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ABSTRACT: The synoptic environment around tropical cyclones plays a significant role in vortex evolution. To capture
the environment, the operational and research communities calculate diagnostic quantities. To aid with applications and
research, the Tropical Cyclone Precipitation, Infrared, Microwave, and Environmental Dataset (TC PRIMED) combines
disparate data sources. A key part of TC PRIMED is the environmental context. Often, environmental diagnostics come
from multiple sources. However, TC PRIMED uses the European Centre for Medium-Range Weather Forecasts fifth-
generation reanalysis (ERA5) product to provide a more complete representation of the storm environment from a single
source. Reanalysis products usually poorly resolve tropical cyclones and their surrounding environment. To understand the
uncertainty of large-scale diagnostics, ERA5 is compared to the Statistical Hurricane Intensity Prediction Scheme develop-
mental dataset and the National Oceanic and Atmospheric Administration Gulfstream IV-SP dropwindsondes. This analy-
sis highlights biases in the ERA5 environmental diagnostic quantities. Thermodynamic fields show the largest biases. The
boundary layer exhibits a cold temperature bias that limits the amount of convective instability; also, the upper troposphere
contains temperature biases and shows a high relative humidity bias. However, the upper-troposphere large-scale kine-
matic fields and derived metrics are low biased. In the lower troposphere, the temperature gradient and advection calcu-
lated from the thermal wind suggest that the low-level wind field is not representative of the observed distribution. These
diagnostics comparisons provide uncertainty so that users of TC PRIMED can assess the implications for specific research
and operational applications.
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1. Introduction

The multiscale nature of tropical cyclones poses a challenge
to understanding the interplay between factors that influence
hazards and impacts. Often to simplify the complex relation-
ships, the tropical cyclone research community either focuses
on the “mesoscale power plant” or the “synoptic-scale sup-
porting structure” (Ooyama 1982). Through improving our
overall understanding, the community has made considerable
progress in developing skillful operational statistical–dynamical
guidance and mesoscale tropical cyclone models. However,
challenges remain in understanding and forecasting aspects of
the tropical cyclone (e.g., tropical cyclogenesis, the tail of the
distribution of intensity change, and secondary eyewall forma-
tion and eyewall replacement). To assist with analysis of these
events in global tropical cyclones, Razin et al. (2022a,b) cre-
ated a new dataset that combines satellite observations and de-
rived products called the Tropical Cyclone Precipitation,

Infrared, Microwave, and Environmental Dataset (TC
PRIMED). TC PRIMED contains global tropical cyclone–
centric 1) intercalibrated, low-Earth-orbiter passive micro-
wave brightness temperatures, 2) NASA’s Goddard Profiling
Algorithm retrieved rainfall, 3) geostationary satellite long-
wave window channel infrared brightness temperatures and
derived metrics, 4) tropical cyclone position and intensity, and
5) NASA’s Tropical Rainfall Measuring Mission and Global
Precipitation Measurement Core Observatory satellite precipi-
tation radar observations. In addition, TC PRIMED includes
storm-centric, large-scale environmental diagnostic quanti-
ties. To calculate these diagnostics from a consistent source,
TC PRIMED uses the European Centre for Medium-Range
Weather Forecasts (ECMWF) fifth-generation reanalysis prod-
uct (ERA5; Hersbach and Dee 2016; Hersbach et al. 2020).
Here, we discuss deriving these diagnostics.

Model reanalysis products aid in dissecting atmospheric
processes through combining a consistent model dynamical
core and physics parameterizations with the best available
conventional and satellite-based observations through data
assimilation (Kalnay 2003). However, because of the compu-
tational cost, the horizontal resolution of these products is
coarser than the operational or parent model equivalent. As a
result, reanalysis can lack the ability to resolve certain tropical
cyclone processes, especially at storm scale, impacting the use-
fulness and applicability of a reanalysis product (Hodges et al.
2017). Here, we focus on how well the reanalysis synoptic-
scale supporting structure represents the storm environment
in observational datasets. We use dropwindsondes from the
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North Atlantic and eastern and central North Pacific to evalu-
ate quantities in the modeled large-scale environment.

What defines the large-scale environment around a tropical
cyclone depends on the purpose and can be specific to an at-
mospheric state variable. With total kinetic energy, Ooyama
(1969) shows the impact of the inner core on the size metric
when using a radius inside 500 km. And, in his simulations,
the tropical cyclone induces a response as far as 1000 km
[Fig. 10 in Ooyama (1969)]. Through composite analyses of
rawinsondes, Frank (1977) demonstrates that temperature
perturbations induced by the tropical cyclone vortex extend
out to 148–158 latitude from the storm center. For factors that
influence storm evolution, other near-storm quantities are
useful. Hill and Lackmann (2009) show how near-storm mois-
ture affects the changes to storm size; also, the community has
documented the impacts of shear and dry-air entrainment on
tropical cyclone formation, intensity, and rapid intensity
change (e.g., Gray 1979). Quantities such as temperature gra-
dient and advection provide insight into the baroclinic envi-
ronment through measuring warm and cold air advection
around the storm and provide insight into storm intensifica-
tion and growth (Maclay et al. 2008). To capture tropical
cyclone and environment interactions, statistical–dynamical
intensity forecast aids use model-derived, area-averaged quanti-
ties. Figure 1 shows Hurricane Harvey in GOES-16 longwave
infrared imagery at 0000 UTC 26 August 2017 before landfall
and the three regions used by statistical–dynamical aids such as
the Statistical Hurricane Intensity Prediction Scheme (SHIPS;
DeMaria and Kaplan 1994), Logistic Growth Equation Model

