-subchannel-set facility is installed,
bits 32-44 of general register 1 must contain zeros,
bits 45-46 must contain a valid value, and bit 47 must
contain the value one; otherwise, an operand excep-
tion is recognized.

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized.

The execution of MODIFY SUBCHANNEL is sup-
pressed on all addressing and protection exceptions.

Resulting Condition Code:

0 Function completed
1 Status pending
2 Busy
3 Not operational

Program Exceptions:

• Access (fetch, operand 2)
• Operand
• Privileged operation
• Specification
• Transaction constraint

14-9

R
E

S
E

T
 C

H
A

N
N

E
L

 P
A

T
HProgramming Notes:

1. If a device signals I/O-error alert while the asso-
ciated subchannel is disabled, the channel sub-
system issues the clear signal to the device and
discards the I/O-error-alert indication without
generating an I/O-interruption condition.

2. If a device presents unsolicited status while the
associated subchannel is disabled, that status is
discarded by the channel subsystem without
generating an I/O-interruption condition. How-
ever, if the status presented contains unit check,
the channel subsystem issues the clear signal for
the associated subchannel and does not gener-
ate an I/O-interruption condition. This should be
taken into account when the program uses MOD-
IFY SUBCHANNEL to enable a subchannel. For
example, the medium on the associated device
that was present when the subchannel became
disabled may have been replaced, and, there-
fore, the program should verify the integrity of
that medium.

3. It is recommended that the program inspect the
contents of the subchannel by subsequently
issuing STORE SUBCHANNEL when MODIFY
SUBCHANNEL sets condition code 0. Use of
STORE SUBCHANNEL is a method for deter-
mining if the designated subchannel was
changed or not. Failure to inspect the subchan-
nel following the setting of condition code 0 by
MODIFY SUBCHANNEL may result in conditions
that the program does not expect to occur.

RESET CHANNEL PATH

RCHP [S]

The channel-path-reset facility is signaled to perform
the channel-path-reset function on the channel path
designated by the contents of general register 1.

The format of general register 1 is as follows:

Channel-Path Identifier (CHPID): Bit positions
56-63 of general register 1 contain an unsigned
binary integer that designates the channel path on
which the channel-path-reset function is to be per-
formed.

Bit positions in general register 1 that are shown as
zeros, are reserved and must contain zeros; other-
wise, an operand exception is recognized. Bit posi-
tions 0-31 of general register 1 are ignored.

If conditions allow, the channel-path-reset facility is
signaled to asynchronously perform the channel-
path-reset function on the designated channel path.
The channel-path-reset function is summarized
below in the section “Associated Functions” and is
described in detail in “Channel-Path Reset” on
page 17-13.

Condition code 0 is set to indicate that the channel-
path-reset facility has been signaled.

Associated Functions

Subsequent to the execution of RESET CHANNEL
PATH, the channel-path-reset facility asynchronously
performs the channel-path-reset function. Certain
indications are reset at all subchannels that have
access to the designated channel path, and the reset
signal is issued on that channel path. Any I/O func-
tions in progress at the devices are reset, but only for
the channel path on which the reset signal is
received. An I/O operation or chain of I/O operations
taking place in the multipath mode may be able to
continue to be executed on other channel paths in
the multipath group, if any. (See “Channel-Path-
Reset Function” on page 15-80.)

The result of performing the channel-path-reset func-
tion on the designated channel path is communi-
cated to the program by means of a channel report
(see “Channel Report” on page 17-28).

'B23B' / / / / / / / / / / / / / / / /

0 16 31

/ /
0 31

0 CHPID
32 56 63

14-10 The z/Architecture I/O Architecture

R
E

S
U

M
E

 S
U

B
C

H
A

N
N

E
L Special Conditions

Condition code 2 is set, and no other action is
taken, when, on some models, the channel-path-
reset facility is busy performing the channel-path-
reset function for a previous execution of the RESET
CHANNEL PATH instruction.

Condition code 3 is set, and no other action is
taken, when, on some models, the designated chan-
nel path is not operational for the execution of
RESET CHANNEL PATH. On these models, the
channel path is not operational for the execution of
RESET CHANNEL PATH when the designated chan-
nel path is not physically available.

If the channel-path-reset facility is busy and the des-
ignated channel path is not physically available, it
depends on the model whether condition code 2 or 3
is set.

RESET CHANNEL PATH can encounter the program
exceptions described or listed below.

Bit positions 32-55 of general register 1 must contain
zeros; otherwise, an operand exception is recog-
nized. Bit positions 0-31 of general register 1 are
ignored.

Resulting Condition Code:

0 Function initiated
1 —
2 Busy
3 Not operational

Program Exceptions:

• Operand
• Privileged operation
• Transaction constraint

Programming Notes:

1. To eliminate the possibility of a data-integrity
exposure for devices that have the capability of
generating unsolicited device-end status, I/O
operations in progress with such devices on the
channel path for which RESET CHANNEL PATH
is to be executed must be terminated by the exe-
cution of either HALT SUBCHANNEL or CLEAR
SUBCHANNEL. Otherwise, subsequent to
receiving the reset signal, the device may pres-
ent an unsolicited device end that may be inter-

preted by the channel subsystem as a solicited
device end and cause command chaining to
occur.

2. If the status-verification facility is being used and
RESET CHANNEL PATH is executed without first
stopping all ongoing operations associated with
the channel path being reset, erroneous device-
status-check conditions may be detected

RESUME SUBCHANNEL

RSCH [S]

The channel subsystem is signaled to perform the
resume function at the designated subchannel.

General register 1 contains a subsystem-identifica-
tion word that designates the subchannel at which
the resume function is to be performed.

The subchannel is made resume pending.

Logically prior to the setting of condition code 0 and
only if the subchannel is currently in the suspended
state, path-not-operational conditions at the sub-
channel, if any, are cleared.

The channel subsystem is signaled to asynchro-
nously perform the resume function. The resume
function is summarized below in the section “Associ-
ated Functions” and is described in detail in “Start
Function and Resume Function” on page 15-20

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of RESUME SUB-
CHANNEL, the channel subsystem asynchronously
performs the resume function. Except when the sub-
channel is subchannel active, if the execution of
RESUME SUBCHANNEL results in the setting of
condition code 0, performance of the resume func-
tion causes execution of a currently suspended chan-
nel program to be resumed with the associated
device, provided that the suspend flag for the current
CCW has been set to zero by the program. If the sus-
pend flag remains one, execution of the channel pro-

'B238' / / / / / / / / / / / / / / / /
0 16 31

14-11

R
E

S
U

M
E

 S
U

B
C

H
A

N
N

E
Lgram remains suspended. But, if the subchannel is

subchannel active at the time the execution of
RESUME SUBCHANNEL results in the setting of
condition code 0, then it is unpredictable whether
execution of the current program is resumed or
whether it is found by the resume function that the
subchannel has become suspended in the interim.
The subchannel is found to be suspended by the
resume function only if the subchannel is status
pending with intermediate status when the resume-
pending condition is recognized by the channel sub-
system. (See “Start Function and Resume Function”
on page 15-20.)

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending.

Condition code 2 is set, and no other action is
taken, when the resume function is not applicable.
The resume function is not applicable when the sub-
channel (1) has any function other than the start
function alone specified, (2) has no function speci-
fied, (3) is resume pending, or (4) does not have sus-
pend control specified for the start function in
progress.

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for the
resume function. A subchannel is not operational for
the resume function if the subchannel is not provided
in the channel subsystem, has no valid device num-
ber assigned to it, or is not enabled.

RESUME SUBCHANNEL can encounter the pro-
gram exceptions described or listed below.

When the multiple-subchannel-set facility is not
installed, bits 32-47 of general register 1 must con-
tain 0001 hex; otherwise, an operand exception is
recognized.

When the multiple-subchannel-set facility is installed,
bits 32-44 of general register 1 must contain zeros,
bits 45-46 must contain a valid value, and bit 47 must
contain the value one; otherwise, an operand excep-
tion is recognized.

Resulting Condition Code:

0 Function initiated
1 Status pending
2 Function not applicable
3 Not operational

Program Exceptions:

• Operand
• Privileged operation
• Transaction constraint

Programming Notes:

1. When channel-program execution is resumed
from the suspended state, the device views the
resumption as the beginning of a new chain of
commands. When the suspension of channel-
program execution occurs and the device
requires that certain commands be first or
appear only once in a chain of commands (for
example, direct-access-storage devices), the
program must ensure that the appropriate com-
mands in the proper sequence are fetched by the
channel subsystem after channel-program exe-
cution is resumed. One way the program can
ensure proper sequencing of commands at the
device is by allowing the I/O interruption to occur
for an intermediate interruption condition due to
suspension.

It is not reliable to notify the program that the
subchannel is suspended by using the PCI flag in
the CCW that contains the S flag because the
PCI I/O interruption may occur before the sub-
channel is suspended. The SCSW would indi-
cate that an I/O operation is in progress at the
subchannel and device in this case.

The suspend flag of the target CCW should be
set to zero before RESUME SUBCHANNEL is
executed; otherwise, it is possible that the
resume-pending condition may be recognized
and the CCW refetched while the suspend flag is
still one, in which case the resume-pending con-
dition would be reset, and the execution of the
channel program would be suspended. If the
suspend flag of the target CCW is set to zero
before the execution of RESUME SUBCHAN-
NEL, the channel program is not suspended,
provided that the subchannel is not subchannel
active at the time the execution of RESUME
SUBCHANNEL results in the setting of condition

14-12 The z/Architecture I/O Architecture

S
E

T
 A

D
D

R
E

S
S

 L
IM

IT code 0. If condition code 0 is set while the sub-
channel is still subchannel active, it is unpredict-
able whether the resume-pending condition is
recognized by the channel subsystem or whether
it is found by the resume function that the sub-
channel has become suspended in the interim.
The subchannel is found to be suspended by the
resume function only if the subchannel is status
pending with intermediate status at the time the
resume-pending condition is recognized. When
the subchannel is suspended, the execution of
TEST SUBCHANNEL, which clears the interme-
diate interruption condition, also clears the indi-
cation of resume pending.

2. Some models recognize a resume-pending con-
dition only after a CCW having an S flag validly
set to one is fetched. Therefore, if a subchannel
is resume pending and, during the execution of
the channel program, no CCW is fetched having
an S flag validly set to one, the subchannel
remains resume pending until the primary inter-
ruption condition is cleared by TEST SUBCHAN-
NEL.

3. Path availability is not tested during the execution
of RESUME SUBCHANNEL. Instead, path avail-
ability is tested when the channel subsystem
begins performance of the resume function.

4. The contents of the CCW fetched during perfor-
mance of the resume function may be different
from the contents of the same CCW when it was
previously fetched and contained an S flag val-
idly set to one.

SET ADDRESS LIMIT

SAL [S]

The address-limit-checking facility is signaled to use
the specified address as the address-limit value, and
the specified address is passed to the facility.
Depending on the model, this instruction may not be
provided. When this instruction is not provided, it is
checked for operand exception and privileged-opera-
tion exception, and then is suppressed.

When the address-limit-checking facility is installed,
the SET ADDRESS LIMIT instruction is available for
use. When the address-limit-checking facility is not

installed, or the FCX facility is installed, the SET
ADDRESS LIMIT instruction is not provided.

General register 1 contains the absolute address to
be used as the address-limit value. The specified
address must be on a 64 K-byte boundary and may
designate a maximum absolute storage address of
2,147,418,112 (7FFF0000 hex) regardless of
whether the CPU is operating in the 24-bit, 31-bit, or
64-bit addressing mode. Bits 0-31 of general register
1 are ignored, and bit 32 must be zero.

General register 1 has the following format:

Associated Functions

The value that is used by the address-limit-checking
facility when determining whether to permit or pro-
hibit a data access is called the address-limit value.
The initial address-limit value is zero. The initial
address-limit value is used by the address-limit-
checking facility until the facility recognizes a signal,
caused by the execution of SET ADDRESS LIMIT, to
use a specified address. The recognition of this spec-
ified address as the new address-limit value occurs
asynchronously with respect to the execution of SET
ADDRESS LIMIT.

If address-limit checking is specified for a subchan-
nel, then whether the specified address is used by
the address-limit-checking facility, when determining
whether to permit or prohibit a data access, depends
on whether SET ADDRESS LIMIT was executed
before, during, or after the execution of START SUB-
CHANNEL for that subchannel. If SET ADDRESS
LIMIT is executed before START SUBCHANNEL, the
specified address is used by the address-limit-check-
ing facility. If SET ADDRESS LIMIT is executed
during or after the execution of START SUBCHAN-
NEL, it is unpredictable whether the specified
address is used by the address-limit-checking facility
for that particular start function. For a description of
the manner in which address-limit checking is per-
formed, see “Address-Limit Checking” on
page 17-26.

'B237' / / / / / / / / / / / / / / / /

0 16 31

/ /
0 31

0 Address-Limit Value
32 63

14-13

S
E

T
 C

H
A

N
N

E
L

 M
O

N
IT

O
RSpecial Conditions

SET ADDRESS LIMIT can encounter the program
exceptions described or listed below.

The address in general register 1 must be desig-
nated on a 64K byte boundary, and bit 32 of general
register 1 must be zero; otherwise, an operand
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operand
• Privileged operation
• Transaction constraint

SET CHANNEL MONITOR

SCHM [S]

Each of the measurement-block-update mode and
device-connect-time-measurement mode of the
channel subsystem is made either active or inactive,
depending on the values of the measurement-mode-
control bits in general register 1. If the measurement-
mode-control bit for measurement-block update is
one, the measurement-block origin and measure-
ment-block key are passed to the channel subsys-
tem.

General register 1 has the following format:

Ignored: Bit positions 0-31 of general register 1 are
ignored.

Measurement-Block Key (MBK): Bit positions
32-35 of general register 1 contain the measure-
ment-block key. When bit 62 is one, MBK specifies

the access key that is to be used by the channel sub-
system when it accesses the measurement-block
area and, when the extended-I/O-measurement-
block facility is installed, to access format-1 measure-
ment blocks. Otherwise, MBK is ignored.

Measurement-Block-Update Control (M): Bit 62
of general register 1 is the measurement-mode-con-
trol bit that controls the measurement-block-update
mode. When bit 62 of general register 1 is one and
conditions allow, the measurement-block-update
facility is signaled to asynchronously make the mea-
surement-block-update mode active. In addition, the
measurement-block-origin (MBO) address in general
register 2 and the measurement-block key (MBK) in
general register 1 are passed to the measurement-
block-update facility.

The measurement-block origin is used to determine
the location of format-0 measurement blocks; the
address of format-1 measurement blocks is stored at
the subchannel using MODIFY SUBCHANNEL. The
measurement-block key is used to access both for-
mat-0 and format-1 measurement blocks. The asyn-
chronous functions that are performed by the
measurement-block-update facility are summarized
below in the section “Associated Functions” and are
described in detail in “Channel-Subsystem Monitor-
ing” on page 17-1.

When bit 62 of general register 1 is zero and condi-
tions allow, the measurement-block-update mode is
made inactive if it is active or remains inactive if it is
inactive. The contents of bit positions 32-35 (MBK) of
general register 1 and the contents of general regis-
ter 2 are ignored.

Device-Connect-Time-Measurement Control
(D): Bit 63 of general register 1 is the measure-
ment-mode-control bit (D). When bit 63 is one and
conditions allow, the device-connect-time-measure-
ment mode is made active if it is inactive or remains
active if it is active. When bit 63 is zero and condi-
tions allow, the device-connect-time-measurement
mode is made inactive if it is active or remains inac-
tive if it is inactive.

Bit positions 36-61of general register 1 are reserved
and must contain zeros; otherwise, an operand
exception is recognized.

General register 2 has the following format:

'B23C' / / / / / / / / / / / / / / / /

0 16 31

0 /
0 31

1 MBK 0 MD
32 36 63

14-14 The z/Architecture I/O Architecture

S
E

T
 C

H
A

N
N

E
L

 M
O

N
IT

O
R

Measurement-Block-Origin (MBO) Address:
When bit 62 (M) of general register 1 is one, bit posi-
tions 0-63 of general register 2 contain the absolute
address of the measurement-block origin (MBO),
which is the beginning of the measurement-block
area. The MBO address is used by the channel sub-
system to locate format-0 measurement blocks. The
origin of the measurement-block area must be desig-
nated on a 32-byte boundary otherwise, an operand
exception is recognized. When bit 62 of general reg-
ister 1 is zero, the contents of general register 2 are
ignored.

If the channel-subsystem timer that is used by the
channel-subsystem-monitoring facilities is in the error
state, the state is reset. This happens independent of
the setting of the two measurement-mode-control
bits. (See “Channel-Subsystem Timing” on
page 17-2 for a description of the timing facilities.)

Associated Functions

When the measurement-block-update facility is sig-
naled (by means of SET CHANNEL MONITOR) to
make the measurement-block-update mode active,
the functions that are performed by the facility
depend on whether or not the mode is already active
when the signal is generated.

If the measurement-block-update mode is inactive
when the signal is generated, the mode remains
inactive until the measurement-block-update facility
recognizes the signal. When the measurement-
block-update facility recognizes the signal, the mea-
surement-block-update mode is made active, and the
MBK that was passed when the signal was gener-
ated is used to access all measurement blocks, and
the MBO that was passed when the signal was gen-
erated is used to determine the address of format-0
measurement blocks.

If the measurement-block-update mode is active
when the signal is generated, the mode remains
active, and the MBK and MBO associated with the
execution of a previous SET CHANNEL MONITOR
instruction continue to be used to control the storing
of measurement data until the measurement-block-
update facility recognizes the signal. When the mea-

surement-block-update facility recognizes the signal,
the MBK and MBO associated with that signal are
used instead of the MBK and MBO associated with
the execution of a previous SET CHANNEL MONI-
TOR instruction. The SET CHANNEL MONITOR
instruction does not affect the measurement-block
address used for format-1 measurement blocks, but
the MBK associated with the signal becomes the key
used to access the measurement block.

In all above cases, the measurement-block-update
facility recognizes the signal during, or subsequent
to, the execution of the SET CHANNEL MONITOR
instruction that caused the signal to be generated
and logically prior to the performance of any start
function that is initiated by the subsequent execution
of START SUBCHANNEL for a subchannel that is
enabled for measurement by this facility. If a sub-
channel that is enabled for measurement by this facil-
ity already has a start function in progress when the
signal is generated, it is unpredictable when mea-
surement data for that subchannel is stored by using
the MBK and MBO associated with that signal.

While the measurement-block-update mode is active,
performance measurements are accumulated for
subchannels that are enabled for measurement-block
update. Measurements for a subchannel are either
accumulated in a single 32-byte format-0 measure-
ment block within the measurement-block area, or a
64-byte format-1 measurement block pointed to by
the measurement-block address at the subchannel.
A subchannel is enabled for the measurement-block-
update mode by setting the measurement-block-
update-enable bit to one in the SCHIB and then exe-
cuting the MODIFY SUBCHANNEL instruction for
that subchannel. The measurement-block-format-
control bit (F) at the subchannel specifies whether a
format-0 or format-1 measurement block is stored for
a subchannel when the measurement-block-update
mode is active and the subchannel is enabled for
measurement-block updates. When the F bit is zero,
the MBO and MBI are used to determine the address
of the measurement block for the subchannel, and a
format-0 measurement block is stored. When the F
bit is one, the measurement-block-address field at
the subchannel contains the address of the measure-
ment block for the subchannel, and a format-1 mea-
surement block is stored. The F bit and
measurement-block-address field are modified using
the MODIFY SUBCHANNEL instruction.

When the device-connect-time-measurement mode
is active, measurements of the length of time that the

MBO Address
0 63

14-15

S
T

A
R

T
 S

U
B

C
H

A
N

N
E

Ldevice is actively communicating with the channel
subsystem during the execution of a channel pro-
gram are accumulated for subchannels that are
enabled for device-connect-time measurement. Mea-
surements for a subchannel are provided in the
extended-status word ESW of the IRB. A subchannel
is enabled for device-connect-time-measurement
mode by setting the device-connect-time-measure-
ment-enable bit to one in the SCHIB and then execut-
ing MODIFY SUBCHANNEL for that subchannel.

For a more detailed description of the measurement-
block-update mode, the format and contents of the
measurement block, and the device-connect-time-
measurement mode, see “Channel-Subsystem Moni-
toring” on page 17-1.

Special Conditions

SET CHANNEL MONITOR can encounter the pro-
gram exceptions described or listed below.

Bits 36-61 of general register 1 must be zeros. When
bit 62 (M) of general register 1 is one, the MBO
address in general register 2 must be designated on
a 32-byte boundary. Otherwise, an operand excep-
tion is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operand
• Privileged operation
• Transaction constraint

Programming Note: When the channel subsystem
is initialized, the measurement-block-update and
device-connect-time-measurement modes are made
inactive.

START SUBCHANNEL

SSCH D2(B2) [S]

The channel subsystem is signaled to asynchro-
nously perform the start function for the associated
device, and the execution parameters that are con-
tained in the designated ORB are placed at the des-

ignated subchannel. (See “Operation-Request Block”
on page 15-24.)

General register 1 contains a subsystem-identifica-
tion word that designates the subchannel to be
started. The second-operand address is the logical
address of the ORB and must be designated on a
word boundary; otherwise, a specification exception
is recognized.

The execution parameters contained in the ORB are
placed at the subchannel.

When START SUBCHANNEL is executed, the sub-
channel is status pending with only secondary status,
and the extended-status-word-format bit (L) is zero,
the status-pending condition is discarded at the sub-
channel.

The subchannel is made start pending, and the start
function is indicated at the subchannel. If the second
operand designates a command-mode ORB, the
subchannel remains in command mode. If the sec-
ond operand designates a transport-mode ORB, the
subchannel enters transport mode. When the sub-
channel enters transport mode, the LPUM is set to
zero if no previous dedicated allegiance exists; other-
wise the LPUM is not changed.

Logically prior to the setting of condition code 0,
path-not-operational conditions at the subchannel, if
any, are cleared.

The channel subsystem is signaled to asynchro-
nously perform the start function. The start function
is summarized below in the section “Associated
Functions” and is described in detail in “Start Func-
tion and Resume Function” on page 15-20.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of START SUBCHAN-
NEL, the channel subsystem asynchronously per-
forms the start function.

The contents of the ORB, other than the fields that
must contain all zeros, are checked for validity. On
some models, the fields of the ORB that must contain
zeros are checked asynchronously, instead of during
the execution of the instruction. When invalid fields
are detected asynchronously, the subchannel

'B233' B2 D2

0 16 20 31

14-16 The z/Architecture I/O Architecture

S
T

O
R

E
 C

H
A

N
N

E
L

 P
A

T
H

 S
T

A
T

U
S becomes status pending with primary, secondary,

and alert status and with deferred condition code 1
and program check indicated. (See “Program Check”
on page 16-25.) In this situation, the I/O operation or
chain of I/O operations is not initiated at the device,
and the condition is indicated by the start-pending bit
being stored as one when the SCSW is cleared by
the execution of TEST SUBCHANNEL. (See “Sub-
channel-Status Word” on page 16-7).

On some models, path availability is tested asynchro-
nously, instead of during the execution of the instruc-
tion. When no channel path is available for selection,
the subchannel becomes status pending with pri-
mary and secondary status and with deferred condi-
tion code 3 indicated. The I/O operation or chain of
I/O operations is not initiated at the device, and this
condition is indicated by the start-pending bit being
stored as one when the SCSW is cleared by the exe-
cution of TEST SUBCHANNEL.

If conditions allow, a channel path is chosen, and
execution of the channel program that is designated
in the ORB is initiated. (See“Start Function and
Resume Function” on page 15-20.)

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending when
START SUBCHANNEL is executed. On some mod-
els, condition code 1 is not set when the subchannel
is status pending with only secondary status; instead,
the status-pending condition is discarded.

Condition code 2 is set, and no other action is
taken, when a start, halt, or clear function is currently
in progress at the subchannel (see “Function Control
(FC)” on page 16-13).

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
START SUBCHANNEL. A subchannel is not opera-
tional for START SUBCHANNEL if the subchannel is
not provided in the channel subsystem, has no valid
device number associated with it, or is not enabled.

A subchannel is also not operational for START SUB-
CHANNEL, on some models, when no channel path
is available for selection. On these models, the lack
of an available channel path is detected as part of the
START SUBCHANNEL execution. On other models,
channel-path availability is only tested as part of the
asynchronous start function.

START SUBCHANNEL can encounter the program
exceptions described or listed below.

In word 1 of the command-mode ORB, bits 26-30
must be zeros, and, in word 2 of the command-mode
ORB, bit 0 must be zero. Otherwise, on some mod-
els, an operand exception is recognized. On other
models, an I/O-interruption condition is generated,
indicating program check, as part of the asynchro-
nous start function.

START SUBCHANNEL can also encounter the pro-
gram exceptions listed below.

When the multiple-subchannel-set facility is not
installed, bits 32-47 of general register 1 must con-
tain 0001 hex; otherwise, an operand exception is
recognized.

When the multiple-subchannel-set facility is installed,
bits 32-44 of general register 1 must contain zeros,
bits 45-46 must contain a valid value, and bit 47 must
contain the value one; otherwise, an operand excep-
tion is recognized.

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized.

The execution of START SUBCHANNEL is sup-
pressed on all addressing and protection exceptions.

Resulting Condition Code:

0 Function initiated
1 Status pending
2 Busy
3 Not operational

Program Exceptions:

• Access (fetch, operand 2)
• Operand
• Privileged operation
• Specification
• Transaction constraint

STORE CHANNEL PATH STATUS

STCPS D2(B2) [S]

'B23A' B2 D2

0 16 20 31

14-17

S
T

O
R

E
 C

H
A

N
N

E
L

 R
E

P
O

R
T

 W
O

R
DDepending on the model, this instruction may not be

provided. When this instruction is not provided, it is
checked for privileged operation exception and the
instruction is suppressed by the machine

A channel-path-status word of up to 256 bits is stored
at the designated location.

The second-operand address is the logical address
of the location where the channel-path-status word is
to be stored and must be designated on a 32-byte
boundary; otherwise, a specification exception is rec-
ognized.

The channel-path-status word indicates which chan-
nel paths are actively communicating with a device at
the time STORE CHANNEL PATH STATUS is exe-
cuted. Bit positions 0-255 correspond, respectively,
to the channel paths having the channel-path identifi-
ers 0-255. Each of the 256 bits at the designated
location is set to one, set to zero, or left unchanged,
as follows:

• For all channel paths in the configuration that are
actively communicating with devices at the time
STORE CHANNEL PATH STATUS is executed,
the corresponding bits are stored as ones.

• For all channel paths that are (1) provided in the
system (PIM bit in the PMCW is one) and (2) in
the configuration but not currently being used by
the channel subsystem in actively communicat-
ing with devices, the corresponding bits are
stored as zeros.

• For all channel paths that are not provided in the
system (PIM bit in the PMCW is zero), the corre-
sponding bits either are not stored or are stored
as zeros.

• For all channel paths in the configuration that are
in the channel-path-terminal state or are not
physically available (the corresponding PAM bit
in the PMCW is zero), the corresponding bits are
stored as zeros.

Special Conditions

STORE CHANNEL PATH STATUS can encounter the
program exceptions described or listed below.

The second operand must be designated on a
32-byte boundary; otherwise, a specification excep-
tion is recognized.

The execution of STORE CHANNEL PATH STATUS
is suppressed on all addressing and protection
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification
• Transaction constraint

Programming Notes:

1. To ensure a consistent interpretation of channel-
path-status-word bits, the program should, prior
to the initial use of the area, store zeros at the
location where the channel-path-status word is to
be stored.

STORE CHANNEL REPORT WORD

STCRW D2(B2) [S]

A CRW containing information affecting the channel
subsystem is stored at the designated location.

The second-operand address is the logical address
of the location where the CRW is to be stored and
must be designated on a word boundary; otherwise,
a specification exception is recognized.

When a malfunction or other condition affecting
channel-subsystem operation is recognized, a chan-
nel report (consisting of one or more CRWs) describ-
ing the condition is made pending for retrieval and
analysis by the program. The channel report contains
information concerning the identity and state of a
facility following the detection of the malfunction or
other condition. For a description of the channel
report, the CRW, and program-recovery actions
related to the channel subsystem, see “Channel-
Subsystem Recovery” on page 17-27.

When one or more channel reports are pending, the
instruction causes a CRW to be stored at the desig-
nated location and condition code 0 to be set. A
pending CRW can only be stored by the execution of
STORE CHANNEL REPORT WORD and, once

'B239' B2 D2

0 16 20 31

14-18 The z/Architecture I/O Architecture

S
T

O
R

E
 S

U
B

C
H

A
N

N
E

L stored, is no longer pending. Thus, each pending
CRW is presented only once to the program.

When no channel reports are pending in the channel
subsystem execution of STORE CHANNEL REPORT
WORD causes zeros to be stored at the designated
location and condition code 1 to be set.

Special Conditions

STORE CHANNEL REPORT WORD can encounter
the program exceptions described or listed below.

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized.

The execution of STORE CHANNEL REPORT
WORD is suppressed on all addressing and protec-
tion exceptions.

Resulting Condition Code:

0 CRW stored
1 Zeros stored
2 —
3 —

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification
• Transaction constraint

Programming Notes:

1. CRW overflow conditions may occur if STORE
CHANNEL REPORT WORD is not executed to
clear pending channel reports. If the overflow
condition is encountered, one or more channel-
report words have been lost. (See “Channel-Sub-
system Recovery” on page 17-27 for details.)

2. A pending CRW can be cleared by any CPU in
the configuration executing STORE CHANNEL
REPORT WORD, regardless of whether a
machine-check interruption has occurred in any
CPU.

STORE SUBCHANNEL

STSCH D2(B2) [S]

Control and status information for the designated
subchannel is stored in the designated SCHIB.

General register 1 contains a subsystem-identifica-
tion word that designates the subchannel for which
the information is to be stored. The second-operand
address is the logical address of the SCHIB and
must be designated on a word boundary; otherwise,
a specification exception is recognized.

When the extended-I/O-measurement-block facility is
not installed, the information that is stored in the
SCHIB consists of a path-management-control word,
a SCSW, and three words of model-dependent infor-
mation. When the extended-I/O-measurement-block
facility is installed, the information that is stored in the
SCHIB consists of a path-management-control word,
a SCSW, the measurement-block-address field, and
one word of model-dependent information. (See
“Subchannel-Information Block” on page 15-2.)

The execution of STORE SUBCHANNEL does not
change any information at the subchannel.

Condition code 0 is set to indicate that control and
status information for the designated subchannel has
been stored in the SCHIB. When the execution of
STORE SUBCHANNEL results in the setting of con-
dition code 0, the information in the SCHIB indicates
a consistent state of the subchannel.

Special Conditions

Condition code 3 is set, and no other action is
taken, when the designated subchannel is not opera-
tional for STORE SUBCHANNEL. A subchannel is
not operational for STORE SUBCHANNEL if the sub-
channel is not provided in the channel subsystem.

STORE SUBCHANNEL can encounter the program
exceptions described or listed below.

When the multiple-subchannel-set facility is not
installed, bits 32-47 of general register 1 must con-
tain 0001 hex; otherwise, an operand exception is
recognized.

'B234' B2 D2

0 16 20 31

14-19

T
E

S
T

 P
E

N
D

IN
G

 IN
T

E
R

R
U

P
T

IO
NWhen the multiple-subchannel-set facility is installed,

bits 32-44 of general register 1 must contain zeros,
bits 45-46 must contain a valid value, and bit 47 must
contain the value one; otherwise, an operand excep-
tion is recognized.

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized.

Resulting Condition Code:

0 SCHIB stored
1 —
2 —
3 Not operational

Program Exceptions:

• Access (store, operand 2)
• Operand
• Privileged operation
• Specification
• Transaction constraint

Programming Notes:

1. Device status that is stored in the SCSW may
include device-busy, control-unit-busy, or control-
unit-end indications.

2. The information that is stored in the SCHIB is
obtained from the subchannel. The STORE
SUBCHANNEL instruction does not cause the
channel subsystem to interrogate the addressed
device.

3. STORE SUBCHANNEL may be executed at any
time to sample conditions existing at the sub-
channel, without causing any pending status
conditions to be cleared.

4. Repeated execution of STORE SUBCHANNEL
without an intervening delay (for example, to
determine when a subchannel changes state)
should be avoided because repeated accesses
of the subchannel by the CPU may delay or pro-
hibit access of the subchannel by a channel sub-
system to update the subchannel.

TEST PENDING INTERRUPTION

TPI D2(B2) [S]

The I/O-interruption code for a pending I/O interrup-
tion at a subchannel is stored at the location desig-
nated by the second-operand address, and the
pending I/O-interruption request is cleared.

The second-operand address, when nonzero, is the
logical address of the location where the two-word
I/O-interruption code, consisting of words 0 and 1, is
to be stored. The second-operand address must be
designated on a word boundary; otherwise, a specifi-
cation exception is recognized.

If the second-operand address is zero, the three-
word I/O-interruption code, consisting of words 0-2, is
stored at real locations 184-195. In this case, low-
address protection and key-controlled protection do
not apply.

In the access-register mode when the second-oper-
and address is zero, it is unpredictable whether
access-register translation occurs for access register
B2. If the translation occurs, the resulting address-
space-control element is not used; that is, the inter-
ruption code still is stored at real locations 184-195.

Pending I/O-interruption requests are accepted only
for those I/O-interruption subclasses allowed by the
I/O-interruption-subclass mask in control register 6 of
the CPU executing the instruction. If no I/O-interrup-
tion requests exist that are allowed by control register
6, the I/O-interruption code is not stored, the second-
operand location is not modified, and condition code
0 is set.

If a pending I/O-interruption request is accepted, the
I/O-interruption code is stored, the pending I/O-inter-
ruption request is cleared, and condition code 1 is
set. The I/O-interruption code that is stored is the
same as would be stored if an I/O interruption had
occurred. However, PSWs are not swapped as when
an I/O-interruption occurs.

'B236' B2 D2

0 16 20 31

14-20 The z/Architecture I/O Architecture

T
E

S
T

 P
E

N
D

IN
G

 IN
T

E
R

R
U

P
T

IO
N I/O-Interruption Code

 The I/O-interruption code that is stored during the
execution of the instruction is defined as follows:

Subsystem-Identification Word (SID):
Bits 32-63 of the SID are placed in word 0.

See “I/O-Instruction Formats” in Chapter 14.

Interruption Parameter: Word 1 contains a four-
byte parameter that was specified by the program
and passed to the subchannel in word 0 of the ORB
or the PMCW. When a device presents alert status
and the interruption parameter was not previously
passed to the subchannel by an execution of START
SUBCHANNEL or MODIFY SUBCHANNEL, this field
contains zeros.

Interruption-Identification Word: Word 2, when
stored, contains the interruption-identification word,
which further identifies the source of the I/O-interrup-
tion. Word 2 is stored only when the second-operand
address is zero.

The interruption-identification word is defined as fol-
lows:

A bit (A)Bit 0 of the interruption-identification word
specifies the type of pending I/O-interruption request
that was cleared. When bit 0 is zero, the I/O-interrup-
tion request was associated with a subchannel.

I/O-Interruption Subclass (ISC): Bit positions 2-4
of the interruption-identification word contain an
unsigned binary integer, in the range 0-7, that speci-
fies the I/O-interruption subclass associated with the
subchannel for which the pending I/O-interruption
request was cleared.

The remaining bit positions are reserved and stored
as zeros.

Special Conditions 15-31

TEST PENDING INTERRUPTION can encounter the
program exceptions described or listed below.

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized.

The execution of TEST PENDING INTERRUPTION
is suppressed on all addressing and protection
exceptions.

Resulting Condition Code:

0 Interruption code not stored
1 Interruption code stored
2 —
3 —

Program Exceptions:

• Access (store, operand 2, second-operand
address nonzero only)

• Privileged operation
• Specification
• Transaction constraint

Programming Notes:

1. TEST PENDING INTERRUPTION should only
be executed with a second-operand address of
zero when I/O interruptions are masked off. Oth-
erwise, an I/O-interruption code stored by the
instruction may be lost if an I/O interruption
occurs. The I/O-interruption code that identifies
the source of an I/O interruption taken subse-
quent to TEST PENDING INTERRUPTION is
also stored at real locations 184-195, replacing
an I/O-interruption code that was stored by the
instruction.

2. In the access-register mode when the second-
operand address is zero, an access exception is
recognized if access-register translation occurs
and the access register is in error. This exception
can be prevented by making the B2 field zero or
by placing 00000000 hex, 00000001 hex, or any
other valid contents in the access register.

Word

0 Subsystem-Identification Word

1 Interruption Parameter

2 Interruption-Identification Word
0 31

A 0 ISC 0
0 2 5 31

14-21

T
E

S
T

 S
U

B
C

H
A

N
N

E
LTEST SUBCHANNEL

TSCH D2(B2) [S]

Control and status information for the subchannel is
stored in the designated IRB.

General register 1 contains a subsystem-identifica-
tion word that designates the subchannel for which
the information is to be stored. The second-operand
address is the logical address of the IRB and must be
designated on a word boundary; otherwise, a specifi-
cation exception is recognized.

The information that is stored in the IRB consists of a
SCSW, an extended-status word, and an extended-
control word. (See “Interruption-Response Block” on
page 16-6.)

If the subchannel is status pending, the status-pend-
ing bit of the status-control field is stored as one.
Whether or not the subchannel is status pending has
an effect on the functions that are performed when
TEST SUBCHANNEL is executed.

When the subchannel is status pending and TEST
SUBCHANNEL is executed, information, as
described above, is stored in the IRB, followed by the
clearing of certain conditions and indications that
exist at the subchannel as described in Figure 14-2
on page 14-21. If the subchannel is in transport
mode, the clearing of these conditions, specifically
the start function, places the subchannel in com-
mand mode. (See Figure 14-2 on page 14-21.If an
I/O-interruption request is pending for the subchan-
nel, the request is cleared. Condition code 0 is set to
indicate that these actions have been taken.

When the subchannel is not status pending and
TEST SUBCHANNEL is executed, information (as
described above) is stored in the IRB, and no condi-
tions or indications are cleared. Condition code 1 is
set to indicate that these actions have been taken.

Figure 14-2 on page 14-21 describes which condi-
tions and indications are cleared by TEST SUB-
CHANNEL when the subchannel is status pending.
All other conditions and indications at the subchannel
remain unchanged.

Special Conditions

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
TEST SUBCHANNEL. A subchannel is not opera-
tional for TEST SUBCHANNEL if the subchannel is
not provided, has no valid device number associated
with it, or is not enabled.

'B235' B2 D2

0 16 20 31

Field

Subchannel Conditions*
Alert

Status
Pending

Int
Status

Pending

Pri
Status

Pending

Sec.
Status

Pending

Status
Pending

Alone
CM TM CM TM CM TM CM TM CM TM

Function Control C C Nc Nm C C C C C C
Activity Control Cp Cp Nr Nm Cp Cp Cp Cp Cp Cp
Status Control Cs Cs Cs C Cs Cs Cs Cs Cs Cs
N Condition C C Nr Nm C C C C C C
Q Condition – C – C – C – C – C

Explanation:

– N/A.

CM Command-Mode Operation

TM Transport-Mode Operation

* Note that the rightmost column applies to status pending
when it is alone. The other four status-pending conditions
result in the clearing actions given. These actions apply
both when a single status-pending condition occurs and
when a combination of the four status-pending conditions
occurs. In the combination case, all the clearing actions of
the individual cases apply.

C Cleared.

Nm Not reset or modified by TEST SUBCHANNEL.

Cp The resume-, start-, halt-, clear pending, and suspended
conditions are cleared.

Cs The status-pending condition is cleared.

Nc Not changed unless function control indicates the halt func-
tion and activity control indicates suspended. If both the
halt function and suspended are indicated, conditions are
cleared as for status pending alone.

Nr Not changed unless activity control indicates suspended
and function control indicates the start function with or
without the halt function. If the halt function is indicated,
the conditions are cleared as for status pending alone. If
only the start function is indicated, the resume-pending
condition and the N condition are cleared.

Note: The clearing of certain subchannel conditions, places the sub-
channel in command mode. A subchannel in the idle state, or with the
function control bits zero is considered to be in command-mode.

Figure 14-2. Conditions and Indications Cleared at the
Subchannel by TEST SUBCHANNEL

14-22 The z/Architecture I/O Architecture

T
E

S
T

 S
U

B
C

H
A

N
N

E
L TEST SUBCHANNEL can encounter the program

exceptions described or listed below.

When the multiple-subchannel-set facility is not
installed, bits 32-47 of general register 1 must con-
tain 0001 hex; otherwise, an operand exception is
recognized.

When the multiple-subchannel-set facility is installed,
bits32-44 of general register 1 must contain zeros,
bits 45-46 must contain a valid value, and bit 47 must
contain the value one; otherwise, an operand excep-
tion is recognized.

The second operand must be designated on a word
boundary; otherwise, a specification exception is rec-
ognized.

When the execution of TEST SUBCHANNEL is ter-
minated on addressing and protection exceptions,
the state of the subchannel is not changed.

Resulting Condition Code:

0 IRB stored; subchannel status pending
1 IRB stored; subchannel not status pending
2 —
3 Not operational

Program Exceptions:

• Access (store, operand 2)
• Operand
• Privileged operation
• Specification

The priority of recognition of program exceptions for
the instruction is shown in Figure 14-3.

Programming Notes:

1. Device status that is stored in the SCSW may
include device-busy, control-unit-busy, or control-
unit-end indications.

2. The information that is stored in the IRB is
obtained from the subchannel. The TEST SUB-
CHANNEL instruction does not cause the chan-
nel subsystem to interrogate the addressed
device.

3. When an I/O interruption occurs, it is the result of
a status-pending condition at the subchannel,
and typically TEST SUBCHANNEL is executed
to clear the status. TEST SUBCHANNEL may
also be executed at any other time to sample
conditions existing at the subchannel.

4. Repeated execution of TEST SUBCHANNEL to
determine when a start function has been com-
pleted should be avoided because there are con-
ditions under which the completion of the start
function may or may not be indicated. For exam-
ple, if the channel subsystem is holding an inter-
face-control-check (IFCC) condition in abeyance
(for any subchannel) because another subchan-
nel is already status pending, and if the start
function being tested by TEST SUBCHANNEL
has as the only path available for selection the
channel path with the IFCC condition, then the
start function may not be initiated until the status-
pending condition in the other subchannel is
cleared, allowing the IFCC condition to be indi-
cated at the subchannel to which it applies.

5. Repeated execution of TEST SUBCHANNEL
without an intervening delay, for example, to
determine when a subchannel changes state,
should be avoided because repeated accesses
of the subchannel by the CPU may delay or pro-
hibit accessing of the subchannel by the channel
subsystem. Execution of TEST SUBCHANNEL

1.-7 Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

8.A Specification exception due to the address spec-
ified by the second operand not being on a word
boundary.

8.B Access exceptions for an access to the subchan-
nel-status-word, extended-status-word, and
extended-control-word sections of the IRB desig-
nated by the second operand.

Figure 14-3. Priority of Execution: TEST SUBCHANNEL
(Part 1 of 2)

8.C Operand exception due to an invalid field in the
subsystem-identification word specified in regis-
ter 1.

8.D Access exceptions for an access to the
extended-measurement-word section of the IRB
designated by the second operand when the
extended-I/O-measurement-word mode is
enabled at the designated subchannel.

Figure 14-3. Priority of Execution: TEST SUBCHANNEL
(Part 2 of 2)

14-23

T
E

S
T

 S
U

B
C

H
A

N
N

E
Lby multiple CPUs for the same subchannel at

approximately the same time may have the same
effect and also should be avoided.

6. The priority of I/O-interruption handling by a CPU
can be modified by the execution of TEST SUB-
CHANNEL. When TEST SUBCHANNEL is exe-
cuted and the designated subchannel has an
I/O-interruption request pending, that I/O-inter-
ruption request is cleared, and the SCSW is

stored, without regard to any previously estab-
lished priority. The relative priority of the remain-
ing I/O-interruption requests is unchanged.

– Bit position 52 of the IOTA contains zero.

 .

14-24 The z/Architecture I/O Architecture

T
E

S
T

 S
U

B
C

H
A

N
N

E
L

15-1© Copyright IBM Corp. 2000, 2019

Chapter 15. Basic I/O Functions

Control of Basic I/O Functions. 15-3
Subchannel-Information Block. 15-3

Path-Management-Control Word. 15-3
Subchannel-Status Word. 15-10
Model-Dependent Area/Measurement

Block Address . 15-10
Summary of Modifiable Fields 15-11

Channel-Path Allegiance 15-13
Working Allegiance 15-13

Working Allegiance for Subchannels
Operating in Command Mode 15-13

Working Allegiance for Subchannels
Operating in Transport Mode. 15-13

Active Allegiance . 15-14
Dedicated Allegiance. 15-14
Channel-Path Availability. 15-14
Control-Unit Type. 15-15

Clear Function . 15-15
Clear-Function Path Management. 15-15
Clear-Function Subchannel Modification . . . 15-16
Clear-Function Signaling and Completion . . 15-16

Halt Function . 15-17
Halt-Function Path Management 15-17
Halt-Function Signaling and Completion . . . 15-18

Start Function and Resume Function 15-21
Start-Function and Resume-Function Path

Management . 15-21
Interrogate Function . 15-23

Interrogate-Function Path Management . . . 15-23
Interrogate TCCB Transportation and

Completion. 15-23
Execution of I/O Operations 15-24

Blocking of Data. 15-25
Operation-Request Block. 15-25

Command-Mode ORB 15-26
Transport-Mode ORB 15-31

Channel-Command Word 15-32
Transport Control Word 15-34
Transport-Command-Control Block 15-37

Transport-Command-Area Header 15-38
Transport-Command Area 15-38
Device-Command Word 15-39

Transport-Command-Area Trailer 15-41
Transport-Command DCW 15-43
Transfer-CBC-Offset-Block DCW 15-44
CBC-Offset Block 15-45
Transfer-TCA-Extension DCW 15-45
Transport-Command-Area Extension 15-46
Interrogate TCCB 15-47
Interrogate DCW . 15-47
Interrogate Data . 15-47

Transport Status Block 15-49
Transport-Status Header (TSH) 15-49
I/O-Status TSA . 15-50
Device-Detected-Program-Check TSA . . . 15-51
Interrogate TSA. 15-57

Command Code . 15-58
Designation of Storage Area. 15-59
CCW Channel Program Chaining 15-61

Data Chaining . 15-62
Command Chaining 15-64

TCW Channel Program Chaining 15-64
Skipping . 15-65
Program-Controlled Interruption 15-65

Indirect-Storage Designator (ISD). 15-67
CCW Indirect Data Addressing 15-67
Modified CCW Indirect Data Addressing . . . 15-69
Transport Indirect Data Addressing 15-71
Suspension of CCW Channel-Program

Execution . 15-74
Commands and Flags for CCWs 15-76
Branching in CCW Channel Programs 15-77

Transfer in Channel 15-78
Command Retry . 15-78

Concluding I/O Operations before Initiation . . . 15-78
Concluding I/O Operations during Initiation . . . 15-79
Immediate Conclusion of Command-Mode I/O

Operations . 15-79
Concluding I/O Operations During Data

Transfer . 15-80
Channel-Path-Reset Function. 15-81

Channel-Path-Reset-Function Signaling. . . . 15-82
Channel-Path-Reset-Function-Completion

Signaling . 15-82

Some I/O instructions specify to the channel subsys-
tem that a function is to be performed. Collectively,
these functions are referred to as the basic I/O func-
tions. The basic I/O functions are the clear, halt, start,
resume, and channel-path-reset functions.

Control of Basic I/O Functions

Information that is present at the subchannel controls
how the clear, halt, resume, and start functions are

15-2 The z/Architecture I/O Architecture

performed. This information is communicated to the
program in the subchannel-information block during
the execution of STORE SUBCHANNEL.

Subchannel-Information Block

The subchannel-information block (SCHIB) is the
operand of the MODIFY SUBCHANNEL and STORE
SUBCHANNEL instructions. The two rightmost bits
of the SCHIB address are zeros, designating the
SCHIB on a word boundary. The SCHIB contains
three major fields: the path-management-control
word (PMCW), the subchannel-status word (SCSW),
and a model-dependent area. When the extended-
I/O-measurement-block facility is installed the SCHIB
also contains the measurement-block-address field.
(Figure 15-1 on page 15-2. shows the format of the
PMCW, and Figure 16-3 on page 16-8 shows the
format of the command-mode SCSW and
Figure 16-8 on page 16-34 shows the format of the
transport-mode SCSW.)

STORE SUBCHANNEL is used to store the current
PMCW, the SCSW, model-dependent data, and,
when the extended-I/O-measurement-block facility is
installed, the measurement-block-address field, for
the designated subchannel. MODIFY SUBCHANNEL
alters certain PMCW fields and, when the extended-
I/O-measurement-block facility is installed, the mea-
surement-block address in the subchannel. When
the program needs to change the contents of one or
more of the PMCW fields, the normal procedure is to
(1) issue STORE SUBCHANNEL to obtain the cur-
rent contents, (2) perform the required modifications
to the PMCW field or the measurement-block-
address field in main storage, and (3) issue MODIFY

SUBCHANNEL to pass the new information to the
subchannel. The SCHIB has the following format:

Path-Management-Control Word
Words 0-6 of the SCHIB contain the path-manage-
ment-control word (PMCW). The PMCW has the for-
mat shown in Figure 15-1 on page 15-2 when the
subchannel is valid (see *“Device Number Valid (V)”
on page 15-4).

The format of the PMCW is as follows:

Interruption Parameter: Bit positions 0-31 of word
0 contain the interruption parameter that is stored as
word 1 of the interruption code. The interruption
parameter can be set to any value by START SUB-
CHANNEL and MODIFY SUBCHANNEL. The initial
value of the interruption parameter is zero.

I/O-Interruption-Subclass Code (ISC): Bits 2-4 of
word 1 are an unsigned binary integer, in the range
0-7, that corresponds to the bit position of the I/O-

Word

0

Path-Management-Control Word

1

2

3

4

5

6

7

Subchannel-Status Word8

9

10 Model-Dependent Area /
Measurement-Block Address11

12 Model-Dependent Area

Word

0 Interruption Parameter

1 0 0 ISC 0 0 0 E LM MM D T V Device Number

2 LPM PNOM LPUM PIM

3 MBI POM PAM

4 CHPID-0 CHPID-1 CHPID-2 CHPID-3

5 CHPID-4 CHPID-5 CHPID-6 CHPID-7

6 0 F X S
0 2 5 8 9 11 13 16 24 29 31

Figure 15-1. PMCW Format

15-3

interruption subclass-mask bit in control register 6 of
each CPU in the configuration. The setting of that
mask bit in control register 6 of a CPU controls the
recognition of interruption requests relating to this
subchannel by that CPU (see “Priority of Interrup-
tions” on page 16-5). The ISC can be set to any
value by MODIFY SUBCHANNEL. The initial value of
the ISC is zero.

Reserved: Bits 0, 1, and 5-7 of word 1 are
reserved and stored as zeros by STORE SUBCHAN-
NEL. Bits 0, 1, 6, and 7 must be zeros when MODIFY
SUBCHANNEL is executed; otherwise, an operand
exception is recognized. Bit 5 of word 1 is ignored
when MODIFY SUBCHANNEL is executed.

Enabled (E): Bit 8 of word 1, when one, indicates
that the subchannel is enabled for all I/O functions.
When the E bit is zero, status presented by the
device is not made available to the program, and I/O
instructions other than MODIFY SUBCHANNEL and
STORE SUBCHANNEL that are executed for the
designated subchannel cause condition code 3 to be
set. The E bit can be either zero or one when MOD-
IFY SUBCHANNEL is executed; initially, all subchan-
nels are not enabled; IPL causes the IPL I/O device
to become enabled.

Limit Mode (LM): When the address-limit-check-
ing facility is installed, bits 9 and 10 of word 1 define
the limit mode (LM) of the subchannel. The limit
mode is used by the channel subsystem when
address-limit checking is invoked for an I/O opera-
tion. (See “Address-Limit Checking” on page 17-26.)
Address-limit checking is under the control of the
address-limit-checking-control bit that is passed to
the subchannel in the operation-request block (ORB)
during the execution of START SUBCHANNEL. (See
“Address-Limit-Checking Control (A)” on

page 15-27.) The definitions of the LM bits, whose
values are used during data transfer, are as follows:

Bit positions 9 and 10 can contain any of the first
three bit combinations shown above when MODIFY
SUBCHANNEL is executed. Specification of the
reserved bit combination in the operand causes an
operand exception to be recognized when MODIFY
SUBCHANNEL is executed.

When the address-limit-checking facility is not
installed, bits 9-10 of word 1 may be set as described
above; however, they are ignored and are not set at
the specified subchannel. When bits 9-10 are not
specified as described above and MODIFY SUB-
CHANNEL is executed, an operand exception is rec-
ognized.

Measurement-Mode Enable (MM): Bits 11 and 12
of word 1 enable the measurement-block-update
mode and the device-connect-time-measurement
mode, respectively, of the subchannel. These bits
can have any value when MODIFY SUBCHANNEL is
executed; initially, neither measurement mode is

Bit
9

Bit
10 Function

0 0 Initialized value. No limit checking is
performed for this subchannel.

0 1 Data address must be equal to or
greater than the current address limit.

1 0 Data address must be less than the
current address limit.

1 1 Reserved.

15-4 The z/Architecture I/O Architecture

enabled. The definition of each of these bits is as fol-
lows:

The meaning of the measurement-mode-enable bits
(MM), described above, applies when the timing-
facility bit for the subchannel is one. When the timing-
facility bit is zero, the effect of the MM bits is
changed, as described below under “Timing Facility
(T)” on page 15-4. (For more discussion on measure-
ment modes, see “Measurement-Block Update” on

page 17-2 and “Device-Connect-Time Measurement”
on page 17-10.)

Multipath Mode (D): Bit 13 of word 1, when one,
indicates that the subchannel operates in the mul-
tipath mode when performing an I/O operation or
chain of I/O operations. For proper operation in the
multipath mode when more than one channel path is
available for selection, the associated device must
have the dynamic-reconnection feature installed and
must be set up for multipath-mode operation. During
performance of a start function in the multipath
mode, a device is allowed to request service from the
channel subsystem over any of the channel paths
indicated at the subchannel as being available for
selection (see *“Logical-Path Mask (LPM)” on
page 15-5 and “Path-Available Mask (PAM)” on
page 15-7). Bit 13, when zero, indicates that the sub-
channel operates in single-path mode when perform-
ing an I/O operation or chain of I/O operations. In the
single-path mode, the entire start function is per-
formed by using the channel path on which the first
command of the I/O operation or chain of I/O opera-
tions was accepted by the device. The D bit can be
either zero or one when MODIFY SUBCHANNEL is
executed; initially, the subchannel is in the single-
path mode.

Timing Facility (T): Bit 14 of word 1, when one,
indicates that the channel-subsystem-timing facility is
available for the subchannel and is under the control
of the two measurement-mode-enable bits (MM) and
SET CHANNEL MONITOR. Bit 14, when zero, indi-
cates that the channel-subsystem-timing facility is
not available for the subchannel. When bit 14 is zero,
the START SUBCHANNEL count is the only mea-
surement data that can be accumulated in the mea-
surement block for the subchannel. Storing of the
START SUBCHANNEL count is under the control of
bit 11 and SET CHANNEL MONITOR, as described
above under “Measurement-Mode Enable (MM)” on
page 15-3. Similarly, if the T bit is zero, no device-
connect-time-interval (DCTI) values can be mea-
sured for the subchannel. (See “Measurement-Block
Update” on page 17-2 and “Device-Connect-Time
Measurement” on page 17-10.)

Device Number Valid (V): Bit 15 of word 1, when
one, indicates that the device-number field (see
below) contains a valid device number and that a
device associated with this subchannel may be phys-
ically installed. Bit 15, when zero, indicates that the
subchannel is not valid, there is no I/O device cur-
rently associated with the subchannel, and the con-

Bit
11 Measurement-Block-Update Enable:

0 Initialized value. The subchannel is not
enabled for measurement-block update. Stor-
ing of measurement-block data does not
occur.

1 The subchannel is enabled for measurement-
block update. If the measurement-block-
update mode is active, measurement data is
accumulated in the measurement block at the
time channel-program execution is completed
or suspended at the subchannel or completed
at the device, as appropriate, provided no
error conditions described by subchannel
logout have been detected. (See “Measure-
ment-Block Update” on page 17-2.) If the mea-
surement-block-update mode is inactive, no
measurement-block data is stored.

Bit
12 Device-Connect-Time-Measurement Enable:

0 Initialized value. The subchannel is not
enabled for device-connect-time measure-
ment. Storing of the device-connect-time inter-
val (DCTI) in the extended-status word (ESW)
does not occur.

1 The subchannel is enabled for device-connect-
time measurement. If the device-connect-time-
measurement mode is active and timing facili-
ties are provided for the subchannel, the value
of the DCTI is stored in the ESW when TEST
SUBCHANNEL is executed after channel-pro-
gram execution is completed or suspended at
the subchannel, provided no error conditions
described by subchannel logout have been
detected. If the device-connect-time-measure-
ment mode is inactive, no measurement val-
ues are stored in the ESW.

15-5

tents of all other defined fields of the SCHIB are
unpredictable.

Device Number: Bit positions 16-31 of word 1 con-
tain the binary representation of the four-digit hexa-
decimal device number of the device that is
associated with this subchannel. The device number
is a system-unique parameter that is assigned to the
subchannel and the associated device when the
device is installed.

Logical-Path Mask (LPM): Bits 0-7 of word 2 indi-
cate the logical availability of channel paths to the
associated device. Each bit of the LPM corresponds
one-for-one, by relative bit position, with a CHPID
located in an associated byte of words 4 and 5 of the
SCHIB. A bit set to one means that the correspond-
ing channel path is logically available; a zero means
the corresponding channel path is logically not avail-
able. When a channel path is logically not available,
the channel subsystem does not use that channel
path to initiate performance of any clear, halt,
resume, or start function, except when a dedicated
allegiance exists for that channel path. When a dedi-
cated allegiance exists at the subchannel for a chan-
nel path, the logical availability of the channel path is
ignored whenever a clear, halt, resume, or start func-
tion is performed. (See “Channel-Path Allegiance” on
page 15-12). If the subchannel is idle, the logical
availability of the channel path is ignored whenever
the control unit initiates a request to present alert sta-
tus to the channel subsystem. The logical availability
of a channel path associated with the subchannel
can be changed by setting the corresponding LPM bit
in the SCHIB and then issuing MODIFY SUBCHAN-
NEL, or by setting the corresponding LPM bit in the
ORB and then issuing START SUBCHANNEL. Ini-
tially, each installed channel path is logically avail-
able.

Path-Not-Operational Mask (PNOM): Any of bits
8-15 of word 2, when one, indicates that a path-not-
operational condition has been recognized on the
corresponding channel path. Each bit of the PNOM
corresponds one-for-one, by relative bit position, with
a CHPID located in an associated byte of words 4
and 5 of the SCHIB. The channel subsystem recog-
nizes a path-not-operational condition when, during
an attempted device selection in order to perform a
clear, halt, resume, or start function, the device asso-
ciated with the subchannel appears not operational
on a channel path that is operational for the subchan-
nel. When a path-not-operational condition is recog-
nized, the state of the channel path changes from

operational for the subchannel to not operational for
the subchannel. A channel path is operational for the
subchannel if the associated device appeared opera-
tional on that channel path the last time the channel
subsystem attempted device selection in order to
perform a clear, halt, resume, or start function. A
device appears to be operational on a channel path
when the device responds to an attempted device
selection. A channel path is not operational for the
subchannel if the associated device appeared not
operational on that channel path the last time the
channel subsystem attempted device selection in
order to perform a clear, halt, resume, or start func-
tion. Any of bits 8-15 of word 2, when zero, indicates
that a path-not-operational condition has not been
recognized on the corresponding channel path.

Initially, each of the eight possible channel paths
associated with each subchannel is considered to be
operational, regardless of whether the respective
channel paths are installed or available; therefore,
unless a path-not-operational condition is recognized
during initial program loading, the PMCW, if stored,
contains a PNOM of all zeros if stored prior to the
execution of a CLEAR SUBCHANNEL, HALT SUB-
CHANNEL, RESUME SUBCHANNEL, or START
SUBCHANNEL instruction.

Programming Note: The PNOM indicates those
channel paths for which a path-not-operational condi-
tion has been recognized during the performance of
the most recent clear, halt, resume, or start function.
That is, the PNOM indicates which of the channel
paths associated with the subchannel have made a
transition from the operational to the not-operational
state for the subchannel during the performance of
the most recent clear, halt, resume, or start function.
However, the transition of a channel path from the
not-operational to the operational state for the sub-
channel is indicated in the POM. Therefore, the POM
must be examined in order to determine whether any
of the channel paths that are associated with a desig-
nated subchannel are operational for the subchan-
nel.

Furthermore, while performing either a start function
or a resume function, the transition of a channel path
from the not-operational to the operational state for
the subchannel is recognized by the channel subsys-
tem only during the initiation sequence for the first
command specified by the start function or implied by
the resume function. Therefore, a channel path that
is currently not operational for the subchannel can be
used by the device associated with the subchannel

15-6 The z/Architecture I/O Architecture

when reconnecting to the channel subsystem in
order to continue command chaining; however, the
channel subsystem does not indicate a transition of
that channel path from the not-operational to the
operational state for the subchannel in the POM.

Last-Path-Used Mask (LPUM): Bits 16-23 of word
2 indicate the channel path that was last used for
communicating or transferring information between
the channel subsystem and the device. Each bit of
the LPUM corresponds one-for-one, by relative bit
position, with a CHPID located in an associated byte
of words 4 and 5 of the SCHIB.

For a subchannel operating in command mode, each
bit of the LPUM is stored as zero, except for the bit
that corresponds to the channel path last used,
whenever one of the following occurs:

1. The first command of a start or resume function
is accepted by the device (see “Activity Control
(AC)” on page 16-14).

2. The device and channel subsystem are actively
communicating when the suspend function is
performed for the channel program in execution.

3. Status has been accepted from the device and is
recognized as an interruption condition, or a con-
dition has been recognized that suppresses com-
mand chaining (see “Interruption Conditions” on
page 16-2).

4. An interface-control-check condition has been
recognized (see “Interface-Control Check” on
page 16-29), and no subchannel-logout informa-
tion is currently present in the subchannel.

For a subchannel operating in transport mode, each
bit of the LPUM is stored as zero, except for the bit
that corresponds to the channel path last used,
whenever one of the following occurs:

1. The path has been selected for transporting the
TCCB for the operation.

2. Status has been accepted from the device and is
recognized as an interruption condition. If the
accepted status is an interrogate response, the
LPUM may be different than that stored with pri-
mary or secondary status or both.

3. An interface-control-check has been recognized
and no subchannel-logout information is cur-
rently present in the subchannel.

The LPUM field of the PMCW contains the most
recent setting. For transport-mode operations the
LPUM in the subchannel is set to zeros when the
start function is set and no dedicated-allegiance con-
dition exists for the subchannel.

Path-Installed Mask (PIM): Bits 24-31 of word 2
indicate which of the channel paths 0-7 to the I/O
device are physically installed. The PIM indicates the
validity of the channel-path identifiers (see below) for
those channel paths that are physically installed.
Each bit of the PIM corresponds one-for-one, by rela-
tive bit position, with a CHPID located in an associ-
ated byte of words 4 and 5 of the SCHIB. A PIM bit
stored as one indicates that the corresponding chan-
nel path is installed. A PIM bit stored as zero indi-
cates that the corresponding channel path is not
installed. The PIM always reflects the full comple-
ment of installed paths to the device, regardless of
how the system is configured. Therefore, some of the
channel paths indicated in the PIM may not be physi-
cally available in that configuration, as indicated by

POM Value and
Device State before
Selection Attempt

Value of Specified Bit Subsequent to
Selection Attempt

Device
State1 POM POM PNOM2

SCSW
N Bit

OP 0 1 0 0
NOP 0 0 0 0
OP 1 1 0 0

NOP 1 0 1 13

Explanation:

1 Device state as it appears on the corresponding channel
path.

2 Prior to the attempted device selection during the
performance of either a start function or a resume function
while the subchannel is suspended, the channel
subsystem clears all existing path-not-operational
conditions, if any, at the designated subchannel.

3 The N bit (bit 15 of word 0 of the SCSW) is indicated to the
program and the N condition is cleared at the subchannel
when TEST SUBCHANNEL is executed the next time the
subchannel is status pending for other than intermediate
status alone provided that it is not also suspended.

NOP The device is not operational on the corresponding channel
path.

OP The device is operational on the corresponding channel
path.

Figure 15-2. Resulting POM, PNOM, and N-Bit Values
Subsequent to Selection Attempt

15-7

the bit settings in the path-available mask (see
below). The initial value of the PIM indicates all the
physically installed channel paths to the device.

Measurement-Block Index (MBI): Bits 0-15 of
word 3 form an index value used by the measure-
ment-block-update facility when the measurement-
block-update mode is active (see “SET CHANNEL
MONITOR” on page 14-13.) and the subchannel is
enabled for the mode (see “Measurement-Mode
Enable (MM)” on page 15-3).

When the measurement-block index is used, five
zero bits are appended on the right, and the result is
added to the measurement-block-origin address des-
ignated by SET CHANNEL MONITOR. The calcu-
lated address, called the measurement-block
address, designates the beginning of a 32-byte stor-
age area where measurement data is stored. (See
“Measurement Block” on page 17-3.) The MBI can
contain any value when MODIFY SUBCHANNEL is
executed; the initial value is zero.

Programming Note: The measurement-block-origin
address specified by SET CHANNEL MONITOR is
used as the origin address for the measurement
blocks for subchannels in all subchannel sets avail-
able to the program. However, the two-byte measure-
ment-block-index field is capable of supporting a
maximum of 65,536 unique MBI values. It is the
responsibility of the program to coordinate use of the
measurement-block index among subchannels and
subchannel sets.

Path-Operational Mask (POM): Bits 16-23 of word
3 indicate the last known operational state of the
device on the corresponding channel paths. Each bit
of the POM corresponds one-for-one, by relative bit
position, with a CHPID located in an associated byte
of words 4 and 5 of the SCHIB. If the associated
device appeared operational on a channel path the
last time the channel subsystem attempted device
selection in order to perform a clear, halt, resume, or
start function, then the channel path is operational for
the subchannel, and the bit corresponding to the
channel path in the POM is one. A device appears to
be operational on a channel path when the device
responds to an attempted device selection. A chan-
nel path is also operational for the subchannel if
MODIFY SUBCHANNEL is executed and the bit cor-
responding to that channel path in the POM is speci-
fied as one.

If the associated device appeared not operational on
a channel path the last time the channel subsystem
attempted device selection in order to perform a
clear, halt, resume, or start function, then the channel
path is not operational for the subchannel, and the bit
corresponding to the channel path in the POM is
zero. A channel path is also not operational for the
subchannel if MODIFY SUBCHANNEL is executed
and the bit corresponding to that channel path in the
POM is specified as zero.

If the device associated with the subchannel appears
not operational on a channel path that is operational
for the subchannel during an attempted device selec-
tion in order to perform a clear, halt, resume, or start
function, then the channel subsystem recognizes a
path-not-operational condition. If an SCSW is subse-
quently stored, then bit 15 of word 0 is one, indicating
the path-not-operational condition. When a path-not-
operational condition is recognized, the state of the
channel path changes from operational for the sub-
channel to not operational for the subchannel.

When the channel path is not operational for the sub-
channel, a path-not-operational condition cannot be
recognized. Moreover, a channel path that is not
operational for the subchannel may be available for
selection; if the channel subsystem chooses that
channel path while performing a path-management
operation, and if, during the attempted device selec-
tion, the device appears to be operational again on
that channel path, then the state of the channel path
changes from not operational for the subchannel to
operational for the subchannel.

The POM can contain any value when MODIFY
SUBCHANNEL is executed. Initially, each of the eight
possible channel paths associated with each sub-
channel is considered to be operational, regardless
of whether the respective channel paths are installed
or available; therefore, unless a path-not-operational
condition is recognized during initial program loading,
the PMCW, if stored, contains a POM of all ones if
stored prior to the execution of a CLEAR SUBCHAN-
NEL, HALT SUBCHANNEL, RESUME SUBCHAN-
NEL, or START SUBCHANNEL instruction.

Path-Available Mask (PAM): Bits 24-31 of word 3
indicate the physical availability of installed channel
paths. Each bit of the PAM corresponds one-for-one,
by relative bit position, with a CHPID located in an
associated byte of words 4 and 5 of the SCHIB. A
PAM bit of one indicates that the corresponding
channel path is physically available for use in access-

15-8 The z/Architecture I/O Architecture

ing the device. A PAM bit of zero indicates the chan-
nel path is not physically available for use in
accessing the device. When a channel path is not
physically available, it may, depending on the model
and the extent of failure, be used during performance
of the reset-channel-path function. A channel path
that is physically available may become not physi-
cally available as a result of reconfiguring the system,
or this may occur as a result of the performance of
the channel-path-reset function. The initial value of
the PAM reflects the set of channel paths by which
the I/O device is physically accessible at the time of
initialization.

Note: The change in the availability of a channel
path affects all subchannels having access to that
channel path. Whenever the setting of a PAM bit is
referred to in conjunction with the availability status of
a channel path, for brevity, reference is made in this
chapter to a single PAM bit instead of to the respec-
tive PAM bits in all of the affected subchannels.

Channel-Path Identifiers (CHPIDs): Words 4 and
5 contain eight one-byte channel-path identifiers cor-
responding to channel paths 0-7 of the PIM. A
CHPID is valid if the corresponding PIM bit is one.
Each valid CHPID contains the identifier of a physical
channel path to a control unit by which the associ-
ated I/O device may be accessed. A unique CHPID is
assigned to each physical channel path in the sys-
tem.

Different devices that are accessible by the same
physical channel path have, in their respective sub-
channels, the same CHPID value. The CHPID value
may, however, appear in each subchannel in different
locations in the CHPID fields 0-7.

Subchannels that share an identical set of channel
paths have the same corresponding PIM bits set to
ones. The channel-path identifiers (CHPIDs) for
these channel paths are the same and occupy the
same respective locations in each SCHIB.

Reserved: Bits 0-28 of word 6 are reserved and
are stored as zeros by STORE SUBCHANNEL. They
must be zeros when MODIFY SUBCHANNEL is exe-
cuted; otherwise, an operand exception may be rec-
ognized.

Measurement Block Format Control (F): When
the extended-I/O-measurement-block facility is
installed, bit 29 of word 6 specifies the format of the
measurement block to be stored when the subchan-

nel is enabled for the measurement-block-update
mode, and measurement-block-update mode is
active. The bit can contain any value when MODIFY
SUBCHANNEL is executed. The initial value is zero.
The definition of the bit is as follows:

If the extended-measurement-block facility is not
installed, bit 29 of word 6 of the SCHIB operand must
be zero when MODIFY SUBCHANNEL is executed;
otherwise, an operand exception is recognized.

Extended Measurement Word Mode Enable (X):
When the extended-measurement-word facility is
installed and enabled, bit 30 of word 6 enables the
extended-measurement-word mode for the subchan-
nel. Initially, the extended-measurement-word mode
is not enabled. The definition of the bit is as follows:

Bit
29 Measurement-Block-Format Control:

0 Format-0 measurement block. Specifies that a
format-0 measurement block is used when
performing a measurement-block update for
the subchannel. The address of the 32-byte
measurement block is obtained using the MBI
provided by MSCH in conjunction with the
MBO provided by SCHM.

1 Format-1 measurement block. Specifies that a
format-1 measurement block is used when
performing a measurement-block update for
the subchannel. The address of the 64-byte
format-1 measurement block is provided by
MSCH.

Bit
30 Measurement-Block-Word-Mode Enable:

0 Initialized value. The subchannel is not
enabled for extended-measurement-word
mode. Storing of the extended-measurement
word does not occur.

1 The subchannel is enabled for extended-mea-
surement-word mode. Measurement data is
stored in the extended-measurement word at
the time channel-program execution is com-
pleted or suspended at the subchannel or
completed at the device, as appropriate, pro-
vided no error conditions described by sub-
channel logout have been detected.

15-9

If the extended-measurement-word facility is not
installed, or is installed but is not enabled, bit 30 of
word 6 of the SCHIB operand must be zero when
MODIFY SUBCHANNEL is executed; otherwise, an
operand exception is recognized.

Concurrent Sense (S): Bit 31 of word 6, when
one, indicates that the subchannel is in the concur-
rent-sense mode. When the subchannel is in com-
mand mode and concurrent-sense mode, whenever
the subchannel becomes status pending with alert
status, and the status byte accepted from the device
contains the unit-check indication, then the channel
subsystem may attempt to retrieve sense information
from the associated device and place that sense
information in the extended-control word.

When the subchannel is operating in transport mode,
any available sense information is provided in the
TSB regardless of the setting of bit 31 of word 6.

If the concurrent-sense facility is not installed, bit 31
of word 6 of the SCHIB operand must be zero when
MODIFY SUBCHANNEL is executed; otherwise, an
operand exception is recognized.

Subchannel-Status Word
Words 7-9 of the SCHIB contain a copy of the SCSW.
The format of the SCSW is described in “Subchan-
nel-Status Word” on page 16-7. The SCSW is stored

by the execution of either STORE SUBCHANNEL or
TEST SUBCHANNEL (see “STORE SUBCHANNEL”
on page 14-18 and “TEST SUBCHANNEL” on
page 14-21).

Model-Dependent Area/Measurement
Block Address
When the extended-I/O-measurement-block facility is
not installed, words 10-12 of the SCHIB contain
model-dependent information.

When the extended-I/O-measurement-block facility is
installed, words 10-11 are defined as the measure-
ment-block-address field. Word 12 contains model-
dependent information.

When (1) the measurement-block-update mode is
active (see “SET CHANNEL MONITOR” on
page 14-13), (2) the subchannel is enabled for the
mode (see“Measurement-Mode Enable (MM)” on
page 15-3), and (3) the format-1-measurement block
is specified (see “Measurement Block Format Control
(F)” on page 15-8) at the subchannel, the measure-
ment-block-address field contains the absolute stor-
age address of the measurement block used by the
measurement-block-update facility. The measure-
ment-block address designates the beginning of a
64-byte storage area and must be designated on
64-byte boundary. The initial value of the measure-
ment block address is zero.

15-10 The z/Architecture I/O Architecture

Summary of Modifiable Fields
*Figure 15-3 on page 15-10 lists the initial settings
for fields in a subchannel whose device-number-valid
bit is one and indicates what modifies the fields.

All of the PMCW fields contain meaningful informa-
tion when STORE SUBCHANNEL is executed and
the designated subchannel is idle. Subchannel fields

that the channel subsystem does not modify contain
valid information whenever STORE SUBCHANNEL
is executed, provided that the device-number-valid bit
is one. The validity of the subchannel fields that are
modifiable by the channel subsystem depends on the
state of the subchannel at the time STORE SUB-
CHANNEL is executed.

Subchannel Field Initial Value1
Program Modifies by
Executing

Modified by
Channel
Subsystem2

Interruption parameter Zeros MSCH,SSCH No
I/O-interruption-subclass code Zeros MSCH No
Enabled (E) Zero MSCH No
Limit mode (LM) Zeros MSCH7 No
Measurement mode (MM) Zeros MSCH Yes3

Multipath mode (D) Zero MSCH No
Timing facility (T) Installed value4 None No
Device number valid (V) Installed value4 None No
Device number Installed value4 None No
Logical-path mask (LPM) Path-installed-mask value MSCH,SSCH No
Path-not-operational mask (PNOM) Zeros CSCH,SSCH,RSCH5 Yes
Last-path-used mask (LPUM) Zeros CSCH Yes
Path-installed mask (PIM) Installed value4 None No
Measurement-block index (MBI) Zeros MSCH No
Path-operational mask (POM) Ones CSCH,MSCH,RSCH5 Yes
Path-available mask (PAM) Installed values4 6 None Yes6

Channel-path ID 0-7 Installed value4 None No
Concurrent sense (S) ZERO MSCH No
Subchannel-status word (SCSW) Zero TSCH Yes
Model-dependent area * None *
Measurement-block-format control (F) Zero MSCH No
Extended-measurement-word enable (X) Zero MSCH No
Measurement-block address Zeros MSCH No

Figure 15-3. Modification of Subchannel Fields (Part 1 of 2)

15-11

Programming Notes:

1. System performance may be degraded if the
LPM is not used to make channel paths for which
a path-not-operational condition has been indi-
cated in the PNOM logically not available.

2. If, during the performance of a start function, a
channel path becomes not physically available
because a channel-path failure has been recog-
nized, continued performance of the start func-
tion may be precluded. That is, the program may
or may not be notified, and the subchannel may
remain in the subchannel-and-device-active
state until cleared by the performance of the
clear function.

3. If the same MBI is placed in more than one sub-
channel by the program, the channel-subsystem-
monitoring facility updates the same locations
with measurement data relating to more than one
subchannel. In this case, the values stored in the
measurement data are unpredictable. (See
“Measurement-Block Update” on page 17-2.)

4. Modification of the I/O configuration (reconfigura-
tion) may be accomplished in various ways
depending on the model. If the reconfiguration

procedure affects the physical availability of a
channel path, then any change in availability can
be detected by executing STORE SUBCHAN-
NEL for a subchannel that has access to the
channel path and by subsequently examining the
PAM bits of the SCHIB.

5. The definitions of the PNOM, POM, and N bit are
such that a path-not-operational condition is
reported to the program only the first time the
condition is detected by the channel subsystem
after the corresponding POM bit is set to one.

For example, if the POM bit for every channel
path available for selection is one and the device
appears not operational on all corresponding
channel paths while the channel subsystem is
attempting to initiate a start function at the
device, the channel subsystem makes the sub-
channel status pending, with deferred condition
code 3 and with the N bit stored as one. The
PNOM in the SCHIB indicates the channel path
or channel paths that appeared not operational,
for which the corresponding POM bits have been
set to zeros. The next START SUBCHANNEL
causes the channel subsystem to again attempt
device selection by choosing a channel path from
among all of the channel paths that are available

Explanation:

* Model dependent.
1 These fields are not meaningful if the subchannel is not valid. Initialization of a subchannel is performed when I/O-system

reset occurs. (See the section "I/O-System Reset" in Chapter 17, "I/O Support Functions.") One or more of the installed-
value parameters that are unmodifiable by the program may be set when the subchannel is idle. In this case, all the
program-modifiable fields are set to their initialized values, and the program is notified of such a change by a channel
report. (See the section "Channel-Report Word" in Chapter 17, "I/O Support Functions.")

2 Subchannel fields that are not normally modifiable by the channel subsystem may be modified as a result of dynamic
configuration changes or as a result of external actions. When this occurs, the program is notified of the change by a
channel report that is made pending at the time of the change.

3 When any of the following error conditions associated with the measurement-block-update mode is detected, the
measurement-block-update mode is disabled by the channel subsystem (bit 11 of word 1 of the SCHIB is zero) in the
affected subchannel. The device-connect-time-measurement-enable bit (bit 12 of word 1 of the SCHIB) is never modified
by the channel subsystem.

Measurement program check
Measurement protection check
Measurement data check
Measurement key check

4 This information is entered when the channel-subsystem configuration is established
5 The mask is modified by the resume function only when the subchannel is in the suspended state at the time RESUME

SUBCHANNEL is executed.
6 The channel subsystem may modify the PAM to reflect changes in the system configuration caused by partitioning or

unpartitioning channel paths because of reconfiguration or permanent failure of part of the I/O system.

Figure 15-3. Modification of Subchannel Fields (Part 2 of 2)

15-12 The z/Architecture I/O Architecture

for selection. If device selection is not successful
and all channel paths available for selection have
again been chosen, deferred condition code 3 is
set, but the N bit in the SCSW is zero. The POM
contains zeros in at least those bit positions that
correspond to the channel paths that are avail-
able for selection. (See “Channel-Path Availabil-
ity” on page 15-13 for a description of the term
“available for selection.”) When the N bit in the
SCSW is zero, the PNOM is also zero.

6. If the program is to detect path-not-operational
conditions, the PNOM should be inspected fol-
lowing the execution of TEST SUBCHANNEL
(which results in the setting of condition code
zero and the valid storing of the N bit as one) and
preceding the performance of another start,
resume, halt, or clear function at the subchannel.

Channel-Path Allegiance

The channel subsystem establishes allegiance con-
ditions between subchannels and channel paths. The
kind of allegiance established at a subchannel for a
channel path or set of channel paths depends upon
the state of the subchannel, the device, and the infor-
mation, if any, transferred between the channel sub-
system and device. The way in which path
management is handled during the performance of a
clear, halt, resume, or start function is determined by
the kind of allegiance, if any, currently recognized
between a subchannel and a channel path.

Performing the clear function at a subchannel clears
any currently existing allegiance condition in the sub-
channel for all channel paths.

Performing the reset-channel-path function clears all
currently existing allegiances for that channel path in
all subchannels.

When a channel path becomes not physically avail-
able, all internal indications of prior allegiance condi-
tions are cleared in all subchannels having access to
the designated channel path.

Note that allegiance rules do not apply for interrogate
operations. An interrogate operation may be initiated
and successfully complete while a subchannel is in
transport mode. Furthermore, interrogate operations
do not alter any allegiance conditions that may exist.

Working Allegiance

Working Allegiance for Subchannels
Operating in Command Mode
A subchannel has a working allegiance for a channel
path when the subchannel is operating in command
mode and becomes device active on that channel
path. Once a working allegiance is established, the
channel subsystem maintains the working allegiance
at the subchannel for the channel path until either the
subchannel is no longer device active or a dedicated
allegiance is recognized, whichever occurs earlier.
Unless a dedicated allegiance is recognized, a work-
ing allegiance for a channel path is extended to the
set of channel paths that are available for selection if
the device is specified to be operating in the mul-
tipath mode (that is, the multipath-mode bit is stored
as one in the SCHIB). Otherwise, the working alle-
giance remains only for that channel path over which
the start function was initiated.

Once a working allegiance is established for a chan-
nel path or set of channel paths, the working alle-
giance is not changed until the subchannel is no
longer device active or until a dedicated allegiance is
established. If the subchannel is operating in the sin-
gle-path mode, a working allegiance is maintained
only for a single path.

While a working allegiance exists at a subchannel,
an active allegiance can occur only for a channel
path for which the working allegiance is being main-
tained, unless the device is specified as operating in
the multipath mode. When the device is specified as
operating in the multipath mode, an active allegiance
may also occur for a channel path that is not avail-
able for selection if the presentation of status by the
device on that channel path causes an alert interrup-
tion condition to be recognized.

A working allegiance is cleared in any subchannel
having access to a channel path if the channel path
becomes not physically available.

Working Allegiance for Subchannels
Operating in Transport Mode
A subchannel has a working allegiance for a channel
path when the subchannel is operating in transport
mode, becomes start pending, and the designated
TCCB is transported over that channel path to the I/O
device. Once a working allegiance is established, the
channel subsystem maintains the working allegiance

15-13

at the subchannel for the channel path until a busy
condition is encountered or the subchannel is made
status pending with primary status. The working alle-
giance remains only for that channel path over which
the start function was initiated.

While a working allegiance exists at a subchannel
that is operating in transport mode, an active alle-
giance can occur only for the channel path for which
the working allegiance is being maintained.

A working allegiance is cleared in any subchannel
having access to a channel path if the channel path
becomes not physically available.

Active Allegiance

A subchannel has an active allegiance established
for a channel path no later than when active commu-
nication has been initiated on that channel path with
an I/O device. The subchannel can have an active
allegiance to only one channel path at a time. While
the subchannel has an active allegiance for a chan-
nel path, the channel subsystem does not actively
communicate with that device on any other channel
path. When the channel subsystem accepts a no-lon-
ger-busy indication from the device that does not
cause an interruption condition, this status does not
constitute the initiation of active communication. An
active allegiance at a subchannel for a channel path
is terminated when the channel subsystem is no lon-
ger actively communicating with the I/O device on
that channel path.

A working allegiance can become an active alle-
giance.

Dedicated Allegiance

If a channel path is physically available (that is, if the
corresponding PAM bit is one), a dedicated alle-
giance may be recognized for that channel path. If a
channel path is not physically available, a dedicated
allegiance cannot be recognized for the correspond-
ing channel path. The channel subsystem estab-
lishes a dedicated allegiance at the subchannel for a
channel path when (1) the subchannel is operating in
command mode, the subchannel becomes status
pending with alert status, and device status contain-
ing the unit-check indication is present but
(2) concurrent-sense information is not present at the

subchannel. A dedicated allegiance is maintained
until the subchannel is no longer start pending
(unless it becomes suspended) or resume pending
following performance of the next start function, clear
function, or channel-path-reset function or the next
resume function if applicable. If the subchannel
becomes suspended, the dedicated allegiance
remains until the resume function is initiated and the
subchannel is no longer resume pending. Unless a
clear or channel-path-reset function is performed, the
subchannel establishes a working allegiance when
the dedicated allegiance ends. This occurs when the
subchannel becomes device active. While a dedi-
cated allegiance exists at a subchannel for a channel
path, only that channel path is available for selection
until the dedicated-allegiance condition is cleared.

Dedicated allegiance does not apply to subchannels
operating in transport mode. When a subchannel
operating in transport mode becomes status pending
with unit check indicated, the sense information has
already been transferred from the I/O device into the
TSB for the I/O operation.

A dedicated allegiance can become an active alle-
giance. While a dedicated allegiance exists, an active
allegiance can only occur for the same channel path.

A currently existing dedicated allegiance is cleared at
any subchannel having access to a channel path
when the channel path becomes not physically avail-
able or whenever the device appears not operational
on the channel path for which the dedicated alle-
giance exists.

Channel-Path Availability

When a channel path is not physically available, the
channel subsystem does not use the channel path to
perform any of the basic I/O functions except, in
some cases, the channel-path-reset function and
does not respond to any control-unit-initiated
requests on that same channel path. If a channel
path is not physically available, the condition is indi-
cated by the corresponding path-available-mask PAM
bit being zero when STORE SUBCHANNEL is exe-
cuted (see“Path-Available Mask (PAM)” on
page 15-7). Furthermore, if the channel path is not
physically available for the subchannel designated by
STORE SUBCHANNEL, then it is not physically
available for any subchannel that has a device which
is accessible by that channel path.

15-14 The z/Architecture I/O Architecture

Unless a dedicated allegiance exists at a subchannel
for the channel path, a channel path becomes avail-
able for selection if it is logically available and physi-
cally available, as indicated by the bits in the LPM
and PAM corresponding to the channel path being
stored as ones when STORE SUBCHANNEL is exe-
cuted. If a dedicated allegiance exists at a subchan-
nel for the channel path, only that channel path is
available for selection, and the setting of the corre-
sponding LPM bit is ignored. If the channel path is
currently being used and a dedicated allegiance
exists at the subchannel for the channel path, selec-
tion of the device is delayed until the channel path is
no longer being used.

The availability status of the eight logical paths to the
associated device described in Figure 15-4 on
page 15-14 is determined by the hierarchical
arrangement of the corresponding bit values con-
tained in the PIM, PAM, and LPM and by existing
conditions, if any, recognized by the channel subsys-
tem.

Control-Unit Type

In “Clear Function” on page 15-14, “Halt Function” on
page 15-16, and “Start Function and Resume Func-
tion” on page 15-20, reference is made to type-1,
type-2, and type-3 control units. For a description of
these control-unit types, see the System Library pub-
lication IBM System/360 and System/370 I/O Inter-
face Channel to Control Unit OEMI, GA22-6974. For
the purposes of this definition, all control units attach-
ing to a serial-I/O interface are considered type-2
control units.

Clear Function

Subsequent to the execution of CLEAR SUBCHAN-
NEL, the channel subsystem performs the clear func-
tion. Performance of the clear function consists in
(1) performing a path-management operation,
(2) modifying fields at the subchannel, (3) issuing the
clear signal to the associated device, and (4) causing
the subchannel to be made status pending, indicat-
ing the completion of the clear function.

Clear-Function Path Management

A path-management operation is performed as part
of the clear function in order to examine channel-path
conditions for the associated subchannel and to
attempt to choose an available channel path on
which the clear signal can be issued to the associ-
ated device.

Channel-path conditions are examined in the follow-
ing order:

1. If the channel subsystem is actively communicat-
ing or attempting to establish active communica-
tion with the device to be signaled, the channel
path that is in use is chosen.

2. If the channel subsystem is in the process of
accepting a no-longer-busy indication (which will
not cause an interruption condition to be recog-
nized) from the device to be signaled, and the
associated subchannel has no allegiance to any
channel path, the channel path that is in use is
chosen.

Value of
Bit 'n'

Channel-
Path
Condition1 Channel-Path StatePIM PAM LPM

0 02 - X Not installed
1 0 - X Not physically available
1 1 03 X Not logically available
1 1 13 Active Available for selection4

1 1 1 Inactive Available for selection

Explanation:

- Bit value is not meaningful.
1 If the channel path is recognized as being used in active

communication with a device, the channel-path condition is
described as active. Otherwise, its condition is described
as inactive.

2 A PAM bit cannot have the value one when the
corresponding PIM bit has the value zero.

3 If a dedicated allegiance exists to the channel path at the
subchannel, the state of the bit is ignored, and the channel
path is considered to be available for selection.

4 The channel path may appear to be active when a channel-
path-terminal condition has been recognized.

X Condition is not meaningful.

Figure 15-4. Path condition and Path-Availability Status for
PIM, PAM, and LPM Values

15-15

3. If the associated subchannel has a dedicated
allegiance for a channel path, that channel path
is chosen.

4. If the associated subchannel has a working alle-
giance for one or more channel paths, one of
those channel paths is chosen.

5. If the associated subchannel has no allegiance
for any channel path, if a last-used channel path
is indicated, and if that channel path is available
for selection, that channel path is chosen. If that
channel path is not available for selection, either
no channel path is chosen or a channel path is
chosen from the set of channel paths, if any, that
are available for selection (as though no last-
used channel path were indicated).

6. If the associated subchannel has no allegiance
for any channel path, if no last-used channel path
is indicated, and if there exist one or more chan-
nel paths that are available for selection, one of
those channel paths is chosen.

If none of the channel-path conditions listed above
apply, no channel path is chosen.

For item 4, for item 5 under the specified conditions,
and for item 6, the channel subsystem chooses a
channel path from a set of channel paths. In these
cases, the channel subsystem may attempt to
choose a channel path, provided that the following
conditions do not apply:

1. A channel-path-terminal condition exists for the
channel path.

2. For a parallel or ESCON channel path: Another
subchannel has an active allegiance for the
channel path.

For a FICON channel path: The channel path is
currently being used to actively communicate
with the maximum number of subchannels that
can have concurrent active communications.

3. The device to be signaled is attached to a type-1
control unit, and the subchannel for another
device attached to the same control unit has an
allegiance to the same channel path, unless the
allegiance is a working allegiance and primary
status has been accepted by that subchannel.

4. The device to be signaled is attached to a type-3
control unit, and the subchannel for another

device attached to the same control unit has a
dedicated allegiance to the same channel path.

Clear-Function Subchannel
Modification

Path-management-control indications at the sub-
channel are modified during performance of the clear
function. Effectively, this modification occurs after the
attempt to choose a channel path, but prior to the
attempt to select the device to issue the clear signal.
The path-management-control indications that are
modified are as follows:

1. The state of all eight possible channel paths at
the subchannel is set to operational for the sub-
channel.

2. The last-path-used indication is reset to indicate
no last-used channel path.

3. Path-not-operational conditions, if any, are reset.

Clear-Function Signaling and
Completion

Subsequent to the attempt to choose a channel path
and the modification of the path-management-control
fields, the channel subsystem, if conditions allow,
attempts to select the device to issue the clear signal.
(See “Clear Signal” on page 17-12.) Conditions asso-
ciated with the subchannel and the chosen channel
path, if any, affect (1) whether an attempt is made to
issue the clear signal, and (2) whether the attempt to
issue the clear signal is successful. Independent of
these conditions, the subchannel is subsequently set
status pending, and the performance of the clear
function is complete. These conditions and their
effect on the clear function are described as follows:

No Attempt Is Made to Issue the Clear Signal:
The channel subsystem does not attempt to issue
the clear signal to the device if any of the following
conditions exist:

1. No channel path was chosen. (See “Clear-Func-
tion Path Management” on page 15-14.)

2. The chosen channel path is no longer available
for selection.

3. A channel-path-terminal condition exists for the
chosen channel path.

15-16 The z/Architecture I/O Architecture

4. For parallel and ESCON channel paths: The cho-
sen channel path is currently being used to
actively communicate with a different device.

For FICON channel paths: The chosen channel
path is currently being used to actively communi-
cate with the maximum number of devices that
can have concurrent active communications.

5. The device to be signaled is attached to a type-1
control unit, and the subchannel for another
device attached to the same control unit has an
allegiance to the same channel path, unless the
allegiance is a working allegiance and primary
status has been accepted by that subchannel.

6. The device to be signaled is attached to a type-3
control unit, and the subchannel for another
device attached to the same control unit has a
dedicated allegiance to the same channel path.

If any of the conditions above exist, the subchannel
remains clear pending and is set status pending, and
the performance of the clear function is complete.

The Attempt to Issue the Clear Signal Is Not Suc-
cessful: When the channel subsystem attempts to
issue the clear signal to the device, the attempt may
not be successful because of the following condi-
tions:

1. The control unit or device signals a busy condi-
tion when the channel subsystem attempts to
select the device to issue the clear signal.

2. A path-not-operational condition is recognized
when the channel subsystem attempts to select
the device to issue the clear signal.

3. An error condition is encountered when the
channel subsystem attempts to issue the clear
signal.

If any of the conditions above exists and the channel
subsystem either determines that the attempt to
issue the clear signal was not successful or cannot
determine whether the attempt was successful, the
subchannel remains clear pending and is set status
pending, and the performance of the clear function is
complete.

The Attempt to Issue the Clear Signal Is Success-
ful: When the channel subsystem determines that
the attempt to issue the clear signal was successful,
the subchannel is no longer clear pending and is set

status pending, and the performance of the clear
function is complete. When the subchannel becomes
status pending, the I/O operation, if any, with the
associated device has been terminated.

Programming Note: Subsequent to the perfor-
mance of the clear function, any nonzero status,
except control unit end alone, that is presented to the
channel subsystem by the device is passed to the
program as unsolicited alert status. Unsolicited sta-
tus consisting of control unit end alone or zero status
is not presented to the program.

Halt Function

Subsequent to the execution of HALT SUBCHAN-
NEL, the channel subsystem performs the halt func-
tion. Performance of the halt function consists of
(1) performing a path-management operation,
(2) issuing the halt signal to the associated device,
and (3) causing the subchannel to be made status
pending, indicating the completion of the halt func-
tion.

Halt-Function Path Management

A path-management operation is performed as part
of the halt function to examine channel-path condi-
tions for the associated subchannel and to attempt to
choose a channel path on which the halt signal can
be issued to the associated device.

Channel-path conditions are examined in the follow-
ing order:

1. If the channel subsystem is actively communicat-
ing or attempting to establish active communica-
tion with the device to be signaled, the channel
path that is in use is chosen.

2. If the channel subsystem is in the process of
accepting a no-longer-busy indication (which will
not cause an interruption condition to be recog-
nized) from the device to be signaled, and the
associated subchannel has no allegiance to any
channel path, the channel path that is in use is
chosen.

3. If the associated subchannel has a dedicated
allegiance for a channel path, that channel path
is chosen.

15-17

4. If the associated subchannel has a working alle-
giance for one or more channel paths, one of
those channel paths is chosen.

5. If the associated subchannel has no allegiance
for any channel path, if a last-used channel path
is indicated, and if that channel path is available
for selection, that channel path is chosen. If that
channel path is not available for selection, either
no channel path is chosen or a channel path is
chosen from the set of channel paths, if any, that
are available for selection (as though no last-
used channel path were indicated).

6. If the associated subchannel has no allegiance
for any channel path, if no last-used channel path
is indicated, and if there exist one or more chan-
nel paths that are available for selection, one of
those channel paths is chosen.

If none of the channel-path conditions listed above
apply, no channel path is chosen.

For item 4, for item 5 under the specified conditions,
and for item 6, the channel subsystem chooses a
channel path from a set of channel paths. In these
cases, the channel subsystem may attempt to
choose a channel path for which the following condi-
tions do not apply:

1. A channel-path-terminal condition exists for the
channel path.

2. For a parallel or ESCON channel path: Another
subchannel has an active allegiance for the
channel path.

For a FICON channel path: The channel path is
currently being used to actively communicate
with the maximum number of subchannels that
can have concurrent active communications.

3. The device to be signaled is attached to a type-1
control unit, and the subchannel for another
device attached to the same control unit has an
allegiance to the same channel path, unless the
allegiance is a working allegiance and primary
status has been accepted by that subchannel.

4. The device to be signaled is attached to a type-3
control unit, and the subchannel for another
device attached to the same control unit has a
dedicated allegiance to the same channel path.

Halt-Function Signaling and
Completion

Subsequent to the attempt to choose a channel path,
the channel subsystem, if conditions allow, attempts
to select the device to issue the halt signal. (See
“Halt Signal” on page 17-12.)

Conditions associated with the subchannel and the
chosen channel path, if any, affect (1) whether an
attempt is made to issue the halt signal, (2) whether
the attempt to issue the halt signal is successful, and
(3) whether the subchannel is made status pending
to complete the halt function. These conditions and
their effect on the halt function are described as fol-
lows:

No Attempt Is Made to Issue the Halt Signal:
The channel subsystem does not attempt to issue
the halt signal to the device if any of the following
conditions exist:

1. No channel path was chosen. (See “Halt-Func-
tion Path Management” on page 15-16.)

2. The chosen channel path is no longer available
for selection.

3. A channel-path-terminal condition exists for the
chosen channel path.

4. The associated subchannel is status pending
with other than intermediate status alone.

5. The device to be signaled is attached to a type-1
control unit, and the subchannel for another
device attached to the same control unit has an
allegiance to the same channel path, unless the
allegiance is a working allegiance and primary
status has been accepted by that subchannel.

6. The device to be signaled is attached to a type-3
control unit, and the subchannel for another
device attached to the same control unit has a
dedicated allegiance to the same channel path.

If the conditions described in items 3, 5, or 6 exist,
the associated subchannel remains halt pending until
those conditions no longer exist. When the conditions
no longer exist (for the channel-path-terminal condi-
tion, when the condition no longer exists as a result
of executing RESET CHANNEL PATH), the channel
subsystem attempts to issue the halt signal to the
device.

15-18 The z/Architecture I/O Architecture

If any of the remaining conditions above exist, the
subchannel remains halt pending and is set status
pending, and the halt function is complete.

The Attempt to Issue the Halt Signal Is Not Suc-
cessful: When the channel subsystem attempts to
issue the halt signal to the device, the attempt may
not be successful because of the following condi-
tions:

1. The control unit or device signals a busy condi-
tion when the channel subsystem attempts to
select the device to issue the halt signal.

2. A path-not-operational condition is recognized
when the channel subsystem attempts to select
the device to issue the halt signal.

3. An error condition is encountered when the
channel subsystem attempts to issue the halt
signal.

If the control unit or device signals a busy condition
(item 1), the subchannel remains halt pending until
the internal indication of busy is reset. When this
event occurs, the channel subsystem again attempts
to issue the halt signal to the device.

If any of the remaining conditions above exists and
the channel subsystem either determines that the
attempt to issue the halt signal was not successful or
cannot determine whether the attempt was success-
ful, then the subchannel remains halt pending and is
set status pending, and the halt function is complete.

The Attempt to Issue the Halt Signal Is Success-
ful: When the channel subsystem determines that
the attempt to issue the halt signal was successful
and ending status, if appropriate, has been received
at the subchannel, the subchannel is no longer halt
pending and is set status pending, and the halt func-
tion is complete. When the subchannel becomes sta-
tus pending, the I/O operation, if any, with the
associated device has been terminated. The condi-
tions that affect the receipt of ending status at the
subchannel, and the effect of the halt signal at the
device are described in the following discussion.

When the subchannel is subchannel-and-device
active or only device active during the performance of
the halt function, the state continues until the sub-
channel is made status pending because (1) the
device has provided ending status or (2) the channel

subsystem has determined that ending status is
unavailable.

When the subchannel is operating in command
mode and is idle, start pending, start pending and
resume pending, suspended, or suspended and
resume pending, or when the halt signal is issued
during command chaining after the receipt of device
end but before the next command is transferred to
the device, no operation is in progress at the device,
and therefore no status is generated by the device as
a result of receiving the halt signal. When the sub-
channel is neither subchannel active, nor status
pending with intermediate status, and no errors are
detected during the attempt to issue the halt signal to
the device, an interruption condition indicating status
pending alone is generated after the halt signal is
issued.

When the subchannel is operating in transport mode
and is start pending, an operation may or may not be
in progress at the device. Regardless of whether an
operation is in progress, device status is not gener-
ated.

The effect of the halt signal at the device depends
partially on the subchannel operation mode, type of
device, and its state. The effect of the halt signal on a
device that is not active or that is performing a
mechanical operation in which data is not transferred
across the channel path, such as rewinding tape or
positioning a disk-access mechanism, depends upon
the control-unit or device model. If the device is per-
forming a type of operation that is unpredictable in
duration or in which data is transferred across the
channel path, the control unit interprets the signal as
one to terminate the operation. Pending status condi-
tions at the device are not reset. When the control
unit recognizes the halt signal, it immediately ceases
all communication with the channel subsystem until it
has reached the normal ending point. The control
unit then requests selection by the channel subsys-
tem to present any generated status.

If the subchannel is involved in the data-transfer por-
tion of an I/O operation, data transfer is terminated
during the performance of the halt function, and the
device is logically disconnected from the channel
path. If the halt function is addressed to a subchan-
nel operating in command mode, performing a chain
of I/O operations, and the device has already pro-
vided channel end for the current I/O operation, the
channel subsystem causes the device to be discon-

15-19

nected and command chaining or command retry to
be suppressed.

If the subchannel is operating in command mode,
performing a chain of I/O operations with the device,
and the halt signal is issued during command chain-
ing at a point after the receipt of device end for the
previous I/O operation but before the next command
is transferred to the device, the subchannel is made
status pending with primary and secondary status
immediately after the halt signal is issued. The
device-status field of the SCSW contains zeros in this
case. If the halt function is addressed to a subchan-
nel that is operating in command mode, start pend-
ing, and the halt-pending condition is recognized
before initiation of the start function, initiation of the
start function is not attempted, and the subchannel
becomes status pending after the device has been
signaled.

If the halt function is addressed to a subchannel
operating in transport mode that is start pending, the
halt signal is issued as follows

• If the TCCB has been transported to the I/O
device for execution, the halt signal is issued and
the subchannel becomes status pending.

• If the TCCB has not been transported to the I/O
device, the TCCB is not transported and the sub-
channel becomes status pending.

When the subchannel is not performing an I/O opera-
tion with the associated device, the device is
selected, and an attempt is made to issue the halt
signal as the device responds. If the subchannel is in
the device-active state, the subchannel does not
become status pending until it receives the device-
end status from the halted device. If the subchannel
is neither subchannel-and-device active nor device
active, the subchannel becomes status pending
immediately after selecting the device and issuing
the halt signal. The SCSW for the latter case has the
status-pending bit set to one (see “Status-Pending
(Bit 31)” on page 16-19).

The termination of an I/O operation by performing the
halt function may result in two distinct interruption
conditions.

The first interruption condition occurs when the
device generates the channel-end condition. The
channel subsystem handles this condition as it would
any other interruption condition from the device,

except that the command address in the associated
SCSW designates the point at which the I/O opera-
tion is terminated as follows:

• When a command-mode IRB is stored, the
SCSW contains the address of the last-executed
CCW, plus 8, and the subchannel-status bits may
reflect unusual conditions that were detected.

• When a transport-mode IRB is stored, the SCSW
contains the address of the current TCW, and the
subchannel-status, subchannel-extended-sta-
tus, and FCX bits may reflect unusual conditions
that were detected.

If the halt signal was issued before all data desig-
nated for the operation had been transferred, incor-
rect length is indicated, subject to the control of the
SLI flag in the current CCW when the subchannel is
operating in command mode. The value in the count
field of the associated SCSW is unpredictable. If the
halt signal was issued before all data designated for
the operation had been transferred, incorrect length
is not indicated, when the subchannel is operating in
transport mode.

The second interruption condition occurs if device-
end status was not presented with the channel-end
interruption condition. In this situation, the subchan-
nel-key, command-address, and count fields of the
associated SCSW are not meaningful.

When HALT SUBCHANNEL terminates an I/O opera-
tion, the method of termination differs from that used
upon exhaustion of count or upon detection of pro-
gramming errors to the extent that termination by
HALT SUBCHANNEL is not contingent on the receipt
of a service request from the associated device.

Programming Notes:

1. When, after an operation is terminated by HALT
SUBCHANNEL, the subchannel is status pend-
ing with primary, primary and secondary, or sec-
ondary status, the extent of data transferred as
described by the count field is unpredictable.

2. When the path that is chosen by the path-man-
agement operation has a channel-path-terminal
condition associated with it, the halt function
remains pending until the condition no longer
exists. Until the condition is cleared, the associ-
ated subchannel cannot be used to perform I/O
operations, even if other channel paths become

15-20 The z/Architecture I/O Architecture

available for selection. CLEAR SUBCHANNEL
can be executed to terminate the halt-pending
condition and make the subchannel usable.

Start Function and Resume
Function

The start and resume functions initiate I/O operations
as described below. The start function applies to sub-
channels operating in either command mode or
transport mode. The resume function applies only to
subchannels operating in command mode.

Subsequent to the execution of START SUBCHAN-
NEL and RESUME SUBCHANNEL, the channel sub-
system performs the start and resume functions,
respectively, to initiate an I/O operation with the asso-
ciated device. Performance of a start or resume func-
tion consists of: (1) performing a path-management
operation, (2) performing an I/O operation or chain of
I/O operations with the associated device, and
(3) causing the subchannel to be made status pend-
ing, indicating the completion of the start function.
(Completion of a start function is described in “I/O
Interruptions” on page 16-1.) The start function initi-
ates the execution of a channel program that is des-
ignated in the ORB, which in turn is designated as
the operand of START SUBCHANNEL, in contrast to
the resume function that initiates the execution of a
suspended channel program, if any, beginning at the
CCW that caused suspension; otherwise, the resume
function is performed as if it were a start function
(see “Resume-Pending (Bit 20)” on page 16-14).

Start-Function and Resume-
Function Path Management

A path-management operation is performed by the
channel subsystem during the performance of either
a start or a resume function to choose an available
channel path that can be used for device selection to
initiate an I/O operation with that device. The actions
taken are as follows:

1. If the subchannel is currently start pending and
device active, the start function remains pending
at the subchannel until the secondary status for
the previous start function has been accepted
from the associated device and the subchannel
is made start pending alone. When the status is

accepted and does not describe an alert inter-
ruption condition, the subchannel is not made
status pending, and the performance of the
pending start function is subsequently initiated. If
the status describes an alert interruption condi-
tion, the subchannel becomes status pending
with secondary and alert status, the pending
start function is not initiated, deferred condition
code 1 is set, and the start-pending bit remains
one. If the subchannel is currently start pending
alone, the performance of the start function is ini-
tiated as described below.

2. If a dedicated allegiance exists at the subchannel
for a channel path, the channel subsystem
chooses that path for device selection. If a busy
condition is encountered while attempting to
select the device and a dedicated allegiance
exists at the subchannel, the start function
remains pending until the internal indication of
busy is reset for that channel path. When the
internal indication of busy is reset, the perfor-
mance of the pending start function is initiated on
that channel path.

3. If no channel path is available for selection and
no dedicated allegiance exists in the subchannel
for a channel path, a channel path is not chosen.

4. If all channel paths that are available for selection
have been tried and one or more of them are
being used to actively communicate with other
devices, or, alternatively, if the channel subsys-
tem has encountered either a control-unit-busy
or a device-busy condition on one or more of
those channel paths, or a combination of those
conditions on one or more of those channel
paths, the start function remains pending at the
subchannel until a channel path, control unit, or
device, as appropriate, becomes available.

5. If (1) the start function is to be initiated on a
channel path with a device attached to a type-1
control unit and (2) no other device is attached to
the same control unit whose subchannel has
either a dedicated allegiance to the same chan-
nel path or a working allegiance to the same
channel path where primary status has not been
received for that subchannel, then that channel
path is chosen if it is available for selection; oth-
erwise, that channel path is not chosen. If, how-
ever, another channel path to the device is
available for selection and no allegiances exist as
described above, that channel path is chosen. If
no other channel path is available for selection,

15-21

the start or resume function, as appropriate,
remains pending until a channel path becomes
available.

6. If the device is attached to a type-3 control unit,
and if at least one other device is attached to the
same control unit whose subchannel has a dedi-
cated allegiance to the same channel path,
another channel path that is available for selec-
tion may be chosen, or the start function remains
pending until the dedicated allegiance for the
other device is cleared.

7. If a channel path has been chosen and a busy
indication is received during device selection to
initiate the execution of the first command of a
pending CCW channel program or to transport
the TCCB of a pending TCW channel program,
the channel path over which the busy indication
is received is not used again for that device or
control unit (depending on the device-busy or
control-unit-busy indication received) until the
internal indication of busy is reset.

8. If, during an attempt to select the device in order
to initiate the execution of the first command
specified for the start or implied for the resume
function for a CCW channel program, or to initi-
ate the transportation of the TCCB for the start
function for a TCW channel program, (as
described in action 7 above), the channel sub-
system receives a busy indication, it performs
one of the following actions:

a. If the device is specified to be operating in
the multipath mode and the busy indication
received is device busy, then the start or
resume function remains pending until the
internal indication of busy is reset. (See
“Multipath Mode (D)” on page 15-4.)

b. If the device is specified to be operating in
the multipath mode and the busy indication
received is control unit busy, or if the device
is specified to be operating in the single-path
mode, the channel subsystem attempts
selection of the device by choosing an alter-
nate channel path that is available for selec-
tion and continues the path-management
operation until either the start or the resume
function is initiated or selection of the device
has been attempted on all channel paths that
are available for selection. If the start or
resume function has not been initiated by the
channel subsystem after all channel paths

available for selection have been chosen, the
start or resume function remains pending
until the internal indication of busy is reset.

c. If the subchannel has a dedicated alle-
giance, then action 2 on page 20 applies.

9. When, during the selection attempt to transfer
the first command for a CCW channel program,
or to transport the TCCB for a TCW channel pro-
gram, the device appears not operational and the
corresponding channel path is operational for the
subchannel, a path-not-operational condition is
recognized, and the state of the channel path
changes at the subchannel from operational for
the subchannel to not operational for the sub-
channel (see “Path-Not-Operational Mask
(PNOM)” on page 15-5). The path-not-opera-
tional conditions at the subchannel, if any, are
preserved until the subchannel next becomes
clear pending, start pending, or resume pending
(if the subchannel was suspended), at which
time the path-not-operational conditions are
cleared. If, however, the corresponding channel
path is not operational for the subchannel, a
path-not-operational condition is not recognized.
When the device appears not operational during
the selection attempt to transfer the first com-
mand or TCCB on a channel path that is avail-
able for selection, one of the following actions
occurs:

a. If a dedicated allegiance exists for that chan-
nel path, then it is the only channel path that
is available for selection; therefore, further
attempts to initiate the start or resume func-
tion are abandoned, and an interruption con-
dition is recognized.

b. If no dedicated allegiance exists and there
are alternate channel paths available for
selection that have not been tried, one of
those channel paths is chosen to attempt
device selection and transfer the first com-
mand for a CCW channel program, or the
TCCB for a TCW channel program.

c. If no dedicated allegiance exists, no alter-
nate channel paths are available for selection
that have not been tried, and the device has
appeared operational on at least one of the
channel paths that were tried, the start or
resume function remains pending at the sub-
channel until a channel path, a control unit,

15-22 The z/Architecture I/O Architecture

or the device, as appropriate, becomes avail-
able.

d. If no dedicated allegiance exists, no alter-
nate channel paths are available for selection
that have not been tried, and the device has
appeared not operational on all channel
paths that were tried, further attempts to initi-
ate the start or resume function are aban-
doned, and an interruption condition is
recognized.

10. When the subchannel is active and an I/O oper-
ation is to be initiated with a device, all device
selections occur according to the LPUM indica-
tion if the multipath mode is not specified at the
subchannel. For example, if command chaining
is specified for a CCW channel program, the
channel subsystem transfers the first and all sub-
sequent commands describing a chain of I/O
operations over the same channel path.

Interrogate Function

Subsequent to the execution of CANCEL SUBCHAN-
NEL for a subchannel operating in transport mode,
the channel subsystem performs the interrogate
function. Performance of the interrogate function con-
sists of (1) transporting the designated interrogate
TCCB to the I/O device, (2) storing the interrogate
TSB, and (3) causing the subchannel to become
intermediate status pending with interrogate-com-
plete status indicated.

All storage accesses used to perform the interrogate
operation are made as if a storage-access key of
zero is used.

Interrogate-Function Path
Management

The same channel path that was used to transport
the TCCB for the I/O operation being interrogated is
used for the interrogate function.

Interrogate TCCB Transportation and
Completion
Subsequent to determining the channel path, the
channel subsystem, if conditions allow, attempts to
transport the interrogate TCCB. Conditions associ-

ated with the subchannel, the interrogate TCCB, and
the chosen channel path, if any, affect (1) whether an
attempt is made to transport the interrogate TCCB,
(2) whether the attempt to transport the interrogate
TCCB is successful, and (3) whether the interrogate
TSB is stored. These conditions and their effect on
the interrogate function are described as follows:

No Attempt Is Made to Transport the Interrogate
TCCB: The channel subsystem does not transport
the interrogate TCCB if any of the following condi-
tions exists:

• The subchannel is status pending with primary
status indicated.

• The subchannel is idle or device active only.

• The TCCB for the I/O operation being interro-
gated has not been transported to the device.

• Another interrogate function is already in prog-
ress on the channel path for the I/O device.

• The interrogate-TCW-address field of the TCW
for the I/O operation being interrogated contains
zeros.

• The channel subsystem doesn't have the
resources to process the interrogate.

The Attempt to Transport the Interrogate TCCB or
Store the Interrogate TSB is Unsuccessful:
When the channel subsystem attempts to transport
the interrogate TCCB, the attempt may not be suc-
cessful if any of the following conditions exists:

• The interrogate-TCW address designated by the
TCW of the I/O operation being interrogated des-
ignates an unavailable storage location or does
not designate the interrogate TCW on a 64-byte
boundary.

• The TCCB-TIDA flag is one in the flags field of
the interrogate TCW and the TCCB-address field
in the interrogate TCW does not designate the
first TIDAW on a quadword boundary.

• The interrogate-TSB address designated by the
TCW of the I/O operation being interrogated des-
ignates an unavailable storage location or does
not designate the interrogate TSB on a double-
word boundary.

If any of the above conditions is true, the subchannel
is made status pending with program check and

15-23

interrogate-failed status indicated in the subchannel-
extended-status field of the IRB.

The attempt to transport the interrogate TCCB is also
not successful when a device-detected program
check is recognized. In this case, interrogate-failed
status is also indicated in the subchannel-extended-
status field of the IRB.

If the interrogate TCCB has been sent and the corre-
sponding interrogate response is not received within
a model-dependent amount of time, an interface-con-
trol check is recognized with interrogate-failed status
indicated in the subchannel-extended-status field of
the IRB.

The Attempt to Transport the Interrogate TCCB is
Successful: When the channel subsystem deter-
mines that the attempt to transport the interrogate
TCCB was successful and the interrogate data has
been received at the subchannel before the comple-
tion of the I/O operation being interrogated, the inter-
rogate data is stored into the interrogate TSB, and
the subchannel is made status pending with interme-
diate status and interrogate-complete status indi-
cated. The status related to the operation being
interrogated remains unchanged.

When the channel subsystem determines that the
operation being interrogated has completed before
the interrogate data has been received at the sub-
channel, the channel subsystem waits until the inter-
rogate data is received. When received, the
interrogate data is stored into the interrogate TSB,
and the subchannel is made status pending with pri-
mary status indicated. The status related to the oper-
ation being interrogated is unchanged.

Execution of I/O Operations

After a channel path is chosen, the channel subsys-
tem, if conditions allow, initiates the execution of an
I/O operation with the associated device. Execution
of additional I/O operations may follow the initiation
and execution of the first I/O operation.

For subchannels operating in command mode, the
channel subsystem can execute seven types of com-
mands: write, read, read backward, control, sense,
sense ID, and transfer in channel. Each command,
except transfer in channel, initiates a corresponding
I/O operation. Except for periods when channel-pro-

gram execution is suspended at the subchannel (see
“Suspension of CCW Channel-Program Execution”
on page 15-73), the subchannel is active from the
acceptance of the first command until the primary
interruption condition is recognized at the subchan-
nel. If the primary interruption condition is recognized
before the acceptance of the first command, the sub-
channel does not become active. Normally, the pri-
mary interruption condition is caused by the channel-
end signal or, in the case of command chaining, the
channel-end signal for the last CCW of the chain.
(See “Primary Interruption Condition” on page 16-4.)
The device is active until the secondary interruption
condition is recognized at the subchannel. Normally,
the secondary interruption condition is caused by the
device-end signal or, in the case of command chain-
ing, the device-end signal for the last CCW of the
chain. (See “Secondary Interruption Condition” on
page 16-5.)

For subchannels operating in transport mode, the
channel subsystem can transport six types of com-
mands for execution: write, read, control, sense,
sense ID, and interrogate. Each command initiates a
corresponding device operation. When one or more
commands are transported to the I/O device in a
TCCB, the subchannel remains start pending until
primary status is presented.

Programming Notes:

In the single-path mode, all transfers of commands,
data, and status for the I/O operation or chain of I/O
operations occur on the channel path over which the
first command was transferred to the device.

When the device has the dynamic-reconnection fea-
ture installed, an I/O operation or chain of I/O opera-
tions may be performed in the multipath mode. To
operate in the multipath mode, MODIFY SUBCHAN-
NEL must have been previously executed for the sub-
channel with bit 13 of word 1 of the SCHIB specified
as one. (See “Multipath Mode (D)” on page 15-4.) In
addition, the device must be set up for the multipath
mode by the execution of certain model-dependent
commands appropriate to that type of device. The
general procedures for handling multipath-mode
operations are as follows:

1. Setup

a. A set-multipath-mode type of command must
be successfully executed by the device on
each channel path that is to be a member of

15-24 The z/Architecture I/O Architecture

the multipath group being set up; otherwise,
the multipath mode of operation may give
unpredictable results at the subchannel. If,
for any reason, one or more physically avail-
able channel paths to the device are not
included in the multipath group, these chan-
nel paths must not be available for selection
while the subchannel is operating in the mul-
tipath mode. A channel path can be made
not available for selection by having the cor-
responding LPM bit set to zero either in the
SCHIB prior to the execution of MODIFY
SUBCHANNEL or in the ORB prior to the
execution of START SUBCHANNEL.

b. When a set-multipath-mode type of com-
mand is transferred to a device, only a single
channel path must be logically available in
order to avoid alternate channel-path selec-
tion for the execution of that start function;
otherwise, device-busy conditions may be
detected by the channel subsystem on more
than one channel path, which may cause
unpredictable results for subsequent mul-
tipath-mode operations. This type of setup
procedure should be used whenever the
membership of a multipath group is
changed.

2. Leaving the Multipath Mode

To leave the multipath mode and continue pro-
cessing in the single-path mode, either of the fol-
lowing two procedures may be used:

a. A disband-multipath-mode type of command
may be executed for any channel path of the
multipath group. This command must be fol-
lowed by either (1) the execution of MODIFY
SUBCHANNEL with bit 13 of word 1 of the
SCHIB specified as zero, or (2) the specifica-
tion of only a single channel path as logically
available in the LPM. A start function must
not be performed at a subchannel operating
in the multipath mode with multiple channel
paths available for selection while the device
is operating in single-path mode; otherwise,
unpredictable results may occur at the sub-
channel for that function or subsequent start
functions.

b. A resign-multipath-mode type of command is
executed on each channel path of the mul-
tipath group (the reverse of the setup
described in item 1 on page 23). This com-

mand must be followed by either (1) the exe-
cution of MODIFY SUBCHANNEL with bit 13
of word 1 of the SCHIB specified as zero, or
(2) the specification of only a single channel
path as logically available in the LPM. No
start function may be performed at a sub-
channel operating in the multipath mode with
multiple channel paths available for selection
while the device is operating in single-path
mode; otherwise, unpredictable results may
occur at the subchannel for that or subse-
quent start functions.

Blocking of Data

Data recorded by an I/O device is divided into blocks.
The length of a block depends on the device; for
example, a block can be a card, a line of printing, or
the information recorded between two consecutive
gaps on magnetic tape.

The maximum amount of information that can be
transferred in one I/O operation is one block. An I/O
operation is terminated when the associated main-
storage area is exhausted or the end of the block is
reached, whichever occurs first. For some opera-
tions, such as writing on a magnetic-tape unit or at an
inquiry station, blocks are not defined, and the
amount of information transferred is controlled only
by the program.

Operation-Request Block

The operation-request block (ORB) is the operand of
START SUBCHANNEL. The ORB specifies the
parameters to be used in controlling that particular
start function. These parameters include the interrup-
tion parameter, the subchannel key, the address of
first CCW or the TCW, operation-control bits, priority-
control numbers, and a specification of the logical
availability of channel paths to the designated device.

The contents of the ORB are placed at the desig-
nated subchannel during the execution of START
SUBCHANNEL, prior to the setting of condition code
0. If the execution will result in a nonzero condition
code, the contents of the ORB are not placed at the
designated subchannel.

The two rightmost bits of the ORB address must be
zeros, placing the ORB on a word boundary; other-
wise, a specification exception is recognized.

15-25

When the fibre-channel-extensions (FCX) facility is
installed, the channel-program-type control (B) (word
1, bit 13) of the ORB specifies the type of channel
program that is designated by the ORB. When B is
zero, the ORB designates a CCW channel program.
When the B is one, the ORB designates a TCW
channel program. Only I/O-devices that support FCX
recognize TCW channel programs.

If the contents of an ORB that designates a CCW
channel program are placed at the designated sub-
channel during the execution of START SUBCHAN-
NEL, the subchannel remains in command mode.
Thus, such an ORB is also known as a command-
mode ORB. If the contents of an ORB that desig-
nates a TCW channel program are placed at the des-
ignated subchannel during execution of START
SUBCHANNEL, the subchannel enters transport
mode. Thus, such an ORB is also known as a trans-
port-mode ORB.

Command-Mode ORB
This section describes the command-mode ORB.
The term operation-request block (ORB), in this sec-
tion, means an ORB in which bit 13 of word 1 (the
channel-program-type control (B)) is zero.

The format of the command-mode ORB is as follows
when the ORB-format facility is not installed:

The fields in the command-mode ORB are defined as
follows:

Interruption Parameter: Bits 0-31 of word 0 are
preserved unmodified in the subchannel until
replaced by a subsequent START SUBCHANNEL or
MODIFY SUBCHANNEL instruction. These bits are
placed in word 1 of the interruption code when an I/O
interruption occurs and when an interruption request

is cleared by the execution of TEST PENDING
INTERRUPTION.

Subchannel Key: Bits 0-3 of word 1 form the sub-
channel key for all fetching of CCWs, IDAWs,
MIDAWS, and output data and for the storing of input
data associated with the start function initiated by
START SUBCHANNEL. This key is matched with a
storage key during these storage references. For
details, see the section “Key-Controlled Protection”
on page 3-11.

Suspend Control (S): Bit 4 of word 1 controls the
performance of the suspend function for the channel
program designated in the ORB. The setting of the S
bit applies to all CCWs of the channel program desig-
nated by the ORB (see “Commands and Flags for
CCWs” on page 15-75).

When bit 4 is one, suspend control is specified, and
channel-program suspension occurs when a sus-
pend flag set to one is detected in a CCW. When bit 4
is zero, suspend control is not specified, and the
presence of a suspend flag set to one in any CCW of
the channel program causes a program-check condi-
tion to be recognized.

Streaming-Mode Control (C): Bit 5 of word 1 con-
trols streaming-mode enablement for subchannels
configured to FICON-converted-I/O-interface channel
paths during performance of the specified start func-
tion. When bit 5 is zero, the streaming mode is
enabled at the subchannel. When bit 5 is one, the
streaming mode is disabled at the subchannel. Bit 5
is meaningful only for subchannels configured to
FICON-converted-I/O-interface channel paths and is
ignored for subchannels configured to other channel-
path types.

When the streaming mode is enabled, the channel
path considers the first command of the designated
channel program to be in progress at the associated
device when the channel path receives the indication
that the command has been accepted at the device.
In addition, the channel path's acceptance of status,
under certain conditions, is recognized by the chan-
nel path without receiving acknowledgement of sta-
tus acceptance from the device.

When the streaming mode is not enabled, the chan-
nel path does not consider the first command of the
designated channel program to be in progress at the
associated device until the appropriate channel-path
response, indicating that the device-command

Word

0 Interruption Parameter

1 Key S C M Y F P I A U B H T LPM L D 0 0 0 0 0 X

2 0 Channel-Program Address

3 CSS Priority Reserved CU Priority Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved
0 1 8 16 24 31

Figure 15-5. Command-Mode Operation-Request Block

15-26 The z/Architecture I/O Architecture

response or status has been accepted at the channel
path, is sent to the device. In addition, when the
device sends status to the channel path, the channel
path's acceptance of that status is not recognized at
the channel path until the channel path's confirma-
tion of acceptance is received and acknowledged by
the device.

Modification Control (M): Bit 6 of word 1 specifies
whether modification control is required for the chan-
nel program. When bit 6 is zero, modification control
is specified. When bit 6 is one, modification control is
not specified.

When modification control is specified, the channel
subsystem forces command synchronization with the
addressed I/O device each time a command is exe-
cuted and the previously executed command has the
PCI and chain-command flags set to one and the
chain-data and suspend flags set to zero. When this
condition is recognized, the channel subsystem sig-
nals a synchronization request to the I/O device for
the current command. The channel subsystem tem-
porarily suspends command chaining and does not
fetch (or refetch) the next command-chained CCW
until after normal ending status is received for the
synchronizing command.

When modification control is not specified, then com-
mand synchronization is not required, and the chan-
nel subsystem may transfer commands to the I/O
device without waiting for status.

The M bit is meaningful only for subchannels config-
ured to FICON-I/O-interface or FICON-converted-
I/O-interface channel paths and is ignored for other
subchannels configured to other channel-path types.

Programming Notes:

1. For FICON-I/O-interface and FICON-converted-
I/O-interface channel paths, modification control
provides the capability to optimize dynamically
modified channel programs that use the PCI flag
in the CCW to initiate channel-program modifica-
tion. Specifically, it allows the program to delay
the channel-subsystem fetching and transferring
of commands until after status is received for the
command following the command with the PCI
bit set. This increases the likelihood that a pro-
gram-controlled interruption will be accepted by a
CPU and acted upon by the program that dynam-
ically modifies one or more command-chained
CCWs that follow the synchronizing command.

In order to increase the probability that any
dynamically modified CCWs are fetched after
their modification and not prior to their modifica-
tion, the modifying program should be executed
as soon as possible following the CPU's accep-
tance of the program-controlled interruption.
Additionally, the program should minimize the
periods during which the configured CPUs are
disabled for I/O interruptions.

For channel paths other than FICON-I/O-inter-
face or FICON-converted-I/O-interface channel
paths, command synchronization is implicit in the
signaling protocol between the channel subsys-
tem and the I/O device; therefore no explicit pro-
gramming action is required to force command
synchronization. Regardless, the program should
still attempt to accept and process program-con-
trolled interruptions for these channel-path types
in as timely a manner as possible for the same
reason as stated above.

2. In order to allow the channel subsystem to opti-
mize the execution of channel programs for
FICON-I/O-interface or FICON-converted-I/O-
interface channel paths, use of the modification-
control facility is discouraged except for channel
programs that require dynamic modification.

Synchronization Control (Y): Bit 7 of word 1
specifies whether synchronization control is required
for the channel program. When bit 7 is zero and the
prefetch-control bit, bit 9 of word 1, is one, synchroni-
zation control is specified. When bit 7 is one and bit 9
is one, synchronization control is not specified.

When synchronization control is specified, the chan-
nel subsystem forces command synchronization with
the addressed I/O device whenever the current com-
mand in execution describes an input operation and
the next CCW to be fetched describes an output
operation. When this condition is recognized, the
channel subsystem signals a synchronization
request to the I/O device when the input command is
transferred. The transfer of the output command is
held pending at the subchannel until normal ending
status, signaling the completion of the performance
of the input operation by the I/O device, is received.
Upon receipt of the ending status, the channel sub-
system fetches (or refetches) the data associated
with the output command and transfers it to the I/O
device.

15-27

When synchronization control is not specified, the
channel subsystem may transfer commands of the
channel program without awaiting status that would
signal the completion of the I/O operation for each
command.

The Y bit is meaningful only when the subchannel is
configured to FICON-I/O-interface or FICON-con-
verted-I/O-interface channel paths and the prefetch-
control bit, bit 9 of word 1, is one. The Y bit is ignored
for subchannels configured to other channel-path
types and when the prefetch-control bit is zero.

CCW-Format Control (F): Bit 8 of word 1 specifies
the format of the channel-command words (CCWs)
that make up the channel program designated by the
channel-program-address field. When bit 8 of word 1
is zero, format-0 CCWs are specified. When bit 8 is
one, format-1 CCWs are specified. (See “Channel-
Command Word” on page 15-31 for the definition of
the CCW formats.)

Prefetch Control (P): Bit 9 of word 1 specifies
whether or not unlimited prefetching of CCWs is
allowed for the channel program. When bit 9 is one,
unlimited prefetching of CCWs is allowed. (Unlimited
prefetching of data, IDAWs, and MIDAWs, associated
with the current and prefetched CCWs is always
allowed.) It is model dependent whether prefetching
is actually performed.

When bit 9 of word 1 is zero, no prefetching is
allowed, except in the case of data chaining on out-
put, where the prefetching of one CCW describing a
data area is allowed. When bit 9 of word 1 is zero, the
synchronization-control bit, bit 7 of word 1, is ignored.

Additional controls may limit the scope of prefetching.

Initial-Status-Interruption Control (I): Bit 10 of
word 1 specifies whether or not the channel subsys-
tem must verify to the program that the device has
accepted the first command associated with a start
or resume function. When the I bit is specified as one
in the ORB, then, when the subchannel becomes
active, indicating that the first command has been
accepted for this start or resume function, the Z bit
(see “Zero Condition Code (Z)” on page 16-12) is set
to one at this subchannel, and the subchannel
becomes status pending with intermediate status.

If the subchannel does not become active — for
example, when the device signals channel end
immediately upon receiving the first command, com-

mand chaining is not specified in the CCW, and com-
mand retry is not signaled — the command-accepted
condition (Z bit set to one) is not generated; instead,
the subchannel becomes status pending with pri-
mary status. Intermediate status may also be indi-
cated in this case when the command is accepted if
the first CCW contained the PCI flag set to one.

Address-Limit-Checking Control (A): When the
address-limit-checking facility is installed, bit 11 of
word 1 specifies whether or not address-limit check-
ing is specified for the channel program. When this
bit is zero, no address-limit checking is performed for
the execution of the channel program, independent of
the setting of the limit-mode bits in the subchannel
(see “Limit Mode (LM)” on page 15-3). When this bit
is one, address-limit checking is allowed for the chan-
nel program, subject to the setting of the limit-mode
bits in the subchannel.

When the address-limit-checking facility is not
installed, the address-limit-checking-control bit (A)
must be zero in the ORB when START SUBCHAN-
NEL is executed; otherwise, an operand exception is
recognized.

Suppress-Suspended-Interruption Control (U):
Bit 12 of word 1, when one, specifies that the channel
subsystem is to suppress the generation of an inter-
mediate interruption condition due to suspension if
the subchannel becomes suspended. When bit 12 is
zero, the channel subsystem generates an intermedi-
ate interruption condition whenever the subchannel
becomes suspended during the execution of the
channel program.

Channel-Program Type Control (B): Bit 13 of
word 1 specifies the type of channel program that is
designated by the channel-program-address field.
When bit 13 is zero, the channel-program-address
field designates a CCW channel program. When bit
13 is one, the channel-program-address field desig-
nates a TCW channel program. If the FCX facility is
not installed and this bit is one, an operand exception
or program-check exception is recognized.

Bit 13 also designates the layout of the ORB. When
bit 13 is zero, a command-mode ORB is specified.
When bit 13 is one, a transport-mode ORB is speci-
fied.

Format-2-IDAW Control (H):
Bit 14 of word 1 specifies the format of IDAWs for
CCWs that specify indirect data addressing. When

15-28 The z/Architecture I/O Architecture

bit 14 of word 1 is one, format-2 (64-bit data address)
IDAWs are provided for all CCWs that have the IDAW
flag set to one in the CCW. When bit 14 of word 1 is
zero, format-1 (31-bit data address) IDAWs are pro-
vided for all CCWs that have the IDAW flag set to one
in the CCW.

Programming Note: Format-2 IDAWs and MIDAWs
provide the only means by which data can be trans-
ferred directly between an I/O device and storage
locations with addresses greater than 2G bytes.

2K-IDAW Control (T): Bit 15 of word 1 specifies
the main-storage block size for format-2-IDAW data
areas. Bit 15 is meaningful only when bit 14 (format-2
IDAW control) is one and is ignored when bit 14 is
zero. When bit 15 of word 1 is one, all format-2
IDAWs designate 2 K-byte storage blocks. When bit
15 of word 1 is zero, all format-2 IDAWs designate
4 K-byte storage blocks.

Logical-Path Mask (LPM): Bits 16-23 of word 1
are preserved unmodified in the subchannel and
specify to the channel subsystem which of the logical
paths 0-7 are to be considered logically available, as
viewed by the program. A bit setting of one means
that the corresponding channel path is logically avail-
able; a zero specifies that the corresponding channel
path is logically not available. If a channel path is
specified by the program as being logically not avail-
able, the channel subsystem does not use that chan-
nel path to perform clear, halt, resume, or start
functions when requested by the program, except
when a dedicated-allegiance condition exists for that
channel path. If a dedicated-allegiance condition
exists, the setting of the LPM is ignored, and a
resume, start, halt, or clear function is performed by
using the channel path having the dedicated alle-
giance.

Incorrect-Length-Suppression Mode (L): When
bit 8 of word 1 is one, then bit 24 of word 1, when
one, specifies the incorrect-length-suppression
mode. When the subchannel is in this mode when an
immediate operation occurs (that is, when a device
signals the channel-end condition during initiation of
the command) and the current CCW contains a non-
zero value in bit positions 16-31, indication of an
incorrect-length condition is suppressed.

When bit 8 of word 1 is one, then bit 24 of word 1,
when zero, specifies the incorrect-length-indication
mode. When the subchannel is in this mode when an
immediate operation occurs (that is, when a device

signals the channel-end condition during initiation of
the command) and the current CCW contains a non-
zero value in bit positions 16-31, indication of an
incorrect-length condition is recognized. Command
chaining is suppressed unless the SLI flag in the
CCW is one and the chain-data flag is zero.

When bit 8 of word 1 is zero, the value of bit 24 is
ignored by the channel subsystem, and the subchan-
nel is in the incorrect-length-suppression mode.

Modified-CCW-Indirect-Data-Addressing Control
(D) : When the modified-CCW-indirect-data-
addressing facility is installed, bit 25 of word 1 speci-
fies whether the channel program may include CCWs
that specify modified-CCW-indirect-data-address
lists. When bit 25 of word 1 is one, the channel pro-
gram may include CCWs that specify lists of quad-
words each called a modified-CCW-indirect-data-
address word (MIDAW). When bit 25 of word 1 is
zero, the channel program may not include CCWs
that specify modified-CCW-indirect-data-address
lists.

When the modified-CCW-indirect-data-addressing
facility is not installed, the modified-CCW-indirect-
data-addressing control must be zero in the ORB
when START SUBCHANNEL is executed; otherwise,
an operand exception is recognized.

ORB-Extension Control (X): Bit 31 of word 1
specifies whether the ORB is extended. When bit 31
of word 1 is zero, the ORB consists of words 0-2, and
words 3-7 are ignored. When bit 31 of word 1 is one,
the ORB consists of words 0-7. Words 0 and 1 are
described above. Words 2-7 are described below.

Reserved: Bits 26-30 of word 1 are reserved for
future use and must be set to zeros. Bit 31 of word 1
must be zero if the ORB-extension facility is not
installed. Otherwise, an operand exception or pro-
gram-check condition is recognized.

Channel-Program Address: Bits 1-31 of word 2
specify the absolute address of the first CCW in main
storage. Bit 0 of word 2 must be zero; otherwise,
either an operand exception or a program-check con-
dition is recognized. If format-0 CCWs are specified
by bit 8 of word 1, then bits 1-7 of word 2 also must
be zeros; otherwise, a program-check condition is
recognized.

The three rightmost bits of the channel-program
address must be zeros, designating the CCW on a

15-29

doubleword boundary; otherwise, a program-check
condition is recognized.

If the channel-program address designates a location
protected against fetching or designates a location
outside the storage of the particular configuration,
the start function is not initiated at the device. In this
situation, the subchannel becomes status pending
with primary, secondary, and alert status.

Channel-Subsystem (CSS) Priority: When bit 31
(X) of word 1 of the ORB is one, byte 0 of word 3 con-
tains an unsigned binary integer, called the channel-
subsystem-priority number, that is assigned to the
designated subchannel and used to order the selec-
tion of subchannels when either a start function or a
resume function is to be initiated for one or more sub-
channels that are start pending or resume pending.

The specified channel-subsystem-priority number
can be any number in the range of 0 to 255. The
numbers 0 and 255 designate the lowest and highest
priorities, respectively.

Depending on the model and the configuration:

1. Fewer than 256 priority levels may be provided.
For such models, the ORB-specified priority
number may be ignored, and an alternative prior-
ity number may be implicitly assigned to the sub-
channel when the subchannel becomes start
pending.

2. When bit 31 (X) of word 1 of the ORB is zero, an
implicit priority number is assigned to the sub-
channel.

See “Channel-Subsystem-I/O-Priority Facility” on
page 17-32 for details about how the priority number
is assigned for both of these cases.

Control-Unit (CU) Priority: When bit 31 (X) of
word 1 of the ORB is one, byte 2 of word 3 contains
an unsigned binary integer, called the control-unit-
priority number, that specifies, for an associated con-
trol unit attached by a FICON channel path, the prior-
ity level that is applied at the associated control unit
for all I/O operations associated with the start func-
tion.

The specified control-unit-priority number can be any
integer in the range of 1 to 255. The numbers 1 and
255 designate the lowest and highest priorities,

respectively. The number 0 designates that no prior-
ity is assigned to the I/O operations associated with
the start function. The handling of I/O operations
when the priority number is 0 depends on the control-
unit model.

Also depending on the control-unit model, fewer than
255 priority levels may be supported by the control
unit. See the control-unit's System Library publication
for additional information regarding the range of pri-
ority numbers supported and how this priority num-
ber is used.

The specified control-unit-priority number is ignored
if any of the following conditions exists:

1. Bit 31 (X) of word 1 is zero. In this case, a con-
trol-unit-priority number of 0 is transmitted in the
associated outbound frames.

2. The designated subchannel is not associated
with a control unit configured to a FICON chan-
nel path.

3. The associated control unit does not provide pri-
oritized performance of I/O operations. In this
case, the control-unit-priority number in the asso-
ciated outbound frames is ignored at the control
unit.

4. The channel-subsystem model does not provide
for the transmission of the control-unit-priority
number.

5. The channel-subsystem-I/O-priority facility is not
operational due to an operator action.

Reserved: All fields in the ORB that are defined as
either "0" or "Reserved" must contain zeros when
START SUBCHANNEL is executed; otherwise, either
an operand exception or a program-check condition
is recognized.

Programming Notes:

1. Bit positions of the ORB that presently are speci-
fied to contain zeros may in the future be
assigned for the control of new functions.

2. The interruption parameter may contain any
information, but ordinarily the information is of
significance to the program handling the I/O
interruption.

15-30 The z/Architecture I/O Architecture

Transport-Mode ORB
This section describes the transport-mode ORB. The
term operation-request block (ORB), in this section,
means an ORB in which bit 13 of word 1 (the chan-
nel-program-type control (B)) is one.

The format of the transport-mode ORB is as follows:

The fields in the transport-mode ORB are defined as
follows:

Interruption Parameter: This field has the same
meaning as in the ORB that designates a CCW
channel program. See “Interruption Parameter” on
page 15-2.

Subchannel Key: Bits 0-3 of word 1 form the sub-
channel key for all fetching of TCWs, TCCBs,
TIDAWS, and output data and for the storing of input
data associated with the start function initiated by
START SUBCHANNEL. This key is matched with a
storage key during these storage references. For
details, see the section “Key-Controlled Protection”
on page 3-11.

All storage accesses to the TSB are made as if the
subchannel key is zero.

Reserved: All fields in the ORB that are defined as
either “0” or “Reserved” must contain zeros when
START SUBCHANNEL is executed; otherwise, either
an operand exception or a program-check condition
is recognized.

Channel-Program Type Control (B): This bit has
the same meaning as in the ORB that designates a
CCW channel program. For the transport-mode
ORB, the value of this bit is one. See “Channel-Pro-
gram Type Control (B)” on page 15-27.

Logical-Path Mask (LPM): Bits 16-23 of word 1
are preserved unmodified in the subchannel and
specify to the channel subsystem which of the logical
paths 0-7 are to be considered logically available, as
viewed by the program. A bit setting of one means
that the corresponding channel path is logically avail-
able; a zero specifies that the corresponding channel
path is logically not available. If a channel path is
specified by the program as being logically not avail-
able, the channel subsystem does not use that chan-
nel path to perform clear, halt, or start functions when
requested by the program.

If the LPM specifies a channel path that does not
support FCX, either an operand-exception or a pro-
gram check may be recognized.

ORB-Extension Control (X): This field has the
same meaning as in the ORB that designates a CCW
channel program. See “ORB-Extension Control (X)”
on page 15-28.

Channel-Program Address: Bits 1-31 of word 2
specify the absolute address of the TCW in main
storage. Bit 0 of word 2 must be zero; otherwise,
either an operand exception or a program-check con-
dition is recognized.

The six rightmost bits of the channel-program
address must be zeros, designating the TCW on a
64-byte boundary; otherwise, a program-check con-
dition is recognized.

If the channel-program address designates a location
protected against fetching or designates a location
outside the storage of the particular configuration,
the start function is not initiated at the device. In this
situation, the subchannel becomes status pending
with primary, secondary, and alert status.

Channel-Subsystem (CSS) Priority: This field
has the same meaning as in the ORB that desig-
nates a CCW channel program. See “Channel-Sub-
system (CSS) Priority” on page 15-29

Reserved for Program Use (Rsv. for Pgm.): Byte
2 of word 3 is reserved for program use and is not
checked or used by the channel subsystem.

Programming Note: See the programming notes on
page 29.

Word

0 Interruption Parameter

1 Key 0 0 0 0 0 0 0 0 0 B 0 0 LPM 0 0 0 0 0 0 0 X

2 0 Channel-Program Address

3 CSS Priority Reserved Rsv. for Pgm. Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved
0 1 8 16 24 31

Figure 15-6. Transport-Mode Operation-Request Block

15-31

Channel-Command Word

The channel-command word (CCW) specifies the
command to be executed and, for commands initiat-
ing certain I/O operations, it designates the storage
area associated with the operation, the action to be
taken whenever transfer to or from the area is com-
pleted, and other options.

A channel program consists of one or more CCWs
that are logically linked such that they are fetched
and executed by the channel subsystem in either a
sequential or a nonsequential order. Sequential (con-
tiguous) CCWs are linked by the use of the chain-
data and chain-command flags, and nonsequential
(noncontiguous) CCWs are linked by a CCW specify-
ing the transfer-in-channel command.

As each CCW is executed, it is recognized as the
current CCW. A CCW becomes current (1) when it is
the first CCW of a channel program and has been
fetched, (2) when, during command chaining, the
new CCW is logically fetched, or (3) when, during
data chaining, the new CCW takes over control of the
I/O operation (see “Data Chaining” on page 15-61).
When chaining is not specified, a CCW is no longer
current after TEST SUBCHANNEL clears the start-
function bit in the subchannel.

The location of the first CCW of the channel program
is designated in the ORB that is the operand of
START SUBCHANNEL. The first CCW is fetched
subsequent to the execution of the instruction. The
format of the CCWs fetched by the channel subsys-
tem is specified by bit 8 of word 1 of the ORB. Each
additional CCW in the channel program is obtained
when the CCW is needed. Fetching of the CCWs by
the channel subsystem does not affect those loca-
tions in main storage.

CCWs have either of two different formats, format 0
or format 1. The two formats do not differ in the infor-
mation contained in the CCW, but they do differ in the
size of the address and the arrangement of fields
within the CCW.

The formats are defined as follows:

Format-0 CCWs can be located anywhere in the first
224 (16M) bytes of absolute storage, and format-1
CCWs can be located anywhere in the first 231 (2G)
bytes of absolute storage.

If indirect data addressing is specified and the for-
mat-2-IDAW-control bit is zero in the ORB associated
with the CCW, then:

1. Bits 30 and 31 (format 0) or 62 and 63 (format 1)
of the CCW must be zeros, designating a word
boundary,

2. Bit 0 of the first entry of the indirect-data-address
list must be zero.

3. The MIDA flag must be zero.

If indirect data addressing is specified and the for-
mat-2-IDAW-control bit is one in the ORB associated
with the CCW, bits 29-31 (format 0) or bits 61-63 (for-
mat 1) of the CCW must be zeros, designating a dou-
bleword boundary.

If modified indirect data addressing is specified, then:

1. The modified-CCW-indirect-data-addressing-
control bit in the ORB must be one.

Format-0 CCW

Cmd Code Data Address
0 8 31

Flags / / / / / / / / Count
32 40 48 63

Format-1 CCW

0 Cmd Code Flags Count
0 8 16 31

1 0 Data Address
32 63

Flags

C
D

C
C

S
L
I

S
K
P

P
C
I

I
D
A S

M
I
D
A

32
8

34
10

36
12

38
14

(in format-0 CCW)
(in format-1 CCW)

15-32 The z/Architecture I/O Architecture

2. Bits 28-31 (format 0) or bits 60-63 (format 1) of
the CCW must be zeros, designating a quadword
boundary.

3. The CCW SKP and IDA flags must be zero.

4. The MIDAW count field must be greater than
zero.

5. The combination of the MIDAW count and data-
address fields must not specify the transfer of
data across a 4 K-byte boundary, unless skipping
is in effect for the MIDAW.

6. Reserved bits in the first entry of the modified-
CCW-indirect-data-address list must be zero.

When any of these requirements is not met, a pro-
gram-check condition may be recognized (see “CCW
Indirect Data Addressing” on page 15-66 and “Modi-
fied CCW Indirect Data Addressing” on page 15-68).
Detection of this condition during data chaining
causes the I/O device to be signaled to conclude the
operation. When a failure to meet these requirements
is detected during command chaining or subsequent
to the execution of START SUBCHANNEL, the new
operation is not initiated, and an interruption condi-
tion is generated.

The contents of bit positions 40-47 of a format-0
CCW are ignored.

The fields in the CCWs are defined as follows:

Command Code: Bits 0-7 (both formats) specify
the operation to be performed.

Data Address: Bits 8-31 (format 0) or bits 33-63
(format 1) designate a location in absolute storage.
The designated location is the first location referred
to in the area designated by the CCW. Bit 32 of a for-
mat-1 CCW must be zero; otherwise, a program-
check condition is recognized. If a byte count of zero
is specified, this field is not checked.

When the MIDA flag is one, the data-address field
must designate an absolute storage location that is
on a quadword boundary; otherwise, a program-
check condition is recognized.

See “CCW Indirect Data Addressing” on page 15-66
and “Modified CCW Indirect Data Addressing” on
page 15-68 for information about the specification of
data addresses greater than 2G bytes.

Chain-Data (CD) Flag: Bit 32 (format 0) or bit 8
(format 1), when one, specifies chaining of data. The
bit causes the storage area designated by the next
CCW to be used with the current I/O operation.
When the CD flag is one in a CCW, the chain-com-
mand and suppress-length-indication flags (see
below) are ignored.

Chain-Command (CC) Flag: Bit 33 (format 0) or
bit 9 (format 1), when one, and when the CD flag and
S flag are both zeros, specifies chaining of com-
mands. The bit causes the operation specified by the
command code in the next CCW to be initiated upon
the normal completion of the current operation.

Suppress-Length-Indication (SLI) Flag: Bit 34
(format 0) or bit 10 (format 1) controls whether an
incorrect-length condition is to be indicated to the
program. When this bit is one and the CD flag is zero,
the incorrect-length indication is suppressed. When
both the CC and SLI flags are ones and the CD flag
is zero, command chaining takes place, regardless of
the presence of an incorrect-length condition. This bit
should be specified in all CCWs where suppression
of the incorrect-length indication is desired.

Skip (SKP) Flag: Bit 35 (format 0) or bit 11 (format
1), when one, specifies the suppression of transfer of
information to storage during a read, read-backward,
sense ID, or sense operation. This bit must be zero
when the MIDA flag is one; otherwise, a program-
check condition is recognized.

Program-Controlled-Interruption (PCI) Flag: Bit
36 (format 0) or bit 12 (format 1), when one, causes
the channel subsystem to generate an intermediate
interruption condition when the CCW containing the
bit takes control of the I/O operation. When the PCI
flag bit is zero, normal operation takes place.

Indirect-Data-Address (IDA) Flag: Bit 37 (format
0) or bit 13 (format 1), when one, specifies indirect
data addressing. This bit must be zero when the
MIDA flag is one; otherwise, a program-check condi-
tion is recognized.

Suspend (S) Flag: Bit 38 (format 0) or bit 14 (for-
mat 1), when one, specifies suspension of channel-
program execution. When valid, it causes channel-
program execution to be suspended prior to the exe-
cution of the CCW containing the S flag. A one value
of the S flag is valid when bit 4 of word 1 of the asso-
ciated ORB is one.

15-33

Modified-Indirect-Data-Address (MIDA) Flag: Bit
39 (format 0) or bit 15 (format 1), when one, specifies
modified indirect data addressing. This bit must be
zero when the modified-CCW-indirect-data-address-
ing-control bit in the ORB is zero, the CCW IDA flag
is one, the CCW SKP flag is one, or the channel
paths associated with the subchannel do not support
modified CCW indirect data addressing; otherwise, a
program-check condition is recognized.

Count: Bits 48-63 (format 0) or bits 16-31
(format 1) specify the number of bytes in the storage
area designated by the CCW.

Transport Control Word

The transport-control word (TCW) specifies a trans-
port-command-control block (TCCB) whose con-
tents are to be transported to the I/O device for
processing. The TCCB contains one or more device-
command words (DCWs) and associated options.
For a DCW that specifies a command which initiates
the transfer of data (with the exception of control data
contained within the TCCB), the TCW designates
one or more storage areas where the data is located.

When a TCW specifies bidirectional data transfer and
the designated DCWs specify write data transfers for
storage areas that overlap with the storage areas for
read data transfers, the results are unpredictable.

When START SUBCHANNEL is issued specifying a
transport-mode ORB, the TCW designated by the
ORB becomes the current TCW, the subchannel
becomes start pending, and the TCCB designated by
the TCW is transported to the I/O device for execu-
tion. The TCW remains the current TCW until TEST
SUBCHANNEL clears the start-function indication in
the subchannel.

The TCW is a 64-byte control block that is desig-
nated on a 64-byte boundary. For all operations,
except for the interrogate operation, accesses to the
TCW by the channel subsystem are made using the
subchannel storage-access key specified in the
ORB. For interrogate operations, fetch accesses to
the interrogate TCW by the channel subsystem are
made as if a subchannel storage-access key of zero
is used. The channel subsystem does not make any
store accesses to a TCW

The format of the TCW is as follows:

Format (F): Bits 0-1 of word 0 form the TCW-for-
mat that contains a 2-bit unsigned integer value that
defines the layout of the TCW. The value of this field
must be zero, otherwise a program-check condition is
recognized.

Reserved: Bits 2-7 of word 0 are reserved and must
be zeros, otherwise a program-check condition is
recognized.

Bytes 0 and 2-3 of word 1 and words 12-14 are
reserved and not checked. These fields are reserved
for future extensions. Programs which place nonzero
values in these fields may not operate compatibly on
future models.

Flags: Bytes 1-3 of word 0 contain information
about the TCW. The meaning of each flag bit is as
follows:

Bit Meaning

0-4 Reserved. Bits 0-4 are reserved and
must be zero, otherwise a program-
check condition is recognized.

5 Input transport-indirect-data addressing
(TIDA): When bit 5 is zero and bit 14 of
word 1 (the R-bit) is one, the input-data-

Word

0 F 0 0 0 0 0 0 Flags

1 Reserved TCCBL RW Reserved

2
Output-Data Address

3

4
Input-Data Address

5

6
Transport-Status-Block Address

7

8
Transport-Command-Control-Block Address

9

10 Output Count

11 Input Count

12

Reserved

14

15 Interrogate-TCW Address
0 2 8 14 16 24 31

Figure 15-7. Transport-Control Word (TCW)

15-34 The z/Architecture I/O Architecture

address field designates the absolute
address of the input location. When bit 5
is one and the R-bit is one, the input-
data-address field designates the abso-
lute address of a transport-indirect-data-
address word (TIDAW) or the first
TIDAW in a list of TIDAWS that desig-
nate the input storage location or loca-
tions, respectively.

When the R-bit is zero, bit 5 has no
meaning.

6 Transport-command-control-block TIDA:
When bit 6 is zero, the transport-com-
mand-control-block-address field desig-
nates the absolute address of the
transport-command-control block for the
TCW. When bit 6 is one, the transport-
command-control-block-address field
designates the absolute address of a
TIDAW or list of TIDAWs that designate
the location or locations, respectively, of
the transport-command-control block for
the TCW.

7 Output TIDA: When bit 7 is zero and bit
15 of word 1 (the W-bit) is one, the out-
put-data-address field designates an
output location in absolute storage.
When bit 7 is one and the W-bit is one,
the output-data-address field designates
the absolute address of a TIDAW or list
of TIDAWs that designates the output
storage location or locations, respec-
tively.

When the W-bit is zero, bit 7 has no
meaning.

8-9 TIDAW format: Bits 8-9 form a 2-bit
encoded field that specifies the format of
TIDAWs designated by the TCW. This
field must contain zeros, otherwise a
program-check condition is recognized.

10-23 Reserved. Bits 10-23 are reserved and
must be zero, otherwise a program-
check condition is recognized.

Transport-Command-Control-Block Length
(TCCBL): Bits 8-13 of word 1, with two zeros
appended on the right, specify the unsigned integer
whose value, when added to 20 for unidirectional
data transfers or when added to 24 for bidirectional
data transfers, specifies the length of the TCCB in

bytes. This field, before having 20 added to it for uni-
directional data transfers or before having 24 added
to it for bidirectional data transfers, must specify a
length that is between 12 and 244 inclusive, other-
wise a program-check condition is recognized.

Note: The TCCBL is based on the FCP additional
command length and does not include the TCA
header (16 bytes), and the transport-count (4 bytes)
in the TCA trailer for unidirectional data transfers, nor
does it include the write count (4 bytes) and read
count (4 bytes) in the TCA trailer for bidirectional data
transfers.

Read Operations (R): When bit 14 of word 1 is
one, the input count (word 11) is valid and contains a
nonzero value, indicating the number of bytes to be
transferred into main storage.

Write Operations (W): When bit 15 of word 1 is
one, the output count (word 10) is valid and contains
a nonzero value, indicating the number of bytes to be
transferred from main storage.

If the R-bit and W-bit are both one and the device
does not support bidirectional data transfer, and flags
bit 10 is zero, a program-check condition is recog-
nized.

If the W-bit is one and the TCW is an interrogate
TCW, a program-check condition is recognized.

Output-Data Address: When bit 15 of word 1 (the
W-bit) is one and bit 7 of the flags field (the output-
TIDA flag) is zero, words 2-3 designate the 64-bit out-
put location in absolute storage. When the W-bit is
one and the output-TIDA flag is one, words 2-3 des-
ignate the 64-bit location in absolute storage of a
TIDAW or list of TIDAWs that designate the output
storage location or locations.

When the W-bit is one and the output-TIDA flag is
one, words 2-3 must designate a storage location
that is on a quadword boundary, otherwise a pro-
gram-check condition is recognized.

When the W-bit is zero, words 2-3 have no meaning
and are ignored.

Input-Data Address: When the bit 14 of word 1
(the R-bit) is one and bit 5 of the flags field (the input-
TIDA flag) is zero, words 4-5 designate the 64-bit
input location in absolute storage. When the R-bit is
one and the input-TIDA flag is one, words 4-5 desig-

15-35

nate the location in absolute storage of a TIDAW or
list of TIDAWs that designate the input storage loca-
tion(s).

When the R-bit is one and the input-TIDA flag is one
words 4-5 must designate a storage location that is
on a quadword boundary, otherwise a program-check
condition is recognized.

When the R-bit is zero, words 4-5 have no meaning
and are ignored.

Transport-Status-Block Address: Words 6-7
designate the 64-bit location in absolute storage of
the transport-status block for the TCW.

Words 6-7 must designate a storage location on an
doubleword boundary, otherwise a program-check
condition is recognized.

Transport-Command-Control-Block Address: If
the transport-command-control-block-TIDA bit (bit 6
of the flags field) is zero, words 8-9 designate 64-bit
location in absolute storage of the transport-com-
mand-control block. When the transport-command-
control-block-TIDA bit is zero, the transport-com-
mand-control block is specified to reside in a contigu-
ous area of storage. If the transport-command-
control-block-TIDA bit is one, words 8-9 designate
the 64-bit location in absolute storage of a TIDAW or
list of TIDAWs that designate the location in absolute
storage of the transport-command-control block.
When the transport-command-control-block-TIDA bit
is one, the transport-command-control block may be
specified to reside in noncontiguous areas of stor-
age.

When the transport-command-control-block-TIDA
flag is zero, words 8-9 should designate a storage
location on a doubleword boundary, otherwise, deg-
radation of performance is possible.

When the transport-command-control-block-TIDA
flag is one:

• Words 8-9 must designate a storage location on
a quadword boundary, otherwise a program-
check condition is recognized.

• The transport-command-control-block-address
and transport-command-control-block-length
fields must not specify a list of TIDAWs that cross
a 4 K-byte boundary, otherwise a program-check
condition is recognized.

• The TIDAW-transfer-in-channel (TTIC) bit should
be zero in all specified TIDAWs, otherwise degra-
dation of performance is possible.

• The first TIDAW should designate the TCCB on a
doubleword boundary; otherwise, degradation of
performance is possible.

.

Output Count: When bit 15 of word 1 (the W-bit) is
one, word 10 contains the unsigned integer total
count of output bytes for the TCW.

When the W-bit is one and word 10 contains zeros, a
program-check condition is recognized.

When the W-bit is one:

• The output-count value, rounded upwards to the
nearest multiple of 4, plus 4, should equal the
value in the transport-count field in the associ-
ated TCCB for unidirectional data transfers or the
value in the write-count field in the associated
TCCB for bidirectional transfer, otherwise this
may lead to a device-detected-program-check
condition being recognized.

• The output-count value should equal the sum of
the following, otherwise this may lead to a
device-detected-program-check condition being
recognized.

• The sum of count field values in all of the
DCWs that specify a write command.

• The sum of the count field values in all of the
transport-command DCWs that specify the
transfer of transport-command-meta infor-
mation (TCMI) plus the size of the reserved
fields in the TCMI. (Note that the size of a
TCMI reserved field may be zero. See
“Transport-Command DCW” on page 15-42.)

• The count of any inserted padding and CBC
bytes when flags bit 7 (the output-TIDA bit) is
one as follows:

– Four bytes for the CBC information for
every TIDAW designated by the output-
address field for which the insert-CBC
flag bit is one.

– The count of padding bytes added for
every TIDAW designated by the output-
address field for which the insert-CBC

15-36 The z/Architecture I/O Architecture

flag bit is one. (See “Transport Indirect
Data Addressing” on page 15-70.)

When the R-bit is one and word 11 contains zeros, a
program-check condition is recognized.

When the W-bit is zero, word 10 is ignored.

Input Count: When bit 14 of word 1 (the R-bit) is
one, word 11 contains the unsigned integer total
count of input bytes for the TCW.

When the R-bit is one and word 11 contains zeros, a
program-check condition is recognized.

When the R-bit is one:

• The input-count value, rounded upwards to the
nearest multiple of 4, plus 4, should equal the
value in the transport-count field in the associ-
ated TCCB for unidirectional transfer or the value
in the read-count field in the associated TCCB for
bidirectional transfer, otherwise this may lead to
a device-detected-program-check condition
being recognized.

• The input-count value should equal the sum of
count fields in all of the DCWs that specify a
read-type command in the associated TCCB and
any such DCWs specified in a TCA extension,
otherwise this may lead to a device-detected-
program-check condition being recognized.

When the R-bit is zero, word 11 is ignored.

Interrogate-TCW Address: When a START SUB-
CHANNEL designates a TCW, word 15 of the TCW is
not checked. When a CANCEL SUBCHANNEL des-
ignates a subchannel that is start pending for a TCW
channel program and is not status pending, bits 1-31
of word 15 of the TCW designated by START SUB-
CHANNEL specify the 31-bit location in absolute
storage of the interrogate-TCW that is used to initiate

an interrogate operation for the subchannel. If word
15 contains zeros when CANCEL SUBCHANNEL is
issued, an interrogate operation is not initiated.

When CANCEL SUBCHANNEL is issued, bit 0 of
word 15 must be zero, otherwise a program-check
condition is recognized with interrogate-failed status
indicated. When CANCEL SUBCHANNEL is issued
and bits 1-31 of word 15 do not contain zeros, bits 1-
31 of word 15 must designate a storage location on a
64-byte boundary, otherwise a program-check condi-
tion is recognized with interrogate-failed status indi-
cated.

Transport-Command-Control Block

The transport-command-control block (TCCB) is vari-
able in length, contains header and trailer informa-
tion, and from 1 to 30 device-command words
(DCWs) that are logically linked such that they are
executed by the control unit in a sequential manner.

A TCCB may reside as a single block of contiguous
storage or it may reside as multiple blocks of noncon-
tiguous storage. The TCCB-TIDA flag specifies
whether the TCCB resides in contiguous storage.
When the flag is zero, the TCW designates a contigu-
ous TCCB. When the flag is one, the TCW desig-
nates one or more TIDAWs that designate the
location of the TCCB in noncontiguous storage.

The transport-command-control block is designated
on an doubleword boundary and has a maximum
length of 264 bytes. For non-interrogate operations,
fetch accesses to the TCCB by the channel subsys-
tem are made using the subchannel storage-access
key specified in the ORB. For interrogate operations,
fetch accesses to the interrogate TCCB by the chan-
nel subsystem are made as if a storage-access key
of zero is used. The channel subsystem does not
make any store accesses to a TCCB nor does it
examine its contents.

15-37

The format of the TCCB is as follows:

Transport-Command-Area Header
The transport-command-area header (TCAH) is a
16-byte control block that contains information about
the transport-command area and the operations
described therein. The TCAH has the following for-
mat:

Format Control: Byte 0 of word 0 is the TCCB for-
mat control. The value of this field must be 7F hex,
otherwise a device-detected-program-check is recog-
nized.

Reserved: Byte 1 of word 0 is reserved and must
contain zeros, otherwise a device-detected-program-
check condition may be recognized. Bytes 2-3 of
word 0, bytes 0-2 of word 1, byte 2 of word 2, and
bytes 0-3 of word 3 are reserved and should contain

zeros, otherwise the channel program may not oper-
ate compatibly in the future.

Transport-Command-Area Length (TCAL): Byte
3 of word 1 specifies an 8-bit unsigned integer whose
value, when reduced by 12, specifies the length of
the TCA in bytes. The specified value must be a non-
zero multiple of 4 that is between 20 and 252, inclu-
sive, otherwise a device-detected-program-check
condition may be recognized.

Service-Action Code (SAC): Bytes 0-1 of word 2
contain an unsigned integer value that must be either
1FFE hex or 1FFF hex. The meanings of these val-
ues is device dependent.

Priority: Byte 3 of word 2 contains the 8-bit
unsigned binary integer priority value for the TCCB.
A value of zero indicates that no priority has been
assigned. Valid priority values range from 1, the low-
est priority, to 255, the highest priority.

Transport-Command Area
The transport-command area (TCA) is a variable-
length area that contains from 1 to 30 device-com-
mand words (DCWs). The length of the TCA is an in
integral number of words.

For DCWs that specify control data, the TCA also
contains the control data associated with the com-
mands. Each DCW that specifies control data,
reduces the maximum-DCW capacity by one or more
DCWs, depending on the size of the command-asso-
ciated data.

For DCWs that specify input or output data, the TCW
specifying the TCCB designates the associated stor-
age area or areas (see “Input-Data Address” on
page 15-34 and “Output-Data Address” on
page 15-34) and the DCW designates the count of
bytes to transfer.

For some devices, the list of DCWs may be extended
past what will fit in the TCA. For such devices, the
TCA extension (TCAX) is specified and transferred
as if it were output data; however, the TCAX is
treated as a logical continuation of the TCA instead
of transfer data. (See “Transport-Command-Area
Extension” on page 15-45.) A TCAX is specified by
the transfer-TCA-extension DCW. (See “Transfer-
TCA-Extension DCW” on page 15-44.)

Word

0
Transport-Command-Area Header

(TCAH)
3

4

Transport-Command Area
(TCA)

N

N+1

Transport-Command-Area Trailer
(TCAT)N+2

or
N+3

0 31

Explanation:

The offset of the last word of the TCCB is N+2 for unidirectional data
transfers and N+3 for bidirectional data transfers.

Figure 15-8. Transport-Command-Control Block (TCCB)

Word (from the beginning of the TCCB)

0 Format Reserved

1 Reserved TCAL

2 SAC Reserved Priority

3 Reserved
0 8 16 24 31

Figure 15-9. Transport-Command-Area Header (TCAH)

15-38 The z/Architecture I/O Architecture

Whether a device supports TCA extensions is deter-
mined by device-dependent means.

The maximum size of the TCA is 240 bytes. The TCA
has the following format:

Device-Command Word
A device-command word (DCW) specifies a com-
mand to be executed. For commands initiating cer-
tain I/O operations, it designates the count of bytes
on which the operation is performed, the action to be
taken whenever transfer to or from storage is com-
pleted, and other options. The storage area or areas
associated with a DCW data-transfer operation are
designated, depending on the operation specified by
the command, by the input-data-address field or the
output-data-address field of the TCW that designates
the transport-control-block containing the DCW.
Whether the input-data-address field or the output-
data-address field of the TCW designates the stor-
age directly or indirectly, by use of a TIDAW list, is
specified by the input-TIDA and output-TIDA flags in
the TCW, respectively.

For commands initiating control operations, the asso-
ciated data immediately follows the command. If this
data is not a multiple of 4 bytes, the field immediately
following the data begins on the next word boundary
that immediately follows the last byte of specified
data. In the TCA, this field will be either the next
DCW, if additional DCWs are specified, or the trans-
port-command-area trailer, if additional DCWs are
not specified. When the DCW is in a transport-com-

mand-area extension (TCAX), this field will be one of
the following:

• The next DCW when additional DCWs are speci-
fied.

• The TCAX reserved area when present, and
additional DCWs are not specified.

• The end of the TCAX when the TCAX reserved
area is not present and additional DCWs are not
specified.

As each DCW is executed and while it is executing it
is recognized as the current DCW. A DCW becomes
current when it is the first DCW of a channel program
and has been selected by the I/O device for execu-
tion or when, during command chaining, the subse-
quent DCW takes over control of the I/O operation.

The first DCW to be executed is at offset zero of the
TCA in the TCCB. Each additional DCW in the chan-
nel program is also in the TCA and is used when the
DCW is needed by the I/O device.

The DCW is an 8-byte control block that is desig-
nated on an word boundary. The format of the DCW
is as follows:

Command Code : Bits 0-7 of word 0 specify the
operation to be performed.

Whether a command is valid is device dependent
and dependent on the value of the service-action-
code field in the TCAH.

Reserved: Bits 8, 11-15, and 16-23 of word 0 are
reserved and should contain zeros, otherwise the
channel program may not operate compatibly in the
future. When the FCX-incorrect-length-indication
facility is not installed or the device does not support

Word (from the beginning of the TCA)

0
DCW

1

2 DCW
or

Control Data for Previous DCW

DCW
or

Control Data for Previous DCW

.

.

.

DCW
or

Control Data for Previous DCWN
0 31

Figure 15-10. Transport-Command Area (TCA)

Word

0 Cmd Code Flags Reserved CD Count

1 Count
0 8 16 24 31

Flags:

0
C
C

S
L
I 0 0 0 0 0

8 9 10 11 15

Figure 15-11. Device-Command Word (DCW)

15-39

incorrect-length indication, bit 10 of word 0 is
reserved and should contain zero, otherwise the
channel program may not operate compatibly in the
future.

Chain-Command (CC) Flag: Bit 9 of word 0, when
one, specifies the chaining of commands. When one,
the bit causes the operation specified by the next
DCW to be initiated upon normal completion of the
current DCW. When the control-data count is zero,
the next DCW immediately follows the DCW in the
TCA or TCAX. When the control-data count is not
zero, the next DCW immediately follows the control-
data, rounded to a word boundary, specified for the
DCW.

If bit 9 of word 0 is one in a DCW whose offset, plus
8, plus its control-data-count value leaves less than 8
bytes in the TCA and a TCAX is not specified, a
device-detected-program-check condition may be
recognized.

If bit 9 of word 0 is one in a DCW whose offset, plus
8, plus its control-data-count value leaves less than 8
bytes in the TCAX, a device-detected-program-check
condition may be recognized.

If bit 9 of word 0 is zero in a DCW whose offset, plus
8, plus its control-data-count value leaves greater
than 3 bytes remaining in the TCA, a device-
detected-program-check condition may be recog-
nized.

Note: When the chain-command flag is one, the next
DCW location in the TCA or TCAX is determined by
adding eight and the value in the CD-count field to
the location of the current DCW and rounding
upwards to the nearest word boundary. If the chain-
command flag is one in a DCW in a TCA, the next
DCW location is past the end of the TCA, and a
TCAX is specified, the next DCW is at the beginning
of the TCAX.

Suppress-Length-Indication (SLI) Flag: When
the FCX-incorrect-length-indication facility is installed
and the device supports incorrect-length indication,
bit 10 of word 0 controls whether an incorrect-length
condition is to be indicated to the program when the
condition is recognized for the DCW in control as fol-
lows:

• When the SLI flag is one, incorrect-length indica-
tion is suppressed. When both the CC and SLI

flags are ones, command chaining takes place,
regardless of the presence of an incorrect-length
condition. This bit should be specified as one in
all DCWs where suppression of the incorrect-
length indication is desired.

• When the SLI flag is not one, processing of the
TCA is terminated (command-chaining is termi-
nated) and the subchannel is made status pend-
ing with incorrect length indicated in the
subchannel status.

When an incorrect-length condition exists for a DCW
and the SLI flag in the DCW is set to zero, data trans-
fer occurs as follows for read operations:

• If the DCW count is greater than the amount
of data available at the device for the com-
mand, the data available at the device is
transferred.

• If the DCW count is less than the amount of
data available at the device for the com-
mand, only an amount of data equal to the
DCW count is transferred

When an incorrect-length condition exists for a DCW
and the SLI flag in the DCW is set one, data transfer
occurs as follows for read operations:

• If the DCW count is greater than the amount
of data available at the device for the com-
mand and the DCW chain-command (CC)
flag is one, the following occurs in order:

1) The data available at the device is trans-
ferred.

2) Pad bytes of zeros are transferred until
the total amount transferred is equal to
the DCW count.

• If the DCW count is greater than the amount
of data available at the device for the com-
mand and the DCW chain-command (CC)
flag is zero, the following occurs in order:

1) The data available at the device is trans-
ferred

2) Depending on the device, either data
transfer is terminated or pad bytes of
zeros are transferred until the total
amount transferred is equal to the DCW
count.

15-40 The z/Architecture I/O Architecture

• If the DCW count is less than the amount of
data available at the device for the com-
mand, only an amount of data equal to the
DCW count is transferred

When an incorrect-length condition exists for a DCW,
data transfer occurs as follows for write operations
regardless of the setting of the SLI flag:

• If the DCW count is greater than the amount
of data required by the device for the com-
mand and the DCW chain-command (CC)
flag is one, the following occurs in order:

1) The data required by the device is trans-
ferred.

2) Data continues to be transferred until the
total amount transferred is equal to the
DCW count. Data not required by the
device is discarded.

• If the DCW count is greater than the amount
of data required by the device for the com-
mand and the DCW chain-command (CC)
flag is zero, the following occurs in order:

1) The data required by the devices is
transferred.

2) Data continues to be transferred until the
next intermediate CBC is specified to be
inserted or until the total amount trans-
ferred is equal to the DCW count. Data
not required by the device is discarded.

• For write operations, if the DCW count is less
than the amount of data required by the
device for the command, only the amount of
data specified by the DCW count is trans-
ferred.

Whether a device supports the suppression of incor-
rect-length indication is determined by device-depen-
dent means.

Control-Data (CD) Count: When the command-
code field specifies a command that requires control
data, the data for the command immediately follows
the DCW and byte 3 of word 0 specifies the length of
the data, in bytes. If the command code specifies a
command that requires control data and byte 3 of
word 0 specifies a control-data count that is less than
required for the command a unit-check condition is
recognized. If the command code specifies a com-
mand that requires control data and byte 3 of word 0

contains zero or contains a value that specifies data
past the end of the TCA or past the end of the speci-
fied TCAX, a device-detected-program-check condi-
tion is recognized.

Count: Word 1 specifies the 32-bit unsigned inte-
ger count of bytes in the storage area designated by
the TCW for this DCW.

Transport-Command-Area Trailer
The transport-command-area trailer (TCAT) contains
additional information about the TCCB. When uni-
directional data transfer is specified (either the R-bit
or the W-bit is set to one) or no data transfer is speci-
fied (both the R-bit and W-bit in the TCW are set to
zero), the TCAT is two words in length. When bidirec-
tional data transfer is specified (both the R-bit and
the W-bit in the TCW are set to one), the TCAT is
three words in length. The TCAT has the following
format:

Reserved: Word 0 is reserved and not checked.

Transport Count: When uni-directional data transfer
is specified, word 1 is the transport count and speci-
fies the 32-bit unsigned integer count of total data to
be transferred.

When a read operation is specified (the TCW R-bit is
one), the value in the transport-count field in the
TCAT is determined as follows, otherwise a device-
detected-program-check condition may be recog-
nized:

• The count field values in the DCWs that each
specify a read-type command are summed.

• The sum is rounded upwards to the nearest mul-
tiple of 4.

• The rounded sum is increased by 4 giving the
transport-count value.

When a read operation is specified, the transport-
count value should be equal to the value in the TCW
input-count field, rounded upwards to the next multi-

Word (from the beginning of the TCA trailer)

0 Reserved

1 Transport Count or Write Count

2 Not Present or Read Count
0 31

Figure 15-12. Transport-Command-Area Trailer (TCAT)

15-41

ple of 4, plus 4, otherwise a device-detected-pro-
gram-check condition may be recognized.

When a write operation is specified (the W-bit in the
TCW is one), the value in the transport-count field in
the TCAT is determined as follows, otherwise a
device-detected-program-check condition may be
recognized:

• The count field values in the DCWs that each
specify a write command are summed.

• The count field values in all of the transport-com-
mand DCWs that specify the transfer of trans-
port-command-meta information (TCMI) plus the
size of the reserved fields in the TCMI are added
to the sum. (Note that the size of a TCMI
reserved field may be zero. See “Transport-Com-
mand DCW” on page 15-42.)

• The total of the counts of any TIDAW-specified
CBC bytes and padding bytes (see “Transport
Indirect Data Addressing” on page 15-70) is
added to the sum.

• The sum is rounded upwards to the nearest mul-
tiple of 4.

• The rounded sum is increased by 4 giving the
transport-count value.

When a write operation is specified, the transport-
count value should be equal to the value in TCW out-
put-count field, rounded upwards to the next multiple
of 4, plus 4, otherwise a device-detected-program-
check condition may be recognized.

When neither a read nor a write operation is speci-
fied (both the W-bit and R-bit in the TCW are zero),
the transport count value should be zero, otherwise
this may lead to a device-detected-program-check
condition being recognized.

Write Count: When bidirectional data transfer is
specified, word 1 is the write count and specifies the
32-bit unsigned integer count of total output data to
be transferred. The value in the write-count field in
the TCAT is determined as follows, otherwise a
device-detected-program-check condition may be
recognized:

• The count field values in the DCWs that each
specify a write command are summed.

• The count field values in all of the transport-com-
mand DCWs that specify the transfer of trans-
port-command-meta information (TCMI) plus the
size of the reserved fields in the TCMI are added
to the sum. (Note that the size of a TCMI
reserved field may be zero. See “Transport-Com-
mand DCW” on page 15-42.)

• The total of the counts of any TIDAW-specified
CBC bytes and padding bytes (see “Transport
Indirect Data Addressing” on page 15-70) is
added to the sum.

• The sum is rounded upwards to the nearest mul-
tiple of 4.

• The rounded sum is increased by 4 giving the
transport-count value.

The write-count value should be equal to the value in
TCW output-count field, rounded upwards to the next
multiple of 4, plus 4, otherwise a device-detected-
program-check condition may be recognized.

Read Count: When uni-directional data transfer is
specified the read count field is not present. When a
bidirectional data transfer is specified, word 2 is the
read count and specifies the 32-bit unsigned integer
count of total input data to be transferred. The value
in the read-count field in the TCAT is determined as
follows, otherwise a device-detected-program-check
condition may be recognized:

• The count field values in the DCWs that each
specify a read-type command are summed.

• The sum is rounded upwards to the nearest mul-
tiple of 4.

• The rounded sum is increased by 4 giving the
transport-count value.

The read-count value should be equal to the value in
the TCW input-count field, rounded upwards to the
next multiple of 4, plus 4, otherwise a device-
detected-program-check condition may be recog-
nized.

Programming Note: The following table summarizes
the determination of the TCW input-count, output-

15-42 The z/Architecture I/O Architecture

count, and the TCCB transport count values for unidi-
rectional data transfers:

The following table summarizes the determination of
the TCW input-count, output-count, and the TCCB

read and write count values for bidirectional data
transfers:

Transport-Command DCW
A transport-command DCW specifies a transport
command that performs a device-support function
associated with transport-mode operations. (See
“Command Code” on page 15-57.) A transport-com-
mand DCW may specify control data and may also

specify the transfer of transport-command-meta
information (TCMI).

When a transport-command DCW specifies the
transfer of TCMI to a device, the TCMI is transferred
as output data. The size of the TCMI is command-

Operation TCW Input Count TCW Output Count TCAT Transport Count

Input operation (TCW R-bit is 1)
Sum of DCW count values

in the TCA.
n/a

Sum of DCW count values in TCA,
rounded to four,2 plus four2

Output operation (TCW W-bit is 1),
TIDAWS not used

(TCW output-TIDA flag is 0)
n/a Sum of DCW count values in TCA.

Sum of DCW count values in TCA,
rounded to four,2 plus four2

Output operation (TCW W-bit is 1),
TIDAWS used

(TCW output-TIDA flag is 1)
n/a

Sum of DCW count values in TCA
and TCAX plus the size of the

reserved areas in any specified
TCMIs3, plus total of TIDAW-

specified CBC and padding bytes 1

Sum of DCW count values in TCA and
TCAX, plus the size of the reserved areas in
any specified TCMIs3, plus total of TIDAW-
specified CBC and padding bytes,1 rounded

to four,2 plus four2

Explanation:
1 See the description of the insert-CBC control in “Flags” on page 15-70.
2 The channel subsystem adds a CBC word to the end of the last data transported. Up to 3 padding bytes are added after the last data

transported to ensure the added CBC word is on a word boundary.
3 Because of alignment requirements, the size of the reserved area in a TCMI is either 0 or 4.

Figure 15-13. Determination of the TCAT Transport Count, TCW Input Count, and TCW Output Count for Uni-Directional
Data Transfers

Operation TCW Input Count TCW Output Count TCAT Read Count TCAT Write Count
Input operation (TCW R-bit is

1) and output operation
(TCW W-bit is 1),
TIDAWS not used

(TCW output-TIDA flag is 0)

Sum of read DCW count
values in the TCA

and TCAX.

Sum of write DCW count
values in the TCA, plus count
values in DCWs that specify

the transfer of TCMI

Sum of read DCW count
values in the TCA and

TCAX,
rounded to four,2 plus

four2

Sum of write DCW count
values in the TCA, plus count
values in DCWs that specify

the transfer of TCMI,
rounded to four,2 plus four2

Input operation (TCW R-bit is
1) and output operation

(TCW W-bit is 1),
TIDAWS used

(TCW output-TIDA flag is 1)

Sum of read DCW count
values in the TCA

and TCAX.

Sum of write DCW count
values in the TCA and TCAX,

plus count values in DCWs that
specify the transfer of TCMI,
plus the size of the reserved

areas in any specified TCMIs3,
plus total of TIDAW-specified

CBC and padding bytes.1

Sum of read DCW count
values in the TCA and

TCAX,
rounded to four,2 plus

four2

Sum of write DCW count
values in the TCA and TCAX,

plus count values in DCWs that
specify the transfer of TCMI,
plus the size of the reserved

areas in any specified TCMIs3,
plus total of TIDAW-specified

CBC and padding bytes,1
rounded to four,2 plus four2

Explanation:

1 See the description of the insert-CBC control in “Flags” on page 15-70.
2 The channel subsystem adds a CBC word to the end of the last data transported. Up to 3 padding bytes are added after the last data

transported to ensure the added CBC word is on a word boundary.
3 Because of alignment requirements, the size of the reserved area in a TCMI is either 0 or 4.

Figure 15-14. Determination of the TCAT Transport Count, TCW Input Count, TCAT Read Count, and TCAT Write Count for
Bidirectional Data Transfers

15-43

dependent and is a multiple of 4. Furthermore, the
TCMI may be extended by 4 reserved bytes when all
of the following are true:

• The size of the TCMI is an even multiple of 4.

• TIDAWs are used to specify the output storage
areas.

• The insert-CBC flag is one in the last TIDAW
used to specify the storage containing the TCMI.

• The chain-command bit is one in the transport-
command DCW that specifies the TCMI.

• A subsequent DCW specifies the transfer of a
TCMI or output data.

Note that when a transport command specifies the
transfer of a TCMI to a device and the TCMI is
extended by 4 reserved bytes because all of the pre-
ceding conditions are met, the 4 reserved bytes are
not included in the data-count value in the transport-
command DCW but are included in the following:

• The count value in the last TIDAW used to spec-
ify the storage containing the TCMI.

• The output-count value in the TCW.

• The transport-count value in the associated
TCCB for unidirectional data transfers or the
write-count value in the associated TCCB for
bidirectional transfer.

The following summarizes the transport-command
DCWs and identifies the specific TCMI that may be
transferred to the device:

Transfer-CBC-Offset-Block DCW
For write operations, the transfer-CBC-offset-block
(TCOB) DCW specifies that a CBC-offset block
(COB) is transported to the device. The content of
the TCOB DCW is as follows:

• The command code contains the transfer-CBC-
offset-block command which is a value of 60 hex.

• The chain-command flag is one.

• When the CD-count is not zero, the COB imme-
diately follows the TCOB DCW in the TCA and
the CD-count specifies the number of CBC off-
sets in the COB multiplied by 4.

• When the CD-count is zero, the COB is specified
as TCMI in the output data, the location of the
COB is specified by the output-data-address field
in the TCW, and the count field specifies the
number of CBC offsets in the COB multiplied by
4.

The incorrect-length condition is not recognized for
the transfer-CBC-offset-block command regardless
of whether the FCX-incorrect-length-indication facility
is installed and supported by the device.

When a TCOB DCW is used, a device-detected pro-
gram check is recognized when any of the following
conditions exist:

• A TCOB DCW is specified and a write operation
is not specified (that is, the W-bit in the TCW is
zero).

• A TCOB DCW is the only DCW in the TCA. (That
is the chain-command flag in the TCOB DCW is
zero.)

• A TCOB DCW is not the first DCW in the TCA.

• More than one TCOB DCW is specified

• The control-data-count field and the count field in
the TCOB DCW both contain the value zero or
both contain a value that is nonzero.

• The control-data-count field contains the value
zero, the count field contains a value that is non-
zero, but the value in the count field is not a mul-
tiple of 4.

• The count field contains the value zero, the con-
trol-data-count field contains a value that is non-
zero, but the value in the control-data-count field
is not a multiple of 4.

When a TCOB is used that specifies the COB in the
output data, the following must be true; otherwise, a
device-detected program check may be recognized:

Transport-Command DCW Transport-Command-
Meta Information (TCMI) Page

Transfer-CBC-Offset Block TCOB_ CBC-Offset Block (COB) 15-43
Transfer-TCA Extension (TTE) TCA Extension (TCAX) 15-44

Interrogate (none) 15-46

Explanation:
(none) - The transport-command DCW does not transfer TCMI.

Figure 15-15. Summary of Transport-Command DCWs

15-44 The z/Architecture I/O Architecture

• The output-TIDA flag (flags bit 7) in the TCW
must be one.

• The insert-CBC control must be set to one in the
last or only TIDAW that is used to transfer the
COB when the transfer of a TCAX or output data
or both is also specified.

• When there is an odd number of CBC offsets in
the COB, the total of the count fields in the
TIDAWs used to the transfer the COB must spec-
ify the number of CBC offsets in the COB multi-
plied by 4. When there is an even number of
CBC offsets in the COB, the total of the count
fields in the TIDAWs used to the transfer the
COB must specify the number of CBC offsets in
the COB multiplied by 4, plus 4.

Whether a device recognizes the TCOB command is
determined by device-dependent means.

CBC-Offset Block
The CBC-offset block (COB) is a variable-length con-
trol block that contains a list of 4-byte entries, each of
which identifies the offset of a CBC specified by a
TIDAW to be inserted in the output data. When the
COB is specified in the output data, the offset of the
CBC inserted by the TIDAW that specifies the trans-
fer of the COB is not included in the COB.

Accesses to a CBC-offset block by the channel sub-
system are treated as if a storage-access key of zero
is used.

The COB has the following format:

CBC Offsets: Entries 0 through N contain CBC off-
sets. Each CBC offset is a 4-byte field containing a
32-bit unsigned integer value that specifies the rela-
tive offset, from the beginning of the output-data
area, to a CBC that is specified to be inserted by a
TIDAW. When a COB is in the TCA, the beginning of
the output-data area is specified by the output-data-
address field of the TCW. When a COB is in the out-
put-data, the output-data area begins immediately
after the COB.

Reserved: When a COB is specified in the TCA, or
a COB is specified in the output data and there is an
odd number of CBC offsets in the COB, there are no
reserved bytes.

When a COB is specified in the output data and there
is an even number of CBC offsets in the COB, the
4 bytes immediately following the last CBC offset are
reserved and should contain zeros, otherwise unpre-
dictable results may result.

See “Transport-Command DCW” on page 15-42 for
the handling of reserved bytes when calculating the
DCW count, TIDAW count, TCCB write-count (for
bidirectional transfers) and TCCB transport count (for
unidirectional data transfers).

Programming Note: When a device indicates that it
supports the TCOB command and TIDAWs are used
that specify insert-CBC, a TCOB and COB should be
used; otherwise, unpredictable results or errors may
result.

Transfer-TCA-Extension DCW
The transfer-TCA-extension (TTE) DCW specifies
that the TCA is logically extended in the output data
and that the TCA extension (TCAX) is transported to
the device. The content of the TTE DCW is as fol-
lows:

4-Byte Entry

0 CBC Offset 0

1 CBC Offset 1

2 .
.
.

N CBC Offset N

Figure 15-16. CBC-Offset Block (COB)

 Reserved
(When the COB is in output data.)Y

0 31

Explanation:
• The size of the COB is 4(N+1) when the COB is specified in the

TCA. (There is no reserved field for this case.)
• The size of the COB is 4(Y+1) when the COB is specified in the

output data, where Y is an even number that is equal to either N or
N+1.

Figure 15-16. CBC-Offset Block (COB) (Continued)

15-45

• The command code contains the transfer-TCA-
extension command which is the value of 50 hex.

• The chain-command flag is set to one.

• The CD-count is zero.

• The count specifies the length of the TCAX as a
multiple of 4.

The incorrect-length condition is not recognized for
the transfer-TCA-extension command regardless of
whether the FCX-incorrect-length-indication facility is
installed and supported by the device.

When a TTE DCW is used, a device-detected pro-
gram check is recognized when any of the following
conditions exist:

• When a TCOB DCW is not specified, the TTE
DCW is not the first DCW in the TCA. When a
TCOB DCW is specified, the TTE DCW is not the
second DCW in the TCA.

• The TTE DCW is specified and a write operation
is not specified (that is, the W-bit in the TCW is
zero).

• The chain-command flag in the TTE DCW is
zero.

• More than one TTE DCW is specified

• The control-data-count field in the TTE DCW
does not contain zero.

• The count field contains less than 8 or a value
that is not a multiple of 4.

• Any of the following are true for the TCA:

– The TCA does not contain at least one DCW
that is not a transport-command DCW.

– The TCA contains one or more DCWs that
are not transport-command DCWs and the
chain-command flag in the last DCW of the
TCA is zero.

Whether a device recognizes the TTE command is
determined by device-dependent means.

Programming-System Note: When a TTE DCW is
used and additional TCMI and/or output data follows
the TCAX, the following should be true; otherwise, a
device-detected program check may be recognized:

• The output-TIDA flag (flags bit 7) in the TCW
must be one.

• When TIDAWs are used for the transfer of a
TCAX and for the transfer of data, the insert-CBC
control must be set to one in the last or only
TIDAW that is used to transfer the TCAX. When
TIDAWs are used for the transfer of only the
TCAX, it is not necessary to set the insert-CBC
control in the last or only TIDAW.

Transport-Command-Area Extension
The transport-command-area extension (TCAX) is a
variable-length area that is the logical continuation of
the TCA. At a minimum, the TCAX contains one
DCW. The length of the TCAX is an integral multiple
of 4 and is specified by the TTE DCW.

For DCWs that specify control data, the TCAX also
contains the control data associated with the com-
mands.

For DCWs that specify input or output data, the asso-
ciated TCW designates the associated storage area
or areas (see “Input-Data Address” on page 15-34
and “Output-Data Address” on page 15-34) and the
DCW designates the count of bytes to transfer.

The maximum size of the TCAX is device dependent.
The TCAX has the following format:

4-Byte Entry

0
DCW

1

2 DCW
or

Control Data for Previous DCW

.

.

.

DCW
or

Control Data for Previous DCWN

Y Reserved
0 31

Explanation:

The size of the TCAX is 4(Y+1), where Y is an even number that is
equal to either N or N+1.

Figure 15-17. Transport-Command Area Extension (TCAX)

15-46 The z/Architecture I/O Architecture

Device-Command Word (DCW) or Control Data
for Previous DCW: For information about DCWs
and control data, see “Device-Command Word” on
page 15-38.

Reserved: When the last information in the TCAX
is a DCW, the end of the DCW defines the end of the
meaningful information in the TCAX. When the last
information in the TCAX is control data and the con-
trol data ends on a 4-byte boundary, the end of the
control data defines the end of the meaningful infor-
mation in the TCAX. When the last information in the
TCAX is control data and the control data does not
end on a 4-byte boundary, padding bytes are
appended to the control data to reach a 4-byte
boundary and the end of the padding bytes define
the end of the meaningful information in the TCAX.

When the size of the meaningful information in the
TCAX divided by four is an odd number, there are no
reserved bytes; otherwise, the four bytes immediately
following the meaningful information in the TCAX are
reserved and should contain zeros, otherwise unpre-
dictable results may result.

See “Transport-Command DCW” on page 15-42 for
the handling of reserved bytes when calculating the
DCW count, TIDAW count, TCAT write-count (for
bidirectional transfers) and TCAT transport count (for
unidirectional data transfers).

Interrogate TCCB
The interrogate TCCB is a TCCB that specifies a ser-
vice-action code value of 1FFF hex, contains a TCA
that is at least 8 bytes in length that specifies an
interrogate DCW, and may specify a read operation.

Any data that immediately follows the interrogate
DCW and is specified by a nonzero CD-count in the
interrogate DCW is transported to the device and
may be written to a device-dependent log. Any input
data that is specified by the interrogate TCW is
device-dependent data and is transferred from the
I/O device.

Accesses to the interrogate TCCB by the channel
subsystem are treated as if a storage-access key of
zero is used.

The format of the interrogate TCA is as follows:

Interrogate DCW
Words 0 and 1 of the interrogate TCA contain a DCW
that specifies an interrogate operation. The content
of the interrogate DCW is as follows:

• The command code contains the interrogate
command which is a value of 40 hex.

• The CD-count field must contain a value that is
not greater than 232, otherwise a device-
detected-program-check condition is recognized
with interrogate-failed status indicated in the sub-
channel-extended-status field of the IRB.

• With the exceptions of the command code, SLI
flag, count and CD-count fields, all other fields in
the DCW must contain zeros, otherwise a
device-detected-program-check condition is rec-
ognized with interrogate-failed status indicated in
the subchannel-extended-status field of the IRB.

The incorrect-length condition is not recognized for
the interrogate command regardless of whether the
FCX-incorrect-length-indication facility is installed
and supported by the device.

Interrogate Data
If the CD-count of the interrogate DCW is greater
than zero, interrogate data is specified. Since interro-
gate data is for device-dependent logging purposes
only, interrogate data that is incorrectly specified

Word (from the beginning of the interrogate TCA)

0
Interrogate DCW

1

2

Interrogate Data
(if present)

N
0 31

Figure 15-18. Interrogate Transport-Command Area (TCA)

15-47

does not cause any exception condition to be recog-
nized. The interrogate data has the following format:

Format: Byte 0 of word 0 contains the unsigned
integer value that defines the layout of the interrogate
data. The value of this field should be zero, otherwise
the I/O device may not recognize the layout of the
interrogate data

Reason Code (RC): Byte 1 of word 0 contains the
unsigned integer value that indicates the reason the
interrogate operation was initiated. The following val-
ues may be specified. The meaning of RC values is
as follows:

Value Meaning

0 Interrogate reason not specified.

1 Timeout: Program-detected timeout for
the operation being interrogated.

2-255 Reserved.

Reason-Code Qualifier (RCQ): Byte 2 of word 0
contains the unsigned integer value that indicates
additional information about the reason the interro-
gate operation was initiated.

When the reason-code field contains the value one,
the meaning of RCQ values are as follows:

Value Meaning

0 Interrogate reason qualifier not specified.

1 Primary: The timeout was specified by
the primary program.

2 Secondary: The timeout was specified
by a secondary program.

3-255 Reserved.

When the reason-code field does not contain the
value one, the reason-code-qualifier field has no
meaning.

Logical-Path Mask (LPM): Byte 3 of word 0 con-
tains the LPM that was used when the operation
being interrogated was initiated by START SUB-
CHANNEL.

Path-Available Mask (PAM): Byte 0 of word 1
contains the value of the PAM at the time the interro-
gate operation is initiated.

Path-Installed Mask (PIM): Byte 1 of word 1 con-
tains the value of the PAM at the time the interrogate
operation is initiated.

Timeout: When the RC field contains the value one
or two, bytes 2-3 of word 1 contain the timeout inter-
val used by the designated program, in unsigned
integer seconds.

Flags: Byte 0 of word 2 contains information about
the interrogate. The meaning of each flag bit is as fol-
lows:

Bit Meaning

0 Multipath mode: This bit has the same
setting as the multipath-mode bit (D) at
the time the interrogate operation is initi-
ated.

1 Program path recovery: The interrogate
is issued during path recovery by the
program.

2 Critical: The device is a critical device for
the program.

3-7 Reserved.

Reserved: Bytes 1-3 of word 2 and word 3 are
reserved.

Time: Words 4-5 contain the time the interrogate
operation was initiated.

Word (from the beginning of the interrogate data)

0 Format RC RCQ LPM

1 PAM PIM Timeout

2 Flags Reserved

3 Reserved

4
Time

5

6
Program Identifier

7

8

Program-Dependent Data

N
0 8 16 24 31

Figure 15-19. Interrogate Data

15-48 The z/Architecture I/O Architecture

Program Identifier: Words 6-7 identify the pro-
gram initiating the interrogate operation. The content
of this field is program dependent.

Program-Dependent Data: Words 8-N contain
program-dependent information.

Programming Notes:

1. It is assumed that the program will specify the
value in the time field as UTC in the same form
as the TOD clock.

2. If the interrogate operation does not complete
within a model-dependent amount of time, an
interface-control check condition is recognized,
terminating the I/O operation being interrogated.

3. If a timeout value is specified and the timeout
value is less than a device-dependent minimum,
the I/O device may not write the interrogate data
into its log.

Transport Status Block

When the TSB-valid bit in the IRB is one, the trans-
port-status block (TSB) for the I/O operation may
contain additional information about the completion
of the associated TCW channel program. When the
interrogate-complete (Q) bit in the IRB is one, the
interrogate TSB may contain interrogate data.

The TSB is 64 bytes in length and is allocated on a
doubleword boundary. Accesses to the TSB by the
channel subsystem are treated as if a storage-
access key of zero is used.

The format of the TSB is as follows:

Transport-Status Header (TSH)
The transport-status header is a 12-byte control
block that contains information about the transport
status. The format of the TSH is as follows:

Length: Byte 0 of word 0 contains the unsigned
binary integer length, in bytes, of the status informa-
tion stored in the TSB. This length includes the TSH
and the transport-status area (TSA), if present. If this
value is less than 64, the difference between the
length value and 64 specifies the number of bytes, at
the end of the TSB, that are not used, have no mean-
ing, and may or may not be stored.

Flags: Byte 1 of word 0 contains information about
the TSB. The meaning of each flag bit is as follows.:

Bit Meaning

0 DCW-offset field valid. When bit 0 is one,
the DCW-offset field contains a DCW-off-
set value. When bit 0 is zero, the DCW-
offset field has no meaning.

1 Count field valid. When bit 1 is one, the
count field contains a count value. When
bit 1 is zero, the count field has no mean-
ing.

2 Cache miss. When flag bits 4-7 specify
an I/O-status TSB and bit 2 is one, one
or more I/O-device cache misses
occurred during the I/O operation. When
flag bits 4-7 specify an I/O-status TSB
and bit 2 is zero, no cache misses
occurred.

When flag bits 4-7 do not specify an I/O-
status TSB, bit 2 is reserved.

3 Time fields valid. When flag bits 4-7
specify an I/O-status TSB and bit 3 is
one, the device-time, defer-time, queue-
time, device-busy-time, and device-
active-only time fields in the I/O-status
TSA contain time information. When flag
bits 4-7 specify an I/O-status TSB and bit

Word

0
Transport-Status Header

2

3

Transport Status Area

15
0 31

Figure 15-20. Transport-Status Block

Word (from the beginning of the TSB)

0 Length Flags DCW Offset

1 Count

2 Reserved
0 8 16 31

Figure 15-21. Transport-Status Header (TSH)

15-49

3 is zero, the contents of the device-time,
defer-time, queue-time, device-busy-
time, and device-active-only time fields
in the I/O-status TSA have no meaning.

When flag bits 4-7 do not specify an I/O-
status TSB, bit 3 is reserved.

4 Reserved.

5-7 TSA format. Bits 5-7 form a 3-bit
unsigned integer that indicates the layout
of the TSA as follows:

Value Meaning

0 TSA contents have no meaning:
The other fields of the TSA do
not contain meaningful data.

1 I/O Status TSA: The TSA con-
tains ending status in addition to
ending status in the IRB for the
I/O operation.

2 Device-detected-program-check
TSA: The TSA contains informa-
tion describing the reason for
the device-detected program
check

3 Interrogate TSA: The TSA con-
tains interrogate response infor-
mation

4-7 Reserved.

DCW Offset: When bit 0 of the flags field (the
DCW-offset-field-valid bit) is one and the DCW-offset
value is less than the size of the TCA, bytes 2-3 of
word 0 contain the byte offset, from the beginning of
the TCA to the DCW either partially or completely
executed when the TSB is stored. When bit 0 of the
flags field is one and the DCW-offset value is greater
than or equal than the size of the TCA, the value in
bytes 2-3 of word 0 minus the size of the TCA is the
offset, from the beginning of the TCAX to the DCW
either partially or completely executed when the TSB
is stored.

If the channel program cannot be completed, this off-
set identifies the DCW for which processing could not
be completed. Additional information in the IRB and
TSB may be used for recovery purposes. When bit 0
of the flags field is zero, bytes 2-3 of word 0 have no
meaning.

Count: When bit 1 of the flags field (the count-field-
valid bit) is one, word 1 contains the residual count
for the DCW designated by the DCW-offset field.

Reserved: Word 2 is reserved and contains zeros.

Programming Note: If the program sets the length
and flags fields to zeros before initiating an operation,
the program can determine whether the TSB con-
tains meaningful information after the operation com-
pletes by checking that both the length and flags field
contain nonzero values.

I/O-Status TSA
When the TSB-format field in the TSH contains one,
the TSA has the following format:

Device Time: When bit 3 of the flags field in the
TSH (the time-fields-valid flag) is one, word 0 con-
tains the 32-bit unsigned integer total count of time
intervals between when the I/O device received the
information in the TCCB until the I/O device returned
the information in the TSB. The resolution of the
device time is such that bit 31 corresponds to one
microsecond.

When bit 3 of the flags field in the TSH (the time-
fields-valid flag) is zero, the contents of word 0 have
no meaning.

Defer Time: When bit 3 of the flags field in the TSH
(the time-fields-valid flag) is one, word 1 contains the
32-bit unsigned integer total count of time intervals
that the I/O operation was temporarily delayed by the
I/O device to perform device-dependent operations
or other operations not associated with the current
channel program. The resolution of the defer time is
such that bit 31 corresponds to one microsecond.

Word (from the beginning of the TSA)

0 Device Time

1 Defer Time

2 Queue Time

3 Device-Busy Time

4 Device-Active-Only Time

5

Additional Data
(if present)

12
0 31

Figure 15-22. I/O-Status Transport-Status Area (TSA)

15-50 The z/Architecture I/O Architecture

When bit 3 of the flags field in the TSH (the time-
fields-valid flag) is zero, the contents of word 1 have
no meaning.

Queue Time: When bit 3 of the flags field in the
TSH (the time-fields-valid flag) is one, word 2 con-
tains the 32-bit unsigned integer total count of timer
intervals that the I/O operation or portions of the
operation were queued at the control unit while wait-
ing for operations not associated with the current
operation to complete. The resolution of the queue
time is such that bit 31 corresponds to one microsec-
ond.

When bit 3 of the flags field in the TSH (the time-
fields-valid flag) is zero, the contents of word 2 have
no meaning.

Device-Busy Time: When bit 3 of the flags field in
the TSH (the time-fields-valid flag) is one, word 3
contains the 32-bit unsigned integer total count of
time intervals that the I/O device was busy attempting
to initiate a command. The resolution of the device-
busy time is such that bit 31 corresponds to one
microsecond.

When bit 3 of the flags field in the TSH (the time-
fields-valid flag) is zero, the contents of word 3 have
no meaning.

Device-Active-Only Time: When bit 3 of the flags
field in the TSH (the time-fields-valid flag) is one,
word 4 contains the 32-bit unsigned integer total
count of time between the time that the channel-end
condition existed and the time that the channel-end
and device-end conditions were recognized by the
device. The resolution of the device-active time is
such that bit 31 corresponds to one microsecond.

When bit 3 of the flags field in the TSH (the time-
fields-valid flag) is zero, the contents of word 4 have
no meaning.

Additional Data: When the length field in the TSH
contains a value greater than 32, additional data has
been provided by the I/O device. The count of mean-
ingful additional-data bytes in this field is determined
by subtracting 32 from the value in the length field.

When unit check is included in the device status, any
additional data provided is sense data. When unit
check is not included in the device status, any addi-
tional data provided is device dependent.

Device-Detected-Program-Check TSA
When the TSB-format field in the TSH contains two,
the TSA has the following format:

Reserved: Bytes 0-2 of word 0 are reserved and
have no meaning.

Reason Code (RC): Byte 3 of word 0 contains an
8-bit unsigned integer code that indicates the primary
reason for the device-detected program check. The
meaning of each reason code value is as follows:

Value Meaning

0 No information: Byte 3 has no meaning.

1 TCCB transport failure: An invalid CBC
was detected by the I/O device while
transporting the TCCB. The reason-
code-qualifier (RCQ) field contains addi-
tional information.

2 Invalid CBC detected on output data: An
invalid CBC was detected while transfer-
ring output data. The RCQ field contains
additional information.

3 Incorrect TCCB length specification: The
RCQ field contains additional informa-
tion.

4 TCAH specification error: The RCQ field
contains additional information.

When a TCAH specification error is rec-
ognized, pre-existing allegiance condi-
tions are not cleared.

5 DCW specification error: There is an
error with the DCW designated by the

Word (from the beginning of the TSA)

0 Reserved RC

1

Reason Code Qualifier

4

5

Sense Data
(if present)

12
0 24 31

Figure 15-23. Device-Detected-Program-Check Transport-
Status Area (TSA)

15-51

DCW-offset field in the TSH. The RCQ
field contains additional information.

6 Transfer-direction specification error:
The command specified by the DCW
designated by the DCW-offset field in the
TSH specifies a direction of data transfer
that disagrees with the transfer direction
specified in the TCW, or both the read-
operation (R) and write-operation (W)
bits in the TCW are set to one and the
device does not support bidirectional
data transfers. The RCQ field contains
additional information.

7 Transport-count specification error: The
RCQ field contains additional informa-
tion.

8 Two I/O operations active: While an I/O
operation is active at the device a sec-
ond non-interrogate TCCB has been
transported to the device for execution.
The RCQ field has no meaning.

9 CBC-offset specification error: One or
more CBC offsets in the CBC-offset
block indicate that a CBC is at a location
that is not recognized by the device or is
not recognized for the designated DCW.
The RCQ field contains additional infor-
mation.

10-255 Reserved.

For a summary of the meanings of reason-code val-
ues and their associated reason-code-qualifier val-
ues see Figure 15-24 on page 15-54.

Reason Code Qualifier (RCQ): Words 1-4 may
contain additional information about the reason for
the device-detected program check as follows.

When the RC field contains the value one, only byte
0 of the RCQ field has meaning. For this case, byte 0
of the RCQ field contains an 8-bit unsigned integer
code that further describes the condition indicated by
the RC field and the meaning of each RCQ value is
as follows:

Value Meaning

0 No additional information.

1 TCCB transport size error: The value of
the TCCBL field of the TCW that was

sent to the I/O device is not equivalent to
the count of bytes actually transported
for the TCCB.

2 TCCB CBC error: An invalid CBC was
detected while transferring the TCCB.

3-255 Reserved.

When the RC field contains the value two, only words
0-1 of the RCQ field have meaning as follows:

Value Meaning

0 Word 0 contains the 32-bit unsigned
integer offset of the first output-data byte
for which the invalid CBC was detected.

1 Word 1 contains the 32-bit unsigned
integer offset of the last byte of the last
output-data word for which the invalid
CBC was detected.

When the RC field contains the value three, only byte
0 of the RCQ field has meaning. For this case, byte 0
of the RCQ field contains an 8-bit unsigned integer
code that further describes the condition indicated by
the RC field and the meaning of each RCQ value is
as follows:

Value Meaning

0 No additional information.

1 The value specified by the TCAL field is
not 8 greater than the value specified by
the TCCBL field in the TCW for the oper-
ation.

2 The value specified by the TCAL field is
less than 20 or greater than 252.

3-255 Reserved.

When the RC field contains the value four, only byte
0 of the RCQ field has meaning. For this case, byte 0
of the RCQ field contains an 8-bit unsigned integer
code that further describes the condition indicated by
the RC field and the meaning of each RCQ value is
as follows:

Value Meaning

0 No additional information.

1 Format-field specification error: The for-
mat field contains an unrecognized

15-52 The z/Architecture I/O Architecture

value. See “Format Control” on
page 15-37.

2 Reserved-field specification error: A
reserved field in the TCAH does not con-
tain zeros.

3 Service-action-code-field specification
error: The service-action-code field in
the TCAH contains an unrecognized
value or a value that is incorrect for com-
mand specified by the DCW designated
by the DCW-offset field in the TSH. See
“Service-Action Code (SAC)” on
page 15-37.

4-255 Reserved.

When the RC field contains the value five, only byte 0
of the RCQ field has meaning. For this case, byte 0
of the RCQ field contains an 8-bit unsigned integer
code that further describes the condition indicated by
the RC field and the meaning of each RCQ value is
as follows:

Value Meaning

0 No additional information.

1 Reserved-field specification error: A
reserved field in the DCW does not con-
tain zeros.

2 Flags-field command-chaining specifica-
tion error: Either of the following is true:

• The chain-command flag is one and
the offset of the next DCW is such
that all or part of the next DCW
extends past the end of the TCA or
TCAX.

• The chain-command flag is zero and
more than 3 unused bytes remain in
the TCA or TCAX (excluding the
TCAX reserved field).

• The DCW is the last DCW in the
TCA, a TCAX is not specified, and
the chain-command flag is one.

• The DCW is the last DCW in the
TCAX and the chain-command flag
is one.

See “Chain-Command (CC) Flag” on
page 15-39.

3 Control-data-count-field specification
error: The CD-count field specifies con-
trol data past the end of the TCA or
TCAX.

See “Control-Data (CD) Count” on
page 15-40.

4 TCOB location error: The TCOB DCW is
not the first DCW in the TCA

5 TCOB duplication error: More than one
TCOB DCW is specified.

6 TCOB multiple-count error: The control-
data-count field and the count field in the
TCOB DCW both specify the value zero
or both specify a nonzero value.

7 TCOB direction error: A TCOB DCW is
specified and the write-operation (W) in
the TCW is zero.

8 TCOB chaining error: The chain-com-
mand bit in the TCOB DCW is zero.

9 TCOB count-specification error: Either of
the following is true:

• The count field in the TCOB is zero,
the control-data-count field in the
TCOB DCW is nonzero, and the
control-data-count field in the TCOB
specifies a value that is not an even
multiple of four

• The control-data-count field in the
TCOB is zero, the count field in the
TCOB DCW is nonzero, and the
count field in the TCOB specifies a
value that is not an even multiple of
four,

10 TTE location error: Either of the following
is true:

• A TCOB DCW is not specified and
the TTE DCW is not the first DCW in
the TCA.

• A TCOB DCW is specified and the
TTE DCW specified is not the sec-
ond DCW in the TCA.

11 TTE duplication error: More than one
TTE DCW is specified.

15-53

12 TTE CD-count specification error: The
control-data-count field in the TTE DCW
specifies a value that is not zero.

13 TTE count specification error: The count
field in the TTE DCW specifies a value
that is less than 8 or a value that is not a
multiple of 4.

14 TTE direction error: A TTE DCW is spec-
ified and the write-operation (W) in the
TCW is zero.

15 TTE chaining error: The chain-command
bit in the TTE DCW is zero.

16 TCAX specification error: A TTE DCW is
specified and any of the following is true:

• The TCA does not contain at least
one DCW that specifies the transfer
of data (that is, at least one DCW
that is not a transport-command
DCW).

• The TCA contains one or more
DCWs that specify the transfer of
data and the chain-command flag in
the last DCW of the TCA is zero.

17-255 Reserved.

When the RC field contains the value six, only byte 0
of the RCQ field has meaning. For this case, byte 0
of the RCQ field contains an 8-bit unsigned integer
code that further describes the condition indicated by
the RC field and the meaning of each RCQ value is
as follows:

Value Meaning

0 No additional information.

1 Read-direction specification error: The
DCW specifies an input operation, but
the R-bit in the TCW used to transport
the TCCB is zero.

2 Write-direction specification error: The
DCW specifies an output operation, a
TCOB operation, or a TTE operation, but
the W-bit in the TCW used to transport
the TCCB is zero.

3 Read-write-conflict specification error:
Both the R-bit and the W-bit are one in
the TCW used to transport the TCCB

and the device does not support bidirec-
tional data transfers.

4-255 Reserved.

When the RC field contains the value seven, only
byte 0 of the RCQ field has meaning. For this case,
byte 0 of the RCQ field contains an 8-bit unsigned
integer code that further describes the condition indi-
cated by the RC field and the meaning of each RCQ
value is as follows:

Value Meaning

0 No additional information.

1 Read-count specification error: The
specified read-count value is incorrect
for any of the following reason:

• For unidirectional data transfers, the
TCAT transport-count specifies a
value that is not equivalent to the
TCW input-count value. See “Trans-
port Count” on page 15-40.

• For bidirectional data transfers, the
TCAT read-count is not equivalent to
the TCW input-count value. See
“Read Count” on page 15-41.

• For unidirectional data transfers, the
TCAT transport-count is not equiva-
lent to the total count of bytes speci-
fied by the DCWs in the TCA and
TCAX (when specified) that specify
read operations.

• For bidirectional data transfers, the
TCAT read-count is not equivalent to
the total count of bytes specified by
the DCWs in the TCA and in the
TCAX (when specified), that specify
read operations.

2 Write-count specification error: The
specified write-count value is incorrect
for any of the following reason:

• For unidirectional data transfers, the
TCAT transport-count specifies a
value that is not equivalent to the
TCW output-count value. See
“Transport Count” on page 15-40.

• For bidirectional data transfers, the
TCAT write-count is not equivalent to

15-54 The z/Architecture I/O Architecture

the TCW output-count value. See
“Write Count” on page 15-41.

• For unidirectional data transfers, the
TCAT transport-count is not equiva-
lent to the total count of bytes speci-
fied by the DCWs in the TCA and
TCAX (when specified) that specify
write operations.

• For bidirectional data transfers, the
TCAT write-count is not equivalent to
the total count of bytes specified by
the DCWs in the TCA and TCAX that
specify write operations, the transfer
of a COB, and the transfer of a
TCAX.

3-255 Reserved.

When the RC field contains the value nine, only
words 1 of the RCQ field has meaning as follows:

Value Meaning

0 Word 0 contains the 32-bit unsigned integer
byte offset of the first CBC-offset entry in the
COB that specifies a CBC offset that is not at
a location that is recognized by the device or
is not recognized for the DCW

Sense Data: When the length field in the TSH con-
tains a value greater than 32, sense data has been
provided by the I/O device. The count of meaningful
sense-data bytes in this field is determined by sub-
tracting 32 from the value in the length field.

Summary of Reason Codes and Associated Rea-
son-Code Qualifiers

Figure 15-24 on page 15-54 provides a summary of
the device-detected-program-check RC values and
the meanings of their associated RCQ values.

Reason Code
Value Meaning

0 No information.
1 TCCB Transport Failure.

Reason-Code
Qualifier Byte 0

Value Meaning
0 No additional information.
1 TCCB transport size error
2 TCCB CBC error.

2 Invalid CBC detected on output data.
Reason-Code

Qualifier Meaning
Word 0 Value: Offset of first output-data byte for which the invalid CBC was detected.
Word 1 Value: Offset of last output-data byte for which the invalid CBC was detected.

3 Incorrect TCCB length specification.
Reason-Code

Qualifier Byte 0
Value Meaning

0 No additional information.
1 TCCB TCAL field value not 8 greater than TCW TCCBL field value.
2 TCCB TCAL field value is less than 20 or greater than 252.

4 TCAH specification error.
Reason-Code

Qualifier Byte 0
Value Meaning

0 No additional information.
1 TCCB format field specification error.
2 TCCB reserved field specification error.
3 TCCB service-action-code field specification error.

Figure 15-24. Summary of Reason-Code (RC) and Reason-Code-Qualifier (RCQ) Values in the Device-Detected-Program-
Check TSA (Part 1 of 2)

15-55

5 DCW specification error.
Reason-Code

Qualifier Byte 0
Value Meaning

0 No additional information.
1 DCW reserved field specification error.
2 DCW flags field command-chaining specification error.
3 DCW control-data-count field specification error.
4 TCOB location error
5 TCOB duplication error
6 TCOB multiple-count error
7 TCOB direction error
8 TCOB chaining error
9 TCOB count-specification error
10 TTE location error.
11 TTE duplication error.
12 TTE CD-count specification error.
13 TTE count specification error.
14 TTE direction error.
15 TTE chaining error.
16 TCAX specification error.

6 Transfer-direction specification error.
Reason-Code

Qualifier Byte 0
Value Meaning

0 No additional information.
1 Read-direction specification error.
2 Write-direction specification error.
3 Read-write conflict error.

7 Transport-count specification error.
Reason-Code

Qualifier Byte 0
Value Meaning

0 No additional information.
1 Read-count specification error.
2 Write-count specification error.

8 Two I/O operations active.
Reason-Code

Qualifier No additional information.
9 CBC-offset-specification error.

Reason-Code
Qualifier No additional information.

Word 0 Value:
Offset of first CBC-offset entry that specifies a CBC offset that is not at a location that is recog-
nized.

Explanation:
• Reason-code values and reason-code-qualifier values that have no meaning do not appear in this summary.
• Portions of the reason-code-qualifier field that have no meaning for a specific reason code do not appear in this

summary.

Reason Code
Value Meaning

Figure 15-24. Summary of Reason-Code (RC) and Reason-Code-Qualifier (RCQ) Values in the Device-Detected-Program-
Check TSA (Part 2 of 2)

15-56 The z/Architecture I/O Architecture

Interrogate TSA
When the TSB-format field in the TSH contains three,
the TSA has the following format:

Format: Byte of word 0 contains the unsigned inte-
ger value that defines the layout of the interrogate
TSA. If the value of this field is not one, the contents
of the interrogate TSA are meaningless.

Flags: Byte 1 of word 0 contains information about
the interrogate TSA. The meaning of each flag bit is
as follows.:

Bit Meaning

0 Control-unit-state valid: When bit 0 is
one, the control-unit-state field contains
meaningful information. When bit 0 is
zero, the control-unit-state field has no
meaning.

1 Device-state valid: When bit 1 is one, the
device-state field contains meaningful
information. When bit 1 is zero, the
device-state field has no meaning

2 Operation-state valid: When bit 2 is one,
the operation-state field contains mean-
ingful information. When bit 2 is zero, the
operation-state field has no meaning.

3-7 Reserved.

Control-Unit State (CS): Byte 2 of word 0 contains
an 8-bit unsigned integer that indicates a current
state of the control unit for the I/O device. The mean-
ing of each value is as follows:

Value Meaning

0 Busy: The control unit is busy and the
device-dependent-data field may contain
additional information about the busy
state.

1 Recovery: The control unit is performing
a recovery process and the device-
dependent-data field may contain addi-
tional information about the recovery
state.

2 Interrogate maximum: The control unit is
executing the maximum number of inter-
rogate operations that it supports

3-127 Reserved.

128-
255 Device-dependent meanings.

Device State (DS): Byte 3 of word 0 contains an
8-bit unsigned integer that indicates a current state of
the I/O device. The meaning of this byte is

Value Meaning

0 Path-group identification: The state-
dependent-information field contains
information identifying a path group.

1 Long busy: The device is in a long-busy
state. The meaning of long busy is
device dependent and the device-depen-
dent field may contain additional infor-
mation about the long-busy state.

2 Recovery: The device is performing a
recovery process and the device-depen-
dent-data field may contain additional
information about the recovery state.

3-127 Reserved.

128-
255 Device-dependent meanings.

Operation State (OS): Byte 0 of word 1 contains
an 8-bit unsigned integer that indicates whether an
I/O operation is present at the device and, when
present, the state of the operation. The meaning of
this byte is as follows:

Value Meaning

0 No I/O operation is present.

Word (from the beginning of the TSA)

0 Format Flags CS DS

1 OS Reserved

2

State-Dependent Information

4

5 Device-Level Identifier

6

Device-Dependent Data

12
0 8 16 24 31

Figure 15-25. Interrogate Transport-Status Area (TSA)

15-57

1 An I/O operation is present and execut-
ing.

2 An I/O operation is present and waiting
for completion of an I/O operation that
was initiated by another configuration.

3 An I/O operation is present and waiting
for completion of an I/O operation that
was initiated for the same device extent.

4 An I/O operation is present and waiting
to perform a device-dependent opera-
tion.

5-127 Reserved.

128-
255 Device-dependent meanings.

State-Dependent Information: Words 2-4 may
contain state-dependent information. Whether this
field has meaning is designated by the CS, DS, and
OS fields.

The contents of this field are device dependent.
When the device places one or more bytes in this
field, they are left justified.

Device-Level Identifier: Word 5 contains a device-
dependent token that identifies the implementation
level of the device.

Device-Dependent Data: Words 6-12 contain
device dependent information. Whether this field has
meaning is designated by the CS, DS, and OS fields.

When the device places one or more bytes in this
field, they are left justified.

Note:

1. An interrogate TSA is stored only in a TSB desig-
nated by an interrogate TCW.

2. If a program-check condition is recognized for an
interrogate TCCB, a device-detect-program-
check TSA is stored in the TSB designated by
the interrogate TCW.

Command Code

For CCW channel programs, the command code, bit
positions 0-7 of the CCW, specifies to the channel
subsystem and the I/O device the operation to be
performed. For TCW channel programs, the com-
mand code, bit positions 0-7 of the DCW, specifies to
the I/O device the operation to be performed.

With the exception of transport commands, the two
rightmost bits or, when these bits are zeros, the four
rightmost bits of the command code identify the oper-
ation to the channel subsystem. The channel subsys-
tem distinguishes among the following operations:

• Control
• Output forward (write)
• Input forward (read, sense, sense ID)
• Input backward (read backward)
• Branching (transfer in channel)
• Interrogate
• Transport

For CCW channel programs, the channel subsystem
ignores the leftmost four bits of the command code in
a format-0 CCW that specifies transfer-in-channel. In
a format-1 CCW that specifies transfer in channel, all
bits of the command code are decoded by the chan-
nel subsystem.

For CCW channel programs, commands that initiate
I/O operations (write, read, read backward, control,
sense, and sense ID) cause all eight bits of the com-
mand code to be transferred to the control unit.

In command codes that initiate I/O operations, the
leftmost bit positions contain modifier bits. The modi-
fier bits specify to the device how the command is to
be executed. They may, for example, cause the
device to compare data received during a write oper-
ation with data previously recorded, and they may
specify such attributes as recording density and par-
ity. For the control command, the modifier bits may
contain the order code specifying the control function
to be performed. The meaning of the modifier bits
depends on the type of I/O device and is specified in
the System Library publication for the device.

The command-code assignment is listed in
Figure 15-26 on page 15-58. The symbol x indicates

15-58 The z/Architecture I/O Architecture

that the bit position is ignored; the symbol m identi-
fies a modifier bit.

Whenever the channel subsystem detects an invalid
command code during the initiation of command exe-
cution for a CCW channel program, the program-
check-interruption condition is generated, and chan-
nel-program execution is terminated. The command
code is ignored during data chaining, unless it speci-
fies transfer in channel.

Whenever an I/O device detects an invalid command
code while executing the commands in a TCCB, a
device-detected-program-check condition is recog-
nized and channel-program execution is terminated.

Designation of Storage Area

For CCW channel programs, the main-storage area
associated with an I/O operation is defined by one or
more CCWs. A CCW defines an area by specifying
the address of the first byte to be transferred and the
number of consecutive bytes contained in the area.
The address of the first byte of data to be transferred
is specified either directly in the data-address field of
the CCW or indirectly in an indirect-data-address
word (IDAW) or modified-indirect-data-address word

(MIDAW) designated by the data-address field of the
CCW. The number of bytes contained in the storage
area is specified in the count field.

For TCW channel programs the main-storage area
associated with an I/O operation is designated by a
TCW. A TCW designates an area by specifying the
address of the first byte to be transferred and the
number of consecutive bytes contained in the area.
The address of the first byte of data to be transferred
for input operations is specified either directly in the
input-data-address field of the TCW or indirectly by a
transport-indirect-data-address word (TIDAW) desig-
nated by the input-data-address field of the TCW.
The number of bytes contained in the storage area
for input operations is specified in the input-count
field. The address of the first byte of data to be trans-
ferred for output operations is specified either directly
in the output-data-address field of the TCW or indi-
rectly by a TIDAW designated by the output-data-
address field of the TCW. The number of bytes con-
tained in the storage area for output operations is
specified in the output-count field. In this case, the
actual number of bytes in the storage area is deter-
mined by subtracting the number of any inserted
padding or CBC bytes from the output-count field
value. The address of the first byte of data to be
transferred into the TSB is specified in the TSB-
address field of the TCW. The number of bytes con-
tained in the storage area for the TSB is dependent
on the status being returned and is a maximum of 64.

In general, for write, read, control, and sense opera-
tions, storage locations are used in ascending order
of addresses. As information is transferred to or from
main storage, the address from the appropriate
address field is incremented, and the count from the
associated count field is decremented. For com-
mand-mode operations, the read-backward operation
places data in storage in a descending order of
addresses, and both the count and the address are
decremented. When the associated count reaches
zero, the storage area defined by the CCW is
exhausted.

When a subchannel is operating in transport mode,
the channel subsystem may take advantage of per-
formance optimizations and access storage locations
in a non-sequential order within the storage area or
areas designated by the current TCW. When a trans-
port-mode operation is concluded, the transfer of
specified data, as indicated by information in the
I/O-status TSB, is complete.

Code Command

x x x x 0 0 0 0 Invalid
m m m m m m 0 1 Write1

m m m m m m 1 0 Read1

m m m m 1 1 0 0 Read Backward2

m m m m m m 1 1 Control
m m m m 0 1 0 0 Sense
1 1 1 0 0 1 0 0 Sense ID
x x x x 1 0 0 0 Transfer in channel3

0 0 0 0 1 0 0 0 Transfer in channel4

m m m m 1 0 0 0 Invalid5

0 1 m m 0 0 0 0 Transport6

Explanation:

m Modifier bit
x Ignored
1 May designate control data in DCWs.
2 CCW only
3 Format-0 CCW
4 Format-1 CCW
5 Format-1 CCW with any of bits 0-3 nonzero
6 DCW only

Figure 15-26. Command-Code Assignment

15-59

Any main-storage location available to the start func-
tion can be used in the transfer of data to or from an
I/O device, provided that the location is not protected
against that type of reference. Format-0 CCWs can
be located in any available part of the first 224 (16M)
bytes of absolute storage, and format-1 CCWs and
TCWs can be located in any available part of the first
231 (2G) bytes of absolute storage, provided that, in
both cases, the location is not protected against a
fetch-type reference. When the channel subsystem
attempts to refer to a protected location, the protec-
tion-check condition is generated, and the device is
signaled to terminate the operation.

A main-storage location is available if it is available in
the configuration and access to the location is not
prevented by the address-limit-checking facility.
CCWs, TCWs, ISDs, TSBs, and the data they
address reside in main-storage locations. If a main-
storage location is not available, it is said to have an
invalid address

If the channel subsystem refers to a location that is
not available, the program-check condition is gener-
ated. When the first CCW or TCW designated by the
channel-program address is at an unavailable loca-
tion, the start function is not initiated at the device,
the status portion of the SCSW is updated with the
program-check indication, the subchannel becomes
status pending with primary, secondary, and alert
status, and deferred condition code 1 is indicated. An
invalid data address, as well as any invalid CCW
address detected on chaining or subsequent to the
execution of START SUBCHANNEL, causes the
channel subsystem to signal the device to conclude
the operation, if and when the device requests or
offers a byte of data or status at the invalid address.
In this situation, the subchannel is made status pend-
ing with program check indicated in the subchannel
status, and the device status is a function of the sta-
tus received from the device. The program-check
condition causes command chaining and command
retry to be suppressed.

During an output operation, the channel subsystem
may fetch data from main storage before the time the
I/O device requests the data. Any number of bytes
specified by the current CCW or TCW may be
prefetched and buffered.

When data chaining during an output operation for a
CCW channel program, the channel subsystem may
fetch one CCW describing a data area at any time
during the execution of the current CCW. If unlimited

prefetching is allowed by the setting of the prefetch-
control bit in the ORB CCW channel program, any
number of CCWs, IDAWs, and MIDAWs and the
associated data may be prefetched by the channel
subsystem. When the I/O operation uses data or
CCWs from locations near the end of the available
storage, such prefetching may cause the channel
subsystem to refer to locations that do not exist.
Invalid addresses detected during prefetching do not
affect the performance of the I/O operation and do
not cause error indications until the operation actu-
ally attempts to use the information. If the operation
is concluded by the I/O device or by the execution of
HALT SUBCHANNEL or CLEAR SUBCHANNEL
before the invalid information is needed, the condition
is not brought to the attention of the program.

The count field in the CCW can specify any number
of bytes up to 65,535. In format-0 CCWs, the count
field is always nonzero unless the command code
specifies transfer in channel, in which case the count
field is ignored. In format-1 CCWs, the count field
may contain the value zero unless data chaining is
specified or the CCW is fetched while data chaining.
Whenever (1) the count field in a format-1 CCW is
zero, (2) data chaining is either not specified or not in
effect, and (3) data transfer is requested by the
device, the device is signaled to stop, and the I/O
operation is terminated. The channel subsystem sets
the incorrect-length condition if the SLI flag is not one
in the CCW. No data is transferred. If the device does
not request data transfer, the operation proceeds to
the normal ending point.

If a zero byte count is contained in a format-0 CCW
that does not specify transfer in channel, or if a zero
byte count is contained in a format-1 CCW that spec-
ifies data chaining or was fetched while data chain-
ing, a program-check condition is recognized, and
the subchannel is made status pending with combi-
nations of primary, secondary, and alert status as a
function of the state of the subchannel and the status
received from the device.

The input-count and output-count fields in the TCW
can specify any number of bytes up to 232 - 8. For
input operations, the input-count field is always non-
zero; otherwise, a program-check condition is recog-
nized. For output operations, the output-count field is
always nonzero; otherwise, a program-check condi-
tion is recognized.

Note: For a description of the storage area associ-
ated with a CCW when indirect data addressing is

15-60 The z/Architecture I/O Architecture

used, see “CCW Indirect Data Addressing” on
page 15-66. For a description of the storage area
associated with a TCW when indirect data address-
ing is used, see “Transport Indirect Data Addressing”
on page 15-70.

Programming Notes:

1. Since a format-1 CCW with a count of zero is
valid, the program can use the CCW count field
to specify that no data be transferred to the I/O
device. If the device requests a data transfer, the
device is signaled to terminate data transfer. If
the SLI and chain-command flags are also speci-
fied as ones, and no unusual conditions are
encountered subsequent to signaling the device
to terminate data transfer, the new operation is
initiated upon receipt of device end from the
device.

2. If the subchannel is in the incorrect-length-sup-
pression mode, the chain-data flag in the current
CCW is zero, and the operation is performed as
an immediate operation, then incorrect length is
not indicated, regardless of the setting of the SLI
flag.

If the subchannel is in the incorrect-length-indi-
cation mode, if the chain-data flag in the current
CCW is zero, and if the operation is performed as
an immediate operation, then incorrect length is
indicated if the count field of the current CCW
specifies a nonzero value, unless suppressed by
the SLI flag of the CCW; incorrect length is not
indicated, however, if the count field of the CCW
specifies a value of zero.

If a new CCW that has a count field of zero is
fetched during data chaining or if a CCW is
fetched with the chain-data flag set to one and a
count field of zero, a program-check condition is
recognized by the channel subsystem.

3. Since the channel-subsystem may access stor-
age in a non-sequential manner while a sub-
channel is operating in transport mode, the
results may be unpredictable if the program
accesses the input storage area or areas desig-

nated by a TCW before primary status is indi-
cated.

CCW Channel Program Chaining

When the channel subsystem has completed the
transfer of information specified by a CCW, it can
continue performing the start function by fetching a
new CCW. Such fetching of a new CCW is a form of
chaining, and the CCWs belonging to such a
sequence are said to be chained.

Chaining takes place between CCWs located in suc-
cessive doubleword locations in storage. It proceeds
in an ascending order of addresses; that is, the
address of the new CCW is obtained by adding 8 to
the address of the current CCW. Two chains of
CCWs located in noncontiguous storage areas can
be coupled for chaining purposes by a transfer-in-
channel command. All CCWs in a chain apply to the
I/O device that is associated with the subchannel
designated by the original START SUBCHANNEL
instruction.

Two types of chaining are provided for CCWs:
Chaining is controlled by the chain-data (CD) and
chain-command (CC) flags in conjunction with the
suppress-length-indication (SLI) flag in the CCW.
These flags specify the action to be taken by the
channel subsystem upon the exhaustion of the cur-
rent CCW and upon receipt of ending status from the
device, as shown in Figure 15-27 on page 15-61.

The specification of chaining is effectively propa-
gated through a transfer-in-channel command.
When, in the process of chaining, a transfer-in-chan-
nel command is fetched, the CCW designated by the
transfer-in-channel command is used for the type of
chaining specified in the CCW preceding the trans-
fer-in-channel command.

The CD and CC flags are ignored in a format-0 CCW
specifying the transfer-in-channel command. In a for-
mat-1 CCW specifying the transfer-in-channel com-

15-61

mand, the CD and CC flags must be zeros;
otherwise, a program-check condition is recognized.

Programming Note: When bit 9 of word 1 of the
ORB is one, unlimited prefetching of chained CCWs
(including CCWs linked by a transfer-in-channel com-
mand) by the channel subsystem is permitted. When
prefetching is allowed by the ORB, no modification of
the channel program should be performed after
START SUBCHANNEL is executed and before the
primary interruption condition for the operation has
been received unless the subchannel is currently
suspended and is not resume pending.

Data Chaining
During data chaining, the new CCW fetched by the
channel subsystem defines a new storage area for
the original I/O operation. If the channel path is of the
parallel-I/O-interface type, the performance of the
operation at the I/O device is not affected. If the
channel path is of the serial-I/O-interface type, then

the performance of the operation at the I/O device
either is not affected or, depending on the device
model, may be terminated with unit-check status.
When the operation at the I/O device is not affected
and all data designated by the current CCW has
been transferred to main storage or to the device,
data chaining causes the operation to continue, using
the storage area designated by the new CCW. The
contents of the command-code field of the new CCW
are ignored, unless they specify transfer in channel.

Data chaining is considered to occur immediately
after the last byte of data designated by the current
CCW has been transferred to main storage or to the
device. When the last byte of the data transfer has
been placed in main storage or accepted by the
device, the new CCW takes over the control of the
operation. If the device sends channel end after

Flags in Current
CCW

Action at the Subchannel upon Exhaustion of Count or Receipt of Channel End
Immediate Operation Non-immediate Operation

Incorrect-Length-
Suppression Mode1

Incorrect-Length-
Indication Mode Count Exhausted

Count Not
Exhausted

and CE
ReceivedCD CC SLI

CCW
Count0

CCW
Count=0

CCW
Count0

CCW
Count=0

CE Not
Received

CE
Received

0 0 0 End, NIL End, NIL End, IL End, NIL Stop, IL End, NIL End, IL
0 0 1 End, NIL End, NIL End, NIL End, NIL Stop, NIL End NIL, End, NIL
0 1 0 CC CC End, IL CC Stop, IL CC End, IL
0 1 1 CC CC CC CC Stop, CC CC CC

1 - - End, NIL PC End, IL PC CD * End IL

Explanation:

- The selected bit is ignored and may be either zero or one.
* These situations cannot validly occur. When data chaining is specified, the new CCW takes control of the operation after

transferring the last byte of data designated by the current CCW, but before the next request for data or status transfer from
the device. The new CCW (which cannot contain a count of zero unless a program-check condition is also recognized) is in
control of the operation

1 The count field must contain a nonzero value when format-0 CCWs are specified; otherwise, the operation is terminated with
a program-check condition.

CC Command chaining is performed by the channel subsystem upon receipt of device end.
CD The chain-data flag causes the channel subsystem to immediately fetch a new CCW for the same operation. The operation

continues unless the CCW thus fetched has a count field of zero, in which case the operation is terminated with a program-
check condition.

CE Channel end from the device that indicates end of block.
End Operation is terminated.
IL Incorrect length is indicated with the subsequent interruption condition generated at the subchannel.
NIL Incorrect length is not indicated with the subsequent interruption condition generated at the subchannel.
PC These situations cannot validly occur. The channel subsystem recognizes a program-check condition when a CCW is

fetched that has the chain-data flag set to one and a count field of zero.
STOP Device is signaled to terminate data transfer, but subchannel remains subchannel active until channel end is received.

Figure 15-27. Subchannel Chaining Action

15-62 The z/Architecture I/O Architecture

exhausting the count of the current CCW but before
transferring any data to or from the storage area des-
ignated by the new CCW, the SCSW associated with
the concluded operation pertains to the new CCW.

If programming errors are detected in the new CCW
or during its fetching, the error indication is gener-
ated, and the device is signaled to conclude the oper-
ation when it attempts to transfer data designated by
the new CCW. If the device signals the channel-end
condition before transferring any data designated by
the new CCW, program check or protection check is
indicated in the SCSW associated with the termina-
tion. The contents of the SCSW pertain to the new
CCW unless the address of the new CCW is invalid,
the location is protected against fetching, or program-
ming errors are detected in an intervening transfer-in-
channel command. A data address referring to a
nonexistent or protected area causes an error indica-
tion only after the I/O device has attempted to trans-
fer data to or from the invalid location.

Data chaining during an input operation causes the
new CCW to be fetched when all data designated by
the current CCW has been placed in main storage.
On an output operation, the channel subsystem may
fetch the new CCW from main storage before data
chaining occurs. Any programming errors in the
prefetched CCW, however, do not affect the perfor-
mance of the operation until all data designated by
the current CCW has been transferred to the I/O
device. If the device concludes the operation before
all data designated by the current CCW has been
transferred, the conditions associated with the
prefetched CCW are not indicated to the program.
Unlimited prefetching is allowed under the control of
the prefetch bit specified in the ORB. (See “Prefetch
Control (P)” on page 15-27.) When unlimited
prefetching is not allowed and an output operation is
specified, only one CCW describing a data area may
be prefetched. If a prefetched CCW specifies transfer
in channel, only one more CCW may be fetched
before the exhaustion of the current CCW.

Programming Notes:

1. If the ORB does not specify unlimited prefetch-
ing, no prefetching of CCWs is performed, except
in the case of data chaining on an output opera-
tion where one CCW describing a data area may
be prefetched at a time.

If the ORB for the I/O operation specifies that
prefetching is allowed, any number of CCWs,

IDAWs, and MIDAWs and the associated data
areas may be prefetched and buffered in the
channel subsystem.

The same actions for signaling errors and termi-
nating operations take place when unlimited
prefetching is allowed by the ORB as when it is
not allowed. However, when unlimited prefetch-
ing is specified and an error condition is
detected, both the channel subsystem and the
program must recognize that the points of termi-
nation at the channel subsystem and at the I/O
device may be different in terms of the channel
command in execution at the point of error. The
channel subsystem indicates the point of termi-
nation at the channel subsystem by storing the
appropriate CCW address in word 1 of the sub-
channel-status word and the point of termination
at the device by storing the secondary-CCW
address in word 4 of the format-0 extended-sta-
tus word.

When prefetching has been specified in the
ORB, the result of modifications to CCWs after
START SUBCHANNEL has been executed or
after self-describing channel programs have
been used is unpredictable. (See note 2 for the
definition of self-describing channel programs.)

2. Data chaining may be used to rearrange informa-
tion as it is transferred between main storage
and an I/O device. Data chaining permits blocks
of information to be transferred to or from non-
contiguous areas of storage, and, when used in
conjunction with the skipping function, data
chaining allows the program to place in main
storage specified portions of a block of data.

When, during an input operation, the program
specifies data chaining to a location in which
data has been placed under the control of the
current CCW, the channel subsystem, in fetching
the next CCW, fetches the new contents of the
location. This is true even if the location contains
the last byte transferred under the control of the
current CCW. When a channel program data-
chains to a CCW placed in storage by the CCW
specifying data chaining, the input block is said
to be self-describing. A self-describing block con-
tains one or more CCWs that designate storage
locations and counts for subsequent data in the
same input block.

The use of self-describing blocks is equivalent to
the use of unchecked data. An I/O data-transfer

15-63

malfunction that affects validity of a block of infor-
mation is signaled only at the completion of data
transfer. The error condition normally does not
prematurely terminate or otherwise affect the
performance of the operation. Thus, there is no
assurance that a CCW read as data is valid until
the operation is completed. If the CCW thus read
is in error, use of the CCW in the current opera-
tion may cause subsequent data to be placed at
wrong locations in main storage with resultant
destruction of its contents, subject only to the
control of the protection key and the address-
limit-checking facility, if used.

3. When, during data chaining, a device transfers
data by using the data-streaming feature, an
overrun or chaining-check condition may be rec-
ognized when a small byte-count value is speci-
fied in the CCW. The minimum acceptable
number of bytes that can be specified varies as a
function of the system model and system activity.

Command Chaining
During command chaining, the new CCW fetched by
the channel subsystem specifies a new I/O opera-
tion. The channel subsystem fetches the new CCW
upon the receipt of the device-end signal for the cur-
rent operation. If the new CCW does not have its S
flag set to one and no unusual conditions are
detected, the channel subsystem initiates the new
operation. The presence of the S flag set to one or
unusual conditions causes command chaining to be
suppressed. When command chaining takes place,
the completion of the current operation does not
cause an I/O interruption, and the count indicating
the amount of data transferred during the current
operation is not made available to the program. For
operations involving data transfer, the new command
always applies to the next block of data at the device.

Command chaining takes place and the new opera-
tion is initiated only if no unusual conditions have
been detected in the current operation. In particular,
the channel subsystem initiates a new I/O operation
by command chaining upon receipt of a status byte
containing only the following bit combinations:
(1) device end, (2) device end and status modifier,
(3) device end and channel end, and (4) device end,
channel end, and status modifier. In the first two
cases, channel end is signaled before device end,
with all other status bits zeros. If a condition such as
attention, unit check, unit exception, incorrect length,
program check, or protection check has occurred, the
sequence of operations is concluded, and the status

associated with the current operation causes an
interruption condition to be generated. The new CCW
in this case is not fetched. The incorrect-length con-
dition does not suppress command chaining if the
current CCW has the SLI flag set to one.

An exception to sequential chaining of CCWs occurs
when the I/O device presents the status-modifier
condition with the device-end signal or channel-end
and device-end signals. When command chaining is
specified and no unusual conditions have been
detected, or when command retry has been previ-
ously signaled and an immediate retry could not be
performed, the combination of status-modifier and
device-end bits causes the channel subsystem to
alter the sequential execution of CCWs. If command
chaining was specified, status modifier and device
end cause the channel subsystem to fetch and chain
to the CCW whose main-storage address is 16
higher than that of the CCW that specified chaining.
If command retry was previously signaled and imme-
diate retry could not be performed, the status causes
the channel subsystem to command chain to the
CCW whose storage address is 8 higher than that of
the CCW for which retry was initially signaled.

When both command and data chaining are speci-
fied, the first CCW associated with the operation
specifies the operation to be performed, and the last
CCW specifies whether another operation follows.

Programming Note: Command chaining makes it
possible for the program to initiate transfer of multiple
blocks of data by issuing a single START SUBCHAN-
NEL instruction. It also permits a subchannel to be
set for execution of other commands, such as posi-
tioning the disk-access mechanism, and for data-
transfer operations without interference by the pro-
gram at the end of each operation. Command chain-
ing, in conjunction with the status-modifier condition,
permits the channel subsystem to modify the normal
sequence of operations in response to signals pro-
vided by the I/O device.

TCW Channel Program Chaining

When the I/O device has completed a control opera-
tion or the transfer of information specified by a DCW,
the device can continue by executing the next DCW
that is specified. Such execution of a new DCW is a
form of command chaining, and the DCWs belonging
to such a sequence are said to be chained.

15-64 The z/Architecture I/O Architecture

Command chaining is controlled by the DCW chain-
command (CC) flag in the DCW. This flag specifies
the action to be taken upon the exhaustion of the cur-
rent DCW. Chaining takes place between successive
DCWs within the TCA. When a TCAX is specified,
chaining also takes place between the last DCW in
the TCA and the first DCW in the TCAX, and
between successive DCWs within the TCAX.

When a TCCB is transported to an I/O device and
selected by the device for processing, the first DCW
in the TCA becomes the current DCW and is exe-
cuted by the device. When the current DCW specifies
command chaining and no unusual conditions have
been detected during the operation, the completion
of the current DCW causes the next DCW to become
the current DCW and be executed by the device. The
TCA offset of the next DCW is determined by adding
8, plus the value of the control-data (CD) count field
of the DCW, to the TCA offset of the current DCW
and rounding upwards to the next word boundary. If a
TCAX is specified and the offset of the next DCW is
past the end of the TCA, chaining continues with the
first DCW of the TCAX whose TCAX offset is deter-
mined by subtracting the TCA length from the calcu-
lated offset. Thus, command chaining proceeds in
ascending order of TCA offsets and then TCAX off-
sets when a TCAX is specified.

During command chaining, the new DCW executed
by the device specifies a new I/O command. When
command chaining takes place, the completion of the
execution of the current command does not cause an
I/O interruption, and the count indicating the amount
of data transferred during the current operation is not
made available to the program. For operations involv-
ing data transfer, the new command always applies
to the next block of data at the device.

Command chaining takes place and the new com-
mand is initiated only if no unusual conditions have
been detected in the execution of the current com-
mand. In particular, the I/O device initiates a new I/O
operation by command chaining upon successful
completion of the current command. If a condition
such as attention, unit check, unit exception, or incor-
rect length has occurred, the sequence of operations
is concluded, and the status associated with the cur-
rent operation causes an interruption condition to be
generated. The new DCW in this case is not exe-
cuted.

Command chaining makes it possible for the program
to initiate transfer of multiple blocks of data by issuing

a single START SUBCHANNEL instruction. It also
permits a subchannel to be set for execution of other
commands, such as positioning the disk-access
mechanism, and for data-transfer operations without
interference by the program at the end of each opera-
tion. For command-mode operations, command
chaining, in conjunction with the status-modifier con-
dition, permits the channel subsystem to modify the
normal sequence of operations in response to sig-
nals provided by the I/O device

Skipping

Skipping causes the suppression of main-storage
references during an I/O operation. It is defined only
for read, read-backward, sense-ID, and sense opera-
tions. Skipping is controlled by the skip flag, which
can be specified individually for each CCW, MIDAW,
or TIDAW. When the skip flag is one, skipping occurs;
when it is zero, normal operation takes place. The
setting of the skip flag is ignored in all other opera-
tions.

Skipping affects only the handling of information by
the channel subsystem. The operation at the I/O
device proceeds normally, and information is trans-
ferred. The channel subsystem keeps updating the
count but does not place the information in main stor-
age. Chaining is not precluded by skipping. In the
case of CCW data chaining, normal operation is
resumed if the skip flag in the new CCW is zero.

No checking for invalid or protected data addresses
takes place during skipping.

Programming Note: Skipping, when combined with
CCW data chaining, MIDAWs, and TIDAWs, permits
the program to place in main storage specified por-
tions of a block of information from an I/O device.

Program-Controlled Interruption

The program-controlled-interruption (PCI) function
permits the program to cause an I/O interruption
during the performance of an I/O operation. The
function is controlled by the PCI flag of the CCW. Nei-
ther the value of the PCI flag nor the associated inter-
ruption request affects the performance of the current
operation.

The value of the PCI flag can be one either in the first
CCW designated for the current start or resume func-

15-65

tion or in a CCW fetched during chaining. If the PCI
flag is one in a CCW that has become current, the
subchannel becomes status pending with intermedi-
ate status, and an I/O-interruption request is gener-
ated. The point at which the subchannel becomes
status pending depends on the progress of the cur-
rent start or resume function as follows:

1. If the PCI flag is one in the first CCW associated
with a start function or a resume function, the
subchannel becomes status pending with inter-
mediate status only after the command has been
accepted.

2. If the PCI flag is one in a CCW that has become
current while data chaining, the subchannel
becomes status pending with intermediate status
after all data designated by the preceding CCW
has been transferred.

3. If the PCI flag is one in a CCW that has become
current while command chaining, the subchannel
becomes status pending with intermediate status
as that CCW becomes current.

In all cases, if the subchannel is enabled for I/O inter-
ruptions, the point of interruption depends on the cur-
rent activity in the system and may be delayed. No
predictable relationship exists between the point at
which the interruption request is generated because
of the PCI flag and the extent to which data transfer
has been completed to or from the area designated
by the CCW. However, all the fields within the SCSW
pertain to the same instant.

An intermediate interruption condition that is made
pending because of a PCI flag remains pending
during chaining if not cleared by TEST SUBCHAN-
NEL or CLEAR SUBCHANNEL. If another CCW con-
taining a PCI flag that is one becomes current prior to
the clearing of the intermediate interruption condi-
tion, only one interruption condition is preserved.

An intermediate interruption may occur while the
subchannel is subchannel-and-device active with the
operation specified by the CCW causing the interme-
diate interruption condition or with the operation
specified by a CCW that has subsequently become
current. If the intermediate interruption condition is
not cleared prior to the conclusion of the operation or
chain of operations, the condition is indicated
together with the primary interruption condition at the
conclusion of the operation or chain of operations.
The intermediate interruption condition may be

cleared by TEST SUBCHANNEL while the subchan-
nel is subchannel active.

If the SCSW stored by TEST SUBCHANNEL indi-
cates that the subchannel is status pending with
intermediate status and the operation or chain of
operations has not been concluded (that is, the activ-
ity-control field indicates subchannel-and-device
active or suspended), then the CCW-address field
contains an address that is 8 higher than the address
of the most recent CCW to become current and have
a PCI flag that is one, or the CCW-address field con-
tains an address that is 8 higher than the address of
a CCW that has subsequently become current.
Unless the SCSW also contains the primary-status
bit set to one, the device-status field contains zeros,
and the count is unpredictable.

Subchannel-status conditions other than PCI may be
indicated when the SCSW is stored. If the subchan-
nel is not also status pending with primary status,
these conditions may or may not be indicated again.
If the subchannel-status condition is detected while
prefetching and the operation or chain of operations
is concluded before the condition affects an opera-
tion, the condition is reset and is not indicated when
the subchannel subsequently becomes status pend-
ing with primary status. If the subchannel-status con-
dition affects an operation, the condition is indicated
when the subchannel becomes status pending with
primary status.

If the program-controlled-interruption condition
remains pending until the operation or chain of oper-
ations is concluded at the subchannel, a single inter-
ruption request exists. When TEST SUBCHANNEL
is subsequently executed, the status-control field of
the SCSW stored indicates both the primary interrup-
tion condition and the intermediate interruption con-
dition, and the PCI bit of the subchannel-status field
is one.

The value of the PCI flag is inspected in every CCW
except for those CCWs that specify the transfer-in-
channel command. The PCI flag is ignored during ini-
tial program loading.

Programming Notes:

1. The program-controlled interruption provides a
means of alerting the program to the progress of
chaining during an I/O operation. It permits pro-
grammed dynamic main-storage allocation.

15-66 The z/Architecture I/O Architecture

2. A CCW with a PCI flag set to one may, if retried
because of command retry, cause multiple PCI
interruptions to occur. (See “Command Retry” on
page 15-77.)

Indirect Storage Addressing

Indirect-storage addressing (ISA) allows for storage
areas designated by a channel program to be speci-
fied in noncontiguous storage. Depending on the
model, more than one form of ISA facility may be
installed as follows:

• CCW-indirect-data (see “CCW Indirect Data
Addressing” on page 15-66) addressing is
installed in all models.

• Modified-CCW-indirect-data (see “Modified CCW
Indirect Data Addressing” on page 15-68)
addressing may also be installed in a model.

• TCW-indirect-data-addressing (see “Transport
Indirect Data Addressing” on page 15-70) may
also be installed in a model.

Indirect-Storage Designator (ISD)
Each ISA facility description includes the definition of
a facility-unique indirect-storage designator (ISD)
that is used to specify a block of storage to the chan-
nel subsystem. Thus, a list of ISDs may be used to
designate noncontiguous storage blocks. How the
location and size of a storage block are specified and
whether the specification of the storage block has
boundary restrictions, size restrictions, or both is
dependent on the method of ISA used. The following
ISDs may be used as follows:

• Format-1 and format-2 indirect-data-address
word (IDAW). See “CCW Indirect Data Address-
ing” on page 15-66.

• Modified-indirect-data-address word (MIDAW),
when the modified-CCW-indirect-data-address-
ing facility is installed. See “Modified CCW Indi-
rect Data Addressing” on page 15-68.

• Transport-indirect-data-address word (TIDAW),
when the fibre-channel-extensions (FCX) facility
is installed. See “Transport Indirect Data
Addressing” on page 15-70.

CCW Indirect Data Addressing

CCW indirect data addressing permits a single chan-
nel-command word to control the transfer of data that
spans noncontiguous 2 K-byte or 4 K-byte blocks in
main storage. The use of CCW indirect data address-
ing also allows the program to designate data
addresses above 16M bytes when using format-0
CCWs or above 2G bytes when using format-1
CCWs. CCW indirect data addressing is specified by
a flag in the CCW which, when one, indicates that the
data address is not used to directly address data.
Instead, the address points to a list of words or dou-
blewords, called indirect-data-address words
(IDAWs), each of which contains an absolute
address designating a data area in main storage.

IDAWs have either of two formats, called format 1
and format 2, as determined by the format-2-IDAW
control, bit 14 of word 1 of the ORB associated with
the channel program being executed. When the for-
mat-2-IDAW control is zero, the IDAW is format 1 and
is a word containing a 31-bit address. When the con-
trol is one, the IDAW is format 2 and is a doubleword
containing a 64-bit address. The IDAW formats are
as follows:

Bit 0 (format 1) is reserved for future use and must be
zero; otherwise, a program-check condition may be
recognized, as described below.

A format-1 IDAW designates a data area within a
2 K-byte block of main storage and is capable of
addressing storage in the range of 0 to 231 - 1.

A format-2 IDAW designates a data area within a
2 K-byte or 4 K-byte block of main storage, as deter-
mined by the 2K-IDAW control, bit 15 of word 1 of the
ORB associated with the channel program being exe-
cuted, and is capable of addressing storage in the
range of 0 to 264 - 1. When the 2K-IDAW-control bit is
zero, each format-2 IDAW of the designated channel

Format-1 IDAW

0 Data Address
0 31

Format-2 IDAW

Data Address (Bytes 0-3)
0 31

Data Address (Bytes 4-7)
32 63

15-67

program designates a 4 K-byte block of main stor-
age. When the 2K-IDAW-control bit is one, each for-
mat-2 IDAW designates a 2 K-byte data-area block.
All IDAWs associated with the designated channel
program must have the same IDAW format, and all of
those IDAWs specify the same size of storage block.

When the indirect-data-addressing bit in the CCW is
one, the data-address field of the CCW designates
the location of the first IDAW to be used for data
transfer for the command. Additional IDAWs, if
needed for completing the data transfer for the CCW,
are in successive locations in storage. The number of
IDAWs required for a CCW is determined by the
IDAW format as specified in the ORB, by the count
field of the CCW, and by the data address in the ini-
tial IDAW. When, for example, (1) the ORB specifies
format-2 IDAWs with 4 K-byte blocks, (2) the CCW
count field specifies 8K bytes, and (3) the first IDAW
designates a location in the middle of a 4 K-byte
block, then three IDAWs are required.

The IDAW designated by the CCW can designate
any location. Data is then transferred, for read, write,
control, sense ID, and sense commands, to or from
successively higher storage locations or, for a read-
backward command, to successively lower storage
locations, until a 2 K-byte block boundary (format-1
or format-2 IDAW) or a 4 K-byte block boundary (for-
mat-2 IDAW) is reached. The control of data transfer
is then passed to the next IDAW. The second and any
subsequent IDAWs must designate, depending on
the command, the first byte, or the last byte for read
backward, of a 2 K-byte block (format-1 or format-2
IDAW) or a 4 K-byte block (format-2 IDAW). Thus, for
read, write, control, sense ID, and sense commands,
such format-1 IDAWs must have zeros in bit positions
21-31, and such format-2 IDAWs must have zeros in
bit positions 53-63 (2 K-byte blocks) or 52-63
(4 K-byte blocks). For a read-backward command,
such format-1 IDAWs must have ones in bit positions
21-31, and such format-2 IDAWs must have ones in
bit positions 53-63 (2 K-byte blocks) or 52-63
(4 K-byte blocks). If any of these rules is violated, a
program-check condition is recognized.

Except for the unique restrictions on the designation
of the data address by the IDAW, all other actions
taken for the data address, such as for protected
storage and invalid addresses, and the actions taken
for data prefetching are the same as when indirect
data addressing is not used.

IDAWs pertaining to the current CCW or a prefetched
CCW may be prefetched. The number of IDAWs that
can be prefetched cannot exceed that required to
satisfy the count in the CCW that points to the
IDAWs. An IDAW takes control of data transfer when
the last byte has been transferred for the previous
IDAW. The same actions take place as with data
chaining regarding when an IDAW takes control of
data transfer during an I/O operation. That is, when
the count for the CCW has not reached zero, a new
IDAW takes control of the data transfer when the last
byte has been transferred for the previous IDAW for
that CCW, even in situations where (1) channel end,
(2) channel end and device end, or (3) channel end,
device end, and status modifier are received prior to
the transfer of any data bytes pertaining to the new
IDAW.

A prefetched IDAW does not take control of an I/O
operation if the count in the CCW has reached zero
with the transfer of the last byte of data for the previ-
ous IDAW for that CCW. Program or access errors
detected in prefetched IDAWs are not indicated to the
program until the IDAW takes control of data transfer.
However, when the channel subsystem detects an
invalid CBC on the contents of a prefetched IDAW or
its associated key, the condition may be indicated to
the program, when detected, before the IDAW takes
control of data transfer. For a description of the indi-
cations provided when an invalid CBC is detected on
the contents of an IDAW or its associated key, see
“Channel-Control Check” on page 16-29.

Bits 1-31 (format 1) or bits 0-63 (format 2) designate
the absolute storage location of the first byte to be
used in the data transfer. When format-1 IDAWs are
specified, the channel subsystem forms a 64-bit
absolute main-storage address by appending 33 zero
bits on the left of bit 1.

When the IDAW flag of the CCW is set to one and
any of the following conditions occurs:

1. Format-1 IDAWs are specified in the ORB, and
the address in the CCW does not designate the
first IDAW on a word boundary,

2. Format-2 IDAWs are specified in the ORB, and
the address in the CCW does not designate the
first IDAW on a doubleword boundary,

3. The address in the CCW designates a storage
location that is not physically available,

15-68 The z/Architecture I/O Architecture

4. Access to the storage location specified by the
address in the CCW is prohibited by protection,
or

5. Bit 0 (format 1 only) of the first IDAW is not zero,

then, depending on the model, one of the following
two actions is taken independent of the setting of the
skip flag (if condition 5 above is true, action 2 must
be taken).

1. The above conditions are checked before initiat-
ing the operation at the device. If any of these
conditions is recognized, initiation of the I/O
operation does not occur, and the subchannel is
made status pending with primary, secondary,
and alert status.

2. The operation is initiated at the device prior to
checking for these conditions. If the device
attempts to transfer data, the device is signaled
to terminate the I/O operation, and the subchan-
nel is made status pending with primary, second-
ary, and alert status as a function of the
subchannel state and the status presented by
the device.

Modified CCW Indirect Data
Addressing

Modified CCW indirect data addressing (MIDA) per-
mits a single channel-command word to control the
transfer of up to 65,535 bytes of data that spans non-
contiguous blocks in main storage. Each block of
main storage to be transferred may be specified on
any boundary and length up to 4K bytes, provided
the specified block does not cross a 4 K-byte bound-
ary. The use of modified CCW indirect data address-
ing requires that the program designate 64-bit data
addresses.

Modified CCW indirect data addressing is controlled
by a flag in the ORB and specified by a flag in the
CCW which, when both are one, indicates that the
CCW data address is not used to directly address
data. Instead, the address points to a contiguous list
of up to 256 quadwords called modified-indirect-data-
address words (MIDAWs), each of which contains
flags, a byte count, and a 64-bit address designating
a data area in absolute storage.

Use of modified CCW indirect data addressing may
be restricted to certain channel-path types. If the

MIDA flag in the CCW is one, specifying the use of
modified CCW indirect data addressing, and the sub-
channel is associated with channel paths that do not
support modified CCW indirect data addressing, a
program check is recognized.

The MIDAW begins on a quadword boundary and
has the following format:

Reserved : Bits 0-39 of the MIDAW are reserved
for future use and must be zero; otherwise, a pro-
gram-check condition may be recognized.

Flags : Bits 40-47 of the MIDAW contain an 8-bit
flag field. The meaning of each flag bit is as follows.
Bits not shown are reserved.

Bit Meaning
 40 Last MIDAW: Bit 40, when one, specifies that the

MIDAW is the last in the contiguous list of
MIDAWs.

 41 Skip: Bit 41, when one, specifies the suppression
of transfer of information to main storage during
a read, read-backward, sense ID, or sense oper-
ation, thus specifying that skipping is in effect.
When the operation is not read, read-backward,
sense ID, or sense, bit 41 is ignored and skipping
is not in effect

When skipping is in effect, no checking for invalid
or protected data addresses takes place.

 42 Data-transfer-interruption control: Bit 42, when
one, specifies that a program-check be recog-
nized when the device attempts to transfer data.

Count : Bits 48-63 of the MIDAW specify the num-
ber of bytes in the storage area designated by the
data-address field. The count value must not be zero;
otherwise a program-check condition is recognized.
When skipping is in effect, the count value may be in
the range of 1 - 65,535. When skipping is not in
effect, the count value, in conjunction with the data
address, must not specify the transfer of data that
crosses a 4K-block boundary; otherwise, a program-

Doubleword

0 Reserved Flags Count

1 Data Address
0 40 48 63

Figure 15-28. Modified-Indirect-Data-Address Word
(MIDAW)

15-69

check condition is recognized. When the count value
causes the total data transfer count to exceed that
specified in the CCW count field, a program-check
condition is recognized.

Data Address : Bits 64-127 of the MIDAW desig-
nate the 64-bit address of a location in absolute stor-
age which is the first byte of information to be
transferred. If the count field specifies zero, this field
is not checked.

When modified CCW indirect data addressing is
specified, the data-address field of the CCW desig-
nates the location of the first MIDAW to be used for
data transfer for the CCW command. Additional
MIDAWs, if needed for completing the data transfer
for the CCW, are fetched from successive locations in
storage. The number of MIDAWs required for a CCW
is determined by the count field of the CCW in rela-
tion to the count fields in the list of MIDAWs desig-
nated by the CCW. The list must not cross a 4 K-byte
boundary.

If a list of two or more MIDAWs is designated for a
read operation, it is unpredictable in which order the
MIDAW data addresses are used to transfer informa-
tion into main storage. Thus, if two or more MIDAWs
in a MIDAW list designate overlapping storage areas,
the results are unpredictable.

MIDAWs that specify the transfer of data (MIDAWs
for which skipping is not in effect) may specify a
transfer count in the range of 1 - 4096 bytes, pro-
vided the MIDAW does not specify a data transfer
that crosses a 4 K-byte boundary; MIDAWs that
specify the suppression of the transfer of data
(MIDAWs for which skipping is in effect) may specify
a skip count in the range of 1 - 65,535 bytes. The
total number of bytes that can be transferred or
skipped or both by a single MIDAW list is limited by
the CCW count field, which is a maximum of 65,535
bytes. The sum of the count fields in all of the
MIDAWs in the list designated by the CCW should
equal the value in the count field of the CCW; other-
wise, a program-check condition may be recognized.

The MIDAW designated by the CCW can designate
any location. When the MIDAW skip flag is zero and
the CCW specifies the read, write, control, sense ID,
or sense command, data is then transferred to or
from successively higher storage locations until the
number of bytes specified by the MIDAW count field
have been transferred. When the MIDAW skip flag is
zero and the CCW specifies the read backwards

command, data is then transferred to successively
lower storage locations until the number of bytes
specified by the MIDAW count field have been trans-
ferred. When the MIDAW skip flag is one and the
CCW specifies the read, sense ID, or sense com-
mand, skipping occurs to successively higher stor-
age locations until the number of bytes specified by
the MIDAW count field have been skipped. When the
MIDAW skip flag is one and the CCW specifies the
read backwards command, skipping occurs to suc-
cessively lower storage locations until the number of
bytes specified by the MIDAW count field have been
skipped.

When the specified number of bytes have been
transferred or skipped and the CCW specifies a sub-
sequent MIDAW, the control of data transfer is then
passed to the next MIDAW in the list. Like the MIDAW
designated by the CCW, subsequent MIDAWs may
designate any location and any length, provided the
MIDAW does not specify a data transfer that crosses
a 4 K-byte boundary; otherwise, a program-check
condition is recognized.

Except for the unique restriction on designating a
valid combination of data address and count by a
MIDAW and the resulting behavior when the data-
transfer-interruption control is one, all other actions
taken for data addresses specified by a MIDAW, such
as for protected storage and invalid addresses, and
the actions taken for data prefetching, are the same
as when modified CCW indirect data addressing is
not used.

MIDAWs pertaining to the current CCW or a
prefetched CCW may be prefetched. The number of
MIDAWs that can be prefetched cannot exceed that
required to satisfy the count in the CCW that desig-
nates the MIDAWs. Any MIDAWs that are prefetched
for a CCW and are not used are discarded.

Similar to when CCW data chaining occurs, the
action of transferring control from one MIDAW to the
next is transparent to any attached device. A MIDAW
takes control of data transfer when the last byte spec-
ified by the previous MIDAW has been transferred,
even in situations where (1) channel end, (2) channel
end and device end, or (3) channel end, device end,
and status modifier are received prior to the transfer
of any data bytes pertaining to the new MIDAW.

A prefetched MIDAW does not take control of an I/O
operation if the count in the CCW has reached zero
with the transfer of the last byte of data for the previ-

15-70 The z/Architecture I/O Architecture

ous MIDAW. Program or access errors detected in
prefetched MIDAWs are not indicated to the program
until the MIDAW takes control of data transfer, even if
an attempt had been made to prefetch that data.
However, when the channel subsystem detects an
invalid CBC on the contents of a prefetched MIDAW
or its associated key, the condition may be indicated
to the program, when detected, before the MIDAW
takes control of data transfer. For a description of the
indications provided when an invalid CBC is detected
on the contents of a MIDAW or its associated key,
see “Channel-Control Check” on page 16-29.

When a CCW specifies a MIDAW list and either the
address in the CCW designates a storage location
that is not physically available or the address desig-
nates a storage location to which access is prohibited
by protection, then, depending on the model, one of
the following two actions is taken:

• The above conditions are checked before initiat-
ing the operation at the device. If any of these
conditions is recognized, initiation of the I/O
operation does not occur, and the subchannel is
made status pending with primary, secondary,
and alert status.

• The operation is initiated at the device prior to
checking for these conditions. If the device
attempts to transfer data, the device is signaled
to terminate the I/O operation, and the subchan-
nel is made status pending with primary, second-
ary, and alert status as a function of the
subchannel state and the status presented by
the device.

Transport Indirect Data Addressing

When a designated subchannel is operating in trans-
port mode, transport indirect data addressing (TIDA)
may be used. TIDA permits a TCW to specify the
transfer of data from noncontiguous blocks in main
storage or to specify the transfer-command-control
block (TCCB) in noncontiguous blocks of storage or
both.

The use of transport indirect data addressing is con-
trolled by flags in the TCW as follows:

When the input-TIDA flag is one in the TCW, the
TCW input-data address is not used to directly
address data. Instead, the TCW input-data
address points to a list of quadwords called

transport-indirect-data-address words (TIDAWs),
each of which contains flags, a byte count, and a
64-bit address designating a data area in abso-
lute storage.

When the output-TIDA flag is one in the TCW,
the TCW output-data address is not used to
directly address data. Instead, the TCW output-
data address points to a list of TIDAWs, each of
which designates a data area in absolute stor-
age.

When the transport-command-control-block-
TIDA flag is one in the TCW, the TCW transport-
command-control-block address is not used to
directly address a TCCB. Instead, the TCW
transport-command-control-block address points
to a list of TIDAWs, each of which designates a
portion of the TCCB in absolute storage.

A list of one or more TIDAWs is called a transport-
indirect-data-addressing list (TIDAL).

Unless otherwise specified, TIDAWs may designate
a block of main storage on any boundary and length
up to 4K bytes, provided the specified block does not
cross a 4 K-byte boundary.

A TIDAW begins on a quadword boundary and has
the following format:

Flags : Bits 0-7 of word 0 contain an 8-bit flag field.
The meaning of each flag bit is as follows. Bits not
described below are reserved.

Bit Meaning

0 Last TIDAW: Bit 0, when one, specifies
that the TIDAW is the last in the contigu-
ous list of TIDAWs.

1 Skip: Bit 1, when one, specifies the sup-
pression of transfer of information to
main storage during an input operation,
thus specifying that skipping is in effect.

Word

0 Flag Reserved

1 Count

2
Address

3
0 8 31

Figure 15-29. Transport-Indirect-Data-Address Word
(TIDAW)

15-71

When the operation is an output opera-
tion, bit 1 is ignored and skipping is not
in effect. When the TIDAW is being used
to transport a TCCB, bit 1 is ignored and
assumed to be zero.

When skipping is in effect, no checking
for invalid or protected data addresses
takes place.

 2 Data-transfer-interruption control: Bit 2,
when one, specifies that a program-
check be recognized when the TIDAW is
the current TIDAW.

3 TIDAW-transfer-in-channel (TTIC): Bit 3,
when one, specifies that the TIDAW is
not used to transfer data or TCCB stor-
age. Instead, the address field desig-
nates the address of the next TIDAW to
be used for the transfer of data. If bit 3 is
one and the address field designates a
TIDAW in which bit 3 is one, a program-
check condition is recognized. If bit 3 is
one and any other TIDAW flag bits are
one, a program-check condition is recog-
nized.

4 Insert-CBC control: Bit 4, when one,
specifies that the following occurs when
an output operation is specified and all of
the data specified by the TIDAW has
been transferred:

• If the count of data bytes transferred
is not a multiple of 4, up to 3 padding
bytes are transferred to make the
total count of data bytes, plus the
count of padding bytes, a multiple of
4.

• A word of CBC information is gener-
ated and transferred to the device.

Bit 4 has no meaning for the following
cases:

• When the TIDAW is being used for
an input data transfer.

• When the TIDAW is being used for
an output data transfer and the last-
TIDAW flag, bit 0, is one.

• When the TIDAW is in a TIDAW list
designated by the TCCB-address
field of the TCW.

5-7 Reserved: Bits 5-7 are reserved and
must be zero, otherwise a program-
check condition is recognized.

Reserved: Bits 8-31 are reserved for future use
and must be zero; otherwise, a program-check condi-
tion may be recognized.

Count : Bits 32-63 specify the number of bytes to
be transferred. When skipping is in effect, the count
value may be in the range of 1 through 232-8 for a
TIDAW. When skipping is not in effect and the TTIC
flag, bit 3, is zero, the count value, in conjunction with
the data address, must not specify the transfer of
data that crosses a 4 K-byte block boundary; other-
wise, a program-check condition is recognized.

When a TIDAW is in the TIDAW list designated by the
input-address field in the TCW, the count value spec-
ified in the TIDAW in which the last-TIDAW flag is one
and the input-count value specified in the TCW must
both decrement to zero for the same byte transferred,
otherwise a program-check condition is recognized.

When a TIDAW is in the TIDAW list designated by the
output-address field in the TCW, the count value
specified in the TIDAW in which the last-TIDAW flag
is one and the output-count value specified in the
TCW must both decrement to zero for the same byte
transferred, otherwise a program-check condition is
recognized.

When a TIDAW is in the TIDAW list designated by the
TCCB-address field in the TCW, the following are
true:

• The count value specified in the TIDAW in which
the last-TIDAW flag is one and the count of bytes
specified by the TCCB-length field in the TCW
must both decrement to zero for the same byte
transferred, otherwise a program-check condition
is recognized.

• If the TIDAW specifies the TCCB to cross a
4 K-byte boundary, a program-check condition is
recognized.

• If the specified count value is zero or is not
evenly divisible by four, a program-check condi-
tion is recognized.

When the TTIC flag is zero, the count field must not
be zero, otherwise a program-check condition is rec-
ognized. When the TTIC flag is one, the count field

15-72 The z/Architecture I/O Architecture

must be zero, otherwise a program-check condition is
recognized.

Address : Bits 64-127 of the TIDAW designate the
64-bit address of a location in absolute storage.
When the TTIC flag is zero, this is the location of the
first byte of information to be transferred. When the
TTIC flag is one, this is the location of the next
TIDAW to be used and must specify an address on a
quadword boundary, otherwise a program-check
condition is recognized.

Input TIDAL: When transport indirect data address-
ing is specified for input (the input-TIDA flag in the
TCW is one), the input-address field of the TCW des-
ignates the location of the first TIDAW to be used for
data transfer for the first DCW in the associated
TCCB that specifies a data transfer command. Addi-
tional TIDAWs, if needed for completing the data
transfer for the DCW or subsequent DCWs, are
fetched from successive locations in storage. The
number of TIDAWs required for an input TIDAL is
variable and is a function of the following factors:

• The total number of bytes being transferred as
specified by the input-count field in the TCW.

• The number of noncontiguous fragments that
compose the data being transferred.

• The number of 4 K-byte boundaries within those
fragments.

The input TIDAL must not cross a 4 K-byte boundary,
otherwise a program-check condition is recognized.

If a list of two or more TIDAWs is designated for an
input operation, it is unpredictable in which order the
TIDAW data addresses are used to transfer informa-
tion into main storage. Thus, if two or more TIDAWs
in a TIDAW list designate overlapping storage areas,
the results are unpredictable.

Output TIDAL: When transport indirect data address-
ing is specified for output (the output-TIDA flag in the
TCW is one), the output-address field of the TCW
designates the location of the first TIDAW to be used
for data transfer for the first DCW in the associated
TCCB that specifies a data transfer command. Addi-
tional TIDAWs, if needed for completing the data
transfer for the DCW or subsequent DCWs, are
fetched from successive locations in storage. The
number of TIDAWs required for a TCW is determined
by the output-count field of the TCW. The number of

TIDAWs required for an output TIDAL is variable and
is a function of the following factors:

• The total number of bytes being transferred as
specified by the output-count field in the TCW.

• The number of noncontiguous fragments that
compose the data being transferred.

• The number of 4 K-byte boundaries within those
fragments.

The output TIDAL must not cross a 4 K-byte bound-
ary, otherwise a program-check condition is recog-
nized.

TCCB TIDAL: When transport indirect data address-
ing is specified for the TCCB (the transport-com-
mand-control-block-TIDA flag in the TCW is one), the
transport-command-control-block-address field of the
TCW designates the location of the first TIDAW to be
used to designate the storage location of the TCCB.
Additional TIDAWs, if needed for completing the
TCCB, are fetched from successive locations in stor-
age. The number of TIDAWs required for a TCCB
TIDAL is variable and is a function of the following
factors:

• The total number of bytes being transferred as
specified by the TCCB-length field in the TCW.

• The number of noncontiguous fragments that
compose the data being transferred.

• The number of 4 K-byte boundaries within those
fragments.

The TCCB TIDAL must not cross a 4 K-byte bound-
ary, otherwise a program-check condition is recog-
nized.

Additional Information

TIDAWs that specify the transfer of data (TIDAWs for
which skipping is not in effect) may specify a transfer
count in the range of 1 through 4096 bytes, provided
the TIDAW does not specify a data transfer that
crosses a 4 K-byte boundary.

TIDAWs that specify the suppression of the transfer
of data may specify a skip count in the range of 1
through 232-8.

The total number of bytes that can be transferred or
skipped or both by a single TIDAL is limited by the

15-73

TCW count field that applies to the TIDAL, which may
be a maximum of 232-8 bytes. If a TIDAL does not
specify the same number of data bytes to be trans-
ferred as the count in the TCW for the TIDAL, or does
not specify the same number of data bytes to trans-
ferred as that specified by the associated TCCB, a
program-check condition may be recognized.

A TIDAW can designate any location. When the
TIDAW skip flag is zero and a DCW specifies the
read, write, control, sense ID, or sense command,
data is then transferred to or from successively
higher storage locations until the number of bytes
specified by the TIDAW count field have been trans-
ferred. When the TIDAW skip flag is one and a DCW
specifies the read, sense ID, or sense command,
skipping occurs to successively higher storage loca-
tions until the number of bytes specified by the
TIDAW count field have been skipped.

When the specified number of bytes have been
transferred or skipped and the TCW and DCW spec-
ify a subsequent TIDAW, the control of data transfer
is then passed to the next TIDAW in the list. Like the
TIDAW designated by the TCW, subsequent TIDAWs
may designate any location and any length, provided
the TIDA does not specify a data transfer that
crosses a 4 K-byte boundary; otherwise, a program-
check condition is recognized.

Except for the unique restriction on designating a
valid combination of data address and count by a
TIDAW, and the resulting behavior when the data-
transfer-interruption control is one, all other actions
taken for data addresses specified by a TIDAW, such
as for protected storage and invalid addresses, and
the actions taken for data prefetching, are the same
as when transport indirect data addressing is not
used.

TIDAWs pertaining to the current TCW may be
prefetched. The number of TIDAWs that can be
prefetched cannot exceed that required to satisfy the
associated count in the TCW that designates the
TIDAWs. Any TIDAWs that are prefetched for a TCW
and are not used are discarded.

The action of transferring control from one TIDAW to
the next is transparent to any attached device. A
TIDAW takes control of data transfer when the last
byte specified by the previous TIDAW has been
transferred, this may occur even in situations where
(1) channel end, (2) channel end and device end, or
(3) channel end, device end, and status modifier are

received prior to the transfer of any data bytes per-
taining to the new TIDAW.

Program or access errors when fetching or prefetch-
ing TIDAWs are indicated to the program when
detected. For output operations, this may preclude
transporting the TCCB to the I/O device.

When the channel subsystem detects an invalid CBC
on the contents of a prefetched TIDAW or its associ-
ated key, the condition may be indicated to the pro-
gram, when detected, before the TIDAW takes
control of data transfer. For a description of the indi-
cations provided when an invalid CBC is detected on
the contents of a TIDAW or its associated key, see
“Channel-Control Check” on page 16-29.

When a TCW specifies a TIDAL and either the
address in the TCW designates a storage location
that is not physically available or the address desig-
nates a storage location to which access is prohibited
by protection, then, depending on the model, one of
the following two actions is taken:

• The above conditions are checked before initiat-
ing the operation at the device. If any of these
conditions is recognized, initiation of the I/O
operation does not occur, and the subchannel is
made status pending with primary, secondary,
and alert status.

• The operation is initiated at the device prior to
checking for these conditions. If the device
attempts to transfer data, the device is signaled
to terminate the I/O operation, and the subchan-
nel is made status pending with primary, second-
ary, and alert status as a function of the
subchannel state and any status presented by
the device.

Suspension of CCW Channel-
Program Execution

The suspend function, when used in conjunction with
RESUME SUBCHANNEL, provides the program with
a means to stop and restart the execution of a chan-
nel program. The initiation of the suspend function is
controlled by the setting of the suspend control, bit 4
of word 1 of the command-mode ORB. The suspend
function is signaled when suspend control has been
specified for the subchannel in the ORB and a CCW
containing an S flag set to one becomes the current
CCW. The flag can be indicated either in the first

15-74 The z/Architecture I/O Architecture

CCW of the channel program or in a CCW fetched
while command chaining. The S flag is not valid and
causes a program-check condition to be recognized
if (1) the ORB contains the suspend-control bit set to
zero, or (2) the CCW is fetched while data chaining
(see “Data Chaining” on page 15-61, concerning the
handling of programming errors detected during data
chaining).

Upon recognition of the suspend function, suspen-
sion of channel-program execution occurs when the
CCW becomes current (see “Channel-Command
Word” on page 15-31, for a definition of when a CCW
becomes current). If suspension occurs during com-
mand chaining, the device is signaled that command
chaining is no longer in effect.

RESUME SUBCHANNEL signals that the CCW that
caused channel-program suspension may have been
modified, that the CCW must be refetched, and that
the contents of the CCW must be examined to deter-
mine the settings of the flags. If the S flag is one, exe-
cution of that CCW does not occur. If the CCW is
valid and the S flag in the CCW is zero, execution is
initiated (see “RESUME SUBCHANNEL” on
page 14-10 and “Start Function and Resume Func-
tion” on page 15-20).

When a valid CCW that contains an S flag validly set
to one becomes the current CCW during command
chaining and the resume-pending condition is not
recognized, the suspend function is performed and
causes the following actions to occur in the order
given:

1. The device is signaled that the chain of opera-
tions has been concluded.

2. Channel-program execution is suspended at the
subchannel; all prefetched IDAWs, MIDAWs,
CCWs, and data are discarded; and the sub-
channel is set up such that the resume function
can be performed when the subchannel is next
recognized to be resume pending.

3. If the measurement-block-update mode is active
and the subchannel is enabled for the mode, the
accrued values of the measurement data, includ-
ing the start-subchannel and sample count, are
added to the accumulated values in the mea-
surement block for the subchannel. The start-
subchannel count is the only measurement data
that is updated in the measurement block if the
channel-subsystem-timing facility is not available

for the subchannel. (See “Channel-Subsystem
Monitoring” on page 17-1 for more information.)

If a measurement-check condition is detected
during the measurement-block update, the chan-
nel program is terminated at the subchannel. The
subchannel is made status pending with primary,
secondary, and alert status, the device-status
and subchannel-status fields are set to zero, and
one of the measurement-check conditions is indi-
cated in the extended-status flags of the format-0
ESW. The subchannel is not placed in the sus-
pended state. (See “Subchannel-Control Field”
on page 16-12.)

4. The subchannel is placed in the suspended
state.

5. If the subchannel is not resume pending at this
point, the intermediate interruption condition due
to suspension is recognized if the suppress-sus-
pended-interruption bit of the ORB is zero; other-
wise, the resume function is performed.

When a valid CCW that contains an S flag validly set
to one becomes the current CCW during command
chaining and the resume-pending condition is recog-
nized, the resume function is performed instead of
the suspend function.

When the first CCW of a channel program contains
an S flag validly set to one and the resume-pending
condition is not recognized, the suspend function is
performed and causes the following actions to occur
in the order given:

1. Channel-program execution is suspended prior
to the selection of the device.

2. The subchannel is set up such that the resume
function can be performed when the subchannel
is next recognized to be resume pending.

3. If the measurement-block-update mode is active
and the subchannel is enabled for the mode, the
SSCH+RSCH count is incremented, and the
accrued function-pending time (a function of the
setting of the timing-facility bit) is added to the
accumulated value in the measurement block for
the subchannel.

If a measurement-check condition is detected
during the measurement-block update, the chan-
nel program is not started at the subchannel. The
subchannel is made status pending with primary,
secondary, and alert status. Deferred condition

15-75

code one is set, and the start-pending bit
remains set to one. The device-status and sub-
channel-status fields are set to zero, and one of
the measurement-check conditions is indicated
in the extended-status flags of the format-0 ESW.
The subchannel is not placed in the suspended
state. (See “Subchannel-Control Field” on
page 16-12.)

4. The subchannel is placed in the suspended
state.

5. If the subchannel is not resume pending at this
point, the subchannel is made status pending
with intermediate status due to suspension if the
suppress-suspended-interruption-control bit of
the ORB is zero; otherwise, the resume function
is performed.

When the first CCW of a channel program contains
an S flag validly set to one and the resume-pending
condition is recognized, the resume function is per-
formed instead of the suspend function.

Programming Notes:

1. The execution of MODIFY SUBCHANNEL and
START SUBCHANNEL completes with condition
code 2 set if the designated subchannel is sus-
pended. The start function is indicated at the
subchannel while the subchannel is in the sus-
pended state.

2. In certain situations, normal resumption of the
execution of a channel program that has been
suspended may not be desired. Normal termina-
tion of the suspended channel-program execu-
tion may be accomplished by:

a. Executing HALT SUBCHANNEL and desig-
nating the subchannel.

b. Modifying the CCWs in storage such that,
when channel-program execution is
resumed, the command transferred to the
device is a control command with all modifier
bits specified as zeros (no-operation) and
with the chain-command flag specified as
zero; and then executing RESUME SUB-
CHANNEL.

c. When an IRB indicates measurement check
along with zero device status, zero subchan-
nel status, and status pending with primary,
secondary, and alert status, it may indicate
that the measurement check was detected

during an attempt to place the subchannel
into the suspended state.

3. If the suspended interruption is suppressed, the
N condition and DCTI values applicable to the
preceding subchannel-active period are not
made available to the program. The execution of
RESUME SUBCHANNEL when the subchannel
is in the suspended state causes path-not-opera-
tional conditions and the N condition to be reset
to zeros. Path-not-operational conditions and the
N condition are not reset when RESUME SUB-
CHANNEL is executed and the designated sub-
channel is not in the suspended state.

Commands and Flags for CCWs

Figure 15-30 on page 15-75 lists the command
codes for the seven CCW commands and indicates
which flags are defined for each command. Except
for a format-1 CCW specifying transfer in channel,
the flags are ignored for all commands for which they
are not defined. The flags are reserved in a format-1
CCW specifying transfer in channel and must be
zeros.

All flags have individual significance, except for the
following cases:

Name Code Flags

Write M M M M M M 0 1 CD CC SLI PCI IDA MIDA
Read M M M M M M 1 0 CD CC SLI SK PCI IDA MIDA
Read

backward M M M M 1 1 0 0 CD CC SLI SK PCI IDA MIDA
Control M M M M M M 1 1 CD CC SLI PCI IDA MIDA
Sense M M M M 0 1 0 0 CD CC SLI SK PCI IDA MIDA
Sense ID 1 1 1 0 0 1 0 0 CD CC SLI SK PCI IDA MIDA
Transfer in

Channel X X X X 1 0 0 0 (See note below)

Explanation:

CC Chain command
CD Chain data
IDA Indirect data addressing
M Modifier bit
MIDA Modified indirect data addressing
PCI Program-controlled interruption
S Suspend
SK Skip
SLI Suppress-length indication
X Ignored in a format-0 CCW; must be zero in a format-1 CCW
Note: Flags are ignored in a format-0 transfer-in-channel CCW and

must be zeros in a format-1 transfer-in-channel CCW.

Figure 15-30. Command Codes and Flags for CCWs

15-76 The z/Architecture I/O Architecture

• The CC and SLI flags are ignored when the CD
flag is set to one, and, for output forward opera-
tions the SK flag is ignored.

• The presence of the SLI flag is ignored for imme-
diate operations involving format-0 CCWs, in
which case the incorrect-length indication is sup-
pressed regardless of the setting of the flag.

• The incorrect-length indication may be sup-
pressed for immediate operations when execut-
ing a format-1 CCW, depending on the incorrect-
length-suppression mode.

• The PCI flag is ignored during initial program
loading. All flags, except the PCI flag, are
ignored when the S flag is one.

• The MIDA flag is mutually exclusive from both
the IDA and SKP flags. If the IDA or SKP flag is
specified and the MIDA flag is specified, a pro-
gram-check condition is recognized.

Programming Notes:

1. A malfunction that affects the validity of data
transferred in an I/O operation is signaled at the
end of the operation by means of unit check or
channel-data check, depending on whether the
device (control unit) or the channel subsystem
detected the error. In order to make use of the
checking facilities provided in the system, data
read in an input operation should not be used
until the end of the operation has been reached
and the validity of the data has been checked.
Similarly, on writing, the copy of data in main
storage should not be destroyed until the pro-
gram has verified that no malfunction affecting
the transfer and recording of data was detected.

2. An error condition may be recognized and the I/O
operation terminated when 256 or more chained
commands are executed with a device and none
of the executed commands result in the transfer
of any data. When this condition is recognized,
program check is indicated.

3. All CCWs that require suppression of incorrect-
length indications must use the SLI flag.

Commands and Flags for DCWs

Figure 15-31 on page 15-76 lists the command
codes for the eight DCW commands and indicates
which flags are defined for each command.

Branching in CCW Channel
Programs

The channel subsystem provides two methods to
modify the normal sequential execution of the CCWs
in a channel program. One is the transfer-in-channel
(TIC) command (described in “Transfer in Channel”
on page 15-77), which can be used to loop back to a
previously executed CCW, or to connect discontigu-
ous segments of the channel program. The other
method, which uses the status-modifier device-status
bit (described in the publication ESA/390 Common
I/O-Device Commands, SA22-7204), allows condi-
tions at the device to cause the channel to bypass
the next CCW in the channel program.

Name Code DCW Flags

Write m m m m m m 0 1 CC SLI
Read m m m m m m 1 0 CC SLI
Control m m m m m m 1 1 CC SLI
Sense m m m m 0 1 0 0 CC SLI
Sense ID 1 1 1 0 0 1 0 0 CC SLI
Interrogate 0 1 0 0 0 0 0 0
Transport COB 0 1 1 0 0 0 0 0 CC SLI1

Transfer TCAX 0 1 0 1 0 0 0 0 CC SLI1

Explanation:

CC Chain command
m Modifier bit.
SLI Suppress-length indication
1 Incorrect-length condition not recognized for this command;

the SLI flag is ignored

Figure 15-31. Command Codes and Flags for DCWs

15-77

Transfer in Channel

The next CCW is fetched from the location in abso-
lute main storage designated by the data-address
field of the CCW specifying transfer in channel. The
transfer-in-channel command does not initiate any
I/O operation, and the I/O device is not signaled of
the execution of the command. The purpose of the
transfer-in-channel command is to provide chaining
between CCWs not located in adjacent doubleword
locations in an ascending order of addresses. The
command can occur in both data and command
chaining.

Bits 29-31 (format 0) or bits 61-63 (format 1) of a
CCW that specifies the transfer-in-channel command
must be zeros, designating a CCW on a doubleword
boundary. Furthermore, a CCW specifying transfer in
channel may not be fetched from a location desig-
nated by an immediately preceding transfer in chan-
nel. When either of these errors is detected or when
an invalid address is designated in the transfer-in-
channel command, the program-check condition is
generated. When a CCW that specifies the transfer-
in-channel command designates a CCW at a location
protected against fetching, the protection-check con-
dition is generated. Detection of these errors during
data chaining causes the operation at the I/O device
to be terminated and an interruption condition to be
generated, while during command chaining it causes
only an interruption condition to be generated.

The contents of the second half of the format-0 CCW,
bit positions 32-63, are ignored. Similarly, the con-
tents of bit positions 0-3 of the format-0 CCW are
ignored.

Bit positions 0-3 and 8-32 of the format-1 CCW must
contain zeros; otherwise, a program-check condition
is generated.

Command Retry

The channel subsystem has the capability to perform
command retry, a procedure that causes a command
to be retried without requiring an I/O interruption.
This retry is initiated by the control unit presenting
either of two status-bit combinations by means of a
special sequence. When immediate retry can be per-
formed, it presents a channel-end, unit-check, and
status-modifier status-bit combination, together with
device end. When immediate retry cannot be per-
formed, the presentation of device end is delayed
until the control unit is prepared. When device end is
presented alone, the previous command is trans-
ferred again. If device end is accompanied by status
modifier, command retry is not performed, and the
channel subsystem command-chains to the CCW fol-
lowing the one for which command retry was sig-
naled (for information on status modifier, see the
publication ESA/390 Common I/O-Device Com-
mands, SA22-7204). When the channel subsystem is
not capable of performing command retry due to an
error condition, or when any status bit other than
device end or device end and status modifier accom-
panies the requested command-retry initiation, the
retry is suppressed, and the subchannel becomes
status pending. The SCSW stored by TEST SUB-
CHANNEL contains the status provided by the I/O
device.

Programming Note: The following possible results
of a command retry must be anticipated by the pro-
gram:

1. A CCW containing a PCI may, if retried because
of command retry, cause multiple PCI interrup-
tions to occur.

2. If a CCW used in an operation is changed before
that operation has been successfully completed,
the results are unpredictable.

Concluding I/O Operations before
Initiation

Subsequent to the execution of START SUBCHAN-
NEL or RESUME SUBCHANNEL for a command-
mode operation and before the first command is
accepted, the start function can be ended at the sub-
channel by CANCEL SUBCHANNEL, CLEAR SUB-
CHANNEL, or HALT SUBCHANNEL.

Format-0 TIC CCW

/ / / / 1 0 0 0 CCW Address
0 8 31

/ /
32 63

Format-1 TIC CCW

0 0 0 0 1 0 0 0 Zeros
0 8 31

0 CCW Address
32 63

15-78 The z/Architecture I/O Architecture

Subsequent to the execution of START SUBCHAN-
NEL for a transport-mode operation, the start func-
tion may be ended at the subchannel by CANCEL
SUBCHANNEL, CLEAR SUBCHANNEL, or HALT
SUBCHANNEL before the TCCB is transported.

For both command-mode and transport-mode opera-
tions, if the I/O operation is ended by CANCEL SUB-
CHANNEL, there is no subsequent interruption
condition from the I/O operation, and the subchannel
is available for the initiation of another start function.
However, the device may have signaled a busy con-
dition while the canceled operation was start pend-
ing. In this case, the device owes a no-longer-busy
signal to the channel subsystem. This may result in
unsolicited device-end status before the next opera-
tion is initiated at the device. (See also “Clear Func-
tion” on page 15-14 and “Halt Function” on
page 15-16.)

Concluding I/O Operations during
Initiation

After the designated subchannel has been deter-
mined to be in a state such that START SUBCHAN-
NEL can be executed, certain tests are performed on
the validity of the information specified by the pro-
gram and on the logical availability of the associated
device. This testing occurs during or subsequent to
the execution of START SUBCHANNEL and during
command chaining and command retry.

A data-transfer operation is initiated at the subchan-
nel and device only when no programming or equip-
ment errors are detected by the channel subsystem
and when the device responds with zero status
during the initiation sequence. When the channel
subsystem detects or the device signals any unusual
condition during the initiation of a command-mode
I/O operation, the command is said to be not
accepted. When the channel subsystem detects or
the device signals any unusual condition during the
initiation of a transport-mode I/O operation, the I/O-
operation initiation is said to be not accepted. For
these cases, the subchannel becomes status pend-
ing with primary, secondary, and alert status.
Deferred condition code 1 is set, and the start-pend-
ing bit remains set to one.

Conditions that preclude the initiation of an I/O oper-
ation are detailed in the SCSW stored by TEST SUB-

CHANNEL. In this situation, the device is not started,
no interruption conditions are generated subsequent
to TEST SUBCHANNEL, and the subchannel is idle.
The device is immediately available for the initiation
of another operation, provided the command was not
rejected because of the busy or not-operational con-
dition.

When an unusual condition causes a command to be
not accepted during the initiation of a command-
mode I/O operation by command chaining or com-
mand retry, an interruption condition is generated,
and the subchannel becomes status pending with
combinations of primary, secondary, and alert status
as a function of the status signaled by the device.
The status describing the condition remains at the
subchannel until cleared by TEST SUBCHANNEL.
The conditions are indicated to the program by
means of the corresponding status bits in the SCSW.
A path-not-operational condition recognized during
command chaining is signaled to the program by
means of an interface-control-check indication. The
new I/O operation at the device is not started.

START SUBCHANNEL is executed independent of
its associated device. Tests on most program-speci-
fied information, on device availability and unit status,
and on most error conditions are performed subse-
quent to the execution of START SUBCHANNEL.
When any conditions are detected that preclude the
performance of the start function, an interruption
condition is generated by the channel subsystem and
placed at the subchannel, causing it to become sta-
tus pending.

Immediate Conclusion of
Command-Mode I/O Operations

During the initiation of an I/O operation, the device
can accept the command and signal the channel-end
condition immediately upon receipt of the command
code. An I/O operation causing the channel-end con-
dition to be signaled during the initiation sequence is
called an immediate operation. Status generated by
the device for the immediate command, when com-
mand chaining is not specified and command retry is
not signaled, causes the subchannel to become sta-
tus pending with combinations of primary, secondary,
intermediate, and alert status as a result of informa-
tion specified in the ORB and CCW and status pre-
sented by the device. If the immediate operation is

15-79

the first operation of the channel program, deferred
condition code 1 is set and accompanies the status
indications. If intermediate status is indicated, the
indication can occur only as a result of the CCW hav-
ing the PCI flag set to one (see “Program-Controlled
Interruption” on page 15-64).

Whenever command chaining is specified after an
immediate operation and no unusual conditions have
been detected during the operation, or when com-
mand retry occurs for an immediate operation, an
interruption condition is not generated. The subse-
quent commands in the chain are handled normally,
and, usually, the channel-end condition for the last
CCW generates a primary interruption condition. If
device end is signaled with channel end, a secondary
interruption condition is also generated.

Whenever immediate completion of an I/O operation
is signaled, no data has been transferred to or from
the device, and the data address in the CCW is not
checked for validity. If the subchannel is in the incor-
rect-length-suppression mode, incorrect length is not
indicated to the program, and command chaining is
performed when specified. If the subchannel is in the
incorrect-length-indication mode, incorrect length
and command chaining are under control of the SLI
and chain-command flags. The conditions that cause
the incorrect-length indication to be suppressed are
summarized in Figure 15-27 on page 15-61.

Programming Note: I/O operations for which the
entire operation is specified in the command code
may be performed as immediate operations. Whether
the command is executed as an immediate operation
depends on the operation and type of device.

Concluding I/O Operations During
Data Transfer

When the subchannel has been passed the contents
of an ORB, the subchannel is said to be start pend-
ing. When a command-mode I/O operation has been
initiated and the command has been accepted, the
subchannel becomes subchannel-and-device active.
When a transport-mode I/O operation has been initi-
ated, the subchannel remains start pending while the
TCCB is transported and executed. The subchannel
remains in the respective state unless (1) the chan-
nel subsystem detects an equipment malfunction,
(2) the operation is concluded by the execution of

CLEAR SUBCHANNEL or HALT SUBCHANNEL, or
(3) status that causes a primary interruption condi-
tion to be recognized (usually channel end) is
accepted from the device.

When CCW command chaining and command retry
are not specified or when chaining is suppressed
because of unusual conditions, the status that is rec-
ognized as primary status causes the operation at
the subchannel to be concluded and an interruption
condition to be generated. The status bits in the
associated SCSW indicate primary status and the
unusual conditions, if any. The device can present
status that is recognized as primary status at any
time after the initiation of the I/O operation, and the
presentation of status may occur before any data has
been transferred.

For operations not involving data transfer, the device
normally controls the timing of the channel-end con-
dition. The duration of data-transfer operations may
be variable and may be controlled by the device or
the channel subsystem.

Excluding equipment errors and the execution of the
CLEAR SUBCHANNEL, HALT SUBCHANNEL, and
RESET CHANNEL PATH instructions, the channel
subsystem signals the device to conclude the perfor-
mance of an I/O operation during data transfer when-
ever any of the following conditions occurs:

• The storage areas designated for the operation
are exhausted or filled.

• A program-check condition is detected.

• A protection-check condition is detected.

• A CCW chaining-check condition is detected.

• A channel-control-check condition is detected
that does not affect the control of the I/O opera-
tion.

The first of these conditions occurs when the channel
subsystem has decremented the count to zero in the
last CCW or current TCW associated with the opera-
tion. A count of zero indicates that the channel sub-
system has transferred all information specified by
the I/O operation. The other four conditions are due
to errors and cause premature conclusion of data
transfer. In either case, the conclusion is signaled in
response to a service request from the device and
causes data transfer to cease. If the device has no
blocks defined for the operation (such as writing on

15-80 The z/Architecture I/O Architecture

magnetic tape), it concludes the operation and pres-
ents channel-end status.

For command-mode operations, the device can con-
trol the duration of an operation and the timing of
channel end by blocking of data. On certain opera-
tions for which blocks are defined (such as reading
on magnetic tape), the device does not present chan-
nel-end status until the end of the block is reached,
regardless of whether the device has been previously
signaled to conclude data transfer.

Checking for the validity of the CCW data address is
performed only as data is transferred to or from main
storage. When the initial data address in the CCW is
invalid, no data is transferred during the operation,
and the device is signaled to conclude the operation
in response to the first service request. On writing,
devices such as magnetic-tape units request the first
byte of data before any mechanical motion is started,
and, if the initial data address is invalid, the operation
is terminated by the channel subsystem before the
recording medium has been advanced. However,
since the operation has been initiated at the device,
the device presents channel-end status, causing the
channel subsystem to recognize a primary interrup-
tion condition. Subsequently, the device also pres-
ents device-end status, causing the channel
subsystem to recognize a secondary interruption
condition. Whether a block at the device is advanced
when no data is transferred depends on the type of
device.

Checking for the validity of main-storage addresses
of the TCCB is performed before attempting to trans-
port the TCCB to the I/O device. When an applicable
address is invalid, a program check condition is rec-
ognized and no data is transferred during the opera-
tion nor is there any communication with the I/O
device. After the TCCB has been transported to the
device, the operation is considered initiated at the
device and subsequent checks for the validity of
main-storage addresses are performed either as
information is transferred to or from main storage or
as information is prefetched, as specified by the
applicable TCW reference to storage (directly or indi-
rectly by a TIDAW). If a main-storage address is
found to be invalid after the operation has been initi-
ated at the device, the device presents channel-end
status, causing the channel subsystem to recognize
a primary interruption condition. Subsequently, the
device may also present device-end status, causing
the channel subsystem to recognize a secondary
interruption condition. Whether a block at the device

is advanced when no data is transferred depends on
the type of device.

When CCW command chaining takes place, the sub-
channel is in the subchannel-and-device-active state
from the time the first I/O operation is initiated at the
device until the device presents channel-end status
for the last I/O operation of the chain. The subchan-
nel remains in the device-active state until the device
presents the device-end status for the last I/O opera-
tion of the chain.

Any unusual conditions cause CCW command chain-
ing to be suppressed and a primary interruption con-
dition to be generated. The unusual conditions can
be detected by either the channel subsystem or the
device, and the device can provide the indications
with channel end, control unit end, or device end.
When the channel subsystem is aware of the unusual
condition by the time the channel-end status for the
operation is accepted, the chain is ended as if the
operation during which the condition occurred were
the last operation of the chain. The device-end status
is recognized as a secondary interruption condition
whether presented together with the channel-end
status or separately. If the device presents unit check
or unit exception together with either control unit end
or device end as status that causes the channel sub-
system to recognize the primary interruption condi-
tion, then the subchannel-and-device-active state of
the subchannel is terminated, and the subchannel is
made status pending with primary, secondary, and
alert status. Intermediate status may also be indi-
cated if an intermediate interruption condition previ-
ously existed at the subchannel for the initial-status-
interruption condition or the PCI condition and that
condition still remains pending at the subchannel.
The channel-end status that was presented to the
channel subsystem previously when command
chaining was signaled is not made available to the
program.

Channel-Path-Reset Function

Subsequent to the execution of RESET CHANNEL
PATH, the channel-path-reset function is performed.
The performance of the function consists of:
(1) issuing the reset signal on the designated chan-
nel path and (2) causing a channel report to be made
pending, indicating the completion of the channel-
path-reset function.

15-81

Channel-Path-Reset-Function
Signaling

The channel subsystem issues the reset signal on
the designated channel path. As part of this opera-
tion, the following actions are taken:

1. All internal indications associated with control-
unit-busy, device-busy, and allegiance conditions
for the designated channel path are reset. These
indications are reset at all subchannels that have
access to the designated channel path.The reset
function has no other effect on subchannels,
including those having I/O operations in prog-
ress.

2. If the channel path fails to respond properly to
the reset signal (see “I/O-System Reset” on
page 17-13 for a detailed description) or,
because of a malfunction, the reset signal could
not be issued, the channel path is made physi-
cally not available at each applicable subchan-
nel.

3. If an I/O operation is in progress at the device
and the device is actively communicating on the
channel path in the performance of that I/O oper-
ation when the reset signal is received on that
channel path, the I/O operation is reset, and the
control unit and device immediately terminate
current communication with the channel subsys-
tem. (To avoid possible misinterpretation of unso-
licited device-end status, programming measures
can be taken as described in programming note
2 on page 82.)

4. If an I/O operation is in progress in the multipath
mode at the device and the device is not cur-
rently communicating over the channel path in
the performance of that I/O operation when the
reset signal is received, then the I/O operation
may or may not be reset depending on whether
another channel path is available for selection in
the same multipath group for the device. If there
is at least one other channel path in the multipath
group for the device that is available for selection,
the I/O operation is not reset. However, the chan-
nel path on which the system reset is received is
removed from the current set of channel paths
that form the multipath group. If the channel path
on which the reset signal is received is the only
channel path of a multipath group, or if the device
is operating in the single-path mode, the I/O
operation is reset.

5. The channel-path-reset function causes I/O
operations to be terminated at the device as
described above; however, I/O operations are
never terminated at the subchannel by the chan-
nel-path-reset function.

If an I/O operation is in progress at the subchannel
and the channel path designated for the performance
of the channel-path-reset function is being used for
that I/O operation, the subchannel may or may not
accurately reflect the progress of the I/O operation up
to that instant. The subchannel remains in the state
that exists at the time the channel-path-reset function
is performed until the state is changed because of
some action taken by the program or by the device.

Channel-Path-Reset-Function-
Completion Signaling

After the reset signal has been issued and an
attempt has been made to issue the reset signal, or
after it has been determined that the reset signal
cannot be issued, the channel-path-reset function is
completed. (See “Reset Signal” on page 17-12.)

As a result of the channel-path-reset function being
performed, a channel report is made pending (see
“Channel-Subsystem Recovery” on page 17-27)

to report the results. If the channel path responds
properly to the system-reset signal, the channel
report indicates that the channel path has been ini-
tialized and is physically available for use. If the reset
signal was issued but either the channel path failed
to respond properly or the channel path was already
not physically available at each subchannel having
access to the channel path, the channel report indi-
cates that the channel path has been initialized but is
not physically available for use. If, because of a mal-
function or because the designated channel path is
not in the configuration, the reset signal could not be
issued, the channel report indicates that the channel
path has not been initialized and is not physically
available for use.

Programming Notes:

1. If an I/O operation is in progress in the multipath
mode when the channel-path-reset function is
performed on a channel path of the multipath
group, it is possible for the I/O operation to be

15-82 The z/Architecture I/O Architecture

continued on a remaining channel path of the
group.

2. When the performance of the channel-path-reset
function causes the I/O operation at the device to
be reset, unsolicited device-end status presented
by the device, if any, may be erroneously inter-
preted by the channel subsystem to be chaining
status and thus cause the channel subsystem to
continue the chain of commands. If this situation
occurs, then the device-end status is not made
available to the program, and the device is
selected again by the channel subsystem; how-
ever, the device may interpret the initiation
sequence as the beginning of a new channel pro-
gram instead of as command chaining. This pos-
sibility can be avoided by issuing CLEAR
SUBCHANNEL or HALT SUBCHANNEL, desig-
nating the affected subchannels, prior to issuing
RESET CHANNEL PATH.

3. The performance of the channel-path-reset func-
tion may, on some models, cause overruns to
occur on other channel paths.

Even though reset is signaled on the designated
channel path, by one or more devices may not have
been reset because of a malfunction at a control unit
or a malfunction at the physical channel path to the
control unit.

16-1© Copyright IBM Corp. 2000, 2019

Chapter 16. I/O Interruptions

Interruption Conditions 16-2
Intermediate Interruption Condition 16-4
Primary Interruption Condition 16-4
Secondary Interruption Condition 16-5
Alert Interruption Condition 16-5

Priority of Interruptions 16-5
Interruption Action . 16-6
 Interruption-Response Block 16-6

IRB Format . 16-6
Subchannel-Status Word. 16-7

Command-Mode SCSW 16-8
Subchannel Key. 16-9
Suspend Control (S) 16-9
Extended-Status-Word Format (L). 16-9
Deferred Condition Code (CC) 16-9
CCW Format (F) 16-11
Prefetch (P) . 16-11
Initial-Status-Interruption Control (I). 16-12
Address-Limit-Checking Control (A) 16-12
IRB-Format Control (X) 16-12
Suppress-Suspended Interruption (U) . . . 16-12

Subchannel-Control Field 16-12
Zero Condition Code (Z) 16-12
Extended Control (E) 16-12
Path Not Operational (N) 16-13
Function Control (FC) 16-13
Activity Control (AC) 16-14
Status Control (SC) 16-17

CCW-Address Field 16-19
Device-Status Field 16-24
Subchannel-Status Field 16-24

Program-Controlled Interruption 16-24
Incorrect Length. 16-24
Program Check . 16-25
Protection Check 16-28
Channel-Data Check 16-28
Channel-Control Check 16-29
Interface-Control Check. 16-29
Chaining Check . 16-30

Count Field . 16-31

Transport-Mode SCSW. 16-34
Subchannel Key . 16-35
Reserved. 16-35
Extended-Status-Word Format (L) 16-35
Deferred Condition Code (CC) 16-35
Format (FMT) . 16-35
IRB-Format Control (X) 16-35
Interrogate Complete (Q) 16-35

Subchannel-Control Field 16-35
Extended Control (E). 16-35
Path Not Operational (N). 16-35
Function Control (FC) 16-35
Activity Control (AC) 16-36
Status Control (SC) 16-36

TCW Address Field. 16-36
Device-Status Field. 16-39
Subchannel-Status Field. 16-39

Incorrect Length . 16-39
Program Check . 16-40
Protection Check. 16-42
Channel-Data Check. 16-42
Channel-Control Check. 16-43
Interface-Control Check 16-43
Channel-Subsystem Retry Failed 16-44

FCX-Status Field. 16-44
Subchannel-Extended-Status Field 16-44

Extended-Status Word 16-47
Extended-Status Format 0 16-47

Subchannel Logout 16-47
Extended-Report Word 16-51
Failing-Storage Address 16-53
Extended-Subchannel-Logout Descriptor

(ESLD) . 16-53
Secondary-CCW Address 16-53

Extended-Status Format 1 16-53
Extended-Status Format 2 16-54
Extended-Status Format 3 16-55

Extended-Control Word 16-56
Extended-Measurement Word 16-56

When an I/O operation or sequence of I/O operations
initiated by the execution of START SUBCHANNEL is
ended, the channel subsystem and the device gener-
ate status conditions. The generation of these condi-
tions can be brought to the attention of the program
by means of an I/O interruption or by means of the
execution of the TEST PENDING INTERRUPTION
instruction. (During certain abnormal situations,

these conditions can be brought to the attention of
the program by means of a machine-check interrup-
tion. See “Channel-Subsystem Recovery” on
page 17-27 for details.)

The status conditions, as well as an address and a
count indicating the extent of the operation
sequence, are presented to the program in the form

16-2 The z/Architecture I/O Architecture

of a subchannel-status word (SCSW). The SCSW is
stored in an interruption-response block (IRB) during
the execution of TEST SUBCHANNEL. When a
transport-mode IRB is stored, additional information
describing the status of the operation is also stored in
the transport-status block.

Normally an I/O operation is being performed until
the device signals primary interruption status. Pri-
mary interruption status can be signaled during initia-
tion of an I/O operation, or later. An I/O operation can
be terminated by the channel subsystem performing
a clear or halt function when it detects an equipment
malfunction, a program check, a chaining check, a
protection check, or an incorrect-length condition, or
by performing a clear, halt, or channel-path-reset
function as a result of the execution of CLEAR SUB-
CHANNEL, HALT SUBCHANNEL, or RESET CHAN-
NEL PATH, respectively.

I/O interruptions provide a means for the CPU to
change its state in response to conditions that occur
at I/O devices or subchannels. These conditions can
be caused by the program, by the channel subsys-
tem, or by an external event at the device.

Interruption Conditions

The conditions causing requests for I/O interruptions
to be initiated are called I/O-interruption conditions.
When an interruption condition is recognized by the
channel subsystem, it is indicated at the appropriate
subchannel. The subchannel is then said to be status
pending. The subchannel becoming status pending
causes the channel subsystem to generate an I/O-
interruption request. An I/O-interruption request can
be brought to the attention of the program only once.

An I/O-interruption request remains pending until it is
accepted by a CPU in the configuration, is withdrawn
by the channel subsystem, or is cleared by means of
the execution of TEST PENDING INTERRUPTION,
TEST SUBCHANNEL, or CLEAR SUBCHANNEL, or
by means of subsystem reset. When a CPU accepts
an interruption request and stores the associated
interruption code, the interruption request is cleared.
When the pending interruption is cleared by the exe-
cution of TEST PENDING INTERRUPTION, the sub-
channel remains status pending until the associated
interruption condition is cleared when TEST SUB-

CHANNEL or CLEAR SUBCHANNEL is executed or
when the subchannel is reset.

An I/O-interruption condition is normally cleared by
means of the execution of TEST SUBCHANNEL. If
TEST SUBCHANNEL is executed, designating a
subchannel that has an I/O-interruption request
pending, both the interruption request and the inter-
ruption condition at the subchannel are cleared. The
interruption request and the interruption condition
can also be cleared by CLEAR SUBCHANNEL.

A device-end status condition generated by the I/O
device and presented following the conclusion of the
last I/O operation of a start function is reset at the
subchannel by the channel subsystem without gener-
ating an I/O-interruption condition or I/O-interruption
request if the subchannel is currently start pending
and if the status contains device end either alone or
accompanied by control unit end. If any other status
bits accompany the device-end status bit, then the
channel subsystem generates an I/O-interruption
request with deferred condition code 1 indicated.

When an I/O operation is terminated because of an
unusual condition detected by the channel subsys-
tem during the command-initiation sequence, status
describing the interruption condition is placed at the
subchannel, causing it to become status pending. If
the unusual condition is detected by the device, the
device-status field of the associated SCSW identifies
the condition.

When command chaining takes place, the generation
of status by the device does not cause an interrup-
tion, and the status is not made available to the pro-
gram.

When the channel subsystem detects any of the fol-
lowing interruption conditions, it initiates a request for
an I/O interruption without necessarily communicat-
ing with, or having received the status byte from, the
device:

• A programming error associated with the con-
tents of the ORB passed to the subchannel by
the previous execution of START SUBCHANNEL

• A suspend flag set to one in the first CCW
fetched that initiates a CCW channel program
execution for either START SUBCHANNEL or
RESUME SUBCHANNEL, and suppress sus-
pended interruption not specified in the com-
mand-mode ORB.

16-3

• A programming error associated with the first
CCW, TCW, TIDAW, TCCB fetch, data fetch,
IDAW, or MIDAW.

These interruption conditions from the subchannel,
except for the suspended condition, can be accom-
panied by other subchannel-status indications, but
the device-status indications are all stored as zeros.

The channel subsystem issues the clear signal to the
device when status containing unit check is pre-
sented to a subchannel that is disabled or when the
device is not associated with any subchannel. How-
ever, if the presented status does not contain unit
check, the status is accepted by the channel subsys-
tem and discarded without causing the subchannel to
become status pending.

An interruption condition caused by the device may
be accompanied by multiple device-status conditions.
Furthermore, more than one interruption condition
associated with the same device can be accepted by
the channel subsystem without an intervening I/O
interruption. As an example, when the channel-end
condition is not cleared at the device by the time
device end is generated, both conditions may be
cleared at the device concurrently and indicated in
the SCSW together. Alternatively, channel-end status
may have been previously accepted at the subchan-
nel, and an I/O interruption may have occurred; how-
ever, the associated status-pending condition may
not have been cleared by TEST SUBCHANNEL by
the time device-end status was accepted at the sub-
channel. In this situation, the device-end status may
be merged with the channel-end status without caus-
ing an additional I/O interruption. Whether an inter-
ruption condition may be merged at the subchannel
with other existing interruption conditions depends

upon whether the interruption condition is unsolicited
or solicited.

Unsolicited Interruption Condition: An unsolic-
ited interruption condition is any interruption condi-
tion that is unrelated to the performance of a clear,
halt, resume, interrogate, or start function. An unso-
licited interruption condition is identified at the sub-
channel as alert status. An unsolicited interruption
condition can be generated only when the subchan-
nel is not device active.

The subchannel and device status associated with
an unsolicited interruption condition is never merged
with that of any currently existing interruption condi-
tion. If the subchannel is currently status pending, the
unsolicited interruption condition is held in abeyance
in either the channel subsystem or the device, as
appropriate, until the status-pending condition has
been cleared. Whenever the subchannel is idle and
zero status is presented by the device, the status is
discarded.

Solicited Interruption Condition: A solicited inter-
ruption condition is any interruption condition gener-
ated as a direct consequence of performing or
attempting to perform a clear, halt, resume, interro-
gate, or start function. Solicited interruption condi-
tions include any interruption condition generated
while the subchannel is either subchannel-and-
device active or device active. When the subchannel
is operating in transport mode, solicited interruption
conditions can be generated when the subchannel is
start pending. The subchannel and device status
associated with a solicited interruption condition may
be merged at the subchannel with that of another
currently existing solicited interruption condition.
Figure 16-1 on page 16-4 describes the interruption

16-4 The z/Architecture I/O Architecture

condition that results from any combination of bits in
the status-control field of the SCSW.

Intermediate Interruption Condition

An intermediate interruption condition is a solicited
interruption condition that indicates that an event has
occurred for which the program had previously
requested notification. An intermediate interruption
condition is described by any of, or any combination
of the following:

• solicited subchannel status
• the Z bit
• the subchannel-suspended condition
• the Q bit

An intermediate interruption condition can occur only
after it has been requested by the program through
the use of flags in the ORB, CCW, or a CANCEL
SUBCHANNEL for a subchannel operating in trans-
port mode that requests an interrogate operation.
Depending on the state of the subchannel, the per-
formance or suspension of the I/O operation contin-
ues, unaffected by the setting of the intermediate-
status bit.

An intermediate interruption condition can be indi-
cated only together with one of the following indica-
tions:

1. Subchannel active

2. Status pending with primary status alone

3. Status pending with primary status together with
alert status or secondary status or both

4. Suspended

5. Interrogate-complete (Q-bit)

If only the intermediate-status bit and the status-
pending bit of the status-control field are ones during
the execution of TEST SUBCHANNEL, the device-
status field is zero.

Primary Interruption Condition

A primary interruption condition is a solicited inter-
ruption condition that indicates the performance of
the start function is completed at the subchannel. A
primary interruption condition is described by the
SCSW stored as a result of the execution of TEST
SUBCHANNEL while the subchannel is status pend-
ing with primary status. Once the primary interruption
condition is indicated at the subchannel, the channel
subsystem is no longer actively participating in the
I/O operation by transferring commands or data.
When a subchannel is status pending with a primary
interruption condition, the execution of any of the fol-
lowing instructions results in the setting of a nonzero
condition code: HALT SUBCHANNEL, MODIFY
SUBCHANNEL, RESUME SUBCHANNEL, and
START SUBCHANNEL. Once the primary interrup-
tion condition is cleared by the execution of TEST
SUBCHANNEL, the subchannel accepts the START

Status-Control Field Status-Control-Bit Combinations

Alert 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Primary 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0

Secondary 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0

Intermediate 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0

Status pending 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Resulting interruption condition E S S S S S - S S S S S S - S S

Explanation:

- Combination does not occur.
E Unsolicited or solicited interruption condition.
S Solicited interruption condition.
0 Indicates the bit stored as zero.
1 Indicates the bit stored as one.

Figure 16-1. Interruption Condition for Status-Control-Bit Combinations

16-5

SUBCHANNEL instruction. (See “START SUB-
CHANNEL” on page 14-15)

Secondary Interruption Condition

A secondary interruption condition is a solicited inter-
ruption condition that normally indicates the comple-
tion of an I/O operation at the device. A secondary
interruption condition is also generated by the chan-
nel subsystem if the start function is terminated
because a solicited alert interruption condition is rec-
ognized prior to initiating the first I/O operation at the
device. A secondary interruption condition is
described by the SCSW stored as a result of the exe-
cution of TEST SUBCHANNEL while the subchannel
is status pending with secondary status. Once the
channel subsystem has accepted status from the
device that causes a secondary interruption condi-
tion to be recognized, the start function is completed
at the device.

Alert Interruption Condition

An alert interruption condition is either a solicited
interruption condition that indicates the occurrence of
an unusual condition in a halt, resume, or start func-
tion or an unsolicited interruption condition that
describes a condition unrelated to the performance
of a halt, resume, or start function. An alert interrup-
tion condition is described by the SCSW stored as a
result of the execution of TEST SUBCHANNEL while
the subchannel is status pending with alert status. An
alert interruption condition may be generated by
either the channel subsystem or the device. Nonzero
alert status is always brought to the attention of the
program.

Priority of Interruptions

All requests for an I/O interruption are asynchronous
to any activity in any CPU, and interruption requests
associated with more than one subchannel can exist
at the same time. The priority of interruptions is con-
trolled by two types of mechanisms — one estab-
lishes within the channel subsystem the priority
among interruption requests from subchannels asso-
ciated with the same I/O-interruption subclass, and
another establishes within a given CPU the priority
among requests from subchannels of different I/O-
interruption subclasses. The channel subsystem

requests an I/O interruption only after it has estab-
lished priority among requests from its subchannels.
The conditions responsible for the I/O-interruption
requests associated with subchannels are preserved
at the subchannels until cleared by a CPU's execu-
tion of TEST SUBCHANNEL or CLEAR SUBCHAN-
NEL or I/O-system reset is performed.

The assignment of priority among requests for inter-
ruption from subchannels of the same I/O-interrup-
tion subclass is in the order that the need for
interruption is recognized by the channel subsystem.
The order of recognition by the channel subsystem is
a function of the type of interruption condition and the
type of channel path. For the parallel-I/O-interface
type of channel path, the order depends on the elec-
trical position of the device on the channel path to
which it is attached. (A device's electrical position on
the parallel-I/O interface is not related to its device
address.)

The assignment of priority among requests for inter-
ruption from subchannels of different I/O-interruption
subclasses is made by the CPU according to the
numerical value of the I/O-interruption subclass
codes (with zero having highest priority), in conjunc-
tion with the I/O-interruption-subclass mask in control
register 6. The numerical value of the I/O-interrup-
tion-subclass code directly corresponds to the bit
position in the I/O-interruption-subclass mask in con-
trol register 6 of a CPU. If, in any CPU, an I/O-inter-
ruption-subclass-mask bit is zero, then all
subchannels having an I/O-interruption-subclass
code numerically equal to the associated position in
the mask register are said to be masked off in the
respective CPU. Therefore, a CPU accepts the high-
est-priority I/O-interruption request from a subchan-
nel that has the lowest-numbered I/O-interruption
subclass code that is not masked off by a corre-
sponding bit in control register 6 of that CPU. When
the highest-priority interruption request is accepted
by a CPU, it is cleared so that the interruption request
is not accepted by any other CPU in the configura-
tion.

The priority of interruption handling can be modified
by the execution of either TEST SUBCHANNEL or
CLEAR SUBCHANNEL. When either of these
instructions is executed and the designated subchan-
nel has an interruption request pending, that interrup-
tion request is cleared, without regard to any
previous established priority. The relative priority of
the remaining interruption requests is unchanged.

16-6 The z/Architecture I/O Architecture

Programming Notes:

1. The I/O-interruption subclass mask is in control
register 6, which has the following format:

2. Control register 6 is set to all zeros during initial
CPU reset.

Interruption Action

An I/O interruption can occur only when the I/O-inter-
ruption-subclass-mask bit associated with the sub-
channel is one and the CPU is enabled for I/O
interruptions.

The interruption occurs at the completion of a unit of
operation (see “Point of Interruption” on page 5-24).
If the channel subsystem establishes the priority
among requests for interruption from subchannels
while the CPU is disabled for I/O interruptions, the
interruption occurs immediately after the completion
of the instruction enabling the CPU and before the
next instruction is executed, provided that the I/O-
interruption subclass-mask bit associated with the
subchannel is one. Alternatively, if the channel sub-
system establishes the priority among requests for
interruption from subchannels while the I/O-interrup-
tion-subclass-mask bit is zero for each subchannel
that is status pending, the interruption occurs imme-
diately after the completion of the instruction that
sets at least one of the I/O-interruption-subclass-
mask bits to one, provided that the CPU is also
enabled for I/O interruptions. This interruption is
associated with the highest-priority I/O-interruption
request, as established by the CPU.

If the channel subsystem has not established the pri-
ority among requests for interruption from the sub-
channels by the time the interruption is allowed, the
interruption does not necessarily occur immediately
after the completion of the instruction enabling the
CPU. A delay can occur regardless of how long the
interruption condition has existed at the subchannel.

The interruption causes the current PSW to be
stored as the input/output old PSW at real locations
368-383 and causes the I/O-interruption code asso-
ciated with the interruption to be stored at real loca-
tions 184-195 of the CPU allowing the interruption.
Subsequently, a new input/output PSW is loaded
from real locations 496-511 and processing resumes
in the CPU state indicated by that PSW. The sub-
channel causing the interruption is identified by the
interruption code.

The I/O-interruption code has the following format
when it is stored. The code is described in “TEST
PENDING INTERRUPTION” on page 14-19.

Programming Note: The I/O-interruption subclass
code for all subchannels is set to zero by I/O-system
reset. It may be set to any of the values 0-7 by the
execution of MODIFY SUBCHANNEL. (The opera-
tion of the instruction is described in “MODIFY SUB-
CHANNEL” on page 14-7.)

 Interruption-Response Block

The interruption-response block (IRB) is the operand
of TEST SUBCHANNEL. The two rightmost bits of
the IRB address are zeros, designating the IRB on a
word boundary. The IRB contains three major fields:
the subchannel-status word, the extended-status
word, and the extended-control word. When the
extended-I/O-measurement-word mode is enabled at
the subchannel, the IRB contains a fourth major field,
the extended-measurement word.

IRB Format

The format of the IRB stored depends upon the sub-
channel status. The status present at the subchannel
when a TEST SUBCHANNEL instruction is executed
determines whether a command-mode IRB or trans-
port-mode IRB is stored. Bit 11 of word 0 of the IRB

Word

0 /
0 31

1 ISC Mask Reserved
32 40 63

Hex.

B8 184
Subsystem-Identification

Word

BC 188
I/O-Interruption

Parameter

C0 192
I/O-Interruption-

Identification Word

16-7

is the IRB-format control bit (X). When an IRB is
stored with X set to zero, a command-mode IRB is
stored. (See “Command-Mode SCSW” on
page 16-8.) When an IRB is stored with X set to one,
a 3-bit format field is defined. (See “Format (FMT)”
on page 16-35.) The format of the IRB is specified
according to the table below:

The general layout of the IRB is as follows:

The length of the subchannel-status and extended-
status words is 12 bytes and 20 bytes, respectively.
The length of the extended-control word is 32 bytes.
When the extended-control bit, bit 14 of word 0 of the
SCSW, is zero, words 8-15 of the interruption-
response block may or may not be stored. The length
of the extended-measurement word is 32 bytes.
When the conditions for storing the extended-mea-
surement word are not met (see “Extended-Measure-
ment Word” on page 16-56), words 16-23 of the
interruption-response block may or may not be
stored.

Subchannel-Status Word

The subchannel-status word (SCSW) provides to the
program indications describing the status of a sub-
channel and its associated device. When a transport-
mode IRB is stored, additional information describing
the status of the operation and the associated device
may also be stored in the transport-status block
associated with the operation. If performance of a
halt, resume, or start function has occurred, the
SCSW may describe the conditions under which the
operation was concluded.

The SCSW is stored when TEST SUBCHANNEL is
executed and the designated subchannel is opera-
tional. The SCSW is placed in words 0-2 of the IRB
that is designated as the TEST SUBCHANNEL oper-
and. When STORE SUBCHANNEL is executed, the
SCSW is stored in words 7-9 of the subchannel-infor-
mation block (described in “Subchannel-Information
Block” on page 15-2).

Figure 16-3 on page 16-8 shows the summary and
contents of the command-mode SCSW.

Subchannel
Mode

Subchannel Status
Bit
(X)

FMT
IRB

Mode Stored
Command

mode
Any subchannel status
or combination of status

0 N Command mode

Transport
mode

Status-pending alone
with halt function

1 Y-0 Transport mode

Status-pending alone
with clear function

0 N Command mode

Primary status
with or without any other

status combination
1 Y-0 Transport mode

Secondary status alone 0 N Command mode
Intermediate status 1 Y-0 Transport mode

Alert status with
secondary, without

primary or intermediate
status

0 N Command mode

Explanation:
N: Format field is not defined.
Y-0: Format field is defined and its value is 0.

Figure 16-2. Summary of IRB Format as Function of Sub-
channel Status

Word

0

Subchannel-Status Word1

2

3

Extended-Status Word

7

8

Extended-Control Word

15

16

Extended-Measurement Word

23

0 31

16-8 The z/Architecture I/O Architecture

Command-Mode SCSW

The format of a command-mode SCSW is as follows:

Word

0 Key S L CC F P I X U Z E N 0 FC AC SC

1 CCW Address

2 DEVS SCHS Count
0 4 6 8 16 20 27 31

Figure 16-3. Command-Mode SCSW Format

Bits Name

Word 0
0-3 Subchannel Key

4 Suspend control (S)
5 ESW format (L)

6-7 Deferred condition code (CC)
8 CCW Format (F)
9 Prefetch (P)

10 Initial-status interruption control (I)
11 IRB-format control (X)
12 Suppressed-suspended interruption (U)
13 Zero condition (Z)
14 Extended control (E)
15 Path not operational (N)
16 Reserved

17-19 Function Control (FC)
17 Start function
18 Halt function
19 Clear function

20-26 Activity Control (AC)
20 Resume pending
21 Start pending
22 Halt pending
23 Clear pending
24 Subchannel active
25 Device active
26 Suspended

27-31 Status Control (SC)
27 Alert status
28 Intermediate status
29 Primary status
30 Secondary status
31 Status pending

Word 1
0-31 CCW Address

Word 2
0-7 Device Status (DEVS)

 0 Attention
 1 Status modifier
2 Control-unit end
3 Busy
4 Channel end
 5 Device end
 6 Unit check
7 Unit exception

8-15 Subchannel Status (SCHS)
8 Program-controlled interruption
9 Incorrect length

10 Program check
11 Protection check
12 Channel-data check
13 Channel-control check
14 Interface-control check
15 Chaining check

16-31 Count

Figure 16-4. Command-Mode SCSW

16-9

The contents of the subchannel-status word (SCSW)
depend on the state of the subchannel when the
SCSW is stored. Depending on the state of the sub-
channel and the device, the specific fields of the
SCSW may contain (1) information pertaining to the
last operation, (2) information unrelated to the perfor-
mance of an operation, (3) zeros, or (4) meaningless
values. The following descriptions indicate when an
SCSW field contains meaningful information for a
command-mode IRB.

Subchannel Key
When the start-function bit, bit 17 of word 0, is one,
bit positions 0-3 of word 0 contain the access key
used during performance of the associated start
function. These bits are identical with the key speci-
fied in bit positions 0-3 of word 1 of the ORB. The
subchannel key is meaningful only when the start-
function bit, bit 17 of word 0, is one.

Suspend Control (S)
When the start-function bit, bit 17 of word 0, is one,
bit 4 of word 0, when one, indicates that the suspend
function can be initiated at the subchannel. Bit 4 is
meaningful only when bit 17 is one. If bit 17 is one
and bit 4 is one, channel-program execution can be
suspended if the channel subsystem recognizes an
S flag set to one in a CCW. If bit 4 is zero, channel-
program execution cannot be suspended, and, if an
S flag set to one in a CCW is encountered, a pro-
gram-check condition is recognized.

Extended-Status-Word Format (L)
When the status-pending bit, bit 31 of word 0, is one,
bit 5 of word 0, when one, indicates that a format-0
ESW has been stored. A format-0 ESW is stored
when an interruption condition containing any of the
following indications is cleared by TEST SUBCHAN-
NEL:

Channel-data check
Channel-control check
Interface-control check
Measurement-block-program check
Measurement-block-data check
Measurement-block-protection check
Path verification required
Authorization check
Extended subchannel logout pending

The extended-status-word-format bit is meaningful
whenever the subchannel is status pending. The

extended-status information that is used to form a
format-0 ESW is cleared at the subchannel by TEST
SUBCHANNEL or CLEAR SUBCHANNEL.

Deferred Condition Code (CC)
When the start-function bit, bit 17 of word 0, is one
and the status-pending bit, bit 31 of word 0, is also
one, bits 6 and 7 of word 0 indicate the general rea-
son that the subchannel was status pending when
TEST SUBCHANNEL or STORE SUBCHANNEL
was executed. The deferred condition code is mean-
ingful when the subchannel is status pending with
any combination of status and only when the start-
function bit of the function-control field in the SCSW
is one. The meaning of the deferred condition code
for each value when the subchannel is status pend-
ing is given in Figure 16-5 on page 16-11.

The deferred condition code, if not zero, is used to
indicate whether conditions have been encountered
that preclude the subchannel becoming subchannel-
and-device active while the subchannel is either start
pending or suspended.

Deferred Condition Code 0: A normal I/O inter-
ruption has taken place.

Deferred Condition Code 1: Status is present in
the SCSW that was presented by the associated
device or generated by the channel subsystem sub-
sequent to the setting of condition code 0 for START
SUBCHANNEL or RESUME SUBCHANNEL. If only
the alert-status bit and the status-pending bit of the
status-control field of the SCSW are ones, the status
present is not related to the execution of a channel
program. If the intermediate-status bit, the primary-
status bit, or both are ones, then the status is related
to the execution of the channel program specified by
the most recently executed START SUBCHANNEL
instruction or implied by the most recently executed
RESUME SUBCHANNEL instruction. (See “Immedi-
ate Conclusion of Command-Mode I/O Operations”
on page 15-78.) If the secondary-status bit is one
and the primary-status bit is zero, the status present
is related to the channel program specified by the
START SUBCHANNEL instruction or implied by the
RESUME SUBCHANNEL instruction that preceded
the most recently executed START SUBCHANNEL
instruction.

Deferred Condition Code 2: This code does not
occur and is reserved for future use.

16-10 The z/Architecture I/O Architecture

Deferred Condition Code 3: An attempted device
selection has occurred, and the device appeared not
operational on all of the channel paths that were
available for selection of the device.

A device appears not operational when it does not
respond to a selection attempt by the channel sub-
system. This occurs when the control unit is not pro-
vided in the system, when power is off in the control
unit, or when the control unit has been logically
switched off the channel path. The not-operational
state is also indicated when the control unit is pro-
vided and is capable of attaching the device, but the
device has not been installed and the control unit is
not designed to recognize the device being selected
as one of its attached devices. (See also “I/O
Addressing” on page 13-5.)

A deferred condition code 3 also can be set by the
channel subsystem if no channel paths to the device
are available for selection. (See Figure 16-5 on
page 16-11.)

Programming Notes:

1. If, during performance of a start function, the I/O
device being selected is not installed or has been
logically removed from the control unit, but the
associated control unit is operational and the
control unit recognizes the I/O device being
selected as one of its I/O devices, the control

unit, depending upon the model, either fails to
recognize the address of the I/O device or con-
siders the I/O device to be not ready. In the for-
mer case, a path-not-operational condition is
recognized, subject to the setting of the path-
operational mask. (See “Path-Operational Mask
(POM)” on page 15-7.) In the latter case, the not-
ready condition is indicated when the control unit
responds to the selection and indicates unit
check whenever the not-ready state precludes
successful initiation of the operation at the I/O
device. In this case, unit-check status is indicated
in the SCSW, the subchannel becomes status
pending with primary, secondary, and alert sta-
tus, and with deferred condition code 1 indicated.
(See the publication ESA/390 Common I/O-
Device Commands, SA22-7204, for a description
of unit-check status.) Refer to the System Library
publication for the control unit to determine how
the condition is indicated.

2. The deferred condition code is 1, and the status-
control field contains the status-pending and
intermediate-status bits or the status-pending,
intermediate-status, and alert-status bits as ones
when HALT SUBCHANNEL has been executed
and the designated subchannel is suspended
and status pending with intermediate status. If
the alert-status bit is one, then subchannel-
logout information was generated as a result of
attempting to issue the halt signal to the device.

16-11

CCW Format (F)
When the start-function bit, bit 17 of word 0, is one,
bit 8 of word 0 indicates the format of the CCWs
associated with an I/O operation. The format bit is
meaningful only when bit 17 is one. If bit 8 of word 0
is zero, format-0 CCWs are indicated. If it is one, for-
mat-1 CCWs are indicated. (See “Channel-Com-

mand Word” on page 15-31 for the description of the
two CCW formats.)

Prefetch (P)
When the start-function bit, bit 17 of word 0, is one,
bit 9 of word 0 indicates whether or not unlimited
prefetching of CCWs, IDAWs, MIDAWS, and associ-

Bit 6 Bit 7 Status Control1 Meaning
0 0 A I P S X Normal I/O Interruption

A I P – X
A – P S X
A – P – X
– I P S X
– I P – X
– I – – X
– – P S X
– – P – X

0 1 A I P S X Either an immediate operation, with chaining not specified, has ended normally,
or the setting of some status condition precluded the initiation or resumption of a
requested I/O operation at the device.

A I P – X
A I – – X2

A – P S X
A – P – X
A – – S X
A – – – X
– I P S X
– I P – X
– I – – X2

– – P S X
– – P – X
– – – S X3

– – – – X3 2

1 0 Reserved Reserved
1 1 – – P S X The device is not operational on any available path or, if a dedicate-allegiance

condition exists, the device is not operational on the path to which the dedicated-
allegiance is owed.

– I P S X

Explanation:

– Bit is zero.
1 The allowed combinations of status-control-bit settings when the

start-function bit is one in the function-control field.
2 The condition is encountered after the execution of HALT SUBCHANNEL when the subchannel is

currently suspended
3 The condition is encountered after the execution of HALT SUBCHANNEL when the subchannel is

currently start pending.
A Alert status.
I Intermediate status.
P Primary status.
S Secondary status.
X Status pending.

Figure 16-5. Deferred-Condition-Code Meaning for Status-Pending Subchannel

16-12 The z/Architecture I/O Architecture

ated data is allowed. The prefetch bit is meaningful
only when bit 17 is one. If bit 9 is zero, prefetching of
one CCW describing a data area is allowed during
output-data-chaining operations and is not allowed
during any other operations. If bit 9 is one, unlimited
prefetching of CCWs, IDAWs, MIDAWS, and associ-
ated data is allowed. It is model dependent whether
prefetching is actually performed for any or all of the
CCWs, IDAWs, MIDAWS, and associated data that
comprise the CCW channel program.

Initial-Status-Interruption Control (I)
When the start-function bit, bit 17 of word 0, is one,
bit 10 of word 0, when one, indicates that the channel
subsystem is to generate an intermediate interrup-
tion condition if the subchannel becomes subchannel
active (see “Initial-Status-Interruption Control (I)” on
page 15-27). Bit 10 of word 0, when zero, indicates
that the subchannel becoming subchannel active is
not to cause an intermediate interruption condition to
be generated.

The program requests the intermediate interruption
condition by means of the command-mode ORB. An
I/O interruption that results from that request may be
due to the channel subsystem performing either a
start function or a resume function. (See “Zero Con-
dition Code (Z)” on page 16-12 for details of the indi-
cation given by the channel subsystem when the
intermediate interruption condition is cleared by
TEST SUBCHANNEL.)

Address-Limit-Checking Control (A)
When the address-limit-checking facility is installed
and the start-function bit, bit 17 of word 0, is one, bit
11 of word 0, when one, indicates that the channel
subsystem has been requested by the program to
perform address-limit checking, subject to the setting
of the limit mode at the subchannel (see “Address-
Limit-Checking Control (A)” on page 15-27). The
address-limit-checking-control bit is meaningful only
when bit 17 is one.

IRB-Format Control (X)
Bit 11 of word 0 is the IRB-format control bit (X). The
value of this bit is zero for the command-mode IRB.
See Figure 16-2 on page 16-7.

Suppress-Suspended Interruption (U)
When the start-function bit, bit 17 of word 0, is one,
bit 12 of word 0, when one, indicates that the channel
subsystem has been requested by the program to

suppress the generation of a subchannel-suspended
interruption condition when the subchannel is sus-
pended (see “Suppress-Suspended-Interruption
Control (U)” on page 15-27). When bit 12 is zero, the
channel subsystem generates an intermediate inter-
ruption condition whenever the subchannel is sus-
pended during the execution of the associated
channel program. The suppress-suspended-interrup-
tion bit is meaningful only when bit 17 is one.

Subchannel-Control Field

The following subchannel-control-information
descriptions apply to the subchannel-control field,
bits 13-31 of word 0 of the SCSW.

Zero Condition Code (Z)
Bit 13 of word 0, when one, indicates that the sub-
channel has become subchannel active and the
channel subsystem has recognized an initial-status-
interruption condition at the subchannel. The Z bit is
meaningful only when the intermediate-status bit, bit
28 of word 0, and the start-function bit, bit 17 of word
0, are both ones.

If the initial-status-interruption-control bit, bit 10 of
word 1 of the command-mode ORB, is one when
START SUBCHANNEL is executed, then the sub-
channel becoming subchannel active causes the
subchannel to be made status pending with interme-
diate status indicating the initial-status-interruption
condition. The initial-status-interruption condition
remains at the subchannel until the intermediate
interruption condition is cleared by the execution of
TEST SUBCHANNEL or CLEAR SUBCHANNEL. If
the initial-status-interruption-control bit of the com-
mand-mode ORB is zero when START SUBCHAN-
NEL is executed, then the subchannel becoming
subchannel active does not cause an intermediate
interruption condition to be generated, and the initial-
status-interruption condition is not recognized.

Extended Control (E)
Bit 14 of word 0, when one, indicates that model-
dependent information or concurrent-sense informa-
tion is stored in the extended-control word (ECW).
When bit 14 is zero, the contents of words 0-7 of the
ECW, if stored, are unpredictable. The E bit is mean-
ingful whenever the subchannel is status pending
with alert status either alone or together with primary
status, secondary status, or both.

16-13

Programming Note: During the execution of TEST
SUBCHANNEL, the storing of words 0-7 of the ECW
is a model-dependent function subject to the setting
of bit 14 as described above. Therefore, the program
should always provide sufficient storage to accom-
modate the storing of at least a 64-byte IRB or, when
the extended-I/O-measurement-word mode is
enabled at the subchannel, a 96-byte IRB.

Path Not Operational (N)
Bit 15 of word 0, when one, indicates that the N con-
dition has been recognized by the channel subsys-
tem. The N condition, in turn, indicates that one or
more path-not-operational conditions have been rec-
ognized. The channel subsystem recognizes a path-
not-operational condition when, during an attempted
device selection in order to perform a clear, halt,
resume, or start function, the device associated with
the subchannel appears not operational on a channel
path that is operational for the subchannel. A channel
path is operational for the subchannel if the associ-
ated device appeared operational on that channel
path the last time the channel subsystem attempted
device selection in order to perform a clear, halt,
resume, or start function. A channel path is not oper-
ational for the subchannel if the associated device
appeared not operational on that channel path the
last time the channel subsystem attempted device
selection in order to perform a clear, halt, resume, or
start function. A device appears to be operational on
a channel path when the device responds to an
attempted device selection.

The N bit is meaningful whenever the status-control
field contains any of the indications listed below and
at least one basic I/O function is also indicated at the
subchannel:

• Status pending with any combination of primary,
secondary, or alert status

• Status pending alone

• Status pending with intermediate status when
the subchannel is also suspended

The N condition is reset whenever the execution of
TEST SUBCHANNEL results in the setting of condi-
tion code 0 and the N bit is meaningful as described
above.

Notes:

1. A path-not-operational condition does not imply a
malfunctioning channel path. A malfunctioning
channel path causes the generation of an error
indication, such as interface-control check.

2. When a path-not-operational condition has been
recognized and the subchannel subsequently
becomes status pending with only intermediate
status, the path-not-operational condition
(a) continues to be recognized until the subchan-
nel becomes status pending with primary status
or becomes suspended and (b) is indicated by
storing the path-not-operational bit as a one
during the execution of TEST SUBCHANNEL.
When a path-not-operational condition has been
recognized and the channel-program execution
subsequently becomes suspended, the path-not-
operational condition does not remain pending if
channel-program execution is subsequently
resumed. Instead, the old indication is lost, and
the path-not-operational indication, if any, per-
tains to the attempt by the channel subsystem to
resume channel-program execution.

Function Control (FC)
The function-control field indicates the basic I/O func-
tions that are indicated at the subchannel. This field
may indicate the acceptance of as many as two func-
tions. The function-control field is contained in bit
positions 17-19 of the first word of the SCSW. The
function-control field is meaningful at an installed
subchannel whenever the subchannel is valid (see
“Device Number Valid (V)” on page 15-4). The func-
tion-control field contains all zeros whenever both the
activity- and status-control fields contain all zeros.
The meaning of the individual bits is as follows:

Start Function (Bit 17): When one, bit 17 indi-
cates that a start function has been requested and is
either pending or in progress at the subchannel. A
start function is requested by the execution of START
SUBCHANNEL. A start function is indicated at the
subchannel when condition code 0 is set during the
execution of START SUBCHANNEL. The start-func-
tion indication is cleared at the subchannel when
TEST SUBCHANNEL is executed and the subchan-
nel is either status pending alone or status pending
with any combination of alert, primary, or secondary
status. The start-function indication is also cleared at
the subchannel during the execution of CLEAR SUB-
CHANNEL.

16-14 The z/Architecture I/O Architecture

Halt Function (Bit 18): When one, bit 18 indicates
that a halt function has been requested and is either
pending or in progress at the subchannel. A halt
function is requested by the execution of HALT SUB-
CHANNEL. A halt function is indicated at the sub-
channel when condition code 0 is set for HALT
SUBCHANNEL. The halt-function indication is
cleared at the subchannel when the next status-
pending condition that occurs is cleared by the exe-
cution of TEST SUBCHANNEL. The next status-
pending condition depends on the state of the sub-
channel when HALT SUBCHANNEL is executed. If
the subchannel is subchannel active when HALT
SUBCHANNEL is executed, then the next status-
pending condition is status pending with at least pri-
mary status indicated. If the subchannel is device
active when HALT SUBCHANNEL is executed, then
the next status-pending condition is status pending
with at least secondary status indicated. If the sub-
channel is suspended and status pending with inter-
mediate status when HALT SUBCHANNEL is
executed, then the next status-pending condition is
status pending with intermediate status. If the sub-
channel is idle when HALT SUBCHANNEL is exe-
cuted, then the next status-pending condition is
status pending alone. The halt-function indication is
also cleared at the subchannel during the execution
of CLEAR SUBCHANNEL. In normal operations, this
function is indicated together with bit 17; that is, there
is a start function either pending or in progress that is
to be halted.

Clear Function (Bit 19): When one, bit 19 indi-
cates that a clear function has been requested and is
either pending or in progress at the subchannel. A
clear function is requested by the execution of
CLEAR SUBCHANNEL. A clear function is indicated
at the subchannel when condition code 0 is set for
CLEAR SUBCHANNEL (see “CLEAR SUBCHAN-
NEL” on page 14-5). The clear-function indication is
cleared at the subchannel when the resulting status-
pending condition is cleared by TEST SUBCHAN-
NEL.

Activity Control (AC)
The activity-control field is contained in bit positions
20-26 of the first word of the SCSW. This field indi-
cates the current progress of a basic I/O function pre-
viously accepted at the subchannel. By using the
contents of this field, the program can determine the
degree of completion of the basic I/O function. The
activity-control field is meaningful at an installed sub-
channel whenever the subchannel is valid (see

“Device Number Valid (V)” on page 15-4). However, if
an IFCC or CCC condition is detected during the per-
formance of a basic I/O function and that function is
indicated as pending, I/O operations may or may not
have been performed at the device. The activity-con-
trol bits are defined as follows:

When an SCSW is stored that has the status-pend-
ing bit of the status-control field zero and all zeros in
the activity-control field, the subchannel is said to be
idle or in the idle state.

Note: All conditions that are represented by the bits
in the function-control field and by the resume-pend-
ing, start-pending, halt-pending, clear-pending, sub-
channel-active, and suspended bits in the activity-
control field are reset at the subchannel when TEST
SUBCHANNEL is executed and the subchannel is
(1) status pending alone, (2) status pending with pri-
mary status, (3) status pending with alert status, or
(4) status pending with intermediate status and is
also suspended.

Resume-Pending (Bit 20): When one, bit 20 indi-
cates that the subchannel is resume pending. The
channel subsystem may or may not be in the process
of performing the start function. The subchannel
becomes resume pending when condition code 0 is
set for RESUME SUBCHANNEL. The point at which
the subchannel is no longer resume pending is a
function of the subchannel state existing when the
resume-pending condition is recognized and the
state of the device if channel-program execution is
resumed.

If the subchannel is in the suspended state when the
resume-pending condition is recognized, the CCW
that caused the suspension is refetched, the setting
of the suspend flag is examined, and one of the fol-
lowing actions is taken by the channel subsystem:

1. If the CCW suspend flag is one, the device is not
selected, the subchannel is no longer resume
pending, and the channel-program execution
remains suspended.

Bit Meaning
20 Resume pending
21 Start pending
22 Halt pending
23 Clear pending
24 Subchannel active
25 Device active
26 Suspended

16-15

2. If the CCW suspend flag is zero, the channel
subsystem attempts to resume channel-program
execution by performing a modified start func-
tion. The resumption of channel-program execu-
tion appears to the device as the initiation of a
new channel-program execution. The resume
function causes the channel subsystem to per-
form the path-management operation as if a new
start function were being initiated, using the ORB
parameters previously passed to the subchannel
by START SUBCHANNEL with the exception that
the channel-program address is the address of
the CCW that caused the suspension of the
channel-program execution.

The subchannel remains resume pending when,
during the performance of the start function, the
channel subsystem (1) determines that it is not
possible to attempt to initiate the I/O operation for
the first command, (2) determines that an
attempt to initiate the I/O operation for the first
command does not result in the command being
accepted, or (3) detects an IFCC or CCC condi-
tion and is unable to determine whether the first
command has been accepted. (See “Start Func-
tion and Resume Function” on page 15-20.)

The subchannel is no longer resume pending
when any of the following events occurs:

a. While performing the start function, the sub-
channel becomes subchannel-and-device
active or device active only, or the first com-
mand is accepted with channel-end and
device-end initial status and the CCW does
not specify command chaining.

b. CLEAR SUBCHANNEL is executed.

c. TEST SUBCHANNEL clears any combina-
tion of primary, secondary, and alert status or
clears the status-pending condition alone.

d. TEST SUBCHANNEL clears intermediate
status while the subchannel is suspended.

e. CANCEL SUBCHANNEL is executed with a
resulting condition code 0.

If the subchannel is not in the suspended state when
the resume-pending condition is recognized, the
CCW suspend flag of the most recently fetched
CCW, if any, is examined, and one of the following
actions is taken by the channel subsystem:

1. If a CCW has not been fetched or the suspend
flag of the most recently fetched CCW is zero,
the subchannel is no longer resume pending,
and the resume function is not performed.

2. If the suspend flag of the most recently fetched
CCW is one, the subchannel is no longer resume
pending, and the CCW is refetched. The sub-
channel proceeds with channel-program execu-
tion if the suspend flag of the refetched CCW is
zero. The subchannel suspends channel-pro-
gram execution if the suspend flag of the
refetched CCW is one.

Some models recognize a resume-pending condition
only after a CCW having an S flag validly set to one is
fetched. Therefore, if a subchannel is resume pend-
ing and, during the execution of the channel program,
no CCW is fetched that has an S flag validly set to
one, the subchannel remains resume pending until
the primary interruption condition is cleared by TEST
SUBCHANNEL.

Start-Pending (Bit 21): When one, bit 21 indicates
that the subchannel is start pending. The channel
subsystem may or may not be in the process of per-
forming the start function. The subchannel becomes
start pending when condition code 0 is set for START
SUBCHANNEL. The subchannel remains start pend-
ing when, during the performance of the start func-
tion, the channel subsystem (1) determines that it is
not possible to attempt to initiate the I/O operation for
the first command, (2) determines that an attempt to
initiate the I/O operation for the first command does
not result in the command being accepted, or
(3) detects an IFCC or CCC condition and is unable
to determine whether the first command has been
accepted. (See “Start Function and Resume Func-
tion” on page 15-20.)

The subchannel becomes no longer start pending
when any of the following occurs:

1. While performing the start function, the subchan-
nel becomes subchannel-and-device active or
device active only, or the first command is
accepted with channel-end and device-end initial
status and the CCW does not specify command
chaining.

2. The subchannel becomes suspended because
of a suspend flag validly set to one in the first
CCW.

3. CLEAR SUBCHANNEL is executed.

16-16 The z/Architecture I/O Architecture

4. TEST SUBCHANNEL clears any combination of
primary, secondary, and alert status or clears the
status-pending condition alone.

5. CANCEL SUBCHANNEL is executed with a
resulting condition code 0.

Halt-Pending (Bit 22): When one, bit 22 indicates
that the subchannel is halt pending. The channel
subsystem may or may not be in the process of per-
forming the halt function. The subchannel becomes
halt pending when condition code 0 is set for HALT
SUBCHANNEL. The subchannel remains halt pend-
ing when, during the performance of the halt function,
the channel subsystem (1) determines that it is not
possible to attempt to issue the halt signal to the
device, (2) determines that the attempt to issue the
halt signal to the device is not successful, or
(3) detects an IFCC or CCC condition and is unable
to determine whether the halt signal is issued to the
device. (See “Halt Function” on page 15-16.)

The subchannel is no longer halt pending when any
of the following occurs:

1. While performing the halt function, the channel
subsystem determines that the halt signal has
been issued to the device.

2. CLEAR SUBCHANNEL is executed.

3. TEST SUBCHANNEL clears any combination of
primary, secondary, and alert status or clears the
status-pending condition alone.

4. TEST SUBCHANNEL clears intermediate status
while the subchannel is suspended.

Clear-Pending (Bit 23): When one, bit 23 indi-
cates that the subchannel is clear pending. The
channel subsystem may or may not be in the process
of performing the clear function. The subchannel
becomes clear pending when condition code 0 is set
for CLEAR SUBCHANNEL. The subchannel remains
clear pending when, during performance of the clear
function, the channel subsystem (1) determines that
it is not possible to attempt to issue the clear signal to
the device, (2) determines that the attempt to issue
the clear signal to the device is not successful, or
(3) detects an IFCC or CCC condition and is unable
to determine whether the clear signal is issued to the
device. (See “Clear Function” on page 15-14.)

The subchannel is no longer clear pending when
either of the following occurs:

1. While performing the clear function, the channel
subsystem determines that the clear signal has
been issued to the device.

2. TEST SUBCHANNEL clears the status-pending
condition alone.

Subchannel Active (Bit 24): When one, bit 24
indicates that the subchannel is subchannel active. A
subchannel is said to be subchannel active when an
I/O operation is currently being performed at the sub-
channel. The subchannel becomes subchannel
active when the first command is accepted and the
start function or resume function is not immediately
concluded at the subchannel. (See “Immediate Con-
clusion of Command-Mode I/O Operations” on
page 15-78.)

The subchannel is no longer subchannel active when
any of the following occurs:

1. The subchannel becomes suspended.

2. The subchannel becomes status pending with
primary status.

3. CLEAR SUBCHANNEL is executed.

4. The device appears not operational during per-
formance of a halt function.

The subchannel does not become subchannel active
during performance of the function specified by either
a HALT SUBCHANNEL or a CLEAR SUBCHANNEL
instruction.

Device Active (Bit 25): When one, bit 25 indicates
that the subchannel is device active. A subchannel is
said to be device active when an I/O operation is cur-
rently in progress at the associated device. The sub-
channel becomes device active when the first
command is accepted.

The subchannel is no longer device active when any
of the following occurs:

1. The subchannel becomes suspended.

2. The subchannel becomes status pending with
secondary status.

3. CLEAR SUBCHANNEL is executed.

4. The device appears not operational during per-
formance of a halt function.

16-17

If the subchannel is not start pending or if the status
accepted from the device also describes an alert
condition, the subchannel becomes status pending
with secondary status. After the status has been
accepted from the device, the device is capable of
accepting a command for performing a new I/O oper-
ation. If the subchannel is start pending and the sta-
tus is device end or device end with control unit end,
then the channel subsystem discards the status and
performs the start function for the new channel pro-
gram. (See“Start Function and Resume Function” on
page 15-20) In this situation, the subchannel does
not become status pending with the secondary inter-
ruption condition, and the status is not made avail-
able to the program.

The subchannel does not become device active
during performance of the functions specified by
either a HALT SUBCHANNEL or a CLEAR SUB-
CHANNEL instruction.

Suspended (Bit 26): When one, bit 26 indicates
that the subchannel is suspended. A subchannel is
said to be suspended when channel-program execu-
tion is currently suspended. The subchannel
becomes suspended as part of the suspend function.
(See “Suspension of CCW Channel-Program Execu-
tion” on page 15-73.)

The subchannel is no longer suspended when any of
the following occurs:

1. As part of the resume function following the exe-
cution of RESUME SUBCHANNEL when the
subchannel becomes subchannel-and-device
active or device active only, or the first command
is accepted for channel-end and device-end ini-
tial status, with or without status modifier, and the
CCW does not specify command chaining.

2. CLEAR SUBCHANNEL is executed.

3. TEST SUBCHANNEL clears any combination of
primary, secondary, and alert status or clears the
status-pending condition alone.

4. TEST SUBCHANNEL clears intermediate status
while the halt function is specified.

5. CANCEL SUBCHANNEL is executed with a
resulting condition code 0.

Programming Note: When an SCSW is stored by
STORE SUBCHANNEL or TEST SUBCHANNEL fol-
lowing CLEAR SUBCHANNEL but prior to the sub-

channel becoming status pending, and the
subchannel-active bit, bit 24 of word 0, is stored as
zero, this does not mean that data transfer has
stopped for the device. The program cannot deter-
mine whether data transfer has stopped until the sub-
channel becomes status pending as a result of
performing the clear function.

Status Control (SC)
The status-control field is contained in bit positions
27-31 of the first word of the SCSW. This field pro-
vides the program with a summary-level indication of
the interruption condition described by either sub-
channel or device status, the Z bit, or, in the case of
the subchannel-suspended interruption, the sus-
pended bit, bit 26. More than one summary indication
may be signaled as a result of existing conditions at
the subchannel. Whenever the subchannel is
enabled (see “Enabled (E)” on page 15-3) and at
least bit 31 is one, the subchannel is said to be status
pending. Whenever the subchannel is disabled, the
subchannel is not made status pending. Bit 31 of
SCSW word 0 is meaningful at an installed subchan-
nel whenever the subchannel is valid (see “Device
Number Valid (V)” on page 15-4); bits 27-30 are
meaningful when bit 31 is one. The status-control bits
are defined as follows:

Alert Status (Bit 27): When one (and when the
status-pending bit is also one), bit 27 indicates an
alert interruption condition exists. In such a case, the
subchannel is said to be status pending with alert
status. An alert interruption condition is recognized
when alert status is present at the subchannel. Alert
status may be subchannel status or device status.
Alert status is status generated by either the channel
subsystem or the device under any of the following
conditions:

• The subchannel is idle (activity-control bits 20-26
and status-control bit 31 are zeros).

• The subchannel is start pending, and the status
condition precludes initiation of the I/O operation.

• The subchannel is subchannel-and-device
active, and the status condition has suppressed
command chaining or would have suppressed
command chaining if chaining had been speci-
fied (see “CCW Channel Program Chaining” on
page 15-60).

• The subchannel is subchannel-and-device
active, command chaining is not specified, the

16-18 The z/Architecture I/O Architecture

execution of the channel program has just been
concluded, and the status presented by the
device is attempting to alter the sequential exe-
cution of commands (see the publication
ESA/390 Common I/O-Device Commands,
SA22-7204, for more information on the use of
status modifier to alter the sequential execution
of commands).

• The subchannel is device active only, and the
status presented by the device is other than
device end, control unit end, or device end and
control unit end.

• The subchannel is suspended (bit 26 is one).

If the subchannel is start pending when an alert inter-
ruption condition is recognized, the subchannel
becomes status pending with alert status, deferred
condition code 1 is set, the start-pending bit remains
one, and the performance of the pending I/O opera-
tion is not initiated.

When TEST SUBCHANNEL is executed and stores
an SCSW with the alert-status bit and the status-
pending bit as ones in the IRB, the alert interruption
condition is cleared at the subchannel. The alert
interruption condition is also cleared during the exe-
cution of CLEAR SUBCHANNEL.

Whenever alert status is present at the subchannel, it
is brought to the attention of the program. Examples
of alert status include attention, device end (which
signals a transition from the not-ready to the ready
state), incorrect length, program check, and unit
check.

Intermediate Status (Bit 28): When one (and
when the status-pending bit is also one), bit 28 indi-
cates an intermediate interruption condition exists. In
such a case, the subchannel is said to be status
pending with intermediate status. Intermediate status
can be indicated when the Z bit (of the subchannel-
control field), the suspended bit (of the activity-con-
trol field), or the PCI bit (of the subchannel-status
field) is one.

When the initial-status-interruption-control bit is one
in the command-mode ORB, the subchannel
becomes status pending with intermediate status
(the Z bit indicated) only after the subchannel is sub-
channel active. If the subchannel does not become
subchannel active, the Z condition is not generated.

When suspend control is specified and the genera-
tion of an intermediate interruption condition due to
suspension is not suppressed in the command-mode
ORB, then the subchannel can become status pend-
ing with intermediate status due to suspension if a
CCW becomes current that contains the suspend
flag set to one. When the suspend flag is specified in
the first CCW of a channel program, channel-pro-
gram execution is suspended, and the subchannel
becomes status pending with intermediate status
(the suspended bit indicated) before the command in
the first CCW is transferred to the device. When the
suspend flag is specified in a CCW fetched during
command chaining, then channel-program execution
is suspended, and the subchannel becomes status
pending with intermediate status (the suspended bit
is indicated), only after the execution of the preceding
CCW is complete.

When the PCI flag is specified in a CCW, the genera-
tion of an intermediate interruption condition due to
PCI depends on whether the CCW is the first CCW of
the channel program. When the PCI flag is specified
in the first CCW of a channel program, the subchan-
nel becomes status pending with intermediate status
(the PCI bit indicated) only after initial status is
received for the first CCW of the channel program
indicating the command has been accepted. When
the PCI flag is specified in a CCW fetched while
chaining, the subchannel becomes status pending
with intermediate status (the PCI bit indicated) only
after the execution of the preceding CCW is com-
plete. If chaining occurs before an interruption condi-
tion containing PCI is cleared by TEST
SUBCHANNEL, the condition is carried over to the
next CCW. This carry-over occurs during both data
and command chaining, and, in either case, the con-
dition is propagated through the transfer-in-channel
command.

If the subchannel is status pending with intermediate
status when HALT SUBCHANNEL is executed, the
intermediate interruption condition remains at the
subchannel, but the interruption request, if any, is
withdrawn, and the subchannel becomes no longer
status-pending. The subchannel remains no longer
status pending until performance of the halt function
has ended. The subchannel then becomes status
pending with intermediate status indicated (possibly
together with any combination of primary, secondary,
and alert status).

When TEST SUBCHANNEL is executed and stores
an SCSW with the intermediate-status bit and the

16-19

status-pending bit as ones in the IRB, the intermedi-
ate interruption condition is cleared at the subchan-
nel. The intermediate interruption condition is also
cleared at the subchannel during the execution of
CLEAR SUBCHANNEL.

Primary Status (Bit 29): When one (and when the
status-pending bit is also one), bit 29 indicates a pri-
mary interruption condition exists. In such a case, the
subchannel is said to be status pending with primary
status. A primary interruption condition is a solicited
interruption condition that indicates the completion of
the start function at the subchannel. The primary
interruption condition is described by the SCSW
stored. When an I/O operation is terminated by HALT
SUBCHANNEL but the halt signal is not issued to the
device because the device appeared not operational,
the subchannel is made status pending with primary
status (and secondary status) with both the subchan-
nel-status field and the device-status field set to zero.

When TEST SUBCHANNEL is executed and stores
an SCSW with the primary-status bit and the status-
pending bit as ones in the IRB, the primary interrup-
tion condition is cleared at the subchannel. The pri-
mary interruption condition is also cleared at the
subchannel during the execution of CLEAR SUB-
CHANNEL.

Secondary Status (Bit 30): When one (and when
the status-pending bit is also one), bit 30 indicates a
secondary interruption condition exists. In such a
case, the subchannel is said to be status pending
with secondary status. A secondary interruption con-
dition is a solicited interruption condition that nor-
mally indicates the completion of the I/O operation at
the device. The secondary interruption condition is
described by the SCSW stored.

When an I/O operation is terminated by HALT SUB-
CHANNEL but the halt signal is not issued to the
device because the device appeared not operational,
the subchannel is made status pending with second-
ary status (and primary status if the subchannel is
also subchannel active) with zeros for subchannel
and device status.

When TEST SUBCHANNEL is executed and stores
an SCSW with the secondary-status bit as one in the
IRB, the secondary interruption condition is cleared
at the subchannel. The secondary interruption condi-
tion is also cleared at the subchannel during the exe-
cution of CLEAR SUBCHANNEL.

Status-Pending (Bit 31): When one, bit 31 indi-
cates that the subchannel is status pending and that
information describing the cause of the interruption
condition is available to the program. The subchannel
becomes status pending whenever intermediate, pri-
mary, secondary, or alert status is generated. When
HALT SUBCHANNEL is executed, designating a sub-
channel that is idle, the subchannel becomes status
pending subsequent to performance of the halt func-
tion to notify the program that the halt function has
been completed. When TEST SUBCHANNEL is exe-
cuted, thus storing an SCSW with the status-pending
bit as one in the IRB, the status-pending condition is
cleared at the subchannel. The status-pending condi-
tion is also cleared at the subchannel during the exe-
cution of CLEAR SUBCHANNEL. When CLEAR
SUBCHANNEL is executed and the designated sub-
channel is operational, the subchannel becomes sta-
tus pending subsequent to performance of the clear
function to notify the program that the clear function
has been completed.

Note: The status-pending bit, in conjunction with the
remaining bits of the status-control field, indicates the
type of status condition. For example, if bits 29 and
31 are ones, the subchannel is status pending with
primary status. Alternatively, if only bit 31 is one, then
the subchannel is said to be status pending or status
pending alone. If only bit 31 is one in the status-con-
trol field, the settings of all bits in the subchannel-sta-
tus and device-status fields are unpredictable. If bit
31 is not one, then the remaining bits of the status-
control field are not meaningful.

CCW-Address Field

Bits 1-31 of word 1 form an absolute address. The
address indicated is a function of the subchannel
state when the SCSW is stored, as indicated in
Figure 16-6 on page 16-20. When the subchannel-
status field indicates channel-control check, channel-
data check, or interface-control check, the CCW-
address field is usable for recovery purposes if the
CCW-address field-validity flag in the ESW is one.

Programming Note: When a CCW address, either
detected in the channel-program address (see
“Channel-Program Address” on page 15-28) or gen-
erated during chaining, would cause the channel
subsystem to fetch a CCW from a location greater
than 224 - 1 while format-0 CCWs are specified for
the operation, the invalid address is stored in the
CCW-address field of the SCSW without truncation.

16-20 The z/Architecture I/O Architecture

If the invalid address causes the channel subsystem,
while chaining, to fetch a CCW from a location
greater than 231 - 1 while format-1 CCWs are speci-

fied for the operation, the rightmost 31 bits of the
invalid address are stored in the CCW-address field.

Subchannel State1 CCW Address2

Start pending (UUUU0/AIPSX)3 Unpredictable

Start pending and device active (UUUU0/AIPSX)3 Unpredictable

Subchannel-and-device active (UUUU0/AIPSX)3 Unpredictable

Device active only (UUUU0/AIPSX) Unpredictable

Suspended (YYYYY/AIPSX)3 See note 1

Status pending (10001/AIPSX) because of
unsolicited alert status from the device while the subchannel was
start pending3

Channel-program address + 8

Status pending (0Y111/AIPSX) because the device appeared not
operational on all paths3

Channel-program address + 8

Status pending (10011/AIPSX) because of solicited alert status from
the device while the subchannel was start pending and device
active3

Channel-program address + 8

Status pending (10111/AIPSX) because of solicited alert status
generated by the channel subsystem while the subchannel was start
pending3 or start pending and device active3

See note 2

Status pending (01001/AIPSX) for the program-controlled-
interruption condition while the subchannel was subchannel-and-
device active3

CCW + 8 of the CCW that contained the last
recognized PCI, or 8 higher than a CCW that has
subsequently become current

Status pending (01001/AIPSX) for the initial-status-interruption
condition while the subchannel was subchannel-and-device active3

CCW + 8 of the CCW causing the intermediate
interruption condition, or a CCW that has
subsequently become current

Status pending (1Y1Y1/AIPSX); termination occurred because of
program check caused by one of the following conditions:3

Bit 24 of word 1 of the ORB set to one; incorrect-length-indica-
tion-suppression facility not installed

Channel-program address + 8

Unused bits in ORB not set to zeros Channel-program address + 8

Invalid CCW-address specification in transfer in channel (TIC) Address of TIC + 8

Invalid CCW-address specification in the channel-program
address in the ORB

Channel-program address + 84

Figure 16-6. (Part 1 of 4) CCW Address as Function of Subchannel State

16-21

Subchannel State1 CCW Address2

Invalid CCW address in TIC Address of TIC + 8

Invalid CCW address in the channel-program address in the
ORB

Channel-program address + 84

Invalid CCW address while chaining Invalid CCW address + 8

Invalid command code Address of invalid CCW + 85

Invalid count Address of invalid CCW + 85

Invalid IDAW-address or MIDAW-address specification Address of invalid CCW + 85

Invalid IDAW or MIDAW address in CCW Address of invalid CCW + 85

Invalid IDAW address while sequentially fetching IDAWs or
invalid MIDAW address while sequentially fetching MIDAWs

Address of current CCW + 8

Invalid data-address specification,
format 1

Address of invalid CCW + 85

Invalid data address in a CCW Address of invalid CCW + 85

Invalid data address while sequentially accessing storage Address of current CCW + 8

Invalid data address in IDAW or MIDAW Address of current CCW + 8

Invalid IDAW or MIDAW specification Address of current CCW + 8

Invalid CCW, format 0 or 1, for a CCW other than a TIC Address of invalid CCW + 85

Invalid suspend flag – CCW fetched during data chaining has
suspend flag set to one

Address of invalid CCW + 8

Invalid suspend flag – CCW has suspend flag set to one, but
suspend control was not specified in the ORB

Address of invalid CCW + 8

Invalid MIDA flag – CCW has MIDA flag set to one, but modi-
fied-CCW-indirect-data addressing was not specified in the
ORB

Address of invalid CCW + 8

Invalid MIDA flag – CCW has MIDA flag set to one and either
the skip flag or the IDA flag or both are set to one

Address of invalid CCW + 8

Invalid CCW, format 1, for a TIC Address of TIC + 8

Invalid sequence – two TICs Address of second TIC + 8

Invalid sequence – 256 or more CCWs without data transfer Address of 256th CCW + 8

Status pending (1Y1Y1/AIPSX); termination occurred because of
protection check detected as follows:3

On a CCW access Address of protected CCW + 85

On data or an IDAW or a MIDAW access Address of current CCW + 8

Figure 16-6. (Part 2 of 4) CCW Address as Function of Subchannel State

16-22 The z/Architecture I/O Architecture

Subchannel State1 CCW Address2

Status pending (1Y1Y1/AIPSX); termination
occurred because of chaining check3

Address of current CCW + 8

Status pending (YY1Y1/AIPSX); termination
occurred under count control3

Address of current CCW + 86

Status pending (1Y1Y1/AIPSX); operation
prematurely terminated by the device because of alert status3

Address of current CCW + 86

Status pending (YYYY1/AIPSX) after termination by HALT SUB-
CHANNEL and the activity-control-field bits indicated below set to
ones:

Status pending alone Unpredictable

Start pending3 Unpredictable

Device active and start pending3 Unpredictable

Device active Unpredictable

Subchannel active and device active3 CCW + 8 of the last-executed CCW

Suspended CCW + 8 of CCW causing suspension

Suspended and resume pending Unpredictable

Status pending (00001/AIPSX) after termination by CLEAR SUB-
CHANNEL

Unpredictable

Status pending (YY1Y1/AIPSX); operation
completed normally at the subchannel3

CCW + 8 of the last-executed CCW6

Status pending (00011/AIPSX) Unpredictable

Status pending (10001/AIPSX) Unpredictable

Status pending (00001/AIPSX) Unpredictable

Status pending (1Y111/AIPSX); command chaining suppressed be-
cause of alert status other than channel-control check or interface-
control check3

Address of current CCW + 86

Status pending (1YYY1/AIPSX) because of alert status for channel-
control check or interface-control check3

See note 36

Status pending (1Y1Y1/AIPSX) because of
channel-data check3

See note 36

Figure 16-6. (Part 3 of 4) CCW Address as Function of Subchannel State

16-23

Explanation:

1 The meaning of the notation used in this column is as follows:
A Alert status
I Intermediate status
P Primary status
S Secondary status
X Status Pending

The possible combination of status-control-bit settings is shown to the left of the "/" symbol by the use of these sym-
bols:

0 Corresponding condition is not indicated
1 Corresponding condition is indicated
U Unpredictable. The corresponding condition is not meaningful when the

subchannel is not status pending.
Y The corresponding condition is not significant and is indicated as a

function of the subchannel state.

2 A CCW becomes current when (1) it is the first CCW of a channel program and has been fetched, (2) while command
chaining, the previous CCW is no longer current and the new CCW has been fetched, or (3) in the case of data chain-
ing, the new CCW takes over control of the I/O operation (see the section "Data Chaining" in Chapter 15, "Basic I/O
Functions"). If chaining is not specified or is suppressed, a CCW is no longer current and becomes the last-executed
CCW when secondary status has been accepted by the channel subsystem. During command chaining, a CCW is
no longer current when device-end status has been accepted or, in the case of data chaining, when the last byte of
data for that CCW has been accepted.

3 The subchannel may also be resume pending.

4 The stored address is the channel-program address (in the ORB) + 8 even though it is either invalid or protected.

5 The stored address is the address of the current CCW + 8 even though it is either invalid or protected.

6 Incorrect length is indicated as a function of the setting of the suppress-length-indication flag in the current CCW (see
the section "Channel-Command Word" in Chapter 15, "Basic I/O Functions").

Notes:

1. Unless the subchannel is also resume pending, the address stored is the address of the CCW that caused suspen-
sion, plus 8. Otherwise, the address stored is unpredictable.

2. The address of the CCW is given as a function of the alert status indicated. For example, if a program-check or pro-
tection-check condition is recognized, the CCW address stored is the same as for the entry for program check or
protection check, respectively, in this table. Alternatively, if alert status for interface-control check or channel-control
check is indicated, the CCW address stored is either the channel-program address (in the ORB) + 8 or invalid as
specified by the field-validity flags in the subchannel logout. If alert status for path-verification required is indicated,
the CCW address stored is the channel-program address (in the ORB) + 8.

3. Bit 21 of the subchannel-logout information, when stored as one, indicates that the address is CCW + 8 of the last-
fetched CCW if the command for the CCW has not been accepted by the device. If the command has been accepted
by the device at the time the error condition is recognized, then the address stored is the address of the CCW + 8 of
the last-executed CCW.

Figure 16-6. (Part 4 of 4) CCW Address as Function of Subchannel State

16-24 The z/Architecture I/O Architecture

Device-Status Field

Device-status conditions are generated by the I/O
device and are presented to the channel subsystem
over the channel path. The timing and causes of
these conditions for each type of device are specified
in the System Library publication for the device. The
device-status field is meaningful whenever the sub-
channel is status pending with any combination of
primary, secondary, intermediate, or alert status.
Whenever the subchannel is status pending with
intermediate status alone, the device-status field is
zero. When the subchannel-status field indicates
channel-control check, channel-data check, or inter-
face-control check, the device-status field is usable
for recovery purposes if the device-status field-valid-
ity flag in the ESW is one. When the subchannel is
status pending with deferred condition code 3 indi-
cated, the contents of the device-status field are not
meaningful.

If, within a system, the I/O device is accessible from
more than one channel path, status related to chan-
nel-subsystem-initiated operations in the single-path
mode (solicited status) is signaled over the initiating
channel path. Devices operating in the multipath
mode may signal solicited status over any channel
path that belongs to the same path group as the initi-
ating channel path. The handling of conditions not
associated with I/O operations (unsolicited alert sta-
tus), such as attention, unit exception, and device
end due to transition from the not-ready to the ready
state, depends on the type of device and condition
and is specified in the System Library publication for
the device.

The channel subsystem does not modify the status
bits received from the I/O device. These bits appear
in the SCSW as received over the channel path. For
more information on the status bits received from the
I/O device, see the publication ESA/390 Common
I/O-Device Commands, SA22-7204.

Subchannel-Status Field

Subchannel-status conditions are detected and indi-
cated in the SCSW by the channel subsystem.
Except for the conditions caused by equipment mal-
functioning, they can occur only while the channel
subsystem is involved with the performance of a halt,
resume, or start function. The subchannel-status
field is meaningful whenever the subchannel is status

pending with any combination of primary, secondary,
intermediate, or alert status. Individual bits contained
in the subchannel-status field may be unpredictable
even when the subchannel-status field is meaningful.
When the subchannel is status pending with deferred
condition code 3 indicated, the contents of the sub-
channel-status field are not meaningful.

Program-Controlled Interruption
An intermediate interruption condition is generated
after a CCW with the program-controlled-interruption
(PCI) flag set to one becomes the current CCW. The
I/O interruption due to the PCI flag may be delayed
an unpredictable amount of time because of masking
of the interruption request or other activity in the sys-
tem. (See “Program-Controlled Interruption” on
page 15-64.) When the channel subsystem recog-
nizes an alert interruption condition due to either a
channel-control-check condition or an interface-con-
trol-check condition, then any previously existing
intermediate interruption condition caused by a PCI
flag in a CCW may or may not be recognized by the
channel subsystem.

Detection of the PCI condition does not affect the
progress of the I/O operation.

Incorrect Length
Incorrect length occurs when the number of bytes
contained in the storage areas assigned for the I/O
operation is not equal to the number of bytes
requested or offered by the I/O device. Incorrect
length is indicated for one of the following reasons:

Long Block on Input: During a read, read-back-
ward, or sense operation, the device attempted to
transfer one or more bytes to main storage after the
assigned main-storage areas were filled, or the
device indicated that more data could have been
transferred if the count had been larger. The extra
bytes have not been placed in main storage. The
count in the SCSW is zero.

Long Block on Output: During a write or control
operation, the device requested one or more bytes
from the channel subsystem after the assigned main-
storage areas were exhausted, or the device indi-
cated that more data could have been transferred if
the count had been larger. The count in the SCSW is
zero.

Short Block on Input: The number of bytes trans-
ferred during a read, read-backward, or sense opera-

16-25

tion is insufficient to fill the main-storage areas
assigned to the operation. The count in the SCSW is
not zero.

Short Block on Output: The device terminated a
write or control operation before all information con-
tained in the assigned main-storage areas was trans-
ferred to the device. The count in the SCSW is not
zero.

The incorrect-length indication is suppressed when
the current CCW has the SLI flag set to one and the
CD flag set to zero. The indication does not occur for
operations rejected during the initiation sequence.
The indication also does not occur for immediate
operations when the count field is nonzero and the
subchannel is in the incorrect-length-suppression
mode. The incorrect-length indication is not meaning-
ful when the count field of the SCSW is not meaning-
ful.

Presence of the incorrect-length condition sup-
presses command chaining unless the SLI flag in the
CCW is one or unless the condition occurs in an
immediate operation when the subchannel is in the
incorrect-length-suppression mode.

Program Check
Program check occurs when programming errors are
detected by the channel subsystem. The condition
can be due to the following causes:

Invalid CCW-Address Specification: The chan-
nel-program address (CPA) or the transfer-in-channel
command does not designate the CCW on a double-
word boundary, or bit 0 of the CPA or bit 32 of a for-
mat-1 CCW specifying the transfer-in-channel
command is not zero.

Invalid CCW Address: The channel subsystem
has attempted to fetch a CCW from a main-storage
location that is not available. An invalid CCW address
can occur because the program has designated an
invalid address in the channel-program-address field
of the command-mode ORB or in the transfer-in-
channel command or because, on chaining, the
channel subsystem attempts to fetch a CCW from an
unavailable location. A main-storage location is
unavailable when any of the following conditions is
detected:

1. The absolute CCW address does not correspond
to a physical location.

2. Format-0 CCWs are specified in the ORB, and
the absolute CCW address is greater than
224 - 1.

3. Format-1 CCWs are specified in the ORB, and
the absolute CCW address is greater than 231 - 1

Invalid Command Code: There are zeros in the
four rightmost bit positions of the command code in
the CCW designated by the CPA or in a CCW fetched
on command chaining. The command code is not
tested for validity during data chaining.

Invalid Count, Format 0: A CCW, which is other
than a CCW specifying transfer in channel, contains
zeros in bit positions 48-63.

Invalid Count, Format 1: A CCW that specifies
data chaining or a CCW fetched while data chaining
contains zeros in bit positions 16-31.

Invalid IDAW-Address or MIDAW-Address Specifi-
cation: Indirect data addressing or modified indi-
rect data addressing is specified, and any of the fol-
lowing conditions is detected:

1. The ORB specifies format-1 IDAWs, the CCW
specifies indirect data addressing, and the con-
tents of the data-address field in the CCW do not
designate the first IDAW on a word boundary;
that is, bits 30 and 31 (format-0 CCW) or 62 and
63 (format-1 CCW) are not zeros.

2. The ORB specifies format-2 IDAWs, the CCW
specifies indirect data addressing, and the con-
tents of the data-address field in the CCW do not
designate the first IDAW on a doubleword bound-
ary; that is, bits 29-31 (format-0 CCW) or 61-63
(format-1 CCW) are not zeros.

3. The ORB specifies modified-CCW-indirect-data
addressing, the CCW specifies modified-indirect-
data addressing, and the contents of the data-
address field in the CCW do not designate the
first MIDAW on a quadword boundary.

Invalid IDAW or MIDAW Address: The channel
subsystem has attempted to fetch an IDAW or
MIDAW from a main-storage location that is not avail-
able. An invalid IDAW or MIDAW address can occur
because the program has designated an invalid
address in a CCW that specifies indirect data
addressing or modified indirect data addressing, or
because the channel subsystem, on sequentially
fetching IDAWs or MIDAWs, attempts to fetch from

16-26 The z/Architecture I/O Architecture

an unavailable location. A main-storage location is
unavailable when any of the following conditions is
detected:

1. The absolute IDAW or MIDAW address does not
correspond to a physical location.

2. Format-0 CCWs are specified in the ORB, and
the absolute IDAW or MIDAW address is greater
than 224 - 1.

3. Format-1 CCWs are specified in the ORB, and
the absolute IDAW or MIDAW address is greater
than 231 - 1.

Invalid Data-Address Specification: Bit 32 of a
format-1 CCW is not zero.

Invalid Data Address: When any of the following
conditions is detected, an invalid data address is rec-
ognized by the channel subsystem.

1. Use of the data address has caused the channel
subsystem to attempt to wrap from the maximum
storage address to zero.

2. Use of the data address has caused the channel
subsystem to attempt to wrap from zero to the
maximum storage address during a read-back-
ward operation.

3. The channel subsystem has attempted to trans-
fer data to a storage location that is unavailable.

An invalid data address can occur because the pro-
gram has designated an unavailable location in a
CCW or in an IDAW or MIDAW, or because the chan-
nel subsystem, on sequentially accessing storage,
attempted to access an unavailable location. A main-
storage location is unavailable when any of the fol-
lowing conditions is detected:

1. The absolute address of the location does not
correspond to a physical location.

2. Format-0 CCWs are specified in the ORB, indi-
rect data addressing is not specified in the CCW,
and the absolute address is greater than 224 - 1.

3. Format-1 CCWs are specified in the ORB, indi-
rect data addressing is not specified in the CCW,
and the absolute address is greater than 231 - 1.

4. Format-1 IDAWs are specified in the ORB, indi-
rect data addressing is specified in the CCW, and
the absolute address is greater than 231 - 1.

5. When the address-limit-checking facility is
installed, the absolute address is outside the
addressing range specified by SET ADDRESS
LIMIT, and the limit mode at the subchannel is
active.

Note: The maximum storage address is determined
as a function of the CCW and IDAW formats used or
MIDAWs used. When neither an IDAW nor a MIDAW
is used, the maximum storage address is a function
of the CCW format specified, as follows:

1. When 24-bit (format 0) CCWs are specified, the
maximum storage address recognized by the
channel subsystem is 224 - 1.

2. When 31-bit (format 1) CCWs are specified, the
maximum storage address recognized by the
channel subsystem is 231 - 1.

When an IDAW is used, the maximum storage
address is a function of the IDAW format specified,
as follows:

1. When 31-bit (format 1) IDAWs are specified, the
maximum storage address recognized by the
channel subsystem is 231 - 1.

2. When 64-bit (format 2) IDAWs are specified, the
maximum storage address recognized by the
channel subsystem is 264 - 1

When a MIDAW is used, the maximum storage
address recognized by the channel subsystem is
264 - 1.

Invalid IDAW or MIDAW Specification: When
any of the following conditions is detected, an invalid
IDAW specification is recognized by the channel sub-
system:

1. Bit 0 of a format-1 IDAW is not zero.

2. A second or subsequent format-1 IDAW does not
designate the location of the beginning byte of a
2 K-byte block or, for read-backward operations,
the location of the ending byte of a 2 K-byte
block.

3. A second or subsequent format-2 IDAW does not
designate the location of the beginning byte of a
2 K-byte or 4 K-byte block, as required by the
2K-IDAW control in the ORB, or, for read-back-
ward operations, the location of the ending byte
of a 2 K-byte or 4 K-byte block.

16-27

When bit 0 of a format-1 IDAW is not zero, the sub-
channel is made status pending with program-check
indicated only after the I/O device attempts to trans-
fer data, just as when an invalid data address that
refers to a nonexistent data area is detected. If the
device ends the operation prior to the transfer of
data, no error condition is reported. See “CCW Indi-
rect Data Addressing” in Chapter 15 for additional
information about the reporting of program-check
conditions.

When any of the following conditions is detected, an
invalid MIDAW specification is recognized by the
channel subsystem:

1. One or more bits defined as reserved in the
MIDAW are not zero.

2. The MIDAW count field contains zeros.

3. The combination of the MIDAW data-address
and count fields specify data addresses that
cross a 4 K-byte block boundary, unless skipping
is in effect for the MIDAW.

4. The MIDAW in control has its last-MIDAW flag
set to zero and the sum of the count values of the
previous MIDAWs in the MIDAW list (MIDAL) and
the MIDAW in control is greater than or equal to
the count value in the CCW.

5. The MIDAW in control has its last-MIDAW flag
set to one and the sum of the count values in the
previous MIDAWs in the MIDAL and the MIDAW
in control do not equal the count value in the
CCW.

6. The MIDAW in control is a second or subsequent
MIDAW whose address is on a 4 K-byte bound-
ary.

Invalid CCW, Format 0: A CCW other than a
CCW specifying transfer in channel does not contain
a zero in bit position 39.

Invalid CCW, Format 1: A CCW other than a
CCW specifying transfer in channel does not contain
a zero in bit position 15, or a CCW specifying transfer
in channel does not contain zeros in bit positions 0-3
and 8-31.

Invalid Suspend Flag: A format-0 or format-1
CCW fetched during data chaining, other than a
CCW specifying transfer in channel, does not contain
a zero in bit position 38 or 14, respectively. A CCW

other than a CCW specifying transfer in channel
does not contain a zero in bit position 38 for a format-
0 CCW or bit position 14 for a format-1 CCW, and
suspend control was not specified by bit 4 of word 1
of the ORB.

Invalid MIDA Flag: When either of the following
conditions is detected, an invalid MIDA flag condition
is recognized by the channel subsystem.

1. Bit 39 (format 0) or bit 15 (format 1) of the CCW
is one, specifying modified CCW indirect data
addressing; however, modified CCW indirect
data addressing was not specified by bit 25 of
word 1 of the ORB.

2. Bit 39 (format 0) or bit 15 (format 1) of the CCW
is one, specifying modified CCW indirect data
addressing, and bit 35 (format 0) or bit 11 (format
1) of the CCW is one, specifying skip.

3. Bit 39 (format 0) or bit 15 (format 1) of the CCW
is one, specifying modified CCW indirect data
addressing, and bit 37 (format 0) or bit 13 (format
1) of the CCW is one, specifying indirect data
addressing.

4. Bit 39 (format 0) or bit 15 (format 1) of the CCW
is one, specifying modified CCW indirect data
addressing, and the designated subchannel is
not associated with channel paths that support
modified CCW indirect data addressing.

Invalid ORB Format: One or more reserved bit
positions in the operation-request block (ORB) is not
zero. (See “Operation-Request Block” on page 15-24
for more information.) If the incorrect-length-indica-
tion-suppression facility is not installed, then bit 24 of
word 1 of the command-mode ORB must also be
zero.

Invalid Sequence: The channel subsystem has
fetched two successive CCWs both of which specify
transfer in channel, or, depending on the model, a
sequence of 256 or more CCWs with command
chaining specified was executed by the channel sub-
system and did not result in the transfer of any data
to or from an I/O device.

Detection of the program-check condition during the
initiation of an operation at the device causes the
operation to be suppressed and the subchannel to be
made status pending with primary, secondary, and
alert status. When the condition is detected after the

16-28 The z/Architecture I/O Architecture

I/O operation has been initiated at the device, the
device is signaled to conclude the operation the next
time the device requests or offers a byte of data or
status. In this situation, the subchannel is made sta-
tus pending as a function of the status received from
the device. The program-check condition causes
command chaining and command retry to be sup-
pressed.

Protection Check
Protection check occurs when the channel subsys-
tem attempts a storage access that is prohibited by
the protection mechanism. Protection applies to the
fetching of CCWs, IDAWs, MIDAWs, and output data
and to the storing of input data. The subchannel key
provided in the ORB is used as the access key for
storage accesses associated with an I/O operation.

Detection of the protection-check condition during
the fetching of the first CCW, IDAW, or MIDAW
causes the operation to be suppressed and the sub-
channel to be made status pending with primary, sec-
ondary, and alert status. When protection check is
detected after the I/O operation has been initiated at
the device, the device is signaled to conclude the
operation after the available data logically prior to the
protection check has been transferred. However, if an
access violation occurs when the channel subsystem
is in the process of fetching either a new IDAW,
MIDAW, or a new CCW while data chaining, and if
the device signals the channel-end condition before
transferring any data designated by the new CCW,
IDAW or MIDAW, then the status is accepted, and the
subchannel becomes status pending with primary
and alert status and with protection check indicated.
Other indications may accompany the protection-
check indication as a function of the operation speci-
fied by the CCW, the status received from the device,
and the current state of the subchannel. The protec-
tion-check condition causes command chaining and
command retry to be suppressed.

Channel-Data Check
Channel-data check indicates that an uncorrected
storage error has been detected in regard to data,
contained in main storage, that is currently used in
the performance of an I/O operation. The condition
may be indicated when detected, even if the data is
not used when prefetched. Channel-data check is
indicated when data or the associated key has an
invalid checking-block code (CBC) in main storage
when that data is referenced by the channel subsys-
tem.

On an input operation, when the channel subsystem
attempts to store less than a complete checking
block, and invalid CBC is detected on the checking
block in storage, the contents of the location remain
unchanged and with invalid CBC. On an output oper-
ation, whenever channel-data check is indicated, no
bytes from the checking block with invalid CBC are
transferred to the device.

During a storage access, the maximum number of
bytes that can be transferred is model dependent. If a
channel-data-check condition is recognized during
that storage access, the number of bytes transferred
to or from storage may not be detectable by the
channel subsystem. Consequently, the number of
bytes transferred to or from storage may not be cor-
rectly reflected by the residual count. However, the
residual count that is stored in the SCSW, when used
in conjunction with the storage-access code and the
CCW address, designates a byte location within the
block of main storage in which the channel-data-
check condition was recognized.

A condition indicated as channel-data check causes
the current operation, if any, to be terminated. The
subchannel becomes status pending with primary
and alert status, or with primary, secondary, and alert
status, as a function of the status received from the
device. The count and address fields of the SCSW
stored by TEST SUBCHANNEL pertain to the opera-
tion terminated. The extended-status-word-format bit
is one, and subchannel-logout information is stored
in the ESW, when TEST SUBCHANNEL is executed.

Whenever the channel-data-check condition pertains
to prefetched data, the failing-storage-address-valid-
ity flag, bit 6 of the ERW, is one. An address of a
location within the checking block for which the chan-
nel-data-check condition is generated is stored in the
ESW failing-storage-address field.

Uncorrectable storage or key errors detected on
prefetched data while the subchannel is start pend-
ing cause the operation to be canceled before initia-
tion at the device. In this case, the subchannel is
made status pending with primary, secondary, and
alert status, with channel-data check indicated, and
with the ESW failing-storage address stored.

Whenever channel-data check is indicated, no mea-
surement data for the subchannel is stored.

16-29

Channel-Control Check
Channel-control check is caused by any machine
malfunction affecting channel-subsystem controls.
The condition includes invalid CBC on a CCW, an
IDAW, a MIDAW, or the respective associated key.
The condition may be indicated when an invalid CBC
is detected on a prefetched CCW, IDAW, MIDAW, or
the respective associated key, even if that CCW,
IDAW, or MIDAW is not used.

Channel-control check may also indicate that an
error has been detected in the information trans-
ferred to or from main storage during an I/O opera-
tion. However, when this condition is detected, the
error has occurred inboard of the channel path: in the
channel subsystem or in the path between the chan-
nel subsystem and main storage.

Detection of the channel-control-check condition
causes the current operation, if any, to be terminated
immediately. The subchannel is made status pending
with primary and alert status or with primary, second-
ary, and alert status as a function of the type of termi-
nation, the current subchannel state, and the device
status presented, if any. When the channel subsys-
tem recognizes a channel-control-check condition,
any previously existing intermediate interruption con-
dition caused by a PCI flag in a CCW may or may not
be recognized by the channel subsystem. The count
and data-address fields of the SCSW stored by
TEST SUBCHANNEL pertain to the operation termi-
nated. The extended-status-word-format bit is one,
and subchannel-logout information is stored in the
ESW, when TEST SUBCHANNEL is executed.

Whenever the channel-control-check condition per-
tains to an invalid CBC detected on a prefetched
CCW, a prefetched IDAW, a prefetched MIDAW, or
the key associated with the prefetched CCW, the
prefetched IDAW, or the prefetched MIDAW, an
extended-report word with bit 6 set to one, and the
failing-storage address, are stored in the ESW when
TEST SUBCHANNEL is executed.

Channel-control-check conditions encountered while
prefetching when the subchannel is start pending
cause the operation to be canceled before initiation
at the device. In this case, the subchannel is made
status pending with primary, secondary, and alert
status, with channel-control check indicated, and with
a failing-storage address that will be stored in the
ESW.

If a subchannel is halt pending and the channel sub-
system encounters a channel-control-check condi-
tion while performing the halt function for that
subchannel, the subchannel remains halt pending
unless the channel subsystem can determine that
the halt signal was issued. The subchannel remains
halt pending even if the channel subsystem was
attempting to issue the halt signal and is unable to
determine if the halt signal was issued.

If a subchannel is start pending or resume pending
and the channel subsystem encounters a channel-
control-check condition while performing the start
function for that subchannel, the subchannel remains
start pending or resume pending unless the channel
subsystem can determine that the first command
was accepted. The subchannel remains start pend-
ing or resume pending even if the channel subsystem
was attempting to initiate the I/O operation for the
first command and is unable to determine if the com-
mand was accepted. If the channel subsystem is
unable to determine whether the first command was
accepted, the subchannel is made status pending
with at least alert and primary status.

In some situations in which a channel-subsystem
malfunction exists, the channel-control-check condi-
tion may be reported as a machine-check condition.

Whenever channel-control check is indicated, no
measurement data for the subchannel is stored.

Programming Note: If the status-control field of the
SCSW indicates that the subchannel is status pend-
ing with alert status but the field-validity flags of the
SCSW indicate that the device-status field is not
usable for error-recovery purposes, the program
should (1) assume that the channel-control-check
condition occurred while the channel subsystem was
accepting alert status from the device and (2) take
the appropriate action for alert status, even though
the status itself has been lost.

Interface-Control Check
Interface-control check indicates that an invalid sig-
nal has occurred on the channel path. The condition
is detected by the channel subsystem and usually
indicates malfunctioning of an I/O device. Interface-
control check can occur for any of the following rea-
sons:

1. A data or status byte received from a device
while the subchannel is subchannel-and-device

16-30 The z/Architecture I/O Architecture

active or device active has an invalid checking-
block code.

2. The status byte received from a device while the
subchannel is idle, start pending, suspended, or
halt pending has an invalid checking-block code.

3. A device responded with an address other than
the address designated by the channel subsys-
tem during initiation of an operation.

4. During command chaining, the device appeared
not operational.

5. A signal from an I/O device either did not occur
or occurred at an invalid time or had an invalid
duration.

6. The channel subsystem recognized the I/O-
error-alert condition (see “I/O-Error Alert (A)” on
page 16-50).

7. ESW bit 26, indicating device-status check, is set
to one.

Detection of an interface-control check during a
CCW-type IPL I/O operation on a machine that
retries IPL I/O operations on an alternate channel
path causes the channel subsystem to terminate
operations on the current channel path and to retry
the IPL I/O operation on another logically-available
channel path to the designated device, if one is avail-
able, without causing the subchannel to become sta-
tus-pending. (See “CCW-type IPL” on page 17-17 for
additional information.) In all other cases and when
an interface-control check has been detected for a
CCW-type IPL operation on all logically-available
channel paths to the designated device, detection of
the interface-control-check condition causes the cur-
rent operation, if any, to be terminated immediately,
and the subchannel is made status pending with alert
status, primary and alert status, secondary and alert
status, or primary, secondary, and alert status as a
function of the type of termination, the current sub-
channel state, and the device status presented, if
any. When the channel subsystem recognizes an
interface-control-check condition, any previously
existing intermediate interruption condition caused
by a PCI flag in a CCW may or may not be recog-
nized by the channel subsystem. The extended-sta-
tus-word-format bit is one, and subchannel-logout
information is stored in the ESW, when TEST SUB-
CHANNEL is executed.

If a subchannel is halt pending and the channel sub-
system encounters an interface-control-check condi-
tion while performing the halt function for that
subchannel, the subchannel remains halt pending
unless the channel subsystem can determine that
the halt signal was issued. The subchannel remains
halt pending even if the channel subsystem was
attempting to issue the halt signal and is unable to
determine if the halt signal was issued.

If a subchannel is start pending or resume pending
and the channel subsystem encounters an interface-
control-check condition while performing the start
function for that subchannel, the subchannel remains
start pending or resume pending unless the channel
subsystem can determine that the first command
was accepted. The subchannel remains start pend-
ing or resume pending even if the channel subsystem
was attempting to initiate the I/O operation for the
first command and is unable to determine if the com-
mand was accepted. If the channel subsystem is
unable to determine whether the first command was
accepted, the subchannel is made status pending
with at least alert and primary status.

If, while initiating a signaling sequence with the chan-
nel subsystem for the purpose of presenting status or
transferring data, the device presents an address
with invalid parity, the error condition is not made
available to the program since the identity of the
device and associated subchannel are unknown.

Whenever interface-control check is indicated, no
measurement data for the subchannel is stored.

Programming Note: If the status-control field of the
SCSW indicates that the subchannel is status pend-
ing with alert status but the field-validity flags of the
SCSW indicate that the device-status field is not
usable for error-recovery purposes, the program
should (1) assume that the interface-control-check
condition occurred while the channel subsystem was
accepting alert status from the device and (2) take
the appropriate action for alert status, even though
the status itself has been lost.

Chaining Check
Chaining check is caused by channel-subsystem
overrun during data chaining on input operations.
The condition occurs when the I/O-data rate is too
high for the particular resolution of data addresses.
Chaining check cannot occur on output operations.

16-31

Detection of the chaining-check condition causes the
I/O device to be signaled to conclude the operation. It
causes command chaining to be suppressed.

Count Field

Bit positions 16-31 of word 2 contain the residual
count. The count is to be used in conjunction with the
original count specified in the last CCW and, depend-
ing upon existing conditions (see Figure 16-7 on
page 16-32), indicates the number of bytes trans-

ferred to or from the area designated by the CCW.
The count field is meaningful whenever the subchan-
nel is status pending with primary status that consists
of either (1) device status only or (2) device status
together with subchannel status of incorrect length
only, PCI only, or both.

In Figure 16-7 on page 16-32, the contents of the
count field are listed for all cases where the subchan-
nel is start pending, subchannel-and-device active,
device active, suspended, or status pending.

16-32 The z/Architecture I/O Architecture

Subchannel State1 Count2

Start pending (UUUU0/AIPSX)2 Not meaningful3

Start pending and status pending (10YY1/AIPSX)2 Not meaningful3

Start pending and status pending (00111/AIPSX) because the
device appeared not operational on all paths2

Not meaningful3

Start pending and device active (UUUU0/AIPSX)2 Not meaningful3

Suspended (YYYYY/AIPSX)2 Not meaningful3

Subchannel-and-device active (UUUU0/AIPSX)2 Not meaningful3

Device active (UUUU0/AIPSX) Not meaningful3

Status pending (01001/AIPSX) because of program-controlled-in-
terruption condition or initial-status interruption

Not meaningful3

Status pending (1Y1Y1/AIPSX); termination occurred because
of:2

Program check Not meaningful3

Protection check Not meaningful3

Chaining check Not meaningful3

channel-control check See note 1
Interface-control check Not meaningful3

Channel-data check See note 2

Status pending (YY1Y1/AIPSX); termination occurred under
count control2

Correct

Status pending (Y0011/AIPSX)2 Not meaningful3

Status pending (1Y1Y1/AIPSX)2 Correct; residual count of last used CCW

Status pending (1Y111/AIPSX); command chaining suppressed
because of alert status2

Correct; residual count of last used CCW

Status pending (YYYY1/AIPSX); after termination by HALT SUB-
CHANNEL2

Unpredictable

Status pending (00001/AIPSX); after termination by CLEAR SUB-
CHANNEL

Not meaningful3

Status pending (YY1Y1/AIPSX); operation completed normally at
the subchannel2

Correct; indicates the residual count

Status pending (1Y111/AIPSX); command chaining terminated
because of alert status2

Correct; original count of CCW specifying the new I/O
operation

Status pending (10001/AIPSX) because of alert status Not meaningful3

Figure 16-7. (Part 1 of 2) Contents of Count Field in SCSW

16-33

Explanation:

1 In situations where more than a single condition exists because of, for example, alert status that is described by
program check and unit check, the entry appearing first in the table takes precedence.

The meaning of the notation used in this column is as follows:

A Alert status
I Intermediate status
P Primary status
S Secondary status
X Status Pending

The allowed combinations of status-control-bit settings is shown to the left of the "/" symbol by the use of these
symbols:

0 Corresponding condition is not indicated
1 Corresponding condition is indicated
U Unpredictable. The corresponding condition is not meaningful when the

subchannel is not status pending.
Y The corresponding condition is not significant and is indicated as a

function of the subchannel state.

2 The subchannel may also be resume pending.

3 The contents of the count field are not meaningful because the count field is not valid when the SCSW is stored
and the subchannel is in the given state.

Notes:
1. The count is unpredictable unless IDAW/MIDAW check is indicated, in which case the count may not correctly

reflect the number of bytes transferred to or from main storage but will (when used in conjunction with the
CCW address) designate a byte location within the page in which the channel-control-check condition was
recognized.

2. During a storage access, the maximum number of bytes that can be stored by a channel subsystem is model
dependent. If a channel-data-check condition is recognized during that access, the number of bytes
transferred to or from storage may not be detectable by the channel subsystem. Consequently, the number of
bytes transferred to or from storage may not be correctly reflected by the residual count. However, the
residual count that is stored when used in conjunction with the storage-access code and the CCW address
designates a byte location within the page in which the channel-data-check condition was recognized.

Figure 16-7. (Part 2 of 2) Contents of Count Field in SCSW

16-34 The z/Architecture I/O Architecture

Transport-Mode SCSW

The format of a transport-mode SCSW is as follows:

Figure 16-9 on page 16-34 shows the summary and
contents of the transport-mode SCSW:

Word

0 Key 0 L CC FMT X Q 0 E N 0 FC AC SC

1 TCW Address

2 DEVS SCHS FCXS SCHXS
0 4 6 8 11 16 20 24 27 31

Figure 16-8. Transport-Mode SCSW Format

Bits Name

Word 0
0-3 Subchannel Key

4 Reserved
5 ESW format (L)

6-7 Deferred condition code (CC)
8-10 Format (FMT)

11 IRB-Format control (X)
12 Interrogate-complete (Q)
13 Reserved
14 Extended control (E)
15 Path not operational (N)
16 Reserved

17-19 Function Control (FC)
17 Start function
18 Halt function
19 Clear function

20-26 Activity Control (AC)
20 Reserved
21 Start pending
22 Halt pending
23 Clear pending
24 Reserved
25 Device active
26 Reserved

Figure 16-9. Transport-Mode SCSW

27-31 Status Control (SC)
27 Alert status
28 Intermediate status
29 Primary status

 30 Secondary status
31 Status pending

Word 1
0-31 TCW Address

Word 2
0-7 Device Status (DEVS)

 0 Attention
 1 Status modifier
2 Control-unit end
 3 Busy
 4 Channel end
5 Device end
6 Unit check
7 Unit exception

8-15 Subchannel Status (SCHS)
8 Reserved
9 Incorrect length

10 Program check
11 Protection check
12 Channel-data check
13 Channel-control check
14 Interface-control check
15 Channel-subsystem retry failed

16-23 FCX Status (FCXS)
16 Reserved
17 Reserved
18 Reserved
19 Reserved
20 Reserved
21 Reserved
22 Reserved
23 TSB Valid

24-31 Subchannel-Extended Status (SCHXS)
24 Interrogate-Failed (F)

25-31 Subchannel-Extended-Status Qualifier (SESQ)

Bits Name

Figure 16-9. Transport-Mode SCSW (Continued)

16-35

The following descriptions indicate when an SCSW
field contains meaningful information for a transport-
mode IRB.

Subchannel Key
This bit has the same meaning as in the command
mode SCSW. (See “Subchannel Key” on page 16-9).

Reserved
SCSW bits 4, 13, 16, 20, 24, and 26 of word 0, bits 0
of word 1, and bits 1, 8, 15, and 16-22 of word 2 are
reserved and stored as zeros.

Extended-Status-Word Format (L)
This bit has the same meaning as in the command-
mode SCSW. (See “Extended-Status-Word Format
(L)” on page 16-9).

Deferred Condition Code (CC)
This field has the same meaning as in the command-
mode SCSW. (See “Deferred Condition Code (CC)”
on page 16-9).

Format (FMT)
Bits 8-10 of word 0 are the IRB-format field that con-
tains a 3-bit, unsigned integer whose value specifies
the layout of the IRB, when the IRB-format control bit
(X), is set to one.

IRB-Format Control (X)
Bit 11 of word 0 is the IRB-format control bit. The
value of this bit is one for the transport-mode IRB.
(See Figure 16-2 on page 16-7).

Interrogate Complete (Q)
Bit 12 of word 0 is the interrogate-complete bit (Q).
When one, Q indicates that the interrogate operation
has completed successfully, and the subchannel is
made status-pending with intermediate interruption
status. If the pending intermediate interruption condi-
tion has not been cleared by TEST SUBCHANNEL
by the time the primary interruption condition for the
original interrogated operation is presented at the
subchannel, both conditions may be merged and
indicated together in the SCSW.

Subchannel-Control Field

The subchannel-control information is contained in
bit positions 13-31 of the first word of the SCSW.

Extended Control (E)
Bit 14 of word 0, when one, indicates that model-
dependent information is stored in the extended-con-
trol word (ECW). When bit 14 is zero, the contents of
words 0-7 of the ECW are unpredictable. The E bit is
meaningful whenever the subchannel is status pend-
ing with alert status either alone or together with pri-
mary status, secondary status, or both. The
concurrent sense information has no meaning when
a transport-mode IRB is stored.

Path Not Operational (N)
This bit has the same meaning as in the command-
mode SCSW. See “Path Not Operational (N)” on
page 16-13.

Function Control (FC)
The function-control field indicates the basic I/O func-
tions that are indicated at the subchannel. This field
may indicate the acceptance of as many as two func-
tions. The function-control field is contained in bit
positions 17-19 of the first word of the SCSW. The
function-control field is meaningful at an installed
subchannel whenever the subchannel is valid (see
“Function Control (FC)” on page 16-13). The func-
tion-control field contains all zeros whenever both the
activity- and status-control fields contain all zeros.
The meaning of the individual bits is as follows:

Start Function (Bit 17): This bit has the same
meaning as in the command-mode SCSW. (See
“Start Function (Bit 17)” on page 16-13).

Halt Function (Bit 18): When one, bit 18 indicates
that a halt function has been requested and is either
pending or in progress at the subchannel. A halt
function is requested by the execution of HALT SUB-
CHANNEL. A halt function is indicated at the sub-
channel when condition code 0 is set for HALT
SUBCHANNEL. The halt-function indication is
cleared at the subchannel when the next status-
pending condition that occurs is cleared by the exe-
cution of TEST SUBCHANNEL. The next status-
pending condition depends on the state of the sub-
channel when HALT SUBCHANNEL is executed. If
the subchannel is start pending or device active
when HALT SUBCHANNEL is executed, then the

FMT Description
0 Transport-Mode IRB
1-7 Reserved

16-36 The z/Architecture I/O Architecture

next status-pending condition is status pending with
at least primary status indicated. The halt-function
indication is also cleared at the subchannel during
the execution of CLEAR SUBCHANNEL.

Clear Function (Bit 19): This bit has the same
meaning as in the command-mode SCSW. (See
“Clear Function (Bit 19)” on page 16-14).

Activity Control (AC)
The activity-control field is contained in bit positions
20-26 of word 0 of the SCSW. The activity-control
field is meaningful at an installed subchannel when-
ever the subchannel is valid (see “Device Number
Valid (V)” on page 15-4). However, if an IFCC or CCC
condition is detected during the performance of a
basic I/O function and that function is indicated as
pending, I/O operations may or may not have been
performed at the device. The activity-control bits are
defined as follows:

Start Pending (Bit 21): This bit has the same mean-
ing as in the command-mode SCSW with the excep-
tion that the subchannel remains start pending until a
primary interruption condition is generated. (See
“Start-Pending (Bit 21)” on page 16-15).

Halt Pending (Bit 22): This bit has the same mean-
ing as in the command-mode SCSW. (See “Halt-
Pending (Bit 22)” on page 16-16).

Clear Pending (Bit 23): This bit has the same
meaning as in the command-mode SCSW. (See
“Clear-Pending (Bit 23)” on page 16-16).

Device Active (Bit 25): When one, bit 25 indicates
that the subchannel is device active. A subchannel is
said to be device active when an I/O operation is cur-
rently in progress at the associated device. The sub-
channel becomes device active, only when primary
status is presented without secondary.

Status Control (SC)
The status-control field is contained in bit positions
27-31 of word 0 of the SCSW. This field provides the
program with a summary-level indication of the inter-
ruption condition described by either subchannel or
device status or the Q bit. More than one summary
indication may be signaled as a result of existing con-
ditions at the subchannel. Whenever the subchannel
is enabled (see “Enabled (E)” on page 15-3) and at
least bit 31 is one, the subchannel is said to be status
pending. Whenever the subchannel is disabled, the
subchannel is not made status pending. Bit 31 of
SCSW word 0 is meaningful at an installed subchan-
nel whenever the subchannel is valid (see “Device
Number Valid (V)” on page 15-4); bits 27-30 are
meaningful when bit 31 is one.The status-control bits
are defined as follows:

Alert Status (Bit 27): This bit has the same meaning
as in the command-mode SCSW with the exception
that a command-mode IRB is stored when alert sta-
tus is presented with secondary status. (See “Alert
Status (Bit 27)” on page 16-17).

Intermediate Status (Bit 28): Intermediate status
can be indicated when the interrogate operation
associated with the TCW is completed, and the Q-bit
(interrogate-complete) is one.

Primary Status (Bit 29): This bit has the same
meaning as in the command-mode SCSW. (See “Pri-
mary Status (Bit 29)” on page 16-19).

Secondary Status (Bit 30): This bit has the same
meaning as in the command-mode SCSW. (See
“Secondary Status (Bit 30)” on page 16-19).

Status Pending (Bit 31): This bit has the same
meaning as in the command-mode SCSW. (See
“Status-Pending (Bit 31)” on page 16-19).

TCW Address Field

Bits1-31 of word 1 form an absolute address of a
TCW. The TCW address indicated is the address of
the current TCW when the subchannel becomes
pending with primary interruption. When the sub-
channel-status field indicates channel-control check,
channel-data check, program check or interface-con-
trol check, the TCW-address field is usable for recov-

Bit Meaning
20 Reserved
21 Start pending
22 Halt pending
23 Clear pending
24 Reserved
25 Device active
26 Reserved

16-37

ery purposes if the TCW-address field-validity flag in
the ESW is one.

Subchannel State TCW Address
Start pending (UUUU0/AIPSX) Unpredictable

Start pending and device active (UUUU0/AIPSX) Unpredictable

Subchannel-and-device active (UUUU0/AIPSX) N/A

Device active only (UUUU0/AIPSX) Unpredictable

Suspended (YYYYY/AIPSX) N/A

Status pending (10001/AIPSX) because of unsolicited alert status from the device while the
subchannel was start pending

Address of current TCW3

Status pending (0Y111/AIPSX) because the device appeared not operational on all paths Address of current TCW3

Status pending (10011/AIPSX) because of solicited alert status from the device while the
subchannel was start pending and device active

Address of current TCW3

Status pending (10111/AIPSX) because of solicited alert status generated by the channel
subsystem while the subchannel was start pending or start pending and device active

See note 2

Status pending (01001/AIPSX) for the program-controlled-interruption condition while the
subchannel was subchannel-and-device active

N/A

Status pending (01001/AIPSX) for the initial-status-interruption condition while the subchannel
was subchannel-and-device active

N/A

Status pending (01001/AIPSX) for the intermediate/interrogate Address of current TCW2

Status pending (1Y1Y1/AIPSX); termination occurred because of program check caused by
one of the following conditions:

Bit 24 of word 1 of the ORB set to one; incorrect-length-indication-suppression facility not
installed

N/A

Unused bits in ORB not set to zeros Address of current TCW2

Invalid TCW-address specification in the channel-program address in the ORB Address of invalid TCW

Invalid TCW address in the channel-program address in the ORB Address of invalid TCW

Invalid TCW address while DCW data chaining N/A

Invalid TCW count or TIDAW count Address of invalid TCW4

Invalid TIDAW-address specification Address of invalid TCW4

Invalid TIDAW address in TCW Address of invalid TCW4

Invalid TIDAW address while sequentially fetching TIDAWs N/A

Invalid data-address specification Address of invalid TCW4

Invalid data address in a TCW Address of invalid TCW4

Invalid data address while sequentially accessing storage Address of current TCW

Invalid data address in TIDAW Address of current TCW

Invalid TIDAW Address of current TCW

Figure 16-10. (Part 1 of 3) TCW Address as Function of Subchannel State

16-38 The z/Architecture I/O Architecture

Invalid TSB-address specification Address of current TCW

Invalid TSB address Address of current TCW

Invalid TCCB address specification Address of current TCW

Invalid TCCB address Address of current TCW

Device-detected program checks Address of current TCW

Status pending (1Y1Y1/AIPSX); termination occurred because of protection check detected as
follows:

On a TCW access Address of protected TCW4

On data or an TIDAW access Address of current TCW

Status pending (1Y1Y1/AIPSX); termination occurred because of chaining check N/A

Status pending (YY1Y1/AIPSX); termination occurred under count control Address of current TCW

Status pending (1Y1Y1/AIPSX); operation prematurely terminated by the device because of alert
status

Address of current TCW3

Status pending (YYYY1/AIPSX) after termination by HALT SUBCHANNEL and the activity-con-
trol-field bits indicated below set to ones:

Status pending alone Unpredictable

Start pending Unpredictable

Device active and start pending Unpredictable

Device active Unpredictable

Status pending (00001/AIPSX) after termination by CLEAR SUBCHANNEL Unpredictable

Status pending (YY1Y1/AIPSX); operation completed normally at the subchannel Address of current TCW

Status pending (00011/AIPSX) Unpredictable

Status pending (10001/AIPSX) Unpredictable

Status pending (00001/AIPSX) Unpredictable

Status pending (1Y111/AIPSX); command chaining suppressed because of alert status other
than channel-control check or interface-control check

N/A

Status pending (1YYY1/AIPSX) because of alert status for channel-control check or interface-
control check

See note 3

Status pending (1Y1Y1/AIPSX) because of channel-data check Address of current TCW

Status pending (1Y1Y1/AIPSX) because of channel-subsystem retry failed Address of current TCW

Explanation:

1 The meaning of the notation used in this column is as follows:
 A Alert status
I Intermediate status
P Primary status
S Secondary status
X Status Pending

Subchannel State TCW Address

Figure 16-10. (Part 2 of 3) TCW Address as Function of Subchannel State (Continued)

16-39

Device-Status Field

The device-status field is contained in bit positions 0-
7 of word 2 of the SCSW. Each bit of the device-sta-
tus field has the same meaning as in the command-
mode SCSW. See “Device-Status Field” on
page 16-24 for details.

Subchannel-Status Field

The subchannel-status field is contained in bit posi-
tions 8-15 of word 2 of the SCSW. Subchannel-status
conditions are detected and indicated in the SCSW
by the channel subsystem. Except for the conditions
caused by equipment malfunctioning, they can occur
only while the channel subsystem is involved with the
performance of a halt or start function. The subchan-
nel-status field is meaningful whenever the subchan-
nel is status pending with any combination of
primary, secondary, intermediate, or alert status.
When the subchannel is status pending with deferred
condition code 3 indicated, the contents of the sub-
channel-status field are not meaningful. The following
subchannel-status conditions are described:

Incorrect Length
Incorrect length occurs when the number of bytes
contained in the storage areas assigned for the I/O

operation is not equal to the number of bytes
requested or offered by the I/O device.

When the FCX-incorrect-length-indication facility is
not installed and an incorrect-length condition is
detected, the processing of the transport-mode chan-
nel program is terminated with program-check status.

When the FCX-incorrect-length-indication facility is
installed, the device supports incorrect-length indica-
tion, incorrect-length-indication is not being sup-
pressed, and an incorrect-length condition is
detected, incorrect length is indicated for one of the
following reasons:

Long Block on Input: During a read or sense
operation, the device attempted to transfer one or
more bytes to main storage after the assigned main-
storage areas were filled, or the device indicated that
more data could have been transferred if the count
had been larger. The extra bytes have not been
placed in main storage. The count in the TSB header
(TSH) is zero.

Long Block on Output: During a write operation,
the device requested one or more bytes from the
channel subsystem after the assigned main-storage
areas were exhausted, or the device indicated that
more data could have been transferred if the count
had been larger. The count in the TSH is zero.

The possible combination of status-control-bit settings is shown to the left of the “/” symbol by the use of these symbols:

0 Corresponding condition is not indicated
1 Corresponding condition is indicated
U Unpredictable. The corresponding condition is not meaningful when the

subchannel is not status pending.
Y The corresponding condition is not significant and is indicated as a

function of the subchannel state.

2 A TCW becomes current when start subchannel is issued, specifying a transport-mode ORB, and the instruction completes with condition code 0.

3 Command-mode IRB may be stored depending on the current subchannel status

4 The stored address is the address of the current TCW even though it is either invalid or protected.

5 Not applicable

Notes:

1. The address stored is unpredictable.

2. The address of the TCW is given as a function of the alert status indicated.

3. Bit 21 of the subchannel-logout information, when stored as one, indicates that the address is the address of the current TCW.

Subchannel State TCW Address

Figure 16-10. (Part 3 of 3) TCW Address as Function of Subchannel State (Continued)

16-40 The z/Architecture I/O Architecture

Short Block on Input: The number of bytes trans-
ferred during a read or sense operation is insufficient
to fill the main-storage areas assigned to the opera-
tion. The count in the TSH is not zero.

Short Block on Output: The device terminated a
write before all of the information contained in the
assigned main-storage areas was transferred to the
device. The count in the TSH is not zero.

The incorrect-length indication is suppressed when
the current DCW has the SLI flag set to one. The
incorrect-length indication is not meaningful when the
count field of the TSH is not meaningful.

Presence of the incorrect-length condition sup-
presses command chaining unless the SLI flag in the
DCW is one.

Program Check
Program check occurs when programming errors are
detected by the channel subsystem. For a transport-
mode operation, programming errors may also be
detected by the I/O device and are reported as pro-
gram checks. When a program check condition is
recognized, additional information may be available
in the “Subchannel-Extended-Status Qualifier
(SESQ)” section of the subchannel-extended-status
field when a program check is indicated.

Whenever the program-check condition pertains to
the fetching of data, the failing-storage-address valid-
ity flag, bit 6 of the ERW, is one. An address of a
location within the checking block for which the pro-
gram-check condition is generated is stored in the
ESW failing-storage-address field.

A program check condition can be due to any of the
following reasons:

Invalid TCW Specification: When any of the follow-
ing conditions is detected, an invalid TCW specifica-
tion is recognized:

1. A reserved field that is checked for zeros in the
TCW does not contain zeros.

2. A nonzero value is specified in the TCW format
field.

3. The read and write bits in the TCW are both one,
bit 10 of the TCW flags field is zero, and either or
both of the following are true.

• The FCX-bidirectional-data-transfer facility is
not installed.

• The specified device does not support bidi-
rectional data transfers.

4. The TCCB-length field in a TCW specifies a
length that is less than 12 or greater than 244.

Invalid TCW-Address Specification: An invalid
TCW address specification can occur because the
TCW address is not designated on a 64-byte bound-
ary.

Invalid TCW Address: The channel-subsystem has
attempted to fetch a TCW from a main-storage loca-
tion that is not available. An invalid TCW address can
occur because the program has designated an
invalid address in the channel-program-address field
of the transport-mode ORB, when the B-bit (channel-
program-type control), is one. A main-storage loca-
tion is unavailable when the absolute TCW address
does not correspond to a physical location.

Invalid TCW Counts: When any of the following
conditions is detected by the channel subsystem, an
invalid TCW byte count is recognized:

1. The write-bit is one in the TCW and the value in
the TCW output-count field is zero.

2. The read-bit is one in the TCW and the value in
the TCW input-count field is zero.

Invalid TSB-Address Specification: An invalid
transport-status-block address specification can
occur if the content of the transport-status-block-
address field specified in the TCW does not desig-
nate a storage location on a doubleword boundary.

Invalid TSB Address: The channel-subsystem has
attempted to store a TSB to a main-storage location
that is not available. An invalid transport-status-block
address can occur because the program has desig-
nated an unavailable location in a TCW, or the chan-
nel-subsystem has attempted to store the transport
status to a main-storage location that is not available.
A main-storage location is unavailable when the
absolute address of the location does not correspond
to a physical location.

Invalid TCCB Address: The channel-subsystem
has attempted to fetch a TCCB from a main-storage
location that is not available. An invalid transport-
command-control-block address can occur because

16-41

the program has designated an unavailable location
in a TCW, or has specified a transport-command-
control-block address and a length which caused a
list of TIDAW to cross a 4 K-byte when the transport-
command-control-block-TIDA flag in the TCW is one.
A main-storage location is unavailable when the
absolute address of the location does not correspond
to a physical location. Invalid TIDAW-Address
Specification: Transport-indirect data addressing is
specified, and any of the following conditions is
detected:

1. A write operation is requested, the output-TIDA
flag in a TCW is one, and the contents of the out-
put-data-address field in the TCW do not desig-
nate a storage location on a quadword boundary.

2. A read operation is requested, the input-TIDA
flag in a TCW is one, and the contents of the
input-data-address field in the TCW do not desig-
nate a storage location on a quadword boundary.

3. The transport-command-control-block-TIDA flag
in the TCW is one, and the contents of the trans-
port-command-control-block-address do not des-
ignate a storage location on a quadword
boundary.

Invalid Data Address: An invalid data address can
occur because the program has designated an
unavailable location specified by a TCW or a TIDAW.
When any of the following conditions is detected, an
invalid data address is recognized by the channel
subsystem.

1. The channel-subsystem has attempted to access
a main-storage location that is not available. A
main-storage location is unavailable when the
absolute address of the location does not corre-
spond to a physical location.

2. The channel subsystem, on sequentially access-
ing storage for a data fetch or data store,
attempted to access an unavailable location.

3. Use of the data address has caused the channel
subsystem to attempt to wrap from the maximum
storage address to zero.

Invalid TIDAW Specification: When the use of
TIDAW is specified, an invalid TIDAW specification is
recognized when any of the following conditions is
detected by the channel subsystem:

1. Any of the bits defined as reserved in the TIDAW
are not zero.

2. The TIDAW-transfer-in-channel flag (TTIC) in a
TIDAW is one, and one or more other flag bits
are also one.

3. The TTIC points to a TIDAW in which the TTIC
flag is one.

4. The TIDAW count field contains zeros when the
TTIC flag is zero.

5. The combination of a TIDAW data-address and
count fields specify data that crosses a 4 K-byte
block boundary, when skipping is not in effect.

6. The count value specified in the TIDAW in which
the last-TIDAW flag is one and the value for
either input-count or output-count specified in a
TCW did not both decrement to zero for the
same byte of data transferred.

7. For a read operation only, the TIDAW in control
has its data-transfer-interruption control flag set
to one when data transfer was attempted by the
device.

8. The TIDAW is in the TIDAW list designated by
the TCCB-address field in the TCW and the
count field of the TIDAW contains either a value
that is zero or a value that is not evenly divisible
by four.

Invalid TIDAW Address: The channel-subsystem
has attempted to fetch a TIDAW from a main-storage
location that is not available. An invalid TIDAW
address can occur because the program has desig-
nated an invalid address in a TCW that specifies
TIDAW addressing, or because the channel subsys-
tem, on sequentially fetching TIDAWs, attempts to
fetch from an unavailable location. A main-storage
location is unavailable when the absolute address of
the location does not correspond to a physical loca-
tion.Storage-Requests Limit Exceeded: The use
of TIDAWs is specified, and the model-dependent
maximum number of storage requests required to
satisfy the transfer of a block of data has been
reached.

Max Data-Count Exceeded: The model-dependent
maximum count of data for a single transport-control
area (TCA) has been reached or exceeded for the
current operation.

16-42 The z/Architecture I/O Architecture

Device-Detected Program Check: Device-detected
program checks are errors detected during a trans-
port-mode operation by the I/O device and the chan-
nel-subsystem is requested to present a program-
check condition. When a device-detected-program-
check condition is recognized, additional information
is available in the subchannel-extended status field,
and the TSB is stored with a transport-status-area
format of two. (See device-detected-program check
in chapter 15.)

Protection Check
Protection check occurs when the channel subsys-
tem attempts a storage access that is prohibited by
the protection mechanism. A protection check condi-
tion is indicated as a result of a storage operation
that detects any of the following errors:

1. Protection applies to the fetching of TCW.

2. Protection applies to the fetching of TCCB.

3. Protection applies to the fetching of TIDAWs.

4. Protection applies to the fetching of output data.

5. Protection applies to the storing of input data.

The subchannel key provided in the transport-mode
ORB is used as the access key for storage accesses
associated with an I/O operation except for the TSB
store.

Detection of the protection-check condition during
the fetching of a TCW, TCCB, or a TIDAW would
cause the operation to be suppressed and the sub-
channel to be made status pending with primary, sec-
ondary, and alert status. When protection check is
detected after the I/O operation has been initiated at
the device, the device may be signaled to conclude
the operation. Other indications may accompany the
protection-check indication as a function of the oper-
ation specified by the TCW, the status received from
the device, on a read operation, and the current state
of the subchannel. The protection-check condition
may or may not causes the execution of subsequent
DCWs in a TCCB to be suppressed.

Whenever the protection-check condition pertains to
the fetching of data, the failing-storage-address valid-
ity flag, bit 6 of the ERW, is one. An address of a
location within the checking block for which the pro-
tection-check condition is generated is stored in the
ESW failing-storage-address field.

Additional information may be available in the “Sub-
channel-Extended-Status Qualifier (SESQ)” section
of the subchannel-extended-status field when a pro-
tection check condition check is indicated.

Channel-Data Check
Channel-data check indicates that an uncorrected
storage error has been detected in regard to data,
contained in main storage, that is currently used in
the performance of an I/O operation. Channel-data
check is indicated when data has an invalid check-
ing-block code (CBC) in main storage when that data
is referenced by the channel subsystem.

On an input operation, when the channel subsystem
attempts to store less than a complete checking
block, and invalid CBC is detected on the checking
block in storage, the contents of the location remain
unchanged and with invalid CBC. On an output oper-
ation, whenever channel-data check is indicated, no
bytes from the checking block with invalid CBC are
transferred to the device.

During a storage access, the maximum number of
bytes that can be transferred is model dependent. If a
channel-data-check condition is recognized during
that storage access, the number of bytes transferred
to or from storage may not be detectable by the
channel subsystem. Consequently, the number of
bytes transferred to or from storage may not be cor-
rectly reflected by the residual count. When a chan-
nel-data-check condition is recognized during a
storage access, the channel subsystem stores the
address where the storage exception is encountered.

A condition indicated as channel-data check causes
the current operation, if any, to be terminated. The
subchannel becomes status pending with primary,
secondary and alert status, as a function of the sta-
tus received from the device. The TCW address field
of the SCSW stored by TEST SUBCHANNEL pertain
to the operation terminated. The extended-status-
word-format bit is one, and subchannel-logout infor-
mation is stored in the ESW, when TEST SUBCHAN-
NEL is executed.

Whenever the channel-data-check condition pertains
to the fetching of data, the failing-storage-address-
validity flag, bit 6 of the ERW, is one. An address of a
location within the checking block for which the chan-
nel-data-check condition is generated is stored in the
ESW failing-storage-address field.

16-43

Uncorrectable storage or key errors detected during
data access causes the operation to be terminated.
In this case the subchannel is made status pending
with primary, secondary, and alert status, with chan-
nel-data check indicated, and with the ESW failing-
storage address stored.

Whenever channel-data check is indicated, no mea-
surement data for the subchannel is stored. The
transport-status block may or may not be stored.
Additional information may be available in the “Sub-
channel-Extended-Status Qualifier (SESQ)” section
of the subchannel-extended-status field.

Channel-Control Check
Channel-control check is caused by any machine
malfunction affecting channel-subsystem controls.
The condition may be indicated when an invalid CBC
is detected on a TCW, TIDAW, TCCB, TSB, or the
respective associated key.

Channel-control check may also indicate that an
error has been detected in the information trans-
ferred to or from main storage during an I/O opera-
tion. However, when this condition is detected, the
error has occurred inboard of the channel path: in the
channel subsystem or in the path between the chan-
nel subsystem and main storage.

Detection of the channel-control-check condition
causes the current operation, if any, to be terminated
immediately. The subchannel is made status pending
with primary and alert status or with primary, second-
ary, and alert status as a function of the type of termi-
nation, the current subchannel state, and the device
status presented, if any. When the channel subsys-
tem recognizes a channel-control-check condition,
any previously existing intermediate interruption con-
dition may or may not be recognized by the channel
subsystem.

Whenever the channel-control-check condition per-
tains to an invalid CBC detected on fetching a TCW
or a TCCB, or a TIDAW or storing a TSB, an
extended-report word with bit 6 set to one, and the
failing-storage address, are stored in the ESW when
TEST SUBCHANNEL is executed.

Channel-control-check conditions encountered while
fetching when the subchannel is start pending cause
the operation to be terminated. In this case, the sub-
channel is made status pending with primary, sec-
ondary, and alert status, with channel-control check

indicated, and with a failing-storage address that is
stored in the ESW.

If a subchannel is halt pending and the channel sub-
system encounters a channel-control-check condi-
tion while performing the halt function for that
subchannel, the subchannel remains halt pending
unless the channel subsystem can determine that
the halt signal was issued. The subchannel remains
halt pending even if the channel subsystem was
attempting to issue the halt signal and is unable to
determine if the halt signal was issued.

If a subchannel is start pending and the channel sub-
system encounters a channel-control-check condi-
tion while performing the start function for that
subchannel, the subchannel is made status pending
with at least alert and primary status.

In some situations in which a channel-subsystem
malfunction exists, the channel-control-check condi-
tion may be reported as a machine-check condition.

Whenever channel-control check is indicated, no
measurement data for the subchannel is stored. The
transport-status block may or may not be stored.
Additional information may be available in the “Sub-
channel-Extended-Status Qualifier (SESQ)” section
of the subchannel-extended-status field.

Interface-Control Check
Interface-control check indicates that an invalid sig-
nal has occurred on the channel path. The condition
is detected by the channel subsystem and usually
indicates malfunctioning of an I/O device. Interface-
control check can occur for any of the following rea-
sons:

1. A data or status byte received from a device has
an invalid checking-block code.

2. A signal from an I/O device either did not occur
or occurred at an invalid time.

3. ESW bit 26, indicating device-status check, is set
to one.

4. A failed interrogate function or a recovery opera-
tion.

5. The TCW residual count did not match the resid-
ual count in the response from the device.

When the channel subsystem recognizes an inter-
face-control-check condition, any previously existing

16-44 The z/Architecture I/O Architecture

intermediate interruption condition may or may not be
recognized by the channel subsystem. The
extended-status-word-format bit is one, and sub-
channel-logout information is stored in the ESW,
when TEST SUBCHANNEL is executed.

If a subchannel is halt pending and the channel sub-
system encounters an interface-control-check condi-
tion while performing the halt function for that
subchannel, the subchannel remains halt pending
unless the channel subsystem can determine that
the halt signal was issued. The subchannel remains
halt pending even if the channel subsystem was
attempting to issue the halt signal and is unable to
determine if the halt signal was issued.

If a subchannel is start pending and the channel sub-
system encounters an interface-control-check condi-
tion while performing the start function for that
subchannel, the subchannel is made status pending
with at least alert and primary status.

Whenever interface-control check is indicated, no
measurement data for the subchannel is stored. The
transport-status block may or may not be stored.
Additional information may also be available in the
“Subchannel-Extended-Status Qualifier (SESQ)”
section of the subchannel-extended-status field.

Channel-Subsystem Retry Failed
Channel-subsystem retry failed indicates that internal
channel-subsystem conditions exist that prevent the
fetching of the TCCB, a TIDAW, or data. The channel
subsystem retried the fetch and the retry failed.

FCX-Status Field

The FCX-status field is contained in bit positions 16-
23 of word 2 of the SCSW. This field contains chan-

nel specific status information returned by the I/O
device.

TSB Valid (Bit 23): Bit 23, when set to one, indi-
cates that additional status information for the I/O
operation designated by the subchannel is available
in the transport-status block. When zero, the con-
tents of the transport-status block do not contain any
additional status information for the completed I/O
operation.

Subchannel-Extended-Status Field

The subchannel-extended-status field is contained in
bit positions 24-31 of word 2 of the SCSW. This field
may contain information used to further qualify the
reason for any the following conditions, when indi-
cated in the subchannel-status: interface-control
check, channel-control check, channel-data check,
program check, and protection check. If none of
these bits are active in the subchannel-status byte,
the fields of the subchannel-extended-status contain
no meaningful information. When more than one
condition is indicated, the interface-control check
takes priority over the other conditions.

Interrogate Failed (F): Bit 24 is the interrogate-
failed operation bit. When set to one, the F bit indi-
cates that an interrogate operation failed because of
a program check, channel-control check, or interface-
control check.

Subchannel-Extended-Status Qualifier (SESQ):
Bits 25-31 are the subchannel-extended-status quali-
fier and contain an unsigned integer value. When the
subchannel-status field indicates program check,
interface-control check, protection check, data check,
or channel-control check, bits 25-31 may contain
additional information as follows:

Value Description IFCC CCC CDC PGC PTC

0 No status available for the exception condition indicated. X X X X X

1 Storage-request limit exceeded, a model-dependent number of storage requests has been
exceeded for the requested block of data.

- - - X -

Figure 16-11. Subchannel-Extended Status Qualifiers

16-45

2 Program check when all of the following conditions are met:
(1) The TCW read or write data count did not go to zero and either the incorrect-length
indication facility is not installed or incorrect-length indication is not supported by the
device.
(2) CE only or CE and DE only status was received, or unit-check with CE or CE and DE
status was received.
(3) The operation is not an interrogate, transfer-COB, or transfer-TCAX operation.

- - - X -

3 Transport mode not supported by the I/O device. - - - X -

4 Transport mode not supported on the selected channel path. - - - X -

5 Reserved

6 Program check on the TCW: An invalid TCW was detected. - - - X -

7 A device-detected program check condition exists due to indeterminate cause. - - - X -

8 A device-detected program check condition exists. - - - X -

9a Program check on a TIDAW: An invalid TIDAW was detected. - - - X - -

10-31 Reserved. - - - - -

32b TCW access exception: An exception was detected on while fetching a TCW. - X - X X

33c TSB access exception: An exception was detecting while storing a TSB. - X - X -

34d TCCB access exception: An exception was detected while fetching a TCCB. - X - X X

35e TIDAW access exception: An exception was detected while fetching a TIDAW. - X - X X

36f Data access exception: An exception was detected while storing or fetching data. - - X X X

37-63 Reserved. - - - - -

64 An invalid CBC error on read data X - - - -

65 Reserved - - - - -

66 A link protocol error condition has occurred. X - - - -

67 A failed device-level recovery operation. X - - - -

68 IFCC occurred because a device-level recovery operation failed. A program, protection or
data check may also be set to one in the Subchannel status.

X - - - -

69 The residual count between the TCW and the response from the device are not the same. X - - - -

70 An Invalid CBC was detected on the status portion of the transport response from the device. X - - - -

71 An Invalid CBC was detected on the TSB transported from the device. X - - - -

72-127 Reserved. - - - - -

Value Description IFCC CCC CDC PGC PTC

Figure 16-11. Subchannel-Extended Status Qualifiers (Continued)

16-46 The z/Architecture I/O Architecture

Explanation:
X Applicable
- Not applicable
IFCC Interface-control check
CCC Channel-control check
CDC Channel-data check
PGC Program check
PTC Protection check

Footnotes:
a The failing-storage-address (FSA) field in the ESW is valid and contains the address of the TIDAW which was determined to be

invalid.
b The FSA field is valid and contains the address of the current TCW.
c The FSA field is valid and contains the address of the TSB designated by the current TCW.
d The FSA field is valid and contains the address of the TCCB designated (directly or indirectly) by the TCW.
e The FSA field is valid and contains the address of the TIDAW for which the exception was detected.
f The FSA field is valid and contains the address of the input or output data designated (directly or indirectly) by the TCW.
Note: If the FSA field is valid for any SESQ value other than those identified by footnotes a-f, the FSA field contains the address of the

current TCW.

Value Description IFCC CCC CDC PGC PTC

Figure 16-11. Subchannel-Extended Status Qualifiers (Continued)

16-47

Extended-Status Word

The extended-status word (ESW) provides additional
information to the program about the subchannel and
its associated device. The ESW is placed in words
3-7 of the IRB designated by the second operand of
TEST SUBCHANNEL when TEST SUBCHANNEL is
executed and the subchannel designated is opera-
tional. If the subchannel is status pending or status
pending with any combination of primary, secondary,
intermediate, or alert status (except as noted in the
next paragraph) when TEST SUBCHANNEL is exe-
cuted, the ESW may have any of the following types
of extended-status format:

Words 0-4 of the ESW contain unpredictable values if
any of the following conditions is met:

1. The subchannel is not status pending.

2. The subchannel is status pending alone, and the
extended-status-word-format bit is zero.

3. The subchannel is status pending with intermedi-
ate status alone for other than the intermediate
interruption condition due to suspension.

The type of extended-status format stored depends
upon conditions existing at the subchannel at the
time TEST SUBCHANNEL is executed. The condi-
tions under which each of the types of formats is
stored are described in the remainder of this section.

Extended-Status Format 0

The ESW stored by TEST SUBCHANNEL is a for-
mat-0 ESW when the extended-status-word-format
bit, bit 5 of word 0 of the SCSW, is one and the sub-
channel is status pending with any combination of
status as defined in Figure 16-12 on page 16-51. In
this case, subchannel-logout information and an
ERW are stored in the extended-status word. Sub-
channel logout provides detailed model-independent
information relating to a subchannel and describing
equipment errors detected by the channel subsys-
tem. The information is provided to aid the recovery
of an I/O operation, a device, or both. Whenever sub-
channel logout is provided, the error conditions relate
only to the subchannel reporting the error. If I/O oper-
ations involving other subchannels have been
affected by the error condition, those subchannels
also provide similar subchannel-logout information.
An extended-report word provides additional informa-
tion relating to the cause of the malfunction.

A format-0 ESW has the following format:

Subchannel Logout
The subchannel logout has the following format:

Extended-Status Flags (ESF): Any of bits 1-7,
when one, specifies that an error-check condition has
been detected by the channel subsystem. The follow-
ing indications are provided in the ESF field:

Key Check. Bit 1, when one, indicates that the
channel subsystem, when accessing data, when
attempting to update the measurement block, or
when attempting to fetch either a CCW, an IDAW,
MIDAW, TCW, TCCB, TIDAW, or when accessing
a TSB, has detected an invalid checking-block
code (CBC) on the associated storage key. The
channel-data-check bit, bit 12 of word 2 of the

Format 0 Subchannel logout in word 0, an ERW in
word 1, a failing-storage address or zeros
in words 2 and 3, and a secondary-CCW
address or zeros in word 4.

Format 1 Zeros in bytes 0, 2, and 3 of word 0, the
LPUM in byte 1 of word 0, an ERW in
word 1, and zeros in words 2-4.

Format 2 Zeros in byte 0, the LPUM in byte 1, and
the device-connect time in bytes 2 and 3
of word 0; an ERW in word 1; zeros in
words 2-4.

Format 3 Zeros in byte 0, the LPUM in byte 1, and
unpredictable values in bytes 2 and 3 of
word 0; an ERW in word 1; zeros in words
2-4.

Word

0 Subchannel Logout

1 Extended-Report Word

2
Failing-Storage Address or ESLD

3

4 Secondary-CCW Address or Zeros
0 31

0 ESF LPUM R FVF SA TC D E A SC
0 1 8 16 17 22 24 26 27 28 29 31

16-48 The z/Architecture I/O Architecture

SCSW, the measurement-block data-check bit,
bit 3 of word 0 of the ESW, the CCW-check bit,
bit 5 of word 0 of the ESW, or the IDAW/MIDAW-
check bit, bit 6 of word 0 of the ESW, identifies
the source of the key error.

Note: This condition may be indicated to the pro-
gram when an invalid checking-block code on a
key is detected but the data, CCW, IDAW,
TIDAW, or MIDAW then is not used after being
prefetched. In this case, the failing-storage-
address-validity bit, bit 6 of the ERW, is one, indi-
cating that the address of a location within the
storage block having the key is stored in words 2
and 3 of the ESW.

Measurement-Block Program Check. Bit 2, when
one, indicates that the channel subsystem, in
attempting to update the measurement block,
has either detected an invalid absolute address
when combining the measurement-block origin
with the measurement-block index for this sub-
channel or has detected an invalid measure-
ment-block address at the subchannel.

Measurement-Block Data Check. Bit 3, when
one, indicates that a malfunction has been
detected involving the data of the measurement
block in main storage. (See “Measurement
Block” on page 17-3.) Measurement-block data
check is indicated when the measurement block
is updated and an invalid checking-block code
(CBC) is detected on the storage used to contain
the measurement data or on the associated key.
When invalid CBC on the associated key is
detected, the key-check bit, bit 1 of the ESF field,
is also stored as one.

Measurement-Block Protection Check. Bit 4,
when one, indicates that the channel subsystem,
when attempting to update the measurement
block, has been prohibited from accessing the
measurement block because the storage key
does not match the measurement-block key (see
“Measurement Block” on page 17-3.) The key
provided by SET CHANNEL MONITOR is used
for the access of storage associated with mea-
surement-block-update operations (see “SET
CHANNEL MONITOR” on page 14-13.).

Note: Whenever any of the measurement-check
conditions is indicated by bits 2-4, the channel
subsystem sets the subchannel measurement-
block-update-enable bit to zero, disabling the
storing of measurement data for the subchannel

(see “Measurement-Mode Enable (MM)” on
page 15-3).

CCW Check. When a command-mode IRB is
stored, bit 5, when one, indicates that an invalid
CBC on the contents of the CCW or its associ-
ated key has been detected. When either of
these conditions is detected, the I/O operation is
terminated, the subchannel becomes status
pending with primary and alert status, the
extended-status-word-format bit in the SCSW is
stored as one, and channel-control check is indi-
cated in the subchannel-status field. The sub-
channel also becomes status pending with
secondary status as a function of the type of ter-
mination or status received from the device.
When invalid CBC on the associated key is
detected, the key-check bit, bit 1 of the ESF field,
is also stored as one.

When a transport-mode IRB is stored, bit 5 is
reserved and set to zero.

Note: This condition may be indicated to the pro-
gram when an invalid checking-block code on a
prefetched CCW is detected but the CCW is not
used. In this case, the failing-storage-address-
validity bit, bit 6 of the ERW, is one, indicating
that the address of a location having the invalid
CBC is stored in words 2 and 3 of the ESW.

IDAW/MIDAW Check. When a command-mode
IRB is stored, bit 6, when one, indicates that an
invalid CBC on the contents of an IDAW or
MIDAW or its associated key has been detected.
When either of these conditions is detected, the
I/O operation is terminated with the device, the
subchannel becomes status pending with pri-
mary and alert status, the extended-status-word-
format bit in the SCSW is one, and channel-con-
trol check is indicated in the subchannel-status
field. The subchannel also becomes status pend-
ing with secondary status as a function of the
type of termination or status received from the
device. When invalid CBC on the associated key
is detected, the key-check bit, bit 1 of the ESF
field, is also one.

When a transport-mode IRB is stored, bit 6 is
reserved and set to zero.

Note: This condition may be indicated to the pro-
gram when an invalid checking-block code on the
contents of a prefetched IDAW or MIDAW is
detected but the IDAW or MIDAW is not used. In
this case, the failing-storage-address-validity bit,

16-49

bit 6 of the ERW, is one, indicating that the
address of a location having the invalid CBC is
stored in words 2 and 3 of the ESW. Detection of
a channel-data-check condition does not cause
the CCW-check and IDAW/MIDAW-check bits to
be stored as ones.

Reserved. Bit 7 is stored as zero.

Last-Path-Used Mask (LPUM): Bits 8-15 indicate
the channel path that was last used for communicat-
ing or transferring information between the channel
subsystem and the device. When a command-mode
IRB is stored, the bit corresponding to the channel
path in use is set whenever any of the following
occurs:

1. The first command of a start-subchannel function
is accepted by the device (see “Activity Control
(AC)” on page 16-14).

2. The device and channel subsystem are actively
communicating when the channel subsystem
performs the suspend function for the channel
program in execution.

3. The channel subsystem accepts status from the
device that is recognized as an interruption con-
dition, or a condition has been recognized that
suppresses command chaining (see “Interruption
Conditions” on page 16-2).

4. The channel subsystem recognizes an interface-
control-check condition (see “Interface-Control
Check” on page 16-29), and no subchannel-
logout information is currently present at the sub-
channel.

When a transport-mode IRB is stored, each bit of the
LPUM is stored as zero, except for the bit that corre-
sponds to the channel path last used, whenever one
of the following occurs:

1. The path has been selected for transporting the
TCCB for the operation.

2. The channel subsystem accepts status from the
device that is recognized as an interruption con-
dition. If the accepted status is an interrogate
response, the LPUM may be different than that
stored with primary or secondary status, or both.

3. The channel subsystem recognizes an interface-
control-check condition (see “Interface-Control
Check” on page 16-29), and no subchannel-

logout information is currently present at the sub-
channel.

The LPUM field contains the most recent setting and
is valid whenever the ESW contains information in
one of the formats 0-3 (see “Extended-Status Word”
on page 16-47) and the SCSW is stored. When sub-
channel-logout information is present in the ESW, a
zero LPUM-field-validity flag indicates that the LPUM
setting is not consistent with the other subchannel-
logout indications.

Ancillary Report (R): Bit 16, when one, indicates
that a malfunction of a system component has
occurred that has been recognized previously or that
has affected the activities of multiple subchannels.
When the malfunction affects the activities of multiple
subchannels, an ancillary-report condition is recog-
nized for all of the affected subchannels except one.
This bit, when zero, indicates that this malfunction of
a system component has not been recognized previ-
ously. This bit is meaningful only when a channel-
control check, channel-data check, or an interface-
control check is indicated in bit positions 12-14 of
word 2 of the SCSW.

Depending on the model, recognition of an ancillary-
report condition may not be provided or it may not be
provided for all system malfunctions that effect sub-
channel activity. When ancillary-report recognition is
not provided, bit 16 is set to zero

Field-Validity Flags (FVF): Bits 17-21 indicate the
validity of the information stored in the corresponding
fields of either the SCSW or the extended-status
word. When the validity bit is one, the corresponding
field has been stored and is usable for recovery pur-
poses. When the validity bit is zero, the correspond-
ing field is not usable.

This bit-significant field has meaning when channel-
data check, channel-control check, or interface-con-
trol check is indicated in the SCSW. When these
checks are not indicated, this field, as well as the ter-
mination-code and sequence-code fields, has no
meaning. Furthermore, when these checks are not
indicated, the last-path-used-mask, device-status,
and the TCW address or the CCW-address fields are
all valid. The fields are defined as follows:

17 Last-path-used mask
18 Termination code
19 Sequence code
20 Device status

16-50 The z/Architecture I/O Architecture

21 CCW address or TCW address

Storage-Access Code (SA): Bits 22-23 indicate
the type of storage access that was being performed
by the channel subsystem at the time of error. The
SA field pertains only to the access of storage for the
purpose of fetching or storing data during the perfor-
mance of an I/O operation. This encoded field has
meaning only when channel-data check, channel-
control check, or interface-control check is indicated
in the subchannel status. The access-code assign-
ments are as follows:

00 Access type unknown
01 Read
10 Write
11 Read backward for a command-mode operation.

Termination Code (TC): Bits 24 and 25 indicate
the type of termination that has occurred. This
encoded field has meaning only when channel-data
check, channel-control check, or interface-control
check is indicated in the SCSW. The types of termi-
nation are as follows:

00 Halt signal issued
01 Stop, stack, or normal termination
10 Clear signal issued
11 Reserved

When at least one channel check is indicated in the
SCSW but the termination-code-field-validity flag is
zero, it is unpredictable which, if any, termination has
been signaled to the device. If more than one chan-
nel-check condition is indicated in the SCSW, the
device may have been signaled one or more termina-
tion codes that are the same or different. In this situa-
tion, if the termination-code-field-validity flag is one,
the termination code indicates the most severe of the
terminations signaled to the device. The termination
codes, in order of increasing severity, are: stop,
stack, or normal termination (01); halt signal issued
(00); and clear signal issued (10)

Device-Status Check (D): When the status-verifi-
cation facility is installed, bit 26, when one, indicates
that the subchannel logout in the ESW resulted from
the channel subsystem detecting device status that
had valid CBC but that contained a combination of
bits that was inappropriate when the status byte was
presented to the channel subsystem. When the
device-status-check bit is one, the interface-control-
check status bit is set to one. If, additionally, bit 20 of
the subchannel-logout field has been stored as one,

then the status byte in error has been stored in the
device-status field of the SCSW. If the status-verifica-
tion facility is not installed, bit 26 is stored as zero.

Secondary Error (E): Bit 27, when one, indicates
that a malfunction of a system component that may
or may not have been directly related to any activity
involving subchannels or I/O devices has occurred.
Subsequent to this occurrence, the activity related to
this subchannel and the associated I/O device was
affected and caused the subchannel to be set status
pending with either channel-control check or inter-
face-control check.

I/O-Error Alert (A): Bit 28, when one, indicates that
subchannel logout in the ESW resulted from the sig-
naling of I/O-error alert. The I/O-error-alert signal
indicates that the control unit or device has detected
a malfunction that must be reported to the channel
subsystem. The channel subsystem, in response,
issues a clear signal and, except as described in the
next paragraph, causes interface-control check to be
set and extended-status-format-0 (logout) informa-
tion to be stored in the ESW.

When I/O-error alert is signaled and the subchannel
has previously been set disabled or no subchannel is
associated with the device, the clear signal is issued
to the device, and the I/O-error-alert indication is
ignored by the channel subsystem.

Sequence Code (SC): When a command-mode
IRB is stored, bits 29-31 identify the I/O sequence in
progress at the time of error. The sequence code
pertains only to I/O operations initiated by the execu-
tion of START SUBCHANNEL or RESUME SUB-
CHANNEL. This encoded field has meaning only
when channel-data check, channel-control check, or
interface-control check is indicated in the SCSW.

When a transport-mode IRB is stored, and the valid-
ity bit corresponding to the sequence-code field is
one, bits 29-31 are stored as zeros.

The sequence-code assignments are:

000 Reserved

001 A nonzero command byte has been sent by
the channel subsystem, but a response has
not yet been analyzed by the channel subsys-
tem. This code is set during the initiation
sequence.

16-51

Figure 16-12 on page 16-51 defines the relationship
between indications provided as subchannel-logout
data and the appropriate SCSW bits.

Extended-Report Word
The extended-report word (ERW) provides informa-
tion to the program describing specific conditions that
may exist at the device, subchannel, or channel sub-
system. The ERW is stored whenever the extended-
status word is stored. When the extended-status-
word-format bit, bit 5 of word 0 of the SCSW, and the
extended-control bit, bit 14 of word 0 of the SCSW,
are both zeros, the ERW contains all zeros. When
the extended-status-word-format bit or the extended-
control bit or both are ones, the ERW has the follow-
ing format:

010 The command has been accepted by the
device, but no data has been transferred.

011 At least one byte of data has been transferred
between the channel subsystem and the
device. This code may be used when the
channel path is in an idle or polling state.

100 The command in the current CCW (1) has not
yet been sent to the device, (2) was sent but
not accepted by the device, or (3) was sent
and accepted but command-retry status was
presented. This code is set when any of the
following conditions occurs:

1. The command address is updated during
command chaining or during the initiation
of a start function or resume function at
the device.

2. During the initiation sequence, the status
includes attention, control unit end, unit
check, unit exception, busy, status modi-
fier (without channel end and device end),
or device end (without channel end).

3. Command retry is signaled.

4. The channel subsystem interrogates the
device in the process of clearing an inter-
ruption condition.

5. The channel subsystem signals the con-
clusion of the chain of operations to the
device during command chaining while
performing the suspend function.

101 The command in the current CCW has been
accepted, but data transfer is unpredictable.
This code applies from the time a device is
logically connected to a channel path until the
time it is determined that a new sequence
code applies. This code may also be used
when the channel subsystem places a channel
path in the polling or idle state and it is impos-
sible to determine that code 010 or 011
applies. It may also be used at other times
when a channel path cannot distinguish
between code 010 or 011.

110 Reserved.

111 Reserved.

Subchannel-Logout Condition Indicated

Logout Condition
for SCSW

Indication of1

CDC CCC IFCC
Key check V V -
Measurement-block-program check2 - - -
Measurement-block-data check2 - - -
Measurement-block-protection check2 - - -
CCW check - V -
IDAW/MIDAW check - V -
Last-path-used mask3 V V V
Field-validity flags V V V
Termination code3 V V V
Device-status check - - V
Secondary error - V V
I/O-error alert - - V
Sequence code3 V V V

Explanation:

- No relationship.
1 When more than one SCSW indication is signaled, the

subchannel-logout conditions that are valid are the logical
OR for each of the respective SCSW indications.

2 Only one measurement-block check may be indicated in a
specific subchannel logout.

3 This field has a field-validity flag.
CCC Channel-control check.
CDC Channel-data check.
IFCC Interface-control check.
V Bit setting valid.

Figure 16-12. Relationship Between Subchannel-Logout
Data and SCSW Bits

0 L E A P T F S C R SCNT Reserved
0 1 4 8 10 16 31

16-52 The z/Architecture I/O Architecture

Request Logging Only (L) : Bit 1, when one,
requests that the program only record information
about the condition that caused the extended-status
word to be stored.

Extended-Subchannel-Logout Pending (E): Bit
2, when one, and when the extended-status-word-
format bit, bit 5 of word 0 of the SCSW, is also one,
indicates that an extended-subchannel logout is
pending and that words 2-3 of the ESW contain the
extended-subchannel-logout descriptor.

Bit 2 is set to zero when bit 6 is set to one.

When an ERW is stored with bits 2 and 6 both set to
zero, zeros are stored in words 2 and 3 of the ESW.

Authorization Check (A): Bit 3, when one, indi-
cates that the start or resume function was termi-
nated because the channel subsystem has been
placed in the isolated state in which pending I/O
operations are not initiated and I/O operations cur-
rently being performed either are in the process of
being terminated or have been terminated.

Path Verification Required (P): Bit 4, when one,
indicates that the program must verify the identity of
the device. The LPUM, when valid, indicates the
channel path for which device verification is to be
performed. When a valid LPUM is not available, the
identity of the device must be verified for each avail-
able channel path.

Channel-Path Timeout (T): Bit 5, when one, indi-
cates that, during a signaling sequence, an appropri-
ate signal from the device did not occur within a
predetermined time interval. Bit 5 is meaningful when
the extended-status-word-format bit, bit 5 of word 0
of the SCSW, and the interface-control-check bit, bit
14 of word 2 of the SCSW, are both ones.

Failing-Storage-Address Validity (F): Bit 6, when
one, and when the extended-status-word-format bit,
bit 5 of word 0 of the SCSW, is also one, indicates
that the channel subsystem has detected an invalid
CBC on a CCW, a data location, an IDAW, a MIDAW,
a TCW, TCCB, a TIDAW, a TSB or on the respective
associated key and has stored, in words 2 and 3 of
the ESW, the absolute address of a location associ-
ated with the invalid CBC.

Bit 6 is set to zero when bit 2 is set to one.

When an ERW is stored with bits 2 and 6 both set to
zero, zeros are stored in words 2 and 3 of the ESW.

Concurrent Sense (S) : When a command-mode
IRB is stored, bit 7, when one, indicates that the con-
current-sense facility has placed sense information
accepted from the device in the extended-control
word and has stored a value, in bit positions 10-15 of
the ERW, that specifies the number of sense bytes
that have been stored in the extended-control word.
When bit 7 is one, bit 14 of word 0 of the SCSW is
also one.

When a transport-mode IRB is stored, bit 7 is
reserved and set to zero.

Concurrent-Sense Count (SCNT): When bit 7 is
one, bit positions 10-15 contain a value, in the range
1-32, that specifies the number of sense bytes stored
into the extended-control word by the concurrent-
sense facility. When bit 7 is zero, bit positions 10-15
contain zeros.

Secondary-CCW-Address Validity (C): When a
command-mode IRB is stored, bit 8, when one, and
when the extended-status-word-format bit, bit 5 of
word 0 of the SCSW, is also one, indicates that the
channel subsystem has detected an error condition
that precludes the continued performance of an I/O
operation. When prefetching applies (bit 9 of word 1
of the ORB is one) and certain error conditions identi-
fied by channel-control check, channel-data check, or
interface-control check are recognized by the chan-
nel subsystem, situations may exist where the termi-
nation point of execution of the channel program
differs between the channel subsystem and the I/O
device. To properly identify the termination points, bit
8 is set to one, and a second CCW address (second-
ary-CCW address) is provided in the ESW and desig-
nates the last CCW executed at the device. When the
validity bit is zero for the previously mentioned errors,
the channel subsystem was unable to determine the
termination point of the control-unit execution, and
the secondary-CCW-address field contains zeros.

Bit 8 is not set to one unless the program has permit-
ted prefetching by setting the prefetch-control bit, bit
9 of word 1 of the ORB, to one for the channel pro-
gram in execution.

When a transport-mode IRB is stored, bit 8 is
reserved and set to zero.

16-53

Failing-Storage-Address Format (R): Bit 9 indi-
cates the format of the failing-storage address when
the failing-storage-address validity bit, bit 6 of the
ERW, is one. When bit 6 is zero, bit 9 is not meaning-
ful and is stored as zero. When bit 6 is one and bit 9
is zero, a format-1 failing-storage address is stored in
words 2 and 3 of the ESW. When bit 6 is one and bit
9 is one, a format-2 failing-storage address is stored
in words 2 and 3. See “Failing-Storage Address”
below for a description of format-1 and format-2
addresses.

Failing-Storage Address
Words 2 and 3 of the extended-status contain a 24-,
31-, or 64-bit absolute address. When the failing-stor-
age-address-validity flag, bit 6 of the ERW, is one,
words 2 and 3 contain either a format-1 failing-stor-
age address or a format-2 failing-storage address.
When bit 6 is one, the failing-storage-address field
designates a byte location within the invalid checking
block associated with an invalid CBC for a CCW, data
location, IDAW, MIDAW, TCW, TCCB, TIDAW, TSB,
or their respective associated key.

When a transport-mode IRB is stored, and the failing-
storage-address validity flag, bit 6 of the ERW, is one,
the failing-storage address contains the absolute
address associated with the reported failing condi-
tion.

When an error condition is detected and a command-
mode IRB is stored, the form of the address stored in
words 2 and 3 depends on the format-2-IDAW con-
trol, bit 14 of word 1 of the ORB, and on the MIDA
control, bit 25 of word 1 of the ORB, as follows:

1. When the format-2-IDAW control is zero, specify-
ing that fullword IDAWs containing 31-bit
addresses are used, and the modified-CCW-indi-
rect-data-addressing-control is zero, a format-1
address is stored, and the failing-storage-
address-format bit, bit 9 of the ERW, is stored as
zero.

2. When either the format-2-IDAW control is one,
specifying that doubleword IDAWs containing 64-
bit addresses are used, or the modified-CCW-
indirect-data-addressing-control is one, or both
are one, a format-2 address is stored, and the
failing-storage-address-format bit is stored as
one.

When an error condition is detected and a transport-
mode IRB is stored, a format-2 failing-storage
address is stored. A format-2 failing-storage address
is stored for a transport-mode IRB when a program-
check, protection check, channel-data check or chan-
nel-control check condition is indicated by the sub-
channel status.

When a format-1 address is stored, bits 1-31 of word
2 form the address associated with the reported error
condition, and bit 0 of word 2 and all of word 3 are
stored as zeros. When a format-2 address is stored,
bits 0-31 of word 2 followed by bits 0-31 of word 3
form the 64-bit address associated with the reported
error condition.

Extended-Subchannel-Logout Descriptor
(ESLD)
When the extended-status-word-format (L) bit, bit 5
of SCSW word 0, is one and the extended-subchan-
nel-logout pending (E) flag, bit 2 of the ERW, is one,
an extended-subchannel-logout descriptor is pro-
vided in words 2-3 of the ESW. The ESLD identifies
the logout and the channel path for which the
extended-subchannel logout is pending.

Secondary-CCW Address
When the subchannel-status field indicates channel-
control check, channel-data check, or interface-con-
trol check and the secondary-CCW-address-validity
flag, bit 8 of word 1, is one, bits 1-31 of word 4 form
an absolute address of the last CCW executed by the
I/O device at the point the reported check condition
caused channel-program termination. When pro-
vided, the secondary-CCW address may be used for
recovery purposes. When the secondary-CCW-
address-validity flag is zero, this field contains zeros.

When a transport-mode IRB is stored and the sub-
channel-status field indicates channel-control check,
channel-data check, or interface-control check, word
4 is reserved and contains zeros.

Extended-Status Format 1

The ESW stored by TEST SUBCHANNEL is a for-
mat-1 ESW when all of the following conditions are
met:

1. The extended-status-word-format bit, bit 5 of
word 0 of the SCSW, is zero.

16-54 The z/Architecture I/O Architecture

2. The subchannel status-control field has the sta-
tus-pending bit, bit 31 of word 0 of the SCSW, set
to one, together with:

a. The primary-status bit, bit 29 of word 0 of the
SCSW, alone,

b. The primary-status bit and other status-con-
trol bits, or

c. The intermediate-status bit, bit 28 of word 0
of the SCSW, and the suspended bit, bit 26
of word 0 of the SCSW.

3. At least one of the following conditions is indi-
cated:

a. The device-connect-time-measurement
mode is inactive.

b. The channel-subsystem-timing facility is not
available for the subchannel.

c. The subchannel is not enabled for the
device-connect-time-measurement mode.

Zeros are stored in bytes 0, 2, and 3 of word 0, and
the LPUM is stored in byte 1 of word 0; an ERW is
stored in word 1; zeros are stored in words 2-4.

The device-connect-time-measurement mode is
made inactive when SET CHANNEL MONITOR is
executed and bit 31 of general register 1 is zero.

A format-1 ESW has the following format:

Last-Path-Used Mask (LPUM): For a definition of
the LPUM, see “Last-Path-Used Mask (LPUM)” on
page 16-49.

Extended-Report Word (ERW): For a definition of
the ERW, see “Extended-Report Word” on
page 16-51.

Extended-Status Format 2

The ESW stored by TEST SUBCHANNEL is a for-
mat-2 ESW when all of the following conditions are
met:

1. The extended-status-word-format bit, bit 5 of
word 0 of the SCSW, is zero.

2. The channel-subsystem-timing facility is avail-
able for the subchannel.

3. The subchannel is enabled for the device-con-
nect-time-measurement mode.

4. The device-connect-time-measurement mode is
active.

5. The subchannel status-control field has the sta-
tus-pending bit, bit 31 of word 0 of the SCSW, set
to one, together with:

a. The primary-status bit, bit 29 of word 0 of the
SCSW, alone,

b. The primary-status bit and other status-con-
trol bits, or

c. The intermediate-status bit, bit 28 of word 0
of the SCSW, and the suspended bit, bit 26
of word 0 of the SCSW.

Zeros are stored in byte 0 of word 0, the LPUM is
stored in byte 1 of word 0, and the device-connect
time is stored in bytes 2 and 3 of word 0; an ERW is
stored in word 1; zeros are stored in words 2-4.

A format-2 ESW has the following format:

Last-Path-Used Mask (LPUM): For a definition of
the LPUM, see “Last-Path-Used Mask (LPUM)” on
page 16-49.

Device-Connect-Time Interval (DCTI): Bit posi-
tions 16-31 contain the binary count of time incre-
ments accumulated by the channel subsystem during

Word

0 Zeros LPUM Zeros

1 Extended-Report Word

2

Zeros3

4
0 8 16 31

Word

0 Zeros LPUM DCTI

1 Extended-Report Word

2

Zeros3

4
0 8 16 31

16-55

the time that the channel subsystem and the device
were actively communicating and the subchannel
was subchannel active for a command-mode opera-
tion, or start pending for a transport-mode operation.
The time increment of the DCTI is 128 microseconds.

If the above conditions for the storing of the DCTI
value in the ESW are met but the device-connect-
time-measurement mode was made active by SET
CHANNEL MONITOR subsequent to the execution of
START SUBCHANNEL for this subchannel, the DCTI
value stored is greater than or equal to zero and less
than or equal to the correct DCTI value.

Note: The DCTI value stored in the ESW is the
same as that used to update the corresponding mea-
surement-block data for the subchannel if the mea-
surement-block-update mode is in use for the
subchannel. If the measurement-block-update mode
for the channel subsystem is active and the subchan-
nel is enabled for the device-connect-time-measure-
ment mode but no DCTI value is stored in the ESW
(because of the presence of subchannel-logout infor-
mation), or if the DCTI is zero, then nothing is added
to the corresponding measurement-block data.

Extended-Report Word (ERW): For a definition of
the ERW, see “Extended-Report Word” on
page 16-51.

Extended-Status Format 3

The ESW stored by TEST SUBCHANNEL is a for-
mat-3 ESW when the extended-status-word-format

bit, bit 5 of word 0 of the SCSW, is zero and the sub-
channel is status pending with (1) secondary status,
alert status, or both when primary status is not also
present, or (2) intermediate status when the sub-
channel is not suspended. Zeros are stored in byte 0
of word 0, and the LPUM is stored in byte 1 of word
0. Bytes 2 and 3 of word 0 contain unpredictable val-
ues; an ERW is stored in word 1; zeros are stored in
words 2-4.

A format-3 ESW has the following format:

Last-Path-Used Mask (LPUM): For a definition of
the LPUM, see “Last-Path-Used Mask (LPUM)” on
page 16-49.

An “X” in the format indicates the bit may be zero or
one.

Extended-Report Word (ERW): For a definition of
the ERW, see “Extended-Report Word” on
page 16-51.

Word

0 Zeros LPUM X X X X X X X X X X X X X X X X

1 Extended-Report Word

2

Zeros3

4
0 8 16 31

16-56 The z/Architecture I/O Architecture

Figure 16-13 on page 16-56 summarizes the condi-
tions at the subchannel under which each type of
information is stored in the ESW.

Extended-Control Word

The extended-control word, which is words 8-15 of
an interruption-response block (see “Interruption-
Response Block” on page 16-6), provides additional
information to the program describing conditions that
may exist at the channel subsystem, subchannel, or
device. The extended-control (E) bit, bit 14 of word 0

of the SCSW, when one, indicates that model-depen-
dent information or concurrent-sense information has
been stored in the extended-control word.

The information provided in the extended-control
word is as follows:

Extended-Measurement Word

The extended-measurement word (EMW) provides
I/O measurement information to the program for the
most recent start or resume operation performed at
the subchannel. When the extended-I/O-measure-
ment-word facility is installed and enabled, the EMW
is conditionally stored in words 16-23 of the IRB des-
ignated by the second operand of TEST SUBCHAN-
NEL when TEST SUBCHANNEL is executed. The
EMW is stored by TEST SUBCHANNEL when all of
the following conditions are met:

1. The extended-status-word-format (L) bit (bit 5,
word 0 of the SCSW) is zero.

2. The channel-subsystem-timing facility is avail-
able for the subchannel, as indicated by the tim-
ing facility bit (T) at the subchannel.

3. The extended-I/O-measurement-word-mode
enable bit (X) at the subchannel is one.

Subchannel Conditions When IRB is stored Extended-
Status Word
(ESW), Word 0

Subchannel-Status
Word

Device
Connect-
Time-
Msrmnt
Mode

Path-Management-
Control Word

Status-
Control
Field

AIPSX
L
Bit

Sus-
pen-
ded
Bit

Timing-
Facility
Bit

Device-
Connect-
Time-
Msrmnt-
Mode-
Enable
Bit

For-
mat

Content
s

Bytes
0,1,2,3

----0 /
U ****00001 0 /

01001 0

0 /

1

Inactive / / / / / / / / / / / / / / / / / / /
1 ZMZZ

Active
0 / / / / / / / / /

1
0
1 2 ZMDD

**1*1 0

/ / / / / Inactive / / / / / / / / / / / / / / / / / / /
1 ZMZZ////

Active
0 / / / / / / / / /

////
1

0
//// 1 2 ZMDD

**011 0 /
3 ZM**

1*001 0 /
****1 1 / 0 RRRR

Explanation:

- Defined to be not meaningful when X is zero.
* Bits may be zeros or ones.
/ Information not relevant in this situation.
A Alert status.
D Accumulated device-connect-time-interval (DCTI) value stored

in bytes 2 and 3.
I Intermediate status.
L Extended-status-word format.
M Last-path-used mask (LPUM) stored in byte 1.
P Primary status.
R Subchannel-logout information stored in word 0.
S Secondary status.
U No format defined.
X Status pending.
Z Bits are stored as zeros.

Figure 16-13. Information Stored in ESW

SCSW
Bits ERW

Bit 7

ERW
Bits 10-

15 ECW Words 0-75 14
0 0 0 Zeros Unpredictable1

0 1 0 (5) (5)
0 1 1 (3) Concurrent-sense information4

1 0 0 Zeros Unpredictable1

1 1 0 Zeros Model-dependent information2

1 1 1 (3) Concurrent-sense information4

Explanation:

1 If stored, the value of these words is unpredictable.
2 Unused bits in the model-dependent information are

stored as zeros.
3 Bit positions 10-15 contain a value equal to the number of

sense bytes returned.
4 Unused bytes in the concurrent-sense information are

stored as zeros.
5 The combination of SCSW bit 5 as 0, SCSW bit 14 as one,

and ERW bit 7 as zero does not occur.

16-57

4. The subchannel status-control field has the sta-
tus-pending bit (bit 31, word 0 of the SCSW) set
to one, together with:

a. The primary-status bit (bit 29, word 0 of the
SCSW) alone, or

b. The primary-status bit and other status-con-
trol bits, or

c. The secondary-status bit (bit 29, word 0 of
the SCSW) alone, or

d. The intermediate-status bit (bit 28, word 0 of
the SCSW) and the suspended bit (bit 26,
word 0 of the SCSW).

Words 16-23 of the IRB contain unpredictable values
when the extended-I/O-measurement-word facility is
installed and enabled but the conditions listed above
are not met.

When the extended-I/O-measurement-word facility is
not installed, or the facility is installed but not
enabled, words 16-23 of the IRB are not accessed by
the channel subsystem.

The format of the extended-measurement word is
shown below:

Each field in the EMW, when valid, contains a 32 bit
binary count in which each increment of the count
represents a value of 0.5 microseconds. A value of
00000000 hex represents a time period of zero sec-
onds; the maximum value of FFFFFFFF hex rep-
resents approximately 35.79 minutes.

The accuracy of each of the measurement fields
stored by the measurement facility is undefined and
may vary depending on the resolution of timers
implemented at the channel subsystem, the types of
channels used to perform the operation, the capabili-

ties of control units accessed during the operation,
and the overall length of the I/O operation that was
performed. The maximum value of FFFFFFFF hex is
stored if a counter overflows; the program is not
alerted when an overflow occurs.

Device-Connect Time: Bit positions 0-31 of word
0 contain the measured device-connect time for the
operation. The device-connect time is the sum of the
time intervals measured whenever the device is logi-
cally connected to a channel path while the subchan-
nel is subchannel active for a command-mode
operation, or start-pending for a transport-mode
operation, and the device is actively communicating
with the channel path, as defined in the section
“Device-Connect Time” on page 17-4.

Function-Pending Time: Bit positions 0-31 of
word 1 contain the SSCH- or RSCH-function-pending
time for the operation. Function-pending time is the
time interval between acceptance of the start func-
tion (or resume function if the subchannel is in the
suspended state) at the subchannel and acceptance
of the first command associated with the initiation or
resumption of channel-program execution at the
device, as defined in the section “Function-Pending
Time” on page 17-5.

Device-Disconnect Time: Bit positions 0-31 of
word 2 contain the device-disconnect time for the
operation. Device-disconnect time is the sum of the
time intervals measured whenever the device is logi-
cally disconnected from the channel subsystem while
the subchannel is subchannel-active for a command-
mode operation, or start-pending for a transport-
mode operation, as defined in the section “Device-
Disconnect Time” on page 17-5.

Control-Unit-Queuing Time : Bit positions 0-31 of
word 3 contain the control-unit-queuing time for the
operation. Control-unit-queuing time is the sum of the
time intervals measured by the control unit whenever
the device is logically disconnected from the channel
subsystem during an I/O operation while the device
is busy with an operation initiated from a different
system, as defined in the section “Control-Unit-Queu-
ing Time” on page 17-5.

Device-active-only time: Bit positions 0-31 of
word 4 contain the device-active-only time for the
operation. For a command-mode operation, device-
active-only time is the sum of the time intervals when
the subchannel is device-active but not subchannel-
active at the end of an I/O operation or chain of I/O

Word

0 Device-Connect Time

1 Function-Pending Time

2 Device-Disconnect Time

3 Control-Unit-Queuing Time

4 Device-Active-Only Time

5 Device-Busy Time

6 Initial Command Response Time

7 Reserved
0 31

16-58 The z/Architecture I/O Architecture

operations initiated by a start function or resume
function, as defined in section “Device-Active-Only
Time” on page 17-6. When a transport-mode IRB is
stored, device-active-only time is the sum of the
times that the I/O device was active executing device
command and the time interval between when chan-
nel-end and device-end status were presented.

Device-busy time: Bit positions 0-31 of word 5
contain the device-busy time for the operation. When
a command-mode IRB is stored, the device-busy
time is the sum of the time intervals when the device
is found to be device busy during an attempt to initi-
ate a start function or resume function at the sub-
channel, as defined in the section “Device-Busy
Time” on page 17-6. When a transport-mode IRB is
stored, device-busy time is the sum of the times that
the I/O device was busy attempting to initiate a com-
mand and the device busy time accumulated by the
channel subsystem.

Initial Command Response Time: Bit positions
0-31 of word 6 contain the initial-command-response
time for the operation. When a command-mode IRB
is stored, initial-command-response time for an oper-
ation is the time interval beginning from when the first
command of the channel program is sent to the
device until the device indicates it has accepted the
command. When a transport-mode IRB is stored, the
initial-command-response time, is the time interval
difference between when a TCCB is sent to the I/O
device until the response is received from the I/O
device, minus the time from when the control unit
receives the TCCB until the channel subsystem
receives the response from the control unit.

17-1© Copyright IBM Corp. 2000, 2019

Chapter 17. I/O Support Functions

Channel-Subsystem Monitoring 17-3
Channel-Subsystem Timing. 17-3

Channel-Subsystem Timer 17-4
Measurement-Block Update 17-4

Measurement Block 17-5
Measurement-Block Format 17-9
Measurement-Block Origin 17-9
Measurement-Block Address. 17-9
Measurement-Block Key 17-9
Measurement-Block Index 17-9
Measurement-Block-Update Mode 17-10
Measurement-Block-Format Control 17-10
Measurement-Block-Update Enable 17-10
Control-Unit-Queuing Measurement 17-11
Control-Unit-Defer Time. 17-11
Device-Active-Only Measurement 17-11
Initial-Command-Response Measurement 17-11
Time-Interval-Measurement Accuracy. . . 17-11

Device-Connect-Time Measurement 17-12
Device-Connect-Time-Measurement

Mode . 17-12
Device-Connect-Time-Measurement

Enable . 17-12
Extended Measurement Word 17-12

Extended-Measurement-Word Enable . . 17-13
Signals and Resets . 17-13

Signals . 17-13
Halt Signal . 17-13

Clear Signal. 17-14
Reset Signal . 17-14

Resets. 17-14
Channel-Path Reset 17-15
I/O-System Reset 17-15

Externally Initiated Functions 17-18
Initial Program Loading 17-18

CCW-type IPL . 17-19
List-Directed IPL . 17-21

IPL Information Report Block 17-23
IPL Signature Certificate List. 17-24
IPL Signature Certificate Entry 17-24

Reconfiguration of the I/O System 17-27
Status Verification. 17-28
Address-Limit Checking 17-28
Configuration Alert . 17-29
Incorrect-Length-Indication Suppression 17-29
Concurrent Sense. 17-29
Channel-Subsystem Recovery 17-29

Channel Report. 17-30
Channel-Report Word 17-31
Restore-Subchannel Facility 17-33
Extended-Subchannel-Logout Facility 17-34

Channel-Subsystem-I/O-Priority Facility 17-34
Number of Channel-Subsystem-Priority

Levels . 17-35
Multiple-Subchannel-Set Facility. 17-35

The I/O support functions are those functions of the
channel subsystem that are not directly related to the
initiation or control of I/O operations. The following
I/O support functions are described in this chapter:

• Channel-subsystem monitoring
• Signals and resets
• Externally initiated functions
• Status verification
• Address-limit checking
• Configuration alert
• Incorrect-length-indication suppression
• Concurrent sense
• Channel-subsystem recovery
• I/O-priority facility
• Restore-subchannel facility
• Multiple-subchannel-set facility

Channel-Subsystem Monitoring

Monitoring facilities are provided in the channel sub-
system so that the program can retrieve measured
values on performance for a designated subchannel.
The use of these facilities is under program control by
means of the execution of the SET CHANNEL MON-
ITOR instruction and the MODIFY SUBCHANNEL
instruction.

The principal components of the channel-subsystem-
monitoring facilities are the channel-subsystem-tim-
ing facility, measurement-block-update facility, and
device-connect-time-measurement facility. The mea-
surement-block-update facility and device-connect-
time-measurement facility both use the channel-sub-
system-timing facility but otherwise are logically dis-
tinct and operate independent of one another.

17-2 The z/Architecture I/O Architecture

Other components of the channel-subsystem-moni-
toring facilities are the control-unit-queuing-measure-
ment facility, the control-unit-defer-time facility, the
device-active-only-measurement facility, the initial-
command-response-measurement facility, the
extended-I/O-measurement-block facility, and the
extended-I/O-measurement-word facility. These
enhance the measurements of the measurement-
block-update facility if they are available as described
in later sections, where each of the facilities that con-
stitute the channel-subsystem-monitoring facilities is
described in this chapter.

Channel-Subsystem Timing

The channel-subsystem-timing facility provides the
channel subsystem with the capability of measuring
the elapsed time required for performing several dif-
ferent phases of the processing of a start function ini-
tiated by START SUBCHANNEL. These elapsed-
time measurements are used by both the measure-
ment-block-update facility and the device-connect-
time-measurement facility to provide subchannel per-
formance information to the program.

While every channel subsystem has a channel-sub-
system-timing facility, it may or may not be provided
for use with all subchannels. Subchannels for which
the facility is provided have the timing-facility bit, bit
14 of word 1, stored as one in the associated sub-
channel-information block. (See “Timing Facility (T)”
on page 15-4.) If the channel-subsystem-timing facil-
ity is not provided for the subchannel, the subchan-
nel's timing-facility bit is stored as zero.

Subchannels that do not have the channel-subsys-
tem-timing facility provided are those for which the
characteristics of the associated device, the manner
in which it is attached to the channel subsystem, or
the channel-subsystem resources required to sup-
port the device are such that use of the channel-sub-
system-timing facility is precluded.

The channel-subsystem-timing facility consists of at
least one channel-subsystem timer and the associ-
ated logic and storage required for computing and
recording the elapsed-time intervals for use by the
two measurement facilities. The aspects of the chan-
nel-subsystem-timing facility that are of importance
to the program are described below.

Channel-Subsystem Timer
Each channel-subsystem timer is a binary counter
that is not accessible to the program. The channel-
subsystem timer provides a minimum timer resolu-
tion of 128 microseconds. A timer resolution of 1.0
microseconds is provided when FICON-I/O-interface
channel paths are supported. When incrementing the
channel-subsystem timer causes a carry out of the
leftmost bit position, the carry is ignored, and count-
ing continues from zero. No indications are gener-
ated as a result of the overflow.

Just as every CPU has access to a TOD clock, every
channel subsystem has access to at least one chan-
nel-subsystem timer. When multiple channel-subsys-
tem timers are provided, synchronization among
these timers is also provided, creating the effect that
all the timing facilities of the channel subsystem
share a single timer. Synchronization among these
timers may be supplied either through some TOD
clock or independently by the channel subsystem.

If the TOD clocks are not synchronized, the elapsed
times measured by the channel-subsystem-timing
facility may have unpredictable values for some or all
of the subchannels, depending on the model and on
the particular channel-subsystem timer and the way
the associated devices are physically attached to the
system. The values are unpredictable for those
devices attached to the system by separately config-
urable channel paths whose associated CPU TOD
clocks are not synchronized.

Synchronization: If either the measurement-block-
update mode or the device-connect-time-measure-
ment mode is active and any of the channel-subsys-
tem timers is found to be out of synchronization, a
channel-subsystem-timer-sync check is recognized,
and a channel report is generated to alert the pro-
gram (see “Channel-Subsystem Recovery” on
page 17-27). If neither of these modes is active, the
lack of synchronization is not recognized.

Measurement-Block Update

The measurement-block-update facility provides the
program with the capability of accumulating perfor-
mance information for subchannels that are enabled
for the measurement-block-update mode when the
measurement-block-update mode is active. A sub-
channel is enabled for the measurement-block-
update mode by setting bit 11 of word 1 of the SCHIB
operand to one and then issuing MODIFY SUB-

17-3

CHANNEL. The measurement-block-update mode is
made active by the execution of SET CHANNEL
MONITOR when bit 62 of general register 1 is one.

When the measurement-block-update mode is active
and the subchannel is enabled for the measurement-
block-update mode, information is accumulated in a
measurement block associated with the subchannel.
A measurement block is either a 32-byte area (for-
mat-0 measurement block) or a 64-byte area (for-
mat-1 measurement block) in main storage that is
associated with a subchannel for the purpose of
accumulating measurement data.

For format-0 measurement blocks, the program spec-
ifies a contiguous area of absolute storage, referred
to as the measurement-block area, and subdivides
this area into 32-byte blocks, one block for each sub-
channel for which measurement data is to be accu-
mulated. The measurement-block-update facility
uses the measurement-block index contained at the
subchannel in conjunction with the measurement-
block origin established by the execution of SET
CHANNEL MONITOR to compute the absolute
address of the measurement block associated with a
subchannel.

For format-1 measurement blocks, the program pro-
vides a 64-byte contiguous area of absolute storage
for the subchannel. The measurement-block-update
facility uses the measurement-block address pro-
vided by the MSCH instruction to access the mea-
surement block.

Measurement data is stored in the measurement
block associated with the subchannel each time an
I/O operation or chain of I/O operations initiated by a
START SUBCHANNEL instruction or RESUME SUB-
CHANNEL instruction is suspended or is completed
at the device The completion of an I/O operation or
chain of I/O operations at the device is normally
determined when secondary status is accepted from
the device.

The measurement data accumulated in the format-0
and format-1 measurement blocks by the measure-
ment-block-update facility is described in the follow-
ing section, “Measurement Block”.

Measurement Block
A measurement block is either a 32-byte area (for-
mat-0 measurement block) at a location designated
by the program by its use of a measurement-block-

origin address in conjunction with the measurement-
block index, or a 64-byte area (format-1 measure-
ment block) at a location designated by the measure-
ment-block address provided in the SCHIB during the
execution of the MODIFY SUBCHANNEL instruction.

The measurement block contains the accumulated
values of the measurement data described below.
When the measurement-block-update mode is active
and the subchannel is enabled for measurement-
block update, the measurement-block-update facility
accumulates the values for the measurement data
that accrue during the performance of an I/O opera-
tion or chain of I/O operations initiated by START
SUBCHANNEL.

When the I/O operation or chain of I/O operations is
suspended or completed and no error condition is
encountered, the accrued values are added to the
accumulated values in the measurement block for
that subchannel. If an error condition is detected and
subchannel-logout information is stored in the
extended-status word (ESW), the accrued values are
not added to the accumulated values in the measure-
ment block for the subchannel, and the two count
fields in the measurement block are not incremented.

If (1) any of the accrued time values is detected to
exceed the internal storage provided for containing
these values, (2) the control unit cannot provide an
accurate queuing time or defer time for the current
operation, or (3) the channel subsystem successfully
recovers from certain error conditions, none of the
accrued values is added to the measurement block
for the subchannel, and the sample count in the mea-
surement block is not incremented, but the
SSCH+RSCH count in the block is incremented.

References to the measurement block by the mea-
surement-block-update facility, in order to accumulate
measurement data at the suspension or completion
of an I/O function, are single-access references and
appear to be word concurrent as observed by CPUs.

The measurement-block-update facility updates all
fields in the measurement block that are required to
be updated for a suspended I/O operation prior to
putting the subchannel into the suspended state. The
measurement-block-update facility updates all fields
in the measurement block that are required to be
updated for a completed I/O operation prior to mak-
ing the subchannel status pending with secondary
status or, if the subchannel is start pending for a sub-

17-4 The z/Architecture I/O Architecture

sequent operation, prior to initiating the start func-
tion.

A format-0 measurement block is stored when the
measurement-block-format-control bit at the sub-
channel is zero; a format-1 measurement block is
stored when the measurement-block-format-control
bit at the subchannel is one.

The format-0 measurement block has the following
format:

The format-1 measurement block has the following
format:

SSCH+RSCH Count: Bits 0-15 of word 0 in the for-
mat-0 measurement block and bits 0-31 of word 0 in
the format-1 measurement block are used as a
binary counter. During the performance of a start

function for which measurement-block update is
active, when (1) the secondary status condition is
recognized or (2) the suspend function is performed,
the counter is incremented by one, and the measure-
ment data is stored. The counter wraps around from
the maximum value to 0. The program is not alerted
when counter overflow occurs.

If the measurement-block-update mode is active and
the subchannel is enabled for measuring, the
SSCH+RSCH count is incremented even when the
lack of measured values for an individual start func-
tion precludes the updating of the remaining fields of
the measurement block or when the timing-facility bit
for the subchannel is zero. The SSCH+RSCH count
is not incremented if the measurement-block-update
mode is inactive, if the subchannel is not enabled for
the measurement-block update, or if subchannel-
logout information has been generated for the start
function.

Sample Count: Bits 16-31 of word 0 in the format-
0 measurement block and bits 0-31 of word 1 in the
format-1 measurement block are used as a binary
counter. When the time-accumulation fields following
word 0 of the format-0 measurement block or follow-
ing word 1 of the format-1 measurement block are
updated, the counter is incremented by one. On
some models, certain conditions may prevent the
measurement-block-update facility from obtaining the
accrued values of the measurement data for an indi-
vidual start function, even when the measurement-
block-update mode is active and the subchannel is
enabled for that mode. The control unit may also sig-
nal that it was not able to accumulate an accurate
queuing time. In these situations, the sample-count
field is not incremented.

The counter wraps around from the maximum value
to 0. The program is not alerted when counter over-
flow occurs. This field is not updated if the channel-
subsystem-timing facility is not provided for the sub-
channel.

The System Library publication for the system model
specifies the conditions, if any, that preclude the
updating of the sample count and time-accumulation
fields of the measurement block.

Device-Connect Time: Bit positions 0-31 of word
1 in the format-0 measurement block and bit posi-
tions 0-31 of word 2 in the format-1 measurement
block contain the accumulation of measured device-
connect-time intervals. The device-connect-time

Word

0 SSCH+RSCH Count Sample Count

1 Device-Connect Time

2 Function-Pending Time

3 Device-Disconnect Time

4 Control-Unit-Queuing Time

5 Device-Active-Only Time

6 Device-Busy Time

7 Initial Command Response Time
0 16 31

Word

0 SSCH+RSCH Count

1 Sample Count

2 Device-Connect Time

3 Function-Pending Time

4 Device-Disconnect Time

5 Control-Unit-Queuing Time

6 Device-Active-Only Time

7 Device-Busy Time

8 Initial Command Response Time

9 Interrupt Delay Time

10 I/O Priority Delay Time

11

Reserved

15
0 31

17-5

interval (DCTI) is the sum of the time intervals mea-
sured whenever the device is logically connected to a
channel path while the subchannel is subchannel
active and the device is actively communicating with
the channel path. The device-connect time does not
include the intervals when a device is logically con-
nected to a channel path but is not actively communi-
cating with the channel. The device reports the
accumulation of time intervals when the device is log-
ically connected but not actively communicating with
the channel path as control-unit-defer time. The con-
trol-unit-defer time is not included in the device-con-
nect-time measurement but, instead, is added to the
accrued device-disconnect-time measurement for the
operation.

The time intervals are stored using a resolution of
128 microseconds. The accumulated value is modulo
approximately 152.71 hours, and the program is not
alerted when an overflow occurs. This field is not
updated if (1) the channel-subsystem-timing facility is
not provided for the subchannel, (2) the measure-
ment-block-update mode is inactive, or (3) any of the
time values accrued for the current start function has
been detected to exceed the internal storage in
which it was accrued.

Accumulation of device-connect-time intervals for a
subchannel and storing this data in the ESW are not
affected by whether the measurement-block-update
mode is active. (See “Device-Connect-Time Mea-
surement” on page 17-10.)

Function-Pending Time: Bit positions 0-31 of
word 2 in the format-0 measurement block and bit
positions 0-31 of word 3 in the format-1 measure-
ment block contain the accumulated SSCH- and
RSCH-function-pending time. Function-pending time
is the time interval between acceptance of the start
function (or resume function if the subchannel is in
the suspended state) at the subchannel and accep-
tance of the first command associated with the initia-
tion or resumption of channel-program execution at
the device.

When channel-program execution is suspended
because of a suspend flag in the first CCW of a chan-
nel program, the suspension occurs prior to transfer-
ring the first command to the device. In this case, the
function-pending time accumulated up to that point is
added to the value in the function-pending-time field
of the measurement block. Function-pending time is
not accrued while the subchannel is suspended.
Function-pending time begins to be accrued again, in

this case, when RESUME SUBCHANNEL is subse-
quently executed while the designated subchannel is
in the suspended state.

The function-pending-time interval is stored using a
resolution of 128 microseconds. The accumulated
value is modulo approximately 152.71 hours, and the
program is not alerted when an overflow occurs. This
field is not updated if the channel-subsystem-timing
facility is not provided for the subchannel.

Device-Disconnect Time: Bit positions 0-31 of
word 3 in the format-0 measurement block and bit
positions 0-31 of word 4 in the format-1 measure-
ment block contain the accumulated device-discon-
nect time. Device-disconnect time is the sum of the
time intervals measured whenever the device is logi-
cally disconnected from the channel subsystem while
the subchannel is subchannel active. The device-dis-
connect time also includes the sum of control-unit-
defer-time intervals reported by the device during the
I/O operation.

Device-disconnect time is not accrued while the sub-
channel is in the suspended state. Device-disconnect
time begins to be accrued again, in this case, on the
first device disconnection after channel-program exe-
cution has been resumed at the device (the subchan-
nel is again subchannel active).

The device-disconnect-time interval is stored using a
resolution of 128 microseconds. The accumulated
value is modulo approximately 152.71 hours; the pro-
gram is not alerted when an overflow occurs. This
field is not updated if the channel-subsystem-timing
facility is not provided for the subchannel.

The device-disconnect time does not include the
interval between the primary status condition and the
secondary status condition at the end of an I/O oper-
ation when the subchannel is no longer subchannel
active but the I/O device is active. If the channel sub-
system provides the device-active-only measurement
facility, this time is accumulated in the device-active-
only-time field of the measurement block.

Control-Unit-Queuing Time: Bit positions 0-31 of
word 4 in the format-0 measurement block and bit
positions 0-31 of word 5 in the format-1 measure-
ment block contain the accumulated control-unit-
queuing time. Control-unit-queuing time is the sum of
the time intervals measured by the control unit when-
ever the device is logically disconnected from the
channel subsystem during an I/O operation while the

17-6 The z/Architecture I/O Architecture

device is busy with an operation initiated from a dif-
ferent system.

Control-unit-queuing time is not accrued while the
subchannel is in the suspended state. Control-unit-
queuing time may be accrued for the channel pro-
gram after the subchannel becomes subchannel
active following a successful resumption.

The control-unit-queuing-time field is updated such
that bit 31 represents 128 microseconds. The accu-
mulated value is modulo approximately 152.71
hours; the program is not alerted when an overflow
occurs. This field is not updated if the channel-sub-
system-timing facility is not provided for the subchan-
nel or if the control unit does not provide a queuing
time.

Device-Active-Only Time: Bit positions 0-31 of
word 5 in the format-0 measurement block and bit
positions 0-31 of word 6 in the format-1 measure-
ment block contain the accumulated device-active-
only time. Device-active-only time is the sum of the
time intervals when the subchannel is device active
but not subchannel active at the end of an I/O opera-
tion or chain of I/O operations initiated by a start
function or resume function.

Device-active-only time is not accumulated when the
subchannel is device active during periods when the
subchannel is active; such time is accumulated as
device-connect time or device-disconnect time, as
appropriate.

The device-active-only-time field is updated such that
bit 31 represents 128 microseconds. The accumu-
lated value is modulo approximately 152.71 hours;
the program is not alerted when an overflow occurs.
This field is not updated if the channel-subsystem-
timing facility is not provided for the subchannel.

Device-Busy Time: When the extended-I/O-mea-
surement-block facility is installed, bit positions 0-31
of word 6 in the format-0 measurement block, and bit
positions 0-31 of word 7 in the format-1 measure-
ment block contain the accumulated device-busy
time. Device-busy time is the sum of the time inter-
vals when the subchannel is device busy during an
attempt to initiate a start function or resume function
at the subchannel.

The device-busy-time field is updated such that bit 31
represents 128 microseconds. The accumulated
value is modulo approximately 152.71 hours; the pro-

gram is not alerted when an overflow occurs. This
field is not updated if the channel-subsystem-timing
facility is not provided for the subchannel.

Initial-Command-Response Time: Bit positions
0-31 of word 7 in the format-0 measurement block,
and bit positions 0-31 of word 8 in the format-1 mea-
surement block contain the accumulated initial-com-
mand-response time for the subchannel.

The initial-command-response time for a start or
resume function is the time interval beginning from
when the first command of the channel program is
sent to the device until the device indicates it has
accepted the command.

The initial-command-response time is stored at a
resolution of 128 microseconds. The accumulated
value is modulo approximately 152.71 hours; the pro-
gram is not alerted when an overflow occurs.

This field is not updated if the channel-subsystem-
timing facility is not provided for the subchannel or if
the initial-command-response-measurement facility
is not installed.

Control-Unit-Defer Time: Control-unit-defer time
is the sum of the time intervals measured by the con-
trol unit whenever the device is logically connected to
the channel subsystem during an I/O operation but is
not actively communicating with the channel because
of device-dependent delays in channel-program exe-
cution. The control-unit-defer time is not stored in the
measurement block as a separate measurement field
but is used in the calculation of device-connect-time
measurement and device-disconnect-time measure-
ment for an operation.

Control-unit-defer time, if provided by a control unit,
is accrued while the device is logically connected to
the channel. The time is reported to the channel
when channel-end status is presented that causes a
device disconnection or terminates the I/O operation.
Control-unit-defer time is subtracted from the device-
connect-time measurement and is added to the
device-disconnect-time measurement reported for
the operation.

Interrupt-Delay Time: When the interrupt-delay-
measurement facility is installed, bit positions 0-31 of
word 9 in the format-1 measurement block contain
the accumulated interrupt-delay time for the sub-
channel. Interrupt-delay time is the time interval from
when a subchannel is made status pending with pri-

17-7

mary status to when the status is cleared by TSCH.
When the interrupt-delay-measurement facility is not
installed, bit positions 0-31 of word 9 in the format-1
measurement block are not updated and contain
zeros.

The interrupt-delay time is accumulated in the mea-
surement block when a measurement-block update
is performed on a subsequent SSCH since the inter-
rupt-delay time is not known when the measurement
block is updated for the current SSCH. Consequently,
the interrupt-delay time contains the accumulated
interrupt-delay time for SSCH operations completed
prior to the last completed SSCH operation.

The interrupt-delay time is stored using a resolution
of 128 microseconds. The accumulated value is
modulo approximately 152.71 hours and the program
is not alerted when an overflow occurs. This field is
not updated if the channel-subsystem-timing facility
is not provided for the subchannel.

I/O-Priority-Delay Time: Bit positions 0-31 of word
10 in the format-1 measurement block contain the
accumulated I/O-priority-delay time for the subchan-
nel. The I/O-priority-delay time is that portion of the
queue time that can be attributed to delay due to I/O-
priority management performed by the control unit.
The measurement applies only to TCW I/O opera-
tions and is reported in the additional data area of the
TSB according to device-dependent definition. If the
control unit does not support I/O-priority manage-
ment or if there is no I/O-priority delay, bit positions
0-31 of word 10 in the format-1 measurement block
are not updated.

The I/O-priority-delay time is stored using a resolu-
tion of 128 microseconds. The accumulated value is
modulo approximately 152.71 hours, and the pro-
gram is not alerted when an overflow occurs. This
field is not updated if the channel-subsystem-timing
facility is not provided for the subchannel.

Programming Note: This time is a direct measure-
ment of the effect of the software setting I/O priorities
for the I/O executed at the control unit for all I/O
devices. Times will vary depending if priorities are
kept low for some work. Software uses the time to
validate the correctness of the algorithms used for
I/O priority management.

Reserved: The remaining words of the measure-
ment block, along with any words associated with
facilities that are not provided by the channel subsys-

tem or the subchannel, are reserved for future use.
They are not updated by the measurement-block-
update facility.

Programming Note: It is possible for the program to
fetch a portion of a measurement block immediately
prior to, or during, a measurement block update by
the measurement-block-update facility. To ensure
that a consistent measurement block is fetched, the
program should not fetch measurement data for a
subchannel during the time from when a start or
resume function is initiated at the subchannel until
the operation is suspended or completes with sec-
ondary status.

Measurement-Block Format
The measurement block is stored as either a format-
0 measurement block or a format-1 measurement
block. The format-0 measurement block is a 32-byte
area (format-0 measurement block) at a location des-
ignated by the program using the measurement-
block origin in conjunction with the measurement-
block index. The format-1 measurement block is a
64-byte area (format-1 measurement block) at a
location designated by the measurement-block
address provided in the SCHIB during the execution
of the MODIFY SUBCHANNEL instruction. The mea-
surement-block-format-control bit at the subchannel
indicates whether a format-0 or format-1 measure-
ment block is stored when measurement-block-
update mode is active and enabled at the subchan-
nel.

Measurement-Block Origin
The measurement-block origin is the beginning of the
measurement-block area in main storage, used to
store format-0 measurement blocks. The absolute
address of the measurement-block origin, specified
on a 32-byte boundary, is passed in general register
2 to the measurement-block-update facility when
SET CHANNEL MONITOR is executed with bit 62 of
general register 1 set to one.

Measurement-Block Address
The measurement-block address is set at the sub-
channel through the execution of MODIFY SUB-
CHANNEL. The measurement block address
specifies the absolute address of the beginning of the
64-byte area to be used for accumulating format-1
measurement-block parameters for that subchannel.

Programming Note: The initial value of the mea-
surement-block address is zero. The program is

17-8 The z/Architecture I/O Architecture

responsible for setting the measurement-block
address to the proper value prior to enabling the sub-
channel for the measurement-block-update mode for
format-1 measurement blocks and making the mode
active.

Measurement-Block Key
Bits 32-35 of general register 1 form the four-bit
access key to be used for subsequent measurement-
block updates when SET CHANNEL MONITOR
causes the measurement-block-update mode to be
made active. The measurement-block key is passed
to the measurement-block-update facility whenever
the measurement-block-update mode is made active.
The key is used for format-0 and format-1 measure-
ment block updates.

Measurement-Block Index
The measurement-block index is set in the subchan-
nel through the execution of MODIFY SUBCHAN-
NEL. The measurement-block index specifies which
32-byte measurement block, relative to the measure-
ment-block origin, is to be used for accumulating the
format-0 measurement-block parameters for that
subchannel. The location of the format-0 measure-
ment block of a subchannel is computed by the mea-
surement-block-update facility by appending five
rightmost zeros to the measurement-block index of
the subchannel and adding the result to the mea-
surement-block origin. The result is the absolute
address of the 32-byte format-0 measurement block
for that subchannel. When the computed measure-
ment-block address exceeds 2311, a measurement-
block program-check condition is recognized, and
measurement-block updating does not occur for the
preceding subchannel-active period.

Programming Note: The initial value of the mea-
surement-block index is zero. The program is respon-
sible for setting the measurement-block index to the
proper value prior to enabling the subchannel for the
measurement-block-update mode and making the
mode active. To ensure predictable results for the
measured parameters in the measurement block,
each subchannel for which measured parameters
are to be accumulated must have a different value for
its measurement-block index.

Measurement-Block-Update Mode
The measurement-block-update mode is made
active by the execution of SET CHANNEL MONITOR
with bit 62 of general register 1 set to one. If bit 62 of
general register 1 is zero when SET CHANNEL

MONITOR is executed, the mode is made inactive.
When the measurement-block-update mode is inac-
tive, no measurement values are accumulated in
main storage. When the measurement-block-update
mode is made active, the contents of general register
2 are passed to the measurement-block-update facil-
ity as the absolute address of the measurement-
block origin and is used to calculate the address of
format-0 measurement blocks. The measurement-
block origin is not used for format-1 measurement
blocks. The MBK is also passed to the measurement-
block-update facility as the access key to be used
when updating either format-0 or format-1 measure-
ment blocks for each subchannel. When the mea-
surement-block-update mode is active, the
measurement-block-update facility accumulates
measurements in individual measurement blocks for
subchannels whose measurement-block-update-
enable bit is one. (See the section “Measurement
Block” on page 17-3 for a description of the mea-
sured parameters.)

If the measurement-block-update mode is already
active when SET CHANNEL MONITOR is executed,
the values for the measurement-block origin and
measurement-block key that are used for a subchan-
nel enabled for measuring by the measurement-
block-update facility are dependent upon whether
SET CHANNEL MONITOR is executed prior to,
during, or subsequent to the execution of START
SUBCHANNEL for that subchannel. If SET CHAN-
NEL MONITOR is executed prior to START SUB-
CHANNEL, the current measurement-block origin
and measurement-block key are in control. If SET
CHANNEL MONITOR is executed during or subse-
quent to execution of START SUBCHANNEL, it is
unpredictable whether the measurement-block origin
and measurement-block key that are in control are
old or current.

Measurement-Block-Format Control
Bit 29, word 6, of the SCHIB is the measurement-
block-format-control bit. This bit provides the capabil-
ity of specifying whether a format-0 or format-1 mea-
surement block is stored on a subchannel basis. The
initial value of the bit is zero. When MODIFY SUB-
CHANNEL is executed with the measurement-block-
format-control bit in the SCHIB operand set to one,
the format-1 measurement block is specified for the
subchannel. If the measurement-block-update mode
is active and enabled at the subchannel, the mea-
surement-block-update facility stores a format-1
measurement-block for the subchannel, starting with

17-9

the next START SUBCHANNEL issued to that sub-
channel. Similarly, if MODIFY SUBCHANNEL is exe-
cuted with measurement-block-format-control bit of
the SCHIB operand set to zero by the program, the
measurement-block-update facility stores a format-0
measurement-block for the subchannel, starting with
the next START SUBCHANNEL issued to that sub-
channel.

Measurement-Block-Update Enable
Bit 11 of word 1 of the SCHIB is the measurement-
block-update-enable bit. This bit provides the capa-
bility of controlling the accumulation of measure-
ment-block parameters on a subchannel basis. The
initial value of the enable bit is zero. When MODIFY
SUBCHANNEL is executed with the enable bit set to
one in the SCHIB, the subchannel is enabled for the
measurement-block-update mode. If the measure-
ment-block-update mode is active, the measurement-
block-update facility accumulates measurement-
block parameters for the subchannel, starting with
the next START SUBCHANNEL issued to that sub-
channel. Conversely, if MODIFY SUBCHANNEL is
executed with bit 11 of word 1 of the SCHIB operand
set to zero by the program, the subchannel is dis-
abled for the measurement-block-update mode, and
no additional measurement-block parameters are
accumulated for that subchannel.

Control-Unit-Queuing Measurement
The control-unit-queuing-measurement facility allows
the channel subsystem to accept queuing times from
control units and, in conjunction with the measure-
ment-block-update facility, to accumulate those times
in the measurement block.

The System Library publication for the control-unit
model specifies its ability to supply queuing time. If a
control-unit model is capable of supplying queuing
time, the publication specifies the conditions that pre-
vent the control unit from accumulating an accurate
control-unit-queuing time.

Control-Unit-Defer Time
The control-unit-defer-time facility allows the channel
subsystem to accept defer times from control units
and, in conjunction with the measurement-block-
update facility, to modify the device-connect and
device-disconnect times reported in the measure-
ment block to reflect the defer time. The control-unit-
defer time is subtracted from the device-connect-time

measurement and is added to the device-disconnect-
time measurement reported for an I/O operation.

The System Library publication for the control-unit
model specifies its ability to supply defer time. If a
control-unit model is capable of supplying defer time,
the publication specifies the conditions that prevent
the control unit from accumulating an accurate con-
trol-unit-defer time.

Device-Active-Only Measurement
The device-active-only-measurement facility permits
the channel subsystem to report the times that the
device is disconnected between primary status and
secondary status at the end of an I/O operation or
chain of I/O operations.

The measurement-block updates are performed at
the time that secondary status is accepted from the
I/O device, in order that the device-active time
between primary status and secondary status can be
reported.

If the subchannel is start pending when secondary
status is accepted from the I/O device and the mea-
surement-block update is to be performed, the mea-
surement-block update is performed prior to
performing the start function. If measurement-block
errors occur, they are reported to the program along
with the secondary status instead of performing the
start function.

Initial-Command-Response
Measurement
The initial-command-response-measurement facility
allows the channel subsystem to calculate initial-
command-response time for I/O operations and, in
conjunction with the measurement-block-update
facility, to accumulate those times in the measure-
ment block. The initial-command-response time is
accumulated in word 7 of the measurement block.

Time-Interval-Measurement Accuracy
On some models, when time intervals are to be mea-
sured and condition code 0 is set for START SUB-
CHANNEL (or RESUME SUBCHANNEL in the case
of a suspended subchannel), a period of latency may
occur prior to the initiation of the function-pending
time measurement. The System Library publication
for the system model specifies the mean latency
value and variance for each of the measured time
intervals.

17-10 The z/Architecture I/O Architecture

Programming Notes:

1. Excessive delays may be encountered by the
channel subsystem when attempting to update
measurement data if the program is concurrently
accessing the same measurement-block area. A
programming convention should ensure that the
storage block designated by SET CHANNEL
MONITOR is made read-only while the measure-
ment-block-update mode is active.

2. To ensure that programs written to support mea-
surement functions are executed properly, the
program should initialize all the measurement
blocks to zeros prior to making the measure-
ment-block-update mode active. Only zeros
should appear in the reserved and unused words
of the measurement blocks.

3. When the incrementing of an accumulated value
causes a carry to be propagated out of bit posi-
tion 0, the carry is ignored, and accumulating
continues from zero on.

Device-Connect-Time
Measurement

The device-connect-time-measurement facility pro-
vides the program with the capability of retrieving the
length of time that a device is actively communicating
with the channel subsystem while executing a chan-
nel program. The measured length of time that the
device spends actively communicating on a channel
path during the execution of a channel program is
called the device-connect-time interval (DCTI). Con-
trol-unit-defer time is not included in the DCTI.

If timing facilities are provided for the subchannel, the
DCTI value is passed to the program in the extended-
status word (ESW) at the completion of the operation
when the primary-status condition is cleared by
TEST SUBCHANNEL and when TEST SUBCHAN-
NEL clears an intermediate-status condition alone
while the subchannel is suspended. The DCTI value
passed in the ESW pertains to the previous subchan-
nel-active period. The passing of the DCTI in the
ESW is under program control by the SET CHANNEL
MONITOR device-connect-time-measurement mode-
control bit and the corresponding enable bit in the
subchannel. However, the DCTI value is not stored in
the ESW if the I/O function initiated by START SUB-
CHANNEL is terminated because of an error condi-
tion that is described by subchannel logout. See the

section “Extended-Status Format 0” on page 16-47.
In this case, the extended-status bit (L) of the SCSW
is stored as one, indicating that the ESW contains
logout information describing the error condition. See
the section “Extended-Status Word” on page 16-47
for the description of the logout information. If the
accrued DCTI value exceeded 8.388608 seconds
during the previous subchannel-active period, then
the maximum value (FFFF hex) is passed in the
ESW.

Device-Connect-Time-Measurement
Mode
The device-connect-time-measurement mode is
made active by the execution of SET CHANNEL
MONITOR when bit 63 of general register 1 is one. If
bit 63 of general register 1 is zero when SET CHAN-
NEL MONITOR is executed, the mode is made inac-
tive, and DCTIs are not passed to the program.
When timing facilities are provided for the subchan-
nel, the device-connect-time-measurement mode is
active, and the subchannel is enabled for the mode,
the DCTI value is passed to the program in the ESW
stored when TEST SUBCHANNEL (1) clears the pri-
mary-interruption condition with no logout information
indicated in the SCSW (extended-status-word-format
bit is zero) or (2) clears the intermediate-status con-
dition alone while the subchannel is suspended.

If a start function is currently being executed with a
subchannel enabled for the device-connect-time-
measurement mode when SET CHANNEL MONI-
TOR makes this mode active for the channel subsys-
tem, the value of the DCTI stored under the
appropriate conditions may be zero, a partial result,
or the full and correct value, depending on the model
and the progress of the start function at the time the
mode was activated.

Provision of the DCTI value in the measurement-
block area is not affected by whether the device-con-
nect-time-measurement mode is active.

Device-Connect-Time-Measurement
Enable
Bit 12 of word 1 of the SCHIB is the device-connect-
time measurement-mode-enable bit. This bit pro-
vides the program with the capability of selectively
controlling the storing of DCTI values for a subchan-
nel when the device-connect-time-measurement
mode is active. The initial value of the enable bit is
zero. When this enable bit is one in the SCHIB and
MODIFY SUBCHANNEL is executed, the subchan-

17-11

nel is enabled for the device-connect-time-measure-
ment mode. If the device-connect-time-measurement
mode is active, the device-connect-time-measure-
ment facility begins providing DCTI values for the
subchannel, starting with the next START SUB-
CHANNEL issued to the subchannel. In this situa-
tion, the DCTI values are provided in the ESW (see
the section “Extended-Status Format 2” on
page 16-54). Similarly, if MODIFY SUBCHANNEL is
executed with bit 12 of word 1 of the SCHIB operand
set to zero by the program, the subchannel is dis-
abled for the device-connect-time-measurement
mode, and no further DCTI values are passed to the
program for that subchannel.

Extended Measurement Word

The extended-I/O-measurement-word facility pro-
vides the program with the capability of retrieving
measurement information for a channel program.
The measurement information is stored into the
extended-measurement word (EMW) in the Interrup-
tion Response Block when the extended-measure-
ment-word enable bit is one at the subchannel. See
the section “Extended-Measurement Word” on
page 16-56 in Chapter 16, “I/O Interruptions,” for the
description of the extended-measurement word.

When the extended-measurement-word is enabled
for the subchannel, measurement values are passed
to program in the EMW when TEST SUBCHANNEL
clears a primary-status condition, secondary-status
condition alone, or an intermediate-status condition
alone while the subchannel is suspended. The mea-
surement values stored in the EMW pertain to the
previous subchannel-active and device-active period.
Measurement values are not stored in the EMW if the
I/O function initiated by START SUBCHANNEL is ter-
minated because of an error condition that is
described by subchannel logout (see the section
“Extended-Status Format 0” on page 16-47). In this
case, the extended-status bit (L) of the SCSW is
stored as one, indicating that the ESW contains
logout information describing the error condition. See
the section “Extended-Status Word” on page 16-47.
for the description of the logout information. If any of
the accrued measurement values exceeded the max-
imum value capable of being measured during the
previous subchannel-active and device-active period,
then the maximum value is stored for that value in the
EMW.

Extended-Measurement-Word Enable
Bit 30 of word 6 of the SCHIB is the extended-mea-
surement-word enable bit. This bit provides the pro-
gram with the capability of selectively controlling the
storing of measurement values for a subchannel. The
initial value of the enable bit is zero. When this
enable bit is one in the SCHIB and MODIFY SUB-
CHANNEL is executed, the subchannel is enabled
for the extended-measurement-word and the
extended-measurement-word facility begins provid-
ing measurement values for the subchannel starting
with the next START SUBCHANNEL issued to the
subchannel. Similarly, if MODIFY SUBCHANNEL is
executed with bit 30, word 6, of the SCHIB operand
set to zero by the program, the subchannel is dis-
abled for the extended-measurement-word and no
further measurement values are passed to the pro-
gram for that subchannel.

Signals and Resets

During system operation, it may become necessary
to terminate an I/O operation or to reset either the I/O
system or a portion of the I/O system. (The I/O sys-
tem consists of the channel subsystem plus all of the
attached control units and devices.) Various signals
and resets are provided for this purpose. Three sig-
nals are provided for the channel subsystem to notify
an I/O device to terminate an operation or perform a
reset function or both. Two resets are provided to
cause the channel subsystem to reinitialize certain
information contained either at the I/O device or at
the channel subsystem.

Signals

The request that the channel subsystem initiate a
signaling sequence is made by one of the following:

1. The program's issuance of the CLEAR SUB-
CHANNEL, HALT SUBCHANNEL, or RESET
CHANNEL PATH instruction

2. The I/O device's signaling of I/O-error alert

3. The channel subsystem itself, upon detecting
certain error conditions or equipment malfunc-
tions

The three signals are the halt signal, the clear signal,
and the reset signal.

17-12 The z/Architecture I/O Architecture

Halt Signal
The halt signal is provided so the channel subsystem
can terminate an I/O operation. The halt signal is
issued by the channel subsystem as part of the halt
function performed subsequent to the execution of
HALT SUBCHANNEL. The halt signal is also issued
by the channel subsystem when certain error condi-
tions are encountered.

For the parallel-I/O-interface type of channel path,
the halt signal results in the channel subsystem using
the interface-disconnect sequence control defined in
the System Library publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit
OEMI, GA22-6974.

For the ESCON-I/O-interface type of channel path,
the halt signal results in the channel subsystem using
the cancel function defined in the System Library
publication IBM Enterprise Systems Architecture/390
ESCON I/O Interface, SA22-7202.

For the FICON-I/O-interface type of channel path and
the subchannel is operating in command-mode, the
halt signal results in the channel subsystem using the
cancel function defined in the ANSI standards docu-
ment Fibre Channel - Single-Byte Command Code
Sets-2 (FC-SB-2).

For the FICON-I/O-interface type of channel path
with the subchannel is operating in transport mode,
the halt signal results in the channel subsystem using
the transport-mode abort-sequence function.

Clear Signal
The clear signal is provided so the channel subsys-
tem can terminate an I/O operation and reset status
and control information contained at the device. The
clear signal is issued as part of the clear function per-
formed subsequent to the execution of CLEAR SUB-
CHANNEL. The clear signal is also issued by the
channel subsystem when certain error conditions or
equipment malfunctions are detected by the I/O
device or the channel subsystem.

For the parallel-I/O-interface type of channel path,
the clear signal results in the channel subsystem
using the selective-reset sequence control defined in
the System Library publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit
OEMI, GA22-6974.

For the ESCON-I/O-interface type of channel path,
the clear signal results in the channel subsystem
using the selective-reset function defined in the Sys-
tem Library publication IBM Enterprise Systems
Architecture/390 ESCON I/O Interface, SA22-7202.

For the FICON-I/O-interface type of channel path and
the subchannel is operating in command-mode, the
clear signal results in the channel subsystem using
the selective-reset function defined in the ANSI stan-
dards document Fibre Channel - Single-Byte Com-
mand Code Sets-2 (FC-SB-2).

For the FICON-I/O-interface type of channel path
with the subchannel is operating in transport mode,
the clear signal results in the channel subsystem
using the selective-reset function.

When the subchannel is operating in command
mode, if an I/O operation is in progress at the device
and the device is actively communicating over a
channel path in the performance of that I/O operation
when a clear signal is received on that channel path,
the device disconnects from that channel path upon
receiving the clear signal. Data transfer and any
operation using the facilities of the control unit are
immediately concluded, and the I/O device is not
necessarily positioned at the beginning of a block.
Mechanical motion not involving the use of the con-
trol unit, such as rewinding magnetic tape or position-
ing a disk-access mechanism, proceeds to the
normal stopping point, if possible. The device may
appear busy until termination of the mechanical
motion or the inherent cycle of operation, if any,
whereupon it becomes available. Status information
in the device and control unit is reset, but an interrup-
tion condition may be generated upon the completion
of any mechanical operation.

Reset Signal
The reset signal is provided so the channel subsys-
tem can reset all I/O devices on a channel path. The
reset signal is issued by the channel subsystem as
part of the channel-path-reset function performed
subsequent to the execution of RESET CHANNEL
PATH. The reset signal is also issued by the channel
subsystem as part of the I/O-system-reset function.

For the parallel-I/O-interface type of channel path,
the reset signal results in the channel subsystem
using the system-reset sequence control defined in
the System Library publication IBM System/360 and

17-13

System/370 I/O Interface Channel to Control Unit
OEMI, GA22-6974.

For the ESCON-I/O-interface type of channel path,
the reset signal results in the channel subsystem
using the system-reset function defined in the Sys-
tem Library publication IBM Enterprise Systems
Architecture/390 ESCON I/O Interface, SA22-7202.

For the FICON-I/O-interface type of channel path, the
reset signal results in the channel subsystem using
the system-reset function defined in the ANSI stan-
dards document Fibre Channel - Single-Byte Com-
mand Code Sets-2 (FC-SB-2).

Resets

Two resets are provided so the channel subsystem
can reinitialize certain information contained at either
the I/O device or the channel subsystem. The
request that the channel subsystem initiate one of
the reset functions is made by one of the following:

1. The program's issuance of the RESET CHAN-
NEL PATH instruction

2. The operator's activation of a system-reset-clear
or system-reset-normal key or a load-clear or
load-normal key

3. The channel subsystem itself upon detecting cer-
tain error conditions or equipment malfunctions

The resets are channel-path reset and I/O-system
reset.

Channel-Path Reset
The channel-path-reset facility provides a mecha-
nism to reset certain indications that pertain to a des-
ignated channel path at all associated subchannels.
Channel-path reset occurs when the channel subsys-
tem performs the channel-path-reset function initi-
ated by RESET CHANNEL PATH. (See “RESET
CHANNEL PATH” on page 14-9.) All internal indica-
tions of dedicated allegiance, control unit busy, and
device busy that pertain to the designated channel
path are cleared in all subchannels, and reset is sig-
naled on that channel path.

The receipt of the reset signal by control units
attached to that channel path causes all operations in
progress and all status, mode settings, and alle-
giance, pertaining to that channel path, of the control

unit and its attached devices to be reset. (See also
the description of the system-reset-signal actions in
“I/O-System Reset” on page 17-13.)

The results of the channel-path-reset function on the
designated channel path are communicated to the
program by means of a subsequent machine-check-
interruption condition generated by the channel sub-
system (see “Channel-Subsystem Recovery” on
page 17-27).

I/O-System Reset
The I/O-system-reset function is performed when the
channel subsystem is powered on, when initial pro-
gram loading is initiated manually (see “Initial Pro-
gram Loading” on page 17-16), and when the
system-reset-clear or system-reset-normal key is
activated. The I/O-system-reset function cannot be
initiated under program control; it must be initiated
manually. I/O-system reset may fail to complete due
to malfunctions detected at the channel subsystem
or on a channel path. I/O-system reset is performed
as part of subsystem reset, which also resets all
floating interruption requests, including pending I/O
interruptions. (See “Subsystem Reset” on
page 4-80.) Detailed descriptions of the effects of
I/O-system reset on the various components of the
I/O system appear later in this chapter.

I/O-system reset provides a means for placing the
channel subsystem and its attached I/O devices in
the initialized state. I/O-system reset affects only the
channel-subsystem configuration in which it is per-
formed, including all channel-subsystem components
configured to that channel subsystem. I/O-system
reset has no effect on any system components that
are not part of the channel-subsystem configuration
that is being reset. The effects of I/O-system reset on
the configured components of the channel subsys-
tem are described in the following sections.

Channel-Subsystem State: I/O-system reset
causes the channel subsystem to be placed in the
initialized state, with all the channel-subsystem com-
ponents in the states described in the following sec-
tions. All operations in progress are terminated and
reset, and all indications of prior conditions are reset.
These indications include status information, inter-
ruption conditions (but not pending interruptions),
dedicated-allegiance conditions, pending channel
reports, and all internal information regarding prior
conditions and operations. In the initialized state, the
channel subsystem has no activity in progress and is

17-14 The z/Architecture I/O Architecture

ready to perform the initial-program-loading (IPL)
function or respond to I/O instructions, as described
in “I/O Instructions” on page 14-1.

Control Units and Devices: I/O-system reset
causes a reset signal to be sent on all configured
channel paths, including those which are not physi-
cally available (as indicated by the PAM bit being
zero) because of a permanent error condition
detected earlier. When the reset signal is received by
a control unit, control-unit functions in progress, con-
trol-unit status, control-unit allegiance, and control-
unit modes for the resetting channel path are reset.
Device operations in progress, device status, device
allegiance, and the device mode for the resetting
channel path are also reset. Control-unit and device
mode, allegiance, status, and I/O functions in prog-
ress for other channel paths are not affected.

For devices that are operating in the single-path
mode, an operation can be in progress for, at most,
one channel path. Therefore, if the reset signal is
received on that channel path, the operation in prog-
ress is reset. Devices that have the dynamic-recon-
nection feature and are operating in the multipath
mode, however, have the capability to establish an
allegiance to a group of channel paths during an I/O
operation, where all the channel paths of the path
group are configured to the same channel subsys-
tem. If an operation is in progress for a device that is
operating in the multipath mode and the reset signal
is received on one of the channel paths of that path
group, then the operation in progress is reset for the
resetting channel path only. Although the operation in
progress cannot continue on the resetting channel
path, it can continue on the other channel paths of
the path group, subject to the following restrictions:

1. If the device is actively communicating with the
channel subsystem on a channel path when it
receives the reset signal on that channel path,
then the operation is reset unconditionally,
regardless of path groups.

2. If the operation is in progress in the multipath
mode but the path group consists only of the
resetting path, then the operation is reset.

3. Except as noted in item 2, if the operation in
progress is currently in a disconnected state
(device not actively communicating with the
channel subsystem) or is active on another chan-
nel path of a path group, system reset has no

effect upon the continued performance of the
operation.

A control unit is completely reset after the reset sig-
nal has been received on all its channel paths, pro-
vided no new activity is initiated at the control unit
between the receipt of the first and last reset signal.
“Completely reset” means that the current operation,
if any, at the control unit is terminated and that con-
trol-unit allegiance, control-unit status, and the con-
trol-unit mode, if any, are reset.

An I/O device is completely reset after the reset sig-
nal has been received on all channel paths of all con-
trol units by which the device is accessible, provided
no new activity is initiated at the device between the
receipt of the first and last reset signal. “Completely
reset” means that the current operation, if any, at the
device is terminated and that device allegiance,
device status, and the device mode are reset.

In summary, system reset always causes an opera-
tion in progress to be reset for the channel path on
which the reset signal is received. If the resetting
channel path is the only channel path for which the
operation is in progress, then the operation is com-
pletely reset. If a device is actively communicating on
a channel path over which the reset signal is
received, then the operation in progress is uncondi-
tionally and completely reset.

The reset signal is not received by control units and
devices on channel paths from which the control unit
has been partitioned. A control unit is partitioned
from a channel path by means of an enable/disable
switch on the control unit for each channel path by
which it is accessible. Multi-tagged, unsolicited sta-
tus, if any, remains pending at the control unit for
such a channel path in this case. However, from the
point of view of the program, the control unit and
device appear to be completely reset if the reset sig-
nal is received by the control unit on all the channel
paths by which it is currently accessible.

The resultant reset state of individual control units
and devices is described in the System Library publi-
cation for the control unit.

Channel Paths: I/O-system reset causes a reset
signal to be sent on all configured channel paths and
causes the channel subsystem to be placed in the
reset and initialized state, as described in the previ-
ous sections. As a result of these actions, all commu-
nication between the channel subsystem and its

17-15

attached control units and devices is terminated and
the components reset, and all configured channel
paths are made quiescent or are deconfigured.

Subchannels: I/O-system reset causes all opera-
tions on all subchannels to be concluded. Status
information, all interruption conditions (but not pend-
ing interruptions), dedicated-allegiance conditions,
and internal indications regarding prior conditions
and operations in all subchannels are reset, and all
valid subchannels are placed in the initialized state.

In the initialized state, the subchannel parameters of
all valid subchannels are set to their initial values.
The initial values of the following subchannel param-
eters are zeros:

• Interruption parameter
• I/O-interruption-subclass code (ISC)
• Enabled
• Limit mode when the address-limit-checking

facility is installed
• Measurement mode
• Multipath mode
• Path-not-operational mask
• Last-path-used mask
• Measurement-block index
• Concurrent sense

The initial values of the following subchannel param-
eters are assigned as part of the installation proce-
dure for the device associated with each valid
subchannel:

• Timing facility
• Device number
• Logical-path mask (same value as path-installed

mask)
• Path-installed mask
• Path-available mask
• Channel-path ID 0-7

The values assigned may depend upon the particular
system model and the configuration; dependencies,
if any, are described in the System Library publication
for the system model. Programming considerations
may further constrain the values assigned.

The initial value of the path-operational mask is all
ones.

The device-number-valid bit is one for all subchan-
nels having an assigned I/O device.

The initial value of the model-dependent area of the
subchannel-information block is described in the
System Library publication for the system model.

The initial value of the subchannel-status word and
extended-status word is all zeros.

The initialized state of the subchannel is the state
specified by the initial values for the subchannel
parameters described above. The description of the
subchannel parameters can be found in “Subchan-
nel-Information Block” on page 15-2, “Subchannel-
Status Word” on page 16-7, and “Extended-Status
Word” on page 16-47.

Channel-Path-Reset Facility: I/O-system reset
causes the channel-path-reset facility to be reset. A
channel-path-reset function initiated by RESET
CHANNEL PATH, either pending or in progress, is
overridden by I/O-system reset. The machine-check-
interruption condition, which normally signals the
completion of a channel-path-reset function, is not
generated for a channel-path-reset function that is
pending or in progress at the time I/O-system reset
occurs.

Address-Limit-Checking Facility: When the
address-limit-checking facility is installed, I/O-sys-
tem reset causes the address-limit-checking facility
to be reset. The address-limit value is initialized to all
zeros and validated.

Channel-Subsystem-Monitoring Facilities: I/O-
system reset causes the channel-subsystem-moni-
toring facilities to be reset. The measurement-block-
update mode and the device-connect-time-measure-
ment mode, if active, are made inactive. The mea-
surement-block origin and the measurement-block
key are both initialized to zeros and validated.

Pending Channel Reports: I/O-system reset
causes pending channel reports to be reset.

Channel-Subsystem Timer: I/O-system reset
does not necessarily affect the contents of the chan-
nel-subsystem timer. In models that provide channel-
subsystem-timer checking, I/O-system reset may
cause the channel-subsystem timer to be validated.

Pending I/O Interruptions: I/O-system reset does
not affect pending I/O interruptions. However, during
subsystem reset, I/O interruptions are cleared con-
currently with the performance of I/O-system reset.
(See “Subsystem Reset” on page 4-80.)

17-16 The z/Architecture I/O Architecture

Externally Initiated Functions

I/O-system reset, which is an externally initiated
function, is described in “I/O-System Reset” on
page 17-13.

Initial Program Loading

Initial program loading (IPL) provides a manual
means for causing a program to be read from a des-
ignated device and for initiating the execution of that
program.

Area Affected Effect on I/O-System Reset1

Channel-subsystem state Reset and initialized
Control units and devices Reset
Channel paths Quiescent
Subchannels Reset and initialized

Interruption parameter Zeros2
I/O-interruption-subclass code (ISC) Zeros2
Enabled bit Zero2
Address-limit-mode bits4 Zeros2

Timing-facility bit Installed value2

Multipath-mode bit Zero2
Measurement-mode bits Zeros2
Device-number-valid bit Installed value2

Device number Installed value2

Logical-path mask Equal to path-installed mask value2
Path-not-operational mask Zeros2
Last-path-used mask Zeros2

Path-installed mask Installed value2

Measurement-block index Zeros2
Path-operational mask Ones2
Path-available mask Installed value2 3

Channel-path ID 0-7 Installed value2

Concurrent-sense bit Zero2
Subchannel-status word Zeros2

Extended-status word Zeros2
Model-dependent area Model dependent2

Channel-path-reset facility Reset
Address-limit-checking facility4 Reset and initialized

Address-limit value Zeros2
Channel-subsystem-monitoring facility Reset and initialized

Measurement-block-update mode Inactive2
Device-connect-time-measurement mode Inactive2

Measurement-block origin Zeros2
Measurement-block key Zeros2

Pending channel-report words Cleared
Channel-subsystem timer Unchanged/validated

Explanation:

1 For a detailed description of the effect of I/O-system reset on each area, see the text.
2 Initialized value.
3 Also subject to model-dependent configuration controls, if any.
4 When the FCX facility is not installed.

Figure 17-1. Summary of I/O-System-Reset Actions

17-17

Some models may provide additional controls and
indications relating to IPL; this additional information
is specified in the System Library publication for the
model.

There are two types of IPL: CCW-type IPL and list-
directed IPL. CCW-type IPL is provided by all
machine configurations. List-directed IPL may be
provided, depending on the model.

CCW-type IPL
CCW-type IPL is initiated manually by setting the
load-unit-address controls to a four-digit number to
designate an input device and by subsequently acti-
vating the load-clear or load-normal key.

When the configuration-z/Architecture-architectural-
mode (CZAM) facility is not installed, activating the
load-clear or load-normal key sets the architectural
mode to the ESA/390 mode (or ESA/390 compatibil-
ity mode). When the CZAM facility is installed, acti-
vating the load-clear or load-normal key leaves the
architectural mode unchanged (that is, it remains in
the z/Architecture architectural mode).

Activating the load-clear key causes a clear reset to
be performed on the configuration.

Activating the load-normal key causes an initial CPU
reset to be performed on this CPU, CPU reset to be
propagated to all other CPUs in the configuration,
and a subsystem reset to be performed on the
remainder of the configuration.

In the loading part of the operation, after the resets
have been performed, this CPU enters the load state.
This CPU does not necessarily enter the stopped
state during performance of the reset. The load indi-
cator is on while the CPU is in the load state.

Subsequently, if conditions allow, a read operation is
initiated from the designated input device and associ-
ated subchannel. The read operation is performed as
if a START SUBCHANNEL instruction were executed
that designated (1) the subchannel corresponding to
the device number specified by the load-unit-address
controls and (2) a command-mode ORB containing
all zeros, except for a byte of all ones in the logical-
path-mask field.

Figure 17-2 illustrates the ORB parameters used by
the channel subsystem for a CCW-type IPL.

The first CCW to be executed is not fetched from
storage. Instead, the effect is as if an implied format-
0 CCW, beginning in absolute location 0 and having
the following detailed format, were executed:

In the illustration above, the CCW specifies a read
command with the modifier bits zeros, a data
address of 0, a byte count of 24, the chain-command
flag one, the suppress-incorrect-length-indication flag
one, the chain-data flag zero, the skip flag zero, the
program-controlled-interruption (PCI) flag zero, the
indirect-data-address (IDA) flag zero, and the sus-
pend flag zero. The CCW fetched, as a result of com-
mand chaining, from location 8 or 16, as well as any
subsequent CCW in the IPL sequence, is interpreted
the same as a CCW in any I/O operation, except that
any PCI flags that are specified in the IPL channel
program are ignored.

At the time the subchannel is made start pending for
the IPL read, it is also enabled, which ensures proper
handling of subsequent status from the device by the
channel subsystem and facilitates subsequent I/O
operations using the IPL device. (Except for the sub-

ORB
Field ValueWord Bit(s)

0 0-31 Interruption parameter Zeros
1 0-3 Key: Subchannel key Zeros
1 4 S: Suspend control 0
1 5 C: Streaming-mode control 0
1 6 M: Modification control 0
1 7 Y: Synchronization control 0
1 8 F: CCW-format control 0
1 9 P: Prefetch control 0
1 10 I: Initial-status-interruption control 0
1 11 A: Address-limit-checking control 0
1 12 U: Suppress-suspended-interruption control 0
1 13 B: Channel-program-type control 0
1 14 H: IDAW control 0
1 15 T: 2K-IDAW control 0
1 16-23 LPM: Logical Path Mask Ones
1 24 L: Incorrect-length-suppression-mode

control
0

1 25 D: Modified-CCW-IDA control 0
1 31 X: ORB-extension control 0
2 1-31 CCW Address (absolute address) Zeros

Figure 17-2. ORB Parameters Used in a CCW-Type IPL

Loc.

0 0 0 0 0 0 0 1 0

4 0 1 1 0 0 0 0 0 / / / / / / / / 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 8 16 31

17-18 The z/Architecture I/O Architecture

channel used by the IPL I/O operation, each sub-
channel must first be made enabled by MODIFY
SUBCHANNEL before it can accept a start function
or any status from the device.)

When the IPL subchannel becomes status pending
for the last operation of the IPL channel program, no
I/O-interruption condition is generated. Instead, the
subsystem ID is stored in absolute locations
184-187, zeros are stored in absolute locations
188-191, and the subchannel is cleared of the pend-
ing status as if TEST SUBCHANNEL had been exe-
cuted but without storing information usually stored in
an IRB. If the subchannel-status field that would nor-
mally have been stored is all zeros and the device-
status field that would normally have been stored
contains only the channel-end indication, with or
without the device-end indication, the IPL I/O opera-
tion is considered to be completed successfully. If the
device-end status for the IPL I/O operation is pro-
vided separately after channel-end status, it causes
an I/O-interruption condition to be generated.

If an interface-control check is detected during exe-
cution of the IPL channel program, some models may
re-initiate the same channel program on another
channel path. The other path chosen is any logically-
available channel path to the designated device on
which the IPL channel program has not previously
been initiated during the current IPL operation. (See
programming note 6 on page 17-19 for additional
information.)

When the IPL I/O operation is completed success-
fully, a new PSW is loaded from absolute locations
0-7. When the configuration-z/Architecture-architec-
tural-mode (CZAM) facility is not installed, the CPU is
in the ESA/390 architectural mode (or ESA/390 com-
patibility mode), and absolute locations 0-7 have the
format of an ESA/390 PSW (in which case, bit 31 of
the new PSW must be zero). When the CZAM facility
is installed, the CPU is in the z/Architecture architec-
tural mode, and absolute locations 0-7 have the
short-PSW format shown in Figure 4-3 on page 4-8
(in which case, bit 31 of the new PSW is the
extended-addressing bit).

If the PSW loading is successful and no malfunctions
are recognized that preclude the completion of IPL,
then the CPU leaves the load state, and the load indi-
cator is turned off. If the rate control is set to the pro-
cess position, the CPU enters the operating state,
and CPU operation proceeds under control of the
new PSW. If the rate control is set to the instruction-

step position, the CPU enters the stopped state, with
the manual indicator on, after the new PSW has been
loaded.

If the IPL I/O operation or the PSW loading is not
completed successfully, the CPU remains in the load
state, and the load indicator remains on.

IPL does not complete when any of the following
occurs

• No subchannel contains a valid device number
equal to the IPL device number specified by the
load-unit-address controls.

• A malfunction is detected in the CPU, main stor-
age, or channel subsystem that precludes the
completion of IPL.

• Unsolicited alert status is presented by the
device subsequent to the subchannel becoming
start pending for the IPL read and before the IPL
subchannel becomes subchannel active. The IPL
read operation is not initiated in this case.

• There were no available channel paths to the IPL
device.

• On every available channel path to the IPL
device, either the IPL device appeared not oper-
ational or an interface-control check was
detected.

• The IPL device presented a status byte contain-
ing indications other than channel end, device
end, status modifier, control unit end, control unit
busy, device busy, or retry status during the IPL
I/O operation. Whenever control unit end, control
unit busy, or device busy is presented in the sta-
tus byte, normal path-management actions are
taken.

• A subchannel-status indication other than PCI
was generated during the IPL I/O operation,
except that on some models, detection of an
interface-control check may cause the I/O opera-
tion to be retried on another available channel
path to the IPL device.

• The PSW loaded from absolute locations 0-7 has
a PSW-format error of the type that is recognized
early.

Except in the cases of no corresponding subchannel
for the device number entered or a machine malfunc-
tion, the subsystem ID of the IPL device is stored in

17-19

absolute locations 184-187; otherwise, the contents
of these locations are unpredictable. In all cases of
unsuccessful IPL, the contents of absolute locations
0-7 are unpredictable.

Subsequent to a successful IPL, the subchannel
parameters contain the normal values as if an actual
START SUBCHANNEL had been executed, desig-
nating the ORB as described above.

Programming Notes:

1. The information read and placed at absolute
locations 8-15 and 16-23 may be used as CCWs
for reading additional information during the IPL
I/O operation: the CCW at location 8 may specify
reading additional CCWs elsewhere in storage,
and the CCW at location 16 may specify the
transfer-in-channel command, causing transfer to
these CCWs.

2. The status-modifier bit has its normal effect
during the IPL I/O operation, causing the channel
subsystem to fetch and chain to the CCW whose
address is 16 higher than that of the current
CCW. This applies also to the initial chaining that
occurs after completion of the read operation
specified by the implicit CCW.

3. The PSW that is loaded at the completion of the
IPL operation may be provided by the first eight
bytes of the IPL I/O operation or may be placed
at absolute locations 0-7 by a subsequent CCW.

4. Activating the load-normal key implicitly specifies
the use of the first 24 bytes of main storage and
the eight bytes at absolute locations 184-191.
Since the remainder of the IPL program may be
placed in any part of storage below the 2 G-byte
boundary, it is possible to preserve such areas of
storage as may be helpful in debugging or recov-
ery. The IPL program should not be placed in the
low 512 bytes of storage since that area is
reserved as described in a programming note
under “Compatibility between z/Architecture and
ESA/390” on page 1-37. When the load-clear key
is activated, the IPL program starts with a
cleared machine in a known state, except that
information on external storage remains
unchanged.

5. When the PSW at absolute location 0 has bit 14
set to one, the CPU is placed in the wait state
after the IPL operation is completed. At that

point, the load and manual indicators are off, and
the wait indicator is on.

6. When the program receives control after the
machine leaves the load state during IPL, the
last-path-used mask (LPUM) in the subchannel-
information block (SCHIB) for the IPL device
should be saved. The program should use this
saved LPUM as the logical-path mask (LPM) in
the ORB until the program reaches the point in
its initialization where it has the ability to process
and recover from interface-control checks, and
verify that all of the channel paths associated
with the subchannel are connected to the same
device.

When multiple paths are associated with the sub-
channel of the IPL device, it is possible that mis-
cabling of one or more of the paths can cause
the program initialization to proceed on different
devices. This affects the integrity of the IPL pro-
cess. The program should ensure that all paths
are connected to the same device, but this typi-
cally is not possible before program initialization
completes. Thus the use of the saved LPUM
ensures that all I/O operations to the IPL device
during program initialization are executed on the
same device, allowing postponement of the
checking of the paths.

Using the saved LPUM also helps to ensure that
the channel subsystem will not select a path on
which errors would prevent completion of the
program initialization, since the path indicated in
the LPUM has demonstrated its functionality. On
some models, using the saved LPUM also
ensures that the path selection will not re-select
a path on which an interface-control check was
detected while the machine was in the load state.

7. Because the CCW-format control (bit 8 of word 1
in the implied ORB) used during the IPL I/O oper-
ation is zero, the CCWs are limited to format-0
CCWs with 24-bit addresses. However, the IPL
process may read in additional CCWs that spec-
ify indirect addressing using IDAWs. Because the
IDAW control (bit 14 of word 1 in the implied
ORB) is zero, the IDAWs are limited to format-1
IDAWs with 31-bits addresses. Therefore, the
IPL process can read into (or write from) any
location below the 2 G-byte boundary.

List-Directed IPL
List-directed IPL supports the use of I/O devices
which are not accessed by CCWs. List-directed IPL

17-20 The z/Architecture I/O Architecture

may be provided for a logical partition or virtual
machine, depending on the model and the amount of
memory available to the logical partition or virtual
machine. The terms logical partition and virtual
machine are not defined in this publication. The term
logical partition is defined in the System Library pub-
lications. The term virtual machine is defined in the
virtual-machine product manuals.

List-directed IPL is initiated by activating the load-
clear-list-directed or load-with-dump key. Prior to acti-
vating either of these keys, the list-directed-IPL
parameters are entered using a model-dependent
console. List-directed-IPL parameters include the fol-
lowing information:

• Information which identifies the I/O device from
which a program is to be loaded. This I/O device
is referred to as the load device.

• Information which identifies a location on a load
device from which a program will be loaded.

• Information to be used by the program which will
be loaded from the load device.

The list-directed-IPL parameters required by a spe-
cific machine and the means by which they are
entered are specified in the System Library publica-
tions.

After the list-directed-IPL parameters have been
entered, the load-clear-list-directed or load-with-
dump key for a particular CPU is activated. In the
description which follows, the term “this CPU” refers
to the CPU in the configuration for which the load-
clear-list-directed key was activated.

Activating the load-clear-list-directed key causes a
clear reset to be performed on all of the CPUs in the
configuration.

Activating the load-with-dump key causes a store-
status operation to be performed on this CPU. After
the store-status operation, an initial-CPU-reset oper-
ation is performed on this CPU, CPU reset is propa-
gated to all other CPUs in the configuration, and a

subsystem reset is performed on the remainder of
the configuration.

In the loading part of the operation, after the resets
have been performed, the operations listed below are
performed.

• If the rate control is not in the process position, it
is forced into the process position.

• If the list-directed IPL operation was initiated by
activating the load-with-dump key, the contents
of a model-dependent number of contiguous log-
ical-partition or virtual-machine storage locations
starting with absolute location 0 are stored in a
model-dependent holding area. The data stored
includes the contents of all storage locations into
which the program will be loaded from the load
device. See Programming Note 4 for additional
information.

• The program to be loaded from the load device is
loaded into logical-partition or virtual-machine
storage at the locations specified on the load
device.

• A system IPL-parameter block used by the
machine during list-directed IPL is placed in stor-
age in the format shown in Figure 17-3 on
page 17-21. The absolute address of the first
word of the system IPL-parameter block is stored
in absolute address locations 20-23. When the
secure-IPL facility is installed in the z/Architec-
ture architectural mode. an XML document is not
present; otherwise, the presence of an XML doc-
ument is model dependent. If an XML document
is present, it contains the system IPL parameters
and it immediately follows the last byte of the
system IPL-parameter block. (See Reference
[22.] on page xxx for information regarding XML.)
When the IPL-Information-Report (IPLIR), bit 2 of
word 2 of the system IPL-parameter block , is
one, an IPL-information-report block (IIRB) con-
taining the IPL information report immediately
follows the last byte of the system IPL-parameter
block (instead of an XML document) and is
aligned on a doubleword boundary; otherwise,
an IIRB containing the system IPL information
report is not present.

17-21

The system IPL-parameter block has the following
format:

Bits 0-31 of word 0 of the system IPL-parameter
block contains a length field. The length field con-
tains a 32-bit binary number representing the number
of bytes occupied by the system IPL-parameter
block. When the secure-IPL facility is installed in the
z/Architecture architectural mode, the system IPL-
parameter block length field must contain a value that
is multiple of 8-bytes to ensure the IPL-information-
report block (IIRB) immediately follows the last byte
of the system IPL-parameter block and is aligned on
a doubleword boundary. Words 1 through n contain
the system IPL parameters.

IPL Information Report Block

The IPL-information-report block (IIRB) contains
information used to locate various IPL records and to
report the results of signature verification of one or
more secure components of the load device. IIRB is
generated by the machine loader after DIAGNOSE
x’0308’ functions are used to update the system IPL-
parameter block. The generated IIRB is stored imme-
diately following the system IPL-parameter block by
the machine loader and is aligned on a doubleword
boundary.

The IPL-information-report block has the following
format:

The IPL-information-report block contains an IPL-
information-report block header, followed by one or
more IPL-information blocks.

The IPL-information-report block header has the fol-
lowing format:

The IPL-information-report block header contains the
following fields:

IPL-Information-Report Block Length: Word 0
contains a 32-bit unsigned binary integer specifying
the number of bytes in the IIRB. Byte 0 of word 0
must be zero to indicate XML file is not present fol-
lowing the system IPL-parameter block and to limit
the length to a maximum of 16-Megabytes; other-
wise, an error is reported.

IIRB Flags: Byte 0 of word 1 contains a flag field
defined as follows:

Version: Bits 24-31 of word 1 contain an 8-bit
unsigned binary integer specifying the version num-
ber of the IPL-information-report block. This field is
set to zero.

IPL Information Blocks

One or two IPL-information blocks follow the IPL-
information-report block header. The first type of IPL-
information block identifies an IPL-signature-certifi-
cate list. A second type of IPL-information block iden-
tifies an IPL-device-component list.

Each IPL-information block contains a common
header followed by one or more specific types of IPL-
information block entries.

Word

0 Length

1

System IPL Parameters

n
0 31

Figure 17-3. System IPL-Parameter Block

Word

0
IPL-Information-Report BlockHeader

3

4

IPL-Information Block(s)

n
0 31

Figure 17-4. IPL-Information-Report Block

Word

0 IPL-Information-Report Block Length

1 IIRB Flags Reserved Version

2
3

Reserved

0 8 24 31

Figure 17-5. IPL-Information-Report BlockHeader

Bit Meaning

0-7 Reserved.

17-22 The z/Architecture I/O Architecture

The IPL-information block header has the following
format:

The IPL-information block header contains the follow-
ing fields:

IPL-Information Block Length: Word 0 contains a
32-bit unsigned binary integer specifying the number
of bytes in the IPL-information block.

IPL-Information Block Type (IBT): Byte 0 of word
1 contains a value that specifies the format of the
specific IPL-information block type. The IBT field val-
ues are defined as follows:

IPL Signature Certificate List

The IPL-information block identifying an IPL-signa-
ture-certificate list has the following format:

IPL Signature Certificate Entry

The IPL-signature-certificate entry has the following
format:

The IPL-signature-certificate entry contains the fol-
lowing fields:

IPL-Signature-Certificate Address: Words 0-1
contain a 64-bit absolute storage location of an X.509
certificate.

IPL-Signature-Certificate Length: Words 2-3
contain a 64-bit unsigned binary integer specifying
the number of bytes in an X.509 certificate.

IPL Device Component List

Word

0 IPL-Information Block Length

1 IBT Reserved

2
3

Reserved

0 7 8 31

Figure 17-6. IPL-Information Block Header

Value Meaning

0 Reserved.

1 The IPL-information block specifies an IPL-
signature-certificate list.

2 The IPL-information block specifies an IPL-device-
component list.

3-255 Reserved.

Word

0

3

IPL-Information Block Header

4

7

IPL-Signature-Certificate Entry 0

8

11

IPL-Signature-Certificate Entry 1

12

n-4

n-3

n

IPL-Signature-Certificate Entry X

0 31

Figure 17-7. IPL-Information Block for IPL-Signature-Certificate List

Word

0
1

IPL-Signature-Certificate Address

2
3

IPL-Signature-Certificate Length

0 31

Figure 17-8. IPL-Signature-Certificate Entry

17-23

The IPL-information block identifying an IPL-device-
component list has the following format:

IPL Device Component Entry

The IPL-device-component entry has the following
format:

The IPL-device-component entry contains the follow-
ing fields:

IPL-Device-Component Address: Words 0-1 con-
tain a 64-bit absolute storage location of the binary
code of a component.

IPL-Device-Component Length: Words 2-3 con-
tain a 64-bit unsigned binary integer specifying the
number of bytes in the binary code of a component.

IPL-Device-Component Flags (DCF): Byte 0 of
word 4 contains a flag field defined as follows:

IPL-Signature-Certificate Index (SCI): Bytes 2-3
of word 5 contain a 16-bit unsigned binary integer
specifying the index of the IPL-signature-certificate
entry containing the X.509 certificate that was used
to verify this signed component.

The IPL-signature-certificate index (SCI) field is
meaningful only when the signed Component (SC)
bit is set to one, indicating that the binary code of the
component is signed.

If no errors occur during the operations listed above,
then if a subchannel is associated with the IPL-
device, the subsystem-identification word is stored in
absolute locations 184-187; otherwise zeros are
stored in absolute locations 184-187. Additionally,
zeros are stored in absolute locations 188-191, and a
new PSW is loaded from absolute locations 0-7.

When the configuration-z/Architecture-architectural-
mode (CZAM) facility is not installed, the CPU is in
the ESA/390 architectural mode (or ESA/390 com-
patibility mode), and absolute locations 0-7 have the
format of an ESA/390 PSW (in which case, bit 31 of
the new PSW must be zero). When the CZAM facility
is installed, the CPU is in the z/Architecture architec-
tural mode, and absolute locations 0-7 have the
short-PSW format shown in Figure 4-3 on page 4-8
(in which case, bit 31 of the new PSW is the
extended-addressing bit).

If the PSW loading is successful and if no malfunc-
tions are recognized which preclude execution of the

Word

0

3

IPL-Information Block Header

4

11

IPL-Device-Component Entry 0

12

19

IPL-Device-Component Entry 1

20

n-8

n-7

n

IPL-Device-Component Entry X

0 31

Figure 17-9. IPL-Information Blockfor IPL-Device-Component List

Word

0
1

IPL-Device-Component Address

2
3

IPL-Device-Component Length

4 DCF Reserved

5 Reserved SCI

6
7

Reserved

0 8 16 31

Figure 17-10. IPL-Device-Component Entry

Bit Meaning

0 Signed Component (SC). When bit 0 is one, the
binary code of the component is signed. When bit
0 is zero, the binary code of the component is not
signed.

1 Component-Signature-Verified (CSV). When bit 1 is
one, the component signature verification is
successful. When bit 1 is zero, the component
signature verification is not successful.

CSV bit is meaningful only when SC bit is set to
one. When SC bit is set to zero, CSV bit should also
be set to zero.

2-7 Reserved.

17-24 The z/Architecture I/O Architecture

program which was loaded from the load device, then
operation proceeds under control of the new PSW.

If errors occur during the operations listed above, or if
the PSW loading is not successful, then this CPU
remains in the operating state. See the appropriate
System Library publications for additional informa-
tion.

When list-directed IPL was initiated by activating the
load-clear-list-directed key, the state of the machine
resources at the time when the loaded program is ini-
tiated is the same as it was immediately after the
clear reset was performed except as indicated below.
For a description of the state of the machine
resources immediately after the clear reset was per-
formed, see “Resets” on page 4-74.

• This CPU is in the operating state. The contents
of the ALB and TLB for this CPU are unpredict-
able.

• The PSW for this CPU is set from the contents of
absolute storage locations 0-7. When the CZAM
facility is not installed, the CPU is in the ESA/390
architectural mode (or ESA/390 compatibility
mode), and absolute locations 0-7 have the for-
mat of an ESA/390 PSW (in which case, bit 31 of
the new PSW must be zero). When the CZAM
facility is installed, the CPU is in the z/Architec-
ture architectural mode, and absolute locations
0-7 have the short-PSW format shown in
Figure 4-3 on page 4-8 (in which case, bit 31 of
the new PSW is the extended-addressing bit).

• Main storage locations into which the program
was loaded from the load device contain the pro-
gram which was loaded, except for absolute stor-
age locations 20-23 and 184-191. Absolute
storage locations 20-23 contain the absolute
address of the system IPL-parameter block; stor-
age locations starting with this absolute address
contain the system IPL-parameter block, immedi-
ately followed by an XML document containing
the same system IPL parameters or IIRB con-
taining the IPL information report (if present). If a
subchannel is associated with the IPL device,
then absolute storage locations 184-187 contain
the subsystem-identification word for the IPL-
device and absolute storage locations 188-191
contain zeros; otherwise, absolute storage loca-
tions 184-191 contain zeros. The contents of all
other storage locations are unpredictable.

• The ACC and F bits of the storage keys associ-
ated with all main storage locations are set to
zero. The R and C bits of the storage keys asso-
ciated with the first 4 K-byte block of storage, the
blocks of storage containing the XML document
or IIRB (if present), and IPL-parameter list, and
the blocks of storage containing the loaded pro-
gram are set to one. The R and C bits of the stor-
age keys associated with all other blocks of
storage are unpredictable.

• The TOD clock is unaffected by initial-program
loading.

When list-directed IPL was initiated by activating the
load-with-dump key, the state of the machine
resources when control is passed to the loaded pro-
gram is as follows:

• The I/O system has been reset.

• The state of all CPUs in the configuration except
for this CPU is the same as it was immediately
after the CPUs were reset.

• This CPU is in the operating state. The contents
of all registers, the ALB, and the TLB for this
CPU are unpredictable.

• The PSW for this CPU is set from the contents of
absolute storage locations 0-7. When the CZAM
facility is not installed, the CPU is in the ESA/390
architectural mode (or ESA/390 compatibility
mode), and absolute locations 0-7 have the for-
mat of an ESA/390 PSW (in which case, bit 31 of
the new PSW must be zero). When the CZAM
facility is installed, the CPU is in the z/Architec-
ture architectural mode, and absolute locations
0-7 have the short-PSW format shown in
Figure 4-3 on page 4-8 (in which case, bit 31 of
the new PSW is the extended-addressing bit).

• The contents of all main storage locations which
were not stored in the model-dependent holding
area are unchanged from the time when the
load-with-dump key was activated.

• The contents of all main storage locations which
were stored in the model-dependent holding
area are unpredictable except as follows:

– Main storage locations into which the pro-
gram was loaded from the load device con-
tain the program which was loaded, except
for absolute storage locations 20-23.

17-25

– Absolute storage locations 20-23 contain the
absolute address of the system IPL-parame-
ter block; storage locations starting with the
absolute address indicated by the contents
of absolute addresses 20-23 contain the sys-
tem IPL-parameter block, which is immedi-
ately followed by an XML document
containing the system IPL parameters or
IIRB containing the IPL information report (if
present).

– If a subchannel is associated with the IPL
device, then absolute storage locations 184-
187 contain the subsystem-identification
word for the IPL-device and absolute storage
locations 188-191 contain zeros; otherwise,
absolute storage locations 184-191 contain
zeros.

• The storage keys associated with the blocks of
main storage which were stored in the model-
dependent holding area are unpredictable. The
storage keys associated with all other blocks of
main storage are in the same state as they were
immediately after the CPUs were reset.

• The TOD clock is unaffected by initial-program
loading.

List-directed IPL does not complete if any of the fol-
lowing occurs:

• A malfunction is detected in the CPU, channel
subsystem, or main storage which precludes the
completion of IPL.

• The list-directed IPL parameters did not contain
sufficient information to identify the load device
or the program on the load device.

• An I/O device designated by the list-directed-IPL
parameters is not in the machine configuration.

• The I/O device designated by the list-directed-
IPL parameters is a CCW-type device and is not
supported by list-directed IPL.

• The I/O device appeared not operational.

• The amount of storage in the logical partition or
virtual machine is insufficient to allow list-
directed IPL to complete.

• The PSW to be loaded from locations 0-7 has a
PSW-format error of the type that is recognized
early.

Programming Notes:

1. The executable portion of the program loaded
during list-directed IPL should be located in
absolute storage starting at absolute storage
locations 8192 and higher. This is necessary in
order to avoid use of the architecturally assigned
storage locations. See “Assigned Storage Loca-
tions” on page 3-73.

2. When the address indicated by storage locations
20-23 is above 16 MB, it is necessary for the
machine to be in 31-bit addressing mode in order
to access the IPL-parameter list and XML docu-
ment or IIRB (if present).

3. When list-directed IPL is initiated by activation of
the load-clear-list-directed key, the program
loaded from the load device is typically an oper-
ating-system loader. In this case, the load device
may also contain the operating system to be
loaded by the operating-system loader. See the
applicable operating-system manuals for addi-
tional information.

4. When list-directed IPL is initiated by activation of
the load-with-dump key, the contents of storage
which are affected by the IPL operation are
stored in a model-dependent holding area so that
they can be retrieved by the program which was
loaded from the load device. The program loaded
from the load device is typically an O/S-specific
system dump program which stores the retrieved
data onto a dump device. This process ensures
that the contents of storage affected by the IPL
operation are preserved for analysis during sub-
sequent debug operations. See the applicable
operating system manuals for additional informa-
tion.

Reconfiguration of the I/O System

Reconfiguration of the I/O system is handled in a
model-dependent manner. For example, changes
may be made under program control, by using the
model-dependent DIAGNOSE instruction; or manu-
ally, by using system-operator configuration controls;
or by using a combination of DIAGNOSE and manual
controls. The method used depends on the system
model. The System Library publication for the system
model specifies how the changes are made. The par-
titioning of channel paths because of reconfiguration
is indicated by the setting of the PAM bits in the
SCHIB stored when STORE SUBCHANNEL is exe-

17-26 The z/Architecture I/O Architecture

cuted (see “Path-Available Mask (PAM)” on
page 15-7).

Status Verification

The status-verification facility provides the channel
subsystem with a means of indicating that a device
has presented a device-status byte that has valid
CBC but that contained a combination of bits that
was inappropriate when the status byte was pre-
sented to the channel subsystem. The indication pro-
vided to the program in the ESW by the channel
subsystem is called device-status check. When the
channel subsystem recognizes a device-status-
check condition, an interface-control-check condition
is also recognized. For a summary of the status com-
binations considered to be appropriate or inappropri-
ate, see the System Library publications IBM
Enterprise Systems Architecture/390 ESCON I/O
Interface, SA22-7202, and IBM System/360 and Sys-
tem/370 I/O Interface Channel to Control Unit OEMI,
GA22-6974, and the ANSI standards document Fibre
Channel - Single-Byte Command Code Sets-2 (FC-
SB-2).

Address-Limit Checking

The address-limit-checking facility may be installed
on a model and when installed provides a storage-
protection mechanism for I/O data accesses to stor-
age that augments key-controlled protection. The
address-limit-checking facility is not installed when
the FCX facility is installed. When address-limit
checking is used, absolute storage is divided into two
parts by a program-controlled address-limit value. I/O
data accesses can then be optionally restricted to
only one of the two parts of absolute storage by the
limit mode at each subchannel. The address-limit
constraint applies at a higher priority than key-con-
trolled protection, that is, I/O data accesses to the
part of main storage that is protected by address-limit
checking are prevented even when the subchannel
key is zero or matches the key in storage. Address-
limit checking does not apply to the fetching of
CCWs, IDAWs and MIDAWs.

The address-limit-checking facility consists of the fol-
lowing elements:

• The I/O instruction SET ADDRESS LIMIT.

• The limit mode at each subchannel.

• The address-limit-checking-control bit in the
ORB.

The execution of SET ADDRESS LIMIT passes the
contents of general register 1 to the address-limit-
checking facility to be used as the address-limit
value. Bits 32 and 48-63of general register 1 must be
zeros to designate a valid absolute address on a
64 K-byte boundary; otherwise, an operand excep-
tion is recognized, and the execution of the instruc-
tion is suppressed.

The limit mode at each subchannel indicates the
manner in which address-limit checking is to be per-
formed. The limit mode is set by placing the desired
value in bit positions 9 and 10 of word 1 in the SCHIB
and executing MODIFY SUBCHANNEL. The settings
of these bits in the SCHIB have the following mean-
ings:

The address-limit-checking-control bit, bit 11 of word
1 of the ORB, specifies whether address-limit check-
ing is to be used for the start function that is accepted
when the execution of START SUBCHANNEL
causes the contents of the ORB to be passed to the
subchannel. If the address-limit-checking-control bit
is zero when the contents of the ORB are passed,
address-limit checking is not specified for that start
function. If the bit is one, address-limit checking is
specified and is under the control of the current
address limit and the current setting of the limit mode
at the subchannel.

During the performance of the start function, an
attempt to access an absolute storage location for
data that is protected by an address limit (either high
or low) is recognized as an address-limit violation,
and the access is not allowed. A program-check con-
dition is recognized, and channel-program execution

00 No limit checking (initialized value).

01 Data address must be equal to or greater than
the current address limit.

10 Data address must be less than the current
address limit.

11 Reserved. This combination of limit-mode bits
causes an operand exception to be recognized
when MODIFY SUBCHANNEL is executed.

17-27

is terminated, just as when an attempt is made to
access an invalid address.

Configuration Alert

The configuration-alert facility provides a detection
mechanism for devices that are not associated with a
subchannel in the configuration. The configuration-
alert facility notifies the program, by means of a
channel report, that a device which is not associated
with a subchannel has attempted to communicate
with the program.

Each device must be assigned to a subchannel
during an installation procedure; otherwise, the chan-
nel subsystem is unable to generate an I/O-interrup-
tion condition for the device. This is because the I/O-
interruption code contains the subchannel number
that identifies the particular device causing the I/O-
interruption condition. When a device that is not
associated with a subchannel attempts to communi-
cate with the channel subsystem, the configuration-
alert facility generates a channel report in which the
unassociated device is identified. For a description of
the means by which the program is notified of a
pending channel report and how the information in
the channel report is retrieved, see “Channel Report”
on page 17-28.

Incorrect-Length-Indication
Suppression

The incorrect-length-indication-suppression facility
allows the indication of incorrect length for immediate
operations to be suppressed in the same manner
when using format-1 CCWs as when using format-0
CCWs. When the incorrect-length-indication-sup-
pression facility is installed, bit 24 of word 1 of the
ORB specifies whether the channel subsystem is to
suppress the indication of incorrect length for an
immediate operation when format-1 CCWs are used
or whether this indication will remain under the con-
trol of the SLI flag of the current CCW (as is the case
for CCWs not executed as immediate operations).
This bit provides the capability for a channel program
to operate in the same manner regarding the indica-
tion of incorrect length regardless of whether format-
0 or format-1 CCWs are used.

Concurrent Sense

The concurrent-sense facility provides a mechanism
whereby sense information that is provided by the
device can be presented by the channel subsystem
to the program in the same command-mode IRB that
contains the unit-check indication when the subchan-
nel is in the concurrent-sense mode. The concurrent-
sense mode is made active at a subchannel for
which the concurrent-sense facility is applicable
when MODIFY SUBCHANNEL is executed and bit
31 of word 6 of the SCHIB operand is set to one. The
concurrent-sense facility is applicable to subchannels
that are operating in command-mode and are associ-
ated with channel paths by which the channel sub-
system can attempt to retrieve sense information
from the device without requiring program interven-
tion.

The concurrent-sense facility is not applicable when
a subchannel is operating in transport mode. When a
transport-mode IRB is presented that contains the
unit-check indication, the associated sense informa-
tion is found in the TSB for the associated TCW
channel program. Therefore, the concurrent sense
facility is not necessary with FCX.

Channel-Subsystem Recovery

The channel subsystem provides various methods
for extensive detection of malfunctions and other
conditions to ensure the integrity of channel-subsys-
tem operation and to achieve automatic recovery of
some malfunctions.

The method used to report a particular malfunction
or other condition is dependent upon the severity of
the malfunction or other condition and the degree to
which the malfunction or other condition can be iso-
lated. A malfunction or other condition in the channel
subsystem may be indicated to the program by infor-
mation being stored by one of the following methods:

1. Information is provided in the IRB describing a
condition that has been recognized by either the
channel subsystem or device that must be
brought to the attention of the program. Gener-
ally, this information is made available to the pro-
gram by the execution of TEST SUBCHANNEL,
which is usually executed in response to the

17-28 The z/Architecture I/O Architecture

occurrence of an I/O interruption. (See “Interrup-
tion Action” on page 16-6, for a definition of the
information stored, as well as “Interruptions” on
page 6-1.)

2. Information is provided in a channel report
describing a machine malfunction affecting the
identified facility associated with the channel-
subsystem. This information is made available to
the program by the execution of STORE CHAN-
NEL REPORT WORD, which is usually executed
in response to the occurrence of a machine-
check interruption. (See “Machine-Check Han-
dling” on page 11-1 for a description of the
machine-check-interruption mechanism and the
contents of the machine-check-interruption
code.)

3. Information is provided in a channel report
describing a malfunction or other condition
affecting a collection of channel-subsystem facili-
ties. This information is made available to the
program as indicated in item 2.

4. Information is provided in the machine-check-
interruption code (MCIC) describing a malfunc-
tion affecting the continued operational integrity
of the channel subsystem. (See “Channel-Sub-
system Damage” on page 11-17.)

5. Information is provided in the MCIC describing a
malfunction affecting the continued operational
integrity of a process or of the system. (See
“Instruction-Processing Damage” on page 11-15
and “System Damage” on page 11-15.)

Channel reports are used to report malfunctions or
other conditions only when the use of the I/O-inter-
ruption facility is not appropriate and in preference to
reporting channel-subsystem damage, instruction-
processing damage, or system damage.

Channel Report

When a malfunction or other condition affecting ele-
ments of the channel subsystem has been recog-
nized, a channel report is generated. The
performance of recovery actions by the program or
by external means may be required to gain recovery
from the error condition. The channel report indicates
the source of the channel report and the recovery
state to the extent necessary for determining the
proper recovery action. A channel report consists of
one or more channel-report words (CRWs) that have

been generated from an analysis of the malfunction
or other condition. The inclusion of two or more
CRWs within a channel report is indicated by the
chaining flag being stored as one in all of the CRWs
of the channel report except the last one in the chain.

When a channel report is made pending by the chan-
nel subsystem for retrieval and analysis by the pro-
gram (by means of the execution of STORE
CHANNEL REPORT WORD), a malfunction or other
condition that affects the normal operation of one or
more of the channel-subsystem facilities has been
recognized. If the channel report that is made pend-
ing is an initial channel report, a machine-check-
interruption condition is generated that indicates one
or more CRWs are pending at the channel subsys-
tem. A channel report is initial either if it is the first
channel report to be generated after the most recent
I/O-system reset or if no previously generated
reports are pending and the last STORE CHANNEL
REPORT WORD instruction that was executed
resulted in the setting of condition code 1, indicating
that no channel report was pending. When the
machine-check interruption occurs and bit 9 of the
machine-check-interruption code (channel report
pending) is one, a channel report is pending. If the
program clears the first CRW of a channel report
before the associated machine-check interruption
has occurred, some models may reset the machine-
check-interruption condition, and the associated
machine-check interruption does not occur. A
machine-check interruption indicating that a channel
report is pending occurs only if the machine-check
mask (PSW bit 13) and the channel-report-pending
subclass mask, bit 3 of control register 14, are both
ones.

If the channel report that is made pending is not an
initial channel report, a machine-check-interruption
condition is not generated. The CRW that is pre-
sented to the program in response to the first STORE
CHANNEL REPORT WORD instruction that is exe-
cuted after a machine-check interruption may or may
not be part of the initial channel report that caused
the machine-check condition to be generated. A
pending channel-report word is cleared by any CPU
executing STORE CHANNEL REPORT WORD,
regardless of whether a machine-check interruption
has occurred in any CPU. If a CRW is not pending
and STORE CHANNEL REPORT WORD is exe-
cuted, condition code 1 is set, and zeros are stored
at the location designated by the second-operand
address. During the execution of STORE CHANNEL
REPORT WORD as a result of receiving a machine-

17-29

check interruption, condition code 1 may be set, and
zeros may be stored because (1) the related channel
report has been cleared by another CPU or (2) a
malfunction occurred during the generation of a
channel report. In the latter case, if, during a subse-
quent attempt, a valid channel report can be made
pending, an additional machine-check-interruption
condition is generated.

When a channel report consists of multiple chained
CRWs, they are presented to the program in the
same order that they are placed in the chain by the
channel subsystem as a result of consecutive execu-
tions of STORE CHANNEL REPORT WORD. If, for
example, the first CRW of a chain is presented to the
program as a result of executing STORE CHANNEL
REPORT WORD, the CRW that is presented as a
result of the next execution of STORE CHANNEL
REPORT WORD is the second CRW of the same
chain and not a CRW that is part of another channel
report.

Channel reports are not presented to the program in
any special order, except for channel reports whose
first or only CRW indicates the same reporting-
source code and the same reporting-source ID.
These channel reports are presented to the program
in the same order that they are generated by the
channel subsystem, but they are not necessarily pre-
sented consecutively. For example, suppose the
channel subsystem generates channel reports A, B,
and C, in that order. The first CRW of channel reports
B and C indicates the same reporting-source code
and the same reporting-source ID. Channel report B
is presented to the program before channel report C
is presented, but channel report A may be presented
after channel report B and before channel report C.

Programming Notes:

1. The information that is provided in a single CRW
may be made obsolete by another CRW that is
subsequently generated for the same channel-
subsystem facility. Therefore, the information
that is provided in one channel report should be
interpreted in light of the information provided by
all of the channel reports that are pending at a
given instant.

2. A machine-check-interruption condition is not
always generated when a channel report is made
pending. The conditions that result in a machine-
check-interruption condition being generated are
described earlier in this section.

3. After a machine-check interruption has occurred
with bit 9 of the machine-check-interruption code
set to one, STORE CHANNEL REPORT WORD
should be issued repeatedly until all of the pend-
ing channel reports have been cleared and con-
dition code 1 has been set.

4. A CRW-overflow condition can occur if the pro-
gram does not issue successive STORE CHAN-
NEL REPORT WORD instructions in a timely
manner after the machine-check interruption
occurs.

5. The number of CRWs that can be pending at the
same time is model dependent. During the exis-
tence of an overflow condition, CRWs that would
have otherwise been made pending are lost and
are never presented to the program.

Channel-Report Word

The channel-report word (CRW) provides information
to the program that can be used to facilitate the
recovery of an I/O operation, a device, or some ele-
ment of the channel subsystem, such as a channel
path or subchannel.

The format of the CRW is as follows:

Solicited CRW (S): Bit 1, when one, indicates a
solicited CRW. A CRW is considered by the channel
subsystem to be solicited if it is made pending as the
direct result of some action that is taken by the pro-
gram. When bit 1 is zero, the CRW is unsolicited and
has been made pending as the result of an action
taken by the channel subsystem that is independent
of the program.

Overflow (R): Bit 2, when one, indicates that a
CRW-overflow condition has been recognized since
this CRW became pending and that one or more
CRWs have been lost. This bit is one in the CRW that
has most recently been set pending when the over-
flow condition is recognized. When bit 2 is zero, a
CRW-overflow condition has not been recognized.

A CRW that is part of a channel report is not made
pending, even though the overflow condition does not
exist, if an overflow condition prevented a previous
CRW of that report from being made pending.

0 S R C RSC A 0 ERC Reporting-Source ID
0 1 2 3 4 8 10 16 31

17-30 The z/Architecture I/O Architecture

Chaining (C): Bit 3, when one, and when the over-
flow flag is zero, indicates chaining of associated
CRWs. Chaining of CRWs is indicated whenever a
malfunction or other condition is described by more
than a single CRW. The chaining flag is zero if the
channel report is described by a single CRW or if the
CRW is the last CRW of a channel report.

The chaining flag is not meaningful if the overflow bit,
bit 2, is one.

Reporting-Source Code (RSC): Bits 4-7 identify
the channel-subsystem facility that is associated with
the channel report. Some facilities are further identi-
fied in the reporting-source-identification field (see
below). The following combinations of bits identify the
facilities:

All other bit combinations in the reporting-source-
code field are reserved.

Ancillary Report (A): Bit 8, when one, indicates
that a malfunction of a system component has
occurred that was recognized previously or which
has affected the activity of multiple channel-subsys-
tem facilities. When the malfunction affects the activ-
ity of multiple channel-subsystem facilities, an
ancillary-report condition is recognized for all of the
affected facilities except one. This bit, when zero,
indicates that this malfunction of a system compo-
nent was not recognized previously. This bit is mean-
ingful for all channel reports.

Depending on the model, recognition of an ancillary-
report condition may not be provided, or it may not be
provided for all system malfunctions that affect chan-
nel-subsystem facilities. When ancillary-report recog-
nition is not provided, bit 8 is set to zero.

Error-Recovery Code (ERC): Bits 10-15, when
zero, indicate that the channel subsystem has error
information regarding the channel-subsystem facility
identified in the reporting-source code, and that the
program can now request that information. Other-

wise, bit positions 10-15 contain the error-recovery
code that defines the recovery state of the channel-
subsystem facility identified in the reporting-source
code. This field, when used in conjunction with the
reporting-source code, can be used by the program
to determine whether the identified facility has
already been recovered and is available for use or
whether recovery actions are still required. The fol-
lowing error-recovery codes are defined:

All other bit combinations in the error-recovery-code
field are reserved.

The specific meaning of each error-recovery code
depends on the particular reporting-source code that
accompanies it in a CRW. The error-recovery codes
are defined as follows:

Event-Information Pending: Event information for the
identified facility is available for retrieval by the pro-
gram. This CRW does not indicate the state of the
identified facility.

Available: The identified facility is in the same state
that the program would expect if the CRW had not
been generated.

Initialized: The identified facility is in the same state
that existed immediately following the I/O-system
reset that was part of the most recent system IPL.

Temporary Error: The identified facility is not operat-
ing in a normal manner or has recognized the occur-
rence of an abnormal event. It is expected that
subsequent actions either will restore the facility to

Bits

4 5 6 7 Facility

0 0 1 0 Monitoring facility

0 0 1 1 Subchannel

0 1 0 0 Channel Path

1 0 0 1 Configuration-alert facility

1 0 1 1 Channel subsystem

Bits
10 11 12 13 14 15 State
0 0 0 0 0 0 Event-information pending
0 0 0 0 0 1 Available
0 0 0 0 1 0 Initialized
0 0 0 0 1 1 Temporary error
0 0 0 1 0 0 Installed parameters initialized
0 0 0 1 0 1 Terminal
0 0 0 1 1 0 Permanent error with facility not

initialized
0 0 0 1 1 1 Permanent error with facility initialized
0 0 1 0 0 0 Installed parameters modified
0 0 1 0 1 0 Installed parameters restored1

Explanation:
1. Installed-parameters restored is presented only if reporting of

the installed-parameters-restored CRW is enabled in the
restore-subchannel facility.

17-31

normal operation or will record the appropriate infor-
mation describing the abnormal event.

Installed Parameters Initialized: This state is the
same as the initialized state, except that one or more
parameters that are associated with the facility and
that are not modifiable by the program may have
been changed.

On some models that do not implement the restore-
subchannel facility, or in the absence of enablement
by the program of reporting of the installed-parame-
ters-restored CRW by the restore-subchannel facility,
the installed-parameters-initialized CRW may be
reported as a result of the channel subsystem’s
recovery of the facility designated by the reporting-
source ID.

Terminal: The identified facility is in a state such that
an operation that was in progress can neither be
completed nor terminated in the normal manner.

Permanent Error with Facility Not Initialized: The
identified facility is in a state of malfunction, and the
channel subsystem has not caused a reset function
to be performed for that facility.

Permanent Error with Facility Initialized: The identi-
fied facility is in a state of malfunction, and the chan-
nel subsystem has caused or may have caused a
reset function to be performed for that facility.

Installed Parameters Modified: One or more parame-
ters of the specified facility have been changed.

Installed Parameters Restored: This state is the
same as the initialized state, except that one or more
parameters that are associated with the facility and
that are not modifiable by the program may have
been changed from their most recent values back to
their initialized values a result of the channel subsys-
tem’s recovery of the facility.

Reporting-Source ID (RSID): Bit positions 16-31
contain the reporting-source ID, which may, depend-
ing upon the condition that caused the channel report
and the reporting-source code, either further identify
the affected channel-subsystem facility or provide
additional information describing the condition that
caused the channel report. The RSID field has the

following format as a function of the bit settings of the
reporting-source code.

When the MSS facility is installed an additional CRW
is chained to every channel report for subchannels.
The content of this chained CRW is identical to the
original CRW except for the RSID field. In this
chained CRW, bit positions 10-11 of the RSID field
contain the SSID identifying the subchannel set.

Restore-Subchannel Facility

The restore-subchannel facility may be available on a
model implementing z/Architecture. This facility pro-
vides the means for the channel subsystem to
recover a damaged subchannel and report the recov-
ery to the program by means of a CRW. When the
facility is installed and reporting of the installed-
parameters-restored CRW is enabled in the restore-
subchannel facility, the channel subsystem may
recover the damaged subchannel and make a CRW
pending that indicates installed-parameters restored.
When the facility is installed and reporting of the
installed-parameters-restored CRW is not enabled,
the channel subsystem may recover the damaged
subchannel and make a CRW pending that indicates
installed-parameters initialized.

In some models that do not implement the restore-
subchannel facility, the channel subsystem may nev-
ertheless recover a damaged subchannel, and make
a CRW pending that indicates installed-parameters
initialized.

Reporting-Source
Code Reporting-Source ID

4 5 6 7 Bits 16-31
0 0 1 0 0000 0000 0000 0000
0 0 1 1 xxxx xxxx xxxx xxxx
0 0 1 1 0000 0000 00ss 0000

0 1 0 0 0000 0000 yyyy yyyy
1 0 0 1 0000 0000 yyyy yyyy
1 0 1 1 0000 0000 0000 0000

Note:

xxxx xxxx xxxx xxxx Subchannel Number

ss Subchannel-set ID when the MSS
facility is installed and the CRW is
chained immediately following a
CRW for a subchannel.

yyyy yyyy Channel-path ID (CHPID)

17-32 The z/Architecture I/O Architecture

Extended-Subchannel-Logout
Facility

When the extended-subchannel-logout facility is
installed and enabled, all fibre-channel (FC) channel
paths can create extended-subchannel logouts,
under applicable error conditions, and generate I/O
interruptions that indicate such a logout is pending
retrieval. The extended-subchannel logouts are
stored in and retrieved from a model-dependent
number of extended-subchannel-logout buffers asso-
ciated with each channel path supported by the facil-
ity.

When TEST SUBCHANNEL for a subchannel that
specifies an FC channel path stores an interruption-
response block (IRB) containing a format-0 ESW in
which the extended-subchannel-logout-pending (E)
bit is 1, an extended-subchannel logout is pending for
the specified subchannel. Words 2-3 of the format-0
ESW contain the extended-subchannel-logout
descriptor (ESLD) that identifies the logout and the
channel path for which the logout is pending.

If all of the buffers for a given channel contain pend-
ing extended-subchannel logouts, the logouts will
remain pending for a model-dependent time interval.
If, during that time interval, a subsequent condition
occurs that warrants a new extended-subchannel
logout, that logout is not made and is lost. If the time
interval has been exceeded and the program has not
used the ESLD to retrieve a pending logout, the
logout may be removed from the buffer or the buffer
may be reused to contain a subsequent logout.
When a logout is removed from a buffer and the buf-
fer is not reused, the ESLD is no longer recognized
as a valid logout identifier. When a buffer is reused,
the ESLD may be recognized as a valid logout identi-
fier albeit for a logout different from the logout for
which the original I/O interruption was generated.

Channel-Subsystem-I/O-Priority
Facility

The channel-subsystem-I/O-priority facility provides
a means by which the program can establish a prior-
ity relationship, at the channel subsystem, among the
subchannels that are placed into the start-pending

state when START SUBCHANNEL is executed and
condition code 0 is indicated. For I/O-subchannels
that are configured to fibre-channel channel paths
(FICON and FICON-converted channel paths), it also
provides a means by which the program can estab-
lish a priority relationship for I/O operations at the
fibre-channel-attached control units.

The program assigns the desired channel-subsystem
priority and control-unit priority by specifying the
desired priority numbers in the ORB extension when
START SUBCHANNEL is executed.

The channel-subsystem-priority number specified in
the ORB is used by the channel subsystem to deter-
mine the order in which start-pending and resume-
pending subchannels are selected when the channel
subsystem attempts to initiate a start function or a
resume function. See the section “Start Function and
Resume Function” on page 15-20 for details about
these functions. In general, I/O subchannels that are
in the start-pending or resume-pending state and
have a higher priority number are selected for start-
function or resume-function initiation by the channel
subsystem before start-pending or resume-pending
subchannels that have a lower priority number. The
specific priority selection algorithm used by the chan-
nel subsystem for this purpose depends on the
model. Additionally, the channel subsystem also
applies a fairness selection algorithm in conjunction
with the priority selection algorithm when selecting
I/O subchannels. The specific fairness selection
algorithm also depends on the model. For all models,
the channel-subsystem priority and fairness selection
algorithms are always applied to I/O subchannels
that are either start pending or resume pending.
Some models may also apply both algorithms to sub-
channels that are either clear pending or halt pend-
ing. See a model's System-Library publication for a
description of the priority and fairness selection algo-
rithms that the model provides and whether these
algorithms are also applied to clear-pending or halt-
pending subchannels.

The control-unit-priority number specified in the ORB
is used by control units attached to fibre-channel
channel paths in order to determine the priority of the
execution of CCWs at the control unit. See “Control-
Unit (CU) Priority:” on page 15-29 for additional infor-
mation.

17-33

Number of Channel-Subsystem-Priority
Levels

Depending on the model, fewer than 256 channel-
subsystem-priority levels may be provided by the
channel subsystem. Each priority level that the model
provides is designated by an eight-bit unsigned
binary integer. The lowest provided channel-subsys-
tem-priority level is designated by the integer 0, and
each succeeding higher priority level is designated
by the next-higher sequential integer. For example, if
the model provides 16 priority levels, they are num-
bered 0-15, respectively, from the lowest priority level
to the highest priority level.

Multiple-Subchannel-Set Facility

The multiple-subchannel-set (MSS) facility increases
the maximum number of subchannels that can be
configured to a program. When the MSS facility is not
provided, a single set of subchannels, in the range
0-65,535 may be provided for a program. When the

MSS facility is provided, a maximum of four sets of
subchannels may be provided for a program. Each
subchannel set provides from one to 64K subchan-
nels in the range 0 to-65,535. A two-bit unsigned
binary integer, in the range of 0-3, called the sub-
channel-set identifier (SSID) is used to specify each
provided subchannel set. The default subchannel set
for a program is SSID 0. The initialized state of the
MSS facility is disabled, in this state the MSS facility
functions are not provided to programs executing in
logical partitions.

When the MSS facility is provided, a subchannel is
specified by a unique address formed by the concat-
enation of:

1. The subchannel-set identifier (SSID) of the sub-
channel-image set to which the designated sub-
channel-image is configured,

2. The subchannel number of the subchannel-
image being accessed.

17-34 The z/Architecture I/O Architecture

Hexadecimal-Floating-Point Instructions 18-1© Copyright IBM Corp. 2000, 2019

Chapter 18. Hexadecimal-Floating-Point Instructions

HFP Arithmetic . 18-1
HFP Number Representation 18-1
Normalization. 18-2
HFP Data Formats. 18-2

HFP Short Format 18-4
HFP Long Format 18-4
HFP Extended Format 18-4

Instructions . 18-5
ADD NORMALIZED. 18-8
ADD UNNORMALIZED 18-9
COMPARE. 18-10
CONVERT FROM FIXED 18-11
CONVERT TO FIXED 18-11
DIVIDE. 18-12
HALVE. 18-13

LOAD AND TEST . 18-13
LOAD COMPLEMENT 18-14
LOAD FP INTEGER 18-15
LOAD LENGTHENED. 18-15
LOAD NEGATIVE . 18-16
LOAD POSITIVE. 18-16
LOAD ROUNDED . 18-17
MULTIPLY . 18-17
MULTIPLY AND ADD 18-19
MULTIPLY AND SUBTRACT 18-19
MULTIPLY AND ADD UNNORMALIZED . . . 18-20
MULTIPLY UNNORMALIZED. 18-22
SQUARE ROOT . 18-23
SUBTRACT NORMALIZED 18-24
SUBTRACT UNNORMALIZED. 18-25

HFP Arithmetic

HFP Number Representation

A hexadecimal-floating-point (HFP) number consists
of a sign bit, a hexadecimal fraction, and an unsigned
seven-bit binary integer called the characteristic. The
characteristic represents a signed exponent and is
obtained by adding 64 to the exponent value (excess-
64 notation). The range of the characteristic is 0 to
127, which corresponds to an exponent range of -64
to +63. The magnitude of an HFP number is the
product of its fraction and the number 16 raised to
the power of the exponent that is represented by its
characteristic. The number is positive or negative
depending on whether the sign bit is zero or one,
respectively.

The fraction of an HFP number is treated as a hexa-
decimal number because it is considered to be multi-
plied by a number which is a power of 16. The name,
fraction, indicates that the radix point is assumed to
be immediately to the left of the leftmost fraction digit.

When an HFP operation would cause the result
exponent to exceed 63, the characteristic wraps
around from 127 to 0, and an HFP-exponent-overflow
condition exists. The result characteristic is then too
small by 128. When an operation would cause the
exponent to be less than -64, the characteristic

wraps around from 0 to 127, and an HFP-exponent-
underflow condition exists. The result characteristic is
then too large by 128, except that a zero characteris-
tic is produced when a true zero is forced.

A true zero is an HFP number with a zero character-
istic and zero fraction. A true zero may arise as the
normal result of an arithmetic operation because of
the particular magnitude of the operands. For HFP
operations, the result is forced to be a positive true
zero when:

1. An HFP exponent underflow occurs and the
HFP-exponent-underflow mask bit in the PSW is
zero.

2. The result fraction of a normalized or unnormal-
ized addition or subtraction operation is zero and
the HFP-significance mask bit in the PSW is
zero.

3. The operand of the CONVERT FROM FIXED
instruction is zero.

4. The dividend in the DIVIDE instruction has a
zero fraction.

5. The operand of the HALVE, LOAD FP INTEGER,
or SQUARE ROOT instruction has a zero frac-
tion.

6. One or both operands of a multiplication opera-
tion has a zero fraction.

18-2 The z/Architecture CPU Architecture

When a program interruption for HFP exponent
underflow occurs, a true zero is not forced; instead,
the fraction and sign remain correct, and the charac-
teristic is too large by 128. When a program interrup-
tion for HFP significance occurs, the fraction remains
zero, the sign is positive, and the characteristic
remains correct.

The sign of a sum, difference, product, quotient,
square root, the result of CONVERT FROM FIXED,
or the result of LOAD FP INTEGER with a zero frac-
tion is positive. The sign for a zero fraction resulting
from other HFP operations is established from the
operand sign, the same as for nonzero fractions.

Normalization

A quantity can be represented with the greatest pre-
cision by an HFP number of a given fraction length
when that number is normalized. A normalized HFP
number has a nonzero leftmost hexadecimal fraction
digit. If one or more leftmost fraction digits are zeros,
the number is said to be unnormalized.

Unnormalized numbers are normalized by shifting
the fraction left, one digit at a time, until the leftmost
hexadecimal digit is nonzero and reducing the char-
acteristic by the number of hexadecimal digits
shifted. A number with a zero fraction cannot be nor-
malized; either its characteristic remains unchanged
or its characteristic is made zero when the result is
forced to be a true zero.

Addition and subtraction with extended operands, as
well as the MULTIPLY, DIVIDE, CONVERT FROM
FIXED, HALVE, LOAD FP INTEGER, and SQUARE
ROOT operations, are performed only with normal-
ization. Addition and subtraction with short or long
operands may be specified as either normalized or
unnormalized. For all other operations, the result is
produced without normalization.

With unnormalized operations, leftmost zeros in the
result fraction are not eliminated. The result may or

may not be in normalized form, depending upon the
original operands.

In both normalized and unnormalized operations, the
initial operands need not be in normalized form. The
operands for multiply, divide, and square-root opera-
tions are normalized before the arithmetic process.
For other normalized operations, normalization takes
place when the intermediate arithmetic result is
changed to the final result.

When the intermediate result of addition, subtraction,
or rounding causes the fraction to overflow, the frac-
tion is shifted right by one hexadecimal-digit position,
and the value one is supplied to the vacated leftmost
digit position. The fraction is then truncated to the
final result length, while the characteristic is
increased by one. This adjustment is made for both
normalized and unnormalized operations.

Figure 18-1 on page 18-3 summarizes, for all instruc-
tions producing HFP results, the handling of zero
results and whether normalization occurs for nonzero
results.

Programming Note: Up to three leftmost bits of the
fraction of a normalized number may be zeros, since
the nonzero test applies to the entire leftmost hexa-
decimal digit.

HFP Data Formats

HFP numbers have a 32-bit (short) format, a 64-bit
(long) format, or a 128-bit (extended) format. Num-
bers in the short and long formats may be designated
as operands both in storage and in the floating-point
registers, whereas operands having the extended for-
mat can be designated only in the floating-point reg-
isters.

In all formats, the first bit (bit 0) is the sign bit (S). The
next seven bits are the characteristic. In the short
and long formats, the remaining bits constitute the
fraction, which consists of six or 14 hexadecimal dig-
its, respectively.

Hexadecimal-Floating-Point Instructions 18-3

Instruction
Nonzero Result

Normalized

Zero Result Forced to True Zero Zero Result Made Positive

Short and Long Extended Short and Long Extended

ADD NORMALIZED Yes Y/N Y/N Yes Yes

ADD UNNORMALIZED No Y/N – Yes –

CONVERT BFP TO HFP1 Yes Yes – No –

CONVERT FROM FIXED Yes Yes Yes Yes Yes

DIVIDE Yes Yes Yes Yes Yes

HALVE Yes Yes – Yes –

LOAD1 No No No No No

LOAD AND TEST No No Yes No No

LOAD COMPLEMENT No No Yes No No

LOAD FP INTEGER Yes Yes Yes Yes Yes

LOAD LENGTHENED No No Yes No No

LOAD NEGATIVE No No Yes No No

LOAD POSITIVE No No Yes Yes Yes

LOAD ROUNDED No No – No –

LOAD ZERO1 – Yes Yes Yes Yes

MULTIPLY Yes Yes Yes Yes Yes

MULTIPLY AND ADD Yes Yes – Yes –

MULTIPLY AND ADD UNNORMALIZED No – No – No

MULTIPLY AND SUBTRACT Yes Yes – Yes –

MULTIPLY UNNORMALIZED No – No – No

PERFORM FLOATING-POINT OPERATION1 Yes Yes Yes No No

SQUARE ROOT Yes Yes Yes Yes Yes

STORE1 No No – No –

SUBTRACT NORMALIZED Yes Y/N Y/N Yes Yes

SUBTRACT UNNORMALIZED No Y/N – Yes –

Explanation:

- Not applicable.
1 Floating-point-support instruction.
Y/N When the HFP-significance mask bit (PSW bit 23) is zero, a true zero is forced. When the HFP-significance mask bit is one, the

characteristic remains unchanged, and a program interruption for HFP significance occurs.

Figure 18-1. Normalization and Zero Handling for Instructions with HFP Results

18-4 The z/Architecture CPU Architecture

HFP Short Format

HFP Long Format

HFP Extended Format

An extended HFP number has a 28-digit fraction and
consists of two long HFP numbers that are called the
high-order and low-order parts. The high-order part
may be any long HFP number. The fraction of the
high-order part contains the leftmost 14 hexadecimal
digits of the 28-digit fraction. The characteristic and
sign of the high-order part are the characteristic and
sign of the extended HFP number. If the high-order
part is normalized, the extended number is consid-
ered normalized. The fraction of the low-order part
contains the rightmost 14 digits of the 28-digit frac-
tion. The sign and characteristic of the low-order part
of an extended operand are ignored.

When a result is generated in the extended format
and placed in a register pair, the sign of the low-order
part is made the same as that of the high-order part,
and, unless the result is a true zero, the low-order
characteristic is made 14 less than the high-order
characteristic. When the subtraction of 14 would
cause the low-order characteristic to become less
than zero, the characteristic is made 128 greater than
its correct value. (Thus, the subtraction is performed
modulo 128.) HFP exponent underflow is indicated
only when the high-order characteristic underflows.

When an extended result is made a true zero, both
the high-order and low-order parts are made a true
zero.

The range covered by the magnitude (M) of a nor-
malized HFP number depends on the format.

In the short format:

16-65 M (1 - 16-6) x 1663

In the long format:

16-65 M (1 - 16-14) x 1663

In the extended format:

16-65 M (1 - 16-28) x 1663

In all formats, approximately:

5.4 x 10-79 M 7.2 x 1075

Although the final result of an HFP operation has six
hexadecimal fraction digits in the short format, 14
fraction digits in the long format, and 28 fraction digits
in the extended format, intermediate results have one
additional hexadecimal digit on the right. This digit is
called the guard digit. The guard digit may increase
the precision of the final result because it participates
in addition, subtraction, and comparison operations
and in the left shift that occurs during normalization.

The entire set of HFP operations with normalized
results is available for short, long, and extended
operands in register-register versions; and for short
and long operands in register-storage versions. Most
instructions generate a result that has the same for-
mat as the source operands, except that there are
multiplication operations which can generate a long
product from short operands or an extended product
from long operands. Other exceptions are instruc-
tions which convert operands from one floating-point
format to another or between floating-point and fixed-
point (binary-integer) formats.

Programming Notes:

1. In the absence of an HFP exponent overflow or
HFP exponent underflow, the long HFP number
constituting the low-order part of an extended
result correctly expresses the value of the low-
order part of the extended result when the char-
acteristic of the high-order part is 14 or higher.
This applies also when the result is a true zero.
When the high-order characteristic is less than
14 but the number is not a true zero, the low-

S Characteristic 6-Digit Fraction
0 1 8 31

S Characteristic 14-Digit Fraction
0 1 8 31

14-Digit Fraction (continued)
32 63

S
High-Order

Characteristic
Leftmost 14 Digits of 28-Digit Fraction

0 1 8 31

Leftmost 14 Digits of 28-Digit Fraction (continued)
32 63

S
Low-Order

Characteristic
Rightmost 14 Digits of 28-Digit Fraction

64 65 72 95

Rightmost 14 Digits of 28-Digit Fraction (continued)
96 127

Hexadecimal-Floating-Point Instructions 18-5

order part, when considered as a long HFP num-
ber, does not express the correct characteristic
value.

2. The entire fraction of an extended result partici-
pates in normalization. The low-order part alone
may or may not appear to be a normalized long
HFP number, depending on whether the 15th
digit of the normalized 28-digit fraction is nonzero
or zero.

Instructions

The HFP instructions and their mnemonics and oper-
ation codes are listed in Figure 18-2 on page 18-5.
The figure indicates, in the column labeled “Charac-
teristics”, the instruction format, when the condition
code is set, the instruction fields that designate
access registers, and the exceptional conditions in
operand designations, data, or results that cause a
program interruption.

All HFP instructions are subject to the AFP-register-
control bit, bit 45 of control register 0. The AFP-regis-
ter-control bit must be one when an AFP register is
specified as an operand location; otherwise, an AFP-
register data exception, DXC 1, is recognized.

Mnemonics for the HFP instructions have an R as the
last letter when the instruction is in the RR, RRE, or
RRF format. Certain letters are used for HFP instruc-
tions to represent operand-format length and normal-
ization, as follows:

F Thirty-two-bit fixed point
G Sixty-four-bit fixed point
D Long normalized
E Short normalized
U Short unnormalized
W Long unnormalized
X Extended normalized

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the assembler language are
shown with each instruction. For a register-to-register
operation using COMPARE (short), for example,
CER is the mnemonic and R1,R2 the operand desig-
nation.

Programming Notes:

1. The following additional HFP instructions are
available when the HFP-multiply-and-add/sub-
tract facility is installed:

• MULTIPLY AND ADD (MAD, MADR, MAE,
MAER)

• MULTIPLY AND SUBTRACT (MSD, MSDR,
MSE, MSER)

2. The following additional HFP instructions are
available when the HFP-unnormalized-exten-
sions facility is installed:

• MULTIPLY AND ADD UNNORMALIZED
(MAY, MAYH, MAYHR, MAYL, MAYLR,
MAYR)

• MULTIPLY UNNORMALIZED (MY, MYH,
MYHR, MYL, MYLR, MYR)

Name
Mne-

monic Characteristics
Op

Code Page

ADD NORMALIZED (extended HFP) AXR RR C ¤7,9 SP Da EU EO LS 36 18-8

ADD NORMALIZED (long HFP) AD RX-a C ¤7,9 A Da EU EO LS B2 6A 18-8

ADD NORMALIZED (long HFP) ADR RR C ¤7,9 Da EU EO LS 2A 18-8

ADD NORMALIZED (short HFP) AE RX-a C ¤7,9 A Da EU EO LS B2 7A 18-8

ADD NORMALIZED (short HFP) AER RR C ¤7,9 Da EU EO LS 3A 18-8

ADD UNNORMALIZED (long HFP) AW RX-a C ¤7,9 A Da EO LS B2 6E 18-9

ADD UNNORMALIZED (long HFP) AWR RR C ¤7,9 Da EO LS 2E 18-9

ADD UNNORMALIZED (short HFP) AU RX-a C ¤7,9 A Da EO LS B2 7E 18-9

ADD UNNORMALIZED (short HFP) AUR RR C ¤7,9 Da EO LS 3E 18-9

COMPARE (extended HFP) CXR RRE C ¤7,9 SP Da B369 18-10

COMPARE (long HFP) CD RX-a C ¤7,9 A Da B2 69 18-10

COMPARE (long HFP) CDR RR C ¤7,9 Da 29 18-10

COMPARE (short HFP) CE RX-a C ¤7,9 A Da B2 79 18-10

COMPARE (short HFP) CER RR C ¤7,9 Da 39 18-10

CONVERT FROM FIXED (32 to extended HFP) CXFR RRE ¤7,9 SP Da B3B6 18-11

Figure 18-2. Summary of HFP Instructions (Part 1 of 4)

18-6 The z/Architecture CPU Architecture

CONVERT FROM FIXED (32 to long HFP) CDFR RRE ¤7,9 Da B3B5 18-11

CONVERT FROM FIXED (32 to short HFP) CEFR RRE ¤7,9 Da B3B4 18-11

CONVERT FROM FIXED (64 to extended HFP) CXGR RRE N ¤7,9 SP Da B3C6 18-11

CONVERT FROM FIXED (64 to long HFP) CDGR RRE N ¤7,9 Da B3C5 18-11

CONVERT FROM FIXED (64 to short HFP) CEGR RRE N ¤7,9 Da B3C4 18-11

CONVERT TO FIXED (extended HFP to 32) CFXR RRF-e C ¤7,9 SP Da B3BA 18-11

CONVERT TO FIXED (extended HFP to 64) CGXR RRF-e C N ¤7,9 SP Da B3CA 18-11

CONVERT TO FIXED (long HFP to 32) CFDR RRF-e C ¤7,9 SP Da B3B9 18-11

CONVERT TO FIXED (long HFP to 64) CGDR RRF-e C N ¤7,9 SP Da B3C9 18-11

CONVERT TO FIXED (short HFP to 32) CFER RRF-e C ¤7,9 SP Da B3B8 18-11

CONVERT TO FIXED (short HFP to 64) CGER RRF-e C N ¤7,9 SP Da B3C8 18-11

DIVIDE (extended HFP) DXR RRE ¤7,9 SP Da EU EO FK B22D 18-12

DIVIDE (long HFP) DD RX-a ¤7,9 A Da EU EO FK B2 6D 18-12

DIVIDE (long HFP) DDR RR ¤7,9 Da EU EO FK 2D 18-12

DIVIDE (short HFP) DE RX-a ¤7,9 A Da EU EO FK B2 7D 18-12

DIVIDE (short HFP) DER RR ¤7,9 Da EU EO FK 3D 18-12

HALVE (long HFP) HDR RR ¤7,9 Da EU 24 18-13

HALVE (short HFP) HER RR ¤7,9 Da EU 34 18-13

LOAD AND TEST (extended HFP) LTXR RRE C ¤7,9 SP Da B362 18-14

LOAD AND TEST (long HFP) LTDR RR C ¤7,9 Da 22 18-13

LOAD AND TEST (short HFP) LTER RR C ¤7,9 Da 32 18-13

LOAD COMPLEMENT (extended HFP) LCXR RRE C ¤7,9 SP Da B363 18-14

LOAD COMPLEMENT (long HFP) LCDR RR C ¤7,9 Da 23 18-14

LOAD COMPLEMENT (short HFP) LCER RR C ¤7,9 Da 33 18-14

LOAD FP INTEGER (extended HFP) FIXR RRE ¤7,9 SP Da B367 18-15

LOAD FP INTEGER (long HFP) FIDR RRE ¤7,9 Da B37F 18-15

LOAD FP INTEGER (short HFP) FIER RRE ¤7,9 Da B377 18-15

LOAD LENGTHENED (long to extended HFP) LXD RXE ¤7,9 A SP Da B2 ED25 18-15

LOAD LENGTHENED (long to extended HFP) LXDR RRE ¤7,9 SP Da B325 18-15

LOAD LENGTHENED (short to extended HFP) LXE RXE ¤7,9 A SP Da B2 ED26 18-15

LOAD LENGTHENED (short to extended HFP) LXER RRE ¤7,9 SP Da B326 18-15

LOAD LENGTHENED (short to long HFP) LDE RXE ¤7,9 A Da B2 ED24 18-15

LOAD LENGTHENED (short to long HFP) LDER RRE ¤7,9 Da B324 18-15

LOAD NEGATIVE (extended HFP) LNXR RRE C ¤7,9 SP Da B361 18-16

LOAD NEGATIVE (long HFP) LNDR RR C ¤7,9 Da 21 18-16

LOAD NEGATIVE (short HFP) LNER RR C ¤7,9 Da 31 18-16

LOAD POSITIVE (extended HFP) LPXR RRE C ¤7,9 SP Da B360 18-16

LOAD POSITIVE (long HFP) LPDR RR C ¤7,9 Da 20 18-16

LOAD POSITIVE (short HFP) LPER RR C ¤7,9 Da 30 18-16

LOAD ROUNDED (extended to long HFP) LDXR RR ¤7,9 SP Da EO 25 18-17

LOAD ROUNDED (extended to long HFP) LRDR RR ¤7,9 SP Da EO 25 18-17

LOAD ROUNDED (extended to short HFP) LEXR RRE ¤7,9 SP Da EO B366 18-17

LOAD ROUNDED (long to short HFP) LEDR RR ¤7,9 Da EO 35 18-17

LOAD ROUNDED (long to short HFP) LRER RR ¤7,9 Da EO 35 18-17

MULTIPLY (extended HFP) MXR RR ¤7,9 SP Da EU EO 26 18-17

MULTIPLY (long HFP) MD RX-a ¤7,9 A Da EU EO B2 6C 18-18

MULTIPLY (long HFP) MDR RR ¤7,9 Da EU EO 2C 18-17

MULTIPLY (long to extended HFP) MXD RX-a ¤7,9 A SP Da EU EO B2 67 18-18

MULTIPLY (long to extended HFP) MXDR RR ¤7,9 SP Da EU EO 27 18-17

MULTIPLY (short HFP) MEE RXE ¤7,9 A Da EU EO B2 ED37 18-18

Name
Mne-

monic Characteristics
Op

Code Page

Figure 18-2. Summary of HFP Instructions (Part 2 of 4)

Hexadecimal-Floating-Point Instructions 18-7

MULTIPLY (short HFP) MEER RRE ¤7,9 Da EU EO B337 18-17

MULTIPLY (short to long HFP) MDE RX-a ¤7,9 A Da EU EO B2 7C 18-18

MULTIPLY (short to long HFP) MDER RR ¤7,9 Da EU EO 3C 18-17

MULTIPLY (short to long HFP) ME RX-a ¤7,9 A Da EU EO B2 7C 18-18

MULTIPLY (short to long HFP) MER RR ¤7,9 Da EU EO 3C 18-18

MULTIPLY AND ADD (long HFP) MAD RXF HM ¤7,9 A Da EU EO B2 ED3E 18-19

MULTIPLY AND ADD (long HFP) MADR RRD HM ¤7,9 Da EU EO B33E 18-19

MULTIPLY AND ADD (short HFP) MAE RXF HM ¤7,9 A Da EU EO B2 ED2E 18-19

MULTIPLY AND ADD (short HFP) MAER RRD HM ¤7,9 Da EU EO B32E 18-19

MULTIPLY AND ADD UNNORM. (long to ext. HFP) MAY RXF UE ¤7,9 A Da B2 ED3A 18-20

MULTIPLY AND ADD UNNORM. (long to ext. HFP) MAYR RRD UE ¤7,9 Da B33A 18-20

MULTIPLY AND ADD UNNRM. (long to ext. high
HFP)

MAYH RXF UE ¤7,9 A Da B2 ED3C 18-20

MULTIPLY AND ADD UNNRM. (long to ext. high
HFP)

MAYHR RRD UE ¤7,9 Da B33C 18-20

MULTIPLY AND ADD UNNRM. (long to ext. low
HFP)

MAYL RXF UE ¤7,9 A Da B2 ED38 18-20

MULTIPLY AND ADD UNNRM. (long to ext. low
HFP)

MAYLR RRD UE ¤7,9 Da B338 18-20

MULTIPLY AND SUBTRACT (long HFP) MSD RXF HM ¤7,9 A Da EU EO B2 ED3F 18-19

MULTIPLY AND SUBTRACT (long HFP) MSDR RRD HM ¤7,9 Da EU EO B33F 18-19

MULTIPLY AND SUBTRACT (short HFP) MSE RXF HM ¤7,9 A Da EU EO B2 ED2F 18-19

MULTIPLY AND SUBTRACT (short HFP) MSER RRD HM ¤7,9 Da EU EO B32F 18-19

MULTIPLY UNNORM. (long to ext. high HFP) MYH RXF UE ¤7,9 A Da B2 ED3D 18-22

MULTIPLY UNNORM. (long to ext. high HFP) MYHR RRD UE ¤7,9 Da B33D 18-22

MULTIPLY UNNORM. (long to ext. low HFP) MYL RXF UE ¤7,9 A Da B2 ED39 18-22

MULTIPLY UNNORM. (long to ext. low HFP) MYLR RRD UE ¤7,9 Da B339 18-22

MULTIPLY UNNORMALIZED (long to ext. HFP) MY RXF UE ¤7,9 A SP Da B2 ED3B 18-22

MULTIPLY UNNORMALIZED (long to ext. HFP) MYR RRD UE ¤7,9 SP Da B33B 18-22

SQUARE ROOT (extended HFP) SQXR RRE ¤7,9 SP Da SQ B336 18-23

SQUARE ROOT (long HFP) SQD RXE ¤7,9 A Da SQ B2 ED35 18-23

SQUARE ROOT (long HFP) SQDR RRE ¤7,9 Da SQ B244 18-23

SQUARE ROOT (short HFP) SQE RXE ¤7,9 A Da SQ B2 ED34 18-23

SQUARE ROOT (short HFP) SQER RRE ¤7,9 Da SQ B245 18-23

SUBTRACT NORMALIZED (extended HFP) SXR RR C ¤7,9 SP Da EU EO LS 37 18-24

SUBTRACT NORMALIZED (long HFP) SD RX-a C ¤7,9 A Da EU EO LS B2 6B 18-24

SUBTRACT NORMALIZED (long HFP) SDR RR C ¤7,9 Da EU EO LS 2B 18-24

SUBTRACT NORMALIZED (short HFP) SE RX-a C ¤7,9 A Da EU EO LS B2 7B 18-24

SUBTRACT NORMALIZED (short HFP) SER RR C ¤7,9 Da EU EO LS 3B 18-24

SUBTRACT UNNORMALIZED (long HFP) SW RX-a C ¤7,9 A Da EO LS B2 6F 18-25

SUBTRACT UNNORMALIZED (long HFP) SWR RR C ¤7,9 Da EO LS 2F 18-25

SUBTRACT UNNORMALIZED (short HFP) SU RX-a C ¤7,9 A Da EO LS B2 7F 18-25

SUBTRACT UNNORMALIZED (short HFP) SUR RR C ¤7,9 Da EO LS 3F 18-25

Explanation:

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.

A Access exceptions for logical addresses.

B2 B2 field designates an access register in the access-register mode.

C Condition code is set.

Name
Mne-

monic Characteristics
Op

Code Page

Figure 18-2. Summary of HFP Instructions (Part 3 of 4)

18-8 The z/Architecture CPU Architecture

A
D

D
 N

O
R

M
A

L
IZ

E
D

ADD NORMALIZED

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
AER '3A' Short HFP
ADR '2A' Long HFP
AXR '36' Extended HFP

Mnemonic2 R1,D2(X2,B2) [RX-a]

Mnemonic2 Op Code Operands
AE '7A' Short HFP
AD '6A' Long HFP

The second operand is added to the first operand,
and the normalized sum is placed at the first-operand
location.

Addition of two HFP numbers consists in characteris-
tic comparison, fraction alignment, and signed frac-
tion addition. The characteristics of the two operands
are compared, and the fraction accompanying the
smaller characteristic is aligned with the other frac-
tion by a right shift, with its characteristic increased

by one for each hexadecimal digit of shift until the two
characteristics agree.

When a fraction is shifted right during alignment, the
leftmost hexadecimal digit shifted out is retained as a
guard digit. The fraction that is not shifted is consid-
ered to be extended with a zero in the guard-digit
position. When no alignment shift occurs, both oper-
ands are considered to be extended with zeros in the
guard-digit position. The fractions with signs are then
added algebraically to form a signed intermediate
sum.

The intermediate-sum fraction consists of seven
(short format), 15 (long format), or 29 (extended for-
mat) hexadecimal digits, including the guard digit,
and a possible carry. If a carry is present, the sum is
shifted right one digit position so that the carry
becomes the leftmost digit of the fraction, and the
characteristic is increased by one.

If the addition produces no carry, the intermediate-
sum fraction is shifted left as necessary to eliminate
any leading hexadecimal zero digits resulting from
the addition, provided the fraction is not zero. Zeros
are supplied to the vacated rightmost digits, and the
characteristic is reduced by the number of hexadeci-
mal digits of shift. The fraction thus normalized is
then truncated on the right to six (short format), 14
(long format), or 28 (extended format) hexadecimal

Da AFP-register data exception.

EO HFP-exponent-overflow exception.

EU HFP-exponent-underflow exception.

FK HFP-divide exception.

HM HFP-multiply-add/subtract facility.

LS HFP-significance exception.

N Instruction is new in z/Architecture as compared to ESA/390.

RR RR instruction format.

RRD RRD instruction format.

RRE RRE instruction format.

RRF RRF instruction format.

RX RX instruction format.

RXE RXE instruction format.

SP Specification exception.

SQ HFP-square-root exception.

UE HFP unnormalized-extensions facility.

Name
Mne-

monic Characteristics
Op

Code Page

Figure 18-2. Summary of HFP Instructions (Part 4 of 4)

Op Code R1 R2

0 8 12 15

Op Code R1 X2 B2 D2

0 8 12 16 20 31

Hexadecimal-Floating-Point Instructions 18-9

A
D

D
 U

N
N

O
R

M
A

L
IZ

E
Ddigits. In the extended format, a characteristic is gen-

erated for the low-order part, which is 14 less than
the high-order characteristic.

The sign of the sum is determined by the rules of
algebra, unless all digits of the intermediate-sum
fraction are zero, in which case the sign is made plus.

An HFP-exponent-overflow exception exists when a
carry from the leftmost position of the intermediate-
sum fraction would cause the characteristic of the
normalized sum to exceed 127. The operation is
completed by making the result characteristic 128
less than the correct value, and a program interrup-
tion for HFP exponent overflow occurs. The result is
normalized, and the sign and fraction remain correct.
For extended results, the characteristic of the low-
order part remains correct.

An HFP-exponent-underflow exception exists when
the characteristic of the normalized sum would be
less than zero and the fraction is not zero. If the HFP-
exponent-underflow mask bit in the PSW is one, the
operation is completed by making the result charac-
teristic 128 greater than the correct value, and a pro-
gram interruption for HFP exponent underflow
occurs. The result is normalized, and the sign and
fraction remain correct. If the HFP-exponent-under-
flow mask bit in the PSW is zero, a program interrup-
tion does not occur; instead, the operation is
completed by making the result a positive true zero.
For extended results, HFP exponent underflow is not
recognized when the low-order characteristic is less
than zero but the high-order characteristic is equal to
or greater than zero.

The result fraction is zero when the intermediate-sum
fraction, including the guard digit, is zero. With a zero
result fraction, the action depends on the setting of
the HFP-significance mask bit in the PSW. If the
HFP-significance mask bit in the PSW is one, no nor-
malization occurs, the intermediate and final result
characteristics are the same, and a program interrup-
tion for HFP significance occurs. If the HFP-signifi-
cance mask bit in the PSW is zero, the program
interruption does not occur; instead, the result is
made a positive true zero.

For AXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

Program Exceptions:

• Access (fetch, operand 2 of AE and AD only)
• Data with DXC 1, AFP register
• HFP exponent overflow
• HFP exponent underflow
• HFP significance
• Specification (AXR only)
• Transaction constraint

Programming Notes:

1. An example of the use of the ADD NORMAL-
IZED instruction (AE) is given in Appendix A.

2. Interchanging the two operands in an HFP addi-
tion does not affect the value of the sum.

3. The ADD NORMALIZED instruction normalizes
the sum but not the operands. Thus, if one or
both operands are unnormalized, precision may
be lost during fraction alignment.

ADD UNNORMALIZED

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
AUR '3E' Short HFP
AWR '2E' Long HFP

Mnemonic2 R1,D2(X2,B2) [RX-a]

Mnemonic2 Op Code Operands
AU '7E' Short HFP
AW '6E' Long HFP

The second operand is added to the first operand,
and the unnormalized sum is placed at the first-oper-
and location.

The execution of ADD UNNORMALIZED is identical
to that of ADD NORMALIZED, except that:

Op Code R1 R2

0 8 12 15

Op Code R1 X2 B2 D2

0 8 12 16 20 31

18-10 The z/Architecture CPU Architecture

C
O

M
P

A
R

E 1. When no carry is present after the addition, the
intermediate-sum fraction is truncated to the
proper result-fraction length without a left shift to
eliminate leading hexadecimal zeros and without
the corresponding reduction of the characteristic.

2. HFP exponent underflow cannot occur.

3. The guard digit does not participate in the recog-
nition of a zero result fraction. A zero result frac-
tion is recognized when the fraction (that is, the
intermediate-sum fraction, excluding the guard
digit) is zero.

Resulting Condition Code:

0 Result fraction zero
1 Result less than zero
2 Result greater than zero
3 --

Program Exceptions:

• Access (fetch, operand 2 of AU and AW only)
• Data with DXC 1, AFP register
• HFP exponent overflow
• HFP significance
• Transaction constraint

Programming Notes:

1. An example of the use of the ADD UNNORMAL-
IZED instruction (AU) is given in Appendix A.

2. Except when the result is made a true zero, the
characteristic of the result of ADD UNNORMAL-
IZED is equal to the greater of the two operand
characteristics, increased by one if the fraction
addition produced a carry, or set to zero if HFP
exponent overflow occurred.