(DeMaria 2009), Tropical Cyclone Formation Probability prod-
uct (Schumacher et al. 2009), and Rapid Intensification Predic-
tion Aid (Knaff et al. 2018). These aids average large-scale
dynamic quantities like vorticity and divergence in the storm-
centric region from 0 to 1000 km in radius (blue circle), thermo-
dynamic quantities like temperature and relative humidity in an
annulus from 200 to 800 km (red annulus), and kinematic (e.g.,
wind) quantities from 0 to 500 km (yellow circle).

To include this familiar representation of the environment
in TC PRIMED, we use these area-averaging definitions to
calculate large-scale environmental diagnostic quantities
from the ERA5 product output. We opt for ERA5 over the
SHIPS developmental dataset to provide full vertical profiles
of dynamic, kinematic, and thermodynamic variables in ad-
dition to derived metrics. Also, in using ERA5, we limit the
source of the diagnostics to a singular, consistent source
over the 1998–2019 period of the satellite observations in TC
PRIMED. In addition to outlining the calculations, we dis-
cuss errors in context with observations. We believe that this
context provides critical information on the uncertainties
and potential limitations of these quantities for research and
forecast applications for either the SHIPS developmental
dataset}the classic source for these data}or the large-scale
environmental diagnostic quantities from ERA5 in TC
PRIMED. For this manuscript, we outline the datasets includ-
ing ERA5, storm characteristics, the SHIPS developmental
dataset (DeMaria et al. 2005) and dropwindsonde observa-
tions in section 2. Then, we discuss the methods for calculating
large-scale environmental profiles and diagnostic quantities in
section 3. We provide a comparison between ERA5 diagnos-
tics and the SHIPS developmental dataset in section 4 before
comparing ERA5 diagnostics to observations in section 5. In
section 6, we offer a discussion of ERA5-based large-scale en-
vironmental diagnostics for tropical cyclones.

2. Data

We use 1) the ECMWF reanalysis version 5 pressure-level
and single-level products to calculate storm-relative large-
scale environmental diagnostic quantities, 2) the Automated
Tropical Cyclone Forecast system database for storm charac-
teristics, 3) the SHIPS developmental dataset for comparison,
and 4) National Oceanic and Atmospheric Administration
(NOAA) Gulfstream IV-SP N49RF synoptic dropwindsondes
to understand vertical kinematic and thermodynamic errors.

a. ECMWF reanalysis version 5

For the ECMWF fifth-generation reanalysis product (ERA5;
Hersbach and Dee 2016; Hersbach et al. 2020), ECMWF uses
the Integrated Forecast System cycle 41r2 at triangular trunca-
tion number 639 (approximately 31-km horizontal resolution)
with 137 hybrid sigma vertical levels. ECMWFmakes reanalysis
output available on pressure- and single-level surfaces at a uni-
form 0.258 horizontal resolution through the European Union’s
Copernicus Climate Change Service (Hersbach et al. 2018a,b).
For the reanalysis product, the four-dimensional variational-
analysis data assimilation uses 12-h windows centered at

FIG. 1.GOES-16 preliminary, nonoperational 10.3-mm longwave
infrared observation at 0000 UTC 26 Aug 2017 showing Hurricane
Harvey prior to landfall with the area-averaging regions for large-
scale dynamics from 0 to 1000 km (blue circle), thermodynamics
from 200 to 800 km (red annulus), and kinematics from 0 to
500 km (yellow circle). Note that portions of each circle and annu-
lus are removed to assist with clarity.
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0300 and 1500 UTC to produce hourly analyses and initialize
18-h forecasts twice daily starting at 0600 and 1800 UTC.

Here, we use the hourly analysis product at synoptic times
(i.e., 0000, 0600, 1200, and 1800 UTC). We subset pressure-
level data from 100 to 1000 hPa at 50-hPa intervals with the
addition of 925 and 975 hPa. For pressure-level fields, we use
the temperature, relative humidity, specific humidity, zonal
and meridional components of the wind, geopotential (con-
verted to geopotential height), relative vorticity, and diver-
gence. From the single-level data, we take the precipitable
water, large-scale and convective rain rates, sea surface temper-
ature, mean sea level pressure, 2-m temperature and dewpoint
temperature, and 10-m zonal and meridional wind components.
We list a summary of these output fields in Table 1.

b. Automated tropical cyclone forecast system database

The Automated Tropical Cyclone Forecast (ATCF; Sampson
and Schrader 2000) system combines working and postseason
tropical cyclone characteristic data from the National Hurricane
Center, Central Pacific Hurricane Center, and Joint Typhoon
Warning Center. For this work, we extract the 6-h position (i.e.,
storm center longitude and latitude), maximum sustained one-
minute average wind or intensity, central minimum pressure,
and development level (e.g., disturbance, open wave, tropical
storm, tropical cyclone, extratropical) from the best-track data-
base files for the 1998–2019 seasons for the North Atlantic, the
western, central, and eastern North Pacific, the north Indian
Ocean, and the Southern Hemisphere tropical cyclone basins.
While commonly used in tropical cyclone applications, the
best-track dataset contains values at 0.18 and 5-kt resolution
(1 kt ≈ 0.51 m s21) for track and intensity, respectively. In

addition to resolution, the quantities in the best-track database
have uncertainty caused by data available to discern the quan-
tity of interest (Torn and Snyder 2012; Landsea and Franklin
2013; Combot et al. 2020).

c. SHIPS developmental dataset

Operational statistical–dynamical forecast aids use the SHIPS
developmental dataset (RAMMB 2022) to represent the
large-scale environment with parameters endemic to tropical
cyclone intensity change. This information amalgamates cur-
rent observations with model output products. In the opera-
tional versions of the large-scale diagnostics, the algorithm
uses the working best-track position and official forecast track
of the tropical cyclone, available geostationary infrared imag-
ery, current satellite-based ocean temperature analysis, and
forecast fields from the operational version of the Global
Forecast System. For the developmental dataset, Cooperative
Institute for Research in the Atmosphere (CIRA) and Re-
gional and Mesoscale Meteorology Branch (RAMMB) take
observational data that may have been missing in real time and
combine them with the final best track to create a more realistic
estimate of the storm environment for tropical systems. CIRA
and RAMMB do not produce developmental dataset output at
synoptic periods for systems that do not have final best tracks
(at least tropical depression intensity) or systems that are non-
tropical (e.g., extratropical and subtropical). For the model
fields, CIRA and RAMMB apply a perfect prognostic ap-
proach with model analyses and reanalyses (DeMaria et al.
2005). In the current version of the developmental dataset,
CIRA and RAMMB use 18 3 18 model data from the Climate
Forecast System Reanalysis from 1982 to 1999 and the Global
Forecast System analyses from 2000 to present (RAMMB
2022). Here, we use 200–800-km temperature, relative humid-
ity, and convective mass flux and 0–500-km wind, vertical wind
shear, and temperature gradient and advection.

d. Dropwindsonde

Since 1997 in support of operations and research for tropi-
cal cyclones, the NOAAGulfstream IV-SP N49RF (G-IV) re-
leases dropwindsondes around tropical cyclones in the North
Atlantic and central and eastern North Pacific basins (Dorst
2007). The G-IV dropwindsondes supply environmental infor-
mation for forecasters and operational data assimilation sys-
tems to create short-term forecast improvements (Aberson
and Franklin 1999; Ryan et al. 2019). During the period for
TC PRIMED from 1998 to 2019, the G-IV collected data
from nearly 12 000 dropwindsondes via the NCAR Airborne
Vertical Atmospheric Profiling System (AVAPS) dropwind-
sonde system (Hock and Franklin 1999). The dropwindsondes
in the AVAPS D-file output format from the G-IV are avail-
able from the NOAA Atlantic Oceanographic and Meteoro-
logical Laboratory Hurricane Research Division database.
During this period, the G-IV has used the RD93, RD94, and
RD41 research dropwindsondes with GPS navigation system
for wind. As dropwindsonde technology, analysis, and re-
search continue to evolve, researchers have found biases in
some instruments. For example, RD94 from 2008 onward

TABLE 1. ERA5 single-level (top section) and pressure-level
(middle section) data and bounding radii for area average.
Derived quantities calculated from the single- and pressure-level
data are in the bottom section.

Quantity Units Area averaging (km)

Single-level data
u and y wind at 10 m m s21 0–500 and 200–800
Temperature at 2 m K 0–500 and 200–800
Dewpoint temperature at 2 m K 0–500 and 200–800
Sea surface temperature K 0–50
Precipitable water mm Multiple radii

Pressure-level data
u and y wind m s21 0–500 and 200–800
Temperature K 0–500 and 200–800
Relative humidity % 0–500 and 200–800
Specific humidity kg kg21 0–500 and 200–800
Geopotential height m 0–500 and 200–800
Divergence s21 0–1000
Relative vorticity s21 0–1000

Derived quantities
Deep-layer and generalized shear m s21 0–500 and 200–800
Temperature gradient 8C m21 0–500 and 200–800
Temperature advection 8C s21 0–500 and 200–800
Convective mass flux m s21 0–500 and 200–800
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exhibit a dry bias (Vömel et al. 2016). The developers have
implemented corrections for these biases in the Atmospheric
Sounding Processing Environment (ASPEN) software that al-
lows for reprocessing of the existing AVAPS D-file data.
Here, we reprocess all G-IV dropwindsondes from 1998 to
2019 with ASPEN version 3.4.6 released on 1 May 2021. We
opt for the default quality control constraints because the
G-IV synoptic surveillance dropwindsondes do not encounter
extremes to warrant changing the constraints, as done by
Stern et al. (2016) for analysis of the inner-core area of the
storm. And, we do not take other post-mission quality control
steps such as those outlined by Ciesielski et al. (2012).