COMPARE

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
CER '39' Short HFP
CDR '29' Long HFP

Mnemonic2 R1,R2 [RRE]

Mnemonic2 Op Code Operands
CXR 'B369' Extended HFP

Mnemonic3 R1,D2(X2,B2) [RX-a]

Mnemonic3 Op Code Operands
CE '79' Short HFP
CD '69' Long HFP

The first operand is compared with the second oper-
and, and the condition code is set to indicate the
result.

The comparison is algebraic and follows the proce-
dure for normalized subtraction, except that the dif-
ference is discarded after setting the condition code
and both operands remain unchanged. When the dif-
ference, including the guard digit, is zero, the oper-
ands are equal. When a nonzero difference is
positive or negative, the first operand is high or low,
respectively.

An HFP-exponent-overflow, HFP-exponent-under-
flow, or HFP-significance exception cannot occur.

For CXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

Program Exceptions:

• Access (fetch, operand 2 of CE and CD only)
• Data with DXC 1, AFP register
• Specification (CXR only)
• Transaction constraint

Programming Notes:

1. Examples of the use of the COMPARE instruc-
tion (CDR) are given in Appendix A.

Op Code R1 R2

0 8 12 15

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2

0 8 12 16 20 31

Hexadecimal-Floating-Point Instructions 18-11

C
O

N
V

E
R

T
 T

O
 F

IX
E

D2. An exponent inequality alone is not sufficient to
determine the inequality of two operands with the
same sign, because the fractions may have dif-
ferent numbers of leading hexadecimal zeros.

3. Numbers with zero fractions compare equal even
when they differ in sign or characteristic.

CONVERT FROM FIXED

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
CEFR 'B3B4' 32-bit binary-integer operand, short HFP

result
CDFR 'B3B5' 32-bit binary-integer operand, long HFP

result
CXFR 'B3B6' 32-bit binary-integer operand, extended

HFP result
CEGR 'B3C4' 64-bit binary-integer operand, short HFP

result
CDGR 'B3C5' 64-bit binary-integer operand, long HFP

result
CXGR 'B3C6' 64-bit binary-integer operand, extended

HFP result

The fixed-point second operand is converted to the
HFP format, and the normalized result is placed at
the first-operand location.

A nonzero result is normalized. A zero result is made
a positive true zero.

The second operand is a signed binary integer that is
located in the general register designated by R2. A
32-bit operand is in bit positions 32-63 of the register.

The result is normalized and rounded toward zero
(truncated) before it is placed at the first-operand
location.

For CXFR and CXGR, the R1 field must designate a
valid floating-point-register pair; otherwise, a specifi-
cation exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• Specification (CXFR and CXGR)
• Transaction constraint

CONVERT TO FIXED

Mnemonic R1,M3,R2 [RRF-e]

Mnemonic Op Code Operands
CFER 'B3B8' Short HFP operand, 32-bit binary-integer

result
CFDR 'B3B9' Long HFP operand, 32-bit binary-integer

result
CFXR 'B3BA' Extended HFP operand, 32-bit binary-inte-

ger result
CGER 'B3C8' Short HFP operand, 64-bit binary-integer

result
CGDR 'B3C9' Long HFP operand, 64-bit binary-integer

result
CGXR 'B3CA' Extended HFP operand, 64-bit binary-inte-

ger result

The HFP second operand is rounded to an integer
value and then converted to the fixed-point format.
The result is placed at the first-operand location.

The result is a signed binary integer that is placed in
the general register designated by R1. For instruc-
tions that produce a 32-bit result, the result replaces
bits 32-63 of the register, and bits 0-31 of the register
remain unchanged.

The second operand is rounded to an integer value
by rounding as specified by the modifier in the M3

field:

M3 Effective Rounding Method
0 Round toward 0
1 Round to nearest with ties away from 0
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

For details on rounding see the section “Rounding
Methods” on page 9-14.

A modifier other than 0, 1, or 4-7 is invalid.

The sign of the result is the sign of the second oper-
and, except that a zero result has a plus sign.

If the rounded result would have a value exceeding
the range that can be represented in the result for-
mat, the largest (in magnitude) representable num-

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code M3 / / / / R1 R2

0 16 20 24 28 31

18-12 The z/Architecture CPU Architecture

D
IV

ID
E ber of the same sign as the source is placed at the

target location, and condition code 3 is set.

HFP exponent underflow is not recognized because
small values are rounded to one (with the appropriate
sign) or to zero, depending on the rounding mode.

The M3 field must designate a valid modifier; other-
wise, a specification exception is recognized. For
CFXR and CGXR, the R2 field must designate a valid
floating-point-register pair; otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

Program Exceptions:

• Data with DXC 1, AFP register
• Specification
• Transaction constraint

DIVIDE

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
DER '3D' Short HFP
DDR '2D' Long HFP

Mnemonic2 R1,R2 [RRE]

Mnemonic2 Op Code Operands
DXR 'B22D' Extended HFP

Mnemonic3 R1,D2(X2,B2) [RX-a]

Mnemonic3 Op Code Operands
DE '7D' Short HFP
DD '6D' Long HFP

The first operand (the dividend) is divided by the sec-
ond operand (the divisor), and the normalized quo-

tient is placed at the first-operand location. No
remainder is preserved.

HFP division consists in characteristic subtraction
and fraction division. The operands are first normal-
ized to eliminate leading hexadecimal zeros. The dif-
ference between the dividend and divisor
characteristics of the normalized operands, plus 64,
is used as the characteristic of an intermediate quo-
tient.

All dividend and divisor fraction digits participate in
forming the fraction of the intermediate quotient. The
intermediate-quotient fraction can have no leading
hexadecimal zeros, but a right shift of one digit posi-
tion may be necessary, with this causing an increase
of the characteristic by one. The fraction is then trun-
cated to the proper result-fraction length.

An HFP-exponent-overflow exception exists when
the characteristic of the final quotient would exceed
127 and the fraction is not zero. The operation is
completed by making the result characteristic 128
less than the correct value, and a program interrup-
tion for HFP exponent overflow occurs. The result is
normalized, and the sign and fraction remain correct.
If, for extended results, the low-order characteristic
would also exceed 127, it too is decreased by 128.

An HFP-exponent-underflow exception exists when
the characteristic of the final quotient would be less
than zero and the fraction is not zero. If the HFP-
exponent-underflow mask bit in the PSW is one, the
operation is completed by making the result charac-
teristic 128 greater than the correct value, and a pro-
gram interruption for HFP exponent underflow
occurs. The result is normalized, and the sign and
fraction remain correct. If the HFP-exponent-under-
flow mask bit in the PSW is zero, a program interrup-
tion does not occur; instead, the operation is
completed by making the result a positive true zero.
For extended results, HFP exponent underflow is not
recognized when the low-order characteristic is less
than zero but the high-order characteristic is equal to
or greater than zero.

HFP exponent underflow does not occur when the
characteristic of an operand becomes less than zero
during normalization of the operands or when the
intermediate-quotient characteristic is less than zero,
as long as the final quotient can be represented with
the correct characteristic.

Op Code R1 R2

0 8 12 15

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2

0 8 12 16 20 31

Hexadecimal-Floating-Point Instructions 18-13

L
O

A
D

 A
N

D
 T

E
S

TWhen the divisor fraction is zero, an HFP-divide
exception is recognized. This includes the case of
division of zero by zero.

When the dividend fraction is zero but the divisor
fraction is nonzero, the quotient is made a positive
true zero. No HFP exponent overflow or HFP expo-
nent underflow occurs.

The sign of the quotient is the exclusive or of the
operand signs, except that the sign is always plus
when the quotient is made a positive true zero.

For DXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of DE and DD only)
• Data with DXC 1, AFP register
• HFP divide
• HFP exponent overflow
• HFP exponent underflow
• Specification (DXR only)
• Transaction constraint

Programming Note: Examples of the use of the
DIVIDE instruction (DER) are given in Appendix A.

HALVE

Mnemonic R1,R2 [RR]

Mnemonic Op Code Operands
HER '34' Short HFP
HDR '24' Long HFP

The second operand is divided by 2, and the normal-
ized quotient is placed at the first-operand location.

The fraction of the second operand is shifted right
one bit position, placing the contents of the rightmost
bit position in the leftmost bit position of the guard
digit, and a zero is supplied to the leftmost bit posi-
tion of the fraction. The intermediate result, including
the guard digit, is then normalized, and the final
result is truncated to the proper length.

An HFP-exponent-underflow exception exists when
the characteristic of the final result would be less
than zero and the fraction is not zero. If the HFP-
exponent-underflow mask bit in the PSW is one, the
operation is completed by making the result charac-
teristic 128 greater than the correct value, and a pro-
gram interruption for HFP exponent underflow
occurs. The result is normalized, and the sign and
fraction remain correct. If the HFP-exponent-under-
flow mask bit in the PSW is zero, a program interrup-
tion does not occur; instead, the operation is
completed by making the result a positive true zero.

When the fraction of the second operand is zero, the
result is made a positive true zero, and no HFP expo-
nent underflow occurs.

The sign of the result is the same as that of the sec-
ond operand, except that the sign is always plus
when the quotient is made a positive true zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• HFP exponent underflow
• Transaction constraint

Programming Notes:

1. An example of the use of the HALVE instruction
(HDR) is given in Appendix A.

2. With short and long operands, the halve opera-
tion is identical to a divide operation with the
number 2 as divisor. Similarly, the result of HDR
is identical to that of MD or MDR with one-half as
a multiplier, and the result of HER is identical to
that of MEE or MEER with one-half as a multi-
plier.

LOAD AND TEST

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
LTER '32' Short HFP
LTDR '22' Long HFP

Op Code R1 R2

0 8 12 15

Op Code R1 R2

0 8 12 15

18-14 The z/Architecture CPU Architecture

L
O

A
D

 C
O

M
P

L
E

M
E

N
T Mnemonic2 R1,R2 [RRE]

Mnemonic2 Op Code Operands
LTXR 'B362' Extended HFP

The second operand is placed at the first-operand
location, and its sign and magnitude are tested to
determine the setting of the condition code. The con-
dition code is set the same as for a comparison of the
second operand with zero.

For short and long operands, the second operand is
placed unchanged in the first-operand location.

For extended operands, the high-order sign and the
entire fraction of the source are placed unchanged in
the result, and the low-order sign is set equal to the
high-order sign. If the extended-operand fraction is
nonzero, the high-order characteristic is placed
unchanged in the result high-order characteristic,
and the low-order characteristic is set to 14 less than
the high-order characteristic, modulo 128. If the
extended-operand fraction is zero, the result is made
a true zero with the same sign as the source (the
high-order and low-order sign bits of the result are
the same as the high-order sign bit of the source).

For LTXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

Program Exceptions:

• Data with DXC 1, AFP register
• Specification (LTXR only)
• Transaction constraint

Programming Note: When, for LTER and LTDR, the
same register is designated as the first-operand and
second-operand location, the operation is equivalent
to a test without data movement.

LOAD COMPLEMENT

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
LCER '33' Short HFP
LCDR '23' Long HFP

Mnemonic2 R1,R2 [RRE]

Mnemonic2 Op Code Operands
LCXR 'B363' Extended HFP

The second operand is placed at the first-operand
location with the sign bit inverted.

The sign bit is inverted even if the operand is zero.
For all operand lengths, the source fraction is placed
unchanged in the result.

For short and long operands, the source characteris-
tic is placed unchanged in the result.

For extended operands, the low-order sign is set
equal to the high-order sign. If the extended-operand
fraction is nonzero, the high-order characteristic is
placed unchanged in the result high-order character-
istic, and the low-order characteristic is set to 14 less
than the high-order characteristic, modulo 128. If the
extended-operand fraction is zero, the result is made
a true zero with the sign inverted from the source (the
high-order and low-order sign bits of the result are
inverted from the high-order sign bit of the source).

For LCXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

Program Exceptions:

• Data with DXC 1, AFP register
• Specification (LCXR only)
• Transaction constraint

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 R2

0 8 12 15

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Hexadecimal-Floating-Point Instructions 18-15

L
O

A
D

 L
E

N
G

T
H

E
N

E
DLOAD FP INTEGER

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
FIER 'B377' Short HFP
FIDR 'B37F' Long HFP
FIXR 'B367' Extended HFP

The second operand is truncated (rounded toward
zero) to an integer value in the same floating-point
format, and the normalized result is placed at the
first-operand location.

A nonzero result is normalized. A zero result is made
a positive true zero.

For FIXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• Specification (FIXR only)
• Transaction constraint

Programming Notes:

1. LOAD FP INTEGER truncates (rounds toward
zero) an HFP number to an integer value. These
integers, which remain in the HFP format, should
not be confused with binary integers, which use
a fixed-point format.

2. If the HFP operand has a large enough exponent
so that it is already an integer, the result value
remains the same, except that an unnormalized
operand is normalized, and an operand with a
zero fraction is changed to a positive true zero.

LOAD LENGTHENED

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
LDER 'B324' Short HFP operand 2, long HFP operand 1
LXDR 'B325' Long HFP operand 2, extended HFP oper-

and 1
LXER 'B326' Short HFP operand 2, extended HFP oper-

and 1

Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
LDE 'ED24' Short HFP operand 2, long HFP operand 1
LXD 'ED25' Long HFP operand 2, extended HFP oper-

and 1
LXE 'ED26' Short HFP operand 2, extended HFP oper-

and 1

The second operand is extended to a longer format,
and the result is placed at the first-operand location.

For all operand lengths, the source fraction is
extended with zeros and placed in the result. The
sign bit of the result is set the same as the sign of the
source even when the result is made a true zero.

For long results, the source characteristic is placed
unchanged in the result.

For extended results, the low-order sign is set equal
to the high-order sign. If the fraction is nonzero, the
source characteristic is placed unchanged in the
result high-order characteristic, and the low-order
characteristic is set to 14 less than the high-order
characteristic, modulo 128. If the fraction is zero, the
result is made a true zero with the same sign as the
source (the high-order and low-order sign bits of the
result are the same as the sign bit of the source).

For LXD, LXDR, LXE, and LXER, the R1 field must
designate a valid floating-point-register pair; other-
wise, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2 / / / / / / / / Op Code
0 8 12 16 20 32 40 47

18-16 The z/Architecture CPU Architecture

L
O

A
D

 N
E

G
A

T
IV

E • Access (fetch, operand 2 of LDE, LXE, and LXD
only)

• Data with DXC 1, AFP register
• Specification (LXE, LXER, LXD, LXDR)
• Transaction constraint

LOAD NEGATIVE

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
LNER '31' Short HFP
LNDR '21' Long HFP

Mnemonic2 R1,R2 [RRE]

Mnemonic2 Op Code Operands
LNXR 'B361' Extended HFP

The second operand is placed at the first-operand
location with the sign bit made one.

The sign bit is made one even if the operand is zero.
For all operand lengths, the source fraction is placed
unchanged in the result.

For short and long operands, the source characteris-
tic is placed unchanged in the result.

For extended operands, the low-order sign is set
equal to the high-order sign. If the extended-operand
fraction is nonzero, the high-order characteristic is
placed unchanged in the result high-order character-
istic, and the low-order characteristic is set to 14 less
than the high-order characteristic, modulo 128. If the
extended-operand fraction is zero, the result is made
a negative true zero (the high-order and low-order
sign bits of the result are set to one).

For LNXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 --
3 --

Program Exceptions:

• Data with DXC 1, AFP register
• Specification (LNXR only)
• Transaction constraint

LOAD POSITIVE

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
LPER '30' Short HFP
LPDR '20' Long HFP

Mnemonic2 R1,R2 [RRE]

Mnemonic2 Op Code Operands
LPXR 'B360' Extended HFP

The second operand is placed at the first-operand
location with the sign bit made zero.

For all operand lengths, the sign bit is made zero,
and the source fraction is placed unchanged in the
result.

For short and long operands, the source characteris-
tic is placed unchanged in the result.

For extended operands, the low-order sign is set
equal to the high-order sign. If the extended-operand
fraction is nonzero, the high-order characteristic is
placed unchanged in the result high-order character-
istic, and the low-order characteristic is set to 14 less
than the high-order characteristic, modulo 128. If the
extended-operand fraction is zero, the result is made
a positive true zero (the high-order and low-order
sign bits of the result are set to zero).

For LPXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 --
2 Result is greater than zero
3 --

Op Code R1 R2

0 8 12 15

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 R2

0 8 12 15

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Hexadecimal-Floating-Point Instructions 18-17

M
U

L
T

IP
L

YProgram Exceptions:

• Data with DXC 1, AFP register
• Specification (LPXR only)
• Transaction constraint

LOAD ROUNDED

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
LEDR '35' Long HFP operand 2, short HFP operand 1
LDXR '25' Extended HFP operand 2, long HFP oper-

and 1
The above mnemonics are alternatives to the following older mnemonics
that are less descriptive of operand lengths:
LRER '35' Long HFP operand 2, short HFP operand 1
LRDR '25' Extended HFP operand 2, long HFP oper-

and 1

Mnemonic2 R1,R2 [RRE]

Mnemonic2 Op Code Operands
LEXR 'B366' Extended HFP operand 2, short HFP oper-

and 1

The second operand is rounded to a shorter format,
and the result is placed at the first-operand location.

Rounding consists in adding a one to the leftmost bit
position of the second operand that is to be dropped
and propagating any carry through the fraction. The
sign of the second operand is ignored, and addition
is performed as if the fraction were positive.

If rounding causes a carry out of the leftmost hexa-
decimal digit position of the fraction, the fraction is
shifted right one digit position so that the carry
becomes the leftmost digit of the fraction, and the
characteristic is increased by one.

The intermediate fraction is then truncated to the
proper result-fraction length. For LEDR and LEXR,
the result replaces the leftmost 32 bits of the target
register, and the rightmost 32 bit positions of the tar-
get register remain unchanged. For LDXR, the 64-bit
result is placed in a floating-point register, not a float-
ing-point register pair.

The sign of the result is the same as the sign of the
second operand. There is no normalization to elimi-
nate leading zeros.

An HFP-exponent-overflow exception exists when
shifting the fraction right would cause the character-
istic to exceed 127. The operation is completed by
making the result characteristic 128 less than the
correct value, and a program interruption for HFP
exponent overflow occurs. The result is normalized,
and the sign and fraction remain correct.

HFP-exponent-underflow and HFP-significance
exceptions cannot occur.

For LDXR (or LRDR) and LEXR, the R2 field must
designate a valid floating-point-register pair; other-
wise, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC 1, AFP register
• HFP exponent overflow
• Specification (LDXR, LEXR, LRDR)
• Transaction constraint

Programming Note: The sign of the rounded result
is the same as the sign of the operand, even when
the result is zero.

MULTIPLY

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
MEER 'B337' Short HFP

Mnemonic2 R1,R2 [RR]

Mnemonic2 Op Code Operands
MDR '2C' Long HFP
MXR '26' Extended HFP
MDER '3C' Short HFP multiplier and multiplicand, long

HFP product
MXDR '27' Long HFP multiplier and multiplicand,

extended HFP product

Op Code R1 R2

0 8 12 15

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 R2

0 8 12 15

18-18 The z/Architecture CPU Architecture

M
U

L
T

IP
L

Y The above mnemonic MDER is an alternative to the following older
mnemonic that is less descriptive of operand lengths:
MER '3C' Short HFP multiplier and multiplicand, long

HFP product

Mnemonic3 R1,D2(X2,B2) [RXE]

Mnemonic3 Op Code Operands
MEE 'ED37' Short HFP

Mnemonic4 R1,D2(X2,B2) [RX-a]

Mnemonic4 Op Code Operands
MD '6C' Long HFP
MDE '7C' Short HFP multiplier and multiplicand, long

HFP product
MXD '67' Long HFP multiplier and multiplicand,

extended HFP product
The above mnemonic MDE is an alternative to the following older
mnemonic that is less descriptive of operand lengths:
ME '7C' Short HFP multiplier and multiplicand, long

HFP product

The normalized product of the second operand (the
multiplier) and the first operand (the multiplicand) is
placed at the first-operand location.

Multiplication of two HFP numbers consists in expo-
nent addition and fraction multiplication. The oper-
ands are first normalized to eliminate leading
hexadecimal zeros. The sum of the characteristics of
the normalized operands, less 64, is used as the
characteristic of the intermediate product.

The fraction of the intermediate product is the exact
product of the normalized operand fractions. If the
intermediate-product fraction has one leading hexa-
decimal zero digit, the fraction is shifted left one digit
position, bringing the contents of the guard-digit posi-
tion into the rightmost position of the result fraction,
and the intermediate-product characteristic is
reduced by one. The fraction is then truncated to the
proper result-fraction length.

For MDE and MDER, the multiplier and multiplicand
fractions have six hexadecimal digits; the product
fraction has the full 14 digits of the long format, with
the two rightmost fraction digits always zeros. For
MEE and MEER, the multiplier and multiplicand frac-
tions have six digits, and the final product fraction is

truncated to six digits; the result, as for all short-for-
mat results, replaces the leftmost 32 bits of the target
register, and the rightmost 32 bit positions of the tar-
get register remain unchanged.

For MD and MDR, the multiplier and multiplicand
fractions have 14 digits, and the final product fraction
is truncated to 14 digits. For MXD and MXDR, the
multiplier and multiplicand fractions have 14 digits,
with the multiplicand occupying the high-order part of
the first operand; the final product fraction contains
28 digits and is an exact product of the operand frac-
tions. For MXR, the multiplier and multiplicand frac-
tions have 28 digits, and the final product fraction is
truncated to 28 digits.

An HFP-exponent-overflow exception exists when
the characteristic of the final product would exceed
127 and the fraction is not zero. The operation is
completed by making the result characteristic 128
less than the correct value, and a program interrup-
tion for HFP exponent overflow occurs. The result is
normalized, and the sign and fraction remain correct.
If, for extended results, the low-order characteristic
would also exceed 127, it too is decreased by 128.

HFP exponent overflow is not recognized when the
intermediate-product characteristic is initially 128 but
is brought back within range by normalization.

An HFP-exponent-underflow exception exists when
the characteristic of the final product would be less
than zero and the fraction is not zero. If the HFP-
exponent-underflow mask bit in the PSW is one, the
operation is completed by making the result charac-
teristic 128 greater than the correct value, and a pro-
gram interruption for HFP exponent underflow
occurs. The result is normalized, and the sign and
fraction remain correct. If the HFP-exponent-under-
flow mask bit in the PSW is zero, a program interrup-
tion does not occur; instead, the operation is
completed by making the result a positive true zero.
For extended results, HFP exponent underflow is not
recognized when the low-order characteristic is less
than zero but the high-order characteristic is equal to
or greater than zero.

HFP exponent underflow does not occur when the
characteristic of an operand becomes less than zero
during normalization of the operands, as long as the
final product can be represented with the correct
characteristic.

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

Op Code R1 X2 B2 D2

0 8 12 16 20 31

Hexadecimal-Floating-Point Instructions 18-19

M
U

L
T

IP
L

Y
 A

N
D

 S
U

B
T

R
A

C
TIf either or both operand fractions are zero, the result

is made a positive true zero, and no HFP exponent
overflow or HFP exponent underflow occurs.

The sign of the product is the exclusive or of the
operand signs, except that the sign is always plus
when the result is made a true zero.

The R1 field for MXD, MXDR, and MXR, and the R2

field for MXR must designate valid floating-point-reg-
ister pairs. Otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of MDE, MEE, MD, and
MXD only)

• Data with DXC 1, AFP register
• HFP exponent overflow
• HFP exponent underflow
• Specification (MXD, MXDR, MXR)
• Transaction constraint

Programming Notes:

1. An example of the use of the MULTIPLY instruc-
tion (MDR) is given in Appendix A.

2. Interchanging the two operands in an HFP multi-
plication does not affect the value of the product.

MULTIPLY AND ADD

Mnemonic1 R1,R3,R2 [RRD]

Mnemonic1 Op Code Operands
MAER 'B32E' Short HFP
MADR 'B33E' Long HFP

Mnemonic2 R1,R3,D2(X2,B2) [RXF]

Mnemonic2 Op Code Operands
MAE 'ED2E' Short HFP
MAD 'ED3E' Long HFP

MULTIPLY AND SUBTRACT

Mnemonic1 R1,R3,R2 [RRD]

Mnemonic1 Op Code Operands
MSER 'B32F' Short HFP
MSDR 'B33F' Long HFP

Mnemonic2 R1,R3,D2(X2,B2) [RXF]

Mnemonic2 Op Code Operands
MSE 'ED2F' Short HFP
MSD 'ED3F' Long HFP

The third operand is multiplied by the second oper-
and, and then the first operand is added to or sub-
tracted from the product. The sum or difference is
placed at the first-operand location. The MULTIPLY
AND ADD and MULTIPLY AND SUBTRACT opera-
tions may be summarized as:

op1 = op3 • op2 op1

The third and second HFP operands are multiplied,
forming an intermediate product, and the first oper-
and is then added (or subtracted) algebraically to (or
from) the intermediate product, forming an intermedi-
ate result. The exponent and fraction of the interme-
diate product and intermediate result are maintained
exactly. The intermediate result, if nonzero, is nor-
malized and truncated to the operand format and
then placed at the first-operand location.

The sign of the result is determined by the rules of
algebra, unless the intermediate-result fraction is
zero, in which case the result is made a positive true
zero.

An HFP-exponent-overflow exception exists when
the characteristic of the normalized result would
exceed 127 and the fraction is not zero. The opera-
tion is completed by making the result characteristic
128 less than the correct value, and a program inter-
ruption for HFP exponent overflow occurs. The result
is normalized, and the sign and fraction remain cor-
rect.

HFP exponent overflow is not recognized on interme-
diate values, provided the normalized result can be
represented with the correct characteristic.

Op Code R1 / / / / R3 R2

0 16 20 24 28 31

Op Code R3 X2 B2 D2 R1 / / / / Op Code

0 8 12 16 20 32 36 40 47

Op Code R1 / / / / R3 R2

0 16 20 24 28 31

Op Code R3 X2 B2 D2 R1 / / / / Op Code
0 8 12 16 20 32 36 40 47

18-20 The z/Architecture CPU Architecture

M
U

L
T

IP
L

Y
 A

N
D

 A
D

D
 U

N
N

O
R

M
A

L
IZ

E
D An HFP-exponent-underflow exception exists when

the characteristic of the normalized result would be
less than zero and the fraction is not zero. If the HFP-
exponent-underflow mask bit in the PSW is one, the
operation is completed by making the result charac-
teristic 128 greater than the correct value, and a pro-
gram interruption for HFP exponent underflow
occurs. The result is normalized, and the sign and
fraction remain correct. If the HFP-exponent-under-
flow mask bit in the PSW is zero, a program interrup-
tion does not occur; instead, the operation is
completed by making the result a positive true zero.

HFP exponent underflow is not recognized on input
operands and intermediate values, provided the nor-
malized result can be represented with the correct
characteristic.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of MAE, MAD, MSE,
MSD)

• Data with DXC 1, AFP register
• HFP exponent overflow
• HFP exponent underflow
• Operation (if the HFP multiply-add/subtract facil-

ity is not installed)
• Transaction constraint

Programming Note: MULTIPLY AND ADD (SUB-
TRACT) differs from MULTIPLY followed by ADD
(SUBTRACT) NORMALIZED in the following ways:

1. The product is maintained to full precision, and
overflow and underflow are not recognized on
the product.

2. The HFP-significance exception is not recog-
nized for MULTIPLY AND ADD (SUBTRACT).

3. ADD (SUBTRACT) NORMALIZED maintains
only a single guard digit and does not prenormal-
ize input operands; thus, in some cases, an
unnormalized input operand may cause loss of
precision in the result. MULTIPLY AND ADD
(SUBTRACT) maintains the entire intermediate
sum (difference), which is normalized before the
truncation operation is performed; thus, unnor-
malized operands do not cause any additional
loss of precision.

4. On most models, the execution time of MULTI-
PLY AND ADD (SUBTRACT) is less than the

combined execution time of MULTIPLY followed
by ADD (SUBTRACT) NORMALIZED. The per-
formance of MULTIPLY AND ADD (SUBTRACT)
may be severely degraded in the case of unnor-
malized input operands.

MULTIPLY AND ADD
UNNORMALIZED

Mnemonic1 R1,R3,R2 [RRD]

Mnemonic1 Op Code Operands
MAYR 'B33A' Long HFP sources, extended HFP result
MAYHR 'B33C' Long HFP sources, high-order part of

extended HFP result
MAYLR 'B338' Long HFP sources, low-order part of

extended HFP result

Mnemonic2 R1,R3,D2(X2,B2) [RXF]

Mnemonic2 Op Code Operands
MAY 'ED3A' Long HFP sources, extended HFP result
MAYH 'ED3C' Long HFP sources, high-order part of

extended HFP result
MAYL 'ED38' Long HFP sources, low-order part of

extended HFP result

The second and third HFP operands are multiplied,
forming an intermediate product; the first operand
(addend) is then added algebraically to the interme-
diate product to form an intermediate sum; the inter-
mediate-sum fraction is truncated on the left or on
the right, if need be, to form an intermediate
extended result. All (or a part) of the intermediate
extended result is placed in the floating-point-register
pair (or floating-point register) designated by the R1

field. The operands, intermediate values, and results
are not normalized to eliminate leading hexadecimal
zeros.

The MULTIPLY AND ADD UNNORMALIZED opera-
tions may be summarized as:

t1 op3op2+op1

Multiplication of two HFP numbers consists in expo-
nent addition and fraction multiplication. The sum of
the characteristics of the second and third operands,
less 64, is used as the characteristic of the high-

Op Code R1 / / / / R3 R2

0 16 20 24 28 31

Op Code R3 X2 B2 D2 R1 / / / / Op Code

0 8 12 16 20 32 36 40 47

Hexadecimal-Floating-Point Instructions 18-21

M
U

L
T

IP
L

Y
 A

N
D

 A
D

D
 U

N
N

O
R

M
A

L
IZ

E
Dorder part of the intermediate product; this value is

independent of whether the result fraction is zero.
The characteristic of the intermediate product is
maintained correctly and does not wrap.

In all cases, the second- and third-operand fractions
have 14 digits; the intermediate-product fraction con-
tains 28 digits and is an exact product of the operand
fractions. The intermediate-product fraction is not
inspected for leading hexadecimal zero digits and is
used without shifting in the subsequent addition.

In all cases, the first operand is located in the float-
ing-point register designated by the R1 field and the
first-operand fraction has 14 digits.

Addition of two HFP numbers consists in characteris-
tic comparison, fraction alignment, and signed frac-
tion addition. The characteristics of the intermediate
product and the addend are compared. If the charac-
teristics are equal, no alignment is required. If the
characteristic of the addend is smaller than the char-
acteristic of the product, the fraction of the addend is
aligned with the product fraction by a right shift, with
its characteristic increased by one for each hexadeci-
mal digit of shift. If the characteristic of the addend is
larger than the characteristic of the product, the frac-
tion of the addend is aligned with the product fraction
by a left shift, with its characteristic decreased by one
for each hexadecimal digit of shift. Shifting continues
until the two characteristics agree. All hexadecimal
digits shifted out are preserved and participate in the
subsequent addition.

After alignment, the fractions with signs are then
added algebraically to form a signed intermediate
sum. The fraction of the intermediate sum is main-
tained exactly. The intermediate-sum fraction is not
inspected for leading hexadecimal zero digits and is
not shifted. Only those 28 hexadecimal digits of the
intermediate-sum fraction which are aligned with the
28 hexadecimal digits of the intermediate-product
fraction are used as the fraction of the intermediate
extended-result.

The high-order characteristic of the intermediate
extended result is set to the characteristic of the
intermediate product, modulo 128. The low-order
characteristic of the intermediate extended result is
set to 14 less than the high-order characteristic, mod-
ulo 128. Wrap-around of the characteristic is inde-
pendent of whether the result fraction is zero.

The sign of the result is determined by the rules of
algebra, unless the entire intermediate-sum fraction
is zero, in which case the sign of the result is made
positive.

For MAY and MAYR, the entire intermediate
extended result is placed in the floating-point regis-
ter-pair designated by the R1 field; the R1 field may
designate either the lower-numbered or higher-num-
bered register of a floating-point-register pair. For
MAYH and MAYHR, the high-order part of the inter-
mediate extended result is placed in the floating-point
register designated by the R1 field and the low-order
part is discarded. For MAYL and MAYLR, the low-
order part of the intermediate extended result is
placed in the floating-point register designated by the
R1 field and the high-order part is discarded.

HFP-exponent-overflow and HFP-exponent-under-
flow exceptions are not recognized. Characteristics
of the intermediate extended result wrap-around
modulo 128 and no exception is reported.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of MAYH, MAY, and
MAYL only)

• Data with DXC 1, AFP register
• Operation (if the HFP-unnormalized-extensions

facility is not installed)
• Transaction constraint

Programming Notes:

1. While performance of MULTIPLY AND ADD may
be severely degraded for the case of unnormal-
ized input operands, this is not the case for MUL-
TIPLY AND ADD UNNORMALIZED.

2. MULTIPLY AND ADD UNNORMALIZED can be
used to efficiently perform multiple precision
arithmetic on numbers of any arbitrary size. This
is accomplished by organizing the numbers into
big digits of 52 bits each, with each big digit
maintained as an integer in the HFP long format.
Using a radix of 252 and big digits which can hold
up to 56 bits provides a redundant representa-
tion. This redundant representation permits mul-
tiplication and addition using a “carry save”
technique and permits maximum utilization of the
floating-point pipeline.

18-22 The z/Architecture CPU Architecture

M
U

L
T

IP
L

Y
 U

N
N

O
R

M
A

L
IZ

E
D 3. By setting the multiplier to an integer value of 1

with the proper characteristic, the multiplicand
can be scaled by any power of 16 and then
added to the addend. This permits, for example,
adding the “carry” from one stage of a multiplica-
tion to the “sum” of the next stage to the left. In
the same manner, the “sum” of one stage can be
scaled to be added to the “carry” of the stage to
the right.

4. In the first round of a multiply and accumulate,
the step of clearing the accumulated value to
zero, may be avoided by using the MULTIPLY
UNNORMALIZED instead of MULTIPLY AND
ADD UNNORMALIZED.

5. For additional notes concerning the unnormal-
ized operations see the programming notes
under the MULTIPLY UNNORMALIZED instruc-
tion.

MULTIPLY UNNORMALIZED

Mnemonic1 R1,R3,R2 [RRD]

Mnemonic1 Op Code Operands
MYR 'B33B' Long HFP multiplier and multiplicand,

extended HFP product
MYHR 'B33D' Long HFP multiplier and multiplicand, high-

order part of extended HFP product
MYLR 'B339' Long HFP multiplier and multiplicand, low-

order part of extended HFP product

Mnemonic2 R1,R3,D2(X2,B2) [RXF]

Mnemonic2 Op Code Operands
MY 'ED3B' Long HFP multiplier and multiplicand,

extended HFP product
MYH 'ED3D' Long HFP multiplier and multiplicand, high-

order part of extended HFP product
MYL 'ED39' Long HFP multiplier and multiplicand, low-

order part of extended HFP product

The second and third HFP operands are multiplied,
forming an intermediate product, which, in turn, is
used to form an intermediate extended result. All (or
a part) of the intermediate extended result is placed
in the floating-point-register pair (or floating-point
register) designated by the R1 field. The operands,

intermediate values, and results are not normalized
to eliminate leading hexadecimal zeros.

Multiplication of two HFP numbers consists in expo-
nent addition and fraction multiplication. The sum of
the characteristics of the second and third operands,
less 64, is used as the characteristic of the high-
order part of the intermediate product; this value is
independent of whether the result fraction is zero.
The characteristic of the intermediate product is
maintained correctly and does not wrap.

The high-order characteristic of the intermediate
extended result is set to the characteristic of the
intermediate product, modulo 128. The low-order
characteristic of the intermediate extended result is
set to 14 less than the high-order characteristic, mod-
ulo 128. Wrap-around of the characteristic is inde-
pendent of whether the result fraction is zero.

In all cases, the second- and third-operand fractions
have 14 digits; the intermediate-product fraction con-
tains 28 digits and is an exact product of the operand
fractions. The intermediate-product fraction is not
inspected for leading hexadecimal zero digits and is
used without shifting as the fraction of the intermedi-
ate extended result.

The sign of the result is the exclusive or of the oper-
and signs, including the case when the result fraction
is zero.

For MY and MYR, the entire intermediate extended
result is placed in the floating-point-register pair des-
ignated by the R1 field. For MYH and MYHR, the
high-order part of the intermediate extended result is
placed in the floating-point register designated by the
R1 field and the low-order part is discarded. For MYL
and MYLR, the low-order part of the intermediate
extended result is placed in the floating-point register
designated by the R1 field and the high-order part is
discarded.

HFP-exponent-overflow and HFP-exponent-under-
flow exceptions are not recognized. Characteristics
of the intermediate extended result wrap-around
modulo 128 and no exception is reported.

The R1 field for MY and MYR must designate a valid
floating-point-register pair. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Op Code R1 / / / / R3 R2

0 16 20 24 28 31

Op Code R3 X2 B2 D2 R1 / / / / Op Code

0 8 12 16 20 32 36 40 47

Hexadecimal-Floating-Point Instructions 18-23

S
Q

U
A

R
E

 R
O

O
TProgram Exceptions:

• Access (fetch, operand 2 of MYH, MY, and MYL
only)

• Data with DXC 1, AFP register
• Operation (if the HFP-unnormalized-extensions

facility is not installed)
• Specification (MY and MYR)
• Transaction constraint

Programming Notes:

1. The formal definition of Long HFP numbers is in
terms of a 14-digit fraction and a signed expo-
nent in “excess-64 notation”. But, without change
in function, these numbers can also be described
as having a 14-digit integer and a signed expo-
nent in “excess-78 notation”. When using the
unnormalized instructions, the programmer may
find it more convenient to consider these values
in the later terms rather than the former. Thus, in
these terms, MULTIPLY UNNORMALIZED multi-
plies two 14-digit integers to produce a 28-digit
integer result. The characteristic of the low-order
part is the sum of the operand characteristics
less 78 and the high-order characteristic is set 14
larger than the low-order part. When considered
as described above, MULTIPLY UNNORMAL-
IZED provides the exact 28-digit integer product
of two 14-digit integers.

2. Rather than using MY (or MYR) to provide the
entire 28-digits in a floating-point-register pair,
the programmer may find it more convenient to
issue two separate instructions, MYH and MYL
(or MYHR and MYLR), to place the high-order
part and low-order part in any floating-point reg-
ister. It is expected that on most machines, the
performance of these two approaches is essen-
tially the same.

3. The MULTIPLY UNNORMALIZED instruction for-
mat designates three operand locations and can
be used to produce a product without overlaying
the source operands. In many cases this saves
an extra load.

SQUARE ROOT

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
SQER 'B245' Short HFP
SQDR 'B244' Long HFP
SQXR 'B336' Extended HFP

Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
SQE 'ED34' Short HFP
SQD 'ED35' Long HFP

The normalized and rounded square root of the sec-
ond operand is placed at the first-operand location.

When the fraction of the second operand is zero, the
sign and characteristic of the second operand are
ignored, and the operation is completed by placing a
positive true zero at the first-operand location.

If the second operand is less than zero, an HFP-
square-root exception is recognized.

If the second operand is normalized and greater than
zero, the characteristic, fraction, and sign of the
result are produced as follows:

• The result characteristic is one-half of the sum of
the operand characteristic and either 64, if the
operand characteristic is even, or 65, if it is odd.

• If the operand characteristic is odd, the operand
fraction is shifted right one digit position, the
rightmost digit entering the guard-digit position.

• An intermediate-result fraction is produced by
computing without rounding the square root of
the operand fraction, after any right shift as
described. The intermediate-result fraction con-
sists of the 29 most significant hexadecimal dig-
its of the square-root result in the extended
format, 15 in the long format, or seven in the
short format, where all three formats include a
guard digit on the right.

• A one is added to the leftmost bit of the guard
digit of the intermediate result, any carry is prop-

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

18-24 The z/Architecture CPU Architecture

S
U

B
T

R
A

C
T

 N
O

R
M

A
L

IZ
E

D agated to the left, and the guard digit is dropped
to produce the result fraction.

• The result sign is made plus.

If the second operand is unnormalized and greater
than zero, the operand is first normalized. The opera-
tion then proceeds as for normalized operands.

For SQXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of SQE and SQD only)
• Data with DXC 1, AFP register
• HFP square root
• Specification (SQXR only)
• Transaction constraint

Programming Notes:

1. The use of the SQUARE ROOT instruction with
short operands (SQER) is illustrated by the
examples in the following table:

2. The result fraction is correctly normalized without
any further left or right shifts of the intermediate-
result fraction and without any further exponent
adjustment. Rounding cannot cause a carry out
of the leftmost digit.

3. Although a characteristic greater than 127 or less
than zero may temporarily be generated during
the operation, the result characteristic is always
within the representable range, and no HFP
exponent overflow or underflow occurs.

Specifically, the smallest nonzero operand in the
long format consists of a one bit, preceded on
the left by 63 zeros. This operand is an unnor-
malized number with a value of 16-78, and its
square root is 16-39. The normalized representa-
tion of this result has a characteristic of 26 (deci-
mal). Similarly, the square root of the largest

representable operand has a characteristic of 96
(decimal). The instruction, therefore, cannot pro-
duce a nonzero result with a characteristic out-
side the range of 26 to 96.

SUBTRACT NORMALIZED

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
SER '3B' Short HFP
SDR '2B' Long HFP
SXR '37' Extended HFP

Mnemonic2 R1,D2(X2,B2) [RX-a]

Mnemonic2 Op Code Operands
SE '7B' Short HFP
SD '6B' Long HFP

The second operand is subtracted from the first oper-
and, and the normalized difference is placed at the
first-operand location.

The execution of SUBTRACT NORMALIZED is iden-
tical to that of ADD NORMALIZED, except that the
second operand participates in the operation with its
sign bit inverted.

For SXR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

Program Exceptions:

• Access (fetch, operand 2 of SE and SD only)
• Data with DXC 1, AFP register
• HFP exponent overflow
• HFP exponent underflow
• HFP significance
• Specification (SXR only)
• Transaction constraint

Operand
(hex)

Decimal
Value

Result
(hex)

Decimal
Value

42 190000 25.0 41 500000 5.0
40 400000 0.250 40 800000 0.50
40 800000 0.50 40 B504F3 0.7071…
41 800000 8.0 41 2D413D 2.8284…

Op Code R1 R2

0 8 12 15

Op Code R1 X2 B2 D2

0 8 12 16 20 31

Hexadecimal-Floating-Point Instructions 18-25

S
U

B
T

R
A

C
T

 U
N

N
O

R
M

A
L

IZ
E

DSUBTRACT UNNORMALIZED

Mnemonic1 R1,R2 [RR]

Mnemonic1 Op Code Operands
SUR '3F' Short HFP
SWR '2F' Long HFP

Mnemonic2 R1,D2(X2,B2) [RX-a]

Mnemonic2 Op Code Operands
SU '7F' Short HFP
SW '6F' Long HFP

The second operand is subtracted from the first oper-
and, and the unnormalized difference is placed at the
first-operand location.

The execution of SUBTRACT UNNORMALIZED is
identical to that of ADD UNNORMALIZED, except
that the second operand participates in the operation
with its sign bit inverted.

Resulting Condition Code:

0 Result fraction zero
1 Result less than zero
2 Result greater than zero
3 --

Program Exceptions:

• Access (fetch, operand 2 of SU and SW only)
• Data with DXC 1, AFP register
• HFP exponent overflow
• HFP significance
• Transaction constraint

Op Code R1 R2

0 8 12 15

Op Code R1 X2 B2 D2

0 8 12 16 20 31

18-26 The z/Architecture CPU Architecture

S
U

B
T

R
A

C
T

 U
N

N
O

R
M

A
L

IZ
E

D

Binary-Floating-Point Instructions 19-1© Copyright IBM Corp. 2000, 2019

Chapter 19. Binary-Floating-Point Instructions

Binary-Floating-Point Facility. 19-1
Floating-Point-Control (FPC) Register 19-2

BFP Arithmetic. 19-2
BFP Data Formats . 19-2

BFP Short Format 19-2
BFP Long Format 19-2
BFP Extended Format 19-2
Biased Exponent . 19-2
Significand . 19-3
Values of Nonzero Numbers 19-3

Classes of BFP Data 19-4
Zeros . 19-4
Subnormal Numbers 19-4
Normal Numbers . 19-4
Infinities . 19-4
Signaling and Quiet NaNs 19-4

BFP-Format Conversion 19-5
BFP Rounding . 19-5
BFP Comparison . 19-5
Remainder . 19-5
IEEE Exceptions . 19-7
Summary of Rounding And Range Actions . . 19-8

Result Figures . 19-9
Data-Exception Codes (DXC) and

Abbreviations. 19-10

Instructions . 19-11
ADD . 19-15
COMPARE . 19-17
COMPARE AND SIGNAL 19-18
CONVERT FROM FIXED 19-19
CONVERT FROM LOGICAL 19-21
CONVERT TO FIXED. 19-22
CONVERT TO LOGICAL 19-25
DIVIDE . 19-27
DIVIDE TO INTEGER 19-28
LOAD AND TEST . 19-31
LOAD COMPLEMENT 19-31
LOAD FP INTEGER 19-32
LOAD LENGTHENED. 19-33
LOAD NEGATIVE . 19-34
LOAD POSITIVE. 19-35
LOAD ROUNDED . 19-35
MULTIPLY . 19-37
MULTIPLY AND ADD 19-38
MULTIPLY AND SUBTRACT 19-38
SQUARE ROOT . 19-40
SUBTRACT. 19-40
TEST DATA CLASS 19-41

Binary-Floating-Point Facility

The binary-floating-point (BFP) facility provides
instructions to operate on binary (radix-2) floating-
point data.

BFP provides a number of important advantages
over hexadecimal floating point (HFP):

• Greater precision and exponent range (except for
numbers in the short format where HFP has the
greater range).

• Automatic rounding to the nearest value for all
arithmetic operations. There are directed-round-
ing options that may be used instead.

• Special entities of “infinity” and “Not-a-Number”
(NaN), which are accepted and handled by arith-
metic operations in a reasonable fashion. They
provide better defaults for exponent overflow and
invalid operations (such as division of zero by

zero). This allows most programs to continue
running without hiding such errors and without
using specialized exception handlers.

• Exponent underflow gives “subnormal” numbers
as the default, which provides more consistent
results than the abrupt result of zero produced by
the HFP instructions.

• The greater exponent range makes exponent
overflow and underflow in correctly written pro-
grams very unlikely, so that programmers may
often be able to ignore these conditions.

• Both mask and flag bits are provided for all IEEE
exceptions. The mask bits enable or disable
interruptions. When interruptions are disabled,
the flag bits keep track of exceptions during exe-
cution so that warning messages may be issued.

• Programs can be migrated from and to worksta-
tions and other systems using different architec-
tures and still give consistent results, provided
that floating-point operations on the other sys-

19-2 The z/Architecture CPU Architecture

tems also conform to ANSI/IEEE Standard 754-
2008 (see Reference [20.] on page xxx). This
does not mean, however, that bit-wise compati-
ble results can be guaranteed, because the stan-
dard allows implementation flexibility, especially
in the presence of exceptions.

Programming Note: The bit representation of the
BFP data formats in storage is defined to be left-to-
right in a manner that is uniform for all numeric oper-
ands in the z/Architecture architecture. Although the
format diagrams in ANSI/IEEE Standard 754-2008
appear to use the same left-to-right bit sequence, the
standard only defines the meaning of the bits without
specifying how they appear in storage; the storage
arrangement is left to the implementation. Several
implementations in fact use other sequences; this
may affect programs which are dependent on the bit
representation of floating-point data in storage.

Floating-Point-Control (FPC)
Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and two rounding-mode fields. The
FPC register is described in the section “Floating-
Point-Control (FPC) Register” on page 9-9. An over-
view of the FPC register is shown in Figure 9-5 on
page 9-9. Details are shown in Figure 9-6 on
page 9-9, Figure 9-7 on page 9-10, and in Figure 9-8
on page 9-10. (In Figure 9-6 on page 9-9, the abbre-
viations “IM” and “SF” are based on the terms “inter-
ruption mask” and “status flag,” respectively.)

The bits of the FPC register are often referred to as,
for example, FPC 1.0, meaning bit 0 of byte 1 of the
register.

BFP Arithmetic

BFP Data Formats

Binary-floating-point data may be represented in any
of three formats: short, long, or extended.

BFP Short Format

When an operand in the BFP short format is loaded
into a floating-point register, it occupies the left half of
the register, and the right half remains unchanged.

BFP Long Format

When an operand in the BFP long format is loaded
into a floating-point register, it occupies the entire
register.

BFP Extended Format

An operand in the BFP extended format occupies a
register pair. The sign and biased exponent are in the
leftmost 16 bits of the lower-numbered register of the
pair and are followed by the leftmost 48 bits of the
fraction. The rightmost 64 bits of the fraction are in
the higher-numbered register of the pair.

The properties of the three formats are tabulated in
Figure 19-4 on page 19-3.

Biased Exponent
For each format, the bias that is used to allow all
exponents to be expressed as unsigned numbers is
shown in the Figure 19-4 on page 19-3. Biased expo-
nents are similar to the characteristics of the HFP for-
mat, except that special meanings are attached to

S
Exponent+127

(8 bits)
Fraction (23 bits)

0 1 9 31

Figure 19-1. BFP Short Format (4 bytes)

S
Exponent + 1023

(11 bits)
Fraction (52 bits)

0 1 12 31

Fraction (continued)
32 63

Figure 19-2. BFP Long Format (8 bytes)

S Exponent + 16383 (15 bits) Fraction (112 bits)
0 1 16 31

Fraction (continued)
32 63

Fraction (continued)
64 95

Fraction (continued)
96 127

Figure 19-3. BFP Extended Format (16 bytes)

Binary-Floating-Point Instructions 19-3

biased exponents of all zeros and all ones, which are
discussed in the section “Classes of BFP Data” on
page 19-4.

Significand
In each format, the binary point of a BFP number is
considered to be to the left of the leftmost fraction bit.
To the left of the binary point there is an implied unit
bit, which is considered to be one for normal num-
bers and zero for zeros and subnormal numbers. The
fraction with the implied unit bit appended on the left
is the significand of the number.

The value of a normal BFP number is the significand
multiplied by the radix 2 raised to the power of the
unbiased exponent. The value of a subnormal BFP
number is the significand multiplied by the radix 2
raised to the power of the minimum exponent.

A value of one in the rightmost bit position of the sig-
nificand in each format is sometimes referred to as
one ulp (unit in the last place).

Values of Nonzero Numbers
The values of nonzero numbers in the various for-
mats are shown in Figure 19-5.

Programming Note: ANSI/IEEE Standard 754-2008
specifies minimum requirements for the extended for-
mat but does not include details. The BFP extended
format meets these requirements, far exceeding
them in the area of precision.

Property

Format

Short Long Extended

Format length (bits) 32 64 128

Biased-exponent length (bits) 8 11 15

Fraction length (bits) 23 52 112

Precision (p) 24 53 113

Maximum left-units-view (LUV) exponent (Emax) 127 1023 16383

Minimum left-units-view (LUV) exponent (Emin) -126 -1022 -16382

Left-units-view (LUV) bias 127 1023 16383

Nmax (1-2-24)x2128

3.4x1038
(1-2-53)x21024

1.8x10308
(1-2-113)x216384

1.2x104932

Nmin 1.0x2-126

1.2x10-38
1.0x2-1022

2.2x10-308
1.0x2-16382

3.4x10-4932

Dmin 1.0x2-149

1.4x10-45
1.0x2-1074

4.9x10-324
1.0x2-16494

6.5x10-4966

Explanation:

 Value is approximate.
Dmin Smallest (in magnitude) representable subnormal number.
Nmax Largest (in magnitude) representable finite number.
Nmin Smallest (in magnitude) representable normal number.

Figure 19-4. Summary of BFP Data Formats

Number Class Format Value

Normal

Short 2e-127x(1.f)

Long 2e-1023x(1.f)

Extended 2e-16383x(1.f)

Subnormal

Short 2-126x(0.f)

Long 2-1022x(0.f)

Extended 2-16382x(0.f)

Explanation:

e Biased exponent (shown in decimal).
f Fraction (in binary).

Figure 19-5. Values of Nonzero Numbers

19-4 The z/Architecture CPU Architecture

Classes of BFP Data

There are six classes of BFP data, which include
numeric and related nonnumeric entities. Each data
item consists of a sign, an exponent, and a signifi-
cand. The exponent is biased such that all biased
exponents are nonnegative unsigned numbers and
the minimum biased exponent is zero. The signifi-
cand consists of an explicit fraction and an implicit
unit bit to the left of the binary point. The sign bit is
zero for plus and one for minus.

All nonzero finite numbers permitted by a given for-
mat have a unique BFP representation. There are no
unnormalized numbers, which numbers might allow
multiple representations for the same values, and
there are no unnormalized arithmetic operations.
Tiny numbers of a magnitude below the minimum
normal number in a given format are represented as
subnormal numbers, but those values are also repre-
sented uniquely. The implied unit bit of a normal
number is one, and that of a subnormal number or a
zero is zero.

The six classes of BFP data are summarized in
Figure 19-6 on page 19-4.

The instruction TEST DATA CLASS may be used to
determine the class of a BFP operand.

Zeros
Zeros have a biased exponent of zero and a zero
fraction. The implied unit bit is zero. A +0 is distinct
from -0, except that comparison treats them as
equal.

Subnormal Numbers
Subnormal numbers are numbers which are smaller
than the smallest normal number and greater than
zero in magnitude. They have a biased exponent of
zero and a nonzero fraction. The biased exponent is
treated arithmetically as if it were one, which causes
the exponent to be the minimum exponent. The
implied unit bit is zero. (In ANSI/IEEE Standard 754-
1985, subnormal numbers were called “denormal-
ized numbers”.)

Normal Numbers
Normal numbers have a biased exponent greater
than zero but less than all ones. The implied unit bit
is one, and the fraction may have any value. (In some
early documentation, normal numbers were called
“normalized numbers”.)

Infinities
An infinity is represented by a biased exponent of all
ones and a zero fraction. Infinities can participate in
most arithmetic operations and give a consistent
result, usually infinity. In comparisons, + compares
greater than any finite number, and - compares less
than any finite number.

Signaling and Quiet NaNs
A NaN (not-a-number) entity is represented by a
biased exponent of all ones and a nonzero fraction.
NaNs are produced in place of a numeric result after
an invalid operation when there is no interruption.
NaNs may also be used by the program to flag spe-
cial operands, such as the contents of an uninitial-
ized storage area.

There are two types of NaNs, signaling and quiet. A
signaling NaN (SNaN) is distinguished from the cor-
responding quiet NaN (QNaN) by the leftmost frac-
tion bit: zero for the SNaN and one for the QNaN. A
special QNaN is supplied as the default result for an
IEEE-invalid-operation exception; it has a plus sign
and a leftmost fraction bit of one, with the remaining
fraction bits being set to zeros.

Normally, QNaNs are just propagated during compu-
tations so that they will remain visible at the end. An

Data Class Sign
Biased

Exponent Unit Bit* Fraction

Zero 0 0 0

Subnormal
numbers

 0** 0 Not 0

Normal
numbers

 Not 0, not
all ones

1 Any

Infinity All ones — 0

Quiet NaN All ones — F0=1,
Fr=any

Signaling NaN All ones — F0=0,
Fr0

Explanation:

— Does not apply.
* The unit bit is implied.
** The biased exponent is treated arithmetically as

if it had the value one.
F0 Leftmost bit of fraction.
Fr Remaining bits of fraction.
NaN Not-a-number.

Figure 19-6. Classes of BFP Data

Binary-Floating-Point Instructions 19-5

SNaN operand causes an IEEE-invalid-operation
exception. If the IEEE-invalid-operation mask (FPC
0.0) is zero, the result is the corresponding QNaN,
which is produced by setting the leftmost fraction bit
to one, and the IEEE-invalid-operation flag (FPC 1.0)
is set to one. If the IEEE-invalid-operation mask (FPC
0.0) is one, the operation is suppressed, and a data
exception for IEEE-invalid operation occurs.

Where applicable, the propagation of NaNs is illus-
trated in the action figure for an instruction.

Programming Notes:

1. The program can generate and assign meanings
to any nonzero fraction values of a NaN. The
CPU propagates those values unchanged,
except that an SNaN is changed to the corre-
sponding QNaN if the IEEE-invalid-operation
mask bit is zero, and conversion to a narrower
format may truncate significant bits on the right.

2. ANSI/IEEE Standard 754-2008 requires SNaNs
to signal the invalid-operation exception for the
arithmetic, comparison, and conversion opera-
tions that are part of the standard, but it makes it
an implementation option whether copying an
SNaN without a change of format signals the
exception. In the appendix, the standard also
makes it an implementation option whether
SNaNs should signal the invalid-operation
exception for the recommended functions of
copying the sign, taking the absolute value,
reversing the sign, and testing the data class of a
datum.

The above functions generally correspond to the
instructions LOAD, LOAD COMPLEMENT, LOAD
NEGATIVE, LOAD POSITIVE, and TEST DATA
CLASS. These instructions do not signal the
invalid-operation exception but, instead, treat
SNaNs like any other data; giving an exception
would be disruptive when the intention is to
include SNaNs. TEST DATA CLASS does not
give an exception since it is the instruction with
which to test for the presence of SNaNs.

3. LOAD AND TEST signals the invalid-operation
exception when the operand is an SNaN. This
instruction, in conjunction with the above instruc-
tions, gives the program the choice of either
option permitted by ANSI/IEEE Standard 754-
2008.

4. Load-type instructions which change the preci-
sion signal the invalid-operation exception when
the operand is an SNaN, as this is required by
ANSI/IEEE Standard 754-2008.

BFP-Format Conversion

BFP format conversion is described in the section
“IEEE Same-Radix Format Conversion” on
page 9-23.

BFP Rounding

BFP rounding is described in the section “IEEE
Rounding” on page 9-13.

BFP Comparison

BFP comparison is described in the section “IEEE
Comparison” on page 9-24.

Remainder

The instruction DIVIDE TO INTEGER produces two
floating-point results, an exact integer quotient and
the corresponding remainder. The remainder is
defined as follows:

Let

a = Dividend
b = Divisor
q = Exact quotient (ab)
r = Remainder

in the selected floating-point format. Then

r = a – b n

where n is an integer. If q is an integer, then n equals
q. Otherwise, n is obtained by rounding q according
to a final-quotient-rounding method.

When the final-quotient-rounding method is round to
nearest with ties to even or round toward zero, the
remainder is exact for any finite dividend and any
nonzero divisor. The remainder cannot overflow.

19-6 The z/Architecture CPU Architecture

If the integer quotient has a value that lies outside the
range of the operand format, a scaled result is pro-
vided.

In certain cases where the number of bits in the inte-
ger quotient exceeds or may exceed the maximum
number of bits provided in the precision of the oper-
and format, partial results are produced, and more
than one execution of the instruction is required to
obtain the final result; this may be done with a simple
instruction loop.

Partial results are produced when the precise quo-
tient is not an integer and the two integers closest to
this precise quotient cannot both be represented
exactly in the precision of the quotient. This situation
exists when the precise quotient is greater than 2P,
where P is the precision of the operand format, and
the remainder is not zero. When the remainder is
zero, then the quotient is an integer, and the number
of bits required to represent the quotient is never
more than the precision of the target.

Programming Note: The remainder result of DIVIDE
TO INTEGER with a final-quotient-rounding method
of round to nearest with ties to even corresponds to
the Remainder function in ANSI/IEEE Standard 754-

2008. This function is similar to the MOD function
found in some languages and to the mathematical
modulo function, but they are not the same. They dif-
fer in the definition of n:

Another important difference is that implementations
of modulo and MOD may put range restrictions on
the result because they may simply use the DIVIDE
instruction and accept its range restrictions.

The MOD definition provides an exact result, as does
Remainder, but the modulo definition may result in
rounding errors.

The differences between the various methods may
be illustrated by the simple example of computing a
divided by b to obtain an integer quotient n, where a
is a series of integers, and b is +4 or -4. Figure 19-7
shows the results for the three definitions.

Remainder n is q rounded to nearest with ties to
even.

modulo n is q rounded toward -.
MOD n is q rounded toward 0.

a

-8 -7 -6 -5 -4 -3 -2 -1 -0 +0 +1 +2 +3 +4 +5 +6 +7 +8
Remainder

b=+4: n -2 -2 -2 -1 -1 -1 -0 -0 -0 +0 +0 +0 +1 +1 +1 +2 +2 +2

r -0 +1 +2 -1 -0 1 -2 -1 -0 +0 +1 +2 -1 +0 +1 -2 -1 +0
b=-4: n +2 +2 +2 +1 +1 +1 +0 +0 +0 -0 -0 -0 -1 -1 -1 -2 -2 -2

r -0 +1 +2 -1 -0 +1 -2 -1 -0 +0 +1 +2 -1 +0 +1 -2 -1 +0

MOD
b=+4: n -2 -1 -1 -1 -1 0 0 0 0 0 0 0 +1 +1 +1 +1 +2

r 0 -3 -2 -1 0 -3 -2 -1 0 +1 +2 +3 0 +1 +2 +3 0

b=-4: n +2 +1 +1 +1 +1 0 0 0 0 0 0 0 -1 -1 -1 -1 -2
r 0 -3 -2 -1 0 -3 -2 -1 0 +1 +2 +3 0 +1 +2 +3 0

modulo

b=+4: n -2 -2 -2 -2 -1 -1 -1 -1 0 0 0 0 +1 +1 +1 +1 +2
r 0 +1 +2 +3 0 +1 +2 +3 0 +1 +2 +3 0 +1 +2 +3 0

b=-4: n +2 +1 +1 +1 +1 0 0 0 0 -1 -1 -1 -1 -2 -2 -2 -2

r 0 -3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0

Explanation:

a Dividend.
b Divisor.
n Integer quotient.
r Result (Remainder, MOD, or modulo).

Figure 19-7. Comparison of Remainder with MOD and Modulo

Binary-Floating-Point Instructions 19-7

The result of Remainder lies in the range of zero to
one-half the divisor, inclusive, in magnitude. A zero
result is defined to have the sign of the dividend. A
zero divisor is invalid.

The modulo and MOD results can both be computed
from the Remainder result; the reverse may not be
true, because of rounding errors and, depending on
the implementation, range restrictions.

An extreme example of the rounding error that can
occur with the modulo definition is the following,
where the result is restricted to two significant deci-
mal digits:

modulo(0.01,-95) = -94.99, which rounds to -95

Remainder(0.01,-95) = 0.01

The properly rounded modulo result is completely
wrong since it is equal to the divisor instead of being
smaller in magnitude. The Remainder result is exact
and can be used to compute the theoretical result of
modulo.

Remainder is included as an arithmetic operation
because of its usefulness in argument reduction
when computing elementary transcendental func-
tions. Thus, SIN(X) can be computed to full precision
for any value of X in degrees by first reducing the
argument to Remainder(X,360).

IEEE Exceptions

The IEEE exceptions for the BFP instructions are
described in the section “IEEE Exceptions” on
page 9-18.

19-8 The z/Architecture CPU Architecture

Summary of Rounding And Range
Actions

Figure 19-8 summarizes the BFP rounding and
range actions.

Range of v Case

Nontrap Result (r) when Effective Rounding Method Is

To Nearest
with ties to

even Toward 0 Toward + Toward -

Prepare for
shorter

precision

v < -Nmax, g < -Nmax Overflow -1 -Nmax -Nmax -1 -Nmax

v < -Nmax, g = -Nmax Normal -Nmax -Nmax -Nmax – -Nmax

-Nmax v -Nmin Normal g g g g g

-Nmin < v -Dmin Tiny d* d d d* d

-Dmin < v < -Dmin/2 Tiny -Dmin -0 -0 -Dmin -Dmin

-Dmin/2 v < 0 Tiny -0 -0 -0 -Dmin -Dmin

v = 0 Exact zero difference2 +0 +0 +0 -0 +0

0 < v +Dmin/2 Tiny +0 +0 +Dmin +0 +Dmin

+Dmin/2 < v < +Dmin Tiny +Dmin +0 +Dmin +0 +Dmin

+Dmin v < +Nmin Tiny d* d d* d d

+Nmin v +Nmax Normal g g g g g

+Nmax < v, g = +Nmax Normal +Nmax +Nmax – +Nmax +Nmax

+Nmax < v, +Nmax < g Overflow +1 +Nmax +1 +Nmax +Nmax

Explanation:

– This situation cannot occur.
* The rounded value, in the extreme case, may be Nmin. In this case, the exceptions are underflow, inexact and

incremented.
1 The nontrap result r is considered to have been incremented.
2 The exact-zero-difference case applies only to ADD, SUBTRACT, MULTIPLY AND ADD, and MULTIPLY AND

SUBTRACT. For all other BFP operations, a zero result is detected by inspection of the source operands without
use of the R(v) function.

d The denormalized value. The value derived when the precise intermediate value (v) is rounded to the format of
the target, including both precision and bounded exponent range. Except as explained in note *, this is a
subnormal number.

g The precision-rounded value. The value derived when the precise intermediate value (v) is rounded to the
precision of the target, but assuming an unbounded exponent range.

v Precise intermediate value. This is the value, before rounding, assuming unbounded precision and an unbounded
exponent range. For LOAD ROUNDED, v is the source value (a).

Dmin Smallest (in magnitude) representable subnormal number in the target format.
Nmax Largest (in magnitude) representable finite number in the target format.
Nmin Smallest (in magnitude) representable normal number in the target format.

Figure 19-8. Action for R(v): Rounding and Range Function (Part 1 of 2)

Binary-Floating-Point Instructions 19-9

Result Figures

Concise descriptions of the results produced by
many of the BFP instructions are made by means of
figures which contain columns and rows representing
all possible combinations of BFP data class for the
source operands of an instruction. The information
shown at the intersection of a row and a column is
one or more symbols representing the result or
results produced for that particular combination of

source-operand data classes. Explanations of the
symbols used are contained in each figure. In many
cases, the explanation of a particular result is in the
form of a cross reference to another figure. In many
cases, the information shown at the intersection con-
sists of several symbols separated by commas. All
such results are produced unless one of the results is
a program interruption. In the case of a program
interruption, the operation is suppressed or com-
pleted as shown in Figure 19-10 on page 19-11.

Case

Is r
Inexact

(rv)

Overflow
Mask

(FPC 0.2)

Underflow
Mask

(FPC 0.3)

IEEE
Inexact

Exception
Control
(XxC)2

Inexact
Mask

(FPC 0.4)

Is r
Incremented

(|r|>|v|)

Is g
Inexact
(gv)

Is g
Incremented

(|g|>|v|) Results

Overflow Yes1 0 – 1 – – – – T(r), SFo1

Overflow Yes1 0 – 0 0 – – – T(r), SFo1, SFx1

Overflow Yes1 0 – 0 1 No – – T(r), SFo1, PIDx(08)

Overflow Yes1 0 – 0 1 Yes – – T(r), SFo1, PIDy(0C)

Overflow Yes1 1 – – – – No No1 Tw(g), PIDo(20)

Overflow Yes1 1 – – – – Yes No Tw(g), PIDox(28)

Overflow Yes1 1 – – – – Yes Yes Tw(g), PIDoy(2C)

Normal No – – – – – – – T(r)

Normal Yes – – 1 – – – – T(r)

Normal Yes – – 0 0 – – – T(r), SFx1

Normal Yes – – 0 1 No – – T(r), PIDx(08)

Normal Yes – – 0 1 Yes – – T(r), PIDy(0C)

Tiny No – 0 – – – – – T(r)

Tiny No – 1 – – – No1 No1 Tw(g), PIDu(10)

Tiny Yes – 0 1 – – – – T(r), SFu1

Tiny Yes – 0 0 0 – – – T(r), SFu1, SFx1

Tiny Yes – 0 0 1 No – – T(r), SFu1, PIDx(08)

Tiny Yes – 0 0 1 Yes – – T(r), SFu1, PIDy(0C)

Tiny Yes – 1 – – – No No1 Tw(g), PIDu(10)

Tiny Yes – 1 – – – Yes No Tw(g), PIDux(18)

Tiny Yes – 1 – – – Yes Yes Tw(g), PIDuy(1C)

Explanation:

– The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 The IEEE-inexact-exception control (XxC) is defined only if the floating-point extension facility is installed.
 Scale factor. For overflow, = 2+. For underflow, = 2-. The unsigned scaling exponent () depends on the type of operation and

operand format. For all BFP operations except LOAD ROUNDED, depends on the target format and is 192 for short, 1536 for long,
and 24576 for extended. For LOAD ROUNDED, depends on the source format, and is 512 for long and 8192 for extended.

g The precision-rounded value. The value derived when the precise intermediate value (v) is rounded to the precision of the target, but
assuming an unbounded exponent range.

r Nontrap result as defined in Part 1 of this figure.
v Precise intermediate value. This is the value, before rounding, assuming unbounded precision and unbounded exponent range.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-10 on page 19-11.
SFo IEEE overflow flag, FPC 1.2.
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.
Tw(x) The scaled result x is placed at the target operand location. For all operations except BFP LOAD ROUNDED, the scaled result is in the

format and length of the target and rounded to the precision of the target. For LOAD ROUNDED, the scaled result is in the format and
length of the source, but rounded to the precision of the target.

Figure 19-8. Action for R(v): Rounding and Range Function (Part 2 of 2)

19-10 The z/Architecture CPU Architecture

Data-Exception Codes (DXC) and
Abbreviations

Figure 19-9 shows IEEE exceptions and flag abbrevi-
ations that are used in the result figures, and it
explains the symbols “Xi:” and “Xz:” that are used in
the figures. Bits 0-4 (i, z, o, u, and x) of the eight-bit
data-exception code (DXC) in byte 2 of the FPC reg-
ister are trap flags and correspond to the same bits in
bytes 0 and 1 of the register (IEEE masks and IEEE
flags). The trap flag for an exception, instead of the
IEEE flag, is set to one when an interruption for the
exception is enabled by the corresponding IEEE
mask bit. Bit 5 of byte 2 (y) is used in conjunction with
bit 4, inexact (x), to indicate that the result has been
incremented in magnitude.

Figure 19-10 on page 19-11 shows the various DXCs
that can be indicated, the associated instruction end-
ings, and abbreviations that are used for the DXCs in
the result figures. (The abbreviation “PID” stands for
“program interruption for a data exception.”)

Exception FPC
IEEE
Mask

Bit

IEEE Flag

Name Abbr.
FPC
Bit Abbr.

IEEE invalid operation Xi1 0.0 1.0 SFi
IEEE division by zero Xz2 0.1 1.1 SFz
IEEE overflow Xo 0.2 1.2 SFo
IEEE underflow Xu 0.3 1.3 SFu
IEEE inexact Xx 0.4 1.4 SFx

Explanation:

1 The symbol “Xi:” followed by a list of results in a
figure indicates that, when FPC 0.0 is zero, then
instruction execution is completed by setting SFi
(FPC 1.0) to one and producing the indicated
results; and when FPC 0.0 is one, then
instruction execution is suppressed, the data
exception code (DXC) is set to 80 hex, and a
program interruption for a data exception
occurs.

2 The symbol “Xz:” followed by a list of results in a
figure indicates that, when FPC 0.1 is zero, then
instruction execution is completed by setting
SFz (FPC 1.1) to one and producing the
indicated results; and when FPC 0.1 is one,
then instruction execution is suppressed, the
data exception code (DXC) is set to 40 hex, and
a program interruption for a data exception
occurs.

Figure 19-9. IEEE Exception and Flag Abbreviations

Binary-Floating-Point Instructions 19-11

Instructions

The BFP instructions and their mnemonics and oper-
ation codes are listed in Figure 19-11 on page 19-12.

The figure indicates, in the column labeled “Charac-
teristics”, the instruction format, when the condition
code is set, the instruction fields that designate
access registers, and the exceptional conditions in
operand designations, data, or results that cause a
program interruption.

All BFP instructions are subject to the AFP-register-
control bit, bit 45 of control register 0. For the BFP
instructions to be executed successfully, the AFP-
register-control bit must be one; otherwise, a BFP-
instruction data exception, DXC 2, is recognized.

Mnemonics for the BFP instructions are distin-
guished from the corresponding HFP instructions by
a B in the mnemonic. Mnemonics for the BFP instruc-
tions have an R as the last letter or the letter next to
the last letter when the instruction is in the RRE or
RRF format. Mnemonics for the BFP instructions
have an A as the last letter when the instruction is an
alternate instruction, which uses additional modifier
fields not available to the original instruction. Certain
letters are used for BFP instructions to represent
operand-format length, as follows:

F Thirty-two-bit signed fixed point
G Sixty-four-bit signed fixed point
LF Thirty-two-bit unsigned fixed point
LG Sixty-four-bit unsigned fixed point
D Long
E Short
X Extended

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the assembler language are
shown with each instruction. For a register-to-register
operation using COMPARE (short), for example,
CEBR is the mnemonic and R1,R2 the operand desig-
nation.

Programming Note: The floating-point extension
facility includes the following BFP features:

• The following new BFP instructions are added:
– CONVERT FROM LOGICAL (CXLFBR,

CDLFBR, CELFBR, CXLGBR, CDLGBR,
and CELGBR).

– CONVERT TO LOGICAL (CLFXBR,
CLFDBR, CLFEBR, CLGXBR, CLGDBR,
and CLGEBR)

• One new value of the effective rounding method
field is assigned to support the round to prepare
for shorter precision rounding method for CON-
VERT TO FIXED, DIVIDE TO INTEGER, and
LOAD FP INTEGER

• An IEEE-inexact-exception control (XxC) is
added to CONVERT TO FIXED and LOAD FP
INTEGER.

Abbr.
DXC
(Hex) Data-Exception-Code Name Instruction Ending

PIDx 08 IEEE inexact and truncated Complete

PIDy 0C IEEE inexact and incremented Complete

PIDu 10 IEEE underflow, exact Complete, scale exponent

PIDux 18 IEEE underflow, inexact and truncated Complete, scale exponent

PIDuy 1C IEEE underflow, inexact and incremented Complete, scale exponent

PIDo 20 IEEE overflow, exact Complete, scale exponent

PIDox 28 IEEE overflow, inexact and truncated Complete, scale exponent

PIDoy 2C IEEE overflow, inexact and incremented Complete, scale exponent

PIDz 40 IEEE division by zero Suppress

PIDi 80 IEEE invalid operation Suppress

Figure 19-10. IEEE Data-Exception Codes (DXC) and Abbreviations

19-12 The z/Architecture CPU Architecture

• An effective rounding method field and an IEEE-
inexact-exception control (XxC) are added to
CONVERT FROM FIXED and LOAD ROUNDED.

Name
Mne-

monic Characteristics
Op

Code Page

ADD (extended BFP) AXBR RRE C ¤7,9 SP Db Xi Xo Xu Xx B34A 19-15

ADD (long BFP) ADB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED1A 19-15

ADD (long BFP) ADBR RRE C ¤7,9 Db Xi Xo Xu Xx B31A 19-15

ADD (short BFP) AEB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED0A 19-15

ADD (short BFP) AEBR RRE C ¤7,9 Db Xi Xo Xu Xx B30A 19-15

COMPARE (extended BFP) CXBR RRE C ¤7,9 SP Db Xi B349 19-17

COMPARE (long BFP) CDB RXE C ¤7,9 A Db Xi B2 ED19 19-17

COMPARE (long BFP) CDBR RRE C ¤7,9 Db Xi B319 19-17

COMPARE (short BFP) CEB RXE C ¤7,9 A Db Xi B2 ED09 19-17

COMPARE (short BFP) CEBR RRE C ¤7,9 Db Xi B309 19-17

COMPARE AND SIGNAL (extended BFP) KXBR RRE C ¤7,9 SP Db Xi B348 19-18

COMPARE AND SIGNAL (long BFP) KDB RXE C ¤7,9 A Db Xi B2 ED18 19-18

COMPARE AND SIGNAL (long BFP) KDBR RRE C ¤7,9 Db Xi B318 19-18

COMPARE AND SIGNAL (short BFP) KEB RXE C ¤7,9 A Db Xi B2 ED08 19-18

COMPARE AND SIGNAL (short BFP) KEBR RRE C ¤7,9 Db Xi B308 19-18

CONVERT FROM FIXED (32 to extended BFP) CXFBR RRE ¤7,9 SP Db B396 19-19

CONVERT FROM FIXED (32 to extended BFP) CXFBRA RRF-e F ¤7,9 SP Db B396 19-19

CONVERT FROM FIXED (32 to long BFP) CDFBR RRE ¤7,9 Db B395 19-19

CONVERT FROM FIXED (32 to long BFP) CDFBRA RRF-e F ¤7,9 SP Db B395 19-19

CONVERT FROM FIXED (32 to short BFP) CEFBR RRE ¤7,9 Db Xx B394 19-19

CONVERT FROM FIXED (32 to short BFP) CEFBRA RRF-e F ¤7,9 SP Db Xx B394 19-19

CONVERT FROM FIXED (64 to extended BFP) CXGBR RRE N ¤7,9 SP Db B3A6 19-19

CONVERT FROM FIXED (64 to extended BFP) CXGBRA RRF-e F ¤7,9 SP Db B3A6 19-19

CONVERT FROM FIXED (64 to long BFP) CDGBR RRE N ¤7,9 Db Xx B3A5 19-19

CONVERT FROM FIXED (64 to long BFP) CDGBRA RRF-e F ¤7,9 SP Db Xx B3A5 19-19

CONVERT FROM FIXED (64 to short BFP) CEGBR RRE N ¤7,9 Db Xx B3A4 19-19

CONVERT FROM FIXED (64 to short BFP) CEGBRA RRF-e F ¤7,9 SP Db Xx B3A4 19-19

CONVERT FROM LOGICAL (32 to extended BFP) CXLFBR RRF-e F ¤7,9 SP Db B392 19-21

CONVERT FROM LOGICAL (32 to long BFP) CDLFBR RRF-e F ¤7,9 SP Db B391 19-21

CONVERT FROM LOGICAL (32 to short BFP) CELFBR RRF-e F ¤7,9 SP Db Xx B390 19-21

CONVERT FROM LOGICAL (64 to extended BFP) CXLGBR RRF-e F ¤7,9 SP Db B3A2 19-21

CONVERT FROM LOGICAL (64 to long BFP) CDLGBR RRF-e F ¤7,9 SP Db Xx B3A1 19-21

CONVERT FROM LOGICAL (64 to short BFP) CELGBR RRF-e F ¤7,9 SP Db Xx B3A0 19-21

CONVERT TO FIXED (extended BFP to 32) CFXBR RRF-e C ¤7,9 SP Db Xi Xx B39A 19-22

CONVERT TO FIXED (extended BFP to 32) CFXBRA RRF-e C F ¤7,9 SP Db Xi Xx B39A 19-22

CONVERT TO FIXED (extended BFP to 64) CGXBR RRF-e C N ¤7,9 SP Db Xi Xx B3AA 19-22

CONVERT TO FIXED (extended BFP to 64) CGXBRA RRF-e C F ¤7,9 SP Db Xi Xx B3AA 19-22

CONVERT TO FIXED (long BFP to 32) CFDBR RRF-e C ¤7,9 SP Db Xi Xx B399 19-22

CONVERT TO FIXED (long BFP to 32) CFDBRA RRF-e C F ¤7,9 SP Db Xi Xx B399 19-22

CONVERT TO FIXED (long BFP to 64) CGDBR RRF-e C N ¤7,9 SP Db Xi Xx B3A9 19-22

CONVERT TO FIXED (long BFP to 64) CGDBRA RRF-e C F ¤7,9 SP Db Xi Xx B3A9 19-22

CONVERT TO FIXED (short BFP to 32) CFEBR RRF-e C ¤7,9 SP Db Xi Xx B398 19-22

CONVERT TO FIXED (short BFP to 32) CFEBRA RRF-e C F ¤7,9 SP Db Xi Xx B398 19-22

CONVERT TO FIXED (short BFP to 64) CGEBR RRF-e C N ¤7,9 SP Db Xi Xx B3A8 19-22

CONVERT TO FIXED (short BFP to 64) CGEBRA RRF-e C F ¤7,9 SP Db Xi Xx B3A8 19-22

CONVERT TO LOGICAL (extended BFP to 32) CLFXBR RRF-e C F ¤7,9 SP Db Xi Xx B39E 19-25

CONVERT TO LOGICAL (extended BFP to 64) CLGXBR RRF-e C F ¤7,9 SP Db Xi Xx B3AE 19-25

Figure 19-11. Summary of BFP Instructions (Part 1 of 3)

Binary-Floating-Point Instructions 19-13

CONVERT TO LOGICAL (long BFP to 32) CLFDBR RRF-e C F ¤7,9 SP Db Xi Xx B39D 19-25

CONVERT TO LOGICAL (long BFP to 64) CLGDBR RRF-e C F ¤7,9 SP Db Xi Xx B3AD 19-25

CONVERT TO LOGICAL (short BFP to 32) CLFEBR RRF-e C F ¤7,9 SP Db Xi Xx B39C 19-25

CONVERT TO LOGICAL (short BFP to 64) CLGEBR RRF-e C F ¤7,9 SP Db Xi Xx B3AC 19-25

DIVIDE (extended BFP) DXBR RRE ¤7,9 SP Db Xi Xz Xo Xu Xx B34D 19-27

DIVIDE (long BFP) DDB RXE ¤7,9 A Db Xi Xz Xo Xu Xx B2 ED1D 19-27

DIVIDE (long BFP) DDBR RRE ¤7,9 Db Xi Xz Xo Xu Xx B31D 19-27

DIVIDE (short BFP) DEB RXE ¤7,9 A Db Xi Xz Xo Xu Xx B2 ED0D 19-27

DIVIDE (short BFP) DEBR RRE ¤7,9 Db Xi Xz Xo Xu Xx B30D 19-27

DIVIDE TO INTEGER (long BFP) DIDBR RRF-b C ¤7,9 SP Db Xi Xu Xx B35B 19-28

DIVIDE TO INTEGER (short BFP) DIEBR RRF-b C ¤7,9 SP Db Xi Xu Xx B353 19-28

LOAD AND TEST (extended BFP) LTXBR RRE C ¤7,9 SP Db Xi B342 19-31

LOAD AND TEST (long BFP) LTDBR RRE C ¤7,9 Db Xi B312 19-31

LOAD AND TEST (short BFP) LTEBR RRE C ¤7,9 Db Xi B302 19-31

LOAD COMPLEMENT (extended BFP) LCXBR RRE C ¤7,9 SP Db B343 19-31

LOAD COMPLEMENT (long BFP) LCDBR RRE C ¤7,9 Db B313 19-31

LOAD COMPLEMENT (short BFP) LCEBR RRE C ¤7,9 Db B303 19-31

LOAD FP INTEGER (extended BFP) FIXBR RRF-e ¤7,9 SP Db Xi Xx B347 19-32

LOAD FP INTEGER (extended BFP) FIXBRA RRF-e F ¤7,9 SP Db Xi Xx B347 19-32

LOAD FP INTEGER (long BFP) FIDBR RRF-e ¤7,9 SP Db Xi Xx B35F 19-32

LOAD FP INTEGER (long BFP) FIDBRA RRF-e F ¤7,9 SP Db Xi Xx B35F 19-32

LOAD FP INTEGER (short BFP) FIEBR RRF-e ¤7,9 SP Db Xi Xx B357 19-32

LOAD FP INTEGER (short BFP) FIEBRA RRF-e F ¤7,9 SP Db Xi Xx B357 19-32

LOAD LENGTHENED (long to extended BFP) LXDB RXE ¤7,9 A SP Db Xi B2 ED05 19-34

LOAD LENGTHENED (long to extended BFP) LXDBR RRE ¤7,9 SP Db Xi B305 19-33

LOAD LENGTHENED (short to extended BFP) LXEB RXE ¤7,9 A SP Db Xi B2 ED06 19-34

LOAD LENGTHENED (short to extended BFP) LXEBR RRE ¤7,9 SP Db Xi B306 19-33

LOAD LENGTHENED (short to long BFP) LDEB RXE ¤7,9 A Db Xi B2 ED04 19-34

LOAD LENGTHENED (short to long BFP) LDEBR RRE ¤7,9 Db Xi B304 19-33

LOAD NEGATIVE (extended BFP) LNXBR RRE C ¤7,9 SP Db B341 19-34

LOAD NEGATIVE (long BFP) LNDBR RRE C ¤7,9 Db B311 19-34

LOAD NEGATIVE (short BFP) LNEBR RRE C ¤7,9 Db B301 19-34

LOAD POSITIVE (extended BFP) LPXBR RRE C ¤7,9 SP Db B340 19-35

LOAD POSITIVE (long BFP) LPDBR RRE C ¤7,9 Db B310 19-35

LOAD POSITIVE (short BFP) LPEBR RRE C ¤7,9 Db B300 19-35

LOAD ROUNDED (extended to long BFP) LDXBR RRE ¤7,9 SP Db Xi Xo Xu Xx B345 19-35

LOAD ROUNDED (extended to long BFP) LDXBRA RRF-e F ¤7,9 SP Db Xi Xo Xu Xx B345 19-35

LOAD ROUNDED (extended to short BFP) LEXBR RRE ¤7,9 SP Db Xi Xo Xu Xx B346 19-35

LOAD ROUNDED (extended to short BFP) LEXBRA RRF-e F ¤7,9 SP Db Xi Xo Xu Xx B346 19-35

LOAD ROUNDED (long to short BFP) LEDBR RRE ¤7,9 Db Xi Xo Xu Xx B344 19-35

LOAD ROUNDED (long to short BFP) LEDBRA RRF-e F ¤7,9 SP Db Xi Xo Xu Xx B344 19-35

MULTIPLY (extended BFP) MXBR RRE ¤7,9 SP Db Xi Xo Xu Xx B34C 19-37

MULTIPLY (long BFP) MDB RXE ¤7,9 A Db Xi Xo Xu Xx B2 ED1C 19-37

MULTIPLY (long BFP) MDBR RRE ¤7,9 Db Xi Xo Xu Xx B31C 19-37

MULTIPLY (long to extended BFP) MXDB RXE ¤7,9 A SP Db Xi B2 ED07 19-37

MULTIPLY (long to extended BFP) MXDBR RRE ¤7,9 SP Db Xi B307 19-37

MULTIPLY (short BFP) MEEB RXE ¤7,9 A Db Xi Xo Xu Xx B2 ED17 19-37

MULTIPLY (short BFP) MEEBR RRE ¤7,9 Db Xi Xo Xu Xx B317 19-37

MULTIPLY (short to long BFP) MDEB RXE ¤7,9 A Db Xi B2 ED0C 19-37

MULTIPLY (short to long BFP) MDEBR RRE ¤7,9 Db Xi B30C 19-37

Name
Mne-

monic Characteristics
Op

Code Page

Figure 19-11. Summary of BFP Instructions (Part 2 of 3)

19-14 The z/Architecture CPU Architecture

MULTIPLY AND ADD (long BFP) MADB RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED1E 19-38

MULTIPLY AND ADD (long BFP) MADBR RRD ¤7,9 Db Xi Xo Xu Xx B31E 19-38

MULTIPLY AND ADD (short BFP) MAEB RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED0E 19-38

MULTIPLY AND ADD (short BFP) MAEBR RRD ¤7,9 Db Xi Xo Xu Xx B30E 19-38

MULTIPLY AND SUBTRACT (long BFP) MSDB RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED1F 19-38

MULTIPLY AND SUBTRACT (long BFP) MSDBR RRD ¤7,9 Db Xi Xo Xu Xx B31F 19-38

MULTIPLY AND SUBTRACT (short BFP) MSEB RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED0F 19-38

MULTIPLY AND SUBTRACT (short BFP) MSEBR RRD ¤7,9 Db Xi Xo Xu Xx B30F 19-38

SQUARE ROOT (extended BFP) SQXBR RRE ¤7,9 SP Db Xi Xx B316 19-40

SQUARE ROOT (long BFP) SQDB RXE ¤7,9 A Db Xi Xx B2 ED15 19-40

SQUARE ROOT (long BFP) SQDBR RRE ¤7,9 Db Xi Xx B315 19-40

SQUARE ROOT (short BFP) SQEB RXE ¤7,9 A Db Xi Xx B2 ED14 19-40

SQUARE ROOT (short BFP) SQEBR RRE ¤7,9 Db Xi Xx B314 19-40

SUBTRACT (extended BFP) SXBR RRE C ¤7,9 SP Db Xi Xo Xu Xx B34B 19-40

SUBTRACT (long BFP) SDB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED1B 19-40

SUBTRACT (long BFP) SDBR RRE C ¤7,9 Db Xi Xo Xu Xx B31B 19-40

SUBTRACT (short BFP) SEB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED0B 19-40

SUBTRACT (short BFP) SEBR RRE C ¤7,9 Db Xi Xo Xu Xx B30B 19-40

TEST DATA CLASS (extended BFP) TCXB RXE C ¤7,9 SP Db ED12 19-41

TEST DATA CLASS (long BFP) TCDB RXE C ¤7,9 Db ED11 19-41

TEST DATA CLASS (short BFP) TCEB RXE C ¤7,9 Db ED10 19-41

Explanation:

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.

A Access exceptions for logical addresses.

B2 B2 field designates an access register in the access-register mode.

C Condition code is set.

Db BFP-instruction data exception.

F Floating-point extension facility

N Instruction is new in z/Architecture as compared to ESA/390.

RRD RRE instruction format.

RRE RRE instruction format.

RRF RRF instruction format.

RXE RXE instruction format.

RXF RXF instruction format.

SP Specification exception.

Xi IEEE invalid-operation data exception.

Xo IEEE overflow data exception.

Xu IEEE underflow data exception.

Xx IEEE inexact data exception.

Xz IEEE division-by-zero data exception.

Name
Mne-

monic Characteristics
Op

Code Page

Figure 19-11. Summary of BFP Instructions (Part 3 of 3)

Binary-Floating-Point Instructions 19-15

A
D

DADD

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
AEBR 'B30A' Short BFP
ADBR 'B31A' Long BFP
AXBR 'B34A' Extended BFP

Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
AEB 'ED0A' Short BFP
ADB 'ED1A' Long BFP

The second operand is added to the first operand,
and the sum is placed at the first-operand location.

If both operands are finite numbers, they are added
algebraically, forming an intermediate sum. The inter-
mediate sum, if nonzero, is rounded to the operand
format according to the current BFP rounding mode.
The sum is then placed at the result location.

The sign of the sum is determined by the rules of
algebra. This also applies to a result of zero:

• If the result of rounding a nonzero intermediate
sum is zero, the sign of the zero result is the sign
of the intermediate sum.

• If the sum of two operands with opposite signs is
exactly zero, the sign of the result is plus in all
rounding methods except round toward -, in
which method the sign is minus.

• The sign of the sum x plus x is the sign of x, even
when x is zero.

If one operand is an infinity and the other is a finite
number, the result is that infinity. If both operands are
infinities of the same sign, the result is the same
infinity. If the two operands are infinities of opposite
signs, an IEEE-invalid-operation exception is recog-
nized.

See Figure 19-13 on page 19-16 for a detailed
description of the results of this instruction.
(Figure 19-12 is referred to by Figure 19-13.)

For AXBR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Access (fetch, operand 2 of AEB and ADB only)
• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification (AXBR only)
• Transaction constraint

Programming Note: Interchanging the two oper-
ands in a BFP addition does not affect the value of
the sum when the result is numeric. This is not true,
however, when both operands are QNaNs, in which
case the result is the first operand; or when both
operands are SNaNs and the IEEE-invalid-operation
mask bit in the FPC register is zero, in which case
the result is the QNaN derived from the first operand.

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

Value of Result (r) Condition Code
r=0 0
r<0 1
r>0 2

Figure 19-12. Condition Code for Resultant Sum

19-16 The z/Architecture CPU Architecture

A
D

D First
Operand

(a) Is

Results for ADD (a+b) when Second Operand (b) Is

- -Nn -Dn -0 +0 +Dn +Nn + QNaN SNaN
- T(-),

cc1
T(-),
cc1

T(-),
cc1

T(-),
cc1

T(-),
cc1

T(-),
cc1

T(-),
cc1

Xi:
T(dNaN),

cc3

T(b),
cc3

Xi: T(b*),
cc3

-Nn T(-),
cc1

R(a+b),
cc1

R(a+b),
cc1

T(a),
cc1

T(a),
cc1

R(a+b),
cc1

R(a+b),
ccrs

T(+),
cc2

T(b),
cc3

Xi: T(b*),
cc3

-Dn T(-),
cc1

R(a+b),
cc1

R(a+b),
cc1

R(a),
cc1

R(a),
cc1

R(a+b),
ccrs

R(a+b),
cc2

T(+),
cc2

T(b),
cc3

Xi: T(b*),
cc3

-0 T(-),
cc1

T(b),
cc1

R(b),
cc1

T(-0),
cc0

Rezd,
cc0

R(b),
cc2

T(b),
cc2

T(+),
cc2

T(b),
cc3

Xi: T(b*),
cc3

+0 T(-),
cc1

T(b),
cc1

R(b),
cc1

Rezd,
cc0

T(+0),
cc0

R(b),
cc2

T(b),
cc2

T(+),
cc2

T(b),
cc3

Xi: T(b*),
cc3

+Dn T(-),
cc1

R(a+b),
cc1

R(a+b),
ccrs

R(a),
cc2

R(a),
cc2

R(a+b),
cc2

R(a+b),
cc2

T(+),
cc2

T(b),
cc3

Xi: T(b*),
cc3

+Nn T(-),
cc1

R(a+b),
ccrs

R(a+b),
cc2

T(a),
cc2

T(a),
cc2

R(a+b),
cc2

R(a+b),
cc2

T(+),
cc2

T(b),
cc3

Xi: T(b*),
cc3

+ Xi:
T(dNaN),

cc3

T(+),
cc2

T(+),
cc2

T(+),
cc2

T(+),
cc2

T(+),
cc2

T(+),
cc2

T(+),
cc2

T(b),
cc3

Xi: T(b*),
cc3

QNaN T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

Xi: T(b*),
cc3

SNaN Xi: T(a*),
cc3

Xi: T(a*),
cc3

Xi: T(a*),
cc3

Xi: T(a*),
cc3

Xi: T(a*),
cc3

Xi: T(a*),
cc3

Xi: T(a*),
cc3

Xi: T(a*),
cc3

Xi: T(a*),
cc3

Xi: T(a*),
cc3

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
ccn Condition code is set to n.
ccrs Condition code is set according to the resultant sum. See Figure 19-12 on page 19-15.
dNaN Default NaN.
Dn Subnormal number.
Nn Normal number.
R(v) Rounding and range action is performed on the value v. See Figure 19-8 on page 19-8.
Rezd Exact zero-difference result. See Figure 19-8 on page 19-8.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 19-13. Results: ADD

Binary-Floating-Point Instructions 19-17

C
O

M
P

A
R

ECOMPARE

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
CEBR 'B309' Short BFP
CDBR 'B319' Long BFP
CXBR 'B349' Extended BFP

Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
CEB 'ED09' Short BFP
CDB 'ED19' Long BFP

The first operand is compared with the second oper-
and, and the condition code is set to indicate the
result.

If both operands are finite numbers, the comparison
is algebraic and follows the procedure for BFP sub-
traction, except that the difference is discarded after
setting the condition code, and both operands remain
unchanged. If the difference is exactly zero with
either sign, the operands are equal; this includes
zero operands (so +0 equals -0). If a nonzero differ-
ence is positive or negative, the first operand is high
or low, respectively.

+ compares greater than any finite number, and all
finite numbers compare greater than -. Two infinity
operands of like sign compare equal.

Numeric comparison is exact, and the condition code
is determined for finite operands as if range and pre-
cision were unlimited. No overflow or underflow
exception can occur.

If either or both operands are QNaNs and neither
operand is an SNaN, the comparison result is unor-
dered, and condition code 3 is set.

If either or both operands are SNaNs, an IEEE-
invalid-operation exception is recognized. If the IEEE
invalid-operation mask bit is one, a program interrup-

tion for a data exception with DXC 80 hex (IEEE
invalid operation) occurs. If the IEEE-invalid-opera-
tion mask bit is zero, the IEEE-invalid-operation flag
bit is set to one, and instruction execution is com-
pleted by setting condition code 3.

See Figure 19-14 on page 19-18 for a detailed
description of the results of this instruction.

For CXBR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Access (fetch, operand 2 of CEB and CDB only)
• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification (CXBR only)
• Transaction constraint

Programming Notes:

1. COMPARE may be used to implement those
comparisons which are required by ANSI/IEEE
Standard 754-2008 to not recognize an excep-
tion when the result is unordered due to a QNaN.

2. ANSI/IEEE Standard 754-2008 requires that it be
possible to compare BFP operands in different
formats. To accomplish this, LOAD LENGTH-
ENED may be used before COMPARE to convert
the shorter operand to the same format as the
longer.

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

19-18 The z/Architecture CPU Architecture

C
O

M
P

A
R

E
 A

N
D

 S
IG

N
A

L

COMPARE AND SIGNAL

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
KEBR 'B308' Short BFP
KDBR 'B318' Long BFP
KXBR 'B348' Extended BFP

Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
KEB 'ED08' Short BFP
KDB 'ED18' Long BFP

The first operand is compared with the second oper-
and, and the condition code is set to indicate the
result. The operation is the same as for COMPARE
except that QNaN operands cause an IEEE-invalid-
operation exception to be recognized. Thus, QNaN
operands are treated as if they were SNaNs.

See Figure 19-16 on page 19-19 for a detailed
description of the results of this instruction.

For KXBR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Access (fetch, operand 2 of KEB and KDB only)
• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification (KXBR only)
• Transaction constraint

Programming Notes:

1. COMPARE AND SIGNAL may be used to imple-
ment those comparisons which are required by
ANSI/IEEE Standard 754-2008 to recognize an
exception when the result is unordered due to a
QNaN.

First
Operand

(a) Is

Results for COMPARE (a:b) when Second Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- cc0 cc1 cc1 cc1 cc1 cc1 cc3 Xi: cc3

-Fn cc2 C(a:b) cc1 cc1 cc1 cc1 cc3 Xi: cc3

-0 cc2 cc2 cc0 cc0 cc1 cc1 cc3 Xi: cc3

+0 cc2 cc2 cc0 cc0 cc1 cc1 cc3 Xi: cc3

+Fn cc2 cc2 cc2 cc2 C(a:b) cc1 cc3 Xi: cc3

+ cc2 cc2 cc2 cc2 cc2 cc0 cc3 Xi: cc3

QNaN cc3 cc3 cc3 cc3 cc3 cc3 cc3 Xi: cc3

SNaN Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3

Explanation:

ccn Condition code is set to n.
C(a:b) Basic compare results. See Figure 19-15.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 19-14. Results: COMPARE

Relation of Value
(a) to Value (b)

Condition Code
for C(a:b)

a=b 0

a<b 1

a>b 2

Figure 19-15. Basic Compare Results

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2 / / / / / / / / Op Code
0 8 12 16 20 32 40 47

Binary-Floating-Point Instructions 19-19

C
O

N
V

E
R

T
 F

R
O

M
 F

IX
E

D2. ANSI/IEEE Standard 754-2008 requires that it be
possible to compare BFP operands in different
formats. To accomplish this, LOAD LENGTH-

ENED may be used before COMPARE AND SIG-
NAL to convert the shorter operand to the same
format as the longer.

CONVERT FROM FIXED

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
CEFBR 'B394' 32-bit binary-integer operand, short BFP

result
CDFBR 'B395' 32-bit binary-integer operand, long BFP

result
CXFBR 'B396' 32-bit binary-integer operand, extended

BFP result
CEGBR 'B3A4' 64-bit binary-integer operand, short BFP

result
CDGBR 'B3A5' 64-bit binary-integer operand, long BFP

result
CXGBR 'B3A6' 64-bit binary-integer operand, extended

BFP result

Mnemonic2 R1,M3,R2,M4 [RRF-e]

Mnemonic2 Op Code Operands
CEFBRA 'B394' 32-bit binary-integer operand, short BFP

result
CDFBRA 'B395' 32-bit binary-integer operand, long BFP

result
CXFBRA 'B396' 32-bit binary-integer operand, extended

BFP result
CEGBRA 'B3A4' 64-bit binary-integer operand, short BFP

result
CDGBRA 'B3A5' 64-bit binary-integer operand, long BFP

result
CXGBRA 'B3A6' 64-bit binary-integer operand, extended

BFP result

The fixed-point second operand is converted to the
BFP format, and the result is placed at the first-oper-
and location.

The second operand is a signed binary integer that is
located in the general register designated by R2. A
32-bit operand is in bit positions 32-63 of the register.

When the floating-point extension facility is installed,
the converted result is rounded by rounding as speci-
fied by the modifier in the M3 field:

M3 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0

First Operand
(a) Is

Results for COMPARE AND SIGNAL (a:b) when Second Operand (b) Is

- -Fn -0 +0 +Fn + NaN

- cc0 cc1 cc1 cc1 cc1 cc1 Xi: cc3

-Fn cc2 C(a:b) cc1 cc1 cc1 cc1 Xi: cc3

-0 cc2 cc2 cc0 cc0 cc1 cc1 Xi: cc3

+0 cc2 cc2 cc0 cc0 cc1 cc1 Xi: cc3

+Fn cc2 cc2 cc2 cc2 C(a:b) cc1 Xi: cc3

+ cc2 cc2 cc2 cc2 cc2 cc0 Xi: cc3

NaN Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3

Explanation:

ccn Condition code is set to n.
C(a:b) Basic compare results. See Figure 19-15 on page 19-18
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 19-16. Results: COMPARE AND SIGNAL

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code M3 M4 R1 R2

0 16 20 24 28 31

19-20 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 F

R
O

M
 F

IX
E

D 6 Round toward +
7 Round toward -

An M3 modifier other than 0, 1, or 3-7 is invalid. The
M3 field must designate a valid modifier; otherwise, a
specification exception is recognized.

When the M3 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode specified in
the FPC register. When the field is not zero, rounding
is performed as specified by the modifier, regardless
of the current BFP rounding mode.

When the floating-point extension facility is not
installed and bits 16-19 of the instruction contain a
value of zero, the converted result is rounded accord-
ing to the current BFP rounding mode. When the
floating-point extension facility is not installed and
bits 16-19 of the instruction contain a nonzero value,
it is undefined whether a specification exception is
recognized or an unpredictable rounding method is
performed.

When the floating-point extension facility is installed,
bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC). Bits 0, 2, and 3 are ignored. If XxC is
zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of IEEE-inex-
act exception is suppressed.

When the floating-point extension facility is not
installed and if bits 20-23 of the instruction are zeros,

recognition of IEEE-inexact exception is not sup-
pressed; when the floating-point extension facility is
not installed and if bits 20-23 of the instruction con-
tain a nonzero value, then it is unpredictable whether
recognition of IEEE-inexact exception is suppressed.

See Figure 19-17 on page 19-21 for a detailed
description of the results of this instruction.

For CXFBR, CXFBRA, CXGBR, and CXGBRA, the
R1 field must designate a valid floating-point-register
pair; otherwise, a specification exception is recog-
nized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Inexact (CEFBR, CEFBRA, CDGBR, CDGBRA,
CEGBR, CEGBRA)

Program Exceptions:

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification
• Transaction constraint

Programming Note: Unassigned bits in the M4 field
are reserved for future extensions and should be set
to zeros; otherwise the program may not operate
compatibly in the future.

Binary-Floating-Point Instructions 19-21

C
O

N
V

E
R

T
 F

R
O

M
 L

O
G

IC
A

L

CONVERT FROM LOGICAL

Mnemonic R1,M3,R2,M4 [RRF-e]

Mnemonic Op Code Operands
CELFBR 'B390' 32-bit binary-integer operand, short BFP

result
CDLFBR 'B391' 32-bit binary-integer operand, long BFP

result
CXLFBR 'B392' 32-bit binary-integer operand, extended

BFP result
CELGBR 'B3A0' 64-bit binary-integer operand, short BFP

result
CDLGBR 'B3A1' 64-bit binary-integer operand, long BFP

result
CXLGBR 'B3A2' 64-bit binary-integer operand, extended

BFP result

The fixed-point second operand is converted to the
BFP format, and the result is placed at the first-oper-
and location.

The second operand is an unsigned binary integer
that is located in the general register designated by
R2. A 32-bit operand is in bit positions 32-63 of the
register.

The converted result is rounded by rounding as spec-
ified by the modifier in the M3 field:

M3 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M3 modifier other than 0, 1, or 3-7 is invalid.

When the M3 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode specified in
the FPC register. When the field is not zero, rounding
is performed as specified by the modifier, regardless
of the current BFP rounding mode.

The M3 field must designate a valid modifier; other-
wise, a specification exception is recognized. For
CXLFBR and CXLGBR, the R1 field must designate a
valid floating-point-register pair; otherwise, a specifi-
cation exception is recognized.

Bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC). Bits 0, 2, and 3 are ignored. If XxC is

Instruction

Results for Instructions with a Single Operand (a) when Operand (a) Is

- -Fn -0 +0 +Fn + QNaN SNaN

CONVERT FROM FIXED – Rf(a) – T(+0) Rf(a) – – –

LOAD AND TEST T(-) T(a) T(-0) T(+0) T(a) T(+) T(a) Xi: T(a*)

LOAD LENGTHENED T(-) T(a)1 T(-0) T(+0) T(a)1 T(+) T(a)1 Xi: T(a*)1

LOAD ROUNDED T(-) R(a) T(-0) T(+0) R(a) T(+) T(a)2 Xi: T(a*)2

SQUARE ROOT Xi:
T(dNaN)

Xi:
T(dNaN)

T(-0) T(+0) R(a) T(+) T(a) Xi: T(a*)

Explanation:

– This situation cannot occur.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
1 The operand is extended to the longer format by appending zeros on the right before it is placed at the target

operand location.
2 The NaN is shortened to the target format by truncating the rightmost bits.
dNaN Default NaN.
Fn Finite nonzero number (includes both subnormal and normal).
R(v) Rounding and range action is performed on the value v. See Figure 19-8 on page 19-9.
Rf(a) The value a is converted to the precise intermediate value floating-point number v, and then action R(v) is

performed.
T(x) The value x is placed in the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 19-17. Results: Single-Operand Instructions

Op Code M3 M4 R1 R2

0 16 20 24 28 31

19-22 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 T

O
 F

IX
E

D zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of IEEE-inex-
act exception is suppressed.

The result always has a plus sign.

See Figure 19-17 on page 19-21 for a detailed
description of the results of this instruction.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Inexact (CELFBR, CDLGBR, CELGBR)

Program Exceptions:

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Operation (if the floating-point extension facility is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. Unassigned bits in the M4 field are reserved for
future extensions and should be set to zeros;
otherwise the program may not operate compati-
bly in the future

2. Using either the round toward 0 or the round
toward - rounding method produces the same
result.

CONVERT TO FIXED

Mnemonic1 R1,M3,R2 [RRF-e]

Mnemonic1 Op Code Operands
CFEBR 'B398' Short BFP operand, 32-bit binary-integer

result
CFDBR 'B399' Long BFP operand, 32-bit binary-integer

result
CFXBR 'B39A' Extended BFP operand, 32-bit binary-inte-

ger result
CGEBR 'B3A8' Short BFP operand, 64-bit binary-integer

result
CGDBR 'B3A9' Long BFP operand, 64-bit binary-integer

result
CGXBR 'B3AA' Extended BFP operand, 64-bit binary-inte-

ger result

Mnemonic2 R1,M3,R2,M4 [RRF-e]

Mnemonic2 Op Code Operands
CFEBRA 'B398' Short BFP operand, 32-bit binary-integer

result
CFDBRA 'B399' Long BFP operand, 32-bit binary-integer

result
CFXBRA 'B39A' Extended BFP operand, 32-bit binary-inte-

ger result
CGEBRA 'B3A8' Short BFP operand, 64-bit binary-integer

result
CGDBRA 'B3A9' Long BFP operand, 64-bit binary-integer

result
CGXBRA 'B3AA' Extended BFP operand, 64-bit binary-inte-

ger result

The BFP second operand is rounded to an integer
value and then converted to the fixed-point format.
The result is placed at the first-operand location.

The result is a signed binary integer that is placed in
the general register designated by R1. For instruc-
tions that produce a 32-bit result, the result replaces
bits 32-63 of the register, and bits 0-31 of the register
remain unchanged.

If the second operand is a finite number, it is rounded
to an integer value by rounding as specified by the
modifier in the M3 field:

M3 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M3 modifier other than 0, 1, or 3-7 is invalid. If the
floating-point extension facility is not installed, an M3

modifier of 3 is also invalid.

When the M3 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode specified in
the FPC register. When the field is not zero, rounding
is performed as specified by the modifier, regardless
of the current BFP rounding mode.

The sign of the result is the sign of the second oper-
and, except that a zero result has a plus sign.

Op Code M3 / / / / R1 R2

0 16 20 24 28 31

Op Code M3 M4 R1 R2

0 16 20 24 28 31

Binary-Floating-Point Instructions 19-23

C
O

N
V

E
R

T
 T

O
 F

IX
E

DWhen the floating-point extension facility is installed,
bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC). Bits 0, 2, and 3 are ignored. If XxC is
zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of IEEE-inex-
act exception is suppressed.

When the floating-point extension facility is not
installed and if bits 20-23 of the instruction are zeros,

recognition of IEEE-inexact exception is not sup-
pressed; when the floating-point extension facility is
not installed and if bits 20-23 of the instruction con-
tain a nonzero value, it is unpredictable whether rec-
ognition of IEEE-inexact exception is suppressed.

See Figure 19-18 for a detailed description of the
results of this instruction.

Operand (a)

Is n
Inexact
(na)

Inv.-Op.
Mask

(FPC 0.0)

IEEE
Inexact

Exception
Control
(XxC)

Inexact
Mask

(FPC 0.4)

Is n
Incre-

mented
(|n|>|a|) Results

- a < MN, n < MN – 0 13 – – T(MN), SFi1, cc3

- a < MN, n < MN – 0 04 0 – T(MN), SFi1, SFx1, cc3 †

- a < MN, n < MN – 0 04 1 – T(MN), SFi1, cc3, PIDx(08) †

- a < MN, n < MN – 1 – – – PIDi(80)

- < a < MN, n = MN – – 13 – – T(MN), cc1

- < a < MN, n = MN – – 04 0 – T(MN), SFx1, cc1

- < a < MN, n = MN – – 04 1 – T(MN), cc1, PIDx(08)

MN a < 0 No – – – – T(f), cc1

MN a < 0 Yes – 13 – – T(f), cc1

MN a < 0 Yes – 04 0 – T(f), SFx1, cc1

MN a < 0 Yes – 04 1 No T(f), cc1, PIDx(08)

MN a < 0 Yes – 04 1 Yes T(f), cc1, PIDy(0C)

-0 No1 – – – – T(0), cc0

+0 No1 – – – – T(0), cc0

0 < a MP No – – – – T(f), cc2

0 < a MP Yes – 13 – – T(f), cc2

0 < a MP Yes – 04 0 – T(f), SFx1, cc2

0 < a MP Yes – 04 1 No T(f), cc2, PIDx(08)

0 < a MP Yes – 04 1 Yes T(f), cc2, PIDy(0C)

MP < a < +, n = MP2 – – 13 – – T(MP), cc2

MP < a < +, n = MP2 – – 04 0 – T(MP), SFx1, cc2

MP < a < +, n = MP2 – – 04 1 – T(MP), cc2, PIDx(08)

MP < a +, n > MP – 0 13 – – T(MP), SFi1, cc3

MP < a +, n > MP – 0 04 0 – T(MP), SFi1, SFx1, cc3 †

MP < a +, n > MP – 0 04 1 – T(MP), SFi1, cc3, PIDx(08) †

MP < a +, n > MP – 1 – – – PIDi(80)

NaN – 0 13 – – T(MN), SFi1, cc3

NaN – 0 04 0 – T(MN), SFi1, SFx1, cc3 †

NaN – 0 04 1 – T(MN), SFi1, cc3, PIDx(08) †

Figure 19-18. Results: CONVERT TO FIXED

19-24 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 T

O
 F

IX
E

D

If the M3 field designates any of the following invalid
modifier values: 2 and 8-15, then a specification
exception is recognized. When the floating-point
extension facility is not installed, if the M3 field desig-
nates the invalid value 3, it is undefined whether a
specification exception is recognized or an unpredict-
able rounding method is performed.

For CFXBR, CFXBRA, CGXBR and CGXBRA, the
R2 field must designate a valid floating-point-register
pair; otherwise, a specification exception is recog-
nized.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

IEEE Exceptions:

• Invalid operation
• Inexact

Program Exceptions:

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification
• Transaction constraint

Programming Note: Unassigned bits in the M4 field
are reserved for future extensions and should be set
to zeros; otherwise the program may not operate
compatibly in the future.

NaN – 1 – – – PIDi(80)

Explanation:

– The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 The n=MP condition only applies to CFDBR, CFDBRA, CFXBR, CFXBRA, CGXBR. and CGXBRA.
3 Floating-point extension facility is installed and XxC bit in the M4 field is 1.
4 Bit 21 of the instruction is 0, regardless of whether the floating-point extension facility is installed.
† Result differs from DFP CONVERT TO FIXED. The DFP instruction combines two cases as it does not recognize

inexact for this case and does not test the inexact mask.
ccn Condition code is set to n.
f The value n converted to a fixed-point result.
n The value derived when the source value (a) is rounded to a floating-point integer using the effective rounding

method.
MN Maximum negative number representable in the target fixed-point format.
MP Maximum positive number representable in the target fixed-point format.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. Figure 19-10 on page 19-11.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.

Operand (a)

Is n
Inexact
(na)

Inv.-Op.
Mask

(FPC 0.0)

IEEE
Inexact

Exception
Control
(XxC)

Inexact
Mask

(FPC 0.4)

Is n
Incre-

mented
(|n|>|a|) Results

Figure 19-18. Results: CONVERT TO FIXED

Binary-Floating-Point Instructions 19-25

C
O

N
V

E
R

T
 T

O
 L

O
G

IC
A

LCONVERT TO LOGICAL

Mnemonic R1,M3,R2,M4 [RRF-e]

Mnemonic Op Code Operands
CLFEBR 'B39C' Short BFP operand, 32-bit binary-integer

result
CLFDBR 'B39D' Long BFP operand, 32-bit binary-integer

result
CLFXBR 'B39E' Extended BFP operand, 32-bit binary-inte-

ger result
CLGEBR 'B3AC' Short BFP operand, 64-bit binary-integer

result
CLGDBR 'B3AD' Long BFP operand, 64-bit binary-integer

result
CLGXBR 'B3AE' Extended BFP operand, 64-bit binary-inte-

ger result

The BFP second operand is rounded to an integer
value and then converted to the fixed-point format.
The result is placed at the first-operand location.

The result is an unsigned binary integer that is
placed in the general register designated by R1. For
instructions that produce a 32-bit result, the result
replaces bits 32-63 of the register, and bits 0-31 of
the register remain unchanged.

If the second operand is a finite number, it is rounded
to an integer value by rounding as specified by the
modifier in the M3 field:

M3 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M3 modifier other than 0, 1, or 3-7 is invalid.

When the M3 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode specified in
the FPC register. When the field is not zero, rounding
is performed as specified by the modifier, regardless
of the current BFP rounding mode.

Bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC). Bits 0, 2, and 3 are ignored. If XxC is
zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of IEEE-inex-
act exception is suppressed.

The M3 field must designate a valid modifier; other-
wise, a specification exception is recognized. For
CLFXBR and CLGXBR, the R2 field must designate a
valid floating-point-register pair; otherwise, a specifi-
cation exception is recognized.

See Figure 19-19 for a detailed description of the
results of this instruction.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

IEEE Exceptions:

• Invalid operation
• Inexact

Program Exceptions:

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Operation (if the floating-point extension facility is

not installed)
• Specification
• Transaction constraint

Programming Note: Unassigned bits in the M4 field
are reserved for future extensions and should be set
to zeros; otherwise the program may not operate
compatibly in the future.

Op Code M3 M4 R1 R2

0 16 20 24 28 31

19-26 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 T

O
 L

O
G

IC
A

L

Operand (a)

Is n
Inexact
(na)

Inv.-Op.
Mask

(FPC 0.0)

IEEE
Inexact

Exception
Control
(XxC)

Inexact
Mask

(FPC 0.4)

Is n
Incremented

(|n|>|a|) Results

- a < 0, n < 0 – 0 1 – – T(0), SFi1, cc3

- a < 0, n < 0 – 0 0 0 – T(0), SFi1, SFx1, cc3 †

- a < 0, n < 0 – 0 0 1 – T(0), SFi1, cc3, PIDx(08) †

- a < 0, n < 0 – 1 – – – PIDi(80)

- < a < 0, n = 0 – – 1 – – T(0), cc1

- < a < 0, n = 0 – – 0 0 – T(0), SFx1, cc1

- < a < 0, n = 0 – – 0 1 – T(0), cc1, PIDx(08)

-0 No1 – – – – T(0), cc0

+0 No1 – – – – T(0), cc0

0 < a MU No – – – – T(f), cc2

0 < a MU Yes – 1 – – T(f), cc2

0 < a MU Yes – 0 0 – T(f), SFx1, cc2

0 < a MU Yes – 0 1 No T(f), cc2, PIDx(08)

0 < a MU Yes – 0 1 Yes T(f), cc2, PIDy(0C)

MU < a < +, n = MU – – 1 – – T(MU), cc2

MU < a < +, n = MU – – 0 0 – T(MU), SFx1, cc2

MU < a < +, n = MU – – 0 1 – T(MU), cc2, PIDx(08)

MU < a +, n > MU – 0 1 – – T(MU), SFi1, cc3

MU < a +, n > MU – 0 0 0 – T(MU), SFi1, SFx1, cc3 †

MU < a +, n > MU – 0 0 1 – T(MU), SFi1, cc3, PIDx(08) †

MU < a +, n > MU – 1 – – – PIDi(80)

NaN – 0 1 – – T(0), SFi1, cc3

NaN – 0 0 0 – T(0), SFi1, SFx1, cc3 †

NaN – 0 0 1 – T(0), SFi1, cc3, PIDx(08) †

NaN – 1 – – – PIDi(80)

Explanation:

– The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
† Result differs from DFP CONVERT TO LOGICAL. The DFP instruction combines two cases as it does not

recognize inexact for this case and does not test the inexact mask.
ccn Condition code is set to n.
f The value n converted to a fixed-point result.
n The value derived when the source value (a) is rounded to a floating-point integer using the effective rounding

method.
MU Maximum unsigned number representable in the target fixed-point format.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. Figure 19-10 on page 19-11.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.

Figure 19-19. Results: CONVERT TO LOGICAL

Binary-Floating-Point Instructions 19-27

D
IV

ID
EDIVIDE

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
DEBR 'B30D' Short BFP
DDBR 'B31D' Long BFP
DXBR 'B34D' Extended BFP

Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
DEB 'ED0D' Short BFP
DDB 'ED1D' Long BFP

The first operand (the dividend) is divided by the sec-
ond operand (the divisor), and the quotient is placed
at the first-operand location. No remainder is pre-
served.

If the divisor is nonzero and both the dividend and
divisor are finite numbers, the first operand is divided

by the second operand to form an intermediate quo-
tient. The intermediate quotient, if nonzero, is
rounded to the target format according to the current
BFP rounding mode.

When the dividend is a finite number and the divisor
is infinity, the result is zero.

The sign of the quotient, if the quotient is numeric, is
the exclusive or of the operand signs. This includes
the sign of a zero or infinite quotient.

If the divisor is zero but the dividend is a finite num-
ber, an IEEE-division-by-zero exception is recog-
nized. If the dividend and divisor are both zero, or if
both are infinity, regardless of sign, an IEEE-invalid-
operation exception is recognized.

See Figure 19-20 on page 19-27 for a detailed
description of the results of this instruction.

For DXBR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Division by zero
• Overflow

• Underflow
• Inexact

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

Dividend
(a)

Results for DIVIDE (ab) when Divisor (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- Xi: T(dNaN) T(+) T(+) T(-) T(-) Xi: T(dNaN) T(b) Xi: T(b*)

-Fn T(+0) R(ab) Xz: T(+) Xz: T(-) R(ab) T(-0) T(b) Xi: T(b*)

-0 T(+0) T(+0) Xi: T(dNaN) Xi: T(dNaN) T(-0) T(-0) T(b) Xi: T(b*)

+0 T(-0) T(-0) Xi: T(dNaN) Xi: T(dNaN) T(+0) T(+0) T(b) Xi: T(b*)

+Fn T(-0) R(ab) Xz: T(-) Xz: T(+) R(ab) T(+0) T(b) Xi: T(b*)

+ Xi: T(dNaN) T(-) T(-) T(+) T(+) Xi: T(dNaN) T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
Fn Finite nonzero number (includes both subnormal and normal).
R(v) Rounding and range action is performed on the value v. See Figure 19-8 on page 19-8.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
Xz: IEEE division-by-zero exception. The results shown are produced only when FPC 0.1 is zero.

Figure 19-20. Results: DIVIDE

19-28 The z/Architecture CPU Architecture

D
IV

ID
E

 T
O

 IN
T

E
G

E
R Program Exceptions:

• Access (fetch, operand 2 of DEB and DDB only)
• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification (DXBR only)
• Transaction constraint

DIVIDE TO INTEGER

Mnemonic R1,R3,R2,M4 [RRF-b]

Mnemonic Op Code Operands
DIEBR 'B353' Short BFP
DIDBR 'B35B' Long BFP

The first operand (the dividend) is divided by the sec-
ond operand (the divisor). An integer quotient in BFP
form is produced and placed at the third-operand
location. The remainder replaces the dividend at the
first-operand location. The first, second, and third
operands must be in different registers. The condition
code indicates whether partial or final results have
been produced.

The remainder result is

r = a – b n

where a is the dividend, b the divisor, and n an inte-
ger obtained by rounding the precise quotient

q = a b.

The first-operand result is r with the sign determined
by the above expression. The third-operand result is
n with a sign that is the exclusive or of the dividend
and divisor signs.

If the precise quotient is not an integer and the two
integers closest to this precise quotient cannot both
be represented exactly in the precision of the quo-
tient, then a partial quotient and partial remainder are
formed. (In all other cases, a final quotient and final
remainder are formed.) This partial quotient n and
the corresponding partial remainder

r = a – b n

are used as the results. The sign of a partial remain-
der is the same as the sign of the dividend. The sign

of a partial quotient is the exclusive or of the dividend
and divisor signs.

If the remainder is zero, then the precise quotient is
an integer and can be represented exactly in the pre-
cision of the quotient.

The M4 field, called the modifier field, specifies
rounding of the final quotient. This rounding is called
the “final-quotient-rounding method” as contrasted to
the “current BFP rounding mode” specified by the
BFP rounding-mode bits in the FPC register. The
final quotient is rounded according to the final-quo-
tient-rounding method. The final-quotient-rounding
method affects only the final quotient; partial quo-
tients are rounded toward zero.

Since the partial quotient is rounded toward zero, the
partial remainder is always exact. For the final-quo-
tient-rounding methods of round toward 0, round to
nearest with ties to even, and round to nearest with
ties away from 0, the final remainder is exact. For the
final-quotient-rounding methods of round toward +
and round toward -, the final remainder may not be
exact.

The final quotient is rounded to an integer by round-
ing as specified by the modifier in the M4 field:

M4 Final-Quotient-Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

When the floating-point extension facility is installed,
a modifier of 2 and 8-15 is invalid. If the floating-point
extension facility is not installed, a modifier of 2-3 and
8-15 is invalid.

When the modifier field is zero, rounding of the final
quotient is controlled by the current BFP rounding
mode specified in the FPC register. When the field is
not zero, rounding is performed as specified by the
modifier, regardless of the current BFP rounding
mode.

Underflow is recognized only on the final remainder,
not on the partial remainder.

Op Code R3 M4 R1 R2

0 16 20 24 28 31

Binary-Floating-Point Instructions 19-29

D
IV

ID
E

 T
O

 IN
T

E
G

E
RFor the final-quotient-rounding methods of round

toward +, round toward -, and round to prepare for
shorter precision, the final remainder may not be
exact. When, in these cases, the final remainder is
inexact, it is rounded according to the current BFP
rounding mode specified in the FPC register.

The sign of a zero quotient is the exclusive or of the
divisor and dividend signs.

A zero remainder has the sign of the dividend.

See Figure 19-21 on page 19-29 for a detailed
description of the results of this instruction.

If the quotient exponent is greater than the largest
exponent that can be represented in the operand for-
mat, the correct remainder or partial remainder still is
produced, and the third-operand result is the correct
value, but with the exponent reduced by 192 or 1536
for short or long operands, respectively. The condi-
tion code indicates this out-of-range condition.

If the M4 field designates any of the following invalid
modifier values: 2 and 8-15, then a specification
exception is recognized. When the floating-point
extension facility is not installed, if the M4 field desig-
nates the invalid value 3, it is undefined whether a
specification exception is recognized or an unpredict-
able rounding method is performed.

The R1, R2, and R3 fields must designate different
registers; otherwise, a specification exception is rec-
ognized.

Resulting Condition Code:

0 Remainder final; normal quotient
1 Remainder final; quotient overflow or NaN
2 Remainder partial; normal quotient
3 Remainder partial; quotient overflow

IEEE Exceptions:

• Invalid operation
• Underflow
• Inexact

Dividend
(a)

Results for DIVIDE TO INTEGER (ab) when Divisor (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

T(b),
cc1

Xi: T(b*),
cc1

-Fn T(a,+0),
cc0

D(a,b) Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

D(a,b) T(a,-0),
cc0

T(b),
cc1

Xi: T(b*),
cc1

-0 T(-0,+0),
cc0

T(-0,+0),
cc0

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

T(-0,-0),
cc0

T(-0,-0),
cc0

T(b),
cc1

Xi: T(b*),
cc1

+0 T(+0,-0),
cc0

T(+0,-0),
cc0

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

T(+0,+0),
cc0

T(+0,+0),
cc0

T(b),
cc1

Xi: T(b*),
cc1

+Fn T(a,-0),
cc0

D(a,b) Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

D(a,b) T(a,+0), cc0 T(b),
cc1

Xi: T(b*),
cc1

+ Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

Xi: T(dNaN),
cc1

T(b),
cc1

Xi: T(b*),
cc1

QNaN T(a),
cc1

T(a),
cc1

T(a),
cc1

T(a),
cc1

T(a),
cc1

T(a),
cc1

T(a),
cc1

Xi: T(b*),
cc1

SNaN Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
ccn Condition code is set to n.
D(a,b) Basic divide-to-integer results. See Part 2 of this figure.
Fn Finite nonzero number (includes both subnormal and normal).
T(r,q) Results r (the remainder) and q (the quotient) are placed in target operands 1 and 3, respectively.
T(x) Value x is placed in both target operands 1 and 3.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 19-21. Results: DIVIDE TO INTEGER (Part 1 of 2)

19-30 The z/Architecture CPU Architecture

D
IV

ID
E

 T
O

 IN
T

E
G

E
R

Program Exceptions:

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification
• Transaction constraint

Programming Notes:

1. The Remainder operation, as defined in
ANSI/IEEE Standard 754-2008, is produced by
issuing DIVIDE TO INTEGER in an iterative loop,
with the M4 field set to 4.

|q| < 2P r = 0 Case#
Is r
Tiny

Is r
Inexact

Underflow
Mask

(FPC 0.3)

Inexact
mask

(FPC 0.4)
Quotient
Overflow

Is r
Incre-

mented Results for D(a,b)

Yes Yes Final No1 No1 – – No1 – T(r,n), cc0

Yes No Final No No – – No1 – T(r,n), cc0

Yes No Final Yes No1 0 – No1 – T(r,n), cc0

Yes No Final Yes No1 1 – No1 No1 T(r, n), cc0, PIDu(10)

Yes No Final No Yes – 0 No1 – T(r,n), SFx1, cc0

Yes No Final No Yes – 1 No1 No T(r,n), cc0, PIDx(08)

Yes No Final No Yes – 1 No1 Yes T(r,n), cc0, PIDy(0C)

No Yes Final No1 No1 – – No – T(r,n), cc0

No Yes Final No1 No1 – – Yes – T(r, n), cc1

No No Partial –2 No1 – – No – T(r,n), cc2

No No Partial –2 No1 – – Yes – T(r, n), cc3

Explanation:

– The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column. That is, when |q| < 2P, there

cannot be a quotient overflow; the cases of remainder is zero, tiny, or inexact are mutually exclusive; and when r
is exact, it is not incremented.

2 Underflow is not recognized for a partial remainder.
Each entry of this column is derived from the entries of the two left columns, and helps determine the specific

rounding method used in some columns on the right and determine the resulting condition code setting.
 Scale factor. For overflow, = 2+. For underflow, = 2-. The unsigned scaling exponent () depends on the

operand format and is 192 for short and 1536 for long.
|q| The absolute value of q, where q is the precise intermediate value of ab before rounding, assuming unbounded

precision and unbounded exponent range.
cc0 Condition code is set to 0 (remainder final; normal quotient).
cc1 Condition code is set to 1 (remainder final; quotient overflow).
cc2 Condition code is set to 2 (remainder partial; normal quotient).
cc3 Condition code is set to 3 (remainder partial; quotient overflow).
n Integer quotient. n = q, rounded toward 0 for partial results and rounded according to the final-quotient-rounding

method for final results. The sign of the integer quotient, including the cases of partial and final, scaled value,
and zero, is the exclusive or of the signs of the dividend (a) and divisor (b).

r Remainder. r = a-bn. A partial remainder is always exact; no rounding is necessary. The sign of a partial
remainder is always the same as the sign of the dividend (a). A final remainder is rounded according to the
current BFP rounding mode (if necessary) specified in the FPC register. The sign of a zero remainder is the
same as the sign of the dividend (a). The sign of a nonzero final remainder is determined by the rules of algebra.

P Precision of the operand, which depends on the target format: P = 24 for short and 53 for long.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-10 on page 19-11.
SFi IEEE invalid-operation flag, FPC 1.0.
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(r,n) Results r (the remainder) and n (the integer quotient) are placed in target operands 1 and 3, respectively.

Figure 19-21. Results: DIVIDE TO INTEGER (Part 2 of 2)

Binary-Floating-Point Instructions 19-31

L
O

A
D

 C
O

M
P

L
E

M
E

N
T2. The rounding specifications of round to nearest

with ties to even, round toward 0, and round
toward - permit the instruction to be used
directly to produce the Remainder, MOD, and
modulo functions, respectively.

3. When DIVIDE TO INTEGER is used in an itera-
tive loop, all quotients are produced in BFP for-
mat but may be considered as portions of a
multiple-precision fixed-point number.

4. In the case when the resulting remainder is sub-
normal, ANSI/IEEE Standard 754-2008 requires
that if traps are implemented and the underflow
mask is one, then an underflow trap must occur.
To accomplish this, DIVIDE TO INTEGER recog-
nizes underflow on the final remainder but not on
the partial remainder. Since in all cases when
underflow exists on the partial remainder it will
also exist on the final remainder, recognizing
underflow on only the final remainder avoids two
underflow traps to be reported for what
ANSI/IEEE Standard 754-2008 considers a sin-
gle Remainder operation.

LOAD AND TEST

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
LTEBR 'B302' Short BFP
LTDBR 'B312' Long BFP
LTXBR 'B342' Extended BFP

The second operand is placed at the first-operand
location, and its sign and magnitude are tested to
determine the setting of the condition code. The con-
dition code is set the same as for a comparison of the
second operand with zero.

The second operand is placed unchanged at the first-
operand location. If the second operand is an SNaN,
an IEEE-invalid-operation exception is recognized; if
there is no interruption, the result is the correspond-
ing QNaN.

See Figure 19-17 on page 19-21 for a detailed
description of the results of this instruction.

For LTXBR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification (LTXBR only)
• Transaction constraint

Programming Note: LOAD AND TEST signals
invalid operation when the operand is an SNaN.
TEST DATA CLASS may be used to test an operand
if signaling is not desired.

LOAD COMPLEMENT

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
LCEBR 'B303' Short BFP
LCDBR 'B313' Long BFP
LCXBR 'B343' Extended BFP

The second operand is placed at the first-operand
location with the sign bit inverted.

The sign bit is inverted even if the operand is zero.
The rest of the second operand is placed unchanged
at the first-operand location. The sign is inverted for
any operand, including a QNaN or SNaN, without
causing an IEEE exception.

For LCXBR, the R fields must designate valid float-
ing-point-register pairs; otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code / / / / / / / / R1 R2

0 16 24 28 31

19-32 The z/Architecture CPU Architecture

L
O

A
D

 F
P

 IN
T

E
G

E
R IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 2, BFP instruction
• Specification (LCXBR only)
• Transaction constraint

Programming Note: LOAD COMPLEMENT does
not signal invalid operation when the operand is an
SNaN. LOAD AND TEST may be used in conjunction
with this instruction if signaling is desired.

LOAD FP INTEGER

Mnemonic1 R1,M3,R2 [RRF-e]

Mnemonic1 Op Code Operands
FIEBR 'B357' Short BFP
FIDBR 'B35F' Long BFP
FIXBR 'B347' Extended BFP

Mnemonic2 R1,M3,R2,M4 [RRF-e]

Mnemonic2 Op Code Operands
FIEBRA 'B357' Short BFP
FIDBRA 'B35F' Long BFP
FIXBRA 'B347' Extended BFP

The second operand is rounded to an integer value in
the same floating-point format, and the result is
placed at the first-operand location.

The second operand, if a finite number, is rounded to
an integer value as specified by the modifier in the M3

field:

M3 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M3 modifier other than 0, 1, or 3-7 is invalid. If the
floating-point extension facility is not installed, an M3

modifier of 3 is also invalid.

When the M3 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode in the FPC
register. When the field is not zero, rounding is per-
formed as specified by the modifier, regardless of the
current BFP rounding mode.

In the absence of an interruption, if the second oper-
and is an infinity or a QNaN, the result is that oper-
and; if the second operand is an SNaN, the result is
the corresponding QNaN.

The sign of the result is the sign of the second oper-
and, even when the result is zero.

When the floating-point extension facility is installed,
bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC). Bits 0, 2, and 3 are ignored. If XxC is
zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of IEEE-inex-
act exception is suppressed.

When the floating-point extension facility is not
installed and if bits 20-23 of the instruction are zeros,
recognition of IEEE-inexact exception is not sup-
pressed; when the floating-point extension facility is
not installed and if bits 20-23 of the instruction con-
tain a nonzero value, it is unpredictable whether rec-
ognition of IEEE-inexact exception is suppressed.

See Figure 19-22 on page 19-33 for a detailed
description of the results of this instruction.

If the M3 field designates any of the following invalid
modifier values: 2 and 8-15, then a specification
exception is recognized. When the floating-point
extension facility is not installed, if the M3 field desig-
nates the invalid value 3, it is undefined whether a
specification exception is recognized or an unpredict-
able rounding method is performed.

For FIXBR and FIXBRA, the R fields must designate
valid floating-point-register pairs. Otherwise, a speci-
fication exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Inexact

Program Exceptions:

• Data with DXC 2, BFP instruction

Op Code M3 / / / / R1 R2

0 16 20 24 28 31

Op Code M3 M4 R1 R2

0 16 20 24 28 31

Binary-Floating-Point Instructions 19-33

L
O

A
D

 L
E

N
G

T
H

E
N

E
D• Data with DXC for IEEE exception

• Specification
• Transaction constraint

Programming Notes:

1. LOAD FP INTEGER rounds a BFP number to an
integer value. These integers, which remain in
the BFP format, should not be confused with
binary integers, which have a fixed-point format.

2. If the BFP operand is a finite number with a large
enough exponent so that it is already an integer,
the result value remains the same.

3. Unassigned bits in the M4 field are reserved for
future extensions and should be set to zeros;
otherwise the program may not operate compati-
bly in the future.

LOAD LENGTHENED

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
LDEBR 'B304' Short BFP operand 2, long BFP operand 1
LXDBR 'B305' Long BFP operand 2, extended BFP oper-

and 1
LXEBR 'B306' Short BFP operand 2, extended BFP oper-

and 1

Operand (a)
Is n Inexact

(na)

Inv.-Op.
Mask

(FPC 0.0)

IEEE Inexact
Exception

Control (XxC)2

Inexact
Mask

(FPC 0.4)

Is n
Incremented

(|n|>|a|) Results

- No1 – – – – T(-)

-Fn No – – – – T(n)

-Fn Yes – 1 – – T(n)

-Fn Yes – 0 0 – T(n), SFx1

-Fn Yes – 0 1 No T(n), PIDx(08)

-Fn Yes – 0 1 Yes T(n), PIDy(0C)

-0 No1 – – – – T(-0)

+0 No1 – – – – T(+0)

+Fn No – – – – T(n)

+Fn Yes – 1 – – T(n)

+Fn Yes – 0 0 – T(n), SFx1

+Fn Yes – 0 1 No T(n), PIDx(08)

+Fn Yes – 0 1 Yes T(n), PIDy(0C)

+ No1 – – – – T(+)

QNaN No1 – – – – T(a)

SNaN No1 0 – – – T(a*), SFi1

SNaN No1 1 – – – PIDi(80)

Explanation:
– The results do not depend on this condition or mask bit.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 XxC is defined only if the Floating-point extension facility is installed.
n The value derived when the source value, a, is rounded to a floating-point integer using the effective rounding

mode.
Fn Finite nonzero number (includes both subnormal and normal).
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-10 on page 19-11.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.

Figure 19-22. Results: LOAD FP INTEGER

Op Code / / / / / / / / R1 R2

0 16 24 28 31

19-34 The z/Architecture CPU Architecture

L
O

A
D

 N
E

G
A

T
IV

E Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
LDEB 'ED04' Short BFP operand 2, long BFP operand 1
LXDB 'ED05' Long BFP operand 2, extended BFP oper-

and 1
LXEB 'ED06' Short BFP operand 2, extended BFP oper-

and 1

The second operand is converted to a longer format,
and the result is placed at the first-operand location.

When the second operand is a finite number, the
value of the second operand is placed in the target
format. The exponent of the second operand is con-
verted to the corresponding exponent in the result
format, and the fraction is extended by appending
zeros on the right.

If the second operand is an infinity, the result is an
infinity of the same sign. If the second operand is an
SNaN, an IEEE-invalid-operation exception is recog-
nized; if there is no interruption, the result is the cor-
responding QNaN with the fraction extended.

The sign of the result is the same as the sign of the
source.

See Figure 19-17 on page 19-21 for a detailed
description of the results of this instruction.

For LXDB, LXDBR, LXEB, and LXEBR, the R1 field
must designate a valid floating-point-register pair;
otherwise, a specification exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Access (fetch, operand 2 of LDEB, LXEB, and
LXDB only)

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification (LXEB, LXEBR, LXDB, LXDBR)

• Transaction constraint

LOAD NEGATIVE

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
LNEBR 'B301' Short BFP
LNDBR 'B311' Long BFP
LNXBR 'B341' Extended BFP

The second operand is placed at the first-operand
location with the sign bit made one.

The sign bit is made one even if the operand is zero.
The rest of the second operand is placed unchanged
at the first-operand location. The sign is set for any
operand, including a QNaN or SNaN, without caus-
ing an IEEE exception.

For LNXBR, the R fields must designate valid float-
ing-point-register pairs; otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 --
3 Result is a NaN

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 2, BFP instruction
• Specification (LNXBR only)
• Transaction constraint

Programming Note: LOAD NEGATIVE does not sig-
nal invalid operation when the operand is an SNaN.
LOAD AND TEST may be used in conjunction with
this instruction if signaling is desired.

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Binary-Floating-Point Instructions 19-35

L
O

A
D

 R
O

U
N

D
E

DLOAD POSITIVE

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
LPEBR 'B300' Short BFP
LPDBR 'B310' Long BFP
LPXBR 'B340' Extended BFP

The second operand is placed at the first-operand
location with the sign bit made zero.

The sign bit is made zero, and the rest of the second
operand is placed unchanged at the first-operand
location. The sign is set for any operand, including a
QNaN or SNaN, without causing an IEEE exception.

For LPXBR, the R fields must designate valid float-
ing-point-register pairs; otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Result is zero
1 --
2 Result is greater than zero
3 Result is a NaN

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 2, BFP instruction
• Specification (LPXBR only)
• Transaction constraint

Programming Note: LOAD POSITIVE does not sig-
nal invalid operation when the operand is an SNaN.
LOAD AND TEST may be used in conjunction with
this instruction if signaling is desired.

LOAD ROUNDED

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
LEDBR 'B344' Long BFP source, short BFP target, short or

long BFP result
LDXBR 'B345' Extended BFP source, long BFP target, long

or extended BFP result
LEXBR 'B346' Extended BFP source, short BFP target,

short or extended BFP result

Mnemonic2 R1,M3,R2,M4 [RRF-e]

Mnemonic2 Op Code Operands
LEDBRA 'B344' Long BFP source, short BFP target, short or

long BFP result
LDXBRA 'B345' Extended BFP source, long BFP target, long

or extended BFP result
LEXBRA 'B346' Extended BFP source, short BFP target,

short or extended BFP result

The second operand, in the format of the source, is
rounded to the precision of the target, and the result
is placed at the first-operand location.

When the floating-point extension facility is installed,
the second operand, if a finite number, is rounded by
rounding as specified by the modifier in the M3 field:

M3 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M3 modifier other than 0, 1, or 3-7 is invalid. The
M3 field must designate a valid modifier; otherwise, a
specification exception is recognized.

When the M3 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode specified in
the FPC register. When the field is not zero, rounding
is performed as specified by the modifier, regardless
of the current BFP rounding mode.

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code M3 M4 R1 R2

0 16 20 24 28 31

19-36 The z/Architecture CPU Architecture

L
O

A
D

 R
O

U
N

D
E

D When the floating-point extension facility is not
installed and bits 16-19 of the instruction contain a
value of zero, the second operand is rounded accord-
ing to the current BFP rounding mode. When the
floating-point extension facility is not installed and
bits 16-19 of the instruction contain a nonzero value,
it is undefined whether a specification exception is
recognized or an unpredictable rounding method is
performed.

In the absence of IEEE-trap action for overflow or
underflow, the result is in the format and length of the
target. However, when an IEEE overflow or an IEEE
underflow is recognized and the corresponding mask
bit is one, the operation is completed by producing a
scaled result in the same format and length as the
source but rounded to the precision of the target. For
LEDBR, LEDBRA, LEXBR and LEXBRA, the result
has at most 23 significand fraction bits; for LDXBR
and LDXBRA, the result has at most 52 significand
fraction bits.

A short-format result replaces the leftmost 32 bits of
the target register, and the rightmost 32 bit positions
of the target register remain unchanged. A long-for-
mat result is placed in a floating-point register, and
the other register of the floating-point register pair, if
any, remains unchanged. An extended-format result
is placed in a floating-point register pair.

The sign of the result is the same as the sign of the
second operand.

When the floating-point extension facility is installed,
bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC). Bits 0, 2, and 3 are ignored. If XxC is
zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of IEEE-inex-
act exception is suppressed.

When the floating-point extension facility is not
installed and if bit 21 of the instruction is zero, recog-
nition of IEEE-inexact exception is not suppressed;
when the floating-point extension facility is not
installed and if bit 21 of the instruction is one, then it
is unpredictable whether recognition of IEEE-inexact
exception is suppressed.

See Figure 19-17 on page 19-21 for a detailed
description of the results of this instruction.

For LDXBR, LDXBRA, LEXBR, and LEXBRA, the R1

and R2 fields must designate valid floating-point-reg-
ister pairs; otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification
• Transaction constraint

Programming Notes:

1. The sign of the rounded result is the same as the
sign of the operand, even when the result is zero.

2. The R1 field for LDXBR, LDXBRA, LEXBR, and
LEXBRA must designate a valid floating-point-
register pair since in certain cases the result is in
the extended format. In normal operation for
LDXBR, LDXBRA, LEXBR and LEXBRA, the
result format is long or short, respectively, and
this result replaces the leftmost 32 bits or 64 bits
of the target-register pair. However, when an
IEEE overflow or an IEEE underflow is recog-
nized and the corresponding mask bit is one, the
operation is completed by placing a result in the
extended format at the target location. Thus, the
program must take into account the fact that
these instructions sometimes update both regis-
ters of the pair.

3. Unassigned bits in the M4 field are reserved for
future extensions and should be set to zeros;
otherwise the program may not operate compati-
bly in the future

Binary-Floating-Point Instructions 19-37

M
U

L
T

IP
L

YMULTIPLY

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
MEEBR 'B317' Short BFP
MDBR 'B31C' Long BFP
MXBR 'B34C' Extended BFP
MDEBR 'B30C' Short BFP multiplier and multiplicand, long

BFP product
MXDBR 'B307' Long BFP multiplier and multiplicand,

extended BFP product

Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
MEEB 'ED17' Short BFP
MDB 'ED1C' Long BFP
MDEB 'ED0C' Short BFP multiplier and multiplicand, long

BFP product
MXDB 'ED07' Long BFP multiplier and multiplicand,

extended BFP product

The product of the second operand (the multiplier)
and the first operand (the multiplicand) is placed at
the first-operand location.

The two BFP operands, if finite numbers, are multi-
plied, forming an intermediate product. For MDEB,
MDEBR, MXDB, and MXDBR, the intermediate prod-
uct is converted to the longer target format; the result
cannot overflow or underflow and is exact. For MDB,
MDBR, MEEB, MEEBR, and MXBR, the result is
rounded to the operand format according to the cur-
rent BFP rounding mode. For MEEB and MEEBR,
the result, as for all short-format results, replaces the
leftmost 32 bits of the target register, and the right-
most 32 bit positions of the target register remain
unchanged.

The sign of the product, if the product is numeric, is
the exclusive or of the operand signs. This includes
the sign of a zero or infinite product.

If one operand is a zero and the other an infinity, an
IEEE-invalid-operation exception is recognized.

See Figure 19-23 on page 19-38 for a detailed
description of the results of this instruction.

The R1 field for MXDB, MXDBR, and MXBR, and the
R2 field for MXBR, must designate valid floating-
point-register pairs. Otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Overflow (MDB, MDBR, MEEB, MEEBR, MXBR)
• Underflow (MDB, MDBR, MEEB, MEEBR,

MXBR)
• Inexact (MDB, MDBR, MEEB, MEEBR, MXBR)

Program Exceptions:

• Access (fetch, operand 2 of MDEB, MEEB, MDB,
and MXDB only)

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification (MXDB, MXDBR, MXBR)
• Transaction constraint

Programming Note: Interchanging the two oper-
ands in a BFP multiplication does not affect the value
of the product when the result is numeric. This is not
true, however, when both operands are QNaNs, in
which case the result is the first operand; or when
both operands are SNaNs and the IEEE-invalid-oper-
ation mask bit in the FPC register is zero, in which
case the result is the QNaN derived from the first
operand.

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

19-38 The z/Architecture CPU Architecture

M
U

L
T

IP
L

Y
 A

N
D

 A
D

D

MULTIPLY AND ADD

Mnemonic1 R1,R3,R2 [RRD]

Mnemonic1 Op Code Operands
MAEBR 'B30E' Short BFP
MADBR 'B31E' Long BFP

Mnemonic2 R1,R3,D2(X2,B2) [RXF]

Mnemonic2 Op Code Operands
MAEB 'ED0E' Short BFP
MADB 'ED1E' Long BFP

MULTIPLY AND SUBTRACT

Mnemonic1 R1,R3,R2 [RRD]

Mnemonic1 Op Code Operands
MSEBR 'B30F' Short BFP
MSDBR 'B31F' Long BFP

Mnemonic2 R1,R3,D2(X2,B2) [RXF]

Mnemonic2 Op Code Operands
MSEB 'ED0F' Short BFP
MSDB 'ED1F' Long BFP

The third operand is multiplied by the second oper-
and, and then the first operand is added to or sub-
tracted from the product. The sum or difference is
placed at the first-operand location. The MULTIPLY
AND ADD and MULTIPLY AND SUBTRACT opera-
tions may be summarized as:

op1 = op3op2op1

When the operands are finite numbers, the third and
second BFP operands are multiplied, forming an
intermediate product, and the first operand is then
added (or subtracted) algebraically to (or from) the
intermediate product, forming an intermediate sum.
The intermediate sum, if nonzero, is rounded to the
operand format according to the current BFP round-
ing mode and then placed at the first-operand loca-
tion. The exponent and fraction of the intermediate
product are maintained exactly; rounding and range
checking occur only on the intermediate sum.

See Figure 19-24 for a detailed description of the
results of MULTIPLY AND ADD. The results of MUL-

First
Operand

(a) Is

Results for MULTIPLY (ab) when Second Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(+) T(+) Xi: T(dNaN) Xi: T(dNaN) T(-) T(-) T(b) Xi: T(b*)

-Fn T(+) R(ab) T(+0) T(-0) R(ab) T(-) T(b) Xi: T(b*)

-0 Xi: T(dNaN) T(+0) T(+0) T(-0) T(-0) Xi: T(dNaN) T(b) Xi: T(b*)

+0 Xi: T(dNaN) T(-0) T(-0) T(+0) T(+0) Xi: T(dNaN) T(b) Xi: T(b*)

+Fn T(-) R(ab) T(-0) T(+0) R(ab) T(+) T(b) Xi: T(b*)

+ T(-) T(-) Xi: T(dNaN) Xi: T(dNaN) T(+) T(+) T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
dNaN Default NaN.
Fn Finite nonzero number (includes both subnormal and normal).
R(v) Rounding and range action is performed on the value v. See Figure 19-8 on page 19-8.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 19-23. Results: MULTIPLY

Op Code R1 / / / / R3 R2

0 16 20 24 28 31

Op Code R3 X2 B2 D2 R1 / / / / Op Code
0 8 12 16 20 32 36 40 47

Op Code R1 / / / / R3 R2

0 16 20 24 28 31

Op Code R3 X2 B2 D2 R1 / / / / Op Code

0 8 12 16 20 32 36 40 47

Binary-Floating-Point Instructions 19-39

M
U

L
T

IP
L

Y
 A

N
D

 S
U

B
T

R
A

C
T

TIPLY AND SUBTRACT are the same, except that
the first operand, if numeric, participates in the oper-
ation with its sign bit inverted. When the first operand
is a NaN, it participates in the operation with its sign
bit unchanged.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Access (fetch, operand 2 of MAEB, MADB,
MSEB, MSDB)

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Transaction constraint

Programming Note: MULTIPLY AND ADD and
MULTIPLY AND SUBTRACT produce a precise inter-
mediate value, and a single rounding operation is
performed after the addition or subtraction. This defi-
nition is consistent with the Power architecture, and,
in certain applications, can be used to great advan-
tage, especially in algorithms used in math libraries.

Third
Operand

(a) Is

Results, Part 1, for MULTIPLY AND ADD (ab+c) when Second Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- P(+) P(+) Xi: T(dNaN) Xi: T(dNaN) P(-) P(-) P(b) Xi: T(b*)

-Fn P(+) P(ab) P(+0) P(-0) P(ab) P(-) P(b) Xi: T(b*)

-0 Xi: T(dNaN) P(+0) P(+0) P(-0) P(-0) Xi: T(dNaN) P(b) Xi: T(b*)

+0 Xi: T(dNaN) P(-0) P(-0) P(+0) P(+0) Xi: T(dNaN) P(b) Xi: T(b*)

+Fn P(-) P(ab) P(-0) P(+0) P(ab) P(+) P(b) Xi: T(b*)

+ P(-) P(-) Xi: T(dNaN) Xi: T(dNaN) P(+) P(+) P(b) Xi: T(b*)

QNaN P(a) P(a) P(a) P(a) P(a) P(a) P(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Figure 19-24. Results: MULTIPLY AND ADD (Part 1 of 2)

Value from
Part 1 (p) Is

Results, Part 2, for MULTIPLY AND ADD (ab+c) when First Operand (c) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(-) T(-) T(-) T(-) T(-) Xi: T(dNaN) T(c) Xi: T(c*)

-Fn T(-) R(p+c) R(p) R(p) R(p+c) T(+) T(c) Xi: T(c*)

-0 T(-) R(c) T(-0) Rezd R(c) T(+) T(c) Xi: T(c*)

+0 T(-) R(c) Rezd T(+0) R(c) T(+) T(c) Xi: T(c*)

+Fn T(-) R(p+c) R(p) R(p) R(p+c) T(+) T(c) Xi: T(c*)

+ Xi: T(dNaN) T(+) T(+) T(+) T(+) T(+) T(c) Xi: T(c*)

QNaN T(p) T(p) T(p) T(p) T(p) T(p) T(p) Xi: T(c*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
dNaN Default NaN.
Fn Finite nonzero number (includes both subnormal and normal).
P(x) The value x is passed to Part 2 of this figure.
R(v) Rounding and range action is performed on the value v. See Figure 19-8 on page 19-8.
Rezd Exact zero-difference result. See Figure 19-8 on page 19-8.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 19-24. Results: MULTIPLY AND ADD (Part 2 of 2)

19-40 The z/Architecture CPU Architecture

S
Q

U
A

R
E

 R
O

O
T SQUARE ROOT

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
SQEBR 'B314' Short BFP
SQDBR 'B315' Long BFP
SQXBR 'B316' Extended BFP

Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
SQEB 'ED14' Short BFP
SQDB 'ED15' Long BFP

The square root of the second operand is placed at
the first-operand location.

The result rounded according to the current BFP
rounding mode is placed at the first-operand location.

If the second operand is a positive finite number, the
result is the square root of that number with a plus
sign. If the operand is a zero of either sign, the result
is a zero of the same sign. If the operand is +, the
result is +.

If the second operand is less than zero, an IEEE-
invalid-operation exception is recognized.

See Figure 19-17 on page 19-21 for a detailed
description of the results of this instruction.

For SQXBR, the R fields must designate valid float-
ing-point-register pairs; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Inexact

Program Exceptions:

• Access (fetch, operand 2 of SQEB and SQDB
only)

• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification (SQXBR only)
• Transaction constraint

SUBTRACT

Mnemonic1 R1,R2 [RRE]

Mnemonic1 Op Code Operands
SEBR 'B30B' Short BFP
SDBR 'B31B' Long BFP
SXBR 'B34B' Extended BFP

Mnemonic2 R1,D2(X2,B2) [RXE]

Mnemonic2 Op Code Operands
SEB 'ED0B' Short BFP
SDB 'ED1B' Long BFP

The second operand is subtracted from the first oper-
and, and the difference is placed at the first-operand
location.

The execution of SUBTRACT is identical to that of
ADD, except that the second operand, if numeric,
participates in the operation with its sign bit inverted.
When the second operand is a NaN, it participates in
the operation with its sign bit unchanged. See
Figure 19-13 on page 19-16 for the detailed results of
ADD.

For SXBR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exceptions:

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47
Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

Binary-Floating-Point Instructions 19-41

T
E

S
T

 D
A

T
A

 C
L

A
S

S• Invalid operation
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Access (fetch, operand 2 of SEB and SDB only)
• Data with DXC 2, BFP instruction
• Data with DXC for IEEE exception
• Specification (SXBR only)
• Transaction constraint

TEST DATA CLASS

Mnemonic R1,D2(X2,B2) [RXE]

Mnemonic Op Code Operands
TCEB 'ED10' Short BFP
TCDB 'ED11' Long BFP
TCXB 'ED12' Extended BFP

The class and sign of the first operand are examined
to select one bit from the second-operand address.
Condition code 0 or 1 is set according to whether the
selected bit is zero or one, respectively.

The second-operand address is not used to address
data; instead, the rightmost 12 bits of the address,
bits 52-63, are used to specify 12 combinations of
BFP data class and sign. Bits 0-51 of the second-
operand address are ignored.

As shown in Figure 19-25, BFP operands are divided
into six classes: zero, normal number, subnormal
number, infinity, quiet NaN, and signaling NaN.

One or more of the second-operand-address bits
may be set to one. If the second-operand-address bit
corresponding to the class and sign of the first oper-
and is one, condition code 1 is set; otherwise, condi-
tion code 0 is set.

Operands, including SNaNs and QNaNs, are exam-
ined without causing an IEEE exception.

For TCXB, the R1 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Selected bit is 0 (no match)
1 Selected bit is 1 (match)
2 --
3 --

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 2, BFP instruction
• Specification (TCXB only)
• Transaction constraint

Programming Notes:

1. TEST DATA CLASS provides a way to test an
operand without risk of an exception or setting
the IEEE flags.

2. The bits used to specify the combinations of data
class and sign are not all the same for BFP and
DFP. Specifically, DFP TEST DATA CLASS uses
bits 54 and 55 for subnormal number, and bits 56
and 57 for normal number.

Op Code R1 X2 B2 D2 / / / / / / / / Op Code

0 8 12 16 20 32 40 47

BFP Operand Class

Bit Used when
Sign Is

+ -
Zero 52 53
Normal number 54 55
Subnormal number 56 57
Infinity 58 59
Quiet NaN 60 61
Signaling NaN 62 63

Figure 19-25. Second-Operand-Address Bits for TEST
DATA CLASS

19-42 The z/Architecture CPU Architecture

T
E

S
T

 D
A

T
A

 C
L

A
S

S

Decimal-Floating-Point Instructions 20-1© Copyright IBM Corp. 2000, 2019

Chapter 20. Decimal-Floating-Point Instructions

Decimal-Floating-Point Facility 20-1
DFP Arithmetic . 20-2

Finite Floating-Point Number 20-2
Cohort . 20-2
Quantum . 20-2
Preferred Quantum 20-2
Scaled Preferred Quantum 20-3
Delivered Quantum 20-3
Special Quantum-Handling Operations . . . 20-3

DFP Data Formats. 20-3
DFP Short Format 20-3
DFP Long Format 20-3
DFP Extended Format 20-4
Sign . 20-4
Combination. 20-4
Encoded Trailing Significand 20-5
Values of Finite Numbers 20-5

Significand . 20-5
DFP Significant Digits 20-5

Canonical Declets . 20-6
DFP Canonical Data 20-6
Classes of DFP Data 20-6

Zeros . 20-6
Subnormal Numbers 20-6
Normal Numbers . 20-7
Infinities . 20-7
Signaling and Quiet NaNs 20-7
Canonicalization . 20-7

DFP-Format Conversion 20-7
DFP Rounding . 20-7
DFP Comparison . 20-7
DFP Formatting Instructions 20-8

Signed-Packed-Decimal Format 20-8
Unsigned-Packed-Decimal Format 20-8
Zoned-Decimal Format 20-9

IEEE Exceptions . 20-9
Summary of Preferred Quantum 20-10
Summary of Rounding And Range Actions . 20-10
Result Figures . 20-15

Data-Exception Codes (DXC) and
Abbreviations . 20-15

Instructions . 20-16
ADD . 20-19
COMPARE . 20-22
COMPARE AND SIGNAL 20-23
COMPARE BIASED EXPONENT. 20-23
CONVERT FROM FIXED 20-24
CONVERT FROM LOGICAL 20-25
CONVERT FROM PACKED 20-26
CONVERT FROM SIGNED PACKED 20-28
CONVERT FROM UNSIGNED PACKED . . . 20-28
CONVERT FROM ZONED 20-29
CONVERT TO FIXED. 20-29
CONVERT TO LOGICAL 20-32
CONVERT TO PACKED. 20-33
CONVERT TO SIGNED PACKED 20-35
CONVERT TO UNSIGNED PACKED. 20-35
CONVERT TO ZONED. 20-36
DIVIDE . 20-37
EXTRACT BIASED EXPONENT 20-39
EXTRACT SIGNIFICANCE. 20-39
INSERT BIASED EXPONENT 20-40
LOAD AND TEST . 20-41
LOAD FP INTEGER 20-42
LOAD LENGTHENED. 20-45
LOAD ROUNDED . 20-46
MULTIPLY . 20-47
QUANTIZE . 20-49
REROUND . 20-52
SHIFT SIGNIFICAND LEFT 20-54
SHIFT SIGNIFICAND RIGHT 20-54
SUBTRACT. 20-55
TEST DATA CLASS 20-56
TEST DATA GROUP 20-57

Densely Packed Decimal (DPD) 20-58
Decimal-to-DPD Mapping 20-58
DPD-to-Decimal Mapping 20-58

Decimal-Floating-Point Facility

The decimal-floating-point (DFP) facility provides
instructions to operate on decimal (radix-10) floating-
point data. The facility was designed in cooperation
with the IEEE floating-point working group.

Additionally, this facility was designed to support a
common library for various systems. This facility in
both the z/architecture and Power architectures sup-
ports the same data formats, the same rounding
methods, the same functions, and the same excep-
tions.

DFP has a number of important characteristics:

20-2 The z/Architecture CPU Architecture

• It produces results consistent with decimal arith-
metic as taught in elementary school.

• It recognizes the quantum of a finite number,
maintains quantum information through arithme-
tic operations, and provides special operations to
extract, compare, and adjust the quantum.

• It provides greater exponent range than hexa-
decimal-floating-point (HFP) and binary-floating-
point (BFP) while maintaining comparable preci-
sion.

• It provides greater precision and better space
efficiency than provided by the decimal-arithme-
tic instructions and the packed-decimal format as
described in Chapter 8, “Decimal Instructions.”

• It supports IEEE flags, exceptions, and special
entities of “infinity” and “Not-a-Number” (NaN).

• It supports eight automatic rounding methods.
For DFP computational instructions, an explicit
rounding method can be specified in a modifier
field in the instruction.

• It facilitates production of DFP results with a pre-
cision other than any supported format precision
and with the effect of single rounding.

• It provides operations for conversion between
fixed-point and DFP formats.

• It provides operations for conversion between
packed-decimal and DFP formats.

• It provides three-operand nondestructive arith-
metic operations by permitting different target-
operand registers from source-operand registers.

The DFP facility uses the same 16 floating-point reg-
isters as those used by HFP and BFP. A set of radix-
independent floating-point-support instructions can
be used to load, store, or change the sign of a DFP
operand. These instructions are defined in Chapter
9, “Floating-Point Overview and Support Instruc-
tions.”

The DFP facility uses the same floating-point-control
(FPC) register as that used by BFP. The bits of the
FPC register are often referred to as, for example,
FPC1.0, meaning bit 0 of byte 1 of the register. The
description of the FPC register, including the DFP-
rounding-mode field, and the instructions that oper-
ate on the FPC register are provided in Chapter 9,
“Floating-Point Overview and Support Instructions.”

The DFP computational model, a high-level overview
of the computational steps, is described in the sec-
tion “IEEE Computational Operations” of Chapter 9,
“Floating-Point Overview and Support Instructions.”
Detailed definitions of rounding methods and IEEE
exceptions supported by DFP are also described in
the section.

DFP Arithmetic

Finite Floating-Point Number

A finite floating-point number has three components:
a sign, an exponent, and a significand. The magni-
tude of a finite number is the product of significand
multiplied by the radix raised to the power of the
exponent. The number is positive or negative
depending on whether the sign bit is zero or one,
respectively.

Cohort
Finite decimal-floating-point (DFP) numbers are not
necessarily normalized; that is, the leftmost signifi-
cand digit may be zero. This allows some values to
have multiple representations; each with a different
combination of the significand and the exponent. The
set of different representations for a value of the
same sign is called a cohort; and each representa-
tion in a cohort is called a cohort member. A positive
zero and a negative zero have the same value but
are in different cohorts.

Quantum
For a DFP finite number, the magnitude of a value of
one in the rightmost digit position of the significand is
called the quantum. Each cohort member of a cohort
uses a different quantum to represent the same
value. Regardless of whether the left-units view or
right-units view is taken, the quantum of a cohort
member is the same.

Preferred Quantum
For operations that produce a DFP result, when, in
the absence of a trap overflow or a trap underflow,
the delivered value is a finite number, a value, called
the preferred quantum, is defined to select a cohort
member to represent the delivered value. The pre-
ferred quantum for each of these operations is shown
in Figure 20-4 on page 20-10. When the delivered
value is exact, the preferred quantum depends on the

Decimal-Floating-Point Instructions 20-3

operation. When the delivered value is inexact, the
preferred quantum is the smallest quantum of the
cohort members, unless otherwise stated.

Scaled Preferred Quantum
For operations that produce a DFP result, when a
trap overflow or a trap underflow occurs, a scaled
preferred quantum is used to select a cohort member
to represent the delivered value. The scaled pre-
ferred quantum is obtained by scaling the preferred
quantum using the same scale factor as that used to
obtain the delivered value.

Delivered Quantum
Normally, when the delivered value is a finite number,
the result is selected from the cohort for the delivered
value in the target format. However, in case of a trap
overflow or trap underflow for LOAD ROUNDED, the
result is selected from a subset of the cohort for the
delivered value in the source format. This subset of
the cohort consists of cohort members that have the
number of DFP significand digits equal to or less
than the precision of the target format.

In the absence of a trap overflow or trap underflow, if
the delivered value is a finite number, the cohort
member with the quantum closest to the preferred
quantum is selected.

In case of a trap overflow or trap underflow, the
cohort member with the quantum closest to the
scaled preferred quantum is selected.

Special Quantum-Handling Operations
Special operations are provided to handle the quan-
tum: COMPARE BIASED EXPONENT can be used
to compare two quanta; EXTRACT BIASED EXPO-
NENT can be used to determine the quantum of a
finite number; and QUANTIZE can be used to adjust
the quantum of a finite number.

Programming Notes:

1. Many financial applications and commercial
databases use scaled integer representation of
decimal data. Calculations are carried out by
using integer arithmetic and scaling factors are
tracked separately; the scaling factor is often an
attribute of a column in the database.

This computational model can be supported by
DFP by allowing the integer part of decimal data
to map into the significand with a right-units view
and the scaling factor to map into the quantum.

2. The term coefficient is used in some other docu-
ments to mean an integer value in significand;
that is, significand in right-units view.

DFP Data Formats

Decimal-floating-point data may be represented in
any of three data formats: short, long, or extended.

The contents of each data format represent encoded
information. Special codes are assigned to distin-
guish finite numbers from NaNs and infinities.

For finite numbers, a biased exponent is used in the
format. For each format, a different bias is used for
right-units-view (RUV) exponents from that for left-
units-view (LUV) exponents. The biased exponents
are unsigned numbers and all biases are shown in
Figure 20-3 on page 20-6. The biased exponent is
encoded with the leftmost digit (LMD) of the signifi-
cand in the combination field. The remaining digits of
the significand are encoded in the encoded trailing-
significand field.

DFP Short Format

When an operand in the DFP short format is loaded
into a floating-point register, it occupies the left half of
the register, and the right half remains unchanged.

DFP Long Format

When an operand in the DFP long format is loaded
into a floating-point register, it occupies the entire
register.

S Combination Encoded Trailing Significand
0 1 12 31

S Combination Encoded Trailing Significand
0 1 14 31

Encoded Trailing Significand (continued)
32 63

20-4 The z/Architecture CPU Architecture

DFP Extended Format

An operand in the DFP extended format occupies a
register pair. The leftmost 64 bits occupy the entire
lower-numbered register of the pair and the rightmost
64 bits occupy the entire higher-numbered register.

The properties of the three formats are tabulated in
Figure 20-3 on page 20-6.

Sign
The sign bit is in bit 0 of each format, and is zero for
plus and one for minus.

Combination
For finite numbers, this field contains the biased
exponent and the leftmost digit of the significand; for
NaNs and infinities, this field contains codes to iden-
tify them.

When bits 1-5 of the format are in the range of 00000
- 11101, the operand is a finite number. The two left-
most bits of the biased exponent and the leftmost
digit of the significand are encoded in bits 1-5 of the
format. Bit 6 through the end of the combination field
contain the rest of the biased exponent.

When bits 1-5 of the format field are 11110, the oper-
and is an infinity. All bits in the combination field to
the right of bit 5 of the format constitute the reserved
field for infinity. A nonzero value in the reserved field
is accepted in a source infinity; the reserved field is
set to zero in a resultant infinity.

When bits 1-5 of the format are 11111, the operand
is a NaN and bit 6, called the SNaN bit, further distin-
guishes QNaN from SNaN. If bit 6 is zero, then it is
QNaN; otherwise, it is SNaN. All bits in the combina-
tion field to the right of bit 6 of the format constitute
the reserved field for NaN. A nonzero value in the
reserved field is accepted in a source NaN; the
reserved field is set to zero in a resultant NaN.

Figure 20-1 summarizes the encoding and layout of
the combination field. In the figure, the biased expo-
nent of a finite number is the concatenation of two
parts: (1) two leftmost bits are derived from bits 1-5
of the format, and (2) the remaining bits in the combi-
nation field. For example, if the combination field of
the DFP short format contains 10101010101 binary,
it represents a biased exponent of 10010101 binary
and a leftmost significand digit of 5.

S Combination Encoded Trailing Significand
0 18 31

Encoded Trailing Significand (continued)
32 63

Encoded Trailing Significand (continued)
64 95

Encoded Trailing Significand (continued)
96 127 Bits

1 2 3 4 5
 Bit
6 Type

Biased
Exponent LMD

00000 m Finite number 00RBE 0

00001 m Finite number 00RBE 1

00010 m Finite number 00RBE 2

00011 m Finite number 00RBE 3

00100 m Finite number 00RBE 4

00101 m Finite number 00RBE 5

00110 m Finite number 00RBE 6

00111 m Finite number 00RBE 7

01000 m Finite number 01RBE 0

01001 m Finite number 01RBE 1

01010 m Finite number 01RBE 2

01011 m Finite number 01RBE 3

01100 m Finite number 01RBE 4

01101 m Finite number 01RBE 5

01110 m Finite number 01RBE 6

01111 m Finite number 01RBE 7

10000 m Finite number 10RBE 0

10001 m Finite number 10RBE 1

10010 m Finite number 10RBE 2

10011 m Finite number 10RBE 3

10100 m Finite number 10RBE 4

10101 m Finite number 10RBE 5

10110 m Finite number 10RBE 6

10111 m Finite number 10RBE 7

11000 m Finite number 00RBE 8

11001 m Finite number 00RBE 9

11010 m Finite number 01RBE 8

11011 m Finite number 01RBE 9

11100 m Finite number 10RBE 8

11101 m Finite number 10RBE 9

11110 r Infinity1 -- --

11111 0 QNaN2 -- --

Figure 20-1. The Combination Field

Decimal-Floating-Point Instructions 20-5

Encoded Trailing Significand
This field contains an encoded decimal number,
which represents digits in the trailing significand. The
trailing significand contains all significand digits,
except the leftmost digit. For infinities, nonzero trail-
ing-significand digits are accepted in a source infin-
ity; all trailing-significand digits in a resultant infinity
are set to zeros, unless otherwise stated. For NaNs,
this field contains diagnostic information called the
payload.

The encoded trailing-significand field is a multiple of
10-bit blocks called declets. The number of declets
depends on the format. Each declet represents three
decimal digits in a 10-bit value. This is described in
the section, “Densely Packed Decimal (DPD)” on
page 20-58.

Values of Finite Numbers
The values of finite numbers in the various formats
are shown in Figure 20-2.

Programming Note: The RUV exponent, Q, is
related to the LUV exponent, E, as follows:
Q = E - p + 1, where p is the format precision.

Significand

Hereafter, the term significand is used to mean the
following:

1. For finite numbers, the significand contains all
trailing significand digits padded on the left with
the leftmost digit of significand derived from the
combination field.

2. For infinities and NaNs, the significand contains
all trailing significand digits padded on the left
with a zero digit.

DFP Significant Digits
For a finite number, the DFP significant digits begin
with the leftmost nonzero significand digit and end
with the rightmost significand digit.

For a finite number, the number of DFP significant
digits is the difference of subtracting the number of
leading zeros from the format precision. The number
of leading zeros is the number of zeros in the signifi-
cand to the left of the leftmost nonzero digit.

Programming Note: The number of DFP significant
digits of the value zero is zero.

11111 1 SNaN2 -- --

Explanation:

-- Not applicable.

 Concatenation.
1 All bits in the combination field to the right of bit 5 of the

format constitute the reserved field for infinity.
2 All bits in the combination field to the right of bit 6 of the

format constitute the reserved field for NaN.

LMD Leftmost digit of the significand.

m Bit 6 is a part of the remaining biased exponent.

RBE Remaining biased exponent. It includes all bits in the
combination field to the right of bit 5 of the format.

r Bit 6 is a reserved bit for infinity.

Bits
1 2 3 4 5

 Bit
6 Type

Biased
Exponent LMD

Figure 20-1. The Combination Field (Continued)

Format

Value

Left-Units View Right-Units View

Short ±10e - 95 (d0.d1d2...d6) ±10e - 101 (d0d1d2...d6)

Long ±10e - 383 (d0.d1d2...d15) ±10e - 398 (d0d1d2...d15)

Extended ±10e - 6143 (d0.d1d2...d33) ±10e - 6176 (d0d1d2...d33)

Explanation:

d0.d1d2…dp-1Significand in left-units view. The decimal point is to the
immediate right of the leftmost digit and di is a decimal
digit, where 0 i (p - 1) and p is the format
precision.

d0d1d2…dp-1Significand in right-units view. The decimal point is to the
right of the rightmost digit and di is a decimal digit,
where 0 i (p - 1) and p is the format precision.

e Biased exponent.

Figure 20-2. Values of Finite Numbers

20-6 The z/Architecture CPU Architecture

Canonical Declets

The trailing significand digits in a DFP data format
are encoded by representing three decimal digits
with a 10-bit declet. Of the 1024 possible declets,
1000 canonical declets are produced in resultant
DFP operands, and 24 noncanonical declets are not
produced as DFP results. Both canonical and nonca-
nonical declets are accepted in source DFP oper-
ands. The encoding of a canonical declet or
noncanonical declet is described in the section,
“Densely Packed Decimal (DPD)” on page 20-58.

DFP Canonical Data

A finite number is canonical when all declets are
canonical declets.

An infinity is canonical when the reserved field is
zero and all digits in the trailing significand are zeros.

A NaN is canonical when the reserved field is zero
and all declets are canonical declets.

Programming Note: To ensure compatibility with
future extensions and interchangeability between
software routines, only DFP canonical data should be
used.

Classes of DFP Data

There are six classes of DFP data: zero, subnormal
number, normal number, infinity, signaling NaN, and
quiet NaN. The zero, subnormal number, and normal
number data classes are collectively called finite
numbers. The instruction TEST DATA CLASS may be
used to determine the class of a DFP operand.

Zeros
Zeros have a zero significand and any representable
value in the biased exponent. A +0 is distinct from a
-0 and zeros with different biased exponents are dis-
tinct, except that comparison treats them as equal.

Subnormal Numbers
Subnormal numbers are numbers which are smaller
than Nmin and larger than zero in magnitude.

Property
Format

Short Long Extended
Format length (bits) 32 64 128
Combination length (bits) 11 13 17

Encoded Trailing significand length (bits) 20 50 110

Precision (p) 7 16 34

Maximum left-units-view (LUV) exponent (Emax) 96 384 6144
Minimum left-units-view (LUV) exponent (Emin) -95 -383 -6143

Left-units-view (LUV) bias 95 383 6143

Maximum right-units-view (RUV) exponent (Qmax) 90 369 6111
Minimum right-units-view (RUV) exponent (Qmin) -101 -398 -6176

Right-units-view (RUV) bias 101 398 6176

Maximum biased exponent 191 767 12,287
Nmax (107 - 1) 1090 (1016 - 1) 10369 (1034 - 1) 106111

Nmin 1 10–95 1 10–383 1 10–6143

Dmin 1 10–101 1 10–398 1 10–6176

Explanation:

Dmin Smallest (in magnitude) subnormal number.
Nmax Largest (in magnitude) normal number.
Nmin Smallest (in magnitude) normal number,

Figure 20-3. Summary of DFP Formats

Decimal-Floating-Point Instructions 20-7

Normal Numbers
Normal numbers are numbers whose magnitude is
between Nmin and Nmax inclusively.

Infinities
An infinity is represented by 11110 binary in bits 1-5
of the data format. Infinities can participate in most
arithmetic operations and give a consistent result,
usually infinity. In comparisons, + compares greater
than any finite number, and - compares less than
any finite number. All + are compared equal and all
- are compared equal.

Signaling and Quiet NaNs
A NaN (Not-a-Number) is represented by 11111
binary in bits 1-5 of the data format. NaNs are pro-
duced in place of a numeric result after an invalid
operation when there is no interruption. NaNs may
also be used by the program to flag special oper-
ands, such as the contents of an uninitialized storage
area.

There are two types of NaNs, signaling and quiet. A
signaling NaN (SNaN) is distinguished from a quiet
NaN (QNaN) by bit 6, the SNaN bit, of the data for-
mat: zero for the QNaN and one for the SNaN. A spe-
cial QNaN, called the default QNaN, is supplied as
the nontrap result for an IEEE-invalid-operation
exception; it has a plus sign, and the SNaN bit, the
reserved field, and the payload are set to zeros.

Normally, source QNaNs are canonicalized to
become the resultant QNaN that has the same sign
and payload as the source during operations so that
they will remain visible at the end. (See the section
“Canonicalization” on page 20-7 for details.) An
SNaN operand causes an IEEE invalid-operation
exception, unless otherwise stated. When the excep-
tion is recognized for a SNaN, the nontrap result is
the corresponding QNaN, which is produced by set-
ting the SNaN bit in the source SNaN to zero and
then the converted QNaN is canonicalized, and the
IEEE-invalid-operation flag (FPC 1.0) is set to one.

Where applicable, the propagation of NaNs is illus-
trated in the action figure for an instruction.

Canonicalization
For operations that are defined to produce a DFP
result, the result placed at the target operand location
is canonical, unless otherwise stated.

Programming Notes:

1. The following instructions may produce a nonca-
nonical infinity as the result:

• INSERT BIASED EXPONENT
• LOAD LENGTHENED
• LOAD ROUNDED
• SHIFT SIGNIFICAND LEFT
• SHIFT SIGNIFICAND RIGHT

Infinities produced as a DFP result have the
reserved field set to zero and have canonical
declets in the encoded trailing-significand field.
However, the infinity produced by the above
instructions does not necessarily have zeros in
all digits in the trailing significand. Such an infin-
ity is not canonical.

2. Only canonical operands should be used, as it is
possible that some libraries or software routines
reject noncanonical operands.

3. Except for INSERT BIASED EXPONENT, if only
canonical source operands are used, the result is
canonical. INSERT BIASED EXPONENT may
produce a noncanonical result even if all source
operands are canonical. Special precautions
should be taken to avoid producing a noncanoni-
cal result from INSERT BIASED EXPONENT.

DFP-Format Conversion

DFP format conversion is described in the section
“IEEE Same-Radix Format Conversion” of Chapter 9,
“Floating-Point Overview and Support Instructions.”

DFP Rounding

DFP rounding is described in the section “IEEE DFP
Rounding” of Chapter 9, “Floating-Point Overview
and Support Instructions.”

DFP Comparison

DFP comparison is described in the section “IEEE
Comparison” of Chapter 9, “Floating-Point Overview
and Support Instructions.”

20-8 The z/Architecture CPU Architecture

DFP Formatting Instructions

A set of instructions are provided to compose and
decompose DFP data. These instructions do not rec-
ognize any IEEE exceptions. They are:

• CONVERT FROM PACKED
• CONVERT FROM SIGNED PACKED
• CONVERT FROM UNSIGNED PACKED
• CONVERT FROM ZONED
• CONVERT TO PACKED
• CONVERT TO SIGNED PACKED
• CONVERT TO UNSIGNED PACKED
• CONVERT TO ZONED
• EXTRACT BIASED EXPONENT
• INSERT BIASED EXPONENT
• SHIFT SIGNIFICAND LEFT
• SHIFT SIGNIFICAND RIGHT

Conversion of data between character strings in an
external format and the DFP format may be per-
formed in several steps. At certain steps, for finite
numbers, the significand is kept in the packed-deci-
mal format and the biased exponent in the fixed-point
format. See Chapter 8, “Decimal Instructions,” for a
detailed description of the zoned and packed-deci-
mal formats.

It takes 17 packed-decimal digits to hold the 16 sig-
nificand digits and one sign of a long DFP format; it
takes 35 packed-decimal digits for an extended DFP
format. To facilitate the conversion, the significand is
divided into pieces and only one piece contains the
sign. Each piece fits into a register or a register pair,
and each piece is converted separately. To support
this piecemeal conversion, two formats, signed-
packed-decimal and unsigned-packed-decimal, are
used to hold the pieces.

To facilitate the conversion between packed-decimal
format data in memory and the DFP format, the
CONVERT FROM PACKED and CONVERT TO
PACKED instructions are provided. It takes up to 9
bytes to hold the 16 significand digits and one sign
digit of a long DFP format. It takes up to 18 bytes to
hold the 34 significand digits and one sign digit for an
extended DFP format. Any unused digits in a packed-
decimal format operand of CONVERT FROM
PACKED must be zero.

For a zoned-decimal format, it takes 16 bytes to hold
the 16 significand digits and one sign digit of a long
DFP format; it takes 34 bytes for an extended DFP

format. To facilitate the conversion, the CONVERT
FROM ZONED and CONVERT TO ZONED instruc-
tions are provided.

Signed-Packed-Decimal Format
In the signed-packed-decimal format, each byte con-
tains two 4-bit decimal digits (D), except for the right-
most byte, which contains a 4-bit sign (S) to the right
of a 4-bit decimal digit.

When a signed-packed-decimal operand resides in a
general register (GR), the operand is 64 bits (15 dig-
its and sign), as shown below.

When a signed-packed-decimal operand resides in a
general-register pair, the leftmost 64 bits of the oper-
and occupy the even-numbered register of the pair
and the rightmost 64 bits occupy the odd-numbered
register, as shown below.

Unsigned-Packed-Decimal Format
In the unsigned-packed-decimal format, each byte
contains two 4-bit decimal digits (D) and there is no
sign.

When an unsigned-packed-decimal operand resides
in a general register, the operand is 64 bits (16 dig-
its), as shown below.

When an unsigned-packed-decimal operand resides
in a general-register pair, the leftmost 64 bits of the
operand occupy the even-numbered register of the
pair and the rightmost 64 bits occupy the odd-num-
bered register, as shown below.

GR D D D D D D D D D D D D D D D S
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 63

GReven D D D D D D D D D D D D D D D D
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 63

GRodd D D D D D D D D D D D D D D D S
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 127

GR D D D D D D D D D D D D D D D D
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 63

GReven D D D D D D D D D D D D D D D D
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 63

GRodd D D D D D D D D D D D D D D D D
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 127

Decimal-Floating-Point Instructions 20-9

Zoned-Decimal Format

In the unsigned zoned-decimal format, each byte
contains two fields, a zone field in the leftmost four bit
positions and a decimal digit in the rightmost four bit
positions. The signed zoned-decimal format is similar
to the unsigned zoned-decimal format except that the
zone field of the rightmost byte instead contains a 4-
bit sign. A zoned-decimal operand is a storage oper-

and. See “Zoned Format” on page 8-1 for more
details.

IEEE Exceptions

The IEEE exceptions for the DFP instructions are
described in the section “IEEE Exceptions” on
page 9-18. This also includes the quantum excep-
tion.

20-10 The z/Architecture CPU Architecture

Summary of Preferred Quantum

Figure 20-4 summarizes all preferred quanta.

Summary of Rounding And Range
Actions

Figure 20-5 on page 20-11 and Figure 20-6 on

page 20-12 summarizes rounding and range actions.

Operations Delivered value Preferred Quantum
ADD Exact The smaller quantum of the two source operands†

Inexact The smallest quantum of cohort members
CONVERT FROM FIXED Exact One†

Inexact The smallest quantum of cohort members
CONVERT FROM LOGICAL Exact One†

Inexact The smallest quantum of cohort members
CONVERT FROM PACKED — One
CONVERT FROM SIGNED PACKED — One
CONVERT FROM UNSIGNED PACKED — One
CONVERT FROM ZONED — One
DIVIDE Exact The quantum of the dividend divided by the quantum of the divisor†

Inexact The smallest quantum of cohort members
INSERT BIASED EXPONENT — The quantum corresponds to the requested biased exponent
LOAD AND TEST — The quantum of the source operand
LOAD FP INTEGER Exact The larger value of one and the quantum of the source operand

Inexact One
LOAD LENGTHENED Exact* The quantum of the source operand
LOAD ROUNDED Exact The quantum of the source operand†

Inexact The smallest quantum of cohort members
PERFORM FLOATING POINT
OPERATION (DPQC=0)‡

Exact The largest quantum of cohort members†
Inexact The smallest quantum of cohort members

PERFORM FLOATING POINT
OPERATION (DPQC=1)‡

Exact One†
Inexact The smallest quantum of cohort members

MULTIPLY Exact The product of the quanta of the two source operands†
Inexact The smallest quantum of cohort members

QUANTIZE Exact The requested quantum
Inexact The requested quantum

REROUND Exact See the instruction description
Inexact The quantum that corresponds to the requested significance

SHIFT SIGNIFICAND LEFT — The quantum of the source operand
SHIFT SIGNIFICAND RIGHT — The quantum of the source operand
SUBTRACT Exact The smaller quantum of the two source operands†

Inexact The smallest quantum of cohort members

Explanation:

* This is true due to a condition to the left of the column.
— For these operations, the concept of exact result or inexact result does not apply.
† If the delivered value cannot be represented with the preferred quantum, it is represented with the quantum closest to the preferred

quantum.
‡ Applicable only when the operation-type code is 01 hex (PFPO Convert Floating-Point Radix).
DPQC DFP preferred quantum control.

Figure 20-4. Summary of Preferred Quantum

Decimal-Floating-Point Instructions 20-11

Range of v Case

Nontrap Result (r) when Effective Rounding Method Is

RNTE RNTZ RNTA RA RM RFS RP RZ

v < -Nmax, g < -Nmax Overflow -1 -1 -1 -1 -1 -Nmax -Nmax -Nmax

v < -Nmax, g = -Nmax Normal -Nmax -Nmax -Nmax — — -Nmax -Nmax -Nmax

-Nmax v -Nmin Normal g g g g g g g g

-Nmin < v -Dmin Tiny d* d* d* d* d* d* d d

-Dmin < v < -Dmin/2 Tiny -Dmin -Dmin -Dmin -Dmin -Dmin -Dmin -0 -0

v = -Dmin/2 Tiny -0 -0 -Dmin -Dmin -Dmin -Dmin -0 -0

-Dmin/2 < v < 0 Tiny -0 -0 -0 -Dmin -Dmin -Dmin -0 -0

v = 0 EZD +0 +0 +0 +0 -0 +0 +0 +0

0 < v < +Dmin/2 Tiny +0 +0 +0 +Dmin +0 +Dmin +Dmin +0

v = +Dmin/2 Tiny +0 +0 +Dmin +Dmin +0 +Dmin +Dmin +0

+Dmin/2 < v < +Dmin Tiny +Dmin +Dmin +Dmin +Dmin +0 +Dmin +Dmin +0

+Dmin v < +Nmin Tiny d* d* d* d* d d* d* d

+Nmin v +Nmax Normal g g g g g g g g

+Nmax < v, g = +Nmax Normal +Nmax +Nmax +Nmax — +Nmax +Nmax — +Nmax

+Nmax < v, +Nmax < g Overflow +1 +1 +1 +1 +Nmax +Nmax +1 +Nmax

Explanation:

— This situation cannot occur.
* The rounded value, in the extreme case, may be Nmin. In this case, the exceptions are underflow, inexact and incremented.
1 The nontrap result r is considered to have been incremented.
d The value derived when the precise intermediate value (v) is rounded to the format of the target, including both precision and

bounded exponent range. Except as explained in note *, this is a subnormal number.
g The precision-rounded value. The value derived when the precise intermediate value (v) is rounded to the precision of the target,

but assuming an unbounded exponent range.
v Precise intermediate value. This is the value, before rounding, assuming unbounded precision and an unbounded exponent

range. For LOAD ROUNDED, v is the source value.
EZD Exact zero difference. The case applies only to ADD and SUBTRACT. For all other DFP operations, a zero result is detected by

inspection of the source operands without use of the R(v) function.
Dmin Smallest (in magnitude) representable subnormal number in the target format.
Nmax Largest (in magnitude) representable finite number in the target format.
Nmin Smallest (in magnitude) representable normal number in the target format.
RNTA Round to nearest with ties away from 0.
RNTE Round to nearest with ties to even.
RNTZ Round to nearest with ties toward 0.
RA Round away from 0.
RFS Round to prepare for shorter precision.
RM Round toward -.
RP Round toward +.
RZ Round toward 0.

Figure 20-5. Action for R(v): Rounding and Range Actions

20-12 The z/Architecture CPU Architecture

Case Is
 r

in
ex

ac
t

(r
v)

O
ve

rfl
ow

 M
as

k
(F

PC
 0

.2
)

Un
de

rfl
ow

 M
as

k
(F

PC
 0

.3
)

IE
EE

 In
ex

ac
t

Ex
ce

pt
io

n
Co

nt
ro

l
(X

xC
)

In
ex

ac
t M

as
k

(F
PC

 0
.4

)

Is
 Q

X
re

co
gn

iz
ed

3

Q
ua

nt
um

 E
xc

ep
tio

n
Co

nt
ro

l2 (X
qC

)

Q
ua

nt
um

 M
as

k2

(F
PC

 0
.5

)

Is
 r

In
cr

em
en

te
d

(|r
|>

|v
|)

Is
 g

 in
ex

ac
t

(g
v

)

Is
 g

 In
cr

em
en

te
d

(|g
|>

|v
|)

Results

Overflow Yes1 0 — 0 0 Yes1 0 0 — — — T(r), SFo 1, SFx 1, SFq 1

Overflow Yes1 0 — 0 0 Yes1 1 — — — — T(r), SFo 1, SFx 1

Overflow Yes1 0 — 1 — Yes1 0 0 — — — T(r), SFo 1, SFq 1

Overflow Yes1 0 — 1 — Yes1 1 — — — — T(r), SFo 1

Overflow Yes1 0 — 0 0 Yes1 0 1 — — — T(r), SFo 1, SFx 1, PIDq(04)

Overflow Yes1 0 — 1 — Yes1 0 1 — — — T(r), SFo 1, PIDq(04)

Overflow Yes1 0 — 0 1 No1 — — No — — T(r), SFo 1, PIDx(08)

Overflow Yes1 0 — 0 1 No1 — — Yes — — T(r), SFo 1, PIDy(0C)

Overflow Yes1 1 — — — No1 — — — No No1 Tw(g), PIDo(20)

Overflow Yes1 1 — — — No1 — — — Yes No Tw(g), PIDox(28)

Overflow Yes1 1 — — — No1 — — — Yes Yes Tw(g), PIDoy(2C)

Normal No — — — — No — — — — — T(r)

Normal No — — — — Yes 0 0 — — — T(r), SFq 1

Normal No — — — — Yes 1 — — — — T(r)

Normal No — — — — Yes 0 1 — — — T(r), PIDq(04)

Normal Yes — — 0 0 Yes1 0 0 — — — T(r), SFx 1, SFq 1

Normal Yes — — 0 0 Yes1 1 — — — — T(r), SFx 1

Explanation:

— The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 The quantum exception mask bit and the quantum exception control are defined only when the floating-point extension facility is

installed.
3 This column specifies whether a QX is recognized by considering all columns to the left of this column and the existence of the

quantum exception condition. The specification in this column does not include the effects of the quantum-exception mask bit and the
quantum-exception control.

 Scale factor. For overflow, For underflow, The unsigned scaling exponent () depends on the type of operation and
operand format. For all DFP operations except LOAD ROUNDED, depends on the target format and is 576 for long, and 9216 for
extended. For LOAD ROUNDED, depends on the source format and is 192 for long and 3072 for extended.

g The precision-rounded value. The value derived when the precise intermediate value (v) is rounded to the precision of the target, but
assuming an unbounded exponent range.

r Nontrap result as defined in Part 1 of this figure.
v Precise intermediate value. This is the value, before rounding, assuming unbounded precision and unbounded exponent range.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 20-8 on page 20-16.
PIDq(04) DXC 04 is defined only when the floating-point extension facility is installed.
QX Quantum exception. This exception is defined only when the floating-point extension facility is installed.
SFo IEEE overflow flag, FPC 1.2.
SFq Quantum-exception status flag, FPC 1.5. This flag is defined only when the floating-point extension facility is installed
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.
Tw(x) The scaled result x is placed at the target operand location. For all DFP operations except LOAD ROUNDED, the scaled result is in the

format and length of the target and rounded to the precision of the target. For LOAD ROUNDED, the scaled result is in the format and
length of the source, but rounded to the precision of the target.

Figure 20-6. (Part 1 of 3) Rounding and Range Actions

Decimal-Floating-Point Instructions 20-13

Normal Yes — — 1 — Yes1 0 0 — — — T(r), SFq 1

Normal Yes — — 1 — Yes1 1 — — — — T(r)

Normal Yes — — 0 0 Yes1 0 1 — — — T(r), SFx 1, PIDq(04)

Normal Yes — — 1 — Yes1 0 1 — — — T(r), PIDq(04)

Normal Yes — — 0 1 No1 — — No — — T(r), PIDx(08)

Normal Yes — — 0 1 No1 — — Yes — — T(r), PIDy(0C)

Tiny No — 0 — — No — — — — — T(r)

Tiny No — 0 — — Yes 0 0 — — — T(r), SFq 1

Tint No — 0 — — Yes 1 — — — — T(r)

Tiny No — 0 — — Yes 0 1 — — — T(r), PIDq(04)

Tiny No — 1 — — No1 — — — No1 No1 Tw(g), PIDu(10)

Tiny Yes — 0 0 0 Yes1 0 0 — — — T(r), SFu 1, SFx 1, SFq 1

Tiny Yes — 0 0 0 Yes1 1 — — — — T(r), SFu 1, SFx 1

Tiny Yes — 0 1 — Yes1 0 0 — — — T(r), SFu 1, SFq 1

Tiny Yes — 0 1 — Yes1 1 — — — — T(r), SFu 1

Tiny Yes — 0 0 0 Yes1 0 1 — — — T(r), SFu 1, SFx 1, PIDq(04)

Tiny Yes — 0 1 — Yes1 0 1 — — — T(r), SFu 1, PIDq(04)

Case Is
 r

in
ex

ac
t

(r
v)

O
ve

rfl
ow

 M
as

k
(F

PC
 0

.2
)

Un
de

rfl
ow

 M
as

k
(F

PC
 0

.3
)

IE
EE

 In
ex

ac
t

Ex
ce

pt
io

n
Co

nt
ro

l
(X

xC
)

In
ex

ac
t M

as
k

(F
PC

 0
.4

)

Is
 Q

X
re

co
gn

iz
ed

3

Q
ua

nt
um

 E
xc

ep
tio

n
Co

nt
ro

l2 (X
qC

)

Q
ua

nt
um

 M
as

k2

(F
PC

 0
.5

)

Is
 r

In
cr

em
en

te
d

(|r
|>

|v
|)

Is
 g

 in
ex

ac
t

(g
v

)

Is
 g

 In
cr

em
en

te
d

(|g
|>

|v
|)

Results

Explanation:

— The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 The quantum exception mask bit and the quantum exception control are defined only when the floating-point extension facility is

installed.
3 This column specifies whether a QX is recognized by considering all columns to the left of this column and the existence of the

quantum exception condition. The specification in this column does not include the effects of the quantum-exception mask bit and the
quantum-exception control.

 Scale factor. For overflow, For underflow, The unsigned scaling exponent () depends on the type of operation and
operand format. For all DFP operations except LOAD ROUNDED, depends on the target format and is 576 for long, and 9216 for
extended. For LOAD ROUNDED, depends on the source format and is 192 for long and 3072 for extended.

g The precision-rounded value. The value derived when the precise intermediate value (v) is rounded to the precision of the target, but
assuming an unbounded exponent range.

r Nontrap result as defined in Part 1 of this figure.
v Precise intermediate value. This is the value, before rounding, assuming unbounded precision and unbounded exponent range.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 20-8 on page 20-16.
PIDq(04) DXC 04 is defined only when the floating-point extension facility is installed.
QX Quantum exception. This exception is defined only when the floating-point extension facility is installed.
SFo IEEE overflow flag, FPC 1.2.
SFq Quantum-exception status flag, FPC 1.5. This flag is defined only when the floating-point extension facility is installed
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.
Tw(x) The scaled result x is placed at the target operand location. For all DFP operations except LOAD ROUNDED, the scaled result is in the

format and length of the target and rounded to the precision of the target. For LOAD ROUNDED, the scaled result is in the format and
length of the source, but rounded to the precision of the target.

Figure 20-6. (Part 2 of 3) Rounding and Range Actions

20-14 The z/Architecture CPU Architecture

Tiny Yes — 0 0 1 No1 — — No — — T(r), SFu 1, PIDx(08)

Tiny Yes — 0 0 1 No1 — — Yes — — T(r), SFu 1, PIDy(0C)

Tiny Yes — 1 — — No1 — — — No No1 Tw(g), PIDu(10)

Tiny Yes — 1 — — No1 — — — Yes No Tw(g), PIDux(18)

Tiny Yes — 1 — — No1 — — — Yes Yes Tw(g), PIDuy(1C)

Case Is
 r

in
ex

ac
t

(r
v)

O
ve

rfl
ow

 M
as

k
(F

PC
 0

.2
)

Un
de

rfl
ow

 M
as

k
(F

PC
 0

.3
)

IE
EE

 In
ex

ac
t

Ex
ce

pt
io

n
Co

nt
ro

l
(X

xC
)

In
ex

ac
t M

as
k

(F
PC

 0
.4

)

Is
 Q

X
re

co
gn

iz
ed

3

Q
ua

nt
um

 E
xc

ep
tio

n
Co

nt
ro

l2 (X
qC

)

Q
ua

nt
um

 M
as

k2

(F
PC

 0
.5

)

Is
 r

In
cr

em
en

te
d

(|r
|>

|v
|)

Is
 g

 in
ex

ac
t

(g
v

)

Is
 g

 In
cr

em
en

te
d

(|g
|>

|v
|)

Results

Explanation:

— The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 The quantum exception mask bit and the quantum exception control are defined only when the floating-point extension facility is

installed.
3 This column specifies whether a QX is recognized by considering all columns to the left of this column and the existence of the

quantum exception condition. The specification in this column does not include the effects of the quantum-exception mask bit and the
quantum-exception control.

 Scale factor. For overflow, For underflow, The unsigned scaling exponent () depends on the type of operation and
operand format. For all DFP operations except LOAD ROUNDED, depends on the target format and is 576 for long, and 9216 for
extended. For LOAD ROUNDED, depends on the source format and is 192 for long and 3072 for extended.

g The precision-rounded value. The value derived when the precise intermediate value (v) is rounded to the precision of the target, but
assuming an unbounded exponent range.

r Nontrap result as defined in Part 1 of this figure.
v Precise intermediate value. This is the value, before rounding, assuming unbounded precision and unbounded exponent range.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 20-8 on page 20-16.
PIDq(04) DXC 04 is defined only when the floating-point extension facility is installed.
QX Quantum exception. This exception is defined only when the floating-point extension facility is installed.
SFo IEEE overflow flag, FPC 1.2.
SFq Quantum-exception status flag, FPC 1.5. This flag is defined only when the floating-point extension facility is installed
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.
Tw(x) The scaled result x is placed at the target operand location. For all DFP operations except LOAD ROUNDED, the scaled result is in the

format and length of the target and rounded to the precision of the target. For LOAD ROUNDED, the scaled result is in the format and
length of the source, but rounded to the precision of the target.

Figure 20-6. (Part 3 of 3) Rounding and Range Actions

Decimal-Floating-Point Instructions 20-15

Result Figures

Concise descriptions of the results produced by
many of the DFP instructions are made by means of
figures which contain columns and rows representing
all possible combinations of DFP data class for the
source operands of an instruction. The information
shown at the intersection of a row and a column is
one or more symbols representing the result or
results produced for that particular combination of
source-operand data classes. Explanations of the
symbols used are contained in each figure. In many
cases, the explanation of a particular result is in the
form of a cross-reference to another figure. In many
cases, the information shown at the intersection con-
sists of several symbols separated by commas. All
such results are produced unless one of the results is
a program interruption. In the case of a program
interruption, the operation is suppressed or com-
pleted as shown in Figure 20-8 on page 20-16.

Data-Exception Codes (DXC) and
Abbreviations

Figure 20-7 shows IEEE exceptions and flag abbrevi-
ations that are used in the result figures, and it
explains the symbols “Xi:” and “Xz:” that are used in
the figures. Bits 0-4 (i,z,o,u,x) of the eight-bit data-
exception code (DXC) in byte 2 of the FPC register
are trap flags and correspond to the same bits in
bytes 0 and 1 of the register (IEEE masks and IEEE
flags). The trap flag for an exception, instead of the
IEEE flag, is set to one when an interruption for the
exception is enabled by the corresponding IEEE
mask bit. Bit 5 (y) of byte 2 is used in conjunction with
bit 4, inexact (x), to indicate that the result has been
incremented in magnitude.

When the floating-point extension facility is installed,
bit 5 of DXC also has a second meaning. When DXC
bits 0-4 are zero, DXC bit 5 is the quantum-exception
trap flag and corresponds to the quantum-exception
mask IMq and its status flag SFq.

Figure 20-8 on page 20-16 shows the various DXCs
that can be indicated, the associated instruction end-
ings, and abbreviations that are used for the DXCs in
the result figures. (The abbreviation “PID” stands for
“program interruption for a data exception.”)

Exception FPC
IEEE
Mask

bit

IEEE Flag

Name Abbr. FPC Bit Abbr.

IEEE invalid operation Xi1 0.0 1.0 SFi

IEEE division by zero Xz2 0.1 1.1 SFz

IEEE overflow Xo 0.2 1.2 SFo

IEEE underflow Xu 0.3 1.3 SFu

IEEE inexact Xx 0.4 1.4 SFx

Quantum-exception Xq 0.5 1.5 SFq

Explanation:

1 The symbol “Xi:” followed by a list of results in a figure
indicates that, when FPC 0.0 is zero, then instruction
execution is completed by setting SFi (FPC 1.0) to one and
producing the indicated results; and when FPC 0.0 is one,
then instruction execution is suppressed, the data
exception code (DXC) is set to 80 hex, and a program
interruption for a data exception occurs.

2 The symbol “Xz:” followed by a list of results in a figure
indicates that, when FPC 0.1 is zero, then instruction
execution is completed by setting SFz (FPC 1.1) to one
and producing the indicated results; and when FPC 0.1 is
one, then instruction execution is suppressed, the data
exception code (DXC) is set to 40 hex, and a program
interruption for a data exception occurs.

Figure 20-7. IEEE Exception and Flag Abbreviations

20-16 The z/Architecture CPU Architecture

Instructions

The Decimal-Floating-Point (DFP) instructions and
their mnemonics and operation codes are listed in
Figure 20-9 on page 20-17.

The figure indicates, in the column labeled “Charac-
teristics,” the instruction format, when the condition
code is set, and the exceptional conditions in oper-
and designations, data, or results that cause a pro-
gram interruption.

All DFP instructions are subject to the AFP-register-
control bit, bit 45 of control register 0. For the DFP
instructions to be executed successfully, the AFP-
register-control bit must be one; otherwise, a DFP-
instruction data exception, DXC 3, is recognized.

Mnemonics for the DFP instructions are distin-
guished from corresponding HFP or BFP instructions
by a T in the mnemonic. Mnemonics for the DFP
instructions have an R as the last letter or the letter
next to the last letter when the instruction is in the
RRE or RRF format. Mnemonics for the DFP instruc-
tions have an A as the last letter when the instruction

is an alternate instruction, which uses additional
modifier fields not available to the original instruction.
Certain letters are used for DFP instructions to repre-
sent operand format and operand-format length, as
follows:

E Short
F Thirty-two-bit fixed point
G Sixty-four-bit fixed point
D Long
P Packed
X Extended
Z Zoned

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the assembler language are
shown with each instruction. For a register-to-register
operation using COMPARE (long), for example,
CDTR is the mnemonic and R1,R2 the operand desig-
nation.

Programming Notes:

1. The floating-point extension facility includes the
following:

• The following new DFP instructions:
– CONVERT FROM FIXED (CXFTR,

CDFTR)
– CONVERT FROM LOGICAL (CXLGTR,

CDLGTR, CXLFTR, CDLFTR)
– CONVERT TO FIXED (CFXTR, CFDTR)
– CONVERT TO LOGICAL (CLGXTR,

CLGDTR, CLFXTR, CLFDTR)
• All reserved values in the effective rounding

method field and a quantum-exception con-
trol (XqC) are assigned for LOAD FP INTE-
GER, LOAD ROUNDED, QUANTIZE, and
REROUND.

• All reserved values in the effective rounding
method field are assigned for CONVERT TO
FIXED.

• An IEEE-inexact-exception control (XxC) is
added to CONVERT TO FIXED and LOAD
ROUNDED.

• An effective rounding method field and a
quantum-exception control (XqC) are added
to ADD, DIVIDE, MULTIPLY, and SUB-
TRACT.

• An effective rounding method field, an IEEE-
inexact-exception control (XxC), and a quan-
tum-exception control (XqC) are added to
CONVERT FROM FIXED.

Abbr.
DXC
(hex)

Data-Exception-Code
Name

Instruction
Ending

PIDq 04 Quantum exception Complete

PIDx 08 IEEE inexact and truncated Complete

PIDy 0C IEEE inexact and incremented Complete

PIDu 10 IEEE underflow, exact Complete,
wrap exponent

PIDux 18 IEEE underflow, inexact and
truncated

Complete,
wrap exponent

PIDuy 1C IEEE underflow, inexact and
incremented

Complete,
wrap exponent

PIDo 20 IEEE overflow, exact Complete,
wrap exponent

PIDox 28 IEEE overflow, inexact and
truncated

Complete,
wrap exponent

PIDoy 2C IEEE overflow, inexact and
incremented

Complete,
wrap exponent

PIDz 40 IEEE division by zero Suppress

PIDi 80 IEEE invalid operation Suppress

Figure 20-8. IEEE Data-Exception Codes (DXC) and
Abbreviations

Decimal-Floating-Point Instructions 20-17

2. The following instructions are available when the
DFP-zoned-conversion facility is installed:

• CONVERT FROM ZONED (CDZT, CXZT)
• CONVERT TO ZONED (CZDT, CZXT)

3. The following instructions are available when the
DFP-packed-conversion facility is installed:

• CONVERT FROM PACKED (CDPT, CXPT)
• CONVERT TO PACKED (CPDT, CPXT)

Name
Mne-

monic Characteristics
Op

Code Page

ADD (extended DFP) AXTR RRF-a C TF ¤7,9 SP Dt Xi Xo Xu Xx B3DA 20-19

ADD (extended DFP) AXTRA RRF-a C F ¤7,9 SP Dt Xi Xo Xu Xx Xq B3DA 20-19

ADD (long DFP) ADTR RRF-a C TF ¤7,9 Dt Xi Xo Xu Xx B3D2 20-19

ADD (long DFP) ADTRA RRF-a C F ¤7,9 Dt Xi Xo Xu Xx Xq B3D2 20-19

COMPARE (extended DFP) CXTR RRE C TF ¤7,9 SP Dt Xi B3EC 20-22

COMPARE (long DFP) CDTR RRE C TF ¤7,9 Dt Xi B3E4 20-22

COMPARE AND SIGNAL (extended DFP) KXTR RRE C TF ¤7,9 SP Dt Xi B3E8 20-23

COMPARE AND SIGNAL (long DFP) KDTR RRE C TF ¤7,9 Dt Xi B3E0 20-23

COMPARE BIASED EXPONENT (extended DFP) CEXTR RRE C TF ¤7,9 SP Dt B3FC 20-23

COMPARE BIASED EXPONENT (long DFP) CEDTR RRE C TF ¤7,9 Dt B3F4 20-23

CONVERT FROM FIXED (32 to extended DFP) CXFTR RRE F ¤7,9 SP Dt B959 20-24

CONVERT FROM FIXED (32 to long DFP) CDFTR RRF-e F ¤7,9 Dt B951 20-24

CONVERT FROM FIXED (64 to extended DFP) CXGTR RRE TF ¤7,9 SP Dt B3F9 20-24

CONVERT FROM FIXED (64 to extended DFP) CXGTRA RRF-e F ¤7,9 SP Dt B3F9 20-24

CONVERT FROM FIXED (64 to long DFP) CDGTR RRE TF ¤7,9 Dt Xx B3F1 20-24

CONVERT FROM FIXED (64 to long DFP) CDGTRA RRF-e F ¤7,9 Dt Xx Xq B3F1 20-24

CONVERT FROM LOGICAL (32 to extended DFP) CXLFTR RRF-e F ¤7,9 SP Dt B95B 20-25

CONVERT FROM LOGICAL (32 to long DFP) CDLFTR RRF-e F ¤7,9 Dt B953 20-25

CONVERT FROM LOGICAL (64 to extended DFP) CXLGTR RRF-e F ¤7,9 SP Dt B95A 20-25

CONVERT FROM LOGICAL (64 to long DFP) CDLGTR RRF-e F ¤7,9 Dt Xx Xq B952 20-25

CONVERT FROM PACKED (to long DFP) CDPT RSL-b PC ¤7,9 A SP Dt Dg B2 EDAE 20-26

CONVERT FROM PACKED (to extended DFP) CXPT RSL-b PC ¤7,9 A SP Dt Dg B2 EDAF 20-26

CONVERT FROM SIGNED PACKED (128 to
extended DFP)

CXSTR RRE TF ¤7,9 SP Dt Dg B3FB 20-28

CONVERT FROM SIGNED PACKED (64 to long
DFP)

CDSTR RRE TF ¤7,9 Dt Dg B3F3 20-28

CONVERT FROM UNSIGNED PACKED (128 to ext.
DFP)

CXUTR RRE TF ¤7,9 SP Dt Dg B3FA 20-28

CONVERT FROM UNSIGNED PACKED (64 to long
DFP)

CDUTR RRE TF ¤7,9 Dt Dg B3F2 20-28

CONVERT FROM ZONED (to extended DFP) CXZT RSL-b ZF ¤7,9 A SP Dt Dg B2 EDAB 20-29

CONVERT FROM ZONED (to long DFP) CDZT RSL-b ZF ¤7,9 A SP Dt Dg B2 EDAA 20-29

CONVERT TO FIXED (extended DFP to 32) CFXTR RRF-e C F ¤7,9 SP Dt Xi Xx B949 20-30

CONVERT TO FIXED (extended DFP to 64) CGXTR RRF-e C TF ¤7,9 SP Dt Xi Xx B3E9 20-29

CONVERT TO FIXED (extended DFP to 64) CGXTRA RRF-e C F ¤7,9 SP Dt Xi Xx B3E9 20-30

CONVERT TO FIXED (long DFP to 32) CFDTR RRF-e C F ¤7,9 Dt Xi Xx B941 20-30

CONVERT TO FIXED (long DFP to 64) CGDTR RRF-e C TF ¤7,9 Dt Xi Xx B3E1 20-29

CONVERT TO FIXED (long DFP to 64) CGDTRA RRF-e C F ¤7,9 Dt Xi Xx B3E1 20-30

CONVERT TO LOGICAL (extended DFP to 32) CLFXTR RRF-e C F ¤7,9 SP Dt Xi Xx B94B 20-32

CONVERT TO LOGICAL (extended DFP to 64) CLGXTR RRF-e C F ¤7,9 SP Dt Xi Xx B94A 20-32

CONVERT TO LOGICAL (long DFP to 32) CLFDTR RRF-e C F ¤7,9 Dt Xi Xx B943 20-32

CONVERT TO LOGICAL (long DFP to 64) CLGDTR RRF-e C F ¤7,9 Dt Xi Xx B942 20-32

CONVERT TO PACKED (from long DFP) CPDT RSL-b C PC ¤7,9 A SP Dt DF ST B2 EDAC 20-33

Figure 20-9. Summary of Decimal Instructions (Part 1 of 3)

20-18 The z/Architecture CPU Architecture

CONVERT TO PACKED (from extended DFP) CPXT RSL-b C PC ¤7,9 A SP Dt DF ST B2 EDAD 20-33

CONVERT TO SIGNED PACKED (extended DFP to
128)

CSXTR RRF-d TF ¤7,9 SP Dt B3EB 20-35

CONVERT TO SIGNED PACKED (long DFP to 64) CSDTR RRF-d TF ¤7,9 Dt B3E3 20-35

CONVERT TO UNSIGNED PACKED (extended DFP
to 128)

CUXTR RRE TF ¤7,9 SP Dt B3EA 20-35

CONVERT TO UNSIGNED PACKED (long DFP to
64)

CUDTR RRE TF ¤7,9 Dt B3E2 20-35

CONVERT TO ZONED (from extended DFP) CZXT RSL-b C ZF ¤7,9 A SP ST B2 EDA9 20-36

CONVERT TO ZONED (from long DFP) CZDT RSL-b C ZF ¤7,9 A SP ST B2 EDA8 20-36

DIVIDE (extended DFP) DXTR RRF-a TF ¤7,9 SP Dt Xi Xz Xo Xu Xx B3D9 20-37

DIVIDE (extended DFP) DXTRA RRF-a F ¤7,9 SP Dt Xi Xz Xo Xu Xx Xq B3D9 20-37

DIVIDE (long DFP) DDTR RRF-a TF ¤7,9 Dt Xi Xz Xo Xu Xx B3D1 20-37

DIVIDE (long DFP) DDTRA RRF-a F ¤7,9 Dt Xi Xz Xo Xu Xx Xq B3D1 20-37

EXTRACT BIASED EXPONENT (extended DFP to
64)

EEXTR RRE TF ¤7,9 SP Dt B3ED 20-39

EXTRACT BIASED EXPONENT (long DFP to 64) EEDTR RRE TF ¤7,9 Dt B3E5 20-39

EXTRACT SIGNIFICANCE (extended DFP to 64) ESXTR RRE TF ¤7,9 SP Dt B3EF 20-39

EXTRACT SIGNIFICANCE (long DFP to 64) ESDTR RRE TF ¤7,9 Dt B3E7 20-39

INSERT BIASED EXPONENT (64 to extended DFP) IEXTR RRF-b TF ¤7,9 SP Dt B3FE 20-40

INSERT BIASED EXPONENT (64 to long DFP) IEDTR RRF-b TF ¤7,9 Dt B3F6 20-40

LOAD AND TEST (extended DFP) LTXTR RRE C TF ¤7,9 SP Dt Xi B3DE 20-41

LOAD AND TEST (long DFP) LTDTR RRE C TF ¤7,9 Dt Xi B3D6 20-41

LOAD FP INTEGER (extended DFP) FIXTR RRF-e TF ¤7,9 SP Dt Xi Xx Xq B3DF 20-42

LOAD FP INTEGER (long DFP) FIDTR RRF-e TF ¤7,9 Dt Xi Xx Xq B3D7 20-42

LOAD LENGTHENED (long to extended DFP) LXDTR RRF-d TF ¤7,9 SP Dt Xi B3DC 20-45

LOAD LENGTHENED (short to long DFP) LDETR RRF-d TF ¤7,9 Dt Xi B3D4 20-45

LOAD ROUNDED (extended to long DFP) LDXTR RRF-e TF ¤7,9 SP Dt Xi Xo Xu Xx Xq B3DD 20-46

LOAD ROUNDED (long to short DFP) LEDTR RRF-e TF ¤7,9 Dt Xi Xo Xu Xx Xq B3D5 20-46

MULTIPLY (extended DFP) MXTR RRF-a TF ¤7,9 SP Dt Xi Xo Xu Xx B3D8 20-47

MULTIPLY (extended DFP) MXTRA RRF-a F ¤7,9 SP Dt Xi Xo Xu Xx Xq B3D8 20-48

MULTIPLY (long DFP) MDTR RRF-a TF ¤7,9 Dt Xi Xo Xu Xx B3D0 20-47

MULTIPLY (long DFP) MDTRA RRF-a F ¤7,9 Dt Xi Xo Xu Xx Xq B3D0 20-48

QUANTIZE (extended DFP) QAXTR RRF-b TF ¤7,9 SP Dt Xi Xx Xq B3FD 20-49

QUANTIZE (long DFP) QADTR RRF-b TF ¤7,9 Dt Xi Xx Xq B3F5 20-49

REROUND (extended DFP) RRXTR RRF-b TF ¤7,9 SP Dt Xi Xx Xq B3FF 20-52

REROUND (long DFP) RRDTR RRF-b TF ¤7,9 Dt Xi Xx Xq B3F7 20-52

SHIFT SIGNIFICAND LEFT (extended DFP) SLXT RXF TF ¤7,9 SP Dt ED48 20-54

SHIFT SIGNIFICAND LEFT (long DFP) SLDT RXF TF ¤7,9 Dt ED40 20-54

SHIFT SIGNIFICAND RIGHT (extended DFP) SRXT RXF TF ¤7,9 SP Dt ED49 20-54

SHIFT SIGNIFICAND RIGHT (long DFP) SRDT RXF TF ¤7,9 Dt ED41 20-54

SUBTRACT (extended DFP) SXTR RRF-a C TF ¤7,9 SP Dt Xi Xo Xu Xx B3DB 20-55

SUBTRACT (extended DFP) SXTRA RRF-a C F ¤7,9 SP Dt Xi Xo Xu Xx Xq B3DB 20-55

SUBTRACT (long DFP) SDTR RRF-a C TF ¤7,9 Dt Xi Xo Xu Xx B3D3 20-55

SUBTRACT (long DFP) SDTRA RRF-a C F ¤7,9 Dt Xi Xo Xu Xx Xq B3D3 20-55

TEST DATA CLASS (extended DFP) TDCXT RXE C TF ¤7,9 SP Dt ED58 20-56

TEST DATA CLASS (long DFP) TDCDT RXE C TF ¤7,9 Dt ED54 20-56

TEST DATA CLASS (short DFP) TDCET RXE C TF ¤7,9 Dt ED50 20-56

TEST DATA GROUP (extended DFP) TDGXT RXE C TF ¤7,9 SP Dt ED59 20-57

TEST DATA GROUP (long DFP) TDGDT RXE C TF ¤7,9 Dt ED55 20-57

TEST DATA GROUP (short DFP) TDGET RXE C TF ¤7,9 Dt ED51 20-57

Name
Mne-

monic Characteristics
Op

Code Page

Figure 20-9. Summary of Decimal Instructions (Part 2 of 3)

Decimal-Floating-Point Instructions 20-19

A
D

D

ADD

Mnemonic1 R1,R2,R3 [RRF-a]

Mnemonic1 Op Code Operands
ADTR 'B3D2' Long DFP
AXTR 'B3DA' Extended DFP

Mnemonic2 R1,R2,R3,M4 [RRF-a]

Mnemonic2 Op Code Operands
ADTRA 'B3D2' Long DFP
AXTRA 'B3DA' Extended DFP

The third operand is added to the second operand,
and the sum is placed at the first-operand location.

If both operands are finite numbers, they are added
algebraically, forming an intermediate sum. The inter-
mediate sum, if nonzero, is rounded to the operand
format and the rounded value is then placed at the
result location.

When the floating-point extension facility is installed,
the intermediate sum is rounded by rounding as
specified by the modifier in the M4 field:

Explanation:

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.

A Access exceptions for logical addresses.

B2 B2 field designates an access register in the access-register mode.

C Condition code is set.

Dg General-operand data exception.

Dt DFP-instruction data exception.

F Floating-point extension facility.

PC DFP packed-conversion facility .

RRE RRE instruction format.

RRF RRF instruction format.

RSL RSL instruction format.

RXE RXE instruction format.

RXF RXF instruction format.

S S instruction format.

SP Specification exception.

ST PER storage-alteration event.

TF Decimal-Floating-Point facility.

Xi IEEE invalid-operation data exception.

Xo IEEE overflow data exception.

Xq Quantum data exception (if the floating-point extension facility is installed).

Xu IEEE underflow data exception.

Xx IEEE inexact data exception.

Xz IEEE division-by-zero data exception.

ZF DFP zoned-conversion facility.

Name
Mne-

monic Characteristics
Op

Code Page

Figure 20-9. Summary of Decimal Instructions (Part 3 of 3)

Op Code R3 / / / / R1 R2

0 16 20 24 28 31

Op Code R3 M4 R1 R2

0 16 20 24 28 31 M4 Effective Rounding Method
0 According to the current DFP rounding mode
1 Round to nearest with ties away from 0

2 According to the current DFP rounding mode

3 Round to prepare for shorter precision

20-20 The z/Architecture CPU Architecture

A
D

D

When the modifier field is zero or two, rounding is
controlled by the current DFP rounding mode speci-
fied in the FPC register. When the field is 1, or 3-15,
rounding is performed as specified by the modifier,
regardless of the current DFP rounding mode.

If the modifier field is 0 or 8-15, the quantum-excep-
tion control (XqC) is one and recognition of the quan-
tum exception is suppressed; if the modifier field is 1-
7, the quantum-exception control is zero and recogni-
tion of the exception is not suppressed.

When the floating-point extension facility is not
installed, no quantum exception is recognized. If bits
20-23 of the instruction contain a value of zero, the
intermediate sum is rounded according to the current
DFP rounding mode; if bits 20-23 of the instruction
contain a nonzero value, it is unpredictable which
rounding method is performed.

The sign of the sum is determined by the rules of
algebra. This also applies to a result of zero, as fol-
lows:

• If the result of rounding a nonzero intermediate
sum is zero, the sign of the zero result is the sign
of the intermediate sum.

• If the sum of two operands with opposite signs is
exactly zero, the sign of the result is plus in all
rounding methods except round toward -, in
which method the sign is minus.

• The sign of the sum x plus x is the sign of x, even
when x is zero.

If one operand is an infinity and the other is a finite
number, the result is an infinity with the sign of the

source infinity. If both operands are infinities of the
same sign, the result is an infinity with the same sign.
If the two operands are infinities of opposite signs, an
IEEE-invalid-operation exception is recognized.

When the delivered value is exact, the preferred
quantum is the smaller quantum of the two source
operands; when the delivered value is inexact, the
preferred quantum is the smallest quantum.

The result placed at the first-operand location is
canonical.

See Figure 20-11 on page 20-21 for a detailed
description of the results of this instruction.
(Figure 20-10 is referred to by Figure 20-11.)

For AXTR and AXTRA, the R fields designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact
• Quantum (if the floating-point extension facility is

installed)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (AXTR and AXTRA only)
• Transaction constraint

4 Round to nearest with ties to even
5 Round toward 0

6 Round toward +
7 Round toward -
8 Round to nearest with ties to even

9 Round toward 0

10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0

13 Round to nearest with ties toward 0

14 Round away from 0
15 Round to prepare for shorter precision

M4 Effective Rounding Method

Value of Result (r) Condition code
r = 0 0

r < 0 1

r > 0 2

Figure 20-10. Condition Code for Resultant Sum

Decimal-Floating-Point Instructions 20-21

A
D

DProgramming Notes:

1. Interchanging the two operands in a DFP addi-
tion does not affect the value of the sum when
the result is numeric. This is not true, however,
when both operands are QNaNs; or when both
operands are SNaNs and the IEEE invalid-opera-
tion mask bit in the FPC register is zero, in these

cases, the result is the canonical QNaN derived
from the second operand.

2. For ADD or SUBTRACT, when the delivered
value is inexact, the preferred quantum is the
smallest quantum which is the same quantum as
that closest to the smaller quantum of the two
source operands.

Second
Operand

(b) is

Results for ADD (b+c) when Third Operand (c) is

- -Nn -Dn -0 +0 +Dn +Nn + QNaN SNaN

- T(-),cc1 T(-), cc1 T(-), cc1 T(-), cc1 T(-), cc1 T(-), cc1 T(-), cc1
Xi:

T(dNaN),
cc3

T(c), cc3
Xi: T(c*),

cc3

-Nn T(-), cc1 R(b+c), cc1 R(b+c), cc1 T(b), cc1 T(b), cc1 R(b+c), cc1 R(b+c), ccrs T(+), cc2 T(c), cc3
Xi: T(c*),

cc3

-Dn T(-), cc1 R(b+c), cc1 R(b+c), cc1 R(b), cc1 R(b), cc1 R(b+c), ccrs R(b+c), cc2 T(+), cc2 T(c), cc3
Xi: T(c*),

cc3

-0 T(-), cc1 T(c), cc1 R(c), cc1 T(-0), cc0 Rezd, cc0 R(c), cc2 T(c), cc2 T(+), cc2 T(c), cc3
Xi: T(c*),

cc3

+0 T(-), cc1 T(c), cc1 R(c), cc1 Rezd, cc0 T(+0), cc0 R(c), cc2 T(c), cc2 T(+), cc2 T(c), cc3
Xi: T(c*),

cc3

+Dn T(-), cc1 R(b+c), cc1 R(b+c), ccrs R(b), cc2 R(b), cc2 R(b+c), cc2 R(b+c), cc2 T(+), cc2 T(c), cc3
Xi: T(c*),

cc3

+Nn T(-), cc1 R(b+c), ccrs R(b+c), cc2 T(b), cc2 T(b), cc2 R(b+c), cc2 R(b+c), cc2 T(+), cc2 T(c), cc3
Xi: T(c*),

cc3

+
Xi:

T(dNaN),
cc3

T(+), cc2 T(+), cc2 T(+), cc2 T(+), cc2 T(+), cc2 T(+), cc2 T(+), cc2 T(c), cc3
Xi: T(c*),

cc3

QNaN T(b), cc3 T(b), cc3 T(b), cc3 T(b), cc3 T(b), cc3 T(b), cc3 T(b), cc3 T(b), cc3 T(b), cc3
Xi: T(c*),

cc3

SNaN
Xi: T(b*),

cc3
Xi: T(b*),

cc3
Xi: T(b*),

cc3
Xi: T(b*),

cc3
Xi: T(b*),

cc3
Xi: T(b*),

cc3
Xi: T(b*),

cc3
Xi: T(b*),

cc3
Xi: T(b*),

cc3
Xi: T(b*),

cc3

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
ccn Condition code is set to n.
ccrs Condition code is set according to the resultant sum. See Figure 20-10 on page 20-20.
dNaN Default NaN.
Nn Normal number.
R(v) Rounding and range action is performed on the value v. See Figure 20-5 on page 20-11. The result is canonical.
Rezd Exact zero-difference result. See Figure 20-5 on page 20-11.
Dn Subnormal number.
T(x) The canonical result x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 20-11. Results: ADD

20-22 The z/Architecture CPU Architecture

C
O

M
P

A
R

E COMPARE

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
CDTR 'B3E4' Long DFP
CXTR 'B3EC' Extended DFP

The first operand is compared with the second oper-
and, and the condition code is set to indicate the
result.

If both operands are finite numbers, the comparison
is algebraic and follows the procedure for DFP sub-
traction, except that the difference is discarded after
setting the condition code, and both operands remain
unchanged. If the difference is exactly zero with
either sign, the operands are equal; this includes
zero operands (so +0 equals -0). If a nonzero differ-
ence is positive or negative, the first operand is high
or low, respectively.

+ compares greater than any finite number, and all
finite numbers compare greater than -. Two infinity
operands of like sign compare equal.

Numeric comparison is exact, and the condition code
is determined for finite operands as if range and pre-
cision were unlimited. No overflow or underflow
exception can occur.

If either or both operands are QNaNs and neither
operand is an SNaN, the comparison result is unor-
dered, and condition code 3 is set.

If either or both operands are SNaNs, an IEEE-
invalid-operation exception is recognized. If the IEEE
invalid-operation mask bit is one, a program interrup-
tion for a data exception with DXC 80 hex (IEEE
invalid operation) occurs. If the IEEE-invalid-opera-
tion mask bit is zero, the IEEE-invalid-operation flag
bit is set to one, and instruction execution is com-
pleted by setting condition code 3.

See Figure 20-12 on page 20-22 for a detailed
description of the results of this instruction.

For CXTR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered

Op Code / / / / / / / / R1 R2

0 16 24 28 31

First
Operand (a) is

Results for COMPARE (a:b)
when Second Operand (b) is

- -Fn -0 +0 +Fn + QNaN SNaN
- cc0 cc1 cc1 cc1 cc1 cc1 cc3 Xi: cc3
-Fn cc2 C(a:b) cc1 cc1 cc1 cc1 cc3 Xi: cc3

-0 cc2 cc2 cc0 cc0 cc1 cc1 cc3 Xi: cc3

+0 cc2 cc2 cc0 cc0 cc1 cc1 cc3 Xi: cc3
+Fn cc2 cc2 cc2 cc2 C(a:b) cc1 cc3 Xi: cc3

+ cc2 cc2 cc2 cc2 cc2 cc0 cc3 Xi: cc3

QNaN cc3 cc3 cc3 cc3 cc3 cc3 cc3 Xi: cc3
SNaN Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3

Explanation:

ccn Condition code is set to n.
C(a:b) Basic compare results. See Figure 20-13.
Fn Nonzero finite number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 20-12. Results: COMPARE

Relation of value (a) to value (b) Condition code for C(a:b)
a = b 0
a < b 1

a > b 2

Figure 20-13. Basic Compare Results

Decimal-Floating-Point Instructions 20-23

C
O

M
P

A
R

E
 B

IA
S

E
D

 E
X

P
O

N
E

N
TIEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (CXTR only)
• Transaction constraint

COMPARE AND SIGNAL

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
KDTR 'B3E0' Long DFP
KXTR 'B3E8' Extended DFP

The first operand is compared with the second oper-
and, and the condition code is set to indicate the
result. The operation is the same as for COMPARE
except that QNaN operands cause an IEEE-invalid-

operation exception to be recognized. Thus QNaN
operands are treated as if they were SNaNs.

See Figure 20-14 on page 20-23 for a detailed
description of the results of this instruction.

For KXTR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (KXTR only)
• Transaction constraint

COMPARE BIASED EXPONENT

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands

CEDTR 'B3F4' Long DFP
CEXTR 'B3FC' Extended DFP

The biased exponent of the first operand is com-
pared with the biased exponent of the second oper-
and, and the condition code is set to indicate the
result.

Op Code / / / / / / / / R1 R2

0 16 24 28 31

First Operand (a) is
Results for COMPARE AND SIGNAL (a:b) when Second Operand (b) is

- -Fn -0 +0 +Fn + NaN
- cc0 cc1 cc1 cc1 cc1 cc1 Xi: cc3
-Fn cc2 C(a:b) cc1 cc1 cc1 cc1 Xi: cc3
-0 cc2 cc2 cc0 cc0 cc1 cc1 Xi: cc3
+0 cc2 cc2 cc0 cc0 cc1 cc1 Xi: cc3

+Fn cc2 cc2 cc2 cc2 C(a:b) cc1 Xi: cc3
+ cc2 cc2 cc2 cc2 cc2 cc0 Xi: cc3
NaN Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3

Explanation:

ccn Condition code is set to n.
C(a:b) Basic compare results. See Figure 20-13.
Fn Nonzero finite number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 20-14. Results: COMPARE AND SIGNAL

Op Code / / / / / / / / R1 R2

0 16 24 28 31

20-24 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 F

R
O

M
 F

IX
E

D This operation is performed for any second operand,
including an infinity, QNaN, or SNaN, without causing
an IEEE exception.

See Figure 20-15 on page 20-24 for a detailed
description of the results of this instruction.

For CEXTR, the R fields must designate valid float-
ing-point-register pairs; otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Biased exponents equal
1 First-operand biased exponent low
2 First-operand biased exponent high
3 Unordered

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (CEXTR only)
• Transaction constraint

CONVERT FROM FIXED

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
CDGTR 'B3F1' 64-bit binary-integer source, long DFP result
CXGTR 'B3F9' 64-bit binary-integer source, extended DFP

result

Mnemonic2 R1,M3,R2,M4 [RRF-e]

Mnemonic2 Op Code Operands
CDGTRA 'B3F1' 64-bit binary-integer source, long DFP result
CXGTRA 'B3F9' 64-bit binary-integer source, extended DFP

result
CDFTR 'B951' 32-bit binary-integer source, long DFP result
CXFTR 'B959' 32-bit binary-integer source, extended DFP

result

The fixed-point second operand is converted to the
DFP format, and the result is placed at the first-oper-
and location.

The second operand is a signed binary integer that is
located in the general register designated by R2. A
32-bit operand is in bit positions 32-63 of the register.

The converted result is rounded and then the
rounded value is placed at the first-operand location.

When the floating-point extension facility is installed,
the converted result is rounded by rounding as speci-
fied by the modifier in the M3 field:

First
operand (a)

is

Result for COMPARE BIASED EXPONENT when
second operand (b) is

F QNaN SNaN
F C(ea:eb) cc3 cc3 cc3
 cc3 cc0 cc3 cc3

QNaN cc3 cc3 cc0 cc0
SNaN cc3 cc3 cc0 cc0

Explanation:

C(ea:eb) Biased-exponent compare results. See Figure 20-16 on
page 20-24.

ccn Condition code is set to n.
F All finite numbers, including zeros.

Figure 20-15. Results: COMPARE BIASED EXPONENT

Relation of value ea to value eb Condition Code for C(ea:eb)
ea = eb cc0
ea < eb cc1
ea > eb cc2

Explanation:

ccn Condition code is set to n.
ea Biased exponent of the first operand
eb Biased exponent of the second operand

Figure 20-16. Biased-Exponent Compare Results

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Op Code M3 M4 R1 R2

0 16 20 24 28 31

M3 Effective Rounding Method
0 According to the current DFP rounding mode
1 Round to nearest with ties away from 0

2 According to the current DFP rounding mode

3 Round to prepare for shorter precision
4 Round to nearest with ties to even

5 Round toward 0

6 Round toward +
7 Round toward -
8 Round to nearest with ties to even

9 Round toward 0

10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0

Decimal-Floating-Point Instructions 20-25

C
O

N
V

E
R

T
 F

R
O

M
 L

O
G

IC
A

L

When the modifier field is zero or two, rounding is
controlled by the current DFP rounding mode speci-
fied in the FPC register. When the field is 1, or 3-15,
rounding is performed as specified by the modifier,
regardless of the current DFP rounding mode.

If the modifier field is 0 or 8-15, the quantum-excep-
tion control (XqC) is one and recognition of the quan-
tum exception is suppressed; if the modifier field is 1-
7, the quantum-exception control is zero and recogni-
tion of the exception is not suppressed.

When the floating-point extension facility is not
installed, no quantum exception is recognized. If bits
16-19 of the instruction contain a value of zero, the
converted result is rounded according to the current
DFP rounding mode; if bits 16-19 of the instruction
contain a nonzero value, it is unpredictable which
rounding method is performed.

When the delivered value is exact, the preferred
quantum is one; when the delivered value is inexact,
the preferred quantum is the smallest quantum.

The result placed at the first-operand location is
canonical.

See Figure 20-24 on page 20-42 for a detailed
description of the results of this instruction.

When the floating-point extension facility is installed,
bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC), and bits 0, 2, and 3 are ignored. If XxC
is zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of the excep-
tion is suppressed.

When the floating-point extension facility is not
installed, and if bits 20-23 of the instruction are zeros,
then recognition of IEEE-inexact exception is not
suppressed; if bits 20-23 of the instruction contain a
nonzero value, it is unpredictable whether recognition
of IEEE-inexact exception is suppressed.

For CXGTR, CXGTRA, and CXFTR, the R1 field
must designate a valid floating-point-register pair;
otherwise, a specification exception is recognized.

An operation exception is recognized if the DFP facil-
ity is not installed. For CDFTR and CXFTR, the oper-
ation exception is also recognized if the floating-point
extension facility is not installed.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Inexact (CDGTR and CDGTRA only)
• Quantum (CDGTR and CDGTRA only, if the

floating-point extension facility is installed)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (CXGTR, CXGTRA, and CXFTR

only)
• Transaction constraint

Programming Note: Unassigned bits in the M4 field
are reserved for future extensions and should be set
to zeros; otherwise, the program may not operate
compatibly in the future.

CONVERT FROM LOGICAL

Mnemonic R1,M3,R2,M4 [RRF-e]

Mnemonic Op Code Operands
CDLGTR 'B952' 64-bit binary-integer source, long DFP result
CXLGTR 'B95A' 64-bit binary-integer source, extended DFP

result
CDLFTR 'B953' 32-bit binary-integer source, long DFP result
CXLFTR 'B95B' 32-bit binary-integer source, extended DFP

result

The fixed-point second operand is converted to the
DFP format, and the result is placed at the first-oper-
and location.

The second operand is an unsigned binary integer
that is located in the general register designated by
R2. A 32-bit operand is in bit positions 32-63 of the
register.

13 Round to nearest with ties toward 0
14 Round away from 0

15 Round to prepare for shorter precision

M3 Effective Rounding Method

Op Code M3 M4 R1 R2

0 16 20 24 28 31

20-26 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 F

R
O

M
 P

A
C

K
E

D The converted result is rounded to an integer value
by rounding as specified by the modifier in the M3

field:

When the modifier field is zero or two, rounding is
controlled by the current DFP rounding mode speci-
fied in the FPC register. When the field is 1, or 3-15,
rounding is performed as specified by the modifier,
regardless of the current DFP rounding mode.

If the modifier field is 0 or 8-15, the quantum-excep-
tion control (XqC) is one and recognition of the quan-
tum exception is suppressed; if the modifier field is 1-
7, the quantum-exception control is zero and recogni-
tion of the exception is not suppressed.

Bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC). Bits 0, 2, and 3 are ignored. If XxC is
zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of the excep-
tion is suppressed.

The result always has a plus sign.

When the delivered value is exact, the preferred
quantum is one; when the delivered value is inexact,
the preferred quantum is the smallest quantum.

The result placed at the first-operand location is
canonical.

See Figure 20-24 on page 20-42 for a detailed
description of the results of this instruction.

For CXLGTR and CXLFTR, the R1 field must desig-
nate a valid floating-point-register pair; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Inexact (CDLGTR only)
• Quantum (CDLGTR only)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the floating-point extension facility is

not installed)
• Specification (CXLGTR and CXLFTR only)
• Transaction constraint

Programming Notes:

1. Unassigned bits in the M4 field are reserved for
future extensions and should be set to zeros;
otherwise, the program may not operate compat-
ibly in the future.

2. Using either the round toward 0 or the round
toward - rounding method produces the same
result; using either the round away from 0 or the
round toward +rounding method produces the
same result.

CONVERT FROM PACKED

Mnemonic R1,D2(L2,B2),M3 [RSL-b]

Mnemonic Op Code Operands
CDPT 'EDAE' Packed source, long DFP result
CXPT 'EDAF' Packed source, extended DFP result

The second operand in the packed-decimal format is
converted to the DFP format, and the result is placed
at the first-operand location.

The preferred quantum is one, and the delivered
value is always represented with the preferred quan-
tum.

The result placed at the first-operand location is
canonical.

M3 Effective Rounding Method
0 According to the current DFP rounding mode

1 Round to nearest with ties away from 0

2 According to the current DFP rounding mode

3 Round to prepare for shorter precision
4 Round to nearest with ties to even

5 Round toward 0

6 Round toward +
7 Round toward -
8 Round to nearest with ties to even

9 Round toward 0
10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0
13 Round to nearest with ties toward 0

14 Round away from 0

15 Round to prepare for shorter precision

OpCode L2 B2 D2 R1 M3 OpCode
0 8 16 20 32 36 40 47

Decimal-Floating-Point Instructions 20-27

C
O

N
V

E
R

T
 F

R
O

M
 P

A
C

K
E

DFor CXPT the length in bytes of the second operand
is 1-18, corresponding to a length code in L2 of 0-17.
For CDPT the length in bytes of the second operand
is 1-9, corresponding to a length code in L2 of 0-8.
See Figure 20-17 for valid L2 values along with the
corresponding number of digits converted.

The M3 field has the following format:

The bits of the M3 field are defined as follows:

• Sign-Control (S): Bit 0 of the M3 field is the sign
control (S). When the S bit is zero, the second
operand does not have a sign field and the sign
bit of the DFP first-operand result is set to zero.

When the S bit is one, the second operand con-
tains a sign field in the rightmost four bit positions
of the rightmost byte. The sign bit of the DFP
first-operand result is set to zero when the sign
field of the second operand indicates a positive
value, or when the ignore-sign-digit control is
one. The sign bit of the DFP first-operand result
is set to one when the sign field of the second
operand indicates a negative value and the
ignore-sign-digit control is zero.

• Reserved: Bits 1-2 of the M3 field are reserved.

• Ignore-Sign-Digit Control (I): Bit 3 of the M3

field is the ignore-sign-digit control (I). When the I
bit is zero, no special action is taken. When the I
bit is one, the sign field of the second operand is
ignored, it is not checked for invalid digits, and
the sign bit of the DFP first-operand result is set
to zero. When the S-bit is zero, the I bit is
ignored.

Special Conditions

When an invalid digit or sign code is detected in the
second operand, or an unused digit is not zero, a
general-operand data exception is recognized. If the
sign control and the ignore-sign-digit control are one,
no sign code checking is performed on the sign digit.

A specification exception is recognized, and the
operation is suppressed, when any of the following is
true.

• For CDPT, the L2 field is greater than 8

• For CXPT, the R1 field designates an invalid float-
ing-point-register pair, or the L2 field is greater
than 17

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (Fetch operand 2)
• Data with DXC 0, general operand
• Data with DXC 3, DFP instruction
• Operation (if the DFP packed-conversion facility

is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. Depending on the model, for CXPT, when the L2

field specifies 16 or 17 (meaning 32-34 digits),
performance may be significantly worse than if
shorter lengths are specified.

2. When trying to convert 16 packed digits and a
sign digit for CDPT, a L2 value of 8 should be
used and the S bit in the M3 field should be set to
one. When trying to convert 34 packed digits and
a sign digit for CXPT an L2 value of 17 should be
used and the S bit in the M3 field should be set to
one. In both of these cases, bits 0-3 of the first
byte of the second operand should be zero; oth-
erwise, a general-operand data exception will
occur.

S / / I

0 1 2 3

L2 S=0 S=1
0 2 1
1 4 3
2 6 5
3 8 7
4 10 9
5 12 11
6 14 13
7 16 15

For CDPT only:
8 16* 16*

CXPT only below
8 18 17
9 20 19
10 22 21
11 24 23
12 26 25
13 28 27

Figure 20-17. Valid L2 Values for Signed and Unsigned
Digit Combinations

20-28 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 F

R
O

M
 S

IG
N

E
D

 P
A

C
K

E
D

CONVERT FROM SIGNED PACKED

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
CDSTR 'B3F3' 64-bit signed-packed-decimal source in GR,

long DFP result
CXSTR 'B3FB' 128-bit signed-packed-decimal source in

GRs, extended DFP result

The second operand in the signed-packed-decimal
format is converted to the DFP format, and the result
is placed at the first-operand location.

The second operand is located in the general register
or general-register pair designated by R2.

The preferred quantum is one, and the delivered
value is always represented with the preferred quan-
tum.

The result placed at the first-operand location is
canonical.

When an invalid digit or sign code is detected in the
second operand, a general-operand data exception
is recognized.

For CXSTR, the R1 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized. Also, the R2 field designates
an even-odd pair of general registers and must des-
ignate an even-numbered register; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 0, general operand
• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (CXSTR only)
• Transaction constraint

CONVERT FROM UNSIGNED
PACKED

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
CDUTR 'B3F2' 64-bit unsigned-packed-decimal source in

GR, long DFP result
CXUTR 'B3FA' 128-bit unsigned-packed-decimal source in

GRs, extended DFP result

The second operand in the unsigned-packed-decimal
format is converted to the DFP format with a positive
sign, and the result is placed at the first-operand
location.

The second operand is located in the general register
or general-register pair designated by R2.

The preferred quantum is one, and the delivered
value is always represented with the preferred quan-
tum.

The result placed at the first-operand location is
canonical.

When an invalid digit code is detected in the second
operand, a general-operand data exception is recog-
nized.

For CXUTR, the R1 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized. Also, the R2 field designates
an even-odd pair of general registers and must des-
ignate an even-numbered register; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 0, general operand
• Data with DXC 3, DFP instruction

14 30 29
15 32 31
16 34 33
17 34* 34*

Explanation:

* Unused digits must be zero.

Op Code / / / / / / / / R1 R2

0 16 24 28 31

L2 S=0 S=1

Figure 20-17. Valid L2 Values for Signed and Unsigned
Digit Combinations

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Decimal-Floating-Point Instructions 20-29

C
O

N
V

E
R

T
 T

O
 F

IX
E

D• Operation (if the DFP facility is not installed)
• Specification (CXUTR only)
• Transaction constraint

CONVERT FROM ZONED

Mnemonic R1,D2(L2,B2),M3 [RSL-b]

Mnemonic Op Code Operands
CDZT 'EDAA' Zoned source, long DFP result
CXZT 'EDAB' Zoned source, extended DFP result

The second operand in the zoned format is con-
verted to the DFP format, and the result is placed at
the first-operand location.

The preferred quantum is one, and the delivered
value is always represented with the preferred quan-
tum.

The result placed at the first-operand location is
canonical.

The length in bytes of the second operand is 1-34 for
CXZT, corresponding to a length code in L2 of 0-33.
The length in bytes of the second operand is 1-16 for
CDZT, corresponding to a length code in L2 of 0-15.

The M3 field has the following format:

The bits of the M3 field are defined as follows:

• Sign-Control (S): Bit 0 of the M3 field is the sign
control (S). When zero, the second operand does
not have a sign field and the sign bit of the DFP
first-operand result is set to zero. When one, the
second operand is signed. That is, the leftmost
four bit positions of the rightmost byte are a sign.
The sign bit of the DFP first-operand result is set
to zero when the sign field indicates a positive
value and one when the sign field indicates a
negative value.

• Reserved: Bits 1-3 of the M3 field are ignored.

Special Conditions:

When an invalid digit or sign code is detected in the
second operand, a general-operand data exception
is recognized.

A specification exception is recognized, and the
operation is suppressed, when any of the following is
true.

• For CDZT, the L2 field is greater than or equal to
16.

• For CXZT, the R1 field designates an invalid float-
ing-point-register pair, or the L2 field is greater
than or equal to 34.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (Fetch operand 2)
• Data with DXC 0, general operand
• Data with DXC 3, DFP instruction
• Operation (if the DFP zoned-conversion facility is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. When an ASCII second operand is specified, bit
0 of the M3 field must be zero, otherwise a gen-
eral-operand data exception is recognized. That
is, a sign value of 0011 binary is not a valid sign.

2. Depending on the model, for CXZT, when the L2

field specifies 32 or 33 (meaning 33 or 34 digits),
performance may be significantly worse than if
shorter lengths are specified.

3. Bits 1-3 of the M3 field should be set to zeros,
otherwise the program may not operate compati-
bly in the future.

CONVERT TO FIXED

Mnemonic1 R1,M3,R2 [RRF-e]

Mnemonic1 Op Code Operands
CGDTR 'B3E1' Long DFP source, 64-bit binary-integer

result
CGXTR 'B3E9' Extended DFP source, 64-bit binary-integer

result

Op Code L2 B2 D2 R1 M3 Op Code

0 8 16 20 32 36 40 47

S / / /

0 1 2 3

Op Code M3 / / / / R1 R2

0 16 20 24 28 31

20-30 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 T

O
 F

IX
E

D Mnemonic2 R1,M3,R2,M4 [RRF-e]

Mnemonic2 Op Code Operands
CGDTRA 'B3E1' Long DFP source, 64-bit binary-integer

result
CGXTRA 'B3E9' Extended DFP source, 64-bit binary-integer

result
CFDTR 'B941' Long DFP source, 32-bit binary-integer

result
CFXTR 'B949' Extended DFP source, 32-bit binary-integer

result

The DFP second operand is rounded to an integer
value and then converted to the fixed-point format.
The result is placed at the first-operand location.

The result is a signed binary integer that is placed in
the general register designated by R1. A 32-bit result
replaces bits 32-63 of the register, and bits 0-31 of
the register remain unchanged.

If the second operand is numeric and finite, it is
rounded to an integer value by rounding as specified
by the modifier in the M3 field:

When the modifier field is zero, rounding is controlled
by the current DFP rounding mode specified in the
FPC register. When the field is 8-15, rounding is per-
formed as specified by the modifier, regardless of the
current DFP rounding mode.

When the floating-point extension facility is installed
and if the modifier field is 2, rounding is controlled by

the current DFP rounding mode specified in the FPC
register; if the field is 1, or 3-7, rounding is performed
as specified by the modifier, regardless of the current
DFP rounding mode.

When the floating-point extension facility is not
installed, and if the M3 modifier field is 1-7, it is unpre-
dictable which rounding method is performed.

The sign of the result is the sign of the second oper-
and, except that a zero result has a plus sign.

This operation performs a functionally-constrained
rounding. Neither overflow nor underflow condition
can occur.

When the floating-point extension facility is installed,
bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC), and bits 0, 2, and 3 are ignored. If XxC
is zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of the excep-
tion is suppressed.

When the floating-point extension facility is not
installed, and if bits 20-23 of the instruction are zeros,
then recognition of IEEE-inexact exception is not
suppressed; if bits 20-23 of the instruction contain a
nonzero value, it is unpredictable whether recognition
of IEEE-inexact exception is suppressed.

See Figure 20-18 for a detailed description of the
results of this instruction.

For CGXTR, CGXTRA, and CFXTR, the R2 field
must designate a valid floating-point-register pair;
otherwise, a specification exception is recognized.

An operation exception is recognized if the DFP facil-
ity is not installed. For CFDTR, CFXTR, CGDTRA,
and CGXTRA, the operation exception is also recog-
nized if the floating-point extension facility is not
installed.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

IEEE Exceptions:

• Invalid operation
• Inexact

Op Code M3 M4 R1 R2

0 16 20 24 28 31

M3 Effective Rounding Method
0 According to the current DFP rounding mode

1 Round to nearest with ties away from 0
2 According to the current DFP rounding mode

3 Round to prepare for shorter precision

4 Round to nearest with ties to even
5 Round toward 0

6 Round toward +
7 Round toward -
8 Round to nearest with ties to even

9 Round toward 0

10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0

13 Round to nearest with ties toward 0
14 Round away from 0

15 Round to prepare for shorter precision

Decimal-Floating-Point Instructions 20-31

C
O

N
V

E
R

T
 T

O
 F

IX
E

DProgram Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation
• Specification (CGXTR, CGXTRA, and CFXTR

only)

• Transaction constraint

Programming Note: Unassigned bits in the M4 field
are reserved for future extensions and should be set
to zeros; otherwise, the program may not operate
compatibly in the future.

Operand (b)

Is n
Inexact
(n b)

Inv.-Op.
Mask

(FPC 0.0)

IEEE Inexact
Exception

Control2 (XxC)

Inexact
Mask

(FPC 0.4)

Is n
Incremented

(|n| > |b|) Results
- b < MN, n < MN — 0 — — — T(MN), SFi1, cc3 †
- b < MN, n < MN — 1 — — — PIDi(80)
- < b < MN, n = MN — — 1 — — T(MN), cc1
- < b < MN, n = MN — — 0 0 — T(MN), SFx1, cc1
- < b < MN, n = MN — — 0 1 — T(MN), cc1, PIDx(08)

MN b < 0 No — — — — T(f), cc1
MN b < 0 Yes — 1 — — T(f), cc1
MN b < 0 Yes — 0 0 — T(f), SFx1, cc1
MN b < 0 Yes — 0 1 No T(f), cc1, PIDx(08)
MN b < 0 Yes — 0 1 Yes T(f), cc1, PIDy(0C)

-0 No1 — — — — T(0), cc0
+0 No1 — — — — T(0), cc0

0 < b MP No — — — — T(f), cc2
0 < b MP Yes — 1 — — T(f), cc2
0 < b MP Yes — 0 0 — T(f), SFx1, cc2
0 < b MP Yes — 0 1 No T(f), cc2, PIDx(08)
0 < b MP Yes — 0 1 Yes T(f), cc2, PIDy(0C)

MP < b < +, n = MP — — 1 — — T(MP), cc2
MP < b < +, n = MP — — 0 0 — T(MP), SFx1, cc2
MP < b < +, n = MP — — 0 1 — T(MP), cc2, PIDx(08)
MP < b +, n > MP — 0 — — — T(MP), SFi1, cc3 †
MP < b +, n > MP — 1 — — — PIDi(80)

NaN — 0 — — — T(MN), SFi1, cc3 †
NaN — 1 — — — PIDi(80)

Explanation:

— The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 XxC is defined only when the floating-point extension facility is installed.
ccn Condition code is set to n.
† Result differs from BFP CONVERT TO FIXED. The BFP instruction recognizes inexact for this case and takes different actions depending

on the inexact mask. The DFP implementation is intended to be more in keeping with the spirit of the IEEE standard.
f The value n converted to a fixed-point result.
n The value derived when the source value (b) is rounded to a floating-point integer using the effective rounding method.
MN Maximum negative number representable in the target fixed-point format.
MP Maximum positive number representable in the target fixed-point format.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. Figure 20-8 on page 20-16
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location

Figure 20-18. Results: CONVERT TO FIXED

20-32 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 T

O
 L

O
G

IC
A

L CONVERT TO LOGICAL

Mnemonic R1,M3,R2,M4 [RRF-e]

Mnemonic Op Code Operands
CLGDTR 'B942' Long DFP source, 64-bit binary-integer

result
CLGXTR 'B94A' Extended DFP source, 64-bit binary-integer

result
CLFDTR 'B943' Long DFP source, 32-bit binary-integer

result
CLFXTR 'B94B' Extended DFP source, 32-bit binary-integer

result

The DFP second operand is rounded to an integer
value and then converted to the fixed-point format.
The result is placed at the first-operand location.

The result is an unsigned binary integer that is
placed in the general register designated by R1. A
32-bit result replaces bits 32-63 of the register, and
bits 0-31 of the register remain unchanged.

If the second operand is numeric and finite, it is
rounded to an integer value by rounding as specified
by the modifier in the M3 field:

When the modifier field is zero or two, rounding is
controlled by the current DFP rounding mode speci-
fied in the FPC register. When the field is 1, or 3-15,
rounding is performed as specified by the modifier,
regardless of the current DFP rounding mode.

This operation performs a functionally-constrained
rounding. Neither overflow nor underflow condition
can occur.

Bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC). Bits 0, 2, and 3 are ignored. If XxC is
zero, recognition of IEEE-inexact exception is not
suppressed; if XxC is one, recognition of the excep-
tion is suppressed.

See Figure 20-19 for a detailed description of the
results of this instruction.

For CLGXTR and CLFXTR, the R2 field must desig-
nate a valid floating-point-register pair; otherwise, a
specification exception is recognized.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

IEEE Exceptions:

• Invalid operation
• Inexact

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the floating-point extension facility is

not installed.)
• Specification (CLGXTR and CLFXTR only)
• Transaction constraint

Programming Note: Unassigned bits in the M4 field
are reserved for future extensions and should be set

Op Code M3 M4 R1 R2

0 16 20 24 28 31

M3 Effective Rounding Method
0 According to the current DFP rounding mode
1 Round to nearest with ties away from 0

2 According to the current DFP rounding mode

3 Round to prepare for shorter precision
4 Round to nearest with ties to even

5 Round toward 0

6 Round toward +
7 Round toward -
8 Round to nearest with ties to even

9 Round toward 0
10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0
13 Round to nearest with ties toward 0

14 Round away from 0

15 Round to prepare for shorter precision

Decimal-Floating-Point Instructions 20-33

C
O

N
V

E
R

T
 T

O
 P

A
C

K
E

Dto zeros; otherwise, the program may not operate
compatibly in the future.

CONVERT TO PACKED

Mnemonic R1,D2(L2,B2),M3 [RSL-b]

Mnemonic Op Code Operands
CPDT 'EDAC' Long DFP source, packed result
CPXT ‘EDAD’ Extended DFP source, packed result

The significand digits of the DFP first operand and
the sign bit of the first operand are converted to the

packed format. The exponent in the combination field
is ignored. The specified number of rightmost bytes
of packed digits are placed at the second-operand
location.

If there are not enough significand digits to fill all of
the packed bytes, zero digits are appended to the
significand as leftmost digits.

The number of bytes containing rightmost significand
digits of the converted first operand is specified by L2.
The length in bytes of the second operand is 1-18 for

Operand (b)

Is n
Inexact
(n b)

Inv.-Op.
Mask

(FPC 0.0)

IEEE Inexact
Exception

Control2 (XxC)

Inexact
Mask

(FPC 0.4)

Is n
Incremented

(|n| > |b|) Results
- b < 0, n < 0 — 0 — — — T(0), SFi1, cc3 †
- b < 0, n < 0 — 1 — — — PIDi(80)
- < b < 0, n = 0 — — 1 — — T(0), cc1
- < b < 0, n = 0 — — 0 0 — T(0), SFx1, cc1
- < b < 0, n = 0 — — 0 1 — T(0), cc1, PIDx(08)

-0 No1 — — — — T(0), cc0
+0 No1 — — — — T(0), cc0

0 < b MU No — — — — T(f), cc2
0 < b MU Yes — 1 — — T(f), cc2
0 < b MU Yes — 0 0 — T(f), SFx1, cc2
0 < b MU Yes — 0 1 No T(f), cc2, PIDx(08)
0 < b MU Yes — 0 1 Yes T(f), cc2, PIDy(0C)

MU < b < +, n = MU — — 1 — — T(MU), cc2
MU< b < +, n = MU — — 0 0 — T(MU), SFx1, cc2
MU < b < +, n = MU — — 0 1 — T(MU), cc2, PIDx(08)
MU < b +, n > MU — 0 — — — T(MU), SFi1, cc3 †
MU < b +, n > MU — 1 — — — PIDi(80)

NaN — 0 — — — T(0), SFi1, cc3 †
NaN — 1 — — — PIDi(80)

Explanation:

— The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 XxC is defined only when the floating-point extension facility is installed.
ccn Condition code is set to n.
† Result differs from BFP CONVERT TO LOGICAL. The BFP instruction recognizes inexact for this case and takes different actions

depending on the inexact mask. The DFP implementation is intended to be more in keeping with the spirit of the IEEE standard.
f The value n converted to a fixed-point result.
n The value derived when the source value (b) is rounded to a floating-point integer using the effective rounding method.
MU Maximum unsigned number representable in the target fixed-point format.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. Figure 20-8 on page 20-16
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location

Figure 20-19. Results: CONVERT TO LOGICAL

OpCode L2 B2 D2 R1 M3 OpCode

0 8 16 20 32 36 40 47

20-34 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 T

O
 P

A
C

K
E

D CPXT, corresponding to a length code in L2 of 0-17.
The length in bytes of the second operand is 1-9 for
CPDT, corresponding to a length code in L2 of 0-8.

The M3 field has the following format:

The bits of the M3 field are defined as follows:

• Sign Control (S): Bit 0 of the M3 field is the sign
control (S). When S is zero, the second operand
does not have a sign field. When S is one, the
second operand has a sign field. That is, the
rightmost four bit positions of the rightmost byte
are a sign.

• Reserved: Bit 1 of the M3 field is reserved and
should be zero.

• Plus-Sign-Code Control (P): Bit 2 of the M3

field is the plus-sign-code control (P). When P is
zero, the plus sign is encoded as 1100 binary.
When P is one, the plus sign is encoded as 1111
binary. When the S bit is zero, the P bit is
ignored.

• Force-Plus-Zero Control (F): Bit 3 of the M3

field is the force-plus-zero control (F). When F is
zero and a signed value of negative zero results,
no action is taken. When F is one and the abso-
lute value of the result placed in the second oper-
and location is zero, the result is set to indicate a
positive zero with the sign code specified by the
P bit. When the S bit is zero, the F bit is ignored.

Special Conditions

The operation is performed for any first operand,
including an infinity, QNaN, or SNaN, without causing
an IEEE exception.

If the first operand is an infinity or a NaN, a zero digit
is appended as the leftmost digit (LMD) of the signifi-
cand, thereby conceptually forming the effective sig-
nificand to be converted. The specified number of
rightmost effective significand digits and the sign bit
are converted to the packed format, the result is

placed at the second-operand location, and execu-
tion completes with condition code 3.

For any type of first operand, including an infinity and
a NAN, when one or more leftmost nonzero digits of
the significand are lost because the second operand
field is too short, the result is obtained by ignoring the
overflow digits, condition code 3 is set, and, if the
decimal-overflow mask bit is one, a program interrup-
tion for decimal overflow occurs. The operand
lengths alone are not an indication of overflow; non-
zero digits must have been lost during the operation.

A specification exception is recognized, and the
operation is suppressed, when any of the following is
true.

• For CPDT, the L2 field is greater than 8.

• For CPXT, the R1 field designates an invalid float-
ing-point-register pair, or the L2 field is greater
than 17.

Resulting Condition Code:

0 Source is zero
1 Source is not special and is less than zero
2 Source is not special and is greater than zero
3 Source is special which is infinity, QNaN, SNaN,

or a partial result

Program Exceptions:

• Access (Store operand 2)
• Data with DXC 3, DFP instruction
• Decimal overflow
• Operation (if the DFP packed-conversion facility

is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. If the number of significant digits of a significand
exceeds the specified number, one or more left-
most digits of the significand are ignored except
for the detection of a decimal overflow exception.

2. A completion with condition code 0 indicates that
the absolute value of the first operand is zero.

S / P F

0 1 2 3

Decimal-Floating-Point Instructions 20-35

C
O

N
V

E
R

T
 T

O
 U

N
S

IG
N

E
D

 P
A

C
K

E
DCONVERT TO SIGNED PACKED

Mnemonic R1,R2,M4 [RRF-d]

Mnemonic Op Code Operands
CSDTR 'B3E3' Long DFP source, 64-bit signed packed-

decimal result in GR
CSXTR 'B3EB' Extended DFP source, 128-bit signed-

packed-decimal result in GRs

Rightmost significand digits of the DFP second oper-
and are converted to the signed-packed-decimal for-
mat, and the result is placed at the first-operand
location.

For CSDTR, the rightmost 15 digits in the trailing sig-
nificand and the sign bit of the second operand are
converted to a 64-bit result (15 4-bit decimal digits
and a 4-bit sign); for CSXTR, the rightmost 31 digits
in the trailing significand and the sign bit of the sec-
ond operand are converted to a 128-bit result (31 4-
bit decimal digits and a 4-bit sign). The sign of the
result is the sign of the second operand.

Bit 3 of the M4 field is the plus sign-code selection bit.
When the bit is zero, the plus sign is encoded as
1100; when the bit is one, the plus sign is encoded
as 1111. Bits 0-2 are ignored.

The result is placed in the general register or gen-
eral-register pair designated by R1.

This operation is performed for any second operand,
including an infinity, QNaN, or SNaN, without causing
an IEEE exception.

For CSXTR, the R2 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized. Also, the R1 field designates
an even-odd pair of general registers and must des-
ignate an even-numbered register; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (CSXTR only)

• Transaction constraint

Programming Notes:

1. See also the programming note under CON-
VERT FROM FIXED.

2. The sign code 1100 is the preferred plus sign in
IBM z Systems products, and 1111 is the pre-
ferred plus sign in IBM System i products.

CONVERT TO UNSIGNED PACKED

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
CUDTR 'B3E2' Long DFP source, 64-bit unsigned-packed-

decimal result in GR
CUXTR 'B3EA' Extended DFP source, 128-bit unsigned-

packed-decimal result in GRs

Rightmost significand digits of the DFP second oper-
and are converted to the unsigned-packed-decimal
format, and the result is placed at the first-operand
location.

For CUDTR, 16 significand digits of the second oper-
and are converted to a 64-bit result (16 4-bit decimal
digits). If the second operand is an infinity or NaN,
the 15 digits in the trailing significand are padded
with a zero digit on the left to form a 16 significand
digits.

For CUXTR, the rightmost 32 digits in the trailing sig-
nificand of the second operand are converted to a
128-bit result (32 4-bit decimal digits).

The result is placed in the general register or gen-
eral-register pair designated by R1.

This operation is performed for any second operand,
including an infinity, QNaN, or SNaN, without causing
an IEEE exception.

For CUXTR, the R2 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized. Also, the R1 field designates
an even-odd pair of general registers and must des-
ignate an even-numbered register; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Op Code / / / / M4 R1 R2

0 16 20 24 28 31

Op Code / / / / / / / / R1 R2

0 16 24 28 31

20-36 The z/Architecture CPU Architecture

C
O

N
V

E
R

T
 T

O
 Z

O
N

E
D IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (CUXTR only)
• Transaction constraint

CONVERT TO ZONED

Mnemonic R1,D2(L2,B2),M3 [RSL-b]

Mnemonic Op Code Operands
CZDT 'EDA8' Long DFP source, zoned result
CZXT ‘EDA9’ Extended DFP source, zoned result

The specified number of rightmost significand digits
of the DFP first operand and the sign bit of the first
operand are converted to the zoned format, and the
result is placed at the second-operand location. The
exponent in the combination field is ignored.

The number of rightmost significand digits of the first
operand to be converted is specified by L2. The
length in bytes of the second operand is 1-34 for
CZXT, corresponding to a length code in L2 of 0-33,
meaning 1-34 digits. The length in bytes of the sec-
ond operand is 1-16 for CZDT, corresponding to a
length code in L2 of 0-15, meaning 1-16 digits.

The M3 field has the following format:

The bits of the M3 field are defined as follows:

• Sign Control (S): Bit 0 of the M3 field is the sign
control (S). When S is zero, the second operand
does not have a sign field, and the zone field is
set as determined by the Z bit. When S is one,
the second operand has a sign field. That is, the
leftmost four bit positions of the rightmost byte
are a sign.

• Zone Control (Z): Bit 1 of the M3 field is the zone
control (Z). When Z is zero, each zone field of the
second operand is stored as 1111 binary, except
that the zone field of the rightmost byte is set to

the sign when the S bit is one. When Z is one,
each zone field of the second operand is stored
as 0011 binary, except that the zone field of the right-
most byte is set to the sign when the S bit is one.

• Plus-Sign-Code Control (P): Bit 2 of the M3

field is the plus-sign-code control (P). When P is
zero, the plus sign is encoded as 1100 binary.
When P is one, the plus sign is encoded as 1111
binary.

When the S bit is zero, the P bit is ignored and
assumed to be zero. The zone of the rightmost
digit is set as determined by the Z bit.

• Force-Plus-Zero Control (F): Bit 3 of the M3

field is the force-plus-zero control (F). When F is
zero, no action is taken. When F is one and the
absolute value of the result placed at the second-
operand location is zero, the sign of the result is
set to indicate a plus value with the sign code
specified by the P bit.

When the S bit is zero, the F bit is ignored and
assumed to be zero.

Special Conditions

The operation is performed for any first operand,
including an infinity, QNaN, or SNaN, without causing
an IEEE exception.

If the first operand is an infinity or a NaN, a zero digit
is assumed to be the leftmost digit (LMD) of the sig-
nificand, thereby conceptually forming the effective
significand to be converted. The specified number of
rightmost effective-significand digits and the sign bit
are converted to the zoned format, the result is
placed at the second-operand location, and execu-
tion completes with condition code 3.

For any type of first operand, including an infinity, and
a NaN, when one or more leftmost nonzero digits of
the significand are lost because the second-operand
field is too short, the result is obtained by ignoring the
overflow digits, condition code 3 is set, and, if the
decimal-overflow mask bit is one, a program interrup-
tion for decimal overflow occurs. The operand
lengths alone are not an indication of overflow; non-
zero digits must have been lost during the operation.

A specification exception is recognized, and the
operation is suppressed, when any of the following is
true:

Op Code L2 B2 D2 R1 M3 Op Code

0 8 16 20 32 36 40 47

S Z P F

0 1 2 3

Decimal-Floating-Point Instructions 20-37

D
IV

ID
E• For CZDT, the L2 field is greater than or equal to

16, meaning 17 or more digits.

• For CZXT, the R1 field designates an invalid float-
ing-point-register pair, or the L2 field is greater
than or equal to 34, meaning 35 or more digits.

Resulting Condition Code:

0 Source is zero
1 Source is less than zero
2 Source is greater than zero
3 Infinity, QNaN, SNaN, Partial result

Program Exceptions:

• Access (Store operand 2)
• Data with DXC 3, DFP instruction
• Decimal overflow
• Operation (if the DFP zoned-conversion facility is

not installed)
• Specification
• Transaction constraint

Programming Notes:

1. An ASCII zoned-decimal operand may be stored
as signed when the S bit is one. This is entirely
up to the program as ASCII representations are
usually unsigned and positive with no concept of
a rightmost zone being used as a sign.

2. If the number of significant digits of a significand
exceeds the specified number, one or more left-
most digits of the significand are ignored.

3. Depending on the model, for CZXT, when the L2

field specifies 32 or 33 (meaning 33 or 34 digits),
performance may be significantly worse than if
shorter lengths are specified.

4. A completion with condition code 0 indicates that
the absolute value of the first operand is zero.

DIVIDE

Mnemonic1 R1,R2,R3 [RRF-a]

Mnemonic1 Op Code Operands
DDTR 'B3D1' Long DFP
DXTR 'B3D9' Extended DFP

Mnemonic2 R1,R2,R3,M4 [RRF-a]

Mnemonic2 Op Code Operands
DDTRA 'B3D1' Long DFP
DXTRA 'B3D9' Extended DFP

The second operand (the dividend) is divided by the
third operand (the divisor), and the quotient is placed
at the first-operand location. No remainder is pre-
served.

If divisor is nonzero and both the dividend and divisor
are finite numbers, the second operand is divided by
the third operand to form an intermediate quotient.
The intermediate quotient, if nonzero, is rounded to
the target format and the rounded value is then
placed at the first-operand location.

When the floating-point extension facility is installed,
the intermediate quotient is rounded by rounding as
specified by the modifier in the M4 field:

When the modifier field is zero or two, rounding is
controlled by the current DFP rounding mode speci-
fied in the FPC register. When the field is 1, or 3-15,
rounding is performed as specified by the modifier,
regardless of the current DFP rounding mode.

If the modifier field is 0 or 8-15, the quantum-excep-
tion control (XqC) is one and recognition of the quan-
tum exception is suppressed; if the modifier field is 1-

Op Code R3 / / / / R1 R2

0 16 20 24 28 31

Op Code R3 M4 R1 R2

0 16 20 24 28 31

M4 Effective Rounding Method
0 According to the current DFP rounding mode

1 Round to nearest with ties away from 0
2 According to the current DFP rounding mode

3 Round to prepare for shorter precision

4 Round to nearest with ties to even
5 Round toward 0

6 Round toward +
7 Round toward -
8 Round to nearest with ties to even

9 Round toward 0

10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0

13 Round to nearest with ties toward 0
14 Round away from 0

15 Round to prepare for shorter precision

20-38 The z/Architecture CPU Architecture

D
IV

ID
E 7, the quantum-exception control is zero and recogni-

tion of the exception is not suppressed.

When the floating-point extension facility is not
installed, no quantum exception is recognized. If bits
20-23 of the instruction contain a value of zero, the
intermediate quotient is rounded according to the
current DFP rounding mode; if bits 20-23 of the
instruction contain a nonzero value, it is unpredict-
able which rounding method is performed.

When the dividend is a finite number and the divisor
is infinity, then a value of zero with zero significand
and zero biased exponent is produced.

The sign of the quotient, if the quotient is numeric, is
the exclusive or of the operand signs. This includes
the sign of a zero or infinite quotient.

When the delivered value is exact, the preferred
quantum is the quantum of the dividend divided by
the quantum of the divisor; when the delivered value
is inexact, the preferred quantum is the smallest
quantum.

The result placed at the first-operand location is
canonical.

If the divisor is zero but the dividend is nonzero and
finite, an IEEE-division-by-zero exception is recog-

nized. If the dividend and divisor are both zero, or if
both are infinite, regardless of sign, an IEEE-invalid-
operation exception is recognized.

See Figure 20-20 on page 20-38 for a detailed
description of the results of this instruction.

For DXTR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Division by zero
• Overflow
• Underflow
• Inexact
• Quantum (if the floating-point extension facility is

installed)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (DXTR and DXTRA only)
• Transaction constraint

Dividend (b)
is

Results for DIVIDE (b c) when divisor (c) is
- -Fn -0 +0 +Fn + QNaN SNaN

- Xi: T(dNaN) T(+) T(+) T(-) T(-) Xi: T(dNaN) T(c) Xi: T(c*)
-Fn T(+zt) R(bc) Xz: T(+) Xz: T(-) R(bc) T(-zt) T(c) Xi: T(c*)
-0 T(+zt) T(+0) Xi: T(dNaN) Xi: T(dNaN) T(-0) T(-zt) T(c) Xi: T(c*)
+0 T(-zt) T(-0) Xi: T(dNaN) Xi: T(dNaN) T(+0) T(+zt) T(c) Xi: T(c*)

+Fn T(-zt) R(bc) Xz: T(-) Xz: T(+) R(bc) T(+zt) T(c) Xi: T(c*)
+ Xi: T(dNaN) T(-) T(-) T(+) T(+) Xi: T(dNaN) T(c) Xi: T(c*)

QNaN T(b) T(b) T(b) T(b) T(b) T(b) T(b) Xi: T(c*)
SNaN Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
dNaN Default NaN.
Fn Nonzero finite number (includes both subnormal and normal numbers).
R(x) Rounding and range action is performed on the value x. See Figure 20-5 on page 20-11. The result is canonical.
T(x) The canonical result x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
Xz: IEEE division-by-zero exception. The results shown are produced only when FPC 0.1 is zero.
zt A value of zero with zero significand and zero biased exponent.

Figure 20-20. Results: DIVIDE

Decimal-Floating-Point Instructions 20-39

E
X

T
R

A
C

T
 S

IG
N

IF
IC

A
N

C
EProgramming Note: For DIVIDE, when the deliv-

ered value is inexact, the preferred quantum is the
smallest quantum which is not always the same
quantum as that closest to the quantum of the divi-
dend divided by the quantum of the divisor.

For example, with the short data format, when
5000001 10-7 is divided by 400 100, the smallest
quantum for the delivered value is 1 10-9. However,
the quantum that is closest to the quantum of the div-
idend divided by the quantum of the divisor is
1 10-7..

EXTRACT BIASED EXPONENT

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
EEDTR 'B3E5' Long DFP source, 64-bit binary-integer

result
EEXTR 'B3ED' Extended DFP source, 64-bit binary-integer

result

The biased exponent of the DFP second operand is
placed at the first-operand location.

When the second operand is a finite number, the
biased exponent of the second operand is placed at
the first-operand location. When the second operand
is an infinity, QNaN, or SNaN, a special value is
placed at the first-operand location.

The result is a 64-bit signed binary integer that is
placed in the general register designated by R1.

This operation is performed for any second operand,
including an infinity, QNaN, or SNaN, without causing
an IEEE exception.

See Figure 20-21 for a detailed description of the
results of this instruction.

For EEXTR, the R2 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (EEXTR only)
• Transaction constraint

EXTRACT SIGNIFICANCE

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
ESDTR 'B3E7' Long DFP source, 64-bit binary-integer

result
ESXTR 'B3EF' Extended DFP source, 64-bit binary-integer

result

The number of DFP significant digits of the DFP sec-
ond operand is placed at the first-operand location.

When the second operand is a finite number, the
result is set to the number of DFP significant digits of
the second operand. When the second operand is an
infinity, QNaN, or SNaN, the result is set to -1, -2, or -
3, respectively.

The result is a 64-bit signed binary integer that is
placed in the general register designated by R1.

See Figure 20-22 for a detailed description of the
results of this instruction.

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Second-operand data First-operand value
 Finite number e

 Infinity -1
 QNaN -2
 SNaN -3

Explanation:

e Biased exponent

Figure 20-21. Results: EXTRACT BIASED EXPONENT

Op Code / / / / / / / / R1 R2

0 16 24 28 31

Second-operand data First-operand value
Nonzero finite number NSD

 Zero 0
 Infinity -1
 QNaN -2
 SNaN -3

Explanation:

NSD The number of DFP significant digits of the second
operand.

Figure 20-22. Results: EXTRACT SIGNIFICANCE

20-40 The z/Architecture CPU Architecture

IN
S

E
R

T
 B

IA
S

E
D

 E
X

P
O

N
E

N
T This operation is performed for any second operand,

including an infinity, QNaN, or SNaN, without causing
an IEEE exception.

For ESXTR, the R2 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (ESXTR only)
• Transaction constraint

INSERT BIASED EXPONENT

Mnemonic R1,R3,R2 [RRF-b]

Mnemonic Op Code Operands
IEDTR 'B3F6' Long DFP
IEXTR 'B3FE' Extended DFP

A DFP operand is produced by combining the
requested biased exponent with the sign bit and the
significand of the DFP third operand, and the result is
placed in the first-operand location.

The value of the requested biased exponent is a 64-
bit signed binary integer and is located in the general
register designated by R2.

When the value of the requested biased exponent is
in the range between zero and the maximum biased
exponent, inclusively, for the target format, the result
is a finite number. The biased exponent of the result
is set to the value of the requested biased exponent;
the significand of the result is set to the significand of
the third operand. If the third operand is an infinity or
NaN, the significand of the third operand contains the
digits in the trailing significand of the third operand
padded with a zero digit on the left.

When the value of the requested biased exponent is
-1, the result is an infinity. The reserved field of the
result is set to zero; the trailing significand of the

result is set to the trailing significand of the third oper-
and.

When the value of the requested biased exponent is
equal to -2, less than -3, or greater than the maxi-
mum biased exponent for the target format, the result
is a QNaN; when the value of the requested biased
exponent is -3, the result is an SNaN. When a NaN is
produced as the result, the reserved field of the result
is set to zero, and the trailing significand of the result
is set to the trailing significand of the third operand.

The sign of the result is the same as the sign of the
third operand.

The preferred quantum is the quantum that corre-
sponds to the requested biased exponent. If the
delivered value is a finite number, it is always repre-
sented with the preferred quantum.

The result placed at the first-operand location is
canonical, except for infinity. When the result is an
infinity, if all digits in the trailing significand of the third
operand are zeros, then the result is a canonical
infinity; otherwise, the result is an infinity that has the
reserved field set to zero, canonical declets in the
encoded trailing-significand field, and some nonzero
digits in the trailing significand.

See Figure 20-23 for a detailed description of the
results of this instruction.

This operation is performed for any requested biased
exponent and any third operand without causing an
IEEE exception.

For IEXTR, the R1 and R3 fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (IEXTR only)
• Transaction constraint

Programming Note: Infinities produced as DFP
results have the reserved field set to zero and have
canonical declets in the encoded trailing-significand

Op Code R3 / / / / R1 R2

0 16 20 24 28 31

Decimal-Floating-Point Instructions 20-41

L
O

A
D

 A
N

D
 T

E
S

T

field. An infinity is not considered canonical unless all
digits in the trailing significand are zeros.

LOAD AND TEST

Mnemonic R1,R2 [RRE]

Mnemonic Op Code Operands
LTDTR 'B3D6' Long DFP
LTXTR 'B3DE' Extended DFP

The second operand is placed at the first-operand
location, and its sign and magnitude are tested to
determine the setting of the condition code. The con-

dition code is set the same as for a comparison of the
second operand with zero.

The second operand is canonicalized before it is
placed at the first-operand location. If the second
operand is an SNaN, an IEEE-invalid-operation
exception is recognized; if there is no interruption,
the result is the corresponding QNaN.

The preferred quantum is the quantum of the second
operand. If the delivered value is a finite number, it is
always represented with the preferred quantum.

The result placed at the first-operand location is
canonical.

See Figure 20-24 for a detailed description of the
results of this instruction.

For LTXTR, the R fields must designate valid floating-
point-register pairs; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (LTXTR only)
• Transaction constraint

Value (b) in
second
operand

Results1 for INSERT BIASED EXPONENT
when third operand (c) is

F QNaN SNaN
b > MBE T(QNaN) T(QNaN) T(QNaN) T(QNaN)

MBE b 0 T(F) T(F2) T(F2) T(F2)

b = -1 N() N() N() N()

b = -2 T(QNaN) T(QNaN) T(QNaN) T(QNaN)
b = -3 T(SNaN) T(SNaN) T(SNaN) T(SNaN)

b -4 T(QNaN) T(QNaN) T(QNaN) T(QNaN)

Explanation:

1 The sign of the result is the same as the sign of the third
operand.

2 The leftmost digit of the significand is zero.
F All finite numbers, including zeros.
MBE Maximum biased exponent for the target format.
N() The result is a canonical infinity if all digits in the trailing

significand of the third operand are zeros; otherwise, the
resultant infinity has the reserved field set to zero,
canonical declets in the encoded trailing-significand field,
and some nonzero digits in the trailing significand.

T(x) The canonical result x is placed at the target operand
location.

Figure 20-23. Results: INSERT BIASED EXPONENT

Op Code / / / / / / / / R1 R2

0 16 24 28 31

20-42 The z/Architecture CPU Architecture

L
O

A
D

 F
P

 IN
T

E
G

E
R

LOAD FP INTEGER

Mnemonic R1,M3,R2,M4 [RRF-e]

Mnemonic Op Code Operands
FIDTR 'B3D7' Long DFP
FIXTR 'B3DF' Extended DFP

The second operand is rounded to an integer value in
the same floating-point format, and the result is
placed at the first-operand location.

The second operand, if a finite number, is rounded to
an integer value as specified by the modifier in the M3

field:

When the modifier field is zero, rounding is controlled
by the current DFP rounding mode specified in the
FPC register. When the field is 8-15, rounding is per-
formed as specified by the modifier, regardless of the
current DFP rounding mode.

When the floating-point extension facility is installed
and if the modifier field is 2, rounding is controlled by
the current DFP rounding mode specified in the FPC
register; if the field is 1, or 3-7, rounding is performed
as specified by the modifier, regardless of the current
DFP rounding mode. If the modifier field is 0 or 8-15,
the quantum-exception control (XqC) is one and rec-
ognition of the quantum exception is suppressed; if
the modifier field is 1-7, the quantum-exception con-

Instruction

Results for some instructions with a single operand (b)
when second operand (b) is

- -Fn -0 +0 +Fn + QNaN SNaN
CONVERT FROM FIXED — Rf(b) — T(+0) Rf(b) — — —

CONVERT FROM LOGICAL — — — T(+0) Rf(b) — — —

LOAD AND TEST T(-) T(b) T(-0) T(+0) T(b) T(+) T(b) Xi: T(b*)

LOAD LENGTHENED (XiC = 0) T(-) T(b)1 T(-0) T(+0) T(b)1 T(+) T(b)1 Xi: T(b*)1

LOAD LENGTHENED (XiC = 1) N(-)1 T(b)1 T(-0) T(+0) T(b)1 N(+)1 T(b)1 T(b)1

LOAD ROUNDED (XiC = 0) T(-) R(b) T(-0) T(+0) R(b) T(+) T(b)2 Xi: T(b*)2

LOAD ROUNDED (XiC = 1) N(-)2 R(b) T(-0) T(+0) R(b) N(+)2 T(b)2 T(b)2

Explanation:

— The results do not depend on this condition.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
1 The operand is extended to the longer format by appending zeros on the left before it is placed at the target operand location.
2 The operand is shortened to the target format by truncating the leftmost digits.
Fn Nonzero finite number (includes both subnormal and normal).
N(±) The resultant infinity has the reserved field set to zero and has canonical declets in the encoded trailing-significand field. The

result is not considered canonical unless all digits in the trailing significand are zeros.
R(v) Rounding and range action is performed on the value v. See Figure 20-5 on page 20-11. The result is canonical.
Rf(b) The value b is converted to the exact floating-point number v, and then action R(v) is performed. The result is canonical.
T(x) The canonical result x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
XiC IEEE-invalid-operation-exception control, bit 0 of the M4 field.

Figure 20-24. Results: Some Single-Operand Instructions

Op Code M3 M4 R1 R2

0 16 20 24 28 31

M3 Effective Rounding Method
0 According to the current DFP rounding mode
1 Round to nearest with ties away from 0

2 According to the current DFP rounding mode

3 Round to prepare for shorter precision

4 Round to nearest with ties to even
5 Round toward 0

6 Round toward +

7 Round toward -
8 Round to nearest with ties to even
9 Round toward 0

10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0

13 Round to nearest with ties toward 0

14 Round away from 0
15 Round to prepare for shorter precision

M3 Effective Rounding Method

Decimal-Floating-Point Instructions 20-43

L
O

A
D

 F
P

 IN
T

E
G

E
Rtrol is zero and recognition of the exception is not

suppressed.

When the floating-point extension facility is not
installed, no quantum exception is recognized. If the
M3 modifier field is 1-7, it is unpredictable which
rounding method is performed.

In the absence of an interruption, if the second oper-
and is an infinity, the result is the canonical infinity; if
the second operand is a QNaN, the result is the
canonicalized source QNaN that has the same sign
and payload as the source; if the second operand is
an SNaN, the result is the corresponding QNaN.

The sign of the result is the sign of the second oper-
and, even when the result is zero.

Bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC). Bits 0, 2, and 3 are ignored.

When the result differs in value from the second
operand, if XxC is zero, an IEEE-inexact exception is
recognized. If XxC one, then no IEEE-inexact excep-
tion is recognized.

This operation performs a functionally-constrained
rounding. Neither overflow nor underflow condition
can occur.

When the delivered value is exact, the preferred
quantum is the larger value of one and the quantum
of the second operand; when the delivered value is
inexact, the preferred quantum is one. If the delivered

value is a finite number, it is always represented with
the preferred quantum.

The result placed at the first-operand location is
canonical.

See Figure 20-25 on page 20-43 for a detailed
description of the results of FIDTR and FIXTR.

When the floating-point extension facility is installed,
if the quantum of the delivered finite number is not
equal to the quantum of the second operand and if
XqC is zero, then a quantum exception is recognized.

For FIXTR, the R fields must designate valid floating-
point-register fields; otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Inexact
• Quantum (if the floating-point extension facility is

installed)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (FIXTR only)
• Transaction constraint

Second
Operand

(b)

Is n
Inexact
(n b)

 IEEE Inexact
Exception

Control
(XxC)

Inexact
Mask

(FPC 0.4)

Is n
Incremented

(|n| > |b|)
Is

Q < 1

 Quantum-
Exception

Control
(XqC)2

Quantum
Exception

Mask
(FPC 0.5)

Inv.-Op.
Mask

(FPC 0.0) Results
- No1 — — — — — — — T(-)

-Fn No — — — No — — — T(n)

-Fn No — — — Yes 1 — — T(n)
-Fn No — — — Yes 0 0 — T(n), SFq1

-Fn No — — — Yes 0 1 — T(n), PIDq(04)

-Fn Yes 0 0 — Yes 1 — — T(n), SFx1
-Fn Yes 0 0 — Yes 0 0 — T(n), SFx1, SFq1

-Fn Yes 0 0 — Yes 0 1 — T(n), SFx1, PIDq(04)

-Fn Yes 0 1 No — — — — T(n), PIDx(08)

-Fn Yes 0 1 Yes — — — — T(n), PIDy(0C)
-Fn Yes 1 — — Yes 1 — — T(n)

-Fn Yes 1 — — Yes 0 0 — T(n), SFq1

-Fn Yes 1 — — Yes 0 1 — T(n), PIDq(04)

Figure 20-25. Results: LOAD FP INTEGER

20-44 The z/Architecture CPU Architecture

L
O

A
D

 F
P

 IN
T

E
G

E
R

Programming Notes:

1. Unassigned bits in the M4 field are reserved for
future extensions and should be set to zeros;
otherwise, the program may not operate compat-
ibly in the future.

2. If the DFP source operand is numeric with a
quantum of at least one so that it is already an
integer, the result value and quantum remain the
same. Other numeric DFP source operands that
are integers with a quantum less than one are

-0 No1 — — — No — — — T(-0)

-0 No1 — — — Yes 1 — — T(-0)

-0 No1 — — — Yes 0 0 — T(-0), SFq1

-0 No1 — — — Yes 0 1 — T(-0), PIDq(04)
+0 No1 — — — No — — — T(+0)

+0 No1 — — — Yes 1 — — T(+0)

+0 No1 — — — Yes 0 0 — T(+0), SFq1
+0 No1 — — — Yes 0 1 — T(+0), PIDq(04)

+Fn No — — — No — — — T(n)

+Fn No — — — Yes 1 — — T(n)
+Fn No — — — Yes 0 0 — T(n), SFq1

+Fn No — — — Yes 0 1 — T(n), PIDq(04)

+Fn Yes 0 0 — Yes 1 — — T(n), SFx1
+Fn Yes 0 0 — Yes 0 0 — T(n), SFx1, SFq1

+Fn Yes 0 0 — Yes 0 1 — T(n), SFx1, PIDq(04)

+Fn Yes 0 1 No — — — — T(n), PIDx(08)
+Fn Yes 0 1 Yes — — — — T(n), PIDy(0C)

+Fn Yes 1 — — Yes 1 — — T(n)

+Fn Yes 1 — — Yes 0 0 — T(n), SFq1
+Fn Yes 1 — — Yes 0 1 — T(n), PIDq(04)

+ No1 — — — — — — — T(+)

QNaN No1 — — — — — — — T(b)
SNaN No1 — — — — — — 0 T(b*), SFi1

SNaN No1 — — — — — — 1 PIDi(80)

Explanation:

— The results do not depend on this condition or mask bit.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 XqC is defined only if the floating-point extension facility is installed.
n The value derived when the source value, b, is rounded to an integer using the effective rounding method.
Fn Finite nonzero number (includes both subnormal and normal).
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 20-8 on page 20-16.
PIDq(04) Program interruption for data exception, quantum-exception condition q, with DXC of 04 in hex. It is defined only if the floating-point

extension facility is installed.
Q Quantum of the second operand.
SFi IEEE invalid-operation flag, FPC 1.0.
SFq Quantum exception flag, FPC 1.5. The flag is defined only if the floating-point extension facility is installed.
SFx IEEE inexact flag, FPC 1.4.
T(x) The canonical result x is placed at the target operand location. The result, when it is a finite number, is always represented with the

preferred quantum.

Second
Operand

(b)

Is n
Inexact
(n b)

 IEEE Inexact
Exception

Control
(XxC)

Inexact
Mask

(FPC 0.4)

Is n
Incremented

(|n| > |b|)
Is

Q < 1

 Quantum-
Exception

Control
(XqC)2

Quantum
Exception

Mask
(FPC 0.5)

Inv.-Op.
Mask

(FPC 0.0) Results

Figure 20-25. Results: LOAD FP INTEGER

Decimal-Floating-Point Instructions 20-45

L
O

A
D

 L
E

N
G

T
H

E
N

E
Dconverted to the same value with a quantum of

one.

LOAD LENGTHENED

Mnemonic R1,R2,M4 [RRF-d]

Mnemonic Op Code Operands
LDETR 'B3D4' Short DFP source, long DFP result
LXDTR 'B3DC' Long DFP source, extended DFP result

The second operand is converted to a longer format,
and the result is placed at the first-operand location.

Bit 0 of the M4 field controls the handling of SNaN
and infinity, and is called the IEEE-invalid-operation-
exception control (XiC). Bits 1-3 are ignored. When
XiC is zero, recognition of IEEE-invalid-operation
exception is not suppressed; when XiC is one, recog-
nition of the exception is suppressed.

When the second operand is a finite number, the
value of the second operand is placed in the target
format.

When the second operand is an infinity, if XiC is zero,
the result is the canonical infinity for the target for-
mat; if XiC is one, the result is the source infinity with
the reserved field of the target format being set to
zero, the trailing significand being extended by
appending zeros on the left, and all declets in the
encoded trailing-significand field being canonical-
ized.

When the second operand is a QNaN, the result is
the canonicalized source QNaN with the payload
extended by appending zeros on the left.

When the second operand is an SNaN, if XiC is zero,
an invalid-operation exception is recognized and the
nontrap result is the corresponding QNaN with the
payload extended by appending zeros on the left; if
XiC is one, no invalid-operation exception is recog-
nized, and the result is the canonicalized source
SNaN with the payload extended by appending zeros
on the left.

The sign of the result is the same as the sign of the
second operand.

The delivered value is always exact and the preferred
quantum is the quantum of the second operand.

When XiC is zero, the result placed at the first-oper-
and location is canonical. When XiC is one, the result
is canonical, except for infinity. See the detailed
description above for producing an infinity when XiC
is one.

See Figure 20-24 on page 20-42 for a detailed
description of the results of this instruction.

For LXDTR, the R1 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (LXDTR only)
• Transaction constraint

Programming Notes:

1. Unassigned bits in the M4 field are reserved for
future extensions and should be set to zeros;
otherwise, the program may not operate compat-
ibly in the future.

2. The equivalent operations of LOAD LENGTH-
ENED (short to long) in the Power architecture
do not recognize the invalid-operation exception
for both BFP and DFP. The equivalent operations
of LOAD LENGTHENED in z/Architecture do rec-
ognize the exception for BFP. The IEEE-invalid-
operation-exception control (XiC) is provided for
compatibility.

3. Infinities produced as DFP results have the
reserved field set to zero and have canonical
declets in the encoded trailing-significand field.
An infinity is not considered canonical unless all
digits in the trailing significand are zeros.

Op Code / / / / M4 R1 R2

0 16 24 28 31

20-46 The z/Architecture CPU Architecture

L
O

A
D

 R
O

U
N

D
E

D LOAD ROUNDED

Mnemonic R1,M3,R2,M4 [RRF-e]

Mnemonic Op Code Operands
LEDTR 'B3D5' Long DFP source, short DFP target, short or

long DFP result
LDXTR 'B3DD' Extended DFP source, long DFP target,

long or extended DFP result

The second operand, in the format of the source, is
rounded to the precision of the target, and the result
is placed at the first-operand location.

The second operand, if it is a finite number, is
rounded as specified by the modifier in the M3 field:

When the modifier field is zero, rounding is controlled
by the current DFP rounding mode specified in the
FPC register. When the field is 8-15, rounding is per-
formed as specified by the modifier, regardless of the
current DFP rounding mode.

When the floating-point extension facility is installed
and if the modifier field is 2, rounding is controlled by
the current DFP rounding mode specified in the FPC
register; if the field is 1, or 3-7, rounding is performed
as specified by the modifier, regardless of the current
DFP rounding mode. If the modifier field is 0 or 8-15,
the quantum-exception control (XqC) is one and rec-
ognition of the quantum exception is suppressed; if
the modifier field is 1-7, the quantum-exception con-

trol is zero and recognition of the exception is not
suppressed.

When the floating-point extension facility is not
installed, no quantum exception is recognized. If the
M3 modifier field is 1-7, it is unpredictable which
rounding method is performed.

Bit 0 of the M4 field controls the handling of SNaN
and infinity, and is called the IEEE-invalid-operation-
exception control (XiC). When XiC is zero, recogni-
tion of IEEE-invalid-operation exception is not sup-
pressed; when XiC is one, recognition of IEEE-
invalid-operation exception is suppressed.

When the floating-point extension facility is installed,
bit 1 of the M4 field is the IEEE-inexact-exception
control (XxC), and bits 2-3 are ignored. If XxC is zero,
recognition of IEEE-inexact exception is not sup-
pressed; if XxC is one, recognition of the exception is
suppressed.

When the floating-point extension facility is not
installed, and if bits 21-23 of the instruction are zeros,
then recognition of IEEE-inexact exception is not
suppressed; if bits 21-23 of the instruction contain a
nonzero value, it is unpredictable whether recognition
of IEEE-inexact exception is suppressed.

In the absence of a trap overflow or trap underflow,
the result is in the format and length of the target.
However, when a trap overflow or trap underflow
occurs, the operation is completed by producing a
scaled result in the same format and length as the
source but rounded to the precision of the target. In
this case, the result is selected from a subset of the
cohort for the delivered value in the source format.
This subset of the cohort consists of cohort members
that have the number of DFP significand digits equal
to or less than the precision of the target format. For
LEDTR, the result has at most seven DFP significant
digits; for LDXTR, the result has at most 16 DFP sig-
nificant digits.

When the second operand is an infinity, if XiC is zero,
the result is the canonical infinity for the target for-
mat; if XiC is one, the result is the source infinity with
the reserved field of the target format being set to
zero, the trailing significand being shortened by
removing leftmost digits, and declets corresponding
to the shortened trailing significand being canonical-
ized.

Op Code M3 M4 R1 R2

0 16 20 24 28 31

M3 Effective Rounding Method
0 According to the current DFP rounding mode

1 Round to nearest with ties away from 0

2 According to the current DFP rounding mode
3 Round to prepare for shorter precision

4 Round to nearest with ties to even

5 Round toward 0
6 Round toward +
7 Round toward -
8 Round to nearest with ties to even
9 Round toward 0

10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0

13 Round to nearest with ties toward 0

14 Round away from 0
15 Round to prepare for shorter precision

Decimal-Floating-Point Instructions 20-47

M
U

L
T

IP
L

YWhen the second operand is a QNaN, the result is
the canonicalized source QNaN with the payload
shortened by removing leftmost digits.

When the second operand is an SNaN, if XiC is zero,
an invalid-operation exception is recognized and the
nontrap result is the corresponding QNaN with the
payload shortened by removing leftmost digits; if XiC
is one, no invalid-operation exception is recognized,
and the result is the canonicalized source SNaN with
the payload shortened by removing leftmost digits.

The sign of the result is the same as the sign of the
second operand.

When the delivered value is exact, the preferred
quantum is the quantum of the second operand;
when the delivered value is inexact, the preferred
quantum is the smallest quantum.

When XiC is zero, the result placed at the first-oper-
and location is canonical. When XiC is one, the result
is canonical, except for infinity. See the detailed
description above for producing an infinity when XiC
is one.

See Figure 20-24 on page 20-42 for a detailed
description of the results of this instruction.

For LDXTR, the R fields must designate valid float-
ing-point-register pairs; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact
• Quantum (if the floating-point extension facility is

installed)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (LDXTR only)
• Transaction constraint

Programming Notes:

1. LOAD ROUNDED and the round-to-prepare-for-
shorter-precision rounding method can be used
to simulate a DFP operation with the precision of
a shorter format and with the effect of single
rounding. The round-to-prepare-for-shorter-pre-
cision rounding method is used by the operation,
and the desirable rounding method is used by
the subsequent LOAD ROUNDED instruction.

2. Unassigned bits in the M4 field are reserved for
future extensions and should be set to zeros;
otherwise, the program may not operate compat-
ibly in the future.

3. The equivalent operation of LOAD ROUNDED
(long to short) in the Power architecture does not
recognize the invalid-operation exception. IEEE-
invalid-operation-exception control (XiC) is pro-
vided for compatibility.

4. Infinities produced as DFP results have the
reserved field set to zero and have canonical
declets in the encoded trailing-significand field.
An infinity is not considered canonical unless all
digits in the trailing significand are zeros.

5. In case of a trap overflow or a trap underflow, the
number of DFP significand digits of the delivered
result is limited to the precision of the target for-
mat. For example, when the source operand is
75958100 X 10369 and is represented with the
quantum of 10369, execution of LEDTR using the
round-away-from-0 rounding method produces a
value of 7595810 X 10178 with the delivered
quantum of 10178 as the trap overflow result.

MULTIPLY

Mnemonic1 R1,R2,R3 [RRF-a]

Mnemonic2 Op Code Operands
MDTR 'B3D0' Long DFP
MXTR 'B3D8' Extended DFP

Mnemonic2 R1,R2,R3,M4 [RRF-a]

Op Code R3 / / / / R1 R2

0 16 20 24 28 31

Op Code R3 M4 R1 R2

0 16 20 24 28 31

20-48 The z/Architecture CPU Architecture

M
U

L
T

IP
L

Y Mnemonic2 Op Code Operands
MDTRA 'B3D0' Long DFP
MXTRA 'B3D8' Extended DFP

The product of the second operand (the multiplicand)
and the third operand (the multiplier) is placed at the
first-operand location.

If both source operands are finite numbers, they are
multiplied to form an intermediate product. The inter-
mediate product is rounded to the target format and
the rounded value is then placed at the first-operand
location.

When the floating-point extension facility is installed,
the intermediate product is rounded by rounding as
specified by the modifier in the M4 field:

When the modifier field is zero or two, rounding is
controlled by the current DFP rounding mode speci-
fied in the FPC register. When the field is 1, or 3-15,
rounding is performed as specified by the modifier,
regardless of the current DFP rounding mode.

If the modifier field is 0 or 8-15, the quantum-excep-
tion control (XqC) is one and recognition of the quan-
tum exception is suppressed; if the modifier field is 1-
7, the quantum-exception control is zero and recogni-
tion of the exception is not suppressed.

When the floating-point extension facility is not
installed, no quantum exception is recognized. If bits
20-23 of the instruction contain a value of zero, the
intermediate product is rounded according to the cur-
rent DFP rounding mode; if bits 20-23 of the instruc-

tion contain a nonzero value, it is unpredictable which
rounding method is performed.

The sign of the product, if the product is numeric, is
the exclusive or of the operand signs. This includes
the sign of a zero or infinite product.

When the delivered value is exact, the preferred
quantum is the product of the quanta of the two
source operands; when the delivered value is inex-
act, the preferred quantum is the smallest quantum.

The result placed at the first-operand location is
canonical.

See Figure 20-26 on page 20-49 for a detailed
description of the results of this instruction.

If one source operand is a zero and the other an
infinity, an IEEE-invalid-operation exception is recog-
nized

For MXTR and MXTRA, the R fields must designate
valid floating-point-register pairs; otherwise, a specifi-
cation exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact
• Quantum (if the floating-point extension facility is

installed)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (MXTR and MXTRA only)
• Transaction constraint

Programming Notes:

1. Interchanging the two operands in a DFP multi-
plication does not affect the value of the product
when the result is numeric. This is not true, how-
ever, when both operands are QNaNs. in which
case the result is the canonical QNaN derived
from the second operand; or when both oper-
ands are SNaNs and the IEEE invalid-operation

M4 Effective Rounding Method
0 According to the current DFP rounding mode
1 Round to nearest with ties away from 0

2 According to the current DFP rounding mode

3 Round to prepare for shorter precision
4 Round to nearest with ties to even

5 Round toward 0

6 Round toward +
7 Round toward -
8 Round to nearest with ties to even

9 Round toward 0
10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0
13 Round to nearest with ties toward 0

14 Round away from 0

15 Round to prepare for shorter precision

Decimal-Floating-Point Instructions 20-49

Q
U

A
N

T
IZ

E

mask bit in the FPC register is zero, in which
case the result is the canonical QNaN derived
from the second operand.

2. For MULTIPLY, when the delivered value is inex-
act, the preferred quantum is the smallest quan-
tum which is the same quantum as that closest to
the product of the quanta of the two source oper-
ands.

QUANTIZE

Mnemonic R1,R3,R2,M4 [RRF-b]

Mnemonic Op Code Operands
QADTR 'B3F5' Long DFP
QAXTR 'B3FD' Extended DFP

The third operand is rounded to a requested quan-
tum, and the result is placed at the first-operand loca-
tion.

The requested quantum is the quantum of the sec-
ond operand.

When both the second and third operands are finite
numbers, if the quantum of the third operand is equal
to or larger than the requested quantum, the value of
the third operand with the requested quantum is
placed at the first-operand location. If the quantum of
the third operand is smaller than the requested quan-

tum, the third operand is rounded to the requested
quantum by rounding as specified by the modifier in
the M4 field, and the result with the requested quan-
tum is placed at the first-operand location.

When the modifier field is zero, rounding is controlled
by the current DFP rounding mode specified in the
FPC register. When the field is 8-15, rounding is per-
formed as specified by the modifier, regardless of the
current DFP rounding mode.

When the floating-point extension facility is installed
and if the modifier field is 2, rounding is controlled by
the current DFP rounding mode specified in the FPC

Multiplicand
(b) is

Results for MULTIPLY (b c) when multiplier (c) is
- -Fn -0 +0 +Fn + QNaN SNaN

- T(+) T(+) Xi: T(dNaN) Xi: T(dNaN) T(-) T(-) T(c) Xi: T(c*)

-Fn T(+) R(bc) T(+0) T(-0) R(bc) T(-) T(c) Xi: T(c*)
-0 Xi: T(dNaN) T(+0) T(+0) T(-0) T(-0) Xi: T(dNaN) T(c) Xi: T(c*)

+0 Xi: T(dNaN) T(-0) T(-0) T(+0) T(+0) Xi: T(dNaN) T(c) Xi: T(c*)

+Fn T(-) R(bc) T(-0) T(+0) R(bc) T(+) T(c) Xi: T(c*)

+ T(-) T(-) Xi: T(dNaN) Xi: T(dNaN) T(+) T(+) T(c) Xi: T(c*)
QNaN T(b) T(b) T(b) T(b) T(b) T(b) T(b) Xi: T(c*)

SNaN Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
dNaN Default NaN.
Fn Nonzero finite number (includes both subnormal and normal).
R(v) Rounding and range action is performed on the value v. See Figure 20-5 on page 20-11. The result is canonical.
T(x) The canonical result x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 20-26. Results: MULTIPLY

Op Code R3 M4 R1 R2

0 16 20 24 28 31

M4 Effective Rounding Method
0 According to the current DFP rounding mode
1 Round to nearest with ties away from 0

2 According to the current DFP rounding mode

3 Round to prepare for shorter precision
4 Round to nearest with ties to even

5 Round toward 0

6 Round toward +
7 Round toward -
8 Round to nearest with ties to even

9 Round toward 0
10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0
13 Round to nearest with ties toward 0

14 Round away from 0

15 Round to prepare for shorter precision

20-50 The z/Architecture CPU Architecture

Q
U

A
N

T
IZ

E register; if the field is 1, or 3-7, rounding is performed
as specified by the modifier, regardless of the current
DFP rounding mode. If the modifier field is 0 or 8-15,
the quantum-exception control (XqC) is one and rec-
ognition of the quantum exception is suppressed; if
the modifier field is 1-7, the quantum-exception con-
trol is zero and recognition of the exception is not
suppressed.

When the floating-point extension facility is not
installed, no quantum exception is recognized. If the
M4 modifier field is 1-7, it is unpredictable which
rounding method is performed.

The sign of the result, if numeric, is the same as the
sign of the third operand.

This operation performs a functionally-constrained
rounding, and does not recognize an underflow
exception. No overflow condition can occur.

The preferred quantum is the requested quantum. If
the delivered value is a finite number, it is always rep-
resented with the preferred quantum.

The result placed at the first-operand location is
canonical.

See Figure 20-27 on page 20-51 for a detailed
description of the results of this instruction.

An invalid-operation exception is recognized when
the resultant value cannot be represented in the tar-

get format with the requested quantum. When the
invalid-operation exception is recognized, and if the
exception is disabled, the result is the default QNaN.

An IEEE inexact exception is recognized when the
result differs in value from the third operand,

When the floating-point extension facility is installed,
if the quantum of the delivered finite number is not
equal to the quantum of the third operand and if XqC
is zero, then a quantum exception is recognized.

For QAXTR, the R fields must designate valid float-
ing-point-register pairs; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Inexact
• Quantum (if the floating-point extension facility is

installed)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (QAXTR only)
• Transaction constraint

Decimal-Floating-Point Instructions 20-51

Q
U

A
N

T
IZ

E

Programming Notes:

1. When the third operand is larger than
(10p - 1) 10Qb in magnitude, an invalid-opera-
tion exception is recognized, where p is the for-
mat precision and 10Qb is the requested
quantum.

The expression, (10p - 1) 10Qb, specifies the
largest magnitude that can be represented with
the requested quantum in the format. A value
larger than (10p - 1) 10Qb in magnitude will
have more than p digits when the value is repre-
sented with the requested quantum.

2. When both source operands are finite numbers,
an invalid-operation exception can occur only if
the requested quantum is smaller than the quan-
tum of the third operand; and an inexact excep-
tion can occur only if the requested quantum is
larger than the quantum of the third operand.

When second
operand (b) is

Result for QUANTIZE when third operand (c) is
- -Fn -0 +0 +Fn + QNaN SNaN

- T(-) Xi: T(dNaN) Xi: T(dNaN) Xi: T(dNaN) Xi: T(dNaN) T(+) T(c) Xi: T(c*)

-Fn Xi: T(dNaN) Q(b:c) E(-0) E(+0) Q(b:c) Xi: T(dNaN) T(c) Xi: T(c*)

-0 Xi: T(dNaN) Q(b:c) E(-0) E(+0) Q(b:c) Xi: T(dNaN) T(c) Xi: T(c*)
+0 Xi: T(dNaN) Q(b:c) E(-0) E(+0) Q(b:c) Xi: T(dNaN) T(c) Xi: T(c*)

+Fn Xi: T(dNaN) Q(b:c) E(-0) E(+0) Q(b:c) Xi: T(dNaN) T(c) Xi: T(c*)

+ T(-) Xi: T(dNaN) Xi: T(dNaN) Xi: T(dNaN) Xi: T(dNaN) T(+) T(c) Xi: T(c*)
QNaN T(b) T(b) T(b) T(b) T(b) T(b) T(b) Xi: T(c*)

SNaN Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*) Xi: T(b*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
dNaN Default NaN.
E(0) The value zero with the quantum of operand b is placed at the target operand location.
Fn Finite nonzero number (includes both subnormal and normal).
Q(b:c) See Figure 20-28.
T(x) The canonical result x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 20-27. Results: QUANTIZE

Relation1 Is |Vc| > (10p - 1) 10Qb? Result for Q(b:c)

10Qb < 10Qc Yes Xi: T(dNaN)

No L(c)

10Qb = 10Qc T(c)

10Qb > 10Qc Rq(c)

Explanation:

1 The quantum of the second operand and the third operand
is 10Qb and 10Qc, respectively.

dNaN Default NaN.
p Format precision.
Qb The right-units-view exponent of the second operand (b).
Qc The right-units-view exponent of the third operand (c).
|Vc| The absolute value of the third operand (c).
L(c) The third operand (c) is represented with the requested

quantum. The result is represented with the preferred
quantum and is canonical.