3. Large-scale environment

The tropical cyclone environment plays a substantial role in
storm development and evolution. With respect to the opera-
tional representation of the environment as scalar quantities,
diagnostic algorithms calculate multiple storm-centered aver-
ages to capture the area that exhibits the greatest influence on
tropical cyclones, in Fig. 1. To generate the storm-centered
representation of the environment, we locate the storm posi-
tion within the model fields, interpolate the model fields to a
polar grid, calculate quantity-specific area averages, and com-
pute additional derived metrics.

a. Storm position

Models do not always place tropical cyclones in the same
location as the best-track database positions. The displace-
ment error is related to the uncertainties in the best-track po-
sition (Torn and Snyder 2012; Landsea and Franklin 2013;
Combot et al. 2020) and issues with resolving the vortex
(Davis 2018). Resolving the tropical cyclone is problematic
for many reanalysis products (Hodges et al. 2017) in that the
reanalysis is run at a coarse resolution compared to the fore-
cast version of the model. Whether for a forecast or a reanaly-
sis, the modeled tropical cyclone center needs to be located
with a vortex tracker algorithm.

For the Global Forecast System and other NCEP models,
the NOAA Geophysical Fluid Dynamics Laboratory (GFDL)
vortex tracker (Marchok 2002, 2021) runs to supply track, in-
tensity, and wind radii information. However, the ERA5
product does not provide tropical cyclone vortex tracker out-
put. Vortex trackers vary in complexity, but follow the GFDL
vortex tracker steps (Marchok 2002, 2021). For an existing
vortex, a position or fix from an outside source or previous
forecast acts as the first guess. Then, the tracker extracts a
subset of the model output fields (e.g., low-level fields for
tropical cyclones) to use with an optimization routine. Be-
cause model output is often not on the native model grid and
the vortex center may be subgrid scale, the vortex center find-
ing procedure requires interpolation to capture the center.
For this step, the GFDL vortex tracker uses multiple itera-
tions of a single-pass Barnes analysis (Barnes 1964) to detect
the subgrid-scale center and to regularize the procedure
across multiple model grid types and resolutions. Since the
center position varies across fields, the tracker averages
the positions to create the final model vortex position. In the

1998 configuration, the GFDL vortex tracker used 700- and
850-hPa relative vorticity, geopotential height, and wind speed
along with mean sea level pressure.

Here, we use the final best-track position from the ATCF
as our initial guess for the location of the tropical cyclone vor-
tex. Then, we subset a selection of reanalysis product output
fields on a 48 3 48 domain. Marchok (2021) shows that
850-hPa geopotential height is the best single field, and that
including other near-surface parameters improves the tracker
performance to be close to a more complex version with
11 different model fields. Additionally, Marchok (2021) finds
that a simple parameter configuration with 850-hPa geopoten-
tial height and mean sea level pressure is sufficient when not
following a vortex in the forecast fields. Since we restart the
center finding for each analysis and do not follow the vortex,
we choose this simple parameter configuration. Because we
are limiting this work to a single model with a consistent res-
olution, we do not use the single-pass Barnes analysis. In-
stead, we use a bivariate cubic spline and a limited-memory
Broyden–Fletcher–Goldfarb–Shanno optimization algorithm
(Byrd et al. 1995) to find the position of the local extrema within
our 483 48 domain. Then, we average the positions of the vortex
center to create our final estimate of the center position.

Using the final best-track position and center position
located in ERA5, we calculate the position offset. Figure 2
shows probability density function diagrams of the position
offsets for intensities (a) between 34 and 63 kt, (b) between
64 and 95 kt, and (c) greater than 95 kt in 10-km bins. The
black curve (labeled “All”) shows the offset for global tropi-
cal cyclones, with the overall median offset being near
25 km}note that an approximate resolution of ERA5 is
31 km. Hodges et al. (2017) show that many reanalysis prod-
ucts prior to ERA5 have a median displacement between
50 and 100 km. Figures 2a–c also include the distribution of
center displacements for North Atlantic (AL; green curve),
eastern North Pacific (EP; purple curve), western North
Pacific (WP; blue curve), north Indian Ocean (IO; orange
curve), and Southern Hemisphere (SH; red curve) basins.
From these panels, the North Atlantic appears to have the
smallest center offsets, which is likely attributable to routine
reconnaissance data in the western portion of the basin. The
Southern Hemisphere exhibits the largest position offsets,
which can likely be attributed to fewer observations in com-
parison to the Northern Hemisphere and best-track informa-
tion not being used in the ERA5 data assimilation system.
The time series of the seasonal mean offset from 1998 to 2019
(Fig. 2d) [shown for all intensities (black curve) and for inten-
sities between 34 and 63 kt (dark blue curve), between 64 and
95 kt (dark purple curve), and greater than 95 kt (dark green
curve) with the one standard deviation (light curves)] shows a
decrease in the mean offset over time from roughly 75 to
50 km and a decrease in the offset standard deviation from
roughly 50 to 25 km. We believe that this is due to the in-
crease of observations available for data assimilation. In com-
parison to the reanalysis products evaluated by Hodges et al.
(2017), ERA5 has smaller displacement error compared to
the best-track database.
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b. Area averaging and metrics

To calculate the tropical cyclone environmental quantities
in SHIPS operational large-scale diagnostics and the SHIPS
developmental dataset, the large-scale diagnostic algorithm
crudely removes the tropical cyclone vortex by subtracting
the area-averaged wind field. However, this vortex removal
process does not remove the associated thermodynamic fields
[for a dynamical approach, see Winterbottom and Chassignet
(2011)]. By removing the vortex, SHIPS can calculate diag-
nostic quantities along the official forecast track or best-track
vortex position. An alternative is to calculate so-called model
diagnostics at the model vortex position (McNoldy et al.
2010)}the approach taken here. While the model diagnostic
approach does not explicitly remove the vortex, the area aver-
aging does eliminate the symmetric component of the wind
field.

Using the model storm center, our next step is to take an
area average of the rectilinear field (first column in Fig. 3 for
Hurricane Harvey at 0000 UTC 26 August 2017 for relative
humidity, temperature anomaly relative to 1500 km from the

center, and wind). Following the approach used in calculating
the SHIPS large-scale diagnostics, we use bilinear interpola-
tion to map the 0.258 3 0.258 ERA5 product output onto a
5-km radius 3 58 azimuth polar grid out to 1500 km from the
model storm center position (shown for Hurricane Harvey in
the second column in Fig. 3 out to 1000 km in radius). Next,
we calculate area averages of the wind, temperature, relative
humidity, geopotential height, divergence, and vorticity. In
the SHIPS developmental dataset (DeMaria et al. 2005), the
diagnostic algorithm calculates quantities over multiple radial
ranges, but only outputs a subset of pressure levels. SHIPS
model diagnostics (McNoldy et al. 2010) stay with a prespeci-
fied area-average for a specific state variable. Here, we create
profiles that are area averaged from 0 to 1000 km at every
pressure level for divergence and relative vorticity. For the
kinematic and thermodynamic fields (i.e., temperature, rela-
tive humidity, geopotential height, and wind), we create verti-
cal profiles with an area average from 0 to 500 km and from
200 to 800 km. Table 1 provides a summary of averaging
areas. Figures 3g and 3h show the 200–800-km area-averaged
temperature and dewpoint temperature calculated from the

FIG. 2. Tropical cyclone position offset between the final best-track position and the center in ERA5 for intensities (a) between 34 and
63 kt, (b) between 64 and 95 kt, and (c) greater than 95 kt in normalized 10-km bins for global (All; black curve), the North Atlantic (AL;
green curve), eastern North Pacific (EP; purple curve), western North Pacific (WP; blue curve), north Indian Ocean (IO; orange curve),
and Southern Hemisphere (SH; red curve) tropical cyclones. (d) The offset from 1998 to 2019 for all intensities (black curve) and intensi-
ties between 34 and 63 kt (dark blue curve), between 64 and 95 kt (dark purple curve), and greater than 95 kt (dark green curve) with plus
or minus one standard deviation (light curves).
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relative humidity on a skew T–logp diagram and 0–500-km
wind on a hodograph as an example of these vertical profiles.

The SHIPS-based diagnostics include two forms of vertical
wind shear: generalized and layered. Deep-layer vertical wind

shear is an example of layered shear and is the difference be-
tween the 200- and 850-hPa wind vectors, and we define it as

Vmag � [(u200 2 u850)2 1 (y200 2 y850)2]1/2, (1)

F IG . 3 . ( a ) –(c) Relative humidity (green to blue shading at 10% intervals), temperature anomaly calculated from the 1500-km mean
profile (grayscale contours at 18C intervals), and wind (barbs; in kt) in a 208 3 208 domain on the 0.258 ERA5 grid centered on Hurri-
cane Harvey at 0000 UTC 26 Aug 2017 for 200, 500, and 850 hPa, respectively. (d)–(f) As in (a)–(c), but out to 1000 km from the storm
center for (d) 200, (e) 500, and (f) 850 hPa after bilinear interpolation to a 5 km in radius and 58 in azimuth cylindrical grid. (g) The skew
T–logp diagram depicts the 200–800-km temperature (red curve) and dewpoint temperature (green curve). (h) A hodograph shows the
0–500-km wind (shaded in dark blue to light blue as a function of pressure) with 200, 500, and 850 hPa labeled and storm motion
vector (yellow arrow), 200–850-hPa mean wind vector (orange arrow) used for the generalized shear, and the deep-layer shear vector
(red arrow).
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where up and yp are the zonal and the meridional components
of the wind at p = 200, 850 hPa. We calculate the direction of
Vmag with

Vdir � cos21 u200 2 u850
Vmag

( )
1

p

2
if (y200 2 y850) , 0,

0 otherwise,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

where Vdir is in radians and then converted to standard mete-
orological heading. We do not calculate other layer shear
quantities}the wind profile data in the TC PRIMED envi-
ronmental file allow for easy calculation of other shear met-
rics. The layer shear quantities miss wind profile variability
that may come from strong winds concentrated in a shallow
layer aloft or middle-tropospheric shear (Elsberry and Jeffries
1996; Velden and Sears 2014). To address this deficiency,
Knaff et al. (2005) define the second form of shear included in
the SHIPS large-scale diagnostics called generalized shear
that removes the column mean wind profile and computes the
mass-weighted sum of the remainder. From Knaff et al.
(2005), the generalized shear is

G � 4
∑I
i�1

wp[(up 2 u)2 1 (yp 2 y)2]1/2, (3)

where i is the pressure level index for pressure values p from
850 to 200 hPa, I is the total number of pressure levels, w is
the mass weight for the pressure level p, and u and y are the
column-averaged zonal and meridional wind. The SHIPS al-
gorithm calculates the shear from 0 to 500 km, the value used
operationally, and from 200 to 800 km. We also calculate the
deep-layer and generalized wind shear with the 200–800-km
zonal and meridional wind profiles and those values are avail-
able in TC PRIMED. For the 0–500-km calculations, Fig. 3h
shows the wind profile (blue curve), the deep-layer shear vec-
tor as a red arrow, the 200–850-hPa mean wind vector used in
the generalized shear as an orange arrow, and the storm mo-
tion vector as a yellow arrow for reference.