Rq(c) The third operand (c) is rounded to the requested quantum.
The result is represented with the preferred quantum and
is canonical.

T(x) The canonical result x is placed at the target operand
location. The result, when it is a finite number, is
represented with the preferred quantum and is canonical.

Xi: IEEE invalid-operation exception. The results shown are
produced only when FPC 0.0 is zero.

Figure 20-28. Results: Q(b:c)

20-52 The z/Architecture CPU Architecture

R
E

R
O

U
N

D REROUND

Mnemonic R1,R3,R2,M4 [RRF-b]

Mnemonic Op Code Operands
RRDTR 'B3F7' Long DFP
RRXTR 'B3FF' Extended DFP

The third operand is rounded to the requested signifi-
cance, and the result is placed at the first-operand
location.

The requested significance, which specifies a num-
ber of DFP significant digits, is an unsigned binary
integer and is in bit positions 58-63 of general regis-
ter R2. The contents of bit positions 0-57 of general
register R2 are ignored.

When the third operand is a finite number, if the
requested significance is zero, then the value of the
third operand with the original quantum is placed at
the first-operand location.

When the third operand is a finite number, if the
requested significance is nonzero, and if the number
of DFP significant digits of the third operand is equal
to or less than the requested significance, then the
value of the third operand with the original quantum
is placed at the first-operand location.

When the third operand is a finite number, if the
requested significance is nonzero, and if the number
of DFP significant digits of the third operand is
greater than the requested significance, then the
third operand is rounded to the requested signifi-
cance, and the result with the requested significance
is placed at the first-operand location.

The third operand is rounded to the requested signifi-
cance by rounding as specified by the modifier in the
M4 field:

When the modifier field is zero, rounding is controlled
by the current DFP rounding mode specified in the
FPC register. When the field is 8-15, rounding is per-
formed as specified by the modifier, regardless of the
current DFP rounding mode.

When the floating-point extension facility is installed
and if the modifier field is 2, rounding is controlled by
the current DFP rounding mode specified in the FPC
register; if the field is 1, or 3-7, rounding is performed
as specified by the modifier, regardless of the current
DFP rounding mode. If the modifier field is 0 or 8-15,
the quantum-exception control (XqC) is one and rec-
ognition of the quantum exception is suppressed; if
the modifier field is 1-7, the quantum-exception con-
trol is zero and recognition of the exception is not
suppressed.

When the floating-point extension facility is not
installed, no quantum exception is recognized. If the
M4 modifier field is 1-7, it is unpredictable which
rounding method is performed.

The sign of the result, if numeric, is the same as the
sign of the third operand.

This operation performs a functionally-constrained
rounding, and does not recognize an underflow
exception. No overflow condition can occur.

When the delivered value is exact, if the requested
significance is zero, or if the requested significance is
nonzero and the number of DFP significant digits of
the third operand is equal to or less than the
requested significance, then the preferred quantum is
the quantum of the third operand. When the deliv-
ered value is exact, if the requested significance is
nonzero and the number of DFP significant digits of
the third operand is greater than the requested signif-
icance, then the preferred quantum is the quantum
that corresponds to the requested significance.

Op Code R3 M4 R1 R2

0 16 20 24 28 31

M4 Effective Rounding Method
0 According to the current DFP rounding mode
1 Round to nearest with ties away from 0

2 According to the current DFP rounding mode

3 Round to prepare for shorter precision

4 Round to nearest with ties to even
5 Round toward 0

6 Round toward +

7 Round toward -
8 Round to nearest with ties to even

9 Round toward 0

10 Round toward +
11 Round toward -
12 Round to nearest with ties away from 0

13 Round to nearest with ties toward 0

14 Round away from 0
15 Round to prepare for shorter precision

M4 Effective Rounding Method

Decimal-Floating-Point Instructions 20-53

R
E

R
O

U
N

DWhen the delivered value is inexact, the preferred
quantum is the quantum that corresponds to the
requested significance.

If the delivered value is a finite number, it is always
represented with the preferred quantum.

The result placed at the first-operand location is
canonical.

See Figure 20-29 for a detailed description of the
results of this instruction.

An invalid-operation exception is recognized when
the resultant value cannot be represented in the tar-
get format with the requested significance. When the
invalid-operation exception is recognized, and if the
exception is disabled, the result is the default QNaN.

When an invalid-operation exception is recognized,
the IEEE inexact exception is not recognized.

In the absence of an invalid-operation exception, if
the result differs in value from the third operand, an
IEEE inexact exception is recognized.

When the floating-point extension facility is installed,
if the quantum of the delivered finite number is not
equal to the quantum of the third operand and if XqC
is zero, then a quantum exception is recognized.

For RRXTR, the R1 and R3 fields must designate
valid floating-point-register pairs; otherwise, a specifi-
cation exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Inexact
• Quantum (if the floating-point extension facility is

installed)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (RRXTR only)
• Transaction constraint

Programming Notes:

1. REROUND and the round-to-prepare-for-
shorter-precision rounding method can be used
to simulate a DFP operation with a precision
other than any supported format precision and
with the effect of single rounding. The round-to-
prepare-for-shorter-precision rounding method is
used by the operation, and the desirable round-

Significance
Comparison

Is |Rp(c)| > (10k-1) 10Qmax?
Results for REROUND when the Third Operand (c) is

- -Fn -0 +0 +Fn + QNaN SNaN
 k = 0 -- T(-) T(c) T(c) T(c) T(c) T(+) T(c) Xi: T(c*)

k 0; k > m -- T(-) T(c) T(c) T(c) T(c) T(+) T(c) Xi: T(c*)

k 0; k = m -- T(-) T(c) -- -- T(c) T(+) T(c) Xi: T(c*)

k 0; k < m No T(-) Rp(c) -- -- Rp(c) T(+) T(c) Xi: T(c*)

Yes T(-) Xi:T(dNaN) -- -- Xi:T(dNaN) T(+) T(c) Xi: T(c*)

Explanation:

-- Not applicable.
* The SNaN is converted to the corresponding QNaN and placed at the target operand location.
dNaN Default NaN.
Fn Nonzero finite numbers (includes both subnormal and normal).
k The requested significance.
m Number of DFP significant digits in the third operand (c).
Qmax Maximum right-units-view exponent.
Rp(c) The third operand (c) is rounded to the requested significance. The result is canonical and is represented with the preferred quantum.
|Rp(c)| The absolute value of Rp(c).
T(x) The canonical result x is placed at the target operand location. The result is canonical and, when it is a finite number, is represented with

the preferred quantum.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 20-29. Results: REROUND

20-54 The z/Architecture CPU Architecture

S
H

IF
T

 S
IG

N
IF

IC
A

N
D

 L
E

F
T ing method is used by the subsequent

REROUND instruction.

2. When the rounded intermediate value is larger
than (10k - 1) 10Qmax in magnitude, an invalid-
operation exception is recognized, where k is the
requested significance and 10Qmax is the largest
quantum for the format.

The expression, (10k - 1) 10Qmax, specifies the
largest magnitude that can be represented with
the requested significance in the format. A value
larger than (10p - 1) 10Qb in magnitude will
have a quantum larger than 10Qmax when the
value is represented with the requested signifi-
cance.

SHIFT SIGNIFICAND LEFT

Mnemonic R1,R3,D2(X2,B2) [RXF]

Mnemonic Op Code Operands
SLDT 'ED40' Long DFP
SLXT 'ED48' Extended DFP

The significand of the third operand is shifted left the
number of digits specified by the second-operand
address, and the result is placed at the first-operand
location.

Digits shifted out of the leftmost digit are lost. Zeros
are supplied to the vacated positions on the right.
The sign of the result is the same as the sign of the
third operand.

For a finite number, all digits in the significand partici-
pate in the shift and the result is a finite number with
the same biased exponent as the third operand and
the shifted significand. For an infinity, all digits in the
trailing significand participate in the shift, and the
result is an infinity with the shifted trailing significand
and a zero in the reserved field of the format. For a
QNaN or SNaN, all digits in the payload participate in
the shift and the result is a QNaN or SNAN, respec-
tively, with the shifted payload and a zero in the
reserved field of the format.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of digit
positions to be shifted. The remainder of the address
is ignored.

The preferred quantum is the quantum of the third
operand. If the delivered value is a finite number, it is
always represented with the preferred quantum.

The result placed at the first-operand location is
canonical, except for infinity. When the result is an
infinity, if all digits in the trailing significand of the
result are zeros, then the result is canonical; other-
wise, the result is an infinity that has the reserved
field set to zero, canonical declets in the encoded
trailing-significand field, and some nonzero digits in
the trailing significand.

This operation is performed for any second operand,
including an infinity, QNaN, or SNaN, without causing
an IEEE exception.

For SLXT, the R1 and R3 fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (SLXT only)
• Transaction constraint

Programming Note: Infinities produced as DFP
results have the reserved field set to zero and have
canonical declets in the encoded trailing-significand
field. An infinity is not considered canonical unless all
digits in the trailing significand are zeros.

SHIFT SIGNIFICAND RIGHT

Mnemonic R1,R3,D2(X2,B2) [RXF]

Mnemonic Op Code Operands
SRDT 'ED41' Long DFP
SRXT 'ED49' Extended DFP

The significand of the third operand is shifted right
the number of digits specified by the second-operand
address, and the result is placed at the first-operand
location.

OpCode R3 X2 B2 D2 R1 / / / / OpCode

0 8 12 16 20 32 36 40 47

OpCode R3 X2 B2 D2 R1 / / / / OpCode

0 8 12 16 20 32 36 40 47

Decimal-Floating-Point Instructions 20-55

S
U

B
T

R
A

C
TDigits shifted out of the rightmost digit are lost. Zeros

are supplied to the vacated positions on the left. The
sign of the result is the same as the sign of the third
operand.

For a finite number, all digits in the significand partici-
pate in the shift and the result is a finite number with
the same biased exponent as the third operand and
the shifted significand. For an infinity, all digits in the
trailing significand participate in the shift, and the
result is an infinity with the shifted trailing significand
and a zero in the reserved field of the format. For a
QNaN or SNaN, all digits in the payload participate in
the shift and the result is a QNaN or SNaN, respec-
tively, with the shifted payload and a zero in the
reserved field of the format.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of digit
positions to be shifted. The remainder of the address
is ignored.

The preferred quantum is the quantum of the third
operand. If the delivered value is a finite number, it is
always represented with the preferred quantum.

The result placed at the first-operand location is
canonical, except for infinity. When the result is an
infinity, if all digits in the trailing significand of the
result are zeros, then the result is canonical; other-
wise, the result is an infinity that has the reserved
field set to zero, canonical declets in the encoded
trailing-significand field, and some nonzero digits in
the trailing significand.

This operation is performed for any second operand,
including an infinity, QNaN, or SNaN, without causing
an IEEE exception.

For SRXT, the R1 and R3 fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (SRXT only)
• Transaction constraint

Programming Note: Infinities produced as DFP
results have the reserved field set to zero and have
canonical declets in the encoded trailing-significand
field. An infinity is not considered canonical unless all
digits in the trailing significand are zeros.

SUBTRACT

Mnemonic1 R1,R2,R3 [RRF-a]

Mnemonic1 Op Code Operands
SDTR 'B3D3' Long DFP
SXTR 'B3DB' Extended DFP

Mnemonic2 R1,R2,R3,M4 [RRF-a]

Mnemonic2 Op Code Operands
SDTRA 'B3D3' Long DFP
SXTRA 'B3DB' Extended DFP

The third operand is subtracted from the second
operand, and the difference is placed at the first-
operand location.

The execution of SUBTRACT is identical to that of
ADD, except that the third operand, if numeric, partic-
ipates in the operation with its sign bit inverted. When
the third operand is a NaN, it participates in the oper-
ation with its sign bit unchanged. See Figure 20-11
on page 20-21 for the detailed results of ADD.

When the delivered value is exact, the preferred
quantum is the smaller quantum of the two source
operands; when the delivered value is inexact, the
preferred quantum is the smallest quantum.

The result placed at the first-operand location is
canonical.

For SXTR and SXTRA, the R fields must designate
valid floating-point-register pairs; otherwise, a specifi-
cation exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero

Op Code R3 / / / / R1 R2

0 16 20 24 28 31

Op Code R3 M4 R1 R2

0 16 20 24 28 31

20-56 The z/Architecture CPU Architecture

T
E

S
T

 D
A

T
A

 C
L

A
S

S 3 Result is a NaN

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact
• Quantum (if the floating-point extension facility is

installed)

Program Exceptions:

• Data with DXC 3, DFP instruction
• Data with DXC for IEEE exception
• Operation (if the DFP facility is not installed)
• Specification (SXTR and SXTRA only)
• Transaction constraint

Programming Note: See the programming notes for
ADD.

TEST DATA CLASS

Mnemonic R1,D2(X2,B2) [RXE]

Mnemonic Op Code Operands
TDCET 'ED50' Short DFP
TDCDT 'ED54' Long DFP
TDCXT 'ED58' Extended DFP

The class and sign of the first operand are examined
to select one bit from the second-operand address.
Condition code 0 or 1 is set according to whether the
selected bit is zero or one, respectively.

The second-operand address is not used to address
data; instead, the rightmost 12 bits of the address,
bits 52-63, are used to specify 12 combinations of
data class and sign. Bits 0-51 of the second-operand
address are ignored.

As shown in Figure 20-30, DFP operands are divided
into six classes: zero, subnormal, normal, infinity,
quiet NaN, and signaling NaN:

One or more of the second-operand-address bits
may be set to one. If the second-operand-address bit

corresponding to the class and sign of the first oper-
and is one, condition code 1 is set; otherwise, condi-
tion code 0 is set.

Operands, including SNaNs and QNaNs, are exam-
ined without causing an IEEE exception.

For TDCXT, the R1 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Selected bit is 0 (no match)
1 Selected bit is 1 (match)
2 --
3 --

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (TDCXT only)
• Transaction constraint

Programming Notes:

1. TEST DATA CLASS provides a way to test an
operand without risk of an exception or setting
the IEEE flags.

2. The bits used to specify the combinations of data
class and sign are not all the same for BFP and
DFP. Specifically, BFP TEST DATA CLASS uses
bits 54 and 55 for normal number, and bits 56
and 57 for subnormal number.

OpCode R1 X2 B2 D2 / / / / / / / / OpCode

0 8 12 16 20 32 40 47

DFP data class
Bit used when sign is

+ -
Zero 52 53
Subnormal 54 55
Normal 56 57
Infinity 58 59
Quiet NaN 60 61
Signaling NaN 62 63

Figure 20-30. Second-Operand-Address Bits for TEST
DATA CLASS

Decimal-Floating-Point Instructions 20-57

T
E

S
T

 D
A

T
A

 G
R

O
U

PTEST DATA GROUP

Mnemonic R1,D2(X2,B2) [RXE]

Mnemonic Op Code Operands
TDGET 'ED51' Short DFP
TDGDT 'ED55' Long DFP
TDGXT 'ED59' Extended DFP

The group and sign of the first operand are examined
to select one bit from the second-operand address.
Condition code 0 or 1 is set according to whether the
selected bit is zero or one, respectively.

The second-operand address is not used to address
data; instead, the rightmost 12 bits of the address,
bits 52-63, are used to specify 12 combinations of
data group and sign. Bits 0-51 of the second-operand
address are ignored.

TEST DATA GROUP is used to determine whether a
finite number is safe. A finite number is safe if the
exponent is neither maximum nor minimum, and the
leftmost significand digit is zero.

Figure 20-31 on page 20-58 shows the data groups
and the bit assignment. There are six data groups:
safe zero, zero with extreme exponent, nonzero with
extreme exponent, safe nonzero, nonzero leftmost
significand digit with nonextreme exponent, and spe-
cial. The special group is defined for infinity and NaN.
Depending on the model, subnormal with nonex-
treme exponent may be placed in the nonzero-with-
extreme-exponent group or the safe-nonzero group.

One or more of the second-operand-address bits
may be set to one. If the second-operand-address bit
corresponding to the group and sign of the first oper-
and is one, condition code 1 is set; otherwise, condi-
tion code 0 is set.

Operands, including SNaNs and QNaNs, are exam-
ined without causing an IEEE exception.

For TDGXT, the R1 field must designate a valid float-
ing-point-register pair; otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Selected bit is 0 (no match)
1 Selected bit is 1 (match)
2 --
3 --

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC 3, DFP instruction
• Operation (if the DFP facility is not installed)
• Specification (TDGXT only)
• Transaction constraint

Programming Notes:

1. TEST DATA GROUP provides a way to test an
operand without risk of an exception or setting
the IEEE flags.

2. TEST DATA GROUP can be issued after an
operation that produces a DFP result to quickly
determine if the result is safe. For DFP results
that are finite numbers, the result is safe if using
a wider data format by the operation would have
produced the same value and quantum. A safe
result has two important characteristics: (1) the
exponent is neither the maximum exponent nor
the minimum exponent, and (2) the leftmost sig-
nificand digit is zero.

3. TEST DATA GROUP may be used to test
whether a nonzero finite number is safe by set-
ting bits 58 and 59 of the second-operand
address to ones.

4. TEST DATA GROUP may be used to test
whether a nonzero finite number has reached the
limit of the format precision but not the limit of the
format range by setting bits 60 and 61 of the sec-
ond-operand address to ones.

5. Subnormal with nonextreme exponent may be
grouped with either the nonzero-with-extreme-
exponent group or the safe-nonzero group. The

OpCode R1 X2 B2 D2 / / / / / / / / OpCode
0 8 12 16 20 32 40 47

20-58 The z/Architecture CPU Architecture

program shouldn’t depend on which group sub-
normal with nonextreme exponent is in.

Densely Packed Decimal (DPD)

Decimal-to-DPD Mapping
The mapping of a 3-digit decimal number (000 - 999)
to a 10-bit value, called a declet is shown in
Figure 20-32 on page 20-59. The DPD entries are
shown in hexadecimal. The first two digits of the dec-
imal number are shown in the leftmost column and
the third digit along the top row. The table is split into
two halves, with the right half being a continuation of
the left half.

DPD-to-Decimal Mapping
The mapping of the 10-bit declet to a 3-digit decimal
number is shown in Figure 20-33 on page 20-60. The
10-bit declet value is split into a 6-bit index shown in
the left column and a 4-bit index shown along the top
row, both represented in hexadecimal. The values
marked with an asterisk are results mapped from
noncanonical declets and are explained further in the
following section.

DFP
Operand Exponent LMD Data Group

Bit used
when

sign is
+ –

Zero
Nonextreme z1 Safe zero 52 53

Extreme z1 Zero with extreme
exponent

54 55

Nonzero finite

Extreme --
Nonzero with extreme

exponent
56 57

Nonextreme z Safe nonzero 58 59

Nonextreme nz
Nonzero leftmost

significand digit with
nonextreme exponent

60 61

Infinity or NaN na na Special 62 63

Explanation:

-- The result does not depend on this condition.
1 This condition is true by virtue of the condition to the left of

this column.
Extreme Maximum right-units-view (RUV) exponent, Qmax, or

minimum right-units-view (RUV) exponent, Qmin.
Nonextreme Qmax < right-units-view (RUV) exponent < Qmin.
LMD Leftmost significand digit.
na Not applicable.
nz Nonzero.
z Zero.

Figure 20-31. Second-Operand-Address Bits for TEST
DATA GROUP

Decimal-Floating-Point Instructions 20-59

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

00_ 000 001 002 003 004 005 006 007 008 009 50_ 280 281 282 283 284 285 286 287 288 289

01_ 010 011 012 013 014 015 016 017 018 019 51_ 290 291 292 293 294 295 296 297 298 299

02_ 020 021 022 023 024 025 026 027 028 029 52_ 2A0 2A1 2A2 2A3 2A4 2A5 2A6 2A7 2A8 2A9

03_ 030 031 032 033 034 035 036 037 038 039 53_ 2B0 2B1 2B2 2B3 2B4 2B5 2B6 2B7 2B8 2B9

04_ 040 041 042 043 044 045 046 047 048 049 54_ 2C0 2C1 2C2 2C3 2C4 2C5 2C6 2C7 2C8 2C9

05_ 050 051 052 053 054 055 056 057 058 059 55_ 2D0 2D1 2D2 2D3 2D4 2D5 2D6 2D7 2D8 2D9

06_ 060 061 062 063 064 065 066 067 068 069 56_ 2E0 2E1 2E2 2E3 2E4 2E5 2E6 2E7 2E8 2E9

07_ 070 071 072 073 074 075 076 077 078 079 57_ 2F0 2F1 2F2 2F3 2F4 2F5 2F6 2F7 2F8 2F9

08_ 00A 00B 02A 02B 04A 04B 06A 06B 04E 04F 58_ 28A 28B 2AA 2AB 2CA 2CB 2EA 2EB 2CE 2CF

09_ 01A 01B 03A 03B 05A 05B 07A 07B 05E 05F 59_ 29A 29B 2BA 2BB 2DA 2DB 2FA 2FB 2DE 2DF

10_ 080 081 082 083 084 085 086 087 088 089 60_ 300 301 302 303 304 305 306 307 308 309

11_ 090 091 092 093 094 095 096 097 098 099 61_ 310 311 312 313 314 315 316 317 318 319

12_ 0A0 0A1 0A2 0A3 0A4 0A5 0A6 0A7 0A8 0A9 62_ 320 321 322 323 324 325 326 327 328 329

13_ 0B0 0B1 0B2 0B3 0B4 0B5 0B6 0B7 0B8 0B9 63_ 330 331 332 333 334 335 336 337 338 339

14_ 0C0 0C1 0C2 0C3 0C4 0C5 0C6 0C7 0C8 0C9 64_ 340 341 342 343 344 345 346 347 348 349

15_ 0D0 0D1 0D2 0D3 0D4 0D5 0D6 0D7 0D8 0D9 65_ 350 351 352 353 354 355 356 357 358 359

16_ 0E0 0E1 0E2 0E3 0E4 0E5 0E6 0E7 0E8 0E9 66_ 360 361 362 363 364 365 366 367 368 369

17_ 0F0 0F1 0F2 0F3 0F4 0F5 0F6 0F7 0F8 0F9 67_ 370 371 372 373 374 375 376 377 378 379

18_ 08A 08B 0AA 0AB 0CA 0CB 0EA 0EB 0CE 0CF 68_ 30A 30B 32A 32B 34A 34B 36A 36B 34E 34F

19_ 09A 09B 0BA 0BB 0DA 0DB 0FA 0FB 0DE 0DF 69_ 31A 31B 33A 33B 35A 35B 37A 37B 35E 35F

20_ 100 101 102 103 104 105 106 107 108 109 70_ 380 381 382 383 384 385 386 387 388 389

21_ 110 111 112 113 114 115 116 117 118 119 71_ 390 391 392 393 394 395 396 397 398 399

22_ 120 121 122 123 124 125 126 127 128 129 72_ 3A0 3A1 3A2 3A3 3A4 3A5 3A6 3A7 3A8 3A9

23_ 130 131 132 133 134 135 136 137 138 139 73_ 3B0 3B1 3B2 3B3 3B4 3B5 3B6 3B7 3B8 3B9

24_ 140 141 142 143 144 145 146 147 148 149 74_ 3C0 3C1 3C2 3C3 3C4 3C5 3C6 3C7 3C8 3C9

25_ 150 151 152 153 154 155 156 157 158 159 75_ 3D0 3D1 3D2 3D3 3D4 3D5 3D6 3D7 3D8 3D9

26_ 160 161 162 163 164 165 166 167 168 169 76_ 3E0 3E1 3E2 3E3 3E4 3E5 3E6 3E7 3E8 3E9

27_ 170 171 172 173 174 175 176 177 178 179 77_ 3F0 3F1 3F2 3F3 3F4 3F5 3F6 3F7 3F8 3F9

28_ 10A 10B 12A 12B 14A 14B 16A 16B 14E 14F 78_ 38A 38B 3AA 3AB 3CA 3CB 3EA 3EB 3CE 3CF

29_ 11A 11B 13A 13B 15A 15B 17A 17B 15E 15F 79_ 39A 39B 3BA 3BB 3DA 3DB 3FA 3FB 3DE 3DF

30_ 180 181 182 183 184 185 186 187 188 189 80_ 00C 00D 10C 10D 20C 20D 30C 30D 02E 02F

31_ 190 191 192 193 194 195 196 197 198 199 81_ 01C 01D 11C 11D 21C 21D 31C 31D 03E 03F

32_ 1A0 1A1 1A2 1A3 1A4 1A5 1A6 1A7 1A8 1A9 82_ 02C 02D 12C 12D 22C 22D 32C 32D 12E 12F

33_ 1B0 1B1 1B2 1B3 1B4 1B5 1B6 1B7 1B8 1B9 83_ 03C 03D 13C 13D 23C 23D 33C 33D 13E 13F

34_ 1C0 1C1 1C2 1C3 1C4 1C5 1C6 1C7 1C8 1C9 84_ 04C 04D 14C 14D 24C 24D 34C 34D 22E 22F

35_ 1D0 1D1 1D2 1D3 1D4 1D5 1D6 1D7 1D8 1D9 85_ 05C 05D 15C 15D 25C 25D 35C 35D 23E 23F

36_ 1E0 1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E8 1E9 86_ 06C 06D 16C 16D 26C 26D 36C 36D 32E 32F

37_ 1F0 1F1 1F2 1F3 1F4 1F5 1F6 1F7 1F8 1F9 87_ 07C 07D 17C 17D 27C 27D 37C 37D 33E 33F

38_ 18A 18B 1AA 1AB 1CA 1CB 1EA 1EB 1CE 1CF 88_ 00E 00F 10E 10F 20E 20F 30E 30F 06E 06F

39_ 19A 19B 1BA 1BB 1DA 1DB 1FA 1FB 1DE 1DF 89_ 01E 01F 11E 11F 21E 21F 31E 31F 07E 07F

40_ 200 201 202 203 204 205 206 207 208 209 90_ 08C 08D 18C 18D 28C 28D 38C 38D 0AE 0AF

41_ 210 211 212 213 214 215 216 217 218 219 91_ 09C 09D 19C 19D 29C 29D 39C 39D 0BE 0BF

42_ 220 221 222 223 224 225 226 227 228 229 92_ 0AC 0AD 1AC 1AD 2AC 2AD 3AC 3AD 1AE 1AF

43_ 230 231 232 233 234 235 236 237 238 239 93_ 0BC 0BD 1BC 1BD 2BC 2BD 3BC 3BD 1BE 1BF

44_ 240 241 242 243 244 245 246 247 248 249 94_ 0CC 0CD 1CC 1CD 2CC 2CD 3CC 3CD 2AE 2AF

45_ 250 251 252 253 254 255 256 257 258 259 95_ 0DC 0DD 1DC 1DD 2DC 2DD 3DC 3DD 2BE 2BF

46_ 260 261 262 263 264 265 266 267 268 269 96_ 0EC 0ED 1EC 1ED 2EC 2ED 3EC 3ED 3AE 3AF

47_ 270 271 272 273 274 275 276 277 278 279 97_ 0FC 0FD 1FC 1FD 2FC 2FD 3FC 3FD 3BE 3BF

48_ 20A 20B 22A 22B 24A 24B 26A 26B 24E 24F 98_ 08E 08F 18E 18F 28E 28F 38E 38F 0EE 0EF

49_ 21A 21B 23A 23B 25A 25B 27A 27B 25E 25F 99_ 09E 09F 19E 19F 29E 29F 39E 39F 0FE 0FF

Figure 20-32. Decimal-to-DPD Mapping

20-60 The z/Architecture CPU Architecture

0 1 2 3 4 5 6 7 8 9 A B C D E F
00_ 000 001 002 003 004 005 006 007 008 009 080 081 800 801 880 881
01_ 010 011 012 013 014 015 016 017 018 019 090 091 810 811 890 891
02_ 020 021 022 023 024 025 026 027 028 029 082 083 820 821 808 809
03_ 030 031 032 033 034 035 036 037 038 039 092 093 830 831 818 819
04_ 040 041 042 043 044 045 046 047 048 049 084 085 840 841 088 089
05_ 050 051 052 053 054 055 056 057 058 059 094 095 850 851 098 099
06_ 060 061 062 063 064 065 066 067 068 069 086 087 860 861 888 889
07_ 070 071 072 073 074 075 076 077 078 079 096 097 870 871 898 899
08_ 100 101 102 103 104 105 106 107 108 109 180 181 900 901 980 981
09_ 110 111 112 113 114 115 116 117 118 119 190 191 910 911 990 991
0A_ 120 121 122 123 124 125 126 127 128 129 182 183 920 921 908 909
0B_ 130 131 132 133 134 135 136 137 138 139 192 193 930 931 918 919
0C_ 140 141 142 143 144 145 146 147 148 149 184 185 940 941 188 189
0D_ 150 151 152 153 154 155 156 157 158 159 194 195 950 951 198 199
0E_ 160 161 162 163 164 165 166 167 168 169 186 187 960 961 988 989
0F_ 170 171 172 173 174 175 176 177 178 179 196 197 970 971 998 999
10_ 200 201 202 203 204 205 206 207 208 209 280 281 802 803 882 883
11_ 210 211 212 213 214 215 216 217 218 219 290 291 812 813 892 893
12_ 220 221 222 223 224 225 226 227 228 229 282 283 822 823 828 829
13_ 230 231 232 233 234 235 236 237 238 239 292 293 832 833 838 839
14_ 240 241 242 243 244 245 246 247 248 249 284 285 842 843 288 289
15_ 250 251 252 253 254 255 256 257 258 259 294 295 852 853 298 299
16_ 260 261 262 263 264 265 266 267 268 269 286 287 862 863 888* 889*
17_ 270 271 272 273 274 275 276 277 278 279 296 297 872 873 898* 899*
18_ 300 301 302 303 304 305 306 307 308 309 380 381 902 903 982 983
19_ 310 311 312 313 314 315 316 317 318 319 390 391 912 913 992 993
1A_ 320 321 322 323 324 325 326 327 328 329 382 383 922 923 928 929
1B_ 330 331 332 333 334 335 336 337 338 339 392 393 932 933 938 939
1C_ 340 341 342 343 344 345 346 347 348 349 384 385 942 943 388 389
1D_ 350 351 352 353 354 355 356 357 358 359 394 395 952 953 398 399
1E_ 360 361 362 363 364 365 366 367 368 369 386 387 962 963 988* 989*
1F_ 370 371 372 373 374 375 376 377 378 379 396 397 972 973 998* 999*
20_ 400 401 402 403 404 405 406 407 408 409 480 481 804 805 884 885
21_ 410 411 412 413 414 415 416 417 418 419 490 491 814 815 894 895
22_ 420 421 422 423 424 425 426 427 428 429 482 483 824 825 848 849
23_ 430 431 432 433 434 435 436 437 438 439 492 493 834 835 858 859
24_ 440 441 442 443 444 445 446 447 448 449 484 485 844 845 488 489
25_ 450 451 452 453 454 455 456 457 458 459 494 495 854 855 498 499
26_ 460 461 462 463 464 465 466 467 468 469 486 487 864 865 888* 889*
27_ 470 471 472 473 474 475 476 477 478 479 496 497 874 875 898* 899*
28_ 500 501 502 503 504 505 506 507 508 509 580 581 904 905 984 985
29_ 510 511 512 513 514 515 516 517 518 519 590 591 914 915 994 995
2A_ 520 521 522 523 524 525 526 527 528 529 582 583 924 925 948 949
2B_ 530 531 532 533 534 535 536 537 538 539 592 593 934 935 958 959
2C_ 540 541 542 543 544 545 546 547 548 549 584 585 944 945 588 589
2D_ 550 551 552 553 554 555 556 557 558 559 594 595 954 955 598 599
2E_ 560 561 562 563 564 565 566 567 568 569 586 587 964 965 988* 989*
2F_ 570 571 572 573 574 575 576 577 578 579 596 597 974 975 998* 999*
30_ 600 601 602 603 604 605 606 607 608 609 680 681 806 807 886 887
31_ 610 611 612 613 614 615 616 617 618 619 690 691 816 817 896 897
32_ 620 621 622 623 624 625 626 627 628 629 682 683 826 827 868 869
33_ 630 631 632 633 634 635 636 637 638 639 692 693 836 837 878 879
34_ 640 641 642 643 644 645 646 647 648 649 684 685 846 847 688 689
35_ 650 651 652 653 654 655 656 657 658 659 694 695 856 857 698 699
36_ 660 661 662 663 664 665 666 667 668 669 686 687 866 867 888* 889*
37_ 670 671 672 673 674 675 676 677 678 679 696 697 876 877 898* 899*
38_ 700 701 702 703 704 705 706 707 708 709 780 781 906 907 986 987
39_ 710 711 712 713 714 715 716 717 718 719 790 791 916 917 996 997
3A_ 720 721 722 723 724 725 726 727 728 729 782 783 926 927 968 969
3B_ 730 731 732 733 734 735 736 737 738 739 792 793 936 937 978 979
3C_ 740 741 742 743 744 745 746 747 748 749 784 785 946 947 788 789
3D_ 750 751 752 753 754 755 756 757 758 759 794 795 956 957 798 799
3E_ 760 761 762 763 764 765 766 767 768 769 786 787 966 967 988* 989*
3F_ 770 771 772 773 774 775 776 777 778 779 796 797 976 977 998* 999*

* Result mapped from a noncanonical declet.

Figure 20-33. DPD-to-Decimal Mapping

Vector Overview and Support Instructions 21-1© Copyright IBM Corp. 2000, 2019

Chapter 21. Vector Overview and Support Instructions

Overview . 21-1
Vector Registers and Controls 21-1

Vector Enablement Control 21-1
Vector Storage Accesses 21-2
Saturating Arithmetic . 21-2
Instructions . 21-2

VECTOR BIT PERMUTE 21-4
VECTOR GATHER ELEMENT 21-5
VECTOR GENERATE BYTE MASK 21-5
VECTOR GENERATE MASK 21-6
VECTOR LOAD. 21-6
VECTOR LOAD AND REPLICATE 21-7
VECTOR LOAD BYTE REVERSED

ELEMENT . 21-7
VECTOR LOAD BYTE REVERSED ELEMENT

AND REPLICATE . 21-7
VECTOR LOAD BYTE REVERSED ELEMENT

AND ZERO . 21-8
VECTOR LOAD BYTE REVERSED

ELEMENTS . 21-9
VECTOR LOAD ELEMENT. 21-9
VECTOR LOAD ELEMENT IMMEDIATE . . 21-10
VECTOR LOAD ELEMENTS REVERSED . 21-10
VECTOR LOAD GR FROM VR ELEMENT. 21-11
VECTOR LOAD LOGICAL ELEMENT AND

ZERO. 21-11
VECTOR LOAD MULTIPLE 21-12
VECTOR LOAD RIGHTMOST WITH

LENGTH . 21-13
VECTOR LOAD TO BLOCK BOUNDARY . 21-13
VECTOR LOAD VR ELEMENT FROM GR. 21-14

VECTOR LOAD VR FROM GRS DISJOINT 21-14
VECTOR LOAD WITH LENGTH 21-15
VECTOR MERGE HIGH. 21-15
VECTOR MERGE LOW 21-15
VECTOR PACK . 21-16
VECTOR PACK SATURATE 21-16
VECTOR PACK LOGICAL SATURATE 21-17
VECTOR PERMUTE 21-18
VECTOR PERMUTE DOUBLEWORD

IMMEDIATE . 21-18
VECTOR REPLICATE 21-19
VECTOR REPLICATE IMMEDIATE 21-19
VECTOR SCATTER ELEMENT 21-20
VECTOR SELECT . 21-20
VECTOR SIGN EXTEND TO

DOUBLEWORD . 21-20
VECTOR STORE . 21-21
VECTOR STORE BYTE REVERSED

ELEMENT. 21-21
VECTOR STORE BYTE REVERSED

ELEMENTS. 21-22
VECTOR STORE ELEMENT 21-23
VECTOR STORE ELEMENTS REVERSED 21-23
VECTOR STORE MULTIPLE 21-24
VECTOR STORE RIGHTMOST WITH

LENGTH . 21-24
VECTOR STORE WITH LENGTH 21-25
VECTOR UNPACK HIGH 21-25
VECTOR UNPACK LOGICAL HIGH 21-26
VECTOR UNPACK LOW 21-26
VECTOR UNPACK LOGICAL LOW 21-27

Overview

The vector facility provided in the z/Architecture
architectural mode provides fixed-sized vectors rang-
ing from one to sixteen elements. For most instruc-
tions, all of the data contained in a vector is operated
on by the instructions defined in this facility. Some

instructions only operate on a subset of the elements
within a vector. If a vector is made up of multiple ele-
ments, each element is processed in parallel with the
others. Instruction completion does not occur until
processing of all elements is complete.

Vector Registers and Controls

Quadword
Doubleword 0 Doubleword 1

Word 0 Word 1 Word 2 Word 3
Halfword 0 Halfword 1 Halfword 2 Halfword 3 Halfword 4 Halfword 5 Halfword 6 Halfword 7

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Figure 21-1. Vector Register Element Representations

21-2 The z/Architecture CPU Architecture

Vector Enablement Control

The vector instructions should only be used if both
the vector enablement control (bit 46) and the AFP-
register-control (bit 45) in control register zero are set
to one. If the vector facility for z/Architecture is
installed and a vector instruction is executed without
the vector enablement control set, a data exception
with DXC FE hex is recognized. If bit 45 of control
register zero is not also set to one, it is unpredictable
if a data exception is recognized. If the vector facility
for z/Architecture is not installed, an operation excep-
tion is recognized.

Programming Note: When a control program initially
enables the vector facility for z/Architecture for a task,
which may occur in response to a data exception with
DXC FE, it should ensure that newly enabled full vec-
tor registers as well as the rightmost portions of vec-
tor registers that overlap with any enabled floating-
point registers are zeroed.

Vector Storage Accesses

All vector data appears in storage in the same left-to-
right sequence as all other data formats. Bits of a
data format that are numbered 0-7 constitute the byte
in the leftmost (lowest-numbered) byte location in
storage, bits 8-15 form the byte in the next sequential
location, and so on. (See also “Storage Addressing”
on page 3-2.)

Saturating Arithmetic

Some vector operations perform saturating opera-
tions. Saturation for signed binary integers means
that if there is an overflow, the result is set to the larg-
est positive number; if there is an underflow, the
result is set to the largest negative number. Satura-
tion for unsigned binary integers means that if there
is an overflow, the result is set to the largest repre-
sentable number; if there is an underflow, the result is
set to zero.

Instructions

All vector instructions, defined in chapters 21-25,
have a field in bits 36-39 of the instruction labeled as
RXB. This field contains the most significant bit for
each of the vector register designated operands. Bits
for register designations not specified by the instruc-
tion are reserved and should be set to zero; other-
wise the program may not operate compatibly in the
future.

The bits are defined as follows:

Programming Note: It is assumed that the assem-
bler will set these bits whenever a vector register
designation greater than 15 is specified.

Unless otherwise specified, all operands are vector-
register operands. A “V” in the assembler syntax des-
ignates a vector operand.

Each instruction has an extended-mnemonic section
which describes recommended extended mnemon-
ics and their corresponding machine assembler syn-
tax.

Programming Note: The vector-enhancements
facility 2 includes the following new instructions to
handle load and store of elements or arrays of ele-
ments in the little endian format:

• VECTOR LOAD BYTE REVERSED ELEMENTS
(VLBR), VECTOR LOAD ELEMENTS
REVERSED (VLER), VECTOR LOAD BYTE
REVERSED ELEMENT AND ZERO (VLLEBRZ),
VECTOR LOAD BYTE REVERSED ELEMENT
(VLEBRH, VLEBRF, VLEBRG), VECTOR LOAD
BYTE REVERSED ELEMENT AND REPLI-

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Figure 21-1. Vector Register Element Representations

Bit MSB of Vector Register in Instruction Bits

36 8-11

37 12-15

38 16-19

39 32-35

Vector Overview and Support Instructions 21-3

CATE (VLBRREP), VECTOR STORE BYTE
REVERSED ELEMENTS (VSTBR), VECTOR
STORE ELEMENTS REVERSED (VSTER), and

VECTOR STORE BYTE REVERSED ELE-
MENT (VSTEBRH, VSTEBRF, VSTEBRG)

Name
Mne-

monic Characteristics
Op-

code Page
VECTOR BIT PERMUTE VBPERM VRR-c V1 ¤7,9 Dv E785 21-4
VECTOR GATHER ELEMENT (32) VGEF VRV VF ¤7,9 A SP Dv B2 E713 21-5
VECTOR GATHER ELEMENT (64) VGEG VRV VF ¤7,9 A SP Dv B2 E712 21-5
VECTOR GENERATE BYTE MASK VGBM VRI-a VF ¤7,9 Dv E744 21-5
VECTOR GENERATE MASK VGM VRI-b VF ¤7,9 SP Dv E746 21-6
VECTOR LOAD VL VRX VF ¤7,9 A Dv B2 E706 21-6
VECTOR LOAD VLR VRR-a VF ¤7,9 Dv E756 21-6
VECTOR LOAD AND REPLICATE VLREP VRX VF ¤7,9 A SP Dv B2 E705 21-7
VECTOR LOAD BYTE REVERSED ELEMENT (16) VLEBRH VRX V2 ¤7,9 A SP Dv B2 E601 21-7
VECTOR LOAD BYTE REVERSED ELEMENT (32) VLEBRF VRX V2 ¤7,9 A SP Dv B2 E603 21-7
VECTOR LOAD BYTE REVERSED ELEMENT (64) VLEBRG VRX V2 ¤7,9 A SP Dv B2 E602 21-7
VECTOR LOAD BYTE REVERSED ELEMENT AND
REPLICATE

VLBRRE
P

VRX V2 ¤7,9 A SP Dv B2 E605 21-8

VECTOR LOAD BYTE REVERSED ELEMENT AND
ZERO

VLLEBRZ VRX V2 ¤7,9 A SP Dv B2 E604 21-8

VECTOR LOAD BYTE REVERSED ELEMENTS VLBR VRX V2 ¤7,9 A SP Dv B2 E606 21-9
VECTOR LOAD ELEMENT (16) VLEH VRX VF ¤7,9 A SP Dv B2 E701 21-9
VECTOR LOAD ELEMENT (32) VLEF VRX VF ¤7,9 A SP Dv B2 E703 21-9
VECTOR LOAD ELEMENT (64) VLEG VRX VF ¤7,9 A SP Dv B2 E702 21-9
VECTOR LOAD ELEMENT (8) VLEB VRX VF ¤7,9 A SP Dv B2 E700 21-9
VECTOR LOAD ELEMENT IMMEDIATE (16) VLEIH VRI-a VF ¤7,9 SP Dv E741 21-10
VECTOR LOAD ELEMENT IMMEDIATE (32) VLEIF VRI-a VF ¤7,9 SP Dv E743 21-10
VECTOR LOAD ELEMENT IMMEDIATE (64) VLEIG VRI-a VF ¤7,9 SP Dv E742 21-10
VECTOR LOAD ELEMENT IMMEDIATE (8) VLEIB VRI-a VF ¤7,9 SP Dv E740 21-10
VECTOR LOAD ELEMENTS REVERSED VLER VRX V2 ¤7,9 A SP Dv B2 E607 21-10
VECTOR LOAD GR FROM VR ELEMENT VLGV VRS-c VF ¤7,9 SP Dv E721 21-11
VECTOR LOAD LOGICAL ELEMENT AND ZERO VLLEZ VRX VF ¤7,9 A SP Dv B2 E704 21-12
VECTOR LOAD MULTIPLE VLM VRS-a VF ¤7,9 A SP Dv B2 E736 21-12
VECTOR LOAD RIGHTMOST WITH LENGTH VLRL VSI VD ¤7,9 A SP Dv B2 E635 21-13
VECTOR LOAD RIGHTMOST WITH LENGTH VLRLR VRS-d VD ¤7,9 A Dv B2 E637 21-13
VECTOR LOAD TO BLOCK BOUNDARY VLBB VRX VF ¤7,9 A SP Dv B2 E707 21-14
VECTOR LOAD VR ELEMENT FROM GR VLVG VRS-b VF ¤7,9 SP Dv E722 21-14
VECTOR LOAD VR FROM GRS DISJOINT VLVGP VRR-f VF ¤7,9 Dv E762 21-15
VECTOR LOAD WITH LENGTH VLL VRS-b VF ¤7,9 A Dv B2 E737 21-15
VECTOR MERGE HIGH VMRH VRR-c VF ¤7,9 SP Dv E761 21-15
VECTOR MERGE LOW VMRL VRR-c VF ¤7,9 SP Dv E760 21-16
VECTOR PACK VPK VRR-c VF ¤7,9 SP Dv E794 21-16
VECTOR PACK LOGICAL SATURATE VPKLS VRR-b C* VF ¤7,9 SP Dv E795 21-18
VECTOR PACK SATURATE VPKS VRR-b C* VF ¤7,9 SP Dv E797 21-17
VECTOR PERMUTE VPERM VRR-e VF ¤7,9 Dv E78C 21-18
VECTOR PERMUTE DOUBLEWORD IMMEDIATE VPDI VRR-c VF ¤7,9 Dv E784 21-19
VECTOR REPLICATE VREP VRI-c VF ¤7,9 SP Dv E74D 21-19
VECTOR REPLICATE IMMEDIATE VREPI VRI-a VF ¤7,9 SP Dv E745 21-20
VECTOR SCATTER ELEMENT (32) VSCEF VRV VF ¤7,9 A SP Dv ST B2 E71B 21-20
VECTOR SCATTER ELEMENT (64) VSCEG VRV VF ¤7,9 A SP Dv ST B2 E71A 21-20
VECTOR SELECT VSEL VRR-e VF ¤7,9 Dv E78D 21-21
VECTOR SIGN EXTEND TO DOUBLEWORD VSEG VRR-a VF ¤7,9 SP Dv E75F 21-21
VECTOR STORE VST VRX VF ¤7,9 A Dv ST B2 E70E 21-21
VECTOR STORE BYTE REVERSED ELEMENT
(16)

VSTEBR
H

VRX V2 ¤7,9 A SP Dv ST B2 E609 21-22

Figure 21-2. Summary of Vector Support Instructions (Part 1 of 2)

21-4 The z/Architecture CPU Architecture

V
E

C
T

O
R

 B
IT

 P
E

R
M

U
T

E

VECTOR BIT PERMUTE

VBPERM V1,V2,V3 [VRR-c]

A source vector is created from the concatenation of
the second operand followed by 128 binary zeros.
The byte sized elements of the third operand contain
unsigned integers which are used to select bits from

the source vector to create a halfword result which is
placed in bits 48 to 63 of the first operand, other half-
words are set to zero. Each bit of the halfword result
is selected from the source vector by the correspond-
ing byte in the third operand.

If the same register is used to designate the first
operand as either the second or third operands, the
original source value is used throughout the opera-
tion with no intermediate updates.

Condition Code: The code remains unchanged.

VECTOR STORE BYTE REVERSED ELEMENT
(32)

VSTEBR
F

VRX V2 ¤7,9 A SP Dv ST B2 E60B 21-22

VECTOR STORE BYTE REVERSED ELEMENT
(64)

VSTEBR
G

VRX V2 ¤7,9 A SP Dv ST B2 E60A 21-22

VECTOR STORE BYTE REVERSED ELEMENTS VSTBR VRX V2 ¤7,9 A SP Dv ST B2 E60E 21-22
VECTOR STORE ELEMENT (16) VSTEH VRX VF ¤7,9 A SP Dv ST B2 E709 21-23
VECTOR STORE ELEMENT (32) VSTEF VRX VF ¤7,9 A SP Dv ST B2 E70B 21-23
VECTOR STORE ELEMENT (64) VSTEG VRX VF ¤7,9 A SP Dv ST B2 E70A 21-23
VECTOR STORE ELEMENT (8) VSTEB VRX VF ¤7,9 A SP Dv ST B2 E708 21-23
VECTOR STORE ELEMENTS REVERSED VSTER VRX V2 ¤7,9 A SP Dv ST B2 E60F 21-24
VECTOR STORE MULTIPLE VSTM VRS-a VF ¤7,9 A SP Dv ST B2 E73E 21-24
VECTOR STORE RIGHTMOST WITH LENGTH VSTRL VSI VD ¤7,9 A SP Dv ST B2 E63D 21-25
VECTOR STORE RIGHTMOST WITH LENGTH VSTRLR VRS-d VD ¤7,9 A Dv ST B2 E63F 21-25
VECTOR STORE WITH LENGTH VSTL VRS-b VF ¤7,9 A Dv ST B2 E73F 21-26
VECTOR UNPACK HIGH VUPH VRR-a VF ¤7,9 SP Dv E7D7 21-26
VECTOR UNPACK LOGICAL HIGH VUPLH VRR-a VF ¤7,9 SP Dv E7D5 21-26
VECTOR UNPACK LOGICAL LOW VUPLL VRR-a VF ¤7,9 SP Dv E7D4 21-27
VECTOR UNPACK LOW VUPL VRR-a VF ¤7,9 SP Dv E7D6 21-27

Explanation:

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.

A Access exceptions for logical addresses.

B2 B2 field designates an access register in the access-register mode.

C* Condition code optionally set.

Dv Vector-instruction data exception

SP Specification exception.

ST PER storage-alteration event.

V1 Vector-enhancements facility 1

V2 Vector-enhancements facility 2

VD Vector packed-decimal facility

VF Vector facility for z/Architecture

VRI VRI instruction format

VRR VRR instruction format

VRS VRS instruction format

VRX VRX instruction format

VRV VRV instruction format

VSI VSI instruction format

Name
Mne-

monic Characteristics
Op-

code Page

Figure 21-2. Summary of Vector Support Instructions (Part 2 of 2)

'E7' V1 V2 V3 / / / / / / / / / / / / / / / / RXB '85'

0 8 12 16 20 36 40 47

Vector Overview and Support Instructions 21-5

V
E

C
T

O
R

 G
E

N
E

R
A

T
E

 B
Y

T
E

 M
A

S
KProgram Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector-enhancements facility 1

is not installed)
• Transaction constraint

Programming Note: The fact that the source vector
contains 128 bits of zeros following the second oper-
and permits the permuted bits to be selected from a
256-bit quantity using a single index register. Assume
the 256-bit quantity is in vector registers 0 and 1, the
indicies are in vector register 2, and each byte of vec-
tor register 3 contains the value 128. The following
code sequence selects sixteen bits from the 256-bit
quantity.

VBPERM v4,v0,v2
VX v2,v2,v3
VBPERM v5,v1,v2
VO v4,v4,v5

VECTOR GATHER ELEMENT

VGEF V1,D2(V2,B2),M3 [VRV]

VGEG V1,D2(V2,B2),M3 [VRV]

The element-sized second operand replaces the
specified element of the first operand indexed by the
M3 field. The remaining elements are left unchanged.
If the M3 field specifies a value greater than the high-
est numbered element in the first operand, of the
specified element size, a specification exception is
recognized.

For VGEF the elements in all operands are 4-bytes in
size; for VGEG the elements in all operands are 8-
bytes in size.

The second-operand address is generated by adding
the unsigned binary integer value from the element in
vector-register V2 indexed by the M3 field with the
address in the B2 register along with the D2 value.

The displacement for VECTOR GATHER ELEMENT
is treated as a 12-bit unsigned integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. The VECTOR GATHER ELEMENT instruction
can be used to perform a load when doing scalar
computation in vector registers and the address
resides in a vector register. However, depending
on the model, performance may be better if
address computations are done in general regis-
ters.

2. For VGEF care must be taken to ensure that the
values in the second operand elements are
unsigned. Otherwise, when running in 64-bit
addressing mode program behavior might not be
as expected.

VECTOR GENERATE BYTE MASK

VGBM V1,I2 [VRI-a]

For each bit in the second operand, if the bit is one,
all bit positions in the corresponding byte element of
the first operand are set to ones. If the bit is zero, all
bit positions in the corresponding byte element of the
first operand are set to zeros.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

Extended Mnemonics:

‘E7’ V1 V2 B2 D2 M3 RXB ‘13’

0 8 12 16 20 32 36 40 47

‘E7’ V1 V2 B2 D2 M3 RXB ‘12’

0 8 12 16 20 32 36 40 47

‘E7’ V1 / / / / I2 / / / / RXB ‘44’
0 8 12 16 32 36 40 47

Extended Mnemonic Base Mnemonic
VZERO V1 VGBM V1,0

21-6 The z/Architecture CPU Architecture

V
E

C
T

O
R

 G
E

N
E

R
A

T
E

 M
A

S
K

Programming Note: VECTOR GENERATE BYTE
MASK is the preferred method for setting a vector
register to all zeros or ones.

VECTOR GENERATE MASK

VGM V1,I2,I3,M4 [VRI-b]

For each element in the first operand a bit mask is
generated. The mask consists of bits set to one start-
ing at the bit position specified by the unsigned inte-
ger value in I2 and ending with the bit position
specified by the unsigned integer value in I3 all other
bit positions are set to zero. Only the number of bits
needed to represent all of the bit positions for the
specified element size are used from the I2 and I3
fields, other bits are ignored. If the bit position in the
I2 field is greater than the bit position in the I3 field,
the range of bits wraps at the maximum bit position
for the specified element size.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR LOAD

VL V1,D2(X2,B2)[,M3] [VRX]

VLR V1,V2 [VRR-a]

The 128-bit second operand is placed unchanged in
the first-operand location.

The displacement for VL is treated as a 12-bit
unsigned integer.

For VL the M3 field contains a 4-bit unsigned binary
integer specifying the alignment of the second oper-
and. Reserved values should not be specified; other-
wise, the program may not operate compatibly in the
future.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 for VL)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

Programming Notes:

1. If the alignment of the address specified by the
second operand is known to be either on a dou-

VONE V1 VGBM V1,X'FFFF'

‘E7’ V1 / / / / I2 I3 M4 RXB ‘46’

0 8 12 16 24 32 36 40 47

M4 Element Size
0 Byte
1 Halfword

2 Word

3 Doubleword
4-15 Reserved

Extended Mnemonic Base Mnemonic

Extended Mnemonic Base Mnemonic
VGMB V1,I2,I3 VGM V1,I2,I3,0
VGMH V1,I2,I3 VGM V1,I2,I3,1
VGMF V1,I2,I3 VGM V1,I2,I3,2
VGMG V1,I2,I3 VGM V1,I2,I3,3

‘E7’ V1 X2 B2 D2 M3 RXB ‘06’

0 8 12 16 20 32 36 40 47

‘E7’ V1 V2 / RXB ‘56’

0 8 12 16 36 40 47

M3 Alignment Hint
0 No alignment indicated
1-2 Reserved

3 Doubleword aligned

4 Quadword aligned
5-15 Reserved

Vector Overview and Support Instructions 21-7

V
E

C
T

O
R

 L
O

A
D

 B
Y

T
E

 R
E

V
E

R
S

E
D

 E
L

E
M

E
N

Tbleword or quadword boundary and alignment
hint is set to 3 or 4 respectively, performance
may be improved on some models. If the align-
ment of the second operand is not on a double-
word or quadword boundary, or is unknown, the
alignment hint should be set to 0.

2. Setting the alignment hint to a non-zero value
that doesn’t correspond to the alignment of the
second operand may reduce performance on
some models.

VECTOR LOAD AND REPLICATE

VLREP V1,D2(X2,B2),M3 [VRX]

The element-sized second operand is replicated into
all elements of the first operand.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR LOAD BYTE REVERSED
ELEMENT

VLEBRH V1,D2(X2,B2),M3 [VRX]

VLEBRF V1,D2(X2,B2),M3 [VRX]

VLEBRG V1,D2(X2,B2),M3 [VRX]

The element-sized second operand replaces the
first-operand element, indexed by the M3 field, with
the left-to-right sequence of bytes reversed. The
remaining elements are left unchanged. If the M3

field specifies a value greater than the highest num-
bered element in the first operand, of the specified
element size, a specification exception is recognized.

The displacement for VECTOR LOAD BYTE
REVERSED ELEMENT is treated as a 12-bit
unsigned integer.

For VLEBRH the elements are halfword sized. For
VLEBRF the elements are word sized. For VLEBRG
the elements are doubleword sized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector enhancements facility 2

is not installed)
• Specification
• Transaction constraint

Programming Note: No byte-sized element are sup-
ported by this instruction as the result would be same
as VLEB.

‘E7’ V1 X2 B2 D2 M3 RXB ‘05’
0 8 12 16 20 32 36 40 47

M3 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VLREPB V1,D2(X2,B2) VLREP V1,D2(X2,B2),0
VLREPH V1,D2(X2,B2) VLREP V1,D2(X2,B2),1
VLREPF V1,D2(X2,B2) VLREP V1,D2(X2,B2),2

VLREPG V1,D2(X2,B2) VLREP V1,D2(X2,B2),3

‘E6’ V1 X2 B2 D2 M3 RXB ‘01’

0 8 12 16 20 32 36 40 47

‘E6’ V1 X2 B2 D2 M3 RXB ‘03’

0 8 12 16 20 32 36 40 47

‘E6’ V1 X2 B2 D2 M3 RXB ‘02’

0 8 12 16 20 32 36 40 47

Extended Mnemonic Base Mnemonic

21-8 The z/Architecture CPU Architecture

V
E

C
T

O
R

 L
O

A
D

 B
Y

T
E

 R
E

V
E

R
S

E
D

 E
L

E
M

E
N

T
 A

N
D

 R
E

P
L

IC
A

T
E VECTOR LOAD BYTE REVERSED

ELEMENT AND REPLICATE

VLBRREP V1,D2(X2,B2),M3 [VRX]

The element-sized second operand is loaded and
replicated into all elements of the first operand with
the left-to-right sequence of bytes reversed within the
elements.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector enhancements facility 2

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR LOAD BYTE REVERSED
ELEMENT AND ZERO

VLLEBRZ V1,D2(X2,B2),M3 [VRX]

An element, of the size specified by the M3 field, is
loaded from the second-operand location in storage
and placed into an element in the first-operand vector
register, with the left-to-right sequence of bytes
reversed within that element. When the M3 value is in
the range 1-3, the unsigned element-sized second
operand is placed in the rightmost sub-element or
element of the leftmost doubleword element of the
vector-register specified first operand with the left-to-
right sequence of the bytes reversed. When the M3

value is 6 the unsigned 4-byte second operand is
placed in word 0 of the vector-register specified first
operand, with its byte order reversed.

The displacement for VLLEBRZ is treated as a 12-bit
unsigned integer.

The M3 field specifies the size of the element to be
loaded. If a reserved value is specified, a specifica-
tion exception is recognized.

The illustration below shows the resulting register
content of this instruction:

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector enhancements facility 2

is not installed)
• Specification

‘E6’ V1 X2 B2 D2 M3 RXB ‘05’

0 8 12 16 20 32 36 40 47

M3 Element Size
0 Reserved

1 Halfword
2 Word

3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VLBRREPH V1,D2(X2,B2) VLBRREP V1,D2(X2,B2),1
VLBRREPF V1,D2(X2,B2) VLBRREP V1,D2(X2,B2),2
VLBRREPG V1,D2(X2,B2) VLBRREP V1,D2(X2,B2),3

‘E6’ V1 X2 B2 D2 M3 RXB ‘04’
0 8 12 16 20 32 36 40 47

M3 Element Size
0 Reserved

1 Halfword

2 Word
3 Doubleword

4-5 Reserved

6 Word - Left Aligned
7-15 Reserved

Operand 2a

a. only the number of bytes corresponding to the element size
specified by M3 are accessed.

0 1 [2] [3] [[4]][[5]][[6][[[7]]

Operand 1b

b. a ‘Z’ in the table denotes a byte with the value of zero.

M3=3 7 6 5 4 3 2 1 0 Z Z Z Z Z Z Z Z

M3=2 Z Z Z Z 3 2 1 0 Z Z Z Z Z Z Z Z

M3=1 Z Z Z Z Z Z 1 0 Z Z Z Z Z Z Z Z

M3=6 3 2 1 0 Z Z Z Z Z Z Z Z Z Z Z Z

Vector Overview and Support Instructions 21-9

V
E

C
T

O
R

 L
O

A
D

 E
L

E
M

E
N

T• Transaction constraint

Extended Mnemonics:

Programming Note: This instruction is similar to the
VECTOR LOAD LOGICAL ELEMENT AND ZERO
but is useful for operating on data in storage in the lit-
tle endian format

VECTOR LOAD BYTE REVERSED
ELEMENTS

VLBR V1,D2(X2,B2),M3 [VRX]

The 16-byte second operand is loaded into the first-
operand location. For each element of the second
operand, the left-to-right sequence of the bytes is
reversed and placed into the corresponding first-
operand element location.

The displacement for VLBR is treated as a 12-bit
unsigned integer.

The M3 field specifies the size of the element to be
loaded. If a reserved value is specified, a specifica-
tion exception is recognized.

The illustration below shows the resulting byte posi-
tion of this instruction:

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector enhancements facility 2

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Note: This instruction is similar to the
VECTOR LOAD but is useful for operating on data in
storage in the little endian format.

VECTOR LOAD ELEMENT

VLEB V1,D2(X2,B2),M3 [VRX]

VLEH V1,D2(X2,B2),M3 [VRX]

VLEF V1,D2(X2,B2),M3 [VRX]

VLEG V1,D2(X2,B2),M3 [VRX]

The element-sized second operand replaces the
specified element of the first operand indexed by the

Extended Mnemonic Base Mnemonic
VLLEBRZH V1,D2(X2,B2) VLLEBRZ V1,D2(X2,B2),1
VLLEBRZF V1,D2(X2,B2) VLLEBRZ V1,D2(X2,B2),2
VLLEBRZG V1,D2(X2,B2) VLLEBRZ V1,D2(X2,B2),3
VLLEBRZE V1,D2(X2,B2) VLLEBRZ V1,D2(X2,B2),6
LDRV V1,D2(X2,B2) VLLEBRZ V1,D2(X2,B2),3
LERV V1,D2(X2,B2) VLLEBRZ V1,D2(X2,B2),6

‘E6’ V1 X2 B2 D2 M3 RXB ‘06’
0 8 12 16 20 32 36 40 47

M3 Element Size
0 Reserved

1 Halfword

2 Word
3 Doubleword

4 Quadword

5-15 Reserved

Operand 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Operand 1

M3=4 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M3=3 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

M3=2 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

M3=1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

Extended Mnemonic Base Mnemonic
VLBRH V1,D2(X2,B2) VLBR V1,D2(X2,B2),1
VLBRF V1,D2(X2,B2) VLBR V1,D2(X2,B2),2
VLBRG V1,D2(X2,B2) VLBR V1,D2(X2,B2),3
VLBRQ V1,D2(X2,B2) VLBR V1,D2(X2,B2),4

‘E7’ V1 X2 B2 D2 M3 RXB ‘00’

0 8 12 16 20 32 36 40 47

‘E7’ V1 X2 B2 D2 M3 RXB ‘01’

0 8 12 16 20 32 36 40 47

‘E7’ V1 X2 B2 D2 M3 RXB ‘03’

0 8 12 16 20 32 36 40 47

‘E7’ V1 X2 B2 D2 M3 RXB ‘02’

0 8 12 16 20 32 36 40 47

21-10 The z/Architecture CPU Architecture

V
E

C
T

O
R

 L
O

A
D

 E
L

E
M

E
N

T
 IM

M
E

D
IA

T
E M3 field. The remaining elements are left unchanged.

If the third operand specifies a value greater than the
highest numbered element in the first operand, of the
specified element size, a specification exception is
recognized.

The displacement for VECTOR LOAD ELEMENT is
treated as a 12-bit unsigned integer.

For VLEB the elements are byte sized. For VLEH the
elements are halfword sized. For VLEF the elements
are word sized. For VLEG the elements are double-
word sized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Note: For VLEB a specification is not
recognized since the third operand cannot designate
an index greater than the number of elements.

VECTOR LOAD ELEMENT
IMMEDIATE

VLEIB V1,I2,M3 [VRI-a]

VLEIH V1,I2,M3 [VRI-a]

VLEIF V1,I2,M3 [VRI-a]

VLEIG V1,I2,M3 [VRI-a]

The signed binary integer second operand is sign
extended, if necessary, and replaces the specified
element of the first operand. The remaining elements
are left unchanged. The M3 field specifies the ele-
ment index of the first operand for the second oper-
and to replace. For VLEIB, only bits 8-15 of the
second operand are placed into the byte element;
bits 0-7 are ignored. If the third operand specifies a
value greater than the highest numbered element in
the first operand, of the specified element size, a
specification exception is recognized.

For VLEIB the elements are byte sized. For VLEIH
the elements are halfword sized. For VLEIF the ele-
ments are word sized. For VLEIG the elements are
doubleword sized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Note: For VLEIB a specification is not
recognized since the third operand cannot designate
an index greater than the number of elements.

VECTOR LOAD ELEMENTS
REVERSED

VLER V1,D2(X2,B2),M3 [VRX]

The 16-byte second operand is loaded into the first-
operand location. The left-to-right sequence of the
elements is reversed when loading into the vector
register. The bytes within the elements themselves
are not reversed.

The displacement for VLER is treated as a 12-bit
unsigned integer.

‘E7’ V1 / / / / I2 M3 RXB ‘40’
0 8 12 16 32 36 40 47

‘E7’ V1 / / / / I2 M3 RXB ‘41’
0 8 12 16 32 36 40 47

‘E7’ V1 / / / / I2 M3 RXB ‘43’
0 8 12 16 32 36 40 47

‘E7’ V1 / / / / I2 M3 RXB ‘42’

0 8 12 16 32 36 40 47

‘E6’ V1 X2 B2 D2 M3 RXB ‘07’
0 8 12 16 20 32 36 40 47

Vector Overview and Support Instructions 21-11

V
E

C
T

O
R

 L
O

A
D

 G
R

 F
R

O
M

 V
R

 E
L

E
M

E
N

TThe M3 field specifies the size of the element to be
loaded. If a reserved value is specified, a specifica-
tion exception is recognized.

The illustration below shows the resulting byte posi-
tion of this instruction:

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector enhancements facility 2

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. VECTOR LOAD BYTE REVERSED ELEMENTS
with an M3 value of 4 can be used to reverse the
elements when the elements are byte-sized.

2. This instruction is useful in the context of large
precision arithmetic.

VECTOR LOAD GR FROM VR
ELEMENT

VLGV R1,V3,D2(B2),M4 [VRS-c]

The element of the third operand indexed by the sec-
ond-operand address is placed in the first-operand
location. The third operand is a vector register. The
first operand is a general register. If the index speci-
fied by the second-operand address is greater than
the highest numbered element in the third operand,
of the specified element size, the result in the first
operand is unpredictable.

If the vector register element is smaller than a dou-
bleword, the element is right aligned in the 64-bit
general register and zeros fill the remaining bits.

The second-operand address is not used to address
data; instead the rightmost 12 bits of the address are
used to specify the index of an element within the
third operand.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

M3 Element Size
0 Reserved

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Operand 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Operand 1

M3=3 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

M3=2 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

M3=1 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

Extended Mnemonic Base Mnemonic
VLERH V1,D2(X2,B2) VLER V1,D2(X2,B2),1
VLERF V1,D2(X2,B2) VLER V1,D2(X2,B2),2
VLERG V1,D2(X2,B2) VLER V1,D2(X2,B2),3

‘E7’ R1 V3 B2 D2 M4 RXB ‘21’

0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword
2 Word

3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VLGVB R1,V3,D2(B2) VLGV R1,V3,D2(B2),0

21-12 The z/Architecture CPU Architecture

V
E

C
T

O
R

 L
O

A
D

 L
O

G
IC

A
L

 E
L

E
M

E
N

T
 A

N
D

 Z
E

R
O

VECTOR LOAD LOGICAL
ELEMENT AND ZERO

VLLEZ V1,D2(X2,B2),M3 [VRX]

When the M3 value is in the range of 0-3, the
unsigned element-sized second operand is placed in
the rightmost sub-element or element of the leftmost
doubleword element of the vector-register specified
first operand. When the vector-enhancements facility
1 is installed and the M3 value is 6 the unsigned ele-
ment-sized second operand is placed in the leftmost
sub-element of the leftmost doubleword element of
the vector-register specified first operand. The bit
positions of all other elements are set to zero. The
element size is determined by the ES value in the M3

field.

The displacement for VLLEZ is treated as a 12-bit
unsigned binary integer.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the element in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.
When the vector-enhancements facility 1 is not
installed the M3 value of 6 is also reserved.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Note: This instruction can be used for
loading scalar values into vector registers.

VECTOR LOAD MULTIPLE

VLM V1,V3,D2(B2)[,M4] [VRS-a]

The set of vector registers starting with the first oper-
and vector register designation and ending with the
third operand vector register designation are loaded
from storage beginning at the location specified by
the second-operand address and continuing through
as many locations as needed.

The vector registers are loaded in ascending order of
their register numbers starting with the first operand
vector register designation and continuing up to and
including the third operand vector register designa-
tion. If the third operand vector register designation is
less than the first operand vector register designa-
tion, a specification exception is recognized. The
number of registers to be loaded is at most sixteen. If
a range of more than sixteen registers is specified, a
specification exception is recognized.

The displacement for VLM is treated as a 12-bit
unsigned binary number.

The M4 field contains a 4-bit unsigned binary integer
specifying the alignment of the second operand.
Reserved values should not be specified; otherwise,

VLGVH R1,V3,D2(B2) VLGV R1,V3,D2(B2),1
VLGVF R1,V3,D2(B2) VLGV R1,V3,D2(B2),2
VLGVG R1,V3,D2(B2) VLGV R1,V3,D2(B2),3

‘E7’ V1 X2 B2 D2 M3 RXB ‘04’
0 8 12 16 20 32 36 40 47

M3 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-5 Reserved

6 Word - Left Aligned
7-15 Reserved

Extended Mnemonic Base Mnemonic

Extended Mnemonic Base Mnemonic
VLLEZB V1,D2(X2,B2) VLLEZ V1,D2(X2,B2),0
VLLEZH V1,D2(X2,B2) VLLEZ V1,D2(X2,B2),1
VLLEZF V1,D2(X2,B2) VLLEZ V1,D2(X2,B2),2
VLLEZG V1,D2(X2,B2) VLLEZ V1,D2(X2,B2),3
VLLEZLF V1,D2(X2,B2) VLLEZ V1,D2(X2,B2),6

‘E7’ V1 V3 B2 D2 M4 RXB ‘36’
0 8 12 16 20 32 36 40 47

Vector Overview and Support Instructions 21-13

V
E

C
T

O
R

 L
O

A
D

 R
IG

H
T

M
O

S
T

 W
IT

H
 L

E
N

G
T

Hthe program may not operate compatibly in the
future.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. If the first operand vector register designation
and the third operand vector register designation
specify the same vector register only 16-bytes
are loaded.

2. If the alignment of the address specified by the
second operand is known to be either on a dou-
bleword or quadword boundary and alignment
hint is set to 3 or 4 respectively, performance
may be improved on some models. If the align-
ment of the second operand is not on a double-
word or quadword boundary, or is unknown, the
alignment hint should be set to 0.

3. Setting the alignment hint to a non-zero value
that doesn’t correspond to the alignment of the
second operand may reduce performance on
some models.

VECTOR LOAD RIGHTMOST WITH
LENGTH

VLRLR V1,R3,D2(B2) [VRS-d]

VLRL V1,D2(B2),I3 [VSI]

Proceeding from left to right, the specified number of
bytes from the second-operand location are placed in
the first operand location.

For VLRLR, bits 32-63 of the general-register speci-
fied third operand contain an unsigned integer value
that when subtracted from fifteen represents the
index of the first byte of the vector register to load. If
the third operand contains a value greater than or
equal to fifteen, all bytes of the first operand are
loaded. Bits 0-31 of the third operand are ignored.

For VLRL, the I3 field has the following format:

The bits of the I3 field are defined as follows:

• Reserved: Bits 0-3 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Operand 2 Length Code(L2): Bits 4-7 contain
an unsigned integer value that when subtracted
from fifteen represents the index of the first byte
of the vector register to load. If the L2 field con-
tains a value equal to fifteen, all bytes of the first
operand are loaded.

Zeros are placed in any bytes of the first operand that
are not loaded from the second operand. Access
exceptions are only recognized for the bytes of the
second operand that are loaded from storage.

The displacement is a 12-bit unsigned integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification (VLRL only)
• Transaction constraint

M4 Alignment Hint
0 No alignment indicated

1-2 Reserved

3 Doubleword aligned
4 Quadword aligned

5-15 Reserved

'E6' / / / / R3 B2 D2 V1 RXB ‘37’

0 8 12 16 20 32 36 40 47

'E6' I3 B2 D2 V1 RXB '35'

0 8 16 20 32 36 40 47

/ / / / L2

0 1 2 3 4 7

21-14 The z/Architecture CPU Architecture

V
E

C
T

O
R

 L
O

A
D

 T
O

 B
L

O
C

K
 B

O
U

N
D

A
R

Y VECTOR LOAD TO BLOCK
BOUNDARY

VLBB V1,D2(X2,B2),M3 [VRX]

The single vector-register first operand is loaded
starting at the zero indexed byte element with bytes
from the second operand. If a boundary condition is
encountered, the rest of the first operand is unpre-
dictable . Access exceptions are not recognized for
second-operand locations beyond the specified
boundary. If no boundary is encountered, all byte ele-
ments of the first operand are loaded with data from
storage.

The displacement for VLBB is treated as a 12-bit
unsigned integer.

The M3 field specifies a code indicating the boundary
at which the second operand ends. If a reserved
value is specified, a specification exception is recog-
nized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. In certain circumstances, data may be loaded
past the block boundary. However, this will only
occur if there are no access exceptions on that

data. The program should not depend on the
unpredictable data being loaded by a particular
model.

2. This instruction can be used for loading null-ter-
minated character data without crossing a page,
segment, or region boundary unnecessarily.

3. If a block size code equal to the cache line size of
the processor is specified, performance may be
improved due to the fact that subsequent
accesses will be aligned.

4. The LOAD COUNT TO BLOCK BOUNDARY
instruction may be used with the same specified
boundary to obtain a count of the number of
bytes loaded.

VECTOR LOAD VR ELEMENT
FROM GR

VLVG V1,R3,D2(B2),M4 [VRS-b]

The third operand of size specified by the ES value in
the M4 field is placed into the element of the first
operand indexed by the second-operand address.
The third operand is a general register. The first oper-
and is a vector register. If the index, specified by the
second-operand address, is greater than the highest
numbered element in the first operand, of the speci-
fied element size, it is unpredictable which element, if
any, is replaced.

For element sizes less than doubleword the rightmost
bits of the third operand are used.

The second operand is not used to address data;
instead the rightmost 12 bits of the address are used
to specify the index of an element within the first
operand.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

‘E7’ V1 X2 B2 D2 M3 RXB ‘07’

0 8 12 16 20 32 36 40 47

Code Boundary
0 64 Byte

1 128 Byte
2 256 Byte

3 512 Byte

4 1 K-byte
5 2 K-Byte

6 4 K-Byte

7-15 Reserved

‘E7’ V1 R3 B2 D2 M4 RXB ‘22’
0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte
1 Halfword

2 Word

Vector Overview and Support Instructions 21-15

V
E

C
T

O
R

 M
E

R
G

E
 H

IG
H

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR LOAD VR FROM GRS
DISJOINT

VLVGP V1,R2,R3 [VRR-f]

The general register specified second operand
placed unchanged into bit positions 0-63 of the first
operand. The general register specified third operand
is placed unchanged into bit positions 64-127 of the
first operand.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR LOAD WITH LENGTH

VLL V1,R3,D2(B2) [VRS-b]

Proceeding from left to right, bytes of the first oper-
and are loaded from the second-operand location.
The third operand (in general register R3) contains a
32-bit unsigned integer that represents the highest
indexed byte to load. If the third operand contains a
value greater than or equal to the highest byte index
of the vector, all bytes of the first operand are loaded.
Zeros are placed in any bytes that are not loaded.

Access exceptions are only recognized for the bytes
of the second operand that are loaded from storage.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR MERGE HIGH

VMRH V1,V2,V3,M4 [VRR-c]

Proceeding from left to right, the elements in the left-
most half of the second operand are placed into the
even indexed elements of the first operand. Proceed-
ing from left to right, the elements in the leftmost half
of the third operand are placed into the odd indexed
elements of the first operand. The elements in the
low order half of the second and third operands are
ignored.

If the same register is used to designate the first
operand as either the second or third operands the
source value is used throughout the operation with
no intermediate updates.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VLVGB V1,R3,D2(B2) VLVG V1,R3,D2(B2),0
VLVGH V1,R3,D2(B2) VLVG V1,R3,D2(B2),1
VLVGF V1,R3,D2(B2) VLVG V1,R3,D2(B2),2
VLVGG V1,R3,D2(B2) VLVG V1,R3,D2(B2),3

‘E7’ V1 R2 R3 / / / / / / / / / / / / / / / / / RXB ‘62’

0 8 12 16 20 36 40 47

‘E7’ V1 R3 B2 D2 / / / / RXB ‘37’

0 8 12 16 20 32 36 40 47

M4 Element Size

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘61’

0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

21-16 The z/Architecture CPU Architecture

V
E

C
T

O
R

 M
E

R
G

E
 L

O
W

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR MERGE LOW

VMRL V1,V2,V3,M4 [VRR-c]

Proceeding from left to right, the elements in the
rightmost half of the second operand are placed into
the even indexed elements of first operand. Proceed-
ing from left to right, the elements in the rightmost
half of the third operand are placed into the odd
indexed elements of the first operand. The elements
in the high order half of the second and third oper-
ands are ignored.

If the same register is used to designate the first
operand as either the second or third operands the
source value is used throughout the operation with
no intermediate updates.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in

the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR PACK

VPK V1,V2,V3,M4 [VRR-c]

A source vector is created from the concatenation of
the vector register-specified second operand fol-
lowed by the vector-register-specified third operand.
In a left to right fashion, each element in the source
vector is reduced in size by half. The rightmost half of
each element of the source vector is placed into the
corresponding element of the vector-register-speci-
fied first operand.

If the same register is used to designate the first
operand as either the second or third operands the
source value is used throughout the operation with
no intermediate updates.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the second and third operands. The first operand

1 Halfword

2 Word

3 Doubleword
4-15 Reserved

Extended Mnemonic Base Mnemonic
VMRHB V1,V2,V3 VMRH V1,V2,V3,0
VMRHH V1,V2,V3 VMRH V1,V2,V3,1
VMRHF V1,V2,V3 VMRH V1,V2,V3,2
VMRHG V1,V2,V3 VMRH V1,V2,V3,3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘60’

0 8 12 16 20 32 36 40 47

M4 Element Size

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VMRLB V1,V2,V3 VMRL V1,V2,V3,0
VMRLH V1,V2,V3 VMRL V1,V2,V3,1
VMRLF V1,V2,V3 VMRL V1,V2,V3,2
VMRLG V1,V2,V3 VMRL V1,V2,V3,3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘94’

0 8 12 16 20 32 36 40 47

Vector Overview and Support Instructions 21-17

V
E

C
T

O
R

 P
A

C
K

 S
A

T
U

R
A

T
Econtains elements half the size of those specified by

the ES control. If a reserved value is specified, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR PACK SATURATE

VPKS V1V2,V3,M4,M5 [VRR-b]

A source vector is created from the concatenation of
the second operand followed by the third operand. In
a left to right fashion each signed element in the
source vector is reduced in size by half and placed in
the corresponding element of the first operand. If the
element in the source vector is outside of the allow-
able range of the target element, the target element
is set to the maximum value in the target format in
the direction of the overflow.

If the same register is used to designate the first
operand as either the second or third operands, the
original source value is used throughout the opera-
tion with no intermediate updates.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in

the second and third operands. The first operand
contains elements half the size of those specified by
the ES control. If a reserved value is specified, a
specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Reserved: Bits 0, 1, and 2 are reserved and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Condition Code Set (CS): If bit 3 is 0, the code
remains unchanged. If the bit is one, the code is
set as described below.

Resulting Condition Code: When bit 3 of the M5

field is one, the condition code is set as follows:

0 No saturation
1 At least one but not all elements saturated
2 --
3 Saturation on all elements

When bit 3 of the M5 field is zero, the code remains
unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

M4 Element Size
0 Reserved

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VPKH V1,V2,V3 VPK V1,V2,V3,1
VPKF V1,V2,V3 VPK V1,V2,V3,2
VPKG V1,V2,V3 VPK V1,V2,V3,3

‘E7’ V1 V2 V3 / / / / / M5 / / / / M4 RXB ‘97’

0 8 12 16 20 24 28 32 36 40 47

M4 Element Size
0 Reserved

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

/ / /
C
S

0 3

Extended Mnemonic Base Mnemonic
VPKSH V1,V2,V3 VPKS V1,V2,V3,1,0
VPKSF V1,V2,V3 VPKS V1,V2,V3,2,0
VPKSG V1,V2,V3 VPKS V1,V2,V3,3,0

21-18 The z/Architecture CPU Architecture

V
E

C
T

O
R

 P
A

C
K

 L
O

G
IC

A
L

 S
A

T
U

R
A

T
E

VECTOR PACK LOGICAL
SATURATE

VPKLS V1V2,V3,M4,M5 [VRR-b]

A source vector is created from the concatenation of
the second operand followed by the third operand. In
a left to right fashion, each unsigned integer element
in the source vector is reduced in size by half and
placed in the corresponding element in the first oper-
and. If the magnitude of the element in the source
vector is greater than the largest magnitude repre-
sentable in the target element, the target element is
set to the largest representable magnitude value.

If the same register is used to designate the first
operand as either the second or third operands, the
original source value is used throughout the opera-
tion with no intermediate updates.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the second and third operands. The first operand
contains elements half the size of those specified by
the ES control. If a reserved value is specified, a
specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Reserved: Bits 0, 1, and 2 are reserved and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Condition Code Set (CS): If bit 3 is 0, the code
remains unchanged. If the bit is one, the code is
set as described below.

Resulting Condition Code: When bit 3 of the M5

field is one, the condition code is set as follows:

0 No saturation
1 At least one but not all elements saturated
2 --
3 Saturation on all elements

When bit 3 of the M5 field is zero, the code remains
unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR PERMUTE

VPERM V1,V2,V3,V4 [VRR-e]

A source vector is created from the concatenation of
the second operand followed by the third operand.
The byte element of the source vector indexed by the
five least significant bits of each byte element of the
fourth operand is placed into the byte element of the
first operand corresponding to the byte element in
the fourth operand.

VPKSHS V1,V2,V3 VPKS V1,V2,V3,1,1
VPKSFS V1,V2,V3 VPKS V1,V2,V3,2,1
VPKSGS V1,V2,V3 VPKS V1,V2,V3,3,1

‘E7’ V1 V2 V3 / / / / / M5 / / / / M4 RXB ‘95’
0 8 12 16 20 24 28 32 36 40 47

M4 Element Size
0 Reserved

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

/ / /
C
S

0 3

Extended Mnemonic Base Mnemonic

Extended Mnemonic Base Mnemonic
VPKLSH V1,V2,V3 VPKLS V1,V2,V3,1,0
VPKLSF V1,V2,V3 VPKLS V1,V2,V3,2,0
VPKLSG V1,V2,V3 VPKLS V1,V2,V3,3,0
VPKLSHS V1,V2,V3 VPKLS V1,V2,V3,1,1
VPKLSFS V1,V2,V3 VPKLS V1,V2,V3,2,1
VPKLSGS V1,V2,V3 VPKLS V1,V2,V3,3,1

‘E7’ V1 V2 V3 / / / / / / / / / / / / V4 RXB ‘8C’
0 8 12 16 20 32 36 40 47

Vector Overview and Support Instructions 21-19

V
E

C
T

O
R

 R
E

P
L

IC
A

T
EIf the same register is used to designate the first

operand as either the second, third, or fourth oper-
ands the original source value is used throughout the
operation with no intermediate updates.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR PERMUTE
DOUBLEWORD IMMEDIATE

VPDI V1V2,V3,M4 [VRR-c]

The first, second and third operands consist of dou-
ble word elements. Bit 1 of the M4 field is the index
which selects which doubleword of the second oper-
and is placed into the zero indexed doubleword of the
first operand. Bit 3 of the M4 field is the index which
selects which doubleword of the third operand is
placed in the doubleword element with index one of
the first operand.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Reserved: Bits 0 and 2 are reserved and should
be zeros; otherwise, the program may not oper-
ate compatibly in the future.

• Second Operand Index (I2): Bit 1 provides the
index of the doubleword in the second operand to
be placed in the first operand.

• Third operand index (I3): Bit 3 provides the
index of the doubleword in the third operand to
be placed in the first operand.

If the same register is used to designate the first
operand as either the second or third operands, the

original source value is used throughout the opera-
tion with no intermediate updates.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR REPLICATE

VREP V1,V3,I2,M4 [VRI-c]

The element of the third operand indexed by the
unsigned integer in I2 is replicated across all ele-
ments of the first operand. If the value of the
unsigned integer in I2 is greater than the highest ele-
ment number in the third operand, of the specified
element size, a specification exception is recognized.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘84’
0 8 12 16 20 32 36 40 47

/
I
2

/
I
3

0 1 2 3

‘E7’ V1 V3 I2 M4 RXB ‘4D’

0 8 12 16 32 36 40 47

M4 Element Size
0 Byte

1 Halfword
2 Word

3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VREPB V1,V3,I2 VREP V1,V3,I2,0

21-20 The z/Architecture CPU Architecture

V
E

C
T

O
R

 R
E

P
L

IC
A

T
E

 IM
M

E
D

IA
T

E

VECTOR REPLICATE IMMEDIATE

VREPI V1,I2,M3 [VRI-a]

The signed integer immediate value in I2 is sign
extended, if necessary, and replicated across all ele-
ments of the first operand. If the element size is less
than a halfword, only bits 8 through 15 of the I2 field
are used; bits zero through seven are ignored.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR SCATTER ELEMENT

VSCEF V1,D2(V2,B2),M3 [VRV]

VSCEG V1,D2(V2,B2),M3 [VRV]

The element of the first operand designated by the
M3 field is placed unchanged into the second-oper-
and location. If the third operand specifies a value
greater than the highest numbered element in the
first operand, of the specified element size, a specifi-
cation exception is recognized.

For VSCEF the elements are 4-bytes in size; for
VSCEG the elements are 8-bytes in size.

The second-operand address is generated by adding
the unsigned binary integer value from the element in
vector-register V2 indexed by the M3 field with the
address in the B2 register along with the D2 value.

The displacement for VECTOR SCATTER ELE-
MENT is treated as a 12-bit unsigned integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. The VECTOR SCATTER ELEMENT instruction
can be used to perform a store when doing sca-
lar computation in vector registers and the
address resides in a vector register. However,
depending on the model, performance may be
better if address computations are done in gen-
eral registers.

2. For VSCEF care must be taken to ensure that
the values in the second operand elements are
unsigned. Otherwise, when running in 64-bit

VREPH V1,V3,I2 VREP V1,V3,I2,1
VREPF V1,V3,I2 VREP V1,V3,I2,2
VREPG V1,V3,I2 VREP V1,V3,I2,3

‘E7’ V1 / / / / I2 M3 RXB ‘45’

0 8 12 16 32 36 40 47

M3 Element Size
0 Byte

1 Halfword
2 Word

3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VREPIB V1,I2 VREPI V1,I2,0
VREPIH V1,I2 VREPI V1,I2,1
VREPIF V1,I2 VREPI V1,I2,2
VREPIG V1,I2 VREPI V1,I2,3

Extended Mnemonic Base Mnemonic

‘E7’ V1 V2 B2 D2 M3 RXB ‘1B’
0 8 12 16 20 32 36 40 47

‘E7’ V1 V2 B2 D2 M3 RXB ‘1A’

0 8 12 16 20 32 36 40 47

Vector Overview and Support Instructions 21-21

V
E

C
T

O
R

 S
T

O
R

Eaddressing mode program behavior might not be
as expected.

VECTOR SELECT

VSEL V1,V2,V3,V4 [VRR-e]

For each bit in the fourth operand that contains a
zero, the corresponding bit from the third operand is
placed in the corresponding bit of the first operand.
For each bit in the fourth operand that contains a
one, the corresponding bit from the second operand
is placed in the corresponding bit of the first operand.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR SIGN EXTEND TO
DOUBLEWORD

VSEG V1,V2,M3 [VRR-a]

The leftmost bit of the rightmost element-sized sub-
element of each doubleword of the second operand
is replicated across all bit positions of all other ele-
ments in the doubleword. The result is placed in the
corresponding doubleword of the first operand.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the element in
each doubleword of the second operand. If a
reserved value is specified, a specification exception
is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. This instruction allows for a value to be sign
extended after being loaded with VECTOR
LOAD LOGICAL ELEMENT AND ZERO.

2. To sign extend to smaller element sizes the VEC-
TOR UNPACK instructions can be used.

VECTOR STORE

VST V1,D2(X2,B2)[,M3] [VRX]

The 128-bit value in the first operand is stored to the
storage location specified by the second operand.

The displacement for VST is treated as a 12-bit
unsigned integer.

The M3 field specifies an alignment hint (AH). The AH
control specifies the alignment of the first byte of the
second operand. Reserved values should not be
specified; otherwise, the program may not operate
compatibly in the future.

Condition Code: The code remains unchanged.

‘E7’ V1 V2 V3 / / / / / / / / / / / / V4 RXB ‘8D’

0 8 12 16 20 32 40 47

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘5F’

0 8 12 16 32 36 40 47

M3 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

Extended Mnemonic Base Mnemonic
VSEGB V1,V2 VSEG V1,V2,0
VSEGH V1,V2 VSEG V1,V2,1
VSEGF V1,V2 VSEG V1,V2,2

‘E7’ V1 X2 B2 D2 M3 RXB ‘0E’
0 8 12 16 20 32 36 40 47

M3 Alignment Hint
0 No alignment indicated

1-2 Reserved

3 Doubleword aligned

4 Quadword aligned
5-15 Reserved

21-22 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
T

O
R

E
 B

Y
T

E
 R

E
V

E
R

S
E

D
 E

L
E

M
E

N
T Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

Programming Notes:

1. If the alignment of the address specified by the
second operand is known to be either on a dou-
bleword or quadword boundary and alignment
hint is set to 3 or 4 respectively, performance
may be improved on some models. If the align-
ment of the second operand is not on a double-
word or quadword boundary, or is unknown, the
alignment hint should be set to 0.

2. Setting the alignment hint to a non-zero value
that doesn’t correspond to the alignment of the
second operand may reduce performance on
some models.

VECTOR STORE BYTE REVERSED
ELEMENT

VSTEBRH V1,D2(X2,B2),M3 [VRX]

VSTEBRF V1,D2(X2,B2),M3 [VRX]

VSTEBRG V1,D2(X2,B2),M3 [VRX]

The first-operand element, indexed by the M3 field, is
stored into the element-sized second-operand. The
left-to-right sequence of bytes within the elements is
reversed when storing into the storage location. If the
M3 field specifies a value greater than the highest
numbered element in the first operand, of the speci-

fied element size, a specification exception is recog-
nized.

The displacement for VECTOR STORE BYTE
REVERSED ELEMENT is treated as a 12-bit
unsigned integer.

For VSTEBRH the elements are halfword sized. For
VSTEBRF the elements are word sized. For VSTE-
BRG the elements are doubleword sized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector enhancements facility 2

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Note: No byte-sized element version
of this instruction exists as it would deliver the same
result as VSTEB.

VECTOR STORE BYTE REVERSED
ELEMENTS

VSTBR V1,D2(X2,B2),M3 [VRX]

The first operand is stored into the 16-bytes second
operand. For each element of the first operand, the
left-to-right sequence of bytes is reversed as that ele-
ment is placed into the corresponding element of the
16-byte storage.

The displacement for VSTBR is treated as a 12-bit
unsigned integer.

‘E6’ V1 X2 B2 D2 M3 RXB ‘09’

0 8 12 16 20 32 36 40 47

‘E6’ V1 X2 B2 D2 M3 RXB ‘0B’

0 8 12 16 20 32 36 40 47

‘E6’ V1 X2 B2 D2 M3 RXB ‘0A’

0 8 12 16 20 32 36 40 47

Extended Mnemonic Base Mnemonic
STERV V1,D2(X2,B2) VSTEBRF V1,D2(X2,B2),0
STDRV V1,D2(X2,B2) VSTEBRG V1,D2(X2,B2),0

‘E6’ V1 X2 B2 D2 M3 RXB ‘0E’

0 8 12 16 20 32 36 40 47

Vector Overview and Support Instructions 21-23

V
E

C
T

O
R

 S
T

O
R

E
 E

L
E

M
E

N
TThe M3 field specifies the size of the element to be

stored. If a reserved value is specified, a specifica-
tion exception is recognized.

The illustration below shows the resulting byte posi-
tion of this instruction:

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector enhancements facility 2

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Note: This instruction is similar to the
VECTOR STORE but is useful for operating on data
in storage in the little endian format.

VECTOR STORE ELEMENT

VSTEB V1,D2(X2,B2),M3 [VRX]

VSTEH V1,D2(X2,B2),M3 [VRX]

VSTEF V1,D2(X2,B2),M3 [VRX]

VSTEG V1,D2(X2,B2),M3 [VRX]

The element of the first operand designated by the
M3 field is placed unchanged into the second-oper-
and location. If the third operand specifies a value
greater than the highest numbered element in the
first operand, of the specified element size, a specifi-
cation exception is recognized. For VSTEB a specifi-
cation is not recognized since the third operand
cannot designate an index greater than the number
of elements.

The displacement for VECTOR STORE ELEMENT is
treated as a 12-bit unsigned integer.

For VSTEB the elements are byte sized. For VSTEH
the elements are halfword sized. For VSTEF the ele-
ments are word sized. For VSTEG the elements are
doubleword sized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

M3 Element Size
0 Reserved

1 Halfword

2 Word
3 Doubleword

4 Quadword

5-15 Reserved

Operand 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Operand 2

M3=4 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M3=3 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

M3=2 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

M3=1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

Extended Mnemonic Base Mnemonic
VSTBRH V1,D2(X2,B2) VSTBR V1,D2(X2,B2),1
VSTBRF V1,D2(X2,B2) VSTBR V1,D2(X2,B2),2
VSTBRG V1,D2(X2,B2) VSTBR V1,D2(X2,B2),3
VSTBRQ V1,D2(X2,B2) VSTBR V1,D2(X2,B2),4

‘E7’ V1 X2 B2 D2 M3 RXB ‘08’
0 8 12 16 20 32 36 40 47

‘E7’ V1 X2 B2 D2 M3 RXB ‘09’

0 8 12 16 20 32 36 40 47

‘E7’ V1 X2 B2 D2 M3 RXB ‘0B’

0 8 12 16 20 32 36 40 47

‘E7’ V1 X2 B2 D2 M3 RXB ‘0A’

0 8 12 16 20 32 36 40 47

21-24 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
T

O
R

E
 E

L
E

M
E

N
T

S
 R

E
V

E
R

S
E

D VECTOR STORE ELEMENTS
REVERSED

VSTER V1,D2(X2,B2),M3 [VRX]

The first operand is stored into the 16-bytes second
operand. The left-to-right sequence of the elements
is reversed when storing into the storage location.

The displacement for VSTER is treated as a 12-bit
unsigned integer.

The M3 field specifies the size of the element to be
stored. If a reserved value is specified, a specifica-
tion exception is recognized.

The illustration below shows the resulting byte posi-
tion of this instruction:

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector enhancements facility 2

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. VECTOR STORE BYTE REVERSED ELE-
MENTS with an M3 value of 4 can be used to
reverse the elements when the elements are
byte-sized.

2. This instruction is useful in the context of large
precision arithmetic.

VECTOR STORE MULTIPLE

VSTM V1,V3,D2(B2)[,M4] [VRS-a]

The set of vector registers starting with the first oper-
and vector register designation and ending with the
third operand vector register designation are placed
in the storage area beginning at the location speci-
fied by the second-operand address and continuing
through as many locations as needed.

The contents of bit positions 0-127 of the vector reg-
isters are stored in successive 16-byte fields begin-
ning at the second-operand address.

The vector registers are stored in the ascending
order of their register numbers, starting with the first
operand vector register designation and continuing
up to and including the third operand vector register
designation. If the third operand vector register des-
ignation is less than the first operand vector register
designation, a specification exception is recognized.
The number of registers to be stored is at most six-
teen. If a range of more than sixteen registers is
specified, a specification exception is recognized.

The displacement for VSTM is treated as a 12-bit
unsigned binary number.

The M4 field specifies an alignment hint (AH). The AH
control specifies the alignment of the first byte of the
second operand. Reserved values should not be

‘E6’ V1 X2 B2 D2 M3 RXB ‘0F’

0 8 12 16 20 32 36 40 47

M3 Element Size
0 Reserved

1 Halfword
2 Word

3 Doubleword

4-15 Reserved

Operand 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Operand 2
M3=3 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

M3=2 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

M3=1 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

Extended Mnemonic Base Mnemonic
VSTERH V1,D2(X2,B2) VSTER V1,D2(X2,B2),1
VSTERF V1,D2(X2,B2) VSTER V1,D2(X2,B2),2
VSTERG V1,D2(X2,B2) VSTER V1,D2(X2,B2),3

‘E7’ V1 V3 B2 D2 M4 RXB ‘3E’
0 8 12 16 20 32 36 40 47

Vector Overview and Support Instructions 21-25

V
E

C
T

O
R

 S
T

O
R

E
 R

IG
H

T
M

O
S

T
 W

IT
H

 L
E

N
G

T
Hspecified; otherwise, the program may not operate

compatibly in the future.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. If the first operand vector register designation
and the third operand vector register designation
specify the same vector register only 16-bytes
are stored.

2. If the alignment of the address specified by the
second operand is known to be either on a dou-
bleword or quadword boundary and alignment
hint is set to 3 or 4 respectively, performance
may be improved on some models. If the align-
ment of the second operand is not on a double-
word or quadword boundary, or is unknown, the
alignment hint should be set to 0.

3. Setting the alignment hint to a non-zero value
that doesn’t correspond to the alignment of the
second operand may reduce performance on
some models.

VECTOR STORE RIGHTMOST
WITH LENGTH

VSTRLR V1,R3,D2(B2) [VRS-d]

VSTRL V1,D2(B2),I3 [VSI]

Proceeding from left to right, the specified number of
rightmost bytes from the first operand are stored at
the second-operand location.

For VSTRLR, bits 32-63 of the general register spec-
ified third operand contain an unsigned integer value
that when subtracted from fifteen represents the
index of the first byte of the vector register to store. If
the third operand contains a value greater than or
equal to fifteen, all bytes of the first operand are
stored. Bits 0-31 of the third operand are ignored.

For VSTRL, the I3 field has the following format:

The bits of the I3 field are defined as follows:

• Reserved: Bits 0-3 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Operand 2 Length Code(L2): Bits 4-7 contain
an unsigned integer value that when subtracted
from fifteen represents the index of the first byte
of the vector register to store. If the L2 field con-
tains a value equal to fifteen, all bytes of the first
operand are stored.

Access exceptions are only recognized on bytes
stored.

The displacement is treated as a 12-bit unsigned
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification (VSTRL only)
• Transaction constraint

M4 Alignment Hint
0 No alignment indicated

1-2 Reserved

3 Doubleword aligned
4 Quadword aligned

5-15 Reserved

'E6' / / / / R3 B2 D2 V1 RXB ‘3F’

0 8 12 16 20 32 36 40 47

'E6' I3 B2 D2 V1 RXB '3D'

0 8 16 20 32 36 40 47

/ / / / L2

0 1 2 3 4 7

21-26 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
T

O
R

E
 W

IT
H

 L
E

N
G

T
H VECTOR STORE WITH LENGTH

VSTL V1,R3,D2(B2) [VRS-b]

Proceeding from left to right, bytes from the first
operand are stored at the second-operand location.
The general register specified third operand contains
a 32-bit unsigned integer containing a value that rep-
resents the highest indexed byte to store. If the third
operand contains a value greater than or equal to the
highest byte index of the vector, all bytes of the first
operand are stored.

Access exceptions are only recognized on bytes
stored.

The displacement for VECTOR STORE WITH
LENGTH is treated as a 12-bit unsigned integer.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR UNPACK HIGH

VUPH V1V2,M3 [VRR-a]

The elements of the left-most half of the vector-regis-
ter second operand are sign extended and placed
into double-sized elements in the first operand. The
right-most half of the second operand are ignored.

If the same register is used to designate the first
operand as the second operand the original source
value is used throughout the operation with no inter-
mediate updates.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in

the second operand. The first operand contains ele-
ments twice the size of those specified by the ES
control. If a reserved value is specified, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR UNPACK LOGICAL HIGH

VUPLH V1V2,M3 [VRR-a]

The elements of the left-most half of the second
operand are zero extended and placed into double-
sized elements in the first operand. The right-most
half of the second operand is ignored.

If the same register is used to designate the first
operand as the second operand the original source
value is used throughout the operation with no inter-
mediate updates.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the second operand. The first operand contains ele-
ments double the size of those specified in the ES

‘E7’ V1 R3 B2 D2 / / / / RXB ‘3F’
0 8 12 16 20 32 36 40 47

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘D7’
0 8 12 16 32 36 40 47

M3 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

Extended Mnemonic Base Mnemonic
VUPHB V1,V2 VUPH V1,V2,0
VUPHH V1,V2 VUPH V1,V2,1
VUPHF V1,V2 VUPH V1,V2,2

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘D5’
0 8 12 16 32 36 40 47

Vector Overview and Support Instructions 21-27

V
E

C
T

O
R

 U
N

P
A

C
K

 L
O

G
IC

A
L

 L
O

Wcontrol. If a reserved value is specified, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR UNPACK LOW

VUPL V1V2,M3 [VRR-a]

The elements of the right-most half of the second
operand are sign extended and placed into double-
sized elements in the first operand. The left-most half
of the second operand is ignored.

If the same register is used to designate the first
operand as the second operand the original source
value is used throughout the operation with no inter-
mediate updates.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the second operand. The first operand contains ele-
ments double the size of those specified by the ES

control. If a reserved value is specified, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR UNPACK LOGICAL LOW

VUPLL V1V2,M3 [VRR-a]

The elements of the right-most half of the second
operand are zero extended and placed into double-
sized elements in the first operand. The left-most half
of the second operand is ignored.

If the same register is used to designate the first
operand as the second operand the original source
value is used throughout the operation with no inter-
mediate updates.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the second operand. The first operand contains ele-
ments double the size of those specified by the ES

M3 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

Extended Mnemonic Base Mnemonic
VUPLHB V1,V2 VUPLH V1,V2,0
VUPLHH V1,V2 VUPLH V1,V2,1
VUPLHF V1,V2 VUPLH V1,V2,2

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘D6’
0 8 12 16 32 36 40 47

M3 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

Extended Mnemonic Base Mnemonic
VUPLB V1,V2 VUPL V1,V2,0
VUPLHW V1,V2 VUPL V1,V2,1
VUPLF V1,V2 VUPL V1,V2,2

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘D4’
0 8 12 16 32 36 40 47

21-28 The z/Architecture CPU Architecture

V
E

C
T

O
R

 U
N

P
A

C
K

 L
O

G
IC

A
L

 L
O

W control. If a reserved value is specified, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction

• Operation (if the vector facility for z/Architecture
is not installed)

• Specification
• Transaction constraint

Extended Mnemonics:

M3 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved Extended Mnemonic Base Mnemonic

VUPLLB V1,V2 VUPLL V1,V2,0
VUPLLH V1,V2 VUPLL V1,V2,1
VUPLLF V1,V2 VUPLL V1,V2,2

Vector Integer Instructions 22-1© Copyright IBM Corp. 2000, 2019

Chapter 22. Vector Integer Instructions

Instructions . 22-1
VECTOR ADD . 22-3
VECTOR ADD COMPUTE CARRY. 22-4
VECTOR ADD WITH CARRY 22-4
VECTOR ADD WITH CARRY COMPUTE

CARRY . 22-5
VECTOR AND . 22-5
VECTOR AND WITH COMPLEMENT. 22-5
VECTOR AVERAGE 22-6
VECTOR AVERAGE LOGICAL. 22-6
VECTOR CHECKSUM 22-6
VECTOR ELEMENT COMPARE. 22-7
VECTOR ELEMENT COMPARE LOGICAL . 22-7
VECTOR COMPARE EQUAL 22-7
VECTOR COMPARE HIGH. 22-8
VECTOR COMPARE HIGH LOGICAL 22-9
VECTOR COUNT LEADING ZEROS 22-10
VECTOR COUNT TRAILING ZEROS. 22-10
VECTOR EXCLUSIVE OR 22-11
VECTOR GALOIS FIELD MULTIPLY SUM. 22-11
VECTOR GALOIS FIELD MULTIPLY SUM

AND ACCUMULATE 22-12
VECTOR LOAD COMPLEMENT. 22-12
VECTOR LOAD POSITIVE 22-12
VECTOR MAXIMUM 22-13
VECTOR MAXIMUM LOGICAL. 22-13
VECTOR MINIMUM. 22-13
VECTOR MINIMUM LOGICAL 22-14
VECTOR MULTIPLY AND ADD LOW. 22-14
VECTOR MULTIPLY AND ADD HIGH 22-15
VECTOR MULTIPLY AND ADD LOGICAL

HIGH . 22-15
VECTOR MULTIPLY AND ADD EVEN 22-15
VECTOR MULTIPLY AND ADD LOGICAL

EVEN. 22-15
VECTOR MULTIPLY AND ADD ODD. 22-16
VECTOR MULTIPLY AND ADD LOGICAL

ODD. 22-16
VECTOR MULTIPLY HIGH 22-16
VECTOR MULTIPLY LOGICAL HIGH. 22-17
VECTOR MULTIPLY LOW 22-17
VECTOR MULTIPLY EVEN 22-18

VECTOR MULTIPLY LOGICAL EVEN 22-18
VECTOR MULTIPLY ODD 22-18
VECTOR MULTIPLY LOGICAL ODD. 22-18
VECTOR MULTIPLY SUM LOGICAL 22-19
VECTOR NAND . 22-20
VECTOR NOR . 22-20
VECTOR NOT EXCLUSIVE OR 22-20
VECTOR OR. 22-20
VECTOR OR WITH COMPLEMENT 22-21
VECTOR POPULATION COUNT 22-21
VECTOR ELEMENT ROTATE LEFT

LOGICAL . 22-21
VECTOR ELEMENT ROTATE AND INSERT

UNDER MASK . 22-22
VECTOR ELEMENT SHIFT LEFT 22-23
VECTOR ELEMENT SHIFT RIGHT

ARITHMETIC . 22-23
VECTOR ELEMENT SHIFT RIGHT

LOGICAL . 22-24
VECTOR SHIFT LEFT 22-25
VECTOR SHIFT LEFT BY BYTE 22-25
VECTOR SHIFT LEFT DOUBLE BY BIT . . . 22-25
VECTOR SHIFT LEFT DOUBLE BY BYTE . 22-26
VECTOR SHIFT RIGHT ARITHMETIC 22-26
VECTOR SHIFT RIGHT ARITHMETIC BY

BYTE. 22-26
VECTOR SHIFT RIGHT DOUBLE BY BIT . . 22-26
VECTOR SHIFT RIGHT LOGICAL. 22-27
VECTOR SHIFT RIGHT LOGICAL BY

BYTE. 22-27
VECTOR SUBTRACT. 22-27
VECTOR SUBTRACT COMPUTE BORROW

INDICATION . 22-28
VECTOR SUBTRACT WITH BORROW

INDICATION . 22-28
VECTOR SUBTRACT WITH BORROW

COMPUTE BORROW INDICATION. 22-29
VECTOR SUM ACROSS DOUBLEWORD. . 22-29
VECTOR SUM ACROSS QUADWORD 22-30
VECTOR SUM ACROSS WORD 22-30
VECTOR TEST UNDER MASK 22-31

Instructions

Many instructions have an extended mnemonic sec-

tion which describe recommended extended mne-
monics and their corresponding machine assembler
syntax.

22-2 The z/Architecture CPU Architecture

Unless otherwise specified all operands are vector-
register operands. A “V” in the assembler syntax des-
ignates a vector operand.

Programming Note: The vector-enhancements
facility 2 includes the following shift features:

• The following new instructions are added:

– VECTOR SHIFT LEFT/RIGHT DOUBLE BY
BIT (VSLD, VSRD)

• The behavior for different per byte element shift
amount has been defined:
– VECTOR SHIFT LEFT (VSL), VECTOR

SHIFT RIGHT LOGICAL (VSRL)

Name
Mne-

monic Characteristics
Op-

code Page
VECTOR ADD VA VRR-c VF ¤7,9 SP Dv E7F3 22-3
VECTOR ADD COMPUTE CARRY VACC VRR-c VF ¤7,9 SP Dv E7F1 22-4
VECTOR ADD WITH CARRY VAC VRR-d VF ¤7,9 SP Dv E7BB 22-4
VECTOR ADD WITH CARRY COMPUTE CARRY VACCC VRR-d VF ¤7,9 SP Dv E7B9 22-5
VECTOR AND VN VRR-c VF ¤7,9 Dv E768 22-5
VECTOR AND WITH COMPLEMENT VNC VRR-c VF ¤7,9 Dv E769 22-5
VECTOR AVERAGE VAVG VRR-c VF ¤7,9 SP Dv E7F2 22-6
VECTOR AVERAGE LOGICAL VAVGL VRR-c VF ¤7,9 SP Dv E7F0 22-6
VECTOR CHECKSUM VCKSM VRR-c VF ¤7,9 Dv E766 22-6
VECTOR COMPARE EQUAL VCEQ VRR-b C* VF ¤7,9 SP Dv E7F8 22-7
VECTOR COMPARE HIGH VCH VRR-b C* VF ¤7,9 SP Dv E7FB 22-8
VECTOR COMPARE HIGH LOGICAL VCHL VRR-b C* VF ¤7,9 SP Dv E7F9 22-9
VECTOR COUNT LEADING ZEROS VCLZ VRR-a VF ¤7,9 SP Dv E753 22-10
VECTOR COUNT TRAILING ZEROS VCTZ VRR-a VF ¤7,9 SP Dv E752 22-10
VECTOR ELEMENT COMPARE VEC VRR-a C VF ¤7,9 SP Dv E7DB 22-7
VECTOR ELEMENT COMPARE LOGICAL VECL VRR-a C VF ¤7,9 SP Dv E7D9 22-7
VECTOR ELEMENT ROTATE AND INSERT UNDER
MASK

VERIM VRI-d VF ¤7,9 SP Dv E772 22-22

VECTOR ELEMENT ROTATE LEFT LOGICAL VERLL VRS-a VF ¤7,9 SP Dv E733 22-21
VECTOR ELEMENT ROTATE LEFT LOGICAL VERLLV VRR-c VF ¤7,9 SP Dv E773 22-21
VECTOR ELEMENT SHIFT LEFT VESLV VRR-c VF ¤7,9 SP Dv E770 22-23
VECTOR ELEMENT SHIFT LEFT VESL VRS-a VF ¤7,9 SP Dv E730 22-23
VECTOR ELEMENT SHIFT RIGHT ARITHMETIC VESRA VRS-a VF ¤7,9 SP Dv E73A 22-23
VECTOR ELEMENT SHIFT RIGHT ARITHMETIC VESRAV VRR-c VF ¤7,9 SP Dv E77A 22-23
VECTOR ELEMENT SHIFT RIGHT LOGICAL VESRL VRS-a VF ¤7,9 SP Dv E738 22-24
VECTOR ELEMENT SHIFT RIGHT LOGICAL VESRLV VRR-c VF ¤7,9 SP Dv E778 22-24
VECTOR EXCLUSIVE OR VX VRR-c VF ¤7,9 Dv E76D 22-11
VECTOR GALOIS FIELD MULTIPLY SUM VGFM VRR-c VF ¤7,9 SP Dv E7B4 22-11
VECTOR GALOIS FIELD MULTIPLY SUM AND
ACCUMULATE

VGFMA VRR-d VF ¤7,9 SP Dv E7BC 22-12

VECTOR LOAD COMPLEMENT VLC VRR-a VF ¤7,9 SP Dv E7DE 22-12
VECTOR LOAD POSITIVE VLP VRR-a VF ¤7,9 SP Dv E7DF 22-12
VECTOR MAXIMUM VMX VRR-c VF ¤7,9 SP Dv E7FF 22-13
VECTOR MAXIMUM LOGICAL VMXL VRR-c VF ¤7,9 SP Dv E7FD 22-13
VECTOR MINIMUM VMN VRR-c VF ¤7,9 SP Dv E7FE 22-13
VECTOR MINIMUM LOGICAL VMNL VRR-c VF ¤7,9 SP Dv E7FC 22-14
VECTOR MULTIPLY AND ADD EVEN VMAE VRR-d VF ¤7,9 SP Dv E7AE 22-15
VECTOR MULTIPLY AND ADD HIGH VMAH VRR-d VF ¤7,9 SP Dv E7AB 22-15
VECTOR MULTIPLY AND ADD LOGICAL EVEN VMALE VRR-d VF ¤7,9 SP Dv E7AC 22-15
VECTOR MULTIPLY AND ADD LOGICAL HIGH VMALH VRR-d VF ¤7,9 SP Dv E7A9 22-15
VECTOR MULTIPLY AND ADD LOGICAL ODD VMALO VRR-d VF ¤7,9 SP Dv E7AD 22-16
VECTOR MULTIPLY AND ADD LOW VMAL VRR-d VF ¤7,9 SP Dv E7AA 22-14
VECTOR MULTIPLY AND ADD ODD VMAO VRR-d VF ¤7,9 SP Dv E7AF 22-16
VECTOR MULTIPLY EVEN VME VRR-c VF ¤7,9 SP Dv E7A6 22-18
VECTOR MULTIPLY HIGH VMH VRR-c VF ¤7,9 SP Dv E7A3 22-16
VECTOR MULTIPLY LOGICAL EVEN VMLE VRR-c VF ¤7,9 SP Dv E7A4 22-18

Figure 22-1. Summary of Vector Integer Instructions (Part 1 of 2)

Vector Integer Instructions 22-3

V
E

C
T

O
R

 A
D

D

VECTOR ADD

VA V1,V2,V3,M4 [VRR-c]

The contents of each element of the second operand
are added to the contents of each corresponding ele-
ment of the third operand and the resulting sum or
sums are placed in the first operand. Each element is
treated as a signed binary integer of size specified by
the element size control in the M4 field.

VECTOR MULTIPLY LOGICAL HIGH VMLH VRR-c VF ¤7,9 SP Dv E7A1 22-17
VECTOR MULTIPLY LOGICAL ODD VMLO VRR-c VF ¤7,9 SP Dv E7A5 22-18
VECTOR MULTIPLY LOW VML VRR-c VF ¤7,9 SP Dv E7A2 22-17
VECTOR MULTIPLY ODD VMO VRR-c VF ¤7,9 SP Dv E7A7 22-18
VECTOR MULTIPLY SUM LOGICAL VMSL VRR-d V1 ¤7,9 SP Dv E7B8 22-19
VECTOR NAND VNN VRR-c V1 ¤7,9 DV E76E 22-20
VECTOR NOR VNO VRR-c VF ¤7,9 Dv E76B 22-20
VECTOR NOT EXCLUSIVE OR VNX VRR-c V1 ¤7,9 Dv E76C 22-20
VECTOR OR VO VRR-c VF ¤7,9 Dv E76A 22-20
VECTOR OR WITH COMPLEMENT VOC VRR-c V1 ¤7,9 Dv E76F 22-21
VECTOR POPULATION COUNT VPOPCT VRR-a VF ¤7,9 SP Dv E750 22-21
VECTOR SHIFT LEFT VSL VRR-c VF ¤7,9 Dv E774 22-25
VECTOR SHIFT LEFT BY BYTE VSLB VRR-c VF ¤7,9 Dv E775 22-25
VECTOR SHIFT LEFT DOUBLE BY BIT VSLD VRI-d V2 ¤7,9 SP Dv E786 22-25
VECTOR SHIFT LEFT DOUBLE BY BYTE VSLDB VRI-d VF ¤7,9 Dv E777 22-26
VECTOR SHIFT RIGHT ARITHMETIC VSRA VRR-c VF ¤7,9 Dv E77E 22-26
VECTOR SHIFT RIGHT ARITHMETIC BY BYTE VSRAB VRR-c VF ¤7,9 Dv E77F 22-26
VECTOR SHIFT RIGHT DOUBLE BY BIT VSRD VRI-d V2 ¤7,9 SP Dv E787 22-26
VECTOR SHIFT RIGHT LOGICAL VSRL VRR-c VF ¤7,9 Dv E77C 22-27
VECTOR SHIFT RIGHT LOGICAL BY BYTE VSRLB VRR-c VF ¤7,9 Dv E77D 22-27
VECTOR SUBTRACT VS VRR-c VF ¤7,9 SP Dv E7F7 22-27
VECTOR SUBTRACT COMPUTE BORROW
INDICATION

VSCBI VRR-c VF ¤7,9 SP Dv E7F5 22-28

VECTOR SUBTRACT WITH BORROW COMPUTE
BORROW INDICATION

VSBCBI VRR-d VF ¤7,9 SP Dv E7BD 22-29

VECTOR SUBTRACT WITH BORROW
INDICATION

VSBI VRR-d VF ¤7,9 SP Dv E7BF 22-28

VECTOR SUM ACROSS DOUBLEWORD VSUMG VRR-c VF ¤7,9 SP Dv E765 22-29
VECTOR SUM ACROSS QUADWORD VSUMQ VRR-c VF ¤7,9 SP Dv E767 22-30
VECTOR SUM ACROSS WORD VSUM VRR-c VF ¤7,9 SP Dv E764 22-30
VECTOR TEST UNDER MASK VTM VRR-a C VF ¤7,9 Dv E7D8 22-31

Explanation:

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.

C Condition code set.

C* Condition code optionally set.

Dv Vector-instruction data exception

SP Specification exception.

V1 Vector-enhancements facility 1

V2 Vector-enhancements facility 2

VF Vector facility for z/Architecture

VRI VRI instruction format

VRR VRR instruction format

VRS VRS instruction format

Name
Mne-

monic Characteristics
Op-

code Page

Figure 22-1. Summary of Vector Integer Instructions (Part 2 of 2)

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘F3’

0 8 12 16 20 32 36 40 47

22-4 The z/Architecture CPU Architecture

V
E

C
T

O
R

 A
D

D
 C

O
M

P
U

T
E

 C
A

R
R

Y When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position.

No fixed point overflow exceptions are recognized.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the element or
elements in the vector register operands. If a
reserved value is specified, a specification exception
is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Note: The same results are obtained
if the contents of each element contain unsigned
binary integers.

VECTOR ADD COMPUTE CARRY

VACC V1,V2,V3,M4 [VRR-c]

The contents of each element of the second operand
are added to the contents of each corresponding ele-

ment of the third operand. If the addition of two ele-
ments results in a carry out of bit zero, a value of one
is placed in the corresponding element of the first
operand. If there is no carry out of bit zero, a value of
zero is placed in the corresponding element of the
first operand. Each element is treated as an
unsigned binary integer of size specified by the ele-
ment size in the M4 field.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the element or
elements in the vector register operands. If a
reserved value is specified, a specification exception
is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR ADD WITH CARRY

VAC V1,V2,V3,V4,M5 [VRR-d]

The contents of the second operand are added to the
third operand to form an intermediate quadword sum.
Subsequently, the rightmost bit of the fourth operand

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4 Quadword

5-15 Reserved

Extended Mnemonic Base Mnemonic
VAB V1,V2,V3 VA V1,V2,V3,0
VAH V1,V2,V3 VA V1,V2,V3,1
VAF V1,V2,V3 VA V1,V2,V3,2
VAG V1,V2,V3 VA V1,V2,V3,3
VAQ V1,V2,V3 VA V1,V2,V3,4

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘F1’
0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4 Quadword

5-15 Reserved

Extended Mnemonic Base Mnemonic
VACCB V1,V2,V3 VACC V1,V2,V3,0
VACCH V1,V2,V3 VACC V1,V2,V3,1
VACCF V1,V2,V3 VACC V1,V2,V3,2
VACCG V1,V2,V3 VACC V1,V2,V3,3
VACCQ V1,V2,V3 VACC V1,V2,V3,4

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘BB’

0 8 12 16 20 24 32 36 40 47

Vector Integer Instructions 22-5

V
E

C
T

O
R

 A
N

D
 W

IT
H

 C
O

M
P

L
E

M
E

N
Tconcatenated with 127 bits of zero on its left are

added to the intermediate sum and the resulting sum
is placed in the first operand. All bits except for the
rightmost bit position of the fourth operand are
ignored. Each operand is treated as a 128-bit
unsigned binary integer.

When there is an overflow, the result is obtained by
allowing any carry into the leftmost-bit position and
ignoring any carry out of the leftmost-bit position.

No fixed point overflow exceptions are recognized.

The M5 field must contain a value of 4; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR ADD WITH CARRY
COMPUTE CARRY

VACCC V1,V2,V3,V4,M5 [VRR-d]

The contents of the second operand are added to the
third operand to form an intermediate quadword sum.
Subsequently, the rightmost bit of the fourth operand
concatenated with 127 bits of zero on its left are
added to the intermediate sum. All bits except for the
rightmost bit position of the fourth operand are
ignored. If the addition results in a carry out of the
leftmost bit, a value of one is placed in the first oper-
and. If there is no carry out of the leftmost bit, a value
of zero is placed in the first operand. Each operand is
treated as a 128-bit unsigned binary integer.

The M5 field must contain a value of 4; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR AND

VN V1,V2,V3 [VRR-c]

The AND of the second and third operands is placed
in the first operand.

The connective AND is applied to the operands bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit positions in both oper-
and contain ones; otherwise, the result bit is set to
zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR AND WITH COMPLEMENT

VNC V1,V2,V3 [VRR-c]

The AND of the second operand and the bit-wise
complement of the third operand is placed in the first
operand.

Extended Mnemonic Base Mnemonic
VACQ V1,V2,V3,V4 VAC V1,V2,V3,V4,4

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘B9’

0 8 12 16 20 24 32 36 40 47

Extended Mnemonic Base Mnemonic
VACCCQ V1,V2,V3,V4 VACCC V1,V2,V3,V4,4

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘68’

0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘69’
0 8 12 16 20 36 40 47

22-6 The z/Architecture CPU Architecture

V
E

C
T

O
R

 A
V

E
R

A
G

E The connective AND is applied to the second oper-
and and bit-wise complemented third operand bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit positions in the second
operand contains a one and the third operand con-
tains a zero; otherwise, the result bit is set to zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

Programming Note: This instruction is useful for
zeroing out bits under a mask.

VECTOR AVERAGE

VAVG V1,V2,V3,M4 [VRR-c]

VECTOR AVERAGE LOGICAL

VAVGL V1,V2,V3,M4 [VRR-c]

The average of the corresponding elements of the
second and third operands is placed in the corre-
sponding element of the first operand.

For VECTOR AVERAGE, each element of the sec-
ond operand and the corresponding element of the
third operand are sign extended by one bit. The ele-
ments are then added together along with an addi-
tional value of one. The sum is then shifted right by
one bit to produce an element sized result in the cor-
responding element of the first operand.

For VECTOR AVERAGE LOGICAL, each element of
the second operand and the corresponding element
of the third operand are extended by one bit by
appending a zero on the left. The elements are then
added together along with an additional value of one.
The sum is then shifted right by one bit to produce an
element sized result in the corresponding element of
the first operand.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR CHECKSUM

VCKSM V1,V2,V3 [VRR-c]

The word-sized elements from the second operand
are added together one-by-one along with the ele-
ment in word one of the third operand. The sum is
placed in word one of the first operand. Zeros are
placed in word elements 0, and 2-3 of the first oper-
and. The word-sized elements are all treated as 32-
bit unsigned binary integers. After each addition of
an element, a carry out of bit position 0 of the sum is
added to bit position 31 of the result in word element
one of the first operand.

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘F2’

0 8 12 16 20 32 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘F0’

0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VAVGB V1,V2,V3 VAVG V1,V2,V3,0
VAVGH V1,V2,V3 VAVG V1,V2,V3,1
VAVGF V1,V2,V3 VAVG V1,V2,V3,2
VAVGG V1,V2,V3 VAVG V1,V2,V3,3
VAVGLB V1,V2,V3 VAVGL V1,V2,V3,0
VAVGLH V1,V2,V3 VAVGL V1,V2,V3,1
VAVGLF V1,V2,V3 VAVGL V1,V2,V3,2
VAVGLG V1,V2,V3 VAVGL V1,V2,V3,3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘66’
0 8 12 16 20 36 40 47

Vector Integer Instructions 22-7

V
E

C
T

O
R

 C
O

M
P

A
R

E
 E

Q
U

A
LCondition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

Programming Notes:

1. The contents of the third operand should contain
zero at the start of a checksum computation
algorithm.

2. A16-bit checksum is used in, for example, the
TCP/IP application. The following program can
be executed after a 32-bit checksum has been
computed:

VERLLF V2,V1,16(0)
VAF V2,V1,V2

The halfword in element 2 will contain the 16-bit
checksum.

VECTOR ELEMENT COMPARE

VEC V1,V2,M3 [VRR-a]

VECTOR ELEMENT COMPARE
LOGICAL

VECL V1,V2,M3 [VRR-a]

The single element of specified size of the first and
second operands are compared and the result is indi-
cated in the condition code.

The elements compared are treated as signed binary
integers for VEC and unsigned binary integers for
VECL.

The index of the element that is being compared is
dependent on the size of the element being com-
pared. Figure 22-2 specifies what element is com-
pared for each element size.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the element in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Resulting Condition Code:

0 Operand elements equal
1 First operand element low
2 First operand element high
3 --

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR COMPARE EQUAL

VCEQ V1,V2,V3,M4,M5 [VRR-b]

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘DB’
0 8 12 16 32 36 40 47

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘D9’
0 8 12 16 32 36 40 47

Element Size Element Index
Byte 7

Halfword 3
Word 1

Doubleword 0

Figure 22-2. Element Sizes and Indexes

M3 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VECB V1,V2 VEC V1,V2,0
VECH V1,V2 VEC V1,V2,1
VECF V1,V2 VEC V1,V2,2
VECG V1,V2 VEC V1,V2,3
VECLB V1,V2 VECL V1,V2,0
VECLH V1,V2 VECL V1,V2,1
VECLF V1,V2 VECL V1,V2,2
VECLG V1,V2 VECL V1,V2,3

‘E7’ V1 V2 V3 / / / / / M5 / / / / M4 RXB ‘F8’

0 8 12 16 20 24 28 32 36 40 47

22-8 The z/Architecture CPU Architecture

V
E

C
T

O
R

 C
O

M
P

A
R

E
 H

IG
H The unsigned binary integer elements of the second

operand are compared with the corresponding
unsigned binary integer elements of the third oper-
and. If the element in the second operand is equal to
the element in the third operand, all of the bit posi-
tions of the corresponding element in the first oper-
and are set to ones; otherwise they are all set to
zeros.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Reserved: Bits 0, 1, and 2 are reserved and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Condition Code Set (CS): If bit 3 is 0, the code
remains unchanged. If the bit is one, the code is
set as described below.

Resulting Condition Code:

When bit 3 of the M5 field is one, the condition code
is set as follows:

0 All elements equal
1 At least one, but not all elements equal
2 --
3 No element equal

When bit 3 of the M5 field is zero, the code remains
unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Note: Depending on the model, set-
ting the condition code may result in reduced perfor-
mance.

VECTOR COMPARE HIGH

VCH V1,V2,V3,M4,M5 [VRR-b]

The signed elements of the second operand are
compared to the corresponding signed elements of
the third operand. If the element in the second oper-
and is greater than the element in the third operand,
all of the bit positions of the corresponding element in
the first operand are set to ones; otherwise, they are
all set to zeros.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

/ / /
C
S

0 3

Extended Mnemonic Base Mnemonic
VCEQB V1,V2,V3 VCEQ V1,V2,V3,0,0
VCEQH V1,V2,V3 VCEQ V1,V2,V3,1,0
VCEQF V1,V2,V3 VCEQ V1,V2,V3,2,0
VCEQG V1,V2,V3 VCEQ V1,V2,V3,3,0
VCEQBS V1,V2,V3 VCEQ V1,V2,V3,0,1
VCEQHS V1,V2,V3 VCEQ V1,V2,V3,1,1
VCEQFS V1,V2,V3 VCEQ V1,V2,V3,2,1
VCEQGS V1,V2,V3 VCEQ V1,V2,V3,3,1

‘E7’ V1 V2 V3 / / / / / M5 / / / / M4 RXB ‘FB’
0 8 12 16 20 24 28 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word

3 Doubleword
4-15 Reserved

Vector Integer Instructions 22-9

V
E

C
T

O
R

 C
O

M
P

A
R

E
 H

IG
H

 L
O

G
IC

A
LThe M5 field has the following format:

The bits of the M5 field are defined as follows:

• Reserved: Bits 0, 1, and 2 are reserved and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Condition Code Set (CS): If bit 3 is 0, the code
remains unchanged. If the bit is one, the code is
set as described below.

Resulting Condition Code:

When bit 3 of the M5 field is one, the condition code
is set as follows:

0 All elements high
1 Some elements high
2 --
3 No element high

When bit 3 of the M5 field is zero, the code remains
unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. Depending on the model, setting the condition
code may result in reduced performance.

2. To do a COMPARE NOT HIGH, reverse the sec-
ond and third operands.

VECTOR COMPARE HIGH
LOGICAL

VCHL V1,V2,V3,M4,M5 [VRR-b]

The unsigned elements of the second operand are
compared to the corresponding unsigned elements
of the third operand. If the element in the second
operand is greater than the element in the third oper-
and, all of the bit positions of the corresponding ele-
ment in the first operand are set to ones; otherwise,
they are all set to zeros.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Reserved: Bits 0, 1, and 2 are reserved and
should contain zeros; otherwise, the program
may not operate compatibly in the future.

• Condition Code Set (CS): If bit 3 is 0, the code
remains unchanged. If the bit is one, the code is
set as described below.

Resulting Condition Code:

When bit 3 of the M5 field is one, the condition code
is set as follows:

/ / /
C
S

0 3

Extended Mnemonic Base Mnemonic
VCHB V1,V2,V3 VCH V1,V2,V3,0,0
VCHH V1,V2,V3 VCH V1,V2,V3,1,0
VCHF V1,V2,V3 VCH V1,V2,V3,2,0
VCHG V1,V2,V3 VCH V1,V2,V3,3,0
VCHBS V1,V2,V3 VCH V1,V2,V3,0,1
VCHHS V1,V2,V3 VCH V1,V2,V3,1,1
VCHFS V1,V2,V3 VCH V1,V2,V3,2,1
VCHGS V1,V2,V3 VCH V1,V2,V3,3,1

‘E7’ V1 V2 V3 / / / / / M5 / / / / M4 RXB ‘F9’
0 8 12 16 20 24 28 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

/ / /
C
S

0 3

22-10 The z/Architecture CPU Architecture

V
E

C
T

O
R

 C
O

U
N

T
 L

E
A

D
IN

G
 Z

E
R

O
S 0 All elements high

1 Some elements high
2 --
3 No element high

When bit 3 of the M5 field is zero, the code remains
unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. Depending on the model, setting the condition
code may result in reduced performance.

2. To do a COMPARE NOT HIGH LOGICAL,
reverse the second and third operands.

VECTOR COUNT LEADING ZEROS

VCLZ V1,V2,M3 [VRR-a]

For each element in the second operand, the number
of leftmost zeros are counted and placed in the corre-
sponding element of the first operand.

The bits of each element in the second operand are
scanned left to right for the leftmost one bit. A binary
integer designating the bit position of the leftmost
one bit, or the number of bits in the element if there is
no one bit, is placed in the corresponding element of
the first operand.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR COUNT TRAILING ZEROS

VCTZ V1,V2,M3 [VRR-a]

For each element in the second operand the number
of rightmost zeros are counted and placed in the cor-
responding element of the first operand.

The bits of each element in the second operand are
scanned right to left for the rightmost one bit. A
binary integer designating the number of bits
scanned to reach the rightmost one bit, or the num-
ber of bits in the element if there is no one bit, is
placed in the corresponding element of the first oper-
and.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in

Extended Mnemonic Base Mnemonic
VCHLB V1,V2,V3 VCHL V1,V2,V3,0,0
VCHLH V1,V2,V3 VCHL V1,V2,V3,1,0
VCHLF V1,V2,V3 VCHL V1,V2,V3,2,0
VCHLG V1,V2,V3 VCHL V1,V2,V3,3,0
VCHLBS V1,V2,V3 VCHL V1,V2,V3,0,1
VCHLHS V1,V2,V3 VCHL V1,V2,V3,1,1
VCHLFS V1,V2,V3 VCHL V1,V2,V3,2,1
VCHLGS V1,V2,V3 VCHL V1,V2,V3,3,1

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘53’

0 8 12 16 32 36 40 47

M3 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VCLZB V1,V2 VCLZ V1,V2,0
VCLZH V1,V2 VCLZ V1,V2,1
VCLZF V1,V2 VCLZ V1,V2,2
VCLZG V1,V2 VCLZ V1,V2,3

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘52’

0 8 12 16 32 36 40 47

Vector Integer Instructions 22-11

V
E

C
T

O
R

 G
A

L
O

IS
 F

IE
L

D
 M

U
L

T
IP

L
Y

 S
U

Mthe vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR EXCLUSIVE OR

VX V1,V2,V3 [VRR-c]

The EXCLUSIVE OR of the second and third oper-
ands is placed at the first-operand location.

The connective EXCLUSIVE OR is applied to the
operands bit by bit. The contents of a bit position in
the result are set to one if the bits in the correspond-
ing bit positions in the two operands are unlike; other-
wise, the result bit is set to zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR GALOIS FIELD MULTIPLY
SUM

VGFM V1,V2,V3,M4 [VRR-c]

Each element of the second operand is multiplied in
a Galois field with the corresponding element of the
third operand. The Galois field has an order of two.
This multiplication is similar to standard binary multi-
plication, but instead of adding the shifted multipli-
cand it is exclusive ORed. The resulting even-odd
pairs of double element-sized products are exclusive
ORed with each other and placed in the correspond-
ing double-wide element of the first operand.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
vector register operands two and three; the elements
in the first operand are twice the size of those speci-
fied by the ES control. If a reserved value is speci-
fied, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

M3 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VCTZB V1,V2 VCTZ V1,V2,0
VCTZH V1,V2 VCTZ V1,V2,1
VCTZF V1,V2 VCTZ V1,V2,2
VCTZG V1,V2 VCTZ V1,V2,3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘6D’

0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘B4’

0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword
2 Word

3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VGFMB V1,V2,V3 VGFM V1,V2,V3,0
VGFMH V1,V2,V3 VGFM V1,V2,V3,1
VGFMF V1,V2,V3 VGFM V1,V2,V3,2
VGFMG V1,V2,V3 VGFM V1,V2,V3,3

22-12 The z/Architecture CPU Architecture

V
E

C
T

O
R

 G
A

L
O

IS
 F

IE
L

D
 M

U
L

T
IP

L
Y

 S
U

M
 A

N
D

 A
C

C
U

M
U

L
A

T
E VECTOR GALOIS FIELD MULTIPLY

SUM AND ACCUMULATE

VGFMA V1,V2,V3,V4,M5 [VRR-d]

Each element of the second operand is multiplied in
a Galois field with the corresponding element of the
third operand. The Galois field has an order of two.
This multiplication is similar to standard binary multi-
plication, but instead of adding the shifted multipli-
cand it is exclusive ORed. The resulting even-odd
pairs of double element-sized products are exclusive
ORed with each other and exclusive ORed with the
corresponding double-wide element of the fourth
operand. The results are placed in the double-wide
elements of the first operand.

The M5 field specifies the element size control (ES).
The ES control specifies the size of the elements in
vector register operands two and three; the elements
in the first and fourth operand are twice the size of
those specified by the ES control. If a reserved value
is specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR LOAD COMPLEMENT

VLC V1,V2,M3 [VRR-a]

The two’s complement of each element in the second
operand is placed in the corresponding element in
the first operand. The operands are treated as signed
binary integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign bit position and ignor-
ing any carry out of the sign-bit position.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR LOAD POSITIVE

VLP V1,V2,M3 [VRR-a]

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘BC’

0 8 12 16 20 24 32 36 40 47

M5 Element Size
0 Byte

1 Halfword
2 Word

3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VGFMAB V1,V2,V3,V4 VGFMA V1,V2,V3,V4,0
VGFMAH V1,V2,V3,V4 VGFMA V1,V2,V3,V4,1
VGFMAF V1,V2,V3,V4 VGFMA V1,V2,V3,V4,2
VGFMAG V1,V2,V3,V4 VGFMA V1,V2,V3,V4,3

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘DE’
0 8 12 16 32 36 40 47

M3 Element Size
0 Byte
1 Halfword

2 Word

3 Doubleword
4-15 Reserved

Extended Mnemonic Base Mnemonic
VLCB V1,V2 VLC V1,V2,0
VLCH V1,V2 VLC V1,V2,1
VLCF V1,V2 VLC V1,V2,2
VLCG V1,V2 VLC V1,V2,3

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘DF’
0 8 12 16 32 36 40 47

Vector Integer Instructions 22-13

V
E

C
T

O
R

 M
IN

IM
U

MThe absolute value of each element in the second
operand is placed in the corresponding element in
the first operand. The operands are treated as signed
binary integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign bit position and ignor-
ing any carry out of the sign-bit position.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR MAXIMUM

VMX V1,V2,V3,M4 [VRR-c]

VECTOR MAXIMUM LOGICAL

VMXL V1,V2,V3,M4 [VRR-c]

Each element of the second operand is compared to
the corresponding element of the third operand. The
greater of the two values is placed into the corre-
sponding element of the first operand. If the oper-
ands are equal the value of both elements is placed
in the corresponding element of the first operand.

For VECTOR MAXIMUM the operands are treated as
signed integer elements. For VECTOR MAXIMUM
LOGICAL the operands are treated as unsigned inte-
ger elements.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR MINIMUM

VMN V1,V2,V3,M4 [VRR-c]

M3 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VLPB V1,V2 VLP V1,V2,0
VLPH V1,V2 VLP V1,V2,1
VLPF V1,V2 VLP V1,V2,2
VLPG V1,V2 VLP V1,V2,3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘FF’

0 8 12 16 20 32 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘FD’

0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VMXB V1,V2,V3 VMX V1,V2,V3,0
VMXH V1,V2,V3 VMX V1,V2,V3,1
VMXF V1,V2,V3 VMX V1,V2,V3,2
VMXG V1,V2,V3 VMX V1,V2,V3,3
VMXLB V1,V2,V3 VMXL V1,V2,V3,0
VMXLH V1,V2,V3 VMXL V1,V2,V3,1
VMXLF V1,V2,V3 VMXL V1,V2,V3,2
VMXLG V1,V2,V3 VMXL V1,V2,V3,3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘FE’

0 8 12 16 20 32 36 40 47

22-14 The z/Architecture CPU Architecture

V
E

C
T

O
R

 M
IN

IM
U

M
 L

O
G

IC
A

L VECTOR MINIMUM LOGICAL

VMNL V1,V2,V3,M4 [VRR-c]

Each element of the second operand is compared to
the corresponding element of the third operand. The
smaller of the two values is placed into the corre-
sponding element of the first operand. If the oper-
ands are equal the value of both elements is placed
in the corresponding element of the first operand.

For VECTOR MINIMUM the operands contain signed
integer elements, for VECTOR MINIMUM LOGICAL
the operands contain unsigned integer elements.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR MULTIPLY AND ADD LOW

VMAL V1,V2,V3,V4,M5 [VRR-d]

The integer elements of the second operand are mul-
tiplied by the corresponding integer elements of the
third operand producing a double element-sized
intermediate product. This intermediate product is
then added to the corresponding element of the
fourth operand. The least significant half of the result-
ing sum is placed into the corresponding element of
the first operand.

The M5 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Note: The results of VMAL are the
same for signed and unsigned binary integers.

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘FC’
0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte
1 Halfword

2 Word

3 Doubleword
4-15 Reserved

Extended Mnemonic Base Mnemonic
VMNB V1,V2,V3 VMN V1,V2,V3,0
VMNH V1,V2,V3 VMN V1,V2,V3,1
VMNF V1,V2,V3 VMN V1,V2,V3,2
VMNG V1,V2,V3 VMN V1,V2,V3,3
VMNLB V1,V2,V3 VMNL V1,V2,V3,0
VMNLH V1,V2,V3 VMNL V1,V2,V3,1
VMNLF V1,V2,V3 VMNL V1,V2,V3,2

VMNLG V1,V2,V3 VMNL V1,V2,V3,3

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘AA’

0 8 12 16 20 24 32 36 40 47

M5 Element Size
0 Byte
1 Halfword

2 Word

3-15 Reserved

Extended Mnemonic Base Mnemonic
VMALB V1,V2,V3,V4 VMAL V1,V2,V3,V4,0
VMALHW V1,V2,V3,V4 VMAL V1,V2,V3,V4,1
VMALF V1,V2,V3,V4 VMAL V1,V2,V3,V4,2

Extended Mnemonic Base Mnemonic

Vector Integer Instructions 22-15

V
E

C
T

O
R

 M
U

L
T

IP
L

Y
 A

N
D

 A
D

D
 L

O
G

IC
A

L
 E

V
E

NVECTOR MULTIPLY AND ADD
HIGH

VMAH V1,V2,V3,V4,M5 [VRR-d]

VECTOR MULTIPLY AND ADD
LOGICAL HIGH

VMALH V1,V2,V3,V4,M5 [VRR-d]

The integer elements of the second operand are mul-
tiplied by the corresponding integer elements of the
third operand producing a double element-sized
intermediate product. This intermediate product is
then added to the corresponding element of the
fourth operand. The most significant half of the
resulting sum is placed into the corresponding ele-
ment of the first operand.

For VECTOR MULTIPLY AND ADD HIGH the ele-
ments are treated as signed binary integers. For
VECTOR MULTIPLY AND ADD HIGH LOGICAL the
elements are treated as unsigned binary integers.

The M5 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification

• Transaction constraint

Extended Mnemonics:

VECTOR MULTIPLY AND ADD
EVEN

VMAE V1,V2,V3,V4,M5 [VRR-d]

VECTOR MULTIPLY AND ADD
LOGICAL EVEN

VMALE V1,V2,V3,V4,M5 [VRR-d]

The even indexed elements of the second operand
are multiplied by the corresponding elements of the
third operand. The intermediate product is added to
the corresponding double-wide even-odd element
pair of the fourth operand. The result is placed into
the double-wide even-odd element pair of the first
operand. The odd elements of the second and third
operands are ignored. Any overflow or carry from the
final addition is ignored.

For VECTOR MULTIPLY AND ADD EVEN the ele-
ments are treated as signed binary integers. For
VECTOR MULTIPLY AND ADD LOGICAL EVEN the
elements are treated as unsigned binary integers.

The M5 field specifies the element size control (ES).
The ES control specifies the size of the elements in
vector register operands two and three; the elements
in the first and fourth operand are twice the size of

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘AB’

0 8 12 16 20 24 32 36 40 47

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘A9’

0 8 12 16 20 24 32 36 40 47

M5 Element Size
0 Byte

1 Halfword
2 Word

3-15 Reserved

Extended Mnemonic Base Mnemonic
VMAHB V1,V2,V3,V4 VMAH V1,V2,V3,V4,0
VMAHH V1,V2,V3,V4 VMAH V1,V2,V3,V4,1
VMAHF V1,V2,V3,V4 VMAH V1,V2,V3,V4,2
VMALHB V1,V2,V3,V4 VMALH V1,V2,V3,V4,0
VMALHH V1,V2,V3,V4 VMALH V1,V2,V3,V4,1
VMALHF V1,V2,V3,V4 VMALH V1,V2,V3,V4,2

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘AE’
0 8 12 16 20 24 32 36 40 47

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘AC’
0 8 12 16 20 24 32 36 40 47

22-16 The z/Architecture CPU Architecture

V
E

C
T

O
R

 M
U

L
T

IP
L

Y
 A

N
D

 A
D

D
 O

D
D those specified by the ES control. If a reserved value

is specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR MULTIPLY AND ADD ODD

VMAO V1,V2,V3,V4,M5 [VRR-d]

VECTOR MULTIPLY AND ADD
LOGICAL ODD

VMALO V1,V2,V3,V4,M5 [VRR-d]

The odd indexed elements of the second operand
are multiplied by the corresponding elements of the
third operand. The intermediate product is added to
the corresponding double-wide even-odd element
pair of the fourth operand. The result is placed into

the even-odd double-wide element pair of the first
operand. The even elements of the second and third
operands are ignored. Any overflow or carry from the
final addition is ignored.

For VECTOR MULTIPLY AND ADD ODD the ele-
ments are treated as signed binary integers. For
VECTOR MULTIPLY AND ADD LOGICAL ODD the
elements are treated as unsigned binary integers.

The M5 field specifies the element size control (ES).
The ES control specifies the size of the elements in
vector register operands two and three; the elements
in the first and fourth operand are twice the size of
those specified by the ES control. If a reserved value
is specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR MULTIPLY HIGH

VMH V1,V2,V3,M4 [VRR-c]

M5 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

Extended Mnemonic Base Mnemonic
VMAEB V1,V2,V3,V4 VMAE V1,V2,V3,V4,0
VMAEH V1,V2,V3,V4 VMAE V1,V2,V3,V4,1
VMAEF V1,V2,V3,V4 VMAE V1,V2,V3,V4,2
VMALEB V1,V2,V3,V4 VMALE V1,V2,V3,V4,0
VMALEH V1,V2,V3,V4 VMALE V1,V2,V3,V4,1
VMALEF V1,V2,V3,V4 VMALE V1,V2,V3,V4,2

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘AF’
0 8 12 16 20 24 32 36 40 47

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘AD’
0 8 12 16 20 24 32 36 40 47

M5 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

Extended Mnemonic Base Mnemonic
VMAOB V1,V2,V3,V4 VMAO V1,V2,V3,V4,0
VMAOH V1,V2,V3,V4 VMAO V1,V2,V3,V4,1
VMAOF V1,V2,V3,V4 VMAO V1,V2,V3,V4,2
VMALOB V1,V2,V3,V4 VMALO V1,V2,V3,V4,0
VMALOH V1,V2,V3,V4 VMALO V1,V2,V3,V4,1
VMALOF V1,V2,V3,V4 VMALO V1,V2,V3,V4,2

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘A3’

0 8 12 16 20 32 36 40 47

Vector Integer Instructions 22-17

V
E

C
T

O
R

 M
U

L
T

IP
L

Y
 L

O
WVECTOR MULTIPLY LOGICAL HIGH

VMLH V1,V2,V3,M4 [VRR-c]

The integer elements of the second operand are mul-
tiplied by the corresponding integer elements of the
third operand. The high-order element-sized portion
of the product is placed in the first operand.

For VECTOR MULTIPLY HIGH, the elements are
treated as signed binary integers. For VECTOR
MULTIPLY LOGICAL HIGH, the elements are treated
as unsigned binary integers.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR MULTIPLY LOW

VML V1,V2,V3,M4 [VRR-c]

The integer elements of the second operand are mul-
tiplied by the corresponding integer elements of the
third operand producing a double element-sized
intermediate product. The least-significant half of the
resulting product is placed into the corresponding
element of the first operand. Any overflow or carry
from the final addition is ignored.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. The results from VML are the same if the ele-
ments are treated as unsigned binary integers or
signed binary integers.

2. VECTOR MULTIPLY LOW is analogous to MUL-
TIPLY SINGLE in chapter 7.

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘A1’
0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte
1 Halfword

2 Word

3-15 Reserved

Extended Mnemonic Base Mnemonic
VMHB V1,V2,V3 VMH V1,V2,V3,0
VMHH V1,V2,V3 VMH V1,V2,V3,1
VMHF V1,V2,V3 VMH V1,V2,V3,2
VMLHB V1,V2,V3 VMLH V1,V2,V3,0
VMLHH V1,V2,V3 VMLH V1,V2,V3,1
VMLHF V1,V2,V3 VMLH V1,V2,V3,2

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘A2’
0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte
1 Halfword

2 Word

3-15 Reserved

Extended Mnemonic Base Mnemonic
VMLB V1,V2,V3 VML V1,V2,V3,0
VMLHW V1,V2,V3 VML V1,V2,V3,1
VMLF V1,V2,V3 VML V1,V2,V3,2

22-18 The z/Architecture CPU Architecture

V
E

C
T

O
R

 M
U

L
T

IP
L

Y
 E

V
E

N 3. The extended mnemonic VMLHW is not VMLH
because that would conflict with VECTOR MUL-
TIPLY LOW

VECTOR MULTIPLY EVEN

VME V1,V2,V3,M4 [VRR-c]

VECTOR MULTIPLY LOGICAL
EVEN

VMLE V1,V2,V3,M4 [VRR-c]

The even indexed elements of the second operand
are multiplied with the corresponding even indexed
elements of the third operand and the resulting dou-
ble element width product is placed into the corre-
sponding even and odd indexed element pair of the
first operand. The odd elements of the second and
third operands are ignored.

For VECTOR MULTIPLY EVEN the elements are
treated as signed binary integers. For VECTOR
MULTIPLY LOGICAL EVEN the elements are treated
as unsigned binary integers.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
vector register operands two and three; the elements
in the first operand are twice the size of those speci-
fied by the ES control. If a reserved value is speci-
fied, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)

• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR MULTIPLY ODD

VMO V1,V2,V3,M4 [VRR-c]

VECTOR MULTIPLY LOGICAL ODD

VMLO V1,V2,V3,M4 [VRR-c]

The odd indexed elements of the second operand
are multiplied with the corresponding odd indexed
elements of the third operand and the resulting dou-
ble element width product is placed into the corre-
sponding even and odd indexed element pair of the
first operand. The even elements of the second and
third operands are ignored.

For VECTOR MULTIPLY ODD the elements are
treated as signed binary integers. For VECTOR
MULTIPLY LOGICAL ODD the elements are treated
as unsigned binary integers.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
vector register operands two and three; the elements
in the first operand are twice the size of those speci-
fied by the ES control. If a reserved value is speci-
fied, a specification exception is recognized.

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘A6’

0 8 12 16 20 32 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘A4’

0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword
2 Word

3-15 Reserved

Extended Mnemonic Base Mnemonic
VMEB V1,V2,V3 VME V1,V2,V3,0
VMEH V1,V2,V3 VME V1,V2,V3,1
VMEF V1,V2,V3 VME V1,V2,V3,2
VMLEB V1,V2,V3 VMLE V1,V2,V3,0
VMLEH V1,V2,V3 VMLE V1,V2,V3,1
VMLEF V1,V2,V3 VMLE V1,V2,V3,2

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘A7’

0 8 12 16 20 32 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘A5’

0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword
2 Word

3-15 Reserved

Vector Integer Instructions 22-19

V
E

C
T

O
R

 M
U

L
T

IP
L

Y
 S

U
M

 L
O

G
IC

A
LCondition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR MULTIPLY SUM LOGICAL

VMSL V1,V2,V3,V4,M5,M6 [VRR-d]

The even indexed unsigned integer elements of the
second and third operands are multiplied to create a
double element wide first intermediate result. The
odd indexed elements of the second and third oper-
ands are multiplied together to create a double ele-
ment wide second intermediate result. The first and
second double-element-wide intermediate results are
each shifted to the left by the values specified in the
M6 field and then added together along with the cor-
responding double-wide even-odd element pair value
in the fourth operand and the corresponding even-
odd element pair sums are placed in the first oper-
and. Any carry outs or overflows from the additions
are ignored.

The M5 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

The M6 field has the following format:

The bits of the M6 field are defined as follows:

• Even Shift Indication (ES): When bit 0 is one,
the first intermediate result is shifted left one bit
before the addition; when bit 0 is zero shifting of
the first intermediate result is not performed.

• Odd Shift Indication (OS): When bit 1 is one,
the second intermediate result is shifted left one
bit before the addition; when bit 1 is zero shifting
of the second intermediate result is not per-
formed.

• Reserved: Bits 2 and 3 are reserved and should
be zeros; otherwise, the program may not oper-
ate compatibly in the future.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (vector-enhancements facility 1 not

installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. On some models when a doubleword element
size is specified, if the most significant eight bits
of the elements in the second and third operands
are non-zero performance may be significantly
reduced.

2. The primary intended use of this instruction is as
a building block for software implementation of
larger multiplications.

3. The shift controls in the M6 field may be used for
software implementations of squaring of large
binary numbers.

Extended Mnemonic Base Mnemonic
VMOB V1,V2,V3 VMO V1,V2,V3,0
VMOH V1,V2,V3 VMO V1,V2,V3,1
VMOF V1,V2,V3 VMO V1,V2,V3,2
VMLOB V1,V2,V3 VMLO V1,V2,V3,0
VMLOH V1,V2,V3 VMLO V1,V2,V3,1
VMLOF V1,V2,V3 VMLO V1,V2,V3,2

‘E7’ V1 V2 V3 M5 M6 / / / / V4 RXB ‘B8’

0 8 12 16 20 24 28 32 36 40 47

M5 Element Size
0-2 Reserved

3 Doubleword

4-15 Reserved

E
S

O
S

/ /

0 1 2 3

Extended Mnemonic Base Mnemonic
VMSLG V1,V2,V3,V4,M6 VMSL V1,V2,V3,V4,3,M6

22-20 The z/Architecture CPU Architecture

V
E

C
T

O
R

 N
A

N
D VECTOR NAND

VNN V1,V2,V3 [VRR-c]

The NAND of the second and third operands is
placed in the first operand.

The connective NAND is applied to the operands bit-
by-bit. The contents of a bit position in the result are
set to zero if the corresponding bit positions in both
source operands contain ones; otherwise, the result
bit is set to one.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (vector-enhancements facility 1 not

installed)
• Transaction constraint

VECTOR NOR

VNO V1,V2,V3 [VRR-c]

The NOR of the second and third operands is placed
at the first-operand location.

The connective NOR is applied to the operand bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit in both operands con-
tains zero; otherwise, the result bit is set to zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

Programming Note: VNO can be used to provide
the functionality of a bit-wise NOT operation by spec-
ifying the same vector-register for V2 and V3.

Extended Mnemonics:

VECTOR NOT EXCLUSIVE OR

VNX V1,V2,V3 [VRR-c]

The complement of the EXCLUSIVE OR of the sec-
ond and third operands is placed at the first-operand
location.

The connective EXCLUSIVE OR and complementa-
tion is applied to the operands bit-by-bit. The con-
tents of a bit position in the result are set to zero if the
bits in the corresponding bit positions in the two
source operands are unlike; otherwise, the result bit
is set to one.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (vector-enhancements facility 1 not

installed)
• Transaction constraint

VECTOR OR

VO V1,V2,V3 [VRR-c]

The OR of the second and third operands is placed
at the first-operand location.

The connective OR is applied to the operand bit by
bit. The contents of a bit position in the result are set
to one if the corresponding bit in one or both oper-
ands contains a one; otherwise, the result bit is set to
zero.

Condition Code: The code remains unchanged.

'E7' V1 V2 V3 / / / / / / / / / / / / / / / / / RXB '6E'
0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘6B’
0 8 12 16 20 36 40 47

Extended Mnemonic Base Mnemonic
VNOT V1,V2 VNO V1,V2,V2

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘6C’

0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘6A’
0 8 12 16 20 36 40 47

Vector Integer Instructions 22-21

V
E

C
T

O
R

 E
L

E
M

E
N

T
 R

O
T

A
T

E
 L

E
F

T
 L

O
G

IC
A

LProgram Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR OR WITH COMPLEMENT

VOC V1,V2,V3 [VRR-c]

The OR of the second operand and the bit-wise com-
plement of the third operand is placed in the first
operand.

The connective OR is applied to the second operand
and bit-wise complemented third operand bit-by-bit.
The contents of a bit position in the result are set to
zero if the corresponding bit positions in the second
operand contains a zero and the third operand con-
tains a one; otherwise, the result bit is set to one.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (vector-enhancements facility 1 not

installed)
• Transaction constraint

VECTOR POPULATION COUNT

VPOPCT V1,V2,M3 [VRR-a]

For each element of the second operand the count of
the number of bits that are one is stored in the corre-
sponding element of the first operand. Each element
in the result contains an binary integer.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the element in
the vector register operands. If a reserved value is
specified, a specification exception is recognized. If

the vector enhancement facility 1 is not installed the
values 1-3 are reserved.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Note: To count all of the ones in a
vector register, a VECTOR SUM ACROSS instruc-
tion may be used.

VECTOR ELEMENT ROTATE LEFT
LOGICAL

VERLLV V1,V2,V3,M4 [VRR-c]

VERLL V1,V3,D2(B2),M4 [VRS-a]

For VERLLV, each element in the second operand is
rotated left by the number of bits specified in the cor-
responding element of the third operand modulo the
element size in bits. For VERLL, each element in the
third operand is rotated left by the number of bits
specified by the second-operand address, modulo
the number of bits in the specified element size.

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘6F’

0 8 12 16 20 36 40 47

‘E7’ V1 V2 / / / / / / / / / / / / / / / / / M3 RXB ‘50’

0 8 12 16 32 36 40 47

M3 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VPOPCTB V1,V2 VPOPCT V1,V2,0
VPOPCTH V1,V2 VPOPCT V1,V2,1
VPOPCTF V1,V2 VPOPCT V1,V2,2
VPOPCTG V1,V2 VPOPCT V1,V2,3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘73’

0 8 12 16 20 32 36 40 47

‘E7’ V1 V3 B2 D2 M4 RXB ‘33’

0 8 12 16 20 32 36 40 47

22-22 The z/Architecture CPU Architecture

V
E

C
T

O
R

 E
L

E
M

E
N

T
 R

O
T

A
T

E
 A

N
D

 IN
S

E
R

T
 U

N
D

E
R

 M
A

S
K Each bit shifted out of the leftmost bit position of the

element reenters in the rightmost bit position of the
element. The result is placed in the corresponding
element in the first operand.

For VERLL, The displacement is treated as a 12-bit
unsigned integer.

For VERLL, The second-operand address is not
used to address data; its rightmost bits indicate the
number of bit positions to be rotated. The remainder
of the address is ignored.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Note: Although the rotate amount is
defined to be an unsigned integer of the number of
bits necessary to specify a full rotate left amount for
an element, a negative value may be encoded which
effectively specifies a rotate-right amount.

Extended Mnemonics:

VECTOR ELEMENT ROTATE AND
INSERT UNDER MASK

VERIM V1,V2,V3,I4,M5 [VRI-d]

Each element of the second operand is rotated left by
the number of bits specified by the fourth operand.
Each bit shifted out of the leftmost bit position of the
element reenters in the rightmost bit position of the
element. The third operand contains a mask in each
element. For each bit in the third operand that is one,
the corresponding bit of the rotated elements in the
second operand replaces the corresponding bit in the
first operand. For each bit in the third operand that is
zero, the corresponding bit of the first operand
remains unchanged. Except for the case when the
first operand is the same as either the second or third
operand, the second and third operands remain
unchanged.

The fourth operand is an unsigned binary integer
specifying the number of bits to rotate each element
in the second operand by. If the value is larger than
the number of bits in the specified element size, the
value is reduced modulo the number of bits in the
element.

The M5 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VERLLVB V1,V2,V3 VERLLV V1,V2,V3,0
VERLLVH V1,V2,V3 VERLLV V1,V2,V3,1
VERLLVF V1,V2,V3 VERLLV V1,V2,V3,2
VERLLVG V1,V2,V3 VERLLV V1,V2,V3,3
VERLLB V1,V3,D2(B2) VERLL V1,V3,D2(B2),0
VERLLH V1,V3,D2(B2) VERLL V1,V3,D2(B2),1
VERLLF V1,V3,D2(B2) VERLL V1,V3,D2(B2),2
VERLLG V1,V3,D2(B2) VERLL V1,V3,D2(B2),3

‘E7’ V1 V2 V3 / / / / I4 M5 RXB ‘72’

0 8 12 16 20 24 32 36 40 47

M5 Element Size
0 Byte

1 Halfword
2 Word

3 Doubleword

4-15 Reserved

Vector Integer Instructions 22-23

V
E

C
T

O
R

 E
L

E
M

E
N

T
 S

H
IF

T
 R

IG
H

T
 A

R
IT

H
M

E
T

ICExtended Mnemonics:

Programming Notes:

1. A combination of VERIM and VGM may be used
to accomplish the full functionality of ROTATE
AND INSERT SELECTED BITS in Chapter 7.

2. Although the bits of the I4 field are defined to con-
tain an unsigned binary integer specifying the
number of bits to rotate each element left, a neg-
ative value may be coded which effectively speci-
fies a rotate-right amount.

VECTOR ELEMENT SHIFT LEFT

VESLV V1,V2,V3,M4 [VRR-c]

VESL V1,V3,D2(B2),M4 [VRS-a]

For VESLV, each element in the second operand is
shifted left by the number of bits specified in the cor-
responding element in the third operand modulo the
number of bits in an element. For VESL, each ele-
ment in the third operand is shifted left by the number
of bits specified by the second-operand address
modulo the number of bits in the specified element
size. Bits shifted out of bit 0 of each element are lost
and zeros are supplied to the vacated bit positions to
the right of each element. The result is placed in the
first operand.

For VESL, the displacement is treated as a 12-bit
unsigned integer.

For VESL, the second-operand address is not used
to address data; its rightmost bits indicate the num-
ber of bit positions to be shifted. The leftmost bits of
the address are ignored.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Note: The same results are obtained
if the second operand contains either signed or
unsigned binary integers.

Extended Mnemonics:

VECTOR ELEMENT SHIFT RIGHT
ARITHMETIC

VESRAV V1,V2,V3,M4 [VRR-c]

VESRA V1,V3,D2(B2),M4 [VRS-a]

Extended Mnemonic Base Mnemonic
VERIMB V1,V2,V3,I4 VERIM V1,V2,V3,I4,0
VERIMH V1,V2,V3,I4 VERIM V1,V2,V3,I4,1
VERIMF V1,V2,V3,I4 VERIM V1,V2,V3,I4,2
VERIMG V1,V2,V3,I4 VERIM V1,V2,V3,I4,3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘70’

0 8 12 16 20 32 36 40 47

‘E7’ V1 V3 B2 D2 M4 RXB ‘30’

0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VESLVB V1,V2,V3 VESLV V1,V2,V3,0
VESLVH V1,V2,V3 VESLV V1,V2,V3,1
VESLVF V1,V2,V3 VESLV V1,V2,V3,2
VESLVG V1,V2,V3 VESLV V1,V2,V3,3
VESLB V1,V3,D2(B2) VESL V1,V3,D2(B2),0
VESLH V1,V3,D2(B2) VESL V1,V3,D2(B2),1
VESLF V1,V3,D2(B2) VESL V1,V3,D2(B2),2
VESLG V1,V3,D2(B2) VESL V1,V3,D2(B2),3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘7A’

0 8 12 16 20 32 36 40 47

‘E7’ V1 V3 B2 D2 M4 RXB ‘3A’

0 8 12 16 20 32 36 40 47

22-24 The z/Architecture CPU Architecture

V
E

C
T

O
R

 E
L

E
M

E
N

T
 S

H
IF

T
 R

IG
H

T
 L

O
G

IC
A

L For VESRAV, each element in the second operand is
shifted right by the number of bits specified in the
corresponding element of the third operand modulo
the number of bits in the specified element size. For
VESRA, each element in the third operand is shifted
right by the number of bits specified in the second-
operand address modulo the number of bits in the
specified element size. The result is placed in the
corresponding element of the first operand with the
vacated bits replaced with the original high order bit
of each element.

For VESRA, the displacement is treated as a 12-bit
unsigned integer.

For VESRA, the second-operand address is not used
to address data; its rightmost bits indicate the num-
ber of bit positions to be shifted. The leftmost bits of
the address are ignored.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR ELEMENT SHIFT RIGHT
LOGICAL

VESRLV V1,V2,V3,M4 [VRR-c]

VESRL V1,V3,D2(B2),M4 [VRS-a]

For VESRLV, each element in the second operand is
shifted right by the number of bits specified in the
corresponding element of the third operand modulo
the number of bits in the specified element size. For
VESRL, each element in the third operand is shifted
right by the number of bits specified in the second-
operand address modulo the specified element size.
The result is placed in the corresponding element of
the first operand with the vacated bits replaced with
zeros.

For VESRL, the displacement is treated as a 12-bit
unsigned integer.

For VESRL, the second-operand address is not used
to address data; its rightmost bits indicate the num-
ber of bit positions to be shifted. The leftmost bits of
the address are ignored.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VESRAVB V1,V2,V3 VESRAV V1,V2,V3,0
VESRAVH V1,V2,V3 VESRAV V1,V2,V3,1
VESRAVF V1,V2,V3 VESRAV V1,V2,V3,2
VESRAVG V1,V2,V3 VESRAV V1,V2,V3,3
VESRAB V1,V3,D2(B2) VESRA V1,V3,D2(B2),0
VESRAH V1,V3,D2(B2) VESRA V1,V3,D2(B2),1
VESRAF V1,V3,D2(B2) VESRA V1,V3,D2(B2),2
VESRAG V1,V3,D2(B2) VESRA V1,V3,D2(B2),3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘78’
0 8 12 16 20 32 36 40 47

‘E7’ V1 V3 B2 D2 M4 RXB ‘38’
0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4-15 Reserved

Vector Integer Instructions 22-25

V
E

C
T

O
R

 S
H

IF
T

 L
E

F
T

 D
O

U
B

L
E

 B
Y

 B
IT• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR SHIFT LEFT

VSL V1,V2,V3 [VRR-c]

Each byte elements of the second operand are
shifted left by the number of bits specified by an
unsigned binary integer in bits 5-7 of the correspond-
ing byte element of the third operand. If the vector-
enhancements facility 2 is not installed and all bytes
of the third operand are not equal, then the result is
unpredictable. Bits shifted out of bit 0 of each byte
are lost and the leftmost bits of the byte element
located right of each byte element are supplied to the
vacated bit positions to the right. For the rightmost
byte element of the second operand, zeros are sup-
plied to the vacated bit positions to the right. The
result is placed in the first operand.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

Engineering Notes:

VECTOR SHIFT LEFT BY BYTE

VSLB V1,V2,V3 [VRR-c]

The second operand is shifted left by the number of
bytes specified by the unsigned integer in bits 1-4 of
byte element seven of the third operand. Bits shifted
out of bit 0 are lost and zeros are supplied to the
vacated bit positions to the right. The result is placed
in the first operand.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR SHIFT LEFT DOUBLE BY
BIT

VSLD V1,V2,V3,I4 [VRI-d]

A double-wide source vector is created by concate-
nating the second operand followed by the third oper-
and. Bits 5-7 of the fourth operand contain an
unsigned binary integer that specifies the start index
of the 128 consecutive bits from the source vector
which are placed into the first operand vector regis-
ter.

If bits 0-4 of the fourth operand are non zero, a spec-
ification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector-enhancements facility 2

is not installed)
• Transaction constraint

Extended Mnemonic Base Mnemonic
VESRLVB V1,V2,V3 VESRLV V1,V2,V3,0
VESRLVH V1,V2,V3 VESRLV V1,V2,V3,1
VESRLVF V1,V2,V3 VESRLV V1,V2,V3,2
VESRLVG V1,V2,V3 VESRLV V1,V2,V3,3
VESRLB V1,V3,D2(B2) VESRL V1,V3,D2(B2),0
VESRLH V1,V3,D2(B2) VESRL V1,V3,D2(B2),1
VESRLF V1,V3,D2(B2) VESRL V1,V3,D2(B2),2
VESRLG V1,V3,D2(B2) VESRL V1,V3,D2(B2),3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘74’
0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘75’

0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / I4 / / / / RXB ‘86’

0 8 12 16 20 24 32 36 40 47

22-26 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
H

IF
T

 L
E

F
T

 D
O

U
B

L
E

 B
Y

 B
Y

T
E • Specification

Programming Note: The illustration below shows an
example:

VECTOR SHIFT LEFT DOUBLE BY
BYTE

VSLDB V1,V2,V3,I4 [VRI-d]

A double-wide source vector of byte elements is cre-
ated by concatenating the second operand followed
by the third operand. Bits 4-7 of the fourth operand
contain an unsigned binary integer that specifies the
starting index of sixteen consecutive bytes from the
source vector which are placed into vector register
V1. Bits 0-3 of the fourth operand should contain
zeros; otherwise the results are unpredictable.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR SHIFT RIGHT
ARITHMETIC

VSRA V1,V2,V3 [VRR-c]

Each byte elements of the second operand is shifted
right by the number of bits specified by an unsigned
binary integer in bits 5-7 of each byte of the third
operand. If the vector-enhancements facility 2 is not
installed and all bytes of the third operand are not

equal, then the result is unpredictable. Bits shifted
out of bit 7 of each byte are lost and the rightmost
bits of the byte element located left of each byte ele-
ment are supplied to the vacated bit positions to the
left. For the byte element zero of the second oper-
and, bits equal to bit zero of byte element zero are
supplied to the vacated bit positions to the left. The
result is placed in the first operand.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

Engineering Notes:

VECTOR SHIFT RIGHT
ARITHMETIC BY BYTE

VSRAB V1,V2,V3 [VRR-c]

The second operand is shifted right by the number of
bytes specified by the unsigned integer in bits 1-4 of
byte seven of the third operand. Bits shifted out of bit
127 are lost, and bits equal to bit zero are supplied to
the vacated bit positions to the left. The result is
placed in the first operand.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR SHIFT RIGHT DOUBLE
BY BIT

VSRD V1,V2,V3,I4 [VRI-d]

Operand 2 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 1 0

Operand 3 F0 E1 D2 C3 B4 A5 96 87 78 69 5A 4B 3C 2D 1E 0 A

Operand 4 = 4

Operand 1 12 34 56 78 9A BC DE FF ED CB A9 87 65 43 21 0 F

‘E7’ V1 V2 V3 / / / / I4 / / / / RXB ‘77’

0 8 12 16 20 24 32 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘7E’

0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘7F’
0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / I4 / / / / RXB ‘87’

0 8 12 16 20 24 32 36 40 47

Vector Integer Instructions 22-27

V
E

C
T

O
R

 S
U

B
T

R
A

C
TA double-wide source vector is created by concate-

nating the second operand followed by the third oper-
and. Bits 5-7 of the fourth operand contain an
unsigned binary integer that subtracted from 128
specifies the start index of the 128 consecutive bits
from the source vector which are placed into the first
operand vector register.

If bits 0-4 of the fourth operand are non zero, a spec-
ification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector-enhancements facility 2

is not installed)
• Transaction constraint
• Specification

Programming Note: This instruction is intended to
extract arbitrary length data elements not on a byte
boundary into SIMD elements for parallel processing.

VECTOR SHIFT RIGHT LOGICAL

VSRL V1,V2,V3 [VRR-c]

Each byte elements of the second operand are
shifted right by the number of bits specified by an
unsigned binary integer in bits 5-7 of the correspond-
ing byte element of the third operand. If the vector-
enhancements facility 2 is not installed and all bytes
of the third operand are not equal, then the result is
unpredictable. Bits shifted out of bit 7 of each byte
are lost and the rightmost bits of the byte element
located left of each byte element are supplied to the
vacated bit positions to the left. For the byte element
zero of the second operand, zeros are supplied to the
vacated bit positions to the left. The result is placed
in the first operand.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)

• Transaction constraint

Engineering Notes:

VECTOR SHIFT RIGHT LOGICAL
BY BYTE

VSRLB V1,V2,V3 [VRR-c]

The second operand is shifted right by the number of
bytes specified by the unsigned integer in bits 1-4 of
byte element seven of the third operand. Bits shifted
out of bit 127 are lost and zeros are supplied to the
vacated bit positions to the left. The result is placed
in the first operand.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

VECTOR SUBTRACT

VS V1,V2,V3,M4 [VRR-c]

The contents of each element of the third operand
are subtracted from the contents of each correspond-
ing element of the second operand and the resulting
difference is placed in the corresponding element of
the first operand. Each element is treated as a
signed binary integer specified by the element size
control in the M4 field.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignor-
ing any carry out of the sign-bit position.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the element or
elements in the vector register operands. If a

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘7C’

0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / / / / / RXB ‘7D’
0 8 12 16 20 36 40 47

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘F7’

0 8 12 16 20 32 36 40 47

22-28 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
U

B
T

R
A

C
T

 C
O

M
P

U
T

E
 B

O
R

R
O

W
 IN

D
IC

A
T

IO
N reserved value is specified, a specification exception

is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Programming Note: The same results are obtained
if the contents of each element contain unsigned
binary integers.

Extended Mnemonics:

VECTOR SUBTRACT COMPUTE
BORROW INDICATION

VSCBI V1,V2,V3,M4 [VRR-c]

The contents of each element of the third operand
are subtracted from the contents of each correspond-
ing element of the second operand. An indication of
borrow is placed in the corresponding element of the
first operand.

If the resulting subtraction results in a carry out of bit
zero, a value of one is placed in the corresponding
element of the first operand; otherwise, a value of
zero is placed in the corresponding element of the

first operand. The operands are treated as unsigned
binary integers of size specified by the element size
control in the M4 field.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the element or
elements in the vector register operands. If a
reserved value is specified, a specification exception
is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR SUBTRACT WITH
BORROW INDICATION

VSBI V1,V2,V3,V4,M5 [VRR-d]

A subtraction is performed by adding the contents of
the second operand with the bitwise complement of
the third operand along with a borrow indication from
the rightmost bit position of the fourth operand and
the result is placed in the first operand. All bit posi-
tions to the left of the rightmost bit position of the

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4 Quadword

5-15 Reserved

Extended Mnemonic Base Mnemonic
VSB V1,V2,V3 VS V1,V2,V3,0
VSH V1,V2,V3 VS V1,V2,V3,1
VSF V1,V2,V3 VS V1,V2,V3,2
VSG V1,V2,V3 VS V1,V2,V3,3
VSQ V1,V2,V3 VS V1,V2,V3,4

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘F5’
0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word
3 Doubleword

4 Quadword

5-15 Reserved

Extended Mnemonic Base Mnemonic
VSCBIB V1,V2,V3 VSCBI V1,V2,V3,0
VSCBIH V1,V2,V3 VSCBI V1,V2,V3,1
VSCBIF V1,V2,V3 VSCBI V1,V2,V3,2
VSCBIG V1,V2,V3 VSCBI V1,V2,V3,3
VSCBIQ V1,V2,V3 VSCBI V1,V2,V3,4

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘BF’
0 8 12 16 20 24 32 36 40 47

Vector Integer Instructions 22-29

V
E

C
T

O
R

 S
U

M
 A

C
R

O
S

S
 D

O
U

B
L

E
W

O
R

Dfourth operand are ignored. Each operand is treated
as an unsigned binary integer.

When there is an overflow, the result is obtained by
allowing any carry into the leftmost-bit position and
ignoring any carry out of the leftmost-bit position.

No fixed point overflow exceptions are recognized.

The M5 field must contain a value of 4; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR SUBTRACT WITH
BORROW COMPUTE BORROW
INDICATION

VSBCBI V1,V2,V3,V4,M5 [VRR-d]

A subtraction is performed by adding the contents of
the second operand with the bitwise complement of
the third operand along with a borrow indication from
the rightmost bit of the fourth operand. All bit posi-
tions to the left of the rightmost bit position of the
fourth operand are ignored. If the addition results in a
carry out of the leftmost bit, a value of one is placed
in the first operand. If there is no carry out of the left-
most bit, a value of zero is placed in the first operand.
Each operand is treated as an unsigned binary inte-
ger.

The M5 field must contain a value of 4; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Note: VECTOR SUBTRACT WITH
BORROW COMPUTE BORROW INDICATION in
conjunction with VECTOR SUBTRACT WITH BOR-
ROW INDICATION can be used to perform subtrac-
tions on values with a precision greater than a
quadword.

VECTOR SUM ACROSS
DOUBLEWORD

VSUMG V1,V2,V3,M4 [VRR-c]

The four halfword or two word sub-elements in each
of the doubleword elements of the second operand
are summed and then added to the corresponding
rightmost sub-element of the corresponding double-
word of the third operand. The full-precision interme-
diate-sum is extended on the left with zeros to a
doubleword and the results are placed in the corre-
sponding doubleword of the first operand.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the sub-elements
in the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Extended Mnemonic Base Mnemonic
VSBIQ V1,V2,V3,V4 VSBI V1,V2,V3,V4,4

‘E7’ V1 V2 V3 M5 / / / / / / / / / V4 RXB ‘BD’
0 8 12 16 20 24 32 36 40 47

Extended Mnemonic Base Mnemonic
VSBCBIQ V1,V2,V3,V4 VSBCBI V1,V2,V3,V4,4

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘65’

0 8 12 16 20 32 36 40 47

M4 Element Size
0 Reserved

1 Halfword

2 Word
3-15 Reserved

22-30 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
U

M
 A

C
R

O
S

S
 Q

U
A

D
W

O
R

D Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR SUM ACROSS
QUADWORD

VSUMQ V1,V2,V3,M4 [VRR-c]

The two doubleword elements or four word elements
of the second operand are added together along with
the corresponding right-most word or doubleword
element of the third operand. The full-precision inter-
mediate-sum is extended on the left with zeros to a
quadword and the result is placed in the first oper-
and.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the sub-elements
in the vector register operands. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification

• Transaction constraint

Extended Mnemonics:

VECTOR SUM ACROSS WORD

VSUM V1,V2,V3,M4 [VRR-c]

The two halfword elements or four byte elements of
each word element of the second operand are added
together along with the corresponding right-most
sub-element of each word in the third operand. The
full-precision intermediate-sum is extended on the
left with zeros to a word and the result is placed in
the corresponding word element of the first operand.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the sub-elements
in the vector register operand. If a reserved value is
specified, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Extended Mnemonic Base Mnemonic
VSUMGH V1,V2,V3 VSUMG V1,V2,V3,1
VSUMGF V1,V2,V3 VSUMG V1,V2,V3,2

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘67’

0 8 12 16 20 32 36 40 47

M4 Element Size
0-1 Reserved
2 Word

3 Doubleword

4-15 Reserved

Extended Mnemonic Base Mnemonic
VSUMQF V1,V2,V3 VSUMQ V1,V2,V3,2
VSUMQG V1,V2,V3 VSUMQ V1,V2,V3,3

‘E7’ V1 V2 V3 / / / / / / / / / / / / / M4 RXB ‘64’
0 8 12 16 20 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2-15 Reserved

Extended Mnemonic Base Mnemonic
VSUMB V1,V2,V3 VSUM V1,V2,V3,0
VSUMH V1,V2,V3 VSUM V1,V2,V3,1

Vector Integer Instructions 22-31

V
E

C
T

O
R

 T
E

S
T

 U
N

D
E

R
 M

A
S

KVECTOR TEST UNDER MASK

VTM V1,V2 [VRR-a]

The second operand contains a mask. The bits in the
mask correspond one for one with the bits of the first
operand. A mask bit of one indicates that the first-
operand bit is to be tested. When a mask bit is zero,
the first operand bit is ignored. When all first-operand
bits thus selected are zero, condition code 0 is set.
Condition code 0 is also set when the mask is all

zeros. When the selected bits are all ones, condition
code 3 is set; otherwise, condition code 1 is set.

Resulting Condition Code:

0 Selected bits all zeros; or all mask bits zero
1 Selected bits a mix of zeros and ones
2 --
3 Selected bits all ones

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Transaction constraint

‘E7’ V1 V2 / RXB ‘D8’
0 8 12 16 36 40 47

22-32 The z/Architecture CPU Architecture

V
E

C
T

O
R

 T
E

S
T

 U
N

D
E

R
 M

A
S

K

Vector String Instructions 23-1© Copyright IBM Corp. 2000, 2019

Chapter 23. Vector String Instructions

Vector String Facility . 23-1
Instructions . 23-1

VECTOR FIND ANY ELEMENT EQUAL. . . . 23-2
VECTOR FIND ELEMENT EQUAL 23-3

VECTOR FIND ELEMENT NOT EQUAL 23-4
VECTOR ISOLATE STRING 23-5
VECTOR STRING RANGE COMPARE 23-6
VECTOR STRING SEARCH 23-8

Vector String Facility

The vector string facility provides instructions to
accelerate the processing of strings of character
data.

Instructions

All of the instructions except for VECTOR ISOLATE
STRING have the ability to produce an index to a
character element within a vector. This index is
always placed in the rightmost bits of the leftmost
doubleword of the vector. This index will often be
used in scalar computation for address generation
and will need to be transferred to a general register.
If an element index is needed the index will have to
be shifted right by the appropriate number of bits.

Unless otherwise specified, all operands are vector-
register operands. A “V” in the assembler syntax des-
ignates a vector operand.

Each instruction has an Extended Mnemonic section
which describe recommended extended mnemonics
and their corresponding machine assembler syntax.

Programming Notes:

1. For all instructions that optionally set the condi-
tion code, performance may be degraded if the
condition code is set.

2. The following additional instruction is available
when the vector-enhancements facility 2 is
installed:

• VECTOR STRING SEARCH (VSTRS)

Name
Mne-

monic Characteristics
Op-

code Page
VECTOR FIND ANY ELEMENT EQUAL VFAE VRR-b C* VF ¤7,9 SP Dv E782 23-2
VECTOR FIND ELEMENT EQUAL VFEE VRR-b C* VF ¤7,9 SP Dv E780 23-3
VECTOR FIND ELEMENT NOT EQUAL VFENE VRR-b C* VF ¤7,9 SP Dv E781 23-4
VECTOR ISOLATE STRING VISTR VRR-a C* VF ¤7,9 SP Dv E75C 23-5
VECTOR STRING RANGE COMPARE VSTRC VRR-d C* VF ¤7,9 SP Dv E78A 23-6
VECTOR STRING SEARCH VSTRS VRR-d C V2 ¤7,9 SP Dv E78B 23-8

Explanation:

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.

C* Condition code optionally set.

Dv Vector-instruction data exception

SP Specification exception.

V2 Vector enhancements facility 2

VF Vector facility for z/Architecture

VRR VRR instruction format

Figure 23-1. Summary of Vector String Instructions

23-2 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
IN

D
 A

N
Y

 E
L

E
M

E
N

T
 E

Q
U

A
L VECTOR FIND ANY ELEMENT

EQUAL

VFAE V1,V2,V3,M4[,M5] [VRR-b]

Proceeding from left to right, each element of the
second operand is compared for equality with every
element of the third operand. A first intermediate
result is created from this comparison with an indica-
tion for each element in the second operand if the
element was equal to any element in the third oper-
and.

If the invert-result (IN) flag in the M5 field is one, then
each indication in the first intermediate result is
inverted.

If the zero-search (ZS) flag in the M5 field is one,
each element in the second operand is also com-
pared with zeros and a second intermediate result is
created with an indication for each element if that ele-
ment is equal to zero. If the ZS flag is zero, the sec-
ond intermediate result contains all false indications.

If the result-type (RT) flag is zero, for each of the two
intermediate results, the index of the lowest indexed
true result is obtained. The index is then converted to
a byte index by multiplying by the number of bytes in
an element. The minimum of the indices obtained
from the two intermediate results is then computed. If
no true result is found in either intermediate result, a
final index equal to the number of bytes in the vector
is produced. The index is placed into byte seven of
the first operand; all other bytes of the first operand
are set to zero.

If the RT flag in the M5 field is one, for each element
in the second operand, if the indication in the first
intermediate result is true, the bit positions of the cor-
responding element in first operand are set to ones. If
the first intermediate result element contains a false
indication the bit positions of the corresponding ele-
ment in the first operand are set to zero. No indica-
tion of true results in the second intermediate value
are indicated in the first operand.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in

the vector register operands. If a reserved value is
specified, a specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Invert Result (IN): If bit 0 is zero, the operation
proceeds using the comparison indication values
in the first intermediate result. If one, the opera-
tion proceeds with the comparison indication val-
ues in the first intermediate result inverted.

• Result Type (RT): If bit 1 is zero, a byte index is
stored into byte seven of the first operand and
zeros are stored in all other elements. If bit 1 is
one, each resulting element is a bit-vector.

• Zero Search (ZS): If bit 2 is one, each element of
the second operand is also compared for equality
with zero.

• Condition Code Set (CS): If bit 3 is zero, the
condition code is not set and remains
unchanged. If one, the condition code is set as
specified in the resulting condition code section
below.

Resulting Condition Code:

If the CS-bit is zero, the code remains unchanged.

If the CS-bit is one, the code is set as follows:

0 If the ZS-bit is one, there are no true indications
in a lower indexed element in the first intermedi-
ate result than a true indication in the second
intermediate result. That is, there were no match-
ing elements before an element containing zero
in the second operand.

1 At least one indication in the first intermediate
result is true. All indications in the second inter-
mediate result are false. That is, there was at

‘E7’ V1 V2 V3 / / / / / M5 / / / / M4 RXB ‘82’

0 8 12 16 20 24 28 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

I
N

R
T

Z
S

C
S

0 1 2 3

Vector String Instructions 23-3

V
E

C
T

O
R

 F
IN

D
 E

L
E

M
E

N
T

 E
Q

U
A

Lleast one match in the second operand and, if
the ZS-bit is one, no zero matches.

2 If the ZS-bit is one and at least one indication in
the first intermediate result is true with a lower
index than a true indication in the second inter-
mediate result.

3 All indications in the first intermediate and sec-
ond intermediate results are false.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. If the RT flag is zero, a byte index is always
stored into the first operand for any element size.
For example, if the specified element size is half-
word and the 2nd indexed halfword compared
equal, a byte index of 4 would be stored.

2. If the CS bit is one, conditions codes 0 and 2 can
only be set if the ZS-bit is one.

VECTOR FIND ELEMENT EQUAL

VFEE V1,V2,V3,M4[,M5] [VRR-b]

Proceeding from left to right, the elements of the sec-
ond operand are compared with the corresponding
elements of the third operand and optionally with
zero.

If two elements are equal, the byte index of the first
byte of the left-most equal element is placed in byte
seven of the first operand. Zeros are stored in the
remaining bytes of the first operand. If no bytes are
found to be equal, or are equal to zero if the zero
search (ZS) bit is one, an index equal to the number
of bytes in the vector is stored in byte seven of the
first operand. Zeros are stored in the remaining
bytes.

If the ZS bit is one in the M5 field, each element in the
second operand is also compared for equality with
zero. If a zero element is found in the second oper-
and before any other elements of the second and
third operands are found to be equal, the byte index
of the first byte of the element found to be zero is
stored in byte seven the first operand and zeros are
stored in all other byte locations. If the condition-
code-set (CS) flag is one, the condition code is set to
zero.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Reserved: Bits 0-1 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

• Zero Search (ZS): If bit 2 is one, each element of
the second operand is also compared for equality
with zero.

Extended Mnemonic Base Mnemonic
VFAEB V1,V2,V3[,M5] VFAE V1,V2,V3,0[,M5]
VFAEH V1,V2,V3[,M5] VFAE V1,V2,V3,1[,M5]
VFAEF V1,V2,V3[,M5] VFAE V1,V2,V3,2[,M5]
VFAEBS V1,V2,V3[,M5] VFAE V1,V2,V3,0,([M5 |] X'1')
VFAEHS V1,V2,V3[,M5] VFAE V1,V2,V3,1,([M5 |] X'1')
VFAEFS V1,V2,V3[,M5] VFAE V1,V2,V3,2,([M5 |] X'1')
VFAEZB V1,V2,V3[,M5] VFAE V1,V2,V3,0,([M5 |] X'2')
VFAEZH V1,V2,V3[,M5] VFAE V1,V2,V3,1,([M5 |] X'2')
VFAEZF V1,V2,V3[,M5] VFAE V1,V2,V3,2,([M5 |] X'2')
VFAEZBS V1,V2,V3[,M5] VFAE V1,V2,V3,0,([M5 |] X'3')
VFAEZHS V1,V2,V3[,M5] VFAE V1,V2,V3,1,([M5 |] X'3')
VFAEZFS V1,V2,V3[,M5] VFAE V1,V2,V3,2,([M5 |] X'3')

‘E7’ V1 V2 V3 / / / / / M5 / / / / M4 RXB ‘80’

0 8 12 16 20 24 28 32 36 40 47

M4 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

/ /
Z
S

C
S

0 1 2 3

23-4 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
IN

D
 E

L
E

M
E

N
T

 N
O

T
 E

Q
U

A
L • Condition Code Set (CS): If bit 3 is zero, the

condition code remains unchanged. If one, the
condition code is set as specified in the following
section.

Resulting Condition Code:

If the CS-bit is zero, the code remains unchanged.

If the CS-bit is one, the code is set as follows:

0 If the ZS-bit is one, in the second operand there
were no equal comparisons in an element with
an index less than an element whose contents
are zero.

1 Comparison detected a match between the sec-
ond and third operands in some element. If the
ZS-bit is one, there were no zero comparisons in
the second operand.

2 If the ZS-bit is one, there was a match between
the second and third operands with a lower index
than a match with zero in the second operand.

3 No elements compared equal. Additionally, if the
ZS-bit is one, no elements contain zero.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. A byte index is always stored into the first oper-
and for any element size. For example, if the
specified element size is halfword and the 2nd
indexed halfword compared equal, a byte index
of 4 would be stored.

2. Depending on the model, VECTOR FIND ELE-
MENT EQUAL may have better performance
than VECTOR FIND ANY EQUAL when search-
ing for a single character by replicating the char-
acter across all elements of the third operand.

VECTOR FIND ELEMENT NOT
EQUAL

VFENE V1,V2,V3,M4[,M5] [VRR-b]

Proceeding from left to right, the elements of the sec-
ond operand are compared with the corresponding
elements of the third operand and optionally with
zeros. The elements of the second and third oper-
ands are treated as unsigned binary integers.

If two elements are not equal, the byte index of the
leftmost not-equal element is placed in byte seven of
the first operand and zeros are stored to all other
bytes. If the condition code set (CS) bit in the M5 field
is one, the condition code is set to indicate which
operand was greater. If all elements were equal, a
byte index equal to the vector size is placed in byte
seven of the first operand and zeros are placed in all
other byte locations and if the CS bit is one, condition
code 3 is set.

If the zero search (ZS) bit is one in the M5 field, each
element in the second operand is also compared for
equality with zero. If a zero element is found in the
second operand with a lower index than any other
element of the second operand found to be unequal,
the byte index of the first byte of the element found to
be zero is stored in byte seven of the first operand.
Zeros are stored in all other bytes and condition code
0 is set.

The M4 field specifies the element size control (ES).
The ES control specifies the size of the elements in

Extended Mnemonic Base Mnemonic
VFEEB V1,V2,V3[,M5] VFEE V1,V2,V3,0[,M5]
VFEEH V1,V2,V3[,M5] VFEE V1,V2,V3,1[,M5]
VFEEF V1,V2,V3[,M5] VFEE V1,V2,V3,2[,M5]
VFEEBS V1,V2,V3 VFEE V1,V2,V3,0,1
VFEEHS V1,V2,V3 VFEE V1,V2,V3,1,1
VFEEFS V1,V2,V3 VFEE V1,V2,V3,2,1
VFEEZB V1,V2,V3 VFEE V1,V2,V3,0,2
VFEEZH V1,V2,V3 VFEE V1,V2,V3,1,2
VFEEZF V1,V2,V3 VFEE V1,V2,V3,2,2
VFEEZBS V1,V2,V3 VFEE V1,V2,V3,0,3
VFEEZHS V1,V2,V3 VFEE V1,V2,V3,1,3
VFEEZFS V1,V2,V3 VFEE V1,V2,V3,2,3

‘E7’ V1 V2 V3 / / / / / M5 / / / / M4 RXB ‘81’

0 8 12 16 20 24 28 32 36 40 47

Vector String Instructions 23-5

V
E

C
T

O
R

 IS
O

L
A

T
E

 S
T

R
IN

Gthe vector register operands. If a reserved value is
specified, a specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Reserved: Bits 0 and 1 are reserved and must
be zero, otherwise a specification exception is
recognized.

• Zero Search (ZS): If bit 2 is one, each element of
the second operand is also compared for equality
with zero.

• Condition Code Set (CS): If bit 3 is zero, the
condition code is not set and remains
unchanged. If one, the condition code is set as
specified in the following section.

Resulting Condition Code:

If the CS-bit is zero, the code remains unchanged.

If the CS-bit is one, the code is set as follows:

0 If the ZS-bit is one, comparison detected a zero
element in both operands in a lower indexed ele-
ment than any unequal compares.

1 An element mismatch was detected and the ele-
ment in the second operand is less than the ele-
ment in the third operand.

2 An element mismatch was detected and the ele-
ment in the second operand is greater than the
element in the third operand.

3 All elements compared equal, and if the ZS-bit is
one, no zero elements were found in the second
operand.

Program Exceptions:

• Data with DXC FE, Vector Instruction

• Operation (if the vector facility for z/Architecture
is not installed)

• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR ISOLATE STRING

VISTR V1,V2,M3[,M5] [VRR-a]

Proceeding from left to right, the elements of the sec-
ond operand are compared with zero. The elements
of the second operand are treated as unsigned
binary integers. If a zero comparison is not found, the
element is copied into the corresponding element of
the first operand. If a zero comparison is found, com-
parison stops and the corresponding element and all
elements to the right in the first operand are set to
zero.

The M3 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

M4 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

/ /
Z
S

C
S

0 1 2 3

Extended Mnemonic Base Mnemonic
VFENEB V1,V2,V3[,M5] VFENE V1,V2,V3,0[,M5]
VFENEH V1,V2,V3[,M5] VFENE V1,V2,V3,1[,M5]
VFENEF V1,V2,V3[,M5] VFENE V1,V2,V3,2[,M5]
VFENEBS V1,V2,V3 VFENE V1,V2,V3,0,1
VFENEHS V1,V2,V3 VFENE V1,V2,V3,1,1
VFENEFS V1,V2,V3 VFENE V1,V2,V3,2,1
VFENEZB V1,V2,V3, VFENE V1,V2,V3,0,2
VFENEZH V1,V2,V3 VFENE V1,V2,V3,1,2
VFENEZF V1,V2,V3 VFENE V1,V2,V3,2,2
VFENEZBS V1,V2,V3 VFENE V1,V2,V3,0,3
VFENEZHS V1,V2,V3 VFENE V1,V2,V3,1,3
VFENEZFS V1,V2,V3 VFENE V1,V2,V3,2,3

‘E7’ V1 V2 / / / / / / / / / M5 / / / / M3 RXB ‘5C’

0 8 12 16 24 28 32 36 40 47

M3 Element Size
0 Byte

1 Halfword
2 Word

3-15 Reserved

23-6 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
T

R
IN

G
 R

A
N

G
E

 C
O

M
P

A
R

E The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Reserved: Bits 0-2 are reserved and must be
zero, otherwise a specification exception is rec-
ognized.

• Condition Code Set (CS): If bit 3 is zero, the
condition code is not set and remains
unchanged. If one, the condition code is set as
specified in the following section.

Resulting Condition Code:

If the CS-bit is zero, the code remains unchanged.

If the CS-bit is one, the code is set as follows:

0 A zero element was found in the second operand
1 --
2 --
3 All elements of the second operand are non-zero

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR STRING RANGE
COMPARE

VSTRC V1,V2,V3,V4,M5[,M6] [VRR-d]

Proceeding from left to right, the elements of the sec-
ond operand are compared to ranges specified by
values in even-odd element pairs of the third and
fourth operands and, optionally, against an element
containing zero. The element in the second and third
operand are treated as unsigned binary integers.

The elements of the third and fourth operands form
range comparisons to which are applied to elements
of the second operand. The even-odd pairs of ele-
ments in the third operand define values for the limits
of the ranges. The corresponding even-odd pair of
elements in the fourth operand contain control infor-
mation to specify the comparison to be done with
each value in the third operand. A range comparison
is said to be true if the comparisons on both ele-
ments in the even-odd pair are true.

Each element in the second operand is compared
against every range specified by the even-odd ele-
ment pairs in the third and fourth operands. A first
intermediate result is created from this comparison
with an indication for each element in the second
operand if the element was contained in any of the
specified ranges.

If the invert-result (IN) flag in the M6 field is one, then
each indication in the first intermediate result is
inverted.

If the zero-search (ZS) flag in the M6 field is one,
each element in the second operand is also com-
pared with zeros and a second intermediate result is
created with an indication for each element if that ele-
ment is equal to zero. If the ZS flag is zero the sec-
ond intermediate result contains all false indications.

If the result-type (RT) flag is zero, for each of the two
intermediate results, the index of the lowest indexed
true result is obtained. The index is then converted to
a byte index by multiplying by the number of bytes in
an element. The minimum of the indices obtained
from the two intermediate results is then computed. If
no true result is found in either intermediate result, a
final index equal to the number of bytes in the vector

/ / /
C
S

0 1 2 3

Extended Mnemonic Base Mnemonic
VISTRB V1,V2[,M5] VISTR V1,V2,0[,M5]
VISTRH V1,V2[,M5] VISTR V1,V2,1[,M5]
VISTRF V1,V2[,M5] VISTR V1,V2,2[,M5]
VISTRBS V1,V2 VISTR V1,V2,0,1
VISTRHS V1,V2 VISTR V1,V2,1,1
VISTRFS V1,V2 VISTR V1,V2,2,1

‘E7’ V1 V2 V3 M5 M6 / / / / V4 RXB ‘8A’

0 8 12 16 20 24 28 32 36 40 47

Vector String Instructions 23-7

V
E

C
T

O
R

 S
T

R
IN

G
 R

A
N

G
E

 C
O

M
P

A
R

Eis produced. The index is placed into byte seven of
the first operand; all other bytes of the first operand
are set to zero.

If the RT flag in the M6 field is one, for each element
in the second operand, if the indication in the first
intermediate result is true, the bit positions of the cor-
responding element in first operand are set to ones. If
the first intermediate result element contains a false
indication the bit positions of the corresponding ele-
ment in the first operand are set to zero. No indica-
tion of true results in the second intermediate value
are indicated in the first operand.

The fourth operand elements have the following for-
mat:

If ES equals 0:

If ES equals 1:

If ES equals 2:

The bits in the fourth operand elements are defined
as follows:

• Equal (E): When one, a comparison for equality
is made.

• Low (L): When one, a less than comparison is
performed.

• High (H): When one, a greater than comparison
is performed.

• All other bits are reserved and should be zero to
ensure future compatibility.

The control bits may be used in any combination. If
none of the bits are set, the comparison will always
produce a false result. If all of the bits are set, the
comparison will always produce a true result.

The M5 field specifies the element size control (ES).
The ES control specifies the size of the elements in
the vector register operands. If a reserved value is
specified, a specification exception is recognized.

The M6 field has the following format:

The bits of the M6 field are defined as follows:

• Invert Result (IN): If bit 0 is zero, the operation
proceeds using the comparison indication values
in the first intermediate result. If one, the opera-
tion proceeds with the comparison indication val-
ues in the first intermediate result inverted.

• Result Type (RT): If bit 1 is zero, a byte index is
stored into byte seven of the first operand and
zeros are stored in all other elements. If bit 1 is
one, each resulting element is a bit-vector.

• Zero Search (ZS): If bit 2 is one, each element of
the second operand is also compared for equality
with zero.

• Condition Code Set (CS): If bit 3 is zero, the
condition code is not set and remains
unchanged. If one, the condition code is set as
specified in the following section.

Resulting Condition Code:

If the CS-bit is zero, the code remains unchanged.

If the CS-bit is one, the code is set as follows:

0 If the ZS-bit is one, there are no true indications
in a lower indexed element in the first intermedi-
ate result than a true indication in the second
intermediate result. That is, there were no match-
ing elements before an element containing zero
in the second operand.

1 At least one indication in the first intermediate
result is true. All indications in the second inter-
mediate result are false. That is, there was at

E L H / / / / /
0 1 2 7

E L H / / / / / / / / / / / / /
0 1 2 15

E L H /
0 1 2 8 16 24 31

M5 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

I
N

R
T

Z
S

C
S

0 1 2 3

23-8 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
T

R
IN

G
 S

E
A

R
C

H least one match in the second operand and, if
the ZS-bit is one, no zero matches.

2 If the ZS-bit is one and at least one indication in
the first intermediate result is true with a lower
index than a true indication in the second inter-
mediate result.

3 All indications in the first intermediate and sec-
ond intermediate results are false.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. To create a comparison that is a range with only
one bound, either place that comparison in both
the even and odd elements of the pair in the third
and fourth operands or place the operand in a
single element of the pair with the comparison
needed in the corresponding element of the
fourth operand, and set the other element in the
fourth operand to have all three control bits set.

2. To create a comparison for equality place the
same value in the even-odd pair in the third oper-
and. The corresponding even-odd element pair
in the fourth operand should contain elements
with only a one in the EQ bit.

3. If all available ranges are not needed, the control
bits in the fourth operand should all be zero for
the elements in the unneeded range. The corre-

sponding elements in the third operand are
ignored.

VECTOR STRING SEARCH

VSTRS V1,V2,V3,V4,M5,[M6] [VRR-d]

The substring specified in the third operand is
searched for in the second operand. The length of
the substring in the third operand is dependent on
the zero-search (ZS) flag in the M6 field. When the
ZS flag is zero, the length in bytes is specified as an
unsigned binary integer in bits 56-63 of the fourth
operand. When the ZS flag is one, the length in bytes
is specified by the smaller of, the unsigned binary
integer in bits 56-63 of the fourth operand, or the
number of leftmost bytes of the third operand that
contain nonzero values (from 0 to 16). See
Figure 23-2 and Figure 23-3 for the dataflow of the
instruction.

If the zero search (ZS) flag in the M6 field is one and
a zero element is contained in the third operand at a
position less than the length specified by the fourth
operand, then the position of the leftmost byte of the
zero element is used as the length of the substring. If
the ZS flag is zero, then the length specified in the
fourth operand is used.

A first intermediate result is computed as the leftmost
byte position in the second operand where the ele-
ments, left to right, of the substring are matching the
elements in the second operand for the length of the
substring. If such a position exists, then a full match
exists. Otherwise, the longest partial string, left to
right, of the substring matching the rightmost ele-
ments of the second operand is computed as the
intermediate result. If such a match is found, it is
called a partial match. Otherwise, there is no match
and the intermediate result is 16.

If the zero search (ZS) flag in the M6 is one and the
index of the first substring matching position is
greater than the position of the leftmost byte of the
leftmost zero element in the second operand then the
match is ignored.

If a non-ignored match is found then the starting
position in bytes of the match in the second operand
is stored in byte element seven of the first operand

Extended Mnemonic Base Mnemonic
VSTRCB V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,0[,M6]
VSTRCH V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,1[,M6]
VSTRCF V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,2[,M6]
VSTRCBS V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,0,([M6 |] X'1')
VSTRCHS V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,1,([M6 |] X'1')
VSTRCFS V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,2,([M6 |] X'1')
VSTRCZB V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,0,([M6 |] X'2')
VSTRCZH V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,1,([M6 |] X'2')
VSTRCZF V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,2,([M6 |] X'2')
VSTRCZBS V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,0,([M6 |] X'3')
VSTRCZHS V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,1,([M6 |] X'3')
VSTRCZFS V1,V2,V3,V4[,M6] VSTRC V1,V2,V3,V4,2,([M6 |] X'3')

‘E7’ V1 V2 V3 M5 M6 / / / / V4 RXB ‘8B’

0 8 12 16 20 24 28 32 36 40 47

Vector String Instructions 23-9

V
E

C
T

O
R

 S
T

R
IN

G
 S

E
A

R
C

Helse a value of 16 is stored. All other bytes of the first
operand are set to zero.

Byte element seven of the fourth operand specifies
the length of the substring in bytes and must be in
the range of 0-16. Other values will result in an
unpredictable result.

The M5 field specifies the size of the elements in the
vector register operands. If a reserved value is speci-
fied, a specification exception is recognized.

If the M5 field specifies a halfword or word element
size and the length of the substring in bytes is not a
multiple of this element size, then results are unpre-
dictable .

The M6 field has the following format:

The bits of the M6 field are defined as follows:

• Reserved: Bits 0,1,3 are reserved and must be
zero, otherwise a specification exception is rec-
ognized.

• Zero Search (ZS): If bit 2 is one, the position of
the leftmost zero byte element marks the string
length.

Resulting Condition Code:

0 No match or partial match of the substring was
found, and either the ZS flag is zero or no zero
byte was detected in the second operand.

1 No match of the substring was found, and the ZS
flag is one and a zero byte was detected in the
second operand.

2 A full match was found.
3 A partial match was found but no full match.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector enhancements facility 2

for the z/Architecture is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. In accordance to C11 and java programming lan-
guage standard a zero length substring is recog-
nized as a full match.

2. If the ZS flag is one and a zero byte was detected
in the second operand, then there can not be a
partial match as the end of the string has been
reached.

3. For proper usage, if the M5 field specifies a half-
word size then bit 63 of the fourth operand must
be zero, and if the M5 field specifies a word size
then bits 62 and 63 of the fourth operand must
both be zero.

M5 Element Size
0 Byte

1 Halfword

2 Word
3-15 Reserved

/ /
Z
S

/

0 1 2 3

Extended Mnemonic Base Mnemonic
VSTRSB V1,V2,V3,V4[,M6] VSTRS V1,V2,V3,V4,0 [,M6]
VSTRSH V1,V2,V3,V4[,M6] VSTRS V1,V2,V3,V4,1 [,M6]
VSTRSF V1,V2,V3,V4[,M6] VSTRS V1,V2,V3,V4,2 [,M6]
VSTRSZB V1,V2,V3,V4 VSTRS V1,V2,V3,V4,0, 2
VSTRSZH V1,V2,V3,V4 VSTRS V1,V2,V3,V4,1, 2
VSTRSZF V1,V2,V3,V4 VSTRS V1,V2,V3,V4,2, 2

23-10 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
T

R
IN

G
 S

E
A

R
C

H

Figure 23-2. Execution of the VSTRS instruction for ZS=0

substr_len = V4[7]
k = 0

substr_len = 0 ?

yes

no

V1[0:6;8:15] = zeros, V1[7] = 16
CC0 (no match)

k + substr_len <=16

yes

V2[k:k+substr_len-1] =

yes

V3[0:substr_len-1]

k = k + char_size

k = 16

no

V1[0:6;8:15] = zeros, V1[7] = k
CC2 (full match)

yes

V2[k:15] = V3[0:15-k]

yes

V1[0:6;8:15] = zeros, V1[7] = k
CC3 (partial match)

no

Vx[y]: denotes the y-th byte element of x-th operand

M5: denotes the value of M5 field

?

?

?

?

no

no

V[j:k]: denotes the concatenated bytes j thru k

M5 = 0 ? no

char_size = 1

M5 = 1? no

char_size = 2

char_size = 4

yes

yes

M5 = 2 ? no

yes

spec excpt

substr_len % char_size

no

yes
=0 ?

model dependent
result

a % b: denotes the remainder of ‘a’ divided by ‘b’

Vector String Instructions 23-11

V
E

C
T

O
R

 S
T

R
IN

G
 S

E
A

R
C

H
Figure 23-3. Execution of the VSTRS instruction for ZS=1

substr_len = V4[7], str_len = 0
i =0, k = 0, eos = 0

V3[i:i+char_size-1] != 0

yes

i<16 and

i = i+char_size

i < substr_len ?
yes

no

substr_len = i

no

V1[0:6;8:15] = zeros, V1[7] = 16
CC0 (no match)

V2[k:k+char_size-1]=0

k = k + char_size

no

k + substr_len

yes

V2[k:k+substr_len-1] =

yes

V3[0:substr_len-1]

yes

k = k+ char_size

k < str_len ?
yes

V1[0:6;8:15] = zeros, V1[7] = k
CC2 (full match)

V1[0:6;8:15] = zeros, V1[7] = 16

CC1 (no match, zero char)

eos = 1 ?

yes

no

no

V2[k:15] = V3[0:15-k]

yes

V1[0:6;8:15] = zeros, V1[7] = k
CC3 (partial match)

no

Vx[y]: denotes the y-th byte element of x-th operand

M5: denotes the value of M5 field

?

?

V[i:k]: denotes the concatenated bytes j thru k

str_len = k, k = 0

eos = 1

k=16 ?
no

yes

?

substr_len = 0 ?

no

yes

<= str_len ?

?

no

no

M5 = 0 ? no

char_size = 1

M5 = 1? no

char_size = 2

char_size = 4

yes

yes

M5 = 1? no

yes

spec excpt

k + substr_len <= str_len

yes
?

eos=0 orno

substr_len % char_size

no

yes
=0 ?

model dependent
result

a % b: denotes the remainder of ‘a’ divided by ‘b’

23-12 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
T

R
IN

G
 S

E
A

R
C

H

Vector Floating-Point Instructions 24-1© Copyright IBM Corp. 2000, 2019

Chapter 24. Vector Floating-Point Instructions

IEEE Exception Handling 24-1
Result Figures . 24-1
Instructions . 24-2

VECTOR FP ADD . 24-4
VECTOR FP COMPARE SCALAR 24-7
VECTOR FP COMPARE AND SIGNAL

SCALAR . 24-8
VECTOR FP COMPARE EQUAL 24-9
VECTOR FP COMPARE HIGH. 24-11
VECTOR FP COMPARE HIGH OR EQUAL 24-13
VECTOR FP CONVERT FROM FIXED . . . 24-15
VECTOR FP CONVERT FROM LOGICAL . 24-17
VECTOR FP CONVERT TO FIXED 24-18
VECTOR FP CONVERT TO LOGICAL. . . . 24-20
VECTOR FP DIVIDE 24-22
VECTOR LOAD FP INTEGER 24-24
VECTOR FP LOAD LENGTHENED 24-26
VECTOR FP LOAD ROUNDED 24-27

VECTOR FP MAXIMUM 24-28
VECTOR FP MINIMUM 24-34
VECTOR FP MULTIPLY. 24-40
VECTOR FP MULTIPLY AND ADD 24-42
VECTOR FP MULTIPLY AND SUBTRACT . 24-42
VECTOR FP NEGATIVE MULTIPLY AND

ADD . 24-42
VECTOR FP NEGATIVE MULTIPLY AND

SUBTRACT . 24-42
VECTOR FP PERFORM SIGN

OPERATION. 24-44
VECTOR FP SQUARE ROOT 24-45
VECTOR FP SUBTRACT 24-46
VECTOR FP TEST DATA CLASS

IMMEDIATE . 24-47

The vector facility for z/Architecture provides support
for short-format, long-format, and extended format
binary-floating-point (BFP) operations. Numerically,
the results in each element are the same as would
occur as if an instruction in Chapter 19 was used to
compute the result. Some instructions have different
result figures noting changes due to different excep-
tion handling described below.

IEEE Exception Handling

When a vector instruction is executed and a trapping
IEEE exception condition is encountered, instruction
execution is suppressed for all elements, except that
the floating-point-control register is updated with the
VXC. The index in the VXC is always the index of the
source element that caused the trapping exception
except for once special case in VECTOR LOAD
LENGTHENED (see the programming note on
page 24-27). If trapping vector-processing exception
conditions exist for multiple elements, the exception
of the lowest-indexed source element is recognized.

When either a trapping IEEE overflow or IEEE under-
flow exception occur concurrently on the same ele-
ment with a trapping IEEE inexact exception, only the
IEEE overflow or IEEE underflow exception is recog-
nized.

When a vector instruction is executed, no trapping
IEEE exceptions are encountered on any elements,
and a non-trapping IEEE exception condition is
encountered on an element, the flag bit for that
exception is set in the floating-point-control (FPC)
register and the IEEE defined default value is placed
in the corresponding element of the target operand. If
multiple elements have non-trapping IEEE exception
conditions then each element sets the flag bit in the
FPC register and the defined default values are
placed in the corresponding elements of the target
operand.

Result Figures

Concise descriptions of the results produced by
many of the vector floating point instructions are
made by means of figures which contain columns
and rows representing all possible combinations of
data class for the source operand elements of an
instruction. The information shown at the intersection
of a row and a column is one or more symbols repre-
senting the result or results produced for that particu-
lar combination of source-operand element data
classes. Explanations of the symbols used are con-
tained in each figure. In many cases, the explanation
of a particular result is in the form of a cross refer-
ence to another figure. In many cases, the informa-

24-2 The z/Architecture CPU Architecture

tion shown at the intersection consists of several
symbols separated by commas. All such results are
produced unless one of the results for an element is
a program interruption. In the case of a program
interruption on any element, the operation is sup-
pressed.

Figure 24-1, “IEEE Exception and Flag Abbrevia-
tions” on page 24-2 shows IEEE exceptions and flag
abbreviations that are used in the result figures.

Instructions

Each instruction has an Extended Mnemonic section
which describes recommended extended mnemon-
ics and their corresponding machine assembler syn-
tax. Not all assemblers may provide these
mnemonics.

Most vector floating-point instructions have a single
element control bit. If this bit is set to one, indicating
only one element is to be executed, performance
may be improved on some models. When the single
element control bit is set the bit positions of all other
elements besides the zero indexed element are
unpredictable A mnemonic with the initial V replaced
with a W indicates the instruction will only operate on
a single element.

Programming Note: When the vector-enhance-
ments facility 2 is installed, the following instructions
are extended to provide conversion between BFP
short format and word sized integer:

• VECTOR FP CONVERT FROM FIXED
• VECTOR FP CONVERT FROM LOGICAL
• VECTOR FP CONVERT TO FIXED
• VECTOR FP CONVERT TO LOGICAL

To distinguish which functions are provided, alterna-
tive names and mnemonics are assigned to these
instructions.

Exception FPC
IEEE
Mask

Bit

IEEE Flag

Name Abbr.
FPC
Bit Abbr.

IEEE invalid operation Xi1 0.0 1.0 SFi
IEEE division by zero Xz2 0.1 1.1 SFz
IEEE overflow Xo 0.2 1.2 SFo
IEEE underflow Xu 0.3 1.3 SFu
IEEE inexact Xx 0.4 1.4 SFx

Explanation:

1 The symbol “Xi:” followed by a list of results in a
figure indicates that, when FPC 0.0 is zero, then
instruction execution is completed by setting SFi
(FPC 1.0) to one and producing the indicated
results; and when FPC 0.0 is one, then
instruction execution is suppressed, if the
element is the leftmost element upon which an
exception is recognized the vector interrupt
code (VIC) in the vector exception code (VXC)
is set to 1 hex, the VIX is set to the index of the
element recognizing the exception, and a
program interruption for a vector-processing
exception occurs.

2 The symbol “Xz:” followed by a list of results in a
figure indicates that, when FPC 0.1 is zero, then
instruction execution is completed by setting
SFz (FPC 1.1) to one and producing the
indicated results; and when FPC 0.1 is one,
then instruction execution is suppressed if the
element is the leftmost element upon which an
exception is recognized the vector interrupt
code (VIC) in the vector exception code (VXC)
is set to 2 hex, the VIX is set to the index of the
element recognizing the exception, and a
program interruption for a data exception
occurs.

Figure 24-1. IEEE Exception and Flag Abbreviations

Vector Floating-Point Instructions 24-3

Name
Mne-

monic Characteristics
Op-

code Page
VECTOR FP ADD VFA VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx E7E3 24-4
VECTOR FP COMPARE SCALAR WFC VRR-a C VF ¤7,9 SP Dv Xi E7CB 24-7
VECTOR FP COMPARE AND SIGNAL SCALAR WFK VRR-a C VF ¤7,9 SP Dv Xi E7CA 24-8
VECTOR FP COMPARE EQUAL VFCE VRR-c C* VF ¤7,9 SP Dv Xi E7E8 24-9
VECTOR FP COMPARE HIGH VFCH VRR-c C* VF ¤7,9 SP Dv Xi E7EB 24-11
VECTOR FP COMPARE HIGH OR EQUAL VFCHE VRR-c C* VF ¤7,9 SP Dv Xi E7EA 24-13
VECTOR FP CONVERT FROM FIXED VCFPS VRR-a V2 ¤7,9 SP Dv Xx E7C3 24-15
VECTOR FP CONVERT FROM FIXED 64-BIT VCDG VRR-a VF ¤7,9 SP Dv Xx E7C3 24-15
VECTOR FP CONVERT FROM LOGICAL VCFPL VRR-a V2 ¤7,9 SP Dv Xx E7C1 24-17
VECTOR FP CONVERT FROM LOGICAL 64-BIT VCDLG VRR-a VF ¤7,9 SP Dv Xx E7C1 24-17
VECTOR FP CONVERT TO FIXED VCSFP VRR-a V2 ¤7,9 SP Dv Xi Xx E7C2 24-18
VECTOR FP CONVERT TO FIXED 64-BIT VCGD VRR-a VF ¤7,9 SP Dv Xi Xx E7C2 24-18
VECTOR FP CONVERT TO LOGICAL VCLFP VRR-a V2 ¤7,9 SP Dv Xi Xx E7C0 24-20
VECTOR FP CONVERT TO LOGICAL 64-BIT VCLGD VRR-a VF ¤7,9 SP Dv Xi Xx E7C0 24-20
VECTOR FP DIVIDE VFD VRR-c VF ¤7,9 SP Dv Xi Xz Xo Xu Xx E7E5 24-22
VECTOR LOAD FP INTEGER VFI VRR-a VF ¤7,9 SP Dv Xi Xx E7C7 24-24
VECTOR FP LOAD LENGTHENED VFLL VRR-a VF ¤7,9 SP Dv Xi E7C4 24-26
VECTOR FP LOAD ROUNDED VFLR VRR-a VF ¤7,9 SP Dv Xi Xo Xu Xx E7C5 24-27
VECTOR FP MAXIMUM VFMAX VRR-c V1 ¤7,9 SP Dv Xi E7EF 24-28
VECTOR FP MINIMUM VFMIN VRR-c V1 ¤7,9 SP Dv Xi E7EE 24-34
VECTOR FP MULTIPLY VFM VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx E7E7 24-40
VECTOR FP MULTIPLY AND ADD VFMA VRR-e VF ¤7,9 SP Dv Xi Xo Xu Xx E78F 24-42
VECTOR FP MULTIPLY AND SUBTRACT VFMS VRR-e VF ¤7,9 SP Dv Xi Xo Xu Xx E78E 24-42
VECTOR FP NEGATIVE MULTIPLY AND ADD VFNMA VRR-e V1 ¤7,9 SP Dv Xi Xo Xu Xx E79F 24-42
 VECTOR FP NEGATIVE MULTIPLY AND
SUBTRACT

VFNMS VRR-e V1 ¤7,9 SP Dv Xi Xo Xu Xx E79E 24-42

VECTOR FP PERFORM SIGN OPERATION VFPSO VRR-a VF ¤7,9 SP Dv E7CC 24-44
VECTOR FP SQUARE ROOT VFSQ VRR-a VF ¤7,9 SP Dv Xi Xx E7CE 24-45
VECTOR FP SUBTRACT VFS VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx E7E2 24-46
VECTOR FP TEST DATA CLASS IMMEDIATE VFTCI VRI-e C VF ¤7,9 SP Dv E74A 24-47

Explanation:

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.

C Condition code set.

C* Condition code optionally set.

Dv Vector-instruction data exception

SP Specification exception.

V1 Vector-enhancements facility 1

V2 Vector-enhancements facility 2

VF Vector facility for z/Architecture

VRI VRI instruction format

VRR VRR instruction format

Xi IEEE invalid-operation vector processing exception.

Xo IEEE overflow vector processing exception.

Xu IEEE underflow vector processing exception.

Xx IEEE inexact vector processing exception.

Xz IEEE division-by-zero vector processing exception.

Figure 24-2. Summary of Vector Floating-Point Instructions

24-4 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 A
D

D VECTOR FP ADD

VFA V1,V2,V3,M4,M5 [VRR-c]

The floating-point element or elements of the third
operand are added to the corresponding floating-
point element or elements of the second operand.
The results are placed in the corresponding elements
of the first operand. The size of the operand ele-
ments is determined by the floating-point-format con-
trol in the M4 field. The operand elements all are
treated as BFP numbers of the specified format.

If the corresponding elements of both operands are
finite numbers, they are added algebraically, forming
an intermediate sum. The intermediate sum, if non-
zero, is rounded to the operand format according to
the current BFP rounding mode. The sum is then
placed at the result location.

The sign of the sum is determined by the rules of
algebra. This also applies to a result of zero:

• If the result of rounding a nonzero intermediate
sum is zero, the sign of the zero result is the sign
of the intermediate sum.

• If the sum of two operand elements with opposite
signs is exactly zero, the sign of the result is plus
in all rounding methods except round toward -,
in which method the sign is minus.

• The sign of the sum x plus x is the sign of x, even
when x is zero.

If one operand element is an infinity and the other is
a finite number, the result is that infinity. If both oper-
and elements are infinities of the same sign, the
result is the same infinity. If the two operand ele-
ments are infinities of opposite signs, an IEEE-
invalid-operation exception is recognized.

See Figure 24-3 on page 24-5 for detailed informa-
tion on the results for each element.

The M4 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception

is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• Reserved: Bits 1 to 3 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid Operation
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

‘E7’ V1 V2 V3 / / / / / / / / M5 M4 RXB ‘E3’
0 8 12 16 20 28 32 36 40 47

M4 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFASB V1,V2,V3 VFA V1,V2,V3,2,0
VFADB V1,V2,V3 VFA V1,V2,V3,3,0

Vector Floating-Point Instructions 24-5

V
E

C
T

O
R

 F
P

 A
D

D

WFASB V1,V2,V3 VFA V1,V2,V3,2,8
WFADB V1,V2,V3 VFA V1,V2,V3,3,8
WFAXB V1,V2,V3 VFA V1,V2,V3,4,8

Extended Mnemonic Base Mnemonic

Second
Operand
Element

(a) Is

Results for VECTOR FP ADD (a+b) when Third Operand Element (b) Is

- -Nn -Dn -0 +0 +Dn +Nn + QNaN SNaN
- T(-) T(-) T(-) T(-) T(-) T(-) T(-) Xi:

T(dNaN)
T(b) Xi: T(b*)

-Nn T(-) R(a+b) R(a+b) T(a) T(a) R(a+b) R(a+b) T(+) T(b) Xi: T(b*)
-Dn T(-) R(a+b) R(a+b) R(a) R(a) R(a+b) R(a+b) T(+) T(b) Xi: T(b*)
-0 T(-) T(b) R(b) T(-0) Rezd R(b) T(b) T(+) T(b) Xi: T(b*)
+0 T(-) T(b) R(b) Rezd T(+0) R(b) T(b) T(+) T(b) Xi: T(b*)

+Dn T(-) R(a+b) R(a+b) R(a) R(a) R(a+b) R(a+b) T(+) T(b) Xi: T(b*)
+Nn T(-) R(a+b) R(a+b) T(a) T(a) R(a+b) R(a+b) T(+) T(b) Xi: T(b*)
+ Xi:

T(dNaN)
T(+) T(+) T(+) T(+) T(+) T(+) T(+) T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)
SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand element location.
dNaN Default NaN.
Dn Subnormal number.
Nn Normal number.
R(v) Rounding and range action is performed on the value v. See Figure 24-4 on page 24-6.
Rezd Exact zero-difference result. See Figure 24-4 on page 24-6.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-3. Results: VECTOR FP ADD

24-6 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 A
D

D

Range of v Case

Nontrap Result (r) when Effective Rounding Method Is

To Nearest
with ties to

even Toward 0 Toward + Toward -

Prepare for
shorter

precision

v < -Nmax, g < -Nmax Overflow -1 -Nmax -Nmax -1 -Nmax

v < -Nmax, g = -Nmax Normal -Nmax -Nmax -Nmax – -Nmax

-Nmax v -Nmin Normal g g g g g

-Nmin < v -Dmin Tiny d* d d d* d

-Dmin < v < -Dmin/2 Tiny -Dmin -0 -0 -Dmin -Dmin

-Dmin/2 v < 0 Tiny -0 -0 -0 -Dmin -Dmin

v = 0 Exact zero difference2 +0 +0 +0 -0 +0

0 < v +Dmin/2 Tiny +0 +0 +Dmin +0 +Dmin

+Dmin/2 < v < +Dmin Tiny +Dmin +0 +Dmin +0 +Dmin

+Dmin v < +Nmin Tiny d* d d* d d

+Nmin v +Nmax Normal g g g g g

+Nmax < v, g = +Nmax Normal +Nmax +Nmax – +Nmax +Nmax

+Nmax < v, +Nmax < g Overflow +1 +Nmax +1 +Nmax +Nmax

Explanation:

– This situation cannot occur.
* The rounded value, in the extreme case, may be Nmin. In this case, the exceptions are underflow, inexact and

incremented.
1 The nontrap result r is considered to have been incremented.
2 The exact-zero-difference case applies only to VECTOR FP ADD, VECTOR FP SUBTRACT, VECTOR FP

MULTIPLY AND ADD, and VECTOR FP MULTIPLY AND SUBTRACT. For all other vector BFP operations, a zero
result is detected by inspection of the source operand elements without use of the R(v) function.

d The denormalized value. The value derived when the precise intermediate value (v) is rounded to the format of
the target, including both precision and bounded exponent range. Except as explained in note *, this is a
subnormal number.

g The precision-rounded value. The value derived when the precise intermediate value (v) is rounded to the
precision of the target, but assuming an unbounded exponent range.

v Precise intermediate value. This is the value, before rounding, assuming unbounded precision and an unbounded
exponent range. For VECTOR LOAD ROUNDED, v is the source value (a).

Dmin Smallest (in magnitude) representable subnormal number in the target format.
Nmax Largest (in magnitude) representable finite number in the target format.
Nmin Smallest (in magnitude) representable normal number in the target format.

Figure 24-4. Action for R(v): Rounding and Range Function (Part 1 of 2)

Vector Floating-Point Instructions 24-7

V
E

C
T

O
R

 F
P

 C
O

M
P

A
R

E
 S

C
A

L
A

R

VECTOR FP COMPARE SCALAR

WFC V1,V2,M3,M4 [VRR-a]

The zero-indexed floating-point element of the first
operand is compared with the zero-indexed floating-
point element of the second operand, and the condi-
tion code is set to indicate the result. The operand
elements are all treated as BFP numbers of the
specified format.

If both operand elements are finite numbers, the
comparison is algebraic and follows the procedure for
BFP subtraction, except that the difference is dis-
carded after setting the condition code, and both
operand elements remain unchanged. If the differ-
ence is exactly zero with either sign, the operand ele-

ments are equal; this includes zero operand
elements (so +0 equals -0). If a nonzero difference is
positive or negative, the first operand element is high
or low, respectively.

+ compares greater than any finite number, and all
finite numbers compare greater than -. Two infinity
operand elements of like sign compare equal.

Numeric comparison is exact, and the condition code
is determined for finite operand elements as if range
and precision were unlimited. No overflow or under-
flow exception can occur.

If either or both operand elements are QNaNs and
neither operand element is an SNaN, the comparison
result is unordered, and condition code 3 is set.

If either or both operand elements are SNaNs, an
IEEE-invalid-operation exception is recognized. If the
IEEE invalid-operation mask bit is one, a program

Case

Is r
Inexact

(rv)

Overflow
Mask

(FPC 0.2)

Underflow
Mask

(FPC 0.3)

IEEE
Inexact

Exception
Control
(XxC)2

Inexact
Mask

(FPC 0.4) Results

Overflow Yes1 0 – 1 – T(r), SFo1

Overflow Yes1 0 – 0 0 T(r), SFo1, SFx1

Overflow Yes1 0 – 0 1 PIV(5)

Overflow Yes1 1 – – – PIV(3)

Normal No – – – – T(r)

Normal Yes – – 1 – T(r)

Normal Yes – – 0 0 T(r), SFx1

Normal Yes – – 0 1 PIV(5)

Tiny No – 0 – – T(r)

Tiny No – 1 – – PIV(4)

Tiny Yes – 0 1 – T(r), SFu1

Tiny Yes – 0 0 0 T(r), SFu1, SFx1

Tiny Yes – 0 0 1 PIV(5)

Tiny Yes – 1 – – PIV(4)

Explanation:

– The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
2 If no XxC is defined for an instruction it is assumed to be zero.
r Nontrap result as defined in Part 1 of this figure.
v Precise intermediate value. This is the value, before rounding, assuming unbounded precision

and unbounded exponent range.
PIV(h) Program interruption for vector-processing exception, with VXC containing the element index

and a VIC of h in hex.
SFo IEEE overflow flag, FPC 1.2.
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand element location.

Figure 24-4. Action for R(v): Rounding and Range Function (Part 2 of 2)

‘E7’ V1 V2 / / / / / / / / / / / / M4 M3 RXB ‘CB’
0 8 12 16 28 32 36 40 47

24-8 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 C
O

M
P

A
R

E
 A

N
D

 S
IG

N
A

L
 S

C
A

L
A

R interruption for a vector-processing exception with a
VXC indicating an IEEE invalid-operation occurs. If
the IEEE-invalid-operation mask bit is zero, the IEEE-
invalid-operation flag bit is set to one, and instruction
execution is completed by setting condition code 3.

See Figure 19-14, “Results: COMPARE” on
page 19-18 for a detailed description of the results of
this instruction substituting the first operand element
for (a) and the second operand element for (b).

The M3 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

The M4 field must be zero otherwise a specification
exception is recognized.

Resulting Condition Code:

0 Operand elements equal
1 First operand element low
2 First operand element high
3 Operand elements unordered

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC FE, Vector instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

Programming Notes:

1. VECTOR FP COMPARE SCALAR may be used
to set a condition code to be used by a subse-
quent branch for program control flow.

2. VECTOR FP COMPARE SCALAR may be used
to implement those comparisons which are
required by ANSI/IEEE Standard 754-2008 to not
recognize an exception when the result is unor-
dered due to a QNaN.

VECTOR FP COMPARE AND
SIGNAL SCALAR

WFK V1,V2,M3,M4 [VRR-a]

The zero-indexed first operand floating-point element
is compared with the zero-indexed second operand
floating-point element, and the condition code is set
to indicate the result. The operand elements are all
treated as BFP numbers of the specified format. The
operation is the same as for VECTOR FP COMPARE
SCALAR except that QNaN operand elements cause
an IEEE-invalid-operation exception to be recog-
nized. Thus, QNaN operand elements are treated as
if they were SNaNs.

See Figure 19-16, “Results: COMPARE AND SIG-
NAL” on page 19-19 for a detailed description of the
results of this instruction substituting the first operand
element for (a) and the second operand element for
(b).

The M3 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception

M3 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

Extended Mnemonic Base Mnemonic
WFCSB V1,V2 WFC V1,V2,2,0
WFCDB V1,V2 WFC V1,V2,3,0
WFCXB V1,V2 WFC V1,V2,4,0

‘E7’ V1 V2 / / / / / / / / / / / / M4 M3 RXB ‘CA’

0 8 12 16 28 32 36 40 47

Vector Floating-Point Instructions 24-9

V
E

C
T

O
R

 F
P

 C
O

M
P

A
R

E
 E

Q
U

A
Lis recognized. If the vector-enhancements facility 1 is

not installed the values 2 and 4 are reserved.

The M4 field must be zero otherwise a specification
exception is recognized.

Resulting Condition Code:

0 Operand elements equal
1 First operand element low
2 First operand element high
3 Operand elements unordered

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

Programming Notes:

1. VECTOR FP COMPARE AND SIGNAL SCALAR
may be used to set a condition code to be used
by a subsequent branch for program control flow.

2. VECTOR FP COMPARE AND SIGNAL SCALAR
may be used to implement those comparisons
which are required by ANSI/IEEE Standard 754-
2008 to recognize an exception when the result
is unordered due to a QNaN.

VECTOR FP COMPARE EQUAL

VFCE V1,V2,V3,M4,M5,M6 [VRR-c]

The floating-point element or elements of the second
operand are compared for equality with the corre-
sponding element or elements of the third operand. If
equal, the bits of the corresponding element in the
first operand are set to all ones, otherwise the bits
are set to all zeros. The size of the operand elements
is determined by the floating-point-format control in
the M4 field. The second and third operand elements
are treated as BFP numbers of the specified format.

If any of the elements in the second or third operands
used in the comparison are SNaNs, an IEEE invalid-
operation exception is recognized. If the vector-
enhancements facility 1 is installed and the signal-if-
QNaN (SQ) control is one and any of the elements in
the second or third operands used in the comparison
are QNaNs, an IEEE invalid-operation exception is
also recognized. If the IEEE invalid-operation mask
bit is one, a program interruption with VXC set for
IEEE invalid-operation and the corresponding ele-
ment index occurs and the operation is suppressed.
If the IEEE invalid-operation mask bit is zero, the bits
of the corresponding element in the first operand are
set to zeros and the IEEE invalid-operation flag bit is
set in the FPC register.

See Figure 24-5 on page 24-11 for a detailed
description of the results for each element.

The M4 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

M3 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

Extended Mnemonic Base Mnemonic
WFKSB V1,V2 WFK V1,V2,2,0
WFKDB V1,V2 WFK V1,V2,3,0
WFKXB V1,V2 WFK V1,V2,4,0

‘E7’ V1 V2 V3 / / / / M6 M5 M4 RXB ‘E8’
0 8 12 16 20 24 28 32 36 40 47

M4 Floating-Point Format
0-1 Reserved
2 Short format

3 Long format

4 Extended format

5-15 Reserved

24-10 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 C
O

M
P

A
R

E
 E

Q
U

A
L The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . The values of all other ele-
ments in the second and third operands are
ignored. If bit 0 is set to zero, the operation
occurs on all elements in the vector.

• Signal-on-QNaN (SQ): If bit 1 is set to one, a
QNaN in any element of the second or third oper-
ands will signal an IEEE invalid-operation excep-
tion. If bit 1 is set to zero a QNaN will not signal
an IEEE invalid-operation exception.

• Reserved: Bits 2, 3, and if the vector-enhance-
ments facility 1 is not installed, bit 1 are reserved
and must be zero. Otherwise, a specification
exception is recognized.

The M6 field has the following format:

The bits of the M6 field are defined as follows:

• Reserved: Bits 0, 1, and 2 are reserved and
must be zero. Otherwise, a specification excep-
tion is recognized.

• Condition Code Set (CS): If bit 3 is 0, the code
remains unchanged. If the bit is one, the code is
set as described below.

Resulting Condition Code: When Bit 3 of the M6

field is one, the code is set as follows:

0 All elements equal (All T results in Figure 24-5)
1 Mix of equal, and unequal or unordered elements

(A mix of T and F results in Figure 24-5)
2 --
3 All elements not equal or unordered (All F results

in Figure 24-5)

Otherwise, the code remains unchanged.

IEEE Exceptions:

• Invalid Operation

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

S
S
Q

/ /

0 1 3

/ / /
C
S

0 2 3

Extended Mnemonic Base Mnemonic
VFCESB V1,V2,V3 VFCE V1,V2,V3,2,0,0
VFCESBS V1,V2,V3 VFCE V1,V2,V3,2,0,1
VFCEDB V1,V2,V3 VFCE V1,V2,V3,3,0,0
VFCEDBS V1,V2,V3 VFCE V1,V2,V3,3,0,1
WFCESB V1,V2,V3 VFCE V1,V2,V3,2,8,0
WFCESBS V1,V2,V3 VFCE V1,V2,V3,2,8,1
WFCEDB V1,V2,V3 VFCE V1,V2,V3,3,8,0
WFCEDBS V1,V2,V3 VFCE V1,V2,V3,3,8,1
WFCEXB V1,V2,V3 VFCE V1,V2,V3,4,8,0
WFCEXBS V1,V2,V3 VFCE V1,V2,V3,4,8,1
VFKESB V1,V2,V3 VFCE V1,V2,V3,2,4,0
VFKESBS V1,V2,V3 VFCE V1,V2,V3,2,4,1
VFKEDB V1,V2,V3 VFCE V1,V2,V3,3,4,0
VFKEDBS V1,V2,V3 VFCE V1,V2,V3,3,4,1
WFKESB V1,V2,V3 VFCE V1,V2,V3,2,12,0
WFKESBS V1,V2,V3 VFCE V1,V2,V3,2,12,1
WFKEDB V1,V2,V3 VFCE V1,V2,V3,3,12,0
WFKEDBS V1,V2,V3 VFCE V1,V2,V3,3,12,1
WFKEXB V1,V2,V3 VFCE V1,V2,V3,4,12,0
WFKEXBS V1,V2,V3 VFCE V1,V2,V3,4,12,1

Vector Floating-Point Instructions 24-11

V
E

C
T

O
R

 F
P

 C
O

M
P

A
R

E
 H

IG
HProgramming Note: Condition code 1 will never be

presented if the S-bit is set to one.

VECTOR FP COMPARE HIGH

VFCH V1,V2,V3,M4,M5,M6 [VRR-c]

The floating-point element or elements of the second
operand are compared with each corresponding
floating-point element or elements of the third oper-
and. If the element in the second operand is greater
than the element in the third operand, the bit posi-
tions of the corresponding element in the first oper-
and are set to one. Otherwise, the bit positions in the
corresponding element of the first operand are set to
zeros. The size of the operand elements is deter-
mined by the floating-point-format control in the M4

field. The second and third operand elements are
treated as BFP numbers of the specified format.

If any of the elements in the second or third operands
used in the comparison are SNaNs, an IEEE invalid-
operation exception is recognized. If the vector-
enhancements facility 1 is installed and the signal-if-
QNaN (SQ) control is one and any of the elements in
the second or third operands used in the comparison

are QNaNs, an IEEE invalid-operation exception is
also recognized.If the IEEE invalid-operation mask
bit is one, a program interruption with a VXC indicat-
ing and IEEE invalid-operation and the correspond-
ing element index occurs and the operation is
suppressed. If the IEEE invalid-operation mask bit is
zero, the bits of the corresponding element in the first
operand are set to zeros and the IEEE invalid-opera-
tion flag bit is set in the FPC register.

See Figure 24-6 on page 24-13 for a detailed
description of the results for each element.

The M4 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

Second
Operand

Element (a)
Is

Results for VECTOR FP COMPARE EQUAL (a:b) when Third Operand Element (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T F F F F F CXi: F Xi: F

-Fn F C(a=b) F F F F CXi: F Xi: F

-0 F F T T F F CXi: F Xi: F

+0 F F T T F F CXi: F Xi: F

+Fn F F F F C(a=b) F CXi: F Xi: F

+ F F F F F T CXi: F Xi: F

QNaN CXi: F CXi: F CXi: F CXi: F CXi: F CXi: F CXi: F Xi: F

SNaN Xi: F Xi: F Xi: F Xi: F Xi: F Xi: F Xi: F Xi: F

Explanation:

T Corresponding element in operand one is set to all ones
F Corresponding element in operand one is set to all zeros
C(a=b) Basic compare result. T if a=b and F if ab.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
CXi: IEEE invalid-operation exception if the vector-enhancements facility 1 is installed and the SQ control in M5 is one.

The results shown are produced only when FPC 0.0 is zero.

Figure 24-5. Results: VECTOR FP COMPARE EQUAL

‘E7’ V1 V2 V3 / / / / M6 M5 M4 RXB ‘EB’
0 8 12 16 20 24 28 32 36 40 47

M4 Floating-Point Format
0-1 Reserved

24-12 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 C
O

M
P

A
R

E
 H

IG
H

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . The values of all other ele-
ments in the second and third operands are
ignored. If bit 0 is set to zero, the operation
occurs on all elements in the vector.

• Signal-on-QNaN (SQ): If bit 1 is set to one, a
QNaN in any element of the second or third oper-
ands will signal an IEEE invalid-operation excep-
tion. If bit 1 is set to zero a QNaN will not signal
an IEEE invalid-operation exception.

• Reserved: Bits 2, 3, and if the vector-enhance-
ments facility 1 is not installed, bit 1 are reserved
and must be zero. Otherwise, a specification
exception is recognized.

The M6 field has the following format:

The bits of the M6 field are defined as follows:

• Reserved: Bits 0, 1, and 2 are reserved and
must be zero. Otherwise, a specification excep-
tion is recognized.

• Condition Code Set (CS): If bit 3 is 0, the code
remains unchanged. If the bit is one, the code is
set as described below.

Resulting Condition Code: When Bit 3 of the M6

field is one, the code is set as follows:

0 All elements greater than (All T results in
Figure 24-6)

1 Mix of greater than, and non-greater than or
unordered elements (A mix of T and F results in
Figure 24-6)

2 --
3 All elements not greater than, or unordered (All F

results in Figure 24-6)

Otherwise, the code remains unchanged.

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

2 Short format

3 Long format

4 Extended format
5-15 Reserved

S
S
Q

/ /

0 1 3

/ / /
C
S

0 2 3

M4 Floating-Point Format

Extended Mnemonic Base Mnemonic
VFCHSB V1,V2,V3 VFCH V1,V2,V3,2,0,0
VFCHSBS V1,V2,V3 VFCH V1,V2,V3,2,0,1
VFCHDB V1,V2,V3 VFCH V1,V2,V3,3,0,0
VFCHDBS V1,V2,V3 VFCH V1,V2,V3,3,0,1
WFCHSB V1,V2,V3 VFCH V1,V2,V3,2,8,0
WFCHSBS V1,V2,V3 VFCH V1,V2,V3,2,8,1
WFCHDB V1,V2,V3 VFCH V1,V2,V3,3,8,0
WFCHDBS V1,V2,V3 VFCH V1,V2,V3,3,8,1
WFCHXB V1,V2,V3 VFCH V1,V2,V3,4,8,0
WFCHXBS V1,V2,V3 VFCH V1,V2,V3,4,8,1
VFKHSB V1,V2,V3 VFCH V1,V2,V3,2,4,0
VFKHSBS V1,V2,V3 VFCH V1,V2,V3,2,4,1
VFKHDB V1,V2,V3 VFCH V1,V2,V3,3,4,0
VFKHDBS V1,V2,V3 VFCH V1,V2,V3,3,4,1
WFKHSB V1,V2,V3 VFCH V1,V2,V3,2,12,0
WFKHSBS V1,V2,V3 VFCH V1,V2,V3,2,12,1
WFKHDB V1,V2,V3 VFCH V1,V2,V3,3,12,0
WFKHDBS V1,V2,V3 VFCH V1,V2,V3,3,12,1
WFKHXB V1,V2,V3 VFCH V1,V2,V3,4,12,0
WFKHXBS V1,V2,V3 VFCH V1,V2,V3,4,12,1

Vector Floating-Point Instructions 24-13

V
E

C
T

O
R

 F
P

 C
O

M
P

A
R

E
 H

IG
H

 O
R

 E
Q

U
A

LProgramming Note: Condition Code 1 will never be
presented if the S-bit is set to one.

VECTOR FP COMPARE HIGH OR
EQUAL

VFCHE V1,V2,V3,M4,M5,M6 [VRR-c]

The floating-point element or elements of the second
operand are compared with each corresponding
floating-point element or elements of the third oper-
and. If the element in the second operand is greater
than or equal to the element in the third operand, the
bit positions of the corresponding element in the first
operand are set to one. Otherwise the bit positions in
the corresponding element of the first operand are
set to zeros. The size of the operand elements is
determined by the floating-point-format control in the
M4 field. The second and third operand elements are
treated as BFP numbers of the specified format.

If any of the elements in the second or third operands
used in the comparison are SNaNs, an IEEE invalid-
operation exception is recognized. If the vector-
enhancements facility 1 is installed and the signal-if-
QNaN (SQ) control is one and any of the elements in
the second or third operands used in the comparison

are QNaNs, an IEEE invalid-operation exception is
also recognized. If the IEEE invalid-operation mask
bit is one, a program interruption with VXC set for
IEEE invalid-operation and the corresponding ele-
ment index occurs and the operation is suppressed.
If the IEEE invalid-operation mask bit is zero, the bits
of the corresponding element in the first operand are
set to zeros and the IEEE invalid-operation flag bit is
set in the FPC register.

See Figure 24-7 on page 24-15 for a detailed
description of the results for each element.

The M4 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

Second
Operand (a) Is

Results for COMPARE HIGH (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- F F F F F F CXi: F Xi: F

-Fn T C(a>b) F F F F CXi: F Xi: F

-0 T T F F F F CXi: F Xi: F

+0 T T F F F F CXi: F Xi: F

+Fn T T T T C(a>b) F CXi: F Xi: F

+ T T T T T F CXi: F Xi: F

QNaN CXi: F CXi: F CXi: F CXi: F CXi: F CXi: F CXi: F Xi: F

SNaN Xi: F Xi: F Xi: F Xi: F Xi: F Xi: F Xi: F Xi: F

Explanation:

T Corresponding element in operand one is set to all ones
F Corresponding element in operand one is set to all zeros
C(a>b) Basic compare results. T if a>b, F if ab
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
CXi: IEEE invalid-operation exception if the vector-enhancements facility 1 is installed and the SQ control in M5 is one.

The results shown are produced only when FPC 0.0 is zero.

Figure 24-6. Results: VECTOR FP COMPARE HIGH

‘E7’ V1 V2 V3 / / / / M6 M5 M4 RXB ‘EA’

0 8 12 16 20 24 28 32 36 40 47

M4 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format

4 Extended format
5-15 Reserved

24-14 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 C
O

M
P

A
R

E
 H

IG
H

 O
R

 E
Q

U
A

L The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . The values of all other ele-
ments in the second and third operands are
ignored. If bit 0 is set to zero, the operation
occurs on all elements in the vector.

• Signal-on-QNaN (SQ): If bit 1 is set to one, a
QNaN in any element of the second or third oper-
ands will signal an IEEE invalid-operation excep-
tion. If bit 1 is set to zero a QNaN will not signal
an IEEE invalid-operation exception.

• Reserved: Bits 2, 3, and if the vector-enhance-
ments facility 1 is not installed, bit 1 are reserved
and must be zero. Otherwise, a specification
exception is recognized.

The M6 field has the following format:

The bits of the M6 field are defined as follows:

• Reserved: Bits 0, 1, and 2 are reserved and
must be zero. Otherwise, a specification excep-
tion is recognized.

• Condition Code Set (CS): If bit 3 is 0, the code
remains unchanged. If the bit is one, the code is
set as described below.

Resulting Condition Code: When Bit 3 of the M6

field is one, the code is set as follows:

0 All elements greater than or equal (All T results
in Figure 24-7)

1 Mix of greater than or equal and less than or
unordered elements (A mix of T and F results in
Figure 24-7)

2 --
3 All elements less than or unordered (All F results

in Figure 24-7)

Otherwise, the code remains unchanged.

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

S
S
Q

/ /

0 1 3

/ / /
C
S

0 2 3

Extended Mnemonic Base Mnemonic
VFCHESB V1,V2,V3 VFCHE V1,V2,V3,2,0,0
VFCHESBS V1,V2,V3 VFCHE V1,V2,V3,2,0,1
VFCHEDB V1,V2,V3 VFCHE V1,V2,V3,3,0,0
VFCHEDBS V1,V2,V3 VFCHE V1,V2,V3,3,0,1
WFCHESB V1,V2,V3 VFCHE V1,V2,V3,2,8,0
WFCHESBS V1,V2,V3 VFCHE V1,V2,V3,2,8,1
WFCHEDB V1,V2,V3 VFCHE V1,V2,V3,3,8,0
WFCHEDBS V1,V2,V3 VFCHE V1,V2,V3,3,8,1
WFCHEXB V1,V2,V3 VFCHE V1,V2,V3,4,8,0
WFCHEXBS V1,V2,V3 VFCHE V1,V2,V3,4,8,1
VFKHESB V1,V2,V3 VFCHE V1,V2,V3,2,4,0
VFKHESBS V1,V2,V3 VFCHE V1,V2,V3,2,4,1
VFKHEDB V1,V2,V3 VFCHE V1,V2,V3,3,4,0
VFKHEDBS V1,V2,V3 VFCHE V1,V2,V3,3,4,1
WFKHESB V1,V2,V3 VFCHE V1,V2,V3,2,12,0
WFKHESBS V1,V2,V3 VFCHE V1,V2,V3,2,12,1
WFKHEDB V1,V2,V3 VFCHE V1,V2,V3,3,12,0
WFKHEDBS V1,V2,V3 VFCHE V1,V2,V3,3,12,1
WFKHEXB V1,V2,V3 VFCHE V1,V2,V3,4,12,0
WFKHEXBS V1,V2,V3 VFCHE V1,V2,V3,4,12,1

Vector Floating-Point Instructions 24-15

V
E

C
T

O
R

 F
P

 C
O

N
V

E
R

T
 F

R
O

M
 F

IX
E

DProgramming Note: Condition Code 1 will never be
presented if the S-bit is set to one.

VECTOR FP CONVERT FROM
FIXED

VCFPS V1,V2,M3,M4,M5 [VRR-a]

VCDG V1,V2,M3,M4,M5 [VRR-a]

The signed binary integer element or elements of the
second operand are converted to binary floating-
point numbers. The results are placed in the corre-
sponding element or elements of the first-operand
location. The first operand elements are treated as
BFP numbers.

The M3 field specifies the floating-point format as well
as the size of the binary integer. The floating-point
format determines the size of the elements within the
target vector register operand. If a reserved value is
specified, a specification exception is recognized. If
the vector-enhancements facility 2 is not installed, an

M3 field value of two is also invalid and a specification
exception is recognized.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector and the result is
placed in the zero-indexed element of the first
operand. In the absence of a trapping exception
condition, the bit positions of all other elements
in the first operand vector are unpredictable . If
bit 0 is set to zero, the operation occurs on all
elements in the vector.

Second
Operand (a) Is

Results for COMPARE HIGH OR EQUAL (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T F F F F F CXi: F Xi: F

-Fn T C(ab) F F F F CXi: F Xi: F

-0 T T T T F F CXi: F Xi: F

+0 T T T T F F CXi: F Xi: F

+Fn T T T T C(ab) F CXi: F Xi: F

+ T T T T T T CXi: F Xi: F

QNaN CXi: F CXi: F CXi: F CXi: F CXi: F CXi: F CXi: F Xi: F

SNaN Xi: F Xi: F Xi: F Xi: F Xi: F Xi: F Xi: F Xi: F

Explanation:

T Corresponding element in operand one is set to all ones
F Corresponding element in operand one is set to all zeros
C(ab) Basic compare results. See Figure 19-15 on page 19-18
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
CXi: IEEE invalid-operation exception if the vector-enhancements facility 1 is installed and the SQ control in M5 is one.

The results shown are produced only when FPC 0.0 is zero.

Figure 24-7. Results: VECTOR FP COMPARE HIGH OR EQUAL

‘E7’ V1 V2 / / / / / / / / M5 M4 M3 RXB ‘C3’

0 8 12 16 24 28 32 36 40 47

M3 Floating-Point Format
0-1 Reserved

2 Word to BFP short format

3 Doubleword to BFP long format
4-15 Reserved

S
X
x
C

/ /

0 1 2 3

24-16 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 C
O

N
V

E
R

T
 F

R
O

M
 F

IX
E

D • IEEE-inexact-exception control (XxC): Bit 1 of
the M4 field is the XxC bit. If XxC is zero, recogni-
tion of IEEE-inexact exception is not suppressed;
if XxC is one, recognition of IEEE-inexact excep-
tion is suppressed.

• Reserved: Bits 2 and 3 are reserved and must
contain zeros otherwise a specification is recog-
nized.

The converted result is rounded by the rounding
method as specified by the modifier in the M5 field:

M5 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M5 modifier other than 0, 1, or 3-7 is invalid. The
M5 field must designate a valid modifier; otherwise, a
specification exception is recognized.

When the M5 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode specified in
the FPC register. When the field is not zero, rounding

is performed as specified by the modifier, regardless
of the current BFP rounding mode.

See Figure 24-8 on page 24-17 for a detailed
description of the results for each element.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

Extended Mnemonic Base Mnemonic
VCDG V1,V2,M3,M4,M5 VCFPS V1,V2,M3,M4,M5

VCEFB V1,V2,M4,M5 VCFPS V1,V2,2,M4,M5

VCDGB V1,V2,M4,M5 VCFPS V1,V2,3,M4,M5

WCEFB V1,V2,M4,M5 VCFPS V1,V2,2,(8 | M4),M5

WCDGB V1,V2,M4,M5 VCFPS V1,V2,3,(8 | M4),M5

Vector Floating-Point Instructions 24-17

V
E

C
T

O
R

 F
P

 C
O

N
V

E
R

T
 F

R
O

M
 L

O
G

IC
A

L

VECTOR FP CONVERT FROM
LOGICAL

VCFPL V1,V2,M3,M4,M5 [VRR-a]

VCDLG V1,V2,M3,M4,M5 [VRR-a]

The unsigned binary integer element or elements in
the second operand are converted to binary floating-
point numbers. The results are placed in the corre-
sponding element or elements of the first-operand
location. The first operand elements are treated as
BFP numbers.

The M3 field specifies the floating-point format as well
as the size of the binary integer. The floating-point
format determines the size of the elements within the
target vector register operand. If a reserved value is

specified, a specification exception is recognized. If
the vector-enhancements facility 2 is not installed, an
M3 field value of two is also invalid and a specification
exception is recognized.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

Instruction

Results for Instructions with a Single Operand when Operand Element (a) Is

- -Fn -0 +0 +Fn + QNaN SNaN

VECTOR FP CONVERT FROM
FIXED

– Rf(a) – T(+0) Rf(a) – – –

VECTOR FP CONVERT FROM
LOGICAL

– – – T(+0) Rf(a) – – –

VECTOR FP LOAD
LENGTHENED

T(-) T(a)1 T(-0) T(+0) T(a)1 T(+) T(a)1 Xi: T(a*)1

VECTOR FP LOAD ROUNDED T(-) R(a) T(-0) T(+0) R(a) T(+) T(a)2 Xi: T(a*)2

VECTOR FP SQUARE ROOT Xi:
T(dNaN)

Xi:
T(dNaN)

T(-0) T(+0) R(a) T(+) T(a) Xi: T(a*)

Explanation:

– This situation cannot occur.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand element location.
1 The operand element is extended to the longer format by appending zeros on the right before it is placed at the

target operand element location.
2 The NaN is shortened to the target format by truncating the rightmost bits.
dNaN Default NaN.
Fn Finite nonzero number (includes both subnormal and normal).
R(v) Rounding and range action is performed on the value v. See Figure 24-4 on page 24-6.
Rf(a) The value a is converted to the precise intermediate value floating-point number v, and then action R(v) is

performed.
T(x) The value x is placed in the target operand element location if no trapping exceptions on other elements.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-8. Results: Single-Operand Instructions

‘E7’ V1 V2 / / / / / / / / M5 M4 M3 RXB ‘C1’

0 8 12 16 24 28 32 36 40 47

M3 Floating-Point Format
0-1 Reserved

2 Word to BFP short format

3 Doubleword to BFP long format
4-15 Reserved

S
X
x
C

/ /

0 1 2 3

24-18 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 C
O

N
V

E
R

T
 T

O
 F

IX
E

D • Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector and the result is
placed in the zero-indexed element of the first
operand. In the absence of a trapping exception
condition, the bit positions of all other elements
in the first operand vector are unpredictable . If
bit 0 is set to zero, the operation occurs on all
elements in the vector.

• IEEE-inexact-exception control (XxC): Bit 1 of
the M4 field is the XxC bit. If XxC is zero, recogni-
tion of IEEE-inexact exception is not suppressed;
if XxC is one, recognition of IEEE-inexact excep-
tion is suppressed.

• Reserved: Bits 2 and 3 are reserved and must
contain zeros otherwise a specification is recog-
nized.

The converted result is rounded by the rounding
method as specified by the modifier in the M5 field:

M5 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M5 modifier other than 0, 1, or 3-7 is invalid. The
M5 field must designate a valid modifier; otherwise, a
specification exception is recognized.

When the M5 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode specified in
the FPC register. When the field is not zero, rounding
is performed as specified by the modifier, regardless
of the current BFP rounding mode.

See Figure 24-8 on page 24-17 for a detailed
description of the results for each element.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction

• Operation (if the vector facility for z/Architecture
is not installed)

• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

VECTOR FP CONVERT TO FIXED

VCSFP V1,V2,M3,M4,M5 [VRR-a]

VCGD V1,V2,M3,M4,M5 [VRR-a]

The BFP floating-point element or elements of the
second operand are rounded to an integer value and
then converted to the fixed-point format. The signed
binary integer result is placed in the corresponding
element of the first-operand location. The second
operand elements are treated as BFP numbers.

If the second operand element is a finite number, it is
rounded to an integer value by the rounding method
as specified by the modifier in the M5 field:

M5 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M5 modifier other than 0, 1, or 3-7 is invalid. The
M5 field must designate a valid modifier; otherwise, a
specification exception is recognized.

When the M5 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode specified in

Extended Mnemonic Base Mnemonic
VCDLG V1,V2,M3,M4,M5 VCFPL V1,V2,M3,M4,M5

VCELFB V1,V2,M4,M5 VCFPL V1,V2,2,M4,M5

VCDLGB V1,V2,M4,M5 VCFPL V1,V2,3,M4,M5

WCELFB V1,V2,M4,M5 VCFPL V1,V2,2,(8 | M4),M5

WCDLGB V1,V2,M4,M5 VCFPL V1,V2,3,(8 | M4),M5

‘E7’ V1 V2 / / / / / / / / M5 M4 M3 RXB ‘C2’

0 8 12 16 24 28 32 36 40 47

Vector Floating-Point Instructions 24-19

V
E

C
T

O
R

 F
P

 C
O

N
V

E
R

T
 T

O
 F

IX
E

Dthe FPC register. When the field is not zero, rounding
is performed as specified by the modifier, regardless
of the current BFP rounding mode.

The sign of the result is the sign of the second oper-
and element, except that a zero result has a plus
sign.

See Figure 24-9 on page 24-19 for a detailed
description of the results for each element.

The M3 field specifies the floating-point format as well
as the size of the binary integer. The floating-point
format determines the size of the elements within the
target vector register operand. If a reserved value is
specified, a specification exception is recognized. If
the vector-enhancements facility 2 is not installed, an
M3 field value of two is also invalid and a specification
exception is recognized.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Single-Element-Control (S): If bit 0 of the M4

field is set to one, the operation takes place only
on the zero-indexed element in the vector and
the result is placed in the zero-indexed element
of the first operand. In the absence of a trapping
exception condition, the bit positions of all other

elements in the first operand vector are unpre-
dictable . If bit 0 is set to zero, the operation
occurs on all elements in the vector.

• IEEE-inexact-exception control (XxC): Bit 1 of
the M4 field is the XxC bit. If XxC is zero, recogni-
tion of IEEE-inexact exception is not suppressed;
if XxC is one, recognition of IEEE-inexact excep-
tion is suppressed.

• Reserved: Bits 2 and 3 are reserved and must
contain zeros otherwise a specification is recog-
nized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Inexact
• Invalid operation

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

M3 Floating-Point Format
0-1 Reserved

2 BFP short format to word

3 BFP long format to doubleword
4-15 Reserved

S
X
x
C

/ /

0 1 2 3

Extended Mnemonic Base Mnemonic
VCGD V1,V2,M3,M4,M5 VCSFP V1,V2,M3,M4,M5

VCFEB V1,V2,M4,M5 VCSFP V1,V2,2,M4,M5

VCGDB V1,V2,M4,M5 VCSFP V1,V2,3,M4,M5

WCFEB V1,V2,M4,M5 VCSFP V1,V2,2,(8 | M4),M5

WCGDB V1,V2,M4,M5 VCSFP V1,V2,3,(8 | M4),M5

Operand Element (a)

Is n
Inexact
(na)

Inv.-Op.
Mask

(FPC 0.0)

IEEE
Inexact

Exception
Control
(XxC)

Inexact
Mask

(FPC 0.4) Results

- a < MN, n < MN – 0 1 – T(MN), SFi1

- a < MN, n < MN – 0 0 0 T(MN), SFi1, SFx1

- a < MN, n < MN – 0 0 1 PIV(5)

- a < MN, n < MN – 1 – – PIV(1)

Figure 24-9. Results: VECTOR FP CONVERT TO FIXED 64

24-20 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 C
O

N
V

E
R

T
 T

O
 L

O
G

IC
A

L

VECTOR FP CONVERT TO
LOGICAL

VCLFP V1,V2,M3,M4,M5 [VRR-a

VCLGD V1,V2,M3,M4,M5 [VRR-a]

The BFP floating-point element or elements of the
second operand are rounded to an integer value and
then converted to the fixed-point format. The
unsigned binary integer result is placed in the corre-
sponding element of the first-operand location. The
second operand elements are treated as BFP num-
bers.

If the second operand element is a finite number, it is
rounded to an integer value by the rounding method
as specified by the modifier in the M5 field:

MN a < 0 No – – – T(f)

MN a < 0 Yes – 1 – T(f)

MN a < 0 Yes – 0 0 T(f), SFx1

MN a < 0 Yes – 0 1 PIV(5)

-0 No1 – – – T(0)

+0 No1 – – – T(0)

0 < a MP No – – – T(f)

0 < a MP Yes – 1 – T(f)

0 < a MP Yes – 0 0 T(f), SFx1

0 < a MP Yes – 0 1 T(f), PIV(5)

MP < a +, n > MP – 0 1 – T(MP), SFi1

MP < a +, n > MP – 0 0 0 T(MP), SFi1, SFx1

MP < a +, n > MP – 0 0 1 PIV(5)

MP < a +, n > MP – 1 – – PIV(1)

NaN – 0 1 – T(MN), SFi1

NaN – 0 0 0 T(MN), SFi1, SFx1

NaN – 0 0 1 PIV(5)

NaN – 1 – – PIV(1)

Explanation:

– The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
f The value n converted to a fixed-point result.
n The value derived when the source value (a) is rounded to a floating-point integer using the effective

rounding method.
MN Maximum negative number representable in the target fixed-point format.
MP Maximum positive number representable in the target fixed-point format.
PIV(h) Program interruption for vector-processing exception with VXC containing the element index and a

VIC of h in hex.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other

elements.

Operand Element (a)

Is n
Inexact
(na)

Inv.-Op.
Mask

(FPC 0.0)

IEEE
Inexact

Exception
Control
(XxC)

Inexact
Mask

(FPC 0.4) Results

Figure 24-9. Results: VECTOR FP CONVERT TO FIXED 64 (Continued)

‘E7’ V1 V2 / / / / / / / / M5 M4 M3 RXB ‘C0’
0 8 12 16 24 28 32 36 40 47

Vector Floating-Point Instructions 24-21

V
E

C
T

O
R

 F
P

 C
O

N
V

E
R

T
 T

O
 L

O
G

IC
A

LM5 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M5 modifier other than 0, 1, or 3-7 is invalid. The
M5 field must designate a valid modifier; otherwise, a
specification exception is recognized.

When the M5 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode specified in
the FPC register. When the field is not zero, rounding
is performed as specified by the modifier, regardless
of the current BFP rounding mode.

See Figure 24-10 on page 24-22 for a detailed
description of the results for each element.

The M3 field specifies the floating-point format as well
as the size of the binary integer. The floating-point
format determines the size of the elements within the
target vector register operand. If a reserved value is
specified, a specification exception is recognized. If
the vector-enhancements facility 2 is not installed, an
M3 field value of 2 is also invalid and a specification
exception is recognized.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector and the result is
placed in the zero-indexed element of the first
operand. In the absence of a trapping exception
condition, the bit positions of all other elements
in the first operand vector are unpredictable . If
bit 0 is set to zero, the operation occurs on all
elements in the vector.

• IEEE-inexact-exception control (XxC): Bit 1 of
the M4 field is the XxC bit. If XxC is zero, recogni-
tion of IEEE-inexact exception is not suppressed;
if XxC is one, recognition of IEEE-inexact excep-
tion is suppressed.

• Reserved: Bits 2 and 3 are reserved and must
contain zeros otherwise a specification is recog-
nized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Inexact
• Invalid operation

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

M3 Floating-Point Format
0-1 Reserved

2 BFP short format to word

3 BFP long format to doubleword
4-15 Reserved

S
X
x
C

/ /

0 1 2 3

Extended Mnemonic Base Mnemonic
VCLGD V1,V2,M3,M4,M5 VCLFP V1,V2,M3,M4,M5

VCLFEB V1,V2,M4,M5 VCLFP V1,V2,2,M4,M5

VCLGDB V1,V2,M4,M5 VCLFP V1,V2,3,M4,M5

WCLFEB V1,V2,M4,M5 VCLFP V1,V2,2,(8 | M4),M5

WCLGDB V1,V2,M4,M5 VCLFP V1,V2,3,(8 | M4),M5

24-22 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 D
IV

ID
E

VECTOR FP DIVIDE

VFD V1,V2,V3,M4,M5 [VRR-c]

The floating-point element or elements of the second
operand (the dividend) are divided by the corre-
sponding floating-point element or elements in the
third operand (the divisor), and the quotient or quo-
tients are placed at the corresponding elements in
first-operand location. No remainder is preserved.

Operand Element (a)

Is n
Inexact
(na)

Inv.-Op.
Mask

(FPC 0.0)

IEEE
Inexact

Exception
Control
(XxC)

Inexact
Mask

(FPC 0.4) Results

- a < 0, n < 0 – 0 1 – T(0), SFi1

- a < 0, n < 0 – 0 0 0 T(0), SFi1, SFx1

- a < 0, n < 0 – 0 0 1 PIV(5)

- a < 0, n < 0 – 1 – – PIV(1)

- < a < 0, n = 0 – – 1 – T(0)

- < a < 0, n = 0 – – 0 0 T(0), SFx1

- < a < 0, n = 0 – – 0 1 PIV(5)

-0 No1 – – – T(0)

+0 No1 – – – T(0)

0 < a MU No – – – T(f)

0 < a MU Yes – 1 – T(f)

0 < a MU Yes – 0 0 T(f), SFx1

0 < a MU Yes – 0 1 PIV(5)

MU < a +, n > MU – 0 1 – T(MU), SFi1

MU < a +, n > MU – 0 0 0 T(MU), SFi1, SFx1

MU < a +, n > MU – 0 0 1 PIV(5)

MU < a +, n > MU – 1 – – PIV(1)

NaN – 0 1 – T(0), SFi1

NaN – 0 0 0 T(0), SFi1, SFx1

NaN – 0 0 1 PIV(5)

NaN – 1 – – PIV(1)

Explanation:

– The results do not depend on this condition or mask bit.
1 This condition is true by virtue of the state of some condition to the left of this column.
f The value n converted to a fixed-point result.
n The value derived when the source value (a) is rounded to a floating-point integer using the

effective rounding method.
MU Maximum unsigned number representable in the target fixed-point format.
PIV(h) Program interruption for vector-processing exception with VXC containing the element index and

a VIC of h in hex.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other

elements.

Figure 24-10. Results: VECTOR FP CONVERT TO LOGICAL 64-BIT

‘E7’ V1 V2 V3 / / / / / / / / M5 M4 RXB ‘E5’

0 8 12 16 20 28 32 36 40 47

Vector Floating-Point Instructions 24-23

V
E

C
T

O
R

 F
P

 D
IV

ID
EThe operand elements are all treated as BFP num-

bers of the specified format.

If the divisor is nonzero and both the dividend and
divisor are finite numbers, the second operand ele-
ment is divided by the third operand element to form
an intermediate quotient. The intermediate quotient,
if nonzero, is rounded to the target format according
to the current BFP rounding mode.

When the dividend is a finite number and the divisor
is infinity, the result is zero.

The sign of the quotient, if the quotient is numeric, is
the exclusive or of the corresponding operand ele-
ment signs. This includes the sign of a zero or infinite
quotient.

If the divisor is zero but the dividend is a finite num-
ber, an IEEE-division-by-zero exception is recog-
nized. If the dividend and divisor are both zero, or if
both are infinity, regardless of sign, an IEEE-invalid-
operation exception is recognized.

See Figure 24-11 on page 24-24 for a detailed
description of the results of each element.

The M4 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• Reserved: Bits 1 to 3 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Division by zero
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics: M4 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFDSB V1,V2,V3 VFD V1,V2,V3,2,0
WFDSB V1,V2,V3 VFD V1,V2,V3,2,8
VFDDB V1,V2,V3 VFD V1,V2,V3,3,0
WFDDB V1,V2,V3 VFD V1,V2,V3,3,8
WFDXB V1,V2,V3 VFD V1,V2,V3,4,8

24-24 The z/Architecture CPU Architecture

V
E

C
T

O
R

 L
O

A
D

 F
P

 IN
T

E
G

E
R

VECTOR LOAD FP INTEGER

VFI V1,V2,M3,M4,M5 [VRR-a]

The floating-point element or elements of the second
operand are rounded to integer values in the same
floating-point format, and the results are placed in the
corresponding elements of the first-operand. The
size of the operand elements is determined by the
floating-point-format control in the M3 field. The first
and second operands are treated as BFP numbers.

The second operand elements, if finite numbers, are
rounded to an integer value by the rounding method
specified by the modifier in the M5 field:

M5 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M5 modifier other than 0, 1, or 3-7 is invalid. The
M5 field must designate a valid modifier; otherwise, a
specification exception is recognized.

When the M5 modifier field is zero, rounding is con-
trolled by the current BFP rounding mode in the FPC
register. When the field is not zero, rounding is per-
formed as specified by the modifier, regardless of the
current BFP rounding mode.

In the absence of an interruption, if the second oper-
and element is an infinity or a QNaN, the result is that
operand element; if the second operand element is
an SNaN, the result is the corresponding QNaN.

The sign of the result is the sign of the second oper-
and element, even when the result is zero.

The M3 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception

is recognized. If the vector-enhancements facility 1 is

Dividend
Element (a)

Results for DIVIDE (ab) when Divisor Element (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- Xi: T(dNaN) T(+) T(+) T(-) T(-) Xi: T(dNaN) T(b) Xi: T(b*)

-Fn T(+0) R(ab) Xz: T(+) Xz: T(-) R(ab) T(-0) T(b) Xi: T(b*)

-0 T(+0) T(+0) Xi: T(dNaN) Xi: T(dNaN) T(-0) T(-0) T(b) Xi: T(b*)

+0 T(-0) T(-0) Xi: T(dNaN) Xi: T(dNaN) T(+0) T(+0) T(b) Xi: T(b*)

+Fn T(-0) R(ab) Xz: T(-) Xz: T(+) R(ab) T(+0) T(b) Xi: T(b*)

+ Xi: T(dNaN) T(-) T(-) T(+) T(+) Xi: T(dNaN) T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand location.
Fn Finite nonzero number (includes both subnormal and normal).
R(v) Rounding and range action is performed on the value v. See Figure 24-4 on page 24-6.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
Xz: IEEE division-by-zero exception. The results shown are produced only when FPC 0.1 is zero.

Figure 24-11. Results: DIVIDE

‘E7’ V1 V2 / / / / / / / / M5 M4 M3 RXB ‘C7’
0 8 12 16 24 28 32 36 40 47

Vector Floating-Point Instructions 24-25

V
E

C
T

O
R

 L
O

A
D

 F
P

 IN
T

E
G

E
Rnot installed the values 2 and 4 are reserved.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• IEEE-inexact-exception control (XxC): Bit 1 of
the M4 field is the XxC bit. If XxC is zero, recogni-
tion of IEEE-inexact exception is not suppressed;
if XxC is one, recognition of IEEE-inexact excep-
tion is suppressed.

• Reserved: Bits 2 and 3 are reserved and must
contain zeros otherwise a specification is recog-
nized.

See Figure 24-12 on page 24-26 for a detailed
description of the results for each element.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Programming Notes:

1. VECTOR LOAD FP INTEGER rounds BFP num-
bers to an integer values. These integers, which
remain in the BFP format, should not be con-
fused with binary integers, which have a fixed-
point format.

2. If the BFP operand element is a finite number
with a large enough exponent so that it is already
an integer, the result value remains the same.

Extended Mnemonics:

M3 Floating-Point Format
0-1 Reserved

2 Short format
3 Long format

4 Extended format

5-15 Reserved

S
X
x
C

/ /

0 1 2 3

Extended Mnemonic Base Mnemonic
VFISB V1,V2,M4,M5 VFI V1,V2,2,M4,M5

WFISB V1,V2,M4,M5 VFI V1,V2,2,(8 | M4),M5

VFIDB V1,V2,M4,M5 VFI V1,V2,3,M4,M5

WFIDB V1,V2,M4,M5 VFI V1,V2,3,(8 | M4),M5

WFIXB V1,V2,M4,M5 VFI V1,V2,4,(8 | M4),M5

24-26 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 L
O

A
D

 L
E

N
G

T
H

E
N

E
D

VECTOR FP LOAD LENGTHENED

VFLL V1,V2,M3,M4 [VRR-a]

The even indexed floating-point element or elements
of the second operand are converted to the next larg-
est format floating point numbers, and the results are
placed in the even-odd pair of elements in the first
operand. The operand elements are all treated as
BFP numbers of the specified format.

When the second operand element is numeric, the
value of the second operand element is placed in the
target format.

If the second operand element is an SNaN, an IEEE-
invalid-operation exception is recognized; if there is
no interruption, the result is the corresponding QNaN
with the fraction extended.

The sign of the result is the same as the sign of the
source.

See Figure 24-8 on page 24-17 for a detailed
description of the results for each element.

Operand
Element (a)

Is n Inexact
(na)

Inv.-Op.
Mask

(FPC 0.0)

IEEE Inexact
Exception

Control (XxC)

Inexact
Mask

(FPC 0.4) Results

- No1 – – – T(-)

-Fn No – – – T(n)

-Fn Yes – 1 – T(n)

-Fn Yes – 0 0 T(n), SFx1

-Fn Yes – 0 1 PIV(5)

-0 No1 – – – T(-0)

+0 No1 – – – T(+0)

+Fn No – – – T(n)

+Fn Yes – 1 – T(n)

+Fn Yes – 0 0 T(n), SFx1

+Fn Yes – 0 1 PIV(5)

+ No1 – – – T(+)

QNaN No1 – – – T(a)

SNaN No1 0 – – T(a*), SFi1

SNaN No1 1 – – PIV(1)

Explanation:
– The results do not depend on this condition or mask bit.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand

element location.
1 This condition is true by virtue of the state of some condition to the left of this column.
n The value derived when the source value, a, is rounded to a floating-point integer using the

effective rounding mode.
Fn Finite nonzero number (includes both subnormal and normal).
PIV(h) Program interruption for vector-processing exception, with a VXC containing the element index and

a VIC of h in hex.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other

elements.

Figure 24-12. Results: VECTOR LOAD FP INTEGER

‘E7’ V1 V2 / / / / / / / / / / / / M4 M3 RXB ‘C4’

0 8 12 16 28 32 36 40 47

Vector Floating-Point Instructions 24-27

V
E

C
T

O
R

 F
P

 L
O

A
D

 R
O

U
N

D
E

DThe M3 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the second operand. If a reserved value
is specified, a specification exception is recognized.
If the vector-enhancements facility 1 is not installed
the value 3 is reserved.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• Reserved: Bits 1 to 3 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

Programming Note: If a trapping IEEE exception is
encountered during execution of VECTOR LOAD
LENGTHENED it is model dependent if the VIX in
the VXC field is the index of the source or target ele-
ment unless the The z/Architecture CPU Architecture
is installed in which case it is always the index of the
source element.

VECTOR FP LOAD ROUNDED

VFLR V1,V2,M3,M4,M5 [VRR-a]

The floating-point element or elements of the second
operand, are rounded to the precision of the next
smallest element size, and the result is placed at the
corresponding even elements in the first-operand
location. The data in the odd elements of the first
operand is unpredictable. The size of the second
operand elements is determined by the floating-
point-format control in the M3 field. The operand ele-
ments are all treated as BFP numbers.

The sign of the resulting element or elements is the
same as the corresponding element of the second
operand.

The second operand element, if a finite number, is
rounded by the rounding method as specified by the
modifier in the M5 field:

M5 Effective Rounding Method
0 According to current BFP rounding mode
1 Round to nearest with ties away from 0
3 Round to prepare for shorter precision
4 Round to nearest with ties to even
5 Round toward 0
6 Round toward +
7 Round toward -

An M5 modifier other than 0, 1, or 3-7 is invalid. The
M5 field must designate a valid modifier; otherwise, a
specification exception is recognized.

M3 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VLDE V1,V2,M3,M4 VFLL V1,V2,M3,M4

VLDEB V1,V2 VFLL V1,V2,2,0

WLDEB V1,V2 VFLL V1,V2,2,8
VFLLS V1,V2 VFLL V1,V2,2,0
WFLLS V1,V2 VFLL V1,V2,2,8
WFLLD V1,V2 VFLL V1,V2,3,8

‘E7’ V1 V2 / / / / / / / / M5 M4 M3 RXB ‘C5’

0 8 12 16 24 28 32 36 40 47

Extended Mnemonic Base Mnemonic

24-28 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 M
A

X
IM

U
M When the M5 modifier field is zero, rounding is con-

trolled by the current BFP rounding mode specified in
the FPC register. When the field is not zero, rounding
is performed as specified by the modifier, regardless
of the current BFP rounding mode.

See Figure 24-8 on page 24-17 for a detailed
description of the results for each element.

The M3 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the second operand. If a reserved value
is specified, a specification exception is recognized.
If the vector-enhancements facility 1 is not installed
the value 4 is reserved.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• IEEE-inexact-exception control (XxC): Bit 1 of
the M4 field is the XxC bit. If XxC is zero, recogni-
tion of IEEE-inexact exception is not suppressed;
if XxC is one, recognition of IEEE-inexact excep-
tion is suppressed.

• Reserved: Bits 2 and 3 are reserved and must
contain zeros otherwise a specification is recog-
nized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Programming Note: The sign of the rounded result
is the same as the sign of the operand element, even
when the result is zero.

Extended Mnemonics:

VECTOR FP MAXIMUM

VFMAX V1,V2,V3,M4,M5,M6 [VRR-c]

The floating point element or elements of the second
operand are compared to the corresponding floating-
point element or elements of the third operand. The
greater of the two values is placed in the correspond-
ing element of the first operand. The operand ele-
ments are all treated as BFP numbers of the
specified format.

Depending on the maximum function performed, if
any of the floating-point elements in the second or
third operand are NaNs, an IEEE invalid-operation
exception may be recognized as specified in the
action figures. If the IEEE invalid-operation mask bit
is one, a program interruption with VXC set for IEEE
invalid-operation and the corresponding element
index occurs and the operation is suppressed.

M3 Floating-Point Format
0-2 Reserved

3 Long format

4 Extended format
5-15 Reserved

S
X
x
C

/ /

0 1 2 3

Extended Mnemonic Base Mnemonic
VLED V1,V2,M3,M4,M5 VFLR V1,V2,M4,M4,M5

VLEDB V1,V2,M4,M5 VFLR V1,V2,3,M4,M5

WLEDB V1,V2,M4,M5 VFLR V1,V2,3,(8 | M4),M5

VFLRD V1,V2,M4,M5 VFLR V1,V2,3,M4,M5

WFLRD V1,V2,M4,M5 VFLR V1,V2,3,(8 | M4),M5

WFLRX V1,V2,M4,M5 VFLR V1,V2,4,(8 | M4),M5

‘E7’ V1 V2 V3 / / / / M6 M5 M4 RXB ‘EF’

0 8 12 16 20 24 28 32 36 40 47

Vector Floating-Point Instructions 24-29

V
E

C
T

O
R

 F
P

 M
A

X
IM

U
MThe M6 field specifies the handling of special cases

for the comparison, see Figure 24-13 to Figure 24-22
for detailed descriptions of the results for each ele-
ment. If a reserved value is specified, a specification
exception is recognized.

The M4 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . The values of all other ele-
ments in the second and third operands are
ignored. If bit 0 is set to zero, the operation
occurs on all elements in the vector.

• Reserved: Bits 1, 2, and 3 are reserved and
must be zero. Otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector-enhancements facility 1

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

M6 Maximum Function Performed
0 IEEE MaxNum

1 Java Math.Max()

2 C-Style Max Macro
3 C++ Algorithm.max()

4 fmax()

5-7 Reserved
8 IEEE MaxNumMag

9 Java Math.Max() of absolute values

10 C-Style Max Macro of absolute values
11 C++ Algorithm.max() of absolute values

12 fmax() of absolute values

13-15 Reserved

M4 Floating-Point Format
0-1 Reserved

2 Short format
3 Long format

4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFMAXSB V1,V2,V3,M6 VFMAX V1,V2,V3,2,0,M6

VFMAXDB V1,V2,V3,M6 VFMAX V1,V2,V3,3,0,M6

WFMAXSB V1,V2,V3,M6 VFMAX V1,V2,V3,2,8,M6

WFMAXDB V1,V2,V3,M6 VFMAX V1,V2,V3,3,8,M6

WFMAXXB V1,V2,V3,M6 VFMAX V1,V2,V3,4,8,M6

24-30 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 M
A

X
IM

U
M Second

Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(a) T(b) T(b) T(b) T(b) T(b) T(a) Xi: T(b*)

-Fn T(a) T(M(a,b)) T(b) T(b) T(b) T(b) T(a) Xi: T(b*)

-0 T(a) T(a) T(a) T(b) T(b) T(b) T(a) Xi: T(b*)

+0 T(a) T(a) T(a) T(a) T(b) T(b) T(a) Xi: T(b*)

+Fn T(a) T(a) T(a) T(a) T(M(a,b)) T(b) T(a) Xi: T(b*)

+ T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

QNaN T(b) T(b) T(b) T(b) T(b) T(b) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed in the target operand location.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the greater of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-13. Results: VECTOR FP MAXIMUM with M6=0 (IEEE MaxNum)

Second
Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(a) T(b) T(b) T(b) T(b) T(b) T(b) Xi: T(b*)

-Fn T(a) T(M(a,b)) T(b) T(b) T(b) T(b) T(b) Xi: T(b*)

-0 T(a) T(a) T(a) T(b) T(b) T(b) T(b) Xi: T(b*)

+0 T(a) T(a) T(a) T(a) T(b) T(b) T(b) Xi: T(b*)

+Fn T(a) T(a) T(a) T(a) T(M(a,b)) T(b) T(b) Xi: T(b*)

+ T(a) T(a) T(a) T(a) T(a) T(a) T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed in the target operand location.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the greater of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-14. Results: VECTOR FP MAXIMUM with M6=1 (JAVA Math.Max())

Vector Floating-Point Instructions 24-31

V
E

C
T

O
R

 F
P

 M
A

X
IM

U
MSecond

Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(b) T(b) T(b) T(b) T(b) T(b) Xi: T(b) Xi: T(b)

-Fn T(a) T(M(a,b)) T(b) T(b) T(b) T(b) Xi: T(b) Xi: T(b)

-0 T(a) T(a) T(b) T(b) T(b) T(b) Xi: T(b) Xi: T(b)

+0 T(a) T(a) T(b) T(b) T(b) T(b) Xi: T(b) Xi: T(b)

+Fn T(a) T(a) T(a) T(a) T(M(a,b)) T(b) Xi: T(b) Xi: T(b)

+ T(a) T(a) T(a) T(a) T(a) T(b) Xi: T(b) Xi: T(b)

QNaN Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b)

SNaN Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b)

Explanation:

T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the greater of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-15. Results: VECTOR FP MAXIMUM with M6=2 (“C-style Max Macro”)

Second
Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(a) T(b) T(b) T(b) T(b) T(b) Xi: T(a) Xi: T(a)

-Fn T(a) T(M(a,b)) T(b) T(b) T(b) T(b) Xi: T(a) Xi: T(a)

-0 T(a) T(a) T(a) T(a) T(b) T(b) Xi: T(a) Xi: T(a)

+0 T(a) T(a) T(a) T(a) T(b) T(b) Xi: T(a) Xi: T(a)

+Fn T(a) T(a) T(a) T(a) T(M(a,b)) T(b) Xi: T(a) Xi: T(a)

+ T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(a) Xi: T(a)

QNaN Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a)

SNaN Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a)

Explanation:

T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the greater of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-16. Results: VECTOR FP MAXIMUM with M6=3 (“C++ Algorithm.max()”)

24-32 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 M
A

X
IM

U
M Second

Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(a) T(b) T(b) T(b) T(b) T(b) T(a) Xi: T(a)

-Fn T(a) T(M(a,b)) T(b) T(b) T(b) T(b) T(a) Xi: T(a)

-0 T(a) T(a) T(a) T(b) T(b) T(b) T(a) Xi: T(a)

+0 T(a) T(a) T(a) T(a) T(b) T(b) T(a) Xi: T(a)

+Fn T(a) T(a) T(a) T(a) T(M(a,b)) T(b) T(a) Xi: T(a)

+ T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(a)

QNaN T(b) T(b) T(b) T(b) T(b) T(b) T(a) Xi: T(a)

SNaN Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(a) Xi: T(a)

Explanation:

T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the greater of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-17. Results: VECTOR FP MAXIMUM with M6=4 (“fmax()”)

Second
Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(a) T(a) T(a) T(a) T(a) T(b) T(a) Xi: T(b*)

-Fn T(b) T(MS(a,b)) T(a) T(a) T(MS(a,b)) T(b) T(a) Xi: T(b*)

-0 T(b) T(b) T(a) T(b) T(b) T(b) T(a) Xi: T(b*)

+0 T(b) T(b) T(a) T(a) T(b) T(b) T(a) Xi: T(b*)

+Fn T(b) T(MS(a,b)) T(a) T(a) T(MS(a,b)) T(b) T(a) Xi: T(b*)

+ T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

QNaN T(b) T(b) T(b) T(b) T(b) T(b) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed in the target operand location.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the greater of floating point value x and y.
MS(x,y) If |x| = | y| return M(x,y), return x if |x| > |y|, otherwise return y
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-18. Results: VECTOR FP MAXIMUM with M6=8 (IEEE MaxNumMag)

Vector Floating-Point Instructions 24-33

V
E

C
T

O
R

 F
P

 M
A

X
IM

U
M

Second
Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand
(b) Is

0 Fn QNaN SNaN

0 T(|a|) T(|b|) T(|b|) T(|b|) Xi: T(|b*|)

Fn T(|a|) T(M(|a|,|b|)) T(|b|) T(|b|) Xi: T(|b*|)

 T(|a|) T(|a|) T(|a|) T(|b|) Xi: T(|b*|)

QNaN T(|a|) T(|a|) T(|a|) T(|a|) Xi: T(|b*|)

SNaN Xi: T(|a*|) Xi: T(|a*|) Xi: T(|a*|) Xi: T(|a*|) Xi: T(|a*|)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed in
the target operand location.

|z| The value of z is used with the sign forced to be positive.
T(x) The value x is placed at the target operand element location if no

trapping exceptions on other elements.
M(x,y) Return the greater of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only

when FPC 0.0 is zero.

Figure 24-19. Results: VECTOR FP MAXIMUM with M6=9 (JAVA Math.Max() of absolute values)

Second
Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand
(b) Is

0 Fn QNaN SNaN

0 T(|b|) T(|b|) T(|b|) Xi: T(|b|) Xi: T(|b|)

Fn T(|a|) T(M(|a|,|b|)) T(|b|) Xi: T(|b|) Xi: T(|b|)

 T(|a|) T(|a|) T(|b|) Xi: T(|b|) Xi: T(|b|)

QNaN Xi: T(|b|) Xi: T(|b|) Xi: T(|b|) Xi: T(|b|) Xi: T(|b|)

SNaN Xi: T(|b|) Xi: T(|b|) Xi: T(|b|) Xi: T(|b|) Xi: T(|b|)

Explanation:

|z| The value of z is used with the sign forced to be positive.
T(x) The value x is placed at the target operand element location if no

trapping exceptions on other elements.
M(x,y) Return the greater of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only

when FPC 0.0 is zero.

Figure 24-20. Results: VECTOR FP MAXIMUM with M6=10 (“C-style Max Macro of absolute values”)

24-34 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 M
IN

IM
U

M

VECTOR FP MINIMUM

VFMIN V1,V2,V3,M4,M5,M6 [VRR-c]

The floating-point element or elements of the second
operand are compared to the corresponding floating-
point element or elements of the third operand. The
lesser of the two values is placed in the correspond-
ing element of the first operand. The operand ele-
ments are all treated as BFP numbers of the
specified format.

Depending on the minimum function performed, if
any of the floating-point elements in the second or
third operand are NaNs, an IEEE invalid-operation
exception may be recognized as specified in the
action figures. If the IEEE invalid-operation mask bit
is one, a program interruption with VXC set for IEEE
invalid-operation and the corresponding element
index occurs and the operation is suppressed.

The M6 field specifies the handling of special cases
for the comparison, see Figure 24-23 to Figure 24-32
for detailed descriptions of the results for each ele-

Second
Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand
(b) Is

0 Fn QNaN SNaN

0 T(|a|) T(|b|) T(|b|) Xi: T(|a|) Xi: T(|a|)

Fn T(|a|) T(M(|a|,|b|)) T(|b|) Xi: T(|a|) Xi: T(|a|)

 T(|a|) T(|a|) T(|a|) Xi: T(|a|) Xi: T(|a|)

QNaN Xi: T(|a|) Xi: T(|a|) Xi: T(|a|) Xi: T(|a|) Xi: T(|a|)

SNaN Xi: T(|a|) Xi: T(|a|) Xi: T(|a|) Xi: T(|a|) Xi: T(|a|)

Explanation:

|z| The value of z is used with the sign forced to be positive.
T(x) The value x is placed at the target operand element location if no

trapping exceptions on other elements.
M(x,y) Return the greater of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only

when FPC 0.0 is zero.

Figure 24-21. Results: VECTOR FP MAXIMUM with M6=11 (“C++ Algorithm.Max() of absolute values”)

Second
Operand (a) Is

Results for VECTOR FP MAXIMUM (a:b) when Third Operand
(b) Is

0 Fn QNaN SNaN

0 T(|a|) T(|b|) T(|b|) T(|a|) Xi: T(|a|)

Fn T(|a|) T(M(|a|,|b|)) T(|b|) T(|a|) Xi: T(|a|)

 T(|a|) T(|a|) T(|a|) T(|a|) Xi: T(|a|)

QNaN T(|b|) T(|b|) T(|b|) T(|a|) Xi: T(|a|)

SNaN Xi: T(|b|) Xi: T(|b|) Xi: T(|b|) Xi: T(|a|) Xi: T(|a|)

Explanation:

T(x) The value x is placed at the target operand element location if no
trapping exceptions on other elements.

M(x,y) Return the greater of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only

when FPC 0.0 is zero.

Figure 24-22. Results: VECTOR FP MAXIMUM with M6=12 (“fmax() of absolute values”)

‘E7’ V1 V2 V3 / / / / M6 M5 M4 RXB ‘EE’

0 8 12 16 20 24 28 32 36 40 47

Vector Floating-Point Instructions 24-35

V
E

C
T

O
R

 F
P

 M
IN

IM
U

Mment. If a reserved value is specified, a specification
exception is recognized.

The M4 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . The values of all other ele-
ments in the second and third operands are
ignored. If bit 0 is set to zero, the operation
occurs on all elements in the vector.

• Reserved: Bits 1, 2, and 3 are reserved and
must be zero. Otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector-enhancements facility 1

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

M6 Minimum Function Performed
0 IEEE MinNum

1 Java Math.Min()

2 C-Style Min Macro
3 C++ algorithm.min()

4 fmin()

5-7 Reserved
8 IEEE MinNum of absolute values

9 Java Math.Min() of absolute values

10 C-Style Min Macro of absolute values
11 C++ algorithm.min() of absolute values

12 fmin() of absolute values

13-15 Reserved

M4 Floating-Point Format
0-1 Reserved

2 Short format
3 Long format

4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFMINSB V1,V2,V3,M6 VFMIN V1,V2,V3,2,0,M6

VFMINDB V1,V2,V3,M6 VFMIN V1,V2,V3,3,0,M6

WFMINSB V1,V2,V3,M6 VFMIN V1,V2,V3,2,8,M6

WFMINDB V1,V2,V3,M6 VFMIN V1,V2,V3,3,8,M6

WFMINXB V1,V2,V3,M6 VFMIN V1,V2,V3,4,8,M6

24-36 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 M
IN

IM
U

M Second
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

-Fn T(b) T(M(a,b)) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

-0 T(b) T(b) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

+0 T(b) T(b) T(b) T(a) T(a) T(a) T(a) Xi: T(b*)

+Fn T(b) T(b) T(b) T(b) T(M(a,b)) T(a) T(a) Xi: T(b*)

+ T(b) T(b) T(b) T(b) T(b) T(a) T(a) Xi: T(b*)

QNaN T(b) T(b) T(b) T(b) T(b) T(b) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed in the target operand location.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the lesser of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-23. Results: VECTOR FP MINIMUM with M6=0 (IEEE MinNum)

Second
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(b) T(a) T(a) T(a) T(a) T(a) T(b) Xi: T(b*)

-Fn T(b) T(M(a,b)) T(a) T(a) T(a) T(a) T(b) Xi: T(b*)

-0 T(b) T(b) T(b) T(a) T(a) T(a) T(b) Xi: T(b*)

+0 T(b) T(b) T(b) T(b) T(a) T(a) T(b) Xi: T(b*)

+Fn T(b) T(b) T(b) T(b) T(M(a,b)) T(a) T(b) Xi: T(b*)

+ T(b) T(b) T(b) T(b) T(b) T(b) T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed in the target operand location.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the lesser of floating point values x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-24. Results: VECTOR FP MINIMUM with M6=1 (JAVA Math.Min())

Vector Floating-Point Instructions 24-37

V
E

C
T

O
R

 F
P

 M
IN

IM
U

MSecond
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(b) T(a) T(a) T(a) T(a) T(a) Xi: T(b) Xi: T(b)

-Fn T(b) T(M(a,b)) T(a) T(a) T(a) T(a) Xi: T(b) Xi: T(b)

-0 T(b) T(b) T(b) T(b) T(a) T(a) Xi: T(b) Xi: T(b)

+0 T(b) T(b) T(b) T(b) T(a) T(a) Xi: T(b) Xi: T(b)

+Fn T(b) T(b) T(b) T(b) T(M(a,b)) T(a) Xi: T(b) Xi: T(b)

+ T(b) T(b) T(b) T(b) T(b) T(a) Xi: T(b) Xi: T(b)

QNaN Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b)

SNaN Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b) Xi: T(b)

Explanation:

T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the lesser of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-25. Results: VECTOR FP MINIMUM with M6=2 (“C-style Min Macro”)

Second
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(b) T(a) T(a) T(a) T(a) T(a) Xi: T(a) Xi: T(a)

-Fn T(b) T(M(a,b)) T(a) T(a) T(a) T(a) Xi: T(a) Xi: T(a)

-0 T(b) T(b) T(a) T(a) T(a) T(a) Xi: T(a) Xi: T(a)

+0 T(b) T(b) T(a) T(a) T(a) T(a) Xi: T(a) Xi: T(a)

+Fn T(b) T(b) T(b) T(b) T(M(a,b)) T(a) Xi: T(a) Xi: T(a)

+ T(b) T(b) T(b) T(b) T(b) T(a) Xi: T(a) Xi: T(a)

QNaN Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a)

SNaN Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a) Xi: T(a)

Explanation:

T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the lesser of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-26. Results: VECTOR FP MINIMUM with M6=3 (“C++ algorithm.min()”)

24-38 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 M
IN

IM
U

M Second
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi:T(a)

-Fn T(b) T(M(a,b)) T(a) T(a) T(a) T(a) T(a) Xi:T(a)

-0 T(b) T(b) T(a) T(a) T(a) T(a) T(a) Xi:T(a)

+0 T(b) T(b) T(b) T(a) T(a) T(a) T(a) Xi:T(a)

+Fn T(b) T(b) T(b) T(b) T(M(a,b)) T(a) T(a) Xi:T(a)

+ T(b) T(b) T(b) T(b) T(b) T(a) T(a) Xi:T(a)

QNaN T(b) T(b) T(b) T(b) T(b) T(b) T(a) Xi:T(a)

SNaN Xi:T(b) Xi:T(b) Xi:T(b) Xi:T(b) Xi:T(b) Xi:T(b) Xi:T(a) Xi:T(a)

Explanation:

T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the lesser of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-27. Results: VECTOR FP MINIMUM with M6=4 (“fmin()”)

Second
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(a) T(b) T(b) T(b) T(b) T(a) T(a) Xi: T(b*)

-Fn T(a) T(MS(a,b)) T(b) T(b) T(MS(a,b)) T(a) T(a) Xi: T(b*)

-0 T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

+0 T(a) T(a) T(b) T(a) T(a) T(a) T(a) Xi: T(b*)

+Fn T(a) T(MS(a,b)) T(b) T(b) T(MS(a,b)) T(a) T(a) Xi: T(b*)

+ T(b) T(b) T(b) T(b) T(b) T(a) T(a) Xi: T(b*)

QNaN T(b) T(b) T(b) T(b) T(b) T(b) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed in the target operand location.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
M(x,y) Return the lesser of floating point value x and y.
MS(x,y) If |x| = | y| return M(x,y), return x if |x| < |y|; otherwise return y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-28. Results: VECTOR FP MINIMUM with M6=8 (IEEE MinNumMag)

Vector Floating-Point Instructions 24-39

V
E

C
T

O
R

 F
P

 M
IN

IM
U

M

Second
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand
(b) Is

0 Fn QNaN SNaN

0 T(|a|) T(|a|) T(|a|) T(|b|) Xi: T(|b*|)

Fn T(|b|) T(M(|a|,|b|)) T(|a|) T(|b|) Xi: T(|b*|)

 T(|b|) T(|b|) T(|a|) T(|b|) Xi: T(|b*|)

QNaN T(|a|) T(|a|) T(|a|) T(|a|) Xi: T(|b*|)

SNaN Xi: T(|a*|) Xi: T(|a*|) Xi: T(|a*|) Xi: T(|a*|) Xi: T(|a*|)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed in
the target operand location.

|z| The value of z is used with the sign forced to be positive.
T(x) The value x is placed at the target operand element location if no

trapping exceptions on other elements.
M(x,y) Return the lesser of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only

when FPC 0.0 is zero.

Figure 24-29. Results: VECTOR FP MINIMUM with M6=9 (JAVA Math.Min() of absolute values)

Second
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand
(b) Is

0 Fn QNaN SNaN

0 T(|b|) T(|a|) T(|a|) Xi: T(|b|) Xi: T(|b|)

Fn T(|b|) T(M(|a|,|b|)) T(|a|) Xi: T(|b|) Xi: T(|b|)

 T(|b|) T(|b|) T(|b|) Xi: T(|b|) Xi: T(|b|)

QNaN Xi: T(|b|) Xi: T(|b|) Xi: T(|b|) Xi: T(|b|) Xi: T(|b|)

SNaN Xi: T(|b|) Xi: T(|b|) Xi: T(|b|) Xi: T(|b|) Xi: T(|b|)

Explanation:

|z| The value of z is used with the sign forced to be positive.
T(x) The value x is placed at the target operand element location if no

trapping exceptions on other elements.
M(x,y) Return the lesser of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only

when FPC 0.0 is zero.

Figure 24-30. Results: VECTOR FP MINIMUM with M6=10 (“C-Style Min Macro of absolute values”)

24-40 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 M
U

L
T

IP
L

Y

VECTOR FP MULTIPLY

VFM V1,V2,V3,M4,M5 [VRR-c]

The product of the floating-point element or elements
of the second operand (the multiplier) and the corre-
sponding floating-point element or elements of the
third operand (the multiplicand) are placed in the cor-
responding element or elements of the first-operand.

The size of the operand elements is determined by
the floating-point-format control in the M4 field. The
operand elements are all treated as BFP numbers.

The two corresponding operand elements, if finite
numbers, are multiplied, forming an intermediate
product. The result is rounded to the operand format
according to the current BFP rounding mode.

The sign of the product, if the product is numeric, is
the exclusive OR of the operand element signs. This
includes the sign of a zero or infinite product.

Second
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand
(b) Is

0 Fn QNaN SNaN

0 T(|a|) T(|a|) T(|a|) Xi: T(|a|) Xi: T(|a|)

Fn T(|b|) T(M(|a|,|b|)) T(|a|) Xi: T(|a|) Xi: T(|a|)

 T(|b|) T(|b|) T(|a|) Xi: T(|a|) Xi: T(|a|)

QNaN Xi: T(|a|) Xi: T(|a|) Xi: T(|a|) Xi: T(|a|) Xi: T(|a|)

SNaN Xi: T(|a|) Xi: T(|a|) Xi: T(|a|) Xi: T(|a|) Xi: T(|a|)

Explanation:

|z| The value of z is used with the sign forced to be positive.
T(x) The value x is placed at the target operand element location if no

trapping exceptions on other elements.
M(x,y) Return the lesser of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only

when FPC 0.0 is zero.

Figure 24-31. Results: VECTOR FP MINIMUM with M6=11 (“C++ algorithm.min() of absolute values”)

Second
Operand (a) Is

Results for VECTOR FP MINIMUM (a:b) when Third Operand
(b) Is

0 Fn QNaN SNaN

0 T(|a|) T(|a|) T(|a|) T(|a|) Xi:T(|a|)

Fn T(|b|) T(M(|a|,|b|)) T(|a|) T(|a|) Xi:T(|a|)

 T(|b|) T(|b|) T(|a|) T(|a|) Xi:T(|a|)

QNaN T(|b|) T(|b|) T(|b|) T(|a|) Xi:T(|a|)

SNaN Xi:T(|b|) Xi:T(|b|) Xi:T(|b|) Xi:T(|a|) Xi:T(|a|)

Explanation:

T(x) The value x is placed at the target operand element location if no
trapping exceptions on other elements.

M(x,y) Return the lesser of floating point value x and y.
Fn Finite nonzero number (includes both subnormal and normal).
Xi: IEEE invalid-operation exception. The results shown are produced only

when FPC 0.0 is zero.

Figure 24-32. Results: VECTOR FP MINIMUM with M6=12 (“fmin() of absolute values”)

‘E7’ V1 V2 V3 / / / / / / / / M5 M4 RXB ‘E7’

0 8 12 16 20 28 32 36 40 47

Vector Floating-Point Instructions 24-41

V
E

C
T

O
R

 F
P

 M
U

L
T

IP
L

YIf one operand element is a zero and the other an
infinity, an IEEE-invalid-operation exception is recog-
nized.

See Figure 24-33 on page 24-42 for a detailed
description of the results for each element.

The M4 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• Reserved: Bits 1 to 3 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

Programming Note: Interchanging the two operand
elements in a BFP multiplication does not affect the
value of the product when the result is numeric. This
is not true, however, when both operand elements
are QNaNs, in which case the result is the second
operand element; or when both operand elements
are SNaNs and the IEEE-invalid-operation mask bit
in the FPC register is zero, in which case the result is
the QNaN derived from the second operand element.

M4 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFMSB V1,V2,V3 VFM V1,V2,V3,2,0
VFMDB V1,V2,V3 VFM V1,V2,V3,3,0
WFMSB V1,V2,V3 VFM V1,V2,V3,2,8
WFMDB V1,V2,V3 VFM V1,V2,V3,3,8
WFMXB V1,V2,V3 VFM V1,V2,V3,4,8

24-42 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 M
U

L
T

IP
L

Y
 A

N
D

 A
D

D

VECTOR FP MULTIPLY AND ADD

VFMA V1,V2,V3,V4,M5,M6 [VRR-e]

VECTOR FP MULTIPLY AND
SUBTRACT

VFMS V1,V2,V3,V4,M5,M6 [VRR-e]

VECTOR FP NEGATIVE MULTIPLY
AND ADD

VFNMA V1,V2,V3,V4,M5,M6 [VRR-e]

VECTOR FP NEGATIVE MULTIPLY
AND SUBTRACT

VFNMS V1,V2,V3,V4,M5,M6 [VRR-e]

The floating-point element or elements of the third
operand are multiplied by the corresponding floating-
point element or elements of the second operand,
and then the corresponding floating-point element or
elements of the fourth operand are added to or sub-
tracted from the products. The sum or differences are
placed at the corresponding first-operand element
locations.The size of the operand elements is deter-
mined by the floating-point-format control in the M6

field. The operand elements are all treated as BFP
numbers.

The VECTOR FP MULTIPLY AND ADD and VEC-
TOR FP MULTIPLY AND SUBTRACT operations
may be summarized below, where “(i)” represents the
“i”th indexed element of the operand:

op1(i) = op3(i)op2(i)op4(i)

The VECTOR FP NEGATIVE MULTIPLY AND ADD
and VECTOR FP NEGATIVE MULTIPLY AND SUB-
TRACT operations may be summarized as below
where “(i)” represents the “i”th indexed element of the
operand:

Second
Operand
Element

(a) Is

Results for VECTOR FP MULTIPLY (ab) when Third Operand Element (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(+) T(+) Xi: T(dNaN) Xi: T(dNaN) T(-) T(-) T(b) Xi: T(b*)

-Fn T(+) R(ab) T(+0) T(-0) R(ab) T(-) T(b) Xi: T(b*)

-0 Xi: T(dNaN) T(+0) T(+0) T(-0) T(-0) Xi: T(dNaN) T(b) Xi: T(b*)

+0 Xi: T(dNaN) T(-0) T(-0) T(+0) T(+0) Xi: T(dNaN) T(b) Xi: T(b*)

+Fn T(-) R(ab) T(-0) T(+0) R(ab) T(+) T(b) Xi: T(b*)

+ T(-) T(-) Xi: T(dNaN) Xi: T(dNaN) T(+) T(+) T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand element location.
dNaN Default NaN.
Fn Finite nonzero number (includes both subnormal and normal).
R(v) Rounding and range action is performed on the value v. See Figure 24-4 on page 24-6.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-33. Results: VECTOR FP MULTIPLY

‘E7’ V1 V2 V3 M6 / / / / M5 V4 RXB ‘8F’

0 8 12 16 20 24 28 32 36 40 47

‘E7’ V1 V2 V3 M6 / / / / M5 V4 RXB ‘8E’

0 8 12 16 20 24 28 32 36 40 47

‘E7’ V1 V2 V3 M6 / / / / M5 V4 RXB ‘9F’

0 8 12 16 20 24 28 32 36 40 47

‘E7’ V1 V2 V3 M6 / / / / M5 V4 RXB ‘9E’
0 8 12 16 20 24 28 32 36 40 47

Vector Floating-Point Instructions 24-43

V
E

C
T

O
R

 F
P

 N
E

G
A

T
IV

E
 M

U
L

T
IP

L
Y

 A
N

D
 S

U
B

T
R

A
C

Top1(i) = -(op3(i)op2(i)op4(i))

When all of the corresponding operand elements are
finite numbers, the third and second BFP operand
elements are multiplied, forming an intermediate
product, and the corresponding fourth operand ele-
ment is then added (or subtracted) algebraically to
(or from) the intermediate product, forming an inter-
mediate sum. The intermediate sum, if nonzero, is
rounded to the operand format according to the cur-
rent BFP rounding mode and then placed at the cor-
responding element of the first-operand location. The
exponent and fraction of the intermediate product are
maintained exactly; rounding and range checking
occur only on the intermediate sum.

See Figure 24-34 for a detailed description of the
results for each element of VECTOR FP MULTIPLY
AND ADD. The results for each element of VECTOR
FP MULTIPLY AND SUBTRACT are the same,
except that the fourth operand element, if numeric,
participates in the operation with its sign bit inverted.
When the fourth operand element is a NaN, it partici-
pates in the operation with its sign bit unchanged.

The results for each element of VECTOR FP NEGA-
TIVE MULTIPLY AND ADD and VECTOR FP NEGA-
TIVE MULTIPLY AND SUBTRACT are the same as
for VECTOR FP MULTIPLY AND ADD and VECTOR
FP MULTIPLY AND SUBTRACT, respectively, except
the sign bit of numeric results are inverted. When the
result is a NaN it’s sign bit is unchanged.

The M6 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. For VECTOR FP MULTIPLY AND ADD
and VECTOR FP MULTIPLY AND SUBTRACT, if the
vector-enhancements facility 1 is not installed the val-
ues 2 and 4 are reserved.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• Reserved: Bits 1 to 3 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (VFMA and VFMS, if the vector facility

for z/Architecture is not installed; VFNMA and
VFNMS, if the vector-enhancements facility 1 is
not installed)

• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

M6 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFMASB V1,V2,V3,V4 VFMA V1,V2,V3,V4,0,2
VFMADB V1,V2,V3,V4 VFMA V1,V2,V3,V4,0,3
WFMASB V1,V2,V3,V4 VFMA V1,V2,V3,V4,8,2
WFMADB V1,V2,V3,V4 VFMA V1,V2,V3,V4,8,3
WFMAXB V1,V2,V3,V4 VFMA V1,V2,V3,V4,8,4
VFMSSB V1,V2,V3,V4 VFMS V1,V2,V3,V4,0,2
VFMSDB V1,V2,V3,V4 VFMS V1,V2,V3,V4,0,3
WFMSSB V1,V2,V3,V4 VFMS V1,V2,V3,V4,8,2
WFMSDB V1,V2,V3,V4 VFMS V1,V2,V3,V4,8,3
WFMSXB V1,V2,V3,V4 VFMS V1,V2,V3,V4,8,4
VFNMASB V1,V2,V3,V4 VFNMA V1,V2,V3,V4,0,2
VFNMADB V1,V2,V3,V4 VFNMA V1,V2,V3,V4,0,3
WFNMASB V1,V2,V3,V4 VFNMA V1,V2,V3,V4,8,2
WFNMADB V1,V2,V3,V4 VFNMA V1,V2,V3,V4,8,3
WFNMAXB V1,V2,V3,V4 VFNMA V1,V2,V3,V4,8,4

24-44 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 P
E

R
F

O
R

M
 S

IG
N

 O
P

E
R

A
T

IO
N

Programming Note: VECTOR FP MULTIPLY AND
ADD, VECTOR FP MULTIPLY AND SUBTRACT,

VECTOR FP NEGATIVE MULTIPLY AND ADD, and
VECTOR NEGATIVE MULTIPLY AND SUBTRACT
produce a precise intermediate value, and a single
rounding operation is performed after the addition or
subtraction. This definition is consistent with the
Power architecture, and, in certain applications, can
be used to great advantage, especially in algorithms
used in math libraries.