Here, we compute the temperature gradient and advection
from the geostrophic thermal wind equation as

TADV � 2u
T
x

2 y
T
y

and (4)

TGRD � T
x

( )2
1

T
y

( )2[ ]1/2
, (5)

where u and y are the average 700- and 850-hPa winds and

T
x

�2
f
R0

u
 lnp

and (6)

T
y

�2
f
R0

y

 lnp
, (7)

where f is the Coriolis parameter as a function of storm center
latitude and R0 is the gas constant. To vertically discretize, we
estimate lnp as ln(p850/p700) and u and y as the differences
between the 700- and 850-hPa winds.

In addition to temperature gradient and advection, we cal-
culate an azimuthal mean environmental temperature profile
at a radius of 1500 km chosen based on Frank (1977) and a
temperature anomaly defined as the temperature profile area-
averaged from 0 to 15 km minus the azimuthal-mean envi-
ronmental temperature profile (shown for a larger area in
the left and middle columns of Fig. 3 to provide an example
of temperature anomaly). Because our focus is on the storm
environment, we will not offer further discussion of the tem-
perature anomaly profile except to note that the ERA5 eye
temperature anomaly will be smaller than the anomaly of
the storm because this cannot be resolved; Davis (2018) dis-
cusses the impact of model resolution on the intensity and
radius of maximum wind.

To assess a measure of convective instability, we use the
temperature and moisture environmental profiles. Since
measures such as convective available potential energy do not
work in the tropics (Zipser 2003), we compute a density-
weighted convective mass flux from DeMaria (2009). DeMa-
ria (2009) uses an entraining plume model after Simpson and
Wiggert (1969) combined with the thermodynamics and bulk
microphysics of Ooyama (1990) to include the water and ice
phase condensate weight. As a summary of this and the other
area-averaged variables and derived metrics discussed in this
section, we provide brief descriptions in Table 1 and detailed
descriptions in Tables S1–S4 in the online supplemental
material.

c. Storm position and shear metric error

An erroneous tropical cyclone center selection in the rean-
alysis fields will result in errors in the large-scale environmen-
tal quantities. For most quantities, this effect will be small
(e.g., temperature fields in the tropics). However, the vertical
wind shear metric calculation assumes that our approach
identifies a correct storm center position and that this center
position represents the storm at all vertical levels. Position
locating issues or a lack of vertical alignment might result in
erroneously high values because the azimuthal averaging
would not completely remove the symmetric component of
the wind field and some storm-induced shear would remain in
the azimuthal average.

To estimate the errors in the wind shear quantities, we re-
process the ERA5 product fields by adding a random pertur-
bation to the tropical cyclone center position. To perturb the
center, we sample from a Gaussian distribution with a stan-
dard deviation of 50 km, which is the forecaster estimate of
best-track position error for satellite-only center fixing in the
North Atlantic (Landsea and Franklin 2013). With this ap-
proach over the TC PRIMED period from 1998 to 2019, the
mean absolute deviation is 1.3 and 0.8 kt and the standard
deviation is 0.8 and 0.5 kt for the 0–500- and 200–800-km
deep-layer vertical wind shear, respectively. The mean abso-
lute deviation for the 0–500- and 200–800-km vertical wind
shear is 8.2% and 4.7% of the mean shear values, 15.9 and
17.1 kt respectively, in the ERA5 diagnostic quantities.
Figure 4 shows (a) the distribution of the randomly generated
position offsets between the centers used for calculating the
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diagnostic quantities from ERA5 for TC PRIMED in gray
bars overlaid with the Gaussian distribution in the black
curve and the perturbed centers and the 25th and 75th percentiles
and median deviation for the (b) 0–500-km (blue curves) and
200–800-km (orange curves) deep-layer vertical wind shear
as a function of offset distance. The relatively small devia-
tions in the vertical wind shear metrics are likely a result of
model resolution being approximately 31 km and interpo-
lated to a 0.258 output grid. The sensitivity to the position
offset in mesoscale models is likely larger and should be eval-
uated before assuming that the result for ERA5 applies more
broadly.

As a note for applications using TC PRIMED when a cen-
ter might naturally be ill defined such as during extratropical

transition or for tropical storms and depressions, the opera-
tional SHIPS algorithm switches from the 0–500-km to the
200–800-km deep-layer vertical wind shear quantity when the
storm position is unknown as a strategy for mitigating center
position issues. As shown by Fig. 4, position-offset-related
deviations are smaller for the 200–800-km vertical wind shear.

4. ERA5 and SHIPS

In contextualizing the tropical cyclone environment for the
National Hurricane Center, Central Pacific Hurricane Center,
and Joint Typhoon Warning Center statistical–dynamical
guidance, the tropical cyclone research community often lever-
ages the SHIPS large-scale diagnostic quantities. In TC PRIMED,
we calculate the model diagnostics from the ERA5 products to
provide more metrics for tropical cyclone applications from a
single source. With the SHIPS developmental dataset being
the tropical cyclone research communities’ main source of en-
vironmental data, we compare the diagnostics calculated from
over 47 300 synoptic periods to estimate uncertainty.