VECTOR FP PERFORM SIGN
OPERATION

VFPSO V1,V2,M3,M4,M5 [VRR-a]

VFNMSSB V1,V2,V3,V4 VFNMS V1,V2,V3,V4,0,2
VFNMSDB V1,V2,V3,V4 VFNMS V1,V2,V3,V4,0,3
WFNMSSB V1,V2,V3,V4 VFNMS V1,V2,V3,V4,8,2
WFNMSDB V1,V2,V3,V4 VFNMS V1,V2,V3,V4,8,3
WFNMSXB V1,V2,V3,V4 VFNMS V1,V2,V3,V4,8,4

Extended Mnemonic Base Mnemonic

Third
Operand
Element

(a) Is

Results, Part 1, for MULTIPLY AND ADD (ab+c) when Second Operand Element (b) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- P(+) P(+) Xi: T(dNaN) Xi: T(dNaN) P(-) P(-) P(b) Xi: T(b*)

-Fn P(+) P(ab) P(+0) P(-0) P(ab) P(-) P(b) Xi: T(b*)

-0 Xi: T(dNaN) P(+0) P(+0) P(-0) P(-0) Xi: T(dNaN) P(b) Xi: T(b*)

+0 Xi: T(dNaN) P(-0) P(-0) P(+0) P(+0) Xi: T(dNaN) P(b) Xi: T(b*)

+Fn P(-) P(ab) P(-0) P(+0) P(ab) P(+) P(b) Xi: T(b*)

+ P(-) P(-) Xi: T(dNaN) Xi: T(dNaN) P(+) P(+) P(b) Xi: T(b*)

QNaN P(a) P(a) P(a) P(a) P(a) P(a) P(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Figure 24-34. Results: VECTOR FP MULTIPLY AND ADD (Part 1 of 2)

Value from
Part 1 (p) Is

Results, Part 2, for MULTIPLY AND ADD (ab+c) when Fourth Operand Element (c) Is

- -Fn -0 +0 +Fn + QNaN SNaN

- T(-) T(-) T(-) T(-) T(-) Xi: T(dNaN) T(c) Xi: T(c*)

-Fn T(-) R(p+c) R(p) R(p) R(p+c) T(+) T(c) Xi: T(c*)

-0 T(-) R(c) T(-0) Rezd R(c) T(+) T(c) Xi: T(c*)

+0 T(-) R(c) Rezd T(+0) R(c) T(+) T(c) Xi: T(c*)

+Fn T(-) R(p+c) R(p) R(p) R(p+c) T(+) T(c) Xi: T(c*)

+ Xi: T(dNaN) T(+) T(+) T(+) T(+) T(+) T(c) Xi: T(c*)

QNaN T(p) T(p) T(p) T(p) T(p) T(p) T(p) Xi: T(c*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand element location.
dNaN Default NaN.
Fn Finite nonzero number (includes both subnormal and normal).
P(x) The value x is passed to Part 2 of this figure.
R(v) Rounding and range action is performed on the value v. See Figure 24-4 on page 24-6.
Rezd Exact zero-difference result. See Figure 24-4 on page 24-6.
T(x) The value x is placed at the target operand element location if no trapping exceptions on other elements.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 24-34. Results: VECTOR FP MULTIPLY AND ADD (Part 2 of 2)

‘E7’ V1 V2 / / / / / / / / M5 M4 M3 RXB ‘CC’

0 8 12 16 24 28 32 36 40 47

Vector Floating-Point Instructions 24-45

V
E

C
T

O
R

 F
P

 S
Q

U
A

R
E

 R
O

O
TThe sign of the floating-point element or elements of

the second operand are modified in a manner speci-
fied by the value of the M5 field. The modified sign bit
and the rest of the unchanged second operand ele-
ment are placed into the corresponding element in
the first operand. The size of the operand elements is
determined by the floating-point-format control in the
M3 field. The operand elements are all treated as
BFP numbers.

The sign operation is performed even if the element
contains zero. If the element contains a QNaN or
SNaN, the sign is still set without causing an IEEE
exception.

The M5 field indicates the operation to perform on the
sign bit.

If any other M5 values are specified, a specification
exception is recognized.

The M3 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. The bit positions
of all other elements in the first operand vector

are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• Reserved: Bits 1 to 3 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

IEEE Exceptions: None

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

VECTOR FP SQUARE ROOT

VFSQ V1,V2,M3,M4 [VRR-a]

The square roots of the floating-point element or ele-
ments of the second operand are placed in the corre-

M5 Sign Operation Performed

0 The sign bit is inverted (complement)

1 The sign bit is set to one (negative)

2 The sign bit is set to zero (positive)

M3 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFPSOSB V1,V2,M5 VFPSO V1,V2,2,0,M5

WFPSOSB V1,V2,M5 VFPSO V1,V2,2,8,M5

VFLCSB V1,V2 VFPSO V1,V2,2,0,0
WFLCSB V1,V2 VFPSO V1,V2,2,8,0
VFLNSB V1,V2 VFPSO V1,V2,2,0,1
WFLNSB V1,V2 VFPSO V1,V2,2,8,1
VFLPSB V1,V2 VFPSO V1,V2,2,0,2
WFLPSB V1,V2 VFPSO V1,V2,2,8,2
VFPSODB V1,V2,M5 VFPSO V1,V2,3,0,M5

WFPSODB V1,V2,M5 VFPSO V1,V2,3,8,M5

VFLCDB V1,V2 VFPSO V1,V2,3,0,0
WFLCDB V1,V2 VFPSO V1,V2,3,8,0
VFLNDB V1,V2 VFPSO V1,V2,3,0,1
WFLNDB V1,V2 VFPSO V1,V2,3,8,1
VFLPDB V1,V2 VFPSO V1,V2,3,0,2
WFLPDB V1,V2 VFPSO V1,V2,3,8,2
WFPSOXB V1,V2,M5 VFPSO V1,V2,4,8,M5

WFLCXB V1,V2 VFPSO V1,V2,4,8,0
WFLNXB V1,V2 VFPSO V1,V2,4,8,1
WFLPXB V1,V2 VFPSO V1,V2,4,8,2

‘E7’ V1 V2 / / / / / / / / / / / / M4 M3 RXB ‘CE’

0 8 12 16 28 32 36 40 47

24-46 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 S
U

B
T

R
A

C
T sponding elements of the first-operand location. The

size of the operand elements is determined by the
floating-point-format control in the M3 field. The oper-
and elements are all treated as BFP numbers.

The result rounded according to the current BFP
rounding mode is placed at the first operand element
location.

If the second operand element is a positive finite
number, the result is the square root of that number
with a plus sign. If the operand element is a zero of
either sign, the result is a zero of the same sign. If the
operand element is +, the result is +.

If the second operand element is less than zero, an
IEEE-invalid-operation exception is recognized.

See Figure 24-8 on page 24-17 for a detailed
description of the results for each element.

The M3 field specifies the floating-point format. The
floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• Reserved: Bits 1 to 3 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

VECTOR FP SUBTRACT

VFS V1,V2,V3,M4,M5 [VRR-c]

The floating-point element or elements in the third
operand are subtracted from the floating-point ele-
ment or elements of the second operand, and the dif-
ference is placed in the floating-point element or
elements at the first-operand location. The size of the
operand elements is determined by the floating-
point-format control in the M4 field. The operand ele-
ments are all treated as BFP numbers.

The execution of VECTOR FP SUBTRACT is identi-
cal to that of VECTOR FP ADD, except that the third
operand element, if numeric, participates in the oper-
ation with its sign bit inverted. When the third oper-
and contains an element that is a NaN, it participates
in the operation with its sign bit unchanged. See
Figure 24-3 on page 24-5 for the detailed results for
each element of VECTOR FP ADD.

The M4 field specifies the floating-point format. The
floating-point format determines the size of the ele-

M3 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFSQSB V1,V2 VFSQ V1,V2,2,0
VFSQDB V1,V2 VFSQ V1,V2,3,0
WFSQSB V1,V2 VFSQ V1,V2,2,8
WFSQDB V1,V2 VFSQ V1,V2,3,8
WFSQXB V1,V2 VFSQ V1,V2,4,8

‘E7’ V1 V2 V3 / / / / / / / / M5 M4 RXB ‘E2’
0 8 12 16 20 28 32 36 40 47

Vector Floating-Point Instructions 24-47

V
E

C
T

O
R

 F
P

 T
E

S
T

 D
A

T
A

 C
L

A
S

S
 IM

M
E

D
IA

T
Ements within the vector register operands. If a

reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. In the absence of
a trapping exception condition, the bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• Reserved: Bits 1 to 3 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

Condition Code: The code remains unchanged.

IEEE Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint
• Vector processing with VXC for IEEE exception

and element index

Extended Mnemonics:

VECTOR FP TEST DATA CLASS
IMMEDIATE

VFTCI V1,V2,I3,M4,M5 [VRI-e]

The class and sign of the floating-point element or
elements of the second operand are examined to
select one bit from the third-operand. If the selected
bit is set, all bit positions of the corresponding ele-
ment in the first operand are set to ones, otherwise
they are set to zero. The size of the operand ele-
ments is determined by the floating-point-format con-
trol in the M4 field. The second operand elements are
treated as BFP numbers.

The 12 bits of the third operand, bits 16-27 of the
instruction text, are used to specify 12 combinations
of BFP data class and sign.

As shown in Figure 24-35, BFP operand elements
are divided into six classes: zero, normal number,
subnormal number, infinity, quiet NaN, and signaling
NaN.

One or more of the third-operand bits may be set to
one.

Operand elements, including SNaNs and QNaNs, are examined without causing an IEEE exception.

M4 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFSSB V1,V2,V3 VFS V1,V2,V3,2,0
VFSDB V1,V2,V3 VFS V1,V2,V3,3,0
WFSSB V1,V2,V3 VFS V1,V2,V3,2,8
WFSDB V1,V2,V3 VFS V1,V2,V3,3,8
WFSXB V1,V2,V3 VFS V1,V2,V3,4,8

‘E7’ V1 V2 I3 M5 M4 RXB ‘4A’

0 8 12 16 28 32 36 40 47

BFP Element Class

Bit Used when
Sign Is

+ -
Zero 0 1
Normal number 2 3
Subnormal number 4 5
Infinity 6 7
Quiet NaN 8 9
Signaling NaN 10 11

Figure 24-35. Third-Operand Bits for VECTOR FP TEST
DATA CLASS

24-48 The z/Architecture CPU Architecture

V
E

C
T

O
R

 F
P

 T
E

S
T

 D
A

T
A

 C
L

A
S

S
 IM

M
E

D
IA

T
E The M4 field specifies the floating-point format. The

floating-point format determines the size of the ele-
ments within the vector register operands. If a
reserved value is specified, a specification exception
is recognized. If the vector-enhancements facility 1 is
not installed the values 2 and 4 are reserved.

The M5 field has the following format:

The bits of the M5 field are defined as follows:

• Single-Element-Control (S): If bit 0 is set to
one, the operation takes place only on the zero-
indexed element in the vector. The bit positions
of all other elements in the first operand vector
are unpredictable . If bit 0 is set to zero, the
operation occurs on all elements in the vector.

• Reserved: Bits 1 to 3 are reserved and must be
zero. Otherwise, a specification exception is rec-
ognized.

Resulting Condition Code:

0 Selected bit is 1 for all elements (match)

1 Selected bit is 1 for at least one but not all ele-
ments (when S-bit is zero)

2 --
3 Selected bit is 0 for all elements (no match)

IEEE Exceptions: None.

Program Exceptions:

• Data with DXC FE, Vector Instruction
• Operation (if the vector facility for z/Architecture

is not installed)
• Specification
• Transaction constraint

Extended Mnemonics:

Programming Notes:

1. VECTOR TEST DATA CLASS provides a way to
test operand elements without risk of an excep-
tion or setting the IEEE flags.

2. When the S bit is set it is impossible to get a
Condition Code of 1.

3. Use VECTOR FP COMPARE EQUAL if you want
behavior similar to LOAD AND TEST in Chapter
19.

M4 Floating-Point Format
0-1 Reserved

2 Short format

3 Long format
4 Extended format

5-15 Reserved

S / / /
0 1 3

Extended Mnemonic Base Mnemonic
VFTCISB V1,V2,I3 VFTCI V1,V2,I3,2,0
VFTCIDB V1,V2,I3 VFTCI V1,V2,I3,3,0
WFTCISB V1,V2,I3 VFTCI V1,V2,I3,2,8
WFTCIDB V1,V2,I3 VFTCI V1,V2,I3,3,8
WFTCIXB V1,V2,I3 VFTCI V1,V2,I3,4,8

Vector Decimal Instructions 25-1© Copyright IBM Corp. 2000, 2019

Chapter 25. Vector Decimal Instructions

Vector-Packed-Decimal Facility. 25-1
Vector Decimal Control 25-1
Vector Decimal Registers 25-1
Decimal Digits and Signs. 25-2
Instructions . 25-2

VECTOR ADD DECIMAL 25-3
VECTOR COMPARE DECIMAL 25-5
VECTOR CONVERT TO BINARY 25-5
VECTOR CONVERT TO DECIMAL 25-7
VECTOR DIVIDE DECIMAL 25-8
VECTOR LOAD IMMEDIATE DECIMAL . . 25-10

VECTOR MULTIPLY DECIMAL 25-10
VECTOR MULTIPLY AND SHIFT DECIMAL 25-12
VECTOR PACK ZONED 25-13
VECTOR PERFORM SIGN OPERATION

DECIMAL . 25-14
VECTOR REMAINDER DECIMAL 25-16
VECTOR SHIFT AND DIVIDE DECIMAL . . 25-18
VECTOR SHIFT AND ROUND DECIMAL . . 25-19
VECTOR SUBTRACT DECIMAL 25-21
VECTOR TEST DECIMAL 25-22
VECTOR UNPACK ZONED 25-22

Vector-Packed-Decimal Facility

The vector-packed-decimal facility provides instruc-
tions to operate on signed-packed-decimal format
data in register operands. Decimal numbers and dec-
imal instructions are introduced in Chapter 8, “Deci-
mal Instructions.” The decimal-arithmetic instructions
described in Chapter 8 operate on decimal data in
storage operands. Since the delay between instruc-
tions encountered to ensure sequential order of oper-
and accesses is likely less between register
accesses than between storage accesses, a
sequence of vector decimal instructions referencing
operands in registers may achieve better perfor-
mance than a comparable sequence of decimal
instructions referencing operands in storage. Addi-
tionally, a program performing sign manipulation can
use the force operand positive controls of the vector
decimal-arithmetic instructions described in this
chapter to reduce the program instruction count.

Vector Decimal Control

The vector decimal instructions described in this
chapter are available to use when the vector-packed-
decimal facility for z/Architecture is installed (which
requires the vector facility for z/Architecture to also
be installed), the vector enablement control (bit 46) in
control register zero is one, and the AFP-register
control (bit 45) in control register zero is one. If the
vector-packed-decimal facility for z/Architecture is not

installed and a vector decimal instruction is executed,
then an operation exception is recognized. If the vec-
tor-packed-decimal facility for z/Architecture is
installed, the vector enablement control (bit 46) in
control register zero is zero, and a vector decimal
instruction is executed, a data exception with DXC
FE hex is recognized. When the vector-packed-deci-
mal facility for z/Architecture is installed, and the
AFP-register control (bit 45) in control register zero is
zero, and a vector decimal instruction is executed, it
is unpredictable whether a data exception is recog-
nized.

Vector Decimal Registers

The vector-packed-decimal facility uses the same 32
vector registers as the vector facility. When a decimal
operand occupies a vector register, the operand is in
the signed-packed-decimal format and occupies all
16 bytes (31 digits and a sign), as illustrated in
Figure 25-1 on page 25-2. Decimal numbers with
fewer than 31 significant digits are right-aligned with
zeros supplied in the remaining leftmost digits. Sev-
eral vector decimal-arithmetic instructions described
in this chapter provide a result digits count (RDC)
control to specify the number of rightmost digits of an
operation to place in the result register.

The vector registers are used by the vector-packed-
decimal facility to support decimal operand lengths
up to 16 bytes. The vector-packed-decimal facility

25-2 The z/Architecture CPU Architecture

does not support multiple elements within a vector
register for the purpose of parallel processing.

Decimal Digits and Signs

Decimal digits 0-9 have codes 0000-1001 binary.

The preferred positive sign has code 1100 binary (C
hex). The preferred negative sign has code 1101
binary (D hex). The vector decimal-arithmetic instruc-
tions and VECTOR CONVERT TO DECIMAL instruc-
tions generate a preferred sign code when the force
operand 1 positive control (P1) is zero and generate
alternate positive sign code 1111 binary (F hex)
when the P1 control is one. VECTOR LOAD IMME-
DIATE generates a preferred sign code. The VEC-
TOR PACK ZONED and VECTOR UNPACK ZONED
instructions move the source sign to the result sign
unchanged.

The vector decimal-arithmetic instructions provide
the option to treat source sign codes as positive and
ignore source sign codes during operation and valid-
ity checks. The force operand positive (P) controls
enable this option.

The vector decimal-arithmetic instructions and VEC-
TOR CONVERT TO DECIMAL instructions generate
a positive sign when the resulting magnitude is zero.
VECTOR LOAD IMMEDIATE can produce a zero
magnitude with a negative sign code. The VECTOR
PACK ZONED and VECTOR UNPACK ZONED
instructions move the source sign to the result sign
unchanged.

Instructions

The vector decimal-arithmetic instructions perform
addition, subtraction, multiplication, division, compar-
ison and shifting. The set of vector decimal instruc-
tions includes the vector decimal-arithmetic
instructions, VECTOR CONVERT TO BINARY, VEC-
TOR CONVERT TO DECIMAL, VECTOR PACK
ZONED, VECTOR UNPACK ZONED, VECTOR
LOAD IMMEDIATE DECIMAL, and VECTOR TEST
DECIMAL instructions.

Programming Note: The vector-packed-decimal-
enhancement facility provides the following enhance-
ments:

• Support for negative zero and digit code validity
check for VECTOR PERFORM SIGN OPERA-
TION DECIMAL (VPSOP).

• Support on the following instructions to suppress
a decimal overflow exception: VECTOR ADD
DECIMAL (VAP), VECTOR CONVERT TO
BINARY (VCVB, VCVBG), VECTOR CONVERT
TO DECIMAL (VCVD, VCVDG), VECTOR
[SHIFT AND] DIVIDE DECIMAL (VDP, VSDP),
VECTOR MULTIPLY [AND SHIFT] DECIMAL
(VMSP, VMP), VECTOR REMAINDER DECI-
MAL (VRP), VECTOR SHIFT AND ROUND
DECIMAL (VSRP), VECTOR SUBTRACT DECI-
MAL (VSP).

D D D D D D D D D D D D D D D D
0 8 16 24 32 40 48 56 63

D D D D D D D D D D D D D D D S
64 72 80 88 96 104 112 120 127

Figure 25-1. Signed-Packed-Decimal Format Number in Vector Registers

Name
Mne-

monic Characteristics
Op

Code Page

VECTOR ADD DECIMAL VAP VRI-f C* VD ¤7,9 SP Dv Dg DF* E671 25-3

VECTOR COMPARE DECIMAL VCP VRR-h C VD ¤7,9 Dv Dg E677 25-5

VECTOR CONVERT TO BINARY VCVB VRR-i C* VD ¤7,9 Dv Dg IF* E650 25-5

VECTOR CONVERT TO BINARY VCVBG VRR-i C* VD ¤7,9 Dv Dg IF* E652 25-5

VECTOR CONVERT TO DECIMAL VCVD VRI-i C* VD ¤7,9 SP Dv DF* E658 25-7

Figure 25-2. Summary of Vector Decimal Instructions (Part 1 of 2)

Vector Decimal Instructions 25-3

V
E

C
T

O
R

 A
D

D
 D

E
C

IM
A

L

VECTOR ADD DECIMAL

VAP V1,V2,V3,I4,M5 [VRI-f]

The second operand is added to the third operand.
The sign and specified number of rightmost digits of
the sum are placed in the first operand location with
other digits set to zero. The operands are in the
signed-packed-decimal format.

The sign codes of the second and third operands
may be modified for use in the add operation by the
force operand two positive (P2) and force operand
three positive (P3) controls respectively.

Addition is algebraic, taking into account the signs
and all digits of the second and third operands.

All digit codes are checked for validity. The sign
codes are checked for validity unless overridden by
the force operand two positive (P2) or force operand
three positive (P3) controls.

VECTOR CONVERT TO DECIMAL VCVDG VRI-i C* VD ¤7,9 SP Dv DF* E65A 25-7

VECTOR DIVIDE DECIMAL VDP VRI-f C* VD ¤7,9 SP Dv Dg DF* DK E67A 25-8

VECTOR LOAD IMMEDIATE DECIMAL VLIP VRI-h VD ¤7,9 Dv Dg E649 25-10

VECTOR MULTIPLY AND SHIFT DECIMAL VMSP VRI-f C* VD ¤7,9 SP Dv Dg DF* E679 25-12

VECTOR MULTIPLY DECIMAL VMP VRI-f C* VD ¤7,9 SP Dv Dg DF* E678 25-10

VECTOR PACK ZONED VPKZ VSI VD ¤7,9 A SP Dv B2 E634 25-13

VECTOR PERFORM SIGN OPERATION DECIMAL VPSOP VRI-g C* VD ¤7,9 SP Dv Dg DF* E65B 25-14

VECTOR REMAINDER DECIMAL VRP VRI-f C* VD ¤7,9 SP Dv Dg DF* DK E67B 25-16

VECTOR SHIFT AND DIVIDE DECIMAL VSDP VRI-f C* VD ¤7,9 SP Dv Dg DF* DK E67E 25-18

VECTOR SHIFT AND ROUND DECIMAL VSRP VRI-g C* VD ¤7,9 SP Dv Dg DF* E659 25-19

VECTOR SUBTRACT DECIMAL VSP VRI-f C* VD ¤7,9 SP Dv Dg DF* E673 25-21

VECTOR TEST DECIMAL VTP VRR-g C VD ¤7,9 Dv E65F 25-22

VECTOR UNPACK ZONED VUPKZ VSI VD ¤7,9 A SP Dv ST B2 E63C 25-22

Explanation:

¤7 Restricted from transactional execution when the effective allow-floating-point-operation control is zero.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized.

A Access exceptions for logical addresses.

B2 B2 field designates an access register in the access-register mode.

C* Condition code is optionally set.

C Condition code is set.

DF* Decimal-overflow exception conditionally recognized.

Dg General-operand data exception.

DK Decimal-divide exception.

Dv Vector-instruction data exception.

IF* Fixed-point-overflow exception conditionally recognized.

SP Specification exception.

ST PER storage-alteration event.

VD Vector-packed-decimal facility.

VRI VRI instruction format.

VRR VRR instruction format.

VSI VSI instruction format.

Name
Mne-

monic Characteristics
Op

Code Page

Figure 25-2. Summary of Vector Decimal Instructions (Part 2 of 2)

'E6' V1 V2 V3 / / / / M5 I4 RXB '71'

0 8 12 16 20 24 28 36 40 47

25-4 The z/Architecture CPU Architecture

V
E

C
T

O
R

 A
D

D
 D

E
C

IM
A

L If the result digits count (RDC) control does not spec-
ify enough digits to contain all leftmost nonzero digits
of the sum, decimal overflow occurs. The operation is
completed. The result is obtained by ignoring the
overflow digits, and if the condition code set (CS)
control is one, condition code 3 is set. If the decimal-
overflow mask in the PSW is one and the instruction-
overflow mask (IOM) is zero, a program interruption
for decimal overflow occurs.

If the RDC control specifies less than thirty one dig-
its, zeros are placed in the remaining leftmost digits
of the first operand.

When the result, after the RDC control is applied, is
nonzero and the force operand one positive (P1) con-
trol is zero, rules of algebra determine the sign of the
result and a preferred sign code is used. When the
result, after the RDC control is applied, is zero and
the P1 control is zero, the sign of the result is made
positive with preferred sign code 1100. When the P1
control is one, the sign of the result is made positive
with sign code 1111.

The I4 field has the following format:

The bits of the I4 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-
overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Result Digits Count (RDC): Bits 3-7 contain an
unsigned binary number specifying the number
of rightmost digits of the sum to be placed in the
first operand. If the magnitude of the sum is
larger than the largest decimal number that can
be represented with the specified number of dig-
its, decimal overflow occurs, and if the decimal-

overflow mask is one, a program interruption for
decimal overflow occurs. If the RDC field is zero,
a specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are:

• Force Operand 2 Positive (P2): When bit 0 is
one, the second operand sign is treated as a
positive sign and is not checked for validity.
When bit 0 is zero, the second operand sign is
used in the operation and is checked for validity.

• Force Operand 3 Positive (P3): When bit 1 is
one, the third operand sign is treated as a posi-
tive sign and is not checked for validity. When bit
1 is zero, the third operand sign is used in the
operation and is checked for validity.

• Force Operand 1 Positive (P1): When bit 2 is
one, the sign of the result placed in the first oper-
and is forced to positive and a sign code of 1111
is used. When bit 2 is zero, the sign of the result
placed in the first operand is the preferred sign
code for the sign of the sum.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand

I
O
M

/ / RDC

0 3 7

P
2

P
3

P
1

C
S

0 1 2 3

Vector Decimal Instructions 25-5

V
E

C
T

O
R

 C
O

N
V

E
R

T
 T

O
 B

IN
A

R
Y• Decimal overflow

• Operation (if the vector-packed-decimal facility
for z/Architecture is not installed)

• Specification
• Transaction constraint

VECTOR COMPARE DECIMAL

VCP V1,V2,M3 [VRR-h]

The first operand is compared with the second oper-
and, and the result is indicated in the condition code.
The operands are in the signed-packed-decimal for-
mat.

The sign codes of the first and second operands may
be modified for use in the compare operation by the
force operand one positive (P1) and force operand
two positive (P2) controls respectively.

Comparison is algebraic and follows the procedure
for decimal subtraction with operand two subtracted
from operand one. When the difference is zero the
operands are equal. When a nonzero difference is
positive or negative, the first operand is high or low,
respectively.

All digit codes are checked for validity. The sign
codes are checked for validity unless overridden by
the force operand one positive (P1) or force operand
two positive (P2) controls.

Overflow cannot occur because the difference is dis-
carded.

The M3 field has the following format:

The bits of the M3 field are defined as follows:

• Force Operand 1 Positive (P1): When bit 0 is
one, the first operand sign is treated as a positive
sign and is not checked for validity. When bit 0 is
zero, the first operand sign is used in the opera-
tion and is checked for validity.

• Force Operand 2 Positive (P2): When bit 1 is
one, the second operand sign is treated as a
positive sign and is not checked for validity.
When bit 1 is zero, the second operand sign is
used in the operation and is checked for validity.

• Reserved: Bits 2-3 are ignored but should con-
tain zeros; otherwise, the program may not oper-
ate compatibly in the future.

Resulting Condition Code:

The condition code is set as follows:

0 Operands equal
1 First operand low
2 First operand high
3 --

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Transaction constraint

Programming Notes:

1. The preferred and alternate sign codes for a par-
ticular sign are treated as equivalent for compari-
son purposes.

2. A negative zero and positive zero compare
equal.

VECTOR CONVERT TO BINARY

VCVB R1,V2,M3[,M4] [VRR-i]

VCVBG R1,V2,M3[,M4] [VRR-i]

The second operand is changed from decimal to
binary, and the result is placed at the first-operand
location. The second operand is in a vector register,
and the first operand is in a general register.

'E6' / / / / V1 V2 / / / / M3 / / / / / / / / RXB '77'

0 8 12 16 20 24 28 36 40 47

P
1

P
2

/ /

0 1 2 3

'E6' R1 V2 / / / / / / / / M3 M4 / / / / RXB '50'

0 8 12 16 24 28 36 40 47

'E6' R1 V2 / / / / / / / / M3 M4 / / / / RXB '52

0 8 12 16 24 28 36 40 47

25-6 The z/Architecture CPU Architecture

V
E

C
T

O
R

 C
O

N
V

E
R

T
 T

O
 B

IN
A

R
Y The second operand has the format of signed-

packed-decimal data. The sign of the second oper-
and may be modified for use before conversion by
the force operand 2 positive (P2) control or the logi-
cal binary (LB) control. All digit codes of the second
operand are checked for validity. The sign code of the
second operand is checked for validity unless over-
ridden by the force operand 2 positive (P2) control.

For VECTOR CONVERT TO BINARY (VCVB) when
the LB control is zero, the result of the conversion is a
32-bit signed binary integer, which is placed in bit
positions 32-63 of general register R1. Bits 0-31 of
general register R1 remain unchanged. The maxi-
mum positive number that can be converted and still
be contained in 32 bit positions is 2,147,483,647; the
maximum negative number (the negative number
with the greatest absolute value) that can be con-
verted is -2,147,483,648.

For VECTOR CONVERT TO BINARY (VCVB) when
the LB control is one, the second operand sign is
treated as a positive sign, and the result of the con-
version is a 32-bit unsigned binary integer, which is
placed in bit positions 32-63 of general register R1.
Bits 0-31 of general register R1 remain unchanged.
The maximum number that can be converted and still
be contained in 32 bit positions is 4,294,967,295.

For VECTOR CONVERT TO BINARY (VCVBG)
when the LB control is zero, the result of the conver-
sion is a 64-bit signed binary integer, which is placed
in bit positions 0-63 of general register R1. The maxi-
mum positive number that can be converted and still
be contained in a 64-bit register is
9,223,372,036,854,775,807; the maximum negative
number (the negative number with the greatest abso-
lute value) that can be converted is
-9,223,372,036,854,775,808.

For VECTOR CONVERT TO BINARY (VCVBG)
when the LB control is one, the second operand sign
is treated as a positive sign, and the result of the con-
version is a 64-bit unsigned binary integer, which is
placed in bit positions 0-63 of general register R1.
The maximum positive number that can be converted
and still be contained in a 64-bit register is
18,446,744,073,709,551,615.

For any decimal number outside these ranges (over-
flow case), the 32 or 64 rightmost bits of the binary
result are placed in the register. Condition code three
is optionally set depending on the value of the condi-
tion code set (CS) control. If the fixed-point-overflow

mask is one and the instruction-overflow mask (IOM)
is zero a program interruption for fixed-point overflow
occurs.

The M3 field has the following format:

The bits of the M3 field are defined as follows:

• Force Operand 2 Positive (P2): When bit 0 is
one, the second operand sign is treated as a
positive sign and is not checked for validity.
When bit 0 is zero, the second operand sign
code is checked for validity, and is used in the
operation if the LB control is zero.

• Reserved: Bit 1 is ignored but should contain
zero; otherwise, the program may not operate
compatibly in the future.

• Logical Binary (LB): When bit 2 is one, the first
operand result is an unsigned binary integer,
which is considered positive. When bit 2 is zero,
the first operand result is a signed binary integer.
When the LB control is one and the P2 control is
zero, the sign code of the second operand is
checked for validity but is treated as a positive
sign code in the conversion.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-

P
2

/
L
B

C
S

0 1 2 3

I
O
M

/ / /

0 1 3

Vector Decimal Instructions 25-7

V
E

C
T

O
R

 C
O

N
V

E
R

T
 T

O
 D

E
C

IM
A

Loverflow mask is one, recognition of a fixed-point
overflow program interrupt is suppressed.

• Reserved: Bits 1-3 are ignored but should con-
tain zeros; otherwise, the program may not oper-
ate compatibly in the future.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 No overflow
1 --
2 --
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Fixed-point overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Transaction constraint

Programming Notes:

1. When the second operand is negative and the
LB bit is zero, the result is in two’s-complement
notation.

2. VECTOR CONVERT TO BINARY (VCVB,
VCVBG) differs from CONVERT TO BINARY
(CVB, CVBY, CVBG) when the converted value
is larger than the first operand can represent. For
VECTOR CONVERT TO BINARY, in the overflow
case, the operation is completed and results in a
program interrupt for fixed-point-overflow if the
fixed-point-overflow mask is one. For CONVERT
TO BINARY, in the overflow case, the operation
is suppressed and results in a program interrupt
for fixed-point-divide.

VECTOR CONVERT TO DECIMAL

VCVD V1,R2,I3,M4 [VRI-i]

VCVDG V1,R2,I3,M4 [VRI-i]

The second operand is changed from binary to deci-
mal, and the result is placed at the first-operand loca-
tion. The second operand is in a general register, and
the first operand is in a vector register.

For VECTOR CONVERT TO DECIMAL (VCVD), the
second operand is treated as a 32-bit binary integer
that is either signed or unsigned depending on the
logical binary (LB) control. For VECTOR CONVERT
TO DECIMAL (VCVDG), the second operand is
treated as a 64-bit binary integer that is either signed
or unsigned depending on the logical binary (LB)
control.

The result is in the format for signed-packed-decimal
data, as described in Chapter 8, “Decimal Instruc-
tions.” The number of rightmost digits of the conver-
sion, as specified by the result digits count (RDC)
control, is placed in the first-operand location.

If the result digits count (RDC) control does not spec-
ify enough digits to contain all leftmost nonzero digits
of the conversion, decimal overflow occurs. The
operation is completed, the specified number of digits
are placed in the first-operand location, and if the
condition code set (CS) control is one, condition code
3 is set. If the decimal-overflow mask in the PSW is
one and the instruction-overflow mask (IOM) is zero,
a program interruption for decimal overflow occurs.

If the RDC control specifies less than thirty one dig-
its, zeros are placed in the remaining leftmost digits
of the first operand.

The rightmost four bits of the result represent the
sign. When the result, after the RDC control is
applied, is nonzero and the force operand one posi-
tive (P1) control is zero, the sign of the result is the
preferred sign code corresponding to the sign of the
second operand. When the result, after the RDC con-
trol is applied, is zero and the P1 control is zero, the
sign of the result is made positive with preferred sign
code 1100. When the P1 control is one, the sign of
the result is made positive with sign code 1111.

'E6' V1 R2 / / / / / / / / M4 I3 RXB '58'

0 8 12 16 24 28 36 40 47

'E6' V1 R2 / / / / / / / / M4 I3 RXB '5A'

0 8 12 16 24 28 36 40 47

25-8 The z/Architecture CPU Architecture

V
E

C
T

O
R

 D
IV

ID
E

 D
E

C
IM

A
L The I3 field has the following format:

The bits of the I3 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-
overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Result Digits Count (RDC): Bits 3-7 contain an
unsigned binary number specifying the number
of rightmost digits of the conversion to be placed
in the first operand. If the magnitude of the con-
version is larger than the largest decimal number
that can be represented with the specified num-
ber of digits decimal overflow occurs, and if the
decimal-overflow mask is one, a program inter-
ruption for decimal overflow occurs. If the RDC
field is zero, a specification exception is recog-
nized.

The M4 field has the following format:

The bits of the M4 field are defined as follows:

• Logical Binary (LB): When bit 0 is one, the sec-
ond operand contains an unsigned binary inte-
ger. When bit 0 is zero, the second operand
contains a signed binary integer.

• Reserved: Bit 1 is ignored but should contain
zero; otherwise, the program may not operate
compatibly in the future.

• Force Operand 1 Positive (P1): When bit 2 is
one, the sign of the result placed in the first oper-

and is forced to positive and a sign code of 1111
is used. When bit 2 is zero, the sign of the result
placed in the first operand is the preferred sign
code for the sign of the conversion.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 No overflow
1 --
2 --
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Decimal overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

VECTOR DIVIDE DECIMAL

VDP V1,V2,V3,I4,M5 [VRI-f]

The second operand (the dividend) is divided by the
third operand (the divisor). The sign and specified
number of rightmost digits of the quotient are placed
in the first-operand location with other digits set to
zero. The operands and result are in the signed-
packed-decimal format.

The sign codes of the second and third operands
may be modified for use in the operation by the force
operand two positive (P2) and force operand three
positive (P3) controls respectively.

I
O
M

/ / RDC

0 3 7

L
B

/
P
1

C
S

0 1 2 3

'E6' V1 V2 V3 / / / / M5 I4 RXB '7A'
0 8 12 16 20 24 28 36 40 47

Vector Decimal Instructions 25-9

V
E

C
T

O
R

 D
IV

ID
E

 D
E

C
IM

A
LAll digit codes are checked for validity. The sign

codes are checked for validity unless overridden by
the force operand two positive (P2) or force operand
three positive (P3) controls.

When the result, after the result digits count (RDC)
control is applied, is nonzero and the force operand
one positive (P1) control is zero, rules of algebra
determine the sign of the result and a preferred sign
code is used. When the result, after the RDC control
is applied, is zero and the P1 control is zero, the sign
of the result is made positive with preferred sign code
1100. When the P1 control is one, the sign of the
result is made positive with sign code 1111.

If the divisor is zero and the divisor sign code used is
valid, a decimal-divide exception is recognized. This
includes the case of division of zero by zero. The divi-
sor sign code used is the third operand sign code
when the force operand 3 positive (P3) bit is zero,
and is a positive sign code when the force operand 3
positive (P3) bit is one.

If the RDC control does not specify enough digits to
contain all leftmost nonzero digits of the quotient,
decimal overflow occurs. The operation is completed.
The result is obtained by ignoring the overflow digits,
and if the condition code set (CS) control is one, con-
dition code 3 is set. If the decimal-overflow mask in
the PSW is one and the instruction-overflow mask
(IOM) is zero, a program interruption for decimal
overflow occurs.

If the RDC control specifies less than thirty one dig-
its, zeros are placed in the remaining leftmost digits
of the first operand.

The I4 field has the following format:

The bits of the I4 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-

overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Result Digits Count (RDC): Bits 3-7 contain an
unsigned binary number specifying the number
of rightmost digits of the quotient to be placed in
the first operand. If the magnitude of the quotient
is larger than the largest decimal number that
can be represented with the specified number of
digits, decimal overflow occurs, and if the deci-
mal-overflow mask is one, a program interruption
for decimal overflow occurs. If the RDC field is
zero, a specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are:

• Force Operand 2 Positive (P2): When bit 0 is
one, the second operand sign is treated as a
positive sign and is not checked for validity.
When bit 0 is zero, the second operand sign is
used in the operation and is checked for validity.

• Force Operand 3 Positive (P3): When bit 1 is
one, the third operand sign is treated as a posi-
tive sign and is not checked for validity. When bit
1 is zero, the third operand sign is used in the
operation and is checked for validity.

• Force Operand 1 Positive (P1): When bit 2 is
one, the sign of the result placed in the first oper-
and is forced to positive and a sign code of 1111
is used. When bit 2 is zero, the sign of the result
placed in the first operand is the preferred sign
code for the sign of the quotient.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

I
O
M

/ / RDC

0 3 7

P
2

P
3

P
1

C
S

0 1 2 3

25-10 The z/Architecture CPU Architecture

V
E

C
T

O
R

 L
O

A
D

 IM
M

E
D

IA
T

E
 D

E
C

IM
A

L 0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Decimal divide
• Decimal overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

Programming Notes:

1. Unlike DIVIDE DECIMAL, VECTOR DIVIDE
DECIMAL will recognize a decimal-overflow
exception instead of a decimal-divide exception if
the first operand is too short to contain all of the
quotient digits.

2. VECTOR DIVIDE DECIMAL may recognize a
decimal-divide exception when the divisor is
zero, depending on the divisor sign code used,
unlike DIVIDE DECIMAL, which may recognize a
decimal-divide exception when the divisor is
zero, depending on all sign and digit codes of
both divisor and dividend. Also note, if the divisor
is zero, all divisor digits are valid.

VECTOR LOAD IMMEDIATE
DECIMAL

VLIP V1,I2,I3 [VRI-h]

The four decimal digits of the second operand,
shifted left by the specified number of digits, and con-
catenated on the right with the specified sign form a
signed-packed-decimal format number placed at the
first-operand location.

The four digit second operand is shifted left the num-
ber of digit positions specified by the shift amount
(SHAMT) control. Zeros are supplied for vacated digit
positions. The shifted value is placed in the magni-
tude of the signed-packed-decimal format first oper-
and. Zeros are placed in the remaining leftmost digits
of the first operand.

The sign code of the result placed at the first-oper-
and is determined by the sign control (SC) bit.

All digits of the second operand are checked for
validity.

The I3 field has the following format:

The bits of the I3 field are:

• Sign Control (SC): When bit 0 is zero, the result
is positive with a sign code of 1100. When bit 0 is
one, the result is negative with a sign code of
1101.

• Shift Amount (SHAMT): Bits 1-3 specify a three
bit unsigned binary number specifying the num-
ber of digits to shift the second operand left.

Condition Code: The code remains unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Transaction constraint

Programming Note: VECTOR LOAD IMMEDIATE
DECIMAL can produce a negative zero, a zero value
with a negative sign, which is a valid operand.

VECTOR MULTIPLY DECIMAL

VMP V1,V2,V3,I4,M5 [VRI-f]

'E6' V1 / / / / I2 I3 RXB '49'

0 8 12 16 32 36 40 47

S
C

SH
AMT

0 1 3

'E6' V1 V2 V3 / / / / M5 I4 RXB '78'
0 8 12 16 20 24 28 36 40 47

Vector Decimal Instructions 25-11

V
E

C
T

O
R

 M
U

L
T

IP
L

Y
 D

E
C

IM
A

LThe second operand (the multiplicand) is multiplied
by the third operand (the multiplier). The sign and
specified number of rightmost digits of the product
are placed in the first-operand location with other dig-
its set to zero. The operands and result are in the
signed-packed-decimal format.

The sign codes of the second and third operands
may be modified for use in the operation by the force
operand two positive (P2) and force operand three
positive (P3) controls respectively.

All digit codes are checked for validity. The sign
codes are checked for validity unless overridden by
the force operand two positive (P2) or force operand
three positive (P3) controls.

When the result, after the result digits count (RDC)
control is applied, is nonzero and the force operand
one positive (P1) control is zero, rules of algebra from
the multiplier and multiplicand signs determine the
sign of the result and a preferred sign code is used.
When the result, after the RDC control is applied, is
zero and the P1 control is zero, the sign of the result
is made positive with preferred sign code 1100.
When the P1 control is one, the sign of the result is
made positive with sign code 1111.

If the RDC control does not specify enough digits to
contain all leftmost nonzero digits of the product,
decimal overflow occurs. The operation is completed.
The result is obtained by ignoring the overflow digits,
and if the condition code set (CS) flag is one, condi-
tion code 3 is set. If the decimal-overflow mask in the
PSW is one and the instruction-overflow mask (IOM)
is zero, a program interruption for decimal overflow
occurs.

If the RDC control specifies less than thirty one dig-
its, zeros are placed in the remaining leftmost digits
of the first operand.

The I4 field has the following format

The bits of the I4 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is

not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-
overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Result Digits Count (RDC): Bits 3-7 contain an
unsigned binary number specifying the number
of rightmost digits of the product to be placed in
the first operand. If the magnitude of the product
is larger than the largest decimal number that
can be represented with the specified number of
digits, decimal overflow occurs, and if the deci-
mal-overflow mask is one, a program interruption
for decimal overflow occurs. If the RDC field is
zero, a specification exception is recognized.

The M5 field has the following format:

The bits of the M5 field are:

• Force Operand 2 Positive (P2): When bit 0 is
one, the second operand sign is treated as a
positive sign and is not checked for validity.
When bit 0 is zero, the second operand sign is
used in the operation and is checked for validity.

• Force Operand 3 Positive (P3): When bit 1 is
one, the third operand sign is treated as a posi-
tive sign and is not checked for validity. When bit
1 is zero, the third operand sign is used in the
operation and is checked for validity.

• Force Operand 1 Positive (P1): When bit 2 is
one, the sign of the result placed in the first oper-
and is forced to positive and a sign code of 1111
is used. When bit 2 is zero, the sign of the result
placed in the first operand is the preferred sign
code for the sign of the product.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

I
O
M

/ / RDC

0 3 7

P
2

P
3

P
1

C
S

0 1 2 3

25-12 The z/Architecture CPU Architecture

V
E

C
T

O
R

 M
U

L
T

IP
L

Y
 A

N
D

 S
H

IF
T

 D
E

C
IM

A
L Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Decimal overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

VECTOR MULTIPLY AND SHIFT
DECIMAL

VMSP V1,V2,V3,I4,M5 [VRI-f]

The product of the second operand (the multiplicand)
and the third operand (the multiplier) is shifted right
by the number of digits specified in the fourth oper-
and and is placed at the first-operand location. The
operands and result are in the signed-packed-deci-
mal format.

The sign codes of the second and third operands
may be modified for use in the operation by the force
operand two positive (P2) and force operand three
positive (P3) controls respectively.

All digit codes are checked for validity, including digits
with no effect on the result due to the shift amount.
The sign codes are checked for validity unless over-
ridden by the force operand two positive (P2) or force
operand three positive (P3) controls.

When the result, after being shifted, is nonzero and
the force operand one positive (P1) control is zero,
rules of algebra from the multiplier and multiplicand
signs determine the sign of the result and a preferred

sign code is used. When the result, after being
shifted, is zero and the P1 control is zero, the sign of
the result is made positive with preferred sign code
1100. When the P1 control is one, the sign of the
result is made positive with sign code 1111.

The I4 field has the following format:

The bits of the I4 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-
overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Shift Amount (SHAMT): Bits 3-7 contain an
unsigned binary number specifying the number
of digits the product is shifted right before the
rightmost thirty one digits are placed in the first
operand. The sign position does not participate
in the shift.

If the first operand does not contain all leftmost non-
zero digits of the shifted product, decimal overflow
occurs. The operation is completed. Condition code 3
is set if the Condition Code Set (CS) bit is one. If the
decimal-overflow mask in the PSW is one and the
instruction-overflow mask (IOM) is zero, a program
interrupt for decimal overflow occurs.

The M5 field has the following format:

The bits of the M5 field are:

• Force Operand 2 Positive (P2): When bit 0 is
one, the second operand sign is treated as a

'E6' V1 V2 V3 / / / / M5 I4 RXB '79'
0 8 12 16 20 24 28 36 40 47

I
O
M

/ / SHAMT

0 3 7

P
2

P
3

P
1

C
S

0 1 2 3

Vector Decimal Instructions 25-13

V
E

C
T

O
R

 P
A

C
K

 Z
O

N
E

Dpositive sign and is not checked for validity.
When bit 0 is zero, the second operand sign is
used in the operation and is checked for validity.

• Force Operand 3 Positive (P3): When bit 1 is
one, the third operand sign is treated as a posi-
tive sign and is not checked for validity. When bit
1 is zero, the third operand sign is used in the
operation and is checked for validity.

• Force Operand 1 Positive (P1): When bit 2 is
one, the sign of the result placed in the first oper-
and is forced to positive and a sign code of 1111
is used. When bit 2 is zero, the sign of the result
placed in the first operand is the preferred sign
code for the sign of the product.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Decimal overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

VECTOR PACK ZONED

VPKZ V1,D2(B2),I3 [VSI]

The format of the second operand is changed from
the zoned format to the signed-packed-decimal for-
mat and placed in the first operand. The zoned and
signed-packed-decimal formats are described in
Chapter 8, “Decimal Instructions.”

The second operand is treated as having the zoned
format. The numeric bits of each byte are treated as
a digit. The zone bits are ignored, except the zone
bits in the rightmost byte, which are treated as a sign.

The sign and digits are moved unchanged to the first
operand and are not checked for valid codes. The
sign is placed in the rightmost four bit positions of the
first operand, and the digits are placed adjacent to
the sign and to each other in the remainder of the
result field. The number of bytes the second operand
occupies in storage is specified by the operand 2
length code (L2) control. When necessary, the sec-
ond operand is considered to be extended on the left
with zeros.

The I3 field has the following format:

The bits of the I3 field are defined as follows:

• Reserved: Bits 0-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Operand 2 Length Code (L2): Bits 3-7 contain
the length code of the second-operand. The
length of the second-operand is 1-31 bytes, cor-
responding to a length code in L2 of 0-30. The
second-operand length must not exceed 31
bytes (L2 must be less than or equal to 30); oth-
erwise, a specification exception is recognized.

Special Conditions:

If the L2 field is larger than 30 a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data with DXC FE, vector instruction
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)

'E6' I3 B2 D2 V1 RXB '34'
0 8 16 20 32 36 40 47

/ / / L2
0 3 7

25-14 The z/Architecture CPU Architecture

V
E

C
T

O
R

 P
E

R
F

O
R

M
 S

IG
N

 O
P

E
R

A
T

IO
N

 D
E

C
IM

A
L • Specification

• Transaction constraint

VECTOR PERFORM SIGN
OPERATION DECIMAL

VPSOP V1,V2,I3,I4,M5 [VRI-g]

The modified sign and specified number of rightmost
digits of the second operand are placed in the first
operand location with other digits set to zero. The

operand and result are in the signed-packed-decimal
format.

All digit codes of the second operand are checked for
validity, unless the operand 2 no validation (NV) con-
trol is one. The sign code of the second operand is
checked for validity based on the SO control, the
operand 2 sign validation (SV) control, and the oper-
and 2 no validation (NV) control, as specified in
Figure 25-3.

The result sign code is a function of the SO control,
the second operand sign, the second operand digits,
the result digits count (RDC) control, the positive sign
code (PC) control, and the negative zero (NZ) con-
trol, as specified in Figure 25-3.

'E6' V1 V2 I4 M5 I3 RXB '5B'
0 8 12 16 24 28 36 40 47

Sign Operation (SO)

Result
Magnitude
(after RDC

applied) V2 Sign

Positive
Sign
Code
(PC)

Negative
Zero (NZ)

V2 Sign Code
Validity
Check

V2 Digit Code
Validity
Check

perform if...
Result Sign
Code (hex)

Condi-
tion

Coded

00 (maintain) nonzeroa positive 0 – NV=0 NV=0 C positive 2

00 (maintain) nonzeroa positive 1 – NV=0 NV=0 F positive 2
00 (maintain) nonzeroa negative – – NV=0 NV=0 D negative 1

00 (maintain) nonzeroa invalidb – – NV=0 NV=0 2nd operand sign 2

00 (maintain) zeroa positive 0 – NV=0 NV=0 C positive 0
00 (maintain) zeroa positive 1 – NV=0 NV=0 F positive 0

00 (maintain) zeroa negative 0 0 NV=0 NV=0 C positive 0

00 (maintain) zeroa negative 1 0 NV=0 NV=0 F positive 0
00 (maintain) zeroa negative – 1 NV=0 NV=0 D negative 0

00 (maintain) zeroa invalidb – – NV=0 NV=0 2nd operand sign 0

01 (complement) nonzeroa positive – – always NV=0 D negative 1
01 (complement) nonzeroa negative 0 – always NV=0 C positive 2

01 (complement) nonzeroa negative 1 – always NV=0 F positive 2

01 (complement) – invalidb – – always NV=0 –c –c

01 (complement) zeroa positive 0 0 always NV=0 C positive 0

01 (complement) zeroa positive 1 0 always NV=0 F positive 0

01 (complement) zeroa positive – 1 always NV=0 D negative 0
01 (complement) zeroa negative 0 – always NV=0 C positive 0

01 (complement) zeroa negative 1 – always NV=0 F positive 0

10 (force positive) nonzeroa – 0 – SV=1 NV=0 C positive 2
10 (force positive) nonzeroa – 1 – SV=1 NV=0 F positive 2

10 (force positive) zeroa – 0 – SV=1 NV=0 C positive 0

10 (force positive) zeroa – 1 – SV=1 NV=0 F positive 0

Figure 25-3. Operation of VECTOR PERFORM SIGN OPERATION DECIMAL (Part 1 of 2)

Vector Decimal Instructions 25-15

V
E

C
T

O
R

 P
E

R
F

O
R

M
 S

IG
N

 O
P

E
R

A
T

IO
N

 D
E

C
IM

A
L

If the RDC control does not specify enough digits to
contain all leftmost nonzero digits of the second
operand, decimal overflow occurs. The operation is
completed. The result is obtained by ignoring the
overflow digits, and if the condition code set (CS) flag
is one, condition code 3 is set. If the decimal-overflow
mask in the PSW is one and the instruction-overflow
mask (IOM) is zero, a program interruption for deci-
mal overflow occurs.

If the RDC control specifies less than thirty one dig-
its, zeros are placed in the remaining leftmost digits
of the first operand.

The I3 field has the following format:

The bits of the I3 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-
overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Result Digits Count (RDC): Bits 3-7 contain an
unsigned binary number specifying the number
of rightmost digits of the second operand to be
placed in the first operand. If the magnitude of
the second operand is larger than the largest
decimal number that can be represented with the
specified number of digits, decimal overflow
occurs, and if the decimal-overflow mask is one,
a program interruption for decimal overflow
occurs. If the RDC field is zero, a specification
exception is recognized.

The I4 field has the following format:

The bits of the I4 field are defined as follows:

• No Validation (NV): When bit 0 is zero or the
vector-packed-decimal-enhancement facility is
not installed, the second operand digits are
checked for validity; if the SO control specifies
maintain sign, then the second operand sign
code is also checked for validity. Sign code valid-
ity is always checked when the SO control speci-
fies complement sign and dependent on SV
control if the SO control specifies force positive
or force negative. If the validity check fails, a data
exception is recognized. If bit 0 is one, then the
second operand digits are not checked for valid-
ity; and if the SO control specifies maintain sign,
then the second operand sign code is also not
checked.

11 (force negative) nonzeroa – – – SV=1 NV=0 D negative 1
11 (force negative) zeroa – 0 0 SV=1 NV=0 C positive 0

11 (force negative) zeroa – 1 0 SV=1 NV=0 F positive 0

11 (force negative) zeroa – – 1 SV=1 NV=0 D negative 0

Explanation:

– Results do not depend on this value
a A result magnitude is considered nonzero if any bits of the result are nonzero
b A sign code between 0-9 is considered invalid
c Produces a suppressing data exception
d Table is showing the condition code for the non-overflow case. Overflow case will deliver a CC3.

Sign Operation (SO)

Result
Magnitude
(after RDC

applied) V2 Sign

Positive
Sign
Code
(PC)

Negative
Zero (NZ)

V2 Sign Code
Validity
Check

V2 Digit Code
Validity
Check

perform if...
Result Sign
Code (hex)

Condi-
tion

Coded

Figure 25-3. Operation of VECTOR PERFORM SIGN OPERATION DECIMAL (Part 2 of 2)

I
O
M

/ / RDC

0 3 7

N
V

N
Z

/ / SO
P
C

S
V

0 1 4 6 7

25-16 The z/Architecture CPU Architecture

V
E

C
T

O
R

 R
E

M
A

IN
D

E
R

 D
E

C
IM

A
L • Negative Zero (NZ): When bit 1 is zero or the

vector-packed-decimal-enhancement facility is
not installed, a zero result after applying the RDC
will result in a positive sign. If bit 1 is one, then
the sign of a zero result after applying the RDC
will be dependent of the second operand sign if
the SO control does not specify force positive or
force negative.

• Reserved: Bits 2-3 are ignored but should con-
tain zeros; otherwise, the program may not oper-
ate compatibly in the future.

• Sign Operation (SO): Bits 4-5 specify the sign
operation used in determining the result sign
code. The result sign code is a function of the SO
control, the second operand sign, the second
operand digits, the RDC control, and the PC bit,
as specified in Figure 25-3.

• Positive Sign Code (PC): When bit 6 is one,
sign code 1111 is used when the result is posi-
tive. When bit 6 is zero, sign code 1100 is used
when the result is positive.

• Operand 2 Sign Validation (SV): If bit 7 is one
and the SO control specifies force positive or
force negative, then the second operand sign
code is checked for validity. If bit 7 is zero and the
SO control specifies force positive or force nega-
tive, then the second operand sign code is not
checked for validity. When the SO control speci-
fies maintain or complement sign, the second
operand sign code is checked for validity, based
on the NV bit value. If the validity check fails, a
data exception is recognized.

The M5 field has the following format:

The bits of the M5 field are:

• Reserved: Bits 0-2 are ignored but should con-
tain zeros; otherwise, the program may not oper-
ate compatibly in the future.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero, or nonzero result and

invalid sign code; no overflow
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Decimal overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

Programming Note: A zero result after applying the
RDC will always result in setting condition code 0 if
the CS bit is one, independent of the positive or neg-
ative sign of the zero.

VECTOR REMAINDER DECIMAL

VRP V1,V2,V3,I4,M5 [VRI-f]

The second operand (the dividend) is divided by the
third operand (the divisor). The sign and specified
number of rightmost digits of the remainder are
placed in the first-operand location with other digits
set to zero. The operands and result are in the
signed-packed-decimal format.

The sign codes of the second and third operands
may be modified for use in the operation by the force
operand two positive (P2) and force operand three
positive (P3) controls respectively.

All digit codes are checked for validity. The sign
codes are checked for validity unless overridden by
the force operand two positive (P2) or force operand
three positive (P3) controls.

/ / /
C
S

0 1 2 3

'E6' V1 V2 V3 / / / / M5 I4 RXB '7B'

0 8 12 16 20 24 28 36 40 47

Vector Decimal Instructions 25-17

V
E

C
T

O
R

 R
E

M
A

IN
D

E
R

 D
E

C
IM

A
LWhen the result, after the result digits count (RDC)

control is applied, is nonzero and the force operand
one positive (P1) control is zero, the sign of the divi-
dend after P2 is applied is the sign of the result and a
preferred sign code is used. When the result, after
the RDC control is applied, is zero and the P1 control
is zero, the sign of the result is made positive with
preferred sign code 1100. When the P1 control is
one, the sign of the result is made positive with sign
code 1111.

If the divisor is zero and the divisor sign code used is
valid, a decimal-divide exception is recognized. This
includes the case of division of zero by zero. The divi-
sor sign code used is the third operand sign code
when the force operand 3 positive (P3) bit is zero,
and is a positive sign code when the force operand 3
positive (P3) bit is one.

If the RDC control does not specify enough digits to
contain all leftmost nonzero digits of the remainder,
decimal overflow occurs. The operation is completed.
The result is obtained by ignoring the overflow digits,
and if the condition code set (CS) flag is one, condi-
tion code 3 is set. If the decimal-overflow mask in the
PSW is one and the instruction-overflow mask (IOM)
is zero, a program interruption for decimal overflow
occurs.

If the RDC control specifies less than thirty one dig-
its, zeros are placed in the remaining leftmost digits
of the first operand.

The I4 field has the following format:

The bits of the I4 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-
overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Result Digits Count (RDC): Bits 3-7 contain an
unsigned binary number specifying the number
of rightmost digits of the remainder to be placed
in the first operand. If the magnitude of the
remainder is larger than the largest decimal num-
ber that can be represented with the specified
number of digits, decimal overflow occurs, and if
the decimal-overflow mask is one, a program
interruption for decimal overflow occurs. If the
RDC field is zero, a specification exception is
recognized.

The M5 field has the following format:

The bits of the M5 field are:

• Force Operand 2 Positive (P2): When bit 0 is
one, the second operand sign is treated as a
positive sign and is not checked for validity.
When bit 0 is zero, the second operand sign is
used in the operation and is checked for validity.

• Force Operand 3 Positive (P3): When bit 1 is
one, the third operand sign is treated as a posi-
tive sign and is not checked for validity. When bit
1 is zero, the third operand sign is used in the
operation and is checked for validity.

• Force Operand 1 Positive (P1): When bit 2 is
one, the sign of the result placed in the first oper-
and is forced to positive and a sign code of 1111
is used. When bit 2 is zero, the sign of the result
placed in the first operand is the preferred sign
code for the sign of the remainder.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 Result zero; no overflow

I
O
M

/ / RDC

0 3 7

P
2

P
3

P
1

C
S

0 1 2 3

25-18 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
H

IF
T

 A
N

D
 D

IV
ID

E
 D

E
C

IM
A

L 1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Decimal divide
• Decimal overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

VECTOR SHIFT AND DIVIDE
DECIMAL

VSDP V1,V2,V3,I4,M5 [VRI-f]

The second operand, shifted left (the dividend) by the
number of digits specified in the fourth operand, is
divided by the third operand (the divisor), and the
rightmost thirty one digits of the quotient are placed
in the first-operand location. The operands and result
are in the signed-packed-decimal format.

The sign codes of the second and third operands
may be modified for use in the operation by the force
operand two positive (P2) and force operand three
positive (P3) controls respectively.

All digit codes are checked for validity. The sign
codes are checked for validity unless overridden by
the force operand two positive (P2) or force operand
three positive (P3) controls.

If the first operand can not contain all leftmost non-
zero digits of the quotient, decimal overflow occurs.
The operation is completed. The result is obtained by
ignoring the overflow digits, and if the condition code
set (CS) flag is one, condition code 3 is set. If the
decimal-overflow mask in the PSW is one and the
instruction-overflow mask (IOM) is zero, a program
interrupt for decimal overflow occurs.

When the rightmost thirty one digits of the quotient
are nonzero and the force operand one positive (P1)
control is zero, rules of algebra from the dividend and
divisor signs determine the sign of the result and a
preferred sign code is used. When the rightmost
thirty one digits of the quotient are zero and the P1
control is zero, the sign of the result is made positive
with preferred sign code 1100. When the P1 control
is one, the sign of the result is made positive with
sign code 1111.

If the divisor is zero and the divisor sign code used is
valid, a decimal-divide exception is recognized. This
includes the case of division of zero by zero. The divi-
sor sign code used is the third operand sign code
when the force operand 3 positive (P3) bit is zero,
and is a positive sign code when the force operand 3
positive (P3) bit is one.

The I4 field has the following format:

The bits of the I4 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-
overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Shift Amount (SHAMT): Bits 3-7 contain an
unsigned binary number specifying the number
of digits the second operand is shifted left to form
the dividend. The second operand sign position
does not participate in the shift. Zeros are sup-
plied for the vacated digit positions.

The M5 field has the following format:

'E6' V1 V2 V3 / / / / M5 I4 RXB '7E'
0 8 12 16 20 24 28 36 40 47

I
O
M

/ / SHAMT

0 3 7

P
2

P
3

P
1

C
S

0 1 2 3

Vector Decimal Instructions 25-19

V
E

C
T

O
R

 S
H

IF
T

 A
N

D
 R

O
U

N
D

 D
E

C
IM

A
LThe bits of the M5 field are:

• Force Operand 2 Positive (P2): When bit 0 is
one, the second operand sign is treated as a
positive sign and is not checked for validity.
When bit 0 is zero, the second operand sign is
used in the operation and is checked for validity.

• Force Operand 3 Positive (P3): When bit 1 is
one, the third operand sign is treated as a posi-
tive sign and is not checked for validity. When bit
1 is zero, the third operand sign is used in the
operation and is checked for validity.

• Force Operand 1 Positive (P1): When bit 2 is
one, the sign of the result placed in the first oper-
and is forced to positive and a sign code of 1111
is used. When bit 2 is zero, the sign of the result
placed in the first operand is the preferred sign
code for the sign of the quotient.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Decimal divide
• Decimal overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

VECTOR SHIFT AND ROUND
DECIMAL

VSRP V1,V2,I3,I4,M5 [VRI-g]

The second operand is shifted in the direction and for
the number of decimal-digit positions specified by the
fourth operand, and, when shifting to the right is
specified, the absolute value of the second operand
is rounded by the rounding digit, and the result is
placed at the first-operand location. The first and sec-
ond operands are in the signed-packed-decimal for-
mat.

The sign code of the second operand may be modi-
fied for use in the operation by the force operand two
positive control (P2).

All digit codes are checked for validity, including digits
with no effect on the result due to the shift amount.
The sign code is checked for validity unless overrid-
den by the force operand two positive control (P2).

Only the digit portion of the second operand is
shifted; the sign position does not participate in the
shifting. Zeros are supplied for the vacated digit posi-
tions. The result is stored in the first operand.

The shift amount (SHAMT) control specifies a 7-bit
signed binary integer, indicating the direction and
number of decimal-digit positions to be shifted. Posi-
tive shift values specify shifting to the left. Negative
shift values, which are represented in two’s comple-
ment notation, specify shifting to the right. The follow-
ing are examples of the interpretation of shift values:

For a right shift, the second operand is rounded by
treating the second operand as positive, regardless
of the sign, and decimally adding the rounding digit,
as specified by the decimal rounding digit control
(DRD), to the leftmost of the digits to be shifted out
and by propagating the carry, if any, to the left. The
sum is then shifted to the right. Except for validity

'E6' V1 V2 I4 M5 I3 RXB '59'

0 8 12 16 24 28 36 40 47

SHAMT (binary) amount and direction
0011111 31 digits to the left

0000001 1 digit to the left
0000000 No shift

1111111 1 digit to the right

1100000 32 digits to the right

25-20 The z/Architecture CPU Architecture

V
E

C
T

O
R

 S
H

IF
T

 A
N

D
 R

O
U

N
D

 D
E

C
IM

A
L checking and participation in rounding, the digits

shifted out of the rightmost decimal-digit position are
ignored and are lost.

If one or more nonzero digits are shifted out during a
left shift, or if the result digits count (RDC) control
does not specify enough digits to contain all leftmost
nonzero digits of the shifted value, decimal overflow
occurs. The operation is completed. The result is
obtained by ignoring the overflow digits, and if the
condition code set (CS) flag is one condition code 3
is set. If the decimal-overflow mask in the PSW is
one and the instruction-overflow mask (IOM) is zero,
a program interruption for a decimal overflow occurs.

When the result, after the RDC control is applied, is
nonzero and the force operand one positive (P1) con-
trol is zero, the sign of the second operand after P2 is
applied determines the sign of the result and a pre-
ferred sign code is used. When the result, after being
shifted, is zero and the P1 control is zero, the sign of
the result is made positive with preferred sign code
1100. When the P1 control is one, the sign of the
result is made positive with sign code 1111.

If the RDC control specifies less than thirty one dig-
its, zeros are placed in the remaining leftmost digits
of the first operand.

The I3 field has the following format:

The bits of the I3 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-
overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Result Digits Count (RDC): Bits 3-7 contain an
unsigned binary number specifying the number

of rightmost digits of the shifted value to be
placed in the first operand. If the magnitude of
the shifted value is larger than the largest deci-
mal number that can be represented with the
specified number of digits, decimal overflow
occurs. If the RDC field is zero, a specification
exception is recognized.

The I4 field has the following format:

The bits of the I4 field are defined as follows:

• Decimal Rounding Digit (DRD): When bit 0 is
zero, the rounding digit is zero, when bit 0 is one,
the rounding digit is 5.

• Shift Amount: (SHAMT): Bits 1-7 specify a
signed binary integer representing the shift
amount and direction. Bit 1 must equal bit 2 or
results are unpredictable.

The M5 field has the following format:

The bits of the M5 field are:

• Force Operand 2 Positive (P2): When bit 0 is
one, the second operand sign is treated as a
positive sign and is not checked for validity.
When bit 0 is zero, the second operand sign is
used in the operation and is checked for validity.

• Reserved: Bit 1 is ignored but should contain
zero; otherwise, the program may not operate
compatibly in the future.

• Force Operand 1 Positive (P1): When bit 2 is
one, the sign of the result placed in the first oper-
and is forced to positive and a sign code of 1111
is used. When bit 2 is zero, the sign of the result
placed in the first operand is the preferred sign
code for the sign of the shifted value.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition

I
O
M

/ / RDC

0 3 7

D
R
D

SHAMT

0 1 7

P
2

/
P
1

C
S

0 1 2 3

Vector Decimal Instructions 25-21

V
E

C
T

O
R

 S
U

B
T

R
A

C
T

 D
E

C
IM

A
Lcode is set as specified in the resulting condition

code section below.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction
• Data with DXC 00, general operand
• Decimal overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

VECTOR SUBTRACT DECIMAL

VSP V1,V2,V3,I4,M5 [VRI-f]

The third operand is subtracted from the second
operand. The sign and specified number of rightmost
digits of the difference are placed in the first operand
location with other digits set to zero. The operands
and result are in the signed-packed-decimal format.

VECTOR SUBTRACT DECIMAL is executed the
same as VECTOR ADD DECIMAL, except that the
third operand is considered to have a sign opposite
to the sign in the potentially modified operand.

The sign codes of the second and third operands
may be modified for use in the operation by the force
operand two positive (P2) and force operand three
positive (P3) controls respectively.

All digit codes are checked for validity. The sign
codes are checked for validity unless overridden by
the force operand two positive (P2) or force operand
three positive (P3) controls.

When the result, after the result digits count (RDC)
control is applied, is nonzero and the force operand
one positive (P1) control is zero, rules of algebra
determine the sign of the result and a preferred sign
code is used. When the result, after the RDC control
is applied, is zero and the P1 control is zero, the sign
of the result is made positive with preferred sign code
1100. When the P1 control is one, the sign of the
result is made positive with sign code 1111.

If the RDC control does not specify enough digits to
contain all leftmost nonzero digits of the difference,
decimal overflow occurs. The operation is completed.
The result is obtained by ignoring the overflow digits,
and if the condition code set (CS) control is one, con-
dition code 3 is set. If the decimal-overflow mask in
the PSW is one and the instruction-overflow mask
(IOM) is zero, a program interruption for decimal
overflow occurs.

If the RDC control specifies less than thirty one dig-
its, zeros are placed in the remaining leftmost digits
of the first operand.

The I4 field has the following format:

The bits of the I4 field are defined as follows:

• Instruction-Overflow Mask (IOM): When the
vector-packed-decimal-enhancement facility is
not installed, bit 0 is reserved and must contain
zero; otherwise, a specification exception is rec-
ognized. When the vector-packed-decimal-
enhancement facility is installed, bit 0 is the
instruction-overflow mask. When the instruction-
overflow mask is one, recognition of a decimal
overflow program interrupt is suppressed.

• Reserved: Bits 1-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Result Digits Count (RDC): Bits 3-7 contain an
unsigned binary number specifying the number
of rightmost digits of the difference to be placed
in the first operand. If the magnitude of the differ-
ence is larger than the largest decimal number
that can be represented with the specified num-
ber of digits, decimal overflow occurs, and if the

'E6' V1 V2 V3 / / / / M5 I4 RXB '73'

0 8 12 16 20 24 28 36 40 47

I
O
M

/ / RDC

0 3 7

25-22 The z/Architecture CPU Architecture

V
E

C
T

O
R

 T
E

S
T

 D
E

C
IM

A
L decimal-overflow mask is one, a program inter-

ruption for decimal overflow occurs. If the RDC
field is zero, a specification exception is recog-
nized.

The M5 field has the following format:

The bits of the M5 field are:

• Force Operand 2 Positive (P2): When bit 0 is
one, the second operand sign is treated as a
positive sign and is not checked for validity.
When bit 0 is zero, the second operand sign is
used in the operation and is checked for validity.

• Force Operand 3 Positive (P3): When bit 1 is
one, the third operand sign is treated as a posi-
tive sign and is not checked for validity. When bit
1 is zero, the third operand sign is used in the
operation and is checked for validity.

• Force Operand 1 Positive (P1): When bit 2 is
one, the sign of the result placed in the first oper-
and is forced to positive and a sign code of 1111
is used. When bit 2 is zero, the sign of the result
placed in the first operand is the preferred sign
code for the sign of the difference.

• Condition Code Set (CS): When bit 3 is zero,
the condition code is not set and remains
unchanged. When bit 3 is one, the condition
code is set as specified in the resulting condition
code section below.

Resulting Condition Code:

When the CS bit is one, the condition code is set as
follows:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

When the CS bit is zero, the condition code remains
unchanged.

Program Exceptions:

• Data with DXC FE, vector instruction

• Data with DXC 00, general operand
• Decimal overflow
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

VECTOR TEST DECIMAL

VTP V1 [VRR-g]

The first operand is tested for valid decimal digits and
a valid sign code, and the result is indicated in the
condition code. The operand is in the signed-packed-
decimal format.

Resulting Condition Code:

0 All digit codes and the sign valid
1 All digit codes valid and sign invalid
2 At least one digit code invalid and sign valid
3 At least one digit code invalid and sign invalid

Program Exceptions:

• Data with DXC FE, vector instruction
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Transaction constraint

VECTOR UNPACK ZONED

VUPKZ V1,D2(B2),I3 [VSI]

The format of the first operand is changed from the
signed-packed-decimal format to the zoned format
and placed in the second-operand location. The
signed-packed-decimal and zoned formats are
described in Chapter 8, “Decimal Instructions.”

The first operand is treated as having the signed-
packed-decimal format. Its digits and sign are placed
unchanged in the second-operand location, using the
zoned format. Zone bits with coding of 1111 binary
are supplied for all bytes except the rightmost byte,
the zone of which receives the sign of the first oper-

P
2

P
3

P
1

C
S

0 1 2 3

'E6' / / / / V1 / RXB '5F'

0 8 12 16 36 40 47

'E6' I3 B2 D2 V1 RXB '3C'

0 8 16 20 32 36 40 47

Vector Decimal Instructions 25-23

V
E

C
T

O
R

 U
N

P
A

C
K

 Z
O

N
E

Dand. The sign and digits are not checked for valid
codes.

The number of bytes the second operand occupies in
storage is specified by the operand 2 length code
(L2) control. If the second-operand field is too short
to contain all digits of the first operand, the remaining
leftmost portion of the first operand is ignored.

The I3 field has the following format:

The bits of the I3 field are defined as follows:

• Reserved: Bits 0-2 are reserved and must con-
tain zeros. Otherwise, a specification exception is
recognized.

• Operand 2 Length Code (L2): Bits 3-7 contain
the length code of the second-operand. The

length of the second-operand is 1-31 bytes, cor-
responding to a length code in L2 of 0-30. The
second-operand length must not exceed 31
bytes (L2 must be less than or equal to 30); oth-
erwise, a specification exception is recognized.

Special Conditions:

If the L2 field is larger than 30 a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Data with DXC FE, vector instruction
• Operation (if the vector-packed-decimal facility

for z/Architecture is not installed)
• Specification
• Transaction constraint

/ / / L2
0 3 7

25-24 The z/Architecture CPU Architecture

V
E

C
T

O
R

 U
N

P
A

C
K

 Z
O

N
E

D

Specialized-Function-Assist Instructions 26-1© Copyright IBM Corp. 2000, 2019

Chapter 26. Specialized-Function-Assist Instructions

Instructions . 26-1
COMPUTE DIGITAL SIGNATURE

AUTHENTICATION 26-2

DEFLATE CONVERSION CALL. 26-16

The specialized-function-assist instructions
described in this chapter are intended to provide per-
formance improvements for specific operations used
in software libraries, utilities, and operating system
services. The facilities and instructions described in
this chapter may be replaced or removed in the
future. As a result, it is recommended that when a
software library, utility, or operating system service
provides an implementation using one or more of the
specialized-function-assist instructions in this chap-
ter, the software library also provides an alternate
implementation which does not rely on any special-
ized-function-assist instruction in case the corre-
sponding facility is not available to the program. It is
also recommended that application programs use
provided software libraries, utilities, or operating sys-
tem services rather than use specialized-function-
assist instructions directly.

The description for each instruction in this chapter
specifies whether the instruction is a privileged or
unprivileged instruction.

Instructions

The instructions described in this chapter are sum-
marized in Figure 26-1 on page 26-1. The figure lists
each instruction and indicates the instruction name,
mnemonic, operation code, format, and other note-
worthy characteristics.

Programming Notes:

1. The COMPUTE DIGITAL SIGNATURE AUTHEN-
TICATION instruction is available when the mes-
sage-security-assist extension 9 is installed.

2. The DEFLATE CONVERSION CALL instruction
is available when the DEFLATE-conversion facil-
ity is installed.

Name
Mne-

monic Characteristics
Op-

code Page
COMPUTE DIGITAL SIGNATURE AUTHENTICATION KDSA RRE C M9 ¤5,9 A SP IC GM I1 ST R2 B93A 26-2
DEFLATE CONVERSION CALL DFLTCC RRF-a C GZ ¤5,9 A SP IC GM I1 ST R1 R2 R3 B939 26-16

Explanation:

¤5 Model dependent whether the instruction is restricted from transactional execution.

¤9 Restricted in the constrained transactional-execution mode; a transaction-constraint program exception may be recognized. For PFD and PFDRL, the
instruction is restricted only when the code in the M1 field is 6 or 7; for STCMH, the instruction is restricted only when the M3 field is zero and the code in the
R1 field is 6 or 7.

A Access exceptions for logical addresses.

C Condition code is set.

Dg General-operand data exception.

GM Instruction execution includes the implied use of multiple general registers:
• General registers 0 and 1 for COMPUTE DIGITAL SIGNATURE AUTHENTICATION and DEFLATE CONVERSION CALL.

GZ DEFLATE-conversion facility.

I1 Access register 1 is implicitly designated in the access-register mode.

IC Condition code alternative to interruptible instruction

M9 Message-security-assist extension 9.

R1 R1 field designates an access register in the access-register mode.

Figure 26-1. Summary of Specialized-Function-Assist Instructions (Part 1 of 2)

26-2 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
N

COMPUTE DIGITAL SIGNATURE
AUTHENTICATION

KDSA R1, R2 [RRE]

A function specified by the function code in general
register 0 is performed.

Bits 16-23 of the instruction and the R1 field are
reserved and should contain zeros; otherwise, the
program may not operate compatibly in the future.

General register 0 contains various controls affecting
the operation of the instruction, as follows:

Function Code (FC): Bit positions 57-63 of gen-
eral register 0 contain the function code. Figure 26-2
shows the assigned function codes for COMPUTE
DIGITAL SIGNATURE AUTHENTICATION. All other
function codes are unassigned. A specification

exception is recognized if an unassigned or unin-
stalled function code is specified.

Deterministic (D): Bit position 56 of general regis-
ter 0 contains the deterministic bit which effects the
KDSA-ECDSA-Sign-P256, KDSA-ECDSA-Sign-
P384, and KDSA-ECDSA-Sign-P521 function codes.
When the deterministic bit is equal to zero the source
random number is used to generate a secret random
number within the execution of the instruction, hidden

R2 R2 field designates an access register in the access-register mode.

R3 R3 field designates an access register in the access-register mode.

RRE RRE instruction format.

RRF RRF instruction format.

SP Specification exception.

ST PER storage-alteration event.

Name
Mne-

monic Characteristics
Op-

code Page

Figure 26-1. Summary of Specialized-Function-Assist Instructions (Part 2 of 2)

‘B93A’ / / / / / / / / / R1 R2

0 16 24 28 31
Code Function

Param.
Block
Size

(bytes)

Data
Block
Size

(bytes)

0 KDSA-Query 16 —

1 KDSA-ECDSA-Verify-P256 4096 —

2 KDSA-ECDSA-Verify-P384 4096 —

3 KDSA-ECDSA-Verify-P521 4096 —

9 KDSA-ECDSA-Sign-P256 4096 —

10 KDSA-ECDSA-Sign-P384 4096 —

11 KDSA-ECDSA-Sign-P521 4096 —

17 KDSA-Encrypted-ECDSA-Sign-P256 4096 —

18 KDSA-Encrypted-ECDSA-Sign-P384 4096 —

19 KDSA-Encrypted-ECDSA-Sign-P521 4096 —

32 KDSA-EdDSA-Verify-Ed25519 4096 32

36 KDSA-EdDSA-Verify-Ed448 4096 64

40 KDSA-EdDSA-Sign-Ed25519 4096 32

44 KDSA-EdDSA-Sign-Ed448 4096 64

48 KDSA-Encrypted-EdDSA-Sign-
Ed25519

4096 32

52 KDSA-Encrypted-EdDSA-Sign-
Ed448

4096 64

Explanation:

— Not applicable

Figure 26-2. Function Codes for COMPUTE DIGITAL
SIGNATURE AUTHENTICATION

Specialized-Function-Assist Instructions 26-3

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
Nto the user. This adds security to the signature pro-

cess and the signature will vary with each execution.
When the deterministic bit is equal to a one the
source random number is used directly and will pro-
vide the same signature for each execution with the
same input. Other function codes are unaffected by
the deterministic bit.

Bits 0-31 of general register 0 are ignored. Bits 32-55
of general register 0 are reserved and should contain
zeros; otherwise, the program may not operate com-
patibly in the future.

General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the
24-bit addressing mode, the contents of bit positions
40-63 of general register 1 constitute the address,
and the contents of bit positions 0-39 are ignored. In
the 31-bit addressing mode, the contents of bit posi-
tions 33-63 of general register 1 constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the contents
of bit positions 0-63 of general register 1 constitute
the address.

Figure 26-3 on page 26-3 shows the contents of the
general registers just described.

In the access-register mode, access register 1 speci-
fies the address space containing the parameter
block.

The query function provides the means of indicating
the availability of the other functions. The contents of

general registers R2 and R2 + 1 are ignored for the
query function.

The verify functions check the validity of the signa-
ture of the hashed message and reports whether the
credentials are valid via the condition code. The sign
functions create a signature for the hashed message.

All Addressing Modes

GR0 / Reserved D FC
0 32 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R2 / Second-Operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Figure 26-3. General Register Assignment for COMPUTE DIGITAL SIGNATURE AUTHENTICATION

26-4 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
N Note: The description of the COMPUTE DIGITAL

SIGNATURE AUTHENTICATION (KDSA) instruction
assumes that the reader is familiar with the Elliptic
Curve Digital Signal Algorithm (ECDSA) described in
Reference [24.] on page xxx and in the Edwards-
curve Digital Signature Algorithm (EdDSA) described
in Reference [25.] on page xxx.

In the case of ECDSA, three Weierstrass curves over
prime fields are supported: NIST P256, P384, and
P521. In Reference [24.] on page xxx these curves
are actually referred to as P-256, P-384, and P-521,
respectively. In Reference [32.] on page xxxi and Ref-
erence [33.] on page xxxi they are referred to as
secp256r1, secp384r1, and secp521r1, respectively.
Also see Reference [27.] on page xxx section 5.4
p.17-18 for algorithm details and see D.1.2.3-5 in
Reference [24.] on page xxx p.100 for the curve
parameter values including the prime modulus, the
order, the coefficient, the base point x coordinate,
and the base point y coordinate used by these func-
tion codes. Two other prime fields are supported
which use the EdDSA algorithm in Reference [25.] on
page xxx and Reference [26.] on page xxx referred to
as Ed25519 and Ed448 though they use the curve
Curve255-19 and Curve448, respectively. Also see
Reference [25.] on page xxx for algorithm details and
curve parameter values, section 5.1.7 and 5.2.7
describe the verify function and 5.1 and 5.2 describe
the curve parameters for Ed25519 and Ed448
respectively which are used by these function codes.
The following is the definition of the moduli of these
fields:

• P256 = 2256 - 2224 + 2192 + 296 - 1
• P384 = 2384 - 2128 - 296 + 232 - 1
• P521 = 2521 - 1
• Ed25519 = 2255 - 19
• Ed448 = 2448 - 2224 - 1

The sign and verify function codes (1, 2, 3, 9, 10, 11,
17, 18, and 19), which use the ECDSA algorithm on
NIST curves, ignore the contents of general registers
R2 and R2 + 1. These functions utilize a hashed mes-
sage of fixed size which is contained in the parame-
ter block.

The Edwards curve functions: KDSA-EdDSA-Verify,
KDSA-EdDSA-Sign, and KDSA-Encrypted-EdDSA-
Sign (function codes 32, 36, 40, 44, 48, and 52), use
the EdDSA algorithm, and the message is not pre-
hashed Reference [25.] on page xxx. The second
operand is the message. The PureEdDSA variant is
supported for the curves Ed25519 and Ed448. Other

variants such as the HashEdDSA variants
Ed25519ph and Ed448ph and the context variant
Ed25519ctx are not supported. The context is
assumed to be null and the prehash function is the
identity function and the flag is 0.

The R2 field designates an even-odd pair of general
registers and must designate an even-numbered reg-
ister other than general register 0; otherwise, a spec-
ification exception is recognized.

The location of the leftmost byte of the second oper-
and is specified by the contents of the R2 general
register. The number of bytes in the second-operand
location is specified in general register R2 + 1. Note
the second-operand can have a length of zero bytes.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general register R2 constitute the
address of the second operand, and the contents of
bit positions 0-39 are ignored; bits 40-63 of the
updated address replace the corresponding bits in
general register R2, carries out of bit position 40 of
the updated address are ignored, and the contents of
bit positions 32-39 of general register R2 are set to
zeros. In the 31-bit addressing mode, the contents of
bit positions 33-63 of general register R2 constitute
the address of the second operand, and the contents
of bit positions 0-32 are ignored; bits 33-63 of the
updated address replace the corresponding bits in
general register R2, carries out of bit position 33 of
the updated address are ignored, and the content of
bit position 32 of general register R2 is set to zero. In
the 64-bit addressing mode, the contents of bit posi-
tions 0-63 of general register R2 constitute the
address of the second operand; bits 0-63 of the
updated address replace the contents of general reg-
ister R2 and carries out of bit position 0 are ignored.

In both the 24-bit and the 31-bit addressing modes,
the contents of bit positions 32-63 of general register
R2 + 1 form a 32-bit unsigned binary integer which
specifies the number of bytes in the second operand;
and the updated value replaces the contents of bit
positions 32-63 of general register R2 + 1. In the 64-
bit addressing mode, the contents of bit positions 0-
63 of general register R2 + 1 form a 64-bit unsigned
binary integer which specifies the number of bytes in
the second operand; and the updated value replaces
the contents of general register R2 + 1.

In the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general registers R2 and R2 +
1, always remain unchanged. In the access register

Specialized-Function-Assist Instructions 26-5

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
Nmode, access register R2 specifies the address

space for the second operand.

These functions will be described in more detail
along with their parameter blocks.

KDSA-Query (Function Code 0)
The location of the operands and addresses used by
the instruction are shown in Figure 26-3 on
page 26-3.

The parameter block used for the function has the fol-
lowing format shown in Figure 26-4:

A 128-bit status word is stored in the parameter
block. Bits 0-127 of this field correspond to function
codes 0-127, respectively, of the COMPUTE DIGI-
TAL SIGNATURE AUTHENTICATION instruction.
When a bit is one, the corresponding function is
installed; otherwise, the function is not installed.

Condition code 0 is set when execution of the KDSA-
Query function completes; condition codes 1, 2, and
3 are not applicable to this function.

KDSA-ECDSA-Verify Functions

This section describes the function codes for three
KDSA-ECDSA-Verify functions for Weierstrass
curves with NIST primes:

• KDSA-ECDSA-Verify-P256 (function code 1)
• KDSA-ECDSA-Verify-P384 (function code 2)
• KDSA-ECDSA-Verify-P521 (function code 3)

The locations of the operands and addresses used
by each of these functions are as shown in
Figure 26-3 on page 26-3. The parameter block con-
tains the operands used by the KDSA-ECDSA-Verify
functions and is addressed by general register 1.

The KDSA-ECDSA-Verify function checks the validity
of a signed message. The originator of the message
has a public key that can be used to see if the signa-
ture matches the hashed message. The signature
consists of two integers in the prime field designated
by R and S. The originator and receiver agree on a
hashing scheme for creating the signature. The
KDSA-ECDSA-Verify function operates on the
already hashed message represented as H(msg) in
the parameter block. The hashed message is
reduced to be less than the order of the curve by
modulo reduction by the order of the curve. The orig-
inator’s public key is represented by K. An elliptic
curve public key is actually a point on the curve and
has X and Y coordinates (represented by Xk and Yk)
within the prime field making it twice as big as other
parameters. These operands are supplied to the
function in the parameter block. The operation results
in a true or false validity indication which is repre-
sented by a condition code equal to zero versus two
respectively.

The parameter block used for KDSA-ECDSA-Verify-
P256 function has the format as shown in
Figure 26-5, below.

0
Status Word

8
0 63

Figure 26-4. Parameter Block for KDSA-Query

Offset

Dec Hex

00 00
Signature (R)

32 20
Signature (S)

64 40
Hashed Message - H(msg)

96 60
Public Cryptographic Key X component (Xk)

128 80
Public Cryptographic Key Y component (Yk)

160 A0 C RIBM

168

4088

A8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-5. Parameter Block for KDSA-ECDSA-Verify-
P256 Function

26-6 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
N The parameter block for KDSA-ECDSA-Verify-P384

is shown in Figure 26-6, below. Each field is 48 bytes

or 384 bits wide.

The parameter block for KDSA-ECDSA-Verify-P521
is shown in Figure 26-7, below. The NIST standard

defines data to be passed in “octets” which are 8 bits
wide. 521-bit operands need to be padded on the
leftmost significant bits with 7 zeros to form 528 bits
or 66 bytes (octets). Each parameter is 66 bytes

which is right-aligned in the 80-byte field. The 14
remaining bytes are ignored and not updated. The
hashed message is 66 bytes wide and upper bits can
be non-zero which may require the function to per-
form modulo reduction by the order of the curve.

The reserved for IBM use (RIBM) field is 60 bits and
the information code (C) is 4 bits for a total of 8 bytes,
and must be initialized to zero prior to the first invoca-
tion of the instruction. The RIBM holds status and
control information and continuation state buffer
(CSB) is provided to hold intermediate results for par-
tial completion reported by setting the condition code
equal to 3. The parameter block should not be
altered by the programmer after partial completion
and before subsequent invocation. Corruption of the
CSB is handled by the CPU clearing the intermediate
results and status in the CSB and ending in partial
completion which will allow a clean re-execution of
the instruction. Also the CSB is cleared by the CPU
of any intermediate state if the KDSA instruction
ends with neither a condition code 3 nor an access
exception. The information code is utilized by the
KDSA Encrypted Sign functions to distinguish
between different condition code one cases and is
reserved for future use on other function codes.

Condition code 1 is set when the public key is invalid
due to a coordinate not being greater than or equal to
zero and less than the prime of the curve, or the point
not on the curve. Condition code 2 is set if the signa-
ture is invalid, and condition code 0 is set if the signa-
ture is valid. Condition code 3 is set if the operation
ends in partial completion.

KDSA-ECDSA-Sign Functions

Note: The description of the KDSA-ECDSA-Sign
function assumes that the reader is familiar with the
Elliptic Curve Digital Signal Algorithm (ECDSA)
described in Reference [24.] on page xxx.

This section illustrates the operation for three KDSA-
ECDSA-Sign and three KDSA-Encrypted-ECDSA-
Sign functions:

• KDSA-ECDSA-Sign-P256 (function code 9)
• KDSA-ECDSA-Sign-P384 (function code 10)
• KDSA-ECDSA-Sign-P521 (function code 11)
• KDSA-Encrypted-ECDSA-Sign-P256 (function

code 17)
• KDSA-Encrypted-ECDSA-Sign-P384 (function

code 18)

Offset

Dec Hex

00 00
Signature(R)

48 30
Signature(S)

96 60
Hashed Message - H(msg)

144 90
Public Cryptographic Key X component (Xk)

192 C0
Public Cryptographic Key Y component (Yk)

240 F0 C RIBM

248

4088

F8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-6. Parameter Block for KDSA-ECDSA-Verify-
P384 Function

Offset

Dec Hex

00 00
Signature(R)

80 50
Signature(S)

160 A0
Hashed Message - H(msg)

240 F0
Public Cryptographic Key X component (Xk)

320 140
Public Cryptographic Key Y component (Yk)

400 190 C RIBM

408

4088

198

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-7. Parameter Block for KDSA-ECDSA-Verify-
P521 Function

Specialized-Function-Assist Instructions 26-7

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
N• KDSA-Encrypted-ECDSA-Sign-P521 (function

code 19)

The KDSA-ECDSA-Sign function uses a cryp-
tographic key (K) that is a plain text key for the
author’s private key. The KDSA-Encrypted-ECDSA-
Sign function uses an encrypted key to hold the
author’s private key and has a corresponding Wrap-
ping Key Verification Pattern (WKeVP) to test the key.

The ECDSA algorithm uses a random number to ran-
domize the signature. KDSA-ECDSA-Sign and
KDSA-Encrypted-ECDSA-Sign functions for NIST
curves (P256, P384, and P521) utilize a user speci-
fied random number, RN, in the parameter block. For
KDSA-ECDSA-Sign with the deterministic bit equal
to zero and for KDSA-Encrypted-ECDSA-Sign, the
specified random number is hashed with a CPU-gen-
erated random number that varies on each invoca-
tion. For KDSA-ECDSA-Sign with the deterministic
bit equal to one the user specified random number is
used directly, which makes every execution with the
same input produce the same signature. The EdDSA
algorithm does not use a random number.

The result of the sign function is a signature which is
represented by two integers, R and S, which are
between a value of zero and the order of the curve for
the particular function and is stored in the designated
location in the parameter block.

The parameter block for KDSA-ECDSA-Sign-P256
function with plain text key is shown in Figure 26-8,
below.

The parameter block for KDSA-ECDSA-Sign-P384
function with plain text key is shown in Figure 26-9,
below.

Offset

Dec Hex

00 00
Signature(R)

32 20
Signature(S)

64 40
Hashed Message - H(msg)

96 60
Private Cryptographic Key(K) in Plain Text

128 80
Random Number(RN)

160 A0 C RIBM

168

4088

A8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-8. Parameter Block for KDSA-ECDSA-Sign-
P256 Function

Offset

Dec Hex

00 00
Signature(R)

48 30
Signature(S)

96 60
Hashed Message - H(msg)

144 90
Private Cryptographic Key(K) in Plain Text

192 C0
Random Number(RN)

240 F0 C RIBM

248

4088

F8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-9. Parameter Block for KDSA-ECDSA-Sign-
P384 Function

26-8 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
N The parameter block for KDSA-ECDSA-Sign-P521

function for with plain text key is shown in
Figure 26-10. The NIST standard defines data to be

passed in “octets” which are 8 bits wide. 521-bit oper-
ands need to be padded on the leftmost significant
bits with 7 zeros to form 528 bits or 66 bytes (octets).
Each parameter is 66 bytes which is right-aligned in
the 80-byte field. The 14 remaining bytes are ignored
and not updated. The hashed message is 66 bytes
wide and leftmost bits can be non-zero which may

require the function to perform modulo reduction by
the order of the curve.

The parameter block for KDSA-Encrypted-ECDSA-
Sign-P256 which uses an encrypted key is shown in
Figure 26-11, below.

Offset

Dec Hex

00 00
Signature(R)

80 50
Signature(S)

160 A0
Hashed Message - H(msg)

240 F0
Private Cryptographic Key(K) in Plain Text

320 140
Random Number(RN)

400 190 C RIBM

408

4088

198

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-10. Parameter Block for KDSA-ECDSA-Sign-
P521 Function

Offset

Dec Hex

00 00
Signature(R)

32 20
Signature(S)

64 40
Hashed Message - H(msg)

96 60
Encrypted Private Cryptographic Key (WKa(K))

128 80
Random Number(RN)

160 A0
AES Wrapping-Key Verification Pattern (WKaVP)

192 C0 C RIBM

200

4088

C8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-11. Parameter Block for KDSA-Encrypted-
ECDSA-Sign-P256 Function

Specialized-Function-Assist Instructions 26-9

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
NThe parameter block for KDSA-Encrypted-ECDSA-

Sign-P384 function is shown in Figure 26-12, below.

The parameter block for KDSA-Encrypted-ECDSA-
Sign-P521 function is shown in Figure 26-13, below.

P521 format has 521 bits with an additional most sig-
nificant 7 bits of zeros for R, S, and operands for 66
bytes which are right aligned within the 80 byte field.
The remaining 14 bytes of the R and S fields are
unchanged. The hashed message is the width of the
whole 80-byte field.

Condition code 1 is set and C is set to 0001 binary if
the verification pattern mismatches. The condition
code is set to 1 and C is set to 0000 binary if the pri-
vate key is zero or greater than or equal to the order
of the curve. Condition code 2 is set if the random
number is not invertible for ECDSA-Sign with the
deterministic bit set to one but not when the deter-
ministic bit is zero or for Encrypted-ECDSA-Sign. For
ECDSA-Sign with the deterministic bit set to zero and
for Encrypted-ECDSA-Sign the CPU generated ran-
dom number will be invertible. Condition code 0 is set
if signature generation is successful. Condition code
3 is set if the operation ends in partial completion.

KDSA-EdDSA-Verify Functions

This section illustrates the operation for two KDSA-
EdDSA-Verify functions for Edwards curves:

• KDSA-EdDSA-Verify-Ed25519 (function code
32)

• KDSA-EdDSA-Verify-Ed448 (function code 36)

The locations of the operands and addresses used
by each of these functions are as shown in
Figure 26-3 on page 26-3. The parameter block con-
tains the operands used by the KDSA-EdDSA-Verify
functions and is addressed by general register 1.

Note that EdDSA is defined in RFC-8032 Reference
[25.] on page xxx to have integers encoded in little-
endian form as opposed to most cryptographic algo-
rithms. Transformation from little-endian to big-
endian can be accomplished by a MOVE INVERSE
(MVCIN) instruction and KDSA is assumed to have
operands in big-endian form.

For Ed25519 the most significant bit of the most sig-
nificant byte is not needed for 255 bit format though
the standard requires this bit to be a zero. For com-
pressed points the y-coordinate is placed in the 255
least significant bits and the x-coordinate least signif-
icant bit is placed in the remaining most significant
bit. Ed448 encodes a compressed point with the 56
byte y-coordinate in the least significant 56 bytes of
the 57 bytes and the x-coordinate least significant bit

Offset

Dec Hex

00 00
Signature(R)

48 30
Signature(S)

96 60
Hashed Message - H(msg)

144 90
Encrypted Private Cryptographic Key (WKa(K))

192 C0
Random Number(RN)

240 F0
AES Wrapping-Key Verification Pattern (WKaVP)

272 110 C RIBM

280

4088

118

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-12. Parameter Block for KDSA-Encrypted-
ECDSA-Sign-P384 Function

Offset

Dec Hex

00 00
Signature(R)

80 50
Signature(S)

160 A0
Hashed Message - H(msg)

240 F0
Encrypted Private Cryptographic Key (WKa(K))

320 140
Random Number(RN)

400 190
AES Wrapping-Key Verification Pattern (WKaVP)

432 1B0 C RIBM

440

4088

1B8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-13. Parameter Block for KDSA-Encrypted-
ECDSA-Sign-P521 Function

26-10 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
N is placed in the most significant bit of the most signif-

icant byte and the remaining bits of the byte are filled
with zeros. Note that the integer representation of a
compressed point can not take on all values, and
there are some values which are invalid and can not
be decompressed. In the case of input that can not
be decompressed, such as the signature R or the
public key, a condition code is produced indicating
the input is invalid.

The KDSA-EdDSA-Verify function checks the validity
of a signed message. The originator of the message
has a public key that can be used to see if the signa-
ture matches the hashed message. The signature
consists of two integers in the prime field designated
by R and S. The originator and receiver agree on a
hashing scheme for creating the signature. The
KDSA-EdDSA-Verify function operates on full mes-
sage which is addressed by operand 2. The origina-
tor’s public key is represented by K in the parameter
block and it is in compressed format where the least
significant bit of the x coordinate is concatenated to
all the bits of the y coordinate. Therefore the public
key is slightly wider than the prime of the curve taking
57 bytes for the Ed448 curve. The operation results
in a true or false validity indication in the condition
code represented by condition code equal to zero or
two respectively.

Note the public key and signature R are compressed
points that are represented in big-endian form in the
parameter block, though the RFC-8032 algorithm
Reference [25.] on page xxx requires these com-
pressed points to be hashed in little-endian format in
compressed format. This requires byte reversing the
public key and signature R.

The parameter block used for KDSA-EdDSA-Verify-
Ed25519 function has the format as shown in

Figure 26-14, below. R, S, and K are represented as

32 bytes or 256 bits wide.

The parameter block for KDSA-EdDSA-Verify-Ed448
is shown in Figure 26-15, below. R, S, and K fields

are 64 bytes or 512 bits wide. The S parameter is
represented by the right most 456 bits of the 512 bit
field and the R and K field which are compressed
points are represented by the right most 456 bits of
the 512 bit field.

The second operand address in general register R2

and the second operand length in general register
R2+1 are not updated as the message is processed.

Condition code 1 is set when the public key is invalid
due to the compressed point not being decompress-
able or the Y coordinate not being greater than or

Offset

Dec Hex

00 00
Signature (R)

32 20
Signature (S)

64 40
Public Cryptographic Key(K)

96 60 C RIBM

104

4088

68

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-14. Parameter Block for KDSA-EdDSA-Verify-
Ed25519 Function

Offset

Dec Hex

00 00
Signature(R)

64 40
Signature(S)

128 80
Public Cryptographic Key(K)

192 C0 C RIBM

200

4088

C8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-15. Parameter Block for KDSA-EdDSA-Verify-
Ed448 Function

Specialized-Function-Assist Instructions 26-11

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
Nequal to zero and less than the prime of the curve, or

the point not on the curve. Condition code 2 is set if
the signature is invalid and condition code 0 is set if
the signature is valid. There are several cases of the
signature being invalid such as the compressed point
R not being decompressable or its resulting Y coordi-
nate not greater than zero and less than the prime or
the signature S not being greater than zero and less
than the prime or the signature not matching. Note
for Ed448 S is 57 bytes and the most significant byte
must be zero otherwise condition code 2 is set. Con-
dition code 3 is set if the operation ends with partial
completion.

KDSA-EdDSA-Sign Functions

Note: The description of the KDSA-EdDSA-Sign
function assumes that the reader is familiar with the
Edwards-curve Digital Signature Algorithm (EdDSA)
described in Reference [25.] on page xxx.

This section illustrates the operation for two KDSA-
EdDSA-Sign functions and the two KDSA-Encrypted-
EdDSA-Sign functions:

• KDSA-EdDSA-Sign-Ed25519 (function code 40)
• KDSA-EdDSA-Sign-Ed448 (function code 44)
• KDSA-Encrypted-EdDSA-Sign-Ed25519 (func-

tion code 48)
• KDSA-Encrypted-EdDSA-Sign-Ed448 (function

code 52)

The KDSA-EdDSA-Sign function uses a cryp-
tographic key (K) that is a plain text key for the
author’s private key. This key must be protected by
software. The KDSA-Encrypted-EdDSA-Sign func-
tion uses an encrypted key to hold the author’s pri-
vate key and has a corresponding Wrapping Key
Verification Pattern (WKaVP) to test the key.

The EdDSA algorithm does not use a random num-
ber and therefore none is specified for KDSA-
EdDSA-Sign functions.

The result of the KDSA-EdDSA-Sign function is a
signature which is represented by two integers, R
and S, where S is between a value of zero and the

order of the curve for the particular function and is
stored in the designated location in the parameter
block.

Note that for EdDSA the private key is not checked
for range since it is directly hashed and does not
need to be in a certain range.

Note the public key and signature R are compressed
points that are created internal to the sign operation
in big-endian form, though the RFC-8032 algorithm
Reference [25.] on page xxx requires these com-
pressed points to be hashed in little-endian format in
compressed format. This requires byte reversing the
public key and signature R.

The parameter block for KDSA-EdDSA-Sign-
Ed25519 with plain text key is shown in Figure 26-16,
below. The R, S, and K parameters are 32 byte

fields. Note that the S parameter has the most signif-
icant bit of the field forced to zero. No random num-
ber is specified since EdDSA algorithm does not
require one.

The parameter block for KDSA-EdDSA-Sign-Ed448
function with plain text key is shown in Figure 26-17,

Offset

Dec Hex

00 00
Signature(R)

32 20
Signature(S)

64 40
Private Cryptographic Key(K) in Plain Text

96 60
Reserved

112 70 C RIBM

120

4088

78

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-16. Parameter Block for KDSA-EdDSA-Sign-
Ed25519 Functions

26-12 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
N below. The R, S, and the K parameters are 456 bits

or 57 bytes and are right aligned. The remaining
bytes of the R and S fields are unchanged. The
Ed448 format also uses the EdDSA algorithm which
does not utilize a random number.

The reserved for IBM use (RIBM) field is 60 bits and
the information code (C) is 4 bits for a total of 8 bytes,
and must be initialized to zero prior to the first invoca-
tion of the instruction. The RIBM holds status and
control information and continuation state buffer
(CSB) is provided to hold intermediate results for par-
tial completion reported by setting the condition code
equal to 3. The parameter block should not be
altered by the programmer after partial completion
and before subsequent invocation. Corruption of the
CSB is handled by the CPU clearing the intermediate
results and status in the CSB and ending in partial
completion which will allow a clean re-execution of
the instruction. Also the CSB is cleared by the CPU
of any intermediate state if the KDSA instruction
ends with neither a condition code 3 nor an access
exception. The information code is utilized by the
KDSA Encrypted Sign functions to distinguish
between different condition code one cases and is
reserved for future use on other function codes.

The parameter block for KDSA-Encrypted-ECDSA-
Sign-Ed25519 for encrypted key is shown in

Figure 26-18, below. Note the Ed25519 format uti-

lizes 32 bytes for each parameter including the S field
which has a zero for the most significant bit.

The parameter block for KDSA-Encrypted-EdDSA-
Sign-Ed448 is shown in Figure 26-19, below. The R

and S parameters require 456 bits or 57 bytes and
they are right aligned within the 64 byte fields.

Offset

Dec Hex

00 00
Signature(R)

64 40
Signature(S)

128 80
Private Cryptographic Key(K) in Plain Text

192 C0
Reserved

208 D0 C RIBM

216

4088

D8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-17. Parameter Block for KDSA-EdDSA-Sign-
Ed448 Function

Offset

Dec Hex

00 00
Signature(R)

32 20
Signature(S)

64 40
Encrypted Private Cryptographic Key (WKa(K))

96 60
AES Wrapping-Key Verification Pattern (WKaVP)

128 80
Reserved

144 90 C RIBM

152

4088

98

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-18. Parameter Block for KDSA-Encrypted-
EdDSA-Sign-Ed25519 Function

Offset

Dec Hex

00 00
Signature(R)

64 40
Signature(S)

128 80
Encrypted Private Cryptographic Key (WKa(K))

192 C0
AES Wrapping-Key Verification Pattern (WKaVP)

224 E0
Reserved

240 F0 C RIBM

248

4088

F8

FF8

Continuation State Buffer(CSB)

0 4 32 63

Figure 26-19. Parameter Block for KDSA-EdDSA-Sign-
Ed448 Function

Specialized-Function-Assist Instructions 26-13

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
NThe second operand address in general register R2

and the second operand length in general register
R2 + 1 are not updated as the message is processed
which is twice for the KDSA-EdDSA-Sign and KDSA-
Encrypted-EdDSA-Sign functions.

Condition code 1 is set and C is set to 0001 binary, if
the verification pattern mismatches. The condition
code is set to 1 and C is set to 0000 binary, if the pri-
vate key is zero or greater than or equal to the order
of the curve. And condition code 0 is set if signature
generation is successful. Condition code 3 is set if
the operation ends with partial completion.

Operand Field Description

The fields of the parameter block for all KDSA-Verify
and KDSA-Sign functions are as follows where each
parameter is right aligned in the field and extracted to
byte boundaries (P521 parameters are 66 bytes or
528 bits with the most significant 7 bits equal to
zeros, except for the hashed message which allows
these 7 bits to be non-zero):

Signature (R): The first part of the signature is rep-
resented by R. For ECDSA, R is an unsigned integer
which is greater than zero and less than the order of
the curve, otherwise it is considered an invalid signa-
ture and for the ECDSA Verify function results in a
condition code equal to 2. For EdDSA functions, R is
a compressed point where the least significant bit of
X is concatenated with the Y. R must be decompress-
able or the condition code is set to 2. For Ed25519, R
is 256 bits consisting of 1 bit of X concatenated on
the left of 255 bits of Y and for Ed448 an extra byte is
added on the left with 1 bit X concatenated with 7
zeros, followed by 448 bits of Y. The Y coordinate
must be greater than or equal to zero and less than
the prime otherwise it is considered an invalid signa-
ture resulting in a condition code equal to 2.

Signature (S): The second part of the signature is
represented by S. S is an unsigned integer for both
ECDSA and EdDSA functions and is greater than
zero and less than the order of the curve, otherwise
for the Verify functions it is considered an invalid sig-
nature resulting in a condition code equal to 2.

Hashed Message - H(msg): The sign and verify
operation utilize a hashed version of the author’s
message for ECDSA curves. Hashing for ECDSA is
performed prior to the KDSA instruction to allow
greater flexibility in supported encryption. The
hashed message is an unsigned integer and can be

any value including zero or greater than the prime.
The hashed message is reduced by the function
modulo the order of the curve to be greater than or
equal to zero and less than the order of the curve.
This parameter is not available on EdDSA curves,
since they do not prehash the message, and instead
operand 2 addresses the encrypted message.

Cryptographic Key (K): The cryptographic key
used in the sign and verify operations begins at vari-
ous bytes of the parameter block. The size of the key
field and its offset in the parameter block are depen-
dent on the function code, as shown in Figure 26-20.

The key used for KDSA-EdDSA-Verify functions is a
compressed point whereas the other functions use
an integer key. If the compressed point public key can
not be decompressed or if the Y coordinate is greater
than or equal to the prime the condition code is set to
1. Note that Ed25519 requires 255 least significant
bits of the 256-bit, 32-byte field. The KDSA-Sign for
P521 and Ed448 require different key widths for
encrypted key and plain text functions. The
encrypted key is encoded into blocks of 128 bits. The
P521 plain text key for sign and for verify are 521 bits
which is 65 bytes and 1 bit, which is aligned in the

Function
Code Function

Key
Length
(bytes)

Key
Offset
(bytes)

1 KDSA-ECDSA-Verify-P256 32x2 96-159

2 KDSA-ECDSA-Verify-P384 48x2 144-239

3 KDSA-ECDSA-Verify-P521 66x2 254-319,
334-399

9 KDSA-ECDSA-Sign-P256 32 96-127

10 KDSA-ECDSA-Sign-P384 48 144-191

11 KDSA-ECDSA-Sign-P521 66 254-319

17 KDSA-Encrypted-ECDSA-Sign-P256 32 96-127

18 KDSA-Encrypted-ECDSA-Sign-P384 48 144-191

19 KDSA-Encrypted-ECDSA-Sign-P521 80 240-319

32 KDSA-EdDSA-Verify-Ed25519 32 64-127

36 KDSA-EdDSA-Verify-Ed448 57 135-191

40 KDSA-EdDSA-Sign-Ed25519 32 64-95

44 KDSA-EdDSA-Sign-Ed448 57 135-191

48 KDSA-Encrypted-EdDSA-Sign-
Ed25519

32 64-95

52 KDSA-Encrypted-EdDSA-Sign-
Ed448

64 128-191

Figure 26-20. Summary of Key Lengths and Offsets for
KDSA Functions

26-14 The z/Architecture CPU Architecture

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
N right most bits of the 66 byte key and the 66 byte key

is aligned in the right most bytes of the 80 byte field
in the parameter block.

For KDSA-ECDSA-Sign the key must be greater than
zero and less than the order of the curve or the con-
dition code is set to 1. For KDSA-ECDSA-Verify the
public key point has to be on the curve and the coor-
dinates must be less than the order of the curve or
the condition code is set to 1.

AES Wrapping-Key Verification Pattern
(WKaVP): For the KDSA-Encrypted-Sign functions
(codes 17-19, 48, and 52), the 32 bytes immediately
following the key in the parameter block contain the
AES wrapping-key verification pattern (WKaVP).

For the KDSA-Verify functions and the plain text key
KDSA-Sign functions, the WKaVP field is not present
in the parameter block.

Wrapping-Key Verification: For the KDSA-Sign
with encrypted key functions (function codes 17-19,
48, and 52), the contents of the 32-byte WKaVP field
are compared with the contents of the AES wrap-
ping-key verification-pattern register. If they mis-
match, the parameter-block location remains
unchanged, and the operation is completed by set-
ting condition code 1. If they match, the contents of
the key field of the parameter block are deciphered
using the AES wrapping key to obtain the cryp-
tographic key, K. (See the “Protection of Cryp-
tographic Keys” on page 7-431 for details.) Note
encrypted ECC keys are protected by AES-256
encryption.

For the KDSA functions that do not use encrypted
keys, wrapping-key verification is not performed.

Random Number (RN): The KDSA-ECDSA-Sign
and KDSA-Encrypted-Sign functions have an input
random number. For KDSA-ECDSA-Sign functions
with the deterministic bit set equal to one the random
number must be greater than zero. Bits more signifi-
cant than number bits in the prime number are forced
to zero and if not less than the order of the curve of
the function, the order of curve is subtracted from the
random number. The random number must be invert-
ible by the order of curve otherwise the parameter-
block location remains unchanged, and the operation
is completed by setting condition code 2.

For KDSA-ECDSA-Sign with the deterministic bit
equal to zero and for KDSA-Encrypted-ECDSA-Sign

functions the random number can be any value
including zero, since it is not used directly but instead
is used as a seed to create an invertible, hidden, ran-
dom number.

RIBM, C, and Continuation State Buffer (CSB):

The RIBM and C must be initialized to zero prior to
the first invocation of the instruction. This reserved
area and continuation state buffer (CSB) are pro-
vided to hold intermediate results for partial comple-
tion reported by setting the condition code equal to 3.
The parameter block should not be altered by the
programmer after partial completion and before sub-
sequent invocation. If corruption is detected in the
RIBM and CSB the CPU clears the CSB intermediate
state and status and ends the instruction in partial
completion which will allow a clean re-execution of
the instruction. Also, the CSB is cleared by the CPU
of any intermediate state when the ends in neither
partial completion nor an access exception. The C
field is an information code field defined for the KDSA
Encrypted Sign functions to distinguish the condition
code one cases of private key not in range, C=0000
binary, and the WKVP mismatch, C=0001 binary and
is reserved for other functions.

Reserved: As an input to an operation, reserved
fields should contain zeros; otherwise, the program
may not operate compatibly in the future. When an
operation ends, reserved fields may be stored as
zeros or may remain unchanged.

Common Operation

When the entire parameter block overlaps the PER
storage-area designation, a PER storage-alteration
event is recognized, when applicable, for the parame-
ter block. When only a portion of the parameter block
overlaps the PER storage-area designation, it is
model-dependent which of the following occurs:

• A PER storage-alteration event is recognized,
when applicable, for the entire parameter block.

• A PER storage-alteration event is recognized,
when applicable, for the portion of the parameter
block that is stored.

A PER zero-address-detection event is recognized,
when applicable, for the second-operand location
and for the parameter block.

For functions that perform a comparison of the wrap-
ping-key verification pattern field in the parameter

Specialized-Function-Assist Instructions 26-15

C
O

M
P

U
T

E
 D

IG
IT

A
L

 S
IG

N
A

T
U

R
E

 A
U

T
H

E
N

T
IC

A
T

IO
Nblock with the wrapping-key verification-pattern regis-

ter, it is unpredictable whether access exceptions
and PER zero-address-detection events are recog-
nized for the second operand when the comparison
results in a mismatch.

When the contents of general register R2 are zero,
multiple PER zero-address-detection events will be
detected if the instruction ends in partial completion.

Access exceptions may be reported for a larger por-
tion of an operand than is processed in a single exe-
cution of the instruction; however, access exceptions
are not recognized for locations beyond the length of
an operand nor for locations more than 4 K-bytes
beyond the current location being processed. The
entire parameter block may be tested for store-type
accesses even though part of it may not be stored.
All KDSA function codes may test for store-type
accesses including KDSA-Verify since it could store
to the RIBM and CSB fields on partial completion.

Special Conditions for KDSA

If the second operand overlaps the parameter block,
results are unpredictable.

A specification exception is recognized and no other
action is taken if any of the following occurs:

1. Bits 57-63 of general register 0 specify an unas-
signed or uninstalled function code.

2. The R2 field designates an odd-numbered regis-
ter or general register 0.

Resulting Condition Code:

0 Query: function completes; Verify: signature veri-
fied for function; Sign: normal completion.

1 Verify: public key not on curve, or not decom-
pressable, or coordinate greater than the prime
of the curve; Sign: key verification-pattern mis-
match, or for ECDSA-Sign the private key is
equal to zero or greater than the prime of the
curve.

2 Verify: signature is incorrect, or for EdDSA R not
decompressable, or for non-Encrypted ECDSA
sign with D=1: random number not invertible or
out of range (0 < RN < order of curve).

3 Partial completion

Program Exceptions:

• Access (fetch, parameter block fields, operand 2
(EdDSA functions only); store, parameter block
fields)

• Operation (if the message-security-assist exten-
sion 9 is not installed)

• Specification
• Transaction constraint

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint.

8. Specification exception due to invalid function
code or invalid register number.

9.A.1 Access exceptions for an access to the
parameter block.

9.A.2 Sign function with condition code 1 due to
verification-pattern mismatch, or ECDSA private
key equal to zero or greater than the order of the
curve.
Verification function for ECDSA with condition
code 1 due to the public key not on the curve or
one or more of the coordinates greater than or
equal to the order.
Verification function for EdDSA with condition
code 1 due to the public key not
decompressable, or one or more of the
coordinates greater than or equal to the prime.

9.A.3 ECDSA Sign (non-encrypted) function and D = 1
with condition code 2 due to a non-invertible
random number or out of range (0 < RN < order
of curve).
Verification function for ECDSA with condition
code 2 due to the signature equal to zero or
greater than or equal to the prime of the curve.
Verification function for EdDSA with condition
code 2 due to the signature S equal to zero or
greater than or equal to the order of the curve or
signature R not decompressable or the Y
coordinate greater than or equal to the prime.

9.B Access exceptions for an access to the second
operand.

Figure 26-21. Priority of Execution: KDSA

26-16 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L

Programming Notes:

1. The performance of the query function (code 0)
may be significantly slower than that of simply
examining a location in storage. If the program
needs to frequently test for the availability of a
function, it should perform the query function
once during initialization; subsequently it should
examine the stored results of the query function
in memory with an instruction such as TEST
UNDER MASK.

2. When condition code 3 is set, the general regis-
ters containing the operand addresses and
lengths, and the parameter block, are updated
such that the program can simply branch back to
the instruction to continue the operation.

3. The R1 field is not used by this instruction for any
function codes.

4. Software should clear fields in the parameter
block that are sensitive such as the Private Key
and the Random Number to limit the time
exposed in storage. The CPU will zero out the
CSB upon restart of the instruction and full com-
pletion.

5. The reserved field should be initialized to zero
otherwise the program may not operate compati-
bly in the future.

DEFLATE CONVERSION CALL

DFLTCC R1,R2,R3 [RRF-a]

DEFLATE CONVERSION CALL performs functions
related to transforming the state of data between the
original (uncompressed) form of the data, and a com-
pressed representation of the data, as specified by
the standard described in Reference [23.] on page
xxx. The uncompressed data is a sequence of bytes.
The compressed representation of the data includes
symbols. Symbols represent an individual byte of
uncompressed data, referred to as a literal byte, or

represent a reoccurring sequence of bytes of uncom-
pressed data, referred to as a duplicate string. A
Huffman table specifies the encoding and decoding
between compressed-data symbols and uncom-
pressed data. There are two types of Huffman tables.
A fixed-Huffman table (FHT) is a predetermined
specification which includes all possible codings. A
dynamic-Huffman table (DHT) is a set of codings cre-
ated specifically for the data to be compressed,
which may be a subset of all possible codings. A
compressed representation of data generated with a
DHT is typically smaller than a compressed repre-
sentation of the same data generated with an FHT. A
portion of the most recently processed uncom-
pressed data, referred to as history, is maintained for
encoding and decoding compressed-data symbols
representing duplicate strings. The history is the ref-
erence source for duplicate strings. The history is
updated as data is processed during an operation.

The definition of DEFLATE CONVERSION CALL
assumes knowledge of the DEFLATE compressed
data format, which is described in Reference [23.] on
page xxx. Noteworthy attributes of the DEFLATE
standard which apply to DEFLATE CONVERSION
CALL are as follows:

• A compressed-data set consists of a series of
blocks. There are three types of blocks. One type
consists of a 3-bit header followed by length
information and uncompressed data. Two types
of blocks consists of a 3-bit header followed by
compressed-data elements.

• Compressed-data elements may include a com-
pressed representation of a dynamic-Huffman
table, compressed-data symbols, and an end-of-
block (EOB) symbol.

• Compressed-data elements have various bit
lengths.

• Compressed-data elements may begin or end
between byte boundaries in storage.

• Compressed-data elements are loaded into
bytes in order from the rightmost bit position to
the leftmost bit position.

Refer to “Descriptions for Compressed-data Blocks”
on page 26-43 for details on boundaries and order-
ings for bytes and bits of the various blocks encoun-
tered in a compressed-data set.

When a compressed-data element occupies part of,
and not all of, a byte in storage, the entire byte in
storage is accessed. Storage-operand lengths spec-
ify the number of addressable bytes, which may

10. Condition code 3 due to partial processing.

11. Condition code 0 due to normal completion or
condition code 2 due to signature incorrect.

'B939' R3 / / / / R1 R2

0 16 20 24 28 31

Figure 26-21. Priority of Execution: KDSA (Continued)

Specialized-Function-Assist Instructions 26-17

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Lspecify more bits than the compressed-data occu-

pies.

DEFLATE CONVERSION CALL is an unprivileged
instruction. It may be executed when the CPU is in
the problem or supervisor state.

Bits 20-23 of the instruction are reserved and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future.

A function specified by the function code in bit posi-
tions 57-63 of general register 0 is performed.
Figure 26-22 shows the assigned function codes for
DEFLATE CONVERSION CALL. All other function
codes are unassigned. When the specified function
is DFLTCC-CMPR or DFLTCC-XPND, bit 56 of gen-
eral register 0 specifies the history-buffer type (HBT)
used during the operation. When HBT is zero, the
history buffer is called an in-line history buffer. When
using an in-line history buffer, the history is immedi-
ately to the left of the second operand when
DFLTCC-CMPR is specified, and is immediately to
the left of the first operand when DFLTCC-XPND is
specified. When HBT is one, the history-buffer is
called a circular history buffer. When using a circular
history buffer, the history is a portion of, or all of, the
third operand when either DFLTCC-CMPR or
DFLTCC-XPND is specified. When the DFLTCC-QAF
or DFLTCC-GDHT function is specified, bit 56 of gen-
eral register 0 is ignored. Bit positions 0-31 of general
register 0 are ignored. Bit positions 32-55 of general
register 0 are reserved and should contain zeros;
otherwise, the program may not operate compatibly
in the future.

When bits 57-63 of general register 0 designate an
unassigned or uninstalled function code, a specifica-
tion exception is recognized.

The contents of general register 1 specify the logical
address of the leftmost byte of the parameter block in
storage. The parameter block must be designated on

a doubleword boundary; otherwise a specification
exception is recognized.

When the specified function is DFLTCC-CMPR or
DFLTCC-XPND, the contents of general register R1

specify the logical address of the leftmost byte of the
first operand. When the specified function is
DFLTCC-CMPR, the contents of general register
R1 + 1, in conjunction with the values of the NT and
SBB fields of the parameter block, specify the length
of the first operand. Figure 26-23 on page 26-17 pro-
vides examples which demonstrate the length of the
first operand for the DFLTCC-CMPR function as a
function of the contents of general register R1 + 1,
the NT field, and the SBB field. When the specified
function is DFLTCC-XPND, the contents of general
register R1 + 1 specify the length of the first operand.
When the specified function is DFLTCC-CMPR or
DFLTCC-XPND the results of compressing or
uncompressing data are stored at the first-operand
location. When the DFLTCC-QAF or DFLTCC-GDHT
function is specified, the contents of general registers
R1 and R1 + 1 are ignored. For all functions, the R1

field designates an even-odd pair of general regis-
ters. For all functions, the R1 field must not designate
general register 0 and must designate an even-num-
bered register; otherwise, a specification exception is
recognized.

When the specified function is DFLTCC-GDHT,
DFLTCC-CMPR, or DFLTCC-XPND, the contents of
general register R2 specify the logical address of the
leftmost byte of the second operand. When the spec-
ified function is DFLTCC-CMPR or DFLTCC-GDHT,
the contents of general register R2 + 1 specify the
length of the second operand. When the specified

Code Function
Parameter Block

Size (bytes)

0 DFLTCC-QAF 32

1 DFLTCC-GDHT 384

2 DFLTCC-CMPR 1536

4 DFLTCC-XPND 1536

Figure 26-22. Function Codes for DEFLATE
COMPRESSION CALL

contents of GR R1 + 1
(hex)

NT SBB (binary)
length of first

operand

00000000 00000002 0 001 15 bits

00000000 00000001 1 --- 8 bits

00000000 00000001 0 000 8 bits

00000000 00000001 0 011 5 bits

00000000 00000001 0 111 1 bit

00000000 00000000 - --- 0 bits

Figure 26-23. Examples Illustrating how NT and SBB Apply
to the length of the first operand for the DFLTCC-
CMPR function

26-18 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L function is DFLTCC-XPND, the contents of general

register R2 + 1, in conjunction with the values of the
NT and SBB fields of the parameter block, specify
the length of the second operand. When the second-
operand length is referenced and has a non-zero
value at the beginning of the execution of the instruc-
tion, data is fetched from the second-operand loca-
tion. When the second-operand length is referenced,
has a value of zero at the beginning of the execution
of the instruction, and the continuation flag (CF) field
of the parameter block is one at the beginning of the
execution of the instruction, the second operand is
not accessed. Refer to page 26-50 and page 26-57
for additional details. When the DFLTCC-QAF func-
tion is specified, the contents of general registers R2

and R2 + 1 are ignored. When the DFLTCC-GDHT
function is specified and the contents of general reg-
ister R2 + 1 specify a length equal to zero, a specifi-
cation exception is recognized and the second
operand is not accessed. When the DFLTCC-CMPR
or DFLTCC-XPND function is specified, the continua-
tion flag (CF) field of the parameter block is zero at
the beginning of the execution of the instruction, and
the contents of general register R2 + 1 specify a
length equal to zero, a specification exception is rec-
ognized and the second operand is not accessed.
For all functions, the R2 field designates an even-odd
pair of general registers. For all functions, the R2 field
must not designate general register 0 and must des-
ignate an even-numbered register; otherwise, a
specification exception is recognized.

When the specified function is DFLTCC-CMPR or
DFLTCC-XPND and the history-buffer type (HBT) is
circular, the contents of general register R3 specify
the logical address of the leftmost byte of the third
operand, and must designate a 4 K-byte boundary;
otherwise a specification exception is recognized.
The circular history buffer is a 32 K-byte buffer
located at the third-operand location. When the spec-
ified function is DFLTCC-CMPR or DFLTCC-XPND
and the HBT is zero, the contents of general register
R3 are ignored. When the DFLTCC-QAF or DFLTCC-
GDHT function is specified, the contents of general
register R3 are ignored. For all functions, the R3 field
must not designate general register 0 or general reg-
ister 1; otherwise, a specification exception is recog-
nized.

As part of the operation when the specified function
is DFLTCC-CMPR, the address in general register R1

is incremented by the number of bytes processed of
the first operand that included processing bit position
0, and the length in general register R1 + 1 is decre-

mented by the same number; the address in general
register R2 is incremented by the number of bytes
processed of the second operand, and the length in
general register R2 + 1 is decremented by the same
number. The number of bytes processed of the first
operand that included processing bit position 0 is the
integer quotient resulting from an integer division
with the dividend being the sum of the number of out-
put bits processed and the original value of the SBB,
and the divisor being a value of eight. The formation
and updating of the addresses and lengths are
dependent on the addressing mode.

As part of the operation when the specified function
is DFLTCC-XPND, the address in general register R1

is incremented by the number of bytes processed of
the first operand, and the length in general register
R1 + 1 is decremented by the same number; the
address in general register R2 is incremented by the
number of bytes processed of the second operand
that included processing bit position 0, and the length
in general register R2 + 1 is decremented by the
same number. The number of bytes processed of the
second operand that included processing bit position
0 is the integer quotient resulting from an integer divi-
sion with the dividend being the sum of the number of
input bits processed and the original value of the
SBB, and the divisor being a value of eight. The for-
mation and updating of the addresses and lengths
are dependent on the addressing mode.

For all functions, the contents of general registers 0,
1, and R3 are not modified.

In the 24-bit addressing mode, the following apply:

• The contents of bit positions 40-63 of general
registers 1, R1, R2, and R3 constitute the
addresses of the parameter block, first operand,
second operand, and circular history buffer,
respectively, and the contents of bit positions 0-
39 are ignored.

• Bits 40-63 of the updated first-operand and sec-
ond-operand addresses replace the correspond-
ing bits in general registers R1 and R2,
respectively. Carries out of bit position 40 of the
updated addresses are ignored, and the con-
tents of bit positions 32-39 of general registers
R1 and R2 are set to zeros. The contents of bit
positions 0-31 of general registers R1 and R2

remain unchanged. When the instruction ends
with partial or normal completion, and an
updated operand address equals the operand
address at the beginning of the execution of the

Specialized-Function-Assist Instructions 26-19

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Linstruction, bit positions 32-39 of the correspond-

ing general register are set to zeros.
• The contents of bit positions 32-63 of general

registers R1 + 1 and R2 + 1 form 32-bit unsigned
binary integers which specify the number of
bytes in the first and second operands, respec-
tively. The contents of bit positions 0-31 of gen-
eral registers R1 + 1 and R2 + 1 are ignored.

• Bits 32-63 of the updated first-operand and sec-
ond-operand lengths replace the corresponding
bits in general registers R1 + 1 and R2 + 1,
respectively. The contents of bit positions 0-31 of
general registers R1 + 1 and R2 + 1 remain
unchanged.

In the 31-bit addressing mode, the following apply:

• The contents of bit positions 33-63 of general
registers 1, R1, R2, and R3 constitute the
addresses of the parameter block, first operand,
second operand, and circular history buffer,
respectively, and the contents of bit positions 0-
32 are ignored.

• Bits 33-63 of the updated first-operand and sec-
ond-operand addresses replace the correspond-
ing bits in general registers R1 and R2,
respectively. Carries out of bit position 33 of the
updated addresses are ignored, and the content
of bit position 32 of general registers R1 and R2 is
set to zero. The contents of bit positions 0-31 of
general registers R1 and R2 remain unchanged.
When the instruction ends with partial or normal
completion, and an updated operand address
equals the operand address at the beginning of
the execution of the instruction, bit position 32 of
the corresponding general register are set to
zero.

• The contents of bit positions 32-63 of general
registers R1 + 1 and R2 + 1 form 32-bit unsigned
binary integers which specify the number of
bytes in the first and second operands, respec-
tively. The contents of bit positions 0-31 of gen-
eral registers R1 + 1 and R2 + 1 are ignored.

• Bits 32-63 of the updated first-operand and sec-
ond-operand lengths replace the corresponding
bits in general registers R1 + 1 and R2 + 1,
respectively. The contents of bit positions 0-31 of
general registers R1 + 1 and R2 + 1 remain
unchanged.

In the 64-bit addressing mode, the following apply:

• The contents of bit positions 0-63 of general reg-
isters 1, R1, R2, and R3 constitute the addresses
of the parameter block, first operand, second
operand, and circular history buffer, respectively.

• Bits 0-63 of the updated first-operand and sec-
ond-operand addresses replace the correspond-
ing bits in general registers R1 and R2,
respectively. Carries out of bit position 0 of the
updated addresses are ignored.

• The contents of bit positions 0-63 of general reg-
isters R1 + 1 and R2 + 1 form 64-bit unsigned
binary integers which specify the number of
bytes in the first and second operands, respec-
tively.

• Bits 0-63 of the updated first-operand and sec-
ond-operand lengths replace the corresponding
bits in general registers R1 + 1 and R2 + 1,
respectively.

In the access-register mode, access registers 1, R1,
R2, and R3 specify the address spaces containing the
parameter block, first operand, second operand, and
circular history buffer, respectively. When DFTCC-
CMPR with an in-line history buffer is specified in the
access-register mode, access register R2 specifies
the address space containing the in-line history.
When DFTCC-XPND with an in-line history buffer is
specified in the access-register mode, access regis-
ter R1 specifies the address space containing the in-
line history.

Figure 26-24 on page 26-19 shows the contents of
the general registers just described.

All Addressing Modes

GR0
/ Reserved

H
B
T

FC

0 56 57 63

Figure 26-24. General Register Assignment for DFLTCC (Part 1 of 2)

26-20 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L 24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

R3 / Circular-History-Buffer Address
0 40 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

R3 / Circular-History-Buffer Address
0 33 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

R3 Circular-History-Buffer Address
0 63

Explanation:

FC Function code
HBT History buffer type

Figure 26-24. General Register Assignment for DFLTCC (Part 2 of 2)

Specialized-Function-Assist Instructions 26-21

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
LFunction Code 0: DFLTCC-QAF (Query

Available Functions)
The DFLTCC-QAF (query) function provides the
means of indicating the availability of all installed
functions and installed parameter block formats.

The parameter block for the query function has the
following format:

An installed-functions vector and an installed-param-
eter-block-formats vector are stored to bytes 0-15
and bytes 24-25, respectively, of the parameter block,
as illustrated in Figure 26-25.

Bits 0-127 of the installed-functions vector corre-
spond to function codes 0-127, respectively, of the
DEFLATE CONVERSION CALL instruction. When a
bit is one, the corresponding function is installed; oth-
erwise, the function is not installed.

Bits 0-15 of the installed-parameter-block-formats
vector correspond to parameter-block formats 0-15,
respectively, for the DFLTCC-GDHT, DFLTCC-
CMPR, and DFLTCC-XPND functions. When a bit is
one, the corresponding parameter-block format is
installed; otherwise, the parameter-block format is
not installed.

Zeros are stored to reserved bytes 16-23 and 26-31
of the parameter block.

The contents of general registers R1, R1 + 1, R2,
R2 + 1, and R3 are ignored when the DFLTCC-QAF
function is specified.

A PER storage-alteration event is recognized, when
applicable, for the parameter block. A PER zero-

address-detection event is recognized, when applica-
ble, for the parameter block.

Condition code 0 is set when execution of the
DFLTCC-QAF function completes; condition codes 1,
2, and 3 are not applicable to the query function.

Function Code 1: DFLTCC-GDHT
(Generate Dynamic-Huffman Table)
When the DFLTCC-GDHT function is specified, the
second operand is used as a source to generate a
compressed representation of a dynamic-Huffman
table (DHT), as specified by the DEFLATE standard.
Aspects of DHT generation are specified by the pro-
gram to the machine using the DHTGC field of the
parameter block. It is intended that the source con-
tains uncompressed data and subsequent to com-
pleting the operation, the generated result is
specified with the DFLTCC-CMPR function to com-
press the same source.

There is no history to reference from prior operations
while processing the current operation.

When the contents of general register R2 + 1 specify
a length greater than 32 K-bytes, the following
applies:

• Only the first 32 K-bytes of the second operand
are used to generate the DHT.

• Access exceptions are not recognized for loca-
tions beyond the first 32 K-bytes of the second
operand.

When the contents of general register R2 + 1 specify
a length equal to zero, a specification exception is
recognized and the second operand is not accessed.

The parameter block for the DFLTCC-GDHT function
is shown in Figure 26-26 on page 26-22. The fields of
the parameter block are described in section ”Param-
eter Block for Data Conversion” on page 26-33.
Fields of the parameter block designated as pre-
served are not modified by the DFLTCC-GDHT func-
tion. Preserved fields are distinguished from
reserved fields to enable a program to initialize a sin-
gle storage location, use that storage location for the
parameter block of a DFLTCC-GDHT function, and
subsequently use the same storage location for the
parameter block of a DFLTCC-CMPR function.

byte

0
Installed-functions vector

8

16 Reserved

24 IPBF vector Reserved
0 16 63

Explanation

IPBF Installed-parameter-block-formats

Figure 26-25. Parameter Block for DFLTCC-QAF

26-22 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L

An invalid-input condition exists when the DFLTCC-
GDHT function is specified and the following occurs:

• The format of the parameter block, as specified
by the parameter-block-version number, is not
supported by the model.

When an invalid-input condition is encountered, a
dynamic-Huffman table (DHT) is not generated, the
operation ends, and the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The operation-ending-supplemental code
(OESC) field of the parameter block is set to 01
hex.

• Condition code 2 is set.

Normal completion occurs when a dynamic-Huffman
table (DHT) is generated. When the operation ends
due to normal completion, the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• A compressed format of the generated DHT is
stored to the CDHT field of the parameter block.
The resulting compressed format of the DHT
includes a Huffman code representing an end-of-
block (EOB) symbol.

• The length of the compressed format of the gen-
erated DHT is stored to the CDHTL field of the
parameter block.

Dec Hex

0 0 PBVN MVN RIBM Reserved P

8 8 Reserved

16 10 P R P R P P P P R R

D
H
T
G
C

Reserved P P P OESC Reserved Preserved

24 18 Reserved

32 20 Reserved

40 28 Reserved Preserved R Preserved

48 30 Preserved Preserved R P Reserved

56 38 R CDHTL Reserved

64 40

 Compressed-Dynamic-Huffman Table (CDHT)

344 158

352 160

 Reserved

368 170

376 178 RIBM

0 4 16 20 24 32 44 48 49 63

Explanation:

CDHTL Compressed-Dynamic-Huffman Table Length

DHTGC Dynamic-Huffman-Table Generation Control

MVN Model-Version Number

OESC Operation-Ending-Supplemental Code

P Preserved

PBVN Parameter-Block-Version Number

R Reserved

RIBM Reserved for IBM use

Figure 26-26. Parameter Block (format 0 hex) for the DFLTCC-GDHT function

Specialized-Function-Assist Instructions 26-23

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L• The operation-ending-supplemental code

(OESC) field of the parameter block is set to 00
hex.

• Condition code 0 is set.

Condition codes 1 and 3 are not applicable to the
DFLTCC-GDHT function.

General registers R2 and R2 + 1 are not modified by
the operation.

The contents of general registers R1, R1 + 1, and R3

are ignored when the DFLTCC-GDHT function is
specified.

When the entire parameter block overlaps the PER
storage-area designation, a PER storage-alteration
event is recognized, when applicable, for the parame-
ter block. When only a portion of the parameter block
overlaps the PER storage-area designation, it is
model-dependent which of the following occurs:

• A PER storage-alteration event is recognized,
when applicable, for the entire parameter block.

• A PER storage-alteration event is recognized,
when applicable, for the portion of the parameter
block that is stored.

A PER zero-address-detection event is recognized,
when applicable, for the second-operand location
and for the parameter block.

Function Code 2: DFLTCC-CMPR
(Compress)
When the DFLTCC-CMPR function is specified, a
compressing operation is performed. The operation
consists of encoding data from the second-operand
location into compressed-data symbols, which are
stored to the first-operand location.

The operation proceeds as described in section
“Compressing Data” on page 26-49.

Normal completion occurs when the entire second
operand is compressed and stored to the first-oper-
and location. When the operation ends due to normal
completion, the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The continuation flag (CF) field of the parameter
block is set to zero.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

• The operation-ending-supplemental code
(OESC) field of the parameter block is set to
zeros.

• The history length (HL) field of the parameter
block is updated.

• The history offset (HO) field of the parameter
block is updated, when applicable.

• The check value field of the parameter block is
updated.

• The end-of-block length (EOBL) and end-of-
block symbol (EOBS) fields of the parameter
block are updated.

• The address in general register R1 is incre-
mented by the number of bytes processed of the
first operand that included processing bit 0, and
the length in general register R1 + 1 is decre-
mented by the same number. The number of
bytes processed of the first operand that
included processing bit 0 is the integer quotient
resulting from an integer division with the divi-
dend being the sum of the number of output bits
processed and the original value of the SBB, and
the divisor being a value of eight.

• The address in general register R2 is incre-
mented by the number of source bytes pro-
cessed, and the length in general register R2 + 1
is decremented by the same number.

• Condition code 0 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

When normal completion occurs, the NT and CSB
fields of the parameter block are undefined, but may
be modified.

When a CPU-determined number of bytes have been
processed and an invalid-input condition, as defined
on page 26-25, has not been encountered, the oper-
ation ends and the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The continuation flag (CF) bit in the parameter
block is set to one.

• The new task (NT) field of the parameter block is
set to zero when the CPU-determined number of
bytes processed is greater than zero.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

26-24 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L • The operation-ending-supplemental code

(OESC) field of the parameter block is set to
zeros.

• The history length (HL) field of the parameter
block is updated.

• The history offset (HO) field of the parameter
block is updated, when applicable.

• The check value field of the parameter block is
updated.

• The end-of-block length (EOBL) and end-of-
block symbol (EOBS) fields of the parameter
block are updated.

• The continuation-state buffer (CSB) field in the
parameter block is updated.

• The address in general register R1 is incre-
mented by the number of bytes processed of the
first operand that included processing bit 0, and
the length in general register R1 + 1 is decre-
mented by the same number. The number of
bytes processed of the first operand that
included processing bit 0 is the integer quotient
resulting from an integer division with the divi-
dend being the sum of the number of output bits
processed and the original value of the SBB, and
the divisor being a value of eight.

• The address in general register R2 is incre-
mented by the number of source bytes pro-
cessed, and the length in general register R2 + 1
is decremented by the same number.

• Condition code 3 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

The CPU-determined number of bytes depends on
the model, and may be a different number each time
the instruction is executed.

Subsequent to the instruction ending with condition
code 3 set, it is expected the program does not mod-
ify any input or output specification for the instruction
and branches back to reexecute the instruction to
resume the operation.

In certain unusual situations, despite ending the
instruction with condition code 3 set, the parameter
block and general registers are not updated. These
situations may occur when the CPU performs a qui-
escing operation or CPU retry while executing
DEFLATE CONVERSION CALL. In these cases, the
CPU-determined number of bytes processed is zero,
data may have been stored to the first-operand loca-
tion, data may have been stored to the third-operand

location, when applicable, and corresponding change
bits have been set.

The first-operand length is insufficient to complete
the operation when any of the following conditions
apply:

• The first-operand length, as specified by the con-
tents of general register R1 + 1, is zero at the
beginning of the execution of the instruction.

• The first-operand length becomes equal to zero
during the execution of the instruction and nor-
mal completion does not occur.

Note: The first-operand length is zero when the con-
tent of general register R1 + 1 is zero, regardless of
the values in the NT and SBB fields of the parameter
block.

When the first-operand length becomes equal to zero
during the execution of the instruction and an invalid-
input condition, as defined on page 26-25, has not
been encountered, the operation ends and the fol-
lowing occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The continuation flag (CF) bit in the parameter
block is set to one.

• The new task (NT) field of the parameter block is
set to zero.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

• The operation-ending-supplemental code
(OESC) field of the parameter block is set to
zeros.

• The history length (HL) field of the parameter
block is updated.

• The history offset (HO) field of the parameter
block is updated, when applicable.

• The check value field of the parameter block is
updated.

• The end-of-block length (EOBL) and end-of-
block symbol (EOBS) fields of the parameter
block are updated.

• The continuation-state buffer (CSB) field in the
parameter block is updated.

• The address in general register R1 is incre-
mented by the number of bytes processed of the
first operand that included processing bit 0, and
the length in general register R1 + 1 is decre-
mented by the same number. The number of
bytes processed of the first operand that

Specialized-Function-Assist Instructions 26-25

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Lincluded processing bit 0 is the integer quotient

resulting from an integer division with the divi-
dend being the sum of the number of output bits
processed and the original value of the SBB, and
the divisor being a value of eight.

• The address in general register R2 is incre-
mented by the number of source bytes pro-
cessed, and the length in general register R2 + 1
is decremented by the same number.

• Condition code 1 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

When the first-operand length is zero at the begin-
ning of the execution of the instruction and an invalid-
input condition, as defined on page 26-25, has not
been encountered, the operation ends and the fol-
lowing occurs:

• Condition code 1 is set.

Subsequent to the instruction ending with condition
code 1 set, it is expected the program modifies the
first-operand length, first-operand address, or both
and reexecute the instruction to resume the opera-
tion.

An invalid-input condition exists when the DFLTCC-
CMPR function is specified and any of the following
occurs:

1. The format of the parameter block, as specified
by the parameter-block-version number, is not
supported by the model.

2. NT is zero and HL is greater than 32,768.

3. The HTT is one and the CDHTL is less than 42
or greater than 2283.

4. The HTT is one and the CDHTL does not equal
the length of the compressed format of the DHT
specified in the CDHT field.

5. The HTT is one and the HLIT sub-element of the
compressed format of the DHT is greater than 29
(invalid DHT).

6. The HTT is one and the HDIST sub-element of
the compressed format of the DHT is greater
than 29 (invalid DHT).

7. The HTT is one and the compressed format of
the DHT (contents of the CDHT field) specifies a

code which is in the sequence of codes specify-
ing the bit lengths for the 19 possible code
lengths defined for a compressed DHT, and is
less than the length required by the Huffman
algorithm to specify a functional Huffman tree
(invalid DHT).

8. The HTT is one and the compressed format of
the DHT (contents of the CDHT field) specifies
code length 16 (copy previous code length) as
the first code length for the set of elements con-
sisting of literal bytes, an EOB symbol, and dupli-
cate-string lengths (invalid DHT).

9. The HTT is one and the compressed format of
the DHT (contents of the CDHT field) specifies a
code which is in the sequence of codes specify-
ing code lengths for literal bytes, and the code
does not match any of the codes determined to
represent the set of referenced code lengths, as
specified earlier in the compressed DHT (invalid
DHT).

10. The HTT is one and the compressed format of
the DHT (contents of the CDHT field) specifies a
code which assigns code length 0 (CL0) to the
EOB symbol. In this case, the corresponding
DHT does not specify a Huffman code to repre-
sent an EOB symbol (invalid DHT).

11. The HTT is one and the compressed format of
the DHT (contents of the CDHT field) specifies a
code which is in the sequence of codes specify-
ing code lengths for duplicate-string lengths and
pointer distances, and the code does not match
any of the codes determined to represent the set
of referenced code lengths, as specified earlier in
the compressed DHT (invalid DHT).

12. The HTT is one and the compressed format of
the DHT (contents of the CDHT field) specifies a
number of code lengths which is greater than the
number of Huffman codes in the DHT, as speci-
fied by the sum of the values in the HLIT field, the
HDIST field, and 258. This is possible with an
improper uses of code lengths 16, 17, and 18
(invalid DHT).

13. The HTT is one and the compressed format of
the DHT (contents of the CDHT field) specifies a
code length for the set of literal bytes, EOB sym-
bol, and duplicate-string lengths, which is less
than the length required by the Huffman algo-
rithm to specify a functional Huffman tree.
(invalid DHT).

26-26 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L 14. The HTT is one and the compressed format of

the DHT (contents of the CDHT field) specifies a
code length for the set of duplicate-string pointer
distances, which is less than the length required
by the Huffman algorithm to specify a functional
Huffman tree. (invalid DHT).

15. The HTT is one and the CPU attempts to gener-
ate a compressed-data symbol to represent a lit-
eral byte in the second operand, and the DHT
derived from the contents of the CDHT field is
non-universal and does not specify a Huffman
code corresponding to that literal byte.

16. The HTT is one and the CPU attempts to gener-
ate a compressed-data symbol to represent a
duplicate-string in the second operand, and the
DHT derived from the contents of the CDHT field
is non-universal and does not specify a Huffman
code corresponding to that duplicate-string
length or pointer distance.

When an invalid-input condition is encountered while
attempting to generate a compressed-data symbol to
represent a literal byte or duplicate-string in the sec-
ond operand, no results associated with that literal
byte or duplicate-string are generated, and the length
of the second operand is not reduced by the size of
that literal byte or duplicate-string.

When an invalid-input condition is encountered and
neither the first-operand length (specified by the con-
tents of general register R1 + 1, NT, and SBB) nor the
second-operand length is reduced, during the execu-
tion of the instruction, the operation ends, and the fol-
lowing occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• A nonzero value is stored to the operation-end-
ing-supplemental code (OESC) field of the
parameter block.

• Condition code 2 is set.

When an invalid-input condition is encountered and
the first-operand length (specified by the contents of
general register R1 + 1, NT, and SBB) or second-
operand length is reduced during the execution of the
instruction, the operation ends, and the following
occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The continuation flag (CF) bit in the parameter
block is set to one.

• The new task (NT) field of the parameter block is
set to zero.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

• A nonzero value is stored to the operation-end-
ing-supplemental code (OESC) field of the
parameter block.

• The history length (HL) field of the parameter
block is updated.

• The history offset (HO) field of the parameter
block is updated, when applicable.

• The check value field of the parameter block is
updated.

• The end-of-block length (EOBL) and end-of-
block symbol (EOBS) fields of the parameter
block are updated.

• The continuation-state buffer (CSB) field in the
parameter block is updated.

• The address in general register R1 is incre-
mented by the number of bytes processed of the
first operand that included processing bit 0, and
the length in general register R1 + 1 is decre-
mented by the same number. The number of
bytes processed of the first operand that
included processing bit 0 is the integer quotient
resulting from an integer division with the divi-
dend being the sum of the number of output bits
processed and the original value of the SBB, and
the divisor being a value of eight.

• The address in general register R2 is incre-
mented by the number of source bytes which are
successfully encoded to compressed-data sym-
bols, and the length in general register R2 + 1 is
decremented by the same number. Source bytes
causing the invalid-input condition cannot be
encoded and do not contribute to the update of
general registers R2 and R2 + 1.

• Condition code 2 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

Subsequent to processing any portion of the first or
second operand, and invalid-input condition 15 or 16
is due to be recognized, the result is that either the
invalid-data condition is recognized, or the operation
ends with partial completion and condition code 3 is
set. If condition code 3 is set, the invalid-data condi-
tion will be recognized when the instruction is exe-

Specialized-Function-Assist Instructions 26-27

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Lcuted again, to continue processing the same

operands, and the invalid-data condition still exists.

A PER storage-alteration event is recognized, when
applicable, for the following:

• Stores to the parameter block, as described
below.

• Stores to the first-operand location.
• Stores to the third-operand location, which only

occur when the history-buffer type (HBT) is one
(circular).

When the entire parameter block overlaps the PER
storage-area designation, a PER storage-alteration
event is recognized, when applicable, for the parame-
ter block. When only a portion of the parameter block
overlaps the PER storage-area designation, it is
model-dependent which of the following occurs:

• A PER storage-alteration event is recognized,
when applicable, for the entire parameter block.

• A PER storage-alteration event is recognized,
when applicable, for the portion of the parameter
block that is stored.

A PER zero-address-detection event is recognized,
when applicable, for the parameter block, first-oper-
and location, second-operand location, and third-
operand location when the HBT is one (circular).

When the instruction ends with a nonzero condition
code set, input data referenced from the second-
operand location may be completely, or only partially,
processed. When input data is only partially pro-
cessed, results in the first-operand location, first-
operand address, first-operand length, and SBB field
of the parameter block do not represent a state con-
sistent with the updated second-operand address
and length. In these cases, partially processed data
and internal-state information may be placed in the
CSB field of the parameter block. The amount of par-
tially processed data depends on conditions existing
at the time the operation ends and the model.
Although some data may only be partially processed,
results stored to the left of the location designated by
the updated first-operand address are complete and
will not be modified when the operation resumes.
Furthermore, when the instruction ends with condi-
tion code 1 or 3 set, it is expected the program sub-
sequently reexecutes the instruction to resume the
operation, at which time the contents of the CSB field
are referenced prior to resuming the operation. When
the instruction ends with condition code 0 set, all

data is completely processed and all results associ-
ated with input and output data represent a consis-
tent state.

Subsequent to the instruction ending with a nonzero
condition code set, and without encountering an
invalid-input condition, and prior to reexecuting the
instruction for the purpose of resuming the operation,
the program should not modify any fields of the
parameter block; otherwise results are unpredictable.

Function Code 4: DFLTCC-XPND
(Expand)
When the DFLTCC-XPND function is specified, an
uncompressing operation is performed. The opera-
tion consists of decoding compressed-data symbols
from the second-operand location into uncom-
pressed data, which is stored to the first-operand
location.

The operation proceeds as described in section
“Uncompressing Data” on page 26-54.

Normal completion occurs when all elements of the
final block of the compressed-data set in the second
operand are decoded and all uncompressed data is
stored to the first-operand location. The last block of
the compressed-data set is identified when the BFI-
NAL bit of the block header is one. When the opera-
tion ends due to normal completion, the following
occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The continuation flag (CF) field of the parameter
block is set to zero.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

• The operation-ending-supplemental code
(OESC) field of the parameter block is set to
zeros.

• The incomplete-function status (IFS) field of the
parameter block is set to zeros.

• The incomplete-function length (IFL) field of the
parameter block is updated, when applicable.

• The history length (HL) field of the parameter
block is updated.

• The history offset (HO) field of the parameter
block is updated, when applicable.

• The check value field of the parameter block is
updated.

26-28 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L • The compressed dynamic-Huffman table (CDHT)

and compressed dynamic-Huffman-table length
(CDHTL) fields of the parameter block are set to
zeros.

• The address in general register R1 is incre-
mented by the number of bytes stored at the first-
operand location, and the length in general regis-
ter R1 + 1 is decremented by the same number.

• The address in general register R2 is incre-
mented by the number of bytes processed of the
second operand that included processing bit 0,
and the length in general register R2 + 1 is decre-
mented by the same number. The number of
bytes processed of the second operand that
included processing bit 0 is the integer quotient
resulting from an integer division with the divi-
dend being the sum of the number of input bits
processed and the original value of the SBB, and
the divisor being a value of eight.

• Condition code 0 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

When normal completion occurs, the NT and CSB
fields of the parameter block are undefined, but may
be modified.

When a CPU-determined amount of data has been
processed and an invalid-input condition, as defined
on page 26-30, has not been encountered, the oper-
ation ends and the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The continuation flag (CF) bit in the parameter
block is set to one.

• The new task (NT) field of the parameter block is
set to zero when the CPU-determined amount of
data processed is greater than zero.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

• The operation-ending-supplemental code
(OESC) field of the parameter block is set to
zeros.

• The incomplete-function status (IFS) field of the
parameter block is updated.

• The incomplete-function length (IFL) field of the
parameter block is updated, when applicable.

• The history length (HL) field of the parameter
block is updated.

• The history offset (HO) field of the parameter
block is updated, when applicable.

• The check value field of the parameter block is
updated.

• The compressed dynamic-Huffman table (CDHT)
and compressed dynamic-Huffman-table length
(CDHTL) fields of the parameter block are
updated. When partial completion occurs while
processing a block with BTYPE value of 10
binary, the bytes of the CDHT field not required
to represent the table are stored as zeros. When
partial completion occurs while processing a
block with BTYPE value of 00 or 01 binary, zeros
are stored to the CDHT and CDHTL fields.

• The continuation-state buffer (CSB) field in the
parameter block is updated.

• The address in general register R1 is incre-
mented by the number of bytes stored at the first-
operand location, and the length in general regis-
ter R1 + 1 is decremented by the same number.

• The address in general register R2 is incre-
mented by the number of bytes processed of the
second operand that included processing bit 0,
and the length in general register R2 + 1 is decre-
mented by the same number. The number of
bytes processed of the second operand that
included processing bit 0 is the integer quotient
resulting from an integer division with the divi-
dend being the sum of the number of input bits
processed and the original value of the SBB, and
the divisor being a value of eight.

• Condition code 3 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

The CPU-determined amount of data depends on the
model, and may be a different number each time the
instruction is executed.

Subsequent to the instruction ending with condition
code 3 set, it is expected the program does not mod-
ify any input or output specification for the instruction
and branches back to reexecute the instruction to
resume the operation.

In certain unusual situations, despite ending the
instruction with condition code 3 set, the parameter
block and general registers are not updated. These
situations may occur when the CPU performs a qui-
escing operation or CPU retry while executing
DEFLATE CONVERSION CALL. In these cases, the
CPU-determined amount of data processed is zero,
data may have been stored to the first-operand loca-
tion, data may have been stored to the third-operand

Specialized-Function-Assist Instructions 26-29

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Llocation, when applicable, and corresponding change

bits have been set.

The second-operand length is insufficient to com-
plete the operation when the following applies:

• The last element of a compressed-data block
with BFINAL equal to one has not been decoded
during the operation, and the number of bits in
the second operand, as designated by the sec-
ond-operand length and SBB, is less than the
number of bits of the next element to decode,
and all results from decoding data from the sec-
ond-operand location have been placed at the
first-operand location.

When the second-operand length is insufficient to
complete the operation, the operation has been par-
tially completed, and an invalid-input condition, as
defined on page 26-30, has not been encountered,
the operation ends, and the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The continuation flag (CF) bit in the parameter
block is set to one.

• The new task (NT) field of the parameter block is
set to zero.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

• The operation-ending-supplemental code
(OESC) field of the parameter block is set to
zeros.

• The incomplete-function status (IFS) field of the
parameter block is updated.

• The incomplete-function length (IFL) field of the
parameter block is updated, when applicable.

• The history length (HL) field of the parameter
block is updated.

• The history offset (HO) field of the parameter
block is updated, when applicable.

• The check value field of the parameter block is
updated.

• The compressed dynamic-Huffman table (CDHT)
and compressed dynamic-Huffman-table length
(CDHTL) fields of the parameter block are
updated. When partial completion occurs while
processing a block with BTYPE value of 10
binary, the bytes of the CDHT field not required
to represent the table are stored as zeros. When
partial completion occurs while processing a
block with BTYPE value of 00 or 01 binary, zeros
are stored to the CDHT and CDHTL fields.

• The continuation-state buffer (CSB) field in the
parameter block is updated.

• The address in general register R1 is incre-
mented by the number of bytes stored at the first-
operand location, and the length in general regis-
ter R1 + 1 is decremented by the same number.

• The address in general register R2 is incre-
mented by the number of bytes processed of the
second operand that included processing bit 0,
and the length in general register R2 + 1 is decre-
mented by the same number. The number of
bytes processed of the second operand that
included processing bit 0 is the integer quotient
resulting from an integer division with the divi-
dend being the sum of the number of input bits
processed and the original value of the SBB, and
the divisor being a value of eight.

• Condition code 2 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

Subsequent to the instruction ending with condition
code 2 set and the OESC field of the parameter block
set to zeros, it is expected the program modifies the
second-operand length, second-operand address, or
both and reexecute the instruction to resume the
operation.

The first-operand length is insufficient to complete
the operation when the following applies:

• Results from decoding data from the second-
operand location can not be placed at the first-
operand location due to the first-operand length
being equal to zero.

Note: Since decoding data from the second-operand
location may not generate result data to place at the
first-operand location, an updated first-operand
length being equal to zero is not the only criteria
which defines when condition code 1 is set. It is pos-
sible for some operations to proceed with a first-oper-
and length being equal to zero.

When the first-operand length is insufficient to com-
plete the operation, the operation has been partially
completed, and an invalid-input condition, as defined
on page 26-30, has not been encountered, the oper-
ation ends, and the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

26-30 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L • The continuation flag (CF) bit in the parameter

block is set to one.
• The new task (NT) field of the parameter block is

set to zero.
• The sub-byte boundary (SBB) field of the param-

eter block is updated.
• The operation-ending-supplemental code

(OESC) field of the parameter block is set to
zeros.

• The incomplete-function status (IFS) field of the
parameter block is updated.

• The incomplete-function length (IFL) field of the
parameter block is updated, when applicable.

• The history length (HL) field of the parameter
block is updated.

• The history offset (HO) field of the parameter
block is updated, when applicable.

• The check value field of the parameter block is
updated.

• The compressed dynamic-Huffman table (CDHT)
and compressed dynamic-Huffman-table length
(CDHTL) fields of the parameter block are
updated. When partial completion occurs while
processing a block with BTYPE value of 10
binary, the bytes of the CDHT field not required
to represent the table are stored as zeros. When
partial completion occurs while processing a
block with BTYPE value of 00 or 01 binary, zeros
are stored to the CDHT and CDHTL fields.

• The continuation-state buffer (CSB) field in the
parameter block is updated.

• The address in general register R1 is incre-
mented by the number of bytes stored at the first-
operand location, and the length in general regis-
ter R1 + 1 is decremented by the same number.

• The address in general register R2 is incre-
mented by the number of bytes processed of the
second operand that included processing bit 0,
and the length in general register R2 + 1 is decre-
mented by the same number. The number of
bytes processed of the second operand that
included processing bit 0 is the integer quotient
resulting from an integer division with the divi-
dend being the sum of the number of input bits
processed and the original value of the SBB, and
the divisor being a value of eight.

• Condition code 1 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

Subsequent to the instruction ending with condition
code 1 set, it is expected the program modifies the
first-operand length, first-operand address, or both

and reexecute the instruction to resume the opera-
tion.

An invalid-input condition exists when the DFLTCC-
XPND function is specified and any of the following
occurs:

1. The format of the parameter block, as specified
by the parameter-block-version number, is not
supported by the model.

2. NT is zero and HL is greater than 32,768.

3. A compressed-data block with BTYPE equal 11
binary is encountered.

4. A compressed-data block with BTYPE equal 00
binary and NLEN not equal to the one’s comple-
ment of LEN is encountered.

5. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered and the HLIT sub-element
of the compressed DHT is greater than 29
(invalid DHT).

6. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered and the HDIST sub-ele-
ment of the compressed DHT is greater than 29
(invalid DHT).

7. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered which specifies a code
which is in the sequence of codes specifying the
bit lengths for the 19 possible code lengths
defined for a compressed DHT, and is less than
the length required by the Huffman algorithm to
specify a functional Huffman tree (invalid DHT).

8. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered which specifies code
length 16 (copy previous code length) as the first
code length for the set of elements consisting of
literal bytes, an EOB symbol, and duplicate-
string lengths (invalid DHT).

9. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered which specifies a code
which is in the sequence of codes specifying
code lengths for literal bytes, and the code does
not match any of the codes determined to repre-
sent the set of referenced code lengths, as spec-

Specialized-Function-Assist Instructions 26-31

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Lified earlier in the compressed DHT (invalid

DHT).

10. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered which specifies a code
which assigns code length 0 (CL0) to the EOB
symbol. In this case, the corresponding DHT
does not specify a Huffman code to represent an
EOB symbol (invalid DHT).

11. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered which specifies a code
which is in the sequence of codes specifying
code lengths for duplicate-string lengths and
pointer distances, and the code does not match
any of the codes determined to represent the set
of referenced code lengths, as specified earlier in
the compressed DHT (invalid DHT).

12. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered which specifies a number
of code lengths which is greater than the number
of Huffman codes in the DHT, as specified by the
sum of the values in the HLIT field, the HDIST
field, and 258. This is possible with an improper
uses of code lengths 16, 17, and 18 (invalid
DHT).

13. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered which specifies a code
length for the set of literal bytes, EOB symbol,
and duplicate-string lengths, which is less than
the length required by the Huffman algorithm to
specify a functional Huffman tree. (invalid DHT).

14. A compressed format of a DHT (contents of a
compressed-data block with BTYPE equal 10
binary) is encountered which specifies a code
length for the set of duplicate-string pointer dis-
tances, which is less than the length required by
the Huffman algorithm to specify a functional
Huffman tree. (invalid DHT).

15. A compressed-data symbol, which is encoun-
tered in a compressed-data block with BTYPE
equal 10 binary, specifies a Huffman code which
is not defined by the non-universal DHT derived
from the compressed format of the DHT in the
same block. In this case, the number of bits of
the second operand which must be available to
process, for the purpose of recognizing the
invalid-input condition, is model-dependent.

More specifically, a model attempting to decode
an undefined code may process 15 bits prior to
recognizing the exception, even though the
exception could be determined after processing
less bits.

16. A compressed-data symbol is encountered
which is a duplicate-string pointer and specifies a
distance greater than the length of history avail-
able at the point of processing the symbol.

17. A compressed-data symbol, which is encoun-
tered in a compressed-data block with BTYPE
equal 01 binary, specifies an invalid code (a code
of 11000110 or 11000111 binary for a duplicate-
string length, or a code of 11110 or 11111 binary
for a duplicate-string-pointer distance). In this
case, the number of bits of the second operand
which must be available to process, for the pur-
pose of recognizing the invalid-input condition, is
model-dependent. More specifically, a model
attempting to decode an invalid code may pro-
cess 8 bits, in the case of a duplicate-string
length, or 5 bits, in the case of a duplicate-string-
pointer distance, prior to recognizing the excep-
tion, even though the exception could be deter-
mined after processing less bits.

When an invalid-input condition is encountered while
attempting to decode an element of a compressed-
data block, no results associated with that element
are generated, and the length of the second operand
(specified by the contents of general register R2 + 1,
NT, and SBB) is not reduced by the size of that ele-
ment. However, it is possible a prior execution of the
instruction ended with partially processing only a
fraction of an element of input data. In that case,
during the prior execution of the instruction, it had not
yet been determined as to whether or not an invalid-
input condition may exist with that element and the
length of the second operand was reduced by the
fraction of that element.

When an invalid-input condition is encountered and
neither the first-operand length nor the second-oper-
and length (specified by the contents of general reg-
ister R2 + 1, NT, and SBB) is reduced, during the
execution of the instruction, the operation ends, and
the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

26-32 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L • A nonzero value is stored to the operation-end-

ing-supplemental code (OESC) field of the
parameter block.

• Condition code 2 is set.

When an invalid-input condition is encountered and
the first-operand length or the second-operand
length (specified by the contents of general register
R2 + 1, NT, and SBB) is reduced, during the execu-
tion of the instruction, the operation ends, and the fol-
lowing occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The continuation flag (CF) bit in the parameter
block is set to one.

• The new task (NT) field of the parameter block is
set to zero.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

• A nonzero value is stored to the operation-end-
ing-supplemental code (OESC) field of the
parameter block.

• The incomplete-function status (IFS) field of the
parameter block is updated.

• The incomplete-function length (IFL) field of the
parameter block is updated, when applicable.

• The history length (HL) field of the parameter
block is updated.

• The history offset (HO) field of the parameter
block is updated, when applicable.

• The check value field of the parameter block is
updated.

• The compressed dynamic-Huffman table (CDHT)
and compressed dynamic-Huffman-table length
(CDHTL) fields of the parameter block are
updated. When partial completion occurs while
processing a block with BTYPE value of 10
binary, the bytes of the CDHT field not required
to represent the table are stored as zeros. When
partial completion occurs while processing a
block with BTYPE value of 00 or 01 binary, zeros
are stored to the CDHT and CDHTL fields. An
invalid DHT is not successfully processed and
does not get placed into the CDHT field.

• The continuation-state buffer (CSB) field in the
parameter block is updated.

• The address in general register R1 is incre-
mented by the number of bytes stored at the first-
operand location, and the length in general regis-
ter R1 + 1 is decremented by the same number.

• The address in general register R2 is incre-
mented by the number of bytes of the second

operand that were successfully processed
(decoded) and included processing bit 0, and the
length in general register R2 + 1 is decremented
by the same number. The number of bytes pro-
cessed of the second operand that included pro-
cessing bit 0 is the integer quotient resulting from
an integer division with the dividend being the
sum of the number of input bits processed and
the original value of the SBB, and the divisor
being a value of eight. Source data causing the
invalid-input condition cannot be decoded suc-
cessfully and does not contribute to the update of
general registers R2 and R2 + 1.

• Condition code 2 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

Subsequent to processing any portion of the first or
second operand, and any of the invalid-input condi-
tions 3-17 is due to be recognized, the result is that
either the invalid-data condition is recognized, or the
operation ends with partial completion and condition
code 3 is set. If condition code 3 is set, the invalid-
data condition will be recognized when the instruc-
tion is executed again, to continue processing the
same operands, and the invalid-data condition still
exists.

A PER storage-alteration event is recognized, when
applicable, for the following:

• Stores to the parameter block, as described
below.

• Stores to the first-operand location.
• Stores to the third-operand location, which only

occur when the history-buffer type (HBT) is one
(circular).

When the entire parameter block overlaps the PER
storage-area designation, a PER storage-alteration
event is recognized, when applicable, for the parame-
ter block. When only a portion of the parameter block
overlaps the PER storage-area designation, it is
model-dependent which of the following occurs:

• A PER storage-alteration event is recognized,
when applicable, for the entire parameter block.

• A PER storage-alteration event is recognized,
when applicable, for the portion of the parameter
block that is stored.

A PER zero-address-detection event is recognized,
when applicable, for the parameter block, first-oper-

Specialized-Function-Assist Instructions 26-33

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Land location, second-operand location, and third-

operand location when the HBT is one (circular).

When the instruction ends with a nonzero condition
code set, input data referenced from the second-
operand location may be completely, or only partially,
processed. When input data is only partially pro-
cessed, results in the first-operand location, first-
operand address, first-operand length, SBB field of
the parameter block, check value field of the parame-
ter block, HL field of the parameter block, IFS field of
the parameter block, and when applicable, the third-
operand location and HO field of the parameter
block, do not represent a state consistent with the
updated second-operand address and length. In
these cases, partially processed data and internal-
state information may be placed in the CSB field of
the parameter block. The amount of partially pro-
cessed data depends on conditions existing at the
time the operation ends and the model. Although
some data may only be partially processed, results
stored to the left of the location designated by the
updated first-operand address are complete and will
not be modified when the operation resumes. Fur-

thermore, when the instruction ends with a nonzero
condition code set and without encountering an
invalid-input condition, it is expected the program
subsequently reexecutes the instruction to resume
the operation, at which time the contents of the CSB
field are referenced prior to resuming the operation.
When the operation ends with condition code 0 set,
all data is completely processed and all results asso-
ciated with input and output data represent a consis-
tent state.

Subsequent to the instruction ending with a nonzero
condition code set, and without encountering an
invalid-input condition, and prior to reexecuting the
instruction for the purpose of resuming the operation,
the program should not modify any fields of the
parameter block; otherwise results are unpredictable.

Parameter Block for Data Conversion

The parameter block with format 0 hex for the
DFLTCC-CMPR and DFLTCC-XPND functions is
shown in Figure 26-27 on page 26-34.

26-34 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L

Dec Hex

0 0 PBVN MVN RIBM Reserved C
F

8 8 Reserved

16 10
N
T

R
C
V
T

R
H
T
T

B
C
F

B
C
C

B
H
F

R R

D
H
T
G
C

Reserved Reserved SBB OESC Reserved IFS IFL

24 18 Reserved

32 20 Reserved

40 28 Reserved History Length R History Offset

48 30 Check Value EOBS R EOBL Reserved

56 38 R CDHTL Reserved

64 40

 Compressed-Dynamic-Huffman Table (CDHT)

344 158

352 160

 Reserved

368 170

376 178 RIBM

384 180

 Continuation-State Buffer (CSB)

1528 5F8

0 1 2 3 4 5 6 7 8 9 10 11 16 20 24 32 44 48 49 63

Explanation:

BCC Block-Closing Control

BCF Block-Continuation Flag

BHF Block-Header Final bit

CDHTL Compressed-Dynamic-Huffman Table Length

CF Continuation Flag

CVT Check Value Type

DHTGC Dynamic-Huffman Table Generation Control

EOBL End-of-block Length

EOBS End-of-block Symbol

HTT Huffman-Table Type

IFL Incomplete-Function Length

IFS Incomplete-Function Status

MVN Model-Version Number

NT New Task

OESC Operation-Ending-Supplemental Code

PBVN Parameter-Block-Version Number

R Reserved

RIBM Reserved for IBM use
SBB Sub-Byte Boundary

Figure 26-27. Parameter Block (format 0 hex) for the DFLTCC-CMPR and DFLTCC-XPND functions

Specialized-Function-Assist Instructions 26-35

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
LThe fields of the parameter block are defined as fol-

lows:

Reserved: As an input to an operation, reserved
fields should contain zeros; otherwise, the program
may not operate compatibly in the future. When an
operation ends, reserved fields may be stored as
zeros or may remain unchanged.

Parameter-Block-Version Number (PBVN):
Bytes 0-1 of the parameter block specify the version
of the parameter block. Bits 0-11 of the PBVN are
reserved and should contain zeros; otherwise, the
program may not operate compatibly in the future.
Bits 12-15 of the PBVN contain an unsigned binary
integer specifying the format of the parameter block.
The DFLTCC-QAF function provides the means of
indicating the parameter block formats available.
When the format of the parameter block specified is
not supported by the model, an invalid-input condi-
tion is recognized (condition code 2 is set and a non-
zero value is stored to the OESC field). The PBVN is
specified by the program and is not modified during
the execution of the instruction.

Model-Version Number (MVN): Byte 2 of the
parameter block is an unsigned binary integer identi-
fying the model which executed the instruction. The
program is not required to initialize the MVN. The
MVN is updated during the execution of the instruc-
tion. The value stored in the MVN is model-depen-
dent.

When the continuation flag (CF) is one, the MVN may
be an input to the operation for the purpose of inter-
preting the contents of the CSB field of the parameter
block to resume the operation.

Reserved for IBM use (RIBM): Bytes 3-5 and
376-383 of the parameter block are reserved for IBM
use and must contain zeros; otherwise results are
unpredictable. The RIBM field is not modified during
the execution of the instruction.

Continuation Flag (CF): Bit 63 of the parameter
block, when one, indicates the operation is partially
complete and the contents of the continuation-state
buffer may be used to resume the operation. It is
required for the program to initialize the continuation
flag (CF) to zero and not modify CF in the event the

instruction is to be reexecuted for the purpose of
resuming the operation; otherwise results are unpre-
dictable.

New Task (NT): Bit 0 of byte 16 of the parameter
block, when one, indicates the operation applies to
the beginning of a compressed-data set. Therefore,
no history and no check value from a prior operation
applies to the current operation. When NT is one at
the beginning of the operation, and the operation
ends after partial completion, zero is stored to the NT
field. When NT is zero, history and a check value
from a prior operation apply to the current operation.

When the specified function is DFLTCC-CMPR, the
meaning for each combination of values of the NT
and CF fields is as follows:

Check Value Type (CVT): Bit 2 of byte 16 of the
parameter block specifies the type of check value
contained in the check value field of the parameter
block. When CVT is zero, the check value type is a
32-bit cyclic-redundancy-check (CRC-32). When
CVT is one, the check value type is a 32-bit Adler
checksum (Adler-32). The CVT bit is not modified
during the execution of the instruction.

Huffman-Table Type (HTT): Bit 4 of byte 16 of the
parameter block, when zero, specifies a table con-
taining fixed-Huffman codes (FHT), as defined by the
DEFLATE standard, is used during a compression
operation. When the HTT is one, a table containing
dynamic-Huffman codes (DHT), as specified in the
CDHT field of the parameter block, is used during a
compression operation. The HTT does not apply to
uncompressing operations. The HTT bit is not modi-
fied during the execution of the instruction.

Block-Continuation Flag (BCF): Bit 5 of byte 16
of the parameter block applies when the DFLTCC-
CMPR function is specified. When zero, a 3-bit block
header, and when applicable, the compressed format
of a dynamic-Huffman table, as specified in the
CDHT field of the parameter block, is stored to the

NT CF meaning

1 0 Generate an individual block of a compressed-
data set, which is the first block of the set.

0 0 Generate an individual block of a compressed-
data set, which is not the first block of the set.

0 1 Continue to generate a block which is currently
partially generated.

1 1 Invalid combination.

26-36 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L first-operand location prior to storing any com-

pressed-data elements. When one, neither a block
header nor a compressed format of a DHT is stored
to the first-operand location. When NT is one, BCF is
treated as equal to zero. The BCF bit is not modified
during the execution of the instruction.

Block Closing Control (BCC): Bit 6 of byte 16 of
the parameter block applies when the DFLTCC-
CMPR function is specified. When one, subsequent
to storing all compressed-data symbols, an end-of-
block (EOB) symbol is stored to the first-operand
location. When the HTT specifies using an FHT, Huff-
man code 0000000 binary (which corresponds to the
intermediate integer representation of 256 in the
table specifying codes for literal bytes, an EOB sym-
bol, and duplicate-string lengths) is used for the EOB
symbol. When the HTT specifies using a DHT, the
Huffman code for the EOB symbol is specified in the
DHT. When the BCC bit is zero, an EOB symbol is
not stored to the first-operand location.

The BCC bit is not modified during the execution of
the instruction.

Block Header Final (BHF): Bit 7 of byte 16 of the
parameter block applies when the DFLTCC-CMPR
function is specified and either BCF is zero or NT is
one; otherwise the BHF does not apply. When appli-
cable and one, the first bit of the block header (BFI-
NAL) is set to one before storing the block header to
the first-operand location. When applicable and zero,
the first bit of the block header (BFINAL) is set to
zero before storing the block header to the first-oper-
and location. The BHF bit is not modified during the
execution of the instruction.

DHT Generation Control (DHTGC): Bit 2 of byte
17 of the parameter block applies to generating a
dynamic-Huffman table (DHT). The DHT specifies
Huffman codes for symbols representing literal bytes,
duplicate-string lengths, an EOB symbol, and dupli-
cate-string-pointer distances. The value of a Huffman
code for a particular symbol is a function of the count
of occurrences for the entity, which the symbol rep-
resents, in the uncompressed form of the data. When
the count for a symbol is zero, there is no Huffman

code in the DHT for the symbol. The DHTGC speci-
fies counts equal to zero will be treated as follows:

A DHT which specifies a Huffman code for every
possible value of literal bytes, an EOB symbol, dupli-
cate-string lengths, and duplicate-string-pointer dis-
tances is called a universal DHT. A DHT which does
not specify Huffman codes for values of literal bytes,
duplicate-string lengths, or duplicate-string-pointer
distances which do not occur in the uncompressed
form of the data is called a non-universal DHT.

For all values of the DHTGC, the resulting DHT spec-
ifies Huffman codes for all possible duplicate-string
lengths and pointer distances, as defined by the
DEFLATE standard. Therefore, the HLIT and HDIST
sub-elements of the resulting compressed form of
the DHT each contain the value of 29. For definitions
of the HLIT and HDIST sub-elements, refer to section
“Descriptions for Compressed-data Blocks”, begin-
ning on page 26-43.

The DHTGC is an input to the operation when the
DFLTCC-GDHT function is specified. The DHTGC
does not apply to the operation when the DFLTCC-
CMPR or DFLTCC-XPND function is specified. The
DHTGC is not modified during the execution of the
instruction.

Sub-Byte Boundary (SBB): Bits 5-7 of byte 18 of
the parameter block contain an unsigned binary inte-
ger specifying the boundary between processed and
unprocessed bits within a byte of the compressed-
data stream. The byte of the stream referenced is the
last byte referenced, meaning the rightmost byte,
when an operation ends, and is the first byte to be
referenced, meaning the leftmost byte, when an
operation begins or resumes. When the DFLTCC-
CMPR function is specified, the SBB applies to the
byte designated by the first-operand address. When
the DFLTCC-XPND function is specified, the SBB
applies to the byte designated by the second-oper-
and address. The SBB specifies the number of right-
most bits that have been processed. The SBB is an
input to the operation and an output of the operation.
Figure 26-28 on page 26-42 illustrates a com-

DHTGC meaning

0 Treat counts of literal bytes, duplicate-string
lengths, and pointer distances equal to zero as
equal to one (generate a universal DHT).

1 Treat counts of duplicate-string lengths and
pointer distances equal to zero as equal to
one.

Specialized-Function-Assist Instructions 26-37

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Lpressed-data stream when SBB has the value of 011

binary. Figure 26-29 on page 26-42 provides exam-
ples which demonstrate how the SBB applies to the
DFLTCC-CMPR function. When NT is one, SBB is
treated as equal to 000 binary.

Operation-Ending-Supplemental Code (OESC):
When execution of DEFLATE CONVERSION CALL
ends, a code is stored to byte 19 of the parameter
block. The code conveys information about invalid-
input conditions encountered during execution. When
an invalid-input condition is not encountered, zeros
are stored to the OESC field. When an invalid-input
condition is encountered, a nonzero value is stored
to the OESC field, which indicates the cause of the
invalid-input condition recognized during execution.
The codes stored to the OESC field are defined as
follows:

OESC
(hex) meaning

00 An invalid-input condition was not
encountered.

01 The format of the parameter block, as
specified by the parameter-block-version
number, is not supported by the model.

02 The DFLTCC-CMPR or DFLTCC-XPND
function is specified, the history length field is
greater than 32,768, and the new task field is
zero.

11 A compressed-data block with BTYPE equal to
11 binary is encountered.

12 A compressed-data block with BTYPE equal to
00 binary and NLEN not equal to the one’s
complement of LEN is encountered.

21 The CDHTL field applies and is less than 42 or
greater than 2283.

22 The HLIT sub-element of a compressed DHT
used during the operation is greater than 29
(invalid DHT).

23 The HDIST sub-element of a compressed
DHT used during the operation is greater than
29 (invalid DHT).

24 A compressed DHT used during the operation
specifies a code which is in the sequence of
codes specifying the bit lengths for the 19
possible code lengths defined for a
compressed DHT, and is less than the length
required by the Huffman algorithm to specify a
functional Huffman tree (invalid DHT).

26 A compressed DHT used during the operation
specifies code length 16 (copy previous code
length) as the first code length for the set of
elements consisting of literal bytes, an EOB
symbol, and duplicate-string lengths (invalid
DHT).

27 A compressed DHT used during the operation
specifies a code which is in the sequence of
codes specifying code lengths for literal bytes,
and the code does not match any of the codes
determined to represent the set of referenced
code lengths, as specified earlier in the
compressed DHT (invalid DHT).

28 A compressed DHT used during the operation
specifies a code which assigns code length 0
(CL0) to the EOB symbol. In this case, the
corresponding DHT does not specify a
Huffman code to represent an EOB symbol
(invalid DHT).

29 A compressed DHT used during the operation
specifies a code which is in the sequence of
codes specifying code lengths for duplicate-
string lengths and pointer distances, and the
code does not match any of the codes
determined to represent the set of referenced
code lengths, as specified earlier in the
compressed DHT (invalid DHT).

2A A compressed DHT used during the operation
specifies a number of code lengths which is
greater than the number of Huffman codes in
the DHT, as specified by the sum of the values
in the HLIT field, the HDIST field, and 258.
This is possible with an improper uses of code
lengths 16, 17, and 18. (invalid DHT).

2B A compressed DHT used during the operation
specifies a code length for the set of literal
bytes, EOB symbol, and duplicate-string
lengths, which is less than the length required
by the Huffman algorithm to specify a
functional Huffman tree. (invalid DHT).

2D A compressed DHT used during the operation
specifies a code length for the set of duplicate-
string pointer distances, which is less than the
length required by the Huffman algorithm to
specify a functional Huffman tree. (invalid
DHT).

2F The CDHTL field applies and does not equal
the length of the compressed DHT in the
CDHT field used during the operation.

OESC
(hex) meaning

26-38 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L

Support for codes other than zero and FF hex is
model-dependent. When multiple invalid-input condi-
tions exist, it is model-dependent which code is
reported in the OESC field.

Incomplete-Function Status (IFS): Bits 4-7 of
byte 21 of the parameter block contain status infor-
mation when certain operations end. When an

uncompressing operation ends, the IFS conveys
information about the second operand as follows:

Note: An uncompressing operation may end with IFS
equal 0000 binary and not satisfy normal completion.
In such cases, the operation ends with condition
code 1 or 3 set.

When a compressing operation ends, the IFS field is
undefined, but may be modified.

The IFS is not an input to the operation.

Incomplete-Function Length (IFL): Bytes 22-23
of the parameter block contain length information
when certain operations end. For an uncompressing
operation, the IFL applies to the second operand.
When an uncompressing operation ends after decod-
ing some, but not all of a block with BTYPE equal 00
binary, the IFL contains an unsigned binary integer

31 A compressed DHT used during the operation
does not specify a Huffman code
corresponding to a literal byte or a duplicate-
string length processed during the operation
(deficient non-universal DHT), or the DFLTCC-
XPND function is specified and a compressed-
data symbol, which is encountered in a
compressed-data block with BTYPE equal 01
binary, specifies an invalid code for a
duplicate-string length (11000110 or
11000111 binary).

32 A compressed DHT used during the operation
does not specify a Huffman code
corresponding to a duplicate-string-pointer
distance processed during the operation
(deficient non-universal DHT), or the DFLTCC-
XPND function is specified and a compressed-
data symbol, which is encountered in a
compressed-data block with BTYPE equal 01
binary, specifies an invalid code for a
duplicate-string-pointer distance (11110 or
11111 binary).

40 A compressed-data symbol is encountered
which is a duplicate-string pointer and
specifies a distance greater than the length of
history available at the point of processing the
symbol.

FF No additional information is provided.

OESC
(hex) meaning

IFS
(binary) meaning

0000 The operation ended after decoding the last
element of a block with BFINAL equal to one.

1000 The operation ended after decoding an
element, other than the last element, of a block
with BTYPE equal 00 binary and BFINAL
equal to zero.

1001 The operation ended after decoding an
element, other than the last element, of a block
with BTYPE equal 00 binary and BFINAL
equal to one.

1010 The operation ended after decoding an
element, other than the last element, of a block
with BTYPE equal 01 binary and BFINAL
equal to zero.

1011 The operation ended after decoding an
element, other than the last element, of a block
with BTYPE equal 01 binary and BFINAL
equal to one.

1100 The operation ended after decoding an
element, other than the last element, of a block
with BTYPE equal 10 binary and BFINAL
equal to zero.

1101 The operation ended after decoding an
element, other than the last element, of a block
with BTYPE equal 10 binary and BFINAL
equal to one.

1110 The operation ended at a block boundary, the
last element of a block with BFINAL equal to
one has not been decoded, and the first
element of the subsequent block has not yet
been processed.

Specialized-Function-Assist Instructions 26-39

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Lspecifying the number of bytes of the block in the

second operand, which have not yet been processed.
Bytes 22-23 contain the IFL in big-endian byte order,
unlike the LEN field of a block with BTYPE equal 00
binary, which is in little-endian byte order.

When an uncompressing operation ends after decod-
ing a complete block with BTYPE equal 00 binary
and BFINAL equal to one, zeros are stored to the IFL
field. When an uncompressing operation ends after
decoding some, but not all of a block with a non-zero
BTYPE, or ends at a block boundary, the IFL field is
undefined, but may be modified.

When a compressing operation ends, the IFL field is
undefined, but may be modified.

The IFL is not an input to the operation.

History Length (HL): Bytes 44-45 of the parame-
ter block contain an unsigned binary integer specify-
ing the number of bytes of history in the history buffer
which can be referenced during an operation. The HL
applies to in-line and circular history buffers. When
new task (NT) equals one, no history applies to the
beginning of the operation and the history length is
treated as zero as an input to the operation.

An invalid-input condition is recognized (condition
code 2 is set and a nonzero value is stored to the
OESC field) when the history length is greater than
32,768 and NT equals zero.

The history length is modified during compressing
and uncompressing operations. When the sum of the
original HL and the number of uncompressed data
bytes processed during the operation is less than, or
equal to 32,768, the updated HL is equal to the sum
of the original HL and the number of uncompressed
data bytes processed during the operation; otherwise
the updated HL is equal to the value of 32,768.

History Offset (HO): Fifteen bits, starting with bit 1
of byte 46, through bit 7 of byte 47, of the parameter
block, contain an unsigned binary integer specifying
an offset in the third operand when the history-buffer
type is circular. The sum of the contents of R3 and the
history offset designates the location of the first byte
of history within the circular-history buffer, which is
the least recently processed byte of uncompressed
data in the buffer. When the history-buffer type is cir-
cular, history offset is an input to the operation and is
updated at the end of the operation. When the sum of
the original HL and the number of uncompressed

data bytes processed during the operation is less
than, or equal to 32,768, the updated HO is equal to
the original HO; otherwise, the updated HO is equal
to the sum of the original HO, the original HL, and the
number of uncompressed data bytes processed
during the operation, modulo 32,768.

When the history-buffer type is in-line, the HO field of
the parameter block is undefined, but may be modi-
fied.

Check Value: Bytes 48-51 of the parameter block
contain a check value. As part of the operation, a
check value is generated. The check value applies to
the uncompressed data operand. That is, the check
value applies to the second operand for the DFLTCC-
CMPR function and applies to the first operand for
the DFLTCC-XPND function. When the CVT bit is
zero, a 32-bit cyclic-redundancy-check check value
(CRC-32) is generated. When the CVT bit is one, a
32-bit Adler checksum check value (Adler-32) is gen-
erated.

The inputs to generating a check value are a 4 byte
base and the uncompressed data processed during
the operation. The base input provides the means to
compute a single and consistent check value for a set
of compressed-data blocks, regardless of the number
of times the DFLTCC instruction is executed to pro-
cess the complete set of compressed-data blocks.
When the NT bit is zero, the original value in the
check value field is used for the base input in gener-
ating a check value.

When an Adler-32 check value is generated, the fol-
lowing apply:

• When the NT bit is one, a value of one is used for
the 4 byte base input.

• The sums defined in the Adler-32 check value
generation are modulo 65,521.

• The result is stored to the check value field in
big-endian byte order. That is, the most signifi-
cant byte of the check value is located in byte 48
and the least significant byte of the check value
is located in byte 51.

When a CRC-32 check value is generated, the fol-
lowing apply:

• When the NT bit is one, a value of zero is used
for the 4 byte base input.

• The polynomial used as the divisor in generating
a CRC-32 check value is

26-40 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x

7 + x5 + x4 + x2 + x1 + x0, which is represented as
104C11DB7 hex. In this representation, the left-
most bit corresponds to the most significant bit.

• The first and final stages of generating the check
value are computing the one’s complement of the
base input and computing the one’s complement
of the result, prior to storing the result, respec-
tively.

• The result is stored to the check value field in lit-
tle-endian byte order. That is, the least significant
byte of the check value is located in byte 48 and
the most significant byte of the check value is
located in byte 51.

The check value is only meaningful to the program
when the operation ends with condition code 0 set;
otherwise, the check value is only an intermediate
result and only meaningful to resume the operation.
When the DFLTCC-CMPR function is specified and
the operation ends with condition code 1, 2, or 3 set,
some bytes to the left of the byte designated by the
second-operand address may not be included in the
computation of the resulting check value. When the
DFLTCC-XPND function is specified and the opera-
tion ends with condition code 1, 2, or 3 set, some
result bytes not yet stored to the right of the byte des-
ignated by the first-operand address may already be
included in the computation of the resulting check
value.

End-Of-Block Symbol (EOBS): Fifteen bits, start-
ing with bit 0 of byte 52, through bit 6 of byte 53, of
the parameter block, contain an end-of-block (EOB)
symbol. The EOBL field of the parameter block spec-
ifies the length of the EOB symbol in the EOBS field.
The EOB symbol is left justified in the EOBS field.
Bits of the EOBS field not occupied by the EOB sym-
bol are stored as zeros. The EOBS field is an output
of the operation when compressing data, regardless
which type of Huffman table applies. The EOBS field
is not used as an input to the operation.

Bit 0 of byte 52 contains the most significant bit of the
EOB symbol. When the length of the EOB symbol is
7 bits, bit 6 of byte 52 contains the least significant bit
of the EOB symbol. When the length of the EOB
symbol is 15 bits, bit 6 of byte 53 contains the least
significant bit of the EOB symbol.

For blocks using a FHT, the EOB symbol is 0000000
binary, as defined by the DEFLATE standard. For
blocks using a DHT, the EOB symbol is defined by
the DHT. The EOB symbol is conveyed in order to

provide the capability for the program to close a
block.

The EOBS field is undefined when the DFLTCC-
XPND function is specified, but may be modified.

End-Of-Block Length (EOBL): Bits 0-3 of byte 54
of the parameter block contain an unsigned binary
integer specifying the length of the end-of-block
(EOB) symbol in the EOBS field of the parameter
block. The length specifies the number of bits which
the EOB symbol occupies in the EOBS field. The
EOBL field is an output of the operation when com-
pressing data, regardless which type of Huffman
table applies. The EOBL field is not used as an input
to the operation.

The EOBL field is undefined when the DFLTCC-
XPND function is specified, but may be modified.

Compressed Dynamic-Huffman-Table Length
(CDHTL): Twelve bits, starting with bit 4 of byte 56,
through bit 7 of byte 57, of the parameter block con-
tain an unsigned binary integer which specifies the
length, as a bit count, of the compressed format of
the DHT in the CDHT field of the parameter block.

The CDHTL is an output from the operation when the
DFLTCC-GDHT function is specified.

The CDHTL is an input to the operation when the
DFLTCC-CMPR function is specified and HTT is one.
When the CDHTL does not specify an appropriate
length for the CDHT, an invalid-input condition is rec-
ognized (condition code 2 is set and a nonzero value
is stored to the OESC field). The CDHTL is not modi-
fied when the DFLTCC-CMPR function is specified.

When the DFLTCC-XPND function is specified and
the operation ends after decoding only a portion of a
block with BTYPE 10 binary, the length of the com-
pressed representation of the DHT in the block is
stored to this field. When the DFLTCC-XPND func-
tion is specified and the operation ends at a block
boundary or after decoding only a portion of a block
with BTYPE 00 or 01 binary, zeros are stored to this
field. When an uncompressing operation is resumed
within a block with BTYPE 10 binary (that is when CF
equals one and IFS equals C or D hex), this field is
an input to the operation.

Compressed Dynamic-Huffman Table (CDHT):
Bytes 64-351 of the parameter block contain a com-
pressed format of a dynamic-Huffman table (DHT).

Specialized-Function-Assist Instructions 26-41

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
LThe DHT specifies Huffman codes (bit sequences) to

represent two sets of elements. The elements for one
set include literal bytes, an EOB symbol, and dupli-
cate-string lengths. The elements for the other set
include duplicate-string pointer distances. The com-
pressed representation of the DHT defines a set of
code lengths and specifies a code length (CL) for
each element of each set. The Huffman code for an
element expected to be referenced during an opera-
tion is derived from the CL specified for that element
and the number of elements in the same set with the
same specified CL. Specifically, the compressed rep-
resentation of the DHT includes the following:

• An HLIT field to specify the number of Huffman
codes representing literal bytes, an EOB symbol,
and duplicate-string lengths.

• An HDIST field to specify the number of Huffman
codes representing and duplicate-string pointer
distances.

• An HCLEN field to specify the number of Huff-
man codes representing code lengths.

• A sequence of codes specifying a bit length for
each of the 19 code lengths defined for the com-
pressed DHT.

• A sequence of codes specifying a code length for
each of the elements of the set consisting of lit-
eral bytes, an EOB symbol, and duplicate-string
lengths.

• A sequence of codes specifying a code length for
each of the elements of the set consisting of
duplicate-string pointer distances.

Refer to the description of a compressed-data block
with block type 10 binary, starting on page 26-45 for
a detailed description of the compressed representa-
tion of a DHT.

The compressed representation of the DHT is left
justified in the CDHT field. That is, the rightmost bit of
byte 64 contains the least-significant bit of the HLIT
sub-element of the compressed representation of the
DHT.

The compressed representation of a DHT is an out-
put from the operation when the DFLTCC-GDHT
function is specified.

The compressed representation of a DHT is an input
to the operation when the DFLTCC-CMPR function is
specified and HTT is one. The CDHT field is not
modified by the DFLTCC-CMPR function.

When the DFLTCC-XPND function is specified and
the operation ends after decoding only a portion of a
block with BTYPE 10 binary, the compressed repre-
sentation of the DHT in the block is stored to this
field. When the DFLTCC-XPND function is specified
and the operation ends at a block boundary or after
decoding only a portion of a block with BTYPE 00 or
01 binary, zeros are stored to this field. When an
uncompressing operation is resumed within a block
with BTYPE 10 binary (that is when CF equals one
and IFS equals C or D hex), this field is an input to
the operation.

When the CDHT is modified, bits of the field not
required to represent the compressed representation
of the DHT are stored as zeros.

Continuation-State Buffer (CSB): When condi-
tions cause a value of one to be stored in the CF
field, internal-state data is stored to bytes 384-1535
of the parameter block; otherwise bytes 384-1535 of
the parameter block are undefined and may be modi-
fied. The internal-state data stored is model-depen-
dent and may be used subsequently to resume the
operation. It is expected, but not required, for the pro-
gram to initialize the continuation-state buffer to con-
tain all zeros. Subsequent to the instruction ending
with a nonzero condition code set, and prior to reexe-
cuting the instruction for the purpose of resuming the
operation, the program should not modify the contin-
uation-state buffer; otherwise results are unpredict-
able.

26-42 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L

Sub-byte boundary (SBB) value of 011 binary:

After end of operation: data that has been processed (shaded in gray):

bit 0 1 2 3 4 5 6 7

byte 1 2 3 4 5

Before start of operation: data to be processed (shaded in gray):

bit 0 1 2 3 4 5 6 7

byte 1 2 3 4 5

Figure 26-28. Sub-byte Boundary (SBB) Example

example 1:

before executing DFLTCC-CMPR: after executing DFLTCC-CMPR:

GR R1 1 2

GR R1 + 1 9 8

NT 0 0

SBB 1 6

results
generated

not applicable 13 bits (shaded in gray)

first operand

bit 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

byte 1 2 3 1 2 3

example 2:

before executing DFLTCC-CMPR: after executing DFLTCC-CMPR:

GR R1 1 2

GR R1 + 1 9 8

NT 0 0

SBB 6 2

results
generated

not applicable 4 bits (shaded in gray)

first operand

bit 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

byte 1 2 3 1 2 3

example 3:

before executing DFLTCC-CMPR: after executing DFLTCC-CMPR:

GR R1 1 1

GR R1 + 1 9 9

NT 0 0

SBB 1 7

results
generated

not applicable 6 bits (shaded in gray)

first operand

bit 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

byte 1 2 3 1 2 3

Figure 26-29. Examples Illustrating how SBB Applies to the DFLTCC-CMPR function

Specialized-Function-Assist Instructions 26-43

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
LDescriptions for Compressed-data Blocks

The bytes of a compressed-data block in storage are
processed from left to right. Compressed-data blocks
are not required to start or end on byte boundaries. A
compressed-data block is a bit stream. Elements of
the block are loaded into storage one bit at a time.
The bit stream is loaded from right to left within each

byte of storage and in byte order from left to right.
When the element is a Huffman code, the bits are
stored in order from most significant bit to least sig-
nificant bit of the element. When the element is not a
Huffman code, the bits are stored in order from least
significant bit to most significant bit of the element.

Figure 26-30 illustrates an example of a block with
block type 00 binary, which contains no compressed-
data symbols. The following applies to this example:

• The compressed-data block consists of a bit
stream which begins with bit 4 of byte 0, identi-
fied as b0, and ends with bit 0 of byte 7, identified
as b60.

• The first element encountered in the bit stream is
BFINAL in bit 4 of byte 0.

• The second element encountered in the bit
stream is BTYPE in bits 2-3 of byte 0. In this
example, the BTYPE is 00 binary.

• Bits to the left of the BTYPE and to the right of a
byte boundary are ignored when the BTYPE is
00 binary, which is bits 0-1 of byte 0 in this exam-
ple.

• The third element encountered in the bit stream
is the least significant byte of the LEN field,
which is followed by the most significant byte of
the LEN field. Bytes 1-2 contain the LEN field in
little-endian byte order. The LEN field specifies
the number of bytes in the block with literal data.
Literal data is uncompressed data. The bytes
with literal data follow the NLEN field in the bit
stream.

• The elements encountered in the bit stream fol-
lowing the LEN field are the least significant byte
of the NLEN field, followed by the most signifi-

cant byte of the NLEN field, respectively. Bytes 3-
4 contain the NLEN field in little-endian byte
order. The NLEN field is the one’s complement of
the LEN field.

• Elements encountered in the bit stream following
the NLEN field are uncompressed data, identi-
fied as literal bytes. Bytes 5-7 contain uncom-
pressed data, which is unchanged from the
source data used to generate this block.

• None of the elements contained in this block are
Huffman codes. Every element in this block is
stored to the bit stream order in order from least
significant bit to most significant bit of the ele-
ment, as defined by the DEFLATE standard.
Since the LEN, NLEN, and literal elements are
each an integral number of bytes aligned on byte
boundaries, these elements may be processed
as units of bytes, and not necessarily as units of
bits.

Figure 26-31 on page 26-44 illustrates an example of
a block with block type 01 binary, which contains
compressed-data symbols generated using a fixed-
Huffman table (FHT). The following applies to this
example:

• The compressed-data block consists of a bit
stream which begins with bit 4 of byte 0, identi-

stream b4 b3 b2 b1 b0 b12b11b10 b9 b8 b7 b6 b5 b20b19b18b17b16b15b14b13 b60b59b58b57b56b55b54b53

content 0 0 f LENLSB LENMSB NLENLSB NLENMSB literal literal literal

bit 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

byte 0 1 2 3 4 5 6 7

Explanation:

b Bits of the stream processed in order of subscripts, starting with b0

f Block header final bit (BFINAL)

LEN Number of bytes in the block with literal data

NLEN The one’s complement of LEN

LSB Least Significant Byte

MSB Most Significant Byte

literal uncompressed byte of data

Figure 26-30. Block Type 00 (no compression) Example

26-44 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L fied as b0, and ends with bit 3 of byte 11, identi-

fied as b89.
• The first element encountered in the bit stream is

BFINAL in bit 4 of byte 0.
• The second element encountered in the bit

stream is BTYPE in bits 2-3 of byte 0. In this
example, the BTYPE is 01 binary.

• The fixed-Huffman table (FHT) is not a compo-
nent of the block.

• The third element encountered in the bit stream
is the first compressed-data symbol, which
begins in bit 1 of byte 0. A compressed-data
symbol consists of the following sub-elements,
which are encountered in the bit stream in the
order which they are listed:

1. A Huffman code of variable length. The most
significant bits of the code designate the
length of the code. The code is encountered
in the bit stream starting with the most signif-
icant bit of the code and ending with the least
significant bit of the code. When the code
represents a literal value or the end-of-block
symbol, the code is the only sub-element of
the compressed-data symbol. When the
code represents a length of a pointer to the
history buffer, the code is followed by subse-
quent sub-elements of the compressed-data
symbol.

2. When applicable, as specified by the
DEFLATE standard, extra length bits may fol-
low the Huffman code representing a pointer
length. Extra length bits are encountered in
the bit stream starting with the least signifi-

cant bit and ending with the most significant
bit of the extra length bits.

3. The next sub-element encountered in the bit
stream is a 5-bit distance code of a pointer to
the history buffer. The distance code is
encountered in the bit stream starting with
the most significant bit of the code and end-
ing with the least significant bit of the dis-
tance code.

4. When applicable, as specified by the
DEFLATE standard, extra distance bits may
follow the distance code. Extra distance bits
are encountered in the bit stream starting
with the least significant bit and ending with
the most significant bit of the extra distance
bits.

• Bits 0-1 of byte 0, all bits of bytes 1 through 9,
and bits 2-7 of byte 10 contain bits of com-
pressed-data symbols.

• The last element encountered in the bit stream is
a compressed-data symbol containing a single
sub-element, which is the Huffman code repre-
senting the end-of-block (EOB) symbol. The
EOB symbol for a block with BTYPE 01 binary is
0000000 binary. In this example, bit 1 of byte 10
contains the most significant bit of the EOB sym-
bol and bit 3 of byte 11 contains the least signifi-
cant bit of the EOB symbol.

• Bit 3 of byte 11 contains the last bit of the bit
stream, which is the last bit of the compressed-
data block.

stream b4 b3 b2 b1 b0 b12b11b10 b9 b8 b7 b6 b5 b20b19b18b17b16b15b14b13 b89b88b87b86b85

content s s 0 1 f s s s s s s s s e e s s s s s s e e e e e

bit 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

byte 0 1 2 3 4 10 11

Explanation:

b Bits of the stream processed in order of subscripts, starting with b0

f Block header final bit (BFINAL)

s A bit of a compressed-data symbol

e A bit of the end-of-block (EOB) symbol

Figure 26-31. Block Type 01 (compressed data using FHT) Example

Specialized-Function-Assist Instructions 26-45

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L

Figure 26-32 on page 26-45 illustrates an example of
a block with block type 10 binary, which contains
compressed-data symbols generated using a
dynamic-Huffman table (DHT). The following applies
to this example:

• The compressed-data block consists of a bit
stream which begins with bit 4 of byte 0, identi-
fied as b0, and ends with bit 3 of byte 11, identi-
fied as b89.

• The first element encountered in the bit stream is
BFINAL in bit 4 of byte 0.

• The second element encountered in the bit
stream is BTYPE in bits 2-3 of byte 0. In this
example, the BTYPE is 10 binary.

• The third element encountered in the bit stream
is the compressed representation of the
dynamic-Huffman table (DHT), which begins in
bit 1 of byte 0. The compressed representation of
the DHT consists of the following sub-elements,
which are encountered in the bit stream in the
order which they are listed:

1. HLIT: The sum of the 5-bit HLIT sub-element
and 257 specifies the number of Huffman
codes representing literal bytes, an EOB
symbol, and duplicate-string lengths. Valid
values of HLIT range from 0 to 29. HLIT bits
are encountered in the bit stream starting
with the least significant bit and ending with
the most significant bit of the HLIT sub-ele-
ment. In this example, bit 1 of byte 0, identi-
fied as b3 is the least significant bit of the
HLIT sub-element.

2. HDIST: The sum of the 5-bit HDIST sub-ele-
ment and 1 specifies the number of Huffman
codes representing duplicate-string pointer

distances. Valid values of HDIST range from
0 to 29. HDIST bits are encountered in the
bit stream starting with the least significant
bit and ending with the most significant bit of
the HDIST sub-element.

3. HCLEN: The sum of the 4-bit HCLEN sub-
element and 4 specifies the number of Huff-
man codes representing code lengths. Valid
values of HCLEN range from 0 to 15. HCLEN
bits are encountered in the bit stream start-
ing with the least significant bit and ending
with the most significant bit of the HCLEN
sub-element.

4. A sequence of codes specifying a bit length
for each of the code lengths defined for the
compressed DHT. The number of codes is
equal to the sum of HCLEN and 4. Each
code is 3 bits.

5. A sequence of codes specifying a code
length for each of the elements of the set
consisting of literal bytes, an EOB symbol,
and duplicate-string lengths. The number of
code lengths specified is equal to the sum of
HLIT and 257.

When the last code length (CL) for the set of
literal bytes, an EOB symbol, and duplicate-
string lengths is 16, 17, or 18, and the extra
bits following the CL specify repeating the CL
for more elements than are defined for the
set, the code length also applies to the set of
duplicate-string pointer distances. The
sequence of codes specifying code lengths
for the set of literal bytes, an EOB symbol,
and duplicate-string lengths, followed by the
sequence of codes specifying code lengths

stream b4 b3 b2 b1 b0 b12b11b10 b9 b8 b7 b6 b5 b20b19b18b17b16b15b14b13 b89b88b87b86b85

content t t 1 0 f t t t t t t t t e e e e e s s s e e e e e

bit 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

byte 0 1 2 3 4 10 11

Explanation:

b Bits of the stream processed in order of subscripts, starting with b0

f Block header final bit (BFINAL)

s A bit of a compressed-data symbol

e A bit of the end-of-block (EOB) symbol

t A bit of the compressed dynamic-Huffman table

Figure 26-32. Block Type 10 (compressed data using DHT) Example

26-46 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L for duplicate-string pointer distances is a

contiguous sequence for both sets.

6. A sequence of codes specifying a code
length for each of the elements of the set
consisting of duplicate-string pointer dis-
tances. The number of code lengths speci-
fied is equal to the sum of HDIST and 1.

• The fourth element encountered in the bit stream
is the first compressed-data symbol. A com-
pressed-data symbol consists of the following
sub-elements, which are encountered in the bit
stream in the order which they are listed:

1. A Huffman code of variable length. The most
significant bits of the code designate the
length of the code. The code is encountered
in the bit stream starting with the most signif-
icant bit of the code and ending with the least
significant bit of the code. When the code
represents a literal value or the end-of-block
symbol, the code is the only sub-element of
the compressed-data symbol. When the
code represents a length of a pointer to the
history buffer, the code is followed by subse-
quent sub-elements of the compressed-data
symbol.

2. When applicable, as specified by the
DEFLATE standard, extra length bits may fol-
low the Huffman code representing a pointer
length. Extra length bits are encountered in
the bit stream starting with the least signifi-
cant bit and ending with the most significant
bit of the extra length bits.

3. The next sub-element encountered in the bit
stream is a 5-bit distance code of a pointer to

the history buffer. The distance code is
encountered in the bit stream starting with
the most significant bit of the code and end-
ing with the least significant bit of the dis-
tance code.

4. When applicable, as specified by the
DEFLATE standard, extra distance bits may
follow the distance code. Extra distance bits
are encountered in the bit stream starting
with the least significant bit and ending with
the most significant bit of the extra distance
bits.

• Subsequent bits encountered in the bit stream,
up to and including bit 5 of byte 10, contain bits
of compressed-data symbols.

• The last element encountered in the bit stream is
a compressed-data symbol containing a single
sub-element, which is the Huffman code repre-
senting the end-of-block (EOB) symbol. In this
example, bit 4 of byte 10 contains the most sig-
nificant bit of the EOB symbol and bit 3 of byte 11
contains the least significant bit of the EOB sym-
bol.

• Bit 3 of byte 11 contains the last bit of the bit
stream, which is the last bit of the compressed-
data block.

Processing a Compressed-Data Set

This section describes examples of processing a
compressed-data set to illustrate intended uses of
DEFLATE CONVERSION CALL and augment the
descriptions of various fields of the parameter block.
The examples are simplistic and do not describe all
possible scenarios, requirements, and capabilities.

Specialized-Function-Assist Instructions 26-47

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
LThe following examples and descriptions apply to a

compressed-data set in storage, as illustrated in
Figure 26-33 on page 26-47.

Figure 26-33. An Example of a Compressed-Data Set in Storage.

For the examples in this section, it is intended for a
program processing the compressed-data set to con-
sider the following:

• A single parameter block may be defined and ref-
erenced by multiple usages of DEFLATE CON-
VERSION CALL to process the entire
compressed-data set. The check value and
check value type fields of the parameter block
shall apply to all compressed-data blocks in the
compressed-data set. The sub-byte boundary
field of the parameter block shall apply to transi-
tions between individual blocks. The history
length and history offset may apply to multiple
blocks. The remaining fields of the parameter
block only apply to the individual compressed-
data block being processed by a specific execu-
tion of a DEFLATE CONVERSION CALL instruc-
tion.

• An individual check value applies to all of the
uncompressed data represented by the com-
pressed-data set.

• There is no history for the first compressed-data
symbol in block 1 to reference. Subsequent sym-

bols in block 1 may reference history correspond-
ing to previously encountered symbols in block 1.
Symbols in block 2 may reference history corre-
sponding to previously encountered symbols in
blocks 2 and 1. Symbols in block 3 may refer-
ences history corresponding to previously
encountered symbols in blocks 3, 2, and 1.

Figure 26-34 on page 26-47 lists a portion of a sam-
ple program used to compress data into the com-
pressed-data set described in Figure 26-33.
Figure 26-35 lists the values for certain fields of the
parameter block used during the execution of the
DFLTCC instruction located at the instruction
address labeled IABLK1. Figure 26-36 lists the val-
ues for certain fields of the parameter block used
during the execution of the DFLTCC instruction
located at the instruction address labeled IABLK2.
These figures demonstrate some of the details asso-
ciated with using DEFLATE CONVERSION CALL
multiple times to process an entire compressed-data
set.

CDSBA

Explanation:
CDSBA: Compressed-Data Set Begin Address

compressed-data block 1 compressed-data block 2 compressed-data block 3
BFINAL=1BFINAL=0

(first block of the set)
BFINAL=0

(last block of the set)

BFINAL: The BFINAL element of each compressed-data block

L 1,PBLKADDR Load parameter block address into GR1.
IILL 0,2 Set GR0(56:63)=02 for DFLTCC-CMPR function.
L 2,CDSBADDR Load compressed-data set output address into GR2.
L 4,UD1ADDR Load uncompressed-data input address into GR4.

IABLK1 DFLTCC 2,4,10 Compress data into block1.
BRC 1,IABLK1 If operation ends with CC=3, branch back to resume the operation.

Figure 26-34. Sample of a Program Compressing Data into Three Blocks of a Compressed-Data Set (Part 1 of 2)

26-48 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L L 6,UD2ADDR Load next uncompressed-data input address into GR6.

IABLK2 DFLTCC 2,6,10 Compress data into block2.
BRC 1,IABLK2 If operation ends with CC=3, branch back to resume the operation.

L 8,UD3ADDR Load next uncompressed-data input address into GR8.

IABLK3 DFLTCC 2,8,10 Compress data into block3.
BRC 1,IABLK3 If operation ends with CC=3, branch back to resume the operation.

Figure 26-34. Sample of a Program Compressing Data into Three Blocks of a Compressed-Data Set (Part 2 of 2)

parameter block field field value at start of
operation

field value at end of
operation when condition
code 1 or 3 is set (also the
value at the start of
resuming the operation)

field value at end of
operation when condition
code 0 is set

new task (NT) 1 (specified by the program) 0 0
continuation flag (CF) initialized to zero by the

program
1 0

continuation state buffer (CSB) initialized to all zeros by the
program

internal-state data recorded at
the end of the operation, which
is required when the operation
later resumes

undefined

check value treated as an initial value, since
NT is one

 value generated from portion
of data processed since the
start of the operation and
starting value for resuming the
operation

value generated from all data
processed by the operation
and starting value for a
subsequent operation

sub-byte boundary (SBB) treated as equal to zero, since
NT is one

applies to the last byte
processed by the operation
and the first byte when the
operation later resumes

applies to the last byte
processed by the operation
and the first byte for a
subsequent operation

Figure 26-35. Parameter Block Contents for a DFLTCC-CMPR Function Operating on the First Compressed-Data Block of
a Set.

parameter block field field value at start of
operation

field value at end of
operation when condition
code 1 or 3 is set (also the
value at the start of
resuming the operation)

field value at end of
operation when condition
code 0 is set

new task (NT) 0 (specified by the program) 0 0
continuation flag (CF) initialized to zero by the

program
1 0

Figure 26-36. Parameter Block Contents for a DFLTCC-CMPR Function Operating on the Second Compressed-Data Block
of a Set. (Part 1 of 2)

Specialized-Function-Assist Instructions 26-49

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L

Figure 26-37 on page 26-49 lists a portion of a sam-
ple program used to uncompress data from the com-
pressed-data set described in Figure 26-33.

Compressing Data

The process of compressing data includes generat-
ing one or more compressed-data blocks. The com-
press function of DEFLATE CONVERSION CALL is
used to construct a portion of an individual block. The
portion may be the entire block. This function gener-
ates portions of a block with block type (BTYPE) 01
or 10 binary, and not 00 binary. When the new task
bit (NT) of the parameter block is one, the first block
of compressed data is generated and there is no his-
tory to reference from previously performed com-
pressing operations.

An individual block contains the following elements in
the order which they are listed:

1. Final block indication (BFINAL).

2. Block type (BTYPE).

3. Compressed format of a Dynamic-Huffman
Table, when applicable.

4. Compressed-data symbols.

5. End-of-block (EOB) symbol.

The compression operation generates the elements
specified in the order defined for a block. The ele-
ments may begin or end between byte boundaries in
storage. The sub-byte boundary (SBB) applies to
storing of the first element to the first-operand loca-
tion. A compressed-data block is a bit stream. Com-
ponents of the block are loaded into storage one bit
at a time. The bit stream is loaded from right to left
within each byte of storage and in byte order from left
to right.

When the SBB is nonzero, the reference to the first
byte at the first-operand location is an update refer-
ence.

Uncompressed data from the second-operand loca-
tion is compressed and stored as compressed-data
symbols to the first-operand location.

When the first-operand length is zero at the begin-
ning of the execution of the instruction, the first oper-
and is not accessed, and the first-operand address

continuation state buffer (CSB) initialized to all zeros by the
program

internal-state data recorded at
the end of the operation, which
is required when the operation
later resumes

undefined

check value value generated from prior
operation (preserved by the
program)

 value generated from portion
of data processed since the
start of the current operation
and starting value for resuming
the current operation

value generated from all data
processed by the operation
and starting value for a
subsequent operation

sub-byte boundary (SBB) value associated with last byte
processed by the prior
operation (preserved by the
program)

applies to the last byte
processed by the current
operation and the first byte
when the current operation
later resumes

applies to the last byte
processed by the operation
and the first byte for a
subsequent operation

Figure 26-36. Parameter Block Contents for a DFLTCC-CMPR Function Operating on the Second Compressed-Data Block
of a Set. (Part 2 of 2)

L 1,PBLKADDR Load parameter block address into GR1.
IILL 0,4 Set GR0(56:63)=04 for DFLTCC-XPND function.
L 2,UDADDR Load uncompressed-data output address into GR2.
L 4,CDSBADDR Load compressed-data set input address into GR4.

IASET DFLTCC 2,4,10 Uncompress all blocks of the compressed-data set.
BRC 1,IASET If operation ended with CC=3, branch back to resume the operation.

Figure 26-37. Sample of a Program Uncompressing Data from a Compressed-Data Set

26-50 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L and first-operand length in general registers R1 and

R1 + 1, respectively, are not changed. This applies
when the value of the CF field is zero or one at the
beginning of the execution of the instruction.

When the second-operand length is zero at the
beginning of the execution of the instruction, the sec-
ond operand is not accessed, and the second-oper-
and address and second-operand length in general
registers R2 and R2 + 1, respectively, are not
changed. The second-operand length is zero at the
beginning of the execution of the instruction for the
following case:

• The instruction is being reexecuted to resume
the operation (the CF field of the parameter block
is one at the beginning of the execution of the
instruction) and completing the operation can be
performed with references to the CSB field of the
parameter block, and without references to the
second operand.

Note: The program can not use DEFLATE CONVER-
SION CALL to perform the following operations:

• Generate an empty compressed-data block. An
empty compressed data block consists of a block
header, a compressed format of a DHT when
applicable, and an EOB symbol.

• Close an open compressed-data block. That is,
only store an EOB symbol to the end of the com-
pressed-data block.

The compression algorithm includes searching an
updated history of recently compressed data for a
string of bytes which matches data currently being
compressed from the second-operand location.
Before the compression operation begins or
resumes, the following applies:

• When new task (NT) is one, there is no initial his-
tory available to reference.

• When NT is zero, and bit 56 of general register 0
(HBT) is zero (in-line), the initial history available
to reference is located to the left of, and adjacent
to, the leftmost byte of the second operand, and
the length of the initial history is specified by the
history length (HL) field of the parameter block.

• When NT is zero, and bit 56 of general register 0
(HBT) is one (circular), the initial history available
to reference is located in the third-operand loca-
tion, as specified by the history offset (HO) and
history length (HL) fields of the parameter block.

During the compression operation, fetch-type refer-
ences to the entire history may be made, regardless
which bytes of history are required to perform the
operation. Furthermore, when the history-buffer type
is circular, fetch-type references to the entire
32 K-byte history buffer may be made, regardless
which bytes of history are required to perform the
operation.

During the compression operation, history is
updated. Subsequent to encoding one or more bytes
of source data into a compressed-data symbol with-
out encountering an invalid-input condition, the
source bytes are concatenated to the end of the his-
tory. The most recently processed bytes of source
data, up to a maximum of 32 K-bytes, constitute the
updated history available to reference while process-
ing subsequent bytes of source data.

When the compression operation ends, the following
applies to the resulting history available to subse-
quently resume the operation, or begin another oper-
ation:

• When the HBT is in-line, storage updates to the
second-operand location are not required when
the history is updated. The updated second-
operand address and updated HL specify the
updated location and updated length of the
resulting history.

• When the HBT is circular, storage updates to the
third-operand location are required when the his-
tory is updated. The third-operand address,
updated HO, and updated HL specify the
updated location and updated length of the
resulting history.

Figure 26-38 on page 26-51 illustrates the location of
in-line history with respect to the second operand
before and after multiple executions of a DEFLATE
CONVERSION CALL instruction with DFLTCC-

Specialized-Function-Assist Instructions 26-51

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
LCMPR function and an in-line history specified, when

each execution ends with partial completion.
When the HBT specified by bit 56 of general register
0 is circular, the history is maintained in a 32 K-byte
buffer located at the third-operand location. The loca-
tion of the first byte of history within the buffer (HB) is
designated by the sum of the contents of general reg-
ister R3 and the history offset (HO). The first byte of
history is the least recently processed byte of uncom-
pressed data in the buffer. The location of the last
byte of history within the buffer (HE) is designated by
the following equation:

HE = R3 + modulo32K(HO + HL - 1)

The last byte of history is the most recently pro-
cessed byte of uncompressed data in the buffer.
When the sum of the history offset (HO) and history
length (HL) exceeds the size of the third operand
(32 K-bytes), the history wraps from the end of the
third operand to the beginning of the third operand.
Figure 26-39 on page 26-52 illustrates the location of
the history within a circular history buffer before and
after multiple executions of a DEFLATE CONVER-
SION CALL instruction with DFLTCC-CMPR function

before DFLTCC-CMPR execution number 1: HL=0

S
B

S
E

during DFLTCC-CMPR execution number 1: BP=10K

after DFLTCC-CMPR execution number 1: HL=10K

H
B

H
E

S
B

S
E

L
R

M
R

during DFLTCC-CMPR execution number 2: BP=40K

after DFLTCC-CMPR execution number 2: HL=32K

H
B

H
E

S
B

S
E

L
R

M
R

Explanation:

shaded areas: bytes of history

SB source-begin address: location specified by R2

SE source-end address: location specified by
R2 + (R2 + 1) - 1

HB history-begin address: location specified by R2 - HL

HE history-end address: location specified by R2 - 1

LR least recently processed byte in history

MR most recently processed byte in history

BP bytes of uncompressed data processed

HL history length

Figure 26-38. In-line History before and after executing DFLTCC-CMPR
multiple times

26-52 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L and a circular history buffer specified, when each

execution ends with partial completion.
When the HBT is circular and the number of bytes
processed from the second-operand location is less
than 32,768, the following applies:

• Stores are made to a range of bytes in the third-
operand location. The range of bytes includes
and starts with the location designated by:

R3 + modulo32K(HOO + HLO)

The range of bytes includes and ends with the
location designated by:

R3 + modulo32K(HOO + HLO + BP -1)

The definitions of the variables in the previous
equations are:
HOO: The history offset before the instruction

executes.
HLO: The history length before the instruction

executes.
BP: The number of bytes processed from the

second-operand location during the exe-
cution of the instruction.

Stores made to the range of bytes just described
are subject to store-type access exceptions, PER
storage-alteration events, and setting change
bits.

• Stores which do not modify the contents of stor-
age locations and are not necessary, may be
made to bytes in the third-operand location which
are not included in the range just described.
Stores to such locations are also subject to
store-type access exceptions, PER storage-alter-
ation events, and setting change bits.

When the HBT is circular and the number of bytes
processed from the second-operand location is more
than, or equal to 32,768, stores are made to all bytes
of the third-operand location and subject to store-
type access exceptions, PER storage-alteration
events, and setting change bits.

When the block-continuation flag (BCF) is zero, a 3-
bit block header, consisting of BFINAL followed by
BTYPE, is stored to the first-operand location. The
BFINAL bit of the block header is set equal to the
block header final bit (BHF) of the parameter block.
When the Huffman-table type (HTT) is zero, the
BTYPE field of the block header is set to 01 binary
and when the HTT is one, BTYPE field of the block
header is set to 10 binary. When a block header is
stored, the BFINAL bit is stored to the bit specified by
the SBB in the first byte of the first operand. Subse-

before DFLTCC execution number 1: HO=0 HL=0

B
B

B
E

during DFLTCC execution number 1: BP=10K

after DFLTCC execution number 1: HO=0 HL=10K

B
B

B
E

L
R

M
R

H
B

H
E

during DFLTCC execution number 2: BP=10K

after DFLTCC execution number 2: HO=0 HL=20K

B
B

B
E

L
R

M
R

H
B

H
E

during DFLTCC execution number 3: BP=20K

after DFLTCC execution number 3: HO=8K HL=32K

B
B

B
E

M
R

L
R

H
E

H
B

during DFLTCC execution number 4: BP=10K

after DFLTCC execution number 4: HO=18K HL=32K

B
B

B
E

M
R

L
R

H
E

H
B

Explanation:

shaded areas: bytes of history within the circular history buffer

BB buffer-begin address: location specified by R3

BE buffer-end address: location specified by R3 + 32K - 1

HB history-begin address: location specified by R3 + HO

HE history-end address: location specified by
R3 + modulo32K(HO + HL -1)

LR least recently processed byte in history

MR most recently processed byte in history

BP bytes of uncompressed data processed

HO history offset

HL history length

Figure 26-39. Circular History Buffer before and after executing DFLTCC
multiple times

Specialized-Function-Assist Instructions 26-53

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Lquently, the BTYPE is stored to the first-operand

location. Refer to section “Descriptions for Com-
pressed-data Blocks” on page 26-43 for details on
ordering of bits, as elements of a block are stored.
When the BCF is one, a block header is not stored.

When the Huffman-table type (HTT) is one, the com-
pressed format of the dynamic-Huffman table (DHT)
specified in the parameter block is examined for
invalid-input conditions. When an invalid-input condi-
tion exists for the specified compressed format of the
DHT, the compressed DHT is referred to as invalid
and can not be used to compress data. Refer to
page 26-25 for a list of invalid-input conditions which
may occur when the DFLTCC-CMPR function is
specified. When the compressed format of the DHT
specifies a bit length for a code length, or a code
length for a literal byte, the EOB symbol, a duplicate-
string length, or a duplicate-string pointer distance,
which is greater than the length required by the Huff-
man algorithm to specify a proper and functional
Huffman tree, the compressed DHT is still used to
derive a functional DHT and compress data. When
the block-continuation flag (BCF) is zero and the HTT
is one, the compressed format of the DHT, as speci-
fied in the CDHT field of the parameter block is
stored to the first-operand location.

During the compression operation, source data from
the second-operand location is encoded into com-
pressed-data symbols. As part of the encoding,
source data is compared to the history. When no
match is found, the intermediate representation of
the source data is literal bytes, which is the same as
the source data. When a match is found, the interme-
diate representation of the source data is a pointer to
a location within the history which contains a dupli-
cate copy of the source data. A pointer consists of a
length and a distance. The length is the number of
source data bytes which match a string in the history.
The distance is the number of bytes from the end of
the history to the beginning of the string which
matches the source data. Two Huffman code trees
from the Huffman table are used to encode the inter-
mediate representation of the source data into com-
pressed-data symbols. When the Huffman-table type
(HTT) is zero, a fixed-Huffman table (FHT), as
described by the DEFLATE standard, specifies the
two Huffman code trees used for encoding intermedi-
ate results. When the HTT is one, the dynamic-Huff-
man table (DHT), which is derived from the
compressed representation of the DHT, specified in
the CDHT field of the parameter block, specifies the
two Huffman code trees used for encoding intermedi-

ate results. The encoding is performed as described
by the DEFLATE standard. When a non-universal
DHT is used which does not specify a Huffman code
required to encode the intermediate representation
of the source data, an invalid-input condition is recog-
nized. The bits of the resulting compressed-data
symbol are arranged in the order specified by the
DEFLATE standard before storing the result to the
first-operand location.

Note: Duplicate-string lengths range from 3 to 258
bytes, as defined in Reference [23.] on page xxx.

Prior to processing further source data, the history is
updated as described previously.

The process is repeated until all source bytes have
been processed.

After all source bytes have been processed and the
block closing control (BCC) is one, an end-of-block
(EOB) symbol is stored to the first-operand location.
When a fixed-Huffman table is used, Huffman code
0000000 binary is used for the EOB symbol. When a
dynamic-Huffman table (DHT) is used, the Huffman
code used for the EOB symbol is specified by the
DHT. The bits of the EOB symbol are arranged in the
order specified by the DEFLATE standard before
storing the EOB symbol to the first-operand location.

When the last compressed-data symbol of the opera-
tion (including the EOB symbol), only occupies a por-
tion of the last byte to store, the bits that do not
contain a portion of the last symbol are stored as
zeros.

Subsequent to processing the last compressed-data
symbol, the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

• The end-of-block length (EOBL) and end-of-
block symbol (EOBS) fields of the parameter
block are updated.

• The address in general register R1 is incre-
mented by the number of bytes processed of the
first operand that included processing bit 0, and
the length in general register R1 + 1 is decre-
mented by the same number. The number of
bytes processed of the first operand that
included processing bit 0 is the integer quotient

26-54 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L resulting from an integer division with the divi-

dend being the sum of the number of output bits
processed and the original value of the SBB, and
the divisor being a value of eight.

• The address in general register R2 is incre-
mented by the number of source bytes pro-
cessed, and the length in general register R2 + 1
is decremented by the same number.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

Coincident with compressing the source data, the
source data is an input to generating a 32-bit check
value. Refer to “Check Value” on page 26-39 for
details on generating a check value. The resulting
check value is stored to the check value field of the
parameter block.

Uncompressing Data

The expand function of DEFLATE CONVERSION
CALL is used to decode a compressed-data set into
uncompressed data. The compressed-data set in the
second-operand location consists of one or more
consecutive compressed-data blocks. The blocks of
the compressed-data set are processed from left to
right. The bytes of a block are processed from left to
right. The blocks are not required to start or end on
byte boundaries. Each block is decoded independent
of other blocks in the compressed-data set. General
register R2 specifies the logical address of the left-
most byte of the first block in the compressed-data
set. The last block in the compressed-data set is the
block encountered during processing with the BFI-
NAL bit equal to one. There are three types of blocks
to process. The method of decoding the contents of a
block is a function of the block type (BTYPE).

When the operation begins (when the continuation
flag field of the parameter block is zero), the bit des-
ignated by general register R2, the new task (NT)
field, and the sub-byte boundary (SBB) field is inter-
preted as the first bit of a compressed-data block (the
BFINAL bit of a block header).

The expand function includes referencing an updated
history of recently decoded uncompressed data.
Before the uncompressing operation begins or
resumes, the following applies:

• When new task (NT) is one, there is no initial his-
tory available to reference.

• When NT is zero, and bit 56 of general register 0
(HBT) is zero (in-line), the initial history available
to reference is located to the left of, and adjacent
to, the leftmost byte of the first operand, and the
length of the initial history is specified by the his-
tory length (HL) field of the parameter block.

• When NT is zero, and bit 56 of general register 0
(HBT) is one (circular), the initial history available
to reference is located in the third-operand loca-
tion, as specified by the history offset (HO) and
history length (HL) fields of the parameter block.

During the operation, fetch-type references to the
entire history may be made, regardless which bytes
of history are required to perform the operation. Fur-
thermore, when the history-buffer type is circular,
fetch-type references to the entire 32 K-byte history
buffer may be made, regardless which bytes of his-
tory are required to perform the operation.

During the uncompressing operation, history is
updated. Subsequent to decoding source data with-
out encountering an invalid-input condition, the
resulting bytes of uncompressed data are concate-
nated to the end of the history. The most recently
decoded bytes of uncompressed data, up to a maxi-
mum of 32 K-bytes, constitute the updated history
available to reference while processing subsequent
source data.

When the uncompressing operation ends, the follow-
ing applies to the resulting history available to subse-
quently resume the operation, or begin another
operation:

• When the HBT is in-line, storage updates to the
first-operand location also constitute updates to
the resulting history. The updated first-operand
address and updated HL specify the updated
location and updated length of the resulting his-
tory.

• When the HBT is circular, storage updates to the
third-operand location are required when the his-
tory is updated. The third-operand address,
updated HO, and updated HL specify the
updated location and updated length of the
resulting history.

Figure 26-40 on page 26-55 illustrates the location of
in-line history with respect to the first operand before
and after multiple executions of a DEFLATE CON-
VERSION CALL instruction with DFLTCC-XPND
function and an in-line history specified, when each

Specialized-Function-Assist Instructions 26-55

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Lexecution ends with partial completion. The history

length (HL) is modified during the operation.

When bit 56 of general register 0 specifies a circular
history buffer, the history is maintained in a 32 K-byte
buffer located at the third-operand location. The loca-
tion of the first byte of history within the buffer (HB) is
designated by the sum of the contents of general reg-
ister R3 and the history offset (HO). The first byte of
history is the least recently processed byte of uncom-
pressed data in the buffer. The location of the last
byte of history within the buffer (HE) is designated by
the following equation:

HE = R3 + modulo32K(HO + HL - 1)

The last byte of history is the most recently pro-
cessed byte of uncompressed data in the buffer.
When the sum of the history offset (HO) and history
length (HL) exceeds the size of the third operand
(32 K-bytes), the history wraps from the end of the

third operand to the beginning of the third operand.
Figure 26-39 on page 26-52 illustrates the location of
the history within a circular history buffer before and
after multiple executions of a DEFLATE CONVER-
SION CALL instruction with DFLTCC-XPND function
and a circular history buffer specified, when each
execution ends with partial completion.

When the HBT is circular and the number of bytes
stored to the first-operand location is less than
32,768, the following applies:

• Stores are made to a range of bytes in the third-
operand location. The range of bytes includes
and starts with the location designated by:

R3 + modulo32K(HOO + HLO)

The range of bytes includes and ends with the
location designated by:

R3 + modulo32K(HOO + HLO + BP -1)

The definitions of the variables in the previous
equations are:
HOO: The history offset before the instruction

executes.
HLO: The history length before the instruction

executes.
BP: The number of bytes stored to the first-

operand location during the execution of
the instruction.

Stores made to the range of bytes just described
are subject to store-type access exceptions, PER
storage-alteration events, and setting change
bits.

• Stores which do not modify the contents of stor-
age locations and are not necessary, may be
made to bytes in the third-operand location which
are not included in the range just described.
Stores to such locations are also subject to
store-type access exceptions, PER storage-alter-
ation events, and setting change bits.

When the HBT is circular and the number of bytes
stored to the first-operand location is more than, or
equal to 32,768, stores are made to all bytes of the
third-operand location and subject to store-type
access exceptions, PER storage-alteration events,
and setting change bits.

When the BTYPE is 00 binary, the block does not
contain compressed data. Figure 26-30 on
page 26-43 illustrates a block with BTYPE equal 00

before DFLTCC-XPND execution number 1: HL=0

T
B

T
E

during DFLTCC-XPND execution number 1: BP=10K

after DFLTCC-XPND execution number 1: HL=10K

H
B

H
E

T
B

T
E

L
R

M
R

during DFLTCC-XPND execution number 2: BP=40K

after DFLTCC-XPND execution number 2: HL=32K

H
B

H
E

T
B

T
E

L
R

M
R

Explanation:

shaded areas: bytes of history

TB target-begin address: location specified by R1

TE target-end address: location specified by
R1 + (R1 + 1) - 1

HB history-begin address: location specified by R1 - HL

HE history-end address: location specified by R1 - 1

LR least recently processed byte in history

MR most recently processed byte in history

BP bytes of uncompressed data processed

HL history length

Figure 26-40. In-line History before and after executing DFLTCC-XPND
multiple times

26-56 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L binary. The LEN field specifies the number of literal

bytes in the block. The byte order of the LEN field is
little-endian. The LEN field may specify zero literal
bytes. The literal bytes of the block are placed at the
first-operand location. The history is also updated, as
previously described, with each literal byte of the
block.

When the BTYPE is 01 binary, the block contains
compressed-data symbols that were generated using
a fixed-Huffman table (FHT). The FHT is defined by
the DEFLATE standard and is not part of the block.
Figure 26-31 on page 26-44 illustrates a block with
BTYPE equal 01 binary. Subsequent to interpreting
the block header, compressed-data symbols are
decoded in the order in which they appear in the
block. Bytes of the block are processed from left to
right. Bits within each byte of the block are processed
from right to left. Each symbol is completely pro-
cessed prior to processing the next symbol in the
block. Each symbol which is not the end-of-block
(EOB) symbol represents a literal value or a pointer
to a substring previously decoded in the history buf-
fer. A previously decoded substring is also referred to
as a duplicate string. A pointer consists of codes rep-
resenting the substring length and the distance from
the end of the history to the beginning of the sub-
string. When a symbol represents a substring in the
history, the substring is referenced from the history
buffer. The uncompressed data resulting from decod-
ing a symbol is placed at the first-operand location.

Note: Duplicate-string lengths range from 3 to 258
bytes, as defined in Reference [23.] on page xxx.

Prior to processing further source data, the history is
updated as previously described.

The updated history applies to decoding the next
symbol of the block. When the EOB symbol is
encountered, processing of the block is complete.

When the BTYPE is 10 binary, the block contains
compressed-data symbols that were generated using
a dynamic-Huffman table (DHT). A compressed for-
mat of the DHT used is an element of the com-
pressed-data block. Figure 26-32 on page 26-45
illustrates a block with BTYPE equal 10 binary. Sub-
sequent to interpreting the block header, the com-
pressed format of the DHT provided within the
compressed-data block is examined for invalid-input
conditions. When an invalid-input condition exists for
the provided compressed format of the DHT, the
compressed format of the DHT is referred to as invalid

and can not be used to uncompress data. Refer to
page 26-30 for a list of invalid-input conditions which
may occur when the DFLTCC-XPND function is
specified. When the compressed format of the DHT
specifies a bit length for a code length, or a code
length for a literal byte, the EOB symbol, a duplicate-
string length, or a duplicate-string pointer distance,
which is greater than the length required by the Huff-
man algorithm to specify a proper and functional
Huffman tree, the compressed DHT is still used to
derive a functional DHT and compress data. Subse-
quent to examining the compressed format of the
DHT, compressed-data symbols are decoded in the
order in which they appear in the block. Bytes of the
block are processed from left to right. Bits within each
byte of the block are processed from right to left.
Each symbol is completely processed prior to pro-
cessing the next symbol in the block. The processing
of symbols in a block with BTYPE 10 binary is the
same as previously described for processing sym-
bols in a block with BTYPE 01, except the former
uses the DHT provided to decode symbols, and the
latter uses the FHT to decode symbols. When a non-
universal DHT is provided which does not specify a
Huffman code required to decode a compressed-
data symbol, an invalid-input condition is recognized.

Coincident with uncompressing the second operand,
the uncompressed data is an input to generating a
32-bit check value. Refer to “Check Value” on
page 26-39 for details on generating a check value.
The resulting check value is stored to the check value
field of the parameter block.

Subsequent to processing the last block of the com-
pressed-data set, the following occurs:

• A model-dependent value is stored to the model-
version number (MVN) field of the parameter
block.

• The sub-byte boundary (SBB) field of the param-
eter block is updated.

• The address in general register R1 is incre-
mented by the number of bytes stored at the first-
operand location, and the length in general regis-
ter R1 + 1 is decremented by the same number.

• The address in general register R2 is incre-
mented by the number of bytes processed of the
second operand that included processing bit 0,
and the length in general register R2 + 1 is decre-
mented by the same number. The number of
bytes processed of the second operand that
included processing bit 0 is the integer quotient
resulting from an integer division with the divi-

Specialized-Function-Assist Instructions 26-57

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Ldend being the sum of the number of input bits

processed and the original value of the SBB, and
the divisor being a value of eight.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

When the first-operand length is zero at the begin-
ning of the execution of the instruction, the first oper-
and is not accessed, and the first-operand address
and first-operand length in general registers R1 and
R1 + 1, respectively, are not changed. This applies
when the value of the CF field is zero or one at the
beginning of the execution of the instruction.

When the second-operand length is zero at the
beginning of the execution of the instruction, the sec-
ond operand is not accessed, and the second-oper-
and address and second-operand length in general
registers R2 and R2 + 1, respectively, are not
changed. The second-operand length is zero at the
beginning of the execution of the instruction for the
following case:

• The instruction is being reexecuted (the CF field
of the parameter block is one at the beginning of
the execution of the instruction) and the entire
second operand was processed when the
instruction was previously executed.

The uncompressing operation may end without stor-
ing any results to the first-operand location, even
though data was processed from the second-oper-
and location. This occurs when the data processed
from the second-operand location only contains any
of the following compressed-data block elements:

• A block header.
• The LEN field of a block with block type 00

binary.
• The NLEN field of a block with block type 00

binary.
• A compressed format of a dynamic-Huffman

table.
• An end-of-block (EOB) symbol.

Other Conditions

When the DFLTCC-CMPR or DFLTCC-XPND func-
tion is specified, execution of the instruction ends
after processing a CPU-determined amount of data.
This permits interruptions to occur. When the instruc-
tion ends with partial completion, the addresses in

general registers R1 and R2, the lengths in general
registers R1 + 1 and R2 + 1, and specific fields of the
parameter block are updated, so that the instruction,
when reexecuted, resumes the operation at the point
it was suspended.

When a DFLTCC-CMPR or DFLTCC-XPND function
is being executed and an access exception is due to
be recognized for the first or second operand, the
result is that either the exception is recognized, or the
operation ends with partial completion and condition
code 3 is set. If condition code 3 is set, the exception
will be recognized when the instruction is executed
again to continue processing the same operands and
the exception condition still exists.

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block, first,
second, and third operands may be multiple-access
references, accesses to these storage locations are
not necessarily block-concurrent, and the sequence
of these accesses or references is undefined.

Results are unpredictable if the DFLTCC-CMPR or
DFLTCC-XPND function is specified and any of the
following apply:
• The parameter block overlaps the first or second

operand.
• The first operand overlaps the second operand.
• The specified history-buffer type (HBT) is circular

and the third operand overlaps the first operand,
the second operand, or the parameter block.

• The specified history-buffer type (HBT) is in-line,
the DFLTCC-CMPR function is specified, and the
history overlaps the first operand or the parame-
ter block.

• The specified history-buffer type (HBT) is in-line,
the DFLTCC-XPND function is specified, and the
history overlaps the second operand or the
parameter block.

In certain unusual situations, despite ending the exe-
cution of DEFLATE CONVERSION CALL with a
CPU-determined amount of data processed being
zero, data may have been stored to the first-operand
location, data may have been stored to the third-
operand location, when applicable, and correspond-
ing change bits have been set, when applicable. In
these cases, the contents of the parameter block and
general registers have not been modified from origi-
nal values. These situations may occur when the
CPU performs a quiescing operation or CPU retry
while executing DEFLATE CONVERSION CALL.

26-58 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L Resulting Condition Code:

0 Normal completion
1 The first-operand length is insufficient to com-

plete the operation
2 The second-operand length is insufficient to

complete the operation (DFLTCC-XPND) or
invalid-input condition

3 CPU-determined amount of data processed

Program Exceptions:

• Access (fetch, operand 2, in-line history; fetch
and store, parameter block, operand 1, operand
3)

• Operation (if the DEFLATE-conversion facility is
not installed)

• Specification
• Transaction constraint

The priority of execution for the DEFLATE CONVER-
SON CALL instruction is shown in Figure 26-41 on
page 26-58.

Prior to usage, the compressed format of a DHT is
examined for the existence of invalid-input condi-
tions. When the length of the compressed format of a
DHT is not precisely defined due to an invalid-input
condition, the interpreted length may depend on the
condition, be model dependent, and does not exceed
286 bytes. As a result, when the DFLTCC-XPND
function is specified, the current second-operand
length is 287, or less bytes, and a compressed for-
mat of a DHT with an invalid-input condition is
encountered in the second operand, it is model
dependent whether the invalid-input condition (prior-
ity 14.A) or insufficient second-operand length (con-
dition code 2 - priority 14.B) is recognized.

Programming Notes:

1. There is no partial completion for the DFLTCC-
GDHT function. To complete the function, all
pages designated by the second operand must
be accessible.

2. When the program references the end-of-block
(EOB) symbol in the parameter block to close a
compressed-data block, the program is responsi-

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint.

8.A Specification exception due to invalid function
code or invalid register number.

Figure 26-41. Priority of Execution: DFLTCC (Part 1 of 2)

8.B Specification exception due to parameter block
not designated on doubleword boundary.

8.C Specification exception due to circular history
buffer not designated on 4 K-byte boundary.

9. Access exceptions for an access to the
parameter block.

10. Condition code 2 due to specified format of the
parameter block is not supported by the model.

11. Specification exception due to second-operand
length equal to zero and CF equal to zero at the
beginning of the execution of the instruction.

12. Condition code 1 due to first-operand length
equal to zero at the beginning of the execution of
the instruction and DFLTCC-CMPR is specified.

13.A Condition code 2 due to the history length field
greater than 32,768 and the new task field is
zero when DFLTCC-CMPR or DFLTCC-XPND is
specified.

13.B Access exceptions for an access to the first
operand and the first-operand length is nonzero.

13.C Access exceptions for an access to the second
operand and the second-operand length is
nonzero.

13.D Access exceptions for an access to in-line history
specified at the beginning of the execution of the
instruction.

13.E Access exceptions for an access to the third
operand.

14.A Condition code 2 due to invalid-input conditions
other than those included in items 10 and 13.A
above.

14.B Condition codes 1, 2, or 3 due to conditions other
than those included in items 10, 12, 13.A, and
14.A above.

15. Condition code 0.

Figure 26-41. Priority of Execution: DFLTCC (Part 2 of 2)

Specialized-Function-Assist Instructions 26-59

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
Lble for reversing the bit order of the EOB symbol,

which is a Huffman code.

3. When compressing or uncompressing data, it
may be significantly more efficient overall when
the operation can be performed with the mini-
mum number of times DEFLATE CONVERSION
CALL (DFTLCC) is executed. In other words,
executing DFLTCC with a large operand may be
significantly more efficient than executing
DFLTCC with small operands multiple times.

4. For the compressing and uncompressing opera-
tions, when condition code 3 is set, the general
registers used by the instruction and the parame-
ter block have been updated such that the pro-
gram can simply branch back to the instruction to
continue the operation.

5. When the program anticipates referencing the
first or second operand of DEFLATE CONVER-
SION CALL (DFLTCC), subsequent to executing
the instruction, there may be a performance
advantage associated with the subsequent refer-
ence when DFLTCC is immediately preceded by
NEXT INSTRUCTION ACCESS INTENT (NIAI)
specifying an access intent corresponding to the
operand of interest with an access intent code
value of one or two.

6. When DFLTCC-XPND is specified and the
instruction ends with condition code 2 set, the
value stored to the OESC field of the parameter
block distinguishes between ending due to an
insufficient second-operand length (zero stored
to OESC field) and ending due to an invalid-input
condition (nonzero value stored to OESC field).

7. The Huffman codes of a non-universal DHT may
be shorter than the Huffman codes of a universal
DHT generated from the same data. As a result,
compressed-data symbols generated when
using a non-universal DHT may occupy less bits
than those generated when using a universal
DHT.

8. A program may encounter an invalid-input condi-
tion (condition code 2 set with a nonzero value
stored to the OESC field of the parameter block)
when using a non-universal DHT to compress
data which was not the same data used as an
input to generating the non-universal DHT.

9. Different compressed representations may be
generated from the same uncompressed input.
However, all compressed representations comply

with the cited DEFLATE standard and can be
decoded to the original (uncompressed) form of
the data by any decoder which complies to the
same standard. Varying results may be observed
on the same model and between different mod-
els. Generated results may depend on the follow-
ing:

• Variations of boundaries in storage for the
input data.

• Variations of the CPU-determined amount of
data processed during the execution of the
instruction.

• Variations of the algorithms implementing
the functions.

Differences to compressed-data symbols primar-
ily include, but are not limited to, representations
of duplicate strings.

10. A compressing operation may end with: the
location of the last byte stored being equal to the
location of first byte of the PER storage-area
designation, a nonzero value in the sub-byte
boundary (SBB) field of the parameter block, and
a PER storage-alteration event being recog-
nized. In this case, the address in general regis-
ter R1 is equal to the starting address of the PER
storage-area designation.

11. Performance may be significantly degraded
when the CPU is enabled to recognize PER stor-
age-alteration events and the PER storage-area
designation overlaps with the first-operand loca-
tion or the third-operand location.

12. When the DFLTCC-CMPR function is specified
and the operation ends with a nonzero value in
the sub-byte boundary (SBB) field of the parame-
ter block, the operation included storing to the
byte designated by the resulting first-operand
address. When the DFLTCC-XPND function is
specified and the operation ends with a nonzero
value in the SBB, the operation included fetching
the byte designated by the resulting second-
operand address.

13. When the operation ends with a nonzero condi-
tion code set and the OESC field contains zeros,
the CSB field of the parameter block may contain
partially processed data, and it is expected the
program reexecutes the instruction to resume the
operation.

14. Subsequent to an operation ending with a non-
zero condition code set, and prior to reexecuting

26-60 The z/Architecture CPU Architecture

D
E

F
L

A
T

E
 C

O
N

V
E

R
S

IO
N

 C
A

L
L the instruction for the purpose of resuming the

operation, the program should not modify any
fields of the parameter block; otherwise results
are unpredictable.

15. When the DFLTCC-GDHT function is specified,
the compressed representation of a DHT gener-
ated describes three proper-full Huffman code
trees, according to the Huffman algorithm. That
is, no under-full Huffman code trees are
described. An under-full Huffman code tree is
derived from a compressed representation of a
DHT which specifies a code length for an ele-
ment which is greater than the length required by
the Huffman algorithm to specify a proper and
functional Huffman tree.

When the DFLTCC-CMPR function is specified,
HTT is one, and the compressed representation
of the DHT includes a description of an under-full
Huffman code tree, the compressed-data results
can be transformed to the original uncompressed
data by using the DFLTCC-XPND function, but
not all decoders, which comply to the DEFLATE
standard may be able to transform the results to
the original uncompressed data. This may occur
when the compressed representation of a DHT,
specified by the program, for the DFLTCC-CMPR
function was not generated as a result of per-
forming the DFLTCC-GDHT function.

16. When the DFLTCC-CMPR function ends with
condition code 1 set, the result stored to the sub-
byte boundary (SBB) field of the parameter block

is 000 binary. Recognizing this scenario may be
relevant to a program allocating output buffers for
use with DEFLATE CONVERSION CALL.

17. When the DFLTCC-XPND function is specified
with a circular history buffer and two different log-
ical addresses in the first operand translate to the
same absolute address, the results stored to the
circular history buffer are unpredictable. Depend-
ing on the model, the implementation for updat-
ing the circular history buffer may include
fetching decoded data stored to the first-operand
location.

18. Athough not explicitly stated in Reference [23.]
on page xxx, two representations for the dupli-
cate-string length of 258 bytes are possible,
which are as follows:

• Symbol code with value 284 followed by 5
extra bits with value 11111 binary.

• Symbol code with value 285, which is the
preferred representation, since it may occur
frequently.

When uncompressing data, both representations
are successfully decoded.

A-1© Copyright IBM Corp. 2000, 2019

Appendix A. Number Representation and Instruction-Use
Examples

Number Representation A-2
Binary Integers. A-2

Signed Binary Integers A-2
Unsigned Binary Integers A-3

Decimal Integers . A-4
Hexadecimal-Floating-Point Numbers A-5
Conversion Example . A-6

Instruction-Use Examples A-7
Machine Format. A-7
Assembler-Language Format A-7

Addressing Mode in Examples A-7
General Instructions . A-7

ADD HALFWORD (AH) A-8
AND (N, NC, NI, NR) . A-8

NI Example . A-8
Linkage Instructions (BAL, BALR, BAS, BASR,

BASSM, BSM) . A-8
Other BALR and BASR Examples. A-10

BRANCH AND STACK (BAKR). A-10
BAKR Example 1 . A-11
BAKR Example 2 . A-11
BAKR Example 3 . A-11

BRANCH ON CONDITION (BC, BCR) A-12
BRANCH ON COUNT (BCT, BCTR) A-12
BRANCH ON INDEX HIGH (BXH) A-12

BXH Example 1 . A-12
BXH Example 2 . A-13

BRANCH ON INDEX LOW OR EQUAL
(BXLE) . A-13
BXLE Example 1 . A-14
BXLE Example 2 . A-14

COMPARE AND FORM CODEWORD (CFC) A-14
COMPARE HALFWORD (CH) A-14
COMPARE LOGICAL (CL, CLC, CLI, CLR) . A-15

CLC Example. A-15
CLI Example . A-15
CLR Example. A-16

COMPARE LOGICAL CHARACTERS UNDER
MASK (CLM) . A-16

COMPARE LOGICAL LONG (CLCL) A-16
COMPARE LOGICAL STRING (CLST). A-18
CONVERT TO BINARY (CVB) A-18
CONVERT TO DECIMAL (CVD) A-19
DIVIDE (D, DR) . A-19
EXCLUSIVE OR (X, XC, XI, XR) A-20

XC Example. A-20
XI Example . A-21

EXECUTE (EX) . A-21

FIND LEFTMOST ONE (FLOGR).A-22
INSERT CHARACTERS UNDER MASK

(ICM) .A-23
LOAD (L, LR) .A-23
LOAD ADDRESS (LA) A-23
LOAD HALFWORD (LH).A-24
MOVE (MVC, MVI) .A-24

MVC Example .A-24
MVI Example. .A-25

MOVE INVERSE (MVCIN)A-25
MOVE LONG (MVCL).A-26
MOVE NUMERICS (MVN)A-26
MOVE STRING (MVST)A-27
MOVE WITH OFFSET (MVO) A-27
MOVE ZONES (MVZ)A-28
MULTIPLY (M, MR) .A-28
MULTIPLY HALFWORD (MH)A-29
OR (O, OC, OI, OR) .A-29

OI Example .A-29
PACK (PACK) .A-29
ROTATE THEN EXCLUSIVE OR SELECTED

BITS .A-30
ROTATE THEN INSERT SELECTED BITS . .A-30
ROTATE THEN OR SELECTED BITSA-30
SEARCH STRING (SRST)A-31

SRST Example 1. .A-31
SRST Example 2. .A-31

SHIFT LEFT DOUBLE (SLDA)A-31
SHIFT LEFT SINGLE (SLA)A-32
STORE CHARACTERS UNDER MASK

(STCM) .A-32
STORE MULTIPLE (STM) A-32
TEST UNDER MASK (TM)A-33
TRANSLATE (TR). .A-33
TRANSLATE AND TEST (TRT)A-34
UNPACK (UNPK) .A-35
UPDATE TREE (UPT) A-36

Decimal Instructions .A-36
ADD DECIMAL (AP) .A-36
COMPARE DECIMAL (CP) A-36
DIVIDE DECIMAL (DP).A-36
EDIT (ED) .A-37
EDIT AND MARK (EDMK) A-38
MULTIPLY DECIMAL (MP).A-39
SHIFT AND ROUND DECIMAL (SRP)A-39

Decimal Left Shift .A-39
Decimal Right ShiftA-39
Decimal Right Shift and Round.A-40

A-2 The z/Architecture CPU Architecture

Multiplying by a Variable Power of 10 A-40
ZERO AND ADD (ZAP) A-40

Hexadecimal-Floating-Point Instructions A-41
ADD NORMALIZED (AD, ADR, AE, AER,

AXR). A-41
ADD UNNORMALIZED (AU, AUR, AW,

AWR) . A-41
COMPARE (CD, CDR, CE, CER) A-42
DIVIDE (DD, DDR, DE, DER) A-42
HALVE (HDR, HER). A-43
MULTIPLY (MD, MDR, MDE, MDER, MXD,

MXDR, MXR) . A-43
Hexadecimal-Floating-Point-Number

Conversion. A-44
Fixed Point to Hexadecimal Floating Point. A-44
Hexadecimal Floating Point to Fixed Point. A-44

Multiprogramming and Multiprocessing
Examples . A-45

Example of a Program Failure Using OR
Immediate . A-45

Conditional Swapping Instructions (CS, CDS) A-46
Setting a Single Bit A-46
Updating Counters. A-47

Bypassing Post and Wait A-47
Lock/Unlock. A-47

Lock/Unlock with LIFO Queuing for
Contentions . A-48

Lock/Unlock with FIFO Queuing for
Contentions . A-49

Free-Pool Manipulation A-50
PERFORM LOCKED OPERATION (PLO) . . A-51

Sorting Instructions . A-53
Tree Format. A-53
Example of Use of Sort Instructions A-55

This appendix (except for the examples for FIND
LEFTMOST ONE, ROTATE THEN EXCLUSIVE OR
SELECTED BITS, ROTATE THEN INSERT
SELECTED BITS, ROTATE THEN OR SELECTED
BITS, and changes in the terminology for signed-
packed decimal and unsigned-packed decimal) is the
same as in Enterprise Systems Architecture/390
Principles of Operation, SA22-7201; it has not been
revised to show the enlargement of register sizes or
the 64-bit addressing mode.

Number Representation

Binary Integers

Signed Binary Integers
Signed binary integers are most commonly repre-
sented as halfwords (16 bits) or words (32 bits). In
both lengths, the leftmost bit (bit 0) is the sign of the
number. The remaining bits (bits 1-15 for halfwords
and 1-31 for words) are used to specify the magni-
tude of the number. Binary integers are also referred
to as fixed-point numbers, because the radix point
(binary point) is considered to be fixed at the right,
and any scaling is done by the programmer.

Positive binary integers are in true binary notation
with a zero sign bit. Negative binary integers are in
two’s-complement notation with a one bit in the sign

position. In all cases, the bits between the sign bit
and the leftmost significant bit of the integer are the
same as the sign bit (that is, all zeros for positive
numbers, all ones for negative numbers).

Negative binary integers are formed in two’s-comple-
ment notation by inverting each bit of the positive
binary integer and adding one. As an example using
the halfword format, the binary number with the deci-
mal value +26 is made negative (-26) in the following
manner:

+26 0 000 0000 0001 1010
Invert 1 111 1111 1110 0101
Add 1 1

———————————–
-26 1 111 1111 1110 0110 (Two's complement

form)
(S is the sign bit.)

This is equivalent to subtracting the number:

00000000 00011010
from
 1 00000000 00000000

Negative binary integers are changed to positive in
the same manner.

The following addition examples illustrate two’s-com-
plement arithmetic and overflow conditions. Only
eight bit positions are used.

A-3

1. +57 = 0011 1001
 +35 = 0010 0011

————————–
 +92 = 0101 1100

2. +57 = 0011 1001
 -35 = 1101 1101

————————–
 +22 = 0001 0110 No overflow – carry into

leftmost position and
carry out

3. +35 = 0010 0011
 -57 = 1100 0111

————————–
 -22 = 1110 1010 Sign change only – no

carry into leftmost posi-
tion and no carry out

4. -57 = 1100 0111
 -35 = 1101 1101

————————–
 -92 = 1010 0100 No overflow – carry into

leftmost position and
carry out

5. +57 = 0011 1001
 +92 = 0101 1100

————————–
 +149 =*1001 0101 *Overflow – carry into

leftmost position, no
carry out

6. -57 = 1100 0111
 -92 = 1010 0100

————————–
 -149 =*0110 1011 *Overflow – no carry into

leftmost position but carry
out

The presence or absence of an overflow condition
may be recognized from the carries:

• There is no overflow:

1. If there is no carry into the leftmost bit posi-
tion and no carry out (examples 1 and 3).

2. If there is a carry into the leftmost position
and also a carry out (examples 2 and 4).

• There is an overflow:

1. If there is a carry into the leftmost position
but no carry out (example 5).

2. If there is no carry into the leftmost position
but there is a carry out (example 6).

The following are 16-bit signed binary integers. The
first is the maximum positive 16-bit binary integer.
The last is the maximum negative 16-bit binary inte-
ger (the negative 16-bit binary integer with the great-
est absolute value).

215-1= 32,767 = 0 111 1111 1111 1111
 20== 1 = 0 000 0000 0000 0001
0 = 0 = 0 000 0000 0000 0000

-20 = -1 = 1 111 1111 1111 1111
-215 = -32,768 = 1 000 0000 0000 0000

Figure A-1 illustrates several 32-bit signed binary
integers arranged in descending order. The first is
the maximum positive binary integer that can be rep-
resented by 32 bits, and the last is the maximum neg-
ative binary integer that can be represented by 32
bits.

Unsigned Binary Integers
Certain instructions, such as ADD LOGICAL, treat

binary integers as unsigned rather than signed.
Unsigned binary integers have the same format as

231-1
216

20

0
-20

-21

-216

-231+1
-231

= 2 147 483 647
= 65 536
= 1
= 0
= -1
= -2
= -65 536
= -2 147 483 647
= -2 147 483 648

= 0 111 1111 1111 1111 1111 1111 1111 1111
= 0 000 0000 0000 0001 0000 0000 0000 0000
= 0 000 0000 0000 0000 0000 0000 0000 0001
= 0 000 0000 0000 0000 0000 0000 0000 0000
= 1 111 1111 1111 1111 1111 1111 1111 1111
= 1 111 1111 1111 1111 1111 1111 1111 1110
= 1 111 1111 1111 1111 0000 0000 0000 0000
= 1 000 0000 0000 0000 0000 0000 0000 0001
= 1 000 0000 0000 0000 0000 0000 0000 0000

Figure A-1. 32-Bit Signed Binary Integers

A-4 The z/Architecture CPU Architecture

signed binary integers, except that the leftmost bit is
interpreted as another numeric bit rather than a sign
bit. There is no complement notation because all
unsigned binary integers are considered positive.

The following examples illustrate the addition of
unsigned binary integers. Only eight bit positions are
used. The examples are numbered the same as the
corresponding examples for signed binary integers.

1. 57 = 0011 1001
 35 = 0010 0011

————————–
 92 = 0101 1100

2. 57 = 0011 1001
 221 = 1101 1101

————————–
 278 =*0001 0110 *Carry out of leftmost
 position

3. 35 = 0010 0011
 199 = 1100 0111

————————–
 234 = 1110 1010

4. 199 = 1100 0111
 221 = 1101 1101

————————–
 420 =*1010 0100 *Carry out of leftmost
 position

5. 57 = 0011 1001
 92 = 0101 1100

————————–
 149 = 1001 0101

6. 199 = 1100 0111
 164 = 1010 0100

————————–
 363 =*0110 1011 *Carry out of leftmost
 position

A carry out of the leftmost bit position may or may not
imply an overflow, depending on the application.

Figure A-2 illustrates several 32-bit unsigned binary
integers arranged in descending order.

Decimal Integers

Decimal integers consist of one or more decimal dig-
its and a sign. Each digit and the sign are repre-
sented by a 4-bit code. The decimal digits are in
binary-coded decimal (BCD) form, with the values 0-
9 encoded as 0000-1001. The sign is usually repre-
sented as 1100 (C hex) for plus and 1101 (D hex) for
minus. These are the preferred sign codes, which are
generated by the machine for the results of decimal-
arithmetic operations. There are also several alter-
nate sign codes (1010, 1110, and 1111 for plus; 1011
for minus). The alternate sign codes are accepted by
the machine as valid in source operands but are not
generated for results.

Decimal integers may have different lengths, from
one to 16 bytes. Of the many decimal formats, only

two will be considered here: signed-packed-decimal
and zoned. In the signed-packed-decimal format,
each byte contains two decimal digits, except for the
rightmost byte, which contains the sign code in the
right half. For decimal arithmetic, the number of deci-
mal digits in the signed-packed-decimal format can
vary from one to 31. Because decimal integers must
consist of whole bytes and there must be a sign code
on the right, the number of decimal digits in this for-
mat is always odd. If an even number of significant
digits is desired, a leading zero must be inserted on
the left.

In the zoned format, each byte consists of a decimal
digit on the right and the zone code 1111 (F hex) on
the left, except for the rightmost byte where the sign
code replaces the zone code. Thus, a decimal inte-
ger in the zoned format can have from one to 16 dig-
its. The zoned format may be used directly for input

232-1
231

231-1
216

20

0

= 4 294 967 295
= 2 147 483 648
= 2 147 483 647
= 65 536
= 1
= 0

= 1111 1111 1111 1111 1111 1111 1111 1111
= 1000 0000 0000 0000 0000 0000 0000 0000
= 0111 1111 1111 1111 1111 1111 1111 1111
= 0000 0000 0000 0001 0000 0000 0000 0000
= 0000 0000 0000 0000 0000 0000 0000 0001
= 0000 0000 0000 0000 0000 0000 0000 0000

Figure A-2. 32-Bit Unsigned Binary Integers

A-5

and output in the extended binary-coded-decimal
interchange code (EBCDIC), except that the sign
must be separated from the rightmost digit and han-
dled as a separate character. For positive (unsigned)
numbers, however, the sign can simply be repre-
sented by the zone code of the rightmost digit
because the zone code is one of the acceptable
alternate codes for plus.

In either format, negative decimal integers are repre-
sented in true notation with a separate sign. As for
binary integers, the radix point (decimal point) of dec-
imal integers is considered to be fixed at the right,
and any scaling is done by the programmer.

The following are some examples of decimal integers
shown in hexadecimal notation:

Under some circumstances, a zero with a minus sign
(negative zero) is produced. For example, the multi-
plicand:

00 12 3D (-123)

times the multiplier:

0C (+0)

generates the product:

00 00 0D (-0)

because the product sign follows the algebraic rule of
signs even when the value is zero. A negative zero,

however, is equivalent to a positive zero in that they
compare equal in a decimal comparison.

Hexadecimal-Floating-Point
Numbers

A hexadecimal-floating-point (HFP) number is
expressed as a hexadecimal fraction multiplied by a
separate power of 16. The term floating point indi-
cates that the placement, of the radix (hexadecimal)
point, or scaling, is automatically maintained by the
machine.

The part of an HFP number which represents the sig-
nificant digits of the number is called the fraction. A
second part specifies the power (exponent) to which
16 is raised and indicates the location of the radix
point of the number. The fraction and exponent may
be represented by 32 bits (short format), 64 bits (long
format), or 128 bits (extended format).

Short HFP Number

Long HFP Number

Extended HFP Number

Decimal
Value

+123

-4321

+000050

-7

00000

Signed
Packed Format

12 3C
or
12 3F

04 32 1D

00 00 05 0C
or
00 00 05 0F

7D

00 00 0C
or
00 00 0F

Zoned Format

F1 F2 C3
or
F1 F2 F3

F4 F3 F2 D1

F0 F0 F0 F0 F5 C0
or
F0 F0 F0 F0 F5 F0

D7

F0 F0 F0 F0 C0
or
F0 F0 F0 F0 F0

S Characteristic 6-Digit Fraction

0 1 8 31

Word

0 S Characteristic 14-Digit Fraction

0 1 8 31

1 14-Digit Fraction (continued)

32 63

Word

0 S
High-Order

Characteristic
Leftmost 14 Digits
of 28-Digit Fraction

0 1 8 31

1
Leftmost 14 Digits

of 28-Digit Fraction (continued)

32 63

2 S
Low-Order

Characteristic
Rightmost 14 Digits
of 28-Digit Fraction

64 72 95

3
Rightmost 14 Digits

of 28-Digit Fraction (continued)

96 127

A-6 The z/Architecture CPU Architecture

An HFP number has two signs: one for the fraction
and one for the exponent. The fraction sign, which is
also the sign of the entire number, is the leftmost bit
of each format (0 for plus, 1 for minus). The numeric
part of the fraction is in true notation regardless of
the sign. The numeric part is contained in bits 8-31
for the short format, in bits 8-63 for the long format,
and in bits 8-63 followed by bits 72-127 for the
extended format.

The exponent sign is obtained by expressing the
exponent in excess-64 notation; that is, the exponent
is added as a signed number to 64. The resulting
number is called the characteristic. It is located in bits
1-7 for all formats. The characteristic can vary from 0
to 127, permitting the exponent to vary from -64
through 0 to +63. This provides a scale multiplier in
the range of 16-64 to 16+63. A nonzero fraction, if nor-
malized, has a value less than one and greater than
or equal to 1/16, so that the range covered by the
magnitude M of a normalized floating-point number
is:

16-65 M < 1663

In decimal terms:

16-65 is approximately 5.4 x 10-79

1663 is approximately 7.2 x 1075

More precisely,

In the short format:

16-65 M (1 - 16-6) x 1663

In the long format:

16-65 M (1 - 16-14) x 1663

In the extended format:

16-65 M (1 - 16-28) x 1663

Within a given fraction length (6, 14, or 28 digits), an
HFP operation will provide the greatest precision if
the fraction is normalized. A fraction is normalized
when the leftmost digit (bit positions 8, 9, 10, and 11)
is nonzero. It is unnormalized if the leftmost digit con-
tains all zeros.

If normalization of the operand is desired, the HFP
instructions that provide automatic normalization are
used. This automatic normalization is accomplished
by left-shifting the fraction (four bits per shift) until a
nonzero digit occupies the leftmost digit position. The
characteristic is reduced by one for each digit shifted.

Figure A-3 illustrates sample normalized short HFP
numbers. The last two numbers represent the small-
est and the largest positive normalized numbers.

Conversion Example

Convert the decimal number 59.25 to a short HFP
number. (In another appendix are tables for the con-
version of hexadecimal and decimal integers and
fractions.)

1. The number is separated into a decimal integer
and a decimal fraction.

59.25 = 59 plus 0.25

2. The decimal integer is converted to its hexadeci-
mal representation.

5910 = 3B16

3. The decimal fraction is converted to its hexadeci-
mal representation.

0.2510 = 0.416

4. The integral and fractional parts are combined
and expressed as a fraction times a power of 16
(exponent).

1.0
0.5
1/64
0.0
-15.0
5.4x10-79

7.2x1075

= +1/16x161

= +8/16x160

= +4/16x16-1

= +0 x16-64

= -15/16x161

 +1/16x16-64

 (1-16-6)x1663

= 0 100 0001 0001 0000 0000 0000 0000 00002
= 0 100 0000 1000 0000 0000 0000 0000 00002
= 0 011 1111 0100 0000 0000 0000 0000 00002
= 0 000 0000 0000 0000 0000 0000 0000 00002
= 1 100 0001 1111 0000 0000 0000 0000 00002
= 0 000 0000 0001 0000 0000 0000 0000 00002
= 0 111 1111 1111 1111 1111 1111 1111 11112

Figure A-3. Normalized Short Hexadecimal-Floating-Point Numbers

A-7

3B.416 = 0.3B416 x 16
2

5. The characteristic is developed from the expo-
nent and converted to binary.

base + exponent = characteristic
64 + 2 = 66 = 1000010

6. The fraction is converted to binary and grouped
hexadecimally.

.3B416 = .0011 1011 0100

7. The characteristic and the fraction are stored in
the short format. The sign position contains the
sign of the fraction.

S Char Fraction
0 1000010 0011 1011 0100 0000 0000 0000

Examples of instruction sequences that may be used
to convert between signed binary integers and HFP
numbers are shown in “Hexadecimal-Floating-Point-
Number Conversion” on page A-44.

Instruction-Use Examples

The following examples illustrate the use of many of
the unprivileged instructions. Before studying one of
these examples, the reader should consult the
instruction description.

The instruction-use examples are written principally
for assembler-language programmers, to be used in
conjunction with the appropriate assembler-language
publications.

Most examples present one particular instruction,
both as it is written in an assembler-language state-
ment and as it appears when assembled in storage
(machine format).

Machine Format

All machine-format values are given in hexadecimal
notation unless otherwise specified. Storage
addresses are also given in hexadecimal. Hexadeci-
mal operands are shown converted into binary, deci-
mal, or both if such conversion helps to clarify the
example for the reader.

Assembler-Language Format

In assembler-language statements, registers and
lengths are presented in decimal. Displacements,
immediate operands, and masks may be shown in
decimal, hexadecimal, or binary notation; for exam-
ple, 12, X‘C’, and B‘1100’ represent the same value.
Whenever the value in a register or storage location
is referred to as “not significant,” this value is
replaced during the execution of the instruction.

When SS-format instructions are written in the
assembler language, lengths are given as the total
number of bytes in the field. This differs from the
machine definition, in which the length field specifies
the number of bytes to be added to the field address
to obtain the address of the last byte of the field.
Thus, the machine length is one less than the assem-
bler-language length. The assembler program auto-
matically subtracts one from the length specified
when the instruction is assembled.

In some of the examples, symbolic addresses are
used in order to simplify the examples. In assembler-
language statements, a symbolic address is repre-
sented as a mnemonic term written in all capitals,
such as FLAGS, which may denote the address of a
storage location containing data or program-control
information. When symbolic addresses are used, the
assembler supplies actual base and displacement
values according to the programmer’s specifications.
Therefore, the actual values for base and displace-
ment are not shown in the assembler-language for-
mat or in the machine-language format. For
assembler-language formats, in the labels that desig-
nate instruction fields, the letter “S” is used to indi-
cate the combination of base and displacement fields
for an operand address. (For example, S2 represents
the combination of B2 and D2.) In the machine-lan-
guage format, the base and displacement address
components are shown as asterisks (****).

Addressing Mode in Examples
Except where otherwise specified, the examples
assume the 24-bit addressing mode.

General Instructions

(See Chapter 7, “General Instructions” for a complete
description of the general instructions.)

A-8 The z/Architecture CPU Architecture

ADD HALFWORD (AH)

The ADD HALFWORD instruction algebraically adds
the contents of a two-byte field in storage to the con-
tents of a register. The storage operand is expanded
to 32 bits after it is fetched and before it is used in the
add operation. The expansion consists in propagat-
ing the leftmost (sign) bit 16 positions to the left. For
example, assume that the contents of storage loca-
tions 2000-2001 are to be added to register 5. Ini-
tially:

Register 5 contains 00 00 00 19 = 2510.

Storage locations 2000-2001 contain FF FE =
-210.

Register 12 contains 00 00 18 00.

Register 13 contains 00 00 01 50.

The format of the required instruction is:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
—————————————

AH 5,X'6B0'(13,12)

After the instruction is executed, register 5 contains
00 00 00 17 = 2310. Condition code 2 is set to indi-
cate a result greater than zero.

AND (N, NC, NI, NR)

When the Boolean operator AND is applied to two
bits, the result is one when both bits are one; other-
wise, the result is zero. When two bytes are ANDed,
each pair of bits is handled separately; there is no
connection from one bit position to another. The fol-
lowing is an example of ANDing two bytes:

First-operand byte: 0011 01012
Second-operand byte: 0101 11002
——————————————————–
Result byte: 0001 01002

NI Example
A frequent use of the AND instruction is to set a par-
ticular bit to zero. For example, assume that storage
location 4891 contains 0100 00112. To set the right-
most bit of this byte to zero without affecting the other
bits, the following instruction can be used (assume
that register 8 contains 00 00 48 90):

Machine Format

Assembler Format
Op Code D1(B1),I2
———————————

NI 1(8),X'FE'

When this instruction is executed, the byte in storage
is ANDed with the immediate byte (the I2 field of the
instruction):

Location 4891: 0100 00112
Immediate byte: 1111 11102
———————————————–
Result: 0100 00102

The resulting byte, with bit 7 set to zero, is stored
back in location 4891. Condition code 1 is set.

Linkage Instructions (BAL, BALR,
BAS, BASR, BASSM, BSM)

Four unprivileged instructions (BRANCH AND LINK,
BRANCH AND SAVE, BRANCH AND SAVE AND
SET MODE, and BRANCH AND SET MODE) are
available, together with the unconditional branch
(BRANCH ON CONDITION with a mask of 15), to
provide linkage between subroutines. BRANCH AND
LINK (BAL or BALR) is provided primarily for compat-
ibility with programs written for System/370;
BRANCH AND SAVE (BAS or BASR) is recom-
mended instead for programs which are to be exe-
cuted using ESA/370. The instructions BRANCH
AND SAVE AND SET MODE (BASSM) and
BRANCH AND SET MODE (BSM) provide subrou-
tine linkage together with switching between the
24-bit and the 31-bit addressing modes. The use of
these instructions is discussed in a programming
note at the end of the section “Subroutine Linkage
without the Linkage Stack” on page 5-14 (See also

Op Code R1 X2 B2 D2

4A 5 D C 6B0

Op Code I2 B1 D1

94 FE 8 001

A-9

the semiprivileged instruction BRANCH AND
STACK.)

The following example compares the operation of
these instructions and of the unconditional-branch
instruction BRANCH ON CONDITION (BC or BCR
with a mask of 15). Assume that each instruction in
turn is located at the current instruction address,
ready to be executed next. For the first set of exam-
ples, the addressing-mode bit, PSW bit 32, is initially
zero (24-bit addressing in effect). For the second set,
PSW bit 32 is initially one (31-bit addressing).
Assume also that general register 5 is to receive the
linkage information, and that general register 6 con-
tains the branch address.

The format of the BALR instruction is:

Machine Format

Assembler Format
Op Code R1,R2
————————
 BALR 5,6

The other linkage instructions in the RR format have
the same format but different op codes:

BASR 0D
BASSM 0C
BSM 0B

For comparison with the RR-format instructions, the
results of two RX-format instructions are also shown.

The format of the BAL instruction is:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
———————————
 BAL 5,0(0,6)

The BAS instruction has the same format, but the op
code is 4D.

The BCR instruction specifies only one register:

Machine Format

Assembler Format
Op Code M1,R2
———————
 BCR 15,6

Assume that:

Register 5 contains BB BB BB BB.

Register 6 contains 82 46 8A CE.

PSW bits 32-63 contain

00 00 10 D6 (for 24-bit addressing).
80 00 10 D6 (for 31-bit addressing).

Condition code is 012.

Program mask is 11002.

The effect of executing each instruction in turn is as
follows:

Note that a value of zero in the R2 field of any of the
RR-format instructions indicates that the branching
function is not to be performed; it does not refer to

Op Code R1 R2

05 5 6

Op Code R1 X2 B2 D2

45 5 0 6 000

Op Code M1 R2

07 F 6

24-Bit Mode Initially

Instruction Register 5 PSW (32-63)

Before BB BB BB BB 00 00 10 D6

BCR 15,6 BB BB BB BB 00 46 8A CE
BAL 5,0(0,6) 9C 00 10 DA 00 46 8A CE
BAS 5,0(0,6) 00 00 10 DA 00 46 8A CE
BALR 5,6 5C 00 10 D8 00 46 8A CE
BASR 5,6 00 00 10 D8 00 46 8A CE
BASSM 5,6 00 00 10 D8 82 46 8A CE
BSM 5,6 3B BB BB BB 82 46 8A CE

31-Bit Mode Initially

Instruction Register 5 PSW (32-63)

Before BB BB BB BB 80 00 10 D6

BCR 15,6 BB BB BB BB 82 46 8A CE
BAL 5,0(0,6) 80 00 10 DA 82 46 8A CE
BAS 5,0(0,6) 80 00 10 DA 82 46 8A CE
BALR 5,6 80 00 10 D8 82 46 8A CE
BASR 5,6 80 00 10 D8 82 46 8A CE
BASSM 5,6 80 00 10 D8 82 46 8A CE
BSM 5,6 BB BB BB BB 82 46 8A CE

A-10 The z/Architecture CPU Architecture

register 0. Likewise, a value of zero in the R1 field of
the BSM instruction indicates that the old value of
PSW bit 32 is not to be saved and that register 0 is to
be left unchanged. Register 0 can be designated by
the R1 field of instructions BAL, BALR, BAS, BASR,
and BASSM, however. In the RX-format branch
instructions, branching occurs independent of
whether there is a value of zero in the B2 field or X2

field of the instruction. However, when the field is
zero, instead of using the contents of general register
0, a value of zero is used for that component of
address generation.

Programming Note: It should be noted that execu-
tion of BAL in the 24-bit addressing mode results in
bit 0 of register 5 being set to one. This is because
the ILC for an RX-format instruction is 10. This is the
only case in which bit zero of the return register does
not correctly reflect the addressing mode of the
caller. Thus, BSM may be used to return for BALR,
BAS, BASR, and BASSM in both the 24-bit and the
31-bit addressing modes, but it cannot be used to
return if the program was called by using BAL in the
24-bit addressing mode.

Other BALR and BASR Examples
The BALR or BASR instruction with the R2 field set to
zero may be used to load a register for use as a base
register. For example, in the assembler language, the
two statements:

BALR 15,0
USING *,15

or

BASR 15,0
USING *,15

indicate that the address of the next sequential
instruction following the BALR or BASR instruction
will be placed in register 15, and that the assembler
may use register 15 as a base register until otherwise
instructed. (The USING statement is an “assembler
instruction” and is thus not a part of the object pro-
gram.)

BRANCH AND STACK (BAKR)

The semiprivileged BRANCH AND STACK instruc-
tion facilitates linkage between subroutines by saving

status in a linkage-stack state entry (sometimes
called a branch state entry to distinguish it from a
program-call state entry). When BRANCH AND
STACK has been used, the return from the called
program is made by means of the PROGRAM
RETURN instruction. PROGRAM RETURN restores
access registers 2-14, general registers 2-14, and
the PSW with values saved in the state entry, except
that it leaves the PER mask unchanged and sets the
condition code to an unpredictable value. The use of
BRANCH AND STACK is discussed in “Branching
Using the Linkage Stack” on page 5-73.

BRANCH AND STACK can be used to perform a call-
ing linkage, or it can be used at or near the entry
point of the called program, depending on whether
the R1 field of the instruction is zero or nonzero,
respectively. If the R1 field is zero, bits 32-63 of the
PSW saved in the state entry indicate the current
addressing mode (24-bit or 31-bit) and the address of
the next sequential instruction after the BRANCH
AND STACK instruction or an EXECUTE instruction.
If the R1 field is nonzero, bits 32-63 of the PSW saved
in the state entry are set with a value generated from
the contents of general register R1: bit 32 of the PSW
is set equal to bit 0 of the register, and bits 1-31 of
the PSW are set with an address generated from bits
1-31 of the register under the control of bit 0 of the
register. Bits 32-63 of the PSW saved in the state
entry are referred to in the following examples as the
return value.

The branch address for the instruction is generated
from the contents of general register R2 under the
control of the current addressing mode. Bit 0 of gen-
eral register R2 does not affect the operation. If the R2

field of the instruction is zero, the operation is per-
formed without branching.

In addition to saving a complete PSW (except with an
unpredictable PER mask) in the state entry,
BRANCH AND STACK saves the new value of bits
32-63 of the current PSW in the state entry. Bits 32-
63 are referred to in the following examples as the
branch value.

The following examples contain cases in which bit 32
of the current PSW is either zero or one (24-bit or 31-
bit addressing) before BRANCH AND STACK is exe-
cuted and in which bit 0 of the general register desig-
nated by a nonzero R1 or R2 field is either zero or
one.

A-11

BAKR Example 1
This example shows BAKR used in a calling pro-
gram. BAKR performs a branch, and the return is to
be to the next sequential instruction.

The format of the BAKR instruction is:

Machine Format

Assembler Format
Op Code R1,R2
————————
 BAKR 0,6

Assume four cases of initial values, as follows:

The results in the four cases are as follows:

BAKR Example 2
This example shows BAKR used in a called program.
BAKR does not perform a branch, and the return is to
be as specified in general register R1.

The format of the BAKR instruction is:

Machine Format

Assembler Format
Op Code R1,R2
————————
 BAKR 5,0

Assume four cases of initial values, as follows:

The results in the four cases are as follows:

BAKR Example 3
This example shows BAKR used in a called program.
BAKR performs a branch, and the return is to be as
specified in general register R1.

The format of the BAKR instruction is:

Machine Format

Assembler Format
Op Code R1,R2
————————
 BAKR 5,6

Assume eight cases of initial values, as follows:

The results in the eight cases are as follows:

Op Code R1 R2

B240 0 6

PSW (32-63) Register 6

1. 00 00 10 D6 02 46 8A CE
2. 00 00 10 D6 82 46 8A CE
3. 80 00 10 D6 02 46 8A CE
4. 80 00 10 D6 82 46 8A CE

Return
Value

Branch Value
and PSW (32-63)

1. 00 00 10 DA 00 46 8A CE
2. 00 00 10 DA 00 46 8A CE
3. 80 00 10 DA 82 46 8A CE
4. 80 00 10 DA 82 46 8A CE

Op Code R1 R2

B240 5 0

Register 5 PSW (32-63)

1. 04 00 10 D6 00 46 8A CE
2. 04 00 10 D6 82 46 8A CE
3. 84 00 10 D6 00 46 8A CE
4. 84 00 10 D6 82 46 8A CE

Return
Value

Branch Value
and PSW (32-63)

1. 00 00 10 D6 00 46 8A D2
2. 00 00 10 D6 82 46 8A D2
3. 84 00 10 D6 00 46 8A D2
4. 84 00 10 D6 82 46 8A D2

Op Code R1 R2

B240 5 6

Register 5 Register 6 PSW (32-63)

1. 04 00 10 D6 06 99 99 00 00 46 8A CE
2. 04 00 10 D6 06 99 99 00 82 46 8A CE
3. 04 00 10 D6 86 99 99 00 00 46 8A CE
4. 04 00 10 D6 86 99 99 00 82 46 8A CE
5. 84 00 10 D6 06 99 99 00 00 46 8A CE
6. 84 00 10 D6 06 99 99 00 82 46 8A CE
7. 84 00 10 D6 86 99 99 00 00 46 8A CE
8. 84 00 10 D6 86 99 99 00 82 46 8A CE

Return
Value

Branch Value
and PSW (32-63)

1. 00 00 10 D6 00 99 99 00
2. 00 00 10 D6 86 99 99 00
3. 00 00 10 D6 00 99 99 00
4. 00 00 10 D6 86 99 99 00

A-12 The z/Architecture CPU Architecture

BRANCH ON CONDITION (BC,
BCR)

The BRANCH ON CONDITION instruction tests the
condition code to see whether a branch should or
should not occur. The branch occurs only if the cur-
rent condition code corresponds to a one bit in a
mask specified by the instruction.

For example, assume that an ADD (A or AR) opera-
tion has been performed and that a branch to
address 6050 is desired if the sum is zero or less
(condition code is 0 or 1). Also assume:

Register 10 contains 00 00 50 00.

Register 11 contains 00 00 10 00.

The RX form of the instruction performs the required
test (and branch if necessary) when written as:

Machine Format

Assembler Format
Op Code M1,D2(X2,B2)
—————————————
 BC 12,X'50'(11,10)

A mask of 1210 means that there are ones in instruc-
tion bits 8 and 9 and zeros in bits 10 and 11, so that
branching takes place when the condition code is
either 0 or 1.

A mask of 15 would indicate a branch on any condi-
tion (an unconditional branch). A mask of zero would
indicate that no branch is to occur (a no-operation).

(See also “Linkage Instructions (BAL, BALR, BAS,
BASR, BASSM, BSM)” on page A-8 for an example
of the BCR instruction.)

BRANCH ON COUNT (BCT, BCTR)

The BRANCH ON COUNT instruction is often used
to execute a program loop for a specified number of
times. For example, assume that the following rep-
resents some lines of coding in an assembler-lan-
guage program:

LUPE AR 8,1

BACK BCT 6,LUPE

where register 6 contains 00 00 00 03 and the
address of LUPE is 6826. Assume that, in order to
address this location, register 10 is used as a base
register and contains 00 00 68 00.

The format of the BCT instruction is:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
————————————
 BCT 6,X'26'(0,10)

The effect of the coding is to execute three times the
loop defined by the instructions labeled LUPE
through BACK, while register 6 is decremented from
three to zero.

BRANCH ON INDEX HIGH (BXH)

BXH Example 1
The BRANCH ON INDEX HIGH instruction is an
index-incrementing and loop-controlling instruction
that causes a branch whenever the sum of an index
value and an increment value is greater than some
compare value. For example, assume that:

Register 4 contains 00 00 00 8A = 13810 = the
index.

5. 84 00 10 D6 00 99 99 00
6. 84 00 10 D6 86 99 99 00
7. 84 00 10 D6 00 99 99 00
8. 84 00 10 D6 86 99 99 00

Condition
Code

Instruction
(Mask) Bit

Mask Value

0 8 8
1 9 4
2 10 2
3 11 1

Op Code M1 X2 B2 D2

47 C B A 050

Op Code R1 X2 B2 D2

46 6 0 A 026

A-13

Register 6 contains 00 00 00 02 = 210 = the incre-
ment.

Register 7 contains 00 00 00 AA = 17010 = the
compare value.

Register 10 contains 00 00 71 30 = the branch
address.

The format of the BXH instruction is:

Machine Format

Assembler Format
Op Code R1,R3,D2(B2)
———————————
 BXH 4,6,0(10)

When the instruction is executed, first the contents of
register 6 are added to register 4, second the sum is
compared with the contents of register 7, and third
the decision whether to branch is made. After execu-
tion:

Register 4 contains 00 00 00 8C = 14010.

Registers 6 and 7 are unchanged.

Since the new value in register 4 is not yet greater
than the value in register 7, the branch to address
7130 is not taken. Repeated use of the instruction
will eventually cause the branch to be taken when the
value in register 4 reaches 17210.

BXH Example 2
When the register used to contain the increment is
odd, that register also becomes the compare-value
register. The following assembler-language subrou-
tine illustrates how this may be used to search a
table.

Assume that:

Register 8 contains the search argument.

Register 9 contains the width of the table in bytes
(00 00 00 04).

Register 10 contains the length of the table in
bytes (00 00 00 18).

Register 11 contains the starting address of the
table.

Register 14 contains the return address to the
main program.

As the following subroutine is executed, the argu-
ment in register 8 is successively compared with the
arguments in the table, starting with argument 6 and
working backward to argument 1. If an equality is
found, the corresponding function replaces the argu-
ment in register 8. If an equality is not found, zero
replaces the argument in register 8.

SEARCH LNR 9,9
NOTEQUAL BXH 10,9,LOOP
NOTFOUND SR 8,8

BCR 15,14
LOOP CH 8,0(10,11)

BC 7,NOTEQUAL
LH 8,2(10,11)
BCR 15,14

The first instruction (LNR) causes the value in regis-
ter 9 to be made negative. After execution of this
instruction, register 9 contains FF FF FF FC = -410.
Considering the case when no equality is found, the
BXH instruction will be executed seven times. Each
time BXH is executed, a value of -4 is added to regis-
ter 10, thus reducing the value in register 10 by 4.
The new value in register 10 is compared with the -4
value in register 9. The branch is taken each time
until the value in register 10 is -4. Then the branch is
not taken, and the SR instruction sets register 8 to
zero.

BRANCH ON INDEX LOW OR
EQUAL (BXLE)

The BRANCH ON INDEX LOW OR EQUAL instruc-
tion performs the same operation as BRANCH ON
INDEX HIGH, except that branching occurs when the
sum is lower than or equal to (instead of higher than)
the compare value. As the instruction which incre-
ments and tests an index value in a program loop,
BXLE is useful at the end of the loop and BXH at the

Op Code R1 R3 B2 D2

86 4 6 A 000

Table
2 Bytes 2 Bytes
ARG1
ARG2
ARG3
ARG4
ARG5
ARG6

FUNCT1
FUNCT2
FUNCT3
FUNCT4
FUNCT5
FUNCT6

A-14 The z/Architecture CPU Architecture

beginning. The following assembler-language rou-
tines illustrate loops with BXLE.

BXLE Example 1
Assume that a group of ten 32-bit signed binary inte-
gers are stored at consecutive locations, starting at
location GROUP. The integers are to be added
together, and the sum is to be stored at location
SUM.

SR 5,5 Set sum to zero
LA 6,GROUP Load first address
SR 7,7 Set index to zero
LA 8,4 Load increment 4
LA 9,39 Load compare value

LOOP A 5,0(7,6) Add integer to sum
BXLE 7,8,LOOP Test end of loop
ST 5,SUM Store sum

The two-instruction loop contains an ADD (A) instruc-
tion which adds each integer to the contents of gen-
eral register 5. The ADD instruction uses the
contents of general register 7 as an index value to
modify the starting address obtained from register 6.
Next, BXLE increments the index value by 4, the
increment previously loaded into register 8, and com-
pares it with the compare value in register 9, the odd
register of this even-odd pair. The compare value
was previously set to 39, which is one less than the
number of bytes in the data area; this is also the
address, relative to the starting address, of the right-
most byte of the last integer to be added. When the
last integer has been added, BXLE increments the
index value to the next relative address (40), which is
found to be greater than the compare value (39) so
that no branching takes place.

BXLE Example 2
The technique illustrated in Example 1 is restricted to
loops containing instructions in the RX instruction for-
mat. That format allows both a base register and an
index register to be specified (double indexing).

For instructions in other formats, where an index reg-
ister cannot be specified, the previous technique may
be modified by having the address itself serve as the
index value in a BXLE instruction and by using as the
compare value the address of the last byte rather
than its relative address. The base register then pro-
vides the address directly at each iteration of the
loop, and it is not necessary to specify a second reg-
ister to hold the index value (single indexing).

In the following example, an AND (NI) instruction in
the SI instruction format sets to zero the rightmost bit
of each of the same group of integers as in Example
1, thus making all of them even. The I2 field of the NI
instruction contains the byte X‘FE’, which consists of
seven ones and a zero. That byte is ANDed into byte
3, the rightmost byte, of each of the integers in turn.

LA 6,GROUP Load first address
LA 8,4 Load increment 4
LA 9,GROUP+39 Load compare value

LOOP NI 3(6),X'FE' AND immediate
BXLE 6,8,LOOP Test end of loop

The technique shown in Example 2 does not work,
however, on an ESA/370 system when it is in the 31-
bit addressing mode and the data is located at the
rightmost end of a 31-bit address space. In this case,
the compare value would be set to 231-1, which is the
largest possible 32-bit signed binary value. The rea-
son the technique does not work is that the BXLE
and BXH instructions treat their operands as 32-bit
signed binary integers. When the address in general
register 6 reaches the value 231-4, BXLE increments
it to a value that is interpreted as -231, rather than 231,
and the comparison remains low, which causes loop-
ing to continue indefinitely.

This situation can be avoided by not allowing data
areas to extend to the rightmost location in a 31-bit
address space or by using other techniques; these
may include double indexing when possible, as in
Example 1, or starting at the end and stepping down-
ward through the data area with a negative incre-
ment.

COMPARE AND FORM
CODEWORD (CFC)

See “Sorting Instructions” on page A-53.

COMPARE HALFWORD (CH)

The COMPARE HALFWORD instruction compares a
16-bit signed binary integer in storage with the con-
tents of a register. For example, assume that:

Register 4 contains FF FF 80 00 = -32,76810.

Register 13 contains 00 01 60 50.

A-15

Storage locations 16080-16081 contain 8000
= -32,76810.

When the instruction:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
—————————————
 CH 4,X'30'(0,13)

is executed, the contents of locations 16080-16081
are fetched, expanded to 32 bits (the sign bit is prop-
agated to the left), and compared with the contents of
register 4. Because the two numbers are equal, con-
dition code 0 is set.

COMPARE LOGICAL (CL, CLC, CLI,
CLR)

The COMPARE LOGICAL instruction differs from the
signed-binary comparison instructions (C, CH, CR) in
that all quantities are handled as unsigned binary
integers or as unstructured data.

CLC Example
The COMPARE LOGICAL (CLC) instruction can be
used to perform the byte-by-byte comparison of stor-
age fields up to 256 bytes in length. For example,
assume that the following two fields of data are in
storage:

Field 1

Field 2

Also assume:

Register 9 contains 00 00 18 80.

Register 7 contains 00 00 19 00.

Execution of the instruction:

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
—————————————
 CLC 6(12,9),0(7)

sets condition code 1, indicating that the contents of
field 1 are lower in value than the contents of field 2.

Because the collating sequence of the EBCDIC code
is determined simply by a logical comparison of the
bits in the code, the CLC instruction can be used to
collate EBCDIC-coded fields. For example, in EBC-
DIC, the above two data fields are:

Field 1: JOHNSON,A.B.
Field 2: JOHNSON,A.C.

Condition code 1 indicates that JOHNSON,A.B.
should precede JOHNSON,A.C. for the fields to be in
alphabetic sequence.

CLI Example
The COMPARE LOGICAL (CLI) instruction com-
pares a byte from the instruction stream with a byte
from storage. For example, assume that:

Register 10 contains 00 00 17 00.

Storage location 1703 contains 7E.

Execution of the instruction:

Machine Format

Assembler Format
Op Code D1(B1),I2
————————————
 CLI 3(10),X'AF'

sets condition code 1, indicating that the first operand
(the quantity in main storage) is lower than the sec-
ond (immediate) operand.

Op Code R1 X2 B2 D2

49 4 0 D 030

1886 1891

D1 D6 C8 D5 E2 D6 D5 6B C1 4B C2 4B

1900 190B

D1 D6 C8 D5 E2 D6 D5 6B C1 4B C3 4B

Op Code L B1 D1 B2 D2

D5 0B 9 006 7 000

Op Code I2 B1 D1

95 AF A 003

A-16 The z/Architecture CPU Architecture

CLR Example
Assume that:

Register 4 contains 00 00 00 01 = 1.

Register 7 contains FF FF FF FF = 232 - 1.

Execution of the instruction:

Machine Format

Assembler Format
Op Code R1,R2
————————
 CLR 4,7

sets condition code 1. Condition code 1 indicates that
the first operand is lower than the second.

If, instead, the signed-binary comparison instruction
COMPARE (CR) had been executed, the contents of
register 4 would have been interpreted as +1 and the
contents of register 7 as -1. Thus, the first operand
would have been higher, so that condition code 2
would have been set.

COMPARE LOGICAL
CHARACTERS UNDER MASK
(CLM)

The COMPARE LOGICAL CHARACTERS UNDER
MASK (CLM) instruction provides a means of com-
paring bytes selected from a general register to a
contiguous field of bytes in storage. The M3 field of
the CLM instruction is a four-bit mask that selects
zero to four bytes from a general register, each mask
bit corresponding, left to right, to a register byte. In
the comparison, the register bytes corresponding to
ones in the mask are treated as a contiguous field.
The operation proceeds left to right. For example,
assume that:

Storage locations 10200-10202 contain F0 BC
7B.

Register 12 contains 00 01 00 00.

Register 6 contains F0 BC 5C 7B.

Execution of the instruction:

Machine Format

Assembler Format
Op Code R1,M3,D2(B2)
—————————————————
 CLM 6,B'1101',X'200'(12)

causes the following comparison:

Register 6: F0 BC 5C 7B
 Mask M3: 1 1 0 1
 -- -- --

Because the selected bytes are equal, condition
code 0 is set.

COMPARE LOGICAL LONG (CLCL)

The COMPARE LOGICAL LONG instruction is used
to compare two operands in storage, byte by byte.
Each operand can be of any length. Two even-odd
pairs of general registers (four registers in all) are
used to locate the operands and to control the execu-
tion of the CLCL instruction, as illustrated in the fol-
lowing diagram. The first register of each pair must
be an even register, and it contains the storage
address of an operand. The odd register of each pair
contains the length of the operand it covers, and the
leftmost byte of the second-operand odd register
contains a padding byte which is used to extend the
shorter operand, if any, to the same length as the lon-
ger operand.

The following illustrates the assignment of registers
in the 24-bit addressing mode:

Op Code R1 R2

15 4 7

Op Code R1 M3 B2 D2

BD 6 D C 200

F0 BC 7B

Storage
Locations
10200-10202: F0 BC 7B

R1 / / / / / / / / First-Operand Address

(even) 0 8 31

R1+1 / / / / / / / / First-Operand Length

(odd) 0 8 31

A-17

In the 31-bit addressing mode, the operand
addresses would be in bit positions 1-31 of the even
registers shown above.

Since the CLCL instruction may be interrupted during
execution, the interrupting program must preserve
the contents of the four registers for use when the
instruction is resumed.

The following instructions set up two register pairs to
control a text-string comparison. For example,
assume:

Operand 1
Address: 2080016
Length: 10010

Operand 2
Address: 20A0016
Length: 13210

Padding Byte
Address: 2000316
Length: 1
Value: 4016

Register 12 contains 00 02 00 00.

The setup instructions are:

Register pair 4,5 defines the first operand. Bits 8-31
of register 4 contain the storage address of the start
of an EBCDIC text string, and bits 8-31 of register 5
contain the length of the string, in this case 100
bytes.

Register pair 8,9 defines the second operand, with
bits 8-31 of register 8 containing the starting location
of the second operand and bits 8-31 of register 9
containing the length of the second operand, in this
case 132 bytes. Bits 0-7 of register 9 contain an
EBCDIC blank character (X‘40’) to pad the shorter
operand. In this example, the padding byte is used in
the first operand, after the 100th byte, to compare
with the remaining bytes in the second operand.

With the register pairs thus set up, the format of the
CLCL instruction is:

Machine Format

Assembler Format
Op Code R1,R2
————————
 CLCL 4,8

When this instruction is executed, the comparison
starts at the left end of each operand and proceeds
to the right. The operation ends as soon as an
inequality is detected or the end of the longer oper-
and is reached.

If this CLCL instruction is interrupted after 60 bytes
have compared equal, the operand lengths in regis-
ters 5 and 9 will have been decremented to 40 and
72, respectively. The operand addresses in registers
4 and 8 will have been incremented to X‘2083C’ and
X‘20A3C’; the leftmost byte of registers 4 and 8 will
have been set to zero. The padding byte X‘40’
remains in register 9. When the CLCL instruction is
reexecuted with these register contents, the compari-
son resumes at the point of interruption.

Now, assume that the instruction is interrupted after
110 bytes. That is, the first 100 bytes of the second
operand have compared equal to the first operand,
and the next 10 bytes of the second operand have
compared equal to the padding byte (blank). The
residual operand lengths in registers 5 and 9 are 0
and 22, respectively, and the operand addresses in
registers 4 and 8 are X‘20864’ (the value when the
first operand was exhausted) and X‘20A6E’ (the cur-
rent value for the second operand).

When the comparison ends, the condition code is set
to 0, 1, or 2, depending on whether the first operand

R2 / / / / / / / / Second-Operand Address

(even) 0 8 31

R2+1 Pad Byte Second-Operand Length

(odd) 0 8 31

LA 4,X‘800’(12) Set register 4 to start of first
operand

LA 5,100 Set register 5 to length of first
operand

LA 8,X‘A00’(12) Set register 8 to start of second
operand

LA 9,132 Set register 9 to length of second
operand

ICM 9,B‘1000’,3(12) Insert padding byte in leftmost
byte position of register 9

Op Code R1 R2

0F 4 8

A-18 The z/Architecture CPU Architecture

is equal to, less than, or greater than the second
operand, respectively.

When the operands are unequal, the addresses in
registers 4 and 8 indicate the bytes that caused the
mismatch.

COMPARE LOGICAL STRING
(CLST)

The COMPARE LOGICAL STRING instruction is
used to compare a first operand designated by gen-
eral register R1 and a second operand designated by
general register R2. The comparison is made left to
right, byte by byte, until unequal bytes are compared,
an ending character specified in general register 0 is
encountered in either operand, or a CPU-determined
number of bytes have been compared. The condition
code is set to 0 if the two operands are equal, to 1 if
the first operand is low, to 2 if the second operand is
low, or to 3 if a CPU-determined number of bytes
have been compared. If the ending character is found
in both operands simultaneously, the operands are
equal. If it is found in only one operand, that operand
is low.

When condition code 1 or 2 is set, the addresses of
the last bytes processed in the first and second oper-
ands are placed in general registers R1 and R2,
respectively. These are the addresses of unequal
bytes in the two operands, or they are the address of
an ending character in one operand and of the byte
in the corresponding byte position in the other oper-
and. When condition code 3 is set, the addresses of
the next bytes to be processed are placed in the reg-
isters. When condition code 0 is set, the contents of
the registers remain unchanged.

Following are examples of first and second operands
beginning at decimal locations 1000 and 2000,
respectively. The addresses in general registers R1

and R2 are 1000 and 2000, respectively. The ending
character in general register 0 is 00 hex (as in the C
programming language). The values of the operand
bytes are shown in hex, and the resulting condition
code and final contents of general registers R1 and
R2 are shown.

Example 1
1000 2000
C1 C2 C3 00 C1 C2 C3 00

CC: 0; (R1): 1000; (R2): 2000

Example 2
1000 2000
40 40 40 C1 40 40 40 C2

CC: 1; (R1): 1003; (R2): 2003

Example 3
1000 2000
40 40 40 C2 40 40 40 C1

CC: 2; (R1): 1003; (R2): 2003

Example 4
1000 2000
C1 C2 C3 00 C1 C2 C3 C4

CC: 1; (R1): 1003; (R2): 2003

Example 5
1000 2000
C1 C2 C3 C4 C1 C2 C3 00

CC: 2; (R1): 1003; (R2): 2003

Example 6
Assuming that the CPU-determined number of bytes
compared is 256:

1000 1256 2000 2256
40 .. 40 00 40 .. 40 00

CC: 3; (R1): 1256; (R2): 2256

Example 7
1000 2000
00 40 40 40 40 40 40 40

CC: 1; (R1): 1000; (R2): 2000

Example 8
1000 2000
40 40 40 40 00 40 40 40

CC: 2; (R1): 1000; (R2): 2000

Example 9
1000 2000
00 40 40 40 00 40 40 40

CC: 0; (R1): 1000; (R2): 2000

CONVERT TO BINARY (CVB)

The CONVERT TO BINARY instruction converts an
eight-byte, signed-packed-decimal number into a
signed binary integer and loads the result into a gen-

A-19

eral register. After the conversion operation is com-
pleted, the number is in the proper form for use as an
operand in signed binary arithmetic. For example,
assume:

Storage locations 7608-760F contain a decimal
number in the signed-packed-decimal format: 00
00 00 00 00 25 59 4C (+25,594).

The contents of register 7 are not significant.

Register 13 contains 00 00 76 00.

The format of the conversion instruction is:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
———————————
 CVB 7,8(0,13)

After the instruction is executed, register 7 contains
00 00 63 FA.

CONVERT TO DECIMAL (CVD)

The CONVERT TO DECIMAL instruction is the oppo-
site of the CONVERT TO BINARY instruction. CVD
converts a signed binary integer in a register to
signed-packed-decimal number and stores the eight-
byte result. For example, assume:

Register 1 contains the signed binary integer: 00
00 0F 0F.

Register 13 contains 00 00 76 00.

The format of the instruction is:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
———————————
 CVD 1,8(0,13)

After the instruction is executed, storage locations
7608-760F contain 00 00 00 00 00 03 85 5C (+3855).

The plus sign generated is the preferred plus sign,
11002.

DIVIDE (D, DR)

The DIVIDE instruction divides the dividend in an
even-odd register pair by the divisor in a register or in
storage. Since the instruction assumes the dividend
to be 64 bits long, it is important first to extend a
32-bit dividend on the left with bits equal to the sign
bit. For example, assume that:

Storage locations 3550-3553 contain 00 00 08
DE = 227010 (the dividend).

Storage locations 3554-3557 contain 00 00 00
32 = 5010 (the divisor).

The initial contents of registers 6 and 7 are not
significant.

Register 8 contains 00 00 35 50.

The following assembler-language statements load
the registers properly and perform the divide opera-
tion:

The machine format of the above DIVIDE instruction
is:

Machine Format

After the instructions listed above are executed:

Register 6 contains 00 00 00 14 = 2010 = the
remainder.

Register 7 contains 00 00 00 2D = 4510 = the
quotient.

Op Code R1 X2 B2 D2

4F 7 0 D 008

Op Code R1 X2 B2 D2

4E 1 0 D 008

Statement Comments
L 6,0(0,8) Places 00 00 08 DE into register 6.
SRDA 6,32(0) Shifts 00 00 08 DE into register 7.

Register 6 is filled with zeros
(sign bits).

D 6,4(0,8) Performs the division.

Op Code R1 X2 B2 D2

5D 6 0 8 004

A-20 The z/Architecture CPU Architecture

Note that if the dividend had not been first placed in
register 6 and shifted into register 7, register 6 might
not have been filled with the proper dividend-sign bits
(zeros in this example), and the DIVIDE instruction
might not have given the expected results.

EXCLUSIVE OR (X, XC, XI, XR)

When the Boolean operator EXCLUSIVE OR is
applied to two bits, the result is one when either, but
not both, of the two bits is one; otherwise, the result
is zero. When two bytes are EXCLUSIVE ORed,
each pair of bits is handled separately; there is no
connection from one bit position to another. The fol-
lowing is an example of the EXCLUSIVE OR of two
bytes:

First-operand byte: 0011 01012
Second-operand byte: 0101 11002
——————————————————–
Result byte: 0110 10012

XC Example
The EXCLUSIVE OR (XC) instruction can be used to
exchange the contents of two areas in storage with-
out the use of an intermediate storage area. For
example, assume two three-byte fields in storage:

Execution of the instruction (assume that register 7
contains 00 00 03 58):

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
—————————————
 XC 1(3,7),8(7)

Field 1 is EXCLUSIVE ORed with field 2 as follows:

Field 1: 00000000 00010111 100100002 = 00 17 9016
Field 2: 00000000 00010100 000000012 = 00 14 0116
—————————————————————————
Result: 00000000 00000011 100100012 = 00 03 9116

The result replaces the former contents of field 1.
Condition code 1 is set to indicate a nonzero result.

Now, execution of the instruction:

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
—————————————
 XC 8(3,7),1(7)

produces the following result:

Field 1: 00000000 00000011 100100012 = 00 03 9116
Field 2: 00000000 00010100 000000012 = 00 14 0116
—————————————————————————
Result: 00000000 00010111 100100002 = 00 17 9016

The result of this operation replaces the former con-
tents of field 2. Field 2 now contains the original
value of field 1. Condition code 1 is set to indicate a
nonzero result.

Lastly, execution of the instruction:

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
—————————————
 XC 1(3,7),8(7)

produces the following result:

Field 1: 00000000 00000011 100100012 = 00 03 9116
Field 2: 00000000 00010111 100100002 = 00 17 9016
—————————————————————————
Result: 00000000 00010100 000000012 = 00 14 0116

The result of this operation replaces the former con-
tents of field 1. Field 1 now contains the original
value of field 2. Condition code 1 is set to indicate a
nonzero result.