To quantify the differences between the two sets of diag-
nostics, we focus on the thermodynamic and kinematic
profiles and calculate the median and the 25th and 75th per-
centiles for the quantities and differences. For kinematic
quantities, Fig. 5 shows these comparisons of ERA5 (dark
bars) with SHIPS (light bars) for all (gray) and individual
basins [North Atlantic (AL), green; eastern North Pacific
(EP), purple; western North Pacific (WP), blue; north Indian
Ocean (IO), orange; Southern Hemisphere (SH), red] for the
1998–2019 seasons. Figures 5a and 5b show values and differ-
ences for the 200–850-hPa deep-layer vertical wind shear
(SHDC), generalized wind shear (SHGC), and 0–500-km 200-hPa
zonal (U20C) and meridional (V20C) wind. The interquar-
tile range for deep-layer shear (SHDC) from both datasets
is 9–21 kt with a bias for ERA5 relative to SHIPS between
0.0 and 0.5 kt. The uncertainty of the layered vertical wind
shear in ERA5 caused by the center position is within this
uncertainty range. Generalized shear (SHGC) has more
variability with a range from 17 to 36 kt. ERA5 shows a
1.0–1.5-kt bias compared to SHIPS. Meridional and zonal
winds range from 215 to 15 kt with small biases. For the
vertical wind shear metrics, the North Atlantic shows the
smallest range in variations between SHIPS and ERA5, and
the Southern Hemisphere exhibits the largest variations.

For thermodynamic quantities, Figs. 5c and 5d show the
values and differences for the following 200–800-km relative
humidity (%) diagnostics: 1000 hPa (R000), 700–850 hPa
(RHLO), 500–700 hPa (RHMD), and 300–500 hPa (RHHI).
ERA5 shows a 5% moisture bias at 1000 hPa with values
ranging from 75% to 85% while SHIPS is drier with values
ranging from 68% to 80%. This signal reverses for the
700–850-, 500–700-, and 300–500-hPa layered relative humid-
ity quantities with ERA5 being 2% drier than the SHIPS de-
velopmental dataset. Figures 5e and 5f show the temperature,
with Fig. 5e presented as an anomaly relative to the North
Atlantic July–October mean atmosphere (Dunion 2011) with
values of 26.48, 43.38, 55.28, and 67.68C for 1000, 250, 200, and
150 hPa, respectively. Overall, temperature shows a small

FIG. 4. (a) The center position offset from the centering finding
technique and random perturbations as a function of radius (gray
bars) and a Gaussian distribution (black curve) with a 50-km stan-
dard deviation. (b) The median absolute deviations (dark curves)
and the 25th and 75th percentiles (light curves) between the deep-
layer vertical wind shear calculated between the two centers for
the 0–500-km (blue curves) and 200–800-km (orange curves) azi-
muthal averages.
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range of 18–28C. For the 1000-, 250-, 200-, and 150-hPa 200- to
800-km temperature, ERA5 has a warm bias with a median bias
of 1.28C at 1000 hPa and near 1.98C at 250, 200, and 150 hPa.
Table 2 provides this uncertainty information from the dif-
ferences between ERA5 and SHIPS. Through performing a

paired-difference Student’s t test, we reject the null hypothe-
sis that the mean differences are zero at the statistical signifi-
cance level of a = 0.01 for all metrics except the 200–850-hPa
deep-layered vertical wind shear (SHDC). For SHDC, we
fail to reject the null hypothesis.

FIG. 5. A comparison between ERA5 (dark bars) and SHIPS (light bars) diagnostics for all (gray bar) and individual basins [North
Atlantic (AL), green; eastern North Pacific (EP), purple; western North Pacific (WP), blue; north Indian Ocean (IO), orange; Southern
Hemisphere (SH), red] from the 1998–2019 season, showing (top) the median and the 25th and 75th percentiles of diagnostic quantities
and (bottom) the difference between ERA5 and SHIPS. (left) 0–500-km wind-based (kt) diagnostics: deep-layer (SHDC) and generalized
(SHGC) wind shear and 200-hPa zonal (U20C) and meridional (V20C) wind. (center) 200–800-km relative humidity (%) diagnostics:
1000 hPa (R000), 700–850 hPa (RHLO), 500–700 hPa (RHMD), and 300–500 (RHHI). (right) 200–800-km temperature (8C) diagnostics:
1000 hPa (T000), 250 hPa (T250), 200 hPa (T200), and 150 hPa (T150). Note that (e) is offset with the mean sounding in Dunion (2011) us-
ing the values of 26.48, 43.38, 55.28, and 67.68C for 1000, 250, 200, and 150 hPa, respectively.
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To provide season-to-season variability, Fig. 6 shows the
same quantities now presented as a seasonal time series with-
out the basin perspective and the mean and standard devia-
tion rather than the median and the 25th and 75th percentiles.
For all quantities, the same general pattern applies in that the
mean deviation between ERA5 and SHIPS remains fairly sta-
ble over time, but the standard deviation decreases slightly.
The most notable change in time is in low-level relative hu-
midity with ERA5 becoming moister in time and having no
bias relative to SHIPS by 2010. We expect systematic biases
in the SHIPS developmental dataset due to using both CFSR
and the operational version of the GFS, which will contain in-
consistencies due to routine operational model updates. How-
ever, the relative stability of the mean differences across the
diagnostic quantities suggests that the definitions are relatively
robust to subtle changes or that the models resolve these quan-
tities at these scales. The variability in the standard deviation
could be a result of systematic biases or interannual variability.