359 35B

Field 1 00 17 90

360 362

Field 2 00 14 01

Op Code L B1 D1 B2 D2

D7 02 7 001 7 008

Op Code L B1 D1 B2 D2

D7 02 7 008 7 001

Op Code L B1 D1 B2 D2

D7 02 7 001 7 008

A-21

XI Example
A frequent use of the EXCLUSIVE OR (XI) instruc-
tion is to invert a bit (change a zero bit to a one or a
one bit to a zero). For example, assume that storage
location 8082 contains 0110 10012. To invert the left-
most and rightmost bits without affecting any of the
other bits, the following instruction can be used
(assume that register 9 contains 00 00 80 80):

Machine Format

Assembler Format
Op Code D1(B1),I2
———————————
 XI 2(9),X'81'

When the instruction is executed, the byte in storage
is EXCLUSIVE ORed with the immediate byte (the I2
field of the instruction):

Location 8082: 0110 10012
Immediate byte: 1000 00012
———————————————–
Result: 1110 10002

The resulting byte is stored back in location 8082.
Condition code 1 is set to indicate a nonzero result.

Notes:

1. With the XC instruction, fields up to 256 bytes in
length can be exchanged.

2. With the XR instruction, the contents of two reg-
isters can be exchanged.

3. Because the X instruction operates storage to
register only, an exchange cannot be made
solely by the use of X.

4. A field EXCLUSIVE ORed with itself is cleared to
zeros.

5. For additional examples of the use of EXCLU-
SIVE OR, see “Hexadecimal-Floating-Point-
Number Conversion” on page A-44.

EXECUTE (EX)

The EXECUTE instruction causes one target instruc-
tion in main storage to be executed out of sequence

without actually branching to the target instruction.
Unless the R1 field of the EXECUTE instruction is
zero, bits 8-15 of the target instruction are ORed with
bits 56-63 of the R1 register before the target instruc-
tion is executed. Thus, EXECUTE may be used to
supply the length field for an SS instruction without
modifying the SS instruction in storage. For example,
assume that a MOVE (MVC) instruction is the target
that is located at address 3820, with a format as fol-
lows:

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
—————————————
 MVC 3(1,12),0(13)

where register 12 contains 00 00 89 13 and register
13 contains 00 00 90 A0.

Further assume that at storage address 5000, the fol-
lowing EXECUTE instruction is located:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
———————————
 EX 1,0(0,10)

where register 10 contains 00 00 38 20 and register 1
contains 00 0F F0 03.

When the instruction at 5000 is executed, the right-
most byte of register 1 is ORed with the second byte
of the target instruction:

Instruction byte: 0000 00002 = 00
Register byte: 0000 00112 = 03
————————————————————
Result: 0000 00112 = 03

causing the instruction at 3820 to be executed as if it
originally were:

Op Code I2 B1 D1

97 81 9 002
Op Code L B1 D1 B2 D2

D2 00 C 003 D 000

Op Code R1 X2 B2 D2

44 1 0 A 000

A-22 The z/Architecture CPU Architecture

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
—————————————
 MVC 3(4,12),0(13)

However, after execution:

Register 1 is unchanged.

The instruction at 3820 is unchanged.

The contents of the four bytes starting at location
90A0 have been moved to the four bytes starting
at location 8916.

The CPU next executes the instruction at
address 5004 (PSW bits 104-127 contain 00 50
04).

FIND LEFTMOST ONE (FLOGR)

FIND LEFTMOST ONE may be used to locate free
objects, the availability of which is tracked in a hierar-
chical bit map.

In the following example, the hierarchical bit map
consists of multiple levels of bits, each level having
64 times the number of bits as the next lower-num-
bered level. This example shows four levels, mapping
a total of 16M objects, however additional levels may
be added to manage larger numbers of objects.

The highest-numbered bit map level (L3 in this illus-
tration) represents the availability of individual
objects, for example, records or pages. A one bit indi-
cates that the object is available, and a zero bit
means that the object is not available.

In lower-numbered bit map levels (L0, L1, and L2 in
this illustration), a bit position corresponds to a dou-
bleword in the next higher-numbered level. When a
bit in a lower-numbered bit map level is one, at least
one bit of the corresponding doubleword in the
higher-level is one. When a bit in a lower-number bit

map level is zero, no bits in the corresponding higher-
level doubleword are one.

An example of using FIND LEFTMOST ONES to
quickly locate the next available lowest-numbered
object, as mapped by such a hierarchical bit map, is
shown below. Upon completion, at the label
“FOUND”, general register 15 contains the number of
the located object. If no objects are available, the
code branches to the label “NOTFND”.

LA 15,0 Zero accumulator
LA 9,OFFSET Point to table
LA 10,4 Load increment
LA 11,ENDOFF-1 Load compare value

FIND LGR 7,15 Copy accum. to R7
ALGF 7,0(,9) Add # DWs to bits
SLLG 7,7,3 Get byte offset
LG 1,BITS(7) Get DW to test
FLOGR 0,1 Find leftmost one
BZ NOTFND No one bits found
SLLG 15,15,6 Times # bits in DW
AGR 15,0 Add bit just found
BXLEG 9,10,FIND Do for each level

FOUND STG 1,BITS(7) Update changed bit
...

NOTFND [Any instruction]

OFFSET DC A((L0-BITS)/8) Offset to level 0
DC A((L1-BITS)/8) Offset to level 1
DC A((L2-BITS)/8) Offset to level 2
DC A((L3-BITS)/8) Offset to level 3

ENDOFF EQU * End of table

BITS DS 0D Start of bit map
L0 DS FD -L0 (64 objects)
L1 DS 64FD -L1 (4K objects)
L2 DS (64*64)FD -L2 (256K objects)
L3 DS (64*64*64)FD -L3 (16M objects)

This code sequence shows the zeroing of the found
bit with the STORE (STG) instruction at the label
“FOUND”. Proper maintenance of such a hierarchical
bit map requires that when all bits of a doubleword
become zeros, the corresponding bit in the next
lower-numbered level is set to zeros. Similarly, when
adding a free object to the highest level, the corre-
sponding bits in lower-numbered levels must be set
to one. These maintenance functions are not shown.

Note, in a multiprocessing environment, access to
the bit map is assumed to be serialized for the dura-
tion of the update process.

Op Code L B1 D1 B2 D2

D2 03 C 003 D 000

A-23

INSERT CHARACTERS UNDER
MASK (ICM)

The INSERT CHARACTERS UNDER MASK (ICM)
instruction may be used to replace all or selected
bytes in a general register with bytes from storage
and to set the condition code to indicate the value of
the inserted field.

For example, if it is desired to insert a three-byte
address from FIELDA into register 5 and leave the
leftmost byte of the register unchanged, assume:

Machine Format

Assembler Format
Op Code R1,M3,S2
———————————————
 ICM 5,B'0111',FIELDA

FIELDA: FE DC BA
Register 5 (before): 12 34 56 78
Register 5 (after): 12 FE DC BA
Condition code (after): 1 (leftmost bit of

inserted field
is one)

As another example:

Machine Format

Assembler Format
Op Code R1,M3,S2
———————————————
 ICM 6,B'1001',FIELDB

FIELDB: 12 34
Register 6 (before): 00 00 00 00
Register 6 (after): 12 00 00 34
Condition code (after): 2 (inserted field is

nonzero with left-
most zero bit)

When the mask field contains 1111, the ICM instruc-
tion produces the same result as LOAD (L) (provided
that the indexing capability of the RX format is not

needed), except that ICM also sets the condition
code. The condition-code setting is useful when an
all-zero field (condition code 0) or a leftmost one bit
(condition code 1) is used as a flag.

LOAD (L, LR)

The LOAD instruction takes four bytes from storage
or from a general register and place them unchanged
into a general register. For example, assume that the
four bytes starting with location 21003 are to be
loaded into register 10. Initially:

Register 5 contains 00 02 00 00.

Register 6 contains 00 00 10 03.

The contents of register 10 are not significant.

Storage locations 21003-21006 contain 00 00
AB CD.

To load register 10, the RX form of the instruction can
be used:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
———————————
 L 10,0(5,6)

After the instruction is executed, register 10 contains
00 00 AB CD.

LOAD ADDRESS (LA)

The LOAD ADDRESS instruction provides a conve-
nient way to place a nonnegative binary integer up to
409510 in a register without first defining a constant
and then using it as an operand. For example, the fol-
lowing instruction places the number 204810 in regis-
ter 1:

Machine Format

Op Code R1 M3 S2

BF 5 7 * * * *

Op Code R1 M3 S2

BF 6 9 * * * *

Op Code R1 X2 B2 D2

58 A 5 6 000

Op Code R1 X2 B2 D2

41 1 0 0 800

A-24 The z/Architecture CPU Architecture

Assembler Format
Op Code R1,D2(X2,B2)
———————————–
 LA 1,2048(0,0)

The LOAD ADDRESS instruction can also be used to
increment a register by an amount up to 409510 spec-
ified in the D2 field. Depending on the addressing
mode, only the rightmost 24 or 31 bits of the sum are
retained, however. The leftmost bits of the 32-bit
result are set to zeros. For example, assume that
register 5 contains 00 12 34 56.

The instruction:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
———————————
 LA 5,10(0,5)

adds 10 (decimal) to the contents of register 5 as fol-
lows:

Register 5 (old): 00 12 34 56
D2 field: 00 00 00 0A
—————————————————
Register 5 (new): 00 12 34 60

The register may be specified as either B2 or X2.
Thus, the instruction LA 5,10(5,0) produces the same
result.

As the most general example, the instruction LA
6,10(5,4) forms the sum of three values: the contents
of register 4, the contents of register 5, and a dis-
placement of 10 and places the 24-bit or 31-bit sum
with zeros appended on the left in register 6.

LOAD HALFWORD (LH)

The LOAD HALFWORD instruction places
unchanged a halfword from storage into the right half
of a register. The left half of the register is loaded
with zeros or ones according to the sign (leftmost bit)
of the halfword.

For example, assume that the two bytes in storage
locations 1803-1804 are to be loaded into register 6.
Also assume:

The contents of register 6 are not significant.

Register 14 contains 00 00 18 03.

Locations 1803-1804 contain 00 20.

The instruction required to load the register is:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
———————————
 LH 6,0(0,14)

After the instruction is executed, register 6 contains
00 00 00 20. If locations 1803-1804 had contained a
negative number, for example, A7 B6, a minus sign
would have been propagated to the left, giving FF FF
A7 B6 as the final result in register 6.

MOVE (MVC, MVI)

MVC Example
The MOVE (MVC) instruction can be used to move
data from one storage location to another. For exam-
ple, assume that the following two fields are in stor-
age:

Also assume:

Register 1 contains 00 00 20 48.

Register 2 contains 00 00 38 40.

With the following instruction, the first eight bytes of
field 2 replace the first eight bytes of field 1:

Op Code R1 X2 B2 D2

41 5 0 5 00A

Op Code R1 X2 B2 D2

48 6 0 E 000

Field
1

2048 2052

C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB

Field
2

3840 3848

F1 F2 F3 F4 F5 F6 F7 F8 F9

A-25

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
—————————————
 MVC 0(8,1),0(2)

After the instruction is executed, field 1 becomes:

Field 2 is unchanged.

MVC can also be used to propagate a byte through a
field by starting the first-operand field one byte loca-
tion to the right of the second-operand field. For
example, suppose that an area in storage starting
with address 358 contains the following data:

With the following MVC instruction, the zeros in loca-
tion 358 can be propagated throughout the entire
field (assume that register 11 contains 00 00 03 58):

Machine Format

Op Code L B1 D1 B2 D2

D2 07 B 001 B 000

Assembler Format
Op Code D1(L,B1),D2(B2)
—————————————
 MVC 1(8,11),0(11)

Because MVC is executed as if one byte were pro-
cessed at a time, the above instruction, in effect,
takes the byte at address 358 and stores it at 359
(359 now contains 00), takes the byte at 359 and
stores it at 35A, and so on, until the entire field is
filled with zeros. Note that an MVI instruction could
have been used originally to place the byte of zeros
in location 358.

Notes:

1. Although the field occupying locations 358-360
contains nine bytes, the length coded in the
assembler format is equal to the number of
moves (one less than the field length).

2. The order of operands is important even though
only one field is involved.

MVI Example
The MOVE (MVI) instruction places one byte of infor-
mation from the instruction stream into storage. For
example, the instruction:

Machine Format

Assembler Format
Op Code D1(B1),I2
——————————–
 MVI 0(1),C'$'

may be used, in conjunction with the instruction EDIT
AND MARK, to insert the EBCDIC code for a dollar
symbol at the storage address contained in general
register 1 (see also the example for EDIT AND
MARK).

MOVE INVERSE (MVCIN)

The MOVE INVERSE (MVCIN) instruction can be
used to move data from one storage location to
another while reversing the order of the bytes within
the field. For example, assume that the following two
fields are in storage:

Also assume:

Register 1 contains 00 00 20 48.

Register 2 contains 00 00 38 40.

With the following instruction, the first eight bytes of
field 2 replace the first eight bytes of field 1:

Op Code L B1 D1 B2 D2

D2 07 1 000 2 000

Field
1

2048 2052

F1 F2 F3 F4 F5 F6 F7 F8 C9 CA CB

358 360

00 F1 F2 F3 F4 F5 F6 F7 F8

Op Code I2 B1 D1

92 5B 1 000

Field
1

2048 2052

C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB

Field
2

3840 3848

F1 F2 F3 F4 F5 F6 F7 F8 F9

A-26 The z/Architecture CPU Architecture

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
——————————–——–
 MVCIN 0(8,1),7(2)

After the instruction is executed, field 1 becomes:

2048 2052

Field 2 is unchanged.

Note: This example uses the same general registers,
storage locations, and original values as the first
example for MVC. For MVCIN, the second-operand
address must designate the rightmost byte of the
field to be moved, in this case location 3847. This is
accomplished by means of the 7 in the D2 field of the
instruction.

MOVE LONG (MVCL)

The MOVE LONG (MVCL) instruction can be used
for moving data in storage as in the first example of
the MVC instruction, provided that the two operands
do not overlap. MVCL differs from MVC in that the
address and length of each operand are specified in
an even-odd pair of general registers. Consequently,
MVCL can be used to move more than 256 bytes of
data with one instruction. As an example, assume:

Register 2 contains 00 0A 00 00.

Register 3 contains 00 00 08 00.

Register 8 contains 00 06 00 00.

Register 9 contains 00 00 08 00.

Execution of the instruction:

Machine Format

Assembler Format
Op Code R1,R2
————————
 MVCL 8,2

moves 2,04810 bytes from locations A0000-A07FF to
locations 60000-607FF. Assuming that the CPU is in
the 24-bit addressing mode, bits 8-31 of registers 2
and 8 are incremented by 80016, and bits 0-7 of regis-
ters 2 and 8 are set to zeros. Bits 8-31 of registers 3
and 9 are decremented to zero. Condition code 0 is
set to indicate that the operand lengths are equal.

If register 3 had contained F0 00 04 00, only the
1,02410 bytes from locations A0000-A03FF would
have been moved to locations 60000-603FF. The
remaining locations 60400-607FF of the first operand
would have been filled with 1,024 copies of the pad-
ding byte X‘F0’, as specified by the leftmost byte of
register 3. Bits 8-31 of register 2 would have been
incremented by 40016, bits 8-31 of register 8 would
have been incremented by 80016, and bits 0-7 of reg-
isters 2 and 8 would have been set to zeros. Bits 8-31
of registers 3 and 9 would still have been decre-
mented to zero. Condition code 2 would have been
set to indicate that the first operand was longer than
the second.

The technique for setting a field to zeros that is illus-
trated in the second example of MVC cannot be used
with MVCL. If the registers were set up to attempt
such an operation with MVCL, no data movement
would take place and condition code 3 would indicate
destructive overlap.

Instead, MVCL may be used to clear a storage area
to zeros as follows. Assume register 8 and 9 are set
up as before. Register 3 contains only zeros, specify-
ing zero length for the second operand and a zero
padding byte. Register 2 is not used to access stor-
age, and its contents are not significant. Executing
the instruction MVCL 8,2 causes locations 60000-
607FF to be filled with zeros. Bits 8-31 of register 8
are incremented by 80016, and bits 0-7 of registers 2
and 8 are set to zeros. Bits 8-31 of register 9 are dec-
remented to zero, and condition code 2 is set to indi-
cate that the first operand is longer than the second.

MOVE NUMERICS (MVN)

Two related instructions, MOVE NUMERICS and
MOVE ZONES, may be used with decimal data in the
zoned format to operate separately on the rightmost

Op Code L B1 D1 B2 D2

E8 07 1 000 2 007

Field
1

2048 2052

F8 F7 F6 F5 F4 F3 F2 F1 C9 CA CB

Op Code R1 R2

0E 8 2

A-27

four bits (the numeric bits) and the leftmost four bits
(the zone bits) of each byte. Both are similar to
MOVE (MVC), except that MOVE NUMERICS moves
only the numeric bits and MOVE ZONES moves only
the zone bits.

To illustrate the operation of the MOVE NUMERICS
instruction, assume that the following two fields are in
storage:

Also assume:

Register 14 contains 00 00 70 90.

Register 15 contains 00 00 70 40.

After the instruction:

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
——————————–——
 MVN 1(4,15),0(14)

is executed, field B becomes:

The numeric bits of the bytes at locations 7090-7093
have been stored in the numeric bits of the bytes at
locations 7041-7044. The contents of locations 7090-
7093 and 7045-7046 are unchanged.

MOVE STRING (MVST)

The MOVE STRING instruction is used to move a
second operand designated by general register R2 to
a first-operand location designated by general regis-
ter R1. The movement is made left to right until an
ending character specified in general register 0 has
been moved or a CPU-determined number of bytes

have been moved. The condition code is set to 1 if
the ending character was moved or to 3 if a CPU-
determined number of bytes were moved.

When condition code 1 is set, the address of the end-
ing character in the first operand is placed in general
register R1, and the contents of general register R2

remain unchanged. When condition code 3 is set, the
address of the next byte to be processed in the first
and second operands is placed in general registers
R1 and R2, respectively.

Following is an example program that sets string A
equal to the concatenation of string B followed by
string C, where the length of each of strings B and C
is unknown, and the end of each of strings B and C is
indicated by an ending character of 00 hex (as in the
C programming language). The program is not writ-
ten for execution in the access-register mode.

MOVE WITH OFFSET (MVO)

MOVE WITH OFFSET may be used to shift a signed-
packed-decimal number an odd number of digit posi-
tions or to concatenate a sign to an unsigned-
packed-decimal number.

Assume that the three-byte unsigned-packed-deci-
mal number in storage locations 4500-4502 is to be
moved to locations 5600-5603 and given the sign of
the signed-packed-decimal number ending at loca-
tion 5603. Also assume:

Register 12 contains 00 00 56 00.

Register 15 contains 00 00 45 00.

Storage locations 5600-5603 contain 77 88 99
0C.

Storage locations 4500-4502 contain 12 34 56.

After the instruction:

Field
A

7090 7093

C6 C7 C8 C9

Field
B

7041 7046

F0 F1 F2 F3 F4 F5

Op Code L B1 D1 B2 D2

D1 03 F 001 E 000

7041 7046

F6 F7 F8 F9 F4 F5

LOOP1

LOOP2

L
L
SR
MVST
BC
L
MVST
BC

4,STRAADR
5,STRBADR
0,0
4,5
1,LOOP1
5,STRCADR
4,5
1,LOOP2

[Any instruction]

A-28 The z/Architecture CPU Architecture

Machine Format

Assembler Format
Op Code D1(L1,B1),D2(L2,B2)
——————————–————
 MVO 0(4,12),0(3,15)

is executed, the storage locations 5600-5603 contain
01 23 45 6C. Note that the second operand is
extended on the left with one zero to fill out the first-
operand field.

MOVE ZONES (MVZ)

The MOVE ZONES instruction can operate on over-
lapping or nonoverlapping fields, as can the instruc-
tions MOVE (MVC) and MOVE NUMERICS. When
operating on nonoverlapping fields, MOVE ZONES
works like the MOVE NUMERICS instruction (see its
example), except that MOVE ZONES moves only the
zone bits of each byte. To illustrate the use of MOVE
ZONES with overlapping fields, assume that the fol-
lowing data field is in storage:

Also assume that register 15 contains 00 00 08 00.
The instruction:

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
——————————–——
 MVZ 1(5,15),0(15)

propagates the zone bits from the byte at address
800 through the entire field, so that the field
becomes:

MULTIPLY (M, MR)

Assume that a number in register 5 is to be multiplied
by the contents of a four-byte field at address 3750.
Initially:

The contents of register 4 are not significant.

Register 5 contains 00 00 00 9A = 15410 = the
multiplicand.

Register 11 contains 00 00 06 00.

Register 12 contains 00 00 30 00.

Storage locations 3750-3753 contain 00 00 00
83 = 13110 = the multiplier.

The instruction required for performing the multiplica-
tion is:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
——————————–———
 M 4,X'150'(11,12)

After the instruction is executed, the product is in the
register pair 4 and 5:

Register 4 contains 00 00 00 00.

Register 5 contains 00 00 4E CE = 20,17410.

Storage locations 3750-3753 are unchanged.

The RR format of the instruction can be used to
square the number in a register. Assume that register
7 contains 00 01 00 05. The contents of register 6
are not significant. The instruction:

Machine Format

Assembler Format
Op Code R1,R2
————————
 MR 6,7

Op Code L1 L2 B1 D1 B2 D2

F1 3 2 C 000 F 000

800 805

F1 C2 F3 C4 F5 C6

Op Code L B1 D1 B2 D2

D3 04 F 001 F 000

800 805

F1 F2 F3 F4 F5 F6

Op Code R1 X2 B2 D2

5C 4 B C 150

Op Code R1 R2

1C 6 7

A-29

multiplies the number in register 7 by itself and
places the result in the pair of registers 6 and 7:

Register 6 contains 00 00 00 01.

Register 7 contains 00 0A 00 19.

MULTIPLY HALFWORD (MH)

The MULTIPLY HALFWORD instruction is used to
multiply the contents of a register by a two-byte field
in storage. For example, assume that:

Register 11 contains 00 00 00 15 =2110 = the
multiplicand.

Register 14 contains 00 00 01 00.

Register 15 contains 00 00 20 00.

Storage locations 2102-2103 contain FF D9 = -
3910 = the multiplier.

The instruction:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
——————————–—
 MH 11,2(14,15)

multiplies the two numbers. The product, FF FF FC
CD = -81910, replaces the original contents of register
11.

Only the rightmost 32 bits of a product are stored in a
register; any significant bits on the left are lost. No
program interruption occurs on overflow.

OR (O, OC, OI, OR)

When the Boolean operator OR is applied to two bits,
the result is one when either bit is one; otherwise, the
result is zero. When two bytes are ORed, each pair of
bits is handled separately; there is no connection
from one bit position to another. The following is an
example of ORing two bytes:

First-operand byte: 0011 01012

Second-operand byte: 0101 11002
——————————————————–
Result byte: 0111 11012

OI Example
A frequent use of the OR instruction is to set a partic-
ular bit to one. For example, assume that storage
location 4891 contains 0100 00102. To set the right-
most bit of this byte to one without affecting the other
bits, the following instruction can be used (assume
that register 8 contains 00 00 48 90):

Machine Format

Assembler Format
Op Code D1(B1),I2
———————————
 OI 1(8),X'01'

When this instruction is executed, the byte in storage
is ORed with the immediate byte (the I2 field of the
instruction):

Location 4891: 0100 00102
Immediate byte: 0000 00012
————————————————
Result: 0100 00112

The resulting byte with bit 7 set to one is stored back
in location 4891. Condition code 1 is set.

PACK (PACK)

Assume that storage locations 1000-1003 contain
the following zoned-decimal number that is to be con-
verted to a signed-packed-decimal number and left in
the same location:

Also assume that register 12 contains 00 00 10 00.
After the instruction:

Machine Format

Op Code R1 X2 B2 D2

4C B E F 002

Op Code I2 B1 D1

96 01 8 001

1000 1003

Zoned number F1 F2 F3 C4

Op Code L1 L2 B1 D1 B2 D2

F2 3 3 C 000 C 000

A-30 The z/Architecture CPU Architecture

Assembler Format
Op Code D1(L1,B1),D2(L2,B2)
——————————————–
 PACK 0(4,12),0(4,12)

is executed, the result in locations 1000-1003 is in
the signed-packed-decimal format:

Notes:

1. This example illustrates the operation of PACK
when the first- and second-operand fields over-
lap completely.

2. During the operation, the second operand was
extended on the left with zeros.

ROTATE THEN EXCLUSIVE OR
SELECTED BITS

The following example illustrates the use of ROTATE
THEN EXCLUSIVE OR SELECTED BITS to deter-
mine if the access-control bits of a page’s storage-
protection key match the key in the PSW. In this
example, only the condition code is set; the result is
not placed in the first-operand register.

LAY 9,BLOCK Point to storage block.
IVSK 14,9 Insert key into bits 56-63.
EPSW 4,0 Extract PSW key (bits 40-43).
RXSBG 4,14,128+40,43,16 Compare keys.

On completion, the condition code will be set to zero
if the PSW key matches the access-control bits in the
storage key of page addressed by general register 9.
Condition code 1 will be set if the keys do not match.

ROTATE THEN INSERT SELECTED
BITS

1. The following example illustrates the use of
ROTATE THEN INSERT SELECTED BITS to
extract the various DAT-table indices of a virtual
address contained in general register 8. This
example shows the use of the zero-remaining-
bits control to set the remaining bits of the result
registers to zero.

The virtual address in general register 8 is
assumed to be 123456789ABCDEF0 hex.

RISBG 1,8,53,128+63,11 Get reg. 1st index.
RISBG 2,8,53,128+63,22 Get reg. 2nd index.
RISBG 3,8,53,128+63,33 Get reg. 3rd index.
RISBG 4,8,53,128+63,44 Get segment index.
RISBG 5,8,56,128+63,52 Get page index.
RISBG 6,8,52,128+63,0 Get byte index.

The condition code following each RISBG is 2.
On completion, general registers 1-6 contain the
region-first index, region-second index, region-
third index, segment index, page index, and byte
index, respectively, as follows:

GR1: 0000000000000091 (RFX)
GR2: 0000000000000515 (RSX)
GR3: 00000000000004F1 (RTX)
GR4: 00000000000001AB (SX)
GR5: 00000000000000CD (PX)
GR6: 0000000000000EF0 (BX)

2. The following example illustrates shifting a 64-bit
value to the left by L bits:

RISBG R1,R2,0,X'80'+63-L,L

3. The following example illustrates shifting a 32-bit
value to the right by R bits and setting the left-
most 32 bits to zero:

RISBG R1,R2,32+R,X'80'+63,-R

4. The following example illustrates zeroing bits S
through E of general register 3.

RISBG 3,3,mod64(E+1),128+mod64(S-1),0

Mod64 represents a modulo function which
effectively ANDs the value in parentheses with
3F hex.

ROTATE THEN OR SELECTED BITS

The following example illustrates the use of ROTATE
THEN OR SELECTED BITS to rotate and combine
selected bits of general registers 6 and 8.

LG 6,=X'004C487040CF4600'
LG 8,=X'C07FAF37FC968280'
ROSBG 6,8,8,54,32

1000 1003

Signed-packed number 00 01 23 4C

A-31

On completion, condition code 1 is set, and general
register 6 is as follows:

GR6: 00DECAF0C0FFEE00

Note that only bits 8-54 of the registers are ORed;
bits 0-7 and 55-63 of general register 6 are not modi-
fied.

SEARCH STRING (SRST)

The SEARCH STRING instruction is used to search
a second operand designated by general register R2

for a character specified in general register 0. The
length of the second operand is known — the
address of the first byte after the second operand is
in general register R1.

When the specified character is found, condition
code 1 is set, the address of the character is placed
in general register R1, and the contents of general
register R2 remain unchanged. When the address of
the next second-operand byte to be examined equals
the address in general register R1, condition code 2
is set, and the contents of general register R1 and R2

remain unchanged. When a CPU-determined num-
ber of second-operand bytes have been examined,
condition code 3 is set, the address of the next byte
to be processed in the second operand is placed in
general register R2, and the contents of general reg-
ister R1 remain unchanged.

SRST Example 1
Following is an example program that determines the
end of string A, as indicated by an ending character
equal to 00 hex (as in the C programming language),
and then determines the address of the first charac-
ter equal to C1 hex in the string. The program is
based on the assumption that the second operand
does not begin at location 0 or wrap around in stor-
age, and, therefore, condition code 2 will not be set
by the first SEARCH STRING instruction because of
the address in general register 0. The program is not
written for execution in the access-register mode.

 L 5,STRAADR
 SR 0,0

LOOP1 SRST 0,5
 BC 1,LOOP1
 L 5,STRAADR
 LR 4,0
 LA 0,X'C1'

LOOP2 SRST 4,5
 BC 1,LOOP2
 BC 2,NOTFND

FOUND [Any instruction]
 ...

NOTFND [Any instruction]

SRST Example 2
Following is an example program that determines the
address of the first character equal to C1 hex in the
string A whose length is known. The program is not
written for execution in the access-register mode.

 L 5,STRAADR
 L 4,STRALEN
 AR 4,5
 LA 0,X'C1'

LOOP1 SRST 4,5
 BC 1,LOOP1
 BC 2,NOTFND

FOUND [Any instruction]
 ...

NOTFND [Any instruction]

In this example, the value in STRALEN may be a
length that either does or does not include an ending
character at the end of the string, provided that the
ending character is not the character for which the
search is made.

SHIFT LEFT DOUBLE (SLDA)

The SHIFT LEFT DOUBLE instruction shifts the 63
numeric bits of an even-odd register pair to the left,
leaving the sign bit unchanged. Thus, the instruction
performs an algebraic left shift of a 64-bit signed
binary integer.

For example, if the contents of registers 2 and 3 are:

00 7F 0A 72 FE DC BA 98 =
00000000 01111111 00001010 01110010
11111110 11011100 10111010 100110002

The instruction:

Machine Format

Op Code R1 B2 D2

8F 2 //// 0 01F

A-32 The z/Architecture CPU Architecture

Assembler Format
Op Code R1,D2(B2)
—————————
 SLDA 2,31(0)

results in registers 2 and 3 both being left-shifted 31
bit positions, so that their new contents are:

7F 6E 5D 4C 00 00 00 00 =
01111111 01101110 01011101 01001100
00000000 00000000 00000000 000000002

Because significant bits are shifted out of bit position
1 of register 2, overflow is indicated by setting condi-
tion code 3, and, if the fixed-point-overflow mask bit
in the PSW is one, a fixed-point-overflow program
interruption occurs.

SHIFT LEFT SINGLE (SLA)

The SHIFT LEFT SINGLE instruction is similar to
SHIFT LEFT DOUBLE, except that it shifts only the
31 numeric bits of a single register. Therefore, this
instruction performs an algebraic left shift of a 32-bit
signed binary integer.

For example, if the contents of register 2 are:

00 7F 0A 72 = 00000000 01111111 00001010 011100102

The instruction:

Machine Format

Assembler Format
Op Code R1,D2(B2)
—————————
 SLA 2,8(0)

results in register 2 being shifted left eight bit posi-
tions so that its new contents are:

7F 0A 72 00 = 01111111 00001010 01110010 000000002

Condition code 2 is set to indicate that the result is
greater than zero.

If a left shift of nine places had been specified, a sig-
nificant bit would have been shifted out of bit
position 1. Condition code 3 would have been set to

indicate this overflow and, if the fixed-point-overflow
mask bit in the PSW were one, a fixed-point overflow
interruption would have occurred.

STORE CHARACTERS UNDER
MASK (STCM)

STORE CHARACTERS UNDER MASK (STCM) may
be used to place selected bytes from a register into
storage. For example, if it is desired to store a three-
byte address from general register 8 into location
FIELD3, assume:

Machine Format

Register Format
Op Code R1,M3,S2
—————————————–
 STCM 8,B'0111',FIELD3

Register 8: 12 34 56 78
FIELD3 (before): not significant
FIELD3 (after): 34 56 78

As another example:

Machine Format

Register Format
Op Code R1,M3,S2
—————————————–
 STCM 9,B'0101',FIELD2

Register 9: 01 23 45 67
FIELD2 (before): not significant
FIELD2 (after): 23 67

STORE MULTIPLE (STM)

Assume that the contents of general registers 14, 15,
0, and 1 are to be stored in consecutive four-byte
fields starting with location 4050 and that:

Register 14 contains 00 00 25 63.

Op Code R1 B2 D2

8B 2 //// 0 008

Op Code R1 M3 S2

BE 8 7 * * * *

Op Code R1 M3 S2

BE 9 5 * * * *

A-33

Register 15 contains 00 01 27 36.

Register 0 contains 12 43 00 62.

Register 1 contains 73 26 12 57.

Register 6 contains 00 00 40 00.

The initial contents of locations 4050-405F are
not significant.

The STORE MULTIPLE instruction allows the use of
just one instruction to store the contents of the four
registers:

Machine Format

Assembler Format
Op Code R1,R3,D2(B2)
———————————–
 STM 14,1,X'50'(6)

After the instruction is executed:

Locations 4050-4053 contain 00 00 25 63.

Locations 4054-4057 contain 00 01 27 36.

Locations 4058-405B contain 12 43 00 62.

Locations 405C-405F contain 73 26 12 57.

TEST UNDER MASK (TM)

The TEST UNDER MASK instruction examines
selected bits of a byte and sets the condition code
accordingly. For example, assume that:

Storage location 9999 contains FB.

Register 7 contains 00 00 99 90.

Assume the instruction to be:

Machine Format

Assembler Format
Op Code D1(B1),I2
—————————————–
 TM 9(7),B'11000011'

The instruction tests only those bits of the byte in
storage for which the mask bits are ones:

FB = 1111 10112
Mask = 1100 00112
—————————
Test = 11xx xx112

Condition code 3 is set: all selected bits in the test
result are ones. (The bits marked “x” are ignored.)

If location 9999 had contained B9, the test would
have been:

B9 = 1011 10012
Mask = 1100 00112
—————————
Test = 10xx xx012

Condition code 1 is set: the selected bits are both
zeros and ones.

If location 9999 had contained 3C, the test would
have been:

3C = 0011 11002
Mask = 1100 00112
—————————
Test = 00xx xx002

Condition code 0 is set: all selected bits are zeros.

Note: Storage location 9999 remains unchanged.

TRANSLATE (TR)

The TRANSLATE instruction can be used to translate
data from any character code to any other desired
code, provided that each character code consists of
eight bits or fewer. An appropriate translation table is
required in storage.

In the following example, EBCDIC code is translated
to ASCII code. The first step is to create a 256-byte
table in storage locations 1000-10FF. This table con-
tains the characters of the ASCII code in the
sequence of the binary representation of the EBC-
DIC code; that is, the ASCII representation of a char-

Op Code R1 R3 B2 D2

90 E 1 6 050

Op Code I2 B1 D1

91 C3 7 009

A-34 The z/Architecture CPU Architecture

acter is placed in storage at the starting address of
the table plus the binary value of the EBCDIC repre-
sentation of the same character.

For simplicity, the example shows only the part of the
table containing the decimal digits:

Assume that the four-byte field at storage location
2100 contains the EBCDIC code for the digits 1984:

Locations 2100-2103 contain F1 F9 F8 F4.

Register 12 contains 00 00 21 00.

Register 15 contains 00 00 10 00.

As the instruction:

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
————————————
 TR 0(4,12),0(15)

is executed, the binary value of each EBCDIC byte is
added to the starting address of the table, and the
resulting address is used to fetch an ASCII byte:

Table starting address: 1000
First EBCDIC byte: F1
————————————————–
Address of ASCII byte: 10F1

After execution of the instruction:

Locations 2100-2103 contain 31 39 38 34.

Thus, the ASCII code for the digits 1984 has
replaced the EBCDIC code in the four-byte field at
storage location 2100.

TRANSLATE AND TEST (TRT)

The TRANSLATE AND TEST instruction can be used
to scan a data field for characters with a special
meaning. To indicate which characters have a special

meaning, a table similar to the one used for the
TRANSLATE instruction is set up, except that zeros
in the table indicate characters without any special
meaning and nonzero values indicate characters with
a special meaning.

Figure A-4 on page A-34 has been set up to distin-
guish alphameric characters (A to Z and 0 to 9) from
blanks, certain special symbols, and all other charac-
ters which are considered invalid. EBCDIC coding is
assumed. The 256-byte table is assumed stored at
locations 2000-20FF.

The table entries for the alphameric characters in
EBCDIC are 00; thus, the letter A (code C1) corre-
sponds to byte location 20C1, which contains 00.

The 15 special symbols have nonzero entries from
0416 to 3C16 in increments of 4. Thus, the blank (code
40) has the entry 0416, the period (code 4B) has the
entry 0816, and so on.

All other table positions have the entry 4016 to indi-
cate an invalid character.

The table entries are chosen so that they may be
used to select one of a list of 16 words containing

10F0 10F9

30 31 32 33 34 35 36 37 38 39

Op Code L B1 D1 B2 D2

DC 03 C 000 F 000

0 1 2 3 4 5 6 7 8 9 A B C D E F

200_ 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

201_ 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

202_ 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

203_ 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

204_ 04 40 40 40 40 40 40 40 40 40 40 08 40 0C 10 40

205_ 14 40 40 40 40 40 40 40 40 40 40 18 1C 20 40 40

206_ 24 28 40 40 40 40 40 40 40 40 40 2C 40 40 40 40

207_ 40 40 40 40 40 40 40 40 40 40 40 30 34 38 3C 40

208_ 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

209_ 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

20A_ 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

20B_ 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

20C_ 40 00 00 00 00 00 00 00 00 00 40 40 40 40 40 40

20D_ 40 00 00 00 00 00 00 00 00 00 40 40 40 40 40 40

20E_ 40 40 00 00 00 00 00 00 00 00 40 40 40 40 40 40

20F_ 00 00 00 00 00 00 00 00 00 00 40 40 40 40 40 40

Note: If the character codes in the statement being
translated occupy a range smaller than 00 through
FF16, a table of fewer than 256 bytes can be used.

Figure A-4. Translate and Test Table

A-35

addresses of different routines to be entered for each
special symbol or invalid character encountered
during the scan.

Assume that this list of 16 branch addresses is
stored at locations 3004-3043.

Starting at storage location CA80, there is the follow-
ing sequence of 2110 EBCDIC characters, where “b”
stands for a blank.

Locations CA80-CA94:
UNPKbPROUT(9),WORD(5)

Also assume:

Register 1 contains 00 00 CA 7F.

Register 2 contains 00 00 30 00.

Register 15 contains 00 00 20 00.

As the instruction:

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
————————————
 TRT 1(21,1),0(15)

is executed, the value of the first source byte, the
EBCDIC code for the letter U, is added to the starting
address of the table to produce the address of the
table entry to be examined:

Table starting address 2000
First source byte (U) E4
—————————————————–
Address of table entry 20E4

Because zeros were placed in storage location 20E4,
no special action occurs. The operation continues
with the second and subsequent source bytes until it
reaches the blank in location CA84. When this sym-
bol is reached, its value is added to the starting
address of the table, as usual:

Table starting address 2000
Source byte (blank) 40
——————————————————
Address of table entry 2040

Because location 2040 contains a nonzero value, the
following actions occur:

The address of the source byte, 00CA84, is
placed in the rightmost 24 bits of register 1.

The table entry, 04, is placed in the rightmost
eight bits of register 2, which now contains 00 00
30 04.

Condition code 1 is set (scan not completed).

The TRANSLATE AND TEST instruction may be fol-
lowed by instructions to branch to the routine at the
address found at location 3004, which corresponds
to the blank character encountered in the scan.
When this routine is completed, program control may
return to the TRANSLATE AND TEST instruction to
continue the scan, except that the length must first be
adjusted for the characters already scanned.

For this purpose, the TRANSLATE AND TEST may
be executed by the use of an EXECUTE instruction,
which supplies the length specification from a gen-
eral register. In this way, a complete statement scan
can be performed with a single TRANSLATE AND
TEST instruction used repeatedly by means of EXE-
CUTE, and without modifying any instructions in stor-
age. In the example, after the first execution of
TRANSLATE AND TEST, register 1 contains the
address of the last source byte translated. It is then a
simple matter to subtract this address from the
address of the last source byte (CA94) to produce a
length specification. This length minus one is placed
in the register that is referenced as the R1 field of the
EXECUTE instruction. (Note that the length code in
the machine format is one less than the total number
of bytes in the field.) The second-operand address of
the EXECUTE instruction points to the TRANSLATE
AND TEST instruction, which is the same as illus-
trated above, except for the length (L) which is set to
zero.

UNPACK (UNPK)

Assume that storage locations 2501-2502 contain a
signed-packed-decimal number that is to be
unpacked and placed in storage locations
1000-1004. Also assume:

Op Code L B1 D1 B2 D2

DD 14 1 001 F 000

A-36 The z/Architecture CPU Architecture

Register 12 contains 00 00 10 00.

Register 13 contains 00 00 25 00.

Storage locations 2501-2502 contain 12 3D.

The initial contents of storage locations
1000-1004 are not significant.

After the instruction:

Machine Format

Assembler Format
Op Code D1(L1,B1),D2(L2,B2)
—————————————–
 UNPK 0(5,12),1(2,13)

is executed, the storage locations 1000-1004 contain
F0 F0 F1 F2 D3.

UPDATE TREE (UPT)

See “Sorting Instructions” on page A-53.

Decimal Instructions

(See Chapter 8, “Decimal Instructions” for a com-
plete description of the decimal instructions.)

ADD DECIMAL (AP)

Assume that the signed-packed-decimal number at
storage locations 500-503 is to be added to the
signed-packed-decimal number at locations 2000-
2002. Also assume:

Register 12 contains 00 00 20 00.

Register 13 contains 00 00 05 00.

Storage locations 2000-2002 contain 38 46 0D (a
negative number).

Storage locations 500-503 contain 01 12 34 5C
(a positive number).

After the instruction:

Machine Format

Assembler Format
Op Code D1(L1,B1),D2(L2,B2)
—————————————–
 AP 0(3,12),0(4,13)

is executed, the storage locations 2000-2002 contain
73 88 5C; condition code 2 is set to indicate that the
result is greater than zero. Note that:

1. Because the two numbers had different signs,
they were in effect subtracted.

2. Although the second operand is longer than the
first operand, no overflow interruption occurs
because the result can be entirely contained
within the first operand.

COMPARE DECIMAL (CP)

Assume that the signed-packed-decimal contents of
storage locations 700-703 are to be algebraically
compared with the signed-packed-decimal contents
of locations 500-502. Also assume:

Register 12 contains 00 00 06 00.

Register 13 contains 00 00 03 00.

Storage locations 700-703 contain 17 25 35 6D.

Storage locations 500-502 contain 72 14 2D.

After the instruction:

Machine Format

Assembler Format
Op Code D1(L1,B1),D2(L2,B2)
—————————————–———–
 CP X'100'(4,12),X'200'(3,13)

is executed, condition code 1 is set, indicating that
the first operand (the contents of locations 700-703)
is less than the second.

Op Code L1 L2 B1 D1 B2 D2

F3 4 1 C 000 D 001

Op Code L1 L2 B1 D1 B2 D2

FA 2 3 C 000 D 000

Op Code L1 L2 B1 D1 B2 D2

F9 3 2 C 100 D 200

A-37

DIVIDE DECIMAL (DP)

Assume that the signed-packed-decimal number at
storage locations 2000-2004 (the dividend) is to be
divided by the signed-packed-decimal number at
locations 3000-3001 (the divisor). Also assume:

Register 12 contains 00 00 20 00.

Register 13 contains 00 00 30 00.

Storage locations 2000-2004 contain 01 23 45
67 8C.

Storage locations 3000-3001 contain 32 1D.

After the instruction:

Machine Format

Assembler Format
Op Code D1(L1,B1),D2(L2,B2)
—————————————–
 DP 0(5,12),0(2,13)

is executed, the dividend is entirely replaced by the
signed quotient and remainder, as follows:

Notes:

1. Because the dividend and divisor have different
signs, the quotient receives a negative sign.

2. The remainder receives the sign of the dividend
and the length of the divisor.

3. If an attempt were made to divide the dividend by
the one-byte field at location 3001, the quotient
would be too long to fit within the four bytes allot-
ted to it. A decimal-divide exception would exist,
causing a program interruption.

EDIT (ED)

Before data in the signed-packed-decimal or
unsigned-packed-decimal format can be used in a

printed report, digits and signs must be converted to
printable characters. Moreover, punctuation marks,
such as commas and decimal points, may have to be
inserted in appropriate places. The highly flexible
EDIT instruction performs these functions in a single
instruction execution.

This example shows step-by-step one way that the
EDIT instruction can be used. The field to be edited
(the source) is four bytes long; it is edited against a
pattern 13 bytes long. The following symbols are
used:

Assume that register 12 contains:

00 00 10 00

and that the source and pattern fields are:

Source

Pattern

Execution of the instruction:

Machine Format

Assembler Format
Op Code D1(L,B1),D2(B2)
———————————————
 ED 0(13,12),X'200'(12)

alters the pattern field as follows:

Op Code L1 L2 B1 D1 B2 D2

FD 4 1 C 000 D 000

2000 2004

Locations 2000-2004 38 46 0D 01 8C

quotient remainder

Symbol Meaning
b (Hexadecimal 40)
((Hexadecimal 21)
d (Hexadecimal 20)

Blank character
Significance starter
Digit selector

1200 1203

02 57 42 6C

1000 100C

40 20 20 6B 20 21 20 4B 20 20 40 C3 D9

b d d , d (d . d d b C R

Op Code L B1 D1 B2 D2

DE 0C C 000 C 200

+

A-38 The z/Architecture CPU Architecture

Thus, after the instruction is executed, the pattern
field contains the result as follows:

Pattern

This pattern field prints as:

2,574.26

The source field remains unchanged. Condition code
2 is set because the number was greater than zero.

If the number in the source field is changed to the
negative number 00 00 02 6D and the original pat-
tern is used, the edited result this time is:

Pattern

This pattern field prints as:

0.26 CR

The significance starter forces the significance indi-
cator to the on state and hence causes a leading
zero and the decimal point to be preserved. Because
the minus-sign code has no effect on the significance
indicator, the characters CR are printed to show a
negative (credit) amount.

Condition code 1 is set (number less than zero).

EDIT AND MARK (EDMK)

The EDIT AND MARK instruction may be used, in
addition to the functions of EDIT, to insert a currency
symbol, such as a dollar sign, at the appropriate
position in the edited result. Assume the same
source in storage locations 1200-1203, the same
pattern in locations 1000-100C, and the same con-
tents of general register 12 as for the EDIT instruc-
tion above. The previous contents of general register
1 (GR1) are not significant; a LOAD ADDRESS
instruction is used to set up the first digit position that
is forced to print if no significant digits occur to the
left.

The instructions:

produce the following results for the two examples
under EDIT:

Pattern

This pattern field prints as:

$2,574.26

Condition code 2 is set to indicate that the number
edited was greater than zero.

Pattern Digit

Significance
Indicator
(Before/
After) Rule

Location
1000-100C

b
d
d
,
d
(
d
.
d
d
b
C
R

0
2

5
7
4

2
6+

off/off
off/off
off/on(2)
on/on
on/on
on/on
on/on
on/on
on/on
on/off(3)
off/off
off/off
off/off

leave(1)
fill
digit
leave
digit
digit
digit
leave
digit
digit
fill
fill
fill

bdd,d(d.ddbCR
bbd,d(d.ddbCR
bb2,d(d.ddbCR
same
bb2,5(d.ddbCR
bb2,57d.ddbCR
bb2,574.ddbCR
same
bb2,574.2dbCR
bb2,574.26bCR
same
bb2,574.26bbR
bb2,574.26bbb

Notes:
1. This character is the fill byte.
2. First nonzero decimal source digit turns on

significance indicator.
3. Plus sign in the four rightmost bits of the byte

turns off significance indicator.

1000 100C

40 40 F2 6B F5 F7 F4 4B F2 F6 40 40 40

b b 2 , 5 7 4 . 2 6 b b b

1000 100C

40 40 40 40 40 40 F0 4B F2 F6 40 C3 D9

b b b b b b 0 . 2 6 b C R

LA 1,6(0,12) Load address of forced
significant digit into GR1

EDMK 0(13,12),X‘200’(12) Leave address of first
significant digit in GR1

BCTR 1,0 Subtract 1 from address in
GR1

MVI 0(1),C ‘$’ Store dollar sign at address in
GR1

1000 100C

40 5B F2 6B F5 F7 F4 4B F2 F6 40 40 40

b $ 2 , 5 7 4 . 2 6 b b b

A-39

Pattern

This pattern field prints as:

$0.26 CR

Condition code 1 is set because the number is less
than zero.

MULTIPLY DECIMAL (MP)

Assume that the signed-packed-decimal number in
storage locations 1202-1204 (the multiplicand) is to
be multiplied by the signed-packed-decimal number
in locations 500-501 (the multiplier).

The multiplicand must first be extended to have at
least two bytes of leftmost zeros, corresponding to
the multiplier length, so as to avoid a data exception
during the multiplication. ZERO AND ADD can be
used to move the multiplicand into a longer field.
Assume:

Register 4 contains 00 00 12 00.

Register 6 contains 00 00 05 00.

Then execution of the instruction:

ZAP X'100'(5,4),2(3,4)

sets up a new multiplicand in storage locations
1300-1304:

Now, after the instruction:

Machine Format

Assembler Format
Op Code D1(L1,B1),D2(L2,B2)
—————————————–
 MP X'100'(5,4),0(2,6)

is executed, storage locations 1300-1304 contain the
product: 01 23 45 66 0C.

SHIFT AND ROUND DECIMAL
(SRP)

The SHIFT AND ROUND DECIMAL (SRP) instruc-
tion can be used for shifting decimal numbers in stor-
age to the left or right. When a number is shifted
right, rounding can also be done.

Decimal Left Shift
In this example, the contents of storage location
FIELD1 are shifted three places to the left, effectively
multiplying the contents of FIELD1 by 1000. FIELD1
is six bytes long. The following instruction performs
the operation:

Machine Format

Assembler Format
Op Code S1(L1),S2,I3
———————————–
 SRP FIELD1(6),3,0

FIELD1 (before): 00 01 23 45 67 8C

FIELD1 (after): 12 34 56 78 00 0C

The second-operand address in this instruction spec-
ifies the shift amount (three places). The rounding
digit, I3, is not used in a left shift, but it must be a valid
decimal digit. After execution, condition code 2 is set
to show that the result is greater than zero.

Decimal Right Shift
In this example, the contents of storage location
FIELD2 are shifted one place to the right, effectively

1000 100C

40 40 40 40 40 5B F0 4B F2 F6 40 C3 D9

b b b b b $ 0 . 2 6 b C R

1202 1204

Multiplicand 38 46 0D

500 501

Multiplier 32 1D

1300 1304

Multiplicand (new) 00 00 38 46 0D

Op Code L1 L2 B1 D1 B2 D2

FC 4 1 4 100 6 000

Op Code L1 I3 S1 B2 D2

F0 5 0 * * * * 0 003

A-40 The z/Architecture CPU Architecture

dividing the contents of FIELD2 by 10 and discarding
the remainder. FIELD2 is five bytes in length. The fol-
lowing instruction performs this operation:

Machine Format

Assembler Format
Op Code S1(L1),S2,I3
—————————————
 SRP FIELD2(5),64-1,0

FIELD 2 (before): 01 23 45 67 8C

FIELD 2 (after): 00 12 34 56 7C

In the SRP instruction, shifts to the right are specified
in the second-operand address by negative shift val-
ues, which are represented as a six-bit value in two’s
complement form.

The six-bit two’s complement of a number, n, can be
specified as 64 - n. In this example, a right shift of
one is represented as 64 - 1.

Condition code 2 is set.

Decimal Right Shift and Round
In this example, the contents of storage location
FIELD3 are shifted three places to the right and
rounded, in effect dividing by 1000 and rounding up.
FIELD3 is four bytes in length.

Machine Format

Assembler Format
Op Code S1(L1),S2,I3
—————————————
 SRP FIELD3(4),64-3,5

FIELD 3 (before): 12 39 60 0D

FIELD 3 (after): 00 01 24 0D

The shift amount (three places) is specified in the D2

field. The I3 field specifies a rounding digit of 5. The
rounding digit is added to the last digit shifted out
(which is a 6), and the carry is propagated to the left.
The sign is ignored during the addition.

Condition code 1 is set because the result is less
than zero.

Multiplying by a Variable Power of 10
Since the shift value specified by the SRP instruction
specifies both the direction and amount of the shift,
the operation is equivalent to multiplying the decimal
first operand by 10 raised to the power specified by
the shift value.

If the shift value is to be variable, it may be specified
by the B2 field instead of the displacement D2 of the
SRP instruction. The general register designated by
B2 should contain the shift value (power of 10) as a
signed binary integer.

A fixed scale factor modifying the variable power of
10 may be specified by using both the B2 field (vari-
able part in a general register) and the D2 field (fixed
part in the displacement).

The SRP instruction uses only the rightmost six bits
of the effective address D2(B2) and interprets them as
a six-bit signed binary integer to control the left or
right shift as in the preceding shift examples.

Op Code L1 I3 S1 B2 D2

F0 4 0 * * * * 0 03F

00111111

6-bit two's
complement
for -1

Op Code L1 I3 S1 B2 D2

F0 3 5 * * * * 0 03D

00111101

6-bit two's
complement
for -3

A-41

ZERO AND ADD (ZAP)

Assume that the signed-packed-decimal number at
storage locations 4500-4502 is to be moved to loca-
tions 4000-4004 with four leading zeros in the result
field. Also assume:

Register 9 contains 00 00 40 00.

Storage locations 4000-4004 contain 12 34 56
78 90.

Storage locations 4500-4502 contain 38 46 0D.

After the instruction:

Machine Format

Assembler Format
Op Code D1(L1,B1),D2(L2,B2)
——————————————
 ZAP 0(5,9),X'500'(3,9)

is executed, the storage locations 4000-4004 contain
00 00 38 46 0D; condition code 1 is set to indicate a
negative result without overflow.

Note that, because the first operand is not checked
for valid sign and digit codes, it may contain any com-
bination of hexadecimal digits before the operation.

Hexadecimal-Floating-Point
Instructions

(See Chapter 9, “Floating-Point Overview and Sup-
port Instructions” for a complete description of the
hexadecimal-floating-point instructions.)

In this section, the abbreviations FPR0, FPR2, FPR4,
and FPR6 stand for floating-point registers 0, 2, 4,
and 6 respectively.

ADD NORMALIZED (AD, ADR, AE,
AER, AXR)

The ADD NORMALIZED instruction performs the
addition of two HFP numbers and places the normal-

ized result in a floating-point register. Neither of the
two numbers to be added must necessarily be in nor-
malized form before addition occurs. For example,
assume that:

FPR6 contains the unnormalized number C3 08
21 00 00 00 00 00 = -82.116 = -130.0610 approxi-
mately.

Storage locations 2000-2007 contain the normal-
ized number 41 12 34 56 00 00 00 00 =
+1.2345616 = +1.1410 approximately.

Register 13 contains 00 00 20 00.

The instruction:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
——————————–
 AE 6,0(0,13)

performs the short-precision addition of the two oper-
ands, as follows.

The characteristics of the two numbers (43 and 41)
are compared. Since the number in storage has a
characteristic that is smaller by 2, it is right-shifted
two hexadecimal digit positions. One guard digit is
retained on the right. The fractions of the two num-
bers are then added algebraically:

Fraction GD1

FPR6 -43 08 21 00
Shifted number from storage +43 00 12 34 5
——————————————————————–
Intermediate sum -43 08 0E CB B
Left-shifted sum -42 80 EC BB

1 Guard digit

Because the intermediate sum is unnormalized, it is
left-shifted to form the normalized HFP number
-80.ECBB16 = -128.9210 approximately. Combining
the sign with the characteristic, the result is C2 80 EC
BB, which replaces the left half of FPR6. The right
half of FPR6 and the contents of storage locations
2000-2007 are unchanged. Condition code 1 is set to
indicate a result less than zero.

Op Code L1 L2 B1 D1 B2 D2

F8 4 2 9 000 9 500
Op Code R1 X2 B2 D2

7A 6 0 D 000

A-42 The z/Architecture CPU Architecture

If the long-precision instruction AD were used, the
result in FPR6 would be C2 80 EC BA A0 00 00 00.
Note that use of the long-precision instruction would
avoid a loss of precision in this example.

ADD UNNORMALIZED (AU, AUR,
AW, AWR)

The ADD UNNORMALIZED instruction operates the
same as the ADD NORMALIZED instruction, except
that the final result is not normalized. For example,
using the same operands as in the example for ADD
NORMALIZED, when the short-precision instruction:

Machine Format

Assembler Format
Op Code R1,D2(X2,B2)
——————————–
 AU 6,0(0,13)

is executed, the two numbers are added as follows:

 Fraction GD1

FPR6 -43 08 21 00
Shifted number from storage +43 00 12 34 5
——————————————————————–
Intermediate sum -43 08 0E CB B

1 Guard digit

The guard digit participates in the addition but is dis-
carded. The unnormalized sum replaces the left half
of FPR6. Condition code 1 is set because the result
is less than zero.

The truncated result in FPR6 (C3 08 0E CB 00 00 00
00) shows a loss of a significant digit when compared
to the result of short-precision normalized addition.

COMPARE (CD, CDR, CE, CER)

Assume that FPR4 contains 43 00 00 00 00 00 00 00
(zero), and FPR6 contains 35 12 34 56 78 9A BC DE
(a positive number). The contents of the two registers
are to be compared using a long-precision COM-
PARE instruction.

Machine Format

Assembler Format
Op Code R1,R2
———————
 CDR 4,6

The number with the smaller characteristic, which is
in register FPR6, is right-shifted 43 - 35 hex (67 - 53
decimal) or 14 digit positions, so that the two charac-
teristics agree. The shifted number is 43 00 00 00 00
00 00 00, with a guard digit of one. Therefore, when
the two numbers are compared, condition code 1 is
set, indicating that operand 1 in FPR4 is less than
operand 2 in FPR6.

If the example is changed to a second operand with a
characteristic of 34 instead of 35, so that FPR6 con-
tains 34 12 34 56 78 9A BC DE, the operand is right-
shifted 15 positions, leaving all fraction digits and the
guard digit as zeros. Condition code 0 is set, indicat-
ing equality. This example shows that two HFP num-
bers with different characteristics or fractions may
compare equal if the numbers are unnormalized or
zero.

As another example of comparing unnormalized HFP
numbers, 41 00 12 34 56 78 9A BC compares equal
to all numbers of the form 3F 12 34 56 78 9A BC 0X
(X represents any hexadecimal digit). When the
COMPARE instruction is executed, the two rightmost
digits are shifted right two places, the 0 becomes the
guard digit, and the X does not participate in the
comparison.

However, when two normalized HFP numbers are
compared, the relationship between numbers that
compare equal is unique: each digit in one number
must be the same as the corresponding digit in the
other number.

DIVIDE (DD, DDR, DE, DER)

Assume that the first operand (the dividend) is in
FPR2 and the second operand (the divisor) in FPR0.
If the operands are in the short-precision format, the
resulting quotient is returned to FPR2 by the instruc-
tion:

Op Code R1 X2 B2 D2

7E 6 0 D 000

Op Code R1 R2

29 4 6

A-43

Machine Format

Assembler Format
Op Code R1,R2
———————
 DER 2,0

Several examples of short-precision HFP division,
with the dividend in FPR2 and the divisor in FPR0,
are shown below. For case A, the result, which
replaces the dividend, is obtained in the following
steps.

Case C shows a number being divided by 4.0. Case
D divides the same number by 2.0, and case E
divides the result of case D again by 2.0. The results
of cases C and E differ in the rightmost hexadecimal
digit position, which illustrates an effect of result trun-
cation.

HALVE (HDR, HER)

HALVE produces the same result as HFP DIVIDE
with a divisor of 2.0. Assume FPR2 contains the
long-precision number +48 30 00 00 00 00 00 0F.
The following HALVE instruction produces the result
+48 18 00 00 00 00 00 07 in FPR2:

Machine Format

Assembler Format
Op Code R1,R2
———————
 HDR 2,2

MULTIPLY (MD, MDR, MDE, MDER,
MXD, MXDR, MXR)

For this example, the following long-precision oper-
ands are in FPR0 and FPR2:

FPR0: -33 606060 60606060
FPR2: -5A 200000 20000020

A long-precision product is generated by the instruc-
tion:

Machine Format

Assembler Format
Op Code R1,R2
———————
 MDR 0,2

If the operands were not already normalized, the
instruction would first normalize them. It then gener-
ates an intermediate result consisting of the full 28-
digit hexadecimal product fraction obtained by multi-
plying the 14-digit hexadecimal operand fractions,
together with the appropriate sign and a characteris-
tic that is the sum of the operand characteristics less
64 (40 hex):

Op Code R1 R2

3D 2 0

7.2522F

.123400.821000

7F6C00

2A400 0

24680 0

5D80 00

5B04 00

27C 000

246 800

35 8000

24 6800

11 18000

11 10C00

7400

Case
FPR2 Before

(Dividend) FPR0 (Divisor)
FPR2 After
(Quotient)

A -43 082100 +43 001234 -42 72522F
B +42 101010 +45 111111 +3D F0F0F0
C +48 30000F +41 400000 +47 C0003C
D +48 30000F +41 200000 +48 180007
E +48 180007 +41 200000 +47 C00038

Op Code R1 R2

24 2 2

Op Code R1 R2

2C 0 2

A-44 The z/Architecture CPU Architecture

The fraction multiplication is performed as follows:

Attaching the sign and characteristic to the fraction
gives:

+4D 0C0C0C 18181824 1818180C 0C0C00

Because this intermediate product has a leading
zero, it is then normalized. The truncated final result
placed in FPR0 is:

+4C C0C0C1 81818241

Hexadecimal-Floating-Point-
Number Conversion

The following examples illustrate one method of con-
verting between binary fixed-point numbers (32-bit
signed binary integers) and normalized HFP num-
bers. Conversion must provide for the different repre-
sentations used with negative numbers: the two’s-
complement form for signed binary integers, and the
signed-absolute-value form for the fractions of HFP
numbers.

Fixed Point to Hexadecimal Floating
Point
The method used here inverts the leftmost bit of the
32-bit signed binary integer, which is equivalent to
adding 231 to the number and considering the result
to be positive. This changes the number from a
signed integer in the range 231 - 1 through -231 to an
unsigned integer in the range 232 - 1 through 0. After
conversion to the long HFP format, the value 231 is
subtracted again.

Assume that general register 9 (GR9) contains the
integer -59 in two’s-complement form:

GR9: FF FF FF C5

Further, assume two eight-byte fields in storage:
TEMP, for use as temporary storage, and TWO31,

which contains the floating-point constant 231 in the
following format:

TWO31: 4E 00 00 00 80 00 00 00

This is an unnormalized long HFP number with the
characteristic 4E, which corresponds to a radix point
(hexadecimal point) to the right of the number.

The following instruction sequence performs the con-
version:

The EXCLUSIVE OR (X) instruction inverts the left-
most bit in general register 9, using the right half of
the constant as the source for a leftmost one bit. The
next two instructions assemble the modified number
in an unnormalized long HFP format, using the left
half of the constant as the plus sign, the characteris-
tic, and the leading zeros of the fraction. LOAD (LD)
places the number unchanged in floating-point regis-
ter 2. The SUBTRACT NORMALIZED (SD) instruc-
tion performs the final two steps by subtracting 231 in
HFP form and normalizing the result.

Hexadecimal Floating Point to Fixed
Point
The procedure described here consists basically in
reversing the steps of the previous procedure. Two
additional considerations must be taken into account.
First: the HFP number may not be an exact integer.
Truncating the excess hexadecimal digits on the right
requires shifting the number one digit position farther
to the right than desired for the final result, so that the
units digit occupies the position of the guard digit.
Second: the HFP number may have to be tested as
to whether it is outside the range of numbers repre-
sentable as a 32-bit signed binary integer.

Assume that floating-point register 6 contains the
number 59.2510 = 3B.416 in normalized form:

FPR6: 42 3B 40 00 00 00 00 00

.60606060606060

.20000020000020

C0C0C0C0C0C0C00

C0C0C0C0C0C0C0

C0C0C0C0C0C0C0

.0C0C0C181818241818180C0C0C00

Result
X 9,TWO31+4 GR9:

7FFF FFC5
ST 9,TEMP+4 TEMP:

xxxx xxxx 7FFF FFC5
MVC TEMP(4),TWO31 TEMP:

4E00 0000 7FFF FFC5
LD 2,TEMP FPR2:

4E00 0000 7FFF FFC5
SD 2,TWO31 FPR2:

C23B 0000 0000 0000

A-45

Further, assume three eight-byte fields in storage:
TEMP, for use as temporary storage, and the con-
stants 232 (TWO32) and 231 (TWO31R) in the follow-
ing formats:

TWO32: 4E 00 00 01 00 00 00 00
TWO31R: 4F 00 00 00 08 00 00 00

The constant TWO31R is shifted right one more posi-
tion than the constant TWO31 of the previous exam-
ple, so as to force the units digit into the guard-digit
position.

The following instruction sequence performs the inte-
ger truncation, range tests, and conversion to a
signed binary integer in general register 8 (GR8):

The SUBTRACT NORMALIZED (SD) instruction
shifts the fraction of the number to the right until it
lines up with TWO31R, which causes the fraction
digit 4 to fall to the right of the guard digit and be lost;
the result of subtracting 231 from the remaining digits
is renormalized. The result should be less than zero;
if not, the original number was too large in the posi-
tive direction. The first BRANCH ON CONDITION
(BC) performs this test.

The ADD UNNORMALIZED (AW) instruction adds
232: 231 to correct for the previous subtraction and
another 231 to change to an all-positive range. The
second BC tests for a result less than zero, showing
that the original number was too large in the negative
direction. The unnormalized result is placed in tem-
porary storage by the STORE (STD) instruction.
There the leftmost bit of the binary integer is inverted
by the EXCLUSIVE OR (XI) instruction to subtract 231

and thus convert the unsigned number to the signed
format. The final result is loaded into GR8.

Multiprogramming and
Multiprocessing Examples

When two or more programs sharing common stor-
age locations are being executed concurrently in a
multiprogramming or multiprocessing environment,
one program may, for example, set a flag bit in the
common-storage area for testing by another pro-
gram. It should be noted that the instructions AND
(NI, NIY, or NC), EXCLUSIVE OR (XI, XIY, or XC),
and OR (OI, OIY, or OC) could be used to set flag
bits in a multiprogramming environment; but when
the interlocked-access facility 2 is not installed, the
same instructions may cause program logic errors in
a multiprocessing configuration where two or more
CPUs can fetch, modify, and store data in the same
storage locations simultaneously.

Example of a Program Failure
Using OR Immediate

The following example assumes that the interlocked-
access facility 2 is not installed.

Assume that two independent programs try to set dif-
ferent bits to one in a common byte in storage. The
following example shows how the use of the instruc-
tion OR immediate (OI) can fail to accomplish this, if
the programs are executed simultaneously on two
different CPUs. One of the possible error situations is
depicted.

The problem shown here is that the value stored by
the OI instruction executed on CPU A overlays the
value that was stored by CPU B. The X‘80’ flag bit

Result
SD 6,TWO31R FPR6:

C87F FFFF C500 0000
BC 11,OVERFLOW Branch to overflow routine if

result is greater than or equal
to zero

AW 6,TWO32 FPR6:
4E00 0000 8000 003B

BC 4,OVERFLOW Branch to overflow routine if
result is less than zero

STD 6,TEMP TEMP:
4E00 0000 8000 003B

XI TEMP+4,X‘80’ TEMP:
4E00 0000 0000 003B

L 8,TEMP+4 GR8:
0000 003B

Execution of instruction
OI FLAGS,X’01’ on
CPU A FLAGS

Execution of instruction
OI FLAGS,X’80’ on
CPU B

X’00’ Fetch FLAGS X’00’
Fetch FLAGS X’00’ X’00’

X’00’ OR X’80’ into X’00’
OR X’01’ into X’00’ X’00’

X’80’ Store X’80’ into FLAGS
Store X’01’ into FLAGS X’01’
FLAGS should have value of X’81’ following both updates.

A-46 The z/Architecture CPU Architecture

was erroneously turned off, and the data is now
invalid.

The COMPARE AND SWAP instruction has been
provided to overcome this and similar problems.

When the interlocked-access facility 2 is installed, the
update performed by OR (OI) instruction is an inter-
locked-update reference, and the problem illustrated
here does not occur.

Conditional Swapping Instructions
(CS, CDS)

The COMPARE AND SWAP (CS) and COMPARE
DOUBLE AND SWAP (CDS) instructions can be
used in multiprogramming or multiprocessing envi-
ronments to serialize access to counters, flags, con-
trol words, and other common storage areas.

The following examples of the use of the COMPARE
AND SWAP and COMPARE DOUBLE AND SWAP
instructions illustrate the applications for which the
instructions are intended. It is important to note that
these are examples of functions that can be per-
formed by programs while the CPU is enabled for
interruption (multiprogramming) or by programs that
are being executed in a multiprocessing configura-
tion. That is, the routine allows a program to modify
the contents of a storage location while the CPU is
enabled, even though the routine may be interrupted
by another program on the same CPU that will
update the location, and even though the possibility
exists that another CPU may simultaneously update
the same location.

The COMPARE AND SWAP instruction first checks
the value of a storage location and then modifies it
only if the value is what the program expects; nor-
mally this would be a previously fetched value. If the
value in storage is not what the program expects,
then the location is not modified; instead, the current
value of the location is loaded into a general register,
in preparation for the program to loop back and try
again. During the execution of COMPARE AND
SWAP, no other CPU can perform a store access or
interlocked-update access at the specified location.

To ensure successful updating of a common storage
field by two or more CPUs, all updates must be done
by means of an interlocked-update reference. See
the programming notes of COMPARE AND SWAP for

an example of how COMPARE AND SWAP can be
unsuccessful due to an OR IMMEDIATE instruction
executed by another CPU.

Setting a Single Bit
The following instruction sequence shows how the
COMPARE AND SWAP instruction can be used to
set a single bit in storage to one. Assume that the
first byte of a word in storage called “WORD” con-
tains eight flag bits.

LA 6,X'80' Put bit to be ORed into GR6
SLL 6,24 Shift left 24 places to

align the byte to be ORed
with the location of the
flag bits within WORD

L 7,WORD Fetch current flag values
RETRY LR 8,7 Load flags into GR8

OR 8,6 Set bit to one
CS 7,8,WORD Store new flags if current

flags unchanged, or re-
fetch current flag values
if changed

BC 4,RETRY If new flags are not stored,
try again

The format of the COMPARE AND SWAP instruction
is:

Machine Format

Assembler Format
Op Code R1,R3,S2
—————————
 CS 7,8,WORD

The COMPARE AND SWAP instruction compares
the first operand (general register 7 containing the
current flag values) to the second operand in storage
(WORD) while no CPU other than the one executing
the COMPARE AND SWAP instruction is permitted to
perform a store access or interlocked-update access
at the specified storage location.

If the comparison is successful, indicating that the
flag bits have not been changed since they were
fetched, the modified copy in general register 8 is
stored into WORD. If the flags have been changed,
the compare will not be successful, and their new val-
ues are loaded into general register 7.

Op Code R1 R3 S2

BA 7 8 * * * *

A-47

The conditional branch (BC) instruction tests the con-
dition code and reexecutes the flag-modifying
instructions if the COMPARE AND SWAP instruction
indicated an unsuccessful comparison (condition
code 1). When the COMPARE AND SWAP instruc-
tion is successful (condition code 0), the flags contain
valid data, and the program exits from the loop.

The branch to RETRY will be taken only if some
other program modifies the contents of WORD. This
type of a loop differs from the typical “bit-spin” loop.
In a bit-spin loop, the program continues to loop until
the bit changes. In this example, the program contin-
ues to loop only if the value does change during each
iteration. If a number of CPUs simultaneously
attempt to modify a single location by using the sam-
ple instruction sequence, one CPU will fall through
on the first try, another will loop once, and so on until
all CPUs have succeeded.

Updating Counters
In this example, a 32-bit counter is updated by a pro-
gram using the COMPARE AND SWAP instruction to
ensure that the counter will be correctly updated. The
original value of the counter is obtained by loading
the word containing the counter into general register
7. This value is moved into general register 8 to pro-
vide a modifiable copy, and general register 6 (con-
taining an increment to the counter) is added to the
modifiable copy to provide the updated counter
value. The COMPARE AND SWAP instruction is
used to ensure valid storing of the counter.

The program updating the counter checks the result
by examining the condition code. The condition code
0 indicates a successful update, and the program
can proceed. If the counter had been changed
between the time that the program loaded its original
value and the time that it executed the COMPARE
AND SWAP instruction, the execution would have
loaded the new counter value into general register 7
and set the condition code to 1, indicating an unsuc-
cessful update. The program must then repeat the
update sequence until the execution of the COM-
PARE AND SWAP instruction results in a successful
update.

The following instruction sequence performs the
above procedure:

LA 6,1 Put increment (1) into GR6
L 7,CNTR Put original counter value

into GR7

LOOP LR 8,7 Set up copy in GR8 to modify
AR 8,6 Increment copy
CS 7,8,CNTR Update counter in storage
BC 4,LOOP If original value had

changed, update new value

The following shows two CPUs, A and B, executing
this instruction sequence simultaneously: both CPUs
attempt to add one to CNTR.

Bypassing Post and Wait

See the MVS Programming: Authorized Assembler
Services Guide (SA22-7608) for details on bypassing
the z/OS WAIT and POST routines.

Lock/Unlock

When a common storage area larger than a double-
word is to be updated, it is usually necessary to pro-
vide special interlocks to ensure that a single
program at a time updates the common area. Such
an area is called a serially reusable resource (SRR).

In general, updating a list, or even scanning a list,
cannot be safely accomplished without first “freezing”
the list. However, the COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP instructions can be
used in certain restricted situations to perform queu-
ing and list manipulation. Of prime importance is the
capability to perform the lock/unlock functions and to
provide sufficient queuing to resolve contentions,
either in a LIFO or FIFO manner. The lock/unlock

CPU A
CNTR

CPU B
CommentsGR7 GR8 GR7 GR8

16

16 16 CPU A loads GR7 and GR8 from
CNTR

16 16 CPU B loads GR7 and GR8 from
CNTR

17 CPU B adds one to GR8
17 CPU A adds one to GR8

17 CPU A executes CS; successful
match, store

17 CPU B executes CS; no match, GR7
changed to CNTR value

18 CPU B loads GR8 from GR7, adds
one to GR8

18 CPU B executes CS; successful
match, store

A-48 The z/Architecture CPU Architecture

functions can then be used as the interlock mecha-
nism for updating an SRR of any complexity.

The lock/unlock functions are based on the use of a
“header” associated with the SRR. The header is the
common starting point for determining the states of
the SRR, either free or in use, and also is used for
queuing requests when contentions occur. Conten-
tions are resolved using WAIT and POST. The gen-
eral programming technique requires that the
program that encounters a “locked” SRR must “leave
a mark on the wall” indicating the address of an ECB
on which it will WAIT. The “unlocking” program sees
the mark and posts the ECB, thus permitting the
waiting program to continue. In the two examples
given, all programs using a particular SRR must use
either the LIFO queuing scheme or the FIFO
scheme; the two cannot be mixed. When more com-
plex queuing is required, it is suggested that the
queue for the SRR be locked using one of the two
methods shown.

Lock/Unlock with LIFO Queuing for
Contentions
The header consists of a word, that is, a four-byte
field aligned on a word boundary. The word can con-
tain zero, a positive value, or a negative value.

• A zero value indicates that the serially reusable
resource (SRR) is free.

• A negative value indicates that the SRR is in use
but no additional programs are waiting for the
SRR.

• A positive value indicates that the SRR is in use
and that one or more additional programs are
waiting for the SRR. Each waiting program is
identified by an element in a chained list. The
positive value in the header is the address of the
element most recently added to the list.

Each element consists of two words. The first word is
used as an ECB; the second word is used as a
pointer to the next element in the list. A negative
value in a pointer indicates that the element is the
last element in the list. The element is required only if
the program finds the SRR locked and desires to be
placed in the list.

The following chart describes the action taken for
LIFO LOCK and LIFO UNLOCK routines. The rou-

tines following the chart allow enabled code to per-
form the actions described in the chart.

LIFO LOCK Routine:

Initial Conditions:

• GR1 contains the address of the incoming ele-
ment.

• GR2 contains the address of the header.

LLOCK SR 3,3 GR3 = 0
ST 3,0(1) Initialize the ECB
LNR 0,1 GR0 = a negative value

TRYAGN CS 3,0,0(2) Set the header to a
negative value if the
header contains zeros

BC 8,USE Did the header contain
zeros?

ST 3,4(1) No, store the value of
the header into the
pointer in the in-
coming element

CS 3,1,0(2) Store the address of
the incoming element
into the header

LA 3,0(0) GR3 = 0
BC 7,TRYAGN Did the header get up-

dated?
WAIT ECB=(1) Yes, wait for the re-

source; the ECB is in
the incoming element

USE [Any instruction]

Function

Action
Header

Contains Zero
Header Contains

Positive Value
Header Contains
Negative Value

LIFO LOCK
(the incoming
element is at
location A)

SRR is free.
Set the header
to a negative
value. Use the
SRR.

SRR is in use. Store the contents of
the header into location A+4. Store
address A into the header. WAIT; the
ECB is at location A.

LIFO UNLOCK Error Some program is
waiting for the
SRR. Move the
pointer from the
“last in” element
into the header.
POST; the ECB is
in the “last in” ele-
ment.

The list is empty.
Store zeros into
the header. The
SRR is free.

A-49

LIFO UNLOCK Routine:

Initial Conditions:

• GR2 contains the address of the header.

LUNLK L 1,0(2) GR1 = the contents of
the header

A LTR 1,1 Does the header contain
BC 4,B a negative value?
L 0,4(1) No, load the pointer
CS 1,0,0(2) from the 'last in'

element and store it in
the header

BC 7,A Did the header get
updated?

POST (1) Yes, post the 'last in'
 element

BC 15,EXIT Continue
B SR 0,0 The header contains a

CS 1,0,0(2) negative value; free
BC 7,A the header and continue

EXIT [Any instruction]

Note that the LOAD instruction L 1,0(2) at location
LUNLK would have to be CS 1,1,0(2) if it were not for
the rule concerning storage-operand consistency.
This rule requires the LOAD instruction to fetch a
four-byte operand aligned on a word boundary such
that, if another CPU changes the word being fetched
by an operation which is also at least word-consis-
tent, either the entire new or the entire old value of
the word is obtained, and not a combination of the
two. (See “Storage-Operand Consistency” on
page 5-125.)

Lock/Unlock with FIFO Queuing for
Contentions
The header always contains the address of the most
recently entered element. The header is originally ini-
tialized to contain the address of a posted ECB. Each
program using the serially reusable resource (SRR)
must provide an element regardless of whether con-
tention occurs. Each program then enters the
address of the element which it has provided into the
header, while simultaneously it removes the address
previously contained in the header. Thus, associated
with any particular program attempting to use the
SRR are two elements, called the “entered element”
and the “removed element” The “entered element” of
one program becomes the “removed element” for the
immediately following program. Each program then
waits on the removed element, uses the SRR, and
then posts the entered element.

When no contention occurs, that is, when the second
program does not attempt to use the SRR until after
the first program is finished, then the POST of the
first program occurs before the WAIT of the second
program. In this case, the bypass-post and bypass-
wait routines described in the preceding section are
applicable. For simplicity, these two routines are
shown only by name rather than as individual instruc-
tions.

In the example, the element need be only a single
word, that is, an ECB. However, in actual practice,
the element could be made larger to include a pointer
to the previous element, along with a program identi-
fication. Such information would be useful in an error
situation to permit starting with the header and chain-
ing through the list of elements to find the program
currently holding the SRR.

It should be noted that the element provided by the
program remains pointed to by the header until the
next program attempts to lock. Thus, in general, the
entered element cannot be reused by the program.
However, the removed element is available, so each
program gives up one element and gains a new one.
It is expected that the element removed by a particu-
lar program during one use of the SRR would then be
used by that program as the entry element for the
next request to the SRR.

It should be noted that, since the elements are
exchanged from one program to the next, the ele-
ments cannot be allocated from storage that would
be freed and reused when the program ends. It is
expected that a program would obtain its first ele-
ment and release its last element by means of the
routines described in “Free-Pool Manipulation”.

The following chart describes the action taken for
FIFO LOCK and FIFO UNLOCK.

The following routines allow enabled code to perform
the actions described in the previous chart.

FIFO Lock Routine:

Initial conditions:

Function Action
FIFO LOCK Store address A into the header.

(the incoming element is
at location A)

WAIT; the ECB is at the location addressed
by the old contents of the header.

FIFO UNLOCK POST; the ECB is at location A.

A-50 The z/Architecture CPU Architecture

• GR3 contains the address of the header.

• GR4 contains the address, A, of the element cur-
rently owned by this program. This element
becomes the entered element.

FLOCK LR 2,4 GR2 now contains
address of element to
be entered

SR 1,1 GR1 = 0
ST 1,0(2) Initialize the ECB
L 1,0(3) GR1 = contents of the

header
TRYAGN CS 1,2,0(3) Enter address A into

header while remember-
BC 7,TRYAGN ing old contents of

header into GR1; GR1
now contains address
of removed element

LR 4,1 Removed element becomes
new currently owned
element

HSWAIT Perform bypass-wait
routine; if ECB
already posted, con-
tinue; if not, wait;
GR1 contains the
address of the ECB

USE [Any instruction]

FIFO Unlock Routine:

Initial conditions:

• GR2 contains the address of the removed ele-
ment, obtained during the FLOCK routine.

• GR5 contains 40 00 00 0016

FUNLK LR 1,2 Place address of entered
element in GR1; GR1 = ad-
dress of ECB to be posted

SR 0,0 GR0 = 0; GR0 has a post code
of zero

OR 0,5 Set bit 1 of GR0 to one
HSPOST Perform bypass-post routine;

if ECB has not been waited
on, then mark posted and
continue; if it has been
waited on, then post

CONTINUE [Any instruction]

Free-Pool Manipulation

It is anticipated that a program will need to add and
delete items from a free list without using the
lock/unlock routines. This is especially likely since the
lock/unlock routines require storage elements for
queuing and may require working storage. The
lock/unlock routines discussed previously allow
simultaneous lock routines but permit only one
unlock routine at a time. In such a situation, multiple
additions and a single deletion to the list may all
occur simultaneously, but multiple deletions cannot
occur at the same time. In the case of a chain of
pointers containing free storage buffers, multiple
deletions along with additions can occur simultane-
ously. In this case, the removal cannot be done using
the COMPARE AND SWAP instruction without a cer-
tain degree of exposure.

Consider a chained list of the type used in the exam-
ple in section “Lock/Unlock with LIFO Queuing for
Contentions” on page A-48. Assume that the first two
elements are at locations A and B, respectively. If
one program attempted to remove the first element
and was interrupted between the fourth and fifth
instructions of the LUNLK routine, the list could be
changed so that elements A and C are the first two
elements when the interrupted program resumes
execution. The COMPARE AND SWAP instruction
would then succeed in storing the value B into the
header, thereby destroying the list.

The probability of the occurrence of such list destruc-
tion can be reduced to near zero by appending to the
header a counter that indicates the number of times
elements have been added to the list. The use of a
32-bit counter guarantees that the list will not be
destroyed unless the following events occur, in the
exact sequence:

1. An unlock routine is interrupted between the
fetch of the pointer from the first element and the
update of the header.

2. The list is manipulated, including the deletion of
the element referenced in 1, and exactly 232 (or
an integer multiple of 232) additions to the list are
performed. Note that this takes on the order of
days to perform in any practical situation.

3. The element referenced in 1 is added to the list.

4. The unlock routine interrupted in 1 resumes exe-
cution.

A-51

The following routines use such a counter in order to
allow multiple, simultaneous additions and removals
at the head of a chain of pointers.

The list consists of a doubleword header and a chain
of elements. The first word of the header contains a
pointer to the first element in the list. The second
word of the header contains a 32-bit counter indicat-
ing the number of additions that have been made to
the list. Each element contains a pointer to the next
element in the list. A zero value indicates the end of
the list.

The following chart describes the free-pool-list
manipulation.

The following routines allow enabled code to perform
the free-pool-list manipulation described in the above
chart.

ADD TO FREE LIST Routine:

Initial Conditions:

• GR2 contains the address of the element to be
added.

• GR4 contains the address of the header.

ADDQ LM 0,1,0(4) GR0,GR1 = contents of
the header

TRYAGN ST 0,4(2) Point the new element to
the top of the list

LR 3,1 Move the count to GR3
AHI 3,1 Increment the count
CDS 0,2,0(4) Update the header
BC 7,TRYAGN

DELETE FROM FREE LIST Routine:

Initial conditions:

• GR4 contains the address of the header.

DELETQ LM 2,3,0(4) GR2,GR3 = contents
of the header

TRYAGN LTR 2,2 Is the list empty?
BC 8,EMPTY Yes, get help
L 0,4(2) No, GR0 = the pointer

from the first
element

LR 1,3 Move the count to GR1
CDS 2,0,0(4) Update the header
BC 7,TRYAGN

USE [Any instruction] The address of the re-
moved element is in
GR2

Notes:

1. The LM (LOAD MULTIPLE) instructions at loca-
tions ADDQ and DELETQ would have to be CDS
(COMPARE DOUBLE AND SWAP) instructions if
it were not for the rule concerning storage-oper-
and consistency. This rule requires the LOAD
MULTIPLE instructions to fetch an eight-byte
operand aligned on a doubleword boundary such
that, if another CPU changes the doubleword
being fetched by an operation which is also at
least doubleword-consistent, either the entire
new or the entire old value of the doubleword is
obtained, and not a combination of the two. (See
“Storage-Operand Consistency” on page 5-125.)

2. The add-to-free-list and delete-from-free-list
examples shown above assume that the pointer
to the next element in the list is in the second
word of the element, as described “Lock/Unlock
with LIFO Queuing for Contentions” on
page A-48.

PERFORM LOCKED OPERATION
(PLO)

The PERFORM LOCKED OPERATION instruction
can be used in a multiprogramming or multiprocess-
ing environment to perform compare, load, compare-
and-swap, and store operations on two or more dis-
contiguous locations that can be words or double-
words. The operations are performed as an atomic
set of operations under the control of a lock that is
held only for the duration of the execution of a single
PERFORM LOCKED OPERATION instruction, as
opposed to across the execution of multiple instruc-
tions. Since lock contention is resolved by the CPU
and is very brief, the program need not include a
method for dealing with the case when the lock to be

Function
Action

Header = 0,Count Header = A,Count
ADD TO LIST (the
incoming element is
at location A)

Store the first word of the header into location A.
Store the address A into the first word of the
header. Decrement the second word of the
header by one.

DELETE FROM
LIST

The list is empty. Set the first word of the
header to the value of the
contents of location A.
Use element A.

A-52 The z/Architecture CPU Architecture

used is held by a program being executed by another
CPU. Also, there need be no concern that the pro-
gram may be interrupted while it holds a lock, since
PERFORM LOCKED OPERATION will complete its
operation and release its lock before an interruption
can occur.

PERFORM LOCKED OPERATION can be thought of
as performing concurrent interlocked updates of mul-
tiple operands. However, the instruction does not
actually perform any interlocked update, and a seri-
ally reusable resource cannot be updated predictably
through the use of both PERFORM LOCKED OPER-
ATION and conditional-swapping instructions (CS
and CDS).

Following is an example of how PERFORM LOCKED
OPERATION can be used to add an element at the
beginning of a queue.

Assume the following variables associated with the
queue: S, which is a sequence number that is incre-
mented anytime the queue is changed; H (for head),
which is the address of the first element on the
queue; and C, which is a count of the number of ele-
ments on the queue. Assume a queue element con-
tains a variable, F (for forward), which is the address
of the next element on the queue. If a new element,
N, is to be enqueued at the head of the queue, that
can be done by setting F in N to H and then perform-
ing the following atomic set of operations:

S+1 S
A(N) H
C+1 C

where A(N) is the address of N.

The enqueueing of N can be done by means of the
following steps:

1. Obtain consistent values of S, H, and C, meaning
obtain S and obtain the H and C that are consis-
tent with that value of S.

2. Store H in N.F.

3. By means of PLO.csdst (PERFORM LOCKED
OPERATION performing compare and swap and
double store), with S as the swap variable and H
and C as the store variables, add one to S, set H
to A(N), and add one to C, provided that S still
has the value obtained in step 1. If S has already
been changed, go back to step 1.

Consistent values of S, H, and C cannot necessarily
be obtained simply by using three LOAD instructions
because a PERFORM LOCKED OPERATION
instruction being executed by another CPU may have
completed an update of S but not yet of H or C. In
this case, the three LOAD instructions will obtain the
new S but the old H or C. However, as will be
described, it may be possible to use three LOAD
instructions.

If S is obtained while holding the lock, meaning by
means of PERFORM LOCKED OPERATION, then H
and C can be obtained by LOAD instructions since
no other CPU can subsequently change H or C with-
out changing S, as observed when the lock is held.

The parameter list used by the PLO.csdst is as fol-
lows, assuming the access-register mode is not
used:

The program is as follows:

LA RT,H Initialize addresses in
PL (T = temp)

ST RT,PL+76 Op4 address (address of
H)

LA RT,C
ST RT,PL+108 Op6 address (address of

C)
LA RN,N Address of N
ST RN,PL+60 Initialize op3 in PL

(address of N)
LA R1,S PLT address = address

of S
--

SR RS,RS Dummy S. CC1 will
probably be set

SR R0,R0 Function code 0
(compare and load)

0

8

48

56 A(N)

64

72 A(H)

80

88 C+1

96

104 A(C)

A-53

PLO RS,S,RS,S Obtain S while holding
lock

--
LA R0,16 Function code 16 (csdst)

LOOP L RT,H Consistent H
ST RT,OFSTF(,RN) OFSTF = offset of

F in N
L RT,C Consistent C
LA RT,1(,RT) C+1
ST RT,PL+92 Initialize op5 in PL

(C+1)
LA RSP,1(,RS) RS/RSP = even-odd pair.

S+1 in RSP
PLO RS,S,0,PL
BNZ LOOP Br if S changed (if CC

not 0)

Note the following about the first PERFORM
LOCKED OPERATION instruction (PLO.cl). If S is
not zero (which is probably true), S (the second oper-
and, op2) is loaded into RS (the first-operand com-
parison value, op1c). If S is zero, S (the fourth
operand, op4) is loaded into RS (the third operand,
op3). Either of these loads occurs while the lock is
held. It is unnecessary to test the condition code to
determine which load occurred.

The above program may be a simplification. If the
queue has associated with it a variable, T (for tail),
that is the address of the last element on the queue,
and the queue is currently empty, T also must be set
when N is added to the queue. This would require a
different program using a compare-and-swap-and-tri-
ple-store operation.

If the queue is added to, deleted from, and rear-
ranged by means of PERFORM LOCKED OPERA-
TION instructions in which the sequence number, S,
is always the second operand, then, since the defini-
tion of PERFORM LOCKED OPERATION specifies
that the second operand is always stored last, the
first PERFORM LOCKED OPERATION instruction in
the above program can be replaced by a LOAD
instruction. The three instructions within the dashed
lines would be replaced by L RS,S.

Sorting Instructions

Tree Format

Two instructions, COMPARE AND FORM CODE-
WORD and UPDATE TREE, refer to a tree — a data
structure with a specific format. A tree consists of
some number (always odd) of consecutively num-
bered nodes. Node 1 is the root of the tree. Every
node except the root has one parent node in the
same tree. Every parent node has two son nodes.
Every even-numbered node is the leftson of its par-
ent node, and every odd-numbered node (except
node 1) is the rightson of its parent node. Division by
two (ignoring remainder) of the node number gives
the parent node number. Nodes with sons are also
called internal nodes, and nodes without sons are
called terminal nodes. Figure A-5 on page A-54 illus-
trates schematically a 21-node tree with arrows
drawn from each parent node to each son node.

A tree is used for merging several sorted sequences
of records into a single merged sequence of records.
At each step in the merging process, there exists the
initial part of the merged sequence and the remain-
ing parts of each of the sorted sequences that are
being merged. Each step consists in selecting the
lowest record (the record with the lowest key when
sorting in ascending sequence) from all of the as yet
unmerged parts of the sorted sequences and adding
it to the merged sequence. Each terminal node in the
tree represents one of the sorted sequences. The
number of internal nodes in the tree is one less than
the number of sorted sequences. Each internal node
conceptually contains one record from each of the
sorted sequences but one; these are the lowest
records, from all but one of the sorted sequences,
that have not yet been added to the merged
sequence. In addition, there is the lowest record from
the one remaining sorted sequence. This additional
record is compared and interchanged with nodes of
the tree to select the record to be added next to the
merged sequence. This processing begins with the
parent of the terminal node that represents the one
remaining sorted sequence, and it continues from
that node along the path to the root of the tree. The
selected record emerges from the root of the tree.

The tree may perhaps be most easily explained by
considering each node to represent a comparison
operation in an “elimination tournament” to find the
lowest record. After the tournament has been com-

A-54 The z/Architecture CPU Architecture

pleted, each node has an associated “loser” record
which had a higher key in the comparison repre-
sented by that node. Besides a loser record at each
node, there is one record (the “winner”) which is not
associated with any node since it never compared
high. The next step would be to introduce a new
record from the same sorted sequence from which
the winner record originated and replay the tourna-
ment with the new record in place of the former win-
ner. It can be seen that it is unnecessary to do all the
comparisons represented by all the nodes in the
tree — most of them are unaffected by the new
record replacing the former winner. In fact, it is suffi-
cient to redo only those node comparisons in which
the former winner record participated. Each new
record is inserted into the tree at the terminal node
that represents the sorted sequence containing the
record. The use of the tree assumes that program-
ming provides a method of remembering at which
terminal node each winning record originated. The
instruction UPDATE TREE allows for a new record to
be inserted at a terminal node and the tree to be
updated so that a new winner record is left in the
general registers.

Rather than comparing the actual keys of records,
much of the merge logic can be performed using
“codewords” to represent a record key rather than
referring to actual keys. The value of a codeword at a
node in the tree depends not only on the record’s key
but also on the key of the winning record in the last
comparison at that node. The codeword consists of
two parts:

1. Bits 16-31 contain the one’s complement of the
first halfword in which the record key differs from
that of the node’s winning record.

2. Bits 0-15 specify the byte offset of the halfword in
this record’s key just beyond the halfword value
(complemented) in bit positions 16-31.

When comparing records in the path of the last win-
ner record, if the new record is also represented by a
codeword resulting from a comparison with the last
winner, all codewords in the update path are with
respect to the same winner. When comparing such
codewords, a high codeword represents a low key
and vice versa. Thus, when codewords are unequal,
a node entry with a high codeword (representing a
low actual key) should move up the tree.

In the case of a tie value of codewords, it is neces-
sary to refer to the actual keys. This is done by the
instruction COMPARE AND FORM CODEWORD,
which resolves the ambiguity and computes a new
codeword for the high-key (loser) record.

The eight bytes at each node of a tree consist of (1) a
codeword for this record, computed with respect to
the last record which compared low against this
record and (2) a parameter usable to locate this
record, for example, a direct or indirect address.

The instruction UPDATE TREE is so defined that tree
updating stops after equal codewords are detected
and the tie-breaking instruction COMPARE AND
FORM CODEWORD can be used, after which
UPDATE TREE can resume tree updating at the
point where equal codewords were previously found.

COMPARE AND FORM CODEWORD may alterna-
tively be used for merging in descending sequence.
In that case, bits 16-31 of the codeword at a node
contain the true value of the first halfword in which
the record key differs from that of the node’s winning
record. When the descending option of COMPARE
AND FORM CODEWORD is used, the higher of two
codewords represents the higher key.

Figure A-5. Schematic Diagram of Merge Control Tree with
21 Nodes

16 17 18 19 20 21

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1

A-55

Example of Use of Sort
Instructions

An example illustrates how the instructions UPDATE
TREE and COMPARE AND FORM CODEWORD
may be used in the merge operation within a sort pro-
gram. A five-way merge requires a tree data structure
with four internal nodes and five terminal-node posi-
tions. The schematic diagram shown later in this sec-
tion illustrates such a tree, containing four internal
nodes (not counting the dummy node) and five input
sequences for a merge, one sequence at each termi-
nal-node position. Each record in an input sequence
in the diagram is indicated by its address. The actual
record contents are shown in Figure A-7 on
page A-58. Each record contains 16 bytes, consist-
ing of the following fields:

The merge process forms a single sorted sequence
from five input sequences, each of which is in sorted
order. This process can be subdivided into three
steps:

1. A priming step takes the first record from each of
the five input sequences and places them in the
tree data structure. For each record to be intro-
duced into the tree, first its codeword value is
computed with respect to the lowest possible key
value of all zeros. This codeword, with a second
word which contains the address of the actual
record, forms a doubleword node value that can
be placed at the appropriate node. After priming,
the node values, one each from each of the five
input sequences, will have been placed in the
tree so that each of the four internal nodes con-
tains one node value and the node value for a
winner record has emerged from the root of the
tree.

2. After each winner emerges from the tree, the
main merge process is performed repeatedly.

Each iteration introduces the node value for one
new record into the tree and produces a node
value for a new winner record. The tree plus the
winner must at all times contain precisely one
node value from each input sequence being
merged. Therefore, the new node value that is
introduced into the tree on each iteration must
come from the same input sequence from which
the winner node value in the preceding iteration
originated.

3. When the node value for the last record of an
input sequence emerges as a winner, there is no
successor record from that input sequence to be
introduced into the tree on the next iteration.
Hence, the order of the merge must be reduced
by one for each such occurrence. This runout
process will consist of one or more iterations for
each of a four-way, three-way, two-way, and one-
way merge. The onset of runout occurs in the
example when it is found that the next input
record from a sequence is lower than its prede-
cessor (a sequence break).

The priming process is discussed next, and the state
of the tree is shown after priming is complete. Then,
a short program that uses the instructions UPDATE
TREE and COMPARE AND FORM CODEWORD to
perform the main merge is described. An abbreviated
trace is then presented to show the status of the tree
and certain general registers for 16 iterations of the
main merge. The runout process is not discussed in
this example.

Priming begins by forming the node value for the first
record of each input sequence. The first word of the
node value is the codeword formed by executing
COMPARE AND FORM CODEWORD on a record
key containing all binary zeros. The second word of
the node value is the address of the record repre-
sented by that node value. The node values for the
first record of each input sequence are:

In the example, the tree data structure is assumed to
have base address X‘1000’, which is kept in general
register 4 (to match the expected use in UPDATE
TREE). Similarly, internal-node index values and

Byte Offset
(hexadecimal)

Field

0-5 Six-byte record key.
6-7 Halfword node index specifying the input

sequence of the next record of this input
sequence.

8-B Address of the next record in the same
input sequence.

C-F This chaining field is initially zero. At the
completion of the merge, this field is to
contain the address of the next record in
the merged sequence.

Sequence Index Node Values

28 0006 FFFC 0000 1030
30 0006 FFFB 0000 1040
38 0006 FFFA 0000 1050
40 0004 FFFE 0000 1080
48 0006 FFF0 0000 1060

A-56 The z/Architecture CPU Architecture

input-sequence index values are always used from
general register 5.

Although the tree-priming program is not part of this
example, the UPDATE TREE instruction is used in
creating it as follows. First, the codeword position for
each internal node of the tree is initialized to all ones
(X‘FFFF FFFF’). This artifice fills the tree with
dummy low records. Then, for each record in the
table, (1) the sequence index is loaded into general
register 5, (2) the node value is loaded into general
registers 0 and 1, and (3) UPDATE TREE is exe-
cuted. At the completion of this priming process, the
tree-node contents in the example are as shown on
line 0 of Figure A-9 on page A-60. The contents of
the general registers are as shown on the first line of
Figure A-8 on page A-59.

The figure illustrating the program for the main merge
is divided into three groups of columns, containing
the absolute program, the general-register trace, and
the symbolic program. The first part of the program
extends from symbolic locations L1 through L2; it
introduces a new record into the tree and executes
an UPDATE TREE instruction. If no tied codewords
are encountered in UPDATE TREE, then the
BRANCH ON CONDITION instruction following
UPDATE TREE loops back to L1 to introduce the
next record into the tree. This BRANCH ON CONDI-
TION instruction is suitable for use when UPDATE
TREE operates in accordance with either its method
1 (setting condition code 1) or its method 2 (setting
condition code 3). (The preceding sentence applies
to 370-XA. In ESA/370 and ESA/390, UPDATE
TREE operates in accordance with only method 2,
which is not to say that it cannot set condition code 1.
Method 2, but not method 1, tests for the condition
that sets condition code 3.)

If UPDATE TREE encounters tied codewords, then
the UPDATE TREE instruction is completed, the sub-
sequent BRANCH ON CONDITION instruction does
not branch, and control falls through to the second
part of the program, which handles entries with tied
codewords. This part then branches back to UPDATE
TREE at L2, which resumes the tree updating. It is
possible for tied codewords to be encountered at any
level in the tree (or indeed at all levels), so that the
tied-codeword part of the program may be entered
up to three times for each record introduced.

The general-register trace for the first part of the
main merge shows the contents of the first seven
general registers after each instruction is executed

during the first iteration. Note that the merged-chain
field (at 1140) serves as the anchor for the merged-
chain address chain through the records. The trace
shows only the lower half of certain general registers,
whose upper half is always zero.

Figure A-9 on page A-60 gives an abbreviated trace
of the entire main merge of 16 records. For each
record introduced into the tree, there are one or more
lines (always an odd number) given in the figure to
show the tree updating, which results finally in a win-
ner in GR0 and GR1. The first line for each record
shows the values of GR5, GR2, and GR3 before the
first or only execution of UPDATE TREE. For the
even-numbered lines, the storage updating by
UPDATE TREE of tree nodes is shown (read left to
right to follow the order of swapping). For example,
consider line 10 and the corresponding UPDATE
TREE: since GR5 contains 28, the first storage node
examined is 1010 (refer to the schematic diagram).
Since the codeword in GR0 is 0004 FFFE (same as
for GR2), which is less than that of the word at 1010
(0006 FFF0), the doubleword at 1010 is swapped
with that in GR0 and GR1. A second comparison at
1008 in the same execution of UPDATE TREE
causes another register-storage doubleword swap,
which leaves the winner (record 1040) in GR1 at the
completion of UPDATE TREE (see the column at the
far right of Figure A-9 on page A-60).

When a codeword comparison is made which does
not result in a tie or a swap (that is, when the storage-
codeword value is low), an asterisk appears in the
trace for that storage entry.

When equal codewords are found, the execution of
UPDATE TREE is completed. The following line in
each such case shows the result of the tied-code-
word routine, which always stores a new codeword
and may also store a new record address before
branching back to L2 to execute UPDATE TREE
again. In this line, the notation “loses” or “wins”
means that the node loses or wins, respectively.

The tie-break trace part of Figure A-8 on page A-59
shows the treatment of the third record (that is, the
first record for which UPDATE TREE encounters a
tied codeword). This corresponds to line 31 in
Figure A-9 on page A-60.

The following is a summary of the steps that are
needed to use this example for verification purposes:

1. Initialize storage as follows:

A-57

a. 1008 through 102F from line 0 of Figure A-9
on page A-60

b. 1030 through 114F from Figure A-7 on
page A-58

c. 1150 through 1189 from Figure A-8 on
page A-59

2. Initialize GRs per first line in Figure A-8 and trace
first record per Figure A-8.

3. Trace to completion of each UPT or BC 15,L2
(once for each line of Figure A-9). A detailed
trace of the GRs for the tied-codeword part of
line 31 of Figure A-9 is given in the lower part of
Figure A-8.

4. Verify that addresses in the chain beginning at
103C and continuing through 114C are as shown
in the right-hand column of Figure A-7.

Note: Each node and input sequence is identified by a number which is the hexadecimal node index. Each
input sequence is given as a list of record addresses (also in hexadecimal).

Figure A-6. Schematic Diagram for Example of Merge to Be Performed

0: Dummy Node

8: Root Node

10: Node 18: Node

20: Node

28:Input Seq.
1030
1070
10D0
1110
1140

30:Input Seq.
1040
10B0
10C0
1140

38:Input Seq.
1050
1090
10E0
1130

[sequence break]
1050

40:Input Seq.
1080
10F0
1120
1140

48:Input Seq.
1060
10A0
1100
1140

A-58 The z/Architecture CPU Architecture

Location
Record Key at Hex Byte Offset

Successor Record Merged-Chain
AddressIndex Location

0 1 2 3 4 5 6 7 8 9 A B C D E F
1030 0 0 0 0 0 0 0 0 0 0 0 3 0 0 2 8 0 0 0 0 1 0 7 0 0 0 0 0 1 0 4 0
1040 0 0 0 0 0 0 0 0 0 0 0 4 0 0 3 0 0 0 0 0 1 0 B 0 0 0 0 0 1 0 5 0
1050 0 0 0 0 0 0 0 0 0 0 0 5 0 0 3 8 0 0 0 0 1 0 9 0 0 0 0 0 1 0 6 0
1060 0 0 0 0 0 0 0 0 0 0 0 F 0 0 4 8 0 0 0 0 1 0 A 0 0 0 0 0 1 0 8 0
1070 0 0 0 0 0 0 0 1 F F F F 0 0 2 8 0 0 0 0 1 0 D 0 0 0 0 0 1 0 9 0
1080 0 0 0 0 0 0 0 1 F F F F 0 0 4 0 0 0 0 0 1 0 F 0 0 0 0 0 1 0 7 0
1090 0 0 0 0 F F F F 0 0 0 0 0 0 3 8 0 0 0 0 1 0 E 0 0 0 0 0 1 0 A 0
10A0 0 0 0 0 F F F F 0 0 0 1 0 0 4 8 0 0 0 0 1 1 0 0 0 0 0 0 1 0 B 0
10B0 0 0 0 0 F F F F 0 0 0 2 0 0 3 0 0 0 0 0 1 0 C 0 0 0 0 0 1 0 C 0
10C0 0 0 0 0 F F F F 0 0 0 2 0 0 3 0 0 0 0 0 1 1 4 0 0 0 0 0 1 0 D 0
10D0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 8 0 0 0 0 1 1 1 0 0 0 0 0 1 0 E 0
10E0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 3 8 0 0 0 0 1 1 3 0 0 0 0 0 1 0 F 0
10F0 0 0 8 0 0 0 0 2 0 0 4 0 0 0 4 0 0 0 0 0 1 1 2 0 0 0 0 0 1 1 0 0
1100 0 0 8 0 0 0 0 2 0 0 5 0 0 0 4 8 0 0 0 0 1 1 4 0 0 0 0 0 1 1 1 0
1110 0 0 8 0 0 0 0 3 0 0 0 0 0 0 2 8 0 0 0 0 1 1 4 0 0 0 0 0 1 1 2 0
1120 0 0 9 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1 1 4 0 0 0 0 0 1 1 3 0
1130 F F F F F F F F F F F E 0 0 3 8 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0
1140 F F F F F F F F F F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0

Figure A-7. Contents of Records to Be Merged

A-59

Absolute General-Register Trace Symbolic Program
Loc INSTR GR0 GR1 GR2 GR3 GR4 GR5 GR6 Loc Instruction

0006FFFC 1030 0000 1000 0000 1140 Using X'1000',4
' ' ' ' ' '

1150 5010600C ' ' ' ' ' L1 ST 1,12(,6) Store merged-chain address
1154 48501006 ' ' ' ' 0028 ' LH 5,6(,1) Load node index of input

' ' ' ' ' sequence of winner
1158 58301008 ' ' 1070 ' ' L 3,8(,1) Load successor-record address
115C 1861 ' ' ' ' ' 1030 LR 6,1 Save old winner address for

' ' ' ' ' ' next merged-chain store
115E 1B22 ' ' 00000000 ' ' ' ' SR 2,2 Zero GR2 as initial offset
1160 B21A0004 ' ' 0004FFFE ' ' ' ' CFC 4 Compute codeword of new

' ' ' ' ' ' ' record based on new winner
1164 4720418A ' ' ' ' ' ' BC 2,L3 Exit on CC=2 (sequence break)
1168 1813 ' 1070 ' ' ' ' ' LR 1,3

Move new record entry
to GRs 0-1

 ' ' ' ' ' '
116A 1802 0004FFFE ' ' ' ' LR 0,2
116C 0102 0006FFFB 1040 ' ' ' 0000 ' L2 UPT Update tree data structure
116E 47504150 ' ' ' ' ' ' ' BC 5,L1 If no codeword tie found,

 ' branch to next iteration
' * Fall through on tied codewords

00040000 1090 00040000 10B0 ' 0018 1050 * GR values for tie-break trace
' ' ' ' ' '

1172 88200010 ' ' 00000004 ' ' ' ' SRL 2,16 Shift codeword offset to
' ' ' ' ' ' initial offset position
' ' ' ' ' ' for CFC

1176 B21A0004 ' ' 0006FFFD ' ' ' ' CFC 4 Compute loser codeword
117A 50254000 ' ' [CC=1] ' ' ' ' ST 2,0(5,4) Store loser codeword in

' ' ' ' ' ' current storage node
117E 47C0416C branch ' BC 12,L2 Resume tree update if old

taken ' storage-node entry is loser
1182 50354004 ' ST 3,4(5,4) Store loser record address
1186 47F0416C ' BC 15,L2 Resume tree update
118A ... L3 ... Control reaches here at end

Figure A-8. Program for Main Merge

}

A-60 The z/Architecture CPU Architecture

L#

General Regs after CFC
at Location 1160 Storage Trace of Node Entries

General Regs
after UPT or
BC 15,L2

GR5 GR2 GR3 Comment 1020 1018 1010 1008 GR0 GR1
01 0004FFFE 1080 0006FFFA 1050 0006FFF0 1060 0006FFFB 1040 0006FFFC 1030
10 28 0004FFFE 1070 No tie 0004FFFE 1070 0006FFF0 1060 0006FFFB 1040
20 30 00040000 10B0 No tie 00040000 10B0 * 0006FFFA 1050
30 38 00040000 1090 CC = 0 Tie 00040000 1090
31 Loses 0006FFFD 00040000 1090
32 No tie 00040000 1090 0006FFF0 1060
40 48 00040000 10A0 CC = 0 00040000 10A0 Tie 0004FFFE 1080
41 Equal 80001070 0004FFFE 1080
42 No tie * 0004FFFE 1080
50 40 0002FF7F 10F0 No tie 0002FF7F 10F0 00040000 10A0 ** 80001070 1070
60 28 0002FFFE 10D0 CC = 0 0002FFFE 10D0 Tie 00040000 10A0
61 Wins 0006FFFE 10A0 00040000 1090
62 No comp 00040000 1090
70 38 0002FF7F 10E0 No tie 0002FF7F 10E0 0006FFFD 10B0 0006FFFE 10A0
80 48 0002FF7F 1100 CC = 0 Tie 0002FF7F 1100
81 Wins 0006FFAF 1100 0002FF7F 10F0
82 No tie 0002FF7F 10F0 0002FFFE 10D0 0006FFFD 10B0
90 30 800010C0 10C0 No tie * * 800010C0 10C0
100 30 00020000 1140 No tie 00020000 1140 0002FF7F 10E0 0002FFFE 10D0
110 28 0002FF7F 1110 CC = 0 Tie 0002FF7F 1110
111 Wins 0004FFFC 1110 0002FF7F 10F0
112 CC = 0 Tie 0002FF7F 10F0
113 Wins 0004FFFD 10F0 0002FF7F 10E0
114 No comp 0002FF7F 10E0
120 38 00020000 1130 CC = 0 Tie 00020000 1130
121 Loses 00060000 00020000 1130
122 No tie 00020000 1130 0004FFFD 10F0
130 40 0002FF6F 1120 No tie 0002FF6F 1120 * * 0006FFAF 1100
140 48 00020000 1140 No tie 00020000 1140 0002FF6F 1120 * 0004FFFC 1110
150 28 00020000 1140 No tie 00020000 1140 * 0002FF6F 1120
160 40 00020000 1140 CC = 0 Tie 00020000 1140
161 Equal 80001140 00020000 1140
162 CC = 0 Tie 00020000 1140
163 Equal 80001140 00020000 1140
164 CC = 0 Tie 00020000 1140
165 Wins 00060000 1140 00020000 1130
166 No comp 00020000 1130
170 38 00020000 1050 Branch

Explanation:
1 Line 0 shows the values in the tree after it is primed.
* Means no swap.
** Means no swap if UPDATE TREE method 1 is used or no examination if UPDATE TREE method 2 is

used. Only method 2 is included in ESA/370 and ESA/390.
CC = 0 UPDATE TREE finds a tie and sets condition code 0.
Loses The tied-codeword routine finds that the node loses.
Wins The tied-codeword routine finds that the node wins.
Equal The tied-codeword routine finds that the keys are equal.
Branch Branches to terminate at 118A on sequence break.
No compNo compare.

Figure A-9. Abbreviated Trace of Main Merge Processing

B-1© Copyright IBM Corp. 2000, 2019

Appendix B. Lists of Instructions

The following figures list instructions by name, mne-
monic, and operation code. Some models may offer
instructions that do not appear in the figures, such as
those provided for assists or as part of special or cus-
tom features.

The operation code for the interpretive execution
facility is not included in this appendix. See the publi-
cation IBM System/370 Extended Architecture Inter-
pretive Execution, SA22-7095, for the operation code
associated with that facility.

The operation code 00 hex with a two-byte instruction
format is allocated for use by the program when an
indication of an invalid operation is required. Opera-
tion code 00 hex will never be assigned to an instruc-
tion implemented in the CPU.

Explanation of Symbols in “Characteristics” Col-
umns:

$ Causes serialization.
¢ Causes serialization and checkpoint syn-

chronization.
£ Causes specific-operand serialization.
¢1 Causes serialization and checkpoint syn-

chronization when the M1 and R2 fields con-
tain 1111 binary and 0000 binary,
respectively. Causes only serialization when
the fast-BCR-serialization facility is installed,
and the M1 and R2 fields contain 1110 binary
and 0000 binary, respectively.

£1 Causes specific-operand serialization when
the interlocked-access facility 1 is installed
and the storage operand is aligned on an
integral boundary corresponding to its size.

¤1 Restricted from transactional execution.
¢2 Causes serialization and checkpoint syn-

chronization when the state entry to be
unstacked is a program-call state entry.

£2 Causes specific-operand serialization when
the interlocked-access facility 2 is installed.

¤2 Restricted from transactional execution when
R2 nonzero and branch tracing is enabled.

¢3 Causes serialization and checkpoint syn-
chronization when the set-key control is one.

¤3 Restricted from transactional execution when
mode tracing is enabled.

¢4 Causes serialization and checkpoint syn-
chronization when the KFC value is 4 or 5.

¤4 Restricted from transactional execution when
a monitor-event condition occurs.

¤5 Model dependent whether the instruction is
restricted from transactional execution.

¤6 Restricted from transactional execution when
the effective allow-AR-modification control is
zero.

¤7 Restricted from transactional execution when
the effective allow-floating-point-operation
control is zero.

¤8 May be restricted from transactional execu-
tion depending on machine conditions.

¤9 Restricted in the constrained transactional-
execution mode; a transaction-constraint
program exception may be recognized. For
STCMH, the instruction is restricted only
when the M3 field is zero.

¤10 Restricted to forward branches in the con-
strained transactional-execution mode.

¤11 For PFD and PFDRL, it is model dependent
whether the instruction is restricted from
transactional execution when the code in the
M1 field is 6 or 7; for STCMH, it is model
dependent whether the instruction is
restricted when the M3 field is zero and the
code in the R1 field is 6 or 7.

¤12 Restricted from transactional execution when
a guarded-storage event is recognized.
When in the transactional-execution mode,
the transaction is aborted, and the guarded-
storage event is processed.

A* Access exceptions for logical addresses. The
optional asterisk indicates that a PER ZAD
event is not recognized.

A1* Access exceptions; not all access exceptions
may occur; see instruction description for
details. The optional asterisk indicates that a
PER ZAD event is not recognized.

AI Access exceptions for instruction address.
B PER branch event. (For LGG and LLGFSG,

the PER branch event is only recognized
coincident with a guarded-storage event.)

B-2 The z/Architecture CPU Architecture

B† B1 field designates an access register when
bit 47 of GR0 is zero, and bits 16-17 of the
current PSW are 01 binary; or when bit 47 of
GR0 is one, and bits 40-41 of GR0 are 01
binary.

B‡ B2 field designates an access register when
bit 63 of GR0 is zero, and bits 16-17 of the
current PSW are 01 binary; or when bit 63 of
GR0 is one, and bits 56-57 of GR0 are 01
binary.

B1 B1 field designates an access register in the
access-register mode.

B2 B2 field designates an access register in the
access-register mode.

B4 B4 field designates an access register in the
access-register mode.

BP B2 field designates an access register when
PSW bits 16 and 17 have the value 01.

C Condition code is set.
C* Condition code is optionally set.
C1 Condition code is set when the conditional-

SSKE facility is installed, and either or both
of the MR and MC bits are one.

CS Compare-and-swap-and-store facility.
CT Configuration-topology facility.
CX Constrained transactional-execution facility.
D2 DAT-enhancement facility 2.
Da AFP-register data exception.
Db BFP-instruction data exception.
Dc Compare-and-trap data exception.
DE DAT-enhancement facility.
DF Decimal-overflow exception.
DF* Decimal-overflow exception conditionally

recognized.
Dg General-operand data exception.
DK Decimal-divide exception.
DM Depending on the model, DIAGNOSE may

generate various program exceptions and
may change the condition code.

DO Distinct-operands facility.
Dt DFP-instruction data exception.
Dv Vector-instruction data exception.
E E instruction format.
E2 Extended-translation facility 2.
E3 Extended-translation facility 3.
ED1 Enhanced-DAT facility 1.
ED2 Enhanced-DAT facility 2.
EH Execution-hint facility.

EI Extended-immediate facility.
EO HFP-exponent-overflow exception.
ES Expanded-storage facility.
ET Extract-CPU-time facility.
EU HFP-exponent-underflow exception.
EX Execute exception.
F Floating-point-extension facility.
FC Designation of access registers depends on

the function code of the instruction.
FG FPR-GR-transfer facility.
FK HFP-divide exception.
FL Store-facility-list-extended facility.
FS Floating-point-support-sign-handling facility.
G0 Instruction execution includes the implied

use of general register 0.
G1 Instruction execution includes the implied

use of general register 1.
G2 Instruction execution includes the implied

use of general register 2.
G4 Instruction execution includes the implied

use of general register 4.
GE General-instructions-extension facility.
GF Guarded-storage facility.
GM Instruction execution includes the implied

use of multiple general registers.
GS Instruction execution includes the implied

use of general register 1 as the subsystem-
identification word.

GZ DEFLATE-conversion facility.
HM HFP-multiply-add/subtract facility.
HW High-word facility.
I I instruction format.
I1 Access register 1 is implicitly designated in

the access-register mode.
I4 Access register 4 is implicitly designated in

the access-register mode.
IA Interlocked-access facility.
IC Condition code alternative to interruptible

instruction.
IE IE instruction format.
IF Fixed-point-overflow exception.
IF* Fixed-point-overflow exception conditionally

recognized.
II Interruptible instruction.
IK Fixed-point-divide exception.
IM Insert-reference-bits-multiple facility
K PER storage-key-alteration event.
L New condition code is loaded.

B-3

L1 Load/store-on-condition facility 1.
L2 Load/store-on-condition facility 2.
LD Long-displacement facility.
LS HFP-significance exception.
LT Load-and-trap facility.
LZ Load-and-zero-rightmost-byte facility.
M3 Message-security assist extension 3.
M4 Message-security assist extension 4.
M5 Message-security assist extension 5.
M8 Message-security assist extension 8.
M9 Message-security assist extension 9.
MD Designation of access registers in the

access-register mode is model-dependent.
ME Monitor event.
MI1 Miscellaneous-instruction-extensions facility

1.
MI2 Miscellaneous-instruction-extensions facility

2.
MI3 Miscellaneous-instruction-extensions facility

3.
MII MII instruction format.
MO Move-with-optional-specifications facility.
MS Message-security assist.
N Instruction is new in z/Architecture as com-

pared to ESA/390.
N3 Instruction is new in z/Architecture and has

been added to ESA/390.
OP Operand exception.
P Privileged-operation exception; also,

restricted from transactional execution.
PA Processor-assist facility.
PC DFP packed-conversion facility.
PE Parsing-enhancement facility.
PF PFPO facility.
PK Population-count facility.
Q Privileged-operation exception for semiprivi-

leged instructions; also, restricted from trans-
actional execution.

R1 R1 field designates an access register in the
access-register mode.

R2 R2 field designates an access register in the
access-register mode.

R3 R3 field designates an access register in the
access-register mode.

RA Reusable-ASN-and-LX facility.
RB Reset-reference-bits-multiple facility.
RI RI instruction format.
RIE RIE instruction format.

RIL RIL instruction format.
RIS RIS instruction format.
RM R1 field designates an access register in the

access-register mode, and access-register 1
also is used in the access-register mode.

RR RR instruction format.
RRD RRD instruction format.
RRE RRE instruction format.
RRF RRF instruction format.
RRS RRS instruction format.
RS RS instruction format.
RSI RSI instruction format.
RSL RSL instruction format.
RSY RSY instruction format.
RX RX instruction format.
RXE RXE instruction format.
RXF RXF instruction format.
RXY RXY instruction format.
S S instruction format.
SC Store-clock-fast facility.
SE Special operation, stack-empty, stack-speci-

fication, and stack-type exceptions.
SF Special-operation, stack-full, and stack-spec-

ification exceptions.
SI SI instruction format.
SIL SIL instruction format.
SIY SIY instruction format.
SMI SMI instruction format.
SO Special-operation exception.
SP Specification exception.
SQ HFP-square-root exception.
SS SS instruction format.
SSE SSE instruction format.
SSF SSF instruction format.
ST PER storage-alteration event. (For LGG and

LLGFSG, the PER storage-alteration event is
only recognized coincident with a guarded-
storage event.)

SU PER store-using-real-address event.
SW Special-operation exception and space-

switch event.
T Trace exceptions (which include trace table,

addressing, and low-address protection).
TE Test-pending-external-interruption facility.
TF Decimal-floating-point facility.
TR Decimal-floating-point-rounding facility.
TS TOD-clock-steering facility.

B-4 The z/Architecture CPU Architecture

TX Transactional-execution facility.
U Condition code is unpredictable.
U1 R1 field designates an access register

unconditionally.
U2 R2 field designates an access register

unconditionally.
UB R1 and R3 fields designate access registers

unconditionally, and B2 field designates an
access register in the access-register mode.

UE HFP unnormalized-extensions facility.
V1 Vector-enhancements facility 1.
V2 Vector-enhancements facility 2.
VD Vector packed-decimal facility.
VF Vector facility for z/Architecture.
VRI VRI instruction format.
VRR VRR instruction format.
VRS VRS instruction format.
VRV VRV instruction format.
VRX VRX instruction format.
VSI VSI instruction format.
WE Space-switch event.
XF IEEE-exception-simulation facility.
Xg Simulated IEEE exception.
Xi IEEE invalid-operation data or vector-pro-

cessing exception.
Xo IEEE overflow data or vector-processing

exception.
Xq Quantum data exception (if the floating-point

extension facility is installed).
Xu IEEE underflow data or vector-processing

exception.
XX Execute-extension facility.
Xx IEEE inexact data or vector-processing

exception.
Xz IEEE division-by-zero data or vector-pro-

cessing exception.
Z1 Additional exceptions and events for PRO-

GRAM CALL (which include ASX-translation,
EX-translation, LX-translation, PC-transla-
tion-specification, special-operation, stack-
full, and stack-specification exceptions and
space-switch event).

Z2 Additional exceptions and events for PRO-
GRAM TRANSFER (which include AFX-
translation, ASX-translation, primary-author-
ity, and special-operation exceptions and
space-switch event).

Z3 Additional exceptions for SET SECONDARY
ASN (which include AFX translation, ASX
translation, secondary authority, and special
operation).

Z4 Additional exceptions and events for PRO-
GRAM RETURN (which include AFX-trans-
lation, ASX-translation, secondary-authority,
special-operation, stack-empty, stack-opera-
tion, stack-specification, and stack-type
exceptions and space-switch event).

Z5 Additional exceptions for BRANCH AND
STACK (which include special operation,
stack full, and stack specification).

Z6 Additional exceptions and events for PRO-
GRAM TRANSFER WITH INSTANCE (which
include AFX-translation, ASTE-instance,
ASX-translation, primary-authority, special-
operation, and subspace-replacement
exceptions and space-switch event).

Z7 Additional exceptions for SET SECONDARY
ASN WITH INSTANCE (which include AFX
translation, ASTE instance, ASX translation,
secondary authority, special operation, and
subspace replacement).

ZF Decimal-floating-point-zoned-conversion
facility.

B-5

Instructions Arranged by Name

Name
Mne-

monic Characteristics
Op-

code Page
ADD (32) A RX-a C A IF B2 5A 7-26
ADD (32) AR RR C IF 1A 7-25
ADD (32) ARK RRF-a C DO IF B9F8 7-25
ADD (32) AY RXY-a C LD A IF B2 E35A 7-26
ADD (64) AG RXY-a C N A IF B2 E308 7-26
ADD (64) AGR RRE C N IF B908 7-25
ADD (64) AGRK RRF-a C DO IF B9E8 7-25
ADD (6432) AGF RXY-a C N A IF B2 E318 7-26
ADD (6432) AGFR RRE C N IF B918 7-25
ADD (extended BFP) AXBR RRE C ¤7,9 SP Db Xi Xo Xu Xx B34A 19-15
ADD (extended DFP) AXTR RRF-a C TF ¤7,9 SP Dt Xi Xo Xu Xx B3DA 20-19
ADD (extended DFP) AXTRA RRF-a C F ¤7,9 SP Dt Xi Xo Xu Xx Xq B3DA 20-19
ADD (long BFP) ADB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED1A 19-15
ADD (long BFP) ADBR RRE C ¤7,9 Db Xi Xo Xu Xx B31A 19-15
ADD (long DFP) ADTR RRF-a C TF ¤7,9 Dt Xi Xo Xu Xx B3D2 20-19
ADD (long DFP) ADTRA RRF-a C F ¤7,9 Dt Xi Xo Xu Xx Xq B3D2 20-19
ADD (short BFP) AEB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED0A 19-15
ADD (short BFP) AEBR RRE C ¤7,9 Db Xi Xo Xu Xx B30A 19-15
ADD DECIMAL AP SS-b C ¤9 A Dg DF ST B1 B2 FA 8-6
ADD HALFWORD (3216) AH RX-a C A IF B2 4A 7-27
ADD HALFWORD (3216) AHY RXY-a C LD A IF B2 E37A 7-27
ADD HALFWORD (6416) AGH RXY-a C MI2 A IF B2 E338 7-28
ADD HALFWORD IMMEDIATE (3216) AHI RI-a C IF A7A 7-28
ADD HALFWORD IMMEDIATE (6416) AGHI RI-a C N IF A7B 7-28
ADD HIGH (32) AHHHR RRF-a C HW IF B9C8 7-28
ADD HIGH (32) AHHLR RRF-a C HW IF B9D8 7-28
ADD IMMEDIATE (32) AFI RIL-a C EI IF C29 7-26
ADD IMMEDIATE (3216) AHIK RIE-d C DO IF ECD8 7-26
ADD IMMEDIATE (328) ASI SIY C GE A IF £1 ST B1 EB6A 7-26
ADD IMMEDIATE (6416) AGHIK RIE-d C DO IF ECD9 7-26
ADD IMMEDIATE (6432) AGFI RIL-a C EI IF C28 7-26
ADD IMMEDIATE (648) AGSI SIY C GE A IF £1 ST B1 EB7A 7-26
ADD IMMEDIATE HIGH (32) AIH RIL-a C HW IF CC8 7-29
ADD LOGICAL (32) AL RX-a C A B2 5E 7-29
ADD LOGICAL (32) ALR RR C 1E 7-29
ADD LOGICAL (32) ALRK RRF-a C DO B9FA 7-29
ADD LOGICAL (32) ALY RXY-a C LD A B2 E35E 7-29
ADD LOGICAL (64) ALG RXY-a C N A B2 E30A 7-29
ADD LOGICAL (64) ALGR RRE C N B90A 7-29
ADD LOGICAL (64) ALGRK RRF-a C DO B9EA 7-29
ADD LOGICAL (6432) ALGF RXY-a C N A B2 E31A 7-29
ADD LOGICAL (6432) ALGFR RRE C N B91A 7-29
ADD LOGICAL HIGH (32) ALHHHR RRF-a C HW B9CA 7-30
ADD LOGICAL HIGH (32) ALHHLR RRF-a C HW B9DA 7-30
ADD LOGICAL IMMEDIATE (32) ALFI RIL-a C EI C2B 7-29
ADD LOGICAL IMMEDIATE (6432) ALGFI RIL-a C EI C2A 7-29
ADD LOGICAL WITH CARRY (32) ALC RXY-a C N3 A B2 E398 7-30
ADD LOGICAL WITH CARRY (32) ALCR RRE C N3 B998 7-30
ADD LOGICAL WITH CARRY (64) ALCG RXY-a C N A B2 E388 7-30
ADD LOGICAL WITH CARRY (64) ALCGR RRE C N B988 7-30

Figure B-1. Instructions Arranged by Name (Part 1 of 24)

B-6 The z/Architecture CPU Architecture

ADD LOGICAL WITH SIGNED IMMEDIATE
(3216)

ALHSIK RIE-d C DO ECDA 7-31

ADD LOGICAL WITH SIGNED IMMEDIATE (328) ALSI SIY C GE A £1 ST B1 EB6E 7-31
ADD LOGICAL WITH SIGNED IMMEDIATE
(6416)

ALGHSIK RIE-d C DO ECDB 7-31

ADD LOGICAL WITH SIGNED IMMEDIATE (648) ALGSI SIY C GE A £1 ST B1 EB7E 7-31
ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
(32)

ALSIH RIL-a C HW CCA 7-32

ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
(32)

ALSIHN RIL-a HW CCB 7-32

ADD NORMALIZED (extended HFP) AXR RR C ¤7,9 SP Da EU EO LS 36 18-8
ADD NORMALIZED (long HFP) AD RX-a C ¤7,9 A Da EU EO LS B2 6A 18-8
ADD NORMALIZED (long HFP) ADR RR C ¤7,9 Da EU EO LS 2A 18-8
ADD NORMALIZED (short HFP) AE RX-a C ¤7,9 A Da EU EO LS B2 7A 18-8
ADD NORMALIZED (short HFP) AER RR C ¤7,9 Da EU EO LS 3A 18-8
ADD UNNORMALIZED (long HFP) AW RX-a C ¤7,9 A Da EO LS B2 6E 18-9
ADD UNNORMALIZED (long HFP) AWR RR C ¤7,9 Da EO LS 2E 18-9
ADD UNNORMALIZED (short HFP) AU RX-a C ¤7,9 A Da EO LS B2 7E 18-9
ADD UNNORMALIZED (short HFP) AUR RR C ¤7,9 Da EO LS 3E 18-9
AND (32) N RX-a C A B2 54 7-32
AND (32) NR RR C 14 7-32
AND (32) NRK RRF-a C DO B9F4 7-32
AND (32) NY RXY-a C LD A B2 E354 7-33
AND (64) NG RXY-a C N A B2 E380 7-33
AND (64) NGR RRE C N B980 7-32
AND (64) NGRK RRF-a C DO B9E4 7-32
AND (character) NC SS-a C ¤9 A ST B1 B2 D4 7-33
AND (immediate) NI SI C A £2 ST B1 94 7-33
AND (immediate) NIY SIY C LD A £2 ST B1 EB54 7-33
AND IMMEDIATE (high high) NIHH RI-a C N A54 7-34
AND IMMEDIATE (high low) NIHL RI-a C N A55 7-34
AND IMMEDIATE (high) NIHF RIL-a C EI C0A 7-34
AND IMMEDIATE (low high) NILH RI-a C N A56 7-34
AND IMMEDIATE (low low) NILL RI-a C N A57 7-34
AND IMMEDIATE (low) NILF RIL-a C EI C0B 7-34
AND WITH COMPLEMENT(32) NCRK RRF-a C MI3 B9F5 7-34
AND WITH COMPLEMENT(64) NCGRK RRF-a C MI3 B9E5 7-34
BRANCH AND LINK BAL RX-a ¤9 B 45 7-35
BRANCH AND LINK BALR RR ¤2,9 T B 05 7-35
BRANCH AND SAVE BAS RX-a ¤9 B 4D 7-36
BRANCH AND SAVE BASR RR ¤2,9 T B 0D 7-36
BRANCH AND SAVE AND SET MODE BASSM RR ¤2,3,9 T B 0C 7-36
BRANCH AND SET AUTHORITY BSA RRE Q A1* SO T B B25A 10-7
BRANCH AND SET MODE BSM RR ¤3,9 T B 0B 7-37
BRANCH AND STACK BAKR RRE ¤1 A1* Z5 T B ST B240 10-11
BRANCH IN SUBSPACE GROUP BSG RRE ¤1 A1* SO T B R2 B258 10-13
BRANCH INDIRECT ON CONDITION BIC RXY-b MI2 ¤9 A B B2 E347 7-38
BRANCH ON CONDITION BC RX-b ¤9 B 47 7-39
BRANCH ON CONDITION BCR RR ¤9 ¢1 B 07 7-39
BRANCH ON COUNT (32) BCT RX-a ¤9 B 46 7-40
BRANCH ON COUNT (32) BCTR RR ¤9 B 06 7-40
BRANCH ON COUNT (64) BCTG RXY-a N ¤9 B E346 7-40
BRANCH ON COUNT (64) BCTGR RRE N ¤9 B B946 7-40
BRANCH ON INDEX HIGH (32) BXH RS-a ¤9 B 86 7-41
BRANCH ON INDEX HIGH (64) BXHG RSY-a N ¤9 B EB44 7-41
BRANCH ON INDEX LOW OR EQUAL (32) BXLE RS-a ¤9 B 87 7-41

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 2 of 24)

B-7

BRANCH ON INDEX LOW OR EQUAL (64) BXLEG RSY-a N ¤9 B EB45 7-41
BRANCH PREDICTION PRELOAD BPP SMI EH ¤9 C7 7-42
BRANCH PREDICTION RELATIVE PRELOAD BPRP MII EH ¤9 C5 7-42
BRANCH RELATIVE AND SAVE BRAS RI-b ¤9 B A75 7-45
BRANCH RELATIVE AND SAVE LONG BRASL RIL-b N3 ¤9 B C05 7-45
BRANCH RELATIVE ON CONDITION BRC RI-c ¤10 B A74 7-46
BRANCH RELATIVE ON CONDITION LONG BRCL RIL-c N3 ¤10 B C04 7-46
BRANCH RELATIVE ON COUNT (32) BRCT RI-b ¤9 B A76 7-47
BRANCH RELATIVE ON COUNT (64) BRCTG RI-b N ¤9 B A77 7-47
BRANCH RELATIVE ON COUNT HIGH (32) BRCTH RIL-b HW ¤9 B CC6 7-47
BRANCH RELATIVE ON INDEX HIGH (32) BRXH RSI ¤9 B 84 7-47
BRANCH RELATIVE ON INDEX HIGH (64) BRXHG RIE-e N ¤9 B EC44 7-47
BRANCH RELATIVE ON INDEX LOW OR EQ. (32) BRXLE RSI ¤9 B 85 7-47
BRANCH RELATIVE ON INDEX LOW OR EQ. (64) BRXLG RIE-e N ¤9 B EC45 7-48
CANCEL SUBCHANNEL XSCH S C P OP ¢ GS B276 14-3
CHECKSUM CKSM RRE C ¤9 A SP IC R2 B241 7-49
CIPHER MESSAGE KM RRE C MS ¤5,9 A SP IC GM I1 ST R1 R2 B92E 7-52
CIPHER MESSAGE WITH AUTHENTICATION KMA RRF-b C M8 ¤5,9 A SP IC GM I1 ST R1 R2 R3 B929 7-77
CIPHER MESSAGE WITH CHAINING KMC RRE C MS ¤5,9 A SP IC GM I1 ST R1 R2 B92F 7-52
CIPHER MESSAGE WITH CIPHER FEEDBACK KMF RRE C M4 ¤5,9 A SP IC GM I1 ST R1 R2 B92A 7-91
CIPHER MESSAGE WITH COUNTER KMCTR RRF-b C M4 ¤5,9 A SP IC GM I1 ST R1,R2,R3 B92D 7-106
CIPHER MESSAGE WITH OUTPUT FEEDBACK KMO RRE C M4 ¤5,9 A SP IC GM I1 ST R1 R2 B92B 7-119
CLEAR SUBCHANNEL CSCH S C P OP ¢ GS B230 14-5
COMPARE (32) C RX-a C A B2 59 7-133
COMPARE (32) CR RR C 19 7-133
COMPARE (32) CY RXY-a C LD A B2 E359 7-133
COMPARE (64) CG RXY-a C N A B2 E320 7-133
COMPARE (64) CGR RRE C N B920 7-133
COMPARE (6432) CGF RXY-a C N A B2 E330 7-133
COMPARE (6432) CGFR RRE C N B930 7-133
COMPARE (extended BFP) CXBR RRE C ¤7,9 SP Db Xi B349 19-17
COMPARE (extended DFP) CXTR RRE C TF ¤7,9 SP Dt Xi B3EC 20-22
COMPARE (extended HFP) CXR RRE C ¤7,9 SP Da B369 18-10
COMPARE (long BFP) CDB RXE C ¤7,9 A Db Xi B2 ED19 19-17
COMPARE (long BFP) CDBR RRE C ¤7,9 Db Xi B319 19-17
COMPARE (long DFP) CDTR RRE C TF ¤7,9 Dt Xi B3E4 20-22
COMPARE (long HFP) CD RX-a C ¤7,9 A Da B2 69 18-10
COMPARE (long HFP) CDR RR C ¤7,9 Da 29 18-10
COMPARE (short BFP) CEB RXE C ¤7,9 A Db Xi B2 ED09 19-17
COMPARE (short BFP) CEBR RRE C ¤7,9 Db Xi B309 19-17
COMPARE (short HFP) CE RX-a C ¤7,9 A Da B2 79 18-10
COMPARE (short HFP) CER RR C ¤7,9 Da 39 18-10
COMPARE AND BRANCH (32) CRB RRS GE ¤9 B ECF6 7-134
COMPARE AND BRANCH (64) CGRB RRS GE ¤9 B ECE4 7-134
COMPARE AND BRANCH RELATIVE (32) CRJ RIE-b GE ¤10 B EC76 7-134
COMPARE AND BRANCH RELATIVE (64) CGRJ RIE-b GE ¤10 B EC64 7-135
COMPARE AND FORM CODEWORD CFC S C ¤9 A SP II GM I1 B21A 7-136
COMPARE AND REPLACE DAT TABLE ENTRY CRDTE RRF-b ED2 P A1 SP $ B98F 10-17
COMPARE AND SIGNAL (extended BFP) KXBR RRE C ¤7,9 SP Db Xi B348 19-18
COMPARE AND SIGNAL (extended DFP) KXTR RRE C TF ¤7,9 SP Dt Xi B3E8 20-23
COMPARE AND SIGNAL (long BFP) KDB RXE C ¤7,9 A Db Xi B2 ED18 19-18
COMPARE AND SIGNAL (long BFP) KDBR RRE C ¤7,9 Db Xi B318 19-18
COMPARE AND SIGNAL (long DFP) KDTR RRE C TF ¤7,9 Dt Xi B3E0 20-23
COMPARE AND SIGNAL (short BFP) KEB RXE C ¤7,9 A Db Xi B2 ED08 19-18
COMPARE AND SIGNAL (short BFP) KEBR RRE C ¤7,9 Db Xi B308 19-18

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 3 of 24)

B-8 The z/Architecture CPU Architecture

COMPARE AND SWAP (32) CS RS-a C ¤9 A SP $ ST B2 BA 7-143
COMPARE AND SWAP (32) CSY RSY-a C LD ¤9 A SP $ ST B2 EB14 7-143
COMPARE AND SWAP (64) CSG RSY-a C N ¤9 A SP $ ST B2 EB30 7-143
COMPARE AND SWAP AND PURGE (32) CSP RRE C P A1 SP $ ST R2 B250 10-21
COMPARE AND SWAP AND PURGE (64) CSPG RRE C DE P A1 SP $ ST R2 B98A 10-21
COMPARE AND SWAP AND STORE CSST SSF C CS ¤1 A SP $ GM ST B1 B2 C82 7-145
COMPARE AND TRAP (32) CRT RRF-c GE Dc B972 7-148
COMPARE AND TRAP (64) CGRT RRF-c GE Dc B960 7-148
COMPARE BIASED EXPONENT (extended DFP) CEXTR RRE C TF ¤7,9 SP Dt B3FC 20-23
COMPARE BIASED EXPONENT (long DFP) CEDTR RRE C TF ¤7,9 Dt B3F4 20-23
COMPARE DECIMAL CP SS-b C ¤9 A Dg B1 B2 F9 8-7
COMPARE DOUBLE AND SWAP (32) CDS RS-a C ¤9 A SP $ ST B2 BB 7-143
COMPARE DOUBLE AND SWAP (32) CDSY RSY-a C LD ¤9 A SP $ ST B2 EB31 7-143
COMPARE DOUBLE AND SWAP (64) CDSG RSY-a C N ¤9 A SP $ ST B2 EB3E 7-143
COMPARE HALFWORD (3216) CH RX-a C A B2 49 7-149
COMPARE HALFWORD (3216) CHY RXY-a C LD A B2 E379 7-149
COMPARE HALFWORD (6416) CGH RXY-a C GE A B2 E334 7-149
COMPARE HALFWORD IMMEDIATE (1616) CHHSI SIL C GE A B1 E554 7-149
COMPARE HALFWORD IMMEDIATE (3216) CHI RI-a C A7E 7-149
COMPARE HALFWORD IMMEDIATE (3216) CHSI SIL C GE A B1 E55C 7-149
COMPARE HALFWORD IMMEDIATE (6416) CGHI RI-a C N A7F 7-149
COMPARE HALFWORD IMMEDIATE (6416) CGHSI SIL C GE A B1 E558 7-149
COMPARE HALFWORD RELATIVE LONG (3216) CHRL RIL-b C GE A* C65 7-149
COMPARE HALFWORD RELATIVE LONG (6416) CGHRL RIL-b C GE A* C64 7-149
COMPARE HIGH (32) CHF RXY-a C HW A B2 E3CD 7-150
COMPARE HIGH (32) CHHR RRE C HW B9CD 7-150
COMPARE HIGH (32) CHLR RRE C HW B9DD 7-150
COMPARE IMMEDIATE (32) CFI RIL-a C EI C2D 7-133
COMPARE IMMEDIATE (6432) CGFI RIL-a C EI C2C 7-134
COMPARE IMMEDIATE AND BRANCH (328) CIB RIS GE ¤9 B ECFE 7-135
COMPARE IMMEDIATE AND BRANCH (648) CGIB RIS GE ¤9 B ECFC 7-135
COMPARE IMMEDIATE AND BRANCH RELATIVE
(328)

CIJ RIE-c GE ¤10 B EC7E 7-135

COMPARE IMMEDIATE AND BRANCH RELATIVE
(648)

CGIJ RIE-c GE ¤10 B EC7C 7-135

COMPARE IMMEDIATE AND TRAP (3216) CIT RIE-a GE Dc EC72 7-148
COMPARE IMMEDIATE AND TRAP (6416) CGIT RIE-a GE Dc EC70 7-148
COMPARE IMMEDIATE HIGH (32) CIH RIL-a C HW CCD 7-150
COMPARE LOGICAL (32) CL RX-a C A B2 55 7-151
COMPARE LOGICAL (32) CLR RR C 15 7-151
COMPARE LOGICAL (32) CLY RXY-a C LD A B2 E355 7-151
COMPARE LOGICAL (64) CLG RXY-a C N A B2 E321 7-151
COMPARE LOGICAL (64) CLGR RRE C N B921 7-151
COMPARE LOGICAL (6432) CLGF RXY-a C N A B2 E331 7-151
COMPARE LOGICAL (6432) CLGFR RRE C N B931 7-151
COMPARE LOGICAL (character) CLC SS-a C ¤9 A B1 B2 D5 7-151
COMPARE LOGICAL (immediate) CLI SI C A B1 95 7-151
COMPARE LOGICAL (immediate) CLIY SIY C LD A B1 EB55 7-151
COMPARE LOGICAL AND BRANCH (32) CLRB RRS GE ¤9 B ECF7 7-153
COMPARE LOGICAL AND BRANCH (64) CLGRB RRS GE ¤9 B ECE5 7-153
COMPARE LOGICAL AND BRANCH RELATIVE
(32)

CLRJ RIE-b GE ¤10 B EC77 7-153

COMPARE LOGICAL AND BRANCH RELATIVE
(64)

CLGRJ RIE-b GE ¤10 B EC65 7-153

COMPARE LOGICAL AND TRAP (32) CLRT RRF-c GE Dc B973 7-154
COMPARE LOGICAL AND TRAP (32) CLT RSY-b MI1 A Dc B2 EB23 7-154

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 4 of 24)

B-9

COMPARE LOGICAL AND TRAP (64) CLGRT RRF-c GE Dc B961 7-154
COMPARE LOGICAL AND TRAP (64) CLGT RSY-b MI1 A Dc B2 EB2B 7-154
COMPARE LOGICAL CHAR. UNDER MASK (high) CLMH RSY-b C N A B2 EB20 7-156
COMPARE LOGICAL CHAR. UNDER MASK (low) CLM RS-b C A B2 BD 7-156
COMPARE LOGICAL CHAR. UNDER MASK (low) CLMY RSY-b C LD A B2 EB21 7-156
COMPARE LOGICAL HIGH (32) CLHF RXY-a C HW A B2 E3CF 7-156
COMPARE LOGICAL HIGH (32) CLHHR RRE C HW B9CF 7-156
COMPARE LOGICAL HIGH (32) CLHLR RRE C HW B9DF 7-156
COMPARE LOGICAL IMMEDIATE (1616) CLHHSI SIL C GE A B1 E555 7-151
COMPARE LOGICAL IMMEDIATE (32) CLFI RIL-a C EI C2F 7-151
COMPARE LOGICAL IMMEDIATE (3216) CLFHSI SIL C GE A B1 E55D 7-151
COMPARE LOGICAL IMMEDIATE (6416) CLGHSI SIL C GE A B1 E559 7-151
COMPARE LOGICAL IMMEDIATE (6432) CLGFI RIL-a C EI C2E 7-151
COMPARE LOGICAL IMMEDIATE AND BRANCH
(328)

CLIB RIS GE ¤9 B ECFF 7-153

COMPARE LOGICAL IMMEDIATE AND BRANCH
(648)

CLGIB RIS GE ¤9 B ECFD 7-153

COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE (328)

CLIJ RIE-c GE ¤10 B EC7F 7-153

COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE (648)

CLGIJ RIE-c GE ¤10 B EC7D 7-153

COMPARE LOGICAL IMMEDIATE AND TRAP
(3216)

CLFIT RIE-a GE Dc EC73 7-155

COMPARE LOGICAL IMMEDIATE AND TRAP
(6416)

CLGIT RIE-a GE Dc EC71 7-155

COMPARE LOGICAL IMMEDIATE HIGH (32) CLIH RIL-a C HW CCF 7-157
COMPARE LOGICAL LONG CLCL RR C ¤9 A SP II R1 R2 0F 7-157
COMPARE LOGICAL LONG EXTENDED CLCLE RS-a C ¤9 A SP IC R1 R3 A9 7-159
COMPARE LOGICAL LONG UNICODE CLCLU RSY-a C E2 ¤9 A SP IC R1 R2 EB8F 7-162
COMPARE LOGICAL RELATIVE LONG (32) CLRL RIL-b C GE A* SP C6F 7-152
COMPARE LOGICAL RELATIVE LONG (3216) CLHRL RIL-b C GE A* C67 7-152
COMPARE LOGICAL RELATIVE LONG (64) CLGRL RIL-b C GE A* SP C6A 7-152
COMPARE LOGICAL RELATIVE LONG (6416) CLGHRL RIL-b C GE A* C66 7-152
COMPARE LOGICAL RELATIVE LONG (6432) CLGFRL RIL-b C GE A* SP C6E 7-152
COMPARE LOGICAL STRING CLST RRE C ¤9 A SP IC G0 R1 R2 B25D 7-165
COMPARE RELATIVE LONG (32) CRL RIL-b C GE A* SP C6D 7-134
COMPARE RELATIVE LONG (64) CGRL RIL-b C GE A* SP C68 7-134
COMPARE RELATIVE LONG (6432) CGFRL RIL-b C GE A* SP C6C 7-134
COMPARE UNTIL SUBSTRING EQUAL CUSE RRE C ¤9 A SP II GM R1 R2 B257 7-166
COMPRESSION CALL CMPSC RRE C ¤5,9 A SP II Dg GM ST R1 R2 B263 7-169
COMPUTE DIGITAL SIGNATURE
AUTHENTICATION

KDSA RRE C M9 ¤5,9 A SP IC GM I1 ST R2 B93A 26-2

COMPUTE INTERMEDIATE MESSAGE DIGEST KIMD RRE C MS ¤5,9 A SP IC GM I1 ST R2 B93E 7-187
COMPUTE LAST MESSAGE DIGEST KLMD RRE C MS ¤5,9 A SP IC GM I1 ST R2 B93F 7-200
COMPUTE MESSAGE AUTHENTICATION CODE KMAC RRE C MS ¤5,9 A SP IC GM I1 ST R2 B91E 7-218
CONVERT BFP TO HFP (long) THDR RRE C ¤7,9 Da B359 9-27
CONVERT BFP TO HFP (short to long) THDER RRE C ¤7,9 Da B358 9-27
CONVERT FROM FIXED (32 to extended BFP) CXFBR RRE ¤7,9 SP Db B396 19-19
CONVERT FROM FIXED (32 to extended BFP) CXFBRA RRF-e F ¤7,9 SP Db B396 19-19
CONVERT FROM FIXED (32 to extended DFP) CXFTR RRE F ¤7,9 SP Dt B959 20-24
CONVERT FROM FIXED (32 to extended HFP) CXFR RRE ¤7,9 SP Da B3B6 18-11
CONVERT FROM FIXED (32 to long BFP) CDFBR RRE ¤7,9 Db B395 19-19
CONVERT FROM FIXED (32 to long BFP) CDFBRA RRF-e F ¤7,9 SP Db B395 19-19
CONVERT FROM FIXED (32 to long DFP) CDFTR RRE F ¤7,9 Dt B951 20-24
CONVERT FROM FIXED (32 to long HFP) CDFR RRE ¤7,9 Da B3B5 18-11
CONVERT FROM FIXED (32 to short BFP) CEFBR RRE ¤7,9 Db Xx B394 19-19

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 5 of 24)

B-10 The z/Architecture CPU Architecture

CONVERT FROM FIXED (32 to short BFP) CEFBRA RRF-e F ¤7,9 SP Db Xx B394 19-19
CONVERT FROM FIXED (32 to short HFP) CEFR RRE ¤7,9 Da B3B4 18-11
CONVERT FROM FIXED (64 to extended BFP) CXGBR RRE N ¤7,9 SP Db B3A6 19-19
CONVERT FROM FIXED (64 to extended BFP) CXGBRA RRF-e F ¤7,9 SP Db B3A6 19-19
CONVERT FROM FIXED (64 to extended DFP) CXGTR RRE TF ¤7,9 SP Dt B3F9 20-24
CONVERT FROM FIXED (64 to extended DFP) CXGTRA RRF-e F ¤7,9 SP Dt B3F9 20-24
CONVERT FROM FIXED (64 to extended HFP) CXGR RRE N ¤7,9 SP Da B3C6 18-11
CONVERT FROM FIXED (64 to long BFP) CDGBR RRE N ¤7,9 Db Xx B3A5 19-19
CONVERT FROM FIXED (64 to long BFP) CDGBRA RRF-e F ¤7,9 SP Db Xx B3A5 19-19
CONVERT FROM FIXED (64 to long DFP) CDGTR RRE TF ¤7,9 Dt Xx B3F1 20-24
CONVERT FROM FIXED (64 to long DFP) CDGTRA RRF-e F ¤7,9 Dt Xx Xq B3F1 20-24
CONVERT FROM FIXED (64 to long HFP) CDGR RRE N ¤7,9 Da B3C5 18-11
CONVERT FROM FIXED (64 to short BFP) CEGBR RRE N ¤7,9 Db Xx B3A4 19-19
CONVERT FROM FIXED (64 to short BFP) CEGBRA RRF-e F ¤7,9 SP Db Xx B3A4 19-19
CONVERT FROM FIXED (64 to short HFP) CEGR RRE N ¤7,9 Da B3C4 18-11
CONVERT FROM LOGICAL (32 to extended BFP) CXLFBR RRF-e F ¤7,9 SP Db B392 19-21
CONVERT FROM LOGICAL (32 to extended DFP) CXLFTR RRF-e F ¤7,9 SP Dt B95B 20-25
CONVERT FROM LOGICAL (32 to long BFP) CDLFBR RRF-e F ¤7,9 SP Db B391 19-21
CONVERT FROM LOGICAL (32 to long DFP) CDLFTR RRF-e F ¤7,9 Dt B953 20-25
CONVERT FROM LOGICAL (32 to short BFP) CELFBR RRF-e F ¤7,9 SP Db Xx B390 19-21
CONVERT FROM LOGICAL (64 to extended BFP) CXLGBR RRF-e F ¤7,9 SP Db B3A2 19-21
CONVERT FROM LOGICAL (64 to extended DFP) CXLGTR RRF-e F ¤7,9 SP Dt B95A 20-25
CONVERT FROM LOGICAL (64 to long BFP) CDLGBR RRF-e F ¤7,9 SP Db Xx B3A1 19-21
CONVERT FROM LOGICAL (64 to long DFP) CDLGTR RRF-e F ¤7,9 Dt Xx Xq B952 20-25
CONVERT FROM LOGICAL (64 to short BFP) CELGBR RRF-e F ¤7,9 SP Db Xx B3A0 19-21
CONVERT FROM PACKED (to extended DFP) CXPT RSL-b PC ¤7,9 A SP Dt Dg B2 EDAF 20-26
CONVERT FROM PACKED (to long DFP) CDPT RSL-b PC ¤7,9 A SP Dt Dg B2 EDAE 20-26
CONVERT FROM SIGNED PACKED (128 to
extended DFP)

CXSTR RRE TF ¤7,9 SP Dt Dg B3FB 20-28

CONVERT FROM SIGNED PACKED (64 to long
DFP)

CDSTR RRE TF ¤7,9 Dt Dg B3F3 20-28

CONVERT FROM UNSIGNED PACKED (128 to ext.
DFP)

CXUTR RRE TF ¤7,9 SP Dt Dg B3FA 20-28

CONVERT FROM UNSIGNED PACKED (64 to long
DFP)

CDUTR RRE TF ¤7,9 Dt Dg B3F2 20-28

CONVERT FROM ZONED (to extended DFP) CXZT RSL-b ZF ¤7,9 A SP Dt Dg B2 EDAB 20-29
CONVERT FROM ZONED (to long DFP) CDZT RSL-b ZF ¤7,9 A SP Dt Dg B2 EDAA 20-29
CONVERT HFP TO BFP (long to short) TBEDR RRF-e C ¤7,9 SP Da B350 9-28
CONVERT HFP TO BFP (long) TBDR RRF-e C ¤7,9 SP Da B351 9-28
CONVERT TO BINARY (32) CVB RX-a ¤9 A Dg IK B2 4F 7-229
CONVERT TO BINARY (32) CVBY RXY-a LD ¤9 A Dg IK B2 E306 7-229
CONVERT TO BINARY (64) CVBG RXY-a N ¤9 A Dg IK B2 E30E 7-229
CONVERT TO DECIMAL (32) CVD RX-a ¤9 A ST B2 4E 7-230
CONVERT TO DECIMAL (32) CVDY RXY-a LD ¤9 A ST B2 E326 7-230
CONVERT TO DECIMAL (64) CVDG RXY-a N ¤9 A ST B2 E32E 7-230
CONVERT TO FIXED (extended BFP to 32) CFXBR RRF-e C ¤7,9 SP Db Xi Xx B39A 19-22
CONVERT TO FIXED (extended BFP to 32) CFXBRA RRF-e C F ¤7,9 SP Db Xi Xx B39A 19-22
CONVERT TO FIXED (extended BFP to 64) CGXBR RRF-e C N ¤7,9 SP Db Xi Xx B3AA 19-22
CONVERT TO FIXED (extended BFP to 64) CGXBRA RRF-e C F ¤7,9 SP Db Xi Xx B3AA 19-22
CONVERT TO FIXED (extended DFP to 32) CFXTR RRF-e C F ¤7,9 SP Dt Xi Xx B949 20-30
CONVERT TO FIXED (extended DFP to 64) CGXTR RRF-e C TF ¤7,9 SP Dt Xi Xx B3E9 20-29
CONVERT TO FIXED (extended DFP to 64) CGXTRA RRF-e C F ¤7,9 SP Dt Xi Xx B3E9 20-30
CONVERT TO FIXED (extended HFP to 32) CFXR RRF-e C ¤7,9 SP Da B3BA 18-11
CONVERT TO FIXED (extended HFP to 64) CGXR RRF-e C N ¤7,9 SP Da B3CA 18-11
CONVERT TO FIXED (long BFP to 32) CFDBR RRF-e C ¤7,9 SP Db Xi Xx B399 19-22
CONVERT TO FIXED (long BFP to 32) CFDBRA RRF-e C F ¤7,9 SP Db Xi Xx B399 19-22

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 6 of 24)

B-11

CONVERT TO FIXED (long BFP to 64) CGDBR RRF-e C N ¤7,9 SP Db Xi Xx B3A9 19-22
CONVERT TO FIXED (long BFP to 64) CGDBRA RRF-e C F ¤7,9 SP Db Xi Xx B3A9 19-22
CONVERT TO FIXED (long DFP to 32) CFDTR RRF-e C F ¤7,9 Dt Xi Xx B941 20-30
CONVERT TO FIXED (long DFP to 64) CGDTR RRF-e C TF ¤7,9 Dt Xi Xx B3E1 20-29
CONVERT TO FIXED (long DFP to 64) CGDTRA RRF-e C F ¤7,9 Dt Xi Xx B3E1 20-30
CONVERT TO FIXED (long HFP to 32) CFDR RRF-e C ¤7,9 SP Da B3B9 18-11
CONVERT TO FIXED (long HFP to 64) CGDR RRF-e C N ¤7,9 SP Da B3C9 18-11
CONVERT TO FIXED (short BFP to 32) CFEBR RRF-e C ¤7,9 SP Db Xi Xx B398 19-22
CONVERT TO FIXED (short BFP to 32) CFEBRA RRF-e C F ¤7,9 SP Db Xi Xx B398 19-22
CONVERT TO FIXED (short BFP to 64) CGEBR RRF-e C N ¤7,9 SP Db Xi Xx B3A8 19-22
CONVERT TO FIXED (short BFP to 64) CGEBRA RRF-e C F ¤7,9 SP Db Xi Xx B3A8 19-22
CONVERT TO FIXED (short HFP to 32) CFER RRF-e C ¤7,9 SP Da B3B8 18-11
CONVERT TO FIXED (short HFP to 64) CGER RRF-e C N ¤7,9 SP Da B3C8 18-11
CONVERT TO LOGICAL (extended BFP to 32) CLFXBR RRF-e C F ¤7,9 SP Db Xi Xx B39E 19-25
CONVERT TO LOGICAL (extended BFP to 64) CLGXBR RRF-e C F ¤7,9 SP Db Xi Xx B3AE 19-25
CONVERT TO LOGICAL (extended DFP to 32) CLFXTR RRF-e C F ¤7,9 SP Dt Xi Xx B94B 20-32
CONVERT TO LOGICAL (extended DFP to 64) CLGXTR RRF-e C F ¤7,9 SP Dt Xi Xx B94A 20-32
CONVERT TO LOGICAL (long BFP to 32) CLFDBR RRF-e C F ¤7,9 SP Db Xi Xx B39D 19-25
CONVERT TO LOGICAL (long BFP to 64) CLGDBR RRF-e C F ¤7,9 SP Db Xi Xx B3AD 19-25
CONVERT TO LOGICAL (long DFP to 32) CLFDTR RRF-e C F ¤7,9 Dt Xi Xx B943 20-32
CONVERT TO LOGICAL (long DFP to 64) CLGDTR RRF-e C F ¤7,9 Dt Xi Xx B942 20-32
CONVERT TO LOGICAL (short BFP to 32) CLFEBR RRF-e C F ¤7,9 SP Db Xi Xx B39C 19-25
CONVERT TO LOGICAL (short BFP to 64) CLGEBR RRF-e C F ¤7,9 SP Db Xi Xx B3AC 19-25
CONVERT TO PACKED (from extended DFP) CPXT RSL-b C PC ¤7,9 A SP Dt DF ST B2 EDAD 20-33
CONVERT TO PACKED (from long DFP) CPDT RSL-b C PC ¤7,9 A SP Dt DF ST B2 EDAC 20-33
CONVERT TO SIGNED PACKED (extended DFP to
128)

CSXTR RRF-d TF ¤7,9 SP Dt B3EB 20-35

CONVERT TO SIGNED PACKED (long DFP to 64) CSDTR RRF-d TF ¤7,9 Dt B3E3 20-35
CONVERT TO UNSIGNED PACKED (extended DFP
to 128)

CUXTR RRE TF ¤7,9 SP Dt B3EA 20-35

CONVERT TO UNSIGNED PACKED (long DFP to
64)

CUDTR RRE TF ¤7,9 Dt B3E2 20-35

CONVERT TO ZONED (from extended DFP) CZXT RSL-b C ZF ¤7,9 A SP ST B2 EDA9 20-36
CONVERT TO ZONED (from long DFP) CZDT RSL-b C ZF ¤7,9 A SP ST B2 EDA8 20-36
CONVERT UNICODE TO UTF-8 CUUTF RRF-c C ¤5,9 A SP IC ST R1 R2 B2A6 7-233
CONVERT UTF-16 TO UTF-32 CU24 RRF-c C E3 ¤5,9 A SP IC ST R1 R2 B9B1 7-230
CONVERT UTF-16 TO UTF-8 CU21 RRF-c C ¤5,9 A SP IC ST R1 R2 B2A6 7-233
CONVERT UTF-8 TO UNICODE CUTFU RRF-c C ¤5,9 A SP IC ST R1 R2 B2A7 7-243
CONVERT UTF-8 TO UTF-16 CU12 RRF-c C ¤5,9 A SP IC ST R1 R2 B2A7 7-243
CONVERT UTF-8 TO UTF-32 CU14 RRF-c C E3 ¤5,9 A SP IC ST R1 R2 B9B0 7-247
CONVERT UTF-32 TO UTF-16 CU42 RRE C E3 ¤5,9 A SP IC ST R1 R2 B9B3 7-237
CONVERT UTF-32 TO UTF-8 CU41 RRE C E3 ¤5,9 A SP IC ST R1 R2 B9B2 7-240
COPY ACCESS CPYA RRE ¤6 U1 U2 B24D 7-251
COPY SIGN (long) CPSDR RRF-b FS ¤7,9 Da B372 9-30
DEFLATE CONVERSION CALL DFLTCC RRF-a C GZ ¤5,9 A SP IC GM I1 ST R1 R2 R3 B939 26-16
DIAGNOSE — DM P DM MD 83 10-23
DIVIDE (3264) D RX-a ¤9 A SP IK B2 5D 7-251
DIVIDE (3264) DR RR ¤9 SP IK 1D 7-251
DIVIDE (extended BFP) DXBR RRE ¤7,9 SP Db Xi Xz Xo Xu Xx B34D 19-27
DIVIDE (extended DFP) DXTR RRF-a TF ¤7,9 SP Dt Xi Xz Xo Xu Xx B3D9 20-37
DIVIDE (extended DFP) DXTRA RRF-a F ¤7,9 SP Dt Xi Xz Xo Xu Xx Xq B3D9 20-37
DIVIDE (extended HFP) DXR RRE ¤7,9 SP Da EU EO FK B22D 18-12
DIVIDE (long BFP) DDB RXE ¤7,9 A Db Xi Xz Xo Xu Xx B2 ED1D 19-27
DIVIDE (long BFP) DDBR RRE ¤7,9 Db Xi Xz Xo Xu Xx B31D 19-27
DIVIDE (long DFP) DDTR RRF-a TF ¤7,9 Dt Xi Xz Xo Xu Xx B3D1 20-37

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 7 of 24)

B-12 The z/Architecture CPU Architecture

DIVIDE (long DFP) DDTRA RRF-a F ¤7,9 Dt Xi Xz Xo Xu Xx Xq B3D1 20-37
DIVIDE (long HFP) DD RX-a ¤7,9 A Da EU EO FK B2 6D 18-12
DIVIDE (long HFP) DDR RR ¤7,9 Da EU EO FK 2D 18-12
DIVIDE (short BFP) DEB RXE ¤7,9 A Db Xi Xz Xo Xu Xx B2 ED0D 19-27
DIVIDE (short BFP) DEBR RRE ¤7,9 Db Xi Xz Xo Xu Xx B30D 19-27
DIVIDE (short HFP) DE RX-a ¤7,9 A Da EU EO FK B2 7D 18-12
DIVIDE (short HFP) DER RR ¤7,9 Da EU EO FK 3D 18-12
DIVIDE DECIMAL DP SS-b ¤9 A SP Dg DK ST B1 B2 FD 8-7
DIVIDE LOGICAL (3264) DL RXY-a N3 ¤9 A SP IK B2 E397 7-252
DIVIDE LOGICAL (3264) DLR RRE N3 ¤9 SP IK B997 7-252
DIVIDE LOGICAL (64128) DLG RXY-a N ¤9 A SP IK B2 E387 7-252
DIVIDE LOGICAL (64128) DLGR RRE N ¤9 SP IK B987 7-252
DIVIDE SINGLE (64) DSG RXY-a N ¤9 A SP IK B2 E30D 7-253
DIVIDE SINGLE (64) DSGR RRE N ¤9 SP IK B90D 7-253
DIVIDE SINGLE (6432) DSGF RXY-a N ¤9 A SP IK B2 E31D 7-253
DIVIDE SINGLE (6432) DSGFR RRE N ¤9 SP IK B91D 7-253
DIVIDE TO INTEGER (long BFP) DIDBR RRF-b C ¤7,9 SP Db Xi Xu Xx B35B 19-28
DIVIDE TO INTEGER (short BFP) DIEBR RRF-b C ¤7,9 SP Db Xi Xu Xx B353 19-28
EDIT ED SS-a C ¤9 A Dg ST B1 B2 DE 8-8
EDIT AND MARK EDMK SS-a C ¤9 A Dg G1 ST B1 B2 DF 8-11
EXCLUSIVE OR (32) X RX-a C A B2 57 7-253
EXCLUSIVE OR (32) XR RR C 17 7-253
EXCLUSIVE OR (32) XRK RRF-a C DO B9F7 7-253
EXCLUSIVE OR (32) XY RXY-a C LD A B2 E357 7-253
EXCLUSIVE OR (64) XG RXY-a C N A B2 E382 7-253
EXCLUSIVE OR (64) XGR RRE C N B982 7-253
EXCLUSIVE OR (64) XGRK RRF-a C DO B9E7 7-253
EXCLUSIVE OR (character) XC SS-a C ¤9 A ST B1 B2 D7 7-254
EXCLUSIVE OR (immediate) XI SI C A ST B1 97 7-254
EXCLUSIVE OR (immediate) XIY SIY C LD A ST B1 EB57 7-254
EXCLUSIVE OR IMMEDIATE (high) XIHF RIL-a C EI C06 7-255
EXCLUSIVE OR IMMEDIATE (low) XILF RIL-a C EI C07 7-255
EXECUTE EX RX-a ¤9 AI SP EX 44 7-255
EXECUTE RELATIVE LONG EXRL RIL-b XX ¤9 AI* EX C60 7-255
EXTRACT ACCESS EAR RRE U2 B24F 7-256
EXTRACT AND SET EXTENDED AUTHORITY ESEA RRE N P B99D 10-24
EXTRACT BIASED EXPONENT (extended DFP to
64)

EEXTR RRE TF ¤7,9 SP Dt B3ED 20-39

EXTRACT BIASED EXPONENT (long DFP to 64) EEDTR RRE TF ¤7,9 Dt B3E5 20-39
EXTRACT CPU ATTRIBUTE ECAG RSY-a GE ¤9 EB4C 7-256
EXTRACT CPU TIME ECTG SSF ET ¤8,9 A GM R3 B1 B2 C81 7-259
EXTRACT FPC EFPC RRE ¤7,9 Db B38C 9-30
EXTRACT PRIMARY ASN EPAR RRE Q SO B226 10-24
EXTRACT PRIMARY ASN AND INSTANCE EPAIR RRE RA Q SO B99A 10-24
EXTRACT PSW EPSW RRE N3 ¤8,9 B98D 7-260
EXTRACT SECONDARY ASN ESAR RRE Q SO B227 10-24
EXTRACT SECONDARY ASN AND INSTANCE ESAIR RRE RA Q SO B99B 10-25
EXTRACT SIGNIFICANCE (extended DFP to 64) ESXTR RRE TF ¤7,9 SP Dt B3EF 20-39
EXTRACT SIGNIFICANCE (long DFP to 64) ESDTR RRE TF ¤7,9 Dt B3E7 20-39
EXTRACT STACKED REGISTERS (32) EREG RRE ¤1 A1* SE U1 U2 B249 10-25
EXTRACT STACKED REGISTERS (64) EREGG RRE N ¤1 A1* SE U1 U2 B90E 10-25
EXTRACT STACKED STATE ESTA RRE C ¤1 A1* SP SE B24A 10-26
EXTRACT TRANSACTION NESTING DEPTH ETND RRE TX ¤9 SO B2EC 7-260
FIND LEFTMOST ONE FLOGR RRE C EI SP B983 7-261
HALT SUBCHANNEL HSCH S C P OP ¢ GS B231 14-6

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 8 of 24)

B-13

HALVE (long HFP) HDR RR ¤7,9 Da EU 24 18-13
HALVE (short HFP) HER RR ¤7,9 Da EU 34 18-13
INSERT ADDRESS SPACE CONTROL IAC RRE C Q SO B224 10-29
INSERT BIASED EXPONENT (64 to extended DFP) IEXTR RRF-b TF ¤7,9 SP Dt B3FE 20-40
INSERT BIASED EXPONENT (64 to long DFP) IEDTR RRF-b TF ¤7,9 Dt B3F6 20-40
INSERT CHARACTER IC RX-a A B2 43 7-261
INSERT CHARACTER ICY RXY-a LD A B2 E373 7-261
INSERT CHARACTERS UNDER MASK (high) ICMH RSY-b C N A B2 EB80 7-261
INSERT CHARACTERS UNDER MASK (low) ICM RS-b C A B2 BF 7-261
INSERT CHARACTERS UNDER MASK (low) ICMY RSY-b C LD A B2 EB81 7-261
INSERT IMMEDIATE (high high) IIHH RI-a N A50 7-262
INSERT IMMEDIATE (high low) IIHL RI-a N A51 7-262
INSERT IMMEDIATE (high) IIHF RIL-a EI C08 7-262
INSERT IMMEDIATE (low high) IILH RI-a N A52 7-262
INSERT IMMEDIATE (low low) IILL RI-a N A53 7-262
INSERT IMMEDIATE (low) IILF RIL-a EI C09 7-262
INSERT PROGRAM MASK IPM RRE B222 7-263
INSERT PSW KEY IPK S Q G2 B20B 10-30
INSERT REFERENCE BITS MULTIPLE IRBM RRE IM P A1* B9AC 10-30
INSERT STORAGE KEY EXTENDED ISKE RRE P A1* B229 10-30
INSERT VIRTUAL STORAGE KEY IVSK RRE Q A1* SO R2 B223 10-31
INVALIDATE DAT TABLE ENTRY IDTE RRF-b U DE P A1 SP $ B98E 10-32
INVALIDATE PAGE TABLE ENTRY IPTE RRF-a P A1 SP $ B221 10-37
LOAD (32) L RX-a A B2 58 7-263
LOAD (32) LR RR 18 7-263
LOAD (32) LY RXY-a LD A B2 E358 7-263
LOAD (64) LG RXY-a N A B2 E304 7-263
LOAD (64) LGR RRE N B904 7-263
LOAD (6432) LGF RXY-a N A B2 E314 7-263
LOAD (6432) LGFR RRE N B914 7-263
LOAD (extended) LXR RRE ¤7,9 SP Da B365 9-31
LOAD (long) LD RX-a ¤7,9 A Da B2 68 9-31
LOAD (long) LDR RR ¤7,9 Da 28 9-31
LOAD (long) LDY RXY-a LD ¤7,9 A Da B2 ED65 9-31
LOAD (short) LE RX-a ¤7,9 A Da B2 78 9-31
LOAD (short) LER RR ¤7,9 Da 38 9-31
LOAD (short) LEY RXY-a LD ¤7,9 A Da B2 ED64 9-31
LOAD ACCESS MULTIPLE LAM RS-a ¤6 A SP UB 9A 7-264
LOAD ACCESS MULTIPLE LAMY RSY-a LD ¤6 A SP UB EB9A 7-264
LOAD ADDRESS LA RX-a 41 7-265
LOAD ADDRESS LAY RXY-a LD E371 7-265
LOAD ADDRESS EXTENDED LAE RX-a ¤6 U1 BP 51 7-265
LOAD ADDRESS EXTENDED LAEY RXY-a GE ¤6 U1 BP E375 7-265
LOAD ADDRESS RELATIVE LONG LARL RIL-b N3 C00 7-266
LOAD ADDRESS SPACE PARAMETERS LASP SSE C P A1 SP SO B1 E500 10-41
LOAD AND ADD (32) LAA RSY-a C IA ¤9 A SP IF £ ST B2 EBF8 7-267
LOAD AND ADD (64) LAAG RSY-a C IA ¤9 A SP IF £ ST B2 EBE8 7-267
LOAD AND ADD LOGICAL (32) LAAL RSY-a C IA ¤9 A SP £ ST B2 EBFA 7-267
LOAD AND ADD LOGICAL (64) LAALG RSY-a C IA ¤9 A SP £ ST B2 EBEA 7-267
LOAD AND AND (32) LAN RSY-a C IA ¤9 A SP £ ST B2 EBF4 7-268
LOAD AND AND (64) LANG RSY-a C IA ¤9 A SP £ ST B2 EBE4 7-268
LOAD AND EXCLUSIVE OR (32) LAX RSY-a C IA ¤9 A SP £ ST B2 EBF7 7-268
LOAD AND EXCLUSIVE OR (64) LAXG RSY-a C IA ¤9 A SP £ ST B2 EBE7 7-268
LOAD AND OR (32) LAO RSY-a C IA ¤9 A SP £ ST B2 EBF6 7-269
LOAD AND OR (64) LAOG RSY-a C IA ¤9 A SP £ ST B2 EBE6 7-269

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 9 of 24)

B-14 The z/Architecture CPU Architecture

LOAD AND TEST (32) LT RXY-a C EI A B2 E312 7-270
LOAD AND TEST (32) LTR RR C 12 7-269
LOAD AND TEST (64) LTG RXY-a C EI A B2 E302 7-270
LOAD AND TEST (64) LTGR RRE C N B902 7-269
LOAD AND TEST (6432) LTGF RXY-a C GE A B2 E332 7-270
LOAD AND TEST (6432) LTGFR RRE C N B912 7-269
LOAD AND TEST (extended BFP) LTXBR RRE C ¤7,9 SP Db Xi B342 19-31
LOAD AND TEST (extended DFP) LTXTR RRE C TF ¤7,9 SP Dt Xi B3DE 20-41
LOAD AND TEST (extended HFP) LTXR RRE C ¤7,9 SP Da B362 18-14
LOAD AND TEST (long BFP) LTDBR RRE C ¤7,9 Db Xi B312 19-31
LOAD AND TEST (long DFP) LTDTR RRE C TF ¤7,9 Dt Xi B3D6 20-41
LOAD AND TEST (long HFP) LTDR RR C ¤7,9 Da 22 18-13
LOAD AND TEST (short BFP) LTEBR RRE C ¤7,9 Db Xi B302 19-31
LOAD AND TEST (short HFP) LTER RR C ¤7,9 Da 32 18-13
LOAD AND TRAP (32L32) LAT RXY-a LT A Dc B2 E39F 7-270
LOAD AND TRAP (64) LGAT RXY-a LT A Dc B2 E385 7-270
LOAD AND ZERO RIGHTMOST BYTE (32) LZRF RXY-a LZ A B2 E33B 7-270
LOAD AND ZERO RIGHTMOST BYTE (64) LZRG RXY-a LZ A B2 E32A 7-270
LOAD BYTE (328) LB RXY-a LD A E376 7-271
LOAD BYTE (328) LBR RRE EI B926 7-271
LOAD BYTE (648) LGB RXY-a LD A E377 7-271
LOAD BYTE (648) LGBR RRE EI B906 7-271
LOAD BYTE HIGH (328) LBH RXY-a HW A B2 E3C0 7-271
LOAD COMPLEMENT (32) LCR RR C IF 13 7-271
LOAD COMPLEMENT (64) LCGR RRE C N IF B903 7-272
LOAD COMPLEMENT (6432) LCGFR RRE C N B913 7-272
LOAD COMPLEMENT (extended BFP) LCXBR RRE C ¤7,9 SP Db B343 19-31
LOAD COMPLEMENT (extended HFP) LCXR RRE C ¤7,9 SP Da B363 18-14
LOAD COMPLEMENT (long BFP) LCDBR RRE C ¤7,9 Db B313 19-31
LOAD COMPLEMENT (long HFP) LCDR RR C ¤7,9 Da 23 18-14
LOAD COMPLEMENT (long) LCDFR RRE FS ¤7,9 Da B373 9-31
LOAD COMPLEMENT (short BFP) LCEBR RRE C ¤7,9 Db B303 19-31
LOAD COMPLEMENT (short HFP) LCER RR C ¤7,9 Da 33 18-14
LOAD CONTROL (32) LCTL RS-a P A SP B2 B7 10-50
LOAD CONTROL (64) LCTLG RSY-a N P A SP B2 EB2F 10-50
LOAD COUNT TO BLOCK BOUNDARY LCBB RXE C VF SP E727 7-272
LOAD FP INTEGER (extended BFP) FIXBR RRF-e ¤7,9 SP Db Xi Xx B347 19-32
LOAD FP INTEGER (extended BFP) FIXBRA RRF-e F ¤7,9 SP Db Xi Xx B347 19-32
LOAD FP INTEGER (extended DFP) FIXTR RRF-e TF ¤7,9 SP Dt Xi Xx Xq B3DF 20-42
LOAD FP INTEGER (extended HFP) FIXR RRE ¤7,9 SP Da B367 18-15
LOAD FP INTEGER (long BFP) FIDBR RRF-e ¤7,9 SP Db Xi Xx B35F 19-32
LOAD FP INTEGER (long BFP) FIDBRA RRF-e F ¤7,9 SP Db Xi Xx B35F 19-32
LOAD FP INTEGER (long DFP) FIDTR RRF-e TF ¤7,9 Dt Xi Xx Xq B3D7 20-42
LOAD FP INTEGER (long HFP) FIDR RRE ¤7,9 Da B37F 18-15
LOAD FP INTEGER (short BFP) FIEBR RRF-e ¤7,9 SP Db Xi Xx B357 19-32
LOAD FP INTEGER (short BFP) FIEBRA RRF-e F ¤7,9 SP Db Xi Xx B357 19-32
LOAD FP INTEGER (short HFP) FIER RRE ¤7,9 Da B377 18-15
LOAD FPC LFPC S ¤7,9 A SP Db B2 B29D 9-31
LOAD FPC AND SIGNAL LFAS S XF ¤7,9 A SP Dt Xg B2 B2BD 9-32
LOAD FPR FROM GR (64 to long) LDGR RRE FG ¤7,9 Da B3C1 9-34
LOAD GR FROM FPR (long to 64) LGDR RRE FG ¤7,9 Da B3CD 9-34
LOAD GUARDED (64) LGG RXY-a GF ¤12 A SP B ST B2 E34C 7-273
LOAD GUARDED STORAGE CONTROLS LGSC RXY-a GF ¤1 A SO B2 E34D 7-274
LOAD HALFWORD (3216) LH RX-a A B2 48 7-275
LOAD HALFWORD (3216) LHR RRE EI B927 7-275

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 10 of 24)

B-15

LOAD HALFWORD (3216) LHY RXY-a LD A B2 E378 7-275
LOAD HALFWORD (6416) LGH RXY-a N A B2 E315 7-275
LOAD HALFWORD (6416) LGHR RRE EI B907 7-275
LOAD HALFWORD HIGH (3216) LHH RXY-a HW A B2 E3C4 7-276
LOAD HALFWORD HIGH IMMEDIATE ON
CONDITION (3216)

LOCHHI RIE-g L2 EC4E 7-276

LOAD HALFWORD IMMEDIATE (32)16 LHI RI-a A78 7-275
LOAD HALFWORD IMMEDIATE (6416) LGHI RI-a N A79 7-275
LOAD HALFWORD IMMEDIATE ON CONDITION
(3216)

LOCHI RIE-g L2 EC42 7-276

LOAD HALFWORD IMMEDIATE ON CONDITION
(6416)

LOCGHI RIE-g L2 EC46 7-276

LOAD HALFWORD RELATIVE LONG (3216) LHRL RIL-b GE A* C45 7-275
LOAD HALFWORD RELATIVE LONG (6416) LGHRL RIL-b GE A* C44 7-275
LOAD HIGH (32) LFH RXY-a HW A B2 E3CA 7-277
LOAD HIGH AND TRAP (32H32) LFHAT RXY-a LT A Dc B2 E3C8 7-277
LOAD HIGH ON CONDITION (32) LOCFH RSY-b L2 A B2 EBE0 7-283
LOAD HIGH ON CONDITION (32) LOCFHR RRF-c L2 B9E0 7-283
LOAD IMMEDIATE (6432) LGFI RIL-a EI C01 7-263
LOAD LENGTHENED (long to extended BFP) LXDB RXE ¤7,9 A SP Db Xi B2 ED05 19-34
LOAD LENGTHENED (long to extended BFP) LXDBR RRE ¤7,9 SP Db Xi B305 19-33
LOAD LENGTHENED (long to extended DFP) LXDTR RRF-d TF ¤7,9 SP Dt Xi B3DC 20-45
LOAD LENGTHENED (long to extended HFP) LXD RXE ¤7,9 A SP Da B2 ED25 18-15
LOAD LENGTHENED (long to extended HFP) LXDR RRE ¤7,9 SP Da B325 18-15
LOAD LENGTHENED (short to extended BFP) LXEB RXE ¤7,9 A SP Db Xi B2 ED06 19-34
LOAD LENGTHENED (short to extended BFP) LXEBR RRE ¤7,9 SP Db Xi B306 19-33
LOAD LENGTHENED (short to extended HFP) LXE RXE ¤7,9 A SP Da B2 ED26 18-15
LOAD LENGTHENED (short to extended HFP) LXER RRE ¤7,9 SP Da B326 18-15
LOAD LENGTHENED (short to long BFP) LDEB RXE ¤7,9 A Db Xi B2 ED04 19-34
LOAD LENGTHENED (short to long BFP) LDEBR RRE ¤7,9 Db Xi B304 19-33
LOAD LENGTHENED (short to long DFP) LDETR RRF-d TF ¤7,9 Dt Xi B3D4 20-45
LOAD LENGTHENED (short to long HFP) LDE RXE ¤7,9 A Da B2 ED24 18-15
LOAD LENGTHENED (short to long HFP) LDER RRE ¤7,9 Da B324 18-15
LOAD LOGICAL (6432) LLGF RXY-a N A B2 E316 7-277
LOAD LOGICAL (6432) LLGFR RRE N B916 7-277
LOAD LOGICAL AND SHIFT GUARDED (6432) LLGFSG RXY-a GF ¤12 A SP B ST B2 E348 7-273
LOAD LOGICAL AND TRAP (6432) LLGFAT RXY-a LT A Dc B2 E39D 7-278
LOAD LOGICAL AND ZERO RIGHTMOST BYTE
(6432)

LLZRGF RXY-a LZ A B2 E33A 7-278

LOAD LOGICAL CHARACTER (328) LLC RXY-a EI A B2 E394 7-278
LOAD LOGICAL CHARACTER (328) LLCR RRE EI B994 7-278
LOAD LOGICAL CHARACTER (648) LLGC RXY-a N A B2 E390 7-278
LOAD LOGICAL CHARACTER (648) LLGCR RRE EI B984 7-278
LOAD LOGICAL CHARACTER HIGH (328) LLCH RXY-a HW A B2 E3C2 7-279
LOAD LOGICAL HALFWORD (3216) LLH RXY-a EI A B2 E395 7-279
LOAD LOGICAL HALFWORD (3216) LLHR RRE EI B995 7-279
LOAD LOGICAL HALFWORD (6416) LLGH RXY-a N A B2 E391 7-279
LOAD LOGICAL HALFWORD (6416) LLGHR RRE EI B985 7-279
LOAD LOGICAL HALFWORD HIGH (3216) LLHH RXY-a HW A B2 E3C6 7-280
LOAD LOGICAL HALFWORD RELATIVE LONG
(3216)

LLHRL RIL-b GE A* C42 7-279

LOAD LOGICAL HALFWORD RELATIVE LONG
(6416)

LLGHRL RIL-b GE A* C46 7-279

LOAD LOGICAL IMMEDIATE (high high) LLIHH RI-a N A5C 7-280
LOAD LOGICAL IMMEDIATE (high low) LLIHL RI-a N A5D 7-280
LOAD LOGICAL IMMEDIATE (high) LLIHF RIL-a EI C0E 7-280

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 11 of 24)

B-16 The z/Architecture CPU Architecture

LOAD LOGICAL IMMEDIATE (low high) LLILH RI-a N A5E 7-280
LOAD LOGICAL IMMEDIATE (low low) LLILL RI-a N A5F 7-280
LOAD LOGICAL IMMEDIATE (low) LLILF RIL-a EI C0F 7-280
LOAD LOGICAL RELATIVE LONG (6432) LLGFRL RIL-b GE A* SP C4E 7-277
LOAD LOGICAL THIRTY ONE BITS (6431) LLGT RXY-a N A B2 E317 7-281
LOAD LOGICAL THIRTY ONE BITS (6431) LLGTR RRE N B917 7-280
LOAD LOGICAL THIRTY ONE BITS AND TRAP
(6431)

LLGTAT RXY-a LT A Dc B2 E39C 7-281

LOAD MULTIPLE (32) LM RS-a A B2 98 7-281
LOAD MULTIPLE (32) LMY RSY-a LD A B2 EB98 7-281
LOAD MULTIPLE (64) LMG RSY-a N A B2 EB04 7-281
LOAD MULTIPLE DISJOINT (6432&32) LMD SS-e N ¤9 A B2 B4 EF 7-282
LOAD MULTIPLE HIGH (32) LMH RSY-a N A B2 EB96 7-282
LOAD NEGATIVE (32) LNR RR C 11 7-282
LOAD NEGATIVE (64) LNGR RRE C N B901 7-282
LOAD NEGATIVE (6432) LNGFR RRE C N B911 7-283
LOAD NEGATIVE (extended BFP) LNXBR RRE C ¤7,9 SP Db B341 19-34
LOAD NEGATIVE (extended HFP) LNXR RRE C ¤7,9 SP Da B361 18-16
LOAD NEGATIVE (long BFP) LNDBR RRE C ¤7,9 Db B311 19-34
LOAD NEGATIVE (long HFP) LNDR RR C ¤7,9 Da 21 18-16
LOAD NEGATIVE (long) LNDFR RRE FS ¤7,9 Da B371 9-34
LOAD NEGATIVE (short BFP) LNEBR RRE C ¤7,9 Db B301 19-34
LOAD NEGATIVE (short HFP) LNER RR C ¤7,9 Da 31 18-16
LOAD ON CONDITION (32) LOC RSY-b L1 A B2 EBF2 7-283
LOAD ON CONDITION (32) LOCR RRF-c L1 B9F2 7-283
LOAD ON CONDITION (64) LOCG RSY-b L1 A B2 EBE2 7-283
LOAD ON CONDITION (64) LOCGR RRF-c L1 B9E2 7-283
LOAD PAGE TABLE ENTRY ADDRESS LPTEA RRF-b C D2 P A1* SP SO R2 B9AA 10-50
LOAD PAIR DISJOINT (32) LPD SSF C IA ¤9 A SP B1 B2 C84 7-284
LOAD PAIR DISJOINT (64) LPDG SSF C IA ¤9 A SP B1 B2 C85 7-284
LOAD PAIR FROM QUADWORD (64&64128) LPQ RXY-a N ¤9 A SP B2 E38F 7-285
LOAD POSITIVE (32) LPR RR C IF 10 7-286
LOAD POSITIVE (64) LPGR RRE C N IF B900 7-286
LOAD POSITIVE (6432) LPGFR RRE C N B910 7-286
LOAD POSITIVE (extended BFP) LPXBR RRE C ¤7,9 SP Db B340 19-35
LOAD POSITIVE (extended HFP) LPXR RRE C ¤7,9 SP Da B360 18-16
LOAD POSITIVE (long BFP) LPDBR RRE C ¤7,9 Db B310 19-35
LOAD POSITIVE (long HFP) LPDR RR C ¤7,9 Da 20 18-16
LOAD POSITIVE (long) LPDFR RRE FS ¤7,9 Da B370 9-34
LOAD POSITIVE (short BFP) LPEBR RRE C ¤7,9 Db B300 19-35
LOAD POSITIVE (short HFP) LPER RR C ¤7,9 Da 30 18-16
LOAD PSW LPSW SI L P A SP ¢ B2 82 10-54
LOAD PSW EXTENDED LPSWE S L N P A SP ¢ B2 B2B2 10-55
LOAD REAL ADDRESS (32) LRA RX-a C P A1* SO BP B1 10-56
LOAD REAL ADDRESS (32) LRAY RXY-a C LD P A1* SO BP E313 10-56
LOAD REAL ADDRESS (64) LRAG RXY-a C N P A1* BP E303 10-56
LOAD RELATIVE LONG (32) LRL RIL-b GE A SP C4D 7-263
LOAD RELATIVE LONG (64) LGRL RIL-b GE A* SP C48 7-263
LOAD RELATIVE LONG (6432) LGFRL RIL-b GE A* SP C4C 7-263
LOAD REVERSED (16) LRVH RXY-a N3 A B2 E31F 7-286
LOAD REVERSED (32) LRV RXY-a N3 A B2 E31E 7-286
LOAD REVERSED (32) LRVR RRE N3 B91F 7-286
LOAD REVERSED (64) LRVG RXY-a N A B2 E30F 7-286
LOAD REVERSED (64) LRVGR RRE N B90F 7-286
LOAD ROUNDED (extended to long BFP) LDXBR RRE ¤7,9 SP Db Xi Xo Xu Xx B345 19-35

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 12 of 24)

B-17

LOAD ROUNDED (extended to long BFP) LDXBRA RRF-e F ¤7,9 SP Db Xi Xo Xu Xx B345 19-35
LOAD ROUNDED (extended to long DFP) LDXTR RRF-e TF ¤7,9 SP Dt Xi Xo Xu Xx Xq B3DD 20-46
LOAD ROUNDED (extended to long HFP) LDXR RR ¤7,9 SP Da EO 25 18-17
LOAD ROUNDED (extended to long HFP) LRDR RR ¤7,9 SP Da EO 25 18-17
LOAD ROUNDED (extended to short BFP) LEXBR RRE ¤7,9 SP Db Xi Xo Xu Xx B346 19-35
LOAD ROUNDED (extended to short BFP) LEXBRA RRF-e F ¤7,9 SP Db Xi Xo Xu Xx B346 19-35
LOAD ROUNDED (extended to short HFP) LEXR RRE ¤7,9 SP Da EO B366 18-17
LOAD ROUNDED (long to short BFP) LEDBR RRE ¤7,9 Db Xi Xo Xu Xx B344 19-35
LOAD ROUNDED (long to short BFP) LEDBRA RRF-e F ¤7,9 SP Db Xi Xo Xu Xx B344 19-35
LOAD ROUNDED (long to short DFP) LEDTR RRF-e TF ¤7,9 Dt Xi Xo Xu Xx Xq B3D5 20-46
LOAD ROUNDED (long to short HFP) LEDR RR ¤7,9 Da EO 35 18-17
LOAD ROUNDED (long to short HFP) LRER RR ¤7,9 Da EO 35 18-17
LOAD USING REAL ADDRESS (32) LURA RRE P A1 SP B24B 10-60
LOAD USING REAL ADDRESS (64) LURAG RRE N P A1 SP B905 10-60
LOAD ZERO (extended) LZXR RRE ¤7,9 SP Da B376 9-35
LOAD ZERO (long) LZDR RRE ¤7,9 Da B375 9-35
LOAD ZERO (short) LZER RRE ¤7,9 Da B374 9-35
MODIFY STACKED STATE MSTA RRE ¤1 A1* SP SE ST B247 10-61
MODIFY SUBCHANNEL MSCH S C P A SP OP ¢ GS B2 B232 14-7
MONITOR CALL MC SI ¤4,8,9 SP ME AF 7-287
MOVE (1616) MVHHI SIL GE A ST B1 E544 7-288
MOVE (3216) MVHI SIL GE A ST B1 E54C 7-288
MOVE (6416) MVGHI SIL GE A ST B1 E548 7-288
MOVE (character) MVC SS-a ¤9 A ST B1 B2 D2 7-288
MOVE (immediate) MVI SI A ST B1 92 7-288
MOVE (immediate) MVIY SIY LD A ST B1 EB52 7-288
MOVE INVERSE MVCIN SS-a ¤9 A ST B1 B2 E8 7-289
MOVE LONG MVCL RR C ¤9 A SP II ST R1 R2 0E 7-289
MOVE LONG EXTENDED MVCLE RS-a C ¤9 A SP IC ST R1 R3 A8 7-293
MOVE LONG UNICODE MVCLU RSY-a C E2 ¤9 A SP IC ST R1 R3 EB8E 7-296
MOVE NUMERICS MVN SS-a ¤9 A ST B1 B2 D1 7-300
MOVE PAGE MVPG RRE C Q A SP OP ¢4 G0 K ST R1 R2 B254 10-62
MOVE RIGHT TO LEFT MVCRL SSE MI3 ¤9 A G0 ST B1 B2 E50A 7-300
MOVE STRING MVST RRE C ¤9 A SP IC G0 ST R1 R2 B255 7-301
MOVE TO PRIMARY MVCP SS-d C Q A SO ¢ ST DA 10-65
MOVE TO SECONDARY MVCS SS-d C Q A SO ¢ ST DB 10-65
MOVE WITH DESTINATION KEY MVCDK SSE Q A GM ST B1 B2 E50F 10-67
MOVE WITH KEY MVCK SS-d C Q A ST B1 B2 D9 10-67
MOVE WITH OFFSET MVO SS-b ¤9 A ST B1 B2 F1 7-302
MOVE WITH OPTIONAL SPECIFICATIONS MVCOS SSF C MO Q A SO G0 ST B† B‡ C80 10-69
MOVE WITH SOURCE KEY MVCSK SSE Q A GM ST B1 B2 E50E 10-72
MOVE ZONES MVZ SS-a ¤9 A ST B1 B2 D3 7-303
MULTIPLY (12864) MG RXY-a MI2 A SP B2 E384 7-304
MULTIPLY (12864) MGRK RRF-a MI2 SP B9EC 7-304
MULTIPLY (6432) M RX-a A SP B2 5C 7-304
MULTIPLY (6432) MFY RXY-a GE A SP B2 E35C 7-304
MULTIPLY (6432) MR RR SP 1C 7-304
MULTIPLY (extended BFP) MXBR RRE ¤7,9 SP Db Xi Xo Xu Xx B34C 19-37
MULTIPLY (extended DFP) MXTR RRF-a TF ¤7,9 SP Dt Xi Xo Xu Xx B3D8 20-47
MULTIPLY (extended DFP) MXTRA RRF-a F ¤7,9 SP Dt Xi Xo Xu Xx Xq B3D8 20-48
MULTIPLY (extended HFP) MXR RR ¤7,9 SP Da EU EO 26 18-17
MULTIPLY (long BFP) MDB RXE ¤7,9 A Db Xi Xo Xu Xx B2 ED1C 19-37
MULTIPLY (long BFP) MDBR RRE ¤7,9 Db Xi Xo Xu Xx B31C 19-37
MULTIPLY (long DFP) MDTR RRF-a TF ¤7,9 Dt Xi Xo Xu Xx B3D0 20-47
MULTIPLY (long DFP) MDTRA RRF-a F ¤7,9 Dt Xi Xo Xu Xx Xq B3D0 20-48

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 13 of 24)

B-18 The z/Architecture CPU Architecture

MULTIPLY (long HFP) MD RX-a ¤7,9 A Da EU EO B2 6C 18-18
MULTIPLY (long HFP) MDR RR ¤7,9 Da EU EO 2C 18-17
MULTIPLY (long to extended BFP) MXDB RXE ¤7,9 A SP Db Xi B2 ED07 19-37
MULTIPLY (long to extended BFP) MXDBR RRE ¤7,9 SP Db Xi B307 19-37
MULTIPLY (long to extended HFP) MXD RX-a ¤7,9 A SP Da EU EO B2 67 18-18
MULTIPLY (long to extended HFP) MXDR RR ¤7,9 SP Da EU EO 27 18-17
MULTIPLY (short BFP) MEEB RXE ¤7,9 A Db Xi Xo Xu Xx B2 ED17 19-37
MULTIPLY (short BFP) MEEBR RRE ¤7,9 Db Xi Xo Xu Xx B317 19-37
MULTIPLY (short HFP) MEE RXE ¤7,9 A Da EU EO B2 ED37 18-18
MULTIPLY (short HFP) MEER RRE ¤7,9 Da EU EO B337 18-17
MULTIPLY (short to long BFP) MDEB RXE ¤7,9 A Db Xi B2 ED0C 19-37
MULTIPLY (short to long BFP) MDEBR RRE ¤7,9 Db Xi B30C 19-37
MULTIPLY (short to long HFP) MDE RX-a ¤7,9 A Da EU EO B2 7C 18-18
MULTIPLY (short to long HFP) MDER RR ¤7,9 Da EU EO 3C 18-17
MULTIPLY (short to long HFP) ME RX-a ¤7,9 A Da EU EO B2 7C 18-18
MULTIPLY (short to long HFP) MER RR ¤7,9 Da EU EO 3C 18-18
MULTIPLY & ADD UNNORMALIZED (long to ext.
HFP)

MAY RXF UE ¤7,9 A Da B2 ED3A 18-20

MULTIPLY & ADD UNNORMALIZED (long to ext.
HFP)

MAYR RRD UE ¤7,9 Da B33A 18-20

MULTIPLY AND ADD (long BFP) MADB RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED1E 19-38
MULTIPLY AND ADD (long BFP) MADBR RRD ¤7,9 Db Xi Xo Xu Xx B31E 19-38
MULTIPLY AND ADD (long HFP) MAD RXF HM ¤7,9 A Da EU EO B2 ED3E 18-19
MULTIPLY AND ADD (long HFP) MADR RRD HM ¤7,9 Da EU EO B33E 18-19
MULTIPLY AND ADD (short BFP) MAEB RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED0E 19-38
MULTIPLY AND ADD (short BFP) MAEBR RRD ¤7,9 Db Xi Xo Xu Xx B30E 19-38
MULTIPLY AND ADD (short HFP) MAE RXF HM ¤7,9 A Da EU EO B2 ED2E 18-19
MULTIPLY AND ADD (short HFP) MAER RRD HM ¤7,9 Da EU EO B32E 18-19
MULTIPLY AND ADD UNNRM. (long to ext. high
HFP)

MAYH RXF UE ¤7,9 A Da B2 ED3C 18-20

MULTIPLY AND ADD UNNRM. (long to ext. high
HFP)

MAYHR RRD UE ¤7,9 Da B33C 18-20

MULTIPLY AND ADD UNNRM. (long to ext. low
HFP)

MAYL RXF UE ¤7,9 A Da B2 ED38 18-20

MULTIPLY AND ADD UNNRM. (long to ext. low
HFP)

MAYLR RRD UE ¤7,9 Da B338 18-20

MULTIPLY AND SUBTRACT (long BFP) MSDB RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED1F 19-38
MULTIPLY AND SUBTRACT (long BFP) MSDBR RRD ¤7,9 Db Xi Xo Xu Xx B31F 19-38
MULTIPLY AND SUBTRACT (long HFP) MSD RXF HM ¤7,9 A Da EU EO B2 ED3F 18-19
MULTIPLY AND SUBTRACT (long HFP) MSDR RRD HM ¤7,9 Da EU EO B33F 18-19
MULTIPLY AND SUBTRACT (short BFP) MSEB RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED0F 19-38
MULTIPLY AND SUBTRACT (short BFP) MSEBR RRD ¤7,9 Db Xi Xo Xu Xx B30F 19-38
MULTIPLY AND SUBTRACT (short HFP) MSE RXF HM ¤7,9 A Da EU EO B2 ED2F 18-19
MULTIPLY AND SUBTRACT (short HFP) MSER RRD HM ¤7,9 Da EU EO B32F 18-19
MULTIPLY DECIMAL MP SS-b ¤9 A SP Dg ST B1 B2 FC 8-12
MULTIPLY HALFWORD (3216) MH RX-a A B2 4C 7-305
MULTIPLY HALFWORD (3216) MHY RXY-a GE A B2 E37C 7-305
MULTIPLY HALFWORD (6416) MGH RXY-a MI2 A B2 E33C 7-305
MULTIPLY HALFWORD IMMEDIATE (3216) MHI RI-a A7C 7-305
MULTIPLY HALFWORD IMMEDIATE (6416) MGHI RI-a N A7D 7-305
MULTIPLY LOGICAL (12864) MLG RXY-a N A SP B2 E386 7-306
MULTIPLY LOGICAL (12864) MLGR RRE N SP B986 7-306
MULTIPLY LOGICAL (6432) ML RXY-a N3 A SP B2 E396 7-306
MULTIPLY LOGICAL (6432) MLR RRE N3 SP B996 7-305
MULTIPLY SINGLE (32) MS RX-a A B2 71 7-307
MULTIPLY SINGLE (32) MSC RXY-a C MI2 A IF B2 E353 7-307

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 14 of 24)

B-19

MULTIPLY SINGLE (32) MSR RRE B252 7-307
MULTIPLY SINGLE (32) MSRKC RRF-a C MI2 IF B9FD 7-307
MULTIPLY SINGLE (32) MSY RXY-a LD A B2 E351 7-307
MULTIPLY SINGLE (64) MSG RXY-a N A B2 E30C 7-307
MULTIPLY SINGLE (64) MSGC RXY-a C MI2 A IF B2 E383 7-307
MULTIPLY SINGLE (64) MSGR RRE N B90C 7-307
MULTIPLY SINGLE (64) MSGRKC RRF-a C MI2 IF B9ED 7-307
MULTIPLY SINGLE (6432) MSGF RXY-a N A B2 E31C 7-307
MULTIPLY SINGLE (6432) MSGFR RRE N B91C 7-307
MULTIPLY SINGLE IMMEDIATE (32) MSFI RIL-a GE C21 7-307
MULTIPLY SINGLE IMMEDIATE (6432) MSGFI RIL-a GE C20 7-307
MULTIPLY UNNORM. (long to ext. high HFP) MYH RXF UE ¤7,9 A Da B2 ED3D 18-22
MULTIPLY UNNORM. (long to ext. high HFP) MYHR RRD UE ¤7,9 Da B33D 18-22
MULTIPLY UNNORM. (long to ext. low HFP) MYL RXF UE ¤7,9 A Da B2 ED39 18-22
MULTIPLY UNNORM. (long to ext. low HFP) MYLR RRD UE ¤7,9 Da B339 18-22
MULTIPLY UNNORMALIZED (long to ext. HFP) MY RXF UE ¤7,9 A SP Da B2 ED3B 18-22
MULTIPLY UNNORMALIZED (long to ext. HFP) MYR RRD UE ¤7,9 SP Da B33B 18-22
NAND (32) NNRK RRF-a C MI3 B974 7-308
NAND (64) NNGRK RRF-a C MI3 B964 7-308
NEXT INSTRUCTION ACCESS INTENT NIAI IE EH B2FA 7-309
NONTRANSACTIONAL STORE (64) NTSTG RXY-a TX ¤9 A SP ST B2 E325 7-310
NOR (32) NORK RRF-a C MI3 B976 7-311
NOR (64) NOGRK RRF-a C MI3 B966 7-311
NOT EXCLUSIVE OR (32) NXRK RRF-a C MI3 B977 7-311
NOT EXCLUSIVE OR (64) NXGRK RRF-a C MI3 B967 7-311
OR (32) O RX-a C A B2 56 7-312
OR (32) OR RR C 16 7-312
OR (32) ORK RRF-a C DO B9F6 7-312
OR (32) OY RXY-a C LD A B2 E356 7-312
OR (64) OG RXY-a C N A B2 E381 7-312
OR (64) OGR RRE C N B981 7-312
OR (64) OGRK RRF-a C DO B9E6 7-312
OR (character) OC SS-a C ¤9 A ST B1 B2 D6 7-312
OR (immediate) OI SI C A ST B1 96 7-312
OR (immediate) OIY SIY C LD A ST B1 EB56 7-312
OR IMMEDIATE (high high) OIHH RI-a C N A58 7-313
OR IMMEDIATE (high low) OIHL RI-a C N A59 7-313
OR IMMEDIATE (high) OIHF RIL-a C EI C0C 7-313
OR IMMEDIATE (low high) OILH RI-a C N A5A 7-313
OR IMMEDIATE (low low) OILL RI-a C N A5B 7-313
OR IMMEDIATE (low) OILF RIL-a C EI C0D 7-313
OR WITH COMPLEMENT (32) OCRK RRF-a C MI3 B975 7-314
OR WITH COMPLEMENT (64) OCGRK RRF-a C MI3 B965 7-314
PACK PACK SS-b ¤9 A ST B1 B2 F2 7-314
PACK ASCII PKA SS-f E2 ¤9 A SP ST B1 B2 E9 7-315
PACK UNICODE PKU SS-f E2 ¤9 A SP ST B1 B2 E1 7-316
PAGE IN PGIN RRE C ES P A1 ¢ B22E 10-73
PAGE OUT PGOUT RRE C ES P A1 ¢ B22F 10-74
PERFORM CRYPTOGRAPHIC COMPUTATION PCC RRE C M4 ¤5,9 A SP IC GM I1 ST B92C 7-316
PERFORM CRYPTOGRAPHIC KEY MGMT.
OPERATIONS

PCKMO RRE M3 P A SP GM ST B928 10-75

PERFORM FLOATING-POINT OPERATION PFPO E PF ¤7-9 SP Da Xi X0 GM Xu Xx Xq 010A 9-35
PERFORM FRAME MANAGEMENT FUNCTION PFMF RRE ED1 P A1 SP II ¢3 K B9AF 10-80
PERFORM LOCKED OPERATION PLO SS-e C ¤1 A SP $ GM ST FC EE 7-337
PERFORM PROCESSOR ASSIST PPA RRF-c PA ¤1 B2E8 7-351

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 15 of 24)

B-20 The z/Architecture CPU Architecture

PERFORM RANDOM NUMBER OPERATION PRNO RRE C M5 ¤5,9 A SP IC Dg GM I1 ST R1 R2 B93C 7-352
PERFORM TIMING FACILITY FUNCTION PTFF E C TS Q A SP GM ST 0104 10-83
PERFORM TOPOLOGY FUNCTION PTF RRE C CT P SP B9A2 10-92
POPULATION COUNT POPCNT RRF-c C PK B9E1 7-365
PREFETCH DATA PFD RXY-b GE ¤9,11 B2 E336 7-365
PREFETCH DATA RELATIVE LONG PFDRL RIL-c GE ¤9,11 C62 7-366
PROGRAM CALL PC S Q A1* Z1 T ¢ GM B ST B218 10-93
PROGRAM RETURN PR E L ¤1 A1* SP Z4 T ¢2 B ST 0101 10-106
PROGRAM TRANSFER PT RRE Q A1* SP Z2 T ¢ B B228 10-110
PROGRAM TRANSFER WITH INSTANCE PTI RRE RA Q A1* SP Z6 T ¢ B B99E 10-110
PURGE ALB PALB RRE P $ B248 10-119
PURGE TLB PTLB S P $ B20D 10-119
QUANTIZE (extended DFP) QAXTR RRF-b TF ¤7,9 SP Dt Xi Xx Xq B3FD 20-49
QUANTIZE (long DFP) QADTR RRF-b TF ¤7,9 Dt Xi Xx Xq B3F5 20-49
REROUND (extended DFP) RRXTR RRF-b TF ¤7,9 SP Dt Xi Xx Xq B3FF 20-52
REROUND (long DFP) RRDTR RRF-b TF ¤7,9 Dt Xi Xx Xq B3F7 20-52
RESET CHANNEL PATH RCHP S C P B23B 14-9
RESET REFERENCE BIT EXTENDED RRBE RRE C P A1* B22A 10-119
RESET REFERENCE BITS MULTIPLE RRBM RRE RB P A1* B9AE 10-120
RESUME PROGRAM RP S L Q A SP WE T B B2 B277 10-120
RESUME SUBCHANNEL RSCH S C P OP ¢ GS B238 14-10
ROTATE LEFT SINGLE LOGICAL (32) RLL RSY-a N3 EB1D 7-367
ROTATE LEFT SINGLE LOGICAL (64) RLLG RSY-a N EB1C 7-367
ROTATE THEN AND SELECTED BITS (64) RNSBG RIE-f C GE EC54 7-368
ROTATE THEN EXCLUSIVE OR SELECT. BITS (64) RXSBG RIE-f C GE EC57 7-368
ROTATE THEN INSERT SELECTED BITS (64) RISBG RIE-f C GE EC55 7-369
ROTATE THEN INSERT SELECTED BITS (64) RISBGN RIE-f MI1 EC59 7-369
ROTATE THEN INSERT SELECTED BITS HIGH
(64)

RISBHG RIE-f HW EC5D 7-371

ROTATE THEN INSERT SELECTED BITS LOW (64) RISBLG RIE-f HW EC51 7-371
ROTATE THEN OR SELECTED BITS (64) ROSBG RIE-f C GE EC56 7-368
SEARCH STRING SRST RRE C ¤9 A SP IC G0 R2 B25E 7-372
SEARCH STRING UNICODE SRSTU RRE C E3 ¤9 A SP IC G0 R1 R2 B9BE 7-374
SELECT (32) SELR RRF-a MI3 B9F0 7-376
SELECT (64) SELGR RRF-a MI3 B9E3 7-376
SELECT HIGH (32) SELFHR RRF-a MI3 B9C0 7-376
SET ACCESS SAR RRE ¤6 U1 B24E 7-377
SET ADDRESS LIMIT SAL S P OP ¢ G1 B237 14-12
SET ADDRESS SPACE CONTROL SAC S Q SP SW ¢ B219 10-123
SET ADDRESS SPACE CONTROL FAST SACF S Q SP SW B279 10-123
SET ADDRESSING MODE (24) SAM24 E N3 ¤3,9 SP T 010C 7-377
SET ADDRESSING MODE (31) SAM31 E N3 ¤3,9 SP T 010D 7-377
SET ADDRESSING MODE (64) SAM64 E N ¤3,9 T 010E 7-377
SET BFP ROUNDING MODE (2 bit) SRNM S ¤7,9 Db B299 9-47
SET BFP ROUNDING MODE (3 bit) SRNMB S F ¤7,9 SP Db B2B8 9-47
SET CHANNEL MONITOR SCHM S P OP ¢ GM B23C 14-13
SET CLOCK SCK S C P A SP B2 B204 10-124
SET CLOCK COMPARATOR SCKC S P A SP B2 B206 10-125
SET CLOCK PROGRAMMABLE FIELD SCKPF E P SP G0 0107 10-126
SET CPU TIMER SPT S P A SP B2 B208 10-126
SET DFP ROUNDING MODE SRNMT S TR ¤7,9 Dt B2B9 9-47
SET FPC SFPC RRE ¤7,9 SP Db B384 9-47
SET FPC AND SIGNAL SFASR RRE XF ¤7,9 SP Dt Xg B385 9-48
SET PREFIX SPX S P A SP $ B2 B210 10-126
SET PROGRAM MASK SPM RR L 04 7-378

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 16 of 24)

B-21

SET PSW KEY FROM ADDRESS SPKA S Q B20A 10-127
SET SECONDARY ASN SSAR RRE ¤1 A1* Z3 T ¢ B225 10-128
SET SECONDARY ASN WITH INSTANCE SSAIR RRE RA ¤1 A1* Z7 T ¢ B99F 10-128
SET STORAGE KEY EXTENDED SSKE RRF-c C1 P A1* II ¢ K B22B 10-133
SET SYSTEM MASK SSM SI P A SP SO B2 80 10-136
SHIFT AND ROUND DECIMAL SRP SS-c C ¤9 A Dg DF ST B1 B2 F0 8-12
SHIFT LEFT DOUBLE (64) SLDA RS-a C SP IF 8F 7-378
SHIFT LEFT DOUBLE LOGICAL (64) SLDL RS-a SP 8D 7-379
SHIFT LEFT SINGLE (32) SLA RS-a C IF 8B 7-379
SHIFT LEFT SINGLE (32) SLAK RSY-a C DO IF EBDD 7-379
SHIFT LEFT SINGLE (64) SLAG RSY-a C N IF EB0B 7-379
SHIFT LEFT SINGLE LOGICAL (32) SLL RS-a 89 7-380
SHIFT LEFT SINGLE LOGICAL (32) SLLK RSY-a DO EBDF 7-380
SHIFT LEFT SINGLE LOGICAL (64) SLLG RSY-a N EB0D 7-380
SHIFT RIGHT DOUBLE (64) SRDA RS-a C SP 8E 7-381
SHIFT RIGHT DOUBLE LOGICAL (64) SRDL RS-a SP 8C 7-381
SHIFT RIGHT SINGLE (32) SRA RS-a C 8A 7-382
SHIFT RIGHT SINGLE (32) SRAK RSY-a C DO EBDC 7-382
SHIFT RIGHT SINGLE (64) SRAG RSY-a C N EB0A 7-382
SHIFT RIGHT SINGLE LOGICAL (32) SRL RS-a 88 7-383
SHIFT RIGHT SINGLE LOGICAL (32) SRLK RSY-a DO EBDE 7-383
SHIFT RIGHT SINGLE LOGICAL (64) SRLG RSY-a N EB0C 7-383
SHIFT SIGNIFICAND LEFT (extended DFP) SLXT RXF TF ¤7,9 SP Dt ED48 20-54
SHIFT SIGNIFICAND LEFT (long DFP) SLDT RXF TF ¤7,9 Dt ED40 20-54
SHIFT SIGNIFICAND RIGHT (extended DFP) SRXT RXF TF ¤7,9 SP Dt ED49 20-54
SHIFT SIGNIFICAND RIGHT (long DFP) SRDT RXF TF ¤7,9 Dt ED41 20-54
SIGNAL PROCESSOR SIGP RS-a C P $ AE 10-136
SQUARE ROOT (extended BFP) SQXBR RRE ¤7,9 SP Db Xi Xx B316 19-40
SQUARE ROOT (extended HFP) SQXR RRE ¤7,9 SP Da SQ B336 18-23
SQUARE ROOT (long BFP) SQDB RXE ¤7,9 A Db Xi Xx B2 ED15 19-40
SQUARE ROOT (long BFP) SQDBR RRE ¤7,9 Db Xi Xx B315 19-40
SQUARE ROOT (long HFP) SQD RXE ¤7,9 A Da SQ B2 ED35 18-23
SQUARE ROOT (long HFP) SQDR RRE ¤7,9 Da SQ B244 18-23
SQUARE ROOT (short BFP) SQEB RXE ¤7,9 A Db Xi Xx B2 ED14 19-40
SQUARE ROOT (short BFP) SQEBR RRE ¤7,9 Db Xi Xx B314 19-40
SQUARE ROOT (short HFP) SQE RXE ¤7,9 A Da SQ B2 ED34 18-23
SQUARE ROOT (short HFP) SQER RRE ¤7,9 Da SQ B245 18-23
START SUBCHANNEL SSCH S C P A SP OP ¢ GS B2 B233 14-15
STORE (32) ST RX-a A ST B2 50 7-383
STORE (32) STY RXY-a LD A ST B2 E350 7-384
STORE (64) STG RXY-a N A ST B2 E324 7-384
STORE (long) STD RX-a ¤7,9 A Da ST B2 60 9-48
STORE (long) STDY RXY-a LD ¤7,9 A Da ST B2 ED67 9-49
STORE (short) STE RX-a ¤7,9 A Da ST B2 70 9-48
STORE (short) STEY RXY-a LD ¤7,9 A Da ST B2 ED66 9-49
STORE ACCESS MULTIPLE STAM RS-a A SP ST UB 9B 7-384
STORE ACCESS MULTIPLE STAMY RSY-a LD A SP ST UB EB9B 7-384
STORE CHANNEL PATH STATUS STCPS S P A SP ¢ ST B2 B23A 14-16
STORE CHANNEL REPORT WORD STCRW S C P A SP ¢ ST B2 B239 14-17
STORE CHARACTER STC RX-a A ST B2 42 7-385
STORE CHARACTER STCY RXY-a LD A ST B2 E372 7-385
STORE CHARACTER HIGH (8) STCH RXY-a HW A ST B2 E3C3 7-385
STORE CHARACTERS UNDER MASK (high) STCMH RSY-b N ¤9,11 A ST B2 EB2C 7-385
STORE CHARACTERS UNDER MASK (low) STCM RS-b A ST B2 BE 7-385
STORE CHARACTERS UNDER MASK (low) STCMY RSY-b LD A ST B2 EB2D 7-385

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 17 of 24)

B-22 The z/Architecture CPU Architecture

STORE CLOCK STCK S C ¤8,9 A $ ST B2 B205 7-386
STORE CLOCK COMPARATOR STCKC S P A SP ST B2 B207 10-138
STORE CLOCK EXTENDED STCKE S C ¤8,9 A $ ST B2 B278 7-387
STORE CLOCK FAST STCKF S C SC ¤8,9 A ST B2 B27C 7-386
STORE CONTROL (32) STCTL RS-a P A SP ST B2 B6 10-138
STORE CONTROL (64) STCTG RSY-a N P A SP ST B2 EB25 10-138
STORE CPU ADDRESS STAP S P A SP ST B2 B212 10-139
STORE CPU ID STIDP S P A SP ST B2 B202 10-139
STORE CPU TIMER STPT S P A SP ST B2 B209 10-141
STORE FACILITY LIST STFL S N3 P B2B1 10-141
STORE FACILITY LIST EXTENDED STFLE S C FL ¤1 A SP G0 ST B2 B2B0 7-389
STORE FPC STFPC S ¤7,9 A Db ST B2 B29C 9-49
STORE GUARDED STORAGE CONTROLS STGSC RXY-a GF ¤1 A SO ST B2 E349 7-390
STORE HALFWORD (16) STH RX-a A ST B2 40 7-390
STORE HALFWORD (16) STHY RXY-a LD A ST B2 E370 7-391
STORE HALFWORD HIGH (16) STHH RXY-a HW A ST B2 E3C7 7-391
STORE HALFWORD RELATIVE LONG (16) STHRL RIL-b GE A* ST C47 7-391
STORE HIGH (32) STFH RXY-a HW A ST B2 E3CB 7-391
STORE HIGH ON CONDITION STOCFH RSY-b L2 A ST B2 EBE1 7-393
STORE MULTIPLE (32) STM RS-a A ST B2 90 7-392
STORE MULTIPLE (32) STMY RSY-a LD A ST B2 EB90 7-392
STORE MULTIPLE (64) STMG RSY-a N A ST B2 EB24 7-392
STORE MULTIPLE HIGH (32) STMH RSY-a N A ST B2 EB26 7-392
STORE ON CONDITION (32) STOC RSY-b L1 A ST B2 EBF3 7-392
STORE ON CONDITION (64) STOCG RSY-b L1 A ST B2 EBE3 7-392
STORE PAIR TO QUADWORD STPQ RXY-a N ¤9 A SP ST B2 E38E 7-393
STORE PREFIX STPX S P A SP ST B2 B211 10-142
STORE REAL ADDRESS STRAG SSE N P A1 SP ST B1 BP E502 10-142
STORE RELATIVE LONG (32) STRL RIL-b GE A* SP ST C4F 7-384
STORE RELATIVE LONG (64) STGRL RIL-b GE A* SP ST C4B 7-384
STORE REVERSED (16) STRVH RXY-a N3 A ST B2 E33F 7-394
STORE REVERSED (32) STRV RXY-a N3 A ST B2 E33E 7-394
STORE REVERSED (64) STRVG RXY-a N A ST B2 E32F 7-394
STORE SUBCHANNEL STSCH S C P A SP OP ¢ GS ST B2 B234 14-18
STORE SYSTEM INFORMATION STSI S C P A SP GM ST B2 B27D 10-143
STORE THEN AND SYSTEM MASK STNSM SI P A ST B1 AC 10-167
STORE THEN OR SYSTEM MASK STOSM SI P A SP ST B1 AD 10-167
STORE USING REAL ADDRESS (32) STURA RRE P A1 SP SU B246 10-168
STORE USING REAL ADDRESS (64) STURG RRE N P A1 SP SU B925 10-168
SUBTRACT (32) S RX-a C A IF B2 5B 7-395
SUBTRACT (32) SR RR C IF 1B 7-394
SUBTRACT (32) SRK RRF-a C DO IF B9F9 7-394
SUBTRACT (32) SY RXY-a C LD A IF B2 E35B 7-395
SUBTRACT (64) SG RXY-a C N A IF B2 E309 7-395
SUBTRACT (64) SGR RRE C N IF B909 7-394
SUBTRACT (64) SGRK RRF-a C DO IF B9E9 7-394
SUBTRACT (6432) SGF RXY-a C N A IF B2 E319 7-395
SUBTRACT (6432) SGFR RRE C N IF B919 7-394
SUBTRACT (extended BFP) SXBR RRE C ¤7,9 SP Db Xi Xo Xu Xx B34B 19-40
SUBTRACT (extended DFP) SXTR RRF-a C TF ¤7,9 SP Dt Xi Xo Xu Xx B3DB 20-55
SUBTRACT (extended DFP) SXTRA RRF-a C F ¤7,9 SP Dt Xi Xo Xu Xx Xq B3DB 20-55
SUBTRACT (long BFP) SDB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED1B 19-40
SUBTRACT (long BFP) SDBR RRE C ¤7,9 Db Xi Xo Xu Xx B31B 19-40
SUBTRACT (long DFP) SDTR RRF-a C TF ¤7,9 Dt Xi Xo Xu Xx B3D3 20-55
SUBTRACT (long DFP) SDTRA RRF-a C F ¤7,9 Dt Xi Xo Xu Xx Xq B3D3 20-55

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 18 of 24)

B-23

SUBTRACT (short BFP) SEB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED0B 19-40
SUBTRACT (short BFP) SEBR RRE C ¤7,9 Db Xi Xo Xu Xx B30B 19-40
SUBTRACT DECIMAL SP SS-b C ¤9 A Dg DF ST B1 B2 FB 8-13
SUBTRACT HALFWORD (3216) SH RX-a C A IF B2 4B 7-395
SUBTRACT HALFWORD (3216) SHY RXY-a C LD A IF B2 E37B 7-395
SUBTRACT HALFWORD (6416) SGH RXY-a C MI2 A IF B2 E339 7-395
SUBTRACT HIGH (32) SHHHR RRF-a C HW IF B9C9 7-396
SUBTRACT HIGH (32) SHHLR RRF-a C HW IF B9D9 7-396
SUBTRACT LOGICAL (32) SL RX-a C A B2 5F 7-396
SUBTRACT LOGICAL (32) SLR RR C 1F 7-396
SUBTRACT LOGICAL (32) SLRK RRF-a C DO B9FB 7-396
SUBTRACT LOGICAL (32) SLY RXY-a C LD A B2 E35F 7-396
SUBTRACT LOGICAL (64) SLG RXY-a C N A B2 E30B 7-397
SUBTRACT LOGICAL (64) SLGR RRE C N B90B 7-396
SUBTRACT LOGICAL (64) SLGRK RRF-a C DO B9EB 7-396
SUBTRACT LOGICAL (6432) SLGF RXY-a C N A B2 E31B 7-397
SUBTRACT LOGICAL (6432) SLGFR RRE C N B91B 7-396
SUBTRACT LOGICAL HIGH (32) SLHHHR RRF-a C HW B9CB 7-397
SUBTRACT LOGICAL HIGH (32) SLHHLR RRF-a C HW B9DB 7-397
SUBTRACT LOGICAL IMMEDIATE (32) SLFI RIL-a C EI C25 7-397
SUBTRACT LOGICAL IMMEDIATE (6432) SLGFI RIL-a C EI C24 7-397
SUBTRACT LOGICAL WITH BORROW (32) SLB RXY-a C N3 A B2 E399 7-398
SUBTRACT LOGICAL WITH BORROW (32) SLBR RRE C N3 B999 7-398
SUBTRACT LOGICAL WITH BORROW (64) SLBG RXY-a C N A B2 E389 7-398
SUBTRACT LOGICAL WITH BORROW (64) SLBGR RRE C N B989 7-398
SUBTRACT NORMALIZED (extended HFP) SXR RR C ¤7,9 SP Da EU EO LS 37 18-24
SUBTRACT NORMALIZED (long HFP) SD RX-a C ¤7,9 A Da EU EO LS B2 6B 18-24
SUBTRACT NORMALIZED (long HFP) SDR RR C ¤7,9 Da EU EO LS 2B 18-24
SUBTRACT NORMALIZED (short HFP) SE RX-a C ¤7,9 A Da EU EO LS B2 7B 18-24
SUBTRACT NORMALIZED (short HFP) SER RR C ¤7,9 Da EU EO LS 3B 18-24
SUBTRACT UNNORMALIZED (long HFP) SW RX-a C ¤7,9 A Da EO LS B2 6F 18-25
SUBTRACT UNNORMALIZED (long HFP) SWR RR C ¤7,9 Da EO LS 2F 18-25
SUBTRACT UNNORMALIZED (short HFP) SU RX-a C ¤7,9 A Da EO LS B2 7F 18-25
SUBTRACT UNNORMALIZED (short HFP) SUR RR C ¤7,9 Da EO LS 3F 18-25
SUPERVISOR CALL SVC I ¤1 ¢ 0A 7-398
TEST ACCESS TAR RRE C ¤1 A1* U1 B24C 10-168
TEST ADDRESSING MODE TAM E C N3 ¤9 010B 7-399
TEST AND SET TS SI C ¤9 A $ ST B2 93 7-399
TEST BLOCK TB RRE C P A1* II $ G0 K B22C 10-170
TEST DATA CLASS (extended BFP) TCXB RXE C ¤7,9 SP Db ED12 19-41
TEST DATA CLASS (extended DFP) TDCXT RXE C TF ¤7,9 SP Dt ED58 20-56
TEST DATA CLASS (long BFP) TCDB RXE C ¤7,9 Db ED11 19-41
TEST DATA CLASS (long DFP) TDCDT RXE C TF ¤7,9 Dt ED54 20-56
TEST DATA CLASS (short BFP) TCEB RXE C ¤7,9 Db ED10 19-41
TEST DATA CLASS (short DFP) TDCET RXE C TF ¤7,9 Dt ED50 20-56
TEST DATA GROUP (extended DFP) TDGXT RXE C TF ¤7,9 SP Dt ED59 20-57
TEST DATA GROUP (long DFP) TDGDT RXE C TF ¤7,9 Dt ED55 20-57
TEST DATA GROUP (short DFP) TDGET RXE C TF ¤7,9 Dt ED51 20-57
TEST DECIMAL TP RSL-a C E2 ¤9 A B1 B2 EBC0 8-14
TEST PENDING EXTERNAL INTERRUPTION TPEI RRE C TE P B9A1 10-172
TEST PENDING INTERRUPTION TPI S C P A1* SP ¢ ST B2 B236 14-19
TEST PROTECTION TPROT SSE C P A1* B1 E501 10-173
TEST SUBCHANNEL TSCH S C P A SP OP ¢ GS ST B2 B235 14-21
TEST UNDER MASK TM SI C A B1 91 7-400
TEST UNDER MASK TMY SIY C LD A B1 EB51 7-400

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 19 of 24)

B-24 The z/Architecture CPU Architecture

TEST UNDER MASK (high high) TMHH RI-a C N A72 7-400
TEST UNDER MASK (high low) TMHL RI-a C N A73 7-400
TEST UNDER MASK (low high) TMLH RI-a C N A70 7-400
TEST UNDER MASK (low low) TMLL RI-a C N A71 7-400
TEST UNDER MASK HIGH TMH RI-a C A70 7-400
TEST UNDER MASK LOW TML RI-a C A71 7-400
TRACE (32) TRACE RS-a P A SP T ¢ B2 99 10-176
TRACE (64) TRACG RSY-a N P A SP T ¢ B2 EB0F 10-176
TRANSACTION ABORT TABORT S TX ¤9 SP SO $ EX B2FC 7-401
TRANSACTION BEGIN (constrained) TBEGINC SIL C CX ¤9 SP SO $ EX E561 7-406
TRANSACTION BEGIN (nonconstrained) TBEGIN SIL C TX ¤9 A SP SO $ EX ST E560 7-401
TRANSACTION END TEND S C TX SO $ EX B2F8 7-408
TRANSLATE TR SS-a ¤9 A ST B1 B2 DC 7-408
TRANSLATE AND TEST TRT SS-a C ¤9 A GM B1 B2 DD 7-409
TRANSLATE AND TEST EXTENDED TRTE RRF-c C PE ¤9 A SP IC ST RM B9BF 7-410
TRANSLATE AND TEST REVERSE TRTR SS-a C E3 ¤9 A GM B1 B2 D0 7-415
TRANSLATE AND TEST REVERSE EXTENDED TRTRE RRF-c C PE ¤9 A SP IC ST RM B9BD 7-410
TRANSLATE EXTENDED TRE RRE C ¤9 A SP IC ST R1 R2 B2A5 7-415
TRANSLATE ONE TO ONE TROO RRF-c C E2 ¤9 A SP IC GM ST RM R2 B993 7-418
TRANSLATE ONE TO TWO TROT RRF-c C E2 ¤9 A SP IC GM ST RM R2 B992 7-418
TRANSLATE TWO TO ONE TRTO RRF-c C E2 ¤9 A SP IC GM ST RM R2 B991 7-418
TRANSLATE TWO TO TWO TRTT RRF-c C E2 ¤9 A SP IC GM ST RM R2 B990 7-418
TRAP TRAP2 E ¤1 A* SO T B ST 01FF 10-177
TRAP TRAP4 S ¤1 A* SO T B ST B2FF 10-177
UNPACK UNPK SS-b ¤9 A ST B1 B2 F3 7-423
UNPACK ASCII UNPKA SS-a C E2 ¤9 A SP ST B1 B2 EA 7-423
UNPACK UNICODE UNPKU SS-a C E2 ¤9 A SP ST B1 B2 E2 7-424
UPDATE TREE UPT E C ¤9 A SP II GM I4 ST 0102 7-425
VECTOR ADD VA VRR-c VF ¤7,9 SP Dv E7F3 22-3
VECTOR ADD COMPUTE CARRY VACC VRR-c VF ¤7,9 SP Dv E7F1 22-4
VECTOR ADD DECIMAL VAP VRI-f C* VD ¤7,9 SP Dv Dg DF* E671 25-3
VECTOR ADD WITH CARRY VAC VRR-d VF ¤7,9 SP Dv E7BB 22-4
VECTOR ADD WITH CARRY COMPUTE CARRY VACCC VRR-d VF ¤7,9 SP Dv E7B9 22-5
VECTOR AND VN VRR-c VF ¤7,9 Dv E768 22-5
VECTOR AND WITH COMPLEMENT VNC VRR-c VF ¤7,9 Dv E769 22-5
VECTOR AVERAGE VAVG VRR-c VF ¤7,9 SP Dv E7F2 22-6
VECTOR AVERAGE LOGICAL VAVGL VRR-c VF ¤7,9 SP Dv E7F0 22-6
VECTOR BIT PERMUTE VBPERM VRR-c V1 ¤7,9 Dv E785 21-4
VECTOR CHECKSUM VCKSM VRR-c VF ¤7,9 Dv E766 22-6
VECTOR COMPARE DECIMAL VCP VRR-h C VD ¤7,9 Dv Dg E677 25-5
VECTOR COMPARE EQUAL VCEQ VRR-b C* VF ¤7,9 SP Dv E7F8 22-7
VECTOR COMPARE HIGH VCH VRR-b C* VF ¤7,9 SP Dv E7FB 22-8
VECTOR COMPARE HIGH LOGICAL VCHL VRR-b C* VF ¤7,9 SP Dv E7F9 22-9
VECTOR CONVERT TO BINARY VCVB VRR-i C* VD ¤7,9 Dv Dg IF* E650 25-5
VECTOR CONVERT TO BINARY VCVBG VRR-i C* VD ¤7,9 Dv Dg IF* E652 25-5
VECTOR CONVERT TO DECIMAL VCVD VRI-i C* VD ¤7,9 SP Dv DF* E658 25-7
VECTOR CONVERT TO DECIMAL VCVDG VRI-i C* VD ¤7,9 SP Dv DF* E65A 25-7
VECTOR COUNT LEADING ZEROS VCLZ VRR-a VF ¤7,9 SP Dv E753 22-10
VECTOR COUNT TRAILING ZEROS VCTZ VRR-a VF ¤7,9 SP Dv E752 22-10
VECTOR DIVIDE DECIMAL VDP VRI-f C* VD ¤7,9 SP Dv Dg DF* DK E67A 25-8
VECTOR ELEMENT COMPARE VEC VRR-a C VF ¤7,9 SP Dv E7DB 22-7
VECTOR ELEMENT COMPARE LOGICAL VECL VRR-a C VF ¤7,9 SP Dv E7D9 22-7
VECTOR ELEMENT ROTATE AND INSERT UNDER
MASK

VERIM VRI-d VF ¤7,9 SP Dv E772 22-22

VECTOR ELEMENT ROTATE LEFT LOGICAL VERLL VRS-a VF ¤7,9 SP Dv E733 22-21

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 20 of 24)

B-25

VECTOR ELEMENT ROTATE LEFT LOGICAL VERLLV VRR-c VF ¤7,9 SP Dv E773 22-21
VECTOR ELEMENT SHIFT LEFT VESLV VRR-c VF ¤7,9 SP Dv E770 22-23
VECTOR ELEMENT SHIFT LEFT VESL VRS-a VF ¤7,9 SP Dv E730 22-23
VECTOR ELEMENT SHIFT RIGHT ARITHMETIC VESRA VRS-a VF ¤7,9 SP Dv E73A 22-23
VECTOR ELEMENT SHIFT RIGHT ARITHMETIC VESRAV VRR-c VF ¤7,9 SP Dv E77A 22-23
VECTOR ELEMENT SHIFT RIGHT LOGICAL VESRL VRS-a VF ¤7,9 SP Dv E738 22-24
VECTOR ELEMENT SHIFT RIGHT LOGICAL VESRLV VRR-c VF ¤7,9 SP Dv E778 22-24
VECTOR EXCLUSIVE OR VX VRR-c VF ¤7,9 Dv E76D 22-11
VECTOR FIND ANY ELEMENT EQUAL VFAE VRR-b C* VF ¤7,9 SP Dv E782 23-2
VECTOR FIND ELEMENT EQUAL VFEE VRR-b C* VF ¤7,9 SP Dv E780 23-3
VECTOR FIND ELEMENT NOT EQUAL VFENE VRR-b C* VF ¤7,9 SP Dv E781 23-4
VECTOR FP ADD VFA VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx E7E3 24-4
VECTOR FP COMPARE AND SIGNAL SCALAR WFK VRR-a C VF ¤7,9 SP Dv Xi E7CA 24-8
VECTOR FP COMPARE EQUAL VFCE VRR-c C* VF ¤7,9 SP Dv Xi E7E8 24-9
VECTOR FP COMPARE HIGH VFCH VRR-c C* VF ¤7,9 SP Dv Xi E7EB 24-11
VECTOR FP COMPARE HIGH OR EQUAL VFCHE VRR-c C* VF ¤7,9 SP Dv Xi E7EA 24-13
VECTOR FP COMPARE SCALAR WFC VRR-a C VF ¤7,9 SP Dv Xi E7CB 24-7
VECTOR FP CONVERT FROM FIXED VCFPS VRR-a V2 ¤7,9 SP Dv Xx E7C3 24-15
VECTOR FP CONVERT FROM FIXED 64-BIT VCDG VRR-a VF ¤7,9 SP Dv Xx E7C3 24-15
VECTOR FP CONVERT FROM LOGICAL VCFPL VRR-a V2 ¤7,9 SP Dv Xx E7C1 24-17
VECTOR FP CONVERT FROM LOGICAL 64-BIT VCDLG VRR-a VF ¤7,9 SP Dv Xx E7C1 24-17
VECTOR FP CONVERT TO FIXED VCSFP VRR-a V2 ¤7,9 SP Dv Xi Xx E7C2 24-18
VECTOR FP CONVERT TO FIXED 64-BIT VCGD VRR-a VF ¤7,9 SP Dv Xi Xx E7C2 24-18
VECTOR FP CONVERT TO LOGICAL VCLFP VRR-a V2 ¤7,9 SP Dv Xi Xx E7C0 24-20
VECTOR FP CONVERT TO LOGICAL 64-BIT VCLGD VRR-a VF ¤7,9 SP Dv Xi Xx E7C0 24-20
VECTOR FP DIVIDE VFD VRR-c VF ¤7,9 SP Dv Xi Xz Xo Xu Xx E7E5 24-22
VECTOR FP LOAD LENGTHENED VFLL VRR-a VF ¤7,9 SP Dv Xi E7C4 24-26
VECTOR FP LOAD ROUNDED VFLR VRR-a VF ¤7,9 SP Dv Xi Xo Xu Xx E7C5 24-27
VECTOR FP MAXIMUM VFMAX VRR-c V1 ¤7,9 SP Dv Xi E7EF 24-28
VECTOR FP MINIMUM VFMIN VRR-c V1 ¤7,9 SP Dv Xi E7EE 24-34
VECTOR FP MULTIPLY VFM VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx E7E7 24-40
VECTOR FP MULTIPLY AND ADD VFMA VRR-e VF ¤7,9 SP Dv Xi Xo Xu Xx E78F 24-42
VECTOR FP MULTIPLY AND SUBTRACT VFMS VRR-e VF ¤7,9 SP Dv Xi Xo Xu Xx E78E 24-42
VECTOR FP NEGATIVE MULTIPLY AND ADD VFNMA VRR-e V1 ¤7,9 SP Dv Xi Xo Xu Xx E79F 24-42
VECTOR FP NEGATIVE MULTIPLY AND
SUBTRACT

VFNMS VRR-e V1 ¤7,9 SP Dv Xi Xo Xu Xx E79E 24-42

VECTOR FP PERFORM SIGN OPERATION VFPSO VRR-a VF ¤7,9 SP Dv E7CC 24-44
VECTOR FP SQUARE ROOT VFSQ VRR-a VF ¤7,9 SP Dv Xi Xx E7CE 24-45
VECTOR FP SUBTRACT VFS VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx E7E2 24-46
VECTOR FP TEST DATA CLASS IMMEDIATE VFTCI VRI-e C VF ¤7,9 SP Dv E74A 24-47
VECTOR GALOIS FIELD MULTIPLY SUM VGFM VRR-c VF ¤7,9 SP Dv E7B4 22-11
VECTOR GALOIS FIELD MULTIPLY SUM AND
ACCUMULATE

VGFMA VRR-d VF ¤7,9 SP Dv E7BC 22-12

VECTOR GATHER ELEMENT (32) VGEF VRV VF ¤7,9 A SP Dv B2 E713 21-5
VECTOR GATHER ELEMENT (64) VGEG VRV VF ¤7,9 A SP Dv B2 E712 21-5
VECTOR GENERATE BYTE MASK VGBM VRI-a VF ¤7,9 Dv E744 21-5
VECTOR GENERATE MASK VGM VRI-b VF ¤7,9 SP Dv E746 21-6
VECTOR ISOLATE STRING VISTR VRR-a C* VF ¤7,9 SP Dv E75C 23-5
VECTOR LOAD VL VRX VF ¤7,9 A Dv B2 E706 21-6
VECTOR LOAD VLR VRR-a VF ¤7,9 Dv E756 21-6
VECTOR LOAD AND REPLICATE VLREP VRX VF ¤7,9 A SP Dv B2 E705 21-7
VECTOR LOAD BYTE REVERSED ELEMENT (16) VLEBRH VRX V2 ¤7,9 A SP Dv B2 E601 21-7
VECTOR LOAD BYTE REVERSED ELEMENT (32) VLEBRF VRX V2 ¤7,9 A SP Dv B2 E603 21-7
VECTOR LOAD BYTE REVERSED ELEMENT (64) VLEBRG VRX V2 ¤7,9 A SP Dv B2 E602 21-7

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 21 of 24)

B-26 The z/Architecture CPU Architecture

VECTOR LOAD BYTE REVERSED ELEMENT AND
REPLICATE

VLBRRE
P

VRX V2 ¤7,9 A SP Dv B2 E605 21-8

VECTOR LOAD BYTE REVERSED ELEMENT AND
ZERO

VLLEBRZ VRX V2 ¤7,9 A SP Dv B2 E604 21-8

VECTOR LOAD BYTE REVERSED ELEMENTS VLBR VRX V2 ¤7,9 A SP Dv B2 E606 21-9
VECTOR LOAD COMPLEMENT VLC VRR-a VF ¤7,9 SP Dv E7DE 22-12
VECTOR LOAD ELEMENT (16) VLEH VRX VF ¤7,9 A SP Dv B2 E701 21-9
VECTOR LOAD ELEMENT (32) VLEF VRX VF ¤7,9 A SP Dv B2 E703 21-9
VECTOR LOAD ELEMENT (64) VLEG VRX VF ¤7,9 A SP Dv B2 E702 21-9
VECTOR LOAD ELEMENT (8) VLEB VRX VF ¤7,9 A SP Dv B2 E700 21-9
VECTOR LOAD ELEMENT IMMEDIATE (16) VLEIH VRI-a VF ¤7,9 SP Dv E741 21-10
VECTOR LOAD ELEMENT IMMEDIATE (32) VLEIF VRI-a VF ¤7,9 SP Dv E743 21-10
VECTOR LOAD ELEMENT IMMEDIATE (64) VLEIG VRI-a VF ¤7,9 SP Dv E742 21-10
VECTOR LOAD ELEMENT IMMEDIATE (8) VLEIB VRI-a VF ¤7,9 SP Dv E740 21-10
VECTOR LOAD ELEMENTS REVERSED VLER VRX V2 ¤7,9 A SP Dv B2 E607 21-10
VECTOR LOAD FP INTEGER VFI VRR-a VF ¤7,9 SP Dv Xi Xx E7C7 24-24
VECTOR LOAD GR FROM VR ELEMENT VLGV VRS-c VF ¤7,9 SP Dv E721 21-11
VECTOR LOAD IMMEDIATE DECIMAL VLIP VRI-h VD ¤7,9 Dv Dg E649 25-10
VECTOR LOAD LOGICAL ELEMENT AND ZERO VLLEZ VRX VF ¤7,9 A SP Dv B2 E704 21-12
VECTOR LOAD MULTIPLE VLM VRS-a VF ¤7,9 A SP Dv B2 E736 21-12
VECTOR LOAD POSITIVE VLP VRR-a VF ¤7,9 SP Dv E7DF 22-12
VECTOR LOAD RIGHTMOST WITH LENGTH VLRL VSI VD ¤7,9 A SP Dv B2 E635 21-13
VECTOR LOAD RIGHTMOST WITH LENGTH VLRLR VRS-d VD ¤7,9 A Dv B2 E637 21-13
VECTOR LOAD TO BLOCK BOUNDARY VLBB VRX VF ¤7,9 A SP Dv B2 E707 21-14
VECTOR LOAD VR ELEMENT FROM GR VLVG VRS-b VF ¤7,9 SP Dv E722 21-14
VECTOR LOAD VR FROM GRS DISJOINT VLVGP VRR-f VF ¤7,9 Dv E762 21-15
VECTOR LOAD WITH LENGTH VLL VRS-b VF ¤7,9 A Dv B2 E737 21-15
VECTOR MAXIMUM VMX VRR-c VF ¤7,9 SP Dv E7FF 22-13
VECTOR MAXIMUM LOGICAL VMXL VRR-c VF ¤7,9 SP Dv E7FD 22-13
VECTOR MERGE HIGH VMRH VRR-c VF ¤7,9 SP Dv E761 21-15
VECTOR MERGE LOW VMRL VRR-c VF ¤7,9 SP Dv E760 21-16
VECTOR MINIMUM VMN VRR-c VF ¤7,9 SP Dv E7FE 22-13
VECTOR MINIMUM LOGICAL VMNL VRR-c VF ¤7,9 SP Dv E7FC 22-14
VECTOR MULTIPLY AND ADD EVEN VMAE VRR-d VF ¤7,9 SP Dv E7AE 22-15
VECTOR MULTIPLY AND ADD HIGH VMAH VRR-d VF ¤7,9 SP Dv E7AB 22-15
VECTOR MULTIPLY AND ADD LOGICAL EVEN VMALE VRR-d VF ¤7,9 SP Dv E7AC 22-15
VECTOR MULTIPLY AND ADD LOGICAL HIGH VMALH VRR-d VF ¤7,9 SP Dv E7A9 22-15
VECTOR MULTIPLY AND ADD LOGICAL ODD VMALO VRR-d VF ¤7,9 SP Dv E7AD 22-16
VECTOR MULTIPLY AND ADD LOW VMAL VRR-d VF ¤7,9 SP Dv E7AA 22-14
VECTOR MULTIPLY AND ADD ODD VMAO VRR-d VF ¤7,9 SP Dv E7AF 22-16
VECTOR MULTIPLY AND SHIFT DECIMAL VMSP VRI-f C* VD ¤7,9 SP Dv Dg DF* E679 25-12
VECTOR MULTIPLY DECIMAL VMP VRI-f C* VD ¤7,9 SP Dv Dg DF* E678 25-10
VECTOR MULTIPLY EVEN VME VRR-c VF ¤7,9 SP Dv E7A6 22-18
VECTOR MULTIPLY HIGH VMH VRR-c VF ¤7,9 SP Dv E7A3 22-16
VECTOR MULTIPLY LOGICAL EVEN VMLE VRR-c VF ¤7,9 SP Dv E7A4 22-18
VECTOR MULTIPLY LOGICAL HIGH VMLH VRR-c VF ¤7,9 SP Dv E7A1 22-17
VECTOR MULTIPLY LOGICAL ODD VMLO VRR-c VF ¤7,9 SP Dv E7A5 22-18
VECTOR MULTIPLY LOW VML VRR-c VF ¤7,9 SP Dv E7A2 22-17
VECTOR MULTIPLY ODD VMO VRR-c VF ¤7,9 SP Dv E7A7 22-18
VECTOR MULTIPLY SUM LOGICAL VMSL VRR-d V1 ¤7,9 SP Dv E7B8 22-19
VECTOR NAND VNN VRR-c V1 ¤7,9 DV E76E 22-20
VECTOR NOR VNO VRR-c VF ¤7,9 Dv E76B 22-20
VECTOR NOT EXCLUSIVE OR VNX VRR-c V1 ¤7,9 Dv E76C 22-20
VECTOR OR VO VRR-c VF ¤7,9 Dv E76A 22-20
VECTOR OR WITH COMPLEMENT VOC VRR-c V1 ¤7,9 Dv E76F 22-21

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 22 of 24)

B-27

VECTOR PACK VPK VRR-c VF ¤7,9 SP Dv E794 21-16
VECTOR PACK LOGICAL SATURATE VPKLS VRR-b C* VF ¤7,9 SP Dv E795 21-18
VECTOR PACK SATURATE VPKS VRR-b C* VF ¤7,9 SP Dv E797 21-17
VECTOR PACK ZONED VPKZ VSI VD ¤7,9 A SP Dv B2 E634 25-13
VECTOR PERFORM SIGN OPERATION DECIMAL VPSOP VRI-g C* VD ¤7,9 SP Dv Dg DF* E65B 25-14
VECTOR PERMUTE VPERM VRR-e VF ¤7,9 Dv E78C 21-18
VECTOR PERMUTE DOUBLEWORD IMMEDIATE VPDI VRR-c VF ¤7,9 Dv E784 21-19
VECTOR POPULATION COUNT VPOPCT VRR-a VF ¤7,9 SP Dv E750 22-21
VECTOR REMAINDER DECIMAL VRP VRI-f C* VD ¤7,9 SP Dv Dg DF* DK E67B 25-16
VECTOR REPLICATE VREP VRI-c VF ¤7,9 SP Dv E74D 21-19
VECTOR REPLICATE IMMEDIATE VREPI VRI-a VF ¤7,9 SP Dv E745 21-20
VECTOR SCATTER ELEMENT (32) VSCEF VRV VF ¤7,9 A SP Dv ST B2 E71B 21-20
VECTOR SCATTER ELEMENT (64) VSCEG VRV VF ¤7,9 A SP Dv ST B2 E71A 21-20
VECTOR SELECT VSEL VRR-e VF ¤7,9 Dv E78D 21-21
VECTOR SHIFT AND DIVIDE DECIMAL VSDP VRI-f C* VD ¤7,9 SP Dv Dg DF* DK E67E 25-18
VECTOR SHIFT AND ROUND DECIMAL VSRP VRI-g C* VD ¤7,9 SP Dv Dg DF* E659 25-19
VECTOR SHIFT LEFT VSL VRR-c VF ¤7,9 Dv E774 22-25
VECTOR SHIFT LEFT BY BYTE VSLB VRR-c VF ¤7,9 Dv E775 22-25
VECTOR SHIFT LEFT DOUBLE BY BIT VSLD VRI-d V2 ¤7,9 SP Dv E786 22-25
VECTOR SHIFT LEFT DOUBLE BY BYTE VSLDB VRI-d VF ¤7,9 Dv E777 22-26
VECTOR SHIFT RIGHT ARITHMETIC VSRA VRR-c VF ¤7,9 Dv E77E 22-26
VECTOR SHIFT RIGHT ARITHMETIC BY BYTE VSRAB VRR-c VF ¤7,9 Dv E77F 22-26
VECTOR SHIFT RIGHT DOUBLE BY BIT VSRD VRI-d V2 ¤7,9 SP Dv E787 22-26
VECTOR SHIFT RIGHT LOGICAL VSRL VRR-c VF ¤7,9 Dv E77C 22-27
VECTOR SHIFT RIGHT LOGICAL BY BYTE VSRLB VRR-c VF ¤7,9 Dv E77D 22-27
VECTOR SIGN EXTEND TO DOUBLEWORD VSEG VRR-a VF ¤7,9 SP Dv E75F 21-21
VECTOR STORE VST VRX VF ¤7,9 A Dv ST B2 E70E 21-21
VECTOR STORE BYTE REVERSED ELEMENT
(16)

VSTEBR
H

VRX V2 ¤7,9 A SP Dv ST B2 E609 21-22

VECTOR STORE BYTE REVERSED ELEMENT
(32)

VSTEBR
F

VRX V2 ¤7,9 A SP Dv ST B2 E60B 21-22

VECTOR STORE BYTE REVERSED ELEMENT
(64)

VSTEBR
G

VRX V2 ¤7,9 A SP Dv ST B2 E60A 21-22

VECTOR STORE BYTE REVERSED ELEMENTS VSTBR VRX V2 ¤7,9 A SP Dv ST B2 E60E 21-22
VECTOR STORE ELEMENT (16) VSTEH VRX VF ¤7,9 A SP Dv ST B2 E709 21-23
VECTOR STORE ELEMENT (32) VSTEF VRX VF ¤7,9 A SP Dv ST B2 E70B 21-23
VECTOR STORE ELEMENT (64) VSTEG VRX VF ¤7,9 A SP Dv ST B2 E70A 21-23
VECTOR STORE ELEMENT (8) VSTEB VRX VF ¤7,9 A SP Dv ST B2 E708 21-23
VECTOR STORE ELEMENTS REVERSED VSTER VRX V2 ¤7,9 A SP Dv ST B2 E60F 21-24
VECTOR STORE MULTIPLE VSTM VRS-a VF ¤7,9 A SP Dv ST B2 E73E 21-24
VECTOR STORE RIGHTMOST WITH LENGTH VSTRL VSI VD ¤7,9 A SP Dv ST B2 E63D 21-25
VECTOR STORE RIGHTMOST WITH LENGTH VSTRLR VRS-d VD ¤7,9 A Dv ST B2 E63F 21-25
VECTOR STORE WITH LENGTH VSTL VRS-b VF ¤7,9 A Dv ST B2 E73F 21-26
VECTOR STRING RANGE COMPARE VSTRC VRR-d C* VF ¤7,9 SP Dv E78A 23-6
VECTOR STRING SEARCH VSTRS VRR-d C V2 ¤7,9 SP Dv E78B 23-8
VECTOR SUBTRACT VS VRR-c VF ¤7,9 SP Dv E7F7 22-27
VECTOR SUBTRACT COMPUTE BORROW
INDICATION

VSCBI VRR-c VF ¤7,9 SP Dv E7F5 22-28

VECTOR SUBTRACT DECIMAL VSP VRI-f C* VD ¤7,9 SP Dv Dg DF* E673 25-21
VECTOR SUBTRACT WITH BORROW COMPUTE
BORROW INDICATION

VSBCBI VRR-d VF ¤7,9 SP Dv E7BD 22-29

VECTOR SUBTRACT WITH BORROW
INDICATION

VSBI VRR-d VF ¤7,9 SP Dv E7BF 22-28

VECTOR SUM ACROSS DOUBLEWORD VSUMG VRR-c VF ¤7,9 SP Dv E765 22-29
VECTOR SUM ACROSS QUADWORD VSUMQ VRR-c VF ¤7,9 SP Dv E767 22-30
VECTOR SUM ACROSS WORD VSUM VRR-c VF ¤7,9 SP Dv E764 22-30

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 23 of 24)

B-28 The z/Architecture CPU Architecture

VECTOR TEST DECIMAL VTP VRR-g C VD ¤7,9 Dv E65F 25-22
VECTOR TEST UNDER MASK VTM VRR-a C VF ¤7,9 Dv E7D8 22-31
VECTOR UNPACK HIGH VUPH VRR-a VF ¤7,9 SP Dv E7D7 21-26
VECTOR UNPACK LOGICAL HIGH VUPLH VRR-a VF ¤7,9 SP Dv E7D5 21-26
VECTOR UNPACK LOGICAL LOW VUPLL VRR-a VF ¤7,9 SP Dv E7D4 21-27
VECTOR UNPACK LOW VUPL VRR-a VF ¤7,9 SP Dv E7D6 21-27
VECTOR UNPACK ZONED VUPKZ VSI VD ¤7,9 A SP Dv ST B2 E63C 25-22
ZERO AND ADD ZAP SS-b C ¤9 A Dg DF ST B1 B2 F8 8-14

Name
Mne-

monic Characteristics
Op-

code Page

Figure B-1. Instructions Arranged by Name (Part 24 of 24)

B-29

Instructions Arranged by Mnemonic

Mne-
monic Name Characteristics

Op-
code Page

— DIAGNOSE DM P DM MD 83 10-23
A ADD (32) RX-a C A IF B2 5A 7-26
AD ADD NORMALIZED (long HFP) RX-a C ¤7,9 A Da EU EO LS B2 6A 18-8
ADB ADD (long BFP) RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED1A 19-15
ADBR ADD (long BFP) RRE C ¤7,9 Db Xi Xo Xu Xx B31A 19-15
ADR ADD NORMALIZED (long HFP) RR C ¤7,9 Da EU EO LS 2A 18-8
ADTR ADD (long DFP) RRF-a C TF ¤7,9 Dt Xi Xo Xu Xx B3D2 20-19
ADTRA ADD (long DFP) RRF-a C F ¤7,9 Dt Xi Xo Xu Xx Xq B3D2 20-19
AE ADD NORMALIZED (short HFP) RX-a C ¤7,9 A Da EU EO LS B2 7A 18-8
AEB ADD (short BFP) RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED0A 19-15
AEBR ADD (short BFP) RRE C ¤7,9 Db Xi Xo Xu Xx B30A 19-15
AER ADD NORMALIZED (short HFP) RR C ¤7,9 Da EU EO LS 3A 18-8
AFI ADD IMMEDIATE (32) RIL-a C EI IF C29 7-26
AG ADD (64) RXY-a C N A IF B2 E308 7-26
AGF ADD (6432) RXY-a C N A IF B2 E318 7-26
AGFI ADD IMMEDIATE (6432) RIL-a C EI IF C28 7-26
AGFR ADD (6432) RRE C N IF B918 7-25
AGH ADD HALFWORD (6416) RXY-a C MI2 A IF B2 E338 7-28
AGHI ADD HALFWORD IMMEDIATE (6416) RI-a C N IF A7B 7-28
AGHIK ADD IMMEDIATE (6416) RIE-d C DO IF ECD9 7-26
AGR ADD (64) RRE C N IF B908 7-25
AGRK ADD (64) RRF-a C DO IF B9E8 7-25
AGSI ADD IMMEDIATE (648) SIY C GE A IF £1 ST B1 EB7A 7-26
AH ADD HALFWORD (3216) RX-a C A IF B2 4A 7-27
AHHHR ADD HIGH (32) RRF-a C HW IF B9C8 7-28
AHHLR ADD HIGH (32) RRF-a C HW IF B9D8 7-28
AHI ADD HALFWORD IMMEDIATE (3216) RI-a C IF A7A 7-28
AHIK ADD IMMEDIATE (3216) RIE-d C DO IF ECD8 7-26
AHY ADD HALFWORD (3216) RXY-a C LD A IF B2 E37A 7-27
AIH ADD IMMEDIATE HIGH (32) RIL-a C HW IF CC8 7-29
AL ADD LOGICAL (32) RX-a C A B2 5E 7-29
ALC ADD LOGICAL WITH CARRY (32) RXY-a C N3 A B2 E398 7-30
ALCG ADD LOGICAL WITH CARRY (64) RXY-a C N A B2 E388 7-30
ALCGR ADD LOGICAL WITH CARRY (64) RRE C N B988 7-30
ALCR ADD LOGICAL WITH CARRY (32) RRE C N3 B998 7-30
ALFI ADD LOGICAL IMMEDIATE (32) RIL-a C EI C2B 7-29
ALG ADD LOGICAL (64) RXY-a C N A B2 E30A 7-29
ALGF ADD LOGICAL (6432) RXY-a C N A B2 E31A 7-29
ALGFI ADD LOGICAL IMMEDIATE (6432) RIL-a C EI C2A 7-29
ALGFR ADD LOGICAL (6432) RRE C N B91A 7-29
ALGHSIK ADD LOGICAL WITH SIGNED IMMEDIATE

(6416)
RIE-d C DO ECDB 7-31

ALGR ADD LOGICAL (64) RRE C N B90A 7-29
ALGRK ADD LOGICAL (64) RRF-a C DO B9EA 7-29
ALGSI ADD LOGICAL WITH SIGNED IMMEDIATE (648) SIY C GE A £1 ST B1 EB7E 7-31
ALHHHR ADD LOGICAL HIGH (32) RRF-a C HW B9CA 7-30
ALHHLR ADD LOGICAL HIGH (32) RRF-a C HW B9DA 7-30
ALHSIK ADD LOGICAL WITH SIGNED IMMEDIATE

(3216)
RIE-d C DO ECDA 7-31

ALR ADD LOGICAL (32) RR C 1E 7-29
ALRK ADD LOGICAL (32) RRF-a C DO B9FA 7-29
ALSI ADD LOGICAL WITH SIGNED IMMEDIATE (328) SIY C GE A £1 ST B1 EB6E 7-31

Figure B-2. Instructions Arranged by Mnemonic (Part 1 of 24)

B-30 The z/Architecture CPU Architecture

ALSIH ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
(32)

RIL-a C HW CCA 7-32

ALSIHN ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
(32)

RIL-a HW CCB 7-32

ALY ADD LOGICAL (32) RXY-a C LD A B2 E35E 7-29
AP ADD DECIMAL SS-b C ¤9 A Dg DF ST B1 B2 FA 8-6
AR ADD (32) RR C IF 1A 7-25
ARK ADD (32) RRF-a C DO IF B9F8 7-25
ASI ADD IMMEDIATE (328) SIY C GE A IF £1 ST B1 EB6A 7-26
AU ADD UNNORMALIZED (short HFP) RX-a C ¤7,9 A Da EO LS B2 7E 18-9
AUR ADD UNNORMALIZED (short HFP) RR C ¤7,9 Da EO LS 3E 18-9
AW ADD UNNORMALIZED (long HFP) RX-a C ¤7,9 A Da EO LS B2 6E 18-9
AWR ADD UNNORMALIZED (long HFP) RR C ¤7,9 Da EO LS 2E 18-9
AXBR ADD (extended BFP) RRE C ¤7,9 SP Db Xi Xo Xu Xx B34A 19-15
AXR ADD NORMALIZED (extended HFP) RR C ¤7,9 SP Da EU EO LS 36 18-8
AXTR ADD (extended DFP) RRF-a C TF ¤7,9 SP Dt Xi Xo Xu Xx B3DA 20-19
AXTRA ADD (extended DFP) RRF-a C F ¤7,9 SP Dt Xi Xo Xu Xx Xq B3DA 20-19
AY ADD (32) RXY-a C LD A IF B2 E35A 7-26
BAKR BRANCH AND STACK RRE ¤1 A1* Z5 T B ST B240 10-11
BAL BRANCH AND LINK RX-a ¤9 B 45 7-35
BALR BRANCH AND LINK RR ¤2,9 T B 05 7-35
BAS BRANCH AND SAVE RX-a ¤9 B 4D 7-36
BASR BRANCH AND SAVE RR ¤2,9 T B 0D 7-36
BASSM BRANCH AND SAVE AND SET MODE RR ¤2,3,9 T B 0C 7-36
BC BRANCH ON CONDITION RX-b ¤9 B 47 7-39
BCR BRANCH ON CONDITION RR ¤9 ¢1 B 07 7-39
BCT BRANCH ON COUNT (32) RX-a ¤9 B 46 7-40
BCTG BRANCH ON COUNT (64) RXY-a N ¤9 B E346 7-40
BCTGR BRANCH ON COUNT (64) RRE N ¤9 B B946 7-40
BCTR BRANCH ON COUNT (32) RR ¤9 B 06 7-40
BIC BRANCH INDIRECT ON CONDITION RXY-b MI2 ¤9 A B B2 E347 7-38
BPP BRANCH PREDICTION PRELOAD SMI EH ¤9 C7 7-42
BPRP BRANCH PREDICTION RELATIVE PRELOAD MII EH ¤9 C5 7-42
BRAS BRANCH RELATIVE AND SAVE RI-b ¤9 B A75 7-45
BRASL BRANCH RELATIVE AND SAVE LONG RIL-b N3 ¤9 B C05 7-45
BRC BRANCH RELATIVE ON CONDITION RI-c ¤10 B A74 7-46
BRCL BRANCH RELATIVE ON CONDITION LONG RIL-c N3 ¤10 B C04 7-46
BRCT BRANCH RELATIVE ON COUNT (32) RI-b ¤9 B A76 7-47
BRCTG BRANCH RELATIVE ON COUNT (64) RI-b N ¤9 B A77 7-47
BRCTH BRANCH RELATIVE ON COUNT HIGH (32) RIL-b HW ¤9 B CC6 7-47
BRXH BRANCH RELATIVE ON INDEX HIGH (32) RSI ¤9 B 84 7-47
BRXHG BRANCH RELATIVE ON INDEX HIGH (64) RIE-e N ¤9 B EC44 7-47
BRXLE BRANCH RELATIVE ON INDEX LOW OR EQ. (32) RSI ¤9 B 85 7-47
BRXLG BRANCH RELATIVE ON INDEX LOW OR EQ. (64) RIE-e N ¤9 B EC45 7-48
BSA BRANCH AND SET AUTHORITY RRE Q A1* SO T B B25A 10-7
BSG BRANCH IN SUBSPACE GROUP RRE ¤1 A1* SO T B R2 B258 10-13
BSM BRANCH AND SET MODE RR ¤3,9 T B 0B 7-37
BXH BRANCH ON INDEX HIGH (32) RS-a ¤9 B 86 7-41
BXHG BRANCH ON INDEX HIGH (64) RSY-a N ¤9 B EB44 7-41
BXLE BRANCH ON INDEX LOW OR EQUAL (32) RS-a ¤9 B 87 7-41
BXLEG BRANCH ON INDEX LOW OR EQUAL (64) RSY-a N ¤9 B EB45 7-41
C COMPARE (32) RX-a C A B2 59 7-133
CD COMPARE (long HFP) RX-a C ¤7,9 A Da B2 69 18-10
CDB COMPARE (long BFP) RXE C ¤7,9 A Db Xi B2 ED19 19-17
CDBR COMPARE (long BFP) RRE C ¤7,9 Db Xi B319 19-17

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 2 of 24)

B-31

CDFBR CONVERT FROM FIXED (32 to long BFP) RRE ¤7,9 Db B395 19-19
CDFBRA CONVERT FROM FIXED (32 to long BFP) RRF-e F ¤7,9 SP Db B395 19-19
CDFR CONVERT FROM FIXED (32 to long HFP) RRE ¤7,9 Da B3B5 18-11
CDFTR CONVERT FROM FIXED (32 to long DFP) RRE F ¤7,9 Dt B951 20-24
CDGBR CONVERT FROM FIXED (64 to long BFP) RRE N ¤7,9 Db Xx B3A5 19-19
CDGBRA CONVERT FROM FIXED (64 to long BFP) RRF-e F ¤7,9 SP Db Xx B3A5 19-19
CDGR CONVERT FROM FIXED (64 to long HFP) RRE N ¤7,9 Da B3C5 18-11
CDGTR CONVERT FROM FIXED (64 to long DFP) RRE TF ¤7,9 Dt Xx B3F1 20-24
CDGTRA CONVERT FROM FIXED (64 to long DFP) RRF-e F ¤7,9 Dt Xx Xq B3F1 20-24
CDLFBR CONVERT FROM LOGICAL (32 to long BFP) RRF-e F ¤7,9 SP Db B391 19-21
CDLFTR CONVERT FROM LOGICAL (32 to long DFP) RRF-e F ¤7,9 Dt B953 20-25
CDLGBR CONVERT FROM LOGICAL (64 to long BFP) RRF-e F ¤7,9 SP Db Xx B3A1 19-21
CDLGTR CONVERT FROM LOGICAL (64 to long DFP) RRF-e F ¤7,9 Dt Xx Xq B952 20-25
CDPT CONVERT FROM PACKED (to long DFP) RSL-b PC ¤7,9 A SP Dt Dg B2 EDAE 20-26
CDR COMPARE (long HFP) RR C ¤7,9 Da 29 18-10
CDS COMPARE DOUBLE AND SWAP (32) RS-a C ¤9 A SP $ ST B2 BB 7-143
CDSG COMPARE DOUBLE AND SWAP (64) RSY-a C N ¤9 A SP $ ST B2 EB3E 7-143
CDSTR CONVERT FROM SIGNED PACKED (64 to long

DFP)
RRE TF ¤7,9 Dt Dg B3F3 20-28

CDSY COMPARE DOUBLE AND SWAP (32) RSY-a C LD ¤9 A SP $ ST B2 EB31 7-143
CDTR COMPARE (long DFP) RRE C TF ¤7,9 Dt Xi B3E4 20-22
CDUTR CONVERT FROM UNSIGNED PACKED (64 to long

DFP)
RRE TF ¤7,9 Dt Dg B3F2 20-28

CDZT CONVERT FROM ZONED (to long DFP) RSL-b ZF ¤7,9 A SP Dt Dg B2 EDAA 20-29
CE COMPARE (short HFP) RX-a C ¤7,9 A Da B2 79 18-10
CEB COMPARE (short BFP) RXE C ¤7,9 A Db Xi B2 ED09 19-17
CEBR COMPARE (short BFP) RRE C ¤7,9 Db Xi B309 19-17
CEDTR COMPARE BIASED EXPONENT (long DFP) RRE C TF ¤7,9 Dt B3F4 20-23
CEFBR CONVERT FROM FIXED (32 to short BFP) RRE ¤7,9 Db Xx B394 19-19
CEFBRA CONVERT FROM FIXED (32 to short BFP) RRF-e F ¤7,9 SP Db Xx B394 19-19
CEFR CONVERT FROM FIXED (32 to short HFP) RRE ¤7,9 Da B3B4 18-11
CEGBR CONVERT FROM FIXED (64 to short BFP) RRE N ¤7,9 Db Xx B3A4 19-19
CEGBRA CONVERT FROM FIXED (64 to short BFP) RRF-e F ¤7,9 SP Db Xx B3A4 19-19
CEGR CONVERT FROM FIXED (64 to short HFP) RRE N ¤7,9 Da B3C4 18-11
CELFBR CONVERT FROM LOGICAL (32 to short BFP) RRF-e F ¤7,9 SP Db Xx B390 19-21
CELGBR CONVERT FROM LOGICAL (64 to short BFP) RRF-e F ¤7,9 SP Db Xx B3A0 19-21
CER COMPARE (short HFP) RR C ¤7,9 Da 39 18-10
CEXTR COMPARE BIASED EXPONENT (extended DFP) RRE C TF ¤7,9 SP Dt B3FC 20-23
CFC COMPARE AND FORM CODEWORD S C ¤9 A SP II GM I1 B21A 7-136
CFDBR CONVERT TO FIXED (long BFP to 32) RRF-e C ¤7,9 SP Db Xi Xx B399 19-22
CFDBRA CONVERT TO FIXED (long BFP to 32) RRF-e C F ¤7,9 SP Db Xi Xx B399 19-22
CFDR CONVERT TO FIXED (long HFP to 32) RRF-e C ¤7,9 SP Da B3B9 18-11
CFDTR CONVERT TO FIXED (long DFP to 32) RRF-e C F ¤7,9 Dt Xi Xx B941 20-30
CFEBR CONVERT TO FIXED (short BFP to 32) RRF-e C ¤7,9 SP Db Xi Xx B398 19-22
CFEBRA CONVERT TO FIXED (short BFP to 32) RRF-e C F ¤7,9 SP Db Xi Xx B398 19-22
CFER CONVERT TO FIXED (short HFP to 32) RRF-e C ¤7,9 SP Da B3B8 18-11
CFI COMPARE IMMEDIATE (32) RIL-a C EI C2D 7-133
CFXBR CONVERT TO FIXED (extended BFP to 32) RRF-e C ¤7,9 SP Db Xi Xx B39A 19-22
CFXBRA CONVERT TO FIXED (extended BFP to 32) RRF-e C F ¤7,9 SP Db Xi Xx B39A 19-22
CFXR CONVERT TO FIXED (extended HFP to 32) RRF-e C ¤7,9 SP Da B3BA 18-11
CFXTR CONVERT TO FIXED (extended DFP to 32) RRF-e C F ¤7,9 SP Dt Xi Xx B949 20-30
CG COMPARE (64) RXY-a C N A B2 E320 7-133
CGDBR CONVERT TO FIXED (long BFP to 64) RRF-e C N ¤7,9 SP Db Xi Xx B3A9 19-22
CGDBRA CONVERT TO FIXED (long BFP to 64) RRF-e C F ¤7,9 SP Db Xi Xx B3A9 19-22
CGDR CONVERT TO FIXED (long HFP to 64) RRF-e C N ¤7,9 SP Da B3C9 18-11

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 3 of 24)

B-32 The z/Architecture CPU Architecture

CGDTR CONVERT TO FIXED (long DFP to 64) RRF-e C TF ¤7,9 Dt Xi Xx B3E1 20-29
CGDTRA CONVERT TO FIXED (long DFP to 64) RRF-e C F ¤7,9 Dt Xi Xx B3E1 20-30
CGEBR CONVERT TO FIXED (short BFP to 64) RRF-e C N ¤7,9 SP Db Xi Xx B3A8 19-22
CGEBRA CONVERT TO FIXED (short BFP to 64) RRF-e C F ¤7,9 SP Db Xi Xx B3A8 19-22
CGER CONVERT TO FIXED (short HFP to 64) RRF-e C N ¤7,9 SP Da B3C8 18-11
CGF COMPARE (6432) RXY-a C N A B2 E330 7-133
CGFI COMPARE IMMEDIATE (6432) RIL-a C EI C2C 7-134
CGFR COMPARE (6432) RRE C N B930 7-133
CGFRL COMPARE RELATIVE LONG (6432) RIL-b C GE A* SP C6C 7-134
CGH COMPARE HALFWORD (6416) RXY-a C GE A B2 E334 7-149
CGHI COMPARE HALFWORD IMMEDIATE (6416) RI-a C N A7F 7-149
CGHRL COMPARE HALFWORD RELATIVE LONG (6416) RIL-b C GE A* C64 7-149
CGHSI COMPARE HALFWORD IMMEDIATE (6416) SIL C GE A B1 E558 7-149
CGIB COMPARE IMMEDIATE AND BRANCH (648) RIS GE ¤9 B ECFC 7-135
CGIJ COMPARE IMMEDIATE AND BRANCH RELATIVE

(648)
RIE-c GE ¤10 B EC7C 7-135

CGIT COMPARE IMMEDIATE AND TRAP (6416) RIE-a GE Dc EC70 7-148
CGR COMPARE (64) RRE C N B920 7-133
CGRB COMPARE AND BRANCH (64) RRS GE ¤9 B ECE4 7-134
CGRJ COMPARE AND BRANCH RELATIVE (64) RIE-b GE ¤10 B EC64 7-135
CGRL COMPARE RELATIVE LONG (64) RIL-b C GE A* SP C68 7-134
CGRT COMPARE AND TRAP (64) RRF-c GE Dc B960 7-148
CGXBR CONVERT TO FIXED (extended BFP to 64) RRF-e C N ¤7,9 SP Db Xi Xx B3AA 19-22
CGXBRA CONVERT TO FIXED (extended BFP to 64) RRF-e C F ¤7,9 SP Db Xi Xx B3AA 19-22
CGXR CONVERT TO FIXED (extended HFP to 64) RRF-e C N ¤7,9 SP Da B3CA 18-11
CGXTR CONVERT TO FIXED (extended DFP to 64) RRF-e C TF ¤7,9 SP Dt Xi Xx B3E9 20-29
CGXTRA CONVERT TO FIXED (extended DFP to 64) RRF-e C F ¤7,9 SP Dt Xi Xx B3E9 20-30
CH COMPARE HALFWORD (3216) RX-a C A B2 49 7-149
CHF COMPARE HIGH (32) RXY-a C HW A B2 E3CD 7-150
CHHR COMPARE HIGH (32) RRE C HW B9CD 7-150
CHHSI COMPARE HALFWORD IMMEDIATE (1616) SIL C GE A B1 E554 7-149
CHI COMPARE HALFWORD IMMEDIATE (3216) RI-a C A7E 7-149
CHLR COMPARE HIGH (32) RRE C HW B9DD 7-150
CHRL COMPARE HALFWORD RELATIVE LONG (3216) RIL-b C GE A* C65 7-149
CHSI COMPARE HALFWORD IMMEDIATE (3216) SIL C GE A B1 E55C 7-149
CHY COMPARE HALFWORD (3216) RXY-a C LD A B2 E379 7-149
CIB COMPARE IMMEDIATE AND BRANCH (328) RIS GE ¤9 B ECFE 7-135
CIH COMPARE IMMEDIATE HIGH (32) RIL-a C HW CCD 7-150
CIJ COMPARE IMMEDIATE AND BRANCH RELATIVE

(328)
RIE-c GE ¤10 B EC7E 7-135

CIT COMPARE IMMEDIATE AND TRAP (3216) RIE-a GE Dc EC72 7-148
CKSM CHECKSUM RRE C ¤9 A SP IC R2 B241 7-49
CL COMPARE LOGICAL (32) RX-a C A B2 55 7-151
CLC COMPARE LOGICAL (character) SS-a C ¤9 A B1 B2 D5 7-151
CLCL COMPARE LOGICAL LONG RR C ¤9 A SP II R1 R2 0F 7-157
CLCLE COMPARE LOGICAL LONG EXTENDED RS-a C ¤9 A SP IC R1 R3 A9 7-159
CLCLU COMPARE LOGICAL LONG UNICODE RSY-a C E2 ¤9 A SP IC R1 R2 EB8F 7-162
CLFDBR CONVERT TO LOGICAL (long BFP to 32) RRF-e C F ¤7,9 SP Db Xi Xx B39D 19-25
CLFDTR CONVERT TO LOGICAL (long DFP to 32) RRF-e C F ¤7,9 Dt Xi Xx B943 20-32
CLFEBR CONVERT TO LOGICAL (short BFP to 32) RRF-e C F ¤7,9 SP Db Xi Xx B39C 19-25
CLFHSI COMPARE LOGICAL IMMEDIATE (3216) SIL C GE A B1 E55D 7-151
CLFI COMPARE LOGICAL IMMEDIATE (32) RIL-a C EI C2F 7-151
CLFIT COMPARE LOGICAL IMMEDIATE AND TRAP

(3216)
RIE-a GE Dc EC73 7-155

CLFXBR CONVERT TO LOGICAL (extended BFP to 32) RRF-e C F ¤7,9 SP Db Xi Xx B39E 19-25

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 4 of 24)

B-33

CLFXTR CONVERT TO LOGICAL (extended DFP to 32) RRF-e C F ¤7,9 SP Dt Xi Xx B94B 20-32
CLG COMPARE LOGICAL (64) RXY-a C N A B2 E321 7-151
CLGDBR CONVERT TO LOGICAL (long BFP to 64) RRF-e C F ¤7,9 SP Db Xi Xx B3AD 19-25
CLGDTR CONVERT TO LOGICAL (long DFP to 64) RRF-e C F ¤7,9 Dt Xi Xx B942 20-32
CLGEBR CONVERT TO LOGICAL (short BFP to 64) RRF-e C F ¤7,9 SP Db Xi Xx B3AC 19-25
CLGF COMPARE LOGICAL (6432) RXY-a C N A B2 E331 7-151
CLGFI COMPARE LOGICAL IMMEDIATE (6432) RIL-a C EI C2E 7-151
CLGFR COMPARE LOGICAL (6432) RRE C N B931 7-151
CLGFRL COMPARE LOGICAL RELATIVE LONG (6432) RIL-b C GE A* SP C6E 7-152
CLGHRL COMPARE LOGICAL RELATIVE LONG (6416) RIL-b C GE A* C66 7-152
CLGHSI COMPARE LOGICAL IMMEDIATE (6416) SIL C GE A B1 E559 7-151
CLGIB COMPARE LOGICAL IMMEDIATE AND BRANCH

(648)
RIS GE ¤9 B ECFD 7-153

CLGIJ COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE (648)

RIE-c GE ¤10 B EC7D 7-153

CLGIT COMPARE LOGICAL IMMEDIATE AND TRAP
(6416)

RIE-a GE Dc EC71 7-155

CLGR COMPARE LOGICAL (64) RRE C N B921 7-151
CLGRB COMPARE LOGICAL AND BRANCH (64) RRS GE ¤9 B ECE5 7-153
CLGRJ COMPARE LOGICAL AND BRANCH RELATIVE

(64)
RIE-b GE ¤10 B EC65 7-153

CLGRL COMPARE LOGICAL RELATIVE LONG (64) RIL-b C GE A* SP C6A 7-152
CLGRT COMPARE LOGICAL AND TRAP (64) RRF-c GE Dc B961 7-154
CLGT COMPARE LOGICAL AND TRAP (64) RSY-b MI1 A Dc B2 EB2B 7-154
CLGXBR CONVERT TO LOGICAL (extended BFP to 64) RRF-e C F ¤7,9 SP Db Xi Xx B3AE 19-25
CLGXTR CONVERT TO LOGICAL (extended DFP to 64) RRF-e C F ¤7,9 SP Dt Xi Xx B94A 20-32
CLHF COMPARE LOGICAL HIGH (32) RXY-a C HW A B2 E3CF 7-156
CLHHR COMPARE LOGICAL HIGH (32) RRE C HW B9CF 7-156
CLHHSI COMPARE LOGICAL IMMEDIATE (1616) SIL C GE A B1 E555 7-151
CLHLR COMPARE LOGICAL HIGH (32) RRE C HW B9DF 7-156
CLHRL COMPARE LOGICAL RELATIVE LONG (3216) RIL-b C GE A* C67 7-152
CLI COMPARE LOGICAL (immediate) SI C A B1 95 7-151
CLIB COMPARE LOGICAL IMMEDIATE AND BRANCH

(328)
RIS GE ¤9 B ECFF 7-153

CLIH COMPARE LOGICAL IMMEDIATE HIGH (32) RIL-a C HW CCF 7-157
CLIJ COMPARE LOGICAL IMMEDIATE AND BRANCH

RELATIVE (328)
RIE-c GE ¤10 B EC7F 7-153

CLIY COMPARE LOGICAL (immediate) SIY C LD A B1 EB55 7-151
CLM COMPARE LOGICAL CHAR. UNDER MASK (low) RS-b C A B2 BD 7-156
CLMH COMPARE LOGICAL CHAR. UNDER MASK (high) RSY-b C N A B2 EB20 7-156
CLMY COMPARE LOGICAL CHAR. UNDER MASK (low) RSY-b C LD A B2 EB21 7-156
CLR COMPARE LOGICAL (32) RR C 15 7-151
CLRB COMPARE LOGICAL AND BRANCH (32) RRS GE ¤9 B ECF7 7-153
CLRJ COMPARE LOGICAL AND BRANCH RELATIVE

(32)
RIE-b GE ¤10 B EC77 7-153

CLRL COMPARE LOGICAL RELATIVE LONG (32) RIL-b C GE A* SP C6F 7-152
CLRT COMPARE LOGICAL AND TRAP (32) RRF-c GE Dc B973 7-154
CLST COMPARE LOGICAL STRING RRE C ¤9 A SP IC G0 R1 R2 B25D 7-165
CLT COMPARE LOGICAL AND TRAP (32) RSY-b MI1 A Dc B2 EB23 7-154
CLY COMPARE LOGICAL (32) RXY-a C LD A B2 E355 7-151
CMPSC COMPRESSION CALL RRE C ¤5,9 A SP II Dg GM ST R1 R2 B263 7-169
CP COMPARE DECIMAL SS-b C ¤9 A Dg B1 B2 F9 8-7
CPDT CONVERT TO PACKED (from long DFP) RSL-b C PC ¤7,9 A SP Dt DF ST B2 EDAC 20-33
CPSDR COPY SIGN (long) RRF-b FS ¤7,9 Da B372 9-30
CPXT CONVERT TO PACKED (from extended DFP) RSL-b C PC ¤7,9 A SP Dt DF ST B2 EDAD 20-33
CPYA COPY ACCESS RRE ¤6 U1 U2 B24D 7-251

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 5 of 24)

B-34 The z/Architecture CPU Architecture

CR COMPARE (32) RR C 19 7-133
CRB COMPARE AND BRANCH (32) RRS GE ¤9 B ECF6 7-134
CRDTE COMPARE AND REPLACE DAT TABLE ENTRY RRF-b ED2 P A1 SP $ B98F 10-17
CRJ COMPARE AND BRANCH RELATIVE (32) RIE-b GE ¤10 B EC76 7-134
CRL COMPARE RELATIVE LONG (32) RIL-b C GE A* SP C6D 7-134
CRT COMPARE AND TRAP (32) RRF-c GE Dc B972 7-148
CS COMPARE AND SWAP (32) RS-a C ¤9 A SP $ ST B2 BA 7-143
CSCH CLEAR SUBCHANNEL S C P OP ¢ GS B230 14-5
CSDTR CONVERT TO SIGNED PACKED (long DFP to 64) RRF-d TF ¤7,9 Dt B3E3 20-35
CSG COMPARE AND SWAP (64) RSY-a C N ¤9 A SP $ ST B2 EB30 7-143
CSP COMPARE AND SWAP AND PURGE (32) RRE C P A1 SP $ ST R2 B250 10-21
CSPG COMPARE AND SWAP AND PURGE (64) RRE C DE P A1 SP $ ST R2 B98A 10-21
CSST COMPARE AND SWAP AND STORE SSF C CS ¤1 A SP $ GM ST B1 B2 C82 7-145
CSXTR CONVERT TO SIGNED PACKED (extended DFP to

128)
RRF-d TF ¤7,9 SP Dt B3EB 20-35

CSY COMPARE AND SWAP (32) RSY-a C LD ¤9 A SP $ ST B2 EB14 7-143
CU12 CONVERT UTF-8 TO UTF-16 RRF-c C ¤5,9 A SP IC ST R1 R2 B2A7 7-243
CU14 CONVERT UTF-8 TO UTF-32 RRF-c C E3 ¤5,9 A SP IC ST R1 R2 B9B0 7-247
CU21 CONVERT UTF-16 TO UTF-8 RRF-c C ¤5,9 A SP IC ST R1 R2 B2A6 7-233
CU24 CONVERT UTF-16 TO UTF-32 RRF-c C E3 ¤5,9 A SP IC ST R1 R2 B9B1 7-230
CU41 CONVERT UTF-32 TO UTF-8 RRE C E3 ¤5,9 A SP IC ST R1 R2 B9B2 7-240
CU42 CONVERT UTF-32 TO UTF-16 RRE C E3 ¤5,9 A SP IC ST R1 R2 B9B3 7-237
CUDTR CONVERT TO UNSIGNED PACKED (long DFP to

64)
RRE TF ¤7,9 Dt B3E2 20-35

CUSE COMPARE UNTIL SUBSTRING EQUAL RRE C ¤9 A SP II GM R1 R2 B257 7-166
CUTFU CONVERT UTF-8 TO UNICODE RRF-c C ¤5,9 A SP IC ST R1 R2 B2A7 7-243
CUUTF CONVERT UNICODE TO UTF-8 RRF-c C ¤5,9 A SP IC ST R1 R2 B2A6 7-233
CUXTR CONVERT TO UNSIGNED PACKED (extended DFP

to 128)
RRE TF ¤7,9 SP Dt B3EA 20-35

CVB CONVERT TO BINARY (32) RX-a ¤9 A Dg IK B2 4F 7-229
CVBG CONVERT TO BINARY (64) RXY-a N ¤9 A Dg IK B2 E30E 7-229
CVBY CONVERT TO BINARY (32) RXY-a LD ¤9 A Dg IK B2 E306 7-229
CVD CONVERT TO DECIMAL (32) RX-a ¤9 A ST B2 4E 7-230
CVDG CONVERT TO DECIMAL (64) RXY-a N ¤9 A ST B2 E32E 7-230
CVDY CONVERT TO DECIMAL (32) RXY-a LD ¤9 A ST B2 E326 7-230
CXBR COMPARE (extended BFP) RRE C ¤7,9 SP Db Xi B349 19-17
CXFBR CONVERT FROM FIXED (32 to extended BFP) RRE ¤7,9 SP Db B396 19-19
CXFBRA CONVERT FROM FIXED (32 to extended BFP) RRF-e F ¤7,9 SP Db B396 19-19
CXFR CONVERT FROM FIXED (32 to extended HFP) RRE ¤7,9 SP Da B3B6 18-11
CXFTR CONVERT FROM FIXED (32 to extended DFP) RRE F ¤7,9 SP Dt B959 20-24
CXGBR CONVERT FROM FIXED (64 to extended BFP) RRE N ¤7,9 SP Db B3A6 19-19
CXGBRA CONVERT FROM FIXED (64 to extended BFP) RRF-e F ¤7,9 SP Db B3A6 19-19
CXGR CONVERT FROM FIXED (64 to extended HFP) RRE N ¤7,9 SP Da B3C6 18-11
CXGTR CONVERT FROM FIXED (64 to extended DFP) RRE TF ¤7,9 SP Dt B3F9 20-24
CXGTRA CONVERT FROM FIXED (64 to extended DFP) RRF-e F ¤7,9 SP Dt B3F9 20-24
CXLFBR CONVERT FROM LOGICAL (32 to extended BFP) RRF-e F ¤7,9 SP Db B392 19-21
CXLFTR CONVERT FROM LOGICAL (32 to extended DFP) RRF-e F ¤7,9 SP Dt B95B 20-25
CXLGBR CONVERT FROM LOGICAL (64 to extended BFP) RRF-e F ¤7,9 SP Db B3A2 19-21
CXLGTR CONVERT FROM LOGICAL (64 to extended DFP) RRF-e F ¤7,9 SP Dt B95A 20-25
CXPT CONVERT FROM PACKED (to extended DFP) RSL-b PC ¤7,9 A SP Dt Dg B2 EDAF 20-26
CXR COMPARE (extended HFP) RRE C ¤7,9 SP Da B369 18-10
CXSTR CONVERT FROM SIGNED PACKED (128 to

extended DFP)
RRE TF ¤7,9 SP Dt Dg B3FB 20-28

CXTR COMPARE (extended DFP) RRE C TF ¤7,9 SP Dt Xi B3EC 20-22
CXUTR CONVERT FROM UNSIGNED PACKED (128 to ext.

DFP)
RRE TF ¤7,9 SP Dt Dg B3FA 20-28

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 6 of 24)

B-35

CXZT CONVERT FROM ZONED (to extended DFP) RSL-b ZF ¤7,9 A SP Dt Dg B2 EDAB 20-29
CY COMPARE (32) RXY-a C LD A B2 E359 7-133
CZDT CONVERT TO ZONED (from long DFP) RSL-b C ZF ¤7,9 A SP ST B2 EDA8 20-36
CZXT CONVERT TO ZONED (from extended DFP) RSL-b C ZF ¤7,9 A SP ST B2 EDA9 20-36
D DIVIDE (3264) RX-a ¤9 A SP IK B2 5D 7-251
DD DIVIDE (long HFP) RX-a ¤7,9 A Da EU EO FK B2 6D 18-12
DDB DIVIDE (long BFP) RXE ¤7,9 A Db Xi Xz Xo Xu Xx B2 ED1D 19-27
DDBR DIVIDE (long BFP) RRE ¤7,9 Db Xi Xz Xo Xu Xx B31D 19-27
DDR DIVIDE (long HFP) RR ¤7,9 Da EU EO FK 2D 18-12
DDTR DIVIDE (long DFP) RRF-a TF ¤7,9 Dt Xi Xz Xo Xu Xx B3D1 20-37
DDTRA DIVIDE (long DFP) RRF-a F ¤7,9 Dt Xi Xz Xo Xu Xx Xq B3D1 20-37
DE DIVIDE (short HFP) RX-a ¤7,9 A Da EU EO FK B2 7D 18-12
DEB DIVIDE (short BFP) RXE ¤7,9 A Db Xi Xz Xo Xu Xx B2 ED0D 19-27
DEBR DIVIDE (short BFP) RRE ¤7,9 Db Xi Xz Xo Xu Xx B30D 19-27
DER DIVIDE (short HFP) RR ¤7,9 Da EU EO FK 3D 18-12
DFLTCC DEFLATE CONVERSION CALL RRF-a C GZ ¤5,9 A SP IC GM I1 ST R1 R2 R3 B939 26-16
DIDBR DIVIDE TO INTEGER (long BFP) RRF-b C ¤7,9 SP Db Xi Xu Xx B35B 19-28
DIEBR DIVIDE TO INTEGER (short BFP) RRF-b C ¤7,9 SP Db Xi Xu Xx B353 19-28
DL DIVIDE LOGICAL (3264) RXY-a N3 ¤9 A SP IK B2 E397 7-252
DLG DIVIDE LOGICAL (64128) RXY-a N ¤9 A SP IK B2 E387 7-252
DLGR DIVIDE LOGICAL (64128) RRE N ¤9 SP IK B987 7-252
DLR DIVIDE LOGICAL (3264) RRE N3 ¤9 SP IK B997 7-252
DP DIVIDE DECIMAL SS-b ¤9 A SP Dg DK ST B1 B2 FD 8-7
DR DIVIDE (3264) RR ¤9 SP IK 1D 7-251
DSG DIVIDE SINGLE (64) RXY-a N ¤9 A SP IK B2 E30D 7-253
DSGF DIVIDE SINGLE (6432) RXY-a N ¤9 A SP IK B2 E31D 7-253
DSGFR DIVIDE SINGLE (6432) RRE N ¤9 SP IK B91D 7-253
DSGR DIVIDE SINGLE (64) RRE N ¤9 SP IK B90D 7-253
DXBR DIVIDE (extended BFP) RRE ¤7,9 SP Db Xi Xz Xo Xu Xx B34D 19-27
DXR DIVIDE (extended HFP) RRE ¤7,9 SP Da EU EO FK B22D 18-12
DXTR DIVIDE (extended DFP) RRF-a TF ¤7,9 SP Dt Xi Xz Xo Xu Xx B3D9 20-37
DXTRA DIVIDE (extended DFP) RRF-a F ¤7,9 SP Dt Xi Xz Xo Xu Xx Xq B3D9 20-37
EAR EXTRACT ACCESS RRE U2 B24F 7-256
ECAG EXTRACT CPU ATTRIBUTE RSY-a GE ¤9 EB4C 7-256
ECTG EXTRACT CPU TIME SSF ET ¤8,9 A GM R3 B1 B2 C81 7-259
ED EDIT SS-a C ¤9 A Dg ST B1 B2 DE 8-8
EDMK EDIT AND MARK SS-a C ¤9 A Dg G1 ST B1 B2 DF 8-11
EEDTR EXTRACT BIASED EXPONENT (long DFP to 64) RRE TF ¤7,9 Dt B3E5 20-39
EEXTR EXTRACT BIASED EXPONENT (extended DFP to

64)
RRE TF ¤7,9 SP Dt B3ED 20-39

EFPC EXTRACT FPC RRE ¤7,9 Db B38C 9-30
EPAIR EXTRACT PRIMARY ASN AND INSTANCE RRE RA Q SO B99A 10-24
EPAR EXTRACT PRIMARY ASN RRE Q SO B226 10-24
EPSW EXTRACT PSW RRE N3 ¤8,9 B98D 7-260
EREG EXTRACT STACKED REGISTERS (32) RRE ¤1 A1* SE U1 U2 B249 10-25
EREGG EXTRACT STACKED REGISTERS (64) RRE N ¤1 A1* SE U1 U2 B90E 10-25
ESAIR EXTRACT SECONDARY ASN AND INSTANCE RRE RA Q SO B99B 10-25
ESAR EXTRACT SECONDARY ASN RRE Q SO B227 10-24
ESDTR EXTRACT SIGNIFICANCE (long DFP to 64) RRE TF ¤7,9 Dt B3E7 20-39
ESEA EXTRACT AND SET EXTENDED AUTHORITY RRE N P B99D 10-24
ESTA EXTRACT STACKED STATE RRE C ¤1 A1* SP SE B24A 10-26
ESXTR EXTRACT SIGNIFICANCE (extended DFP to 64) RRE TF ¤7,9 SP Dt B3EF 20-39
ETND EXTRACT TRANSACTION NESTING DEPTH RRE TX ¤9 SO B2EC 7-260
EX EXECUTE RX-a ¤9 AI SP EX 44 7-255
EXRL EXECUTE RELATIVE LONG RIL-b XX ¤9 AI* EX C60 7-255

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 7 of 24)

B-36 The z/Architecture CPU Architecture

FIDBR LOAD FP INTEGER (long BFP) RRF-e ¤7,9 SP Db Xi Xx B35F 19-32
FIDBRA LOAD FP INTEGER (long BFP) RRF-e F ¤7,9 SP Db Xi Xx B35F 19-32
FIDR LOAD FP INTEGER (long HFP) RRE ¤7,9 Da B37F 18-15
FIDTR LOAD FP INTEGER (long DFP) RRF-e TF ¤7,9 Dt Xi Xx Xq B3D7 20-42
FIEBR LOAD FP INTEGER (short BFP) RRF-e ¤7,9 SP Db Xi Xx B357 19-32
FIEBRA LOAD FP INTEGER (short BFP) RRF-e F ¤7,9 SP Db Xi Xx B357 19-32
FIER LOAD FP INTEGER (short HFP) RRE ¤7,9 Da B377 18-15
FIXBR LOAD FP INTEGER (extended BFP) RRF-e ¤7,9 SP Db Xi Xx B347 19-32
FIXBRA LOAD FP INTEGER (extended BFP) RRF-e F ¤7,9 SP Db Xi Xx B347 19-32
FIXR LOAD FP INTEGER (extended HFP) RRE ¤7,9 SP Da B367 18-15
FIXTR LOAD FP INTEGER (extended DFP) RRF-e TF ¤7,9 SP Dt Xi Xx Xq B3DF 20-42
FLOGR FIND LEFTMOST ONE RRE C EI SP B983 7-261
HDR HALVE (long HFP) RR ¤7,9 Da EU 24 18-13
HER HALVE (short HFP) RR ¤7,9 Da EU 34 18-13
HSCH HALT SUBCHANNEL S C P OP ¢ GS B231 14-6
IAC INSERT ADDRESS SPACE CONTROL RRE C Q SO B224 10-29
IC INSERT CHARACTER RX-a A B2 43 7-261
ICM INSERT CHARACTERS UNDER MASK (low) RS-b C A B2 BF 7-261
ICMH INSERT CHARACTERS UNDER MASK (high) RSY-b C N A B2 EB80 7-261
ICMY INSERT CHARACTERS UNDER MASK (low) RSY-b C LD A B2 EB81 7-261
ICY INSERT CHARACTER RXY-a LD A B2 E373 7-261
IDTE INVALIDATE DAT TABLE ENTRY RRF-b U DE P A1 SP $ B98E 10-32
IEDTR INSERT BIASED EXPONENT (64 to long DFP) RRF-b TF ¤7,9 Dt B3F6 20-40
IEXTR INSERT BIASED EXPONENT (64 to extended DFP) RRF-b TF ¤7,9 SP Dt B3FE 20-40
IIHF INSERT IMMEDIATE (high) RIL-a EI C08 7-262
IIHH INSERT IMMEDIATE (high high) RI-a N A50 7-262
IIHL INSERT IMMEDIATE (high low) RI-a N A51 7-262
IILF INSERT IMMEDIATE (low) RIL-a EI C09 7-262
IILH INSERT IMMEDIATE (low high) RI-a N A52 7-262
IILL INSERT IMMEDIATE (low low) RI-a N A53 7-262
IPK INSERT PSW KEY S Q G2 B20B 10-30
IPM INSERT PROGRAM MASK RRE B222 7-263
IPTE INVALIDATE PAGE TABLE ENTRY RRF-a P A1 SP $ B221 10-37
IRBM INSERT REFERENCE BITS MULTIPLE RRE IM P A1* B9AC 10-30
ISKE INSERT STORAGE KEY EXTENDED RRE P A1* B229 10-30
IVSK INSERT VIRTUAL STORAGE KEY RRE Q A1* SO R2 B223 10-31
KDB COMPARE AND SIGNAL (long BFP) RXE C ¤7,9 A Db Xi B2 ED18 19-18
KDBR COMPARE AND SIGNAL (long BFP) RRE C ¤7,9 Db Xi B318 19-18
KDSA COMPUTE DIGITAL SIGNATURE

AUTHENTICATION
RRE C M9 ¤5,9 A SP IC GM I1 ST R2 B93A 26-2

KDTR COMPARE AND SIGNAL (long DFP) RRE C TF ¤7,9 Dt Xi B3E0 20-23
KEB COMPARE AND SIGNAL (short BFP) RXE C ¤7,9 A Db Xi B2 ED08 19-18
KEBR COMPARE AND SIGNAL (short BFP) RRE C ¤7,9 Db Xi B308 19-18
KIMD COMPUTE INTERMEDIATE MESSAGE DIGEST RRE C MS ¤5,9 A SP IC GM I1 ST R2 B93E 7-187
KLMD COMPUTE LAST MESSAGE DIGEST RRE C MS ¤5,9 A SP IC GM I1 ST R2 B93F 7-200
KM CIPHER MESSAGE RRE C MS ¤5,9 A SP IC GM I1 ST R1 R2 B92E 7-52
KMA CIPHER MESSAGE WITH AUTHENTICATION RRF-b C M8 ¤5,9 A SP IC GM I1 ST R1 R2 R3 B929 7-77
KMAC COMPUTE MESSAGE AUTHENTICATION CODE RRE C MS ¤5,9 A SP IC GM I1 ST R2 B91E 7-218
KMC CIPHER MESSAGE WITH CHAINING RRE C MS ¤5,9 A SP IC GM I1 ST R1 R2 B92F 7-52
KMCTR CIPHER MESSAGE WITH COUNTER RRF-b C M4 ¤5,9 A SP IC GM I1 ST R1,R2,R3 B92D 7-106
KMF CIPHER MESSAGE WITH CIPHER FEEDBACK RRE C M4 ¤5,9 A SP IC GM I1 ST R1 R2 B92A 7-91
KMO CIPHER MESSAGE WITH OUTPUT FEEDBACK RRE C M4 ¤5,9 A SP IC GM I1 ST R1 R2 B92B 7-119
KXBR COMPARE AND SIGNAL (extended BFP) RRE C ¤7,9 SP Db Xi B348 19-18
KXTR COMPARE AND SIGNAL (extended DFP) RRE C TF ¤7,9 SP Dt Xi B3E8 20-23
L LOAD (32) RX-a A B2 58 7-263

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 8 of 24)

B-37

LA LOAD ADDRESS RX-a 41 7-265
LAA LOAD AND ADD (32) RSY-a C IA ¤9 A SP IF £ ST B2 EBF8 7-267
LAAG LOAD AND ADD (64) RSY-a C IA ¤9 A SP IF £ ST B2 EBE8 7-267
LAAL LOAD AND ADD LOGICAL (32) RSY-a C IA ¤9 A SP £ ST B2 EBFA 7-267
LAALG LOAD AND ADD LOGICAL (64) RSY-a C IA ¤9 A SP £ ST B2 EBEA 7-267
LAE LOAD ADDRESS EXTENDED RX-a ¤6 U1 BP 51 7-265
LAEY LOAD ADDRESS EXTENDED RXY-a GE ¤6 U1 BP E375 7-265
LAM LOAD ACCESS MULTIPLE RS-a ¤6 A SP UB 9A 7-264
LAMY LOAD ACCESS MULTIPLE RSY-a LD ¤6 A SP UB EB9A 7-264
LAN LOAD AND AND (32) RSY-a C IA ¤9 A SP £ ST B2 EBF4 7-268
LANG LOAD AND AND (64) RSY-a C IA ¤9 A SP £ ST B2 EBE4 7-268
LAO LOAD AND OR (32) RSY-a C IA ¤9 A SP £ ST B2 EBF6 7-269
LAOG LOAD AND OR (64) RSY-a C IA ¤9 A SP £ ST B2 EBE6 7-269
LARL LOAD ADDRESS RELATIVE LONG RIL-b N3 C00 7-266
LASP LOAD ADDRESS SPACE PARAMETERS SSE C P A1 SP SO B1 E500 10-41
LAT LOAD AND TRAP (32L32) RXY-a LT A Dc B2 E39F 7-270
LAX LOAD AND EXCLUSIVE OR (32) RSY-a C IA ¤9 A SP £ ST B2 EBF7 7-268
LAXG LOAD AND EXCLUSIVE OR (64) RSY-a C IA ¤9 A SP £ ST B2 EBE7 7-268
LAY LOAD ADDRESS RXY-a LD E371 7-265
LB LOAD BYTE (328) RXY-a LD A E376 7-271
LBH LOAD BYTE HIGH (328) RXY-a HW A B2 E3C0 7-271
LBR LOAD BYTE (328) RRE EI B926 7-271
LCBB LOAD COUNT TO BLOCK BOUNDARY RXE C VF SP E727 7-272
LCDBR LOAD COMPLEMENT (long BFP) RRE C ¤7,9 Db B313 19-31
LCDFR LOAD COMPLEMENT (long) RRE FS ¤7,9 Da B373 9-31
LCDR LOAD COMPLEMENT (long HFP) RR C ¤7,9 Da 23 18-14
LCEBR LOAD COMPLEMENT (short BFP) RRE C ¤7,9 Db B303 19-31
LCER LOAD COMPLEMENT (short HFP) RR C ¤7,9 Da 33 18-14
LCGFR LOAD COMPLEMENT (6432) RRE C N B913 7-272
LCGR LOAD COMPLEMENT (64) RRE C N IF B903 7-272
LCR LOAD COMPLEMENT (32) RR C IF 13 7-271
LCTL LOAD CONTROL (32) RS-a P A SP B2 B7 10-50
LCTLG LOAD CONTROL (64) RSY-a N P A SP B2 EB2F 10-50
LCXBR LOAD COMPLEMENT (extended BFP) RRE C ¤7,9 SP Db B343 19-31
LCXR LOAD COMPLEMENT (extended HFP) RRE C ¤7,9 SP Da B363 18-14
LD LOAD (long) RX-a ¤7,9 A Da B2 68 9-31
LDE LOAD LENGTHENED (short to long HFP) RXE ¤7,9 A Da B2 ED24 18-15
LDEB LOAD LENGTHENED (short to long BFP) RXE ¤7,9 A Db Xi B2 ED04 19-34
LDEBR LOAD LENGTHENED (short to long BFP) RRE ¤7,9 Db Xi B304 19-33
LDER LOAD LENGTHENED (short to long HFP) RRE ¤7,9 Da B324 18-15
LDETR LOAD LENGTHENED (short to long DFP) RRF-d TF ¤7,9 Dt Xi B3D4 20-45
LDGR LOAD FPR FROM GR (64 to long) RRE FG ¤7,9 Da B3C1 9-34
LDR LOAD (long) RR ¤7,9 Da 28 9-31
LDXBR LOAD ROUNDED (extended to long BFP) RRE ¤7,9 SP Db Xi Xo Xu Xx B345 19-35
LDXBRA LOAD ROUNDED (extended to long BFP) RRF-e F ¤7,9 SP Db Xi Xo Xu Xx B345 19-35
LDXR LOAD ROUNDED (extended to long HFP) RR ¤7,9 SP Da EO 25 18-17
LDXTR LOAD ROUNDED (extended to long DFP) RRF-e TF ¤7,9 SP Dt Xi Xo Xu Xx Xq B3DD 20-46
LDY LOAD (long) RXY-a LD ¤7,9 A Da B2 ED65 9-31
LE LOAD (short) RX-a ¤7,9 A Da B2 78 9-31
LEDBR LOAD ROUNDED (long to short BFP) RRE ¤7,9 Db Xi Xo Xu Xx B344 19-35
LEDBRA LOAD ROUNDED (long to short BFP) RRF-e F ¤7,9 SP Db Xi Xo Xu Xx B344 19-35
LEDR LOAD ROUNDED (long to short HFP) RR ¤7,9 Da EO 35 18-17
LEDTR LOAD ROUNDED (long to short DFP) RRF-e TF ¤7,9 Dt Xi Xo Xu Xx Xq B3D5 20-46
LER LOAD (short) RR ¤7,9 Da 38 9-31
LEXBR LOAD ROUNDED (extended to short BFP) RRE ¤7,9 SP Db Xi Xo Xu Xx B346 19-35

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 9 of 24)

B-38 The z/Architecture CPU Architecture

LEXBRA LOAD ROUNDED (extended to short BFP) RRF-e F ¤7,9 SP Db Xi Xo Xu Xx B346 19-35
LEXR LOAD ROUNDED (extended to short HFP) RRE ¤7,9 SP Da EO B366 18-17
LEY LOAD (short) RXY-a LD ¤7,9 A Da B2 ED64 9-31
LFAS LOAD FPC AND SIGNAL S XF ¤7,9 A SP Dt Xg B2 B2BD 9-32
LFH LOAD HIGH (32) RXY-a HW A B2 E3CA 7-277
LFHAT LOAD HIGH AND TRAP (32H32) RXY-a LT A Dc B2 E3C8 7-277
LFPC LOAD FPC S ¤7,9 A SP Db B2 B29D 9-31
LG LOAD (64) RXY-a N A B2 E304 7-263
LGAT LOAD AND TRAP (64) RXY-a LT A Dc B2 E385 7-270
LGB LOAD BYTE (648) RXY-a LD A E377 7-271
LGBR LOAD BYTE (648) RRE EI B906 7-271
LGDR LOAD GR FROM FPR (long to 64) RRE FG ¤7,9 Da B3CD 9-34
LGF LOAD (6432) RXY-a N A B2 E314 7-263
LGFI LOAD IMMEDIATE (6432) RIL-a EI C01 7-263
LGFR LOAD (6432) RRE N B914 7-263
LGFRL LOAD RELATIVE LONG (6432) RIL-b GE A* SP C4C 7-263
LGG LOAD GUARDED (64) RXY-a GF ¤12 A SP B ST B2 E34C 7-273
LGH LOAD HALFWORD (6416) RXY-a N A B2 E315 7-275
LGHI LOAD HALFWORD IMMEDIATE (6416) RI-a N A79 7-275
LGHR LOAD HALFWORD (6416) RRE EI B907 7-275
LGHRL LOAD HALFWORD RELATIVE LONG (6416) RIL-b GE A* C44 7-275
LGR LOAD (64) RRE N B904 7-263
LGRL LOAD RELATIVE LONG (64) RIL-b GE A* SP C48 7-263
LGSC LOAD GUARDED STORAGE CONTROLS RXY-a GF ¤1 A SO B2 E34D 7-274
LH LOAD HALFWORD (3216) RX-a A B2 48 7-275
LHH LOAD HALFWORD HIGH (3216) RXY-a HW A B2 E3C4 7-276
LHI LOAD HALFWORD IMMEDIATE (32)16 RI-a A78 7-275
LHR LOAD HALFWORD (3216) RRE EI B927 7-275
LHRL LOAD HALFWORD RELATIVE LONG (3216) RIL-b GE A* C45 7-275
LHY LOAD HALFWORD (3216) RXY-a LD A B2 E378 7-275
LLC LOAD LOGICAL CHARACTER (328) RXY-a EI A B2 E394 7-278
LLCH LOAD LOGICAL CHARACTER HIGH (328) RXY-a HW A B2 E3C2 7-279
LLCR LOAD LOGICAL CHARACTER (328) RRE EI B994 7-278
LLGC LOAD LOGICAL CHARACTER (648) RXY-a N A B2 E390 7-278
LLGCR LOAD LOGICAL CHARACTER (648) RRE EI B984 7-278
LLGF LOAD LOGICAL (6432) RXY-a N A B2 E316 7-277
LLGFAT LOAD LOGICAL AND TRAP (6432) RXY-a LT A Dc B2 E39D 7-278
LLGFR LOAD LOGICAL (6432) RRE N B916 7-277
LLGFRL LOAD LOGICAL RELATIVE LONG (6432) RIL-b GE A* SP C4E 7-277
LLGFSG LOAD LOGICAL AND SHIFT GUARDED (6432) RXY-a GF ¤12 A SP B ST B2 E348 7-273
LLGH LOAD LOGICAL HALFWORD (6416) RXY-a N A B2 E391 7-279
LLGHR LOAD LOGICAL HALFWORD (6416) RRE EI B985 7-279
LLGHRL LOAD LOGICAL HALFWORD RELATIVE LONG

(6416)
RIL-b GE A* C46 7-279

LLGT LOAD LOGICAL THIRTY ONE BITS (6431) RXY-a N A B2 E317 7-281
LLGTAT LOAD LOGICAL THIRTY ONE BITS AND TRAP

(6431)
RXY-a LT A Dc B2 E39C 7-281

LLGTR LOAD LOGICAL THIRTY ONE BITS (6431) RRE N B917 7-280
LLH LOAD LOGICAL HALFWORD (3216) RXY-a EI A B2 E395 7-279
LLHH LOAD LOGICAL HALFWORD HIGH (3216) RXY-a HW A B2 E3C6 7-280
LLHR LOAD LOGICAL HALFWORD (3216) RRE EI B995 7-279
LLHRL LOAD LOGICAL HALFWORD RELATIVE LONG

(3216)
RIL-b GE A* C42 7-279

LLIHF LOAD LOGICAL IMMEDIATE (high) RIL-a EI C0E 7-280
LLIHH LOAD LOGICAL IMMEDIATE (high high) RI-a N A5C 7-280

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 10 of 24)

B-39

LLIHL LOAD LOGICAL IMMEDIATE (high low) RI-a N A5D 7-280
LLILF LOAD LOGICAL IMMEDIATE (low) RIL-a EI C0F 7-280
LLILH LOAD LOGICAL IMMEDIATE (low high) RI-a N A5E 7-280
LLILL LOAD LOGICAL IMMEDIATE (low low) RI-a N A5F 7-280
LLZRGF LOAD LOGICAL AND ZERO RIGHTMOST BYTE

(6432)
RXY-a LZ A B2 E33A 7-278

LM LOAD MULTIPLE (32) RS-a A B2 98 7-281
LMD LOAD MULTIPLE DISJOINT (6432&32) SS-e N ¤9 A B2 B4 EF 7-282
LMG LOAD MULTIPLE (64) RSY-a N A B2 EB04 7-281
LMH LOAD MULTIPLE HIGH (32) RSY-a N A B2 EB96 7-282
LMY LOAD MULTIPLE (32) RSY-a LD A B2 EB98 7-281
LNDBR LOAD NEGATIVE (long BFP) RRE C ¤7,9 Db B311 19-34
LNDFR LOAD NEGATIVE (long) RRE FS ¤7,9 Da B371 9-34
LNDR LOAD NEGATIVE (long HFP) RR C ¤7,9 Da 21 18-16
LNEBR LOAD NEGATIVE (short BFP) RRE C ¤7,9 Db B301 19-34
LNER LOAD NEGATIVE (short HFP) RR C ¤7,9 Da 31 18-16
LNGFR LOAD NEGATIVE (6432) RRE C N B911 7-283
LNGR LOAD NEGATIVE (64) RRE C N B901 7-282
LNR LOAD NEGATIVE (32) RR C 11 7-282
LNXBR LOAD NEGATIVE (extended BFP) RRE C ¤7,9 SP Db B341 19-34
LNXR LOAD NEGATIVE (extended HFP) RRE C ¤7,9 SP Da B361 18-16
LOC LOAD ON CONDITION (32) RSY-b L1 A B2 EBF2 7-283
LOCFH LOAD HIGH ON CONDITION (32) RSY-b L2 A B2 EBE0 7-283
LOCFHR LOAD HIGH ON CONDITION (32) RRF-c L2 B9E0 7-283
LOCG LOAD ON CONDITION (64) RSY-b L1 A B2 EBE2 7-283
LOCGHI LOAD HALFWORD IMMEDIATE ON CONDITION

(6416)
RIE-g L2 EC46 7-276

LOCGR LOAD ON CONDITION (64) RRF-c L1 B9E2 7-283
LOCHHI LOAD HALFWORD HIGH IMMEDIATE ON

CONDITION (3216)
RIE-g L2 EC4E 7-276

LOCHI LOAD HALFWORD IMMEDIATE ON CONDITION
(3216)

RIE-g L2 EC42 7-276

LOCR LOAD ON CONDITION (32) RRF-c L1 B9F2 7-283
LPD LOAD PAIR DISJOINT (32) SSF C IA ¤9 A SP B1 B2 C84 7-284
LPDBR LOAD POSITIVE (long BFP) RRE C ¤7,9 Db B310 19-35
LPDFR LOAD POSITIVE (long) RRE FS ¤7,9 Da B370 9-34
LPDG LOAD PAIR DISJOINT (64) SSF C IA ¤9 A SP B1 B2 C85 7-284
LPDR LOAD POSITIVE (long HFP) RR C ¤7,9 Da 20 18-16
LPEBR LOAD POSITIVE (short BFP) RRE C ¤7,9 Db B300 19-35
LPER LOAD POSITIVE (short HFP) RR C ¤7,9 Da 30 18-16
LPGFR LOAD POSITIVE (6432) RRE C N B910 7-286
LPGR LOAD POSITIVE (64) RRE C N IF B900 7-286
LPQ LOAD PAIR FROM QUADWORD (64&64128) RXY-a N ¤9 A SP B2 E38F 7-285
LPR LOAD POSITIVE (32) RR C IF 10 7-286
LPSW LOAD PSW SI L P A SP ¢ B2 82 10-54
LPSWE LOAD PSW EXTENDED S L N P A SP ¢ B2 B2B2 10-55
LPTEA LOAD PAGE TABLE ENTRY ADDRESS RRF-b C D2 P A1* SP SO R2 B9AA 10-50
LPXBR LOAD POSITIVE (extended BFP) RRE C ¤7,9 SP Db B340 19-35
LPXR LOAD POSITIVE (extended HFP) RRE C ¤7,9 SP Da B360 18-16
LR LOAD (32) RR 18 7-263
LRA LOAD REAL ADDRESS (32) RX-a C P A1* SO BP B1 10-56
LRAG LOAD REAL ADDRESS (64) RXY-a C N P A1* BP E303 10-56
LRAY LOAD REAL ADDRESS (32) RXY-a C LD P A1* SO BP E313 10-56
LRDR LOAD ROUNDED (extended to long HFP) RR ¤7,9 SP Da EO 25 18-17
LRER LOAD ROUNDED (long to short HFP) RR ¤7,9 Da EO 35 18-17
LRL LOAD RELATIVE LONG (32) RIL-b GE A SP C4D 7-263

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 11 of 24)

B-40 The z/Architecture CPU Architecture

LRV LOAD REVERSED (32) RXY-a N3 A B2 E31E 7-286
LRVG LOAD REVERSED (64) RXY-a N A B2 E30F 7-286
LRVGR LOAD REVERSED (64) RRE N B90F 7-286
LRVH LOAD REVERSED (16) RXY-a N3 A B2 E31F 7-286
LRVR LOAD REVERSED (32) RRE N3 B91F 7-286
LT LOAD AND TEST (32) RXY-a C EI A B2 E312 7-270
LTDBR LOAD AND TEST (long BFP) RRE C ¤7,9 Db Xi B312 19-31
LTDR LOAD AND TEST (long HFP) RR C ¤7,9 Da 22 18-13
LTDTR LOAD AND TEST (long DFP) RRE C TF ¤7,9 Dt Xi B3D6 20-41
LTEBR LOAD AND TEST (short BFP) RRE C ¤7,9 Db Xi B302 19-31
LTER LOAD AND TEST (short HFP) RR C ¤7,9 Da 32 18-13
LTG LOAD AND TEST (64) RXY-a C EI A B2 E302 7-270
LTGF LOAD AND TEST (6432) RXY-a C GE A B2 E332 7-270
LTGFR LOAD AND TEST (6432) RRE C N B912 7-269
LTGR LOAD AND TEST (64) RRE C N B902 7-269
LTR LOAD AND TEST (32) RR C 12 7-269
LTXBR LOAD AND TEST (extended BFP) RRE C ¤7,9 SP Db Xi B342 19-31
LTXR LOAD AND TEST (extended HFP) RRE C ¤7,9 SP Da B362 18-14
LTXTR LOAD AND TEST (extended DFP) RRE C TF ¤7,9 SP Dt Xi B3DE 20-41
LURA LOAD USING REAL ADDRESS (32) RRE P A1 SP B24B 10-60
LURAG LOAD USING REAL ADDRESS (64) RRE N P A1 SP B905 10-60
LXD LOAD LENGTHENED (long to extended HFP) RXE ¤7,9 A SP Da B2 ED25 18-15
LXDB LOAD LENGTHENED (long to extended BFP) RXE ¤7,9 A SP Db Xi B2 ED05 19-34
LXDBR LOAD LENGTHENED (long to extended BFP) RRE ¤7,9 SP Db Xi B305 19-33
LXDR LOAD LENGTHENED (long to extended HFP) RRE ¤7,9 SP Da B325 18-15
LXDTR LOAD LENGTHENED (long to extended DFP) RRF-d TF ¤7,9 SP Dt Xi B3DC 20-45
LXE LOAD LENGTHENED (short to extended HFP) RXE ¤7,9 A SP Da B2 ED26 18-15
LXEB LOAD LENGTHENED (short to extended BFP) RXE ¤7,9 A SP Db Xi B2 ED06 19-34
LXEBR LOAD LENGTHENED (short to extended BFP) RRE ¤7,9 SP Db Xi B306 19-33
LXER LOAD LENGTHENED (short to extended HFP) RRE ¤7,9 SP Da B326 18-15
LXR LOAD (extended) RRE ¤7,9 SP Da B365 9-31
LY LOAD (32) RXY-a LD A B2 E358 7-263
LZDR LOAD ZERO (long) RRE ¤7,9 Da B375 9-35
LZER LOAD ZERO (short) RRE ¤7,9 Da B374 9-35
LZRF LOAD AND ZERO RIGHTMOST BYTE (32) RXY-a LZ A B2 E33B 7-270
LZRG LOAD AND ZERO RIGHTMOST BYTE (64) RXY-a LZ A B2 E32A 7-270
LZXR LOAD ZERO (extended) RRE ¤7,9 SP Da B376 9-35
M MULTIPLY (6432) RX-a A SP B2 5C 7-304
MAD MULTIPLY AND ADD (long HFP) RXF HM ¤7,9 A Da EU EO B2 ED3E 18-19
MADB MULTIPLY AND ADD (long BFP) RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED1E 19-38
MADBR MULTIPLY AND ADD (long BFP) RRD ¤7,9 Db Xi Xo Xu Xx B31E 19-38
MADR MULTIPLY AND ADD (long HFP) RRD HM ¤7,9 Da EU EO B33E 18-19
MAE MULTIPLY AND ADD (short HFP) RXF HM ¤7,9 A Da EU EO B2 ED2E 18-19
MAEB MULTIPLY AND ADD (short BFP) RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED0E 19-38
MAEBR MULTIPLY AND ADD (short BFP) RRD ¤7,9 Db Xi Xo Xu Xx B30E 19-38
MAER MULTIPLY AND ADD (short HFP) RRD HM ¤7,9 Da EU EO B32E 18-19
MAY MULTIPLY & ADD UNNORMALIZED (long to ext.

HFP)
RXF UE ¤7,9 A Da B2 ED3A 18-20

MAYH MULTIPLY AND ADD UNNRM. (long to ext. high
HFP)

RXF UE ¤7,9 A Da B2 ED3C 18-20

MAYHR MULTIPLY AND ADD UNNRM. (long to ext. high
HFP)

RRD UE ¤7,9 Da B33C 18-20

MAYL MULTIPLY AND ADD UNNRM. (long to ext. low
HFP)

RXF UE ¤7,9 A Da B2 ED38 18-20

MAYLR MULTIPLY AND ADD UNNRM. (long to ext. low
HFP)

RRD UE ¤7,9 Da B338 18-20

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 12 of 24)

B-41

MAYR MULTIPLY & ADD UNNORMALIZED (long to ext.
HFP)

RRD UE ¤7,9 Da B33A 18-20

MC MONITOR CALL SI ¤4,8,9 SP ME AF 7-287
MD MULTIPLY (long HFP) RX-a ¤7,9 A Da EU EO B2 6C 18-18
MDB MULTIPLY (long BFP) RXE ¤7,9 A Db Xi Xo Xu Xx B2 ED1C 19-37
MDBR MULTIPLY (long BFP) RRE ¤7,9 Db Xi Xo Xu Xx B31C 19-37
MDE MULTIPLY (short to long HFP) RX-a ¤7,9 A Da EU EO B2 7C 18-18
MDEB MULTIPLY (short to long BFP) RXE ¤7,9 A Db Xi B2 ED0C 19-37
MDEBR MULTIPLY (short to long BFP) RRE ¤7,9 Db Xi B30C 19-37
MDER MULTIPLY (short to long HFP) RR ¤7,9 Da EU EO 3C 18-17
MDR MULTIPLY (long HFP) RR ¤7,9 Da EU EO 2C 18-17
MDTR MULTIPLY (long DFP) RRF-a TF ¤7,9 Dt Xi Xo Xu Xx B3D0 20-47
MDTRA MULTIPLY (long DFP) RRF-a F ¤7,9 Dt Xi Xo Xu Xx Xq B3D0 20-48
ME MULTIPLY (short to long HFP) RX-a ¤7,9 A Da EU EO B2 7C 18-18
MEE MULTIPLY (short HFP) RXE ¤7,9 A Da EU EO B2 ED37 18-18
MEEB MULTIPLY (short BFP) RXE ¤7,9 A Db Xi Xo Xu Xx B2 ED17 19-37
MEEBR MULTIPLY (short BFP) RRE ¤7,9 Db Xi Xo Xu Xx B317 19-37
MEER MULTIPLY (short HFP) RRE ¤7,9 Da EU EO B337 18-17
MER MULTIPLY (short to long HFP) RR ¤7,9 Da EU EO 3C 18-18
MFY MULTIPLY (6432) RXY-a GE A SP B2 E35C 7-304
MG MULTIPLY (12864) RXY-a MI2 A SP B2 E384 7-304
MGH MULTIPLY HALFWORD (6416) RXY-a MI2 A B2 E33C 7-305
MGHI MULTIPLY HALFWORD IMMEDIATE (6416) RI-a N A7D 7-305
MGRK MULTIPLY (12864) RRF-a MI2 SP B9EC 7-304
MH MULTIPLY HALFWORD (3216) RX-a A B2 4C 7-305
MHI MULTIPLY HALFWORD IMMEDIATE (3216) RI-a A7C 7-305
MHY MULTIPLY HALFWORD (3216) RXY-a GE A B2 E37C 7-305
ML MULTIPLY LOGICAL (6432) RXY-a N3 A SP B2 E396 7-306
MLG MULTIPLY LOGICAL (12864) RXY-a N A SP B2 E386 7-306
MLGR MULTIPLY LOGICAL (12864) RRE N SP B986 7-306
MLR MULTIPLY LOGICAL (6432) RRE N3 SP B996 7-305
MP MULTIPLY DECIMAL SS-b ¤9 A SP Dg ST B1 B2 FC 8-12
MR MULTIPLY (6432) RR SP 1C 7-304
MS MULTIPLY SINGLE (32) RX-a A B2 71 7-307
MSC MULTIPLY SINGLE (32) RXY-a C MI2 A IF B2 E353 7-307
MSCH MODIFY SUBCHANNEL S C P A SP OP ¢ GS B2 B232 14-7
MSD MULTIPLY AND SUBTRACT (long HFP) RXF HM ¤7,9 A Da EU EO B2 ED3F 18-19
MSDB MULTIPLY AND SUBTRACT (long BFP) RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED1F 19-38
MSDBR MULTIPLY AND SUBTRACT (long BFP) RRD ¤7,9 Db Xi Xo Xu Xx B31F 19-38
MSDR MULTIPLY AND SUBTRACT (long HFP) RRD HM ¤7,9 Da EU EO B33F 18-19
MSE MULTIPLY AND SUBTRACT (short HFP) RXF HM ¤7,9 A Da EU EO B2 ED2F 18-19
MSEB MULTIPLY AND SUBTRACT (short BFP) RXF ¤7,9 A Db Xi Xo Xu Xx B2 ED0F 19-38
MSEBR MULTIPLY AND SUBTRACT (short BFP) RRD ¤7,9 Db Xi Xo Xu Xx B30F 19-38
MSER MULTIPLY AND SUBTRACT (short HFP) RRD HM ¤7,9 Da EU EO B32F 18-19
MSFI MULTIPLY SINGLE IMMEDIATE (32) RIL-a GE C21 7-307
MSG MULTIPLY SINGLE (64) RXY-a N A B2 E30C 7-307
MSGC MULTIPLY SINGLE (64) RXY-a C MI2 A IF B2 E383 7-307
MSGF MULTIPLY SINGLE (6432) RXY-a N A B2 E31C 7-307
MSGFI MULTIPLY SINGLE IMMEDIATE (6432) RIL-a GE C20 7-307
MSGFR MULTIPLY SINGLE (6432) RRE N B91C 7-307
MSGR MULTIPLY SINGLE (64) RRE N B90C 7-307
MSGRKC MULTIPLY SINGLE (64) RRF-a C MI2 IF B9ED 7-307
MSR MULTIPLY SINGLE (32) RRE B252 7-307
MSRKC MULTIPLY SINGLE (32) RRF-a C MI2 IF B9FD 7-307
MSTA MODIFY STACKED STATE RRE ¤1 A1* SP SE ST B247 10-61

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 13 of 24)

B-42 The z/Architecture CPU Architecture

MSY MULTIPLY SINGLE (32) RXY-a LD A B2 E351 7-307
MVC MOVE (character) SS-a ¤9 A ST B1 B2 D2 7-288
MVCDK MOVE WITH DESTINATION KEY SSE Q A GM ST B1 B2 E50F 10-67
MVCIN MOVE INVERSE SS-a ¤9 A ST B1 B2 E8 7-289
MVCK MOVE WITH KEY SS-d C Q A ST B1 B2 D9 10-67
MVCL MOVE LONG RR C ¤9 A SP II ST R1 R2 0E 7-289
MVCLE MOVE LONG EXTENDED RS-a C ¤9 A SP IC ST R1 R3 A8 7-293
MVCLU MOVE LONG UNICODE RSY-a C E2 ¤9 A SP IC ST R1 R3 EB8E 7-296
MVCOS MOVE WITH OPTIONAL SPECIFICATIONS SSF C MO Q A SO G0 ST B† B‡ C80 10-69
MVCP MOVE TO PRIMARY SS-d C Q A SO ¢ ST DA 10-65
MVCRL MOVE RIGHT TO LEFT SSE MI3 ¤9 A G0 ST B1 B2 E50A 7-300
MVCS MOVE TO SECONDARY SS-d C Q A SO ¢ ST DB 10-65
MVCSK MOVE WITH SOURCE KEY SSE Q A GM ST B1 B2 E50E 10-72
MVGHI MOVE (6416) SIL GE A ST B1 E548 7-288
MVHHI MOVE (1616) SIL GE A ST B1 E544 7-288
MVHI MOVE (3216) SIL GE A ST B1 E54C 7-288
MVI MOVE (immediate) SI A ST B1 92 7-288
MVIY MOVE (immediate) SIY LD A ST B1 EB52 7-288
MVN MOVE NUMERICS SS-a ¤9 A ST B1 B2 D1 7-300
MVO MOVE WITH OFFSET SS-b ¤9 A ST B1 B2 F1 7-302
MVPG MOVE PAGE RRE C Q A SP OP ¢4 G0 K ST R1 R2 B254 10-62
MVST MOVE STRING RRE C ¤9 A SP IC G0 ST R1 R2 B255 7-301
MVZ MOVE ZONES SS-a ¤9 A ST B1 B2 D3 7-303
MXBR MULTIPLY (extended BFP) RRE ¤7,9 SP Db Xi Xo Xu Xx B34C 19-37
MXD MULTIPLY (long to extended HFP) RX-a ¤7,9 A SP Da EU EO B2 67 18-18
MXDB MULTIPLY (long to extended BFP) RXE ¤7,9 A SP Db Xi B2 ED07 19-37
MXDBR MULTIPLY (long to extended BFP) RRE ¤7,9 SP Db Xi B307 19-37
MXDR MULTIPLY (long to extended HFP) RR ¤7,9 SP Da EU EO 27 18-17
MXR MULTIPLY (extended HFP) RR ¤7,9 SP Da EU EO 26 18-17
MXTR MULTIPLY (extended DFP) RRF-a TF ¤7,9 SP Dt Xi Xo Xu Xx B3D8 20-47
MXTRA MULTIPLY (extended DFP) RRF-a F ¤7,9 SP Dt Xi Xo Xu Xx Xq B3D8 20-48
MY MULTIPLY UNNORMALIZED (long to ext. HFP) RXF UE ¤7,9 A SP Da B2 ED3B 18-22
MYH MULTIPLY UNNORM. (long to ext. high HFP) RXF UE ¤7,9 A Da B2 ED3D 18-22
MYHR MULTIPLY UNNORM. (long to ext. high HFP) RRD UE ¤7,9 Da B33D 18-22
MYL MULTIPLY UNNORM. (long to ext. low HFP) RXF UE ¤7,9 A Da B2 ED39 18-22
MYLR MULTIPLY UNNORM. (long to ext. low HFP) RRD UE ¤7,9 Da B339 18-22
MYR MULTIPLY UNNORMALIZED (long to ext. HFP) RRD UE ¤7,9 SP Da B33B 18-22
N AND (32) RX-a C A B2 54 7-32
NC AND (character) SS-a C ¤9 A ST B1 B2 D4 7-33
NCGRK AND WITH COMPLEMENT (64) RRF-a C MI3 B9E5 7-34
NCRK AND WITH COMPLEMENT (32) RRF-a C MI3 B9F5 7-34
NG AND (64) RXY-a C N A B2 E380 7-33
NGR AND (64) RRE C N B980 7-32
NGRK AND (64) RRF-a C DO B9E4 7-32
NI AND (immediate) SI C A £2 ST B1 94 7-33
NIAI NEXT INSTRUCTION ACCESS INTENT IE EH B2FA 7-309
NIHF AND IMMEDIATE (high) RIL-a C EI C0A 7-34
NIHH AND IMMEDIATE (high high) RI-a C N A54 7-34
NIHL AND IMMEDIATE (high low) RI-a C N A55 7-34
NILF AND IMMEDIATE (low) RIL-a C EI C0B 7-34
NILH AND IMMEDIATE (low high) RI-a C N A56 7-34
NILL AND IMMEDIATE (low low) RI-a C N A57 7-34
NIY AND (immediate) SIY C LD A £2 ST B1 EB54 7-33
NNGRK NAND (64) RRF-a C MI3 B964 7-308
NNRK NAND (32) RRF-a C MI3 B974 7-308

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 14 of 24)

B-43

NOGRK NOR (64) RRF-a C MI3 B966 7-311
NORK NOR (32) RRF-a C MI3 B976 7-311
NR AND (32) RR C 14 7-32
NRK AND (32) RRF-a C DO B9F4 7-32
NTSTG NONTRANSACTIONAL STORE (64) RXY-a TX ¤9 A SP ST B2 E325 7-310
NXGRK NOT EXCLUSIVE OR (64) RRF-a C MI3 B967 7-311
NXRK NOT EXCLUSIVE OR (32) RRF-a C MI3 B977 7-311
NY AND (32) RXY-a C LD A B2 E354 7-33
O OR (32) RX-a C A B2 56 7-312
OC OR (character) SS-a C ¤9 A ST B1 B2 D6 7-312
OCGRK OR WITH COMPLEMENT (64) RRF-a C MI3 B965 7-314
OCRK OR WITH COMPLEMENT (32) RRF-a C MI3 B975 7-314
OG OR (64) RXY-a C N A B2 E381 7-312
OGR OR (64) RRE C N B981 7-312
OGRK OR (64) RRF-a C DO B9E6 7-312
OI OR (immediate) SI C A ST B1 96 7-312
OIHF OR IMMEDIATE (high) RIL-a C EI C0C 7-313
OIHH OR IMMEDIATE (high high) RI-a C N A58 7-313
OIHL OR IMMEDIATE (high low) RI-a C N A59 7-313
OILF OR IMMEDIATE (low) RIL-a C EI C0D 7-313
OILH OR IMMEDIATE (low high) RI-a C N A5A 7-313
OILL OR IMMEDIATE (low low) RI-a C N A5B 7-313
OIY OR (immediate) SIY C LD A ST B1 EB56 7-312
OR OR (32) RR C 16 7-312
ORK OR (32) RRF-a C DO B9F6 7-312
OY OR (32) RXY-a C LD A B2 E356 7-312
PACK PACK SS-b ¤9 A ST B1 B2 F2 7-314
PALB PURGE ALB RRE P $ B248 10-119
PC PROGRAM CALL S Q A1* Z1 T ¢ GM B ST B218 10-93
PCC PERFORM CRYPTOGRAPHIC COMPUTATION RRE C M4 ¤5,9 A SP IC GM I1 ST B92C 7-316
PCKMO PERFORM CRYPTOGRAPHIC KEY MGMT.

OPERATIONS
RRE M3 P A SP GM ST B928 10-75

PFD PREFETCH DATA RXY-b GE ¤9,11 B2 E336 7-365
PFDRL PREFETCH DATA RELATIVE LONG RIL-c GE ¤9,11 C62 7-366
PFMF PERFORM FRAME MANAGEMENT FUNCTION RRE ED1 P A1 SP II ¢3 K B9AF 10-80
PFPO PERFORM FLOATING-POINT OPERATION E PF ¤7-9 SP Da Xi X0 GM Xu Xx Xq 010A 9-35
PGIN PAGE IN RRE C ES P A1 ¢ B22E 10-73
PGOUT PAGE OUT RRE C ES P A1 ¢ B22F 10-74
PKA PACK ASCII SS-f E2 ¤9 A SP ST B1 B2 E9 7-315
PKU PACK UNICODE SS-f E2 ¤9 A SP ST B1 B2 E1 7-316
PLO PERFORM LOCKED OPERATION SS-e C ¤1 A SP $ GM ST FC EE 7-337
POPCNT POPULATION COUNT RRF-c C PK B9E1 7-365
PPA PERFORM PROCESSOR ASSIST RRF-c PA ¤1 B2E8 7-351
PR PROGRAM RETURN E L ¤1 A1* SP Z4 T ¢2 B ST 0101 10-106
PRNO PERFORM RANDOM NUMBER OPERATION RRE C M5 ¤5,9 A SP IC Dg GM I1 ST R1 R2 B93C 7-352
PT PROGRAM TRANSFER RRE Q A1* SP Z2 T ¢ B B228 10-110
PTF PERFORM TOPOLOGY FUNCTION RRE C CT P SP B9A2 10-92
PTFF PERFORM TIMING FACILITY FUNCTION E C TS Q A SP GM ST 0104 10-83
PTI PROGRAM TRANSFER WITH INSTANCE RRE RA Q A1* SP Z6 T ¢ B B99E 10-110
PTLB PURGE TLB S P $ B20D 10-119
QADTR QUANTIZE (long DFP) RRF-b TF ¤7,9 Dt Xi Xx Xq B3F5 20-49
QAXTR QUANTIZE (extended DFP) RRF-b TF ¤7,9 SP Dt Xi Xx Xq B3FD 20-49
RCHP RESET CHANNEL PATH S C P B23B 14-9
RISBG ROTATE THEN INSERT SELECTED BITS (64) RIE-f C GE EC55 7-369
RISBGN ROTATE THEN INSERT SELECTED BITS (64) RIE-f MI1 EC59 7-369

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 15 of 24)

B-44 The z/Architecture CPU Architecture

RISBHG ROTATE THEN INSERT SELECTED BITS HIGH
(64)

RIE-f HW EC5D 7-371

RISBLG ROTATE THEN INSERT SELECTED BITS LOW (64) RIE-f HW EC51 7-371
RLL ROTATE LEFT SINGLE LOGICAL (32) RSY-a N3 EB1D 7-367
RLLG ROTATE LEFT SINGLE LOGICAL (64) RSY-a N EB1C 7-367
RNSBG ROTATE THEN AND SELECTED BITS (64) RIE-f C GE EC54 7-368
ROSBG ROTATE THEN OR SELECTED BITS (64) RIE-f C GE EC56 7-368
RP RESUME PROGRAM S L Q A SP WE T B B2 B277 10-120
RRBE RESET REFERENCE BIT EXTENDED RRE C P A1* B22A 10-119
RRBM RESET REFERENCE BITS MULTIPLE RRE RB P A1* B9AE 10-120
RRDTR REROUND (long DFP) RRF-b TF ¤7,9 Dt Xi Xx Xq B3F7 20-52
RRXTR REROUND (extended DFP) RRF-b TF ¤7,9 SP Dt Xi Xx Xq B3FF 20-52
RSCH RESUME SUBCHANNEL S C P OP ¢ GS B238 14-10
RXSBG ROTATE THEN EXCLUSIVE OR SELECT. BITS (64) RIE-f C GE EC57 7-368
S SUBTRACT (32) RX-a C A IF B2 5B 7-395
SAC SET ADDRESS SPACE CONTROL S Q SP SW ¢ B219 10-123
SACF SET ADDRESS SPACE CONTROL FAST S Q SP SW B279 10-123
SAL SET ADDRESS LIMIT S P OP ¢ G1 B237 14-12
SAM24 SET ADDRESSING MODE (24) E N3 ¤3,9 SP T 010C 7-377
SAM31 SET ADDRESSING MODE (31) E N3 ¤3,9 SP T 010D 7-377
SAM64 SET ADDRESSING MODE (64) E N ¤3,9 T 010E 7-377
SAR SET ACCESS RRE ¤6 U1 B24E 7-377
SCHM SET CHANNEL MONITOR S P OP ¢ GM B23C 14-13
SCK SET CLOCK S C P A SP B2 B204 10-124
SCKC SET CLOCK COMPARATOR S P A SP B2 B206 10-125
SCKPF SET CLOCK PROGRAMMABLE FIELD E P SP G0 0107 10-126
SD SUBTRACT NORMALIZED (long HFP) RX-a C ¤7,9 A Da EU EO LS B2 6B 18-24
SDB SUBTRACT (long BFP) RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED1B 19-40
SDBR SUBTRACT (long BFP) RRE C ¤7,9 Db Xi Xo Xu Xx B31B 19-40
SDR SUBTRACT NORMALIZED (long HFP) RR C ¤7,9 Da EU EO LS 2B 18-24
SDTR SUBTRACT (long DFP) RRF-a C TF ¤7,9 Dt Xi Xo Xu Xx B3D3 20-55
SDTRA SUBTRACT (long DFP) RRF-a C F ¤7,9 Dt Xi Xo Xu Xx Xq B3D3 20-55
SE SUBTRACT NORMALIZED (short HFP) RX-a C ¤7,9 A Da EU EO LS B2 7B 18-24
SEB SUBTRACT (short BFP) RXE C ¤7,9 A Db Xi Xo Xu Xx B2 ED0B 19-40
SEBR SUBTRACT (short BFP) RRE C ¤7,9 Db Xi Xo Xu Xx B30B 19-40
SELFHR SELECT HIGH (32) RRF-a MI3 B9C0 7-376
SELGR SELECT (64) RRF-a MI3 B9E3 7-376
SELR SELECT (32) RRF-a MI3 B9F0 7-376
SER SUBTRACT NORMALIZED (short HFP) RR C ¤7,9 Da EU EO LS 3B 18-24
SFASR SET FPC AND SIGNAL RRE XF ¤7,9 SP Dt Xg B385 9-48
SFPC SET FPC RRE ¤7,9 SP Db B384 9-47
SG SUBTRACT (64) RXY-a C N A IF B2 E309 7-395
SGF SUBTRACT (6432) RXY-a C N A IF B2 E319 7-395
SGFR SUBTRACT (6432) RRE C N IF B919 7-394
SGH SUBTRACT HALFWORD (6416) RXY-a C MI2 A IF B2 E339 7-395
SGR SUBTRACT (64) RRE C N IF B909 7-394
SGRK SUBTRACT (64) RRF-a C DO IF B9E9 7-394
SH SUBTRACT HALFWORD (3216) RX-a C A IF B2 4B 7-395
SHHHR SUBTRACT HIGH (32) RRF-a C HW IF B9C9 7-396
SHHLR SUBTRACT HIGH (32) RRF-a C HW IF B9D9 7-396
SHY SUBTRACT HALFWORD (3216) RXY-a C LD A IF B2 E37B 7-395
SIGP SIGNAL PROCESSOR RS-a C P $ AE 10-136
SL SUBTRACT LOGICAL (32) RX-a C A B2 5F 7-396
SLA SHIFT LEFT SINGLE (32) RS-a C IF 8B 7-379
SLAG SHIFT LEFT SINGLE (64) RSY-a C N IF EB0B 7-379

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 16 of 24)

B-45

SLAK SHIFT LEFT SINGLE (32) RSY-a C DO IF EBDD 7-379
SLB SUBTRACT LOGICAL WITH BORROW (32) RXY-a C N3 A B2 E399 7-398
SLBG SUBTRACT LOGICAL WITH BORROW (64) RXY-a C N A B2 E389 7-398
SLBGR SUBTRACT LOGICAL WITH BORROW (64) RRE C N B989 7-398
SLBR SUBTRACT LOGICAL WITH BORROW (32) RRE C N3 B999 7-398
SLDA SHIFT LEFT DOUBLE (64) RS-a C SP IF 8F 7-378
SLDL SHIFT LEFT DOUBLE LOGICAL (64) RS-a SP 8D 7-379
SLDT SHIFT SIGNIFICAND LEFT (long DFP) RXF TF ¤7,9 Dt ED40 20-54
SLFI SUBTRACT LOGICAL IMMEDIATE (32) RIL-a C EI C25 7-397
SLG SUBTRACT LOGICAL (64) RXY-a C N A B2 E30B 7-397
SLGF SUBTRACT LOGICAL (6432) RXY-a C N A B2 E31B 7-397
SLGFI SUBTRACT LOGICAL IMMEDIATE (6432) RIL-a C EI C24 7-397
SLGFR SUBTRACT LOGICAL (6432) RRE C N B91B 7-396
SLGR SUBTRACT LOGICAL (64) RRE C N B90B 7-396
SLGRK SUBTRACT LOGICAL (64) RRF-a C DO B9EB 7-396
SLHHHR SUBTRACT LOGICAL HIGH (32) RRF-a C HW B9CB 7-397
SLHHLR SUBTRACT LOGICAL HIGH (32) RRF-a C HW B9DB 7-397
SLL SHIFT LEFT SINGLE LOGICAL (32) RS-a 89 7-380
SLLG SHIFT LEFT SINGLE LOGICAL (64) RSY-a N EB0D 7-380
SLLK SHIFT LEFT SINGLE LOGICAL (32) RSY-a DO EBDF 7-380
SLR SUBTRACT LOGICAL (32) RR C 1F 7-396
SLRK SUBTRACT LOGICAL (32) RRF-a C DO B9FB 7-396
SLXT SHIFT SIGNIFICAND LEFT (extended DFP) RXF TF ¤7,9 SP Dt ED48 20-54
SLY SUBTRACT LOGICAL (32) RXY-a C LD A B2 E35F 7-396
SP SUBTRACT DECIMAL SS-b C ¤9 A Dg DF ST B1 B2 FB 8-13
SPKA SET PSW KEY FROM ADDRESS S Q B20A 10-127
SPM SET PROGRAM MASK RR L 04 7-378
SPT SET CPU TIMER S P A SP B2 B208 10-126
SPX SET PREFIX S P A SP $ B2 B210 10-126
SQD SQUARE ROOT (long HFP) RXE ¤7,9 A Da SQ B2 ED35 18-23
SQDB SQUARE ROOT (long BFP) RXE ¤7,9 A Db Xi Xx B2 ED15 19-40
SQDBR SQUARE ROOT (long BFP) RRE ¤7,9 Db Xi Xx B315 19-40
SQDR SQUARE ROOT (long HFP) RRE ¤7,9 Da SQ B244 18-23
SQE SQUARE ROOT (short HFP) RXE ¤7,9 A Da SQ B2 ED34 18-23
SQEB SQUARE ROOT (short BFP) RXE ¤7,9 A Db Xi Xx B2 ED14 19-40
SQEBR SQUARE ROOT (short BFP) RRE ¤7,9 Db Xi Xx B314 19-40
SQER SQUARE ROOT (short HFP) RRE ¤7,9 Da SQ B245 18-23
SQXBR SQUARE ROOT (extended BFP) RRE ¤7,9 SP Db Xi Xx B316 19-40
SQXR SQUARE ROOT (extended HFP) RRE ¤7,9 SP Da SQ B336 18-23
SR SUBTRACT (32) RR C IF 1B 7-394
SRA SHIFT RIGHT SINGLE (32) RS-a C 8A 7-382
SRAG SHIFT RIGHT SINGLE (64) RSY-a C N EB0A 7-382
SRAK SHIFT RIGHT SINGLE (32) RSY-a C DO EBDC 7-382
SRDA SHIFT RIGHT DOUBLE (64) RS-a C SP 8E 7-381
SRDL SHIFT RIGHT DOUBLE LOGICAL (64) RS-a SP 8C 7-381
SRDT SHIFT SIGNIFICAND RIGHT (long DFP) RXF TF ¤7,9 Dt ED41 20-54
SRK SUBTRACT (32) RRF-a C DO IF B9F9 7-394
SRL SHIFT RIGHT SINGLE LOGICAL (32) RS-a 88 7-383
SRLG SHIFT RIGHT SINGLE LOGICAL (64) RSY-a N EB0C 7-383
SRLK SHIFT RIGHT SINGLE LOGICAL (32) RSY-a DO EBDE 7-383
SRNM SET BFP ROUNDING MODE (2 bit) S ¤7,9 Db B299 9-47
SRNMB SET BFP ROUNDING MODE (3 bit) S F ¤7,9 SP Db B2B8 9-47
SRNMT SET DFP ROUNDING MODE S TR ¤7,9 Dt B2B9 9-47
SRP SHIFT AND ROUND DECIMAL SS-c C ¤9 A Dg DF ST B1 B2 F0 8-12
SRST SEARCH STRING RRE C ¤9 A SP IC G0 R2 B25E 7-372

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 17 of 24)

B-46 The z/Architecture CPU Architecture

SRSTU SEARCH STRING UNICODE RRE C E3 ¤9 A SP IC G0 R1 R2 B9BE 7-374
SRXT SHIFT SIGNIFICAND RIGHT (extended DFP) RXF TF ¤7,9 SP Dt ED49 20-54
SSAIR SET SECONDARY ASN WITH INSTANCE RRE RA ¤1 A1* Z7 T ¢ B99F 10-128
SSAR SET SECONDARY ASN RRE ¤1 A1* Z3 T ¢ B225 10-128
SSCH START SUBCHANNEL S C P A SP OP ¢ GS B2 B233 14-15
SSKE SET STORAGE KEY EXTENDED RRF-c C1 P A1* II ¢ K B22B 10-133
SSM SET SYSTEM MASK SI P A SP SO B2 80 10-136
ST STORE (32) RX-a A ST B2 50 7-383
STAM STORE ACCESS MULTIPLE RS-a A SP ST UB 9B 7-384
STAMY STORE ACCESS MULTIPLE RSY-a LD A SP ST UB EB9B 7-384
STAP STORE CPU ADDRESS S P A SP ST B2 B212 10-139
STC STORE CHARACTER RX-a A ST B2 42 7-385
STCH STORE CHARACTER HIGH (8) RXY-a HW A ST B2 E3C3 7-385
STCK STORE CLOCK S C ¤8,9 A $ ST B2 B205 7-386
STCKC STORE CLOCK COMPARATOR S P A SP ST B2 B207 10-138
STCKE STORE CLOCK EXTENDED S C ¤8,9 A $ ST B2 B278 7-387
STCKF STORE CLOCK FAST S C SC ¤8,9 A ST B2 B27C 7-386
STCM STORE CHARACTERS UNDER MASK (low) RS-b A ST B2 BE 7-385
STCMH STORE CHARACTERS UNDER MASK (high) RSY-b N ¤9,11 A ST B2 EB2C 7-385
STCMY STORE CHARACTERS UNDER MASK (low) RSY-b LD A ST B2 EB2D 7-385
STCPS STORE CHANNEL PATH STATUS S P A SP ¢ ST B2 B23A 14-16
STCRW STORE CHANNEL REPORT WORD S C P A SP ¢ ST B2 B239 14-17
STCTG STORE CONTROL (64) RSY-a N P A SP ST B2 EB25 10-138
STCTL STORE CONTROL (32) RS-a P A SP ST B2 B6 10-138
STCY STORE CHARACTER RXY-a LD A ST B2 E372 7-385
STD STORE (long) RX-a ¤7,9 A Da ST B2 60 9-48
STDY STORE (long) RXY-a LD ¤7,9 A Da ST B2 ED67 9-49
STE STORE (short) RX-a ¤7,9 A Da ST B2 70 9-48
STEY STORE (short) RXY-a LD ¤7,9 A Da ST B2 ED66 9-49
STFH STORE HIGH (32) RXY-a HW A ST B2 E3CB 7-391
STFL STORE FACILITY LIST S N3 P B2B1 10-141
STFLE STORE FACILITY LIST EXTENDED S C FL ¤1 A SP G0 ST B2 B2B0 7-389
STFPC STORE FPC S ¤7,9 A Db ST B2 B29C 9-49
STG STORE (64) RXY-a N A ST B2 E324 7-384
STGRL STORE RELATIVE LONG (64) RIL-b GE A* SP ST C4B 7-384
STGSC STORE GUARDED STORAGE CONTROLS RXY-a GF ¤1 A SO ST B2 E349 7-390
STH STORE HALFWORD (16) RX-a A ST B2 40 7-390
STHH STORE HALFWORD HIGH (16) RXY-a HW A ST B2 E3C7 7-391
STHRL STORE HALFWORD RELATIVE LONG (16) RIL-b GE A* ST C47 7-391
STHY STORE HALFWORD (16) RXY-a LD A ST B2 E370 7-391
STIDP STORE CPU ID S P A SP ST B2 B202 10-139
STM STORE MULTIPLE (32) RS-a A ST B2 90 7-392
STMG STORE MULTIPLE (64) RSY-a N A ST B2 EB24 7-392
STMH STORE MULTIPLE HIGH (32) RSY-a N A ST B2 EB26 7-392
STMY STORE MULTIPLE (32) RSY-a LD A ST B2 EB90 7-392
STNSM STORE THEN AND SYSTEM MASK SI P A ST B1 AC 10-167
STOC STORE ON CONDITION (32) RSY-b L1 A ST B2 EBF3 7-392
STOCFH STORE HIGH ON CONDITION RSY-b L2 A ST B2 EBE1 7-393
STOCG STORE ON CONDITION (64) RSY-b L1 A ST B2 EBE3 7-392
STOSM STORE THEN OR SYSTEM MASK SI P A SP ST B1 AD 10-167
STPQ STORE PAIR TO QUADWORD RXY-a N ¤9 A SP ST B2 E38E 7-393
STPT STORE CPU TIMER S P A SP ST B2 B209 10-141
STPX STORE PREFIX S P A SP ST B2 B211 10-142
STRAG STORE REAL ADDRESS SSE N P A1 SP ST B1 BP E502 10-142
STRL STORE RELATIVE LONG (32) RIL-b GE A* SP ST C4F 7-384

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 18 of 24)

B-47

STRV STORE REVERSED (32) RXY-a N3 A ST B2 E33E 7-394
STRVG STORE REVERSED (64) RXY-a N A ST B2 E32F 7-394
STRVH STORE REVERSED (16) RXY-a N3 A ST B2 E33F 7-394
STSCH STORE SUBCHANNEL S C P A SP OP ¢ GS ST B2 B234 14-18
STSI STORE SYSTEM INFORMATION S C P A SP GM ST B2 B27D 10-143
STURA STORE USING REAL ADDRESS (32) RRE P A1 SP SU B246 10-168
STURG STORE USING REAL ADDRESS (64) RRE N P A1 SP SU B925 10-168
STY STORE (32) RXY-a LD A ST B2 E350 7-384
SU SUBTRACT UNNORMALIZED (short HFP) RX-a C ¤7,9 A Da EO LS B2 7F 18-25
SUR SUBTRACT UNNORMALIZED (short HFP) RR C ¤7,9 Da EO LS 3F 18-25
SVC SUPERVISOR CALL I ¤1 ¢ 0A 7-398
SW SUBTRACT UNNORMALIZED (long HFP) RX-a C ¤7,9 A Da EO LS B2 6F 18-25
SWR SUBTRACT UNNORMALIZED (long HFP) RR C ¤7,9 Da EO LS 2F 18-25
SXBR SUBTRACT (extended BFP) RRE C ¤7,9 SP Db Xi Xo Xu Xx B34B 19-40
SXR SUBTRACT NORMALIZED (extended HFP) RR C ¤7,9 SP Da EU EO LS 37 18-24
SXTR SUBTRACT (extended DFP) RRF-a C TF ¤7,9 SP Dt Xi Xo Xu Xx B3DB 20-55
SXTRA SUBTRACT (extended DFP) RRF-a C F ¤7,9 SP Dt Xi Xo Xu Xx Xq B3DB 20-55
SY SUBTRACT (32) RXY-a C LD A IF B2 E35B 7-395
TABORT TRANSACTION ABORT S TX ¤9 SP SO $ EX B2FC 7-401
TAM TEST ADDRESSING MODE E C N3 ¤9 010B 7-399
TAR TEST ACCESS RRE C ¤1 A1* U1 B24C 10-168
TB TEST BLOCK RRE C P A1* II $ G0 K B22C 10-170
TBDR CONVERT HFP TO BFP (long) RRF-e C ¤7,9 SP Da B351 9-28
TBEDR CONVERT HFP TO BFP (long to short) RRF-e C ¤7,9 SP Da B350 9-28
TBEGIN TRANSACTION BEGIN (nonconstrained) SIL C TX ¤9 A SP SO $ EX ST E560 7-401
TBEGINC TRANSACTION BEGIN (constrained) SIL C CX ¤9 SP SO $ EX E561 7-406
TCDB TEST DATA CLASS (long BFP) RXE C ¤7,9 Db ED11 19-41
TCEB TEST DATA CLASS (short BFP) RXE C ¤7,9 Db ED10 19-41
TCXB TEST DATA CLASS (extended BFP) RXE C ¤7,9 SP Db ED12 19-41
TDCDT TEST DATA CLASS (long DFP) RXE C TF ¤7,9 Dt ED54 20-56
TDCET TEST DATA CLASS (short DFP) RXE C TF ¤7,9 Dt ED50 20-56
TDCXT TEST DATA CLASS (extended DFP) RXE C TF ¤7,9 SP Dt ED58 20-56
TDGDT TEST DATA GROUP (long DFP) RXE C TF ¤7,9 Dt ED55 20-57
TDGET TEST DATA GROUP (short DFP) RXE C TF ¤7,9 Dt ED51 20-57
TDGXT TEST DATA GROUP (extended DFP) RXE C TF ¤7,9 SP Dt ED59 20-57
TEND TRANSACTION END S C TX SO $ EX B2F8 7-408
THDER CONVERT BFP TO HFP (short to long) RRE C ¤7,9 Da B358 9-27
THDR CONVERT BFP TO HFP (long) RRE C ¤7,9 Da B359 9-27
TM TEST UNDER MASK SI C A B1 91 7-400
TMH TEST UNDER MASK HIGH RI-a C A70 7-400
TMHH TEST UNDER MASK (high high) RI-a C N A72 7-400
TMHL TEST UNDER MASK (high low) RI-a C N A73 7-400
TML TEST UNDER MASK LOW RI-a C A71 7-400
TMLH TEST UNDER MASK (low high) RI-a C N A70 7-400
TMLL TEST UNDER MASK (low low) RI-a C N A71 7-400
TMY TEST UNDER MASK SIY C LD A B1 EB51 7-400
TP TEST DECIMAL RSL-a C E2 ¤9 A B1 B2 EBC0 8-14
TPEI TEST PENDING EXTERNAL INTERRUPTION RRE C TE P B9A1 10-172
TPI TEST PENDING INTERRUPTION S C P A1* SP ¢ ST B2 B236 14-19
TPROT TEST PROTECTION SSE C P A1* B1 E501 10-173
TR TRANSLATE SS-a ¤9 A ST B1 B2 DC 7-408
TRACE TRACE (32) RS-a P A SP T ¢ B2 99 10-176
TRACG TRACE (64) RSY-a N P A SP T ¢ B2 EB0F 10-176
TRAP2 TRAP E ¤1 A* SO T B ST 01FF 10-177
TRAP4 TRAP S ¤1 A* SO T B ST B2FF 10-177

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 19 of 24)

B-48 The z/Architecture CPU Architecture

TRE TRANSLATE EXTENDED RRE C ¤9 A SP IC ST R1 R2 B2A5 7-415
TROO TRANSLATE ONE TO ONE RRF-c C E2 ¤9 A SP IC GM ST RM R2 B993 7-418
TROT TRANSLATE ONE TO TWO RRF-c C E2 ¤9 A SP IC GM ST RM R2 B992 7-418
TRT TRANSLATE AND TEST SS-a C ¤9 A GM B1 B2 DD 7-409
TRTE TRANSLATE AND TEST EXTENDED RRF-c C PE ¤9 A SP IC ST RM B9BF 7-410
TRTO TRANSLATE TWO TO ONE RRF-c C E2 ¤9 A SP IC GM ST RM R2 B991 7-418
TRTR TRANSLATE AND TEST REVERSE SS-a C E3 ¤9 A GM B1 B2 D0 7-415
TRTRE TRANSLATE AND TEST REVERSE EXTENDED RRF-c C PE ¤9 A SP IC ST RM B9BD 7-410
TRTT TRANSLATE TWO TO TWO RRF-c C E2 ¤9 A SP IC GM ST RM R2 B990 7-418
TS TEST AND SET SI C ¤9 A $ ST B2 93 7-399
TSCH TEST SUBCHANNEL S C P A SP OP ¢ GS ST B2 B235 14-21
UNPK UNPACK SS-b ¤9 A ST B1 B2 F3 7-423
UNPKA UNPACK ASCII SS-a C E2 ¤9 A SP ST B1 B2 EA 7-423
UNPKU UNPACK UNICODE SS-a C E2 ¤9 A SP ST B1 B2 E2 7-424
UPT UPDATE TREE E C ¤9 A SP II GM I4 ST 0102 7-425
VA VECTOR ADD VRR-c VF ¤7,9 SP Dv E7F3 22-3
VAC VECTOR ADD WITH CARRY VRR-d VF ¤7,9 SP Dv E7BB 22-4
VACC VECTOR ADD COMPUTE CARRY VRR-c VF ¤7,9 SP Dv E7F1 22-4
VACCC VECTOR ADD WITH CARRY COMPUTE CARRY VRR-d VF ¤7,9 SP Dv E7B9 22-5
VAP VECTOR ADD DECIMAL VRI-f C* VD ¤7,9 SP Dv Dg DF* E671 25-3
VAVG VECTOR AVERAGE VRR-c VF ¤7,9 SP Dv E7F2 22-6
VAVGL VECTOR AVERAGE LOGICAL VRR-c VF ¤7,9 SP Dv E7F0 22-6
VBPERM VECTOR BIT PERMUTE VRR-c V1 ¤7,9 Dv E785 21-4
VCDG VECTOR FP CONVERT FROM FIXED 64-BIT VRR-a VF ¤7,9 SP Dv Xx E7C3 24-15
VCDLG VECTOR FP CONVERT FROM LOGICAL 64-BIT VRR-a VF ¤7,9 SP Dv Xx E7C1 24-17
VCEQ VECTOR COMPARE EQUAL VRR-b C* VF ¤7,9 SP Dv E7F8 22-7
VCFPL VECTOR FP CONVERT FROM LOGICAL VRR-a V2 ¤7,9 SP Dv Xx E7C1 24-17
VCFPS VECTOR FP CONVERT FROM FIXED VRR-a V2 ¤7,9 SP Dv Xx E7C3 24-15
VCGD VECTOR FP CONVERT TO FIXED 64-BIT VRR-a VF ¤7,9 SP Dv Xi Xx E7C2 24-18
VCH VECTOR COMPARE HIGH VRR-b C* VF ¤7,9 SP Dv E7FB 22-8
VCHL VECTOR COMPARE HIGH LOGICAL VRR-b C* VF ¤7,9 SP Dv E7F9 22-9
VCKSM VECTOR CHECKSUM VRR-c VF ¤7,9 Dv E766 22-6
VCLFP VECTOR FP CONVERT TO LOGICAL VRR-a V2 ¤7,9 SP Dv Xi Xx E7C0 24-20
VCLGD VECTOR FP CONVERT TO LOGICAL 64-BIT VRR-a VF ¤7,9 SP Dv Xi Xx E7C0 24-20
VCLZ VECTOR COUNT LEADING ZEROS VRR-a VF ¤7,9 SP Dv E753 22-10
VCP VECTOR COMPARE DECIMAL VRR-h C VD ¤7,9 Dv Dg E677 25-5
VCSFP VECTOR FP CONVERT TO FIXED VRR-a V2 ¤7,9 SP Dv Xi Xx E7C2 24-18
VCTZ VECTOR COUNT TRAILING ZEROS VRR-a VF ¤7,9 SP Dv E752 22-10
VCVB VECTOR CONVERT TO BINARY VRR-i C* VD ¤7,9 Dv Dg IF* E650 25-5
VCVBG VECTOR CONVERT TO BINARY VRR-i C* VD ¤7,9 Dv Dg IF* E652 25-5
VCVD VECTOR CONVERT TO DECIMAL VRI-i C* VD ¤7,9 SP Dv DF* E658 25-7
VCVDG VECTOR CONVERT TO DECIMAL VRI-i C* VD ¤7,9 SP Dv DF* E65A 25-7
VDP VECTOR DIVIDE DECIMAL VRI-f C* VD ¤7,9 SP Dv Dg DF* DK E67A 25-8
VEC VECTOR ELEMENT COMPARE VRR-a C VF ¤7,9 SP Dv E7DB 22-7
VECL VECTOR ELEMENT COMPARE LOGICAL VRR-a C VF ¤7,9 SP Dv E7D9 22-7
VERIM VECTOR ELEMENT ROTATE AND INSERT UNDER

MASK
VRI-d VF ¤7,9 SP Dv E772 22-22

VERLL VECTOR ELEMENT ROTATE LEFT LOGICAL VRS-a VF ¤7,9 SP Dv E733 22-21
VERLLV VECTOR ELEMENT ROTATE LEFT LOGICAL VRR-c VF ¤7,9 SP Dv E773 22-21
VESL VECTOR ELEMENT SHIFT LEFT VRS-a VF ¤7,9 SP Dv E730 22-23
VESLV VECTOR ELEMENT SHIFT LEFT VRR-c VF ¤7,9 SP Dv E770 22-23
VESRA VECTOR ELEMENT SHIFT RIGHT ARITHMETIC VRS-a VF ¤7,9 SP Dv E73A 22-23
VESRAV VECTOR ELEMENT SHIFT RIGHT ARITHMETIC VRR-c VF ¤7,9 SP Dv E77A 22-23
VESRL VECTOR ELEMENT SHIFT RIGHT LOGICAL VRS-a VF ¤7,9 SP Dv E738 22-24
VESRLV VECTOR ELEMENT SHIFT RIGHT LOGICAL VRR-c VF ¤7,9 SP Dv E778 22-24

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 20 of 24)

B-49

VFA VECTOR FP ADD VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx E7E3 24-4
VFAE VECTOR FIND ANY ELEMENT EQUAL VRR-b C* VF ¤7,9 SP Dv E782 23-2
VFCE VECTOR FP COMPARE EQUAL VRR-c C* VF ¤7,9 SP Dv Xi E7E8 24-9
VFCH VECTOR FP COMPARE HIGH VRR-c C* VF ¤7,9 SP Dv Xi E7EB 24-11
VFCHE VECTOR FP COMPARE HIGH OR EQUAL VRR-c C* VF ¤7,9 SP Dv Xi E7EA 24-13
VFD VECTOR FP DIVIDE VRR-c VF ¤7,9 SP Dv Xi Xz Xo Xu Xx E7E5 24-22
VFEE VECTOR FIND ELEMENT EQUAL VRR-b C* VF ¤7,9 SP Dv E780 23-3
VFENE VECTOR FIND ELEMENT NOT EQUAL VRR-b C* VF ¤7,9 SP Dv E781 23-4
VFI VECTOR LOAD FP INTEGER VRR-a VF ¤7,9 SP Dv Xi Xx E7C7 24-24
VFLL VECTOR FP LOAD LENGTHENED VRR-a VF ¤7,9 SP Dv Xi E7C4 24-26
VFLR VECTOR FP LOAD ROUNDED VRR-a VF ¤7,9 SP Dv Xi Xo Xu Xx E7C5 24-27
VFM VECTOR FP MULTIPLY VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx E7E7 24-40
VFMA VECTOR FP MULTIPLY AND ADD VRR-e VF ¤7,9 SP Dv Xi Xo Xu Xx E78F 24-42
VFMAX VECTOR FP MAXIMUM VRR-c V1 ¤7,9 SP Dv Xi E7EF 24-28
VFMIN VECTOR FP MINIMUM VRR-c V1 ¤7,9 SP Dv Xi E7EE 24-34
VFMS VECTOR FP MULTIPLY AND SUBTRACT VRR-e VF ¤7,9 SP Dv Xi Xo Xu Xx E78E 24-42
VFNMA VECTOR FP NEGATIVE MULTIPLY AND ADD VRR-e V1 ¤7,9 SP Dv Xi Xo Xu Xx E79F 24-42
VFNMS VECTOR FP NEGATIVE MULTIPLY AND

SUBTRACT
VRR-e V1 ¤7,9 SP Dv Xi Xo Xu Xx E79E 24-42

VFPSO VECTOR FP PERFORM SIGN OPERATION VRR-a VF ¤7,9 SP Dv E7CC 24-44
VFS VECTOR FP SUBTRACT VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx E7E2 24-46
VFSQ VECTOR FP SQUARE ROOT VRR-a VF ¤7,9 SP Dv Xi Xx E7CE 24-45
VFTCI VECTOR FP TEST DATA CLASS IMMEDIATE VRI-e C VF ¤7,9 SP Dv E74A 24-47
VGBM VECTOR GENERATE BYTE MASK VRI-a VF ¤7,9 Dv E744 21-5
VGEF VECTOR GATHER ELEMENT (32) VRV VF ¤7,9 A SP Dv B2 E713 21-5
VGEG VECTOR GATHER ELEMENT (64) VRV VF ¤7,9 A SP Dv B2 E712 21-5
VGFM VECTOR GALOIS FIELD MULTIPLY SUM VRR-c VF ¤7,9 SP Dv E7B4 22-11
VGFMA VECTOR GALOIS FIELD MULTIPLY SUM AND

ACCUMULATE
VRR-d VF ¤7,9 SP Dv E7BC 22-12

VGM VECTOR GENERATE MASK VRI-b VF ¤7,9 SP Dv E746 21-6
VISTR VECTOR ISOLATE STRING VRR-a C* VF ¤7,9 SP Dv E75C 23-5
VL VECTOR LOAD VRX VF ¤7,9 A Dv B2 E706 21-6
VLBB VECTOR LOAD TO BLOCK BOUNDARY VRX VF ¤7,9 A SP Dv B2 E707 21-14
VLBR VECTOR LOAD BYTE REVERSED ELEMENTS VRX V2 ¤7,9 A SP Dv B2 E606 21-9
VLBRRE
P

VECTOR LOAD BYTE REVERSED ELEMENT AND
REPLICATE

VRX V2 ¤7,9 A SP Dv B2 E605 21-8

VLC VECTOR LOAD COMPLEMENT VRR-a VF ¤7,9 SP Dv E7DE 22-12
VLEB VECTOR LOAD ELEMENT (8) VRX VF ¤7,9 A SP Dv B2 E700 21-9
VLEBRF VECTOR LOAD BYTE REVERSED ELEMENT (32) VRX V2 ¤7,9 A SP Dv B2 E603 21-7
VLEBRG VECTOR LOAD BYTE REVERSED ELEMENT (64) VRX V2 ¤7,9 A SP Dv B2 E602 21-7
VLEBRH VECTOR LOAD BYTE REVERSED ELEMENT (16) VRX V2 ¤7,9 A SP Dv B2 E601 21-7
VLEF VECTOR LOAD ELEMENT (32) VRX VF ¤7,9 A SP Dv B2 E703 21-9
VLEG VECTOR LOAD ELEMENT (64) VRX VF ¤7,9 A SP Dv B2 E702 21-9
VLEH VECTOR LOAD ELEMENT (16) VRX VF ¤7,9 A SP Dv B2 E701 21-9
VLEIB VECTOR LOAD ELEMENT IMMEDIATE (8) VRI-a VF ¤7,9 SP Dv E740 21-10
VLEIF VECTOR LOAD ELEMENT IMMEDIATE (32) VRI-a VF ¤7,9 SP Dv E743 21-10
VLEIG VECTOR LOAD ELEMENT IMMEDIATE (64) VRI-a VF ¤7,9 SP Dv E742 21-10
VLEIH VECTOR LOAD ELEMENT IMMEDIATE (16) VRI-a VF ¤7,9 SP Dv E741 21-10
VLER VECTOR LOAD ELEMENTS REVERSED VRX V2 ¤7,9 A SP Dv B2 E607 21-7
VLGV VECTOR LOAD GR FROM VR ELEMENT VRS-c VF ¤7,9 SP Dv E721 21-11
VLIP VECTOR LOAD IMMEDIATE DECIMAL VRI-h VD ¤7,9 Dv Dg E649 25-10
VLL VECTOR LOAD WITH LENGTH VRS-b VF ¤7,9 A Dv B2 E737 21-15
VLLEBRZ VECTOR LOAD BYTE REVERSED ELEMENT AND

ZERO
VRX V2 ¤7,9 A SP Dv B2 E604 21-8

VLLEZ VECTOR LOAD LOGICAL ELEMENT AND ZERO VRX VF ¤7,9 A SP Dv B2 E704 21-12
VLM VECTOR LOAD MULTIPLE VRS-a VF ¤7,9 A SP Dv B2 E736 21-12

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 21 of 24)

B-50 The z/Architecture CPU Architecture

VLP VECTOR LOAD POSITIVE VRR-a VF ¤7,9 SP Dv E7DF 22-12
VLR VECTOR LOAD VRR-a VF ¤7,9 Dv E756 21-6
VLREP VECTOR LOAD AND REPLICATE VRX VF ¤7,9 A SP Dv B2 E705 21-7
VLRL VECTOR LOAD RIGHTMOST WITH LENGTH VSI VD ¤7,9 A SP Dv B2 E635 21-13
VLRLR VECTOR LOAD RIGHTMOST WITH LENGTH VRS-d VD ¤7,9 A Dv B2 E637 21-13
VLVG VECTOR LOAD VR ELEMENT FROM GR VRS-b VF ¤7,9 SP Dv E722 21-14
VLVGP VECTOR LOAD VR FROM GRS DISJOINT VRR-f VF ¤7,9 Dv E762 21-15
VMAE VECTOR MULTIPLY AND ADD EVEN VRR-d VF ¤7,9 SP Dv E7AE 22-15
VMAH VECTOR MULTIPLY AND ADD HIGH VRR-d VF ¤7,9 SP Dv E7AB 22-15
VMAL VECTOR MULTIPLY AND ADD LOW VRR-d VF ¤7,9 SP Dv E7AA 22-14
VMALE VECTOR MULTIPLY AND ADD LOGICAL EVEN VRR-d VF ¤7,9 SP Dv E7AC 22-15
VMALH VECTOR MULTIPLY AND ADD LOGICAL HIGH VRR-d VF ¤7,9 SP Dv E7A9 22-15
VMALO VECTOR MULTIPLY AND ADD LOGICAL ODD VRR-d VF ¤7,9 SP Dv E7AD 22-16
VMAO VECTOR MULTIPLY AND ADD ODD VRR-d VF ¤7,9 SP Dv E7AF 22-16
VME VECTOR MULTIPLY EVEN VRR-c VF ¤7,9 SP Dv E7A6 22-18
VMH VECTOR MULTIPLY HIGH VRR-c VF ¤7,9 SP Dv E7A3 22-16
VML VECTOR MULTIPLY LOW VRR-c VF ¤7,9 SP Dv E7A2 22-17
VMLE VECTOR MULTIPLY LOGICAL EVEN VRR-c VF ¤7,9 SP Dv E7A4 22-18
VMLH VECTOR MULTIPLY LOGICAL HIGH VRR-c VF ¤7,9 SP Dv E7A1 22-17
VMLO VECTOR MULTIPLY LOGICAL ODD VRR-c VF ¤7,9 SP Dv E7A5 22-18
VMN VECTOR MINIMUM VRR-c VF ¤7,9 SP Dv E7FE 22-13
VMNL VECTOR MINIMUM LOGICAL VRR-c VF ¤7,9 SP Dv E7FC 22-14
VMO VECTOR MULTIPLY ODD VRR-c VF ¤7,9 SP Dv E7A7 22-18
VMP VECTOR MULTIPLY DECIMAL VRI-f C* VD ¤7,9 SP Dv Dg DF* E678 25-10
VMRH VECTOR MERGE HIGH VRR-c VF ¤7,9 SP Dv E761 21-15
VMRL VECTOR MERGE LOW VRR-c VF ¤7,9 SP Dv E760 21-16
VMSL VECTOR MULTIPLY SUM LOGICAL VRR-d V1 ¤7,9 SP Dv E7B8 22-19
VMSP VECTOR MULTIPLY AND SHIFT DECIMAL VRI-f C* VD ¤7,9 SP Dv Dg DF* E679 25-12
VMX VECTOR MAXIMUM VRR-c VF ¤7,9 SP Dv E7FF 22-13
VMXL VECTOR MAXIMUM LOGICAL VRR-c VF ¤7,9 SP Dv E7FD 22-13
VN VECTOR AND VRR-c VF ¤7,9 Dv E768 22-5
VNC VECTOR AND WITH COMPLEMENT VRR-c VF ¤7,9 Dv E769 22-5
VNN VECTOR NAND VRR-c V1 ¤7,9 DV E76E 22-20
VNO VECTOR NOR VRR-c VF ¤7,9 Dv E76B 22-20
VNX VECTOR NOT EXCLUSIVE OR VRR-c V1 ¤7,9 Dv E76C 22-20
VO VECTOR OR VRR-c VF ¤7,9 Dv E76A 22-20
VOC VECTOR OR WITH COMPLEMENT VRR-c V1 ¤7,9 Dv E76F 22-21
VPDI VECTOR PERMUTE DOUBLEWORD IMMEDIATE VRR-c VF ¤7,9 Dv E784 21-19
VPERM VECTOR PERMUTE VRR-e VF ¤7,9 Dv E78C 21-18
VPK VECTOR PACK VRR-c VF ¤7,9 SP Dv E794 21-16
VPKLS VECTOR PACK LOGICAL SATURATE VRR-b C* VF ¤7,9 SP Dv E795 21-18
VPKS VECTOR PACK SATURATE VRR-b C* VF ¤7,9 SP Dv E797 21-17
VPKZ VECTOR PACK ZONED VSI VD ¤7,9 A SP Dv B2 E634 25-13
VPOPCT VECTOR POPULATION COUNT VRR-a VF ¤7,9 SP Dv E750 22-21
VPSOP VECTOR PERFORM SIGN OPERATION DECIMAL VRI-g C* VD ¤7,9 SP Dv Dg DF* E65B 25-14
VREP VECTOR REPLICATE VRI-c VF ¤7,9 SP Dv E74D 21-19
VREPI VECTOR REPLICATE IMMEDIATE VRI-a VF ¤7,9 SP Dv E745 21-20
VRP VECTOR REMAINDER DECIMAL VRI-f C* VD ¤7,9 SP Dv Dg DF* DK E67B 25-16
VS VECTOR SUBTRACT VRR-c VF ¤7,9 SP Dv E7F7 22-27
VSBCBI VECTOR SUBTRACT WITH BORROW COMPUTE

BORROW INDICATION
VRR-d VF ¤7,9 SP Dv E7BD 22-29

VSBI VECTOR SUBTRACT WITH BORROW
INDICATION

VRR-d VF ¤7,9 SP Dv E7BF 22-28

VSCBI VECTOR SUBTRACT COMPUTE BORROW
INDICATION

VRR-c VF ¤7,9 SP Dv E7F5 22-28

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 22 of 24)

B-51

VSCEF VECTOR SCATTER ELEMENT (32) VRV VF ¤7,9 A SP Dv ST B2 E71B 21-20
VSCEG VECTOR SCATTER ELEMENT (64) VRV VF ¤7,9 A SP Dv ST B2 E71A 21-20
VSDP VECTOR SHIFT AND DIVIDE DECIMAL VRI-f C* VD ¤7,9 SP Dv Dg DF* DK E67E 25-18
VSEG VECTOR SIGN EXTEND TO DOUBLEWORD VRR-a VF ¤7,9 SP Dv E75F 21-21
VSEL VECTOR SELECT VRR-e VF ¤7,9 Dv E78D 21-21
VSL VECTOR SHIFT LEFT VRR-c VF ¤7,9 Dv E774 22-25
VSLB VECTOR SHIFT LEFT BY BYTE VRR-c VF ¤7,9 Dv E775 22-25
VSLD VECTOR SHIFT LEFT DOUBLE BY BIT VRI-d V2 ¤7,9 SP Dv E786 22-25
VSLDB VECTOR SHIFT LEFT DOUBLE BY BYTE VRI-d VF ¤7,9 Dv E777 22-26
VSP VECTOR SUBTRACT DECIMAL VRI-f C* VD ¤7,9 SP Dv Dg DF* E673 25-21
VSRA VECTOR SHIFT RIGHT ARITHMETIC VRR-c VF ¤7,9 Dv E77E 22-26
VSRAB VECTOR SHIFT RIGHT ARITHMETIC BY BYTE VRR-c VF ¤7,9 Dv E77F 22-26
VSRD VECTOR SHIFT RIGHT DOUBLE BY BIT VRI-d V2 ¤7,9 SP Dv E787 22-26
VSRL VECTOR SHIFT RIGHT LOGICAL VRR-c VF ¤7,9 Dv E77C 22-27
VSRLB VECTOR SHIFT RIGHT LOGICAL BY BYTE VRR-c VF ¤7,9 Dv E77D 22-27
VSRP VECTOR SHIFT AND ROUND DECIMAL VRI-g C* VD ¤7,9 SP Dv Dg DF* E659 25-19
VST VECTOR STORE VRX VF ¤7,9 A Dv ST B2 E70E 21-21
VSTBR VECTOR STORE BYTE REVERSED ELEMENTS VRX V2 ¤7,9 A SP Dv ST B2 E60E 21-22
VSTEB VECTOR STORE ELEMENT (8) VRX VF ¤7,9 A SP Dv ST B2 E708 21-23
VSTEBR
F

VECTOR STORE BYTE REVERSED ELEMENT
(32)

VRX V2 ¤7,9 A SP Dv ST B2 E60B 21-22

VSTEBR
G

VECTOR STORE BYTE REVERSED ELEMENT
(64)

VRX V2 ¤7,9 A SP Dv ST B2 E60B 21-22

VSTEBR
H

VECTOR STORE BYTE REVERSED ELEMENT
(16)

VRX V2 ¤7,9 A SP Dv ST B2 E60B 21-22

VSTEF VECTOR STORE ELEMENT (32) VRX VF ¤7,9 A SP Dv ST B2 E70B 21-23
VSTEG VECTOR STORE ELEMENT (64) VRX VF ¤7,9 A SP Dv ST B2 E70A 21-23
VSTEH VECTOR STORE ELEMENT (16) VRX VF ¤7,9 A SP Dv ST B2 E709 21-23
VSTER VECTOR STORE ELEMENTS REVERSED VRX V2 ¤7,9 A SP Dv ST B2 E60F 21-24
VSTL VECTOR STORE WITH LENGTH VRS-b VF ¤7,9 A Dv ST B2 E73F 21-26
VSTM VECTOR STORE MULTIPLE VRS-a VF ¤7,9 A SP Dv ST B2 E73E 21-24
VSTRC VECTOR STRING RANGE COMPARE VRR-d C* VF ¤7,9 SP Dv E78A 23-6
VSTRL VECTOR STORE RIGHTMOST WITH LENGTH VSI VD ¤7,9 A SP Dv ST B2 E63D 21-25
VSTRLR VECTOR STORE RIGHTMOST WITH LENGTH VRS-d VD ¤7,9 A Dv ST B2 E63F 21-25
VSTRS VECTOR STRING SEARCH VRR-d C V2 ¤7,9 SP Dv E78B 23-8
VSUM VECTOR SUM ACROSS WORD VRR-c VF ¤7,9 SP Dv E764 22-30
VSUMG VECTOR SUM ACROSS DOUBLEWORD VRR-c VF ¤7,9 SP Dv E765 22-29
VSUMQ VECTOR SUM ACROSS QUADWORD VRR-c VF ¤7,9 SP Dv E767 22-30
VTM VECTOR TEST UNDER MASK VRR-a C VF ¤7,9 Dv E7D8 22-31
VTP VECTOR TEST DECIMAL VRR-g C VD ¤7,9 Dv E65F 25-22
VUPH VECTOR UNPACK HIGH VRR-a VF ¤7,9 SP Dv E7D7 21-26
VUPKZ VECTOR UNPACK ZONED VSI VD ¤7,9 A SP Dv ST B2 E63C 25-22
VUPL VECTOR UNPACK LOW VRR-a VF ¤7,9 SP Dv E7D6 21-27
VUPLH VECTOR UNPACK LOGICAL HIGH VRR-a VF ¤7,9 SP Dv E7D5 21-26
VUPLL VECTOR UNPACK LOGICAL LOW VRR-a VF ¤7,9 SP Dv E7D4 21-27
VX VECTOR EXCLUSIVE OR VRR-c VF ¤7,9 Dv E76D 22-11
WFC VECTOR FP COMPARE SCALAR VRR-a C VF ¤7,9 SP Dv Xi E7CB 24-7
WFK VECTOR FP COMPARE AND SIGNAL SCALAR VRR-a C VF ¤7,9 SP Dv Xi E7CA 24-8
X EXCLUSIVE OR (32) RX-a C A B2 57 7-253
XC EXCLUSIVE OR (character) SS-a C ¤9 A ST B1 B2 D7 7-254
XG EXCLUSIVE OR (64) RXY-a C N A B2 E382 7-253
XGR EXCLUSIVE OR (64) RRE C N B982 7-253
XGRK EXCLUSIVE OR (64) RRF-a C DO B9E7 7-253
XI EXCLUSIVE OR (immediate) SI C A ST B1 97 7-254
XIHF EXCLUSIVE OR IMMEDIATE (high) RIL-a C EI C06 7-255

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 23 of 24)

B-52 The z/Architecture CPU Architecture

XILF EXCLUSIVE OR IMMEDIATE (low) RIL-a C EI C07 7-255
XIY EXCLUSIVE OR (immediate) SIY C LD A ST B1 EB57 7-254
XR EXCLUSIVE OR (32) RR C 17 7-253
XRK EXCLUSIVE OR (32) RRF-a C DO B9F7 7-253
XSCH CANCEL SUBCHANNEL S C P OP ¢ GS B276 14-3
XY EXCLUSIVE OR (32) RXY-a C LD A B2 E357 7-253
ZAP ZERO AND ADD SS-b C ¤9 A Dg DF ST B1 B2 F8 8-14

Mne-
monic Name Characteristics

Op-
code Page

Figure B-2. Instructions Arranged by Mnemonic (Part 24 of 24)

B-53

Instructions Arranged by Operation Code

Op-
code Name

Mne-
monic Characteristics Page

0101 PROGRAM RETURN PR E L ¤1 A1* SP Z4 T ¢2 B ST 10-106
0102 UPDATE TREE UPT E C ¤9 A SP II GM I4 ST 7-425
0104 PERFORM TIMING FACILITY FUNCTION PTFF E C TS Q A SP GM ST 10-83
0107 SET CLOCK PROGRAMMABLE FIELD SCKPF E P SP G0 10-126
010A PERFORM FLOATING-POINT OPERATION PFPO E PF ¤7-9 SP Da Xi X0 GM Xu Xx Xq 9-35
010B TEST ADDRESSING MODE TAM E C N3 ¤9 7-399
010C SET ADDRESSING MODE (24) SAM24 E N3 ¤3,9 SP T 7-377
010D SET ADDRESSING MODE (31) SAM31 E N3 ¤3,9 SP T 7-377
010E SET ADDRESSING MODE (64) SAM64 E N ¤3,9 T 7-377
01FF TRAP TRAP2 E ¤1 A* SO T B ST 10-177
04 SET PROGRAM MASK SPM RR L 7-378
05 BRANCH AND LINK BALR RR ¤2,9 T B 7-35
06 BRANCH ON COUNT (32) BCTR RR ¤9 B 7-40
07 BRANCH ON CONDITION BCR RR ¤9 ¢1 B 7-39
0A SUPERVISOR CALL SVC I ¤1 ¢ 7-398
0B BRANCH AND SET MODE BSM RR ¤3,9 T B 7-37
0C BRANCH AND SAVE AND SET MODE BASSM RR ¤2,3,9 T B 7-36
0D BRANCH AND SAVE BASR RR ¤2,9 T B 7-36
0E MOVE LONG MVCL RR C ¤9 A SP II ST R1 R2 7-289
0F COMPARE LOGICAL LONG CLCL RR C ¤9 A SP II R1 R2 7-157
10 LOAD POSITIVE (32) LPR RR C IF 7-286
11 LOAD NEGATIVE (32) LNR RR C 7-282
12 LOAD AND TEST (32) LTR RR C 7-269
13 LOAD COMPLEMENT (32) LCR RR C IF 7-271
14 AND (32) NR RR C 7-32
15 COMPARE LOGICAL (32) CLR RR C 7-151
16 OR (32) OR RR C 7-312
17 EXCLUSIVE OR (32) XR RR C 7-253
18 LOAD (32) LR RR 7-263
19 COMPARE (32) CR RR C 7-133
1A ADD (32) AR RR C IF 7-25
1B SUBTRACT (32) SR RR C IF 7-394
1C MULTIPLY (6432) MR RR SP 7-304
1D DIVIDE (3264) DR RR ¤9 SP IK 7-251
1E ADD LOGICAL (32) ALR RR C 7-29
1F SUBTRACT LOGICAL (32) SLR RR C 7-396
20 LOAD POSITIVE (long HFP) LPDR RR C ¤7,9 Da 18-16
21 LOAD NEGATIVE (long HFP) LNDR RR C ¤7,9 Da 18-16
22 LOAD AND TEST (long HFP) LTDR RR C ¤7,9 Da 18-13
23 LOAD COMPLEMENT (long HFP) LCDR RR C ¤7,9 Da 18-14
24 HALVE (long HFP) HDR RR ¤7,9 Da EU 18-13
25 LOAD ROUNDED (extended to long HFP) LDXR RR ¤7,9 SP Da EO 18-17
25 LOAD ROUNDED (extended to long HFP) LRDR RR ¤7,9 SP Da EO 18-17
26 MULTIPLY (extended HFP) MXR RR ¤7,9 SP Da EU EO 18-17
27 MULTIPLY (long to extended HFP) MXDR RR ¤7,9 SP Da EU EO 18-17
28 LOAD (long) LDR RR ¤7,9 Da 9-31
29 COMPARE (long HFP) CDR RR C ¤7,9 Da 18-10
2A ADD NORMALIZED (long HFP) ADR RR C ¤7,9 Da EU EO LS 18-8
2B SUBTRACT NORMALIZED (long HFP) SDR RR C ¤7,9 Da EU EO LS 18-24
2C MULTIPLY (long HFP) MDR RR ¤7,9 Da EU EO 18-17
2D DIVIDE (long HFP) DDR RR ¤7,9 Da EU EO FK 18-12

Figure B-3. Instructions Arranged by Opcode (Part 1 of 24)

B-54 The z/Architecture CPU Architecture

2E ADD UNNORMALIZED (long HFP) AWR RR C ¤7,9 Da EO LS 18-9
2F SUBTRACT UNNORMALIZED (long HFP) SWR RR C ¤7,9 Da EO LS 18-25
30 LOAD POSITIVE (short HFP) LPER RR C ¤7,9 Da 18-16
31 LOAD NEGATIVE (short HFP) LNER RR C ¤7,9 Da 18-16
32 LOAD AND TEST (short HFP) LTER RR C ¤7,9 Da 18-13
33 LOAD COMPLEMENT (short HFP) LCER RR C ¤7,9 Da 18-14
34 HALVE (short HFP) HER RR ¤7,9 Da EU 18-13
35 LOAD ROUNDED (long to short HFP) LEDR RR ¤7,9 Da EO 18-17
35 LOAD ROUNDED (long to short HFP) LRER RR ¤7,9 Da EO 18-17
36 ADD NORMALIZED (extended HFP) AXR RR C ¤7,9 SP Da EU EO LS 18-8
37 SUBTRACT NORMALIZED (extended HFP) SXR RR C ¤7,9 SP Da EU EO LS 18-24
38 LOAD (short) LER RR ¤7,9 Da 9-31
39 COMPARE (short HFP) CER RR C ¤7,9 Da 18-10
3A ADD NORMALIZED (short HFP) AER RR C ¤7,9 Da EU EO LS 18-8
3B SUBTRACT NORMALIZED (short HFP) SER RR C ¤7,9 Da EU EO LS 18-24
3C MULTIPLY (short to long HFP) MDER RR ¤7,9 Da EU EO 18-17
3C MULTIPLY (short to long HFP) MER RR ¤7,9 Da EU EO 18-18
3D DIVIDE (short HFP) DER RR ¤7,9 Da EU EO FK 18-12
3E ADD UNNORMALIZED (short HFP) AUR RR C ¤7,9 Da EO LS 18-9
3F SUBTRACT UNNORMALIZED (short HFP) SUR RR C ¤7,9 Da EO LS 18-25
40 STORE HALFWORD (16) STH RX-a A ST B2 7-390
41 LOAD ADDRESS LA RX-a 7-265
42 STORE CHARACTER STC RX-a A ST B2 7-385
43 INSERT CHARACTER IC RX-a A B2 7-261
44 EXECUTE EX RX-a ¤9 AI SP EX 7-255
45 BRANCH AND LINK BAL RX-a ¤9 B 7-35
46 BRANCH ON COUNT (32) BCT RX-a ¤9 B 7-40
47 BRANCH ON CONDITION BC RX-b ¤9 B 7-39
48 LOAD HALFWORD (3216) LH RX-a A B2 7-275
49 COMPARE HALFWORD (3216) CH RX-a C A B2 7-149
4A ADD HALFWORD (3216) AH RX-a C A IF B2 7-27
4B SUBTRACT HALFWORD (3216) SH RX-a C A IF B2 7-395
4C MULTIPLY HALFWORD (3216) MH RX-a A B2 7-305
4D BRANCH AND SAVE BAS RX-a ¤9 B 7-36
4E CONVERT TO DECIMAL (32) CVD RX-a ¤9 A ST B2 7-230
4F CONVERT TO BINARY (32) CVB RX-a ¤9 A Dg IK B2 7-229
50 STORE (32) ST RX-a A ST B2 7-383
51 LOAD ADDRESS EXTENDED LAE RX-a ¤6 U1 BP 7-265
54 AND (32) N RX-a C A B2 7-32
55 COMPARE LOGICAL (32) CL RX-a C A B2 7-151
56 OR (32) O RX-a C A B2 7-312
57 EXCLUSIVE OR (32) X RX-a C A B2 7-253
58 LOAD (32) L RX-a A B2 7-263
59 COMPARE (32) C RX-a C A B2 7-133
5A ADD (32) A RX-a C A IF B2 7-26
5B SUBTRACT (32) S RX-a C A IF B2 7-395
5C MULTIPLY (6432) M RX-a A SP B2 7-304
5D DIVIDE (3264) D RX-a ¤9 A SP IK B2 7-251
5E ADD LOGICAL (32) AL RX-a C A B2 7-29
5F SUBTRACT LOGICAL (32) SL RX-a C A B2 7-396
60 STORE (long) STD RX-a ¤7,9 A Da ST B2 9-48
67 MULTIPLY (long to extended HFP) MXD RX-a ¤7,9 A SP Da EU EO B2 18-18
68 LOAD (long) LD RX-a ¤7,9 A Da B2 9-31
69 COMPARE (long HFP) CD RX-a C ¤7,9 A Da B2 18-10
6A ADD NORMALIZED (long HFP) AD RX-a C ¤7,9 A Da EU EO LS B2 18-8

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 2 of 24)

B-55

6B SUBTRACT NORMALIZED (long HFP) SD RX-a C ¤7,9 A Da EU EO LS B2 18-24
6C MULTIPLY (long HFP) MD RX-a ¤7,9 A Da EU EO B2 18-18
6D DIVIDE (long HFP) DD RX-a ¤7,9 A Da EU EO FK B2 18-12
6E ADD UNNORMALIZED (long HFP) AW RX-a C ¤7,9 A Da EO LS B2 18-9
6F SUBTRACT UNNORMALIZED (long HFP) SW RX-a C ¤7,9 A Da EO LS B2 18-25
70 STORE (short) STE RX-a ¤7,9 A Da ST B2 9-48
71 MULTIPLY SINGLE (32) MS RX-a A B2 7-307
78 LOAD (short) LE RX-a ¤7,9 A Da B2 9-31
79 COMPARE (short HFP) CE RX-a C ¤7,9 A Da B2 18-10
7A ADD NORMALIZED (short HFP) AE RX-a C ¤7,9 A Da EU EO LS B2 18-8
7B SUBTRACT NORMALIZED (short HFP) SE RX-a C ¤7,9 A Da EU EO LS B2 18-24
7C MULTIPLY (short to long HFP) MDE RX-a ¤7,9 A Da EU EO B2 18-18
7C MULTIPLY (short to long HFP) ME RX-a ¤7,9 A Da EU EO B2 18-18
7D DIVIDE (short HFP) DE RX-a ¤7,9 A Da EU EO FK B2 18-12
7E ADD UNNORMALIZED (short HFP) AU RX-a C ¤7,9 A Da EO LS B2 18-9
7F SUBTRACT UNNORMALIZED (short HFP) SU RX-a C ¤7,9 A Da EO LS B2 18-25
80 SET SYSTEM MASK SSM SI P A SP SO B2 10-136
82 LOAD PSW LPSW SI L P A SP ¢ B2 10-54
83 DIAGNOSE — DM P DM MD 10-23
84 BRANCH RELATIVE ON INDEX HIGH (32) BRXH RSI ¤9 B 7-47
85 BRANCH RELATIVE ON INDEX LOW OR EQ. (32) BRXLE RSI ¤9 B 7-47
86 BRANCH ON INDEX HIGH (32) BXH RS-a ¤9 B 7-41
87 BRANCH ON INDEX LOW OR EQUAL (32) BXLE RS-a ¤9 B 7-41
88 SHIFT RIGHT SINGLE LOGICAL (32) SRL RS-a 7-383
89 SHIFT LEFT SINGLE LOGICAL (32) SLL RS-a 7-380
8A SHIFT RIGHT SINGLE (32) SRA RS-a C 7-382
8B SHIFT LEFT SINGLE (32) SLA RS-a C IF 7-379
8C SHIFT RIGHT DOUBLE LOGICAL (64) SRDL RS-a SP 7-381
8D SHIFT LEFT DOUBLE LOGICAL (64) SLDL RS-a SP 7-379
8E SHIFT RIGHT DOUBLE (64) SRDA RS-a C SP 7-381
8F SHIFT LEFT DOUBLE (64) SLDA RS-a C SP IF 7-378
90 STORE MULTIPLE (32) STM RS-a A ST B2 7-392
91 TEST UNDER MASK TM SI C A B1 7-400
92 MOVE (immediate) MVI SI A ST B1 7-288
93 TEST AND SET TS SI C ¤9 A $ ST B2 7-399
94 AND (immediate) NI SI C A £2 ST B1 7-33
95 COMPARE LOGICAL (immediate) CLI SI C A B1 7-151
96 OR (immediate) OI SI C A ST B1 7-312
97 EXCLUSIVE OR (immediate) XI SI C A ST B1 7-254
98 LOAD MULTIPLE (32) LM RS-a A B2 7-281
99 TRACE (32) TRACE RS-a P A SP T ¢ B2 10-176
9A LOAD ACCESS MULTIPLE LAM RS-a ¤6 A SP UB 7-264
9B STORE ACCESS MULTIPLE STAM RS-a A SP ST UB 7-384
A50 INSERT IMMEDIATE (high high) IIHH RI-a N 7-262
A51 INSERT IMMEDIATE (high low) IIHL RI-a N 7-262
A52 INSERT IMMEDIATE (low high) IILH RI-a N 7-262
A53 INSERT IMMEDIATE (low low) IILL RI-a N 7-262
A54 AND IMMEDIATE (high high) NIHH RI-a C N 7-34
A55 AND IMMEDIATE (high low) NIHL RI-a C N 7-34
A56 AND IMMEDIATE (low high) NILH RI-a C N 7-34
A57 AND IMMEDIATE (low low) NILL RI-a C N 7-34
A58 OR IMMEDIATE (high high) OIHH RI-a C N 7-313
A59 OR IMMEDIATE (high low) OIHL RI-a C N 7-313
A5A OR IMMEDIATE (low high) OILH RI-a C N 7-313
A5B OR IMMEDIATE (low low) OILL RI-a C N 7-313

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 3 of 24)

B-56 The z/Architecture CPU Architecture

A5C LOAD LOGICAL IMMEDIATE (high high) LLIHH RI-a N 7-280
A5D LOAD LOGICAL IMMEDIATE (high low) LLIHL RI-a N 7-280
A5E LOAD LOGICAL IMMEDIATE (low high) LLILH RI-a N 7-280
A5F LOAD LOGICAL IMMEDIATE (low low) LLILL RI-a N 7-280
A70 TEST UNDER MASK (low high) TMLH RI-a C N 7-400
A70 TEST UNDER MASK HIGH TMH RI-a C 7-400
A71 TEST UNDER MASK (low low) TMLL RI-a C N 7-400
A71 TEST UNDER MASK LOW TML RI-a C 7-400
A72 TEST UNDER MASK (high high) TMHH RI-a C N 7-400
A73 TEST UNDER MASK (high low) TMHL RI-a C N 7-400
A74 BRANCH RELATIVE ON CONDITION BRC RI-c ¤10 B 7-46
A75 BRANCH RELATIVE AND SAVE BRAS RI-b ¤9 B 7-45
A76 BRANCH RELATIVE ON COUNT (32) BRCT RI-b ¤9 B 7-47
A77 BRANCH RELATIVE ON COUNT (64) BRCTG RI-b N ¤9 B 7-47
A78 LOAD HALFWORD IMMEDIATE (32)16 LHI RI-a 7-275
A79 LOAD HALFWORD IMMEDIATE (6416) LGHI RI-a N 7-275
A7A ADD HALFWORD IMMEDIATE (3216) AHI RI-a C IF 7-28
A7B ADD HALFWORD IMMEDIATE (6416) AGHI RI-a C N IF 7-28
A7C MULTIPLY HALFWORD IMMEDIATE (3216) MHI RI-a 7-305
A7D MULTIPLY HALFWORD IMMEDIATE (6416) MGHI RI-a N 7-305
A7E COMPARE HALFWORD IMMEDIATE (3216) CHI RI-a C 7-149
A7F COMPARE HALFWORD IMMEDIATE (6416) CGHI RI-a C N 7-149
A8 MOVE LONG EXTENDED MVCLE RS-a C ¤9 A SP IC ST R1 R3 7-293
A9 COMPARE LOGICAL LONG EXTENDED CLCLE RS-a C ¤9 A SP IC R1 R3 7-159
AC STORE THEN AND SYSTEM MASK STNSM SI P A ST B1 10-167
AD STORE THEN OR SYSTEM MASK STOSM SI P A SP ST B1 10-167
AE SIGNAL PROCESSOR SIGP RS-a C P $ 10-136
AF MONITOR CALL MC SI ¤4,8,9 SP ME 7-287
B1 LOAD REAL ADDRESS (32) LRA RX-a C P A1* SO BP 10-56
B202 STORE CPU ID STIDP S P A SP ST B2 10-139
B204 SET CLOCK SCK S C P A SP B2 10-124
B205 STORE CLOCK STCK S C ¤8,9 A $ ST B2 7-386
B206 SET CLOCK COMPARATOR SCKC S P A SP B2 10-125
B207 STORE CLOCK COMPARATOR STCKC S P A SP ST B2 10-138
B208 SET CPU TIMER SPT S P A SP B2 10-126
B209 STORE CPU TIMER STPT S P A SP ST B2 10-141
B20A SET PSW KEY FROM ADDRESS SPKA S Q 10-127
B20B INSERT PSW KEY IPK S Q G2 10-30
B20D PURGE TLB PTLB S P $ 10-119
B210 SET PREFIX SPX S P A SP $ B2 10-126
B211 STORE PREFIX STPX S P A SP ST B2 10-142
B212 STORE CPU ADDRESS STAP S P A SP ST B2 10-139
B218 PROGRAM CALL PC S Q A1* Z1 T ¢ GM B ST 10-93
B219 SET ADDRESS SPACE CONTROL SAC S Q SP SW ¢ 10-123
B21A COMPARE AND FORM CODEWORD CFC S C ¤9 A SP II GM I1 7-136
B221 INVALIDATE PAGE TABLE ENTRY IPTE RRF-a P A1 SP $ 10-37
B222 INSERT PROGRAM MASK IPM RRE 7-263
B223 INSERT VIRTUAL STORAGE KEY IVSK RRE Q A1* SO R2 10-31
B224 INSERT ADDRESS SPACE CONTROL IAC RRE C Q SO 10-29
B225 SET SECONDARY ASN SSAR RRE ¤1 A1* Z3 T ¢ 10-128
B226 EXTRACT PRIMARY ASN EPAR RRE Q SO 10-24
B227 EXTRACT SECONDARY ASN ESAR RRE Q SO 10-24
B228 PROGRAM TRANSFER PT RRE Q A1* SP Z2 T ¢ B 10-110
B229 INSERT STORAGE KEY EXTENDED ISKE RRE P A1* 10-30
B22A RESET REFERENCE BIT EXTENDED RRBE RRE C P A1* 10-119

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 4 of 24)

B-57

B22B SET STORAGE KEY EXTENDED SSKE RRF-c C1 P A1* II ¢ K 10-133
B22C TEST BLOCK TB RRE C P A1* II $ G0 K 10-170
B22D DIVIDE (extended HFP) DXR RRE ¤7,9 SP Da EU EO FK 18-12
B22E PAGE IN PGIN RRE C ES P A1 ¢ 10-73
B22F PAGE OUT PGOUT RRE C ES P A1 ¢ 10-74
B230 CLEAR SUBCHANNEL CSCH S C P OP ¢ GS 14-5
B231 HALT SUBCHANNEL HSCH S C P OP ¢ GS 14-6
B232 MODIFY SUBCHANNEL MSCH S C P A SP OP ¢ GS B2 14-7
B233 START SUBCHANNEL SSCH S C P A SP OP ¢ GS B2 14-15
B234 STORE SUBCHANNEL STSCH S C P A SP OP ¢ GS ST B2 14-18
B235 TEST SUBCHANNEL TSCH S C P A SP OP ¢ GS ST B2 14-21
B236 TEST PENDING INTERRUPTION TPI S C P A1* SP ¢ ST B2 14-19
B237 SET ADDRESS LIMIT SAL S P OP ¢ G1 14-12
B238 RESUME SUBCHANNEL RSCH S C P OP ¢ GS 14-10
B239 STORE CHANNEL REPORT WORD STCRW S C P A SP ¢ ST B2 14-17
B23A STORE CHANNEL PATH STATUS STCPS S P A SP ¢ ST B2 14-16
B23B RESET CHANNEL PATH RCHP S C P 14-9
B23C SET CHANNEL MONITOR SCHM S P OP ¢ GM 14-13
B240 BRANCH AND STACK BAKR RRE ¤1 A1* Z5 T B ST 10-11
B241 CHECKSUM CKSM RRE C ¤9 A SP IC R2 7-49
B244 SQUARE ROOT (long HFP) SQDR RRE ¤7,9 Da SQ 18-23
B245 SQUARE ROOT (short HFP) SQER RRE ¤7,9 Da SQ 18-23
B246 STORE USING REAL ADDRESS (32) STURA RRE P A1 SP SU 10-168
B247 MODIFY STACKED STATE MSTA RRE ¤1 A1* SP SE ST 10-61
B248 PURGE ALB PALB RRE P $ 10-119
B249 EXTRACT STACKED REGISTERS (32) EREG RRE ¤1 A1* SE U1 U2 10-25
B24A EXTRACT STACKED STATE ESTA RRE C ¤1 A1* SP SE 10-26
B24B LOAD USING REAL ADDRESS (32) LURA RRE P A1 SP 10-60
B24C TEST ACCESS TAR RRE C ¤1 A1* U1 10-168
B24D COPY ACCESS CPYA RRE ¤6 U1 U2 7-251
B24E SET ACCESS SAR RRE ¤6 U1 7-377
B24F EXTRACT ACCESS EAR RRE U2 7-256
B250 COMPARE AND SWAP AND PURGE (32) CSP RRE C P A1 SP $ ST R2 10-21
B252 MULTIPLY SINGLE (32) MSR RRE 7-307
B254 MOVE PAGE MVPG RRE C Q A SP OP ¢4 G0 K ST R1 R2 10-62
B255 MOVE STRING MVST RRE C ¤9 A SP IC G0 ST R1 R2 7-301
B257 COMPARE UNTIL SUBSTRING EQUAL CUSE RRE C ¤9 A SP II GM R1 R2 7-166
B258 BRANCH IN SUBSPACE GROUP BSG RRE ¤1 A1* SO T B R2 10-13
B25A BRANCH AND SET AUTHORITY BSA RRE Q A1* SO T B 10-7
B25D COMPARE LOGICAL STRING CLST RRE C ¤9 A SP IC G0 R1 R2 7-165
B25E SEARCH STRING SRST RRE C ¤9 A SP IC G0 R2 7-372
B263 COMPRESSION CALL CMPSC RRE C ¤5,9 A SP II Dg GM ST R1 R2 7-169
B276 CANCEL SUBCHANNEL XSCH S C P OP ¢ GS 14-3
B277 RESUME PROGRAM RP S L Q A SP WE T B B2 10-120
B278 STORE CLOCK EXTENDED STCKE S C ¤8,9 A $ ST B2 7-387
B279 SET ADDRESS SPACE CONTROL FAST SACF S Q SP SW 10-123
B27C STORE CLOCK FAST STCKF S C SC ¤8,9 A ST B2 7-386
B27D STORE SYSTEM INFORMATION STSI S C P A SP GM ST B2 10-143
B299 SET BFP ROUNDING MODE (2 bit) SRNM S ¤7,9 Db 9-47
B29C STORE FPC STFPC S ¤7,9 A Db ST B2 9-49
B29D LOAD FPC LFPC S ¤7,9 A SP Db B2 9-31
B2A5 TRANSLATE EXTENDED TRE RRE C ¤9 A SP IC ST R1 R2 7-415
B2A6 CONVERT UNICODE TO UTF-8 CUUTF RRF-c C ¤5,9 A SP IC ST R1 R2 7-233
B2A6 CONVERT UTF-16 TO UTF-8 CU21 RRF-c C ¤5,9 A SP IC ST R1 R2 7-233
B2A7 CONVERT UTF-8 TO UNICODE CUTFU RRF-c C ¤5,9 A SP IC ST R1 R2 7-243

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 5 of 24)

B-58 The z/Architecture CPU Architecture

B2A7 CONVERT UTF-8 TO UTF-16 CU12 RRF-c C ¤5,9 A SP IC ST R1 R2 7-243
B2B0 STORE FACILITY LIST EXTENDED STFLE S C FL ¤1 A SP G0 ST B2 7-389
B2B1 STORE FACILITY LIST STFL S N3 P 10-141
B2B2 LOAD PSW EXTENDED LPSWE S L N P A SP ¢ B2 10-55
B2B8 SET BFP ROUNDING MODE (3 bit) SRNMB S F ¤7,9 SP Db 9-47
B2B9 SET DFP ROUNDING MODE SRNMT S TR ¤7,9 Dt 9-47
B2BD LOAD FPC AND SIGNAL LFAS S XF ¤7,9 A SP Dt Xg B2 9-32
B2E8 PERFORM PROCESSOR ASSIST PPA RRF-c PA ¤1 7-351
B2EC EXTRACT TRANSACTION NESTING DEPTH ETND RRE TX ¤9 SO 7-260
B2F8 TRANSACTION END TEND S C TX SO $ EX 7-408
B2FA NEXT INSTRUCTION ACCESS INTENT NIAI IE EH 7-309
B2FC TRANSACTION ABORT TABORT S TX ¤9 SP SO $ EX 7-401
B2FF TRAP TRAP4 S ¤1 A* SO T B ST 10-177
B300 LOAD POSITIVE (short BFP) LPEBR RRE C ¤7,9 Db 19-35
B301 LOAD NEGATIVE (short BFP) LNEBR RRE C ¤7,9 Db 19-34
B302 LOAD AND TEST (short BFP) LTEBR RRE C ¤7,9 Db Xi 19-31
B303 LOAD COMPLEMENT (short BFP) LCEBR RRE C ¤7,9 Db 19-31
B304 LOAD LENGTHENED (short to long BFP) LDEBR RRE ¤7,9 Db Xi 19-33
B305 LOAD LENGTHENED (long to extended BFP) LXDBR RRE ¤7,9 SP Db Xi 19-33
B306 LOAD LENGTHENED (short to extended BFP) LXEBR RRE ¤7,9 SP Db Xi 19-33
B307 MULTIPLY (long to extended BFP) MXDBR RRE ¤7,9 SP Db Xi 19-37
B308 COMPARE AND SIGNAL (short BFP) KEBR RRE C ¤7,9 Db Xi 19-18
B309 COMPARE (short BFP) CEBR RRE C ¤7,9 Db Xi 19-17
B30A ADD (short BFP) AEBR RRE C ¤7,9 Db Xi Xo Xu Xx 19-15
B30B SUBTRACT (short BFP) SEBR RRE C ¤7,9 Db Xi Xo Xu Xx 19-40
B30C MULTIPLY (short to long BFP) MDEBR RRE ¤7,9 Db Xi 19-37
B30D DIVIDE (short BFP) DEBR RRE ¤7,9 Db Xi Xz Xo Xu Xx 19-27
B30E MULTIPLY AND ADD (short BFP) MAEBR RRD ¤7,9 Db Xi Xo Xu Xx 19-38
B30F MULTIPLY AND SUBTRACT (short BFP) MSEBR RRD ¤7,9 Db Xi Xo Xu Xx 19-38
B310 LOAD POSITIVE (long BFP) LPDBR RRE C ¤7,9 Db 19-35
B311 LOAD NEGATIVE (long BFP) LNDBR RRE C ¤7,9 Db 19-34
B312 LOAD AND TEST (long BFP) LTDBR RRE C ¤7,9 Db Xi 19-31
B313 LOAD COMPLEMENT (long BFP) LCDBR RRE C ¤7,9 Db 19-31
B314 SQUARE ROOT (short BFP) SQEBR RRE ¤7,9 Db Xi Xx 19-40
B315 SQUARE ROOT (long BFP) SQDBR RRE ¤7,9 Db Xi Xx 19-40
B316 SQUARE ROOT (extended BFP) SQXBR RRE ¤7,9 SP Db Xi Xx 19-40
B317 MULTIPLY (short BFP) MEEBR RRE ¤7,9 Db Xi Xo Xu Xx 19-37
B318 COMPARE AND SIGNAL (long BFP) KDBR RRE C ¤7,9 Db Xi 19-18
B319 COMPARE (long BFP) CDBR RRE C ¤7,9 Db Xi 19-17
B31A ADD (long BFP) ADBR RRE C ¤7,9 Db Xi Xo Xu Xx 19-15
B31B SUBTRACT (long BFP) SDBR RRE C ¤7,9 Db Xi Xo Xu Xx 19-40
B31C MULTIPLY (long BFP) MDBR RRE ¤7,9 Db Xi Xo Xu Xx 19-37
B31D DIVIDE (long BFP) DDBR RRE ¤7,9 Db Xi Xz Xo Xu Xx 19-27
B31E MULTIPLY AND ADD (long BFP) MADBR RRD ¤7,9 Db Xi Xo Xu Xx 19-38
B31F MULTIPLY AND SUBTRACT (long BFP) MSDBR RRD ¤7,9 Db Xi Xo Xu Xx 19-38
B324 LOAD LENGTHENED (short to long HFP) LDER RRE ¤7,9 Da 18-15
B325 LOAD LENGTHENED (long to extended HFP) LXDR RRE ¤7,9 SP Da 18-15
B326 LOAD LENGTHENED (short to extended HFP) LXER RRE ¤7,9 SP Da 18-15
B32E MULTIPLY AND ADD (short HFP) MAER RRD HM ¤7,9 Da EU EO 18-19
B32F MULTIPLY AND SUBTRACT (short HFP) MSER RRD HM ¤7,9 Da EU EO 18-19
B336 SQUARE ROOT (extended HFP) SQXR RRE ¤7,9 SP Da SQ 18-23
B337 MULTIPLY (short HFP) MEER RRE ¤7,9 Da EU EO 18-17
B338 MULTIPLY AND ADD UNNRM. (long to ext. low

HFP)
MAYLR RRD UE ¤7,9 Da 18-20

B339 MULTIPLY UNNORM. (long to ext. low HFP) MYLR RRD UE ¤7,9 Da 18-22

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 6 of 24)

B-59

B33A MULTIPLY & ADD UNNORMALIZED (long to ext.
HFP)

MAYR RRD UE ¤7,9 Da 18-20

B33B MULTIPLY UNNORMALIZED (long to ext. HFP) MYR RRD UE ¤7,9 SP Da 18-22
B33C MULTIPLY AND ADD UNNRM. (long to ext. high

HFP)
MAYHR RRD UE ¤7,9 Da 18-20

B33D MULTIPLY UNNORM. (long to ext. high HFP) MYHR RRD UE ¤7,9 Da 18-22
B33E MULTIPLY AND ADD (long HFP) MADR RRD HM ¤7,9 Da EU EO 18-19
B33F MULTIPLY AND SUBTRACT (long HFP) MSDR RRD HM ¤7,9 Da EU EO 18-19
B340 LOAD POSITIVE (extended BFP) LPXBR RRE C ¤7,9 SP Db 19-35
B341 LOAD NEGATIVE (extended BFP) LNXBR RRE C ¤7,9 SP Db 19-34
B342 LOAD AND TEST (extended BFP) LTXBR RRE C ¤7,9 SP Db Xi 19-31
B343 LOAD COMPLEMENT (extended BFP) LCXBR RRE C ¤7,9 SP Db 19-31
B344 LOAD ROUNDED (long to short BFP) LEDBR RRE ¤7,9 Db Xi Xo Xu Xx 19-35
B344 LOAD ROUNDED (long to short BFP) LEDBRA RRF-e F ¤7,9 SP Db Xi Xo Xu Xx 19-35
B345 LOAD ROUNDED (extended to long BFP) LDXBR RRE ¤7,9 SP Db Xi Xo Xu Xx 19-35
B345 LOAD ROUNDED (extended to long BFP) LDXBRA RRF-e F ¤7,9 SP Db Xi Xo Xu Xx 19-35
B346 LOAD ROUNDED (extended to short BFP) LEXBR RRE ¤7,9 SP Db Xi Xo Xu Xx 19-35
B346 LOAD ROUNDED (extended to short BFP) LEXBRA RRF-e F ¤7,9 SP Db Xi Xo Xu Xx 19-35
B347 LOAD FP INTEGER (extended BFP) FIXBR RRF-e ¤7,9 SP Db Xi Xx 19-32
B347 LOAD FP INTEGER (extended BFP) FIXBRA RRF-e F ¤7,9 SP Db Xi Xx 19-32
B348 COMPARE AND SIGNAL (extended BFP) KXBR RRE C ¤7,9 SP Db Xi 19-18
B349 COMPARE (extended BFP) CXBR RRE C ¤7,9 SP Db Xi 19-17
B34A ADD (extended BFP) AXBR RRE C ¤7,9 SP Db Xi Xo Xu Xx 19-15
B34B SUBTRACT (extended BFP) SXBR RRE C ¤7,9 SP Db Xi Xo Xu Xx 19-40
B34C MULTIPLY (extended BFP) MXBR RRE ¤7,9 SP Db Xi Xo Xu Xx 19-37
B34D DIVIDE (extended BFP) DXBR RRE ¤7,9 SP Db Xi Xz Xo Xu Xx 19-27
B350 CONVERT HFP TO BFP (long to short) TBEDR RRF-e C ¤7,9 SP Da 9-28
B351 CONVERT HFP TO BFP (long) TBDR RRF-e C ¤7,9 SP Da 9-28
B353 DIVIDE TO INTEGER (short BFP) DIEBR RRF-b C ¤7,9 SP Db Xi Xu Xx 19-28
B357 LOAD FP INTEGER (short BFP) FIEBR RRF-e ¤7,9 SP Db Xi Xx 19-32
B357 LOAD FP INTEGER (short BFP) FIEBRA RRF-e F ¤7,9 SP Db Xi Xx 19-32
B358 CONVERT BFP TO HFP (short to long) THDER RRE C ¤7,9 Da 9-27
B359 CONVERT BFP TO HFP (long) THDR RRE C ¤7,9 Da 9-27
B35B DIVIDE TO INTEGER (long BFP) DIDBR RRF-b C ¤7,9 SP Db Xi Xu Xx 19-28
B35F LOAD FP INTEGER (long BFP) FIDBR RRF-e ¤7,9 SP Db Xi Xx 19-32
B35F LOAD FP INTEGER (long BFP) FIDBRA RRF-e F ¤7,9 SP Db Xi Xx 19-32
B360 LOAD POSITIVE (extended HFP) LPXR RRE C ¤7,9 SP Da 18-16
B361 LOAD NEGATIVE (extended HFP) LNXR RRE C ¤7,9 SP Da 18-16
B362 LOAD AND TEST (extended HFP) LTXR RRE C ¤7,9 SP Da 18-14
B363 LOAD COMPLEMENT (extended HFP) LCXR RRE C ¤7,9 SP Da 18-14
B365 LOAD (extended) LXR RRE ¤7,9 SP Da 9-31
B366 LOAD ROUNDED (extended to short HFP) LEXR RRE ¤7,9 SP Da EO 18-17
B367 LOAD FP INTEGER (extended HFP) FIXR RRE ¤7,9 SP Da 18-15
B369 COMPARE (extended HFP) CXR RRE C ¤7,9 SP Da 18-10
B370 LOAD POSITIVE (long) LPDFR RRE FS ¤7,9 Da 9-34
B371 LOAD NEGATIVE (long) LNDFR RRE FS ¤7,9 Da 9-34
B372 COPY SIGN (long) CPSDR RRF-b FS ¤7,9 Da 9-30
B373 LOAD COMPLEMENT (long) LCDFR RRE FS ¤7,9 Da 9-31
B374 LOAD ZERO (short) LZER RRE ¤7,9 Da 9-35
B375 LOAD ZERO (long) LZDR RRE ¤7,9 Da 9-35
B376 LOAD ZERO (extended) LZXR RRE ¤7,9 SP Da 9-35
B377 LOAD FP INTEGER (short HFP) FIER RRE ¤7,9 Da 18-15
B37F LOAD FP INTEGER (long HFP) FIDR RRE ¤7,9 Da 18-15
B384 SET FPC SFPC RRE ¤7,9 SP Db 9-47
B385 SET FPC AND SIGNAL SFASR RRE XF ¤7,9 SP Dt Xg 9-48

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 7 of 24)

B-60 The z/Architecture CPU Architecture

B38C EXTRACT FPC EFPC RRE ¤7,9 Db 9-30
B390 CONVERT FROM LOGICAL (32 to short BFP) CELFBR RRF-e F ¤7,9 SP Db Xx 19-21
B391 CONVERT FROM LOGICAL (32 to long BFP) CDLFBR RRF-e F ¤7,9 SP Db 19-21
B392 CONVERT FROM LOGICAL (32 to extended BFP) CXLFBR RRF-e F ¤7,9 SP Db 19-21
B394 CONVERT FROM FIXED (32 to short BFP) CEFBR RRE ¤7,9 Db Xx 19-19
B394 CONVERT FROM FIXED (32 to short BFP) CEFBRA RRF-e F ¤7,9 SP Db Xx 19-19
B395 CONVERT FROM FIXED (32 to long BFP) CDFBR RRE ¤7,9 Db 19-19
B395 CONVERT FROM FIXED (32 to long BFP) CDFBRA RRF-e F ¤7,9 SP Db 19-19
B396 CONVERT FROM FIXED (32 to extended BFP) CXFBR RRE ¤7,9 SP Db 19-19
B396 CONVERT FROM FIXED (32 to extended BFP) CXFBRA RRF-e F ¤7,9 SP Db 19-19
B398 CONVERT TO FIXED (short BFP to 32) CFEBR RRF-e C ¤7,9 SP Db Xi Xx 19-22
B398 CONVERT TO FIXED (short BFP to 32) CFEBRA RRF-e C F ¤7,9 SP Db Xi Xx 19-22
B399 CONVERT TO FIXED (long BFP to 32) CFDBR RRF-e C ¤7,9 SP Db Xi Xx 19-22
B399 CONVERT TO FIXED (long BFP to 32) CFDBRA RRF-e C F ¤7,9 SP Db Xi Xx 19-22
B39A CONVERT TO FIXED (extended BFP to 32) CFXBR RRF-e C ¤7,9 SP Db Xi Xx 19-22
B39A CONVERT TO FIXED (extended BFP to 32) CFXBRA RRF-e C F ¤7,9 SP Db Xi Xx 19-22
B39C CONVERT TO LOGICAL (short BFP to 32) CLFEBR RRF-e C F ¤7,9 SP Db Xi Xx 19-25
B39D CONVERT TO LOGICAL (long BFP to 32) CLFDBR RRF-e C F ¤7,9 SP Db Xi Xx 19-25
B39E CONVERT TO LOGICAL (extended BFP to 32) CLFXBR RRF-e C F ¤7,9 SP Db Xi Xx 19-25
B3A0 CONVERT FROM LOGICAL (64 to short BFP) CELGBR RRF-e F ¤7,9 SP Db Xx 19-21
B3A1 CONVERT FROM LOGICAL (64 to long BFP) CDLGBR RRF-e F ¤7,9 SP Db Xx 19-21
B3A2 CONVERT FROM LOGICAL (64 to extended BFP) CXLGBR RRF-e F ¤7,9 SP Db 19-21
B3A4 CONVERT FROM FIXED (64 to short BFP) CEGBR RRE N ¤7,9 Db Xx 19-19
B3A4 CONVERT FROM FIXED (64 to short BFP) CEGBRA RRF-e F ¤7,9 SP Db Xx 19-19
B3A5 CONVERT FROM FIXED (64 to long BFP) CDGBR RRE N ¤7,9 Db Xx 19-19
B3A5 CONVERT FROM FIXED (64 to long BFP) CDGBRA RRF-e F ¤7,9 SP Db Xx 19-19
B3A6 CONVERT FROM FIXED (64 to extended BFP) CXGBR RRE N ¤7,9 SP Db 19-19
B3A6 CONVERT FROM FIXED (64 to extended BFP) CXGBRA RRF-e F ¤7,9 SP Db 19-19
B3A8 CONVERT TO FIXED (short BFP to 64) CGEBR RRF-e C N ¤7,9 SP Db Xi Xx 19-22
B3A8 CONVERT TO FIXED (short BFP to 64) CGEBRA RRF-e C F ¤7,9 SP Db Xi Xx 19-22
B3A9 CONVERT TO FIXED (long BFP to 64) CGDBR RRF-e C N ¤7,9 SP Db Xi Xx 19-22
B3A9 CONVERT TO FIXED (long BFP to 64) CGDBRA RRF-e C F ¤7,9 SP Db Xi Xx 19-22
B3AA CONVERT TO FIXED (extended BFP to 64) CGXBR RRF-e C N ¤7,9 SP Db Xi Xx 19-22
B3AA CONVERT TO FIXED (extended BFP to 64) CGXBRA RRF-e C F ¤7,9 SP Db Xi Xx 19-22
B3AC CONVERT TO LOGICAL (short BFP to 64) CLGEBR RRF-e C F ¤7,9 SP Db Xi Xx 19-25
B3AD CONVERT TO LOGICAL (long BFP to 64) CLGDBR RRF-e C F ¤7,9 SP Db Xi Xx 19-25
B3AE CONVERT TO LOGICAL (extended BFP to 64) CLGXBR RRF-e C F ¤7,9 SP Db Xi Xx 19-25
B3B4 CONVERT FROM FIXED (32 to short HFP) CEFR RRE ¤7,9 Da 18-11
B3B5 CONVERT FROM FIXED (32 to long HFP) CDFR RRE ¤7,9 Da 18-11
B3B6 CONVERT FROM FIXED (32 to extended HFP) CXFR RRE ¤7,9 SP Da 18-11
B3B8 CONVERT TO FIXED (short HFP to 32) CFER RRF-e C ¤7,9 SP Da 18-11
B3B9 CONVERT TO FIXED (long HFP to 32) CFDR RRF-e C ¤7,9 SP Da 18-11
B3BA CONVERT TO FIXED (extended HFP to 32) CFXR RRF-e C ¤7,9 SP Da 18-11
B3C1 LOAD FPR FROM GR (64 to long) LDGR RRE FG ¤7,9 Da 9-34
B3C4 CONVERT FROM FIXED (64 to short HFP) CEGR RRE N ¤7,9 Da 18-11
B3C5 CONVERT FROM FIXED (64 to long HFP) CDGR RRE N ¤7,9 Da 18-11
B3C6 CONVERT FROM FIXED (64 to extended HFP) CXGR RRE N ¤7,9 SP Da 18-11
B3C8 CONVERT TO FIXED (short HFP to 64) CGER RRF-e C N ¤7,9 SP Da 18-11
B3C9 CONVERT TO FIXED (long HFP to 64) CGDR RRF-e C N ¤7,9 SP Da 18-11
B3CA CONVERT TO FIXED (extended HFP to 64) CGXR RRF-e C N ¤7,9 SP Da 18-11
B3CD LOAD GR FROM FPR (long to 64) LGDR RRE FG ¤7,9 Da 9-34
B3D0 MULTIPLY (long DFP) MDTR RRF-a TF ¤7,9 Dt Xi Xo Xu Xx 20-47
B3D0 MULTIPLY (long DFP) MDTRA RRF-a F ¤7,9 Dt Xi Xo Xu Xx Xq 20-48
B3D1 DIVIDE (long DFP) DDTR RRF-a TF ¤7,9 Dt Xi Xz Xo Xu Xx 20-37
B3D1 DIVIDE (long DFP) DDTRA RRF-a F ¤7,9 Dt Xi Xz Xo Xu Xx Xq 20-37

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 8 of 24)

B-61

B3D2 ADD (long DFP) ADTR RRF-a C TF ¤7,9 Dt Xi Xo Xu Xx 20-19
B3D2 ADD (long DFP) ADTRA RRF-a C F ¤7,9 Dt Xi Xo Xu Xx Xq 20-19
B3D3 SUBTRACT (long DFP) SDTR RRF-a C TF ¤7,9 Dt Xi Xo Xu Xx 20-55
B3D3 SUBTRACT (long DFP) SDTRA RRF-a C F ¤7,9 Dt Xi Xo Xu Xx Xq 20-55
B3D4 LOAD LENGTHENED (short to long DFP) LDETR RRF-d TF ¤7,9 Dt Xi 20-45
B3D5 LOAD ROUNDED (long to short DFP) LEDTR RRF-e TF ¤7,9 Dt Xi Xo Xu Xx Xq 20-46
B3D6 LOAD AND TEST (long DFP) LTDTR RRE C TF ¤7,9 Dt Xi 20-41
B3D7 LOAD FP INTEGER (long DFP) FIDTR RRF-e TF ¤7,9 Dt Xi Xx Xq 20-42
B3D8 MULTIPLY (extended DFP) MXTR RRF-a TF ¤7,9 SP Dt Xi Xo Xu Xx 20-47
B3D8 MULTIPLY (extended DFP) MXTRA RRF-a F ¤7,9 SP Dt Xi Xo Xu Xx Xq 20-48
B3D9 DIVIDE (extended DFP) DXTR RRF-a TF ¤7,9 SP Dt Xi Xz Xo Xu Xx 20-37
B3D9 DIVIDE (extended DFP) DXTRA RRF-a F ¤7,9 SP Dt Xi Xz Xo Xu Xx Xq 20-37
B3DA ADD (extended DFP) AXTR RRF-a C TF ¤7,9 SP Dt Xi Xo Xu Xx 20-19
B3DA ADD (extended DFP) AXTRA RRF-a C F ¤7,9 SP Dt Xi Xo Xu Xx Xq 20-19
B3DB SUBTRACT (extended DFP) SXTR RRF-a C TF ¤7,9 SP Dt Xi Xo Xu Xx 20-55
B3DB SUBTRACT (extended DFP) SXTRA RRF-a C F ¤7,9 SP Dt Xi Xo Xu Xx Xq 20-55
B3DC LOAD LENGTHENED (long to extended DFP) LXDTR RRF-d TF ¤7,9 SP Dt Xi 20-45
B3DD LOAD ROUNDED (extended to long DFP) LDXTR RRF-e TF ¤7,9 SP Dt Xi Xo Xu Xx Xq 20-46
B3DE LOAD AND TEST (extended DFP) LTXTR RRE C TF ¤7,9 SP Dt Xi 20-41
B3DF LOAD FP INTEGER (extended DFP) FIXTR RRF-e TF ¤7,9 SP Dt Xi Xx Xq 20-42
B3E0 COMPARE AND SIGNAL (long DFP) KDTR RRE C TF ¤7,9 Dt Xi 20-23
B3E1 CONVERT TO FIXED (long DFP to 64) CGDTR RRF-e C TF ¤7,9 Dt Xi Xx 20-29
B3E1 CONVERT TO FIXED (long DFP to 64) CGDTRA RRF-e C F ¤7,9 Dt Xi Xx 20-30
B3E2 CONVERT TO UNSIGNED PACKED (long DFP to

64)
CUDTR RRE TF ¤7,9 Dt 20-35

B3E3 CONVERT TO SIGNED PACKED (long DFP to 64) CSDTR RRF-d TF ¤7,9 Dt 20-35
B3E4 COMPARE (long DFP) CDTR RRE C TF ¤7,9 Dt Xi 20-22
B3E5 EXTRACT BIASED EXPONENT (long DFP to 64) EEDTR RRE TF ¤7,9 Dt 20-39
B3E7 EXTRACT SIGNIFICANCE (long DFP to 64) ESDTR RRE TF ¤7,9 Dt 20-39
B3E8 COMPARE AND SIGNAL (extended DFP) KXTR RRE C TF ¤7,9 SP Dt Xi 20-23
B3E9 CONVERT TO FIXED (extended DFP to 64) CGXTR RRF-e C TF ¤7,9 SP Dt Xi Xx 20-29
B3E9 CONVERT TO FIXED (extended DFP to 64) CGXTRA RRF-e C F ¤7,9 SP Dt Xi Xx 20-30
B3EA CONVERT TO UNSIGNED PACKED (extended DFP

to 128)
CUXTR RRE TF ¤7,9 SP Dt 20-35

B3EB CONVERT TO SIGNED PACKED (extended DFP to
128)

CSXTR RRF-d TF ¤7,9 SP Dt 20-35

B3EC COMPARE (extended DFP) CXTR RRE C TF ¤7,9 SP Dt Xi 20-22
B3ED EXTRACT BIASED EXPONENT (extended DFP to

64)
EEXTR RRE TF ¤7,9 SP Dt 20-39

B3EF EXTRACT SIGNIFICANCE (extended DFP to 64) ESXTR RRE TF ¤7,9 SP Dt 20-39
B3F1 CONVERT FROM FIXED (64 to long DFP) CDGTR RRE TF ¤7,9 Dt Xx 20-24
B3F1 CONVERT FROM FIXED (64 to long DFP) CDGTRA RRF-e F ¤7,9 Dt Xx Xq 20-24
B3F2 CONVERT FROM UNSIGNED PACKED (64 to long

DFP)
CDUTR RRE TF ¤7,9 Dt Dg 20-28

B3F3 CONVERT FROM SIGNED PACKED (64 to long
DFP)

CDSTR RRE TF ¤7,9 Dt Dg 20-28

B3F4 COMPARE BIASED EXPONENT (long DFP) CEDTR RRE C TF ¤7,9 Dt 20-23
B3F5 QUANTIZE (long DFP) QADTR RRF-b TF ¤7,9 Dt Xi Xx Xq 20-49
B3F6 INSERT BIASED EXPONENT (64 to long DFP) IEDTR RRF-b TF ¤7,9 Dt 20-40
B3F7 REROUND (long DFP) RRDTR RRF-b TF ¤7,9 Dt Xi Xx Xq 20-52
B3F9 CONVERT FROM FIXED (64 to extended DFP) CXGTR RRE TF ¤7,9 SP Dt 20-24
B3F9 CONVERT FROM FIXED (64 to extended DFP) CXGTRA RRF-e F ¤7,9 SP Dt 20-24
B3FA CONVERT FROM UNSIGNED PACKED (128 to ext.

DFP)
CXUTR RRE TF ¤7,9 SP Dt Dg 20-28

B3FB CONVERT FROM SIGNED PACKED (128 to
extended DFP)

CXSTR RRE TF ¤7,9 SP Dt Dg 20-28

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 9 of 24)

B-62 The z/Architecture CPU Architecture

B3FC COMPARE BIASED EXPONENT (extended DFP) CEXTR RRE C TF ¤7,9 SP Dt 20-23
B3FD QUANTIZE (extended DFP) QAXTR RRF-b TF ¤7,9 SP Dt Xi Xx Xq 20-49
B3FE INSERT BIASED EXPONENT (64 to extended DFP) IEXTR RRF-b TF ¤7,9 SP Dt 20-40
B3FF REROUND (extended DFP) RRXTR RRF-b TF ¤7,9 SP Dt Xi Xx Xq 20-52
B6 STORE CONTROL (32) STCTL RS-a P A SP ST B2 10-138
B7 LOAD CONTROL (32) LCTL RS-a P A SP B2 10-50
B900 LOAD POSITIVE (64) LPGR RRE C N IF 7-286
B901 LOAD NEGATIVE (64) LNGR RRE C N 7-282
B902 LOAD AND TEST (64) LTGR RRE C N 7-269
B903 LOAD COMPLEMENT (64) LCGR RRE C N IF 7-272
B904 LOAD (64) LGR RRE N 7-263
B905 LOAD USING REAL ADDRESS (64) LURAG RRE N P A1 SP 10-60
B906 LOAD BYTE (648) LGBR RRE EI 7-271
B907 LOAD HALFWORD (6416) LGHR RRE EI 7-275
B908 ADD (64) AGR RRE C N IF 7-25
B909 SUBTRACT (64) SGR RRE C N IF 7-394
B90A ADD LOGICAL (64) ALGR RRE C N 7-29
B90B SUBTRACT LOGICAL (64) SLGR RRE C N 7-396
B90C MULTIPLY SINGLE (64) MSGR RRE N 7-307
B90D DIVIDE SINGLE (64) DSGR RRE N ¤9 SP IK 7-253
B90E EXTRACT STACKED REGISTERS (64) EREGG RRE N ¤1 A1* SE U1 U2 10-25
B90F LOAD REVERSED (64) LRVGR RRE N 7-286
B910 LOAD POSITIVE (6432) LPGFR RRE C N 7-286
B911 LOAD NEGATIVE (6432) LNGFR RRE C N 7-283
B912 LOAD AND TEST (6432) LTGFR RRE C N 7-269
B913 LOAD COMPLEMENT (6432) LCGFR RRE C N 7-272
B914 LOAD (6432) LGFR RRE N 7-263
B916 LOAD LOGICAL (6432) LLGFR RRE N 7-277
B917 LOAD LOGICAL THIRTY ONE BITS (6431) LLGTR RRE N 7-280
B918 ADD (6432) AGFR RRE C N IF 7-25
B919 SUBTRACT (6432) SGFR RRE C N IF 7-394
B91A ADD LOGICAL (6432) ALGFR RRE C N 7-29
B91B SUBTRACT LOGICAL (6432) SLGFR RRE C N 7-396
B91C MULTIPLY SINGLE (6432) MSGFR RRE N 7-307
B91D DIVIDE SINGLE (6432) DSGFR RRE N ¤9 SP IK 7-253
B91E COMPUTE MESSAGE AUTHENTICATION CODE KMAC RRE C MS ¤5,9 A SP IC GM I1 ST R2 7-218
B91F LOAD REVERSED (32) LRVR RRE N3 7-286
B920 COMPARE (64) CGR RRE C N 7-133
B921 COMPARE LOGICAL (64) CLGR RRE C N 7-151
B925 STORE USING REAL ADDRESS (64) STURG RRE N P A1 SP SU 10-168
B926 LOAD BYTE (328) LBR RRE EI 7-271
B927 LOAD HALFWORD (3216) LHR RRE EI 7-275
B928 PERFORM CRYPTOGRAPHIC KEY MGMT.

OPERATIONS
PCKMO RRE M3 P A SP GM ST 10-75

B929 CIPHER MESSAGE WITH AUTHENTICATION KMA RRF-b C M8 ¤5,9 A SP IC GM I1 ST R1 R2 R3 7-77
B92A CIPHER MESSAGE WITH CIPHER FEEDBACK KMF RRE C M4 ¤5,9 A SP IC GM I1 ST R1 R2 7-91
B92B CIPHER MESSAGE WITH OUTPUT FEEDBACK KMO RRE C M4 ¤5,9 A SP IC GM I1 ST R1 R2 7-119
B92C PERFORM CRYPTOGRAPHIC COMPUTATION PCC RRE C M4 ¤5,9 A SP IC GM I1 ST 7-316
B92D CIPHER MESSAGE WITH COUNTER KMCTR RRF-b C M4 ¤5,9 A SP IC GM I1 ST R1,R2,R3 7-106
B92E CIPHER MESSAGE KM RRE C MS ¤5,9 A SP IC GM I1 ST R1 R2 7-52
B92F CIPHER MESSAGE WITH CHAINING KMC RRE C MS ¤5,9 A SP IC GM I1 ST R1 R2 7-52
B930 COMPARE (6432) CGFR RRE C N 7-133
B931 COMPARE LOGICAL (6432) CLGFR RRE C N 7-151
B939 DEFLATE CONVERSION CALL DFLTCC RRF-a C GZ ¤5,9 A SP IC GM I1 ST R1 R2 R3 26-16

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 10 of 24)

B-63

B93A COMPUTE DIGITAL SIGNATURE
AUTHENTICATION

KDSA RRE C M9 ¤5,9 A SP IC GM I1 ST R2 26-2

B93C PERFORM RANDOM NUMBER OPERATION PRNO RRE C M5 ¤5,9 A SP IC Dg GM I1 ST R1 R2 7-352
B93E COMPUTE INTERMEDIATE MESSAGE DIGEST KIMD RRE C MS ¤5,9 A SP IC GM I1 ST R2 7-187
B93F COMPUTE LAST MESSAGE DIGEST KLMD RRE C MS ¤5,9 A SP IC GM I1 ST R2 7-200
B941 CONVERT TO FIXED (long DFP to 32) CFDTR RRF-e C F ¤7,9 Dt Xi Xx 20-30
B942 CONVERT TO LOGICAL (long DFP to 64) CLGDTR RRF-e C F ¤7,9 Dt Xi Xx 20-32
B943 CONVERT TO LOGICAL (long DFP to 32) CLFDTR RRF-e C F ¤7,9 Dt Xi Xx 20-32
B946 BRANCH ON COUNT (64) BCTGR RRE N ¤9 B 7-40
B949 CONVERT TO FIXED (extended DFP to 32) CFXTR RRF-e C F ¤7,9 SP Dt Xi Xx 20-30
B94A CONVERT TO LOGICAL (extended DFP to 64) CLGXTR RRF-e C F ¤7,9 SP Dt Xi Xx 20-32
B94B CONVERT TO LOGICAL (extended DFP to 32) CLFXTR RRF-e C F ¤7,9 SP Dt Xi Xx 20-32
B951 CONVERT FROM FIXED (32 to long DFP) CDFTR RRE F ¤7,9 Dt 20-24
B952 CONVERT FROM LOGICAL (64 to long DFP) CDLGTR RRF-e F ¤7,9 Dt Xx Xq 20-25
B953 CONVERT FROM LOGICAL (32 to long DFP) CDLFTR RRF-e F ¤7,9 Dt 20-25
B959 CONVERT FROM FIXED (32 to extended DFP) CXFTR RRE F ¤7,9 SP Dt 20-24
B95A CONVERT FROM LOGICAL (64 to extended DFP) CXLGTR RRF-e F ¤7,9 SP Dt 20-25
B95B CONVERT FROM LOGICAL (32 to extended DFP) CXLFTR RRF-e F ¤7,9 SP Dt 20-25
B960 COMPARE AND TRAP (64) CGRT RRF-c GE Dc 7-148
B961 COMPARE LOGICAL AND TRAP (64) CLGRT RRF-c GE Dc 7-154
B964 NAND (64) NNGRK RRF-a C MI3 7-308
B965 OR WITH COMPLEMENT(64) OCGRK RRF-a C MI3 7-314
B966 NOR (64) NOGRK RRF-a C MI3 7-311
B967 NOT EXCLUSIVE OR (64) NXGRK RRF-a C MI3 7-311
B972 COMPARE AND TRAP (32) CRT RRF-c GE Dc 7-148
B973 COMPARE LOGICAL AND TRAP (32) CLRT RRF-c GE Dc 7-154
B974 NAND (32) NNRK RRF-a C MI3 7-308
B975 OR WITH COMPLEMENT(32) OCRK RRF-a C MI3 7-314
B976 NOR (32) NORK RRF-a C MI3 7-311
B977 NOT EXCLUSIVE OR (32) NXRK RRF-a C MI3 7-311
B980 AND (64) NGR RRE C N 7-32
B981 OR (64) OGR RRE C N 7-312
B982 EXCLUSIVE OR (64) XGR RRE C N 7-253
B983 FIND LEFTMOST ONE FLOGR RRE C EI SP 7-261
B984 LOAD LOGICAL CHARACTER (648) LLGCR RRE EI 7-278
B985 LOAD LOGICAL HALFWORD (6416) LLGHR RRE EI 7-279
B986 MULTIPLY LOGICAL (12864) MLGR RRE N SP 7-306
B987 DIVIDE LOGICAL (64128) DLGR RRE N ¤9 SP IK 7-252
B988 ADD LOGICAL WITH CARRY (64) ALCGR RRE C N 7-30
B989 SUBTRACT LOGICAL WITH BORROW (64) SLBGR RRE C N 7-398
B98A COMPARE AND SWAP AND PURGE (64) CSPG RRE C DE P A1 SP $ ST R2 10-21
B98D EXTRACT PSW EPSW RRE N3 ¤8,9 7-260
B98E INVALIDATE DAT TABLE ENTRY IDTE RRF-b U DE P A1 SP $ 10-32
B98F COMPARE AND REPLACE DAT TABLE ENTRY CRDTE RRF-b ED2 P A1 SP $ 10-17
B990 TRANSLATE TWO TO TWO TRTT RRF-c C E2 ¤9 A SP IC GM ST RM R2 7-418
B991 TRANSLATE TWO TO ONE TRTO RRF-c C E2 ¤9 A SP IC GM ST RM R2 7-418
B992 TRANSLATE ONE TO TWO TROT RRF-c C E2 ¤9 A SP IC GM ST RM R2 7-418
B993 TRANSLATE ONE TO ONE TROO RRF-c C E2 ¤9 A SP IC GM ST RM R2 7-418
B994 LOAD LOGICAL CHARACTER (328) LLCR RRE EI 7-278
B995 LOAD LOGICAL HALFWORD (3216) LLHR RRE EI 7-279
B996 MULTIPLY LOGICAL (6432) MLR RRE N3 SP 7-305
B997 DIVIDE LOGICAL (3264) DLR RRE N3 ¤9 SP IK 7-252
B998 ADD LOGICAL WITH CARRY (32) ALCR RRE C N3 7-30
B999 SUBTRACT LOGICAL WITH BORROW (32) SLBR RRE C N3 7-398
B99A EXTRACT PRIMARY ASN AND INSTANCE EPAIR RRE RA Q SO 10-24

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 11 of 24)

B-64 The z/Architecture CPU Architecture

B99B EXTRACT SECONDARY ASN AND INSTANCE ESAIR RRE RA Q SO 10-25
B99D EXTRACT AND SET EXTENDED AUTHORITY ESEA RRE N P 10-24
B99E PROGRAM TRANSFER WITH INSTANCE PTI RRE RA Q A1* SP Z6 T ¢ B 10-110
B99F SET SECONDARY ASN WITH INSTANCE SSAIR RRE RA ¤1 A1* Z7 T ¢ 10-128
B9A1 TEST PENDING EXTERNAL INTERRUPTION TPEI RRE C TE P 10-172
B9A2 PERFORM TOPOLOGY FUNCTION PTF RRE C CT P SP 10-92
B9AA LOAD PAGE TABLE ENTRY ADDRESS LPTEA RRF-b C D2 P A1* SP SO R2 10-50
B9AC INSERT REFERENCE BITS MULTIPLE IRBM RRE IM P A1* 10-30
B9AE RESET REFERENCE BITS MULTIPLE RRBM RRE RB P A1* 10-120
B9AF PERFORM FRAME MANAGEMENT FUNCTION PFMF RRE ED1 P A1 SP II ¢3 K 10-80
B9B0 CONVERT UTF-8 TO UTF-32 CU14 RRF-c C E3 ¤5,9 A SP IC ST R1 R2 7-247
B9B1 CONVERT UTF-16 TO UTF-32 CU24 RRF-c C E3 ¤5,9 A SP IC ST R1 R2 7-230
B9B2 CONVERT UTF-32 TO UTF-8 CU41 RRE C E3 ¤5,9 A SP IC ST R1 R2 7-240
B9B3 CONVERT UTF-32 TO UTF-16 CU42 RRE C E3 ¤5,9 A SP IC ST R1 R2 7-237
B9BD TRANSLATE AND TEST REVERSE EXTENDED TRTRE RRF-c C PE ¤9 A SP IC ST RM 7-410
B9BE SEARCH STRING UNICODE SRSTU RRE C E3 ¤9 A SP IC G0 R1 R2 7-374
B9BF TRANSLATE AND TEST EXTENDED TRTE RRF-c C PE ¤9 A SP IC ST RM 7-410
B9C0 SELECT HIGH (32) SELFHR RRF-a MI3 7-376
B9C8 ADD HIGH (32) AHHHR RRF-a C HW IF 7-28
B9C9 SUBTRACT HIGH (32) SHHHR RRF-a C HW IF 7-396
B9CA ADD LOGICAL HIGH (32) ALHHHR RRF-a C HW 7-30
B9CB SUBTRACT LOGICAL HIGH (32) SLHHHR RRF-a C HW 7-397
B9CD COMPARE HIGH (32) CHHR RRE C HW 7-150
B9CF COMPARE LOGICAL HIGH (32) CLHHR RRE C HW 7-156
B9D8 ADD HIGH (32) AHHLR RRF-a C HW IF 7-28
B9D9 SUBTRACT HIGH (32) SHHLR RRF-a C HW IF 7-396
B9DA ADD LOGICAL HIGH (32) ALHHLR RRF-a C HW 7-30
B9DB SUBTRACT LOGICAL HIGH (32) SLHHLR RRF-a C HW 7-397
B9DD COMPARE HIGH (32) CHLR RRE C HW 7-150
B9DF COMPARE LOGICAL HIGH (32) CLHLR RRE C HW 7-156
B9E0 LOAD HIGH ON CONDITION (32) LOCFHR RRF-c L2 7-283
B9E1 POPULATION COUNT POPCNT RRF-c C PK 7-365
B9E2 LOAD ON CONDITION (64) LOCGR RRF-c L1 7-283
B9E3 SELECT (64) SELGR RRF-a MI3 7-376
B9E4 AND (64) NGRK RRF-a C DO 7-32
B9E5 AND WITH COMPLEMENT (64) NCGRK RRF-a C MI3 7-34
B9E6 OR (64) OGRK RRF-a C DO 7-312
B9E7 EXCLUSIVE OR (64) XGRK RRF-a C DO 7-253
B9E8 ADD (64) AGRK RRF-a C DO IF 7-25
B9E9 SUBTRACT (64) SGRK RRF-a C DO IF 7-394
B9EA ADD LOGICAL (64) ALGRK RRF-a C DO 7-29
B9EB SUBTRACT LOGICAL (64) SLGRK RRF-a C DO 7-396
B9EC MULTIPLY (12864) MGRK RRF-a MI2 SP 7-304
B9ED MULTIPLY SINGLE (64) MSGRKC RRF-a C MI2 IF 7-307
B9F0 SELECT (32) SELR RRF-a MI3 7-376
B9F2 LOAD ON CONDITION (32) LOCR RRF-c L1 7-283
B9F4 AND (32) NRK RRF-a C DO 7-32
B9F5 AND WITH COMPLEMENT (32) NCRK RRF-a C MI3 7-34
B9F6 OR (32) ORK RRF-a C DO 7-312
B9F7 EXCLUSIVE OR (32) XRK RRF-a C DO 7-253
B9F8 ADD (32) ARK RRF-a C DO IF 7-25
B9F9 SUBTRACT (32) SRK RRF-a C DO IF 7-394
B9FA ADD LOGICAL (32) ALRK RRF-a C DO 7-29
B9FB SUBTRACT LOGICAL (32) SLRK RRF-a C DO 7-396
B9FD MULTIPLY SINGLE (32) MSRKC RRF-a C MI2 IF 7-307

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 12 of 24)

B-65

BA COMPARE AND SWAP (32) CS RS-a C ¤9 A SP $ ST B2 7-143
BB COMPARE DOUBLE AND SWAP (32) CDS RS-a C ¤9 A SP $ ST B2 7-143
BD COMPARE LOGICAL CHAR. UNDER MASK (low) CLM RS-b C A B2 7-156
BE STORE CHARACTERS UNDER MASK (low) STCM RS-b A ST B2 7-385
BF INSERT CHARACTERS UNDER MASK (low) ICM RS-b C A B2 7-261
C00 LOAD ADDRESS RELATIVE LONG LARL RIL-b N3 7-266
C01 LOAD IMMEDIATE (6432) LGFI RIL-a EI 7-263
C04 BRANCH RELATIVE ON CONDITION LONG BRCL RIL-c N3 ¤10 B 7-46
C05 BRANCH RELATIVE AND SAVE LONG BRASL RIL-b N3 ¤9 B 7-45
C06 EXCLUSIVE OR IMMEDIATE (high) XIHF RIL-a C EI 7-255
C07 EXCLUSIVE OR IMMEDIATE (low) XILF RIL-a C EI 7-255
C08 INSERT IMMEDIATE (high) IIHF RIL-a EI 7-262
C09 INSERT IMMEDIATE (low) IILF RIL-a EI 7-262
C0A AND IMMEDIATE (high) NIHF RIL-a C EI 7-34
C0B AND IMMEDIATE (low) NILF RIL-a C EI 7-34
C0C OR IMMEDIATE (high) OIHF RIL-a C EI 7-313
C0D OR IMMEDIATE (low) OILF RIL-a C EI 7-313
C0E LOAD LOGICAL IMMEDIATE (high) LLIHF RIL-a EI 7-280
C0F LOAD LOGICAL IMMEDIATE (low) LLILF RIL-a EI 7-280
C20 MULTIPLY SINGLE IMMEDIATE (6432) MSGFI RIL-a GE 7-307
C21 MULTIPLY SINGLE IMMEDIATE (32) MSFI RIL-a GE 7-307
C24 SUBTRACT LOGICAL IMMEDIATE (6432) SLGFI RIL-a C EI 7-397
C25 SUBTRACT LOGICAL IMMEDIATE (32) SLFI RIL-a C EI 7-397
C28 ADD IMMEDIATE (6432) AGFI RIL-a C EI IF 7-26
C29 ADD IMMEDIATE (32) AFI RIL-a C EI IF 7-26
C2A ADD LOGICAL IMMEDIATE (6432) ALGFI RIL-a C EI 7-29
C2B ADD LOGICAL IMMEDIATE (32) ALFI RIL-a C EI 7-29
C2C COMPARE IMMEDIATE (6432) CGFI RIL-a C EI 7-134
C2D COMPARE IMMEDIATE (32) CFI RIL-a C EI 7-133
C2E COMPARE LOGICAL IMMEDIATE (6432) CLGFI RIL-a C EI 7-151
C2F COMPARE LOGICAL IMMEDIATE (32) CLFI RIL-a C EI 7-151
C42 LOAD LOGICAL HALFWORD RELATIVE LONG

(3216)
LLHRL RIL-b GE A* 7-279

C44 LOAD HALFWORD RELATIVE LONG (6416) LGHRL RIL-b GE A* 7-275
C45 LOAD HALFWORD RELATIVE LONG (3216) LHRL RIL-b GE A* 7-275
C46 LOAD LOGICAL HALFWORD RELATIVE LONG

(6416)
LLGHRL RIL-b GE A* 7-279

C47 STORE HALFWORD RELATIVE LONG (16) STHRL RIL-b GE A* ST 7-391
C48 LOAD RELATIVE LONG (64) LGRL RIL-b GE A* SP 7-263
C4B STORE RELATIVE LONG (64) STGRL RIL-b GE A* SP ST 7-384
C4C LOAD RELATIVE LONG (6432) LGFRL RIL-b GE A* SP 7-263
C4D LOAD RELATIVE LONG (32) LRL RIL-b GE A SP 7-263
C4E LOAD LOGICAL RELATIVE LONG (6432) LLGFRL RIL-b GE A* SP 7-277
C4F STORE RELATIVE LONG (32) STRL RIL-b GE A* SP ST 7-384
C5 BRANCH PREDICTION RELATIVE PRELOAD BPRP MII EH ¤9 7-42
C60 EXECUTE RELATIVE LONG EXRL RIL-b XX ¤9 AI* EX 7-255
C62 PREFETCH DATA RELATIVE LONG PFDRL RIL-c GE ¤9,11 7-366
C64 COMPARE HALFWORD RELATIVE LONG (6416) CGHRL RIL-b C GE A* 7-149
C65 COMPARE HALFWORD RELATIVE LONG (3216) CHRL RIL-b C GE A* 7-149
C66 COMPARE LOGICAL RELATIVE LONG (6416) CLGHRL RIL-b C GE A* 7-152
C67 COMPARE LOGICAL RELATIVE LONG (3216) CLHRL RIL-b C GE A* 7-152
C68 COMPARE RELATIVE LONG (64) CGRL RIL-b C GE A* SP 7-134
C6A COMPARE LOGICAL RELATIVE LONG (64) CLGRL RIL-b C GE A* SP 7-152
C6C COMPARE RELATIVE LONG (6432) CGFRL RIL-b C GE A* SP 7-134
C6D COMPARE RELATIVE LONG (32) CRL RIL-b C GE A* SP 7-134

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 13 of 24)

B-66 The z/Architecture CPU Architecture

C6E COMPARE LOGICAL RELATIVE LONG (6432) CLGFRL RIL-b C GE A* SP 7-152
C6F COMPARE LOGICAL RELATIVE LONG (32) CLRL RIL-b C GE A* SP 7-152
C7 BRANCH PREDICTION PRELOAD BPP SMI EH ¤9 7-42
C80 MOVE WITH OPTIONAL SPECIFICATIONS MVCOS SSF C MO Q A SO G0 ST B† B‡ 10-69
C81 EXTRACT CPU TIME ECTG SSF ET ¤8,9 A GM R3 B1 B2 7-259
C82 COMPARE AND SWAP AND STORE CSST SSF C CS ¤1 A SP $ GM ST B1 B2 7-145
C84 LOAD PAIR DISJOINT (32) LPD SSF C IA ¤9 A SP B1 B2 7-284
C85 LOAD PAIR DISJOINT (64) LPDG SSF C IA ¤9 A SP B1 B2 7-284
CC6 BRANCH RELATIVE ON COUNT HIGH (32) BRCTH RIL-b HW ¤9 B 7-47
CC8 ADD IMMEDIATE HIGH (32) AIH RIL-a C HW IF 7-29
CCA ADD LOGICAL WITH SIGNED IMMEDIATE HIGH

(32)
ALSIH RIL-a C HW 7-32

CCB ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
(32)

ALSIHN RIL-a HW 7-32

CCD COMPARE IMMEDIATE HIGH (32) CIH RIL-a C HW 7-150
CCF COMPARE LOGICAL IMMEDIATE HIGH (32) CLIH RIL-a C HW 7-157
D0 TRANSLATE AND TEST REVERSE TRTR SS-a C E3 ¤9 A GM B1 B2 7-415
D1 MOVE NUMERICS MVN SS-a ¤9 A ST B1 B2 7-300
D2 MOVE (character) MVC SS-a ¤9 A ST B1 B2 7-288
D3 MOVE ZONES MVZ SS-a ¤9 A ST B1 B2 7-303
D4 AND (character) NC SS-a C ¤9 A ST B1 B2 7-33
D5 COMPARE LOGICAL (character) CLC SS-a C ¤9 A B1 B2 7-151
D6 OR (character) OC SS-a C ¤9 A ST B1 B2 7-312
D7 EXCLUSIVE OR (character) XC SS-a C ¤9 A ST B1 B2 7-254
D9 MOVE WITH KEY MVCK SS-d C Q A ST B1 B2 10-67
DA MOVE TO PRIMARY MVCP SS-d C Q A SO ¢ ST 10-65
DB MOVE TO SECONDARY MVCS SS-d C Q A SO ¢ ST 10-65
DC TRANSLATE TR SS-a ¤9 A ST B1 B2 7-408
DD TRANSLATE AND TEST TRT SS-a C ¤9 A GM B1 B2 7-409
DE EDIT ED SS-a C ¤9 A Dg ST B1 B2 8-8
DF EDIT AND MARK EDMK SS-a C ¤9 A Dg G1 ST B1 B2 8-11
E1 PACK UNICODE PKU SS-f E2 ¤9 A SP ST B1 B2 7-316
E2 UNPACK UNICODE UNPKU SS-a C E2 ¤9 A SP ST B1 B2 7-424
E302 LOAD AND TEST (64) LTG RXY-a C EI A B2 7-270
E303 LOAD REAL ADDRESS (64) LRAG RXY-a C N P A1* BP 10-56
E304 LOAD (64) LG RXY-a N A B2 7-263
E306 CONVERT TO BINARY (32) CVBY RXY-a LD ¤9 A Dg IK B2 7-229
E308 ADD (64) AG RXY-a C N A IF B2 7-26
E309 SUBTRACT (64) SG RXY-a C N A IF B2 7-395
E30A ADD LOGICAL (64) ALG RXY-a C N A B2 7-29
E30B SUBTRACT LOGICAL (64) SLG RXY-a C N A B2 7-397
E30C MULTIPLY SINGLE (64) MSG RXY-a N A B2 7-307
E30D DIVIDE SINGLE (64) DSG RXY-a N ¤9 A SP IK B2 7-253
E30E CONVERT TO BINARY (64) CVBG RXY-a N ¤9 A Dg IK B2 7-229
E30F LOAD REVERSED (64) LRVG RXY-a N A B2 7-286
E312 LOAD AND TEST (32) LT RXY-a C EI A B2 7-270
E313 LOAD REAL ADDRESS (32) LRAY RXY-a C LD P A1* SO BP 10-56
E314 LOAD (6432) LGF RXY-a N A B2 7-263
E315 LOAD HALFWORD (6416) LGH RXY-a N A B2 7-275
E316 LOAD LOGICAL (6432) LLGF RXY-a N A B2 7-277
E317 LOAD LOGICAL THIRTY ONE BITS (6431) LLGT RXY-a N A B2 7-281
E318 ADD (6432) AGF RXY-a C N A IF B2 7-26
E319 SUBTRACT (6432) SGF RXY-a C N A IF B2 7-395
E31A ADD LOGICAL (6432) ALGF RXY-a C N A B2 7-29
E31B SUBTRACT LOGICAL (6432) SLGF RXY-a C N A B2 7-397

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 14 of 24)

B-67

E31C MULTIPLY SINGLE (6432) MSGF RXY-a N A B2 7-307
E31D DIVIDE SINGLE (6432) DSGF RXY-a N ¤9 A SP IK B2 7-253
E31E LOAD REVERSED (32) LRV RXY-a N3 A B2 7-286
E31F LOAD REVERSED (16) LRVH RXY-a N3 A B2 7-286
E320 COMPARE (64) CG RXY-a C N A B2 7-133
E321 COMPARE LOGICAL (64) CLG RXY-a C N A B2 7-151
E324 STORE (64) STG RXY-a N A ST B2 7-384
E325 NONTRANSACTIONAL STORE (64) NTSTG RXY-a TX ¤9 A SP ST B2 7-310
E326 CONVERT TO DECIMAL (32) CVDY RXY-a LD ¤9 A ST B2 7-230
E32A LOAD AND ZERO RIGHTMOST BYTE (64) LZRG RXY-a LZ A B2 7-270
E32E CONVERT TO DECIMAL (64) CVDG RXY-a N ¤9 A ST B2 7-230
E32F STORE REVERSED (64) STRVG RXY-a N A ST B2 7-394
E330 COMPARE (6432) CGF RXY-a C N A B2 7-133
E331 COMPARE LOGICAL (6432) CLGF RXY-a C N A B2 7-151
E332 LOAD AND TEST (6432) LTGF RXY-a C GE A B2 7-270
E334 COMPARE HALFWORD (6416) CGH RXY-a C GE A B2 7-149
E336 PREFETCH DATA PFD RXY-b GE ¤9,11 B2 7-365
E338 ADD HALFWORD (6416) AGH RXY-a C MI2 A IF B2 7-28
E339 SUBTRACT HALFWORD (6416) SGH RXY-a C MI2 A IF B2 7-395
E33A LOAD LOGICAL AND ZERO RIGHTMOST BYTE

(6432)
LLZRGF RXY-a LZ A B2 7-278

E33B LOAD AND ZERO RIGHTMOST BYTE (32) LZRF RXY-a LZ A B2 7-270
E33C MULTIPLY HALFWORD (6416) MGH RXY-a MI2 A B2 7-305
E33E STORE REVERSED (32) STRV RXY-a N3 A ST B2 7-394
E33F STORE REVERSED (16) STRVH RXY-a N3 A ST B2 7-394
E346 BRANCH ON COUNT (64) BCTG RXY-a N ¤9 B 7-40
E347 BRANCH INDIRECT ON CONDITION BIC RXY-b MI2 ¤9 A B B2 7-38
E348 LOAD LOGICAL AND SHIFT GUARDED (6432) LLGFSG RXY-a GF ¤12 A SP B ST B2 7-273
E349 STORE GUARDED STORAGE CONTROLS STGSC RXY-a GF ¤1 A SO ST B2 7-390
E34C LOAD GUARDED (64) LGG RXY-a GF ¤12 A SP B ST B2 7-273
E34D LOAD GUARDED STORAGE CONTROLS LGSC RXY-a GF ¤1 A SO B2 7-274
E350 STORE (32) STY RXY-a LD A ST B2 7-384
E351 MULTIPLY SINGLE (32) MSY RXY-a LD A B2 7-307
E353 MULTIPLY SINGLE (32) MSC RXY-a C MI2 A IF B2 7-307
E354 AND (32) NY RXY-a C LD A B2 7-33
E355 COMPARE LOGICAL (32) CLY RXY-a C LD A B2 7-151
E356 OR (32) OY RXY-a C LD A B2 7-312
E357 EXCLUSIVE OR (32) XY RXY-a C LD A B2 7-253
E358 LOAD (32) LY RXY-a LD A B2 7-263
E359 COMPARE (32) CY RXY-a C LD A B2 7-133
E35A ADD (32) AY RXY-a C LD A IF B2 7-26
E35B SUBTRACT (32) SY RXY-a C LD A IF B2 7-395
E35C MULTIPLY (6432) MFY RXY-a GE A SP B2 7-304
E35E ADD LOGICAL (32) ALY RXY-a C LD A B2 7-29
E35F SUBTRACT LOGICAL (32) SLY RXY-a C LD A B2 7-396
E370 STORE HALFWORD (16) STHY RXY-a LD A ST B2 7-391
E371 LOAD ADDRESS LAY RXY-a LD 7-265
E372 STORE CHARACTER STCY RXY-a LD A ST B2 7-385
E373 INSERT CHARACTER ICY RXY-a LD A B2 7-261
E375 LOAD ADDRESS EXTENDED LAEY RXY-a GE ¤6 U1 BP 7-265
E376 LOAD BYTE (328) LB RXY-a LD A 7-271
E377 LOAD BYTE (648) LGB RXY-a LD A 7-271
E378 LOAD HALFWORD (3216) LHY RXY-a LD A B2 7-275
E379 COMPARE HALFWORD (3216) CHY RXY-a C LD A B2 7-149
E37A ADD HALFWORD (3216) AHY RXY-a C LD A IF B2 7-27

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 15 of 24)

B-68 The z/Architecture CPU Architecture

E37B SUBTRACT HALFWORD (3216) SHY RXY-a C LD A IF B2 7-395
E37C MULTIPLY HALFWORD (3216) MHY RXY-a GE A B2 7-305
E380 AND (64) NG RXY-a C N A B2 7-33
E381 OR (64) OG RXY-a C N A B2 7-312
E382 EXCLUSIVE OR (64) XG RXY-a C N A B2 7-253
E383 MULTIPLY SINGLE (64) MSGC RXY-a C MI2 A IF B2 7-307
E384 MULTIPLY (12864) MG RXY-a MI2 A SP B2 7-304
E385 LOAD AND TRAP (64) LGAT RXY-a LT A Dc B2 7-270
E386 MULTIPLY LOGICAL (12864) MLG RXY-a N A SP B2 7-306
E387 DIVIDE LOGICAL (64128) DLG RXY-a N ¤9 A SP IK B2 7-252
E388 ADD LOGICAL WITH CARRY (64) ALCG RXY-a C N A B2 7-30
E389 SUBTRACT LOGICAL WITH BORROW (64) SLBG RXY-a C N A B2 7-398
E38E STORE PAIR TO QUADWORD STPQ RXY-a N ¤9 A SP ST B2 7-393
E38F LOAD PAIR FROM QUADWORD (64&64128) LPQ RXY-a N ¤9 A SP B2 7-285
E390 LOAD LOGICAL CHARACTER (648) LLGC RXY-a N A B2 7-278
E391 LOAD LOGICAL HALFWORD (6416) LLGH RXY-a N A B2 7-279
E394 LOAD LOGICAL CHARACTER (328) LLC RXY-a EI A B2 7-278
E395 LOAD LOGICAL HALFWORD (3216) LLH RXY-a EI A B2 7-279
E396 MULTIPLY LOGICAL (6432) ML RXY-a N3 A SP B2 7-306
E397 DIVIDE LOGICAL (3264) DL RXY-a N3 ¤9 A SP IK B2 7-252
E398 ADD LOGICAL WITH CARRY (32) ALC RXY-a C N3 A B2 7-30
E399 SUBTRACT LOGICAL WITH BORROW (32) SLB RXY-a C N3 A B2 7-398
E39C LOAD LOGICAL THIRTY ONE BITS AND TRAP

(6431)
LLGTAT RXY-a LT A Dc B2 7-281

E39D LOAD LOGICAL AND TRAP (6432) LLGFAT RXY-a LT A Dc B2 7-278
E39F LOAD AND TRAP (32L32) LAT RXY-a LT A Dc B2 7-270
E3C0 LOAD BYTE HIGH (328) LBH RXY-a HW A B2 7-271
E3C2 LOAD LOGICAL CHARACTER HIGH (328) LLCH RXY-a HW A B2 7-279
E3C3 STORE CHARACTER HIGH (8) STCH RXY-a HW A ST B2 7-385
E3C4 LOAD HALFWORD HIGH (3216) LHH RXY-a HW A B2 7-276
E3C6 LOAD LOGICAL HALFWORD HIGH (3216) LLHH RXY-a HW A B2 7-280
E3C7 STORE HALFWORD HIGH (16) STHH RXY-a HW A ST B2 7-391
E3C8 LOAD HIGH AND TRAP (32H32) LFHAT RXY-a LT A Dc B2 7-277
E3CA LOAD HIGH (32) LFH RXY-a HW A B2 7-277
E3CB STORE HIGH (32) STFH RXY-a HW A ST B2 7-391
E3CD COMPARE HIGH (32) CHF RXY-a C HW A B2 7-150
E3CF COMPARE LOGICAL HIGH (32) CLHF RXY-a C HW A B2 7-156
E500 LOAD ADDRESS SPACE PARAMETERS LASP SSE C P A1 SP SO B1 10-41
E501 TEST PROTECTION TPROT SSE C P A1* B1 10-173
E502 STORE REAL ADDRESS STRAG SSE N P A1 SP ST B1 BP 10-142
E50A MOVE RIGHT TO LEFT MVCRL SSE MI3 ¤9 A G0 ST B1 B2 7-300
E50E MOVE WITH SOURCE KEY MVCSK SSE Q A GM ST B1 B2 10-72
E50F MOVE WITH DESTINATION KEY MVCDK SSE Q A GM ST B1 B2 10-67
E544 MOVE (1616) MVHHI SIL GE A ST B1 7-288
E548 MOVE (6416) MVGHI SIL GE A ST B1 7-288
E54C MOVE (3216) MVHI SIL GE A ST B1 7-288
E554 COMPARE HALFWORD IMMEDIATE (1616) CHHSI SIL C GE A B1 7-149
E555 COMPARE LOGICAL IMMEDIATE (1616) CLHHSI SIL C GE A B1 7-151
E558 COMPARE HALFWORD IMMEDIATE (6416) CGHSI SIL C GE A B1 7-149
E559 COMPARE LOGICAL IMMEDIATE (6416) CLGHSI SIL C GE A B1 7-151
E55C COMPARE HALFWORD IMMEDIATE (3216) CHSI SIL C GE A B1 7-149
E55D COMPARE LOGICAL IMMEDIATE (3216) CLFHSI SIL C GE A B1 7-151
E560 TRANSACTION BEGIN (nonconstrained) TBEGIN SIL C TX ¤9 A SP SO $ EX ST 7-401
E561 TRANSACTION BEGIN (constrained) TBEGINC SIL C CX ¤9 SP SO $ EX 7-406
E601 VECTOR LOAD BYTE REVERSED ELEMENT (16) VLEBRH VRX V2 ¤7,9 A SP Dv B2 21-7

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 16 of 24)

B-69

E602 VECTOR LOAD BYTE REVERSED ELEMENT (64) VLEBRG VRX V2 ¤7,9 A SP Dv B2 21-7
E603 VECTOR LOAD BYTE REVERSED ELEMENT (32) VLEBRF VRX V2 ¤7,9 A SP Dv B2 21-7
E604 VECTOR LOAD BYTE REVERSED ELEMENT AND

ZERO
VLLEBRZ VRX V2 ¤7,9 A SP Dv B2 21-8

E605 VECTOR LOAD BYTE REVERSED ELEMENT AND
REPLICATE

VLBRRE
P

VRX V2 ¤7,9 A SP Dv B2 21-8

E606 VECTOR LOAD BYTE REVERSED ELEMENTS VLBR VRX V2 ¤7,9 A SP Dv B2 21-9
E607 VECTOR LOAD ELEMENTS REVERSED VLER VRX V2 ¤7,9 A SP Dv B2 21-10
E609 VECTOR STORE BYTE REVERSED ELEMENT

(16)
VSTEBR
H

VRX V2 ¤7,9 A SP Dv ST B2 21-22

E60A VECTOR STORE BYTE REVERSED ELEMENT
(64)

VSTEBR
G

VRX V2 ¤7,9 A SP Dv ST B2 21-22

E60B VECTOR STORE BYTE REVERSED ELEMENT
(32)

VSTEBR
F

VRX V2 ¤7,9 A SP Dv ST B2 21-22

E60E VECTOR STORE BYTE REVERSED ELEMENTS VSTBR VRX V2 ¤7,9 A SP Dv ST B2 21-22
E60F VECTOR STORE ELEMENTS REVERSED VSTER VRX V2 ¤7,9 A SP Dv ST B2 21-22
E634 VECTOR PACK ZONED VPKZ VSI VD ¤7,9 A SP Dv B2 25-13
E635 VECTOR LOAD RIGHTMOST WITH LENGTH VLRL VSI VD ¤7,9 A SP Dv B2 21-13
E637 VECTOR LOAD RIGHTMOST WITH LENGTH VLRLR VRS-d VD ¤7,9 A Dv B2 21-13
E63C VECTOR UNPACK ZONED VUPKZ VSI VD ¤7,9 A SP Dv ST B2 25-22
E63D VECTOR STORE RIGHTMOST WITH LENGTH VSTRL VSI VD ¤7,9 A SP Dv ST B2 21-25
E63F VECTOR STORE RIGHTMOST WITH LENGTH VSTRLR VRS-d VD ¤7,9 A Dv ST B2 21-25
E649 VECTOR LOAD IMMEDIATE DECIMAL VLIP VRI-h VD ¤7,9 Dv Dg 25-10
E650 VECTOR CONVERT TO BINARY VCVB VRR-i C* VD ¤7,9 Dv Dg IF* 25-5
E652 VECTOR CONVERT TO BINARY VCVBG VRR-i C* VD ¤7,9 Dv Dg IF* 25-5
E658 VECTOR CONVERT TO DECIMAL VCVD VRI-i C* VD ¤7,9 SP Dv DF* 25-7
E659 VECTOR SHIFT AND ROUND DECIMAL VSRP VRI-g C* VD ¤7,9 SP Dv Dg DF* 25-19
E65A VECTOR CONVERT TO DECIMAL VCVDG VRI-i C* VD ¤7,9 SP Dv DF* 25-7
E65B VECTOR PERFORM SIGN OPERATION DECIMAL VPSOP VRI-g C* VD ¤7,9 SP Dv Dg DF* 25-14
E65F VECTOR TEST DECIMAL VTP VRR-g C VD ¤7,9 Dv 25-22
E671 VECTOR ADD DECIMAL VAP VRI-f C* VD ¤7,9 SP Dv Dg DF* 25-3
E673 VECTOR SUBTRACT DECIMAL VSP VRI-f C* VD ¤7,9 SP Dv Dg DF* 25-21
E677 VECTOR COMPARE DECIMAL VCP VRR-h C VD ¤7,9 Dv Dg 25-5
E678 VECTOR MULTIPLY DECIMAL VMP VRI-f C* VD ¤7,9 SP Dv Dg DF* 25-10
E679 VECTOR MULTIPLY AND SHIFT DECIMAL VMSP VRI-f C* VD ¤7,9 SP Dv Dg DF* 25-12
E67A VECTOR DIVIDE DECIMAL VDP VRI-f C* VD ¤7,9 SP Dv Dg DF* DK 25-8
E67B VECTOR REMAINDER DECIMAL VRP VRI-f C* VD ¤7,9 SP Dv Dg DF* DK 25-16
E67E VECTOR SHIFT AND DIVIDE DECIMAL VSDP VRI-f C* VD ¤7,9 SP Dv Dg DF* DK 25-18
E700 VECTOR LOAD ELEMENT (8) VLEB VRX VF ¤7,9 A SP Dv B2 21-9
E701 VECTOR LOAD ELEMENT (16) VLEH VRX VF ¤7,9 A SP Dv B2 21-9
E702 VECTOR LOAD ELEMENT (64) VLEG VRX VF ¤7,9 A SP Dv B2 21-9
E703 VECTOR LOAD ELEMENT (32) VLEF VRX VF ¤7,9 A SP Dv B2 21-9
E704 VECTOR LOAD LOGICAL ELEMENT AND ZERO VLLEZ VRX VF ¤7,9 A SP Dv B2 21-12
E705 VECTOR LOAD AND REPLICATE VLREP VRX VF ¤7,9 A SP Dv B2 21-7
E706 VECTOR LOAD VL VRX VF ¤7,9 A Dv B2 21-6
E707 VECTOR LOAD TO BLOCK BOUNDARY VLBB VRX VF ¤7,9 A SP Dv B2 21-14
E708 VECTOR STORE ELEMENT (8) VSTEB VRX VF ¤7,9 A SP Dv ST B2 21-23
E709 VECTOR STORE ELEMENT (16) VSTEH VRX VF ¤7,9 A SP Dv ST B2 21-23
E70A VECTOR STORE ELEMENT (64) VSTEG VRX VF ¤7,9 A SP Dv ST B2 21-23
E70B VECTOR STORE ELEMENT (32) VSTEF VRX VF ¤7,9 A SP Dv ST B2 21-23
E70E VECTOR STORE VST VRX VF ¤7,9 A Dv ST B2 21-21
E712 VECTOR GATHER ELEMENT (64) VGEG VRV VF ¤7,9 A SP Dv B2 21-5
E713 VECTOR GATHER ELEMENT (32) VGEF VRV VF ¤7,9 A SP Dv B2 21-5
E71A VECTOR SCATTER ELEMENT (64) VSCEG VRV VF ¤7,9 A SP Dv ST B2 21-20
E71B VECTOR SCATTER ELEMENT (32) VSCEF VRV VF ¤7,9 A SP Dv ST B2 21-20
E721 VECTOR LOAD GR FROM VR ELEMENT VLGV VRS-c VF ¤7,9 SP Dv 21-11

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 17 of 24)

B-70 The z/Architecture CPU Architecture

E722 VECTOR LOAD VR ELEMENT FROM GR VLVG VRS-b VF ¤7,9 SP Dv 21-14
E727 LOAD COUNT TO BLOCK BOUNDARY LCBB RXE C VF SP 7-272
E730 VECTOR ELEMENT SHIFT LEFT VESL VRS-a VF ¤7,9 SP Dv 22-23
E733 VECTOR ELEMENT ROTATE LEFT LOGICAL VERLL VRS-a VF ¤7,9 SP Dv 22-21
E736 VECTOR LOAD MULTIPLE VLM VRS-a VF ¤7,9 A SP Dv B2 21-12
E737 VECTOR LOAD WITH LENGTH VLL VRS-b VF ¤7,9 A Dv B2 21-15
E738 VECTOR ELEMENT SHIFT RIGHT LOGICAL VESRL VRS-a VF ¤7,9 SP Dv 22-24
E73A VECTOR ELEMENT SHIFT RIGHT ARITHMETIC VESRA VRS-a VF ¤7,9 SP Dv 22-23
E73E VECTOR STORE MULTIPLE VSTM VRS-a VF ¤7,9 A SP Dv ST B2 21-24
E73F VECTOR STORE WITH LENGTH VSTL VRS-b VF ¤7,9 A Dv ST B2 21-26
E740 VECTOR LOAD ELEMENT IMMEDIATE (8) VLEIB VRI-a VF ¤7,9 SP Dv 21-10
E741 VECTOR LOAD ELEMENT IMMEDIATE (16) VLEIH VRI-a VF ¤7,9 SP Dv 21-10
E742 VECTOR LOAD ELEMENT IMMEDIATE (64) VLEIG VRI-a VF ¤7,9 SP Dv 21-10
E743 VECTOR LOAD ELEMENT IMMEDIATE (32) VLEIF VRI-a VF ¤7,9 SP Dv 21-10
E744 VECTOR GENERATE BYTE MASK VGBM VRI-a VF ¤7,9 Dv 21-5
E745 VECTOR REPLICATE IMMEDIATE VREPI VRI-a VF ¤7,9 SP Dv 21-20
E746 VECTOR GENERATE MASK VGM VRI-b VF ¤7,9 SP Dv 21-6
E74A VECTOR FP TEST DATA CLASS IMMEDIATE VFTCI VRI-e C VF ¤7,9 SP Dv 24-47
E74D VECTOR REPLICATE VREP VRI-c VF ¤7,9 SP Dv 21-19
E750 VECTOR POPULATION COUNT VPOPCT VRR-a VF ¤7,9 SP Dv 22-21
E752 VECTOR COUNT TRAILING ZEROS VCTZ VRR-a VF ¤7,9 SP Dv 22-10
E753 VECTOR COUNT LEADING ZEROS VCLZ VRR-a VF ¤7,9 SP Dv 22-10
E756 VECTOR LOAD VLR VRR-a VF ¤7,9 Dv 21-6
E75C VECTOR ISOLATE STRING VISTR VRR-a C* VF ¤7,9 SP Dv 23-5
E75F VECTOR SIGN EXTEND TO DOUBLEWORD VSEG VRR-a VF ¤7,9 SP Dv 21-21
E760 VECTOR MERGE LOW VMRL VRR-c VF ¤7,9 SP Dv 21-16
E761 VECTOR MERGE HIGH VMRH VRR-c VF ¤7,9 SP Dv 21-15
E762 VECTOR LOAD VR FROM GRS DISJOINT VLVGP VRR-f VF ¤7,9 Dv 21-15
E764 VECTOR SUM ACROSS WORD VSUM VRR-c VF ¤7,9 SP Dv 22-30
E765 VECTOR SUM ACROSS DOUBLEWORD VSUMG VRR-c VF ¤7,9 SP Dv 22-29
E766 VECTOR CHECKSUM VCKSM VRR-c VF ¤7,9 Dv 22-6
E767 VECTOR SUM ACROSS QUADWORD VSUMQ VRR-c VF ¤7,9 SP Dv 22-30
E768 VECTOR AND VN VRR-c VF ¤7,9 Dv 22-5
E769 VECTOR AND WITH COMPLEMENT VNC VRR-c VF ¤7,9 Dv 22-5
E76A VECTOR OR VO VRR-c VF ¤7,9 Dv 22-20
E76B VECTOR NOR VNO VRR-c VF ¤7,9 Dv 22-20
E76C VECTOR NOT EXCLUSIVE OR VNX VRR-c V1 ¤7,9 Dv 22-20
E76D VECTOR EXCLUSIVE OR VX VRR-c VF ¤7,9 Dv 22-11
E76E VECTOR NAND VNN VRR-c V1 ¤7,9 DV 22-20
E76F VECTOR OR WITH COMPLEMENT VOC VRR-c V1 ¤7,9 Dv 22-21
E770 VECTOR ELEMENT SHIFT LEFT VESLV VRR-c VF ¤7,9 SP Dv 22-23
E772 VECTOR ELEMENT ROTATE AND INSERT UNDER

MASK
VERIM VRI-d VF ¤7,9 SP Dv 22-22

E773 VECTOR ELEMENT ROTATE LEFT LOGICAL VERLLV VRR-c VF ¤7,9 SP Dv 22-21
E774 VECTOR SHIFT LEFT VSL VRR-c VF ¤7,9 Dv 22-25
E775 VECTOR SHIFT LEFT BY BYTE VSLB VRR-c VF ¤7,9 Dv 22-25
E777 VECTOR SHIFT LEFT DOUBLE BY BYTE VSLDB VRI-d VF ¤7,9 Dv 22-26
E778 VECTOR ELEMENT SHIFT RIGHT LOGICAL VESRLV VRR-c VF ¤7,9 SP Dv 22-24
E77A VECTOR ELEMENT SHIFT RIGHT ARITHMETIC VESRAV VRR-c VF ¤7,9 SP Dv 22-23
E77C VECTOR SHIFT RIGHT LOGICAL VSRL VRR-c VF ¤7,9 Dv 22-27
E77D VECTOR SHIFT RIGHT LOGICAL BY BYTE VSRLB VRR-c VF ¤7,9 Dv 22-27
E77E VECTOR SHIFT RIGHT ARITHMETIC VSRA VRR-c VF ¤7,9 Dv 22-26
E77F VECTOR SHIFT RIGHT ARITHMETIC BY BYTE VSRAB VRR-c VF ¤7,9 Dv 22-26
E780 VECTOR FIND ELEMENT EQUAL VFEE VRR-b C* VF ¤7,9 SP Dv 23-3
E781 VECTOR FIND ELEMENT NOT EQUAL VFENE VRR-b C* VF ¤7,9 SP Dv 23-4

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 18 of 24)

B-71

E782 VECTOR FIND ANY ELEMENT EQUAL VFAE VRR-b C* VF ¤7,9 SP Dv 23-2
E784 VECTOR PERMUTE DOUBLEWORD IMMEDIATE VPDI VRR-c VF ¤7,9 Dv 21-19
E785 VECTOR BIT PERMUTE VBPERM VRR-c V1 ¤7,9 Dv 21-4
E786 VECTOR SHIFT LEFT DOUBLE BY BIT VSLD VRI-d V2 ¤7,9 SP Dv 22-25
E787 VECTOR SHIFT RIGHT DOUBLE BY BIT VSRD VRI-d V2 ¤7,9 SP Dv 22-26
E78A VECTOR STRING RANGE COMPARE VSTRC VRR-d C* VF ¤7,9 SP Dv 23-6
E78B VECTOR STRING SEARCH VSTRS VRR-d C V2 ¤7,9 SP Dv 23-8
E78C VECTOR PERMUTE VPERM VRR-e VF ¤7,9 Dv 21-18
E78D VECTOR SELECT VSEL VRR-e VF ¤7,9 Dv 21-21
E78E VECTOR FP MULTIPLY AND SUBTRACT VFMS VRR-e VF ¤7,9 SP Dv Xi Xo Xu Xx 24-42
E78F VECTOR FP MULTIPLY AND ADD VFMA VRR-e VF ¤7,9 SP Dv Xi Xo Xu Xx 24-42
E794 VECTOR PACK VPK VRR-c VF ¤7,9 SP Dv 21-16
E795 VECTOR PACK LOGICAL SATURATE VPKLS VRR-b C* VF ¤7,9 SP Dv 21-18
E797 VECTOR PACK SATURATE VPKS VRR-b C* VF ¤7,9 SP Dv 21-17
E79E VECTOR FP NEGATIVE MULTIPLY AND

SUBTRACT
VFNMS VRR-e V1 ¤7,9 SP Dv Xi Xo Xu Xx 24-42

E79F VECTOR FP NEGATIVE MULTIPLY AND ADD VFNMA VRR-e V1 ¤7,9 SP Dv Xi Xo Xu Xx 24-42
E7A1 VECTOR MULTIPLY LOGICAL HIGH VMLH VRR-c VF ¤7,9 SP Dv 22-17
E7A2 VECTOR MULTIPLY LOW VML VRR-c VF ¤7,9 SP Dv 22-17
E7A3 VECTOR MULTIPLY HIGH VMH VRR-c VF ¤7,9 SP Dv 22-16
E7A4 VECTOR MULTIPLY LOGICAL EVEN VMLE VRR-c VF ¤7,9 SP Dv 22-18
E7A5 VECTOR MULTIPLY LOGICAL ODD VMLO VRR-c VF ¤7,9 SP Dv 22-18
E7A6 VECTOR MULTIPLY EVEN VME VRR-c VF ¤7,9 SP Dv 22-18
E7A7 VECTOR MULTIPLY ODD VMO VRR-c VF ¤7,9 SP Dv 22-18
E7A9 VECTOR MULTIPLY AND ADD LOGICAL HIGH VMALH VRR-d VF ¤7,9 SP Dv 22-15
E7AA VECTOR MULTIPLY AND ADD LOW VMAL VRR-d VF ¤7,9 SP Dv 22-14
E7AB VECTOR MULTIPLY AND ADD HIGH VMAH VRR-d VF ¤7,9 SP Dv 22-15
E7AC VECTOR MULTIPLY AND ADD LOGICAL EVEN VMALE VRR-d VF ¤7,9 SP Dv 22-15
E7AD VECTOR MULTIPLY AND ADD LOGICAL ODD VMALO VRR-d VF ¤7,9 SP Dv 22-16
E7AE VECTOR MULTIPLY AND ADD EVEN VMAE VRR-d VF ¤7,9 SP Dv 22-15
E7AF VECTOR MULTIPLY AND ADD ODD VMAO VRR-d VF ¤7,9 SP Dv 22-16
E7B4 VECTOR GALOIS FIELD MULTIPLY SUM VGFM VRR-c VF ¤7,9 SP Dv 22-11
E7B8 VECTOR MULTIPLY SUM LOGICAL VMSL VRR-d V1 ¤7,9 SP Dv 22-19
E7B9 VECTOR ADD WITH CARRY COMPUTE CARRY VACCC VRR-d VF ¤7,9 SP Dv 22-5
E7BB VECTOR ADD WITH CARRY VAC VRR-d VF ¤7,9 SP Dv 22-4
E7BC VECTOR GALOIS FIELD MULTIPLY SUM AND

ACCUMULATE
VGFMA VRR-d VF ¤7,9 SP Dv 22-12

E7BD VECTOR SUBTRACT WITH BORROW COMPUTE
BORROW INDICATION

VSBCBI VRR-d VF ¤7,9 SP Dv 22-29

E7BF VECTOR SUBTRACT WITH BORROW
INDICATION

VSBI VRR-d VF ¤7,9 SP Dv 22-28

E7C0 VECTOR FP CONVERT TO LOGICAL VCLFP VRR-a V2 ¤7,9 SP Dv Xi Xx 24-20
E7C0 VECTOR FP CONVERT TO LOGICAL 64-BIT VCLGD VRR-a VF ¤7,9 SP Dv Xi Xx 24-20
E7C1 VECTOR FP CONVERT FROM LOGICAL VCFPL VRR-a V2 ¤7,9 SP Dv Xx 24-17
E7C1 VECTOR FP CONVERT FROM LOGICAL 64-BIT VCDLG VRR-a VF ¤7,9 SP Dv Xx 24-17
E7C2 VECTOR FP CONVERT TO FIXED VCSFP VRR-a V2 ¤7,9 SP Dv Xi Xx 24-18
E7C2 VECTOR FP CONVERT TO FIXED 64-BIT VCGD VRR-a VF ¤7,9 SP Dv Xi Xx 24-18
E7C3 VECTOR FP CONVERT FROM FIXED VCFPS VRR-a V2 ¤7,9 SP Dv Xx 24-15
E7C3 VECTOR FP CONVERT FROM FIXED 64-BIT VCDG VRR-a VF ¤7,9 SP Dv Xx 24-15
E7C4 VECTOR FP LOAD LENGTHENED VFLL VRR-a VF ¤7,9 SP Dv Xi 24-26
E7C5 VECTOR FP LOAD ROUNDED VFLR VRR-a VF ¤7,9 SP Dv Xi Xo Xu Xx 24-27
E7C7 VECTOR LOAD FP INTEGER VFI VRR-a VF ¤7,9 SP Dv Xi Xx 24-24
E7CA VECTOR FP COMPARE AND SIGNAL SCALAR WFK VRR-a C VF ¤7,9 SP Dv Xi 24-8
E7CB VECTOR FP COMPARE SCALAR WFC VRR-a C VF ¤7,9 SP Dv Xi 24-7
E7CC VECTOR FP PERFORM SIGN OPERATION VFPSO VRR-a VF ¤7,9 SP Dv 24-44
E7CE VECTOR FP SQUARE ROOT VFSQ VRR-a VF ¤7,9 SP Dv Xi Xx 24-45

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 19 of 24)

B-72 The z/Architecture CPU Architecture

E7D4 VECTOR UNPACK LOGICAL LOW VUPLL VRR-a VF ¤7,9 SP Dv 21-27
E7D5 VECTOR UNPACK LOGICAL HIGH VUPLH VRR-a VF ¤7,9 SP Dv 21-26
E7D6 VECTOR UNPACK LOW VUPL VRR-a VF ¤7,9 SP Dv 21-27
E7D7 VECTOR UNPACK HIGH VUPH VRR-a VF ¤7,9 SP Dv 21-26
E7D8 VECTOR TEST UNDER MASK VTM VRR-a C VF ¤7,9 Dv 22-31
E7D9 VECTOR ELEMENT COMPARE LOGICAL VECL VRR-a C VF ¤7,9 SP Dv 22-7
E7DB VECTOR ELEMENT COMPARE VEC VRR-a C VF ¤7,9 SP Dv 22-7
E7DE VECTOR LOAD COMPLEMENT VLC VRR-a VF ¤7,9 SP Dv 22-12
E7DF VECTOR LOAD POSITIVE VLP VRR-a VF ¤7,9 SP Dv 22-12
E7E2 VECTOR FP SUBTRACT VFS VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx 24-46
E7E3 VECTOR FP ADD VFA VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx 24-4
E7E5 VECTOR FP DIVIDE VFD VRR-c VF ¤7,9 SP Dv Xi Xz Xo Xu Xx 24-22
E7E7 VECTOR FP MULTIPLY VFM VRR-c VF ¤7,9 SP Dv Xi Xo Xu Xx 24-40
E7E8 VECTOR FP COMPARE EQUAL VFCE VRR-c C* VF ¤7,9 SP Dv Xi 24-9
E7EA VECTOR FP COMPARE HIGH OR EQUAL VFCHE VRR-c C* VF ¤7,9 SP Dv Xi 24-13
E7EB VECTOR FP COMPARE HIGH VFCH VRR-c C* VF ¤7,9 SP Dv Xi 24-11
E7EE VECTOR FP MINIMUM VFMIN VRR-c V1 ¤7,9 SP Dv Xi 24-34
E7EF VECTOR FP MAXIMUM VFMAX VRR-c V1 ¤7,9 SP Dv Xi 24-28
E7F0 VECTOR AVERAGE LOGICAL VAVGL VRR-c VF ¤7,9 SP Dv 22-6
E7F1 VECTOR ADD COMPUTE CARRY VACC VRR-c VF ¤7,9 SP Dv 22-4
E7F2 VECTOR AVERAGE VAVG VRR-c VF ¤7,9 SP Dv 22-6
E7F3 VECTOR ADD VA VRR-c VF ¤7,9 SP Dv 22-3
E7F5 VECTOR SUBTRACT COMPUTE BORROW

INDICATION
VSCBI VRR-c VF ¤7,9 SP Dv 22-28

E7F7 VECTOR SUBTRACT VS VRR-c VF ¤7,9 SP Dv 22-27
E7F8 VECTOR COMPARE EQUAL VCEQ VRR-b C* VF ¤7,9 SP Dv 22-7
E7F9 VECTOR COMPARE HIGH LOGICAL VCHL VRR-b C* VF ¤7,9 SP Dv 22-9
E7FB VECTOR COMPARE HIGH VCH VRR-b C* VF ¤7,9 SP Dv 22-8
E7FC VECTOR MINIMUM LOGICAL VMNL VRR-c VF ¤7,9 SP Dv 22-14
E7FD VECTOR MAXIMUM LOGICAL VMXL VRR-c VF ¤7,9 SP Dv 22-13
E7FE VECTOR MINIMUM VMN VRR-c VF ¤7,9 SP Dv 22-13
E7FF VECTOR MAXIMUM VMX VRR-c VF ¤7,9 SP Dv 22-13
E8 MOVE INVERSE MVCIN SS-a ¤9 A ST B1 B2 7-289
E9 PACK ASCII PKA SS-f E2 ¤9 A SP ST B1 B2 7-315
EA UNPACK ASCII UNPKA SS-a C E2 ¤9 A SP ST B1 B2 7-423
EB04 LOAD MULTIPLE (64) LMG RSY-a N A B2 7-281
EB0A SHIFT RIGHT SINGLE (64) SRAG RSY-a C N 7-382
EB0B SHIFT LEFT SINGLE (64) SLAG RSY-a C N IF 7-379
EB0C SHIFT RIGHT SINGLE LOGICAL (64) SRLG RSY-a N 7-383
EB0D SHIFT LEFT SINGLE LOGICAL (64) SLLG RSY-a N 7-380
EB0F TRACE (64) TRACG RSY-a N P A SP T ¢ B2 10-176
EB14 COMPARE AND SWAP (32) CSY RSY-a C LD ¤9 A SP $ ST B2 7-143
EB1C ROTATE LEFT SINGLE LOGICAL (64) RLLG RSY-a N 7-367
EB1D ROTATE LEFT SINGLE LOGICAL (32) RLL RSY-a N3 7-367
EB20 COMPARE LOGICAL CHAR. UNDER MASK (high) CLMH RSY-b C N A B2 7-156
EB21 COMPARE LOGICAL CHAR. UNDER MASK (low) CLMY RSY-b C LD A B2 7-156
EB23 COMPARE LOGICAL AND TRAP (32) CLT RSY-b MI1 A Dc B2 7-154
EB24 STORE MULTIPLE (64) STMG RSY-a N A ST B2 7-392
EB25 STORE CONTROL (64) STCTG RSY-a N P A SP ST B2 10-138
EB26 STORE MULTIPLE HIGH (32) STMH RSY-a N A ST B2 7-392
EB2B COMPARE LOGICAL AND TRAP (64) CLGT RSY-b MI1 A Dc B2 7-154
EB2C STORE CHARACTERS UNDER MASK (high) STCMH RSY-b N ¤9,11 A ST B2 7-385
EB2D STORE CHARACTERS UNDER MASK (low) STCMY RSY-b LD A ST B2 7-385
EB2F LOAD CONTROL (64) LCTLG RSY-a N P A SP B2 10-50
EB30 COMPARE AND SWAP (64) CSG RSY-a C N ¤9 A SP $ ST B2 7-143

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 20 of 24)

B-73

EB31 COMPARE DOUBLE AND SWAP (32) CDSY RSY-a C LD ¤9 A SP $ ST B2 7-143
EB3E COMPARE DOUBLE AND SWAP (64) CDSG RSY-a C N ¤9 A SP $ ST B2 7-143
EB44 BRANCH ON INDEX HIGH (64) BXHG RSY-a N ¤9 B 7-41
EB45 BRANCH ON INDEX LOW OR EQUAL (64) BXLEG RSY-a N ¤9 B 7-41
EB4C EXTRACT CPU ATTRIBUTE ECAG RSY-a GE ¤9 7-256
EB51 TEST UNDER MASK TMY SIY C LD A B1 7-400
EB52 MOVE (immediate) MVIY SIY LD A ST B1 7-288
EB54 AND (immediate) NIY SIY C LD A £2 ST B1 7-33
EB55 COMPARE LOGICAL (immediate) CLIY SIY C LD A B1 7-151
EB56 OR (immediate) OIY SIY C LD A ST B1 7-312
EB57 EXCLUSIVE OR (immediate) XIY SIY C LD A ST B1 7-254
EB6A ADD IMMEDIATE (328) ASI SIY C GE A IF £1 ST B1 7-26
EB6E ADD LOGICAL WITH SIGNED IMMEDIATE (328) ALSI SIY C GE A £1 ST B1 7-31
EB7A ADD IMMEDIATE (648) AGSI SIY C GE A IF £1 ST B1 7-26
EB7E ADD LOGICAL WITH SIGNED IMMEDIATE (648) ALGSI SIY C GE A £1 ST B1 7-31
EB80 INSERT CHARACTERS UNDER MASK (high) ICMH RSY-b C N A B2 7-261
EB81 INSERT CHARACTERS UNDER MASK (low) ICMY RSY-b C LD A B2 7-261
EB8E MOVE LONG UNICODE MVCLU RSY-a C E2 ¤9 A SP IC ST R1 R3 7-296
EB8F COMPARE LOGICAL LONG UNICODE CLCLU RSY-a C E2 ¤9 A SP IC R1 R2 7-162
EB90 STORE MULTIPLE (32) STMY RSY-a LD A ST B2 7-392
EB96 LOAD MULTIPLE HIGH (32) LMH RSY-a N A B2 7-282
EB98 LOAD MULTIPLE (32) LMY RSY-a LD A B2 7-281
EB9A LOAD ACCESS MULTIPLE LAMY RSY-a LD ¤6 A SP UB 7-264
EB9B STORE ACCESS MULTIPLE STAMY RSY-a LD A SP ST UB 7-384
EBC0 TEST DECIMAL TP RSL-a C E2 ¤9 A B1 B2 8-14
EBDC SHIFT RIGHT SINGLE (32) SRAK RSY-a C DO 7-382
EBDD SHIFT LEFT SINGLE (32) SLAK RSY-a C DO IF 7-379
EBDE SHIFT RIGHT SINGLE LOGICAL (32) SRLK RSY-a DO 7-383
EBDF SHIFT LEFT SINGLE LOGICAL (32) SLLK RSY-a DO 7-380
EBE0 LOAD HIGH ON CONDITION (32) LOCFH RSY-b L2 A B2 7-283
EBE1 STORE HIGH ON CONDITION STOCFH RSY-b L2 A ST B2 7-393
EBE2 LOAD ON CONDITION (64) LOCG RSY-b L1 A B2 7-283
EBE3 STORE ON CONDITION (64) STOCG RSY-b L1 A ST B2 7-392
EBE4 LOAD AND AND (64) LANG RSY-a C IA ¤9 A SP £ ST B2 7-268
EBE6 LOAD AND OR (64) LAOG RSY-a C IA ¤9 A SP £ ST B2 7-269
EBE7 LOAD AND EXCLUSIVE OR (64) LAXG RSY-a C IA ¤9 A SP £ ST B2 7-268
EBE8 LOAD AND ADD (64) LAAG RSY-a C IA ¤9 A SP IF £ ST B2 7-267
EBEA LOAD AND ADD LOGICAL (64) LAALG RSY-a C IA ¤9 A SP £ ST B2 7-267
EBF2 LOAD ON CONDITION (32) LOC RSY-b L1 A B2 7-283
EBF3 STORE ON CONDITION (32) STOC RSY-b L1 A ST B2 7-392
EBF4 LOAD AND AND (32) LAN RSY-a C IA ¤9 A SP £ ST B2 7-268
EBF6 LOAD AND OR (32) LAO RSY-a C IA ¤9 A SP £ ST B2 7-269
EBF7 LOAD AND EXCLUSIVE OR (32) LAX RSY-a C IA ¤9 A SP £ ST B2 7-268
EBF8 LOAD AND ADD (32) LAA RSY-a C IA ¤9 A SP IF £ ST B2 7-267
EBFA LOAD AND ADD LOGICAL (32) LAAL RSY-a C IA ¤9 A SP £ ST B2 7-267
EC42 LOAD HALFWORD IMMEDIATE ON CONDITION

(3216)
LOCHI RIE-g L2 7-276

EC44 BRANCH RELATIVE ON INDEX HIGH (64) BRXHG RIE-e N ¤9 B 7-47
EC45 BRANCH RELATIVE ON INDEX LOW OR EQ. (64) BRXLG RIE-e N ¤9 B 7-48
EC46 LOAD HALFWORD IMMEDIATE ON CONDITION

(6416)
LOCGHI RIE-g L2 7-276

EC4E LOAD HALFWORD HIGH IMMEDIATE ON
CONDITION (3216)

LOCHHI RIE-g L2 7-276

EC51 ROTATE THEN INSERT SELECTED BITS LOW (64) RISBLG RIE-f HW 7-371
EC54 ROTATE THEN AND SELECTED BITS (64) RNSBG RIE-f C GE 7-368

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 21 of 24)

B-74 The z/Architecture CPU Architecture

EC55 ROTATE THEN INSERT SELECTED BITS (64) RISBG RIE-f C GE 7-369
EC56 ROTATE THEN OR SELECTED BITS (64) ROSBG RIE-f C GE 7-368
EC57 ROTATE THEN EXCLUSIVE OR SELECT. BITS (64) RXSBG RIE-f C GE 7-368
EC59 ROTATE THEN INSERT SELECTED BITS (64) RISBGN RIE-f MI1 7-369
EC5D ROTATE THEN INSERT SELECTED BITS HIGH

(64)
RISBHG RIE-f HW 7-371

EC64 COMPARE AND BRANCH RELATIVE (64) CGRJ RIE-b GE ¤10 B 7-135
EC65 COMPARE LOGICAL AND BRANCH RELATIVE

(64)
CLGRJ RIE-b GE ¤10 B 7-153

EC70 COMPARE IMMEDIATE AND TRAP (6416) CGIT RIE-a GE Dc 7-148
EC71 COMPARE LOGICAL IMMEDIATE AND TRAP

(6416)
CLGIT RIE-a GE Dc 7-155

EC72 COMPARE IMMEDIATE AND TRAP (3216) CIT RIE-a GE Dc 7-148
EC73 COMPARE LOGICAL IMMEDIATE AND TRAP

(3216)
CLFIT RIE-a GE Dc 7-155

EC76 COMPARE AND BRANCH RELATIVE (32) CRJ RIE-b GE ¤10 B 7-134
EC77 COMPARE LOGICAL AND BRANCH RELATIVE

(32)
CLRJ RIE-b GE ¤10 B 7-153

EC7C COMPARE IMMEDIATE AND BRANCH RELATIVE
(648)

CGIJ RIE-c GE ¤10 B 7-135

EC7D COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE (648)

CLGIJ RIE-c GE ¤10 B 7-153

EC7E COMPARE IMMEDIATE AND BRANCH RELATIVE
(328)

CIJ RIE-c GE ¤10 B 7-135

EC7F COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE (328)

CLIJ RIE-c GE ¤10 B 7-153

ECD8 ADD IMMEDIATE (3216) AHIK RIE-d C DO IF 7-26
ECD9 ADD IMMEDIATE (6416) AGHIK RIE-d C DO IF 7-26
ECDA ADD LOGICAL WITH SIGNED IMMEDIATE

(3216)
ALHSIK RIE-d C DO 7-31

ECDB ADD LOGICAL WITH SIGNED IMMEDIATE
(6416)

ALGHSIK RIE-d C DO 7-31

ECE4 COMPARE AND BRANCH (64) CGRB RRS GE ¤9 B 7-134
ECE5 COMPARE LOGICAL AND BRANCH (64) CLGRB RRS GE ¤9 B 7-153
ECF6 COMPARE AND BRANCH (32) CRB RRS GE ¤9 B 7-134
ECF7 COMPARE LOGICAL AND BRANCH (32) CLRB RRS GE ¤9 B 7-153
ECFC COMPARE IMMEDIATE AND BRANCH (648) CGIB RIS GE ¤9 B 7-135
ECFD COMPARE LOGICAL IMMEDIATE AND BRANCH

(648)
CLGIB RIS GE ¤9 B 7-153

ECFE COMPARE IMMEDIATE AND BRANCH (328) CIB RIS GE ¤9 B 7-135
ECFF COMPARE LOGICAL IMMEDIATE AND BRANCH

(328)
CLIB RIS GE ¤9 B 7-153

ED04 LOAD LENGTHENED (short to long BFP) LDEB RXE ¤7,9 A Db Xi B2 19-34
ED05 LOAD LENGTHENED (long to extended BFP) LXDB RXE ¤7,9 A SP Db Xi B2 19-34
ED06 LOAD LENGTHENED (short to extended BFP) LXEB RXE ¤7,9 A SP Db Xi B2 19-34
ED07 MULTIPLY (long to extended BFP) MXDB RXE ¤7,9 A SP Db Xi B2 19-37
ED08 COMPARE AND SIGNAL (short BFP) KEB RXE C ¤7,9 A Db Xi B2 19-18
ED09 COMPARE (short BFP) CEB RXE C ¤7,9 A Db Xi B2 19-17
ED0A ADD (short BFP) AEB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 19-15
ED0B SUBTRACT (short BFP) SEB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 19-40
ED0C MULTIPLY (short to long BFP) MDEB RXE ¤7,9 A Db Xi B2 19-37
ED0D DIVIDE (short BFP) DEB RXE ¤7,9 A Db Xi Xz Xo Xu Xx B2 19-27
ED0E MULTIPLY AND ADD (short BFP) MAEB RXF ¤7,9 A Db Xi Xo Xu Xx B2 19-38
ED0F MULTIPLY AND SUBTRACT (short BFP) MSEB RXF ¤7,9 A Db Xi Xo Xu Xx B2 19-38
ED10 TEST DATA CLASS (short BFP) TCEB RXE C ¤7,9 Db 19-41
ED11 TEST DATA CLASS (long BFP) TCDB RXE C ¤7,9 Db 19-41

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 22 of 24)

B-75

ED12 TEST DATA CLASS (extended BFP) TCXB RXE C ¤7,9 SP Db 19-41
ED14 SQUARE ROOT (short BFP) SQEB RXE ¤7,9 A Db Xi Xx B2 19-40
ED15 SQUARE ROOT (long BFP) SQDB RXE ¤7,9 A Db Xi Xx B2 19-40
ED17 MULTIPLY (short BFP) MEEB RXE ¤7,9 A Db Xi Xo Xu Xx B2 19-37
ED18 COMPARE AND SIGNAL (long BFP) KDB RXE C ¤7,9 A Db Xi B2 19-18
ED19 COMPARE (long BFP) CDB RXE C ¤7,9 A Db Xi B2 19-17
ED1A ADD (long BFP) ADB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 19-15
ED1B SUBTRACT (long BFP) SDB RXE C ¤7,9 A Db Xi Xo Xu Xx B2 19-40
ED1C MULTIPLY (long BFP) MDB RXE ¤7,9 A Db Xi Xo Xu Xx B2 19-37
ED1D DIVIDE (long BFP) DDB RXE ¤7,9 A Db Xi Xz Xo Xu Xx B2 19-27
ED1E MULTIPLY AND ADD (long BFP) MADB RXF ¤7,9 A Db Xi Xo Xu Xx B2 19-38
ED1F MULTIPLY AND SUBTRACT (long BFP) MSDB RXF ¤7,9 A Db Xi Xo Xu Xx B2 19-38
ED24 LOAD LENGTHENED (short to long HFP) LDE RXE ¤7,9 A Da B2 18-15
ED25 LOAD LENGTHENED (long to extended HFP) LXD RXE ¤7,9 A SP Da B2 18-15
ED26 LOAD LENGTHENED (short to extended HFP) LXE RXE ¤7,9 A SP Da B2 18-15
ED2E MULTIPLY AND ADD (short HFP) MAE RXF HM ¤7,9 A Da EU EO B2 18-19
ED2F MULTIPLY AND SUBTRACT (short HFP) MSE RXF HM ¤7,9 A Da EU EO B2 18-19
ED34 SQUARE ROOT (short HFP) SQE RXE ¤7,9 A Da SQ B2 18-23
ED35 SQUARE ROOT (long HFP) SQD RXE ¤7,9 A Da SQ B2 18-23
ED37 MULTIPLY (short HFP) MEE RXE ¤7,9 A Da EU EO B2 18-18
ED38 MULTIPLY AND ADD UNNRM. (long to ext. low

HFP)
MAYL RXF UE ¤7,9 A Da B2 18-20

ED39 MULTIPLY UNNORM. (long to ext. low HFP) MYL RXF UE ¤7,9 A Da B2 18-22
ED3A MULTIPLY & ADD UNNORMALIZED (long to ext.

HFP)
MAY RXF UE ¤7,9 A Da B2 18-20

ED3B MULTIPLY UNNORMALIZED (long to ext. HFP) MY RXF UE ¤7,9 A SP Da B2 18-22
ED3C MULTIPLY AND ADD UNNRM. (long to ext. high

HFP)
MAYH RXF UE ¤7,9 A Da B2 18-20

ED3D MULTIPLY UNNORM. (long to ext. high HFP) MYH RXF UE ¤7,9 A Da B2 18-22
ED3E MULTIPLY AND ADD (long HFP) MAD RXF HM ¤7,9 A Da EU EO B2 18-19
ED3F MULTIPLY AND SUBTRACT (long HFP) MSD RXF HM ¤7,9 A Da EU EO B2 18-19
ED40 SHIFT SIGNIFICAND LEFT (long DFP) SLDT RXF TF ¤7,9 Dt 20-54
ED41 SHIFT SIGNIFICAND RIGHT (long DFP) SRDT RXF TF ¤7,9 Dt 20-54
ED48 SHIFT SIGNIFICAND LEFT (extended DFP) SLXT RXF TF ¤7,9 SP Dt 20-54
ED49 SHIFT SIGNIFICAND RIGHT (extended DFP) SRXT RXF TF ¤7,9 SP Dt 20-54
ED50 TEST DATA CLASS (short DFP) TDCET RXE C TF ¤7,9 Dt 20-56
ED51 TEST DATA GROUP (short DFP) TDGET RXE C TF ¤7,9 Dt 20-57
ED54 TEST DATA CLASS (long DFP) TDCDT RXE C TF ¤7,9 Dt 20-56
ED55 TEST DATA GROUP (long DFP) TDGDT RXE C TF ¤7,9 Dt 20-57
ED58 TEST DATA CLASS (extended DFP) TDCXT RXE C TF ¤7,9 SP Dt 20-56
ED59 TEST DATA GROUP (extended DFP) TDGXT RXE C TF ¤7,9 SP Dt 20-57
ED64 LOAD (short) LEY RXY-a LD ¤7,9 A Da B2 9-31
ED65 LOAD (long) LDY RXY-a LD ¤7,9 A Da B2 9-31
ED66 STORE (short) STEY RXY-a LD ¤7,9 A Da ST B2 9-49
ED67 STORE (long) STDY RXY-a LD ¤7,9 A Da ST B2 9-49
EDA8 CONVERT TO ZONED (from long DFP) CZDT RSL-b C ZF ¤7,9 A SP ST B2 20-36
EDA9 CONVERT TO ZONED (from extended DFP) CZXT RSL-b C ZF ¤7,9 A SP ST B2 20-36
EDAA CONVERT FROM ZONED (to long DFP) CDZT RSL-b ZF ¤7,9 A SP Dt Dg B2 20-29
EDAB CONVERT FROM ZONED (to extended DFP) CXZT RSL-b ZF ¤7,9 A SP Dt Dg B2 20-29
EDAC CONVERT TO PACKED (from long DFP) CPDT RSL-b C PC ¤7,9 A SP Dt DF ST B2 20-33
EDAD CONVERT TO PACKED (from extended DFP) CPXT RSL-b C PC ¤7,9 A SP Dt DF ST B2 20-33
EDAE CONVERT FROM PACKED (to long DFP) CDPT RSL-b PC ¤7,9 A SP Dt Dg B2 20-26
EDAF CONVERT FROM PACKED (to extended DFP) CXPT RSL-b PC ¤7,9 A SP Dt Dg B2 20-26
EE PERFORM LOCKED OPERATION PLO SS-e C ¤1 A SP $ GM ST FC 7-337
EF LOAD MULTIPLE DISJOINT (6432&32) LMD SS-e N ¤9 A B2 B4 7-282

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 23 of 24)

B-76 The z/Architecture CPU Architecture

F0 SHIFT AND ROUND DECIMAL SRP SS-c C ¤9 A Dg DF ST B1 B2 8-12
F1 MOVE WITH OFFSET MVO SS-b ¤9 A ST B1 B2 7-302
F2 PACK PACK SS-b ¤9 A ST B1 B2 7-314
F3 UNPACK UNPK SS-b ¤9 A ST B1 B2 7-423
F8 ZERO AND ADD ZAP SS-b C ¤9 A Dg DF ST B1 B2 8-14
F9 COMPARE DECIMAL CP SS-b C ¤9 A Dg B1 B2 8-7
FA ADD DECIMAL AP SS-b C ¤9 A Dg DF ST B1 B2 8-6
FB SUBTRACT DECIMAL SP SS-b C ¤9 A Dg DF ST B1 B2 8-13
FC MULTIPLY DECIMAL MP SS-b ¤9 A SP Dg ST B1 B2 8-12
FD DIVIDE DECIMAL DP SS-b ¤9 A SP Dg DK ST B1 B2 8-7

Op-
code Name

Mne-
monic Characteristics Page

Figure B-3. Instructions Arranged by Opcode (Part 24 of 24)

C-1© Copyright IBM Corp. 2000, 2019

Appendix C. Condition-Code Settings

This appendix lists the condition-code setting for
instructions in z/Architecture which set the condition
code. In addition to those instructions listed which set
the condition code, the condition code may be
changed by DIAGNOSE and the target of EXECUTE.
The condition code is loaded by LOAD PSW, LOAD
PSW EXTENDED, PROGRAM RETURN, RESUME
PROGRAM, and SET PROGRAM MASK and by an

interruption. The condition code is set to zero by ini-
tial CPU reset and is loaded by the successful con-
clusion of the initial-program-loading sequence.

Some models may offer instructions which set the
condition code and do not appear in this document,
such as those provided for assists or as part of spe-
cial or custom features.

Instruction
Condition Code

0 1 2 3
ADD (BFP, DFP) Zero < zero > zero NaN

ADD (general) Zero < zero > zero Overflow
ADD DECIMAL Zero < zero > zero Overflow

ADD HALFWORD Zero < zero > zero Overflow

ADD HALFWORD IMMEDIATE Zero < zero > zero Overflow
ADD HIGH Zero < zero > zero Overflow

ADD IMMEDIATE Zero < zero > zero Overflow

ADD IMMEDIATE HIGH Zero < zero > zero Overflow
ADD LOGICAL Zero, no carry Not zero, no carry Zero, carry Not zero, carry

ADD LOGICAL HIGH Zero, no carry Not zero, no carry Zero, carry Not zero, carry

ADD LOGICAL IMMEDIATE Zero, no carry Not zero, no carry Zero, carry Not zero, carry
ADD LOGICAL WITH CARRY Zero, no carry Not zero, no carry Zero, carry Not zero, carry

ADD LOGICAL WITH SIGNED IMMEDIATE Zero, no carry Not zero, no carry Zero, carry Not zero, carry

ADD LOGICAL WITH SIGNED IMMEDIATE HIGH Zero, no carry Not zero, no carry Zero, carry Not zero, carry
ADD NORMALIZED Zero < zero > zero —

ADD UNNORMALIZED Zero < zero > zero —

AND Zero Not zero — —
AND IMMEDIATE Zero Not zero — —

AND WITH COMPLEMENT Zero Not zero — —

CANCEL SUBCHANNEL Function initiated — — Not operational
CHECKSUM Checksum complete — — CPU-determined

completion
CIPHER MESSAGE Normal completion Verification mismatch — Partial completion

CIPHER MESSAGE WITH AUTHENTICATION Normal completion Verification mismatch Partial completion
(LAAD or LPC zero)

Partial completion
(time out)

CIPHER MESSAGE WITH CHAINING Normal completion Verification mismatch — Partial completion

CIPHER MESSAGE WITH CIPHER FEEDBACK Normal completion Verification mismatch — Partial completion
CIPHER MESSAGE WITH COUNTER Normal completion Verification mismatch — Partial completion

CIPHER MESSAGE WITH OUTPUT FEEDBACK Normal completion Verification mismatch — Partial completion

CLEAR SUBCHANNEL Function initiated — — Not operational
COMPARE (BFP, DFP) Equal Low High Unordered

COMPARE (general, HFP) Equal Low High —

COMPARE AND FORM CODEWORD Equal OCB=0: low
OCB=1: high

OCB=0: high
OCB=1: low

—

COMPARE AND REPLACE DAT TABLE ENTRY Equal Not equal — —

Figure C-1. Summary of Condition-Code Settings (Part 1 of 7)

C-2 The z/Architecture CPU Architecture

COMPARE AND SIGNAL Equal Low High Unordered

COMPARE AND SWAP Equal Not equal — —

COMPARE AND SWAP AND PURGE Equal Not equal — —
COMPARE AND SWAP AND STORE Equal Not equal — —

COMPARE BIASED EXPONENT Equal Low High Unordered

COMPARE DECIMAL Equal Low High —

COMPARE DOUBLE AND SWAP Equal Not equal — —
COMPARE HALFWORD Equal Low High —

COMPARE HALFWORD IMMEDIATE Equal Low High —

COMPARE HALFWORD RELATIVE LONG Equal Low High —
COMPARE HIGH Equal Low High —

COMPARE IMMEDIATE Equal Low High —

COMPARE IMMEDIATE HIGH Equal Low High —
COMPARE LOGICAL Equal Low High —

COMPARE LOGICAL CHARACTERS UNDER
MASK

Equal Low High —

COMPARE LOGICAL HIGH Equal Low High —

COMPARE LOGICAL IMMEDIATE Equal Low High —
COMPARE LOGICAL IMMEDIATE HIGH Equal Low High —

COMPARE LOGICAL LONG Equal Low High —

COMPARE LOGICAL LONG EXTENDED Equal Low High CPU-determined
completion

COMPARE LOGICAL LONG UNICODE Equal Low High CPU-determined
completion

COMPARE LOGICAL RELATIVE LONG Equal Low High —
COMPARE LOGICAL STRING Equal Low High CPU-determined

completion
COMPARE RELATIVE LONG Equal Low High —

COMPARE UNTIL SUBSTRING EQUAL Equal substrings Last bytes equal Last bytes unequal CPU-determined
completion

COMPRESSION CALL Op2 processed Op1 full and op2 not
processed

— CPU-determined
completion

COMPUTE DIGITAL SIGNATURE
AUTHENTICATION

Verify: Signature
verified; Sign: Normal
Completion

Verify: public key not
on curve; Sign: key
verification-pattern
mismatch; Sign &
Verify: reserved area

Verify: signature is
incorrect or invalid;
Sign: random number
is not invertible if
deterministic

Partial completion

COMPUTE INTERMEDIATE MESSAGE DIGEST Normal completion — — Partial completion

COMPUTE LAST MESSAGE DIGEST Normal completion — — Partial completion
COMPUTE MESSAGE AUTHENTICATION CODE Normal completion Verification mismatch — Partial completion

CONVERT BFP TO HFP Zero < zero > zero Special case

CONVERT HFP TO BFP Zero < zero > zero Special case
CONVERT TO FIXED Zero < zero > zero Special case

CONVERT TO LOGICAL Zero < zero > zero Special case

CONVERT TO PACKED Source is zero Source is less than
zero

Source is greater than
zero

Infinity, QNaN, SNaN,
Partial result

CONVERT TO ZONED Source is zero Source is less than
zero

Source is greater than
zero

Infinity, QNaN, SNaN,
Partial result

Instruction
Condition Code

0 1 2 3

Figure C-1. Summary of Condition-Code Settings (Part 2 of 7)

C-3

CONVERT UTF-16 TO UTF-32 Data processed Op1 full Invalid low surrogate CPU-determined
completion

CONVERT UTF-16 TO UTF-8 Data processed Op1 full Invalid low surrogate CPU-determined
completion

CONVERT UTF-32 TO UTF-16 Data processed Op1 full Invalid UTF-32
character

CPU-determined
completion

CONVERT UTF-32 TO UTF-8 Data processed Op1 full Invalid UTF-32
character

CPU-determined
completion

CONVERT UTF-8 TO UTF-16 Data processed Op1 full Invalid UTF-8
character

CPU-determined
completion

CONVERT UTF-8 TO UTF-32 Data processed Op1 full Invalid UTF-8
character

CPU-determined
completion

DEFLATE CONVERSION CALL Normal Completion op1 length insufficient op2 length insufficient
(DFLTCC-XPND) or
invalid input

CPU-determined
completion

DIAGNOSE1 See note See note See note See note

DIVIDE TO INTEGER Remainder complete;
normal quotient

Remainder complete;
quotient overflow or
NaN

Remainder
incomplete; normal
quotient

Remainder
incomplete; quotient
overflow or NaN

EDIT Zero < zero > zero —

EDIT AND MARK Zero < zero > zero —
EXCLUSIVE OR Zero Not zero — —

EXCLUSIVE OR IMMEDIATE Zero Not zero — —

EXTRACT STACKED STATE Branch state entry Program-call state
entry

— —

FIND LEFTMOST ONE No one bit found — One bit found —
HALT SUBCHANNEL Function initiated Status-pending with

other than
intermediate status

Busy Not operational

INSERT ADDRESS SPACE CONTROL Primary-space mode Secondary-space
mode

Access-register mode Home-space mode

INSERT CHARACTERS UNDER MASK All zeros First bit one First bit zero —

LOAD ADDRESS SPACE PARAMETERS Parameters loaded Primary ASN not
available

Secondary ASN not
available or not
authorized

Space-switch event

LOAD AND TEST (BFP, DFP) Zero < zero > zero NaN

LOAD AND TEST (general, HFP) Zero < zero > zero —
LOAD COMPLEMENT (BFP) Zero < zero > zero NaN

LOAD COMPLEMENT (gen) Zero < zero > zero Overflow

LOAD COMPLEMENT (HFP) Zero < zero > zero —
LOAD COUNT TO BLOCK BOUNDARY Operand 1 = 16 — — Operand 1 < 16

LOAD NEGATIVE (BFP) Zero < zero — NaN

LOAD NEGATIVE (gen, HFP) Zero < zero — —

LOAD PAGE TABLE ENTRY ADDRESS Translation, STE.P = 0 Translation, STE.P = 1 I bit on in RTE or STE,
or enhanced-DAT
applies and STE.FC=1

Exception condition
exists

LOAD POSITIVE (BFP) Zero — > zero NaN

LOAD POSITIVE (gen) Zero — > zero Overflow

Instruction
Condition Code

0 1 2 3

Figure C-1. Summary of Condition-Code Settings (Part 3 of 7)

C-4 The z/Architecture CPU Architecture

LOAD POSITIVE (HFP) Zero — > zero —

LOAD PSW3 / LOAD PSW EXTENDED3 See note See note See note See note

LOAD REAL ADDRESS 2 Translation available ST entry invalid PT entry invalid ASCE or entry not
available or length
violation

MODIFY SUBCHANNEL SCHIB information
placed in subchannel

Status-pending Busy Not operational

MOVE LONG Length equal Length low Length high Destructive overlap

MOVE LONG EXTENDED Length equal Length low Length high CPU-determined
completion

MOVE LONG UNICODE Length equal Length low Length high CPU-determined
completion

MOVE PAGE Data moved Operand 1 invalid,
both valid in ES,
locked, or ES error

Operand 2 invalid —

MOVE STRING — Data moved — CPU-determined
completion

MOVE TO PRIMARY Length 256 — — Length > 256

MOVE TO SECONDARY Length 256 — — Length > 256

MOVE WITH KEY Length 256 — — Length > 256
MOVE WITH OPTIONAL SPECIFICATIONS Length 4,096 — — Length > 4,096

NAND Zero Not zero — —

NOR Zero Not zero — —
NOT EXCLUSIVE OR Zero Not zero — —

OR Zero Not zero — —

OR IMMEDIATE Zero Not zero — —
OR WITH COMPLEMENT Zero Not zero — —

PAGE IN Page-in operation
completed

Expanded-storage
data error

— Expanded-storage
block not available

PAGE OUT Page-out operation
completed

Expanded-storage
data error

— Expanded-storage
block not available

PERFORM CRYPTOGRAPHIC COMPUTATION Normal completion Verification mismatch;
Scalar-Multiply: source
not on curve or out of
range, d out of range

Invalid index or length;
Scalar-Multiply: d is
zero which yields
result of infinity

Partial completion

PERFORM FLOATING-POINT OPERATION (test
bit one)

Function code valid — — Function code invalid

PERFORM FLOATING-POINT OPERATION (test
bit zero)

Normal result Nontrap exception Trap exception with
alternate action

—

PERFORM LOCKED OPERATION (test bit one) Function code valid — — Function code invalid
PERFORM LOCKED OPERATION (test bit zero) Equal Op1 not equal Op1 equal, op3 not

equal (dcs only)
—

PERFORM RANDOM NUMBER OPERATION Normal completion — — Partial completion

PERFORM TIMING FACILITY FUNCTION Function performed — — Function not available

PERFORM TOPOLOGY FUNCTION (FC 0 or 1) Change initiated — Request rejected —

PERFORM TOPOLOGY FUNCTION (FC 2) Report not pending Report pending — —
POPULATION COUNT Zero Not zero — —

PROGRAM RETURN See note See note See note See note

RESET CHANNEL PATH Function initiated — Busy Not operational

Instruction
Condition Code

0 1 2 3

Figure C-1. Summary of Condition-Code Settings (Part 4 of 7)

C-5

RESET REFERENCE BIT EXTENDED R bit zero,
C bit zero

R bit zero,
C bit one

R bit one,
C bit zero

R bit one,
C bit one

RESUME PROGRAM3 See note See note See note See note

RESUME SUBCHANNEL Function initiated Status pending Function not
applicable

Not operational

ROTATE THEN AND SELECTED BITS Zero Not zero — —
ROTATE THEN EXCLUSIVE OR SELECTED BITS Zero Not zero — —

ROTATE THEN INSERT SELECTED BITS Zero < zero > zero —

ROTATE THEN OR SELECTED BITS Zero Not zero — —
SEARCH STRING — Found Not found CPU-determined

completion
SEARCH STRING UNICODE — Found Not found CPU-determined

completion
SET CLOCK Set Secure — Not operational

SET PROGRAM MASK4 See note See note See note See note

SET STORAGE KEY EXTENDED Storage key not set Entire storage key set Partial storage key set Entire storage key set;
bits 48-55 of GR R1
unpredictable

SHIFT AND ROUND DECIMAL Zero < zero > zero Overflow

SHIFT LEFT (DOUBLE/SINGLE) Zero < zero > zero Overflow
SHIFT RIGHT (DOUBLE/SINGLE) Zero < zero > zero —

SIGNAL PROCESSOR Order accepted Status stored Busy Not operational

START SUBCHANNEL Function initiated Status-pending Busy Not operational
STORE CHANNEL REPORT WORD CRW stored Zeros stored — —

STORE CLOCK Set Not set Error Stopped or not
operational

STORE CLOCK EXTENDED Set Not set Error Stopped or not
operational

STORE CLOCK FAST Set Not set Error Stopped or not
operational

STORE FACILITY LIST EXTENDED Complete facility list
stored

— — Incomplete facility list
stored

STORE SUBCHANNEL SCHIB stored — — Not operational

STORE SYSTEM INFORMATION Information provided — — Information not
available

SUBTRACT (BFP, DFP) Zero < zero > zero NaN
SUBTRACT (general) Zero < zero > zero Overflow

SUBTRACT DECIMAL Zero < zero > zero Overflow

SUBTRACT HALFWORD Zero < zero > zero Overflow
SUBTRACT HIGH Zero < zero > zero Overflow

SUBTRACT LOGICAL — Not zero, borrow Zero, no borrow Not zero, no borrow

SUBTRACT LOGICAL HIGH — Not zero, borrow Zero, no borrow Not zero, no borrow
SUBTRACT LOGICAL IMMEDIATE — Not zero, borrow Zero, no borrow Not zero, no borrow

SUBTRACT LOGICAL WITH BORROW Zero, borrow Not zero, borrow Zero, no borrow Not zero, no borrow

SUBTRACT NORMALIZED (HFP) Zero < zero > zero —

SUBTRACT UNNORMALIZED (HFP) Zero < zero > zero —

Instruction
Condition Code

0 1 2 3

Figure C-1. Summary of Condition-Code Settings (Part 5 of 7)

C-6 The z/Architecture CPU Architecture

TEST ACCESS ALET 0 DU access list, no
exceptions

PS access list, no
exceptions

ALET 1 or exceptions

TEST ADDRESSING MODE Twenty-four bit mode Thirty-one bit mode — Sixty-four bit mode

TEST AND SET Left bit zero Left bit one — —

TEST BLOCK Usable Not usable — —

TEST DATA CLASS Zero (no match) One (match) — —
TEST DATA GROUP Zero (no match) One (match) — —

TEST DECIMAL Digits and sign valid Sign invalid Digit invalid Sign and digit invalid

TEST PENDING EXTERNAL INTERRUPTION None pending One or more pending — —
TEST PENDING INTERRUPTION Interruption code not

stored
Interruption code
stored

— —

TEST PROTECTION Can fetch, can store Can fetch, cannot
store

Cannot fetch, cannot
store

Translation not
available

TEST SUBCHANNEL IRB stored;
subchannel status-
pending

IRB stored;
subchannel not status-
pending

— Not operational

TEST UNDER MASK All zeros Mixed — All ones
TEST UNDER MASK (HIGH/LOW) All zeros Mixed, left bit zero Mixed, left bit one All ones

TRANSACTION BEGIN Initiated successfully — — —

TRANSACTION END CPU in transactional-
execution mode at
start of instruction

— CPU not in trans.-
execution mode at
start of instruction

—

TRANSLATE AND TEST All zeros Incomplete Complete —

TRANSLATE AND TEST EXTENDED All zeros Nonzero code selected — CPU-determined
completion

TRANSLATE AND TEST REVERSE All zeros Incomplete Complete —
TRANSLATE AND TEST REVERSE EXTENDED All zeros Nonzero code selected — CPU-determined

completion
TRANSLATE EXTENDED Data processed Op1 byte equal test

byte
— CPU-determined

completion
TRANSLATE ONE TO ONE, ONE TO TWO, TWO
TO ONE, TWO TO TWO

Character equal test
character not found

Character equal test
character found

— CPU-determined
completion

UNPACK ASCII Sign plus Sign minus — Sign invalid

UNPACK UNICODE Sign plus Sign minus — Sign invalid

UPDATE TREE Equal Not equal or no
comparison

— GR5 nonzero, GR0
negative

VECTOR ADD DECIMAL5 Zero < zero > zero Overflow
VECTOR COMPARE DECIMAL Equal Low High —

VECTOR COMPARE EQUAL5 All elements equal Some elements equal — No element equal

VECTOR COMPARE HIGH LOGICAL5 All elements high Some elements high — No element high
VECTOR COMPARE HIGH5 All elements high Some elements high — No element high

VECTOR CONVERT TO BINARY5 No overflow — — Overflow

VECTOR CONVERT TO DECIMAL5 No overflow — — Overflow
VECTOR DIVIDE DECIMAL5 Zero < zero > zero Overflow

VECTOR ELEMENT COMPARE Equal Low High —

VECTOR ELEMENT COMPARE LOGICAL Equal Low High —

VECTOR FIND ANY ELEMENT EQUAL5 None equal, zero
found

Equal element found,
no zeros if ZS=1

Equal element found
and zero found

No equal elements, no
zeros

Instruction
Condition Code

0 1 2 3

Figure C-1. Summary of Condition-Code Settings (Part 6 of 7)

C-7

VECTOR FIND ELEMENT EQUAL5 Zero found Equal element found,
no zeros

Equal element found,
and zero

Not equal, no zeros

VECTOR FIND ELEMENT NOT EQUAL5 Zero found Not equal element
found, less than

Not equal found,
greater than

Equal, no zero

VECTOR FP COMPARE AND SIGNAL SCALAR Elements equal First element low First element high Elements unordered
VECTOR FP COMPARE EQUAL5 All elements equal Mix of equal and

unequal (or unordered)
elements

— All elements not equal
(or unordered)

VECTOR FP COMPARE HIGH OR EQUAL5 All elements Mix of and < — All elements < (or
unordered)

VECTOR FP COMPARE HIGH5 All elements > Mix of > and — All elements (or
unordered)

VECTOR FP COMPARE SCALAR Elements equal First element low First element high Elements unordered
VECTOR FP TEST DATA CLASS IMMEDIATE Match Selected bit 1 for some

(but not all) elements
— No match

VECTOR ISOLATE STRING5 Zero element found — — All elements nonzero

VECTOR MULTIPLY AND SHIFT DECIMAL5 Zero < zero > zero Overflow

VECTOR MULTIPLY DECIMAL5 Zero < zero > zero Overflow
VECTOR PACK LOGICAL SATURATE5 No saturation Some saturated All saturated

VECTOR PACK SATURATE5 No saturation Some saturated All saturated

VECTOR PERFORM SIGN OPERATION
DECIMAL5

Zero < zero > zero Overflow

VECTOR REMAINDER DECIMAL5 Zero < zero > zero Overflow
VECTOR SHIFT AND DIVIDE DECIMAL5 Zero < zero > zero Overflow

VECTOR SHIFT AND ROUND DECIMAL5 Zero < zero > zero Overflow

VECTOR STRING RANGE COMPARE5 Zero found At least one in ranges,
no zero

At least one in ranges,
zero found

No ranges match, no
zeros

VECTOR STRING SEARCH no match found6 no match found6 full match found partial match found
VECTOR SUBTRACT DECIMAL5 Zero < zero > zero Overflow

VECTOR TEST DECIMAL Digits and sign valid Sign invalid Digit invalid Sign and digit invalid

VECTOR TEST UNDER MASK All zeros or mask zero Mixed — All ones
ZERO AND ADD Zero < zero > zero Overflow

Explanation and Notes:

— Code is not set by the instruction.
1 For DIAGNOSE, the resulting condition code is model-dependent.
2 For LOAD REAL ADDRESS, the following applies:

Condition code 1 is set if segment-table entry is invalid for LRAG, or for LRA and LRAY in 64-bit addressing mode, or for LRA and LRAY
in 24-bit or 31-bit addressing mode and bits 0-32 of the entry address are all zeros.
Condition code 2 is set if page-table entry is invalid for LRAG, or for LRA and LRAY in 64-bit addressing mode, or for LRA and LRAY in
24-bit or 31-bit addressing mode and bits 0-32 of the entry address are all zeros.
Condition code 3 is set if address-space-control element not available, region-table entry outside table or invalid, segment-table entry
outside table, or, for LRA in 24- or 31-bit mode when bits 0-32 of entry address not all zeros, segment- or page-table entry invalid.

3 For LOAD PSW, LOAD PSW EXTENDED, and RESUME PROGRAM, the condition code is loaded from the condition-code field of the
second operand.

4 For SET PROGRAM MASK, the condition code is loaded from bit positions 2 and 3 of the first operand.
5 For various vector-facility instructions, the condition code is optionally set based on the CS control (in a mask field of the instruction)
6 For VECTOR STRING SEARCH, refer to the instruction description for the distinction between condition codes 0 and 1.

Instruction
Condition Code

0 1 2 3

Figure C-1. Summary of Condition-Code Settings (Part 7 of 7)

C-8 The z/Architecture CPU Architecture

D-1© Copyright IBM Corp. 2000, 2019

Appendix D. Compression Call Facility

Introduction to Compression Call Facility D-1
Compression and Expansion Dictionaries D-1
Compression-Dictionary Entries D-1
Compression Process D-2
Child and Sibling Characters D-2
Child and Extension-Character Combinations. D-3
Restriction on Identical Child and Sibling

Characters . D-3
Expansion-Dictionary Entries. D-6

Expansion Process D-6
Compressed-Data Symbol Size. D-7
Symbol Translation . D-8

Order Preservation .D-8
Entropy Encoding .D-9
Results of Dictionary Errors D-10

Dictionary Formats .D-10
Notation. .D-10
Compression DictionaryD-11
Format-0 Sibling DescriptorD-11
Format-1 Sibling DescriptorD-12
Expansion Dictionary D-12

Character Entry .D-12
Format-1 Sibling Descriptor D-13

Introduction to Compression Call
Facility

The compression call facility consists of the COM-
PRESSION CALL (CMPSC) instruction, which com-
presses or expands data as specified by a bit in
general register 0. COMPRESSION CALL is primar-
ily intended to operate on randomly accessed DB2*
data, typically 80-byte records, so that the data can
be kept on DASD in compressed form, thus saving
DASD space. However, COMPRESSION CALL can
also be used to compress any randomly or sequen-
tially accessed data, provided that there is some
degree of repetition of character strings (which may
be actual characters or bytes of numeric or graphic
data) in the data. COMPRESSION CALL also has an
option, named the symbol-translation option and the
order-preservation option, that allows the instruction
to be used to compress VTAM* network data and
DB2 keys, respectively.

In the following material, COMPRESSION CALL is
first described for the case in which the symbol trans-
lation and order preservation options are not used,
and then the differences due to the options are
described.

Compression and Expansion
Dictionaries

COMPRESSION CALL uses two static dictionaries
that must be prepared by the program, before the

compression operation, by scanning data that is typi-
cal of that to be compressed. One of these dictionar-
ies is named the compression dictionary and is used
only during compression. The other dictionary is
named the expansion dictionary, is used during
expansion, and may, depending on an option, be
used slightly during compression. During expansion,
the beginning of the expansion dictionary is desig-
nated by an address in general register 1. During
compression, this same address designates the
beginning of the compression dictionary, and the
expansion dictionary, if used, immediately follows the
compression dictionary.

Each of the compression and expansion dictionaries
contains 512, 1K, 2K, 4K, or 8K doubleword entries,
as determined by bits in general register 0. An entry
in either of the dictionaries is identified or designated
by means of the index to its position in that dictionary.
That is, the first entry in a dictionary is identified or
designated by index 0, the next by index 1, and so
forth. The two entries at the same index position in
each of the two dictionaries correspond to each other
in that they both represent the same character string,
which string is called a symbol.

Compression-Dictionary Entries

The entries in the compression dictionary correspond
approximately to a Ziv-Lempel tree. There are 256
alphabet entries corresponding to the 256 possible
values of a single-byte character, and these are the
topmost entries in the tree (which is upside down).
The alphabet entries may be parent entries that point
to child entries. The child entries may in turn be par-

D-2 The z/Architecture CPU Architecture

ent entries that point to their child entries. Each of the
alphabet entries and the child entries is called a char-
acter entry. A character entry represents one or more
extension characters. An alphabet entry represents
one extension character. (The character represented
by an alphabet entry is the first character of a charac-
ter symbol, which term is defined in the next para-
graph. The character is an extension to a null
character represented by a physically non-existing
null root entry that conceptually is the parent of the
256 alphabet entries.) A lower-level character entry
represents from one to five extension characters. (In
a pure Ziv-Lempel tree, each node represents only
one extension character.)

In addition to representing one or more extension
characters, a compression-dictionary entry rep-
resents a character symbol that is the extension
characters of the entry preceded by the extension
characters of all of the entry's ancestor entries, up to
an alphabet entry.

The alphabet entries are the first entries in a dictio-
nary and have the indexes 0-255. If an entry is a par-
ent, it contains the index, called a child pointer, of its
first child. Its other children, if any, follow the first child
contiguously in the dictionary (and thus in storage).

Compression Process

Compression occurs as follows. The first character of
the string to be compressed is used as an index to
locate the alphabet entry that represents the first
character. If the alphabet entry has children, the chil-
dren are processed in the left-to-right order of the
children, and the extension characters represented
by each child are compared to the next characters of
the string until a match is found or all children have
been examined. If a match is found, the process is
repeated using the children of that child and the next
characters of the string. When the last match has
been found, which might be just the match on the
alphabet entry, the index of the last matching entry is
output as the compressed data. This index is called
an index symbol. The length in bits of an index sym-
bol is the power of 2 that defines the number of
entries in the dictionary. Thus, the length is nine, 10,
11, 12, or 13 bits depending on whether the number
of entries is 512, 1K, 2K, 4K, or 8K, respectively.

There is an exception to the above that is described
below in the section “Restriction on Identical Child
and Sibling Characters.”

The unqualified term “symbol” can mean either a
character symbol or an index symbol. The first mean-
ing applies when discussing the uncompressed data
or the dictionary entries. The second meaning
applies when discussing the compressed data.

Child and Sibling Characters

It is a fundamental goal of the compression call facil-
ity to minimize the number of storage references
required when processing dictionary entries to find
matches. To this end, a character entry never con-
tains its own first extension character and always
contains the first extension characters of some num-
ber of its children, if any. These first extension char-
acters of the children are named child characters.
The positional number of a child character in a parent
along with the pointer to the first child locates the
child. If an entry represents more than one extension
character, the characters after the first are in the
entry and are called additional extension characters.

If a parent has more children than the number of
bytes available in the parent to contain child charac-
ters, the first extension characters of the additional
children are in a sibling-descriptor dictionary entry
that follows the last child entry able to be represented
by means of its child character in the parent. These
first extension characters in a sibling descriptor are
named sibling characters. COMPRESSION CALL
provides the option of having either format-0 or for-
mat-1 sibling descriptors. A format-0 sibling descrip-
tor is one doubleword, contains up to seven sibling
characters, and resides entirely within the compres-
sion dictionary. It resides at an index position that
would otherwise be used by a character entry. A for-
mat-1 sibling descriptor is two doublewords, contains
up to 14 sibling characters, and has its first double-
word at an index position in the compression dictio-
nary and its second doubleword at the same index
position in the expansion dictionary. This position in
the expansion dictionary would otherwise be wasted.
This partial residence of sibling descriptors in the
expansion dictionary is the only way the expansion
dictionary is used during compression.

A sibling descriptor contains from one to seven or 14
sibling characters that correspond to the additional
children of the parent. The additional child entries fol-
low the sibling descriptor in the dictionary. If there are
more than seven or 14 additional children, another
sibling descriptor follows the seventh or fourteenth
additional child. This following of seven or 14 children

D-3

by another sibling descriptor can be repeated again
and again. However, a parent must have no more
than 260 children; otherwise, a data exception may
be recognized when an attempt is made to find a
match on a child after the 260th child.

Child and Extension-Character
Combinations

The compression dictionary contains only two types
of entries: character entries and sibling descriptors.
However, the character entries have different formats
depending on how many additional extension charac-
ters an entry represents and on whether an entry has
zero, one, or more than one children. Only the follow-
ing combinations are allowed:

• If an entry has zero children, it can have from
zero to four additional extension characters.

• If an entry has one chid, it can have from zero to
four additional extension characters.

• If an entry has more than one child it can have
only zero or one additional extension character.

Character entries and sibling descriptors contain
count fields whose contents specify the numbers of
additional extension characters, child characters, or
sibling characters in the entries and also whether a
sibling descriptor follows a child. Character entries
and sibling descriptors also contain examine-child
bits that specify whether child entries, whether desig-
nated from a parent or a sibling descriptor, need to
be examined. A child entry need not be examined if
the entry represents only one extension character
and has no children. Conversely, if the entry rep-
resents (contains) one or more additional extension
characters or has children, the entry must be exam-
ined in order to continue the matching process.

Restriction on Identical Child and
Sibling Characters

The compression process is described above with
some lack of detail, which detail is provided here.
However, this section, including its programming
notes, does not apply if the order-preservation option
is used.

After a match has been found on a parent entry, and
if the parent has children, the next character of the

string is compared against the child characters in the
parent and the sibling characters in the sibling
descriptors that are among the children of the parent
until a match is found or all child and sibling charac-
ters have been processed. If a match is found, the
next characters of the string are compared against
the additional extension characters, if any, in the child
designated by means of the matched child or sibling
character. If the additional extension characters
match, or if there are no additional extension charac-
ters, the matching process is repeated using the
matched child as the next parent. If there are addi-
tional extension characters that do not match the
next characters of the string, then, except in one
case, it is model-dependent whether the matching
process is ended, with the match on the current par-
ent being the last match, or whether the matching
process is continued by attempting to match on a
remaining child of the current parent. The one excep-
tional case is when the designated child and also the
next child are in a set of children designated by
means of consecutive identical child characters (not
sibling characters) beginning with the first child char-
acter in the parent. In this case, an attempt is made
to match on the following children in the set until
either a match is found or all such children have been
processed.

The effect of the detailed operation just described is
that it is assured that it is useful for two or more iden-
tical characters to appear as child characters in a
parent or sibling characters in a sibling descriptor
under a parent only when the characters are all con-
secutive child characters beginning with the first child
character in the parent. In any case where the identi-
cal characters are not consecutive child characters
beginning with the first child character in the parent,
the second character and any subsequent identical
child or sibling character may be wasted since,
depending on the model, they may never be com-
pared against a string character equal to them.

Programming Notes:

1. When an examine-child bit indicates that the cor-
responding child need not be examined, it does
not necessarily cause the child not to be exam-
ined. Therefore, the count fields in the child must
contain all zeros as they correctly should; other-
wise, there may be a match on one or more false
additional extension characters or a false child
character in the child. Since the expansion dictio-
nary will not have been built to recreate the
falsely matched character or characters, the

D-4 The z/Architecture CPU Architecture

expanded data will not be equal to the original
uncompressed data.

2. The restriction against identical child or sibling
characters may improve performance because it
generally allows the matching process to be
ended immediately after a match on a child or
sibling character followed by a failure to match on
additional extension characters in the designated
child. On the other hand, the provision that
attempted matching continues in the case of
identical consecutive leading child characters
improves performance in the case of compress-
ing strings, of many different lengths, of the same
repeated character. For example, consider the
following two different sets of compression-dictio-
nary entries that might be used for compressing
strings, of lengths 1-15, of the character A.
(Strings of binary zeros or of blanks are a more
important case, but those two characters are
unprintable and, therefore, cannot be shown in
this example.)

In the first set of entries (Set 1), each parent has
only one child, and there are no additional exten-
sion characters -- each child represents only one
more character than its parent. Set 1 is shown
abstractly as follows:

The entries in Set 1 are shown with the first and
only child of a parent immediately beneath the
parent except indented one character position to
the right. Part of the abstraction is that the

entries are numbered 1-15 even though, in an
actual dictionary, entries 0-255 must be alphabet
entries. Note that the number of A's represented
by an entry is equal to the number of the entry.

The number of storage references made to the
dictionary during compression may be an import-
ant determinant of performance, depending on
the model. Using Set 1, the number of dictionary
storage references needed to compress a string
of 1-15 A's is equal to the number of A's in the
string.

In the second set of entries (Set 2), each parent
has two children, the first child has one additional
extension character, and the second child has no
additional extension character -- the first child
represents two more characters than its parent,
and the second child represents one more char-
acter than its parent. Set 2 is shown abstractly as
follows. The following also explicitly shows the
number of A's represented by each entry and the
number of storage references needed to match
on each entry.:

The entries in Set 2 are shown with the first child
of a parent immediately beneath the parent,
except indented one character position to the
right, and with the other child of the same parent
aligned vertically with the first child. For example,
entry 1 (A) has the children 2 (AAA) and 3 (AA),
and entry 2 (AAA) has the children 4 (AAAAA)
and 5 (AAAA). Entries 3 (AA) and 5 (AAAA) do

Set 1

Entry
Number

Character Symbol Represented by Entry

1 A

2 AA

3 AAA

4 AAAA

5 AAAAA

6 AAAAAA

7 AAAAAAA

8 AAAAAAAA

9 AAAAAAAAA

10 AAAAAAAAAA

11 AAAAAAAAAAA

12 AAAAAAAAAAAA

13 AAAAAAAAAAAAA

14 AAAAAAAAAAAAAA

15 AAAAAAAAAAAAAAA

Set 2

Entry
Number

Character Symbol
Represented by Entry A’s

Stg.
Refs

1 A 1 1

2 AAA 3 2

4 AAAAA 5 3

6 AAAAAAA 7 4

8 AAAAAAAAA 9 5

10 AAAAAAAAAAA 11 6

12 AAAAAAAAAAAAA 13 7

14 AAAAAAAAAAAAAAA 15 8

15 AAAAAAAAAAAAAA 14 9

13 AAAAAAAAAAAA 12 8

11 AAAAAAAAAA 10 7

9 AAAAAAAA 8 6

7 AAAAAA 6 5

5 AAAA 4 4

3 AA 2 3

D-5

not have a child. The entries are numbered as
they are because the children of a parent must
be numbered consecutively.

It can be seen that except for entries 5 and 3 of
Set 2, the number of storage references needed
to match on a Set-2 entry is always less than the
number of storage references needed to match
on the Set-1 entry representing the same num-
ber of A's.

A dictionary might contain entries in the style of
either Set 1 or Set 2 that would allow compres-
sion of a string of up to 260 repeated characters
as a single index symbol. Using entries in the
style of Set 2, instead of the style of Set 1,
reduces the number of required storage refer-
ences by approximately 50%. (Matching a string
of 101 A's would require 101 references using
the Set-1 style but only 51 references using the
Set-2 style.)

3. Long strings of a repeated character can be
compressed with even fewer storage references
if entries in the style of Set 3, shown below, are
used. Using entries in the style of Set 3, instead
of the style of Set 1, reduces the number of
required storage references by approximately
67%.

In Set 3, an odd-level parent has no additional
extension character and five children, and the
children, in order, have four, three, two, one, and
zero additional extension characters -- the chil-
dren represent from five to one more characters
than their parent. An even-level parent, which is
the first child of an odd-level parent, has four
additional extension characters and one child,
which is the next odd-level parent. The second
through fifth children of an oddlevel parent do not
have a child. Specifically in Set 3, entry 1 (A) has
the children 2 (AAAAAA), 3 (AAAAA), 4 (AAAA),
5 (AAA), and 6 (AA); entry 2 (AAAAAA) has the
child 7 (AAAAAAA); entry 7 has the children 8-
12; entry 8 has the child 13, and entry 13 has the
children 14-18. Entries 3-6, 9-12, and 15-18 do
not have a child. Entry 14 might have a child to
continue the pattern.

Matching a string of 18 A's requires six storage
references, which is 33% of the number required
when using the Set-1 style.

Entries should not be arranged as in the follow-
ing examples.

Entry 3 in Set 4 is useless because if the string to
be matched is AAA, a match of the AA at the
beginning of the string will be found on entry 2,
and entry 3 will not be examined. (This would be
true also if the string to be matched were AAB
and entry 3 represented AAB.)

Entry 4 in Set 5 may be useless because if the
string to be matched is AAX, the matching pro-
cess may end, depending on the model, after the
failure to match the AAX to entry 2. (Entries 2
and 4 are designated by identical child charac-

Set 3

Entry
Number

Character Symbol
Represented by Entry A’s

Stg.
Refs

1 A 1 1

2 AAAAAA 6 2

7 AAAAAAA 7 3

8 AAAAAAAAAAAA 12 4

13 AAAAAAAAAAAAA 13 5

14 AAAAAAAAAAAAAAAAAA 18 6

15 AAAAAAAAAAAAAAAAA 17 7

16 AAAAAAAAAAAAAAAA 16 8

17 AAAAAAAAAAAAAAA 15 9

18 AAAAAAAAAAAAAA 14 10

9 AAAAAAAAAAA 11 5

10 AAAAAAAAAA 10 6

11 AAAAAAAAA 9 7

12 AAAAAAAA 8 8

3 AAAAA 5 3

4 AAAA 4 4

5 AAA 3 5

6 AA 2 6

Set 4 (Erroneous)

Entry
Number

Character Symbol
Represented by Entry

1 A

2 AA

3 AAA

Set 5 (Erroneous)

Entry
Number

Character Symbol
Represented by Entry

1 A

2 AAA

3 AB

4 AA

D-6 The z/Architecture CPU Architecture

ters in entry 1, and the first of these child charac-
ters is the first child character in entry A, but the
two child characters are not consecutive.)

Entry 4 in Set 6 may be useless because if the
string to be matched is AAX, the matching pro-
cess may end, depending on the model, after the
failure to match the AAX to entry 3. (Entries 3
and 4 are designated by identical consecutive
child characters in entry 1, but the first of these
child characters is not the first child character in
entry A.)

Expansion-Dictionary Entries

The expansion dictionary contains three types of
entries: unpreceded character entries, preceded
character entries, and the second halves of the for-
mat-1 sibling descriptors that begin in the compres-
sion dictionary. An unpreceded character entry
represents a character symbol by containing all of
the characters of the symbol -- these are the exten-
sion characters represented by the corresponding
entry in the compression dictionary and the exten-
sion characters represented by all the ancestors of
that compression-dictionary entry. An unpreceded
character entry can contain from one to seven char-
acters. A preceded character entry represents a
character symbol by containing from one to five of
the rightmost characters of the symbol and also a
pointer, called a predecessor pointer, to another
expansion-dictionary character entry that contains
some or all of the next lefthand characters of the
character symbol. That is, the predecessor pointer in
a preceded character entry can point to either an
unpreceded or a preceded character entry.

A predecessor pointer is not necessarily a parent
pointer, which term has no role in this definition. That
is, a predecessor pointer may designate a higher-
level entry that is more remote than simply a parent.

An unpreceded character entry contains a complete-
symbol-length field whose contents specify the num-

ber of characters in the entry. A preceded character
entry contains a partial-symbol-length field whose
contents specify the number of characters in the
entry, and it also contains an offset that may be used
to position the leftmost character of the entry in the
expanded-data operand.

Expansion Process

Expansion of an index symbol occurs in a way that
depends on whether the value of the symbol is in the
range 0-255 or is 256 or larger. If the value of the
index symbol is in the range 0-255, a byte containing
the value of the symbol is simply stored as the next
byte of expanded data, and no reference is made to
the expansion dictionary. That is, the index symbol is
assumed to designate an expansion-dictionary entry
that represents the same character symbol as does
the alphabet entry that is designated by the index
symbol in the compression dictionary -- the index
symbol can be said to designate an alphabet entry in
the expansion dictionary. If the value of the index
symbol is 256 or larger, expansion occurs by using
the value as an index to locate the corresponding
expansion-dictionary character entry and then (1)
outputting the characters in the entry, and (2) if the
entry is a preceded entry, proceeding up the chain of
preceded entries and outputting the characters in
each of them on the left of the characters already
output, until finally an unpreceded entry has been
encountered. Following is a more detailed descrip-
tion of the case when the value of the index symbol is
256 or larger.

1. The rightmost byte of the first preceded charac-
ter entry obtained during the expansion of an
index symbol contains the byte offset from the
current location in the expanded-data operand to
where the first extension character represented
by the character entry is to be placed. (All pre-
ceded character entries contain an offset since
any entry can be the first one obtained during an
expansion.) The address of the current location
is named the current origin address. At the end
of the operation, the current origin address is
updated in accordance with one of two methods,
and which method is used is unpredictable.
When the first method is used, the current origin
address is updated by adding to it the sum of the
partial symbol length and the offset in the first-
obtained preceded entry. When the second
method is used, the current origin address is
updated by adding to it the number of characters

Set 5 (Erroneous)

Entry
Number

Character Symbol
Represented by Entry

1 A

2 AB

3 AAA

4 AA

D-7

placed in the first operand location due to the
expansion of the index symbol. If the expansion-
dictionary entries processed specify a logically
correct operation, the results are the same
regardless of which method is used. The entries
are considered to specify a logically correct oper-
ation if they together contain n characters and
cause placement of those n characters, without
overlaps or spaces, in the n character positions
beginning at the original current origin address
and ending at the address that is one less than
the updated current origin address. The machine
does not check in any way that the operation is
logically correct.

2. If the first character entry obtained during expan-
sion of an index symbol is an unpreceded entry,
the characters in the entry are placed at the cur-
rent origin address, and then the current origin
address is updated by adding to it the complete
symbol length in the unpreceded entry.

3. When the first character entry obtained during
expansion of an index symbol is a preceded
entry, the processing of the preceding entries,
which may include additional preceded entries, is
in accordance with one of two methods, and
which method is used is unpredictable. When the
first method is used, the processing is the same
as in items 1 and 2; that is, the characters in a
preceded entry are placed as determined by the
offset in the entry, and the characters in an
unpreceded entry are placed at the current origin
address. When the second method is used, the
characters in each preceding entry are placed
immediately to the left of the characters resulting
from the previously processed preceded entry.
Either the same or different methods may be
used for each of preceded and unpreceded
entries and for each of multiple preceded entries.
If the entries processed specify a logically correct
operation, the results are the same regardless of
which method is used. The updated current ori-
gin address is determined as specified in item 1.
If the operation is logically incorrect and leaves
spaces in the n character positions beginning at
the original current origin address, the contents
of those spaces are unpredictable.

When method 1 is used, storing may be specified
to occur at or to the right of the updated current
origin address because either the offset in a sub-
sequent preceded entry is larger than the offset

in the first one or because the offset in the first
one is too small, considering the complete sym-
bol length in the unpreceded entry. (The preced-
ing is incomplete because it does not deal with
partial symbol lengths, but the point should be
clear.) When method 2 is used, storing may be
specified to occur to the left of the original current
origin address because the offset in the first pre-
ceded entry is too small. In the method-1 or
method-2 case, such storing may be within or
outside the first-operand location. It may cause a
data exception to be recognized, or it may be
attempted. If it is attempted, it may cause an
access exception to be recognized and the oper-
ation to be nullified or suppressed, depending on
the exception. If an access exception is recog-
nized, the results may not be true nullification or
suppression because storing may have occurred
in a location for which no access exception was
recognized. Recognition of an access exception
may cause condition code 3 to be set instead of
being treated as a program-interruption condi-
tion.

4. When entropy-encoding is not enabled and the
value of a predecessor pointer is in the range 0-
255, either the pointer may be used to reference
a dictionary entry as already described, or the
value may simply be stored as the next byte of
expanded data. When entropy-encoding is
enabled and the value of a predecessor pointer
is in the range 0-255 the pointer is always used
to reference a dictionary entry as already
described.

Programming Note: If no predecessor pointer des-
ignates one of the entries 0-255 in the expansion dic-
tionary, those entries need not actually be provided,
and the storage that would be occupied by the
entries can be used for other purposes. However, the
storage must exist and have the correct storage key
since the CPU may pretest the entire expansion dic-
tionary, including entries 0-255, for access excep-
tions.

Compressed-Data Symbol Size

The bits in general register 0 that specify the number
of bits in an index symbol and the size in entries and
bytes of a dictionary are named the compressed-
data symbol size (CDSS).

D-8 The z/Architecture CPU Architecture

Symbol Translation

During compression, symbol translation can be spec-
ified by means of a bit in general register 0; this bit is
ignored during expansion. When symbol translation
is specified, the index symbols generated by the
compression process are used to locate two-byte
entries in a symbol-translation table (STT), and inter-
change symbols are taken from the STT entries and
placed in the compressed-data operand. The begin-
ning of the STT is designated by the address and an
offset in general register 1.

When symbol-translation is specified, the CDSS
does not specify either the number of bits in an index
symbol or the size of the compression dictionary; the
CDSS specifies the number of bits in an interchange
symbol, the compression dictionary is considered to
extend to the beginning of the STT, and the size of
the STT in bytes is considered to be one fourth that
of the compression dictionary.

Symbol translation is not performed during (before)
expansion because the expansion dictionary can be
formed to directly expand interchange symbols, that
is, during expansion, interchange symbols and index
symbols are considered to be identical, and only the
term index symbol is used.

Symbol translation and format-1 sibling descriptors
must not both be specified; otherwise, the results are
unpredictable.

Programming Note: Symbol translation is for use by
VTAM. During compression, VTAM will form an adap-
tive dictionary until compression becomes good, and
VTAM will then freeze its dictionary and transform it
to the architected form used by COMPRESSION
CALL. VTAM will also signal the other end of the ses-
sion to freeze its dictionary also, but the other end will
then continue to use its frozen adaptive dictionary.
Since the architected dictionary must contain some
entries that are sibling-descriptor entries while the
adaptive dictionary has no similar requirement (all of
its entries are character entries), most of the entries
in the architected dictionary cannot have the same
indexes as the logically corresponding entries in the
adaptive dictionary, and symbol translation must be
used to generate the correct interchange symbols.

Order Preservation

During compression, order preservation can be
specified by means of a bit in general register 0.
When order preservation is specified, the symbol-
translation bit in the register is ignored, but a modi-
fied form of symbol translation occurs.

When an appropriate compression dictionary and
symbol-translation table are used, order preservation
causes, for successive units of uncompressed data
that are in collating-sequence order, production of
corresponding successive units of compressed data
that also are in collating-sequence order.

The compression process used in the basic com-
pression operation uses what is referred to here as
the unordered comparison algorithm: the children of
a parent are not considered to be in any particular
order, and the next characters from the string being
compressed are compared against the extension
characters represented by the children in the left-to-
right order of the children until either a match is found
or all of the children have been processed. The result
of the compression process is the index symbol that
designates the last matched entry, which is the par-
ent entry if no match was found on any child or there
are no children.

The order-preservation option causes the compres-
sion process to use an ordered comparison algo-
rithm: the children of a parent are considered to be
ordered such that the string of one or more extension
characters represented by any child is always earlier
in the collating sequence than the string of one or
more extension characters represented by the next
child of the same parent, that is, the children are con-
sidered to be in collating-sequence order. The next
characters from the string being compressed are
compared against the extension characters repre-
sented by the children in the left-to-right order of the
children until any of the following is true: (1) a match
is found on an entry without children, or a match is
found on an entry with children but there is not
another character in the string; (2) the next charac-
ters from the string have a collating-sequence value
less than that of the extension characters repre-
sented by a child of the last matched parent; or (3)
the next characters from the string have a collating-
sequence value greater than that of the extension
characters represented by the last child of the last
matched parent. The result of the compression pro-
cess in each of the three cases is as follows:

D-9

1. If the process ends because of a match on an
entry without children or because of a match on
an entry when there is not another character in
the string, the result is the index symbol that des-
ignates the entry.

2. If the process ends because the next characters
of the string have a value less than that of the
characters represented by a child, the result is
the index symbol that designates the child.

3. If the process ends because the next characters
of the string have a value greater than that of the
characters represented by the last child, the
result is the index symbol that designates the last
child.

Note that Case 2 includes the case when the next
character of the string match the leftmost extension
characters represented by a child but there are not
as many next characters remaining in the string as
there are additional extension characters repre-
sented in the child.

The index symbol produced by the compression pro-
cess is used to locate a symbol-translation-table
entry containing an interchange symbol just as when
the symbol-translation option is specified. The result-
ing interchange symbol that is placed in the com-
pressed-data operand is then as follows:

1. In Case 1, the interchange symbol in the entry.

2. In Case 2, the interchange symbol in the entry,
minus one; that is, one is subtracted from the
value of the interchange symbol that is in the
entry to form the interchange symbol that is
stored.

3. In Case 3, the interchange symbol in the entry,
plus one; that is, one is added to the value of the
interchange symbol that is in the entry to form
the interchange symbol that is stored.

Although the order-preservation option does not
affect the expansion process, the expansion dictio-
nary must be formed so that the interchange symbols
produced by compression are properly expanded
when they are treated as index symbols during
expansion. During expansion, an index symbol equal
to an interchange symbol produced during compres-
sion must designate a dictionary entry that rep-
resents the same character symbol as did the last
entry that was matched during the compression. In
Case 2 or 3, the last matched entry is the parent of

the entry that caused the Case 2 or Case 3 condition
to be satisfied.

Programming Note: The assumption that an index
symbol in the range 0-255 designates an alphabet
entry in the expansion dictionary requires that inter-
change symbols be assigned as follows when the
order-preservation option is used. If n is the number
of the lowest-numbered alphabet entry in the com-
pression dictionary having a child, then the inter-
change symbols 0-n must be assigned to alphabet
entries 0-n, the interchange symbol 256 must be
assigned to the first epsilon entry or child under entry
n, and the interchange symbols (n+1)-255 must not
be assigned.

Entropy Encoding

Entropy encoding can be specified by means of a bit
in general register 0. When entropy encoding is
specified, a higher degree of compression may be
obtained due to using shorter codewords for more
frequent symbols.

The compressed operand does not contain index
symbols, instead it contains codewords. The code-
words may vary from 1-16 bits in length. Each code-
word represents an index symbol. The most frequent
index symbols will have codewords with fewer bits,
and less frequent index symbols will have codewords
with more bits.

The mapping of index symbols to codewords is han-
dled differently for compression and expansion. How-
ever, the entropy descriptor is common. The entropy
descriptor describes the valid codewords from most
frequent to least frequent. The entropy descriptor
consists of sixteen halfword entries each of which
contain a count of the number of entries of the corre-
sponding bit length from one to sixteen.

The mapping of index symbols to codewords is done
by generating a prefix tree for all index symbols. The
prefix tree is formed using the frequency that each
index symbol is seen when compressing data. The
codewords are grouped by their information content
and enumerated in descending order. This is some-
times called a cannonical Huffman code or an Shan-
non-Fano code. Since all of the codewords are
ordered, it is possible to describe the tree by enumer-
ating the number of entries of each codeword length.
The maximum codeword size supported is 16-bits.
The entropy descriptor must fully represent a valid

D-10 The z/Architecture CPU Architecture

tree. The sum of all of the entries in the entropy
descriptor must add up to the number of dictionary
entries plus one; otherwise, a general-operand data
exception is recognized. Also there cannot be any
underflow or overflow when computing the lower and
upper bound codewords for each bit length otherwise
a general-operand data exception is recognized.

The entropy descriptor is located immediately after
the compression or expansion dictionary and is
pointed to by the offset field in general register 1.
During compression a symbol translation table is
located immediately after the entropy descriptor. The
symbol translation table is one fourth the size of the
compression dictionary.

During compression index symbols which are formed
during compression are used to index into the sym-
bol translation table. Each halfword in the symbol
translation table contains the codeword which maps
to the index symbol left aligned in the halfword. Any
unused bits in the symbol translation table entry must
contain zeros; otherwise, a general-operand data
exception is recognized. The number of bits from the
symbol translation table entry to be copied to the first
operand location is computed for each symbol trans-
lation table entry.

During expansion the bits of the second operand are
broken into codewords using the information in the
entropy description. The codewords are converted to
sequence numbers and used to index directly into
the expansion dictionary. Indices 0-255 have no spe-
cial meaning in the expansion dictionary when the
entropy encoding option is specified. Since the
entries in the expansion dictionary are indexed by
sequence numbers they must be ordered by likeli-
hood. The sequence number is the number of code-
words with a higher probability than the current input
codeword.

Results of Dictionary Errors

The following may be truncated on the left to elimi-
nate bits not needed because of the dictionary size,

or they may always be treated as 13 bits regardless
of the dictionary size: child pointers, predecessor
pointers, and index symbols that are used to locate
entries in a symbol-translation table. If the pointers or
symbols are not truncated and a child pointer speci-
fies an entry beyond the end of the compression dic-
tionary, a predecessor pointer specifies an entry
beyond the end of the expansion dictionary, or an
index symbol specifies an entry beyond the end of
the symbol-translation table, any of the following may
occur: in the case of a child pointer and a zero exam-
ine-child bit, an index symbol containing too many
bits may be generated and stored in the first-operand
location (possibly overlaying a rightmost bit or bits of
the previous index symbol); the contents at the
improper location may be used in the normal way as
a dictionary or table entry; or a data exception may
be recognized. If the contents are to be used in the
normal way, an access exception can be recognized
for the improper location even after a store has
occurred in the first-operand location. Such an
access exception does not result in true nullification
or suppression, except that the instruction address in
the PSW is correct for the type of exception recog-
nized. When order-preservation is specified, the
results when dictionary entries are not in collating-
sequence order are unpredictable and may include
recognition of a data exception.

Dictionary Formats

Notation

(m-n) Value allowed in the field

[EC] Extension character may be present

Three periods (...) means the preceding field may be
repeated.

D-11

Compression Dictionary

Character Entry

When CCT = 0

When CCT = 1

When CCT >1

Format-0 Sibling Descriptor

CCT ACT [EC] [EC] [EC] [EC]
0 3 8 11 24 32 40 48 56 63

ACT Additional-extension-character count (0-4); number of ECs in entry. if ACT is 5, 6, or 7, it may be treated as 4, may cause
data exception, or may cause comparison to mod(ACT,4) additional entries that are obtained from unpredictable locations
in the current entry or from storage locations immediately following the current entry; see Note 1

EC Additional extension character

CCT X ACT CPTR [EC] … CC
0 3 4 8 11 24 n 63

X examine-child bit; child has one or more additional extension characters or has children; see Note 2

ACT Additional-extension-character count (0-4). if ACT is 5, 6, or 7, it may be treated as 4, may cause data exception, or may
cause comparison to mod(ACT,4) additional entries that are obtained from unpredictable locations in the current entry or
from storage locations immediately following the current entry.

CPTR Index of first child

EC Additional extension character(s)

CC Child character

CCT XXXXXYYD CPTR [EC] CC CC … …
0 3 8 11 24 n n+8 63

CCT Child count (2-6 if D=0, 2-5 if D=1). If D=0 and CCT=6, sibling descriptor follows 5th child (CCT = 7 may be treated as 6
or it may cause a data exception). If D=1 and CCT=5, sibling descriptor follows 4th child ACT (CCT = 6 or 7 may be
treated as 5 or it may cause a data exception)

XXXXX Examine-child bits for children 1-5 (D=0) or 1-4 (D=1). Bit(s) ignored if respective child does not exist.

YY Examine child bits for 6th & 7th siblings designated by first format-0 sibling descriptor for children of this entry; or
examine-child-bits for 13th and 14th siblings designated by first format-1 sibling descriptor for children of this entry. Bit(s)
ignored if sibling does not exist.

EC Additional extension character(s)

CC Child character

SCT YYYYY SC [SC] … … … … …
0 3 8 16 24 n n+8 63

SCT Sibling Count (0-7); zero is treated as 7 and indicates another SD follows 7th sibling

YYY… Examine-child bits for siblings 1-5; bit is ignored if sibling does not exist; if this is the first sibling descriptor under parent,
bits for siblings 6 and 7 are in parent — otherwise, 6th and 7th siblings must be examined since bits for them are not
provided.

SC Sibling character

D-12 The z/Architecture CPU Architecture

Format-1 Sibling Descriptor

Notes:

1. If ACT or D is nonzero in alphabet entry, any of
the following may result:

• ACT or D is treated as zero.

• ACT or D does not cause comparison to
additional extension characters but does
determine the position of the first child char-
acter.

• ACT or D is treated the same as in a nonal-
phabet entry except that, if this causes a
mismatch on the next characters to be com-
pressed, a data exception is recognized.

2. A child may be examined even if its examine-
child bit (X or Y) is zero. If an examine-child bit (X
or Y) is one and the corresponding child or sib-
ling exists, but it is not true that the child or sib-
ling either has one or more additional extension
characters or has children, a data exception may
be recognized.

Expansion Dictionary

Character Entry

Generic Form

If PSL=0 (Unpreceded Entry)

SCT YYYYYYYYYYYYY SC [SC] … … … …
0 3 16 24 n n+8 63

SCT Sibling Count (1-15); 15 is treated as 14 and indicates another SD follows 14th sibling. 0 may be treated as 15 or cause a
data exception)

YYY… Examine-child bits for siblings 1-12; bit is ignored if sibling does not exist; if this is the first sibling descriptor under parent,
bits for siblings 13 and 14 are in parent — otherwise, 1‘3th and 14th siblings must be examined since bits for them are not
provided.

SC Sibling character

PSL
0 3 63

PSL Partial-symbol length (0-5); number of ECs in entry; 0 indicates an unpreceded entry; 6 and 7 may be treated as 5, may
cause a data exception, or may cause movement to the first operand location of one or two, respectively, additional ECs
that are obtained from unpredictable locations in the current entry or from the storage locations immediately following the
current entry.

PSL CSL EC [EC] [EC] [EC] [EC] [EC] [EC]
0 3 5 8 16 24 32 40 48 56 63

CSL Complete-symbol length (1-7); number of ECs in the entry; 0 may cause a data exception or may cause movement to the
first operand location of up to 256 ECs that are obtained from unpredictable locations in the current entry or from storage
locations immediately following the current entry

EC Extension character

Bits 3 and 4 of the entry should be zeros; otherwise, any of the following may occur: the bits may be ignored, they may cause a data
exception, or they may cause movement to the first operand location of up to 24 additional ECs that are obtained from
unpredictable locations in the current entry or from the storage locations immediately following the current entry.

D-13

If PSL>0 (Preceded Entry)

Format-1 Sibling Descriptor

The expansion dictionary contains bits 64-127 of the
format-1 sibling descriptors that begin in the com-
pression dictionary.

PSL PPTR EC [EC] [EC] [EC] [EC] OFST
0 3 16 24 32 40 48 56 63

PSL Partial-symbol length (1-5); number of ECs in the entry; 0 indicates an unpreceded entry; 6 and 7 may be treated as 5,
may cause a data exception, or may cause movement to the first operand location of one or two, respectively, additional
ECs that are obtained from unpredictable locations in the current entry or from the storage locations immediately
following the current entry.

PPTR Predecessor pointer; index of preceding entry that should contain the next left-hand characters of the character symbol
represented by this entry

OFST Offset (0-255) from the current position in the output area to where first EC in this entry is placed; however, for preceded
entries after the first one, either method 1 or method 2 may be used -- see the text

When expansion is completed, the output pointer is advanced either by the sum of the PSL and OFST in the first-
encountered preceded entry or by the number of characters placed in the first-operand location due to expansion of the
index symbol. If the first method is used and PSL is 6 or 7, either 5 or the actual value of PSL may be used.

There is no checking for logical correctness of the operation.

D-14 The z/Architecture CPU Architecture

G-1© Copyright IBM Corp. 2000, 2019

Appendix G. Table of Powers of 2

Plus Minus
1 0 1.
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.0625
32 5 0.03125
64 6 0.01562 5

128 7 0.00781 25
256 8 0.00390 625
512 9 0.00195 3125

1,024 10 0.00097 65625
2,048 11 0.00048 82812 5
4,096 12 0.00024 41406 25
8,192 13 0.00012 20703 125

16,384 14 0.00006 10351 5625
32,768 15 0.00003 05175 78125
65,536 16 0.00001 52587 89062 5

131,072 17 0.00000 76293 94531 25
262,144 18 0.00000 38146 97265 625
524,288 19 0.00000 19073 48632 8125

1,048,576 20 0.00000 09536 74316 40625
2,097,152 21 0.00000 04768 37158 20312 5
4,194,304 22 0.00000 02384 18579 10156 25
8,388,608 23 0.00000 01192 09289 55078 125

16,777,216 24 0.00000 00596 04644 77539 0625
33,554,432 25 0.00000 00298 02322 38769 53125
67,108,864 26 0.00000 00149 01161 19384 76562 5

134,217,728 27 0.00000 00074 50580 59692 38281 25
268,435,456 28 0.00000 00037 25290 29846 19140 625
536,870,912 29 0.00000 00018 62645 14923 09570 3125

1,073,741,824 30 0.00000 00009 31322 57461 54785 15625
2,147,483,648 31 0.00000 00004 65661 28730 77392 57812 5
4,294,967,296 32 0.00000 00002 32830 64365 38696 28906 25
8,589,934,592 33 0.00000 00001 16415 32182 69348 14453 125

17,179,869,184 34 0.00000 00000 58207 66091 34674 07226 5625
34,359,738,368 35 0.00000 00000 29103 83045 67337 03613 28125
68,719,476,736 36 0.00000 00000 14551 91522 83668 51806 64062 5

137,438,953,472 37 0.00000 00000 07275 95761 41834 25903 32031 25
274,877,906,944 38 0.00000 00000 03637 97880 70917 12951 66015 625
549,755,813,888 39 0.00000 00000 01818 98940 35458 56475 83007 8125

1,099,511,627,776 40 0.00000 00000 00909 49470 17729 28237 91503 90625
2,199,023,255,552 41 0.00000 00000 00454 74735 08864 64118 95751 95312 5
4,398,046,511,104 42 0.00000 00000 00227 37367 54432 32059 47875 97656 25
8,796,093,022,208 43 0.00000 00000 00113 68683 77216 16029 73937 98828 125

17,592,186,044,416 44 0.00000 00000 00056 84341 88608 08014 86968 99414 0625
35,184,372,088,832 45 0.00000 00000 00028 42170 94304 04007 43484 49707 03125
70,368,744,177,664 46 0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5

140,737,488,355,328 47 0.00000 00000 00007 10542 73576 01001 85871 12426 75781 25
281,474,976,710,656 48 0.00000 00000 00003 55271 36788 00500 92935 56213 37890 625
562,949,953,421,312 49 0.00000 00000 00001 77635 68394 00250 46467 78106 68945 3125

1,125,899,906,842,624 50 0.00000 00000 00000 88817 84197 00125 23233 89053 34472 65625
2,251,799,813,685,248 51 0.00000 00000 00000 44408 92098 50062 61616 94526 67236 32812 5
4,503,599,627,370,496 52 0.00000 00000 00000 22204 46049 25031 30808 47263 33618 16406 25
9,007,199,254,740,992 53 0.00000 00000 00000 11102 23024 62515 65404 23631 66809 08203 125

18,014,398,509,481,984 54 0.00000 00000 00000 05551 11512 31257 82702 11815 83404 54101 5625
36,028,797,018,963,968 55 0.00000 00000 00000 02775 55756 15628 91351 05907 91702 27050 78125
72,057,594,037,927,936 56 0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39062 5

144,115,188,075,855,872 57 0.00000 00000 00000 00693 88939 03907 22837 76476 97925 56762 69531 25
288,230,376,151,711,744 58 0.00000 00000 00000 00346 94469 51953 61418 88238 48962 78381 34765 625
576,460,752,303,423,488 59 0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 8125

1,152,921,504,606,846,976 60 0.00000 00000 00000 00086 73617 37988 40354 72059 62240 69595 33691 40625
2,305,843,009,213,693,952 61 0.00000 00000 00000 00043 36808 68994 20177 36029 81120 34797 66845 70312 5
4,611,686,018,427,387,904 62 0.00000 00000 00000 00021 68404 34497 10088 68014 90560 17398 83422 85156 25
9,223,372,036,854,775,808 63 0.00000 00000 00000 00010 84202 17248 55044 34007 45280 08699 41711 42578 125

Figure G-1. Powers of 2

G-2 The z/Architecture CPU Architecture

18,446,744,073,709,551,616 64 0.00000 00000 00000 00005 42101 08624 27522 17003 72640 04349 70855 71289 0625
36,893,488,147,419,103,232 65
73,786,976,294,838,206,464 66

147,573,952,589,676,412,928 67
295,147,905,179,352,825,856 68
590,295,810,358,705,651,712 69

1,180,591,620,717,411,303,424 70
2,361,183,241,434,822,606,848 71
4,722,366,482,869,645,213,696 72
9,444,732,965,739,290,427,392 73

18,889,465,931,478,580,854,784 74
37,778,931,862,957,161,709,568 75
75,557,863,725,914,323,419,136 76

151,115,727,451,828,646,838,272 77
302,231,454,903,657,293,676,544 78
604,462,909,807,314,587,353,088 79

1,208,925,819,614,629,174,706,176 80
2,417,851,639,229,258,349,412,352 81
4,835,703,278,458,516,698,824,704 82
9,671,406,556,917,033,397,649,408 83

19,342,813,113,834,066,795,298,816 84
38,685,626,227,668,133,590,597,632 85
77,371,252,455,336,267,181,195,264 86

154,742,504,910,672,534,362,390,528 87
309,485,009,821,345,068,724,781,056 88
618,970,019,642,690,137,449,562,112 89

1,237,940,039,285,380,274,899,124,224 90
2,475,880,078,570,760,549,798,248,448 91
4,951,760,157,141,521,099,596,496,896 92
9,903,520,314,283,042,199,192,993,792 93

19,807,040,628,566,084,398,385,987,584 94
39,614,081,257,132,168,796,771,975,168 95
79,228,162,514,264,337,593,543,950,336 96

158,456,325,028,528,675,187,087,900,672 97
316,912,650,057,057,350,374,175,801,344 98
633,825,300,114,114,700,748,351,602,688 99

1,267,650,600,228,229,401,496,703,205,376 100
2,535,301,200,456,458,802,993,406,410,752 101
5,070,602,400,912,917,605,986,812,821,504 102

10,141,204,801,825,835,211,973,625,643,008 103
20,282,409,603,651,670,423,947,251,286,016 104
40,564,819,207,303,340,847,894,502,572,032 105
81,129,638,414,606,681,695,789,005,144,064 106

162,259,276,829,213,363,391,578,010,288,128 107
324,518,553,658,426,726,783,156,020,576,256 108
649,037,107,316,853,453,566,312,041,152,512 109

1,298,074,214,633,706,907,132,624,082,305,024 110
2,596,148,429,267,413,814,265,248,164,610,048 111
5,192,296,858,534,827,628,530,496,329,220,096 112

10,384,593,717,069,655,257,060,992,658,440,192 113
20,769,187,434,139,310,514,121,985,316,880,384 114
41,538,374,868,278,621,028,243,970,633,760,768 115
83,076,749,736,557,242,056,487,941,267,521,536 116

166,153,499,473,114,484,112,975,882,535,043,072 117
332,306,998,946,228,968,225,951,765,070,086,144 118
664,613,997,892,457,936,451,903,530,140,172,288 119

1,329,227,995,784,915,872,903,807,060,280,344,576 120
2,658,455,991,569,831,745,807,614,120,560,689,152 121
5,316,911,983,139,663,491,615,228,241,121,378,304 122

10,633,823,966,279,326,983,230,456,482,242,756,608 123
21,267,647,932,558,653,966,460,912,964,485,513,216 124
42,535,295,865,117,307,932,921,825,928,971,026,432 125
85,070,591,730,234,615,865,843,651,857,942,052,864 126

170,141,183,460,469,231,731,687,303,715,884,105,728 127
340,282,366,920,938,463,463,374,607,431,768,211,456 128

Plus Minus

Figure G-1. Powers of 2

H-1© Copyright IBM Corp. 2000, 2019

Appendix H. Hexadecimal Tables

The following tables aid in converting hexadecimal
values to decimal values, or the reverse.

Direct Conversion Table

This table provides direct conversion of decimal and
hexadecimal numbers in these ranges:

To convert numbers outside these ranges, and to
convert fractions, use the hexadecimal and decimal
conversion tables that follow the direct conversion
table in this appendix.

Hexadecimal Decimal
000 to FFF 0000 to 4095

H-2 The z/Architecture CPU Architecture

0 1 2 3 4 5 6 7 8 9 A B C D E F
00_ 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
01_ 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02_ 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
03_ 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
04_ 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05_ 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06_ 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07_ 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
08_ 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09_ 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0A_ 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0B_ 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
0C_ 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0D_ 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
0E_ 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
0F_ 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255
10_ 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
11_ 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12_ 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13_ 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
14_ 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15_ 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16_ 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17_ 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
18_ 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19_ 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A_ 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1B_ 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1C_ 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D_ 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E_ 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1F_ 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
20_ 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21_ 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24_ 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26_ 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27_ 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29_ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A_ 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E_ 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F_ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31_ 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32_ 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33_ 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34_ 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37_ 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B_ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E_ 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F_ 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

H-3

40_ 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41_ 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42_ 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43_ 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44_ 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45_ 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
46_ 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47_ 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48_ 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49_ 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A_ 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B_ 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D_ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E_ 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F_ 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
50_ 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51_ 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52_ 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54_ 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57_ 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58_ 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59_ 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A_ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D_ 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E_ 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F_ 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61_ 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64_ 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67_ 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68_ 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A_ 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B_ 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C_ 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F_ 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71_ 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73_ 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
74_ 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77_ 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A_ 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B_ 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7C_ 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F_ 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

0 1 2 3 4 5 6 7 8 9 A B C D E F

H-4 The z/Architecture CPU Architecture

80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81_ 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E_ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91_ 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93_ 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97_ 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C_ 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D_ 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F_ 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
A0_ 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A1_ 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2_ 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3_ 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4_ 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5_ 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7_ 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8_ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA_ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB_ 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD_ 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE_ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF_ 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
B0_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B1_ 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2_ 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3_ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4_ 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5_ 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6_ 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7_ 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8_ 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9_ 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA_ 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB_ 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC_ 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD_ 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE_ 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF_ 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A B C D E F

H-5

C0_ 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C1_ 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2_ 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3_ 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C4_ 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5_ 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6_ 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7_ 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8_ 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB_ 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC_ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD_ 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE_ 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF_ 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
D0_ 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D1_ 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2_ 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3_ 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D4_ 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5_ 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7_ 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8_ 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA_ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB_ 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC_ 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD_ 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE_ 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF_ 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
E0_ 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1_ 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4_ 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7_ 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA_ 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF_ 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
F0_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F1_ 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2_ 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3_ 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F4_ 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6_ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7_ 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8_ 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF_ 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

0 1 2 3 4 5 6 7 8 9 A B C D E F

H-6 The z/Architecture CPU Architecture

Conversion Table: Hexadecimal and Decimal Integers

POWERS OF 16 TABLE

Example: 268,435,45610 = (2.68435456 x 108)10 = 1000 000016 = (107)16

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 268,435,456 1 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 536,870,912 2 33,554,432 2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 1,073,741,824 4 67,108,864 4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 1,879,048,192 7 117,440,512 7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 2,415,919,104 9 150,994,944 9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 3,221,225,472 C 201,326,592 C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

8 7 6 5 4 3 2 1

TO CONVERT HEXADECIMAL TO DECIMAL

1. Locate the column of the decimal numbers corresponding
to the leftmost digit or letter of the hexadecimal; select
from this column and record the number that corresponds
to the position of the hexadecimal digit or letter.

2. Repeat step 1 for the next (second from the left) position.

3. Repeat step 1 for the units (third from the left) position.

4. Add the numbers selected from the table to form the deci-
mal number.

To convert integer numbers greater than the
capacity of the table, use the techniques
below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left
to right, adding units position.

Example: D3416 = 338010 D = 13
x 16
208

3 = + 3
211

x 16
3376

4 = + 4
3380

EXAMPLE

Conversion of
Hexadecimal Value D34

1. D 3328

2. 3 48

3. 4 + 4

4. Decimal 3380

TO CONVERT DECIMAL TO HEXADECIMAL

1. (a) Select from the table the highest decimal number that
is equal to or less than the number to be converted.
(b) Record the hexadecimal of the column containing the
selected number.
(c) Subtract the selected decimal from the number to be
converted.

2. Using the remainder from step 1(c), repeat all of step 1 to
develop the second position of the hexadecimal (and a
remainder)

3. Using the remainder from step 2, repeat all of step 1 to
develop the units position of the hexadecimal.

4. Combine the terms to form the hexadecimal number.

DECIMAL TO HEXADECIMAL

Divide and collect the remainder in reverse
order

Example: 338010 = X16

Remainder

16 3380 4

16 211 3

16 13 D

338010 = D3416

EXAMPLE

Conversion of
Decimal Value 3380

1. D -3328
52

2. 3 - 48
4

3. 4 - 4

4. Hexadecimal D34

16n n
1 0

16 1
256 2

4 096 3
65 536 4

1 048 576 5
16 777 216 6

268 435 456 7

4 294 967 296 8
68 719 476 736 9

1 099 511 627 776 10 = A
17 592 186 044 416 11 = B

281 474 976 710 656 12 = C
4 503 599 627 370 496 13 = D

72 057 594 037 927 936 14 = E
1 152 921 504 606 846 976 15 = F
 Decimal Values

16n n

H-7

Conversion Table: Hexadecimal and Decimal Fractions

HALFWORD

BYTE BYTE

Bits 0123 4567 0123 4567

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Equivalent

.0 .0000 .00 .0000 0000 .000 .0000 0000 0000 .0000 .0000 0000 0000 0000

.1 .0625 .01 .0039 0625 .001 .0002 4414 0625 .0001 .0000 1525 8789 0625

.2 .1250 .02 .0078 1250 .002 .0004 8828 1250 .0002 .0000 3051 7578 1250

.3 .1875 .03 .0117 1875 .003 .0007 3242 1875 .0003 .0000 4577 6367 1875

.4 .2500 .04 .0156 2500 .004 .0009 7656 2500 .0004 .0000 6103 5156 2500

.5 .3125 .05 .0195 3125 .005 .0012 2070 3125 .0005 .0000 7629 3945 3125

.6 .3750 .06 .0234 3750 .006 .0014 6484 3750 .0006 .0000 9155 2734 3750

.7 .4375 .07 .0273 4375 .007 .0017 0898 4375 .0007 .0001 0681 1523 4375

.8 .5000 .08 .0312 5000 .008 .0019 5312 5000 .0008 .0001 2207 0312 5000

.9 .5625 .09 .0351 5625 .009 .0021 9726 5625 .0009 .0001 3732 9101 5625

.A .6250 .0A .0390 6250 .00A .0024 4140 6250 .000A .0001 5258 7890 6250

.B .6875 .0B .0429 6875 .00B .0026 8554 6875 .000B .0001 6784 6679 6875

.C .7500 .0C .0468 7500 .00C .0029 2968 7500 .000C .0001 8310 5468 7500

.D .8125 .0D .0507 8125 .00D .0031 7382 8125 .000D .0001 9836 4257 8125

.E .8750 .0E .0546 8750 .00E .0034 1796 8750 .000E .0002 1362 3046 8750

.F .9375 .0F .0585 9375 .00F .0036 6210 9375 .000F .0002 2888 1835 9375

1 2 3 4

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find .A in position 1 .6250

Find .0B in position 2 .0429 6825

Find .00C in position 3 + .0029 2968 7500

.ABC is equal to .6708 9843 7500

TO CONVERT .13 DECIMAL TO HEXADECIMAL

1. Find .1250 next lowest to .1300
subtract – .1250 = .2 Hex

2. Find .0039 0625 next lowest to .0050 0000
– .0039 0625 = .01

3. Find .0009 7656 2500 .0010 9375 0000
– .0009 7656 2500 = .004

4. Find .0001 0681 1523 4375 .0001 1718 7500 0000
– .0001 0681 1523 4375 = .0007

.0000 1037 5976 5625 = .2147 Hex

5. .13 Decimal is approximately equal to

To convert fractions beyond the capacity of the table, use tech-
niques below:

HEXADECIMAL TO FRACTION DECIMAL

Convert the hexadecimal fraction to its decimal equivalent using
the same technique as for integer numbers. Divide the results by
16n (n is the number of fraction positions).

Example: .8A7 = .54077110

8A716 = 221510 .540771

163 = 4096 4096 2215.000000

DECIMAL FRACTION TO HEXADECIMAL

Collect integer parts of product in the order of calculation.

Example: .540810 = .8A716

.5408

 16

8 8. 6528

 16

A 10. 4448

 16

7 7. 1168

H-8 The z/Architecture CPU Architecture

Hexadecimal Addition and Subtraction Table

Example: 6 + 2 = 8, 8 - 2 = 6, and 8 - 6 = 2

Hexadecimal Multiplication Table

Example: 2 x 4 = 08, F x 2 = 1E

1 2 3 4 5 6 7 8 9 A B C D E F

1 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

2 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11

3 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12

4 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13

5 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14

6 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15

7 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16

8 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

9 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18

A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19

B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A

C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B

D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C

E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D

F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

1 2 3 4 5 6 7 8 9 A B C D E F

1 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

2 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E

3 03 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D

4 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

5 05 0A 0F 14 19 1E 23 28 2D 32 37 3C 41 46 4B

6 06 0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A

7 07 0E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 09 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87

A 0A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B 0B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C 0C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D 0D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E 0E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2

F 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

I-1© Copyright IBM Corp. 2000, 2019

Appendix I. EBCDIC and ISO-8 Codes

Dec Hex EBCDIC-
037

ISO-8 Dec Hex EBCDIC-
037

ISO-8 Dec Hex EBCDIC-
037

ISO-8 Dec Hex EBCDIC-
037

ISO-8

0 00 NUL NUL 64 40 SP @ 128 80 Ø 192 C0 { À

1 01 SOH SOH 65 41 RSP A 129 81 a 193 C1 A Á

2 02 STX STX 66 42 â B 130 82 b BPH 194 C2 B Â

3 03 ETX ETX 67 43 ä C 131 83 c NBH 195 C3 C Ã

4 04 SEL EOT 68 44 à D 132 84 d IND 196 C4 D Ä

5 05 HT ENQ 69 45 á E 133 85 e NEL 197 C5 E Å

6 06 RNL ACK 70 46 ã F 134 86 f SSA 198 C6 F Æ

7 07 DEL BEL 71 47 å G 135 87 g ESA 199 C7 G Ç

8 08 GE BS 72 48 ç H 136 88 h HTS 200 C8 H È

9 09 SPS HT 73 49 ñ I 137 89 i HTJ 201 C9 I É

10 0A RPT LF 74 4A ¢ J 138 8A « VTS 202 CA SHY Ê

11 0B VT VT 75 4B . K 139 8B » PLD 203 CB ô Ë

12 0C FF FF 76 4C < L 140 8C ð PLU 204 CC ö Ì

13 0D CR CR 77 4D (M 141 8D ý RI 205 CD ò Í

14 0E SO SO 78 4E + N 142 8E þ SS2 206 CE ó Î

15 0F SI SI 79 4F | O 143 8F ± SS3 207 CF õ Ï

16 10 DLE DLE 80 50 & P 144 90 ° DCS 208 D0 } Ð

17 11 DC1 DC1 81 51 é Q 145 91 j PU1 209 D1 J Ñ

18 12 DC2 DC2 82 52 ê R 146 92 k PU2 210 D2 K Ò

19 13 DC3 DC3 83 53 ë S 147 93 l STS 211 D3 L Ó

20 14 RES/ENP DC4 84 54 è T 148 94 m CCH 212 D4 M Ô

21 15 NL NAK 85 55 í U 149 95 n MW 213 D5 N Õ

22 16 BS SYN 86 56 î V 150 96 o SPA 214 D6 O Ö

23 17 POC ETB 87 57 ï W 151 97 p EPA 215 D7 P ×

24 18 CAN CAN 88 58 ì X 152 98 q SOS 216 D8 Q Ø

25 19 EM EM 89 59 ß Y 153 99 r 217 D9 R Ù

26 1A UBS SUB 90 5A ! Z 154 9A ª SCI 218 DA ¹ Ú

27 1B CU1 ESC 91 5B $ [155 9B º CSI 219 DB û Û

28 1C IFS IFS 92 5C * \ 156 9C æ ST 220 DC ü Ü

29 1D IGS IGS 93 5D)] 157 9D ¸ OSC 221 DD ù Ý

30 1E IRS IRS 94 5E ; ^ 158 9E Æ PM 222 DE ú Þ

31 1F ITB/IUS IUS 95 5F ¬ _ 159 9F ¤ APC 223 DF ÿ ß

32 20 DS SP 96 60 - ‘ 160 A0 µ RSP 224 E0 \ à

33 21 SOS ! 97 61 / a 161 A1 ~ ¡ 225 E1 ÷/NSP á

34 22 FS " 98 62 Â b 162 A2 s ¢ 226 E2 S â

35 23 WUS # 99 63 Ä c 163 A3 t £ 227 E3 T ã

36 24 BYP/INP $ 100 64 À d 164 A4 u ¤ 228 E4 U ä

37 25 LF % 101 65 Á e 165 A5 v ¥ 229 E5 V å

38 26 ETB & 102 66 Ã f 166 A6 w ¦ 230 E6 W æ

39 27 ESC ' 103 67 Å g 167 A7 x § 231 E7 X ç

40 28 SA (104 68 Ç h 168 A8 y ¨ 232 E8 Y è

41 29 SFE) 105 69 Ñ i 169 A9 z © 233 E9 Z é

42 2A SM/SW * 106 6A ¦ j 170 AA ¡ ª 234 EA ² ê

43 2B CSP + 107 6B , k 171 AB ¿ « 235 EB Ô ë

44 2C MFA , 108 6C % l 172 AC Ð ¬ 236 EC Ö ì

45 2D ENQ - 109 6D _ m 173 AD Ý SHY 237 ED Ò í

46 2E ACK . 110 6E > n 174 AE þ ® 238 EE Ó î

47 2F BEL / 111 6F ? o 175 AF ® ¯ 239 EF Õ ï

48 30 0 112 70 ø p 176 B0 ^ ° 240 F0 0 ð

49 31 1 113 71 É q 177 B1 £ ± 241 F1 1 ñ

50 32 SYN 2 114 72 Ê r 178 B2 ¥ ² 242 F2 2 ò

51 33 IR 3 115 73 Ë s 179 B3 · ³ 243 F3 3 ó

52 34 PP 4 116 74 È t 180 B4 © ´ 244 F4 4 ô

53 35 TRN 5 117 75 Í u 181 B5 § µ 245 F5 5 õ

54 36 NBS 6 118 76 Î v 182 B6 ¶ ¶ 246 F6 6 ö

55 37 EOT 7 119 77 Ï w 183 B7 ¼ · 247 F7 7 ÷

56 38 SBS 8 120 78 Ì x 184 B8 ½ ¸ 248 F8 8 ø

57 39 IT 9 121 79 ‘ y 185 B9 ¾ ¹ 249 F9 9 ù

58 3A RFF : 122 7A : z 186 BA [º 250 FA ³ ú

59 3B CU3 ; 123 7B # { 187 BB] » 251 FB Û û

60 3C DC4 < 124 7C @ | 188 BC ¯ ¼ 252 FC Ü ü

61 3D NAK = 125 7D ' } 189 BD ¨ ½ 253 FD Ù ý

62 3E > 126 7E = ~ 190 BE ´ ¾ 254 FE Ú þ

63 3F SUB ? 127 7F " � 191 BF × ¿ 255 FF EO ÿ

I-2 The z/Architecture CPU Architecture

Control Character Representations

Formatting Character Representations

Additional ISO-8 Control Character
Representations

Note: The ISO-8 controls are from ISO 6429, and the
graphics are from ISO 8859-1. The ISO-8 graphics are
code page 00819, named ISO/ANSI Multilingual.

ACK Acknowledge
BEL Bell
BS Backspace
BYP Bypass
CAN Cancel
CR Carriage Return
CSP Control Sequence Prefix
CU1 Customer Use 1
CU3 Customer Use 3
DC1 Device Control 1
DC2 Device Control 2
DC3 Device Control 3
DC4 Device Control 4
DEL Delete
DLE Data Link Escape
DS Digit Select
EM End of Medium
ENP Enable Presentation

ENQ Enquiry
EO Eight Ones
EOT End of Transmission
ESC Escape
ETB End of Transmission Block
ETX End of Text
FF Form Feed
FS Field Separator
GE Graphic Escape
HT Horizontal Tab
IFS Interchange File Separator
IGS Interchange Group

Separator
INP Inhibit Presentation
IR Index Return
IRS Interchange Record

Separator
IT Indent Tab

ITB Intermediate Transmission
Block

IUS International Unit Separator
LF Line Feed
MFA Modify Field Attribute
NAK Negative Acknowledge
NBS Numeric Backspace
NL New Line
NUL Null
POC Program-Operator

Communication
PP Presentation Position
RES Restore
RFF Required Form Feed
RNL Required New Line
RPT Repeat
SA Set Attribute
SBS Subscript

SEL Select
SFE Start Field Extended
SI Shift In
SM Set Mode
SO Shift Out
SOH Start of Heading
SOS Start of Significance
SPS Superscript
STX Start of Text
SUB Substitute
SW Switch
SYN Synchronous Idle
TRN Transparent
UBS Unit Backspace
VT Vertical Tab
WUS Word Underscore

NSP Numeric Space RSP Required Space SP Space SHY Syllable Hyphen

APC Application Program
Command

BPH Break Permitted Here
CCH Cancel Character
CSI Control Sequence

Introducer
DCS Device Control String
EPA End of Guarded Area
ESA End of Selected Area

HTJ Character Tabulation with
Justification

HTS Character Tabulation Set
IFS Information Separator Four
IGS Information Separator Three
IND Index
IRS Information Separator Two
MW Message Waiting
NBH No Break Here
NEL Next Line

OSC Operating System
Command

PLD Partial Line Down
PLU Partial Line Up
PM Privacy Message
PU1 Private Use One
PU2 Private Use Two
RI Reverse linefeed (or index)
SCI Single Character Introducer
SOS Start of String

SPA Start of Guarded Area
SSA Start of Selected Area
SS2 Single Shift Two
SS3 Single Shift Three
ST String Terminator
STS Set Transmit State
US Information Separator One
VTS Line Tabulation Set

X-1© Copyright IBM Corp. 2000, 2019

Index

Numerics
2K-IDAW control 15-28
370-XA architecture 1-34

A
A (ADD) binary instruction 7-26
abort

transactional execution 5-89
aborted-transaction-instruction-address

in the transaction diagnostic block 5-95
absolute address 3-4
absolute storage 3-4
access-control bits

in segment-table entry 3-46, 3-49
access-control bits in storage key 3-9
access-exception-fetch/store-indication facility

facility indication 4-101
access exceptions 6-47, 6-53

priority of 6-53
recognition of 6-47

access key 3-11
for channel-program execution 3-11, 15-25,

15-30
for channel-subsystem monitoring 3-11
for CPU 3-11

access list 5-56
See also access-list entry
accessing capability, revocation of 5-51
allocation and invalidation of entries in 5-49
authorizing the use of entries in 5-49
concepts 5-47
designation (ALD) 5-56
length (ALL) 5-56
origin (ALO) 5-56

access-list-controlled protection 3-13
exception for 6-34

access-list designation 5-56
access-list entry (ALE) 5-56

authorization index (ALEAX) 5-57
number

See ALEN
sequence exception 6-22

as an access exception 6-47
sequence number (ALESN)

in ALE 5-56
in ALET 5-54

token
See ALET

access-register mode 3-40

access-register translation (ART) 5-53
as part of LOAD REAL ADDRESS, STORE REAL

ADDRESS, TEST ACCESS, and TEST
PROTECTION 5-59

introduction to 5-47
lookaside buffer

See ALB
sequence of table fetches 5-119

access-register-translation (ART) tables 5-55
access registers 2-6

designation of 5-46
functions of 5-46
instructions for use of 5-52
machine-check save area for 3-87
save areas for 3-83
store-status save area for 3-87
validity bit for 11-21

access to storage 5-113
See also reference

active
device 16-16, 16-36
subchannel 16-16, 16-36

active allegiance 15-13
active communication 15-13
activity-control field (SCSW) 16-14, 16-36

following TEST SUBCHANNEL 14-21
AD (ADD NORMALIZED) HFP instruction 18-8

example A-41
adaptive dictionary 7-179
ADB (ADD) BFP instruction 19-15
ADBR (ADD) BFP instruction 19-15
ADD BFP instructions 19-15
ADD binary instructions 7-25
ADD DECIMAL instruction 8-6

example A-36
ADD DFP instructions 20-19
ADD HALFWORD IMMEDIATE instruction 7-28
ADD HALFWORD instruction 7-27

example A-8
ADD HIGH binary instructions 7-28
ADD IMMEDIATE binary instructions 7-26
ADD IMMEDIATE HIGH binary instructions 7-29
ADD LOGICAL HIGH binary instructions 7-30
ADD LOGICAL IMMEDIATE instructions 7-29
ADD LOGICAL instructions 7-29
ADD LOGICAL WITH CARRY instructions 7-30
ADD LOGICAL WITH SIGNED IMMEDIATE HIGH

binary instructions 7-32
ADD LOGICAL WITH SIGNED IMMEDIATE

instructions 7-31

X-2 The z/Architecture CPU Architecture

ADD NORMALIZED HFP instructions 18-8
example A-41

ADD UNNORMALIZED HFP instructions 18-9
example A-42

additional floating-point (AFP) registers 9-9
address 3-2

24-bit, 31-bit, and 64-bit 3-6
in branch-address generation 5-13
in operand address generation 5-12

absolute 3-4
AR-specified virtual

See AR-specified
arithmetic 3-5, 5-11

unsigned binary 7-6
backward stack-entry 5-80
base

See base address
branch

See branch address
channel-program

See channel-program address
comparison 12-1

controls for 12-1
effect on CPU state 4-2

CPU
See CPU address

data (I/O)
See data address

effective
See effective address

failing-storage
See failing-storage address

format 3-3
forward-section header 5-81
generation 5-10

for storage addressing 3-7
home virtual

See home virtual address
I/O 13-5
instruction

See instruction address
invalid 6-20
logical

See logical address
numbering of for byte locations 3-2
PER

See PER address
prefixing

See prefix
primary virtual

See primary virtual address
real 3-4
secondary virtual

See secondary virtual address

size of
controlled by addressing mode 5-10

storage 3-2
summary information 3-70
translation

See dynamic address translation, prefix
types 3-4
virtual 3-5
wraparound

See wraparound
address-limit checking (I/O)

effect of I/O-system reset on 17-15
limit mode (bits in PMCW) 15-3

address-limit-checking control (I/O) 15-27, 16-12
used for IPL 17-17

address of] 15-35
address space 3-23

AR-specified 5-46
changing of 3-23
control bits

control bit 5-76
in the PSW 4-7
use in address translation 3-40

created by DAT 3-38
number

See ASN
address-space-control element (ASCE) 3-42

effective 3-52
home 3-45
in AST entry 3-32

used for access-register translation 5-58
used for subspace groups 5-69

primary 3-42
secondary 3-44
type exception 6-22

addressing
trimodal 7-8

address-and-translation-mode identification (ATMID)
4-31

addressing exception 6-20
as an access exception 6-47, 6-53

addressing mode 5-10
bit in linkage-stack state entry 5-83
bit in the PSW 4-7
effect on address size 3-6
effect on operand-address generation 5-12
effect on sequential instruction-address

generation 5-10
effect on wraparound 3-7
in branch-address generation 5-13
in examples A-7
in operand address generation 5-12
set by BRANCH AND SAVE AND SET MODE

instruction 7-36

X-3

set by BRANCH AND SET MODE instruction
7-37

set by SET ADDRESSING MODE instruction
7-377

use of 5-18
ADR (ADD NORMALIZED) HFP instruction 18-8
ADTR (ADD) DFP instruction 20-19
AE (ADD NORMALIZED) HFP instruction 18-8

example A-41
AEB (ADD) BFP instruction 19-15
AEBR (ADD) BFP instruction 19-15
AER (ADD NORMALIZED) HFP instruction 18-8
AFI (ADD IMMEDIATE) instruction 7-26, 7-29
AFP (additional floating-point) registers 9-9
AFP-register data exception 6-25
AFT (ASN first table) 3-31
AFTE (ASN-first-table entry) 3-31
AFTO (ASN-first-table origin) 3-31
AFX (ASN-first-table index) 3-30

invalid bit 3-31
translation exception 6-22

AG (ADD) binary instruction 7-26
AGF (ADD) binary instruction 7-26
AGFI (ADD IMMEDIATE) instruction 7-26
AGFR (ADD) binary instruction 7-25
AGH (ADD HALFWORD) instruction 7-28
AGHI (ADD HALFWORD IMMEDIATE) instruction

7-28
AGHIK (ADD IMMEDIATE) instruction 7-26
AGR (ADD) binary instruction 7-25
AGRK (ADD) binary instruction 7-26
AGSI (ADD IMMEDIATE) instruction 7-26
AH (ADD HALFWORD) instruction 7-27

example A-8
AHHHR (ADD HIGH) binary instruction 7-28
AHI (ADD HALFWORD IMMEDIATE) instruction

7-28
AHIK (ADD IMMEDIATE) instruction 7-26
AHY (ADD HALFWORD) instruction 7-27
AIH (ADD IMMEDIATE HIGH) binary instruction 7-29
AKM (authorization key mask) 5-38
AL (ADD LOGICAL) instruction 7-29
ALB (ART-lookaside buffer) 5-64

entry
clearing of 5-66
effect of translation changes on 5-66
usable state 5-65

ALC (ADD LOGICAL WITH CARRY) instruction 7-30
ALCG (ADD LOGICAL WITH CARRY) instruction

7-30
ALCGR (ADD LOGICAL WITH CARRY) instruction

7-30
ALCR (ADD LOGICAL WITH CARRY) instruction

7-30

ALD (access-list designation) 5-56
ALE

See access-list entry
ALEAX (access-list-entry authorization index) 5-57
ALEN (access-list-entry number) 5-54

invalid bit 5-56
translation exception 6-22

as an access exception 6-47
alert (class of machine-check condition) 11-10
alert interruption condition (I/O) 16-5
alert-status bit (I/O) 16-17
ALESN (access-list-entry sequence number)

in ALE 5-56
in ALET 5-54

ALET (access-list-entry token) 5-48, 5-54
specification exception 6-22

as an access exception 6-47
ALFI (ADD LOGICAL IMMEDIATE) instruction 7-29
ALG (ADD LOGICAL) instruction 7-29
ALGF (ADD LOGICAL) instruction 7-29
ALGFI (ADD LOGICAL IMMEDIATE) instruction

7-29
ALGFR (ADD LOGICAL) instruction 7-29
ALGHSIK (ADD LOGICAL WITH SIGNED

IMMEDIATE) instruction 7-31
ALGR (ADD LOGICAL) instruction 7-29
ALGRK (ADD) binary instruction 7-29
ALGSI (ADD LOGICAL WITH SIGNED IMMEDIATE)

instruction 7-31
ALHHHR (ADD LOGICAL HIGH) binary instruction

7-30
ALHSIK (ADD LOGICAL WITH SIGNED

IMMEDIATE) instruction 7-31
alignment 3-3
ALL (access-list length) 5-56
allegiance

active 15-13
channel-path 15-12
dedicated 15-13
effect on CLEAR SUBCHANNEL of 15-12
working 15-12

allowed interruptions 6-6
ALO (access-list origin) 5-56
ALR (ADD LOGICAL) instruction 7-29
ALRK (ADD) binary instruction 7-29
ALSI (ADD LOGICAL WITH SIGNED IMMEDIATE)

instruction 7-31
ALSIH (ADD LOGICAL WITH SIGNED IMMEDIATE

HIGH) instruction 7-32
ALSIHN (ADD LOGICAL WITH SIGNED IMMEDIATE

HIGH) binary instruction 7-32
alter-and-display controls 12-2
alteration

storage (PER event) 4-37

X-4 The z/Architecture CPU Architecture

ALY (ADD LOGICAL) instruction 7-29
ancillary-report bit

in channel-report word 17-30
in machine-check-interruption code 11-18
in subchannel logout 16-49

AND IMMEDIATE instructions 7-34
AND instructions 7-32

examples A-8
AND WITH COMPLEMENT instructions 7-34
AP (ADD DECIMAL) instruction 8-6

example A-36
AR (ADD) binary instruction 7-25
AR-specified (access-register-specified) 3-5, 3-23

address space 3-23, 5-46
virtual address 3-5

AR-specified (access-register-specified) virtual
address

effective address-space-control element for 3-52
architected register context

See CPU
architectural mode

identification 3-76, 3-85
indication of 12-2, 12-3
selection of by IML controls 12-3
selection of by manual controls 12-3
selection of by signal-processor order 4-89

architecture
compatibility 1-36

arithmetic
address

See address arithmetic
binary 7-5

examples A-2
decimal 8-3

examples A-4, A-36
floating-point 9-1

examples A-5, A-41
logical (unsigned binary) 7-6

examples A-3
ARK (ADD) binary instruction 7-25
ART

See access-register translation
ART-lookaside buffer

See ALB
ASCE

See address-space-control element
ASCE (address-space-control element)

type exception 6-22
ASCII character code

handled by architecture 0-xxix
ASI (ADD IMMEDIATE) instruction 7-26
ASN (address-space number) 3-23

AST (ASN second table) 3-31
authorization 3-35

first table (AFT) 3-31
first-table index

See AFX
first-table origin (AFTO) 3-31
in entry-table entry 5-38
second-table (AST) 3-31
second-table address in ETE 5-38
second-table entry (ASTE)

for subspace groups 5-68
instance exception 6-23
instance number (ASTEIN), used in ASN reuse

3-26
origin, in ALE 5-57
primary (PASTE) 5-35
pseudo 3-24
sequence exception 6-23
sequence exception as an access exception

6-47
sequence number (ASTESN), in ALE 5-57
sequence number (ASTESN), in ASTE 5-58
validity exception 6-24
validity exception as an access exception 6-47

second-table index
See ASX

second-table origin (ASTO) 3-31
trace-control bit 4-15
translation 3-30

exceptions 6-55
translation-control bit 3-30, 5-29

ASN-and-LX-reuse-control bit 3-25
ASN-and-LX-reuse facility 1-7, 3-25

facility indication 4-99
assembler language A-7

instruction formats in
See instruction lists and page numbers in

Appendix B
assigned storage locations 3-73
AST (ASN second table) 3-31
AST entry 5-57

See also ASN-second-table entry
ASTE

See ASN-second-table entry
ASTESN (AST-entry sequence number)

in ALE 5-57
in ASTE 5-58

ASTO (ASN-second-table origin) 3-31
ASX (ASN-second-table index) 3-30

invalid bit 3-31
use in ART 5-58

translation exception 6-24
AT

See authority table
ATL (authority-table length) 3-32

use in ART 5-58

X-5

ATMID (addressing-and-translation-mode
identification) 4-31

ATO (authority-table origin) 3-32
use in ART 5-58

attached ART-table entry 5-65
attached region-table, segment-table, or page-table

entry 3-63
attachment of I/O devices 13-3
attribute-set indication

CPU attribute
CPU speed 7-257

AU (ADD UNNORMALIZED) HFP instruction 18-9
example A-42

AUR (ADD UNNORMALIZED) HFP instruction 18-9
authority table (AT) 5-30

designation 3-32, 5-58
length 3-32, 5-58
origin 3-32, 5-58

authorization
ASN 3-35
index (AX) 3-35, 5-29
key mask (AKM) 5-38
mechanisms 5-27

summary of 5-32
testing of 5-74

authorization check 16-52
indicator for (in ERW) 16-52

automatic reconfiguration 1-34
auxiliary storage 3-2, 3-38
availability (characteristic of a system) 1-37
AW (ADD UNNORMALIZED) HFP instruction 18-9
AWR (ADD UNNORMALIZED) HFP instruction 18-9
AX (authorization index) 3-35, 5-29
AXBR (ADD) BFP instruction 19-15
AXR (ADD NORMALIZED) HFP instruction 18-8
AY (ADD) binary instruction 7-26

B
B field of instruction 5-11
backed-up bit (machine-check condition) 11-17
backup

processing (synchronous machine-check
condition) 11-18

backward stack-entry address 5-80
backward stack-entry validity bit 5-80
BAKR (BRANCH AND STACK) instruction 10-11

examples A-10
BAL (BRANCH AND LINK) instruction 7-35

examples A-8
BALR (BRANCH AND LINK) instruction 7-35

examples A-8
BAS (BRANCH AND SAVE) instruction 7-36

example A-8

base address 5-11
register for 2-4

base-AST-entry origin (BASTEO) 5-67
base-authority state 10-8
base space 5-18
base-space bit 5-68
basic addressing mode

bit in entry-table entry 5-38
basic I/O functions 15-1
basic PROGRAM CALL 5-72, 10-96
BASR (BRANCH AND SAVE) instruction 7-36

example A-8
BASSM (BRANCH AND SAVE AND SET MODE)

instruction 7-36
example A-8

BASTEO (base-AST-entry origin) 5-67
BC (BRANCH ON CONDITION) instruction 7-39

example A-12
BCR (BRANCH ON CONDITION) instruction 7-39
BCT (BRANCH ON COUNT) instruction 7-40

example A-12
BCTG (BRANCH ON COUNT) instruction 7-40
BCTGR (BRANCH ON COUNT) instruction 7-40
BCTR (BRANCH ON COUNT) instruction 7-40

example A-12
BFP

data class
testing of 19-41

BFP (binary floating point) 9-4
BFP data 19-2

conversion of 9-27
BFP facility 19-1
BFP-instruction data exception 6-25
bias for exponent 9-2, 19-2, 20-3

function of view 9-2
summary for BFP 19-2, 19-3
summary for DFP 20-3, 20-6

biased exponent 9-2, 19-2, 20-3
BIC (BRANCH INDIRECT ON CONDITION)

instruction 7-38
big endian 7-287, 7-394
bimodal addressing

See addressing mode
binary

See also fixed point
arithmetic 7-5

examples A-2
negative zero 7-4
number representation 7-4

examples A-2
overflow 7-5

example A-2
See also fixed point
sign bit 7-4

X-6 The z/Architecture CPU Architecture

binary floating point (BFP) 9-4
binary integer

conversion from floating point 18-11, 19-22,
19-25, 20-29, 20-32

conversion to floating point 18-11, 19-19, 20-24,
20-25

binary-to-decimal conversion 7-230, 25-7
example A-19

bit 3-2
numbering of within a group of bytes 3-3

bits to left of compressed data 7-174
bits to right of compressed data 7-174
block-concurrent storage references 5-127
block number

expanded storage 2-2
block of I/O data 15-24
block of storage 3-4

See also page
testing for usability of 10-170

borrow 7-397
boundary alignment 3-3

for instructions 5-3
BPP (BRANCH PREDICTION PRELOAD) instruction

7-42
BPRP (BRANCH PREDICTION RELATIVE

PRELOAD) instruction 7-42
branch address 5-12

control bit 4-28
in linkage-stack state entry 5-83
in trace entry 4-22

BRANCH AND LINK instructions 7-35
examples A-8

BRANCH AND SAVE AND SET MODE instruction
7-36
examples A-8

BRANCH AND SAVE instructions 7-36
examples A-8

BRANCH AND SET AUTHORITY instruction 10-7
BRANCH AND SET MODE instruction 7-37

examples A-8
BRANCH AND STACK instruction 10-11

examples A-10
BRANCH IN SUBSPACE GROUP instruction 10-13
BRANCH INDIRECT ON CONDITION instruction

7-38
BRANCH ON CONDITION instructions 7-39

example A-12
BRANCH ON COUNT instructions 7-40

example A-12
BRANCH ON INDEX HIGH instruction 7-41

examples A-12
BRANCH ON INDEX LOW OR EQUAL instruction

7-41
examples A-13

BRANCH RELATIVE AND SAVE instruction 7-45
BRANCH RELATIVE AND SAVE LONG instruction

7-45
BRANCH RELATIVE ON CONDITION instruction

7-46
BRANCH RELATIVE ON CONDITION LONG

instruction 7-46
BRANCH RELATIVE ON COUNT HIGH instruction

7-47
BRANCH RELATIVE ON COUNT instruction 7-47
BRANCH RELATIVE ON INDEX HIGH instruction

7-47
BRANCH RELATIVE ON INDEX LOW OR EQUAL

instruction 7-47
branch state entry 5-81, 10-11
branch-trace-control bit 4-15
branching

branch-address generation 5-12
in a channel program 15-76
relative 5-13
to perform decision making, loop control, and

subroutine linkage 5-14
using the linkage stack 5-73

BRAS (BRANCH RELATIVE AND SAVE) instruction
7-45

BRASL (BRANCH RELATIVE AND SAVE LONG)
instruction 7-45

BRC (BRANCH RELATIVE ON CONDITION)
instruction 7-46

BRCL (BRANCH RELATIVE ON CONDITION LONG)
instruction 7-46

BRCT (BRANCH RELATIVE ON COUNT) instruction
7-47

BRCTG (BRANCH RELATIVE ON COUNT)
instruction 7-47

BRCTH (BRANCH RELATIVE ON COUNT HIGH)
instruction 7-47

breaking-event address
in the transaction diagnostic block 5-96
assigned storage locations for 3-80

breaking-event-address register 4-46
broadcasted-purging facility 1-30
BRXH (BRANCH RELATIVE ON INDEX HIGH)

instruction 7-47
BRXHG (BRANCH RELATIVE ON INDEX HIGH)

instruction 7-47
BRXLE (BRANCH RELATIVE ON INDEX LOW OR

EQUAL) instruction 7-47
BRXLG (BRANCH RELATIVE ON INDEX LOW OR

EQUAL) instruction 7-48
BSA (BRANCH AND SET AUTHORITY) instruction

10-7
BSG (BRANCH IN SUBSPACE GROUP) instruction

10-13

X-7

BSM (BRANCH AND SET MODE) instruction 7-37
example A-8

buffer storage (cache) 3-2
burst mode (channel-path operation) 13-3
busy

in I/O operations 13-10
in SIGNAL PROCESSOR 4-95

BX (byte index) 3-39
BXH (BRANCH ON INDEX HIGH) instruction 7-41

examples A-12
BXHG (BRANCH ON INDEX HIGH) instruction 7-41
BXLE (BRANCH ON INDEX LOW OR EQUAL)

instruction 7-41
examples A-13

BXLEG (BRANCH ON INDEX LOW OR EQUAL)
instruction 7-41

byte 3-2
numbering of in storage 3-2

byte index (BX) 3-39
byte-multiplex mode (channel-path operation) 13-3

C
C (COMPARE) binary instruction 7-133
cache 3-2
called-space identification 5-83
cancel-I/O facility 1-30
CANCEL SUBCHANNEL instruction 14-3
candidates

selection of 9-13
canonical

declets 20-6
canonicalization

of DFP data 20-7
capability list 5-51
carry 7-5
CBC (checking-block code) 11-2

invalid 11-2
in registers 11-9
in storage 11-7
in storage keys 11-7

near-valid 11-2
valid 11-2

CBN (compressed-data bit number) 7-172
example of 7-178

CCC (channel-control check) 16-29
CCW (channel-command word) 15-31

2K-IDAW control
used for IPL 17-17

address of 16-19
byte count in 15-33
channel-program-type control

used for IPL 17-17
check (in subchannel logout) 16-48

command codes
See commands

contents of 15-31
current 15-31
designation of storage area in 15-32
format-0 and format-1 15-31
format control 16-11, 16-12, 16-35, 16-36

used for IPL 17-17
IDA flag in 15-32
IDAW control

used for IPL 17-17
incorrect-length-suppression-mode control

used for IPL 17-17
indirect data addressing used in 13-9, 15-66
invalid format of 16-27
invalid specification of 16-25, 16-40
MIDA flag in 15-33
modification control

used for IPL 17-17
modified indirect data addressing used in 15-68
modified-CCW-IDA control

used for IPL 17-17
ORB-extension control

used for IPL 17-17
PCI flag in 15-32
prefetch control in 16-11

used for IPL 17-17
prefetching 15-62
retry of

See command retry
skip flag in 15-32
streaming-mode control

used for IPL 17-17
suspend flag in 15-32

CCW channel program 13-7
CCW-format control 15-27
CCW-type IPL (CCW-type initial program loading)

17-17
CD (COMPARE) HFP instruction 18-10
CDB (COMPARE) BFP instruction 19-17
CDBR (COMPARE) BFP instruction 19-17
CDFBR (CONVERT FROM FIXED) BFP instruction

19-19, 19-21
CDFBRA (CONVERT FROM FIXED) BFP instruction

19-19
CDFR (CONVERT FROM FIXED) HFP instruction

18-11
CDFTR (CONVERT FROM FIXED) DFP instruction

20-24
CDGBR (CONVERT FROM FIXED) BFP instruction

19-19, 19-21
CDGBRA (CONVERT FROM FIXED) BFP instruction

19-19

X-8 The z/Architecture CPU Architecture

CDGR (CONVERT FROM FIXED) HFP instruction
18-11

CDGTR (CONVERT FROM FIXED) DFP instruction
20-24

CDGTRA (CONVERT FROM FIXED) DFP instruction
20-24

CDLFBR (CONVERT FROM LOGICAL) BFP
instruction 19-21

CDLFTR (CONVERT FROM LOGICAL) DFP
instruction 20-25

CDLGBR (CONVERT FROM LOGICAL) BFP
instruction 19-21

CDLGTR (CONVERT FROM LOGICAL) DFP
instruction 20-25

CDPT (CONVERT FROM PACKED) instruction
20-26

CDR (COMPARE) HFP instruction 18-10
examples A-42

CDS (COMPARE DOUBLE AND SWAP) instruction
7-143
examples A-46

CDSG (COMPARE DOUBLE AND SWAP) instruction
7-143

CDSS (compressed-data symbol size) 7-173
CDSTR (CONVERT FROM SIGNED PACKED) DFP

instruction 20-28
CDSY (COMPARE DOUBLE AND SWAP) instruction

7-143
CDTR (COMPARE) DFP instruction 20-22
CDUTR (CONVERT FROM UNSIGNED PACKED)

DFP instruction 20-28
CDZT '????' Zoned-decimal source, long DFP result

20-29, 20-36
CE (COMPARE) HFP instruction 18-10
CEB (COMPARE) BFP instruction 19-17
CEBR (COMPARE) BFP instruction 19-17
CEDTR (COMPARE BIASED EXPONENT) DFP

instruction 20-23
CEFBR (CONVERT FROM FIXED) BFP instruction

19-19, 19-21
CEFBRA (CONVERT FROM FIXED) BFP instruction

19-19
CEFR (CONVERT FROM FIXED) HFP instruction

18-11
CEGBR (CONVERT FROM FIXED) BFP instruction

19-19, 19-21
CEGBRA (CONVERT FROM FIXED) BFP instruction

19-19
CEGR (CONVERT FROM FIXED) HFP instruction

18-11
CELFBR (CONVERT FROM LOGICAL) BFP

instruction 19-21
CELGBR (CONVERT FROM LOGICAL) BFP

instruction 19-21

central processing unit
See CPU

CER (COMPARE) HFP instruction 18-10
CEXTR (COMPARE BIASED EXPONENT) DFP

instruction 20-23
CFC (COMPARE AND FORM CODEWORD)

instruction 7-136
example A-53

CFDBR (CONVERT TO FIXED) BFP instruction
19-22

CFDBRA (CONVERT TO FIXED) BFP instruction
19-22

CFDR (CONVERT TO FIXED) HFP instruction 18-11
CFEBR (CONVERT TO FIXED) BFP instruction

19-22
CFEBRA (CONVERT TO FIXED) BFP instruction

19-22
CFER (CONVERT TO FIXED) HFP instruction 18-11
CFI (COMPARE IMMEDIATE) instruction 7-133
CFXBR (CONVERT TO FIXED) BFP instruction

19-22
CFXBRA (CONVERT TO FIXED) BFP instruction

19-22
CFXR (CONVERT TO FIXED) HFP instruction 18-11
CG (COMPARE) binary instruction 7-133
CGDBR (CONVERT TO FIXED) BFP instruction

19-22
CGDBRA (CONVERT TO FIXED) BFP instruction

19-22
CGDR (CONVERT TO FIXED) HFP instruction

18-11
CGDTR (CONVERT TO FIXED) DFP instruction

20-29, 20-30
CGEBR (CONVERT TO FIXED) BFP instruction

19-22
CGEBRA (CONVERT TO FIXED) BFP instruction

19-22
CGER (CONVERT TO FIXED) HFP instruction

18-11
CGF (COMPARE) binary instruction 7-133
CGFI (COMPARE IMMEDIATE) instruction 7-134
CGFR (COMPARE) binary instruction 7-133
CGFRL (COMPARE RELATIVE LONG) instruction

7-134
CGH (COMPARE HALFWORD) binary instruction

7-149
CGHI (COMPARE HALFWORD IMMEDIATE)

instruction 7-149
CGHRL (COMPARE HALFWORD RELATIVE

LONG) binary instruction 7-149
CGHSI (COMPARE HALFWORD IMMEDIATE)

instruction 7-149
CGIB (COMPARE IMMEDIATE AND BRANCH)

instruction 7-135

X-9

CGIJ (COMPARE IMMEDIATE AND BRANCH
RELATIVE) instruction 7-135

CGIT (COMPARE IMMEDIATE AND TRAP)
instruction 7-148

CGR (COMPARE) binary instruction 7-133
CGRB (COMPARE AND BRANCH) instruction 7-134
CGRJ (COMPARE AND BRANCH RELATIVE)

instruction 7-135
CGRL (COMPARE RELATIVE LONG) binary

instruction 7-134
CGRT (COMPARE AND TRAP) instruction 7-148
CGXBR (CONVERT TO FIXED) BFP instruction

19-22
CGXBRA (CONVERT TO FIXED) BFP instruction

19-22
CGXR (CONVERT TO FIXED) HFP instruction

18-11
CGXTR (CONVERT TO FIXED) DFP instruction

20-29, 20-30, 20-32
CH (COMPARE HALFWORD) instruction 7-149

example A-14
chaining check (subchannel status) 16-30
chaining of CCWs 15-63

command
See command chaining of CCWs

data
See data chaining of CCWs

chaining of CRWs 17-29, 17-30
change bit in storage key 3-9
change recording 3-20
channel-command word

See CCW
channel commands

See commands (I/O)
channel-control check (subchannel status) 16-29
channel-data check (subchannel status) 16-28,

16-35, 16-44
channel path 13-3

active allegiance for 15-13
available for selection 15-13
dedicated allegiance for 15-13
effect of I/O-system reset on 17-14
masks in SCHIB

See LPM, LPUM, PAM, PIM, PNOM, POM
multipath mode of 15-4, 15-23
not operational 16-13
parallel-I/O-interface type 13-3
serial-I/O-interface type 13-3
storing of status for 14-16
type of 13-3, 13-6
working allegiance for 15-12

channel-path identifier
See CHPID

channel-path reset 17-13

effect of I/O-system reset on 17-15
channel-path-reset function 15-80

completion of 15-81
initiation by RESET CHANNEL PATH 14-9
reset signal issued as part of 17-12
signaling for 15-81

channel-path-status word 14-16
channel-path timeout

indicator for (in ERW) 16-52
channel program 15-31

2K-IDAW control for 15-28
branching in

See TIC
CCW channel program 13-7
execution of 13-11, 15-23

resumption of 14-11
suspension of 13-11, 15-73

format-2-IDAW control for 15-27
modification control for 15-26
serialization 5-133
streaming-mode control for 15-25
suspend control for 15-25
synchronization control for 15-26
TCW channel program 13-7

channel-program address 16-19
field-validity flag for in IRB 16-49
used for IPL 17-17

channel-program type
CCW channel program 13-7
TCW channel program 13-7

channel-program-type control 15-27
channel report 17-28

generated as a result of RCHP 14-9
channel report pending 11-17, 17-28

effect of I/O-system reset on 17-15
subclass-mask bit for 11-26

channel-report word
See CRW

channel subsystem 2-7, 13-1
addressing used in 13-5
damage 11-17
effect of I/O-system reset on 17-13
effect of power-on reset on 4-81
isolated state of 16-52

channel-subsystem-call facility 1-33
channel-subsystem monitoring 17-1

effect of I/O-system reset on 17-15
channel-subsystem recovery 11-5, 17-27
channel-subsystem timer 17-2

effect of I/O-system reset on 17-15
channel-subsystem timing 17-2
channel-subsystem timing-facility bit (in PMCW) 15-4
characteristic (of HFP number) 18-1

See also exponent

X-10 The z/Architecture CPU Architecture

characters
represented by eight-bit code 0-xxix

check bits 3-3, 11-2
check stop 4-3, 11-9

as signal-processor status 4-98
during manual operation 12-1
effect on CPU timer 4-64
entering of 11-13
indicator 12-3
malfunction alert for 6-13
system 11-10

checking block 11-2
checking-block code

See CBC
checkpoint 11-2
checkpoint synchronization 11-3

action 11-4
operations 11-4

CHECKSUM instruction 7-49
CHH (COMPARE HIGH) instruction 7-150
CHHR (COMPARE HIGH) instruction 7-150
CHHSI (COMPARE HALFWORD IMMEDIATE)

instruction 7-149
CHI (COMPARE HALFWORD IMMEDIATE)

instruction 7-149
CHLR (COMPARE HIGH) instruction 7-150
CHPID (channel-path identifier) 13-5

in PMCW 15-8
used in RESET CHANNEL PATH 14-9

CHRL (COMPARE HALFWORD RELATIVE LONG)
binary instruction 7-149

CHSI (COMPARE HALFWORD IMMEDIATE)
instruction 7-149

CHY (COMPARE HALFWORD) instruction 7-149
CIB (COMPARE IMMEDIATE AND BRANCH)

instruction 7-135
CIH (COMPARE IMMEDIATE HIGH) instruction

7-150
CIJ (COMPARE IMMEDIATE AND BRANCH

RELATIVE) instruction 7-135
CIPHER MESSAGE instruction 7-52
CIPHER MESSAGE WITH AUTHENTICATION

instruction 7-77
CIPHER MESSAGE WITH CHAINING instruction

7-52
CIPHER MESSAGE WITH CIPHER FEEDBACK

instruction 7-91
CIPHER MESSAGE WITH COUNTER instruction

7-106
CIPHER MESSAGE WITH OUTPUT FEEDBACK

instruction 7-119
CIT (COMPARE IMMEDIATE AND TRAP) instruction

7-148
CKSM (CHECKSUM) instruction 7-49

CL (COMPARE LOGICAL) instruction 7-151
class

of BFP data 19-4
testing of 19-41

of DFP data
testing of 20-56

CLC (COMPARE LOGICAL) instruction 7-151
example A-15

CLCL (COMPARE LOGICAL LONG) instruction
7-157
example A-16

CLCLE (COMPARE LOGICAL LONG EXTENDED)
instruction 7-159

CLCLU (COMPARE LOGICAL LONG UNICODE)
instruction 7-162

clear function 15-14, 15-22
bit in SCSW for 16-14
completion of 15-15
initiated by CLEAR SUBCHANNEL 14-5
path management for 15-14, 15-22
pending 16-16
signaling for 15-15
subchannel modification by 15-15

clear reset 4-80
clear signal 17-12

issued as part of clear function 15-15
CLEAR SUBCHANNEL instruction 14-5

See also clear function
effect on device status of 15-16
function initiated by 15-14, 15-22
use of after RESET CHANNEL PATH 14-10

clearing operation
by clear-reset function 4-80
by load-clear key 12-4
by load-clear-list-directed key 12-4
by system-reset-clear key 12-6
by TEST BLOCK instruction 10-170

CLFDBR (CONVERT TO FIXED) BFP instruction
19-25

CLFDTR (CONVERT TO LOGICAL) DFP instruction
20-32

CLFEBR (CONVERT TO FIXED) BFP instruction
19-25

CLFHSI (COMPARE LOGICAL IMMEDIATE)
instruction 7-151

CLFI (COMPARE LOGICAL IMMEDIATE) instruction
7-151

CLFIT (COMPARE LOGICAL IMMEDIATE AND
TRAP) instruction 7-155

CLFT (COMPARE LOGICAL AND TRAP) instruction
7-154

CLFXBR (CONVERT TO FIXED) BFP instruction
19-25

CLG (COMPARE LOGICAL) binary instruction 7-151

X-11

CLGDBR (CONVERT TO FIXED) BFP instruction
19-25

CLGDTR (CONVERT TO LOGICAL) DFP instruction
20-32

CLGEBR (CONVERT TO FIXED) BFP instruction
19-25

CLGF (COMPARE LOGICAL) binary instruction
7-151

CLGFI (COMPARE LOGICAL IMMEDIATE)
instruction 7-151

CLGFR (COMPARE LOGICAL) binary instruction
7-151

CLGFRL (COMPARE LOGICAL RELATIVE LONG)
binary instruction 7-152

CLGHRL (COMPARE LOGICAL RELATIVE LONG)
binary instruction 7-152

CLGHSI (COMPARE LOGICAL IMMEDIATE)
instruction 7-151

CLGIB (COMPARE LOGICAL IMMEDIATE AND
BRANCH) instruction 7-153

CLGIJ (COMPARE LOGICAL IMMEDIATE AND
BRANCH RELATIVE) instruction 7-153

CLGIT (COMPARE LOGICAL IMMEDIATE AND
TRAP) instruction 7-155

CLGR (COMPARE LOGICAL) binary instruction
7-151

CLGRB (COMPARE LOGICAL AND BRANCH)
instruction 7-153

CLGRJ (COMPARE LOGICAL AND BRANCH
RELATIVE) instruction 7-153

CLGRL (COMPARE LOGICAL RELATIVE LONG)
binary instruction 7-152

CLGRT (COMPARE LOGICAL AND TRAP)
instruction 7-154

CLGT (COMPARE LOGICAL AND TRAP) instruction
7-154

CLGXBR (CONVERT TO FIXED) BFP instruction
19-25

CLGXTR (CONVERT TO LOGICAL) DFP instruction
20-32

CLHH (COMPARE LOGICAL HIGH) instruction
7-156

CLHHR (COMPARE LOGICAL HIGH) instruction
7-156

CLHHSI (COMPARE LOGICAL IMMEDIATE)
instruction 7-151

CLHLR (COMPARE LOGICAL HIGH) instruction
7-156

CLHRL (COMPARE LOGICAL RELATIVE LONG)
binary instruction 7-152

CLI (COMPARE LOGICAL) instruction 7-151
example A-15

CLIB (COMPARE LOGICAL IMMEDIATE AND
BRANCH) instruction 7-153

CLIH (COMPARE LOGICAL IMMEDIATE HIGH)
instruction 7-157

CLIJ (COMPARE LOGICAL IMMEDIATE AND
BRANCH RELATIVE) instruction 7-153

CLIY (COMPARE LOGICAL) instruction 7-151
CLM (COMPARE LOGICAL CHARACTERS UNDER

MASK) instruction 7-156
example A-16

CLMH (COMPARE LOGICAL CHARACTERS
UNDER MASK) instruction 7-156

CLMY (COMPARE LOGICAL CHARACTERS
UNDER MASK) instruction 7-156

clock
See TOD clock

clock comparator 4-60
external interruption 6-12
machine-check save area for 3-86
save areas for 3-82
store-status save area for 3-86
validity bit for 11-22

clock unit 4-47, 7-389
CLR (COMPARE LOGICAL) instruction 7-151

example A-16
CLRB (COMPARE LOGICAL AND BRANCH)

instruction 7-153
CLRJ (COMPARE LOGICAL AND BRANCH

RELATIVE) instruction 7-153
CLRL (COMPARE LOGICAL RELATIVE LONG)

binary instruction 7-152
CLRT (COMPARE LOGICAL AND TRAP) instruction

7-154
CLST (COMPARE LOGICAL STRING) instruction

7-165
examples A-18

CLY (COMPARE LOGICAL) instruction 7-151
CMPSC (COMPRESSION CALL) instruction 7-169
CMPSC-enhancement facility 1-7

facility indication CMPSC enhancement facility
facility indication] 4-100

code
ASCII

handled by architecture 0-xxix
checking-block

See CBC
command (in CCW)

See command code in CCW
condition

See condition code
data-exception (DXC) 6-17, 20-15
decimal digit and sign 8-2
deferred condition (I/O) 16-9
EBCDIC

handled by architecture 0-xxix
table for I-2

X-12 The z/Architecture CPU Architecture

eight-bit
handled by architecture 0-xxix

error-recovery (I/O) 17-30
external-damage 11-23

validity bit for 11-21
I/O-interruption subclass 15-2
instruction-length

See ILC
interruption

See interruption code
linkage-stack-entry type 5-79
monitor

See monitor code
operation 5-3
PER

See PER code
reporting-source (I/O) 17-30
storage-access (in subchannel logout) 16-50
vector-exception (VXC) 6-20

codeword (for sorting operations) 7-136
example A-54

cohort 20-2
combination field

in DFP data format 20-4
command chaining of CCWs 15-63

effect of status modifier on 15-63
flag in CCW for 15-32
overview of 13-11

command chaining of TCWs
overview of 13-11

command code in CCW 15-57
See also commands
See also common I/O-device commands
invalid 16-25

command codes
See command code in CCW

command mode 13-9
command retry 15-77

effect on PCI of 15-65
commands (I/O) 15-57

See also common I/O-device commands
transfer in channel 15-77

commit
transactional execution 5-90

common I/O-device commands
publication referenced 0-xxix

common-region bit 3-47
common-segment bit 3-50
common-rounding-point view 9-13
COMPARE AND BRANCH instructions 7-134
COMPARE AND BRANCH RELATIVE instructions

7-134
COMPARE AND FORM CODEWORD instruction

7-136

example A-53
COMPARE AND REPLACE DAT TABLE ENTRY

instruction 10-17
COMPARE AND SIGNAL BFP instructions 19-18
COMPARE AND SIGNAL DFP instructions 20-23
COMPARE AND SWAP AND PURGE instruction

10-21
compare-and-swap-and-store facility 1-8

facility indication 4-100
compare-and-swap-and-store facility 2 1-8

facility indication 4-100
COMPARE AND SWAP AND STORE instruction

7-145
COMPARE AND SWAP instruction 7-143

examples A-46
compare-and-trap-instruction data exception 6-25
COMPARE AND TRAP instructions 7-148
COMPARE BFP instructions 19-17
COMPARE BIASED EXPONENT DFP instructions

20-23
COMPARE binary instructions 7-133
COMPARE DECIMAL instruction 8-7

example A-36
COMPARE DFP instructions 20-22
COMPARE DOUBLE AND SWAP instruction 7-143

examples A-46
COMPARE HALFWORD IMMEDIATE instructions

7-149
COMPARE HALFWORD instruction 7-149

example A-14
COMPARE HFP instructions 18-10

examples A-42
COMPARE HIGH instructions 7-150
COMPARE IMMEDIATE AND BRANCH instructions

7-135
COMPARE IMMEDIATE AND BRANCH RELATIVE

instructions 7-135
COMPARE IMMEDIATE AND TRAP instructions

7-148
COMPARE IMMEDIATE binary instructions 7-133
COMPARE IMMEDIATE HIGH instruction 7-150
COMPARE LOGICAL AND BRANCH instructions

7-153
COMPARE LOGICAL AND BRANCH RELATIVE

instructions 7-153
COMPARE LOGICAL AND TRAP instructions 7-154
COMPARE LOGICAL CHARACTERS UNDER

MASK instruction 7-156
example A-16

COMPARE LOGICAL HIGH instruction 7-156
COMPARE LOGICAL IMMEDIATE AND BRANCH

instructions 7-153
COMPARE LOGICAL IMMEDIATE AND BRANCH

RELATIVE instructions 7-153

X-13

COMPARE LOGICAL IMMEDIATE AND TRAP
instructions 7-155

COMPARE LOGICAL IMMEDIATE HIGH instruction
7-157

COMPARE LOGICAL IMMEDIATE instructions
7-151

COMPARE LOGICAL instructions 7-151
examples A-15

COMPARE LOGICAL LONG EXTENDED instruction
7-159

COMPARE LOGICAL LONG instruction 7-157
example A-16

COMPARE LOGICAL LONG UNICODE instruction
7-162

COMPARE LOGICAL STRING instruction 7-165
examples A-18

COMPARE RELATIVE LONG instructions 7-134
COMPARE UNTIL SUBSTRING EQUAL instruction

7-166
comparison

address
See address comparison

decimal 8-7
example A-36

hexadecimal-floating-point
examples A-42

logical 7-7
examples A-15

of IEEE data 9-24
signed-binary 7-7
TOD-clock 4-60

compatibility 1-36
among systems implementing different

architectures 1-37
among systems implementing same architecture

1-36
control-program 1-37
problem-state 1-37

completion of I/O functions
by channel-path-reset function 15-81
by clear function 15-15
by halt function 15-17
during initiation 15-78

completion of instruction execution 5-22
completion of unit of operation 5-24
compressed-data bit number (CBN) 7-172

example of 7-178
compressed-data symbol size (CDSS) 7-173
COMPRESSION CALL instruction 7-169

restriction related to
on leftmost bits in symbol-translation-table

entry 7-175
on length of chain of compression-dictionary

entries 7-177

on length of chain of expansion-dictionary
entries 7-177

on length of character symbol during
compression 7-177

on length of character symbol during
expansion 7-177

on number of children 7-177, 7-179
on offset to symbol-translation table 7-173
on symbol translation with format-1 sibling

descriptors 7-173
compression dictionary

size of with symbol translation 7-173
compression facility

publication referenced 0-xxx
COMPUTE DIGITAL SIGNATURE

AUTHENTICATION 26-2
COMPUTE INTERMEDIATE MESSAGE DIGEST

instruction 7-187
COMPUTE LAST MESSAGE DIGEST instruction

7-200
COMPUTE MESSAGE AUTHENTICATION CODE

instruction 7-218
conceptual sequence 5-113

as related to storage-operand accesses 5-129
conclusion of I/O operations 13-10, 16-1

during initiation 15-78
conclusion of instruction execution 5-22
concurrency of access for storage references 5-127
concurrent sense

in ECW 16-56
indicator for (in ERW) 16-52

concurrent-sense count (in ERW) 16-52
concurrent-sense facility 17-27
condition code 4-7

deferred 16-9
for IEEE instructions 9-24
in the PSW 4-7
inserted by INSERT PROGRAM MASK 7-263
preserved by BRANCH AND LINK 5-15, 7-35
set by SET PROGRAM MASK 7-378
summary C-1
tested by BRANCH ON CONDITION instruction

7-39
used for decision making 5-14
validity bit for 11-21

conditional emergency signal (external interruption)
signal-processor order 4-91

conditional-SSKE facility 1-8
and invalid CBC in storage key 11-8

conditional-swapping instructions
See COMPARE AND SWAP instruction,

COMPARE DOUBLE AND SWAP instruction
conditional-SSKE facility

facility indication 4-100

X-14 The z/Architecture CPU Architecture

conditions for interruption
See interruption conditions

configuration 2-1
of storage 3-4

configuration-alert facility (I/O) 17-27
configuration identification (in STORE CPU ID result)

10-139, 10-140
configuration-topology facility 1-8

facility indication 4-100
configuration-z/Architecture-architectural-mode

facility 1-8
conflict

transactional execution 5-90
conflict token

in the transaction diagnostic block 5-95
connective

See logical connective
consistency (storage operand) 5-125

examples A-49, A-51
console device 12-1
console integration 1-34
constrained transaction

transactional execution 5-90
constrained transactional-execution facility

facility indication 4-100
constrained-transactional-execution facility 1-8
constrained transaction-execution mode

transactional execution 5-90
contraction 4-85
control 4-1

instructions 10-1
manual

See manual operation
control-program compatibility 1-37
control register 2-6, 4-8

save areas for 3-83
validity bit 11-21

control-register assignment 4-10
(CRx.y indicates control register x, bit position y)
CR0.15:

See (SA23-2260)
CR0.43:

instruction-fetch-suppression-enablement-
control bit 3-42

CR0.33:
SSM-suppression-control bit 6-38, 10-136

CR0.34:
TOD-clock-sync-control bit 4-49, 4-54

CR0.35:
low-address-protection-control bit 3-14

CR0.36:
extraction-authority-control bit 5-28

CR0.37:
secondary-space-control bit 3-41, 5-29

CR0.38:
fetch-protection-override-control bit 3-13

CR0.39:
storage-protection-override-control bit 3-12

CR0.40:
enhanced-DAT-enablement-control bit 3-41

CR0.44:
ASN-and-LX-reuse-control bit 3-25

CR0.45:
AFP-register-control bit 9-11

CR0.48:
malfunction-alert subclass-mask bit 6-13

CR0.49:
emergency-signal subclass-mask bit 6-13

CR0.50:
external-call subclass-mask bit 6-13

CR0.52:
clock-comparator subclass-mask bit 6-12

CR0.53:
CPU-timer subclass-mask bit 6-13

CR0.54:
service-signal subclass-mask bit 6-14

CR0.57:
interrupt-key subclass-mask bit 6-13

CR0.58:
See (SA23-2260)

CR0.59:
timing-alert subclass-mask bit 6-14

CR0.61:
crypto-control bit 6-24

CR0.8:
transactional-execution control 5-92

CR0.9:
transactional-execution program-interruption-

filtering override 5-92
CR1:

primary address-space-control element
(PASCE) 3-42

CR1.0-51:
primary real-space token origin (PRSTKO)

3-44
primary region-table origin (PRTO) 3-42
primary segment-table origin (PSTO) 3-42

CR1.54:
primary subspace-group-control bit 3-43

CR1.55:
primary private-space-control bit 3-43

CR1.56:
primary storage-alteration-event-control bit

3-43
CR1.57:

primary space-switch-event-control bit 3-43,
6-37

CR1.58:

X-15

primary real-space-control bit 3-43
CR1.60-61:

primary designation-type-control bits 3-44
CR1.62-63:

primary region-table length (PRTL) 3-44
primary segment-table length (PSTL) 3-44

CR2.33-57:
dispatchable-unit-control-table origin (DUCTO)

5-53
CR2.61:

transaction-diagnostic-scope control 5-92
CR2.62-63:

transaction-diagnostic control 5-92
CR3.0-31:

secondary ASTEIN (SASTEIN) 3-26
CR3.32-47:

PSW-key mask (PKM) 5-28
CR3.48-63:

secondary ASN (SASN) 3-24
CR4.0-31:

primary ASTEIN (PASTEIN) 3-26
CR4.32-47:

authorization index (AX) 3-35, 5-29
CR4.48-63:

primary ASN (PASN) 3-24
CR5.33-57:

primary-AST-entry origin (PASTEO) 5-35,
5-54

CR6.32-39:
I/O-interruption subclass mask 6-16

CR7:
secondary address-space-control element

(SASCE) 3-44
CR7.0-51:

secondary real-space token origin (SRSTKO)
3-44

secondary region-table origin (SRTO) 3-44
secondary segment-table origin (SSTO) 3-44

CR7.54:
secondary subspace-group-control bit 3-44

CR7.55:
secondary private-space-control bit 3-44

CR7.56:
secondary storage-alteration-event-control bit

3-44
CR7.58:

secondary real-space-control bit 3-44
CR7.60-61:

secondary designation-type-control bits 3-44
CR7.62-63:

secondary region-table length (SRTL) 3-44
secondary segment-table length (SSTL) 3-44

CR8.16-31:
enhanced-monitor-mask bits 6-30, 7-287

CR8.32-47:
extended authorization index (EAX) 5-54

CR8.48-63:
monitor-mask bits 6-30, 7-287

CR9.32:
PER successful-branching-event-mask bit

4-27
CR9.33:

PER instruction-fetching-event-mask bit 4-27
CR9.34:

PER storage-alteration-event-mask bit 4-27
CR9.36:

PER store-using-real-address-event-mask bit
4-27

CR9.37:
PER zero-address-detection-event-mask bit

4-27
CR9.38:

PER transaction-end-event-mask bit 4-27
CR9.39:

PER instruction-fetching-nullification-event-
mask bit 4-27

CR9.40:
PER branch-address-control bit 4-28

CR9.41:
PER event-suppression-control bit 4-28

CR9.42:
PER storage-alteration-space-control bit 4-28

CR10.0-63:
PER starting address 4-27

CR11.0-63:
PER ending address 4-27

CR12.0:
branch-trace-control bit 4-15

CR12.1:
mode-trace-control bit 4-15

CR12.2-61:
trace-entry address 4-15

CR12.62:
ASN-trace-control bit 4-15

CR12.63:
explicit-trace-control bit 4-15

CR13:
home address-space-control element

(HASCE) 3-45
CR13.0-51:

home real-space token origin (HRSTKO) 3-45
home region-table origin (HRTO) 3-45
home segment-table origin (HSTO) 3-45

CR13.55:
home private-space-control bit 3-45

CR13.56:
home storage-alteration-event-control bit 3-45

CR13.57:

X-16 The z/Architecture CPU Architecture

home space-switch-event-control bit 3-45,
6-37

CR13.58:
home real-space-control bit 3-45

CR13.60-61:
home designation-type-control bits 3-45

CR13.62-63:
home region-table length (HRTL) 3-45
home segment-table length (HSTL) 3-45

CR14.35:
channel-report-pending subclass-mask bit

11-26
CR14.36:

recovery subclass-mask bit 11-26
CR14.37:

degradation subclass-mask bit 11-27
CR14.38:

external-damage subclass-mask bit 11-27
CR14.39:

warning subclass-mask bit 11-27
CR14.42:

TOD-clock-control-override control 4-49
CR14.44:

ASN-translation-control bit 3-30, 5-29
CR14.45-63:

ASN-first-table origin (AFTO) 3-31
CR15.0-60:

linkage-stack-entry address 5-78
controlregisters

machine-check save area for 3-87
store-status save area for 3-87

control unit 2-8, 13-4
effect of I/O-system reset on 17-14
sharing of 13-4
type of 15-14

control-unit-defer time (I/O) 17-9
control unit defer time interval (in measurement block)

17-6
control-unit-queuing measurement (I/O) 17-9
control-unit-queuing-time interval (in measurement

block) 17-5
controlled-ASN bit 3-25
conversion

between HFP and BFP data 9-27
binary-to-decimal 7-230, 25-7

example A-19
decimal-to-binary 7-229, 25-5

example A-18
hexadecimal-floating-point-number

basic example A-6
examples with instructions A-44

of floating-point format 9-23, 19-5
CONVERT BFP TO HFP floating-point-support

instructions 9-27

CONVERT FROM FIXED BFP instructions 19-19,
19-22, 19-33

CONVERT FROM FIXED DFP instructions 20-24
CONVERT FROM FIXED HFP instructions 18-11
CONVERT FROM LOGICAL DFP instructions 20-25
CONVERT FROM SIGNED PACKED DFP

instructions 20-28
CONVERT FROM UNSIGNED PACKED DFP

instructions 20-28
CONVERT FROM ZONED DFP instruction 20-26,

20-29, 20-33, 20-36
CONVERT HFP TO BFP floating-point-support

instructions 9-28
CONVERT TO BINARY instruction

example A-18
CONVERT TO BINARY instructions 7-229
CONVERT TO DECIMAL instruction

example A-19
CONVERT TO DECIMAL instructions 7-230
CONVERT TO FIXED BFP instructions 19-22,

19-25
CONVERT TO FIXED DFP instructions 20-29
CONVERT TO FIXED HFP instructions 18-11
CONVERT TO LOGICAL DFP instructions 20-32
CONVERT TO SIGNED PACKED DFP instructions

20-35
CONVERT TO UNSIGNED PACKED DFP

instructions 20-35
CONVERT UNICODE TO UTF-8 instruction 7-233
CONVERT UTF-16 TO UTF-32 instruction 7-230
CONVERT UTF-16 TO UTF-8 instruction 7-233
CONVERT UTF-32 TO UTF-16 instruction 7-237
CONVERT UTF-32 TO UTF-8 instruction 7-240
CONVERT UTF-8 TO UNICODE instruction 7-243
CONVERT UTF-8 TO UTF-16 instruction 7-243
CONVERT UTF-8 TO UTF-32 instruction 7-247
Coordinated Universal Time (UTC) used in TOD

epoch 4-52
COPY ACCESS instruction 7-251
COPY SIGN floating-point-support instruction 9-30
core

identification (ID) 2-3, 4-84, 12-3, 12-7
multithreading 2-3

count field
in CCW 15-33

invalid 16-25
in SCSW 16-31, 16-44

counter updating (example) A-47
counting operations 7-40
coupling facility 1-34
CP (COMPARE DECIMAL) instruction 8-7

example A-36
CPA

See channel-program address

X-17

CPDT (CONVERT TO PACKED) instruction 20-33
CPSDR (COPY SIGN) floating-point-support

instruction 9-30
CPU (central processing unit) 2-2

address 4-84, 4-85
assigned storage locations for 3-74, 3-84
when stored during external interruptions 6-11

architected register context 2-3, 4-93
checkpoint 11-2
configuration identification 10-139, 10-140
effect of power-on reset on 4-81
environment 10-139
format indication 10-139, 10-140
hangup due to string of interruptions 4-3
machine-type number 10-139, 10-140
registers 2-3

save areas for 3-82
reset 4-78

signal-processor order 4-86
retry 11-2
serialization 5-130

effects of transactional execution 5-131
signaling 4-85
state 4-2

check-stop 4-3
load 4-3
no effect on TOD clock 4-48
operating 4-3
stopped 4-2

types 2-3
primary 2-3, 4-82, 12-7
secondary 2-3

CPU-measurement-counter facility
facility indication 4-101

CPU-measurement-sampling facility
facility indication 4-101

CPU state 4-2
CPU timer 4-63

external interruption 6-12
machine-check save area for 3-86
save areas for 3-82
store-status save area for 3-86
validity bit for 11-22

CPUs-per-core
operator indicator 12-3

CPXT (CONVERT TO PACKED) instruction 20-33
CPYA (COPY ACCESS) instruction 7-251
CR

See control register
CR (COMPARE) binary instruction 7-133
CRB (COMPARE AND BRANCH) instruction 7-134
CRDTE (COMPARE AND REPLACE DAT TABLE

ENTRY) instruction 10-17

CRJ (COMPARE AND BRANCH RELATIVE)
instruction 7-134

CRL (COMPARE RELATIVE LONG) binary
instruction 7-134

CRT (COMPARE AND TRAP) instruction 7-148
CRW (channel-report word)

chaining of 17-29, 17-30
error-recovery code (ERC) in 17-30
overflow in 17-29
reporting-source code (RSC) in 17-30
reporting-source ID (RSID) in 17-31
solicited 17-29
storing of 14-17

crypto-operation exception 6-24
cryptographic facility 1-33, 2-7
CS (COMPARE AND SWAP) instruction 7-143

examples A-46
CSCH (CLEAR SUBCHANNEL) instruction 14-5
CSDTR (CONVERT TO SIGNED PACKED) DFP

instruction 20-35
CSG (COMPARE AND SWAP) instruction 7-143
CSP (COMPARE AND SWAP AND PURGE)

instruction 10-21
CSPG (COMPARE AND SWAP AND PURGE)

instruction 10-21
CSS priority 15-29
CSST (COMPARE AND SWAP AND STORE)

instruction 7-145
CSXTR (CONVERT TO SIGNED PACKED) DFP

instruction 20-35
CSY (COMPARE AND SWAP) instruction 7-143
CTN configuration change (machine-check condition)

11-24
CU12 (CONVERT UTF-8 TO UTF-16) instruction

7-243
CU14 (CONVERT UTF-8 TO UTF-32) instruction

7-247
CU21 (CONVERT UTF-16 TO UTF-8) instruction

7-233
CU24 (CONVERT UTF-16 TO UTF-32) instruction

7-230
CU41 (CONVERT UTF-32 TO UTF-8) instruction

7-240
CU42 (CONVERT UTF-32 TO UTF-16) instruction

7-237
CUDTR (CONVERT TO UNSIGNED PACKED) DFP

instruction 20-35
current CCW 15-31

See also CCW
current PSW 4-4, 5-14

See also PSW
stored during interruption 6-2

CUSE (COMPARE UNTIL SUBSTRING EQUAL)
instruction 7-166

X-18 The z/Architecture CPU Architecture

CUTFU (CONVERT UTF-8 TO UNICODE) instruction
7-243

CUUTF (CONVERT UNICODE TO UTF-8) instruction
7-233

CUXTR (CONVERT TO UNSIGNED PACKED) DFP
instruction 20-35

CVB (CONVERT TO BINARY) instruction 7-229
example A-18

CVBG (CONVERT TO BINARY) instruction 7-229
CVBY (CONVERT TO BINARY) instruction 7-229
CVD (CONVERT TO DECIMAL) instruction 7-230

example A-19
CVDG (CONVERT TO DECIMAL) instruction 7-230
CVDY (CONVERT TO DECIMAL) instruction 7-230
CXBR (COMPARE) BFP instruction 19-17
CXFBR (CONVERT FROM FIXED) BFP instruction

19-19, 19-21
CXFBRA (CONVERT FROM FIXED) BFP instruction

19-19
CXFR (CONVERT FROM FIXED) HFP instruction

18-11
CXFTR (CONVERT FROM FIXED) DFP instruction

20-24
CXGBR (CONVERT FROM FIXED) BFP instruction

19-19, 19-21
CXGBRA (CONVERT FROM FIXED) BFP instruction

19-19
CXGR (CONVERT FROM FIXED) HFP instruction

18-11
CXGTR (CONVERT FROM FIXED) DFP instruction

20-24
CXGTRA (CONVERT FROM FIXED) DFP instruction

20-24
CXLFBR (CONVERT FROM LOGICAL) BFP

instruction 19-21
CXLFTR (CONVERT FROM LOGICAL) DFP

instruction 20-25
CXLGBR (CONVERT FROM LOGICAL) BFP

instruction 19-21
CXLGTR (CONVERT FROM LOGICAL) DFP

instruction 20-25
CXPT (CONVERT FROM PACKED) instruction

20-26
CXR (COMPARE) HFP instruction 18-10
CXSTR (CONVERT FROM SIGNED PACKED) DFP

instruction 20-28
CXTR (COMPARE) DFP instruction 20-22
CXUTR (CONVERT FROM UNSIGNED PACKED)

DFP instruction 20-28
CY (COMPARE) binary instruction 7-133

D
D (DIVIDE) binary instruction 7-251

example A-19
D field of instruction 5-11
damage

channel-subsystem 11-17
code (external) 11-23

validity bit for 11-21
external 11-16

subclass-mask bit for 11-27
instruction-processing 11-15
processing 11-19
service-processor 11-17
system 11-15
timing-facility 11-16

DAT
leaf-table entry 3-42, 3-53, 3-54, 3-65
See dynamic address translation
leaf-table entry 3-46

DAT-enhancement facility
facility indication 4-99

DAT-enhancement facility 1 1-8
DAT-enhancement facility 2 1-9
DAT mode (bit in PSW)

use in address translation 3-40
DAT mode (bit in the PSW) 4-6
DAT protection 3-13

bit for in page-table entry 3-51
bit for in region-table entry 3-46
bit for in segment-table entry 3-50

DAT-table format error 6-47
data

blocking of (I/O) 15-24
format for

binary-floating-point instructions 19-2
decimal instructions 8-1
decimal-floating-point instructions 20-3
general instructions 7-4
hexadecimal-floating-point instructions 18-2

indirect addressing of (I/O) 13-9, 15-66
measurement (I/O)

See measurement data
modified indirect addressing of (I/O) 15-68
prefetching of for I/O operation 15-59
transport indirect addressing of (I/O) 15-70

data address (I/O)
invalid 16-26
invalid specification of 16-26

data chaining of CCWs 15-61
flag in CCW for 15-32
overview of 13-11

data check
measurement-block 16-48

data exception 6-25
AFP-register 6-25
BFP-instruction 6-25

X-19

compare-and-trap-instruction 6-25
DFP-instruction 6-25
general-operand 6-25, 8-5
IEEE-exception 6-25, 9-18
priority of program interruptions for 6-17
simulated IEEE exception 6-26

data exception code
in the transaction diagnostic block 5-96

data-exception code (DXC) 6-17, 20-15
data signaling and quiet NaNs

classes of BFP data 19-4
classes of DFP data 20-7

data streaming (I/O) 13-4
effect of CCW count on 15-63

DCTI (device-connect-time interval)
in ESW 16-54
in extended-measurement word 16-57
in measurement block 17-4

DCW (device-command word)
contents of 15-38
current 15-38

DD (DIVIDE) HFP instruction 18-12
DDB (DIVIDE) BFP instruction 19-27
DDBR (DIVIDE) BFP instruction 19-27
DDR (DIVIDE) HFP instruction 18-12
DDTR (DIVIDE) DFP instruction 20-37
DDTRA (DIVIDE) DFP instruction 20-37
DE (DIVIDE) HFP instruction 18-12
DEB (DIVIDE) BFP instruction 19-27
DEBR (DIVIDE) BFP instruction 19-27
decimal

arithmetic 8-3
comparison 8-7
digit codes 8-2
divide exception 6-26
instructions 8-1

examples A-36
number representation 8-1

examples A-4
operand overlap 8-3
overflow

exception 6-26
mask in PSW 4-7

sign codes 8-2
decimal (DFP)

data formats 20-3
decimal-floating-point

packed-conversion facility 1-9
zoned-conversion facility 1-9

decimal floating point (DFP) 9-4
See also DFP

decimal-floating-point (DFP)
facility 20-1

decimal-floating-point (DFP) facility

facility indication 4-100
decimal-floating-point facility 1-9
decimal floating point packed conversion facility

facility indication 4-101
decimal-floating-point packed-conversion facility 1-9
decimal-floating-point-rounding facility 1-9
decimal-floating-point zoned-conversion facility 1-9

facility indication 4-100
decimal-to-binary conversion 7-229, 25-5

example A-18
decimal-floating-point (DFP)

facility 1-9
rounding facility 1-9

dedicated allegiance 15-13
default QNaN 9-3, 19-4, 20-7
deferred condition code 16-9
DEFLATE CONVERSION CALL 26-16
DEFLATE-conversion facility 1-9

facility indication 4-101
degradation (machine-check condition) 11-16

subclass-mask bit for 11-27
degradation, storage (machine-check condition)

11-19
delay in storing 5-123
delayed access exception (machine-check condition)

11-17
deletion of malfunctioning unit 11-5
denormalization rounding 9-12
denormalized value 9-12
DER (DIVIDE) HFP instruction 18-12

examples A-42
derived quantum 20-3
designation

authority-table 3-32
entry-table 5-36, 5-37
home real-space (HRSD) 3-45
home region-table 3-45
home segment-table 3-45
linkage-first-table 5-36
linkage-table 5-35
primary real-space 3-42
primary region-table 3-42
primary segment-table 3-42
real-space 3-42

in AST entry 3-32
used for access-register translation 5-58
used for subspace groups 5-69

region-table 3-42
in AST entry 3-32
used for access-register translation 5-58
used for subspace groups 5-69

secondary real-space 3-44
secondary region-table 3-44
secondary segment-table 3-44

X-20 The z/Architecture CPU Architecture

segment-table 3-42
in AST entry 3-32
used for access-register translation 5-58
used for subspace groups 5-69

designation (origin and length)
access-list 5-55

designation-type-control bits
home 3-45
primary 3-44
secondary 3-44

destructive overlap 5-128, 7-290, 7-295, 7-298
in the access-register mode 5-116

device 2-8, 13-5
console 12-1
effect of I/O-system reset on 17-14

device-active bit 16-16, 16-36
device-active-only measurement (I/O) 17-9
device-active-only-time interval (in measurement

block) 17-6
device address 13-6
device-busy time (in extended measurement word)

16-58
device-busy time (in measurement block) 17-6
device-command word

See DCW
device-connect-time interval

See DCTI
device-connect-time measurement 17-10

effect of suspension on 15-75
enable 15-4

device-disconnect-time interval (in measurement
block) 17-5

device identifier 13-6
device number 13-6

assignment of 13-6
in PMCW 15-5

device-number valid (bit in PMCW) 15-4
device status 16-24

field-validity flag for (in subchannel logout) 16-29,
16-49

with inappropriate bit combination 16-50
device status check 16-50
DFLTCC (DEFLATE CONVERSION CALL) 26-16
DFP

canonical data 20-6
canonical declets 20-6
classes of DFP data 20-6

data signaling and quiet NaNs 20-7
infinities 20-7
normal numbers 20-7
subnormal numbers 20-6
zero 20-6

cohort 20-2
data class

testing of 20-56
data formats 20-3

combination field 20-4
encoded trailing significand field 20-5
values of finite numbers 20-5

derived quantum 20-3
format conversion 20-7
formatting instructions 20-8

signed-packed-decimal format 20-28, 20-35
unsigned-packed-decimal format 20-28,

20-35
of DFP data

canonicalization 20-7
preferred quantum 20-2, 20-10
quantum 20-2
scaled preferred quantum 20-3
significand 20-5

significant digits 20-5
special quantum-handling operations 20-3

DFP (decimal floating point) 9-4
DFP-instruction data exception 6-25
DIAGNOSE instruction 10-23
dictionary

adaptive 7-179
DIDBR (DIVIDE TO INTEGER) BFP instruction

19-28
DIEBR (DIVIDE TO INTEGER) BFP instruction

19-28
digit codes (decimal) 8-2
digit selector (in EDIT) 8-8
direct-access storage 3-2
disabling for interruptions 6-6
disallowed interruptions 6-6
dispatchable unit (DU) 5-48

access-list designation (DUALD) 5-55
control table (DUCT) 5-55

origin (DUCTO) 5-53
when subspace-group facility installed 5-66
when trap facility installed 10-178

displacement (in relative addressing) 5-11
display (manual controls) 12-2
distinct-operands facility 1-9

facility indication 4-100
DIVIDE BFP instructions 19-27
DIVIDE binary instructions 7-251

example A-19
DIVIDE DECIMAL instruction 8-7

example A-37
DIVIDE DFP instructions 20-37
divide exception

decimal 6-26
fixed-point 6-27
HFP 6-28

DIVIDE HFP instructions 18-12

X-21

examples A-42
DIVIDE LOGICAL instructions 7-252
DIVIDE SINGLE binary instructions 7-253
DIVIDE TO INTEGER BFP instructions 19-28

remainder result of 19-5
divisible instruction execution 5-115
DL (DIVIDE LOGICAL) instruction 7-252
DLG (DIVIDE LOGICAL) binary instruction 7-252
DLGR (DIVIDE LOGICAL) binary instruction 7-252
DLR (DIVIDE LOGICAL) instruction 7-252
doubleword 3-3
doubleword-concurrent storage references 5-127
DP (DIVIDE DECIMAL) instruction 8-7

example A-37
DR (DIVIDE) binary instruction 7-251
DSG (DIVIDE SINGLE) binary instruction 7-253
DSGF (DIVIDE SINGLE) binary instruction 7-253
DSGFR (DIVIDE SINGLE) binary instruction 7-253
DSGR (DIVIDE SINGLE) binary instruction 7-253
DU (dispatchable unit) 5-48
DUALD (dispatchable-unit access-list designation)

5-55
DUCT (dispatchable-unit control table) 5-55, 5-66
DUCTO (dispatchable-unit-control-table origin) 5-53
dump (standalone) 12-5
DXBR (DIVIDE) BFP instruction 19-27
DXC (data-exception code) 6-17, 19-10, 20-15

summary figures 6-17, 6-18
DXR (DIVIDE) HFP instruction 18-12
DXTRA (DIVIDE) DFP instruction 20-37
dynamic address translation (DAT) 3-38

by LOAD REAL ADDRESS instruction 10-56
by STORE REAL ADDRESS instruction 10-142
control of 3-40
explicit and implicit 3-52
mode bit in PSW

use in address translation 3-40
mode bit in the PSW 4-6
sequence of table fetches 5-119

dynamic-reconnection feature 13-3

E
E (exa) 0-xxviii
E instruction format 5-6
EAR (EXTRACT ACCESS) instruction 7-256
early exception recognition 6-9
EAX

See extended authorization index
EBCDIC (Extended Binary-Coded-Decimal

Interchange Code)
architecture designed for 0-xxix
character code

table for I-2

ECAG (EXTRACT CPU ATTRIBUTE) instruction
7-256

ECC (error checking and correction) 11-2
ECTG (EXTRACT CPU TIME) instruction 7-259
ECW (extended-control word) 16-56

indication in SCSW 16-12
ED (EDIT) instruction 8-8

examples A-37
EDIT AND MARK instruction 8-11

example A-38
EDIT instruction 8-8

examples A-37
editing instructions 8-4

See also ED instruction, EDMK instruction
EDMK (EDIT AND MARK) instruction 8-11

example A-38
EEDTR (EXTRACT BIASED EXPONENT) DFP

instruction 20-39
EEXTR (EXTRACT BIASED EXPONENT) DFP

instruction 20-39
effective access-list designation 5-55
effective address 3-5

controlled by addressing mode 5-10
generation 5-10
used for storage interlocks 5-115

effective address-space-control element 3-52
EFPC (EXTRACT FPC) floating-point-support

instruction 9-30
EKM (entry key mask) 5-38
emergency signal (external interruption) 6-13

signal-processor order 4-86
EMIF (ESCON-multiple-image facility) 1-34
EMW (extended-measurement word) 16-56

in IRB 16-56
enabled (bit for TRAP) 10-178
enabled (bit in PMCW) 15-3
enabling for interruptions 6-6

subchannel 16-6
enabling of subchannel 15-3, 16-6
encoded trailing significand field

in DFP data format 20-5
endian 7-287, 7-394
ending of instruction execution 5-22
enhanced-DAT facility 1-10

and change-bit override 3-10
and DAT protection 3-14
and format-control in R3TE 3-19
and format-control in STE 3-10, 3-19

enhanced-DAT facility 1 1-10
facility indication 4-99

enhanced-DAT facility1
facility indication 4-101, 7-175, 7-176

enhanced-monitor facility 1-11
counter-array origin 5-110

X-22 The z/Architecture CPU Architecture

counter-array size 5-110
exception count 5-110
facility indication 4-100
monitor masks 5-109

enhanced-monitor masks 4-11
enhanced-DAT-enablement control

and enhanced-DAT applicability 3-42
and the P bit in RTEs 3-47
definition 3-41
in control register 0 4-10

Enterprise Systems Connection Architecture
(ESCON) I/O interface

publication referenced 0-xxix
entropy-encoding compression facility 1-11

facility indication 4-100
entry

extended authorization index 5-76
key 5-76

entry (for tracing) 4-15
entry descriptor 5-79
entry index (EX) 5-33
entry key mask (EKM) 5-38
entry table (ET)

designation 5-36, 5-37
length (ETL) 5-36, 5-37
origin (ETO) 5-36, 5-37

entry-table entry (ETE) 5-37, 5-75
entry-type code 5-79
environment (in STORE CPU ID result) 10-139
EPAIR (EXTRACT PRIMARY ASN AND INSTANCE)

instruction 10-24
EPAR (EXTRACT PRIMARY ASN) instruction 10-24
epoch (for TOD clock) 4-52

definition 4-47
epoch index 4-48
epoch index (for TOD clock)

definition 4-47
EPSW (EXTRACT PSW) instruction 7-260
equipment check

in signal-processor status 4-97
ERC (error-recovery code) 17-30

See also CRW
EREG (EXTRACT STACKED REGISTERS)

instruction 10-25
EREGG (EXTRACT STACKED REGISTERS)

instruction 10-25
error

checking and correction 11-2
from DIAGNOSE instruction 10-23
I/O-error alert 16-50
indirect storage 11-20
intermittent 11-6
PSW-format 6-9
secondary (I/O) 16-50

solid 11-6
state of TOD clock 4-49
storage 11-19
storage-key 11-19

error-recovery code (ERC) 17-30
See also CRW

ERW (extended-report word) 16-47, 16-51
as result of channel-control check 16-29, 16-43
as result of channel-data check 16-28, 16-42,

16-43
ESA/370 architecture 1-34
ESA/390

compatibility with z/Architecture 1-37
ESA/390 architecture

architectural-mode controls 12-3
ESA/390-compatibility-mode facility 1-11, 5-111

facility indication 4-101
ESAIR (EXTRACT SECONDARY ASN AND

INSTANCE) instruction 10-25
ESAR (EXTRACT SECONDARY ASN) instruction

10-24
ESCON (Enterprise Systems Connection

Architecture) 13-3
ESCON (Enterprise Systems Connection

Architecture) I/O interface
publication referenced 0-xxix

ESCON channel-to-channel adapter
publication referenced 0-xxix

ESCON-multiple-image facility (EMIF) 1-34
ESDTR (EXTRACT SIGNIFICANCE) DFP instruction

20-39
ESEA (EXTRACT AND SET EXTENDED

AUTHORITY) instruction 10-24
ESTA (EXTRACT STACKED STATE) instruction

10-26
ESW (extended-status word) 16-47

See also extended status
ESW format bit (in SCSW) 16-9
ESXTR (EXTRACT SIGNIFICANCE) DFP instruction

20-39
ET

See entry table
ETE

See entry-table entry
ETF2-enhancement facility 1-11

facility indication 4-100
ETF3-enhancement facility 1-11

facility indication 4-100
ETL (entry-table length) 5-36, 5-37
ETND (EXTRACT TRANSACTION NESTING

DEPTH) instruction 7-260
ETO (entry-table origin) 5-36, 5-37
ETR (external time reference) 2-7
ETR (external time reference) facility 1-33

X-23

ETR sync check (machine-check condition) 11-23
ETR-timing-alert condition

See timing alert
event 6-16

monitor 7-287
PER 4-26
space-switch 6-37
transactional-execution aborted 6-46

EX (entry index) 5-33
translation exception 6-26

EX (EXECUTE)
See EXECUTE instruction

EX-translation exception 6-26
exception access identification 3-74

in the transaction diagnostic block 5-96
exceptions 6-16

access (collective program-interruption name)
6-47, 6-53

addressing 6-20
AFX-translation 6-22
ALE-sequence 6-22
ALEN-translation 6-22
ALET-specification 6-22
ASCE-type 6-22
ASN-translation (collective program-interruption

name) 6-55
associated with

ART 5-64
stacking process 5-86
unstacking process 5-89

ASTE-instance 6-23
ASTE-sequence 6-23
ASTE-validity 6-24
ASX-translation 6-24
crypto-operation 6-24
data 6-25
decimal-divide 6-26
decimal-overflow 6-26
delayed access (machine-check condition) 11-17
during translation 3-62
EX-translation 6-26
extended-authority 6-27
fixed-point-divide 6-27
fixed-point-overflow 6-27
HFP-divide 6-28
HFP-exponent-overflow 6-28
HFP-exponent-underflow 6-28
HFP-significance 6-28
HFP-square-root 6-29
IEEE 9-18
LFX-translation 6-29
LSTE-sequence 6-29
LSX-translation 6-29
LX-translation 6-30

operand (of I/O instruction) 6-31
operation 6-31
page-translation 6-32
PC-translation-specification 6-32
primary-authority 6-33
privileged-operation 6-33
protection 6-34
PSW-related 6-9
recognition of

early and late 6-9
region-first-translation 6-35
region-second-translation 6-36
region-third-translation 6-36
region translation 6-35
secondary-authority 6-37
segment-translation 6-37
special-operation 6-38
specification 6-40
stack-empty 6-44
stack-full 6-45
stack-operation 6-45
stack-specification 6-45
stack-type 6-45
subspace-replacement (collective program-

interruption name) 6-56
trace (collective program-interruption name) 6-56
trace-table 6-45
transaction constraint 6-46
translation-specification 6-46

EXCLUSIVE OR IMMEDIATE instructions 7-255
EXCLUSIVE OR instructions 7-253

examples A-20
execute-extensions facility 1-12

facility indication 4-100
EXECUTE instruction 7-255

effect of address comparison on 12-1
example A-21
exceptions while fetching target of 6-8
PER event for target of 4-37

EXECUTE RELATIVE LONG instruction 7-255
execution-hint facility 1-12

facility indication 4-100
exigent machine-check conditions 11-10
expanded storage 2-2

block number 2-2
expansion 4-84
expansion dictionary

location of during compression 7-173
expansion-operation bit 7-172
expansion process

flowchart of 7-185
explicit address translation 3-52
explicit-trace-control bit 4-15
exponent 18-1

X-24 The z/Architecture CPU Architecture

See also characteristic, floating point
overflow

HFP 18-1
signed value 9-2
underflow

HFP 18-1
mask in PSW 4-7

exponent bias 9-2, 19-2, 20-3
summary for BFP 19-3
summary for DFP 20-6

extended addressing mode
bit in entry-table entry 5-38
bit in trace entry 4-23

extended-authority exception 6-27
as an access exception 6-47

extended authorization 5-63
extended authorization index (EAX) 5-54

control bit 5-76
in entry-table entry 5-76
in linkage-stack state entry 5-82

extended binary-floating-point number 19-2
extended control (bit in SCSW) 16-12
extended-control word 16-56

See also ECW
extended decimal-floating-point number 20-4
extended hexadecimal-floating-point number 18-2
extended-I/O-measurement-block facility 1-12
extended-I/O-measurement-word facility 1-12
extended-immediate facility 1-12

facility indication 4-100
extended-measurement-word 17-11
extended-measurement-word enable (I/O)

update enable 15-8
extended measurement word mode enable (I/O)

15-8
extended-report word

See ERW
extended-save-area address

machine-check save area for 3-86
store-status save area for 3-86

extended-sorting facility 1-33
extended status

See also ESW
flags in subchannel logout for 16-47
format-0 16-47
format-1 16-53
format-2 16-54
format-3 16-55
secondary-CCW address 16-53

extended-status word 16-47
See also extended status

extended-status-word-format bit 16-9
extended-subchannel-logout descriptor (in ERW)

16-53

in ESW 16-53
extended-subchannel-logout pending 16-52

indicator for (in ERW) 16-52
extended-translation facility 2 1-13

facility indication 4-100
extended-translation facility 3 1-13

facility indication 4-100
external call

external interruption 6-13
pending (signal-processor status) 4-97
signal-processor order 4-85

external damage 11-16
subclass-mask bit for 11-27

external-damage code 11-23
assigned storage locations for 3-80, 3-86
validity bit for 11-21

external interruption 6-11
clock-comparator 6-12, 4-60
CPU-timer 4-63, 6-12
direct conditions 6-11
emergency-signal 6-13
external-call 6-13
interrupt-key 6-13
malfunction-alert 6-13
mask in the PSW 4-6
measurement-alert 6-14
parameter 6-11

assigned storage locations for 3-74, 3-84
pending conditions 6-11
priority of conditions 6-11
service-signal 6-14
timing-alert 6-14

external time reference (ETR) 2-7
external-time-reference (ETR) facility 1-33
externally initiated functions 4-74

I/O 17-16
EXTRACT ACCESS instruction 7-256
EXTRACT AND SET EXTENDED AUTHORITY

instruction 10-24
EXTRACT BIASED EXPONENT DFP instructions

20-39
extract-CPU-time facility 1-13, 7-260

facility indication 4-100
EXTRACT CPU TIME instruction 7-259
EXTRACT FPC floating-point-support instruction

9-30
EXTRACT PRIMARY ASN AND INSTANCE

instruction 10-24
EXTRACT PRIMARY ASN instruction 10-24
EXTRACT PSW instruction 7-260
EXTRACT SECONDARY ASN AND INSTANCE

instruction 10-25
EXTRACT SECONDARY ASN instruction 10-24
EXTRACT SIGNIFICANCE DFP instructions 20-39

X-25

EXTRACT STACKED REGISTERS instruction 10-25
EXTRACT STACKED STATE instruction 10-26
EXTRACT TRANSACTION NESTING DEPTH

instruction 7-260
extraction-authority-control bit 5-28

F
facility indication

access-exception-fetch/store-indication facility
4-101

ASN-and-LX-reuse facility 4-99
CMPSC-enhancement facility 4-100
compare-and-swap-and-store facility 4-100
compare-and-swap-and-store facility 2 4-100
conditional-SSKE facility 4-100
configuration-topology facility 4-100
configuration-z/architecture-architectural-mode

facility 4-101
constrained transactional-execution facility 4-100
CPU-measurement-counter facility 4-101
CPU-measurement-sampling facility 4-101
DAT-enhancement facility 4-99
decimal-floating-point facility 4-100
decimal-floating-point high-performance 4-100
decimal-floating-point packed-conversion facility

4-101
decimal-floating-point zoned-conversion facility

4-100
DEFLATE-conversion facility 4-101
distinct-operands facility 4-100
enhanced-DAT facility 1 4-99, 4-101, 7-175,

7-176
enhanced-monitor facility 4-100
entropy-encoding compression facility 4-100
ESA/390-compatibility-mode facility 4-101
ETF2-enhancement facility 4-100
ETF3-enhancement facility 4-100
execute-extensions facility 4-100
execution-hint facility 4-100
extended-immediate facility 4-100
extended-translation facility 2 4-100
extended-translation facility 3 4-100
extract-CPU-time facility 4-100
fast-BCR-serialization facility 4-100
floating-point-extension facility 4-100
floating-point-support-enhancement facilities

4-100
general-instructions-extension facility 4-100
guarded-storage facility 4-101
HFP-multiply-and-add/subtract facility 4-100
HFP-unnormalized-extension facility 4-100
high-word facility 4-100
insert-reference-bits-multiple facility 4-101

instruction-execution-protection facility 4-101
interlocked-access facility 1 4-100
interlocked-access facility 2 4-100
IPTE-range facility 4-100
load-and-trap facility 4-100
load-and-zero-rightmost-byte facilty 4-100
load/store-on-condition facility 1 4-100
local-TLB-clearing facility 4-100
long-displacement facility 4-100
long-displacement-facilty high-performance

4-100
message-security-assist extension 3 4-101
message-security-assist extension 4 4-101
message-security-assist extension 5 4-100
message-security-assist extension 8 4-101
message-security-assist extension 9 4-101
message-security assist 4-100
miscellaneous-instruction-extensions facility 1

4-100
miscellaneous-instruction-extensions facility 2

4-100
miscellaneous-instruction-extensions facility 3

4-101
move-with-optional-specifications facility 4-100
move-page-and-set-key facility 4-101
nonquiescing key-setting facility 4-100
order-preserving-compression facility 4-100
parsing-enhancement facility 4-100
PFPO facility 4-100
population-count facility 4-100
PPA-in-order facility 4-101
processor-assist facility 4-100
reset-reference-bits-multiple facility 4-101
sense-running-status facility 4-99
set-program-parameters facility 4-100
side-effect-access facility 4-101
store-clock-fast facility 4-100
store-CPU-counter-multiple facility 4-101
store-facility-list-extended facility 4-99
store-hypervisor-information facility 4-101
test-pending-external-interruption 4-101
TOD-clock epoch-extension facility 4-101
TOD-clock-steering facility 4-100
transactional-execution facility 4-101
vector-enhancements facility 1 4-101
vector-enhancements facility 2 4-101
vector facility for z/Architecture 4-101
vector-packed-decimal-enhancement facility

4-101
vector-packed-decimal facility 4-101
z/architecture active 4-99
z/architecture installed 4-99
z/architecture instructions in ESA/390 mode 4-99

facility indications 4-99

X-26 The z/Architecture CPU Architecture

failing-storage address 11-24
assigned storage locations for 3-80, 3-86
in ESW 16-47, 16-53

as result of channel-control check 16-29,
16-43

as result of channel-data check 16-28, 16-42,
16-43

validity bit for 11-21
validity flag for (in ERW) 16-52

failing-storage-address format
indicator for (in ERW) 16-53

fast-BCR-serialization facility 1-13
facility indication 4-100

FCX-bidirectional-data-transfer facility 1-14
FCX facility 1-13
fetch-only bit 5-56
fetch protection 3-11

bit in segment-table entry 3-46, 3-49
bit in storage key 3-9
override-control bit 3-13

fetch reference 5-123
access exceptions for 6-50

fetching
handling of invalid CBC in storage during 11-8
of ART-table and DAT-table entries 5-119
of instructions 5-118
of PSWs during interruptions 5-130
of storage operands 5-123

Fibre-Channel Extensions 13-6
fibre-channel-extensions facility 1-13
Fibre-Channel Extensions 13-6
FICON I/O interface

publication referenced 0-xxix
FIDBR (LOAD FP INTEGER) BFP instruction 19-32
FIDBRA (LOAD FP INTEGER) BFP instruction 19-32
FIDR (LOAD FP INTEGER) HFP instruction 18-15
FIDTR (LOAD FP INTEGER) DFP instruction 20-42
FIEBR (LOAD FP INTEGER) BFP instruction 19-32
FIEBRA (LOAD FP INTEGER) BFP instruction 19-32
field 3-3
field separator (in EDIT) 8-8
field-validity flags (in subchannel logout) 16-49

relation to channel-control check of 16-29
FIER (LOAD FP INTEGER) HFP instruction 18-15
FIFO (first in first out) queuing

example for lock and unlock A-49
fill byte (in EDIT) 8-8
filtering

of program interruptions 5-104
FIND LEFTMOST ONE instruction 7-261

example A-22
FIXBR (LOAD FP INTEGER) BFP instruction 19-32
FIXBRA (LOAD FP INTEGER) BFP instruction 19-32
fixed-length field 3-3

fixed logout
assigned storage locations for 3-82
machine-check 11-27

fixed point
See also binary
divide exception 6-27
overflow exception 6-27

mask in PSW 4-7
See also binary

FIXR (LOAD FP INTEGER) HFP instruction 18-15
FIXTR (LOAD FP INTEGER) DFP instruction 20-42
flags

for IEEE exceptions 9-10
in the transaction diagnostic block 5-95

floating interruption conditions 6-6, 11-25
clearing of 4-80

floating point
See also exponent
binary (BFP) 9-4
binary data format 19-2
conversion

between formats 9-23, 19-5
conversion from binary integer 18-11, 19-19,

20-24
conversion from unsigned binary integer 19-21,

20-25
conversion to binary integer 18-11, 19-22, 20-29
conversion to unsigned binary integer 19-25,

20-32
data

lengthening format of 18-15, 19-33, 20-45
shortening format of 18-17, 19-35, 20-46

data class 19-4
decimal (DFP) 9-4
hexadecimal (HFP) 9-3
hexadecimal data formats 18-2
instructions 9-1
numbers 19-2
registers 2-4, 9-8

clearing of 9-35
save areas for 3-82
validity bit for 11-21

shifting
See normalization

floating-point
registers

machine-check save area for 3-87
store-status save area for 3-87

floating-point-control (FPC) register 9-9
save area for 3-82
validity bit for 11-22

floating-point extension facility 1-14
floating-point-extension facility

facility indication 4-100

X-27

floating-point-support-enhancement facilities
facility indication 4-100

floating-point-support-sign-handling facility 1-15
FLOGR (FIND LEFTMOST ONE) instruction 7-261

example A-22
format

address 3-3
binary-floating-point data 19-2
CCW

See CCW format control
decimal data 8-1
error

in DAT-table entry 6-47
in PSW 6-9

general data 7-4
in the transaction diagnostic block 5-94
information 3-3
instruction 5-3
PSW 4-5

format-0 and format-1 CCWs 15-31
format-2-IDAW control 15-27
format indication (in STORE CPU ID result) 10-139,

10-140
format-1-sibling-descriptor bit 7-173
formats

hexadecimal-floating-point data 18-2
forward section header address 5-81
forward-section validity bit 5-81
FPC

See floating-point-control (FPC) register
FPC (floating-point-control) register 9-9
FPR-GR-transfer facility 1-15
fraction 18-1
fraction view of floating-point numbers 9-2
free-pool manipulation

programming example A-50
freeze 7-179
fullword

See word
function control (I/O) 16-13
function-pending time 17-2

in extended-measurement word 16-57
functionally-constrained rounding 9-12
functionally-rounded value 9-12
function-pending time

in measurement block 17-5

G
G (giga) 0-xxviii
general instructions 7-4

examples A-7
general-instructions-extension facility 1-15

facility indication 4-100

general-operand data exception 6-25, 8-5
general register

save areas 3-82
general registers 2-4

machine-check save area for 3-87
store-status save area for 3-87
validity bit for 11-21

glue module 5-21
GMT (Greenwich Mean Time) obsolete term for UTC

4-52
Greenwich Mean Time (GMT) obsolete term for

Coordinated Universal Time 4-52
guard digit 18-4
guarded-storage facility 1-16, 4-65

facility indication 4-101
guarded-storage-event parameter list 4-67
guarded-storage-facility registers 4-65

guarded-storage-designation register 4-66
guarded-storage-event-parameter-list register

4-67
guarded-storage-facility-enablement control

4-65
guarded-storage-section-mask register 4-66

operation 4-70
event detection 4-70
event processing 4-71

H
halfword 3-3
halfword-concurrent storage references 5-127
halt function 15-16

bit in SCSW for 16-13
completion of 15-17
initiated by HALT SUBCHANNEL 14-6
path management for 15-16
pending 16-16
signaling for 15-17

halt signal 17-12
issued as part of halt function 15-17

HALT SUBCHANNEL instruction 14-6
See also halt function
effect on SCSW count field 15-19
function initiated by 15-16
use of after RESET CHANNEL PATH 14-10

HALVE HFP instructions 18-13
example A-43

HASCE (home address-space-control element) 3-45
HDR (HALVE) HFP instruction 18-13

example A-43
HER (HALVE) HFP instruction 18-13
hex

See hexadecimal
hexadecimal (hex) representation 5-7

X-28 The z/Architecture CPU Architecture

hexadecimal floating point
conversion

examples with instructions A-44
instructions

examples A-41
hexadecimal floating point (HFP) 9-3

conversion
basic example A-6

hexadecimal-floating-point number
examples A-5

HFP (hexadecimal floating point) 9-3
HFP data 18-2

conversion of 9-27
HFP exponent

overflow
exception 6-28

underflow
exception 6-28

HFP-multiply-and-add/subtract facility 1-16
facility indication 4-100

HFP significance
exception 6-28

HFP square root
exception 6-29

HFP-unnormalized-extension facility 1-16
facility indication 4-100

HFP-unnormalized-extensions facility 1-16
high-speed data transfer (I/O) 13-4
high-word facility 1-16

facility indication 4-100
home address space 3-23, 5-44

facilities 5-44
home designation-type-control bits 3-45
home private-space-control bit 3-45
home real-space-control bit 3-45
home real-space token origin (HRSTKO) 3-45
home region table

designation (HRTD) 3-45
length (HRTL) 3-45
origin (HRTO) 3-45

home segment table
designation (HSTD) 3-45
length (HSTL) 3-45
origin (HSTO) 3-45

home-space mode 3-40
home space-switch-event-control bit 3-45
home storage-alteration-event-control bit 3-45
home virtual address 3-5

effective address-space-control element for 3-52
HRSD (home real-space designation) 3-45
HRTD (home region-table designation) 3-45
HRTL (home region-table length) 3-45
HRTO (home region-table origin) 3-45
HSCH (HALT SUBCHANNEL) instruction 14-6

HSTD (home segment-table designation) 3-45
HSTL (home segment-table length) 3-45
HSTO (home segment-table origin) 3-45

I
I field of instruction 5-8
I instruction format 5-6
I/O (input/output) 2-7

basic functions of 15-1
blocking of data for 15-24
effect on CPU timer 4-63
sense data

See sense data
support functions of 17-1

I/O addressing 13-5
I/O-command words

CCW 13-7
DCW 13-7

I/O commands
See also commands
publication referenced 0-xxix

I/O device
See device

I/O-error alert (in subchannel logout) 16-50
I/O instructions 14-2

deferred condition code for 16-9
operand access by 14-2
role of in I/O operations 13-8

I/O interface
ESCON publication referenced 0-xxix
OEMI publication referenced 0-xxix

I/O interruption 6-15, 16-1
See also interruption
action for 16-6
mask in the PSW 4-6
masking of 13-12
priority of 16-5
program-controlled interrupton

See PCI)
I/O-interruption code 6-15

interruption-identification word in 14-20
stored by TPI 14-20

I/O-interruption condition 13-12, 16-2
alert 16-5
intermediate 16-4
primary 13-10, 16-4
secondary 13-10, 16-5
solicited 16-3
unsolicited 16-3

I/O-interruption-identification word 14-20
assigned storage locations for 3-79, 3-85

I/O-interruption parameter
assigned storage locations for 3-79, 3-85

X-29

in I/O-interruption code 14-20
in ORB 15-25
in PMCW 15-2
used for IPL 17-17

I/O-interruption request
clearing of 13-12
from subchannels 16-6

I/O-interruption subclass 13-12
I/O-interruption subclass code

See ISC
I/O-interruption subclass mask 6-16, 16-6

relation to priority 16-5
I/O operations 13-8

conclusion of
See conclusion of I/O operations

initiated indication for 16-12
termination of

See conclusion of I/O operations
I/O-system reset 17-13

as part of subsystem reset 4-80
IAC (INSERT ADDRESS SPACE CONTROL)

instruction 10-29
IC (INSERT CHARACTER) instruction 7-261
IC (instruction counter)

See instruction address
ICM (INSERT CHARACTERS UNDER MASK)

instruction 7-261
examples A-23

ICMH (INSERT CHARACTERS UNDER MASK)
instruction 7-261

ICMY (INSERT CHARACTERS UNDER MASK)
instruction 7-261

ICY (INSERT CHARACTER) instruction 7-261
IDA (indirect-data address) 15-66

flag in CCW 15-32
IDAW (indirect-data-address word) 15-66

check (in subchannel logout) 16-48
invalid address of 16-25
invalid address specification in 16-25
invalid address specification of 16-26

idle state for subchannel 16-14
IDTE (INVALIDATE DAT TABLE ENTRY) instruction

10-32
IEDTR (INSERT BIASED EXPONENT) DFP

instruction 20-40
IEEE exception conditions

summary figure 19-10, 24-2
IEEE-exception data exception 6-25, 9-18
IEEE-exception-simulation facility 1-17
IEEE rounding 9-13
IEEE standard 1-32
IEEE trap action and nontrap action 9-18
IEEE-exception data exception 19-10, 24-2

IEXTR (INSERT BIASED EXPONENT) DFP
instruction 20-40

IFCC (interface-control check) 16-29
IIHF (INSERT IMMEDIATE) instruction 7-262
IIHH (INSERT IMMEDIATE) instruction 7-262
IIHL (INSERT IMMEDIATE) instruction 7-262
IILF (INSERT IMMEDIATE) instruction 7-262
IILH (INSERT IMMEDIATE) instruction 7-262
IILL (INSERT IMMEDIATE) instruction 7-262
ILC (instruction-length code) 6-7

assigned storage locations for 3-74, 3-84
for program interruptions 6-16

IML (initial machine loading) controls 12-3
immediate operand 5-8
immediate operation

SLI flag in CCW for 15-60
implicit address translation 3-52
in DFP data 20-5
incorrect length (subchannel status) 16-24, 16-39

for immediate operations 15-60
incorrect-length-indication mode 15-28
incorrect-length-indication-suppression facility 17-27

effect on immediate operation 15-60
incorrect-length-suppression mode 15-28
incorrect state (signal-processor status) 4-97
index

for address generation 5-11
instructions for branching on 7-41
into access list 5-54
into ASN first and second tables 3-30
into authority table 5-29
into entry and linkage tables 5-33
register for 2-4

indicator
check-stop 12-3
CPUs-per-core 12-3
load 12-3
manual 12-4
mode 12-2, 12-3
test 12-6
wait 12-6

indirect-data address
See IDA

indirect-data-address word
See IDAW

indirect storage error 11-20
infinities 9-2, 19-4

classes of DFP data 20-7
information format 3-3
initial-command-response measurement (I/O) 17-9
initial-command-response time (in measurement

block) 17-6
initial CPU reset 4-79

signal-processor order 4-86

X-30 The z/Architecture CPU Architecture

initial-machine-loading (IML) controls 12-3
initial program loading

See IPL
initial-program-loading CCW1 (assigned storage

locations) 3-73, 3-83
initial-program-loading CCW2 (assigned storage

locations) 3-74, 3-83
initial-program-loading PSW (assigned storage

locations) 3-73, 3-83
initial-status-interruption control 15-27, 16-12

relation to Z bit 16-12
used for IPL 17-17

inoperative (signal-processor status) 4-98
input/output

See I/O
INSERT ADDRESS SPACE CONTROL instruction

10-29
INSERT BIASED EXPONENT DFP instructions

20-40
INSERT CHARACTER instructions 7-261
INSERT CHARACTERS UNDER MASK instruction

7-261
examples A-23

INSERT IMMEDIATE instructions 7-262
INSERT PROGRAM MASK instruction 7-263
INSERT PSW KEY instruction 10-30
INSERT REFERENCE BIT MULTIPLE instruction

10-30
insert-reference-bits-multiple facility 1-17

facility indication 4-101
INSERT STORAGE KEY EXTENDED instruction

10-30
INSERT VIRTUAL STORAGE KEY instruction 10-31
installation 2-1
instruction address

as a type of address 3-5
handling by DAT 3-40
in entry-table entry 5-38
in the PSW 4-7
validity bit for 11-21

instruction-execution protection 3-10
instruction-execution-protection facility 1-17, 3-14

facility indication 4-101
instruction-fetching-nullification-event mask 4-27
instruction format 5-6
instruction-length code

preserved by BRANCH AND LINK 5-15, 7-35
See ILC

instruction-processing damage 11-15
resulting in processing backup 11-18
resulting in processing damage 11-19

instructions
See also instruction lists and page numbers in

Appendix B

backing up of 11-18
classes of 2-2
control 10-1
damage to 11-15, 11-19
decimal 8-1

examples A-36
divisible execution of 5-115
ending of 5-22
examples of use A-7
execution of 5-14
fetching of 5-118

access exception for 6-47
PER event for 4-37
PER-event mask for 4-27

floating-point 9-1
format of 5-3
general 7-4

examples A-7
hexadecimal-floating-point

examples A-41
I/O

See I/O Instructions 13-1
interruptible

See interruptible instructions
length of 5-7
list of B-1
modification by execute-type instruction 7-255
prefetching of 5-118
privileged 4-6

for control 10-1
See instruction lists and page numbers in

Appendix B
semiprivileged 4-6, 10-2
sequence of execution of 5-3
stepping of (rate control) 12-5

effect on CPU state 4-2
effect on CPU timer 4-64

unprivileged 4-6, 7-4
integer

binary 7-4
address as 5-11
conversion from floating point 18-11, 19-22,

19-25, 20-29, 20-32
conversion to floating point 18-11, 19-19,

20-24, 20-25
examples A-2

decimal 8-3
unsigned binary

conversion to floating point 19-21
integer quotient 19-28
integral boundary 3-3

octoword 3-3
interface

ESCON I/O

X-31

publication referenced 0-xxix
parallel-I/O

OEMI publication referenced 0-xxix
serial-I/O

publication referenced 0-xxix
interface-control check (subchannel status) 16-29
interlocked-access facility 1 1-17

facility indication 4-100
interlocked-access facility 2 1-17

facility indication 4-100
interlocked-update storage reference 5-123, 5-124
interlocks for virtual storage references 5-115
intermediate interruption condition (I/O) 16-4
intermediate-status bit (I/O) 16-18, 16-36
intermediate values 9-12
intermittent errors 11-6
International Atomic Time (TAI) related to

Coordinated Universal Time 4-52
interpretive execution

publication referenced 0-xxx
interpretive-execution facility 1-35
interrogate TCW

address of 15-36
interrupt-delay time (in measurement block) 17-6
interrupt key 12-3

external interruption 6-13
interruptible instructions 5-24

COMPARE AND FORM CODEWORD 7-136
COMPARE LOGICAL LONG 7-158
COMPARE UNTIL SUBSTRING EQUAL 7-168
MOVE LONG 7-291
PER event affecting the ending of 4-34
stopping of 4-2
TEST BLOCK 10-171
UPDATE TREE 7-426

interruption 6-2
See also masks
action 6-2

I/O 16-6
machine-check 11-11

classes of 6-5
effect on instruction sequence 5-22
external

See external interruption
I/O

See I/O interruption
machine-check

See machine-check interruption
masking of 6-6
pending 6-6

external 6-11
machine-check 11-13
relation to CPU state 4-2

priority of

See priority
program

See program interruption
program-controlled (I/O)

See PCI
restart 6-56
string

See string of interruptions
supervisor-call 6-57

interruption code 6-5
external 6-11
I/O

See I/O-interruption code
machine-check (MCIC) 3-80, 3-86, 11-14
program 6-16
summary of 6-2

interruption conditions 6-2
clearing of 4-78
floating 6-6, 11-25
I/O

See I/O-interruption condition
interruption parameter

external (assigned storage locations) 3-74, 3-84
I/O

See I/O-interruption parameter
interruption-response block

See IRB
interruption subclass

See I/O-interruption subclass
invalid

access-list entry 5-56
address 6-20
bit in ASN-first-table entry 3-31
bit in ASN-second-table entry 3-31
bit in linkage-first-table entry 5-36
bit in linkage-second-table entry 5-37
bit in linkage-table entry 5-36
bit in page-table entry 3-51
bit in region-table entry 3-47
bit in segment-table entry 3-50
CBC 11-2

in registers 11-9
in storage 11-7
in storage keys 11-7

operation code 6-31
order (signal-processor status) 4-98
parameter (signal-processor status) 4-97
translation address 3-62
translation format

exception recognition 3-62
invalid address specification

in channel-program address 16-25, 16-40
in IDAW 16-26
in MIDAW 16-26

X-32 The z/Architecture CPU Architecture

of data in CCW 16-26
of IDAW 16-25
of TIC CCW 16-25, 16-40

invalid CCW field
command code 16-25
count 16-25
data address 16-26
MIDA flag 16-27
suspend flag 16-27

invalid format
of CCW 16-27
of ORB 16-27

invalid sequence of CCWs 16-27
INVALIDATE DAT TABLE ENTRY instruction 10-32
INVALIDATE PAGE TABLE ENTRY instruction

10-37
effect of when CPU is stopped 4-3

inverse move
See MOVE INVERSE instruction, move-inverse

facility
IPK (INSERT PSW KEY) instruction 10-30
IPL (initial program loading) 4-81, 17-16
IPM (INSERT PROGRAM MASK) instruction 7-263
IPTE (INVALIDATE PAGE TABLE ENTRY)

instruction 10-37
IPTE-range facility 1-17

facility indication 4-100
IRB (interruption-response block) 16-6

See also ECW, ERW, ESW, SCSW
storage requirements for 16-13

IRBM (INSERT REFERENCE BIT MULTIPLE)
instruction 10-30

ISC (I/O-interruption-subclass code) 15-2
enhanced 14-20

ISKE (INSERT STORAGE KEY EXTENDED)
instruction 10-30

isolated state 16-52
IVSK (INSERT VIRTUAL STORAGE KEY) instruction

10-31

K
K (kilo) 0-xxviii
KDB (COMPARE AND SIGNAL) BFP instruction

19-18
KDBR (COMPARE AND SIGNAL) BFP instruction

19-18
KDSA (CCOMPUTE DIGITAL SIGNATURE

AUTHENTICATION) 26-2
KDTR (COMPARE AND SIGNAL) DFP instruction

20-23
KEB (COMPARE AND SIGNAL) BFP instruction

19-18

KEBR (COMPARE AND SIGNAL) BFP instruction
19-18

key
access

See access key
manual

See manual operation
PSW

See PSW key
storage

See storage key
subchannel

See subchannel key
key check (in subchannel logout) 16-47
key-controlled protection 3-11

exception for 6-34
key mask

authorization 5-38
entry 5-38
PSW (PKM) 5-28

KIMD (COMPUTE INTERMEDIATE MESSAGE
DIGEST) instruction 7-187

KLMD (COMPUTE LAST MESSAGE DIGEST)
instruction 7-200

KM (CIPHER MESSAGE) instruction 7-52
KMA (CIPHER MESSAGE WITH

AUTHENTICATION) instruction 7-77
KMAC (COMPUTE MESSAGE AUTHENTICATION

CODE) instruction 7-218
KMC (CIPHER MESSAGE WITH CHAINING)

instruction 7-52
KMCTR (CIPHER MESSAGE WITH COUNTER)

instruction 7-106
KMF (CIPHER MESSAGE WITH CIPHER

FEEDBACK) instruction 7-91
KMO (CIPHER MESSAGE WITH OUTPUT

FEEDBACK) instruction 7-119
KXBR (COMPARE AND SIGNAL) BFP instruction

19-18
KXTR (COMPARE AND SIGNAL) DFP instruction

20-23

L
L (LOAD) binary instruction 7-263

example A-23
L fields of instruction 5-9
LA (LOAD ADDRESS) instruction 7-265

examples A-23
LAA (LOAD AND ADD) instruction 7-267
LAAG (LOAD AND ADD) instruction 7-267
LAAL (LOAD AND ADD LOGICAL) instruction 7-267
LAALG (LOAD AND ADD LOGICAL) instruction

7-267

X-33

LAE (LOAD ADDRESS EXTENDED) instruction
7-265

LAEY (LOAD ADDRESS EXTENDED) instruction
7-265

LAM (LOAD ACCESS MULTIPLE) instruction 7-264
LAMY (LOAD ACCESS MULTIPLE) instruction

7-264
LAN (LOAD AND AND) instruction 7-268
LANG (LOAD AND AND) instruction 7-268
LAO (LOAD AND OR) instruction 7-269
LAOG (LOAD AND OR) instruction 7-269
LARL (LOAD ADDRESS RELATIVE LONG)

instruction 7-266
LASP (LOAD ADDRESS SPACE PARAMETERS)

instruction 10-41
last-path-used mask

See LPUM
LAT (LOAD AND TRAP) instruction 7-270
late exception recognition 6-10
LATG (LOAD LOGICAL AND TRAP) instruction

7-270
LATH (LOAD HIGH AND TRAP) instruction 7-277
LAX (LOAD AND EXCLUSIVE OR) instruction 7-268
LAXG (LOAD AND EXCLUSIVE OR) instruction

7-268
LAY (LOAD ADDRESS) instruction 7-265
LB (LOAD BYTE) instruction 7-271
LBH (LOAD BYTE HIGH) instruction 7-271
LBR (LOAD BYTE) binary instruction 7-271
LCCB (LOAD COUNT TO BLOCK BOUNDARY)

binary instruction 7-272
LCDBR (LOAD COMPLEMENT) BFP instruction

19-31
LCDFR (LOAD COMPLEMENT) floating-point-

support instruction 9-31
LCDR (LOAD COMPLEMENT) HFP instruction

18-14
LCEBR (LOAD COMPLEMENT) BFP instruction

19-31
LCER (LOAD COMPLEMENT) HFP instruction

18-14
LCGFR (LOAD COMPLEMENT) binary instruction

7-272
LCGR (LOAD COMPLEMENT) binary instruction

7-272
LCR (LOAD COMPLEMENT) binary instruction

7-271
LCTL (LOAD CONTROL) instruction 10-50
LCTLG (LOAD CONTROL) instruction 10-50
LCXBR (LOAD COMPLEMENT) BFP instruction

19-31
LCXR (LOAD COMPLEMENT) HFP instruction

18-14
LD (LOAD) floating-point-support instruction 9-31

LDE (LOAD LENGTHENED) HFP instruction 18-15
LDEB (LOAD LENGTHENED) BFP instruction 19-34
LDEBR (LOAD LENGTHENED) BFP instruction

19-33
LDER (LOAD LENGTHENED) HFP instruction 18-15
LDETR (LOAD LENGTHENED) DFP instruction

20-45
LDGR (LOAD FPR FROM GR) floating-point-support

instruction 9-34
LDR (LOAD) floating-point-support instruction 9-31
LDXBR (LOAD ROUNDED) BFP instruction 19-35
LDXBRA (LOAD ROUNDED) BFP instruction 19-35
LDXR (LOAD ROUNDED) HFP instruction 18-17
LDXTR (LOAD ROUNDED) DFP instruction 20-46
LDY (LOAD) floating-point-support instruction 9-31
LE (LOAD) floating-point-support instruction 9-31
leaf

DAT-table entry 3-42, 3-53, 3-54, 3-65, 3-46
LEDBR (LOAD ROUNDED) BFP instruction 19-35
LEDBRA (LOAD ROUNDED) BFP instruction 19-35
LEDR (LOAD ROUNDED) HFP instruction 18-17
LEDTR (LOAD ROUNDED) DFP instruction 20-46
left-to-right addressing 3-2
left-units view (LUV) of floating-point numbers 9-2
length

field 3-3
instruction 5-7
of BFP data

decreasing 19-35
increasing 19-33

of DFP data
decreasing 20-46
increasing 20-45

of HFP data
decreasing 18-17
increasing 18-15

register-operand 5-8
second operand same as first 5-8
variable (storage operand) 5-9

LER (LOAD) floating-point-support instruction 9-31
LEXBR (LOAD ROUNDED) BFP instruction 19-35
LEXBRA (LOAD ROUNDED) BFP instruction 19-35
LEXR (LOAD ROUNDED) HFP instruction 18-17
LEY (LOAD) floating-point-support instruction 9-31
LFAS (LOAD FPC AND SIGNAL) floating-point-

support instruction 9-32
LFH (LOAD HIGH) instruction 7-277
LFPC (LOAD FPC) floating-point-support instruction

9-31
LFT (linkage first table) 5-36
LFTD (linkage-first-table designation) 5-36
LFTL (linkage-first-table length) 5-36
LFTO (linkage-first-table origin) 5-36
LFX (linkage first index)

X-34 The z/Architecture CPU Architecture

invalid bit 5-36
translation exception 6-29

LG (LOAD) binary instruction 7-263
LGB (LOAD BYTE) instruction 7-271
LGBR (LOAD BYTE) binary instruction 7-271
LGDR (LOAD GR FROM FPR) floating-point-support

instruction 9-34
LGF (LOAD) binary instruction 7-263
LGFI (LOAD IMMEDIATE) instruction 7-263
LGFR (LOAD) binary instruction 7-263
LGFRL (LOAD RELATIVE LONG) binary instruction

7-263
LGG (LOAD GUARDED) instruction 7-273
LGH (LOAD HALFWORD) instruction 7-275
LGHI (LOAD HALFWORD IMMEDIATE) instruction

7-275
LGHR (LOAD HALFWORD) binary instruction 7-275
LGHRL (LOAD HALFWORD RELATIVE LONG)

binary instruction 7-275
LGR (LOAD) binary instruction 7-263
LGRL (LOAD RELATIVE LONG) binary instruction

7-263
LGSC (LOAD GUARDED STORAGE CONTROLS)

instruction 7-274
LH (LOAD HALFWORD) instruction 7-275

examples A-24
LHH (LOAD HALFWORD HIGH) instruction 7-276
LHI (LOAD HALFWORD IMMEDIATE) instruction

7-275
LHR (LOAD HALFWORD) binary instruction 7-275
LHRL (LOAD HALFWORD RELATIVE LONG) binary

instruction 7-275
LHY (LOAD HALFWORD) instruction 7-275
LIFO (last in first out) queuing

example for lock and unlock A-48
light

See indicator
limit mode (I/O) 15-3
link information

for BRANCH AND LINK instruction 7-35
for BRANCH AND SAVE AND SET MODE

instruction 7-36
for BRANCH AND SAVE instruction 7-36

linkage first table (LFT) 5-36
designation (LFTD) 5-36
length (LFTL) 5-36
origin (LFTO) 5-36

linkage for subroutines 5-14
linkage index (LX) 5-33
linkage second table (LST) 5-37

origin (LSTO) 5-36
linkage stack 5-70, 5-79

associated PER events 5-75
associated trace entries 5-75

branch state entry 10-11
entry address 5-78
entry descriptor 5-79
entry-type code 5-79
handling of information in 5-74
instructions 5-71
introduction 5-76
next-entry size 5-80
operations 5-76

control 5-78
program-call state entry 10-97
remaining free space 5-79
section 5-76

identification 5-79
state entry 5-81

linkage-stack functions 5-71
linkage table (LT) 5-36

designation (LTD) 5-35
length (LTL) 5-35
origin (LTO) 5-35

list-directed initial-program-load (IPL) function 1-17
list-directed IPL machine-loader execution-space size

(assigned-storage locations) 3-74, 3-83
list-directed IPL system-parameter-block address

(assigned-storage locations) 3-74, 3-83
list-directed IPL (list-directed initial program loading)

17-19
little endian 7-287, 7-394
LLC (LOAD LOGICAL CHARACTER) instruction

7-278
LLCH (LOAD LOGICAL CHARACTER HIGH)

instruction 7-279
LLCR (LOAD LOGICAL CHARACTER) binary

instruction 7-278
LLGC (LOAD LOGICAL CHARACTER) instruction

7-278
LLGCR (LOAD LOGICAL CHARACTER) binary

instruction 7-278
LLGF (LOAD LOGICAL) instruction 7-277
LLGFR (LOAD LOGICAL) instruction 7-277
LLGFRL (LOAD LOGICAL RELATIVE LONG) binary

instruction 7-277
LLGFSG (LOAD LOGICAL AND SHIFT GUARDED)

instruction 7-273
LLGH (LOAD LOGICAL HALFWORD) instruction

7-279
LLGHR (LOAD LOGICAL HALFWORD) binary

instruction 7-279
LLGHRL (LOAD LOGICAL RELATIVE LONG) binary

instruction 7-279
LLGT (LOAD LOGICAL THIRTY ONE BITS)

instruction 7-281
LLGTR (LOAD LOGICAL THIRTY ONE BITS)

instruction 7-280

X-35

LLH (LOAD LOGICAL HALFWORD) instruction
7-279

LLHH (LOAD LOGICAL HALFWORD HIGH)
instruction 7-280

LLHR (LOAD LOGICAL HALFWORD) binary
instruction 7-279

LLHRL (LOAD LOGICAL RELATIVE LONG) binary
instruction 7-279

LLIHF (LOAD LOGICAL IMMEDIATE) instruction
7-280

LLIHH (LOAD LOGICAL IMMEDIATE) instruction
7-280

LLIHL (LOAD LOGICAL IMMEDIATE) instruction
7-280

LLILF (LOAD LOGICAL IMMEDIATE) instruction
7-280

LLILH (LOAD LOGICAL IMMEDIATE) instruction
7-280

LLILL (LOAD LOGICAL IMMEDIATE) instruction
7-280

LLTG (LOAD AND TRAP) instruction 7-270
LLTGF (LOAD LOGICAL AND TRAP) instruction

7-278
LLTGT (LOAD LOGICAL THIRTY ONE BITS AND

TRAP) instruction 7-281
LLZRGF (LOAD LOGICAL AND ZERO RIGHTMOST

BYTE) binary instruction 7-278
LM (LOAD MULTIPLE) instruction 7-281
LMD (LOAD MULTIPLE DISJOINT) instruction 7-282
LMG (LOAD MULTIPLE) instruction 7-281
LMH (LOAD MULTIPLE HIGH) instruction 7-282
LMY (LOAD MULTIPLE) instruction 7-281
LNDBR (LOAD NEGATIVE) BFP instruction 19-34
LNDFR (LOAD NEGATIVE) floating-point-support

instruction 9-34
LNDR (LOAD NEGATIVE) HFP instruction 18-16
LNEBR (LOAD NEGATIVE) BFP instruction 19-34
LNER (LOAD NEGATIVE) HFP instruction 18-16
LNGFR (LOAD NEGATIVE) binary instruction 7-283
LNGR (LOAD NEGATIVE) binary instruction 7-282
LNR (LOAD NEGATIVE) binary instruction 7-282
LNXBR (LOAD NEGATIVE) BFP instruction 19-34
LNXR (LOAD NEGATIVE) HFP instruction 18-16
LOAD ACCESS MULTIPLE instructions 7-264
LOAD ADDRESS EXTENDED instruction 7-265
LOAD ADDRESS instructions 7-265

examples A-23
LOAD ADDRESS RELATIVE LONG instruction

7-266
LOAD ADDRESS SPACE PARAMETERS instruction

10-41
LOAD AND ADD instructions 7-267
LOAD AND ADD LOGICAL instructions 7-267
LOAD AND AND instructions 7-268

LOAD AND EXCLUSIVE OR instructions 7-268
LOAD AND OR instructions 7-269
LOAD AND TEST BFP instructions 19-31
LOAD AND TEST binary instruction 7-269
LOAD AND TEST DFP instructions 20-41
LOAD AND TEST HFP instructions 18-13
LOAD AND TRAP binary instructions 7-270
load-and-trap facility 1-18

facility indication 4-100
LOAD AND ZERO RIGHTMOST BYTE binary

instructions 7-270
load-and-zero-rightmost-byte facility 1-18

facility indication 4-100
LOAD binary instructions 7-263

example A-23
LOAD BYTE HIGH instruction 7-271
LOAD BYTE instructions 7-271
load-clear key 12-4
load-clear-list-directed key 12-4
LOAD COMPLEMENT BFP instructions 19-31
LOAD COMPLEMENT binary instruction 7-271
LOAD COMPLEMENT floating-point-support

instruction 9-31
LOAD COMPLEMENT HFP instructions 18-14
LOAD CONTROL instructions 10-50
LOAD COUNT TO BLOCK BOUNDARY binary

instruction 7-272
LOAD floating-point-support instructions 9-31
LOAD FP INTEGER BFP instructions 19-32
LOAD FP INTEGER DFP instructions 20-42
LOAD FP INTEGER HFP instructions 18-15
LOAD FPC AND SIGNAL floating-point-support

instruction 9-32
LOAD FPC floating-point-support instruction 9-31
LOAD FPR FROM GR floating-point-support

instruction 9-34
LOAD GR FROM FPR floating-point-support

instruction 9-34
LOAD GUARDED instruction 7-273
LOAD GUARDED STORAGE CONTROLS

instruction 7-274
LOAD HALFWORD binary 7-275
LOAD HALFWORD HIGH IMMEDIATE ON

CONDITION binary instruction 7-276
LOAD HALFWORD HIGH instruction 7-276
LOAD HALFWORD IMMEDIATE instruction 7-275
LOAD HALFWORD IMMEDIATE ON CONDITION

binary instruction 7-276
LOAD HALFWORD instruction

examples A-24
LOAD HALFWORD RELATIVE LONG instructions

7-275
LOAD HIGH AND TRAP instruction 7-277
LOAD HIGH instruction 7-277

X-36 The z/Architecture CPU Architecture

LOAD HIGH ON CONDITION instructions 7-283
LOAD IMMEDIATE instruction 7-263
load indicator 12-3
LOAD LENGTHENED BFP instructions 19-33
LOAD LENGTHENED DFP instructions 20-45
LOAD LENGTHENED HFP instructions 18-15
LOAD LOGICAL AND SHIFT GUARDED instruction

7-273
LOAD LOGICAL AND TRAP instruction 7-278
LOAD LOGICAL AND ZERO RIGHTMOST BYTE

binary instruction 7-278
LOAD LOGICAL CHARACTER HIGH instruction

7-279
LOAD LOGICAL CHARACTER instructions 7-278
LOAD LOGICAL HALFWORD HIGH instruction

7-280
LOAD LOGICAL HALFWORD instructions 7-279
LOAD LOGICAL HALFWORD RELATIVE LONG

instructions 7-279
LOAD LOGICAL IMMEDIATE instructions 7-280
LOAD LOGICAL instructions 7-277
LOAD LOGICAL RELATIVE LONG binary instruction

7-277
LOAD LOGICAL THIRTY ONE BITS AND TRAP

instruction 7-281
LOAD LOGICAL THIRTY ONE BITS instructions

7-280
LOAD MULTIPLE DISJOINT instruction 7-282
LOAD MULTIPLE HIGH instruction 7-282
LOAD MULTIPLE instructions 7-281
LOAD NEGATIVE BFP instructions 19-34
LOAD NEGATIVE binary instruction 7-282
LOAD NEGATIVE floating-point-support instruction

9-34
LOAD NEGATIVE HFP instructions 18-16
load-normal key 12-4
LOAD ON CONDITION instructions 7-283
LOAD PAGE-TABLE-ENTRY ADDRESS instruction

10-50
LOAD PAIR DISJOINT instructions 7-284
LOAD PAIR FROM QUADWORD instruction 7-285
LOAD POSITIVE BFP instructions 19-35
LOAD POSITIVE binary instruction 7-286
LOAD POSITIVE floating-point-support instruction

9-34
LOAD POSITIVE HFP instructions 18-16
LOAD PSW EXTENDED instruction 10-55
LOAD PSW instruction 10-54
LOAD REAL ADDRESS instructions 10-56
LOAD RELATIVE LONG instruction 7-263
LOAD REVERSED instructions 7-286
LOAD ROUNDED BFP instructions 19-35
LOAD ROUNDED DFP instructions 20-46
LOAD ROUNDED HFP instructions 18-17

load state 4-2, 4-3
during CCW-type IPL 4-82

load/store-on-condition facility 1 1-18
facility indication 4-100

load-unit-address controls 12-4
LOAD USING REAL ADDRESS instruction 10-60
load-with-dump key 12-4
LOAD ZERO floating-point-support instructions 9-35
load/store-on-condition facility 2 1-18
loading, initial

See IML, IPL
LOC (LOAD ON CONDITION) instruction 7-283
local-TLB-clearing facility 1-18

facility indication 4-100
location 3-2

not available in configuration 6-20
See also address

LOCFH (LOAD HIGH ON CONDITION) binary
instruction 7-283

LOCFHR (LOAD HIGH ON CONDITION) binary
instruction 7-283

LOCG (LOAD ON CONDITION) instruction 7-283
LOCGHI (LOAD HALFWORD HIGH IMMEDIATE ON

CONDITION) binary instruction 7-276
LOCGR (LOAD ON CONDITION) instruction 7-283
LOCHHI (LOAD HALFWORD HIGH IMMEDIATE ON

CONDITION) binary instruction 7-276
LOCHI (LOAD HALFWORD IMMEDIATE ON

CONDITION) binary instruction 7-276
lock A-47

example with FIFO queuing A-49
example with LIFO queuing A-48

lock used by PERFORM LOCKED OPERATION
instruction 7-347

LOCR (LOAD ON CONDITION) instruction 7-283
logical

arithmetic (unsigned binary) 7-6
comparison 7-7
connective

AND 7-33, 7-34
EXCLUSIVE OR 7-254, 7-255
OR 7-312, 7-313

data 7-4
logical address 3-5

handling by DAT 3-40
logical-path mask

See LPM
I/O-interruption

See I/O-interruption subclass mask
logical string assist 1-30
logically partitioned (LPAR) mode 1-34, 1-36
logout

fixed
assigned storage locations for 3-82

X-37

machine-check 11-27
subchannel (I/O) 16-47

long binary-floating-point number 19-2
long decimal-floating-point number 20-3
long-displacement facility 1-18

facility indication 4-100
long hexadecimal-floating-point number 18-2
long I/O block 16-24, 16-39
loop control 5-14
loop of interruptions

See string of interruptions
low-address protection 3-14

control bit 3-14
exception for 6-34

LPAR (logically partitioned) mode 1-34, 1-36
LPD (LOAD PAIR DISJOINT instructions 7-284
LPDBR (LOAD POSITIVE) BFP instruction 19-35
LPDFR (LOAD POSITIVE) floating-point-support

instruction 9-34
LPDG (LOAD PAIR DISJOINT instructions 7-284
LPDR (LOAD POSITIVE) HFP instruction 18-16
LPEBR (LOAD POSITIVE) BFP instruction 19-35
LPER (LOAD POSITIVE) HFP instruction 18-16
LPGFR (LOAD POSITIVE) binary instruction 7-286
LPGR (LOAD POSITIVE) binary instruction 7-286
LPM (logical-path mask) 15-5, 15-28, 15-30

effect on system performance of 15-11
used for IPL 17-17

LPQ (LOAD PAIR FROM QUADWORD) instruction
7-285

LPR (LOAD POSITIVE) binary instruction 7-286
LPSW (LOAD PSW) instruction 10-54
LPSWE (LOAD PSW EXTENDED) instruction 10-55
LPTEA (LOAD PAGE-TABLE-ENTRY ADDRESS)

instruction 10-50
LPUM (last-path-used mask) 15-6

in ESW 16-49
field-validity flag for (in subchannel logout) 16-49

LPXBR (LOAD POSITIVE) BFP instruction 19-35
LPXR (LOAD POSITIVE) HFP instruction 18-16
LR (LOAD) binary instruction 7-263
LRA (LOAD REAL ADDRESS) instruction 10-56
LRAG (LOAD REAL ADDRESS) instruction 10-56
LRAY (LOAD REAL ADDRESS) instruction 10-56
LRDR (LOAD ROUNDED) HFP instruction 18-17
LRER (LOAD ROUNDED) HFP instruction 18-17
LRL (LOAD RELATIVE LONG) binary instruction

7-263
LRV (LOAD REVERSED) instruction 7-286
LRVG (LOAD REVERSED) instruction 7-286
LRVGR (LOAD REVERSED) instruction 7-286
LRVH (LOAD REVERSED) instruction 7-286
LRVR (LOAD REVERSED) instruction 7-286
LST (linkage second table) 5-37

LSTO (linkage-second-table origin) 5-36
LSX (linkage first index)

translation exception 6-29
LSX (linkage second index)

invalid bit 5-37
LT (linkage table) 5-36
LT (LOAD AND TEST) instruction 7-270
LTD (linkage-table designation) 5-35
LTDBR (LOAD AND TEST) BFP instruction 19-31
LTDR (LOAD AND TEST) HFP instruction 18-13
LTDTR (LOAD AND TEST) DFP instruction 20-41
LTEBR (LOAD AND TEST) BFP instruction 19-31
LTER (LOAD AND TEST) HFP instruction 18-13
LTG (LOAD AND TEST) instruction 7-270
LTGF (LOAD AND TEST) binary instruction 7-270
LTGFR (LOAD AND TEST) binary instruction 7-269
LTGR (LOAD AND TEST) binary instruction 7-269
LTL (linkage-table length) 5-35
LTO (linkage-table origin) 5-35
LTR (LOAD AND TEST) binary instruction 7-269
LTXBR (LOAD AND TEST) BFP instruction 19-31
LTXR (LOAD AND TEST) HFP instruction 18-14
LTXTR (LOAD AND TEST) DFP instruction 20-41
LURA (LOAD USING REAL ADDRESS) instruction

10-60
LURAG (LOAD USING REAL ADDRESS) instruction

10-60
LUV (left-units view) of floating-point numbers 9-2
LX (linkage index) 5-33

invalid bit 5-36
translation exception 6-30

LXD (LOAD LENGTHENED) HFP instruction 18-15
LXDB (LOAD LENGTHENED) BFP instruction 19-34
LXDBR (LOAD LENGTHENED) BFP instruction

19-33
LXDR (LOAD LENGTHENED) HFP instruction 18-15
LXDTR (LOAD LENGTHENED) DFP instruction

20-45
LXE (LOAD LENGTHENED) HFP instruction 18-15
LXEB (LOAD LENGTHENED) BFP instruction 19-34
LXEBR (LOAD LENGTHENED) BFP instruction

19-33
LXER (LOAD LENGTHENED) HFP instruction 18-15
LXR (LOAD) floating-point-support instruction 9-31
LY (LOAD) binary instruction 7-263
LZDR (LOAD ZERO) floating-point-support

instruction 9-35
LZER (LOAD ZERO) floating-point-support

instruction 9-35
LZRF (LOAD AND ZERO RIGHTMOST BYTE) binary

instruction 7-270
LZRG (LOAD AND ZERO RIGHTMOST BYTE)

binary instruction 7-270

X-38 The z/Architecture CPU Architecture

LZXR (LOAD ZERO) floating-point-support
instruction 9-35

M
M (mega) 0-xxviii
M (MULTIPLY) binary instruction 7-304, 7-305

example A-28
machine check

See also malfunction
handling of malfunction detected as part of I/O

11-5
interruption 6-16, 11-10

action 11-11
code (MCIC) 3-80, 3-86, 11-14
floating conditions 11-26
machine check interruption 11-26
mask in the PSW 4-6
subclass masks in control register 11-26

logout 11-27
mask

in the PSW 4-6
machine-check architectural-mode identification

3-76, 3-85
machine-check extended save area 11-24
machine-type number (in STORE CPU ID result)

10-139, 10-140
MAD (MULTIPLY AND ADD) HFP instruction 18-19
MADB (MULTIPLY AND ADD) BFP instruction 19-38
MADBR (MULTIPLY AND ADD) BFP instruction

19-38
MADR (MULTIPLY AND ADD) HFP instruction 18-19
MAE (MULTIPLY AND ADD) HFP instruction 18-19
MAEB (MULTIPLY AND ADD) BFP instruction 19-38
MAEBR (MULTIPLY AND ADD) BFP instruction

19-38
MAER (MULTIPLY AND ADD) HFP instruction 18-19
main storage 3-2

See also storage
effect of power-on reset on 4-81
See also storage
shared (in multiprocessing) 4-84

malfunction 11-2
at channel subsystem 16-29
at I/O device 16-29
correction of 11-2
effect on manual operation 12-1
from DIAGNOSE instruction 10-23
indication of 11-5
machine-check handling for when detected as part

of I/O 11-5
malfunction alert (external interruption) 6-13

when entering check-stop state 11-10
manual indicator 12-4

See also stopped state
manual operation 12-1

controls
address-compare 12-1
alter-and-display 12-2
IML 12-3
load-unit-address 12-4
power 12-4
rate 12-5
TOD-clock 12-6

effect on CPU signaling 4-95
keys

interrupt 12-3
load-clear 12-4
load-clear-list-directed 12-4
load-normal 12-4
load-with-dump 12-4
restart 12-5
start 12-5
stop 12-5
store-status 12-5
system-reset-clear 12-6
system-reset-normal 12-6

masks 6-6
See also I/O interruption, interruption
for IEEE exceptions 9-10
in BRANCH INDIRECT ON CONDITION

instruction 7-39
in BRANCH ON CONDITION instruction 7-40
in BRANCH RELATIVE ON CONDITION

instruction 7-46
in COMPARE LOGICAL CHARACTERS UNDER

MASK instruction 7-156
in INSERT CHARACTERS UNDER MASK

instruction 7-262
in PSW 4-5
in STORE CHARACTERS UNDER MASK

instruction 7-385
in TEST UNDER MASK instruction 7-400
monitor 6-30
path-management 15-2, 15-28, 15-30
PER-event 4-27
program-interruption 6-17
subclass

See subclass-mask bits
maximum negative number 7-4
MBA (measurement-block address) 15-9
MC (MONITOR CALL) instruction 7-287
MCIC (machine-check-interruption code) 3-80,

3-86, 11-14
MD (MULTIPLY) HFP instruction 18-18
MDB (MULTIPLY) BFP instruction 19-37
MDBR (MULTIPLY) BFP instruction 19-37
MDE (MULTIPLY) HFP instruction 18-18

X-39

MDEB (MULTIPLY) BFP instruction 19-37
MDEBR (MULTIPLY) BFP instruction 19-37
MDER (MULTIPLY) HFP instruction 18-17
MDR (MULTIPLY) HFP instruction 18-17

example A-43
MDTR (MULTIPLY) DFP instruction 20-47
MDTRA (MULTIPLY) DFP instruction 20-48
ME (MULTIPLY) HFP instruction 18-18
measurement

block (I/O)
address 17-7
format 17-7
origin 17-7

device-connect-time 17-10
extended-measurement-word 17-11
measurement-block update (I/O) 17-2

measurement-alert external interruption 6-14
measurement block (I/O) 17-3

data check 16-48
index 15-7
key (MBK)

used as access key 3-11
multiple use of 15-11
program check 16-48
protection check 16-48
update enable 15-3

measurement-block-format control (I/O) 15-8
measurement data (I/O)

accumulated 17-3
effect of CSCH on 14-5
effect of HSCH on 14-7

measurement-mode control (I/O) 15-3
MEE (MULTIPLY) HFP instruction 18-18
MEEB (MULTIPLY) BFP instruction 19-37
MEEBR (MULTIPLY) BFP instruction 19-37
MEER (MULTIPLY) HFP instruction 18-17
MER (MULTIPLY) HFP instruction 18-18
message byte (in EDIT) 8-8
message-security assist 1-19

facility indication 4-100
message-security-assist extension 1 1-19
message-security-assist extension 2 1-19
message-security-assist extension 3 1-19

facility indication 4-101
message-security-assist extension 4 1-20

facility indication 4-101
message-security-assist extension 5 1-21

facility indication 4-100
message-security-assist extension 6 1-21
message-security-assist extension 7 1-22
message-security-assist extension 8 1-22

facility indication 4-101
message-security-assist extension 9 1-22

facility indication 4-101

MFY (MULTIPLY) binary instruction 7-304
MG (MULTIPLY) binary instruction 7-304
MGH (MULTIPLY HALFWORD) binary instruction

7-305
MGHI (MULTIPLY HALFWORD IMMEDIATE)

instruction 7-305
MGRK (MULTIPLY) binary instruction 7-304
MH (MULTIPLY HALFWORD) instruction 7-305

example A-29
MHI (MULTIPLY HALFWORD IMMEDIATE)

instruction 7-305
MHY (MULTIPLY HALFWORD) binary instruction

7-305
MIDA (modified-indirect-data addressing) 15-68
MIDA flag in CCW 15-33

invalid 16-27
MIDAW (modified indirect-data-address word)

invalid address specification of 16-26
MIDAW (modified-indirect-data-address word) 15-68

check (in subchannel logout) 16-48
MIDAW (modified indirect-data-address word)

invalid address of 16-25
MIDAW control 15-28
miscellaneous-instruction-extensions facility 1 1-23

facility indication 4-100
miscellaneous-instruction-extensions facility 2 1-23

facility indication 4-100
miscellaneous-instruction-extensions facility 3 1-23

facility indication 4-101
ML (MULTIPLY LOGICAL) instruction 7-306
MLG (MULTIPLY LOGICAL) instruction 7-306
MLGR (MULTIPLY LOGICAL) instruction 7-306
MLR (MULTIPLY LOGICAL) instruction 7-306
modal instructions 1-5, 7-8
mode

access-register 3-40
addressing

See addressing mode
architectural

See architectural mode
burst (channel-path operation) 13-3
byte-multiplex mode (channel-path operation)

13-3
home-space 3-40
incorrect-length-indication 15-28
incorrect-length-suppression 15-28
indicator

architectural 12-2, 12-3
multipath

See multipath mode
primary-space 3-40
real 3-40
requirements for semiprivileged instructions 5-28
secondary-space 3-40

X-40 The z/Architecture CPU Architecture

single-path 15-4, 15-23
translation 3-40

mode-trace-control bit 4-15
modifiable area (in linkage-stack state entry) 5-83
modification control 15-26
modified-CCW-indirect-data-addressing control

15-28
modified-CCW-indirect-data-addressing facility 1-23
MODIFY STACKED STATE instruction 10-61
MODIFY SUBCHANNEL instruction 14-7
MONITOR CALL instruction 7-287
monitor-class number 6-30, 7-287

assigned storage locations for 3-74, 3-85
monitor code 6-31, 7-287

assigned storage locations for 3-79, 3-85
monitor event 6-30, 7-287

counting operation 7-287
program interruption 7-287

monitor-event
counting operation 5-110

monitor masks 6-30, 7-287
monitoring

See also measurement
channel-subsystem 17-1
for PER events

See PER
with MONITOR CALL 6-30, 7-287

MOVE instructions 7-288
examples A-21, A-24

move-inverse facility 7-289
MOVE INVERSE instruction 7-289

example A-25
MOVE LONG EXTENDED instruction 7-293
MOVE LONG instruction 7-289

examples A-26
MOVE LONG UNICODE instruction 7-296
MOVE NUMERICS instruction 7-300

example A-26
MOVE PAGE instruction 10-62, 10-80
MOVE RIGHT TO LEFT instruction 7-300
MOVE STRING instruction 7-301

example A-27
MOVE TO PRIMARY instruction 10-65
MOVE TO SECONDARY instruction 10-65
MOVE WITH DESTINATION KEY instruction 10-67
MOVE WITH KEY instruction 10-67
MOVE WITH OFFSET instruction 7-302

example A-27
move-with-optional-specifications facility 1-24

facility indication 4-100
MOVE WITH OPTIONAL SPECIFICATIONS

instruction 10-69
MOVE WITH SOURCE KEY instruction 10-72
MOVE ZONES instruction 7-303

example A-28
move-page-and-set-key facility 1-24

facility indication 4-101
MP (MULTIPLY DECIMAL) instruction 8-12

example A-39
MR (MULTIPLY) binary instruction 7-304

example A-28
MS (MULTIPLY SINGLE) instruction 7-307
MSC (MULTIPLY SINGLE) instruction 7-307
MSCH (MODIFY SUBCHANNEL) instruction 14-7
MSD (MULTIPLY AND SUBTRACT) HFP instruction

18-19
MSDB (MULTIPLY AND SUBTRACT) BFP

instruction 19-38
MSDBR (MULTIPLY AND SUBTRACT) BFP

instruction 19-38
MSDR (MULTIPLY AND SUBTRACT) HFP

instruction 18-19
MSE (MULTIPLY AND SUBTRACT) HFP instruction

18-19
MSEB (MULTIPLY AND SUBTRACT) BFP

instruction 19-38
MSEBR (MULTIPLY AND SUBTRACT) BFP

instruction 19-38
MSER (MULTIPLY AND SUBTRACT) HFP

instruction 18-19
MSFI (MULTIPLY SINGLE IMMEDIATE) instruction

7-307
MSG (MULTIPLY SINGLE) instruction 7-307
MSGC (MULTIPLY SINGLE) instruction 7-307
MSGF (MULTIPLY SINGLE) instruction 7-307
MSGFI (MULTIPLY SINGLE IMMEDIATE) instruction

7-307
MSGFR (MULTIPLY SINGLE) instruction 7-307
MSGR (MULTIPLY SINGLE) instruction 7-307
MSGRKC (MULTIPLY SINGLE) instruction 7-307
MSR (MULTIPLY SINGLE) instruction 7-307
MSRKC (MULTIPLY SINGLE) instruction 7-307
MSS (multiple subchannel set facility) 17-33
MSS (multiple-subchannel-set) facility 1-24
MSTA (MODIFY STACKED STATE) instruction

10-61
MSY (MULTIPLY SINGLE) instruction 7-307
multipath mode 15-4

entering 15-23
multiple-access storage references 5-125
multiple-epoch facility 1-24
multiple-subchannel-set facility 1-24
multiple subchannel set facility (MSS) 17-33
MULTIPLY AND ADD BFP instructions 19-38
MULTIPLY AND ADD HFP instructions 18-19
MULTIPLY AND SUBTRACT BFP instructions 19-38
MULTIPLY AND SUBTRACT HFP instructions 18-19
MULTIPLY BFP instructions 19-37

X-41

MULTIPLY binary instructions 7-304
examples A-28

MULTIPLY DECIMAL instruction 8-12
example A-39

MULTIPLY DFP instructions 20-47
MULTIPLY HALFWORD IMMEDIATE instruction

7-305
MULTIPLY HALFWORD instruction 7-305

example A-29
MULTIPLY HFP instructions 18-17

example A-43
MULTIPLY LOGICAL instructions 7-306
MULTIPLY SINGLE IMMEDIATE instructions 7-307
MULTIPLY SINGLE instructions 7-307
multiprocessing 4-83

manual operations for 12-6
programming considerations for 8-4, A-45
programming examples A-45
timing-facility interruptions for 4-53
TOD clock for 4-47

multiprogramming examples A-45
multithreading

core 2-3
disablement of 4-78, 4-79, 4-80
enablement of 4-92
facility description 1-25
operator considerations 12-7
terminology 2-3
thread 2-3

MVC (MOVE) instruction 7-288
examples A-21, A-24

MVCDK (MOVE WITH DESTINATION KEY)
instruction 10-67

MVCIN (MOVE INVERSE) instruction 7-289
example A-25

MVCK (MOVE WITH KEY) instruction 10-67
MVCL (MOVE LONG) instruction 7-289

examples A-26
MVCLE (MOVE LONG EXTENDED) instruction

7-293
MVCLU (MOVE LONG UNICODE) instruction 7-296
MVCOS (MOVE WITH OPTIONAL

SPECIFICATIONS) instruction 10-69
MVCP (MOVE TO PRIMARY) instruction 10-65
MVCRL (MOVE RIGHT TO LEFT) instruction 7-300
MVCS (MOVE TO SECONDARY) instruction 10-65
MVCSK (MOVE WITH SOURCE KEY) instruction

10-72
MVGHI (MOVE) instruction 7-288
MVHHI (MOVE) instruction 7-288
MVHI (MOVE) instruction 7-288
MVI (MOVE) instruction 7-288

example A-25
MVIY (MOVE) instruction 7-288

MVN (MOVE NUMERICS) instruction 7-300
example A-26

MVO (MOVE WITH OFFSET) instruction 7-302
example A-27

MVPG (MOVE PAGE) instruction 10-62, 10-80
MVST (MOVE STRING) instruction 7-301

example A-27
MVZ (MOVE ZONES) instruction 7-303

example A-28
MXBR (MULTIPLY) BFP instruction 19-37
MXD (MULTIPLY) HFP instruction 18-18
MXDB (MULTIPLY) BFP instruction 19-37
MXDBR (MULTIPLY) BFP instruction 19-37
MXDR (MULTIPLY) HFP instruction 18-17
MXR (MULTIPLY) HFP instruction 18-17
MXTR (MULTIPLY) DFP instruction 20-47
MXTRA (MULTIPLY) DFP instruction 20-48

N
N (AND) instruction 7-32
N condition (I/O) 16-13
NaN (not-a-number) 9-2, 19-4, 20-7
NAND instructions 7-308
NC (AND) instruction 7-33
NCGRK (AND WITH COMPLEMENT) instruction

7-34
NCRK (AND WITH COMPLEMENT) instruction 7-34
NDNR (AND) binary instruction 7-32
NDXGR (EXCLUSIVE OR) binary instruction 7-253
near-valid CBC 11-2

in storage 11-6
negative zero

binary 7-4
decimal 8-3

example A-5
nested transaction

transactional execution 5-90, 5-91
nesting 5-90, 5-91
new PSW 4-4

assigned storage locations for 3-81
assigned storage locations for (in the

z/Architecture architectural mode) 3-83
fetched during interruption 6-2

next-entry size (in linkage stack) 5-80
NG (AND) instruction 7-33
NGR (AND) instruction 7-32
NGRK (AND) binary instruction 7-32
NI (AND) instruction 7-33

example A-8
NIHF (AND IMMEDIATE) instruction 7-34
NIHH (AND IMMEDIATE) instruction 7-34
NIHL (AND IMMEDIATE) instruction 7-34
NILF (AND IMMEDIATE) instruction 7-34

X-42 The z/Architecture CPU Architecture

NILH (AND IMMEDIATE) instruction 7-34
NILL (AND IMMEDIATE) instruction 7-34
NIY (AND) instruction 7-33
NNGRK (NAND) instruction 7-308
NNRK (NAND) instruction 7-308
no-operation

instruction (BRANCH ON CONDITION) 7-40
instruction (BRANCH RELATIVE ON

CONDITION) 7-46
node (of tree structure) 7-425
NOGRK (NOR) instruction 7-311
nonconstrained transaction

transactional execution 5-91
nonconstrained transaction-execution mode

transactional execution 5-91
noninterlocked-update storage reference 5-124
nonnumeric entities

decimal 20-7
IEEE 9-2

nonquiescing key-setting facility
facility indication 4-100
NQ control

in SET STORAGE KEY EXTENDED 10-133
storage-key accesses 5-120

 1-25
NONTRANSACTION STORE instruction 7-310
nontrap action

IEEE 9-18
nonvolatile storage 3-2
NOR instructions 7-311
NORK (NOR) instruction 7-311
normal numbers

class of BFP data 19-4
class of DFP data 20-7

normalization
of HFP numbers 18-2

not-a-number (NaN) 9-2, 19-4, 20-7
NOT EXCLUSIVE OR instructions 7-311
not operational

as channel-path state 16-13
See path-not-operational bit

as CPU state 4-95
as TOD-clock state 4-49

not set (TOD-clock state) 4-48
NR (AND) instruction 7-32
NTSTG (NONTRANSACTION STORE) instruction

7-310
nullification

exceptions to 5-26
for exigent machine-check conditions 11-10
of instruction execution 5-23
of unit of operation 5-25

numbering
of addresses (byte locations) 3-2

of bits 3-3
numbers

binary 7-4
examples A-2

binary-floating-point 19-2
configuration identification (in STORE CPU ID

result) 10-139, 10-140
decimal 8-1

examples A-4
device 13-6
hexadecimal 5-7
hexadecimal-floating-point 18-2

examples A-5
machine-type number (in STORE CPU ID result)

10-139, 10-140
numeric bits 8-1

moving of 7-300
Numeric part of PC number 5-83
NXGRK (NOT EXCLUSIVE OR) instruction 7-311
NXRK (NOT EXCLUSIVE OR) instruction 7-311
NY (AND) instruction 7-33

O
O (OR) instruction 7-312
OC (OR) instruction 7-312
OCGRK (OR WITH COMPLEMENT) instruction

7-314
OCRK (OR WITH COMPLEMENT) instruction 7-314
octoword 3-3
OEMI (original equipment manufacturers information)

for I/O interface
publication referenced 0-xxix

offset of symbol-translation table 7-172
OG (OR) instruction 7-312
OGR (OR) instruction 7-312
OGRK (OR) binary instruction 7-312
OI (OR) instruction 7-312

example A-29
example of problem with A-45

OIHF (OR IMMEDIATE) instruction 7-313
OIHH (OR IMMEDIATE) instruction 7-313
OIHL (OR IMMEDIATE) instruction 7-313
OILF (OR IMMEDIATE) instruction 7-313
OILH (OR IMMEDIATE) instruction 7-313
OILL (OR IMMEDIATE) instruction 7-313
OIY (OR) instruction 7-312
old PSW 6-2

assigned storage locations for 3-80
assigned storage locations for (in the ESA/390-

compatibility mode) 3-83
assigned storage locations for (in the

z/Architecture architectural mode) 3-83
one's complement binary notation 7-4

X-43

used for SUBTRACT LOGICAL instruction 7-397
used for SUBTRACT LOGICAL WITH BORROW

instruction 7-398
op code

See operation code
operand 5-3

access identification 3-75
access of 5-123

for I/O instructions 14-2
address generation for 5-11
exception 6-31
immediate 5-8
length of 5-3
overlap of

for decimal instructions 8-3
for general instructions 7-4

register for 5-7
sequence of references for 5-123
storage 5-9
types of (fetch, store, update) 5-123
used for result 5-3

operating state 4-2, 4-3
operation

I/O
See I/O operations

unit of 5-24
operation code (op code) 5-3

invalid 6-31
operation exception 6-31
operation-request block

See ORB
operator facilities 2-8, 12-1

basic 12-1
operator intervening (signal-processor status) 4-97
OR (OR) instruction 7-312
OR IMMEDIATE instructions 7-313
OR instructions 7-312

example of problem with OR immediate A-45
examples A-29

OR WITH COMPLEMENT instructions 7-314
ORB (operation-request block) 15-24

channel-program-type control 15-27
CSS priority 15-29
designating a CCW channel program 15-25
extension control in 15-28, 15-30
interruption parameter in 15-25
invalid 16-27
logical-path mask (LPM) in 15-28, 15-30

order-preserving-compression facility 1-25
facility indication 4-100

orders (I/O) 13-8
orders (signal-processor) 4-85

conditional emergency signal 4-91
conditions precluding response to 4-95

CPU reset 4-86
emergency signal 4-86
emergency signal, conditional 4-91
external call 4-85
initial CPU reset 4-86
restart 4-86
sense 4-85
set architecture 4-89, 4-93
set prefix 4-86
start 4-86
stop 4-86
stop and store status 4-86
store status at address 4-87
set multithreading 4-92

ORK (OR) binary instruction 7-312
outer transaction 5-91
outermost transaction 5-91
overflow

binary 7-5
example A-2

decimal 6-26
exponent

See exponent overflow
fixed-point 6-27, 7-5
in CRW 17-29

overlap
destructive 7-290, 7-295, 7-298
operand 5-116

for decimal instructions 8-3
for general instructions 7-4

operation 5-114
OY (OR) instruction 7-312

P
P (peta) 0-xxviii
PACK ASCII instruction 7-315
PACK instruction 7-314

example A-29
PACK UNICODE instruction 7-316
packed decimal numbers 8-1

conversion of to zoned format 7-423
conversion to from zoned format 7-314

padding byte
for COMPARE LOGICAL LONG EXTENDED

instruction 7-160
for COMPARE LOGICAL LONG instruction 7-157
for MOVE LONG EXTENDED instruction 7-293
for MOVE LONG instruction 7-289

page 3-39
page-frame real address (PFRA) 3-51
PAGE IN instruction 10-73
page index (PX) 3-39
page-invalid bit (in page-table entry) 3-51

X-44 The z/Architecture CPU Architecture

PAGE OUT instruction 10-74
page protection

exception for 6-34
page swapping 3-38
page table 3-51

lookup 3-61
origin (PTO) 3-49

page-translation exception 6-32
as an access exception 6-47, 6-53

PALB (PURGE ALB) instruction 10-119
PAM (path-available mask) 15-7

effect of reconfiguration on 15-11
effect of resetting on 15-11
effect on allegiance of 15-12

parallel-I/O channel-to-channel adapter
publication referenced 0-xxix

parallel-I/O interface 13-3
OEMI publication referenced 0-xxix

parameter
external-interruption 6-11

assigned storage locations for 3-74, 3-84
I/O-interruption

See I/O-interruption parameter
register for SIGNAL PROCESSOR 4-86, 10-137
translation 3-40

parity bit 11-2
parsing-enhancement facility 1-25

facility indication 4-100
partial completion of instruction execution 5-24
PASCE (primary address-space-control element)

3-42
PASN (primary address-space number) 3-24

in trace entry 4-23
PASTE (primary AST entry) 5-35
PASTEIN (primary-AST-entry instance number) 3-26
PASTEO (primary-AST-entry origin) 5-35, 5-54
path

See channel path
path available for selection 15-13
path management 13-9

for clear function 15-14, 15-22
for halt function 15-16
for start function and resume function 15-20

path-management-control word
See PMCW

path-management masks
last-path-used mask

See LPUM
logical-path mask

See LPM
path-available mask

See PAM
path-installed mask

See PIM

path-not-operational mask
See PNOM

path-operational mask
See POM

path-not-operational bit (N) in SCSW 16-13
path-not-operational condition 15-5
path verification required

indicator for (in ERW) 16-52
pattern (in EDIT) 8-8
PC-cp (PROGRAM CALL instruction, to current

primary) 10-98
PC number 10-95

in linkage-stack state entry 5-83
in trace entry 4-23
translation 5-33

PC-ss (PROGRAM CALL instruction, with space
switching) 10-98

PC-translation-specification exception 6-32
PC-type bit 5-38
PCC (PERFORM CRYPTOGRAPHIC

COMPUTATION) instruction 7-316
PCI (program-controlled interruption) 15-64

as flag in CCW 15-32
intermediate interruption condition for 16-18
subchannel status for 16-24

PCKMO (PERFORM CRYPTOGRAPHIC KEY
MANAGEMENT OPERATION) instruction 10-75

pending channel reports
effect of I/O-system reset on 17-15

pending interruption
See interruption pending

PER (program-event recording)
access identification 3-75, 3-85, 4-32
address 4-32

assigned storage locations for 3-74, 3-85
address-space-control element (ASCE)

identification 4-31
ASCE (address-space-control element)

identification 4-31
ATMID (addressing-and-translation-mode

identification) 4-31
code 4-30

assigned storage locations for 3-74, 3-85
events 4-26
extensions 1-33
instruction-fetching event 4-37
masks

bit in the PSW 4-5
PER-event 4-27

priority of indication 4-33
program-interruption condition 6-32
storage-alteration event 4-37
storage-area designation 4-35

ending address 4-28

X-45

starting address 4-28
wraparound 4-35

store-using-real-address event 4-38
successful-branching event 4-36

PER zero-address-detection facility 1-26
PER-3 facility 1-25

breaking-event-address recording 4-45
PER instruction-fetching nullification 4-26

PERFORM CRYPTOGRAPHIC COMPUTATION
instruction 7-316

PERFORM CRYPTOGRAPHIC KEY
MANAGEMENT OPERATION instruction 10-75

PERFORM FLOATING-POINT OPERATION
floating-point-support instruction 9-35

PERFORM FRAME MANAGEMENT FUNCTION
instruction 10-80

PERFORM LOCKED OPERATION instruction 7-337
example A-51

PERFORM PROCESSOR ASSIST instruction 7-351
PERFORM RANDOM NUMBER OPERATION

instruction 7-352
PERFORM TIMING FACILITY FUNCTION

instruction 10-83
PERFORM TOPOLOGY FUNCTION instruction

10-92
permissible set 9-13
PER-storage-key-alteration facility 1-26
PFD (PREFETCH DATA) instruction 7-365
PFDRL (PREFETCH DATA RELATIVE LONG)

instruction 7-366
PFPO (PERFORM FLOATING-POINT OPERATION)

floating-point-support instruction 9-35
PFPO facility 1-26

facility indication 4-100
PFRA (page-frame real address) 3-51
PGIN (PAGE IN) instruction 10-73
PGOUT (PAGE OUT) instruction 10-74
piecemeal steps of instruction execution 5-115
PIM (path-installed mask) 15-6
PKA (PACK ASCII) instruction 7-315
PKM (PSW-key mask) 5-28
PKU (PACK UNICODE) instruction 7-316
PLO (PERFORM LOCKED OPERATION) instruction

7-337
example A-51

PMCW (path-management-control word) 15-2
channel-path identifiers (CHPID) 15-8

PNOM (path-not-operational mask) 15-5
effect on POM of 15-11
indicated in SCSW 16-13

point of damage 11-14
point of interruption 5-24

for machine check 11-14
POM (path-operational mask) 15-7

effect on PNOM of 15-11
POPCNT (POPULATION COUNT) instruction 7-365
population-count facility 1-26

facility indication 4-100
POPULATION COUNT instruction 7-365
postnormalization 18-2
power controls 12-4
power-on reset 4-81
powers of 2

table of G-1
PPA (PERFORM PROCESSOR ASSIST) instruction

7-351
PPA-in-order facility

facility indication 4-101
PPNO. See PRNO
PR (PROGRAM CALL instruction 10-93
PR (PROGRAM RETURN) instruction 10-106
PR-cp (PROGRAM RETURN instruction, to current

primary) 10-107
PR-ss (PROGRAM RETURN instruction, with space

switching) 10-107
PR/SM (Processor Resource/Systems Manager)

1-34, 1-36
precise intermediate value 9-12
precision (floating-point) 9-1
precision-rounded value 9-12
preferred quantum 20-2
preferred sign codes 8-2
prefetch control 15-27
PREFETCH DATA instruction 7-365
PREFETCH DATA RELATIVE LONG instruction

7-366
prefetching

access exceptions not recognized for 6-47
channel-control check during 16-29, 16-43
channel-data check during 16-28, 16-42, 16-43
handling of invalid CBC in storage during 11-8
of ART-table and DAT-table entries 5-119
of data for I/O 15-59
of instructions 5-118
of operands 5-123
See CCW prefetch control

prefix 3-21
set by signal-processor order 4-86
store-status save area for 3-82, 3-86

prefix area 3-21
prefix register 3-21
prenormalization 18-2
primary address space 3-23
primary ASN (PASN) 3-24

in linkage-stack state entry 5-82
primary-AST entry (PASTE) 5-35

origin (PASTEO) 5-35, 5-54
primary ASTEIN (PASTEIN)

X-46 The z/Architecture CPU Architecture

in linkage-stack state entry 5-84
primary authority 3-36

exception 6-33
primary CPU 2-3, 4-82, 12-7
primary designation-type-control bits 3-44
primary interruption condition (I/O) 16-4
primary-list bit 5-54
primary private-space-control bit 3-43
primary real-space-control bit 3-43
primary real-space token origin (PRSTKO) 3-44
primary region table

designation (PRTD) 3-42
length (PRTL) 3-44
origin (PRTO) 3-42

primary segment table
designation (PSTD) 3-42
length (PSTL) 3-44
origin (PSTO) 3-42

primary-space access-list designation (PSALD) 5-56
primary-space mode 3-40
primary space-switch-event-control bit 3-43
primary-status bit (I/O) 16-19
primary storage-alteration-event-control bit 3-43
primary subspace-group-control bit 3-43
primary virtual address 3-5

effective address-space-control element for 3-52
priority

of access exceptions 6-53
of ASN-translation exceptions 6-55
of data exceptions 6-17
of external-interruption conditions 6-11
of I/O interruptions 16-5
of interruptions (CPU) 6-57
of PER events 4-33
of program-interruption conditions 6-51
of subspace-replacement exceptions 6-56
of trace exceptions 6-56

private bit 5-56
private-space control

effect on
fetch-protection override 3-13
low-address protection 3-14
use of common regions 3-47
use of common segments 3-50

private-space-control bit 3-43
home 3-45
primary 3-43
secondary 3-44

privileged instructions 4-6
control 10-1

privileged-operation exception 6-33
PRNO (PERFORM RANDOM NUMBER

GENERATION) instruction 7-352
problem state 4-6

bit in entry-table entry 5-38
bit in the PSW 4-6
compatibility 1-37

processing backup (synchronous machine-check
condition) 11-18

processing damage (synchronous machine-check
condition) 11-19

processor
See CPU 2-2

processor-assist facility 1-26
facility indication 4-100

processor-availability facility 1-34
Processor Resource/Systems Manager (PR/SM)

1-34, 1-36
program 5-48

channel
See channel program

exceptions 6-16
execution of 5-1
fields of SCHIB modifiable by 15-10
initial loading by CCW-type IPL 17-17
initial loading by list-directed IPL 17-19
initial loading of 4-81, 17-16
interruption 6-16

priority of 6-17, 6-51
PROGRAM CALL instruction 10-93

trace entry for 4-23
type of 5-38

program-call state entry 5-81, 10-97
program check

as subchannel status 16-25, 16-40
measurement-block 16-48

program-controlled interruption (I/O)
See PCI

program-event recording
See PER

program events
See PER events

program interruption
filtering 5-104
transaction diagnostic block 3-83

program-interruption filtering
in transactional execution 5-91

program interruption identification
in the transaction diagnostic block 5-96

program mask
in the PSW 4-7, 6-17
inserted by INSERT PROGRAM MASK 7-263
preserved by BRANCH AND LINK 5-15, 7-35
set by SET PROGRAM MASK 7-378
validity bit for 11-21

PROGRAM RETURN instruction 10-106
program-status word

See PSW

X-47

PROGRAM TRANSFER instruction 10-110
trace entry for 4-23

PROGRAM TRANSFER WITH INSTANCE
instruction 10-110

programmable field of TOD clock 4-52
protection (storage) 3-10

access-list-controlled
See access-list-controlled protection

DAT
See DAT protection

during tracing 4-25
fetch

See fetch protection
key-controlled

See key-controlled protection
low-address

See low-address protection
page

See page protection
protection check

as subchannel status 16-28, 16-42
measurement-block 16-48

protection exception 6-34
as an access exception 6-47, 6-53

PRSD (primary real-space designation) 3-42
PRSTKO (primary real-space token origin) 3-44
PRTD (primary region-table designation) 3-42
PRTL (primary region-table length) 3-44
PRTO (primary region-table origin) 3-42
PSALD (primary-space access-list designation) 5-56
pseudo AST entry 3-24
PSMF(PERFORM FRAME MANAGEMENT

FUNCTION) instruction 10-80
PSTD (primary segment-table designation) 3-42
PSTL (primary segment-table length) 3-44
PSTO (primary segment-table origin) 3-42
PSW (program-status word) 2-4, 4-4

current 4-4, 5-14
stored during interruption 6-2

exceptions associated with 6-9
format error 6-9
in linkage-stack state entry 5-82
in program execution 5-14
saved 4-78
store-status save area for 3-82, 3-86
validity bits for 11-20

PSW key 4-6
control bit 5-75
in entry-table entry 5-76
in trace entry 4-23
used as access key 3-11
validity bit for 11-20

PSW-key mask (PKM) 5-28
control bit 5-75

in linkage-stack state entry 5-82
PT (PROGRAM TRANSFER) instruction 10-110
PT-cp (PROGRAM TRANSFER instruction, to current

primary) 10-111
PT-ss or PTI-ss (PROGRAM TRANSFER (WITH

INSTANCE) instruction, with space switching)
10-111

PTF (PERFORM TOPOLOGY FUNCTION)
instruction 10-92

PTFF (PERFORM TIMING FACILITY FUNCTION)
instruction 10-83

PTI (PROGRAM TRANSFER WITH INSTANCE)
instruction 10-110

PTLB (PURGE TLB) instruction 10-119
PTO (page-table origin) 3-49
publications

other related documents 0-xxix
PURGE ALB instruction 10-119
PURGE TLB instruction 10-119
PX (page index) 3-39

Q
QADTR (QUANTIZE) DFP instruction 20-49
QAXTR (QUANTIZE) DFP instruction 20-49
QNaN (quiet NaN) 9-2, 19-4, 20-7
quadword 3-3
quadword-concurrent storage references 5-127
QUANTIZE DFP instructions 20-49
quantum 20-2
quantum exception 9-21

nontrap action 9-22
trap action 9-22

queuing
FIFO

example for lock and unlock A-49
LIFO

example for lock and unlock A-48
quiescing 5-133
quiet NaN (QNaN) 9-2, 19-4, 20-7

R
R field of instruction 5-7
radix

binary 9-4
decimal 9-4
hexadecimal 9-3

rate control 12-5
RCHP (RESET CHANNEL PATH) instruction 14-9
real address 3-4
real mode 3-40
real space

token origin (RSTKO) 3-42
real-space-control bit

X-48 The z/Architecture CPU Architecture

home 3-45
primary 3-43
secondary 3-44

real-space designation (RSD)
home 3-45
primary 3-42
secondary 3-44

real storage 3-5
receiver check (signal-processor status) 4-98
reconfiguration of I/O system 17-25
recovery

as class of machine-check condition 11-10
channel-subsystem 17-27
system 11-15

subclass-mask bit for 11-26
reduced-authority state 10-8
redundancy 11-2
reference

bit in storage key 3-9
multiple-access 5-125
recording 3-19
sequence for storage 5-113

See also sequence
single-access 5-125

region 3-39
region first index (RFX) 3-39
region-first-translation exception 6-35

as an access exception 6-53
region index (RX)

in virtual address 3-39
region-invalid bit (in region-table entry) 3-47
region second index (RSX) 3-39
region-second-translation exception 6-36

as an access exception 6-53
region table

origin (RTO) 3-42
region-table designation (RTD) 3-42

home 3-45
primary 3-42
secondary 3-44

region-table entry (RTE) 3-46
region third index (RTX) 3-39
region-third-translation exception 6-36

as an access exception 6-53
region-translation exception 6-35
register

access 2-6
base-address 2-4
control 2-6
designation of 5-7
floating-point 2-4, 9-8
floating-point-control 9-9
general 2-4
index 2-4

prefix 3-21
save areas for 3-82, 11-23
validation of 11-9
validity bits for 11-21, 11-22
vector 2-5

relative branching 5-13
remainder 19-5

result of DIVIDE TO INTEGER 19-28
remaining free space (in linkage stack) 5-79
remote operating stations 12-1
reporting-source code (RSC) 17-30
reporting-source ID (RSID) 17-31
repressible machine-check conditions 11-10
request-logging-only 16-52

indicator for (in ERW) 16-52
REROUND DFP instructions 20-52
reset 17-13

channel-path 17-13
clear 4-80
CPU 4-78
effect on CPU state 4-2
effect on TOD clock 4-48
I/O-system 17-13

as part of subsystem reset 4-80
initial CPU 4-79
power on 4-81
subsystem 4-80
summary of functions 4-76
summary of functions performed by manual

initiation of 4-75
system-reset-clear key 12-6
system-reset-normal key 12-6

RESET CHANNEL PATH instruction 14-9
function initiated by 15-80
See channel-path-reset function

RESET REFERENCE BIT EXTENDED instruction
10-119

RESET REFERENCE BIT MULTIPLE instruction
10-120

reset-reference-bits-multiple facility 1-26
facility indication 4-101

reset signal (I/O) 17-12
in I/O-system reset 17-14
issued as part of RCHP 15-81
in channel-path reset 17-13

resolution
of clock comparator 4-60
of CPU timer 4-63
of TOD clock 4-47

restart
interruption 6-56
key 12-5
signal-processor order 4-86

result operand 5-3

X-49

resume function 13-11, 15-20
initiated by RESUME SUBCHANNEL 14-10
path management for 15-20
pending 16-14, 16-36
See also start function

RESUME PROGRAM instruction 10-120
RESUME SUBCHANNEL instruction 14-10

channel-program requirements for 14-11
count of in measurement block 17-4
function initiated by 15-20
See resume function

retry
CPU 11-2
I/O command

See command retry
reusable-ASN bit 3-25
RFX (region first index) 3-39
RI instruction format 5-6
RIE instruction format 5-6
right-units view (RUV) of floating-point numbers 9-2
RIL instruction format 5-6
RIS instruction format 5-6
RISBG (ROTATE THEN INSERT SELECTED BITS)

instruction 7-369
RISBG N(ROTATE THEN INSERT SELECTED

BITS) instruction 7-369
RISBHG (ROTATE THEN INSERT SELECTED BITS

HIGH) instruction 7-371
RISBLG (ROTATE THEN INSERT SELECTED BITS

LOW) instruction 7-371
RLL (ROTATE LEFT SINGLE LOGICAL) instruction

7-367
RLLG (ROTATE LEFT SINGLE LOGICAL) instruction

7-367
RNSBG (ROTATE THEN AND SELECTED BITS)

instruction 7-368
ROTATE LEFT SINGLE LOGICAL instruction 7-367
ROTATE THEN AND SELECTED BITS instruction

7-368
ROTATE THEN EXCLUSIVE OR SELECTED BITS

instruction 7-368
example A-30

ROTATE THEN INSERT SELECTED BITS HIGH
instruction 7-371

ROTATE THEN INSERT SELECTED BITS
instruction 7-369

example A-30
ROTATE THEN INSERT SELECTED BITS LOW

instruction 7-371
ROTATE THEN OR SELECTED BITS instruction

7-368
example A-30

rounded intermediate value 9-12
rounding (decimal) 8-12

example A-40
rounding (floating-point)

IEEE 9-13
rounding action

summary of 9-17
rounding methods 9-14
RP (RESUME PROGRAM) instruction 10-120
RR instruction format 5-6
RRBE (RESET REFERENCE BIT EXTENDED)

instruction 10-119
RRBM (RESET REFERENCE BIT MULTIPLE)

instruction 10-120
RRD instruction format 5-6
RRDTR (REROUND) DFP instruction 20-52
RRE instruction format 5-6
RRF instruction format 5-6
RRS instruction format 5-6
RRXTR (REROUND) DFP instruction 20-52
RS instruction format 5-6
RSC (reporting-source code) 17-30
RSCH (RESUME SUBCHANNEL) instruction 14-10
RSI instruction format 5-6
RSID (reporting-source ID) 17-31
RSL instruction format 5-6
RSTKO (real-space token origin) 3-42
RSX (region second index) 3-39
RSY instruction format 5-6
RTE (region-table entry) 3-46
RTO (region-table origin) 3-42
RTX (region third index) 3-39
running (state of TOD clock) 4-48
RUV (right-units view) of floating-point numbers 9-2
RX (region index) 3-39
RX instruction format 5-6
RXE instruction format 5-6, 5-7
RXF instruction format 5-6, 5-7
RXSBG (ROTATE THEN EXCLUSIVE OR

SELECTED BITS) instruction 7-368
RXY instruction format 5-6, 5-7

S
S (SUBTRACT) binary instruction 7-395
S instruction format 5-6, 5-7
SAC (SET ADDRESS SPACE CONTROL) instruction

10-123
SACF (SET ADDRESS SPACE CONTROL FAST)

instruction 10-123
SAL (SET ADDRESS LIMIT) instruction 14-12
SAM24 (SET ADDRESSING MODE) instruction

7-377
SAM31 (SET ADDRESSING MODE) instruction

7-377

X-50 The z/Architecture CPU Architecture

SAM64 (SET ADDRESSING MODE) instruction
7-377

sample count (in ESW) 17-4
SAR (SET ACCESS) instruction 7-377
SASCE (secondary address-space-control element)

3-44
SASN (secondary address-space number) 3-24

in trace entry 4-24
SASTEIN (secondary-AST-entry instance number)

3-26
save areas for registers 3-82, 11-23
saved PSW 4-78
scale factor () 9-12
scaled preferred quantum 20-3
scaled value 9-12
scaling exponent

signed () 9-13
unsigned () 9-12

SCHIB (subchannel-information block) 15-2
as operand of

MODIFY SUBCHANNEL 14-7
STORE SUBCHANNEL 14-18

Measurement-Block Address (MBA) 15-9
model-dependent area in 15-9
path-management-control word (PMCW) in 15-2
subchannel-status word (SCSW) in 15-9
summary of modifiable fields in 15-10

SCHM (SET CHANNEL MONITOR) instruction
14-13

SCK (SET CLOCK) instruction 10-124
SCKC (SET CLOCK COMPARATOR) instruction

10-125
SCKPF (SET CLOCK PROGRAMMABLE FIELD)

instruction 10-126
SCP-initiated reset 1-34
SCSW (subchannel-status word) 16-7

activity-control field in 16-14, 16-36
CCW address in 16-19
count in 16-31, 16-44
device-status field in 16-24
function-control field in 16-13
in IRB 16-7
in SCHIB 15-9
status-control field in 16-17
subchannel-control field in 16-12, 16-35
subchannel-status field in 16-24, 16-39

SD (SUBTRACT NORMALIZED) HFP instruction
18-24

SDB (SUBTRACT) BFP instruction 19-40
SDBR (SUBTRACT) BFP instruction 19-40
SDR (SUBTRACT NORMALIZED) HFP instruction

18-24
SDTR (SUBTRACT) DFP instruction 20-55
SDTRA (SUBTRACT) DFP instruction 20-55

SE (SUBTRACT NORMALIZED) HFP instruction
18-24

SEARCH STRING instruction 7-372
examples A-31

SEARCH STRING UNICODE instruction 7-374
SEB (SUBTRACT) BFP instruction 19-40
SEBR (SUBTRACT) BFP instruction 19-40
secondary address space 3-23
secondary ASN (SASN) 3-24

control bit 5-76
in linkage-stack state entry 5-82

secondary ASTEIN (SASTEIN)
in linkage-stack state entry 5-83

secondary authority 3-36
exception 6-37

secondary-CCW address validity (in ERW) 16-52
secondary CPU 2-3
secondary designation-type-control bits 3-44
secondary error (in subchannel logout) 16-50
secondary interruption condition (I/O) 16-5
secondary private-space-control bit 3-44
secondary real-space-control bit 3-44
secondary real-space token origin (SRSTKO) 3-44
secondary region table

designation (SRTD) 3-44
length (SRTL) 3-44
origin (SRTO) 3-44

secondary segment table
designation (SSTD) 3-44
length (SSTL) 3-44
origin (SSTO) 3-44

secondary-space-control bit 3-41, 5-29
secondary-space mode 3-40
secondary-status bit (I/O) 16-19
secondary storage-alteration-event-control bit 3-44
secondary subspace-group-control bit 3-44
secondary virtual address 3-5

effective address-space-control element for 3-52
segment 3-39
segment-frame absolute address 3-49
segment index (SX) 3-39
segment-invalid bit (in segment-table entry) 3-50
segment table 3-49

length (STL) 3-42
origin (STO) 3-42

segment-table designation (STD)
home 3-45
obtaining of in access-register translation 5-47
primary 3-42
secondary 3-44

segment-translation exception 6-37
as an access exception 6-47, 6-53

SELECT HIGH instruction 7-376
SELECT instructions 7-376

X-51

self-describing block of I/O data 15-62
SELFHR (SELECT HIGH) instruction 7-376
SELGR (SELECT) instruction 7-376
SELR (SELECT) instruction 7-376
semiprivileged

instructions 4-6
descriptions of 10-2

program authorization 5-27
summary of 5-32

programs 4-6, 5-27
sense

as signal-processor order 4-85
sense-running-status facility

facility indication 4-99
sequence

conceptual 5-113
instruction-execution 5-3
of CCWs that is invalid 16-27
of storage references 5-113

ART-table and DAT-table entries 5-119
for floating-point data 9-8
instructions 5-118
operands 5-123
storage keys 5-120

sequence code (in subchannel logout) 16-50
field-validity flag 16-49

SER (SUBTRACT NORMALIZED) HFP instruction
18-24

serial-I/O channel-to-channel adapter
publication referenced 0-xxix

serial-I/O interface 13-3
publication referenced 0-xxix

serialization 5-130
caused by I/O Instructions 14-2
channel-program 5-133
CPU 5-130

effects of transactional execution 5-131
in completion of store operations 5-124
quiescing 5-133
specific operand 5-132

server-time-protocol facility 1-26
service-call-logical-processor (SCLP) facility 1-35
service-processor damage 11-17
service processor inoperative (signal-processor

status) 4-98
service-signal external interruption 6-14

subclass-mask bit for 6-14
SET ACCESS instruction 7-377
SET ADDRESS LIMIT instruction 14-12
SET ADDRESS SPACE CONTROL FAST instruction

10-123
SET ADDRESS SPACE CONTROL instruction

10-123
SET ADDRESSING MODE instruction 7-377

SET ADDRESSING MODE instructions 7-377
set architecture

signal-processor order 4-89, 4-93
SET BFP ROUNDING MODE floating-point-support

instructions 9-47
SET CHANNEL MONITOR instruction 14-13

effect on measurement modes of 17-1
SET CLOCK COMPARATOR instruction 10-125
SET CLOCK instruction 10-124
SET CLOCK PROGRAMMABLE FIELD instruction

10-126
SET CPU TIMER instruction 10-126
SET DFP ROUNDING MODE (SRNMT) floating-

point-support instruction 9-47
SET FPC AND SIGNAL floating-point-support

instruction 9-48
SET FPC floating-point-support instruction 9-47
set multithreading

signal-processor order 4-92
set prefix (signal-processor order) 4-86
SET PREFIX instruction 10-126
SET PROGRAM MASK instruction 7-378
set-program-parameters facility

facility indication 4-100
SET PSW KEY FROM ADDRESS instruction 10-127
SET SECONDARY ASN instruction 10-128

access registers 5-51
SET SECONDARY ASN WITH INSTANCE

instruction 10-128
set state (of TOD clock) 4-49
SET STORAGE KEY EXTENDED instruction 10-133
SET SYSTEM MASK instruction 10-136
SFAA (segment-frame absolute address) 3-49
SFASR (SET FPC AND SIGNAL) floating-point-

support instruction 9-48
SFPC (SET FPC) floating-point-support instruction

9-47
SG (SUBTRACT) binary instruction 7-395
SGF (SUBTRACT) binary instruction 7-395
SGFR (SUBTRACT) binary instruction 7-394
SGH (SUBTRACT HALFWORD) instruction 7-395
SGR (SUBTRACT) binary instruction 7-394
SGRK (SUBTRACT) binary instruction 7-394
SH (SUBTRACT HALFWORD) instruction 7-395
shared storage

See storage sharing
shared TOD clock 4-47
SHHHR (SUBTRACT HIGH) instruction 7-396
SHHLR (SUBTRACT HIGH) instruction 7-396
SHIFT AND ROUND DECIMAL instruction 8-12

examples A-39
SHIFT LEFT DOUBLE instruction 7-378

example A-31
SHIFT LEFT DOUBLE LOGICAL instruction 7-379

X-52 The z/Architecture CPU Architecture

SHIFT LEFT SINGLE instruction 7-379
example A-32

SHIFT LEFT SINGLE LOGICAL instruction 7-380
SHIFT RIGHT DOUBLE instruction 7-381
SHIFT RIGHT DOUBLE LOGICAL instruction 7-381
SHIFT RIGHT SINGLE instruction 7-382
SHIFT RIGHT SINGLE LOGICAL instruction 7-383
SHIFT SIGNIFICAND LEFT DFP instructions 20-54
SHIFT SIGNIFICAND RIGHT DFP instructions 20-54
shifting

floating-point
See normalization

short binary-floating-point number 19-2
short decimal-floating-point number 20-3
short hexadecimal-floating-point number 18-2
short I/O block 16-24, 16-39
SHY (SUBTRACT HALFWORD) instruction 7-395
SI instruction format 5-6, 5-7
SID

See subsystem-identification word
side-effect-access facility 1-27

facility indication 4-101
sign bit

binary 7-4
floating point 9-2

sign codes (decimal) 8-2
signal (I/O) 17-11

clear
See clear signal

halt
See halt signal

reset
See reset signal

SIGNAL PROCESSOR instruction 10-136
orders 4-85
status 4-96

signaling NaN (SNaN) 9-2, 19-4, 20-7
signed binary

arithmetic 7-5
comparison 7-7
integer 7-4

examples A-2
signed exponent 9-2
signed-packed-decimal format 8-2

used in DFP formatting instructions 20-8
signed-packed-decimal numbers

examples A-4
signed scaling exponent () 9-13
significance

loss 18-2
in HFP addition 18-9

mask (in PSW) 4-7
requested in REROUND 20-52
See also significant digits

starter (in EDIT) 8-8
significand

in BFP data 19-3
in DFP data 20-5

significant digits 20-5
SIGP

See SIGNAL PROCESSOR instruction
SIGP (SIGNAL PROCESSOR) instruction 10-136
SIL instruction format 5-7
simulated IEEE-exception data exception 6-26
single-access reference 5-125
single-path mode 15-4, 15-23
SIY instruction format 5-6, 5-7
size notation 0-xxviii
size of address

controlled by addressing mode 5-10
in CCW 15-32

skip flag in CCW 15-32
effect on data transfer of 15-64

SL (SUBTRACT LOGICAL) instruction 7-396
SLA (SHIFT LEFT SINGLE) instruction 7-379

example A-32
SLAG (SHIFT LEFT SINGLE) instruction 7-379
SLAK (SHIFT LEFT SINGLE) instruction 7-379
SLB (SUBTRACT LOGICAL WITH BORROW)

instruction 7-398
SLBG (SUBTRACT LOGICAL WITH BORROW)

instruction 7-398
SLBGR (SUBTRACT LOGICAL WITH BORROW)

instruction 7-398
SLBR (SUBTRACT LOGICAL WITH BORROW)

instruction 7-398
SLDA (SHIFT LEFT DOUBLE) instruction 7-378

example A-31
SLDL (SHIFT LEFT DOUBLE LOGICAL) instruction

7-379
SLDT (SHIFT SIGNIFICAND LEFT) DFP instruction

20-54
SLFI (SUBTRACT LOGICAL IMMEDIATE)

instruction 7-397
SLGFI (SUBTRACT LOGICAL IMMEDIATE)

instruction 7-397
SLGFR (SUBTRACT LOGICAL) instruction 7-396
SLGR (SUBTRACT LOGICAL) instruction 7-396,

7-397
SLGRK (SUBTRACT LOGICAL) binary instruction

7-396
SLHHHR (SUBTRACT LOGICAL HIGH) instruction

7-397
SLHHLR (SUBTRACT LOGICAL HIGH) instruction

7-397
SLI (suppress-length-indication) flag in CCW 15-32,

15-39
for immediate operations 15-60

X-53

SLL (SHIFT LEFT SINGLE LOGICAL) instruction
7-380

SLLG (SHIFT LEFT SINGLE LOGICAL) instruction
7-380

SLLK (SHIFT LEFT SINGLE LOGICAL) instruction
7-380

SLR (SUBTRACT LOGICAL) instruction 7-396
SLRK (SUBTRACT LOGICAL) binary instruction

7-396
SLXT (SHIFT SIGNIFICAND LEFT) DFP instruction

20-54
SLY (SUBTRACT LOGICAL) instruction 7-396
SNaN (signaling NaN) 9-2, 19-4, 20-7
solicited interruption condition (I/O) 16-3
solid errors 11-6
sorting

extended 1-33
sorting instructions

example A-53
See also COMPARE AND FORM CODEWORD

instruction, UPDATE TREE instruction
source of interruption

identified by interruption code 6-5
SP (SUBTRACT DECIMAL) instruction 8-13
space-switch event 6-37

control bit
in ASTE 3-32

space-switch-event-control bit
home 3-45
primary 3-43

special-operation exception 6-38
special QNaN 9-3, 19-4, 20-7
special quantum-handling operations 20-3
specific-operand serialization 5-132
specification exception 6-40
SPKA (SET PSW KEY FROM ADDRESS) instruction

10-127
SPM (SET PROGRAM MASK) instruction 7-378
SPT (SET CPU TIMER) instruction 10-126
SPX (SET PREFIX) instruction 10-126
SQD (SQUARE ROOT) HFP instruction 18-23
SQDB (SQUARE ROOT) BFP instruction 19-40
SQDBR (SQUARE ROOT) BFP instruction 19-40
SQDR (SQUARE ROOT) HFP instruction 18-23
SQE (SQUARE ROOT) HFP instruction 18-23
SQEB (SQUARE ROOT) BFP instruction 19-40
SQEBR (SQUARE ROOT) BFP instruction 19-40
SQER (SQUARE ROOT) HFP instruction 18-23
SQUARE ROOT BFP instructions 19-40
SQUARE ROOT HFP instructions 18-20
SQXBR (SQUARE ROOT) BFP instruction 19-40
SQXR (SQUARE ROOT) HFP instruction 18-23
SR (SUBTRACT) binary instruction 7-394
SRA (SHIFT RIGHT SINGLE) instruction 7-382

SRAG (SHIFT RIGHT SINGLE) instruction 7-382
SRAK (SHIFT RIGHT SINGLE) instruction 7-382
SRDA (SHIFT RIGHT DOUBLE) instruction 7-381
SRDL (SHIFT RIGHT DOUBLE LOGICAL) instruction

7-381
SRDT (SHIFT SIGNIFICAND RIGHT) DFP

instruction 20-54
SRK (SUBTRACT) binary instruction 7-394
SRL (SHIFT RIGHT SINGLE LOGICAL) instruction

7-383
SRLG (SHIFT RIGHT SINGLE LOGICAL) instruction

7-383
SRLK (SHIFT RIGHT SINGLE LOGICAL) instruction

7-383
SRNM (SET BFP ROUNDING MODE) floating-point-

support instruction 9-47
SRNMB (SET BFP ROUNDING MODE) floating-

point-support instruction 9-47
SRNMT (SET DFP ROUNDING MODE) floating-

point-support instruction 9-47
SRP (SHIFT AND ROUND DECIMAL) instruction

8-12
examples A-39

SRSD (secondary real-space designation) 3-44
SRST (SEARCH STRING) instruction 7-372

examples A-31
SRSTKO (secondary real-space token origin) 3-44
SRSTU (SEARCH STRING UNICODE) instruction

7-374
SRTD (secondary region-table designation) 3-44
SRTL (secondary region-table length) 3-44
SRTO (secondary region-table origin) 3-44
SRXT (SHIFT SIGNIFICAND RIGHT) DFP instruction

20-54
SS instruction format 5-6, 5-7
SSAIR (SET SECONDARY ASN WITH INSTANCE)

instruction 10-128
SSAR (SET SECONDARY ASN) instruction 10-128

access registers 5-51
SSAR-cp or SSAIR-cp (SET SECONDARY ASN

(WITH INSTANCE) instruction, to current primary)
10-128

SSAR-ss or SSAIR-ss (SET SECONDARY ASN
(WITH INSTANCE) instruction, with space
switching) 10-128

SSASTEO (subspace-AST-entry origin) 5-67
SSASTESN (subspace-AST-entry sequence

number) 5-67
SSCH (START SUBCHANNEL) instruction 14-15
SSE instruction format 5-6, 5-7
SSF instruction format 5-7
SSID (subchannel-set identifier) 13-5
SSKE (SET STORAGE KEY EXTENDED) instruction

10-133

X-54 The z/Architecture CPU Architecture

SSM (SET SYSTEM MASK) instruction 10-136
SSM-suppression-control bit 6-38, 10-136
SSTD (secondary segment-table designation) 3-44
SSTL (secondary segment-table length) 3-44
SSTO (secondary segment-table origin) 3-44
ST (STORE) binary instruction 7-383
stack-empty exception 6-44
stack-full exception 6-45
stack-operation exception 6-45
stack-specification exception 6-45
stack-type exception 6-45
stacking process 5-84
stacking PROGRAM CALL 5-72
STAM (STORE ACCESS MULTIPLE) instruction

7-384
STAMY (STORE ACCESS MULTIPLE) instruction

7-384
standalone dump 12-5
standard epoch (for TOD clock) 4-52
STAP (STORE CPU ADDRESS) instruction 10-139
start (CPU)

function 4-3
key 12-5
signal-processor order 4-86

start function (I/O) 13-8, 15-20
bit in SCSW for 16-13
initiated by START SUBCHANNEL 14-15
path management for 15-20
pending 16-15, 16-36

START SUBCHANNEL instruction 14-15
See also start function for I/O
count of in measurement block 17-4
deferred condition code for (in SCSW) 16-9
function initiated by 15-20
operation-request block (ORB) used by 15-24

state
CPU

See CPU state
TOD-clock 4-48

state entry 5-81
status

alert 16-17
device 16-24

effect of clear function on 15-16
field-validity flag for (in subchannel logout)

16-49
with inappropriate bit combination 16-50

device-status check 16-50
for SIGNAL PROCESSOR 4-85, 10-137
initial-status interruption

See initial-status-interruption control
intermediate 16-18, 16-36
primary 16-19
program

See PSW
resulting from signal-processor orders 4-96
secondary 16-19
storing of 4-82

manual key for 12-5
subchannel 16-24

status-control field (in SCSW) 16-17
status modifier (device status)

effect of in command chaining 15-63
status pending 16-19
status-verification facility 17-26
STC (STORE CHARACTER) instruction 7-385
STCH (STORE CHARACTER HIGH) instruction

7-385
STCK (STORE CLOCK) instruction 7-386
STCKC (STORE CLOCK COMPARATOR)

instruction 10-138
STCKE (STORE CLOCK EXTENDED) instruction

7-387
STCKF (STORE CLOCK FAST) instruction 7-386
STCM (STORE CHARACTERS UNDER MASK)

instruction 7-385
examples A-32

STCMH (STORE CHARACTERS UNDER MASK)
instruction 7-385

STCMY (STORE CHARACTERS UNDER MASK)
instruction 7-385

STCPS (STORE CHANNEL PATH STATUS)
instruction 14-16

STCRW (STORE CHANNEL REPORT WORD)
instruction 14-17

STCTG (STORE CONTROL) instruction 10-138
STCTL (STORE CONTROL) instruction 10-138
STCY (STORE CHARACTER) instruction 7-385
STD

See segment-table designation
STD (STORE) floating-point-support instruction 9-48
STDY (STORE) floating-point-support instruction

9-49
STE (STORE) floating-point-support instruction 9-48
STEY (STORE) floating-point-support instruction

9-49
STFH (STORE HIGH) instruction 7-391
STFL (STORE FACILITY LIST) instruction 10-141
STFL facility list 3-79, 3-85
STFLE (STORE FACILITY LIST EXTENDED)

instruction 7-389
STFPC (STORE FPC) floating-point-support

instruction 9-49
STG (STORE) binary instruction 7-384
STGRL (STORE RELATIVE LONG) instruction

7-384
STGSC (STORE GUARDED STORAGE

CONTROLS) instruction 7-390

X-55

STH (STORE HALFWORD) instruction 7-390
STHH (STORE HALFWORD HIGH) instruction

7-391
STHHRL (STORE HALFWORD RELATIVE LONG)

instruction 7-391
STHY (STORE HALFWORD) instruction 7-391
STIDP (STORE CPU ID) instruction 10-139

configuration identification 10-140
environment 10-139
format indication 10-139, 10-140
machine-type number 10-139, 10-140

STL (segment-table length) 3-42
STM (STORE MULTIPLE) instruction 7-392

example A-32
STMG (STORE MULTIPLE) instruction 7-392
STMH (STORE MULTIPLE HIGH) instruction 7-392
STMY (STORE MULTIPLE) instruction 7-392
STNSM (STORE THEN AND SYSTEM MASK)

instruction 10-167
STO (segment-table origin) 3-42
STOC (STORE ON CONDITION) instruction 7-392
STOCFH (STORE HIGH ON CONDITION) binary

instruction 7-393
STOCG (STORE ON CONDITION) instruction 7-392
stop

function 4-2
key 12-5
signal-processor order 4-86

stop and store status (signal-processor order) 4-86
stopped (signal-processor status) 4-97
stopped state

of CPU 4-2
effect on completion of store operations 5-124

of TOD clock 4-49
storage 3-1, 3-43

absolute 3-4
address wraparound

See wraparound
addressing 3-2

See also address
alteration

space-control bit 4-28
alteration manual controls 12-2
alteration PER event 4-37

bits for 3-43
mask for 4-27

assigned locations in 3-73
auxiliary 3-2, 3-38
block 3-4

testing for usability of 10-170
buffer (cache) 3-2
clearing of

See clearing operation
concurrency of access for references to 5-127

configuration of 3-4
direct-access 3-2
display 12-2
error 11-19

indirect 11-20
expanded 2-2
failing address in

See failing-storage address
interlocked update 5-123, 5-124
interlocks for virtual references 5-115
main 3-2
noninterlocked update of 5-124
nonvolatile 3-2
operand 5-9

reference to (fetch, store, update) 5-123
update reference 5-124

operand consistency 5-125
examples A-49, A-51

prefixing for 3-21
real 3-5
sequence of references to 5-113

for floating-point data 9-8
size

notation for 0-xxviii
validation of 11-7
virtual 3-38
volatile 3-2

effect of power-on reset on 4-81
storage-access code (in subchannel logout) 16-50
storage-alteration-event bit 4-28
storage-alteration-event-control bit 3-43

home 3-45
primary 3-43
secondary 3-44

storage-area designation
for PER events 4-35

storage degradation (machine-check condition)
11-19

storage key 3-9
error in 11-19
sequence of references to 5-120
testing for usability of 10-170
validation of 11-7

storage-key function 1-34
storage-logical-validity bit 11-21
storage protection 3-10

during tracing 4-25
storage-protection-override-control bit 3-12
storage reconfiguration 1-34
storage sharing

by address spaces 3-38
by CPUs and the channel subsystem 3-4
examples A-45
in multiprocessing 4-84

X-56 The z/Architecture CPU Architecture

STORE ACCESS MULTIPLE instructions 7-384
STORE binary instructions 7-383
STORE CHANNEL PATH STATUS instruction 14-16
STORE CHANNEL REPORT WORD instruction

14-17
channel-report word (CRW) stored by 17-29

STORE CHARACTER HIGH instruction 7-385,
7-391

STORE CHARACTER instructions 7-385
STORE CHARACTERS UNDER MASK instruction

7-385
examples A-32

STORE CLOCK COMPARATOR instruction 10-138
STORE CLOCK EXTENDED instruction 7-387
store-clock-fast facility 1-27, 4-24

facility indication 4-100
STORE CLOCK FAST instruction 7-386
STORE CLOCK instruction 7-386
STORE CONTROL instruction 10-138
STORE CPU ADDRESS instruction 10-139
store-CPU-counter-multiple facility

facility indication 4-101
STORE CPU ID instruction 10-139

configuration identification 10-139, 10-140
environment 10-139
format indication 10-139, 10-140
machine-type number 10-139, 10-140

STORE CPU TIMER instruction 10-141
store-facility-list-extended facility 1-27

facility indication 4-99
STORE FACILITY LIST EXTENDED instruction

7-389
STORE FACILITY LIST instruction 10-141
STORE floating-point-support instructions 9-48
STORE FPC floating-point-support instruction 9-49
STORE GUARDED STORAGE CONTROLS

instruction 7-390
STORE HALFWORD HIGH instruction 7-391
STORE HALFWORD instructions 7-390
STORE HALFWORD RELATIVE LONG instruction

7-391
STORE HIGH instruction 7-391
STORE HIGH ON CONDITION instructions 7-393
store-hypervisor-information facility

facility indication 4-101
STORE MULTIPLE HIGH instruction 7-392
STORE MULTIPLE instruction

example A-32
STORE MULTIPLE instructions 7-392
STORE ON CONDITION instructions 7-392
STORE PAIR TO QUADWORD instruction 7-393
STORE PREFIX instruction 10-142
STORE REAL ADDRESS instruction 10-142
store reference 5-123

access exceptions for 6-50
STORE RELATIVE LONG instructions 7-384
STORE REVERSED instructions 7-394
store status 4-82

key 12-5
signal-processor order for 4-86

store-status architectural-mode identification 3-76,
3-85

store status at address (signal-processor order) 4-87
STORE SUBCHANNEL instruction 14-18
STORE SYSTEM INFORMATION instruction 10-143
STORE THEN AND SYSTEM MASK instruction

10-167
STORE THEN OR SYSTEM MASK instruction

10-167
store using real address (PER event) 4-38
store-using-real-address-event mask 4-27
STORE USING REAL ADDRESS instruction 10-168
STOSM (STORE THEN OR SYSTEM MASK)

instruction 10-167
STP clock source error (machine-check condition)

11-24
STP sync check (machine-check condition) 11-23
STP-timing-alert condition

See timing alert
STPQ (STORE PAIR TO QUADWORD) instruction

7-393
STPT (STORE CPU TIMER) instruction 10-141
STPX (STORE PREFIX) instruction 10-142
STRAG (STORE REAL ADDRESS) instruction

10-142
streaming-mode control 15-25
string of interruptions 4-3, 6-57

caused by clock comparator 4-61
caused by CPU timer 4-64

STRV (STORE REVERSED) instruction 7-394
STRVG (STORE REVERSED) instruction 7-394
STRVH (STORE REVERSED) instruction 7-394
STSCH (STORE SUBCHANNEL) instruction 14-18
STSI (STORE SYSTEM INFORMATION) instruction

10-143
STURA (STORE USING REAL ADDRESS)

instruction 10-168
STURG (STORE USING REAL ADDRESS)

instruction 10-168
STY (STORE) binary instruction 7-384
SU (SUBTRACT UNNORMALIZED) HFP instruction

18-25
subchannel

active allegiance for 15-13
dedicated allegiance for 15-13
effect of I/O-system reset on 17-15
idle 16-14
working allegiance for 15-12

X-57

subchannel-active bit 16-16, 16-36
subchannel addressing 13-5
subchannel control information in SCSW 16-12,

16-35
subchannel enabled bit in PMCW 15-3
subchannel-information block

See SCHIB
subchannel key 15-25, 15-30, 16-9

used as access key 3-11
used for IPL 17-17

subchannel key check (in subchannel logout) 16-47
subchannel logout 16-47
subchannel number 13-5
subchannel operation mode

command mode 13-9
transport mode 13-9

subchannel-set identifier
See SSID

Subchannel sets 13-2
subchannel status 16-24, 16-39
subchannel-status word

See SCSW
subchannels 13-2
subclass-mask bits

I/O-interruption
See I/O-interruption subclass mask

external-interruption 6-11
machine-check 11-26

subnormal numbers
class of DFP data 20-6

subroutine linkage 5-14
subspace-active bit 5-67
subspace-AST-entry origin (SSASTEO) 5-67
subspace-AST-entry sequence number

(SSASTESN) 5-67
subspace-group control 3-43
subspace-group-control bit

primary 3-43
secondary 3-44

subspace groups
introduction to 5-18

subspace-replacement
exceptions 6-56
operations 5-70

subsystem-identification word 14-1
subsystem-identification word (SID)

assigned storage locations for 3-79, 3-85
subsystem-linkage-control bit 5-29, 5-35, 5-36
subsystem reset 4-80
SUBTRACT BFP instructions 19-40
SUBTRACT binary instructions 7-394
SUBTRACT DECIMAL instruction 8-13
SUBTRACT DFP instructions 20-55
SUBTRACT HALFWORD instructions 7-395

SUBTRACT HIGH instruction 7-396
SUBTRACT LOGICAL HIGH instructions 7-397
SUBTRACT LOGICAL IMMEDIATE instructions

7-397
SUBTRACT LOGICAL instructions 7-396
SUBTRACT LOGICAL WITH BORROW instructions

7-398
SUBTRACT NORMALIZED

See SUBTRACT BFP instructions
SUBTRACT NORMALIZED HFP instructions 18-24
SUBTRACT UNNORMALIZED HFP instructions

18-25
successful-branching PER event 4-36

mask for 4-27
SUPERVISOR CALL instruction 7-398
supervisor-call interruption 6-57
supervisor state 4-6
support functions (I/O) 17-1
suppress-length-indication flag in CCW

See SLI
suppress-suspended-interruption control (I/O) 15-27,

16-12
used for IPL 17-17

suppression
exceptions to 5-26
of instruction execution 5-22
of unit of operation 5-25

SUR (SUBTRACT UNNORMALIZED) HFP
instruction 18-25

suspend control 15-25
suspend-control bit 16-9

used for IPL 17-17
suspend flag in CCW 15-32

invalid 16-27
suspend function 13-11
suspended bit (in SCSW) 16-17, 16-36
suspension of channel-program execution 15-73

effect on DCTI of 15-75
intermediate interruption condition for 16-18

SVC (SUPERVISOR CALL) instruction 7-398
SW (SUBTRACT UNNORMALIZED) HFP instruction

18-25
swapping

by COMPARE (DOUBLE) AND SWAP
instructions 7-143

by EXCLUSIVE OR instruction 7-254
SWR (SUBTRACT UNNORMALIZED) HFP

instruction 18-25
SX (segment index) 3-39
SXBR (SUBTRACT) BFP instruction 19-40
SXR (SUBTRACT NORMALIZED) HFP instruction

18-24
SXTR (SUBTRACT) DFP instruction 20-55
SXTRA (SUBTRACT) DFP instruction 20-55

X-58 The z/Architecture CPU Architecture

SY (SUBTRACT) binary instruction 7-395
symbol translation

use by VTAM 7-179
symbol-translation-option bit 7-172
synchronization

checkpoint 11-3
of CPU timer with TOD clock 4-63
of TOD clocks 4-49, 4-54

synchronization control 15-26
synchronous machine-check-interruption conditions

11-18
system

manual control of 12-1
organization of 2-1

system check stop 11-10
system damage 11-15
system mask (in PSW) 4-5

validity bit for 11-20
system recovery 11-15
system reset

I/O
See I/O-system reset

See reset
system-reset-clear key 12-6
system-reset-normal key 12-6
System/360 and System/370 I/O interface

See parallel-I/O interface

T
T (tera) 0-xxviii
table of powers of 2 G-1
table-type bits 3-48, 3-50

in region-table entry 3-48
in segment-table entry 3-50

tables
ASN

See ASN first table, ASN second table
authority

See authority table
DAT

See page table, segment table, region table
entry

See entry table
linkage

See linkage tables
page

See page table
region

See region table
segment

See segment table
translation 3-45

TABORT (TRANSACTION ABORT) instruction
7-401

TAI (International Atomic Time) related to UTC 4-52
TAM (TEST ADDRESSING MODE) instruction 7-399
TAR (TEST ACCESS) instruction 10-168
target instruction 7-255
target-precision-constrained rounding 9-12
TB (TEST BLOCK) instruction 10-170
TBDR (CONVERT HFP TO BFP) floating-point-

support instruction 9-28
TBDER (CONVERT HFP TO BFP) floating-point-

support instruction 9-28
TBEGIN (TRANSACTION BEGIN) instruction 7-401
TBEGINC (TRANSACTION BEGIN CONSTRAINED)

instruction 7-406
TCCB (transport-command-control block)

address of 15-35
contents of 15-37

TCDB (TEST DATA CLASS) BFP instruction 19-41
TCEB (TEST DATA CLASS) BFP instruction 19-41
DCW (device-command word) 15-38
TCW (transport-command word) 15-33

contents of 15-33
TCW channel program 13-7
TCW (transport-command word)

chaining 15-63
TCXB (TEST DATA CLASS) BFP instruction 19-41
TDCDT (TEST DATA CLASS) DFP instruction 20-56
TDCET (TEST DATA CLASS) DFP instruction 20-56
TDCXT (TEST DATA CLASS) DFP instruction 20-56
TDGDT (TEST DATA GROUP) DFP instruction

20-57
TDGET (TEST DATA GROUP) DFP instruction

20-57
TDGXT (TEST DATA GROUP) DFP instruction

20-57
TEND (TRANSACTION END) instruction 7-408
termination

of I/O operations
See conclusion of I/O operations

of instruction execution 5-23
for exigent machine-check conditions 11-10

of unit of operation 5-25
for exigent machine-check conditions 11-10

termination code (in subchannel logout) 16-50
field-validity flag for 16-49

TEST ACCESS instruction 10-168
TEST ADDRESSING MODE instruction 7-399
TEST AND SET instruction 7-399
TEST BLOCK instruction 10-170
TEST DATA CLASS BFP instructions 19-41
TEST DATA CLASS DFP instructions 20-56
TEST DATA GROUP DFP instructions 20-57
TEST DECIMAL instruction 8-14

X-59

test indicator 12-6
test-pending-external-interruption facility 1-27

facility indication 4-101
TEST PENDING EXTERNAL INTERRUPTION

instruction 10-172
TEST PENDING INTERRUPTION instruction 14-19

interruption code stored by 14-20
TEST PROTECTION instruction 10-173
TEST SUBCHANNEL instruction 14-21

interruption-response block (IRB)used by 16-6
TEST UNDER MASK HIGH instruction 7-400
TEST UNDER MASK instruction 7-400

examples A-33
TEST UNDER MASK LOW instruction 7-400
testing for storage-block and storage-key usability

10-170
THDER (CONVERT BFP TO HFP) floating-point-

support instruction 9-27
THDR (CONVERT BFP TO HFP) floating-point-

support instruction 9-27
thread

identification (ID) 2-3, 4-84, 4-85, 4-93, 12-3,
12-7
program-specified maximum 2-3, 4-84, 4-92,

4-93, 12-3
width 4-84

multithreading 2-3
TIC (transfer in channel) 15-77

invalid sequence of 16-27
TID

See thread identification
TID width

See thread identification width
ties 9-13
time-of-day clock

See TOD clock
timer

See CPU timer
timing

channel-subsystem 17-2
timing alert

external interruption 6-14
timing facilities 4-47
timing-facility bit (in PMCW) 15-4
timing-facility damage 11-16

for TOD clock 4-49
timing-alert condition

ETR-timing-alert condition 6-14
STP-timing-alert condition 6-14

TLB (translation-lookaside buffer) 3-62
entries 3-63

attachment of 3-63
clearing of 3-67
effect of translation changes on 3-67

usable state 3-65
TM (TEST UNDER MASK) instruction 7-400

examples A-33
TMH (TEST UNDER MASK HIGH) instruction 7-400
TMHH (TEST UNDER MASK) instruction 7-400
TMHL (TEST UNDER MASK) instruction 7-400
TML (TEST UNDER MASK LOW) instruction 7-400
TMLH (TEST UNDER MASK) instruction 7-400
TMLL (TEST UNDER MASK) instruction 7-400
TMY (TEST UNDER MASK) instruction 7-400
TOD clock 4-47

effect of power-on reset on 4-81
effect on clock-comparator interruption 6-12
effect on CPU-timer decrementing 4-64
effect on CPU-timer interruption 6-12
manual control of 4-49, 12-6
offset-based steering

overview 4-57
steering 4-55

episodes 4-57
facility indication 4-100
hardware based 4-55

overview 4-56
offset based 4-55

overview 4-56
offset update events 4-57
registers 4-57
UTC information block (UIB) 4-58

unique values of 4-50
validation of 11-9
value in trace entry 4-24

TOD-clock-control-override control 4-49
TOD-clock epoch-extension facility

facility indication 4-101
TOD-clock programmable field 4-52
TOD-clock programmable register 4-52

save areas for 3-82
validity bit for 11-22

TOD-clock-steering facility 1-27
TOD-clock-sync-control bit 4-49, 4-54
TOD-clock-synchronization facility 4-54
TP (TEST DECIMAL) instruction 8-14
TPEI (TEST PENDING EXTERNAL

INTERRUPTION) instruction 10-172
TPI (TEST PENDING INTERRUPTION) instruction

14-19
interruption code stored by 14-20

TPROT (TEST PROTECTION) instruction 10-173
TR (TRANSLATE) instruction 7-408

example A-33
trace 4-12

entries 4-15
entry address 4-15
exceptions 6-56

X-60 The z/Architecture CPU Architecture

table exception 6-45
TRACE instruction 10-176

trace entry for 4-24
TRACG (TRACE) instruction 10-176
transaction

definition of 5-91
transaction abort code

in the transaction diagnostic block 5-95
TRANSACTION ABORT instruction 7-401
transaction-abort PSW 5-93
TRANSACTION BEGIN CONSTRAINED instruction

7-406
TRANSACTION BEGIN instruction 7-401, 7-406

processing of 7-403, 7-406
transaction constraint exception 6-46
transaction diagnostic block

aborted-transaction-instruction-address field 5-95
breaking-event-address field 5-96
conflict-token field 5-95
data-exception-code field 5-96
exception-access-identification field 5-96
flags field 5-95
for a program interruption 3-83
format field 5-94
program-interruption-identification field 5-96
transaction-abort-code field 5-95
transaction-nesting-depth field 5-95
translation-exception-identification field 5-96

transaction-diagnostic-block address 5-93
transaction diagnostic control

in control register 2 5-92
transaction diagnostic scope

in control register 2 5-92
TRANSACTION END instruction 7-408
transaction-end PER event

mask for 4-27
transaction initiation 5-99
transaction nesting depth 5-93

in the transaction diagnostic block 5-95
transactional access 5-91
transactional execution

abort 5-89
and breaking events 4-46
and PER events 4-29, 4-41
commit 5-90
conflict 5-90
constrained transaction 5-90
constrained transaction-execution mode 5-90
controls 5-92
effects on CPU serialization 5-131
nested transaction 5-90, 5-91
nonconstrained transaction 5-91
nonconstrained transaction-execution mode 5-91
outer transaction 5-91

outermost transaction 5-91
program-interruption filtering 5-91
restricted instruction

tracing 4-25
transaction

definition of 5-91
transactional access 5-91
transactional-execution mode 5-91

transactional-execution-aborted event 6-46
transactional-execution control

in control register 0 4-10, 5-92
transactional-execution facility 1-27, 5-89

facility indication 4-101
instructions 5-97

restricted 5-97
operation 5-99

execution in the transactional-execution mode
5-99

normal transaction ending 5-99
program-interruption filtering 5-104
transaction abort conditions 5-100
transaction abort processing 5-102
transaction initiation 5-99

terminology 5-89
transactional-execution program-interruption filtering

override
in control register 0 5-92, 4-10

transfer in channel
See TIC

transferring program control 5-71
TRANSLATE AND TEST instruction 7-409

example A-34
TRANSLATE AND TEST REVERSE instruction

7-415
TRANSLATE EXTENDED instruction 7-415
TRANSLATE instruction 7-408

example A-33
TRANSLATE ONE TO ONE instruction 7-418
TRANSLATE ONE TO TWO instruction 7-418
TRANSLATE TWO TO ONE instruction 7-418
TRANSLATE TWO TO TWO instruction 7-418
translation

address 3-38
See dynamic address translation

exception identification 3-76, 3-77
lookaside buffer

See TLB
PC-number 5-33
specification exception 6-46
tables for 3-45

translation exception identification
in the transaction diagnostic block 5-96

translation modes 3-40
translation parameters 3-40

X-61

translation path 3-64
TCCB (transport-command-control block) 15-36
transport-command-control block

See TCCB
transport-command word

See TCW
transport-status block

See TSB
trap action

IEEE 9-18
trap control block 10-178
TRAP instruction 10-177
trap save area 10-179
TRAP2 (TRAP) instruction 10-177
TRAP4 (TRAP) instruction 10-177
TRE (TRANSLATE EXTENDED) instruction 7-415
tree structure for sorting 7-425

example A-53
trial execution

for editing instructions and TRANSLATE
instruction 5-27

for PER 4-30
trimodal addressing 5-10, 7-8
TROO (TRANSLATE ONE TO ONE) instruction

7-418
TROT (TRANSLATE ONE TO TWO) instruction

7-418
TRT (TRANSLATE AND TEST) instruction 7-409

example A-34
TRTO (TRANSLATE TWO TO ONE) instruction

7-418
TRTR (TRANSLATE AND TEST REVERSE)

instruction 7-415
TRTT (TRANSLATE TWO TO TWO) instruction

7-418
true zero (HFP number) 18-1
TS (TEST AND SET) instruction 7-399
TSB (transport-status block) 15-48

address of 15-35
contents of 15-49, 15-56

TSCH (TEST SUBCHANNEL) instruction 14-21
two’s complement binary notation 7-4

examples A-2
type of PROGRAM CALL 5-38

U
UIB

See UTC information block 4-58
ulp (unit in the last place) 9-7, 9-8, 19-3
underflow

See exponent underflow
unit check (device status)

in establishing dedicated allegiance 15-13

unit of operation 5-24
unlock A-47

example with FIFO queuing A-50
example with LIFO queuing A-49

unnormalized floating-point number 18-2
HFP data only 9-3

unordered (comparison to a NaN) 9-24
UNPACK ASCII instruction 7-423
UNPACK instruction 7-423

example A-35
UNPACK UNICODE instruction 7-424
UNPK (UNPACK) instruction 7-423

example A-35
UNPKA (PACK ASCII) instruction 7-423
UNPKU (PACK UNICODE) instruction 7-424
unprivileged instructions 4-6, 7-4
unsigned binary

arithmetic 7-6
integer 7-4

examples A-3
in address generation 5-11

unsigned binary integer
conversion to floating point 19-21

unsigned-packed-decimal format 8-2
used in DFP formatting instructions 20-8

unsigned scaling exponent () 9-12
unsolicited interruption condition (I/O) 16-3
unstack-suppression bit 5-79
unstacking process 5-86
update reference 5-124
UPDATE TREE instruction 7-425

example A-53
UPT (UPDATE TREE) instruction 7-425

example A-53
usable ALB entry 5-65
UTC (Coordinated Universal Time) used in TOD

epoch 4-52
UTC information block (UIB) 4-58

V
VA (VECTOR ADD) vector instruction 22-3
VAC (VECTOR ADD WITH CARRY) vector

instruction 22-4
VACC (VECTOR ADD COMPUTE CARRY) vector

instruction 22-4
VACCC (VECTOR ADD WITH CARRY COMPUTE

CARRY) vector instruction 22-5
valid ART-table entry 5-65
valid CBC 11-2
valid floating-point-register numbers 9-9
valid region-table, segment-table, or page-table entry

3-63
validation 11-6

X-62 The z/Architecture CPU Architecture

of registers 11-9
of storage 11-7
of storage key 11-7
of TOD clock 11-9

validity bit for backward stack-entry address 5-80
validity bit for forward-section-header address 5-81
validity bits

in machine-check-interruption code 11-20
in subchannel logout 16-49

VAP (VECTOR ADD DECIMAL) instruction 25-3
variable-length field 3-3
VAVG (VECTOR AVERAGE) vector instruction 22-6
VAVGL (VECTOR AVERAGE LOGICAL) vector

instruction 22-6
VBPERM (VECTOR BIT PERMUTE) vector

instruction 21-4
VCDG (VECTOR FP CONVERT FROM FIXED 64-

BIT) vector instruction 24-15
VCDLG (VECTOR FP CONVERT FROM LOGICAL

64-BIT) vector instruction 24-17
VCEQ (VECTOR COMPARE EQUAL) vector

instruction 22-7
VCFPS (VECTOR FP CONVERT FROM FIXED)

vector instruction 24-15
VCGD (VECTOR FP CONVERT TO FIXED 64-BIT)

vector instruction 24-18
VCH (VECTOR COMPARE HIGH) vector instruction

22-8
VCHL (VECTOR COMPARE HIGH LOGICAL) vector

instruction 22-9
VCKSM (VECTOR CHECKSUM) vector instruction

22-6
VCLFP (VECTOR FP CONVERT TO LOGICAL)

vector instruction 24-20
VCLGD (VECTOR FP CONVERT TO LOGICAL 64-

BIT) vector instruction 24-20
VCLZ (VECTOR COUNT LEADING ZEROS) vector

instruction 22-10
VCP (VECTOR COMPARE DECIMAL) instruction

25-5
VCSFP (VECTOR FP CONVERT TO FIXED) vector

instruction 24-18
VCTZ (VECTOR COUNT TRAILING ZEROS) vector

instruction 22-10
VCVB (VECTOR CONVERT TO BINARY) instruction

25-5
VCVBG (VECTOR CONVERT TO BINARY)

instruction 25-5
VCVD (VECTOR CONVERT TO DECIMAL)

instruction 25-7
VCVDG (VECTOR CONVERT TO DECIMAL)

instruction 25-7
VDP (VECTOR DIVIDE DECIMAL) instruction 25-8

VEC (VECTOR ELEMENT COMPARE) vector
instruction 22-7

VECL (VECTOR ELEMENT COMPARE LOGICAL)
vector instruction 22-7

vector
registers 2-5

validity bit for 11-21, 11-22
VECTOR ADD COMPUTE CARRY vector instruction

22-4
VECTOR ADD DECIMAL instruction 25-3
VECTOR ADD vector instruction 22-3
VECTOR ADD WITH CARRY COMPUTE CARRY

vector instruction 22-5
VECTOR ADD WITH CARRY vector instruction 22-4
VECTOR AND vector instruction 22-5
VECTOR AND WITH COMPLEMENT vector

instruction 22-5
VECTOR AVERAGE LOGICAL vector instruction

22-6
VECTOR AVERAGE vector instruction 22-6
VECTOR BIT PERMUTE vector instruction 21-4
VECTOR CHECKSUM vector instruction 22-6
VECTOR COMPARE DECIMAL instruction 25-5
VECTOR COMPARE EQUAL vector instruction 22-7
VECTOR COMPARE HIGH LOGICAL vector

instruction 22-9
VECTOR COMPARE HIGH vector instruction 22-8
VECTOR CONVERT TO BINARY instructions 25-5
VECTOR CONVERT TO DECIMAL instructions 25-7
VECTOR COUNT LEADING ZEROS vector

instruction 22-10
VECTOR COUNT TRAILING ZEROS vector

instruction 22-10
VECTOR DIVIDE DECIMAL instruction 25-8
VECTOR ELEMENT COMPARE LOGICAL vector

instruction 22-7
VECTOR ELEMENT COMPARE vector instruction

22-7
VECTOR ELEMENT ROTATE AND INSERT UNDER

MASK vector instruction 22-22
VECTOR ELEMENT ROTATE LEFT LOGICAL

vector instruction 22-21
VECTOR ELEMENT SHIFT LEFT vector instruction

22-23
VECTOR ELEMENT SHIFT RIGHT ARITHMETIC

vector instruction 22-23
VECTOR ELEMENT SHIFT RIGHT LOGICAL vector

instruction 22-24
vector-enhancements facility 1

facility indication 4-101
vector-enhancements facility 2 1-28

facility indication 4-101
vector-exception code (VXC) 6-20
VECTOR EXCLUSIVE OR vector instruction 22-11

X-63

vector facility for z/Architecture
facility indication 4-101

vector facility for z/architecture 1-28
VECTOR FIND ANY ELEMENT EQUAL vector

instruction 23-2
VECTOR FIND ELEMENT EQUAL vector instruction

23-3
VECTOR FIND ELEMENT NOT EQUAL vector

instruction 23-4
VECTOR FP ADD vector instruction 24-4
VECTOR FP COMPARE AND SIGNAL SCALAR

vector instruction 24-8
VECTOR FP COMPARE EQUAL vector instruction

24-9
VECTOR FP COMPARE HIGH OR EQUAL vector

instruction 24-13
VECTOR FP COMPARE HIGH vector instruction

24-11
VECTOR FP COMPARE SCALAR vector instruction

24-7
VECTOR FP CONVERT FROM FIXED 64-BIT vector

instruction 24-15
VECTOR FP CONVERT FROM LOGICAL 64-BIT

vector instruction 24-17
VECTOR FP CONVERT TO FIXED 64-BIT vector

instruction 24-18
VECTOR FP CONVERT TO LOGICAL 64-BIT vector

instruction 24-20
VECTOR FP DIVIDE vector instruction 24-22
VECTOR FP LOAD LENGTHENED vector instruction

24-26
VECTOR FP LOAD ROUNDED vector instruction

24-27
VECTOR FP MAXIMUM vector instruction 24-28
VECTOR FP MINIMUM vector instruction 24-34
VECTOR FP MULTIPLY AND ADD vector instruction

24-42
VECTOR FP MULTIPLY AND SUBTRACT vector

instruction 24-42
VECTOR FP MULTIPLY vector instruction 24-40
VECTOR FP NEGATIVE MULTIPLY AND ADD

vector instruction 24-42
VECTOR FP NEGATIVE MULTIPLY AND

SUBTRACT vector instruction 24-42
VECTOR FP PERFORM SIGN OPERATION vector

instruction 24-44
VECTOR FP SQUARE ROOT vector instruction

24-45
VECTOR FP SUBTRACT vector instruction 24-46
VECTOR FP TEST DATA CLASS IMMEDIATE

vector instruction 24-47
VECTOR GALOIS FIELD MULTIPLY SUM AND

ACCUMULATE vector instruction 22-12

VECTOR GALOIS FIELD MULTIPLY SUM vector
instruction 22-11

VECTOR GATHER ELEMENT vector instruction
21-5

VECTOR GENERATE BYTE MASK vector
instruction 21-5

VECTOR GENERATE MASK vector instruction 21-6
VECTOR ISOLATE STRING vector instruction 23-5
VECTOR LOAD AND REPLICATE vector instruction

21-7
VECTOR LOAD COMPLEMENT vector instruction

22-12
VECTOR LOAD ELEMENT IMMEDIATE vector

instruction 21-10
VECTOR LOAD ELEMENT vector instruction 21-9
VECTOR LOAD FP INTEGER vector instruction

24-24
VECTOR LOAD GR FROM VR ELEMENT vector

instruction 21-11
VECTOR LOAD IMMEDIATE DECIMAL instruction

25-10
VECTOR LOAD LOGICAL ELEMENT AND ZERO

vector instruction 21-12
VECTOR LOAD MULTIPLE vector instruction 21-12
VECTOR LOAD POSITIVE vector instruction 22-12
VECTOR LOAD RIGHTMOST WITH LENGTH

instruction 21-13
VECTOR LOAD TO BLOCK BOUNDARY vector

instruction 21-14
VECTOR LOAD vector instruction 21-6
VECTOR LOAD VR ELEMENT FROM GR vector

instruction 21-14
VECTOR LOAD VR FROM GRS DISJOINT vector

instruction 21-15
VECTOR LOAD WITH LENGTH vector instruction

21-15
VECTOR MAXIMUM LOGICAL vector instruction

22-13
VECTOR MAXIMUM vector instruction 22-13
VECTOR MERGE HIGH vector instruction 21-15
VECTOR MERGE LOW vector instruction 21-16
VECTOR MINIMUM LOGICAL vector instruction

22-14
VECTOR MINIMUM vector instruction 22-13
VECTOR MULTIPLY AND ADD EVEN vector

instruction 22-15
VECTOR MULTIPLY AND ADD HIGH vector

instruction 22-15
VECTOR MULTIPLY AND ADD LOGICAL EVEN

vector instruction 22-15
VECTOR MULTIPLY AND ADD LOGICAL HIGH

vector instruction 22-15
VECTOR MULTIPLY AND ADD LOGICAL ODD

vector instruction 22-16

X-64 The z/Architecture CPU Architecture

VECTOR MULTIPLY AND ADD LOW vector
instruction 22-14

VECTOR MULTIPLY AND ADD ODD vector
instruction 22-16

VECTOR MULTIPLY AND SHIFT DECIMAL
instruction 25-11

VECTOR MULTIPLY DECIMAL instruction 25-10
VECTOR MULTIPLY EVEN vector instruction 22-18
VECTOR MULTIPLY HIGH vector instruction 22-16
VECTOR MULTIPLY LOGICAL EVEN vector

instruction 22-18
VECTOR MULTIPLY LOGICAL HIGH vector

instruction 22-17
VECTOR MULTIPLY LOGICAL ODD vector

instruction 22-18
VECTOR MULTIPLY LOW vector instruction 22-17
VECTOR MULTIPLY ODD vector instruction 22-18
VECTOR NAND vector instruction 22-20
VECTOR NOR vector instruction 22-19
VECTOR NOT EXCLUSIVE OR vector instruction

22-20
VECTOR OR vector instruction 22-20
VECTOR OR WITH COMPLEMENT vector

instruction 22-21
VECTOR PACK LOGICAL SATURATE vector

instruction 21-18
VECTOR PACK SATURATE vector instruction 21-17
VECTOR PACK vector instruction 21-16
VECTOR PACK ZONED instruction 25-13
vector-packed-decimal facility 1-27, 1-28

facility indication 4-101
VECTOR PERFORM SIGN OPERATION DECIMAL

instruction 25-14
VECTOR PERMUTE DOUBLEWORD IMMEDIATE

vector instruction 21-19
VECTOR PERMUTE vector instruction 21-18
VECTOR POPULATION COUNT vector instruction

22-21
VECTOR REMAINDER DECIMAL instruction 25-16
VECTOR REPLICATE IMMEDIATE vector instruction

21-20
VECTOR REPLICATE vector instruction 21-19
VECTOR SCATTER ELEMENT vector instruction

21-20
VECTOR SELECT vector instruction 21-21
VECTOR SHIFT AND DIVIDE DECIMAL instruction

25-18
VECTOR SHIFT AND ROUND DECIMAL instruction

25-19
VECTOR SHIFT LEFT BY BYTE vector instruction

22-25
VECTOR SHIFT LEFT DOUBLE BY BYTE vector

instruction 22-26
VECTOR SHIFT LEFT vector instruction 22-25

VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
vector instruction 22-26

VECTOR SHIFT RIGHT ARITHMETIC vector
instruction 22-26

VECTOR SHIFT RIGHT LOGICAL BY BYTE vector
instruction 22-27

VECTOR SHIFT RIGHT LOGICAL vector instruction
22-27

VECTOR SIGN EXTEND TO DOUBLEWORD vector
instruction 21-21

VECTOR STORE ELEMENT vector instruction
21-23, 21-24

VECTOR STORE MULTIPLE vector instruction
21-24

VECTOR STORE RIGHTMOST WITH LENGTH
instruction 21-25

VECTOR STORE vector instruction 21-21
VECTOR STORE WITH LENGTH vector instruction

21-26
VECTOR STRING RANGE COMPARE vector

instruction 23-6
VECTOR SUBTRACT COMPUTE BORROW

INDICATION vector instruction 22-28
VECTOR SUBTRACT DECIMAL instruction 25-21
VECTOR SUBTRACT vector instruction 22-27
VECTOR SUBTRACT WITH BORROW COMPUTE

BORROW INDICATION vector instruction 22-29
VECTOR SUBTRACT WITH BORROW INDICATION

vector instruction 22-28
VECTOR SUM ACROSS DOUBLEWORD vector

instruction 22-29
VECTOR SUM ACROSS QUADWORD vector

instruction 22-30
VECTOR SUM ACROSS WORD vector instruction

22-30
VECTOR TEST DECIMAL instruction 25-22
VECTOR TEST UNDER MASK vector instruction

22-31
VECTOR UNPACK HIGH vector instruction 21-26
VECTOR UNPACK LOGICAL HIGH vector

instruction 21-26
VECTOR UNPACK LOGICAL LOW vector instruction

21-27
VECTOR UNPACK LOW vector instruction 21-27
VECTOR UNPACK ZONED instruction 25-22
vector-packed-decimal-enhancement facility 1-29

facility indication 4-101
VERIM (VECTOR ELEMENT ROTATE AND INSERT

UNDER MASK) vector instruction 22-22
VERLL (VECTOR ELEMENT ROTATE LEFT

LOGICAL) vector instruction 22-21
VERLLV (VECTOR ELEMENT ROTATE LEFT

LOGICAL) vector instruction 22-21

X-65

VESL (VECTOR ELEMENT SHIFT LEFT) vector
instruction 22-23

VESLV (VECTOR ELEMENT SHIFT LEFT) vector
instruction 22-23

VESRA (VECTOR ELEMENT SHIFT RIGHT
ARITHMETIC) vector instruction 22-23

VESRAV (VECTOR ELEMENT SHIFT RIGHT
ARITHMETIC) vector instruction 22-23

VESRL (VECTOR ELEMENT SHIFT RIGHT
LOGICAL) vector instruction 22-24

VESRLV (VECTOR ELEMENT SHIFT RIGHT
LOGICAL) vector instruction 22-24

VFA (VECTOR FP ADD) vector instruction 24-4
VFAE (VECTOR FIND ANY ELEMENT EQUAL)

vector instruction 23-2
VFCE (VECTOR FP COMPARE EQUAL) vector

instruction 24-9
VFCH (VECTOR FP COMPARE HIGH) vector

instruction 24-11
VFCHE (VECTOR FP COMPARE HIGH OR EQUAL)

vector instruction 24-13
VFD (VECTOR FP DIVIDE) vector instruction 24-22
VFEE (VECTOR FIND ELEMENT EQUAL) vector

instruction 23-3
VFENE (VECTOR FIND ELEMENT NOT EQUAL)

vector instruction 23-4
VFI (VECTOR LOAD FP INTEGER) vector instruction

24-24
VFLL (VECTOR FP LOAD LENGTHENED) vector

instruction 24-26
VFLR (VECTOR FP LOAD ROUNDED) vector

instruction 24-27
VFM (VECTOR FP MULTIPLY) vector instruction

24-40
VFMA (VECTOR FP MULTIPLY AND ADD) vector

instruction 24-42
VFMAX (VECTOR FP MAXIMUM) vector instruction

24-28
VFMIN (VECTOR FP MINIMUM) vector instruction

24-34
VFMS (VECTOR FP MULTIPLY AND SUBTRACT)

vector instruction 24-42
VFNMA (VECTOR FP NEGATIVE MULTIPLY AND

ADD) vector instruction 24-42
VFNMS (VECTOR FP NEGATIVE MULTIPLY AND

SUBTRACT) vector instruction 24-42
VFPSO (VECTOR FP PERFORM SIGN

OPERATION) vector instruction 24-44
VFS (VECTOR FP SUBTRACT) vector instruction

24-46
VFSQ (VECTOR FP SQUARE ROOT) vector

instruction 24-45
VFTCI (VECTOR FP TEST DATA CLASS

IMMEDIATE) vector instruction 24-47

VGBM (VECTOR GENERATE BYTE MASK) vector
instruction 21-5

VGEF (VECTOR GATHER ELEMENT) vector
instruction 21-5

VGEG (VECTOR GATHER ELEMENT) vector
instruction 21-5

VGFM (VECTOR GALOIS FIELD MULTIPLY SUM)
vector instruction 22-11

VGFMA (VECTOR GALOIS FIELD MULTIPLY SUM
AND ACCUMULATE) vector instruction 22-12

VGM (VECTOR GENERATE MASK) vector
instruction 21-6

view (of floating-point numbers) 9-2
common-rounding-point 9-13
fraction 9-2
left-units view 9-2
right-units view 9-2

virtual address 3-5
virtual machine

extensions for 1-34
virtual storage 3-38
VISTR (VECTOR ISOLATE STRING) vector

instruction 23-5
VL (VECTOR LOAD) vector instruction 21-6
VLBB (VECTOR LOAD TO BLOCK BOUNDARY)

vector instruction 21-14
VLBR (VECTOR LOAD BYTE REVERSED

ELEMENTS) vector instruction 21-9
VLBRREP (VECTOR LOAD BYTE REVERSED

ELEMENT AND REPLICATE) vector instruction
21-8

VLC (VECTOR LOAD COMPLEMENT) vector
instruction 22-12

VLEB (VECTOR LOAD ELEMENT) vector instruction
21-9

VLEBRF (VECTOR LOAD BYTE REVERSED
ELEMENT) vector instruction 21-7

VLEBRG (VECTOR LOAD BYTE REVERSED
ELEMENT) vector instruction 21-7

VLEBRH (VECTOR LOAD BYTE REVERSED
ELEMENT) vector instruction 21-7

VLEF (VECTOR LOAD ELEMENT) vector instruction
21-9

VLEG (VECTOR LOAD ELEMENT) vector instruction
21-9

VLEH (VECTOR LOAD ELEMENT) vector instruction
21-9

VLEIB (VECTOR LOAD ELEMENT IMMEDIATE)
vector instruction 21-10

VLEIF (VECTOR LOAD ELEMENT IMMEDIATE)
vector instruction 21-10

VLEIG (VECTOR LOAD ELEMENT IMMEDIATE)
vector instruction 21-10

X-66 The z/Architecture CPU Architecture

VLEIH (VECTOR LOAD ELEMENT IMMEDIATE)
vector instruction 21-10

VLER (VECTOR LOAD ELEMENTS REVERSED)
vector instruction 21-10

VLGV (VECTOR LOAD GR FROM VR ELEMENT)
vector instruction 21-11

VLIP (VECTOR LOAD IMMEDIATE DECIMAL)
instruction 25-10

VLL (VECTOR LOAD WITH LENGTH) vector
instruction 21-15

VLLEBRZ (VECTOR LOAD BYTE REVERSED
ELEMENT AND ZERO) vector instruction 21-8

VLLEZ (VECTOR LOAD LOGICAL ELEMENT AND
ZERO) vector instruction 21-12

VLM (VECTOR LOAD MULTIPLE) vector instruction
21-12

VLP (VECTOR LOAD POSITIVE) vector instruction
22-12

VLR (VECTOR LOAD) vector instruction 21-6
VLREP (VECTOR LOAD AND REPLICATE) vector

instruction 21-7
VLRL (VECTOR LOAD RIGHTMOST WITH

LENGTH) vector instruction 21-13
VLRLR (VECTOR LOAD RIGHTMOST WITH

LENGTH) vector instruction 21-13
VLVG (VECTOR LOAD VR ELEMENT FROM GR)

vector instruction 21-14
VLVGP (VECTOR LOAD VR FROM GRS DISJOINT)

vector instruction 21-15
VM-data-space facility 1-34
VMAE (VECTOR MULTIPLY AND ADD EVEN)

vector instruction 22-15
VMAH (VECTOR MULTIPLY AND ADD HIGH) vector

instruction 22-15
VMAL (VECTOR MULTIPLY AND ADD LOW) vector

instruction 22-14
VMALE (VECTOR MULTIPLY AND ADD LOGICAL

EVEN) vector instruction 22-15
VMALH (VECTOR MULTIPLY AND ADD LOGICAL

HIGH) vector instruction 22-15
VMALO (VECTOR MULTIPLY AND ADD LOGICAL

ODD) vector instruction 22-16
VMAO *VECTOR MULTIPLY AND ADD ODD) vector

instruction 22-16
VME (VECTOR MULTIPLY EVEN) vector instruction

22-18
VMH (VECTOR MULTIPLY HIGH) vector instruction

22-16
VML (VECTOR MULTIPLY LOW) vector instruction

22-17
VMLE (VECTOR MULTIPLY LOGICAL EVEN) vector

instruction 22-18
VMLH (VECTOR MULTIPLY LOGICAL HIGH) vector

instruction 22-17

VMLO (VECTOR MULTIPLY LOGICAL ODD) vector
instruction 22-18

VMN (VECTOR MINIMUM) vector instruction 22-13
VMNL (VECTOR MINIMUM LOGICAL) vector

instruction 22-14
VMO (VECTOR MULTIPLY ODD) vector instruction

22-18
VMP (VECTOR MULTIPLY DECIMAL) instruction

25-10
VMRH (VECTOR MERGE HIGH) vector instruction

21-15
VMRL (VECTOR MERGE LOW) vector instruction

21-16
VMSL (VECTOR MULTIPLY SUM LOGICAL) vector

instruction 22-19
VMSP (VECTOR MULTIPLY AND SHIFT DECIMAL)

instruction 25-12
VMX (VECTOR MAXIMUM) vector instruction 22-13
VMXL (VECTOR MAXIMUM LOGICAL) vector

instruction 22-13
VN (VECTOR AND) vector instruction 22-5
VNC (VECTOR AND WITH COMPLEMENT) vector

instruction 22-5
VNN (VECTOR NAND) vector instruction 22-20
VNO (VECTOR NOR) vector instruction 22-20
VNX (VECTOR NOT EXCLUSIVE OR) vector

instruction 22-20
VO (VECTOR OR) vector instruction 22-20
VOC (VECTOR OR WITH COMPLEMENT) vector

instruction 22-21
volatile storage 3-2

effect of power-on reset on 4-81
voting digit 9-13
VPDI (VECTOR PERMUTE DOUBLEWORD

IMMEDIATE) vector instruction 21-19
VPERM (VECTOR PERMUTE) vector instruction

21-18
VPK (VECTOR PACK) vector instruction 21-16
VPKLS (VECTOR PACK LOGICAL SATURATE)

vector instruction 21-18
VPKS (VECTOR PACK SATURATE) vector

instruction 21-17
VPKZ (VECTOR PACK ZONED) instruction 25-13
VPOPCT (VECTOR POPULATION COUNT) vector

instruction 22-21
VPSOP (VECTOR PERFORM SIGN OPERATION

DECIMAL) instruction 25-14
VREP (VECTOR REPLICATE) vector instruction

21-19
VREPI (VECTOR REPLICATE IMMEDIATE) vector

instruction 21-20
VRP (VECTOR REMAINDER DECIMAL) instruction

25-16
VS (VECTOR SUBTRACT) vector instruction 22-27

X-67

VSBCBI (VECTOR SUBTRACT WITH BORROW
COMPUTE BORROW INDICATION) vector
instruction 22-29

VSBI (VECTOR SUBTRACT WITH BORROW
INDICATION) vector instruction 22-28

VSCBI (VECTOR SUBTRACT COMPUTE BORROW
INDICATION) vector instruction 22-28

VSCEF (VECTOR SCATTER ELEMENT) vector
instruction 21-20

VSCEG (VECTOR SCATTER ELEMENT) vector
instruction 21-20

VSDP (VECTOR SHIFT AND DIVIDE DECIMAL)
instruction 25-18

VSEG (VECTOR SIGN EXTEND TO
DOUBLEWORD) vector instruction 21-21

VSEL (VECTOR SELECT) vector instruction 21-21
VSL (VECTOR SHIFT LEFT) vector instruction

22-25
VSLB (VECTOR SHIFT LEFT BY BYTE) vector

instruction 22-25
VSLD (VECTOR SHIFT LEFT DOUBLE BY BIT)

vector instruction 22-25
VSLDB (VECTOR SHIFT LEFT DOUBLE BY BYTE)

vector instruction 22-26
VSP (VECTOR SUBTRACT DECIMAL) instruction

25-21
VSRA (VECTOR SHIFT RIGHT ARITHMETIC)

vector instruction 22-26
VSRAB (VECTOR SHIFT RIGHT ARITHMETIC BY

BYTE) vector instruction 22-26
VSRD (VECTOR SHIFT RIGHT DOUBLE BY BIT)

vector instruction 22-26
VSRL (VECTOR SHIFT RIGHT LOGICAL) vector

instruction 22-27
VSRLB (VECTOR SHIFT RIGHT LOGICAL) vector

instruction 22-27
VSRP (VECTOR SHIFT AND ROUND DECIMAL)

instruction 25-19
VST (VECTOR STORE) vector instruction 21-21
VSTBR (VECTOR STORE BYTE REVERSED

ELEMENTS) vector instruction 21-22
VSTEB (VECTOR STORE ELEMENT) vector

instruction 21-22, 21-23
VSTEBRF (VECTOR STORE BYTE REVERSED

ELEMENT) vector instruction 21-22
VSTEBRG (VECTOR STORE BYTE REVERSED

ELEMENT) vector instruction 21-22
VSTEBRH (VECTOR STORE BYTE REVERSED

ELEMENT) vector instruction 21-22
VSTEF (VECTOR STORE ELEMENT) vector

instruction 21-23
VSTEG (VECTOR STORE ELEMENT) vector

instruction 21-23

VSTEH (VECTOR STORE ELEMENT) vector
instruction 21-22, 21-23, 21-24

VSTER (VECTOR STORE ELEMENTS REVERSED)
vector instruction 21-24

VSTL (VECTOR STORE WITH LENGTH) vector
instruction 21-26

VSTM (VECTOR STORE MULTIPLE) vector
instruction 21-24

VSTRC (VECTOR STRING RANGE COMPARE)
vector instruction 23-6

VSTRLR (VECTOR LOAD RIGHTMOST WITH
LENGTH) vector instruction 21-25

VSTRLR (VECTOR STORE RIGHTMOST WITH
LENGTH) vector instruction 21-25

VSTRS (VECTOR STRING SEARCH) vector
instruction 23-8

VSUM (VECTOR SUM ACROSS WORD) vector
instruction 22-30

VSUMG (VECTOR SUM ACROSS DOUBLEWORD)
vector instruction 22-29

VSUMQ (VECTOR SUM ACROSS QUADWORD)
vector instruction 22-30

VTAM use of symbol translation 7-179
VTM (VECTOR TEST UNDER MASK) vector

instruction 22-31
VTP (VECTOR TEST DECIMAL) instruction 25-22
VUPH (VECTOR UNPACK HIGH) vector instruction

21-26
VUPKZ (VECTOR UNPACK ZONED) instruction

25-22
VUPL (VECTOR UNPACK LOW) vector instruction

21-27
VUPLH (VECTOR UNPACK LOGICAL) vector

instruction 21-26
VUPLL (VECTOR UNPACK LOGICAL LOW) vector

instruction 21-27
VX (VECTOR EXCLUSIVE OR) vector instruction

22-11
VXC (vector-exception code) 6-20

W
wait indicator 12-6
wait-state bit

in the PSW 4-6
warning (machine-check condition) 11-17

subclass-mask bit for 11-27
warning-track-interruption facility 1-29
WFC (VECTOR FP COMPARE SCALAR) vector

instruction 24-7
WFK (VECTOR FP COMPARE AND SIGNAL

SCALAR) vector instruction 24-8
word 3-3
word-concurrent storage references 5-127

X-68 The z/Architecture CPU Architecture

working allegiance (I/O) 15-12
wraparound

of instruction addresses 5-10
of PER addresses 4-35
of register numbers

for LOAD MULTIPLE instruction 7-281
for STORE MULTIPLE instruction 7-392

of storage addresses 3-7
controlled by addressing mode 3-7
for MOVE INVERSE instruction 7-289
for MOVE LONG EXTENDED instruction

7-295
for MOVE LONG instruction 7-291
for MOVE LONG UNICODE instruction 7-298
for MOVE WITH OPTIONAL

SPECIFICATIONS instruction 10-70
of TOD clock 4-48

X
X (EXCLUSIVE OR) instruction 7-253
X field of instruction 5-11
XA (extended architecture)

See 370-XA architecture
XC (EXCLUSIVE OR) instruction 7-254

examples A-20
XG (EXCLUSIVE OR) instruction 7-253
XGR (EXCLUSIVE OR) instruction 7-253
XI (EXCLUSIVE OR) instruction 7-254

example A-21
XIHF (EXCLUSIVE OR IMMEDIATE) instruction

7-255
XILF (EXCLUSIVE OR IMMEDIATE) instruction

7-255

XIY (EXCLUSIVE OR) instruction 7-254
XR (EXCLUSIVE OR) instruction 7-253
XRK (EXCLUSIVE OR) binary instruction 7-253
XSCH (CANCEL SUBCHANNEL) instruction 14-3
XY (EXCLUSIVE OR) instruction 7-253

Z
Z bit (zero condition-code bit) 16-12

as cause of intermediate interruption condition
16-18

z/Architecture architecture
additions to 1-2, 1-7
original highlights of 1-2

ZAP (ZERO AND ADD) instruction 8-14
example A-41

zero
instruction-length code 6-7
negative

See negative zero
normal meaning for byte value 0-xxix
setting floating-point register to 9-35
true (HFP number) 18-1

zero-address-detection PER event
mask for 4-27

ZERO AND ADD instruction 8-14
example A-41

zero condition code (Z bit in SCSW) 16-12
zero-padding control 7-172
zone bits 8-1

moving of 7-303
zoned decimal numbers 8-1
zoned-decimal numbers

examples A-4

Communicating Your Comments to IBM

Title: z/Architecture Principles of Operation

Publication No: SA22-7832-12

If you especially like or dislike anything about this book, please direct your comments to:

Internet e-mail: mhvrcfs@us.ibm.com

Be sure to send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or complete-
ness of this book. However, the comments you send should pertain to only the information in this manual
and the way in which the information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk to your IBM representa-
tive or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Make sure to include the following in your note:

• Title and publication number of this book
• Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your comments by phone.

.

SA22-7832-12

07SA22783212

IBMr

	Contents
	Notices
	Trademarks

	Preface
	Size and Number Notation
	Bytes, Characters, and Codes
	Other Publications
	Summary of Changes in Thirteenth Edition
	Summary of Changes in Twelfth Edition
	Summary of Changes in Eleventh Edition
	Summary of Changes in Tenth Edition
	Summary of Changes in Ninth Edition
	Summary of Changes in Eighth Edition
	Summary of Changes in Seventh Edition
	Summary of Changes in Sixth Edition
	Summary of Changes in Fifth Edition
	Summary of Changes in Fourth Edition
	Summary of Changes in Third Edition
	Summary of Changes in Second Edition

	Chapter 1. Introduction
	Highlights of Original z/Architecture
	General Instructions for 64-Bit Integers
	Other New General Instructions
	Floating-Point Instructions
	Control Instructions
	Trimodal Addressing
	Modal Instructions
	Effects on Bits 0-31 of a General Register

	Input/Output

	Additions to z/Architecture
	ASN-and-LX-Reuse Facility
	CMPSC-Enhancement Facility
	Compare-and-Swap-and-Store Facility
	Compare-and-Swap-and-Store Facility 2
	Conditional-SSKE Facility
	Configuration-Topology Facility
	Configuration-z/Architecture- Architectural-Mode Facility
	Constrained-Transactional- Execution Facility
	DAT-Enhancement Facility 1
	DAT-Enhancement Facility 2
	Decimal-Floating-Point Facility
	Decimal-Floating-Point Packed- Conversion Facility
	Decimal-Floating-Point-Rounding Facility
	Decimal-Floating-Point Zoned- Conversion Facility
	DEFLATE-Conversion Facility
	Distinct-Operands Facility
	Enhanced-DAT Facility 1
	Enhanced-DAT Facility 2
	Enhanced-Monitor Facility
	Entropy Encoding Compression Facility
	ESA/390-Compatibility-Mode Facility
	ETF2-Enhancement Facility
	ETF3-Enhancement Facility
	Execute-Extensions Facility
	Execution-Hint Facility
	Extended-Immediate Facility
	Extended-I/O-Measurement-Block Facility
	Extended-I/O-Measurement-Word Facility
	Extended-Translation Facility 2
	Extended-Translation Facility 3
	Extract-CPU-Time Facility
	Fast-BCR-Serialization Facility
	Fibre-Channel Extensions (FCX)
	FCX-Bidirectional-Data-Transfer Facility
	Floating-Point Extension Facility
	Floating-Point-Support-Sign- Handling Facility
	FPR-GR-Transfer Facility
	General-Instructions-Extension Facility
	Guarded-Storage Facility
	HFP Multiply-and-Add/Subtract Facility
	HFP-Unnormalized-Extensions Facility
	High-Word Facility
	IEEE-Exception-Simulation Facility
	Insert-Reference-Bits-Multiple Facility
	Instruction-Execution-Protection Facility
	Interlocked-Access Facility 1
	Interlocked-Access Facility 2
	IPTE-Range Facility
	List-Directed Initial Program Load
	Load-and-Trap Facility
	Load-and-Zero-Rightmost-Byte Facility
	Load/Store-on-Condition Facility 1
	Load/Store-on-Condition Facility 2
	Local-TLB-Clearing Facility
	Long-Displacement Facility
	Message-Security Assist
	Message-Security-Assist Extension 1
	Message-Security-Assist Extension 2
	Message-Security-Assist Extension 3
	Message-Security-Assist Extension 4
	Message-Security-Assist Extension 5
	Message-Security-Assist Extension 6
	Message-Security-Assist Extension 7
	Message-Security-Assist Extension 8
	Message-Security-Assist Extension 9
	Miscellaneous-Instruction- Extensions Facility 1
	Miscellaneous-Instruction- Extensions Facility 2
	Miscellaneous-Instruction- Extensions Facility 3
	Modified CCW Indirect Data Addressing Facility
	Move-Page-and-Set-Key Facility
	Move-With-Optional-Specifications Facility
	Multiple-Epoch Facility
	Multiple-Subchannel-Set Facility
	Multithreading Facility
	Nonquiescing Key-Setting Facility
	Parsing-Enhancement Facility
	PER-3 Facility
	PER-Storage-Key-Alteration Facility
	PER Zero-Address-Detection Facility
	PFPO Facility
	Population-Count Facility
	Processor-Assist Facility
	Reset-Reference-Bits-Multiple Facility
	Restore-Subchannel Facility
	Server-Time-Protocol Facility
	Side-Effect-Access Facility
	Store-Clock-Fast Facility
	Store-Facility-List-Extended Facility
	Test-Pending-External-Interruption Facility
	TOD-Clock-Steering Facility
	Transactional-Execution Facility
	Vector-Enhancements Facility 1
	Vector-Enhancements Facility 2
	Vector Facility for z/Architecture
	Vector Packed-Decimal Facility
	Vector-Packed-Decimal- Enhancement Facility
	Warning-Track Interruption Facility

	The ESA/390 Base
	The ESA/370 and 370-XA Base

	System Program
	Compatibility
	Compatibility among z/Architecture Systems
	Compatibility between z/Architecture and ESA/390
	Control-Program Compatibility
	Problem-State Compatibility

	Availability

	Chapter 2. Organization
	Main Storage
	Expanded Storage
	CPU
	CPU Types
	Multithreading
	PSW
	General Registers
	Floating-Point Registers
	Floating-Point-Control Register
	Vector Registers
	Control Registers
	Access Registers
	Cryptographic Facility

	External Time Reference
	I/O
	Channel Subsystem
	Channel Paths
	I/O Devices and Control Units

	Operator Facilities

	Chapter 3. Storage
	Storage Addressing
	Information Formats
	Integral Boundaries

	Address Types and Formats
	Address Types
	Absolute Address
	Real Address
	Virtual Address
	Primary Virtual Address
	Secondary Virtual Address
	AR-Specified Virtual Address
	Home Virtual Address
	Logical Address
	Instruction Address
	Effective Address

	Address Size and Wraparound
	Address Wraparound

	Storage Key
	Protection
	Key-Controlled Protection
	Storage-Protection-Override Control
	Fetch-Protection-Override Control

	Access-List-Controlled Protection
	DAT Protection
	Low-Address Protection
	Instruction-Execution Protection
	Suppression on Protection

	Reference Recording
	Change Recording
	Prefixing
	Prefixing in the z/Architecture Architectural Mode
	Prefixing in the ESA/390- Compatibility Mode
	Common Prefixing Attributes

	Address Spaces
	Changing to Different Address Spaces
	Address-Space Number
	ASN-Second-Table-Entry Sequence Number
	ASN-Second-Table-Entry Instance Number and ASN Reuse

	ASN Translation
	ASN-Translation Controls
	Control Register 14

	ASN-Translation Tables
	ASN-First-Table Entries
	ASN-Second-Table Entries

	ASN-Translation Process
	ASN-First-Table Lookup
	ASN-Second-Table Lookup
	Recognition of Exceptions during ASN Translation

	ASN Authorization
	ASN-Authorization Controls
	Control Register 4
	ASN-Second-Table Entry

	Authority-Table Entries
	ASN-Authorization Process
	Authority-Table Lookup
	Recognition of Exceptions during ASN Authorization

	Dynamic Address Translation
	Translation Control
	Translation Modes
	Control Register 0
	Control Register 1
	Control Register 7
	Control Register 13

	Translation Tables
	Region-Table Entries
	Segment-Table Entries
	Page-Table Entries

	Translation Process
	Inspection of Real-Space Control
	Inspection of Designation-Type Control
	Lookup in a Table Designated by an Address-Space-Control Element
	Lookup in a Table Designated by a Region-Table Entry
	Page-Table Lookup
	Formation of the Real and Absolute Addresses
	Recognition of Exceptions during Translation

	Translation-Lookaside Buffer
	TLB Structure
	Formation of TLB Entries
	Use of TLB Entries
	Modification of Translation Tables

	Address Summary
	Addresses Translated
	Handling of Addresses

	Assigned Storage Locations
	Assigned Storage Locations in the z/Architecture Architectural Mode
	Assigned Storage Locations in the ESA/390-Compatibility Mode

	Chapter 4. Control
	CPU States
	Stopped State
	Operating State
	Load State
	Check-Stop State

	Program-Status Word
	Program-Status-Word Format
	Short PSW Format

	Control Registers
	Tracing
	Implicit Tracing
	Branch Tracing
	ASN Tracing
	Mode Tracing

	Explicit Tracing
	Control-Register Allocation
	Trace Entries
	Trace Operation

	Program-Event Recording
	PER Instruction-Fetching Nullification
	Control-Register Allocation and Address-Space-Control Element
	PER Operation
	Identification of Cause
	Priority of Indication

	Storage-Area Designation
	PER Events
	Successful Branching
	Instruction Fetching
	Storage Alteration
	Store Using Real Address
	Zero-Address Detection
	Transaction End
	Storage-Key Alteration

	Indication of PER Events Concurrently with Other Interruption Conditions
	Indication of PER Events and Guarded- Storage Events

	Breaking-Event-Address Recording
	Breaking-Event-Address Register
	Execution-Break Instructions

	Timing
	Time-of-Day Clock and Epoch Index
	Format
	States
	Changes in Clock State
	Setting and Inspecting the Clock
	TOD Programmable Register

	TOD-Clock Synchronization
	Timing Mode
	Timing State
	STP Clock Source State

	TOD-Clock Steering
	Offset-Based TOD-Clock Steering Overview
	Hardware-Based TOD-Clock-Steering Overview
	TOD-Offset-Update Events
	Episodes
	TOD-Clock-Steering Registers
	UTC Information Block (UIB)

	Clock Comparator
	CPU Timer

	Guarded-Storage Facility
	Guarded-Storage-Facility Registers
	Control Register 2
	Guarded-Storage-Designation (GSD) Register
	Guarded-Storage-Section-Mask (GSSM) Register
	Guarded-Storage-Event Parameter-List- Address (GSEPLA) Register

	Guarded-Storage Control Block (GSCB)
	Guarded-Storage-Event Parameter List (GSEPL)
	Guarded-Storage Facility Operation
	Guarded-Storage-Event Detection
	Guarded-Storage-Event Processing

	Externally Initiated Functions
	Resets
	. CPU Reset
	Initial CPU Reset
	Subsystem Reset
	Clear Reset
	Power-On Reset

	Initial Program Loading
	CCW-Type IPL

	Store Status

	Multiprocessing
	Shared Main Storage
	CPU-Address Identification
	CPU-Address Expansion
	CPU-Address Contraction

	CPU Signaling and Response
	Signal-Processor Orders
	Sense
	External Call
	Emergency Signal
	Start
	Stop
	Restart
	Stop and Store Status
	Initial CPU Reset
	CPU Reset
	Set Prefix
	Store Status at Address
	Store Extended Status at Address
	Set Architecture
	Conditional Emergency Signal
	Sense Running Status
	Set Multithreading
	Store Additional Status at Address

	Conditions Determining Response
	Conditions Precluding Interpretation of the Order Code
	Status Bits

	Facility Indications

	Chapter 5. Program Execution
	Instructions
	Operands
	Instruction Formats
	Register Operands
	Immediate Operands
	Storage Operands

	Address Generation
	Trimodal Addressing
	Sequential Instruction-Address Generation
	Operand-Address Generation
	Formation of the Intermediate Value
	Formation of the Operand Address

	Branch-Address Generation
	Formation of the Intermediate Value
	Formation of the Branch Address

	Instruction Execution and Sequencing
	Decision Making
	Loop Control
	Subroutine Linkage without the Linkage Stack
	Simple Branch Instructions
	Other Linkage Instructions

	Interruptions
	Types of Instruction Ending
	Completion
	Suppression
	Nullification
	Termination

	Interruptible Instructions
	Point of Interruption
	Unit of Operation
	Execution of Interruptible Instructions
	Condition-Code Alternative to Interruptibility

	Exceptions to Nullification and Suppression
	Modification of DAT-Table Entries
	Trial Execution for Editing Instructions and Translate Instruction

	Authorization Mechanisms
	Mode Requirements
	Extraction-Authority Control
	PSW-Key Mask
	Secondary-Space Control
	Subsystem-Linkage Control
	ASN-Translation Control
	Authorization Index
	Instructions and Controls Related to ASN-and-LX Reuse

	PC-Number Translation
	PC-Number Translation Control
	Control Register 0
	Control Register 5

	PC-Number Translation Tables
	Linkage-Table Entries
	Linkage-First-Table Entries
	Linkage-Second-Table Entries
	Entry-Table Entries
	Table Summary

	PC-Number-Translation Process
	Obtaining the Linkage-Table or Linkage- First-Table Designation
	Linkage-Table Lookup
	Linkage-First-Table Lookup
	Linkage-Second-Table Lookup
	Linkage-Second-Table-Entry-Sequence- Number Comparison
	Entry-Table Lookup
	Recognition of Exceptions during PC- Number Translation

	Home Address Space
	Access-Register Introduction
	Summary
	Access-Register Functions
	Access-Register-Specified Address Spaces
	Access-Register Instructions

	Access-Register Translation
	Access-Register-Translation Control
	Control Register 2
	Control Register 5
	Control Register 8

	Access Registers
	Access-Register-Translation Tables
	Dispatchable-Unit Control Table and Access-List Designations
	Access-List Entries
	ASN-Second-Table Entries

	Access-Register-Translation Process
	Selecting the Access-List-Entry Token
	Obtaining the Primary or Secondary Address-Space-Control Element
	Checking the First Byte of the ALET
	Obtaining the Effective Access-List Designation
	Access-List Lookup
	Locating the ASN-Second-Table Entry
	Authorizing the Use of the Access-List Entry
	Checking for Access-List-Controlled Protection
	Obtaining the Address-Space-Control Element from the ASN-Second-Table Entry
	Recognition of Exceptions during Access-Register Translation

	ART-Lookaside Buffer
	ALB Structure
	Formation of ALB Entries
	Use of ALB Entries
	Modification of ART Tables

	Subspace Groups
	Subspace-Group Tables
	Subspace-Group Dispatchable-Unit Control Table
	Subspace-Group ASN-Second-Table Entries

	Subspace-Replacement Operations

	Linkage-Stack Introduction
	Summary
	Linkage-Stack Functions
	Transferring Program Control
	Branching Using the Linkage Stack
	Adding and Retrieving Information
	Testing Authorization
	Program-Problem Analysis

	Linkage-Stack Entry-Table Entries
	Linkage-Stack Operations
	Linkage-Stack-Operations Control
	Control Register 0
	Control Register 15

	Linkage Stack
	Entry Descriptors
	Header Entries
	Trailer Entries
	State Entries

	Stacking Process
	Locating Space for a New Entry
	Forming the New Entry
	Updating the Current Entry
	Updating Control Register 15
	Recognition of Exceptions during the Stacking Process

	Unstacking Process
	Locating the Current Entry and Processing a Header Entry
	Checking for a State Entry
	Restoring Information
	Updating the Preceding Entry
	Updating Control Register 15
	Recognition of Exceptions during the Unstacking Process

	Transactional-Execution Facility
	Transactional-Execution Terminology
	Transactional-Execution Facility Controls
	Control Register Bits
	Transaction-Diagnostic-Block Address (TDBA)
	Transaction-Abort PSW (TAPSW)
	Transaction Nesting Depth (TND)

	Transaction Diagnostic Block (TDB)
	Transactional-Execution Facility Instructions
	Restricted Instructions

	Transactional-Execution Facility Operation
	Transaction Initiation
	Execution in the Transactional-Execution Mode
	Normal Transaction Ending
	Transaction Abort Conditions
	Transaction Abort Processing
	Program-Interruption Filtering on a Transaction Abort
	Priority of Abort Conditions
	Constrained Transaction

	Monitor-Event Counting
	ESA/390-Compatibility-Mode Facility
	Sequence of Storage References
	Conceptual Sequence
	Overlapped Operation of Instruction Execution
	Divisible Instruction Execution
	Interlocks for Virtual-Storage References
	Interlocks between Instructions
	Interlocks within a Single Instruction

	Instruction Fetching
	ART-Table and DAT-Table Fetches
	Storage-Key Accesses
	Storage-Operand References
	Storage-Operand Fetch References
	Storage-Operand Store References
	Storage-Operand Update References

	Storage-Operand Consistency
	Single-Access References
	Multiple-Access References
	Block-Concurrent References

	Relation between Operand Accesses
	Storage Operand References in the Transactional-Execution Mode
	Other Storage References
	Relation between Storage-Key Accesses

	Serialization
	CPU Serialization
	Specific-Operand Serialization

	Channel-Program Serialization
	Quiescing

	Chapter 6. Interruptions
	Interruption Action
	Interruption Code
	Enabling and Disabling
	Handling of Floating Interruption Conditions
	Instruction-Length Code
	Zero ILC
	ILC on Instruction-Fetching Exceptions

	Exceptions Associated with the PSW
	Early Exception Recognition
	Late Exception Recognition

	External Interruption
	Clock Comparator
	CPU Timer
	Emergency Signal
	External Call
	Interrupt Key
	Malfunction Alert
	Measurement Alert
	Service Signal
	Timing Alert
	ETR-Timing-Alert Condition
	STP-Timing-Alert Condition

	Warning Track

	I/O Interruption
	Machine-Check Interruption
	Program Interruption
	Data-Exception Code (DXC)
	Priority of Program Interruptions for Data Exceptions

	Vector-Exception Code
	Program-Interruption Conditions
	Addressing Exception
	AFX-Translation Exception
	ALEN-Translation Exception
	ALE-Sequence Exception
	ALET-Specification Exception
	ASCE-Type Exception
	ASTE-Instance Exception
	ASTE-Sequence Exception
	ASTE-Validity Exception
	ASX-Translation Exception
	Crypto-Operation Exception
	Data Exception
	Decimal-Divide Exception
	Decimal-Overflow Exception
	Execute Exception
	EX-Translation Exception
	Extended-Authority Exception
	Fixed-Point-Divide Exception
	Fixed-Point-Overflow Exception
	HFP-Divide Exception
	HFP-Exponent-Overflow Exception
	HFP-Exponent-Underflow Exception
	HFP-Significance Exception
	HFP-Square-Root Exception
	LFX-Translation Exception
	LSTE-Sequence Exception
	LSX-Translation Exception
	LX-Translation Exception
	Monitor Event
	Operand Exception
	Operation Exception
	Page-Translation Exception
	PC-Translation-Specification Exception
	PER Event
	Primary-Authority Exception
	Privileged-Operation Exception
	Protection Exception
	Region-First-Translation Exception
	Region-Second-Translation Exception
	Region-Third-Translation Exception
	Secondary-Authority Exception
	Segment-Translation Exception
	Space-Switch Event
	Special-Operation Exception
	Specification Exception
	Stack-Empty Exception
	Stack-Full Exception
	Stack-Operation Exception
	Stack-Specification Exception
	Stack-Type Exception
	Trace-Table Exception
	Transaction-Constraint Exception
	Transactional-Execution-Aborted Event
	Translation-Specification Exception
	Vector Processing Exception

	Collective Program-Interruption Names
	Recognition of Access Exceptions
	Multiple Program-Interruption Conditions
	Access Exceptions
	ASN-Translation Exceptions
	Subspace-Replacement Exceptions
	Trace Exceptions

	Restart Interruption
	Supervisor-Call Interruption
	Priority of Interruptions

	Chapter 7. General Instructions
	Data Format
	Binary-Integer Representation
	Binary Arithmetic
	Signed Binary Arithmetic
	Addition and Subtraction
	Fixed-Point Overflow

	Unsigned Binary Arithmetic

	Signed and Logical Comparison
	Instructions
	ADD
	ADD IMMEDIATE
	ADD HALFWORD
	ADD HALFWORD IMMEDIATE
	ADD HIGH
	ADD IMMEDIATE HIGH
	ADD LOGICAL
	ADD LOGICAL IMMEDIATE
	ADD LOGICAL HIGH
	ADD LOGICAL WITH CARRY
	ADD LOGICAL WITH SIGNED IMMEDIATE
	ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
	AND
	AND IMMEDIATE
	AND WITH COMPLEMENT
	BRANCH AND LINK
	BRANCH AND SAVE
	BRANCH AND SAVE AND SET MODE
	BRANCH AND SET MODE
	BRANCH INDIRECT ON CONDITION
	BRANCH ON CONDITION
	BRANCH ON COUNT
	BRANCH ON INDEX HIGH
	BRANCH ON INDEX LOW OR EQUAL
	BRANCH PREDICTION PRELOAD
	BRANCH PREDICTION RELATIVE PRELOAD
	BRANCH RELATIVE AND SAVE
	BRANCH RELATIVE AND SAVE LONG
	BRANCH RELATIVE ON CONDITION
	BRANCH RELATIVE ON CONDITION LONG
	BRANCH RELATIVE ON COUNT
	BRANCH RELATIVE ON COUNT HIGH
	BRANCH RELATIVE ON INDEX HIGH
	BRANCH RELATIVE ON INDEX LOW OR EQUAL
	CHECKSUM
	CIPHER MESSAGE
	CIPHER MESSAGE WITH CHAINING
	KM-Query (KM Function Code 0)
	KM-DEA (KM Function Code 1)
	KM-Encrypted-DEA (KM Function Code 9)
	KM-TDEA-128 (KM Function Code 2)
	KM-Encrypted-TDEA-128 (KM Function Code 10)
	KM-TDEA-192 (KM Function Code 3)
	KM-Encrypted-TDEA-192 (KM Function Code 11)
	KM-AES-128 (KM Function Code 18)
	KM-Encrypted-AES-128 (KM Function Code 26)
	KM-AES-192 (KM Function Code 19)
	KM-Encrypted-AES-192 (KM Function Code 27)
	KM-AES-256 (KM Function Code 20)
	KM-Encrypted-AES-256 (KM Function Code 28)
	KM-XTS-AES-128 (KM Function Code 50)
	KM-XTS-Encrypted-AES-128 (KM Function Code 58)
	KM-XTS-AES-256 (KM Function Code 52)
	KM-XTS-Encrypted-AES-256 (KM Function Code 60)
	KMC-Query (KMC Function Code 0)
	KMC-DEA (KMC Function Code 1)
	KMC-Encrypted-DEA (KMC Function Code 9)
	KMC-TDEA-128 (KMC Function Code 2)
	KMC-Encrypted-TDEA-128 (KMC Function Code 10)
	KMC-TDEA-192 (KMC Function Code 3)
	KMC-Encrypted-TDEA-192 (KMC Function Code 11)
	KMC-AES-128 (KMC Function Code 18)
	KMC-Encrypted-AES-128 (KMC Function Code 26)
	KMC-AES-192 (KMC Function Code 19)
	KMC-Encrypted-AES-192 (KMC Function Code 27)
	KMC-AES-256 (KMC Function Code 20)
	KMC-Encrypted-AES-256 (KMC Function Code 28)
	KMC-PRNG (KMC Function Code 67)

	CIPHER MESSAGE WITH AUTHENTICATION
	KMA-Query (Function Code 0)
	KMA-GCM-AES Functions

	CIPHER MESSAGE WITH CIPHER FEEDBACK
	KMF-Query (Function Code 0)
	KMF-DEA (Function Code 1)
	KMF-Encrypted-DEA (Function Code 9)
	KMF-TDEA-128 (Function Code 2)
	KMF-Encrypted-TDEA-128 (Function Code 10)
	KMF-TDEA-192 (Function Code 3)
	KMF-Encrypted-TDEA-192 (Function Code 11)
	KMF-AES-128 (Function Code 18)
	KMF-Encrypted-AES-128 (Function Code 26)
	KMF-AES-192 (Function Code 19)
	KMF-Encrypted-AES-192 (Function Code 27)
	KMF-AES-256 (Function Code 20)
	KMF-Encrypted-AES-256 (Function Code 28)

	CIPHER MESSAGE WITH COUNTER
	KMCTR-Query (Function Code 0)
	KMCTR-DEA (Function Code 1)
	KMCTR-Encrypted-DEA (Function Code 9)
	KMCTR-TDEA-128 (Function Code 2)
	KMCTR-Encrypted-TDEA-128 (Function Code 10)
	KMCTR-TDEA-192 (Function Code 3)
	KMCTR-Encrypted-TDEA-192 (Function Code 11)
	KMCTR-AES-128 (Function Code 18)
	KMCTR-Encrypted-AES-128 (Function Code 26)
	KMCTR-AES-192 (Function Code 19)
	KMCTR-Encrypted-AES-192 (Function Code 27)
	KMCTR-AES-256 (Function Code 20)
	KMCTR-Encrypted-AES-256 (Function Code 28)

	CIPHER MESSAGE WITH OUTPUT FEEDBACK
	KMO-Query (Function Code 0)
	KMO-DEA (Function Code 1)
	KMO-Encrypted-DEA (Function Code 9)
	KMO-TDEA-128 (Function Code 2)
	KMO-Encrypted-TDEA-128 (Function Code 10)
	KMO-TDEA-192 (Function Code 3)
	KMO-Encrypted-TDEA-192 (Function Code 11)
	KMO-AES-128 (Function Code 18)
	KMO-Encrypted-AES-128 (Function Code 26)
	KMO-AES-192 (Function Code 19)
	KMO-Encrypted-AES-192 (Function Code 27)
	KMO-AES-256 (Function Code 20)
	KMO-Encrypted-AES-256 (Function Code 28)

	COMPARE
	COMPARE IMMEDIATE
	COMPARE RELATIVE LONG
	COMPARE AND BRANCH
	COMPARE AND BRANCH RELATIVE
	COMPARE IMMEDIATE AND BRANCH
	COMPARE IMMEDIATE AND BRANCH RELATIVE
	COMPARE AND FORM CODEWORD
	COMPARE AND SWAP
	COMPARE DOUBLE AND SWAP
	COMPARE AND SWAP AND STORE
	COMPARE AND TRAP
	COMPARE IMMEDIATE AND TRAP
	COMPARE HALFWORD
	COMPARE HALFWORD IMMEDIATE
	COMPARE HALFWORD RELATIVE LONG
	COMPARE HIGH
	COMPARE IMMEDIATE HIGH
	COMPARE LOGICAL
	COMPARE LOGICAL IMMEDIATE
	COMPARE LOGICAL RELATIVE LONG
	COMPARE LOGICAL AND BRANCH
	COMPARE LOGICAL AND BRANCH RELATIVE
	COMPARE LOGICAL IMMEDIATE AND BRANCH
	COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE
	COMPARE LOGICAL AND TRAP
	COMPARE LOGICAL IMMEDIATE AND TRAP
	COMPARE LOGICAL CHARACTERS UNDER MASK
	COMPARE LOGICAL HIGH
	COMPARE LOGICAL IMMEDIATE HIGH
	COMPARE LOGICAL LONG
	COMPARE LOGICAL LONG EXTENDED
	COMPARE LOGICAL LONG UNICODE
	COMPARE LOGICAL STRING
	COMPARE UNTIL SUBSTRING EQUAL
	COMPRESSION CALL
	COMPUTE INTERMEDIATE MESSAGE DIGEST
	KIMD-Query (KIMD Function Code 0)
	KIMD-SHA-1 (KIMD Function Code 1)
	KIMD-SHA-256 (KIMD Function Code 2)
	KIMD-SHA-512 (KIMD Function Code 3)
	KIMD-SHA3-224 (KIMD Function Code 32)
	KIMD-SHA3-256 (KIMD Function Code 33)
	KIMD-SHA3-384 (KIMD Function Code 34)
	KIMD-SHA3-512 (KIMD Function Code 35)
	KIMD-SHAKE-128 (KIMD Function Code 36)
	KIMD-SHAKE-256 (KIMD Function Code 37)
	KIMD-GHASH (Function Code 65)

	COMPUTE LAST MESSAGE DIGEST
	KLMD-Query (KLMD Function Code 0)
	KLMD-SHA-1 (KLMD Function Code 1)
	KLMD-SHA-256 (KLMD Function Code 2)
	KLMD-SHA-512 (KLMD Function Code 3)
	KLMD-SHA3-224 (KLMD Function Code 32)
	KLMD-SHA3-256 (KLMD Function Code 33)
	KLMD-SHA3-384 (KLMD Function Code 34)
	KLMD-SHA3-512 (KLMD Function Code 35)
	KLMD-SHAKE-128 (KLMD Function Code 36)
	KLMD-SHAKE-256 (KLMD Function Code 37)

	COMPUTE MESSAGE AUTHENTICATION CODE
	KMAC-Query (Function Code 0)
	KMAC-DEA (Function Code 1)
	KMAC-Encrypted-DEA (Function Code 9)
	KMAC-TDEA-128 (Function Code 2)
	KMAC-Encrypted-TDEA-128 (Function Code 10)
	KMAC-TDEA-192 (Function Code 3)
	KMAC-Encrypted-TDEA-192 (Function Code 11)
	KMAC-AES-128 (Function Code 18)
	KMAC-Encrypted-AES-128 (Function Code 26)
	KMAC-AES-192 (Function Code 19)
	KMAC-Encrypted-AES-192 (Function Code 27)
	KMAC-AES-256 (Function Code 20)
	KMAC-Encrypted-AES-256 (Function Code 28)

	CONVERT TO BINARY
	CONVERT TO DECIMAL
	CONVERT UTF-16 TO UTF-32
	CONVERT UTF-16 TO UTF-8
	CONVERT UNICODE TO UTF-8
	CONVERT UTF-32 TO UTF-16
	CONVERT UTF-32 TO UTF-8
	CONVERT UTF-8 TO UTF-16
	CONVERT UTF-8 TO UNICODE
	CONVERT UTF-8 TO UTF-32
	COPY ACCESS
	DIVIDE
	DIVIDE LOGICAL
	DIVIDE SINGLE
	EXCLUSIVE OR
	EXCLUSIVE OR IMMEDIATE
	EXECUTE
	EXECUTE RELATIVE LONG
	EXTRACT ACCESS
	EXTRACT CPU ATTRIBUTE
	Cache-Attribute-Set Operation
	CPU-Attribute-Set Operation
	Common Operation
	Cache-Attribute Results (ASI = 0)
	CPU-Attribute Results (ASI = 1)

	EXTRACT CPU TIME
	EXTRACT PSW
	EXTRACT TRANSACTION NESTING DEPTH
	FIND LEFTMOST ONE
	INSERT CHARACTER
	INSERT CHARACTERS UNDER MASK
	INSERT IMMEDIATE
	INSERT PROGRAM MASK
	LOAD
	LOAD IMMEDIATE
	LOAD RELATIVE LONG
	LOAD ACCESS MULTIPLE
	LOAD ADDRESS
	LOAD ADDRESS EXTENDED
	LOAD ADDRESS RELATIVE LONG
	LOAD AND ADD
	LOAD AND ADD LOGICAL
	LOAD AND AND
	LOAD AND EXCLUSIVE OR
	LOAD AND OR
	LOAD AND TEST
	LOAD AND TRAP
	LOAD AND ZERO RIGHTMOST BYTE
	LOAD BYTE
	LOAD BYTE HIGH
	LOAD COMPLEMENT
	LOAD COUNT TO BLOCK BOUNDARY
	LOAD GUARDED
	LOAD LOGICAL AND SHIFT GUARDED
	LOAD GUARDED STORAGE CONTROLS
	LOAD HALFWORD
	LOAD HALFWORD IMMEDIATE
	LOAD HALFWORD RELATIVE LONG
	LOAD HALFWORD HIGH
	LOAD HALFWORD IMMEDIATE ON CONDITION
	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION
	LOAD HIGH
	LOAD HIGH AND TRAP
	LOAD LOGICAL
	LOAD LOGICAL RELATIVE LONG
	LOAD LOGICAL AND TRAP
	LOAD LOGICAL AND ZERO RIGHTMOST BYTE
	LOAD LOGICAL CHARACTER
	LOAD LOGICAL CHARACTER HIGH
	LOAD LOGICAL HALFWORD
	LOAD LOGICAL HALFWORD RELATIVE LONG
	LOAD LOGICAL HALFWORD HIGH
	LOAD LOGICAL IMMEDIATE
	LOAD LOGICAL THIRTY ONE BITS
	LOAD LOGICAL THIRTY ONE BITS AND TRAP
	LOAD MULTIPLE
	LOAD MULTIPLE DISJOINT
	LOAD MULTIPLE HIGH
	LOAD NEGATIVE
	LOAD ON CONDITION
	LOAD HIGH ON CONDITION
	LOAD PAIR DISJOINT
	LOAD PAIR FROM QUADWORD
	LOAD POSITIVE
	LOAD REVERSED
	MONITOR CALL
	Monitor-Event Program Interruption
	Monitor-Event Counting Operation

	MOVE
	MOVE INVERSE
	MOVE LONG
	MOVE LONG EXTENDED
	MOVE LONG UNICODE
	MOVE NUMERICS
	MOVE RIGHT TO LEFT
	MOVE STRING
	MOVE WITH OFFSET
	MOVE ZONES
	MULTIPLY
	MULTIPLY HALFWORD
	MULTIPLY HALFWORD IMMEDIATE
	MULTIPLY LOGICAL
	MULTIPLY SINGLE
	MULTIPLY SINGLE IMMEDIATE
	NAND
	NEXT INSTRUCTION ACCESS INTENT
	NONTRANSACTIONAL STORE
	NOR
	NOT EXCLUSIVE OR
	OR
	OR IMMEDIATE
	OR WITH COMPLEMENT
	PACK
	PACK ASCII
	PACK UNICODE
	PERFORM CRYPTOGRAPHIC COMPUTATION
	PCC-Query (Function Code 0)
	PCC-Compute-Last-Block-CMAC-Using- DEA (Function Code 1)
	PCC-Compute-Last-Block-CMAC-Using- Encrypted-DEA (Function Code 9)
	PCC-Compute-Last-Block-CMAC-Using- TDEA-128 (Function Code 2)
	PCC-Compute-Last-Block-CMAC-Using- Encrypted-TDEA-128 (Function Code 10)
	PCC-Compute-Last-Block-CMAC-Using- TDEA-192 (Function Code 3)
	PCC-Compute-Last-Block-CMAC-Using- Encrypted-TDEA-192 (Function Code 11)
	PCC-Compute-Last-Block-CMAC-Using- AES-128 (Function Code 18)
	PCC-Compute-Last-Block-CMAC-Using- Encrypted-AES-128 (Function Code 26)
	PCC-Compute-Last-Block-CMAC-Using- AES-192 (Function Code 19)
	PCC-Compute-Last-Block-CMAC-Using- Encrypted-AES-192 (Function Code 27)
	PCC-Compute-Last-Block-CMAC-Using- AES-256 (Function Code 20)
	PCC-Compute-Last-Block-CMAC-Using- Encrypted-AES-256(Function Code 28)
	PCC-Compute-XTS-Parameter-Using- AES-128 (Function Code 50)
	PCC-Compute-XTS-Parameter-Using- Encrypted-AES-128 (Function Code 58)
	PCC-Compute-XTS-Parameter-Using- AES-256 (Function Code 52)
	PCC-Compute-XTS-Parameter-Using- Encrypted-AES-256 (Function Code 60)
	PCC-Scalar-Multiply (Function Codes 64, 65, 66, 72, and 73)
	PCC-Scalar-Multiply-Montgomery Form (Function Codes 80 and 81)

	PERFORM LOCKED OPERATION
	Function Codes 0-3 (Compare and Load)
	Function Codes 4-7 (Compare and Swap)
	Function Codes 8-11 (Double Compare and Swap)
	Function Codes 12-15 (Compare and Swap and Store)
	Function Codes 16-19 (Compare and Swap and Double Store)
	Function Codes 20-23 (Compare and Swap and Triple Store)

	PERFORM PROCESSOR ASSIST
	PERFORM RANDOM NUMBER OPERATION
	PRNO-Query (PRNO Function Code 0)
	PRNO-SHA-512-DRNG (PRNO Function Code 3)
	PRNO-TRNG-Query-Raw-to-Conditioned Ratio (PRNO Function Code 112)
	PRNO-TRNG (PRNO Function Code 114)

	POPULATION COUNT
	PREFETCH DATA
	PREFETCH DATA RELATIVE LONG
	ROTATE LEFT SINGLE LOGICAL
	ROTATE THEN AND SELECTED BITS
	ROTATE THEN EXCLUSIVE OR SELECTED BITS
	ROTATE THEN OR SELECTED BITS
	ROTATE THEN INSERT SELECTED BITS
	ROTATE THEN INSERT SELECTED BITS HIGH
	ROTATE THEN INSERT SELECTED BITS LOW
	SEARCH STRING
	SEARCH STRING UNICODE
	SELECT
	SELECT HIGH
	SET ACCESS
	SET ADDRESSING MODE
	SET PROGRAM MASK
	SHIFT LEFT DOUBLE
	SHIFT LEFT DOUBLE LOGICAL
	SHIFT LEFT SINGLE
	SHIFT LEFT SINGLE LOGICAL
	SHIFT RIGHT DOUBLE
	SHIFT RIGHT DOUBLE LOGICAL
	SHIFT RIGHT SINGLE
	SHIFT RIGHT SINGLE LOGICAL
	STORE
	STORE RELATIVE LONG
	STORE ACCESS MULTIPLE
	STORE CHARACTER
	STORE CHARACTER HIGH
	STORE CHARACTERS UNDER MASK
	STORE CLOCK
	STORE CLOCK FAST
	STORE CLOCK EXTENDED
	STORE FACILITY LIST EXTENDED
	STORE GUARDED STORAGE CONTROLS
	STORE HALFWORD
	STORE HALFWORD RELATIVE LONG
	STORE HALFWORD HIGH
	STORE HIGH
	STORE MULTIPLE
	STORE MULTIPLE HIGH
	STORE ON CONDITION
	STORE HIGH ON CONDITION
	STORE PAIR TO QUADWORD
	STORE REVERSED
	SUBTRACT
	SUBTRACT HALFWORD
	SUBTRACT HIGH
	SUBTRACT LOGICAL
	SUBTRACT LOGICAL IMMEDIATE
	SUBTRACT LOGICAL HIGH
	SUBTRACT LOGICAL WITH BORROW
	SUPERVISOR CALL
	TEST ADDRESSING MODE
	TEST AND SET
	TEST UNDER MASK (TEST UNDER MASK HIGH, TEST UNDER MASK LOW)
	TRANSACTION ABORT
	TRANSACTION BEGIN (TBEGIN)
	TRANSACTION BEGIN (TBEGINC)
	TRANSACTION END
	TRANSLATE
	TRANSLATE AND TEST
	TRANSLATE AND TEST EXTENDED
	TRANSLATE AND TEST REVERSE EXTENDED
	TRANSLATE AND TEST REVERSE
	TRANSLATE EXTENDED
	TRANSLATE ONE TO ONE
	TRANSLATE ONE TO TWO
	TRANSLATE TWO TO ONE
	TRANSLATE TWO TO TWO
	UNPACK
	UNPACK ASCII
	UNPACK UNICODE
	UPDATE TREE

	Protection of Cryptographic Keys
	Protection of DES Keys
	Protection of AES Keys
	Protection of ECC Keys

	Chapter 8. Decimal Instructions
	Decimal-Number Formats
	Zoned Format
	Packed-Decimal Formats
	Signed-Packed-Decimal Format
	Unsigned-Packed-Decimal Format

	Decimal Codes

	Decimal Operations
	Decimal-Arithmetic Instructions
	Editing Instructions
	Execution of Decimal Instructions
	Other Instructions for Decimal Operands
	General-Operand Data Exception

	Instructions
	ADD DECIMAL
	COMPARE DECIMAL
	DIVIDE DECIMAL
	EDIT
	EDIT AND MARK
	MULTIPLY DECIMAL
	SHIFT AND ROUND DECIMAL
	SUBTRACT DECIMAL
	TEST DECIMAL
	ZERO AND ADD

	Chapter 9. Floating-Point Overview and Support Instructions
	Sign Bit
	Finite Floating-Point Numbers
	Infinities
	Not-A-Number (NaN)
	Signaling and Quiet NaNs
	Payload
	Propagation of NaNs
	Default QNaN

	Floating-Point Number Representations
	Hexadecimal-Floating-Point (HFP)
	Binary Floating-Point (BFP)
	Decimal Floating-Point (DFP)
	Canonical DFP Data

	Comparison of Floating-Point Number Representations
	Floating-Point Number Ranges
	Equivalent Floating-Point Number Representations
	Effective Width

	Floating-Point Data in Storage

	Registers And Controls
	Floating-Point Registers
	Additional Floating-Point (AFP) Registers
	Valid Floating-Point-Register Designations

	Floating-Point-Control (FPC) Register
	IEEE Masks and Flags
	FPC DXC Byte
	Operations on the FPC Register

	AFP-Register-Control Bit

	IEEE Computational Operations
	Intermediate Values
	Precise Intermediate Value
	Precision-Rounded Value
	Denormalized Value
	Functionally-Rounded Value
	Rounded Intermediate Value
	Scaled Value
	Scale Factor (Y)
	Unsigned Scaling Exponent (a)
	Signed Scaling Exponent (W)

	IEEE Rounding
	Permissible Set
	Selection of Candidates
	Ties
	Voting Digit and Common-Rounding- Point View
	Rounding Methods
	Explicit Rounding Methods
	Summary of Rounding Action

	IEEE Exceptions
	Concurrent IEEE Exceptions
	IEEE Invalid Operation
	IEEE Division-By-Zero
	IEEE Overflow
	IEEE Underflow
	IEEE Inexact
	Quantum Exception

	Suppression of Certain IEEE Exceptions
	IEEE Same-Radix Format Conversion
	IEEE Comparison
	Condition Codes for IEEE Instructions

	Instructions
	CONVERT BFP TO HFP
	CONVERT HFP TO BFP
	COPY SIGN
	EXTRACT FPC
	LOAD
	LOAD COMPLEMENT
	LOAD FPC
	LOAD FPC AND SIGNAL
	LOAD FPR FROM GR
	LOAD GR FROM FPR
	LOAD NEGATIVE
	LOAD POSITIVE
	LOAD ZERO
	PERFORM FLOATING-POINT OPERATION
	General Register 0 (GR0)
	Return Code
	Sign Preservation
	Preferred Quantum
	NaN Conversion
	Scaled Value and Signed Scaling Exponent (W) for PFPO
	HFP Values
	HFP Zero Result
	HFP Overflow and Underflow for PFPO
	IEEE Exceptions for PFPO
	PFPO Actions

	SET BFP ROUNDING MODE
	SET DFP ROUNDING MODE
	SET FPC
	SET FPC AND SIGNAL
	STORE
	STORE FPC

	Summary of All Floating-Point Instructions
	Impacts on ESA/390 and ESA/390- Compatibility Mode
	Impacts of the Decimal-Floating- Point Facility
	Impacts of the Floating-Point Extension Facility

	Chapter 10. Control Instructions
	BRANCH AND SET AUTHORITY
	BRANCH AND STACK
	BRANCH IN SUBSPACE GROUP
	COMPARE AND REPLACE DAT TABLE ENTRY
	COMPARE AND SWAP AND PURGE
	DIAGNOSE
	EXTRACT AND SET EXTENDED AUTHORITY
	EXTRACT PRIMARY ASN
	EXTRACT PRIMARY ASN AND INSTANCE
	EXTRACT SECONDARY ASN
	EXTRACT SECONDARY ASN AND INSTANCE
	EXTRACT STACKED REGISTERS
	EXTRACT STACKED STATE
	INSERT ADDRESS SPACE CONTROL
	INSERT PSW KEY
	INSERT REFERENCE BITS MULTIPLE
	INSERT STORAGE KEY EXTENDED
	INSERT VIRTUAL STORAGE KEY
	INVALIDATE DAT TABLE ENTRY
	INVALIDATE PAGE TABLE ENTRY
	LOAD ADDRESS SPACE PARAMETERS
	LOAD CONTROL
	LOAD PAGE TABLE ENTRY ADDRESS
	LOAD PSW
	LOAD PSW EXTENDED
	LOAD REAL ADDRESS
	DAT-Related Exceptions for LOAD REAL ADDRESS

	LOAD USING REAL ADDRESS
	MODIFY STACKED STATE
	MOVE PAGE
	MOVE TO PRIMARY
	MOVE TO SECONDARY
	MOVE WITH DESTINATION KEY
	MOVE WITH KEY
	MOVE WITH OPTIONAL SPECIFICATIONS
	MOVE WITH SOURCE KEY
	PAGE IN
	PAGE OUT
	PERFORM CRYPTOGRAPHIC KEY MANAGEMENT OPERATION
	PCKMO-Query (Function Code 0)
	PCKMO-Encrypt-DEA-Key (Function Code 1)
	PCKMO-Encrypt-TDEA-128-Key (Function Code 2)
	PCKMO-Encrypt-TDEA-192-Key (Function Code 3)
	PCKMO-Encrypt-AES-128-Key (Function Code 18)
	PCKMO-Encrypt-AES-192-Key (Function Code 19)
	PCKMO-Encrypt-AES-256-Key (Function Code 20)
	PCKMO-Encrypt-ECC-P256-Key (Function Code 32)
	PCKMO-Encrypt-ECC-P384-Key (Function Code 33)
	PCKMO-Encrypt-ECC-P521-Key (Function Code 34)
	PCKMO-Encrypt-ECC-Ed25519-Key (Function Code 40)
	PCKMO-Encrypt-ECC-Ed448-Key (Function Code 41)

	PERFORM FRAME MANAGEMENT FUNCTION
	PERFORM TIMING FACILITY FUNCTION
	Function 0: PTFF-QAF (Query Available Functions)
	Function 1: PTFF-QTO (Query TOD Offset)
	Function 2: PTFF-QSI (Query Steering Information)
	Function 3: PTFF-QPT (Query Physical Clock)
	Function 4: PTFF-QUI (Query UTC Information)
	Function 5: PTFF-QTOU (Query TOD Offset User)
	Function 10: PTFF-QSIE (Query Steering Information Extended)
	Function 13: PTFF-QTOUE (Query TOD Offset User Extended)
	Function 65: PTFF-STO (Set TOD Offset)
	Function 69: PTFF-STOU (Set TOD Offset User)
	Function 73: PTFF-STOE (Set TOD Offset Extended)
	Function 77: PTFF-STOUE (Set TOD Offset User Extended)

	PERFORM TOPOLOGY FUNCTION
	Operation of Function Codes 0 and 1
	Operation of Function Code 2:

	PROGRAM CALL
	PROGRAM RETURN
	PROGRAM TRANSFER
	PROGRAM TRANSFER WITH INSTANCE
	PURGE ALB
	PURGE TLB
	RESET REFERENCE BIT EXTENDED
	RESET REFERENCE BITS MULTIPLE
	RESUME PROGRAM
	SET ADDRESS SPACE CONTROL
	SET ADDRESS SPACE CONTROL FAST
	SET CLOCK
	SET CLOCK COMPARATOR
	SET CLOCK PROGRAMMABLE FIELD
	SET CPU TIMER
	SET PREFIX
	Operation in the z/Architecture Architectural Mode
	Operation in the ESA/390-Compatibility Mode
	Common Operation

	SET PSW KEY FROM ADDRESS
	SET SECONDARY ASN
	SET SECONDARY ASN WITH INSTANCE
	SET STORAGE KEY EXTENDED
	Setting Storage Keys in Multiple 4 K-byte Blocks

	SET SYSTEM MASK
	SIGNAL PROCESSOR
	STORE CLOCK COMPARATOR
	STORE CONTROL
	STORE CPU ADDRESS
	STORE CPU ID
	STORE CPU TIMER
	STORE FACILITY LIST
	STORE PREFIX
	STORE REAL ADDRESS
	STORE SYSTEM INFORMATION
	SYSIB 1.1.1 (Basic-Machine Configuration)
	SYSIB 1.2.1 (Basic-Machine CPU/Core)
	SYSIB 1.2.2 (Basic-Machine CPUs)
	SYSIB 2.2.1 (Logical-Partition CPU/Core)
	SYSIB 2.2.2 (Logical-Partition CPUs / Cores)
	SYSIB 3.2.2 (Virtual-Machine CPUs / Cores)
	Virtual-Machine Description Block
	SYSIB 15.1.2 - 15.1.6 (Configuration Topology)
	CPU Topology Overview
	CPU Slack

	STORE THEN AND SYSTEM MASK
	STORE THEN OR SYSTEM MASK
	STORE USING REAL ADDRESS
	TEST ACCESS
	TEST BLOCK
	TEST PENDING EXTERNAL INTERRUPTION
	TEST PROTECTION
	TRACE
	TRAP

	Chapter 11. Machine-Check Handling
	Machine-Check Detection
	Correction of Machine Malfunctions
	Error Checking and Correction
	CPU Retry
	Effects of CPU Retry
	Checkpoint Synchronization
	Handling of Machine Checks during Checkpoint Synchronization
	Checkpoint-Synchronization Operations
	Checkpoint-Synchronization Action

	Channel-Subsystem Recovery
	Unit Deletion

	Handling of Machine Checks
	Validation
	Invalid CBC in Storage
	Programmed Validation of Storage

	Invalid CBC in Storage Keys
	Invalid CBC in Registers

	Check-Stop State
	System Check Stop

	Machine-Check Interruption
	Exigent Conditions
	Repressible Conditions
	Interruption Action
	Interruption Action in the z/Architecture Architectural Mode
	Interruption Action in the ESA/390- Compatibility Mode
	Interruption Action: Common Actions

	Point of Interruption

	Machine-Check-Interruption Code
	Subclass
	System Damage
	Instruction-Processing Damage
	System Recovery
	Timing-Facility Damage
	External Damage
	Degradation
	Warning
	Channel Report Pending
	Service-Processor Damage
	Channel-Subsystem Damage

	Subclass Modifiers
	Backed Up
	Delayed Access Exception
	Ancillary Report

	Synchronous Machine-Check- Interruption Conditions
	Processing Backup
	Processing Damage

	Storage Errors
	Storage Error Uncorrected
	Storage Error Corrected
	Storage-Key Error Uncorrected
	Storage Degradation
	Indirect Storage Error

	Machine-Check Interruption-Code Validity Bits
	PSW-MWP Validity
	PSW Mask and Key Validity
	PSW Program-Mask and Condition-Code Validity
	PSW-Instruction-Address Validity
	Failing-Storage-Address Validity
	Vector Register Validity
	External-Damage-Code Validity
	Floating-Point-Register Validity
	General-Register Validity
	Control-Register Validity
	Storage Logical Validity
	Access-Register Validity
	Guarded-Storage-Registers Validity
	TOD-Programmable-Register Validity
	Floating-Point-Control-Register Validity
	CPU-Timer Validity
	Clock-Comparator Validity

	Machine-Check Extended Interruption Information
	Register-Save Areas
	External-Damage Code
	Failing-Storage Address
	Machine-Check Extended Save Area (MCESA)
	Machine-Check Extended Save Area in the z/Architecture Architectural Mode
	Machine-Check Extended Save Area in the ESA/390 Compatibility Mode

	Handling of Machine-Check Conditions
	Floating Interruption Conditions
	Floating Machine-Check-Interruption Conditions
	Floating I/O Interruptions

	Machine-Check Masking
	Channel-Report-Pending Subclass Mask
	Recovery Subclass Mask
	Degradation Subclass Mask
	External-Damage Subclass Mask
	Warning Subclass Mask

	Machine-Check Logout
	Summary of Machine-Check Masking

	Chapter 12. Operator Facilities
	Manual Operation
	Basic Operator Facilities
	Address-Compare Controls
	Alter-and-Display Controls
	Architectural-Mode Indicator
	Architectural-Mode-Selection Controls
	Check-Stop Indicator
	CPUs-per-Core Indicator
	IML Controls
	Interrupt Key
	Load Indicator
	Load-Clear Key
	Load-Clear-List-Directed Key
	Load-Normal Key
	Load-with-Dump Key
	Load-Unit-Address Controls
	Manual Indicator
	Power Controls
	Rate Control
	Restart Key
	Start Key
	Stop Key
	Store-Status Key
	System-Reset-Clear Key
	System-Reset-Normal Key
	Test Indicator
	TOD-Clock Control
	Wait Indicator

	Multiprocessing Configurations
	Multithreading Considerations

	Chapter 13. I/O Overview
	Input/Output (I/O)
	The Channel Subsystem
	Subchannel Sets
	Subchannels

	Attachment of Input/Output Devices
	Channel Paths
	Control Units
	I/O Devices

	I/O Addressing
	Subchannel-Set Identifier
	Channel-Path Identifier
	Subchannel Number
	Device Number
	Device Identifier

	Fibre-Channel Extensions
	I/O-Command Words
	Transport Command Word (TCW)
	Channel Program Organization
	CCW Channel Program
	TCW Channel Program

	Execution of I/O Operations
	Start-Function Initiation
	Subchannel Operation Modes

	Path Management
	Channel-Program Execution
	Conclusion of I/O Operations
	Chaining When Using a CCW Channel Program
	Chaining When Using a TCW Channel Program
	Premature Conclusion of I/O Operations

	I/O Interruptions

	Chapter 14. I/O Instructions
	I/O-Instruction Formats
	I/O-Instruction Execution
	Serialization
	Operand Access
	Condition Code
	Program Exceptions

	Instructions
	CANCEL SUBCHANNEL
	CLEAR SUBCHANNEL
	HALT SUBCHANNEL
	MODIFY SUBCHANNEL
	RESET CHANNEL PATH
	RESUME SUBCHANNEL
	SET ADDRESS LIMIT
	SET CHANNEL MONITOR
	START SUBCHANNEL
	STORE CHANNEL PATH STATUS
	STORE CHANNEL REPORT WORD
	STORE SUBCHANNEL
	TEST PENDING INTERRUPTION
	I/O-Interruption Code

	TEST SUBCHANNEL

	Chapter 15. Basic I/O Functions
	Control of Basic I/O Functions
	Subchannel-Information Block
	Path-Management-Control Word
	Subchannel-Status Word
	Model-Dependent Area/Measurement Block Address
	Summary of Modifiable Fields

	Channel-Path Allegiance
	Working Allegiance
	Working Allegiance for Subchannels Operating in Command Mode
	Working Allegiance for Subchannels Operating in Transport Mode

	Active Allegiance
	Dedicated Allegiance
	Channel-Path Availability
	Control-Unit Type

	Clear Function
	Clear-Function Path Management
	Clear-Function Subchannel Modification
	Clear-Function Signaling and Completion

	Halt Function
	Halt-Function Path Management
	Halt-Function Signaling and Completion

	Start Function and Resume Function
	Start-Function and Resume- Function Path Management

	Interrogate Function
	Interrogate-Function Path Management
	Interrogate TCCB Transportation and Completion

	Execution of I/O Operations
	Blocking of Data
	Operation-Request Block
	Command-Mode ORB
	Transport-Mode ORB

	Channel-Command Word
	Transport Control Word
	Transport-Command-Control Block
	Transport-Command-Area Header
	Transport-Command Area
	Device-Command Word
	Transport-Command-Area Trailer
	Transport-Command DCW
	Transfer-CBC-Offset-Block DCW
	CBC-Offset Block
	Transfer-TCA-Extension DCW
	Transport-Command-Area Extension
	Interrogate TCCB
	Interrogate DCW
	Interrogate Data

	Transport Status Block
	Transport-Status Header (TSH)
	I/O-Status TSA
	Device-Detected-Program-Check TSA
	Interrogate TSA

	Command Code
	Designation of Storage Area
	CCW Channel Program Chaining
	Data Chaining
	Command Chaining

	TCW Channel Program Chaining
	Skipping
	Program-Controlled Interruption
	Indirect-Storage Designator (ISD)

	CCW Indirect Data Addressing
	Modified CCW Indirect Data Addressing
	Transport Indirect Data Addressing
	Suspension of CCW Channel- Program Execution
	Commands and Flags for CCWs
	Branching in CCW Channel Programs
	Transfer in Channel

	Command Retry

	Concluding I/O Operations before Initiation
	Concluding I/O Operations during Initiation
	Immediate Conclusion of Command-Mode I/O Operations
	Concluding I/O Operations During Data Transfer
	Channel-Path-Reset Function
	Channel-Path-Reset-Function Signaling
	Channel-Path-Reset-Function- Completion Signaling

	Chapter 16. I/O Interruptions
	Interruption Conditions
	Intermediate Interruption Condition
	Primary Interruption Condition
	Secondary Interruption Condition
	Alert Interruption Condition

	Priority of Interruptions
	Interruption Action
	Interruption-Response Block
	IRB Format

	Subchannel-Status Word
	Command-Mode SCSW
	Subchannel Key
	Suspend Control (S)
	Extended-Status-Word Format (L)
	Deferred Condition Code (CC)
	CCW Format (F)
	Prefetch (P)
	Initial-Status-Interruption Control (I)
	Address-Limit-Checking Control (A)
	IRB-Format Control (X)
	Suppress-Suspended Interruption (U)

	Subchannel-Control Field
	Zero Condition Code (Z)
	Extended Control (E)
	Path Not Operational (N)
	Function Control (FC)
	Activity Control (AC)
	Status Control (SC)

	CCW-Address Field
	Device-Status Field
	Subchannel-Status Field
	Program-Controlled Interruption
	Incorrect Length
	Program Check
	Protection Check
	Channel-Data Check
	Channel-Control Check
	Interface-Control Check
	Chaining Check

	Count Field
	Transport-Mode SCSW
	Subchannel Key
	Reserved
	Extended-Status-Word Format (L)
	Deferred Condition Code (CC)
	Format (FMT)
	IRB-Format Control (X)
	Interrogate Complete (Q)

	Subchannel-Control Field
	Extended Control (E)
	Path Not Operational (N)
	Function Control (FC)
	Activity Control (AC)
	Status Control (SC)

	TCW Address Field
	Device-Status Field
	Subchannel-Status Field
	Incorrect Length
	Program Check
	Protection Check
	Channel-Data Check
	Channel-Control Check
	Interface-Control Check
	Channel-Subsystem Retry Failed

	FCX-Status Field
	Subchannel-Extended-Status Field

	Extended-Status Word
	Extended-Status Format 0
	Subchannel Logout
	Extended-Report Word
	Failing-Storage Address
	Extended-Subchannel-Logout Descriptor (ESLD)
	Secondary-CCW Address

	Extended-Status Format 1
	Extended-Status Format 2
	Extended-Status Format 3

	Extended-Control Word
	Extended-Measurement Word

	Chapter 17. I/O Support Functions
	Channel-Subsystem Monitoring
	Channel-Subsystem Timing
	Channel-Subsystem Timer

	Measurement-Block Update
	Measurement Block
	Measurement-Block Format
	Measurement-Block Origin
	Measurement-Block Address
	Measurement-Block Key
	Measurement-Block Index
	Measurement-Block-Update Mode
	Measurement-Block-Format Control
	Measurement-Block-Update Enable
	Control-Unit-Queuing Measurement
	Control-Unit-Defer Time
	Device-Active-Only Measurement
	Initial-Command-Response Measurement
	Time-Interval-Measurement Accuracy

	Device-Connect-Time Measurement
	Device-Connect-Time-Measurement Mode
	Device-Connect-Time-Measurement Enable

	Extended Measurement Word
	Extended-Measurement-Word Enable

	Signals and Resets
	Signals
	Halt Signal
	Clear Signal
	Reset Signal

	Resets
	Channel-Path Reset
	I/O-System Reset

	Externally Initiated Functions
	Initial Program Loading
	CCW-type IPL
	List-Directed IPL

	IPL Information Report Block
	IPL Signature Certificate List
	IPL Signature Certificate Entry

	Reconfiguration of the I/O System

	Status Verification
	Address-Limit Checking
	Configuration Alert
	Incorrect-Length-Indication Suppression
	Concurrent Sense
	Channel-Subsystem Recovery
	Channel Report
	Channel-Report Word
	Restore-Subchannel Facility
	Extended-Subchannel-Logout Facility

	Channel-Subsystem-I/O-Priority Facility
	Number of Channel-Subsystem-Priority Levels

	Multiple-Subchannel-Set Facility

	Chapter 18. Hexadecimal-Floating-Point Instructions
	HFP Arithmetic
	HFP Number Representation
	Normalization
	HFP Data Formats
	HFP Short Format
	HFP Long Format
	HFP Extended Format

	Instructions
	ADD NORMALIZED
	ADD UNNORMALIZED
	COMPARE
	CONVERT FROM FIXED
	CONVERT TO FIXED
	DIVIDE
	HALVE
	LOAD AND TEST
	LOAD COMPLEMENT
	LOAD FP INTEGER
	LOAD LENGTHENED
	LOAD NEGATIVE
	LOAD POSITIVE
	LOAD ROUNDED
	MULTIPLY
	MULTIPLY AND ADD
	MULTIPLY AND SUBTRACT
	MULTIPLY AND ADD UNNORMALIZED
	MULTIPLY UNNORMALIZED
	SQUARE ROOT
	SUBTRACT NORMALIZED
	SUBTRACT UNNORMALIZED

	Chapter 19. Binary-Floating-Point Instructions
	Binary-Floating-Point Facility
	Floating-Point-Control (FPC) Register

	BFP Arithmetic
	BFP Data Formats
	BFP Short Format
	BFP Long Format
	BFP Extended Format
	Biased Exponent
	Significand
	Values of Nonzero Numbers

	Classes of BFP Data
	Zeros
	Subnormal Numbers
	Normal Numbers
	Infinities
	Signaling and Quiet NaNs

	BFP-Format Conversion
	BFP Rounding
	BFP Comparison
	Remainder
	IEEE Exceptions
	Summary of Rounding And Range Actions

	Result Figures
	Data-Exception Codes (DXC) and Abbreviations

	Instructions
	ADD
	COMPARE
	COMPARE AND SIGNAL
	CONVERT FROM FIXED
	CONVERT FROM LOGICAL
	CONVERT TO FIXED
	CONVERT TO LOGICAL
	DIVIDE
	DIVIDE TO INTEGER
	LOAD AND TEST
	LOAD COMPLEMENT
	LOAD FP INTEGER
	LOAD LENGTHENED
	LOAD NEGATIVE
	LOAD POSITIVE
	LOAD ROUNDED
	MULTIPLY
	MULTIPLY AND ADD
	MULTIPLY AND SUBTRACT
	SQUARE ROOT
	SUBTRACT
	TEST DATA CLASS

	Chapter 20. Decimal-Floating-Point Instructions
	Decimal-Floating-Point Facility
	DFP Arithmetic
	Finite Floating-Point Number
	Cohort
	Quantum
	Preferred Quantum
	Scaled Preferred Quantum
	Delivered Quantum
	Special Quantum-Handling Operations

	DFP Data Formats
	DFP Short Format
	DFP Long Format
	DFP Extended Format
	Sign
	Combination
	Encoded Trailing Significand
	Values of Finite Numbers

	Significand
	DFP Significant Digits

	Canonical Declets
	DFP Canonical Data
	Classes of DFP Data
	Zeros
	Subnormal Numbers
	Normal Numbers
	Infinities
	Signaling and Quiet NaNs
	Canonicalization

	DFP-Format Conversion
	DFP Rounding
	DFP Comparison
	DFP Formatting Instructions
	Signed-Packed-Decimal Format
	Unsigned-Packed-Decimal Format
	Zoned-Decimal Format

	IEEE Exceptions
	Summary of Preferred Quantum
	Summary of Rounding And Range Actions
	Result Figures
	Data-Exception Codes (DXC) and Abbreviations

	Instructions
	ADD
	COMPARE
	COMPARE AND SIGNAL
	COMPARE BIASED EXPONENT
	CONVERT FROM FIXED
	CONVERT FROM LOGICAL
	CONVERT FROM PACKED
	CONVERT FROM SIGNED PACKED
	CONVERT FROM UNSIGNED PACKED
	CONVERT FROM ZONED
	CONVERT TO FIXED
	CONVERT TO LOGICAL
	CONVERT TO PACKED
	CONVERT TO SIGNED PACKED
	CONVERT TO UNSIGNED PACKED
	CONVERT TO ZONED
	DIVIDE
	EXTRACT BIASED EXPONENT
	EXTRACT SIGNIFICANCE
	INSERT BIASED EXPONENT
	LOAD AND TEST
	LOAD FP INTEGER
	LOAD LENGTHENED
	LOAD ROUNDED
	MULTIPLY
	QUANTIZE
	REROUND
	SHIFT SIGNIFICAND LEFT
	SHIFT SIGNIFICAND RIGHT
	SUBTRACT
	TEST DATA CLASS
	TEST DATA GROUP

	Densely Packed Decimal (DPD)
	Decimal-to-DPD Mapping
	DPD-to-Decimal Mapping

	Chapter 21. Vector Overview and Support Instructions
	Overview
	Vector Registers and Controls
	Vector Enablement Control

	Vector Storage Accesses
	Saturating Arithmetic
	Instructions
	VECTOR BIT PERMUTE
	VECTOR GATHER ELEMENT
	VECTOR GENERATE BYTE MASK
	VECTOR GENERATE MASK
	VECTOR LOAD
	VECTOR LOAD AND REPLICATE
	VECTOR LOAD BYTE REVERSED ELEMENT
	VECTOR LOAD BYTE REVERSED ELEMENT AND REPLICATE
	VECTOR LOAD BYTE REVERSED ELEMENT AND ZERO
	VECTOR LOAD BYTE REVERSED ELEMENTS
	VECTOR LOAD ELEMENT
	VECTOR LOAD ELEMENT IMMEDIATE
	VECTOR LOAD ELEMENTS REVERSED
	VECTOR LOAD GR FROM VR ELEMENT
	VECTOR LOAD LOGICAL ELEMENT AND ZERO
	VECTOR LOAD MULTIPLE
	VECTOR LOAD RIGHTMOST WITH LENGTH
	VECTOR LOAD TO BLOCK BOUNDARY
	VECTOR LOAD VR ELEMENT FROM GR
	VECTOR LOAD VR FROM GRS DISJOINT
	VECTOR LOAD WITH LENGTH
	VECTOR MERGE HIGH
	VECTOR MERGE LOW
	VECTOR PACK
	VECTOR PACK SATURATE
	VECTOR PACK LOGICAL SATURATE
	VECTOR PERMUTE
	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
	VECTOR REPLICATE
	VECTOR REPLICATE IMMEDIATE
	VECTOR SCATTER ELEMENT
	VECTOR SELECT
	VECTOR SIGN EXTEND TO DOUBLEWORD
	VECTOR STORE
	VECTOR STORE BYTE REVERSED ELEMENT
	VECTOR STORE BYTE REVERSED ELEMENTS
	VECTOR STORE ELEMENT
	VECTOR STORE ELEMENTS REVERSED
	VECTOR STORE MULTIPLE
	VECTOR STORE RIGHTMOST WITH LENGTH
	VECTOR STORE WITH LENGTH
	VECTOR UNPACK HIGH
	VECTOR UNPACK LOGICAL HIGH
	VECTOR UNPACK LOW
	VECTOR UNPACK LOGICAL LOW

	Chapter 22. Vector Integer Instructions
	Instructions
	VECTOR ADD
	VECTOR ADD COMPUTE CARRY
	VECTOR ADD WITH CARRY
	VECTOR ADD WITH CARRY COMPUTE CARRY
	VECTOR AND
	VECTOR AND WITH COMPLEMENT
	VECTOR AVERAGE
	VECTOR AVERAGE LOGICAL
	VECTOR CHECKSUM
	VECTOR ELEMENT COMPARE
	VECTOR ELEMENT COMPARE LOGICAL
	VECTOR COMPARE EQUAL
	VECTOR COMPARE HIGH
	VECTOR COMPARE HIGH LOGICAL
	VECTOR COUNT LEADING ZEROS
	VECTOR COUNT TRAILING ZEROS
	VECTOR EXCLUSIVE OR
	VECTOR GALOIS FIELD MULTIPLY SUM
	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
	VECTOR LOAD COMPLEMENT
	VECTOR LOAD POSITIVE
	VECTOR MAXIMUM
	VECTOR MAXIMUM LOGICAL
	VECTOR MINIMUM
	VECTOR MINIMUM LOGICAL
	VECTOR MULTIPLY AND ADD LOW
	VECTOR MULTIPLY AND ADD HIGH
	VECTOR MULTIPLY AND ADD LOGICAL HIGH
	VECTOR MULTIPLY AND ADD EVEN
	VECTOR MULTIPLY AND ADD LOGICAL EVEN
	VECTOR MULTIPLY AND ADD ODD
	VECTOR MULTIPLY AND ADD LOGICAL ODD
	VECTOR MULTIPLY HIGH
	VECTOR MULTIPLY LOGICAL HIGH
	VECTOR MULTIPLY LOW
	VECTOR MULTIPLY EVEN
	VECTOR MULTIPLY LOGICAL EVEN
	VECTOR MULTIPLY ODD
	VECTOR MULTIPLY LOGICAL ODD
	VECTOR MULTIPLY SUM LOGICAL
	VECTOR NAND
	VECTOR NOR
	VECTOR NOT EXCLUSIVE OR
	VECTOR OR
	VECTOR OR WITH COMPLEMENT
	VECTOR POPULATION COUNT
	VECTOR ELEMENT ROTATE LEFT LOGICAL
	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
	VECTOR ELEMENT SHIFT LEFT
	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
	VECTOR ELEMENT SHIFT RIGHT LOGICAL
	VECTOR SHIFT LEFT
	VECTOR SHIFT LEFT BY BYTE
	VECTOR SHIFT LEFT DOUBLE BY BIT
	VECTOR SHIFT LEFT DOUBLE BY BYTE
	VECTOR SHIFT RIGHT ARITHMETIC
	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
	VECTOR SHIFT RIGHT DOUBLE BY BIT
	VECTOR SHIFT RIGHT LOGICAL
	VECTOR SHIFT RIGHT LOGICAL BY BYTE
	VECTOR SUBTRACT
	VECTOR SUBTRACT COMPUTE BORROW INDICATION
	VECTOR SUBTRACT WITH BORROW INDICATION
	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
	VECTOR SUM ACROSS DOUBLEWORD
	VECTOR SUM ACROSS QUADWORD
	VECTOR SUM ACROSS WORD
	VECTOR TEST UNDER MASK

	Chapter 23. Vector String Instructions
	Vector String Facility
	Instructions
	VECTOR FIND ANY ELEMENT EQUAL
	VECTOR FIND ELEMENT EQUAL
	VECTOR FIND ELEMENT NOT EQUAL
	VECTOR ISOLATE STRING
	VECTOR STRING RANGE COMPARE
	VECTOR STRING SEARCH

	Chapter 24. Vector Floating-Point Instructions
	IEEE Exception Handling
	Result Figures
	Instructions
	VECTOR FP ADD
	VECTOR FP COMPARE SCALAR
	VECTOR FP COMPARE AND SIGNAL SCALAR
	VECTOR FP COMPARE EQUAL
	VECTOR FP COMPARE HIGH
	VECTOR FP COMPARE HIGH OR EQUAL
	VECTOR FP CONVERT FROM FIXED
	VECTOR FP CONVERT FROM LOGICAL
	VECTOR FP CONVERT TO FIXED
	VECTOR FP CONVERT TO LOGICAL
	VECTOR FP DIVIDE
	VECTOR LOAD FP INTEGER
	VECTOR FP LOAD LENGTHENED
	VECTOR FP LOAD ROUNDED
	VECTOR FP MAXIMUM
	VECTOR FP MINIMUM
	VECTOR FP MULTIPLY
	VECTOR FP MULTIPLY AND ADD
	VECTOR FP MULTIPLY AND SUBTRACT
	VECTOR FP NEGATIVE MULTIPLY AND ADD
	VECTOR FP NEGATIVE MULTIPLY AND SUBTRACT
	VECTOR FP PERFORM SIGN OPERATION
	VECTOR FP SQUARE ROOT
	VECTOR FP SUBTRACT
	VECTOR FP TEST DATA CLASS IMMEDIATE

	Chapter 25. Vector Decimal Instructions
	Vector-Packed-Decimal Facility
	Vector Decimal Control
	Vector Decimal Registers
	Decimal Digits and Signs
	Instructions
	VECTOR ADD DECIMAL
	VECTOR COMPARE DECIMAL
	VECTOR CONVERT TO BINARY
	VECTOR CONVERT TO DECIMAL
	VECTOR DIVIDE DECIMAL
	VECTOR LOAD IMMEDIATE DECIMAL
	VECTOR MULTIPLY DECIMAL
	VECTOR MULTIPLY AND SHIFT DECIMAL
	VECTOR PACK ZONED
	VECTOR PERFORM SIGN OPERATION DECIMAL
	VECTOR REMAINDER DECIMAL
	VECTOR SHIFT AND DIVIDE DECIMAL
	VECTOR SHIFT AND ROUND DECIMAL
	VECTOR SUBTRACT DECIMAL
	VECTOR TEST DECIMAL
	VECTOR UNPACK ZONED

	Chapter 26. Specialized-Function-Assist Instructions
	Instructions
	COMPUTE DIGITAL SIGNATURE AUTHENTICATION
	KDSA-Query (Function Code 0)
	KDSA-ECDSA-Verify Functions
	KDSA-ECDSA-Sign Functions
	KDSA-EdDSA-Verify Functions
	KDSA-EdDSA-Sign Functions

	DEFLATE CONVERSION CALL
	Function Code 0: DFLTCC-QAF (Query Available Functions)
	Function Code 1: DFLTCC-GDHT (Generate Dynamic-Huffman Table)
	Function Code 2: DFLTCC-CMPR (Compress)
	Function Code 4: DFLTCC-XPND (Expand)

	Appendix A. Number Representation and Instruction-Use Examples
	Number Representation
	Binary Integers
	Signed Binary Integers
	Unsigned Binary Integers

	Decimal Integers
	Hexadecimal-Floating-Point Numbers
	Conversion Example

	Instruction-Use Examples
	Machine Format
	Assembler-Language Format
	Addressing Mode in Examples

	General Instructions
	ADD HALFWORD (AH)
	AND (N, NC, NI, NR)
	NI Example

	Linkage Instructions (BAL, BALR, BAS, BASR, BASSM, BSM)
	Other BALR and BASR Examples

	BRANCH AND STACK (BAKR)
	BAKR Example 1
	BAKR Example 2
	BAKR Example 3

	BRANCH ON CONDITION (BC, BCR)
	BRANCH ON COUNT (BCT, BCTR)
	BRANCH ON INDEX HIGH (BXH)
	BXH Example 1
	BXH Example 2

	BRANCH ON INDEX LOW OR EQUAL (BXLE)
	BXLE Example 1
	BXLE Example 2

	COMPARE AND FORM CODEWORD (CFC)
	COMPARE HALFWORD (CH)
	COMPARE LOGICAL (CL, CLC, CLI, CLR)
	CLC Example
	CLI Example
	CLR Example

	COMPARE LOGICAL CHARACTERS UNDER MASK (CLM)
	COMPARE LOGICAL LONG (CLCL)
	COMPARE LOGICAL STRING (CLST)
	CONVERT TO BINARY (CVB)
	CONVERT TO DECIMAL (CVD)
	DIVIDE (D, DR)
	EXCLUSIVE OR (X, XC, XI, XR)
	XC Example
	XI Example

	EXECUTE (EX)
	FIND LEFTMOST ONE (FLOGR)
	INSERT CHARACTERS UNDER MASK (ICM)
	LOAD (L, LR)
	LOAD ADDRESS (LA)
	LOAD HALFWORD (LH)
	MOVE (MVC, MVI)
	MVC Example
	MVI Example

	MOVE INVERSE (MVCIN)
	MOVE LONG (MVCL)
	MOVE NUMERICS (MVN)
	MOVE STRING (MVST)
	MOVE WITH OFFSET (MVO)
	MOVE ZONES (MVZ)
	MULTIPLY (M, MR)
	MULTIPLY HALFWORD (MH)
	OR (O, OC, OI, OR)
	OI Example

	PACK (PACK)
	ROTATE THEN EXCLUSIVE OR SELECTED BITS
	ROTATE THEN INSERT SELECTED BITS
	ROTATE THEN OR SELECTED BITS
	SEARCH STRING (SRST)
	SRST Example 1
	SRST Example 2

	SHIFT LEFT DOUBLE (SLDA)
	SHIFT LEFT SINGLE (SLA)
	STORE CHARACTERS UNDER MASK (STCM)
	STORE MULTIPLE (STM)
	TEST UNDER MASK (TM)
	TRANSLATE (TR)
	TRANSLATE AND TEST (TRT)
	UNPACK (UNPK)
	UPDATE TREE (UPT)

	Decimal Instructions
	ADD DECIMAL (AP)
	COMPARE DECIMAL (CP)
	DIVIDE DECIMAL (DP)
	EDIT (ED)
	EDIT AND MARK (EDMK)
	MULTIPLY DECIMAL (MP)
	SHIFT AND ROUND DECIMAL (SRP)
	Decimal Left Shift
	Decimal Right Shift
	Decimal Right Shift and Round
	Multiplying by a Variable Power of 10

	ZERO AND ADD (ZAP)

	Hexadecimal-Floating-Point Instructions
	ADD NORMALIZED (AD, ADR, AE, AER, AXR)
	ADD UNNORMALIZED (AU, AUR, AW, AWR)
	COMPARE (CD, CDR, CE, CER)
	DIVIDE (DD, DDR, DE, DER)
	HALVE (HDR, HER)
	MULTIPLY (MD, MDR, MDE, MDER, MXD, MXDR, MXR)
	Hexadecimal-Floating-Point- Number Conversion
	Fixed Point to Hexadecimal Floating Point
	Hexadecimal Floating Point to Fixed Point

	Multiprogramming and Multiprocessing Examples
	Example of a Program Failure Using OR Immediate
	Conditional Swapping Instructions (CS, CDS)
	Setting a Single Bit
	Updating Counters

	Bypassing Post and Wait
	Lock/Unlock
	Lock/Unlock with LIFO Queuing for Contentions
	Lock/Unlock with FIFO Queuing for Contentions

	Free-Pool Manipulation
	PERFORM LOCKED OPERATION (PLO)

	Sorting Instructions
	Tree Format
	Example of Use of Sort Instructions

	Appendix B. Lists of Instructions
	Instructions Arranged by Name
	Instructions Arranged by Mnemonic
	Instructions Arranged by Operation Code

	Appendix C. Condition-Code Settings
	Appendix D. Compression Call Facility
	Introduction to Compression Call Facility
	Compression and Expansion Dictionaries
	Compression-Dictionary Entries
	Compression Process
	Child and Sibling Characters
	Child and Extension-Character Combinations
	Restriction on Identical Child and Sibling Characters
	Expansion-Dictionary Entries
	Expansion Process

	Compressed-Data Symbol Size
	Symbol Translation
	Order Preservation
	Entropy Encoding
	Results of Dictionary Errors

	Dictionary Formats
	Notation
	Compression Dictionary
	Character Entry

	Format-0 Sibling Descriptor
	Format-1 Sibling Descriptor
	Expansion Dictionary
	Character Entry
	Format-1 Sibling Descriptor

	Appendix G. Table of Powers of 2
	Appendix H. Hexadecimal Tables
	Appendix I. EBCDIC and ISO-8 Codes
	Control Character Representations
	Formatting Character Representations
	Additional ISO-8 Control Character Representations

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