For the derived metrics, we assess generalized vertical wind
shear [Eq. (3), as shown in the last section], convective mass
flux from the entrained plume model with ice and liquid
phases and 700–850-hPa temperature advection [Eq. (4)] and
gradient [Eq. (5)] from the geostrophic thermal wind equation.

We compare the derived diagnostic metrics because these
tend to enhance subtle differences across multiple layers in
the vertical profile. Figure 7 shows probability density func-
tion plots of the four metrics for the individual basins with
least squares regression lines for the North Atlantic (AL,
green), eastern North Pacific (EP, purple), western North Pacific
(WP, blue), north Indian Ocean (IO, orange), and Southern
Hemisphere (SH, red). The SHIPS and ERA5 generalized shear
values (Fig. 7a) are highly correlated with little spread. However,
the deviations in shear between ERA5 and SHIPS are larger for
low and high shear values in the Southern Hemisphere basin
than in the Northern Hemisphere tropical cyclone basins. The
convective mass flux calculated using the 200–800-km-averaged
temperature and relative humidity shows that ERA5 has less
convective instability than SHIPS. The temperature gradient
and advection (Figs. 7c and 7d) show that the two quantities are
in relative agreement between the two models, but suggest that
the low-level winds have higher variability than the 200-hPa
wind component as shown in Fig. 5a.

5. Comparison to observations

Comparing two versions of diagnostics quantities does not
provide context for how well the metrics or model represent

TABLE 2. The mean m and standard deviation s of the bias in the second and third columns. The quantity sample standard
deviation provides scaled versions of these values in parentheses. The remaining columns provide the 25th, 50th (median), and 75th
percentiles in the fourth, fifth, and sixth columns, and the m and s of ERA5 (roman) and SHIPS (italics). The quantity identifiers in
the first column represent the 200–850-hPa deep-layer vertical wind shear (SHDC), generalized wind shear (SHGC), and 0–500-km
200-hPa zonal (U20C) and meridional (V20C) wind, 200–800-km relative humidity (%) diagnostics for 1000 hPa (R000), 700–850 hPa
(RHLO), and 500–700 hPa (RHMD), 300–500 (RHHI), as well as the 200–800-km temperature (8C) diagnostics: 1000 hPa (T000),
250 hPa (T250), 200 hPa (T200), and 150 hPa (T150). Note that for all metrics except SHDC, a paired-difference Student’s t test
yields a rejected null hypothesis at a significance level of a = 0.01.

Quantity

Bias Percentile

m sm s 25th 50th 75th

SHDC (kt) 0.02 (0.09) 5.59 (0.56) 8.2 13.1 19.6 14.9 9.4
8.0 12.9 19.3 14.9 10.0

SHGC (kt) 1.17 (0.26) 6.02 (0.52) 19.1 25.0 32.0 27.1 11.0
17.7 23.5 31.3 25.9 11.8

U20C (kt) 0.12 (0.01) 4.74 (0.33) 211.3 23.7 6.1 21.4 14.2
211.3 24.0 5.7 21.6 14.4

V20C (kt) 20.22 (20.02) 4.80 (0.43) 25.7 0.7 7.2 1.1 11.3
25.3 0.9 7.3 1.3 11.1

R000 (%) 5.09 (2.02) 3.04 (0.68) 79.7 82.1 84.1 81.4 4.4
75.0 77.0 79.0 76.3 4.6

RHLO (%) 22.05 (0.38) 4.30 (0.55) 66.7 72.3 76.8 71.2 7.4
69.0 74.0 79.0 73.2 8.0

RHMD (%) 22.68 (0.19) 5.16 (0.42) 51.8 60.7 68.7 60.0 11.6
54.0 64.0 72.0 62.5 12.6

RHHI (%) 20.78 (0.19) 6.00 (0.39) 44.7 55.2 65.7 54.9 14.3
45.0 56.0 67.0 55.7 15.2

T000 (8C) 1.28 (0.67) 0.54 (0.30) 25.1 26.0 26.8 25.8 1.7
23.7 24.8 25.7 24.6 1.8

T250 (8C) 1.97 (0.99) 0.53 (0.27) 240.7 239.6 238.5 239.7 2.0
242.7 241.6 240.5 241.6 2.0

T200 (8C) 1.92 (1.09) 1.77 (0.27) 253.0 252.0 250.8 251.8 1.8
254.9 253.9 252.7 253.8 1.8

T150 (8C) 0.99 (1.00) 1.79 (0.27) 267.9 267.0 265.7 266.6 1.8
269.6 268.8 267.7 268.4 1.8

J OURNAL OF CL IMATE VOLUME 353556

Unauthenticated | Downloaded 11/11/22 09:20 PM UTC



and resolve observed tropical cyclones. To understand the
synoptic-scale representation of ERA5, we provide uncer-
tainty for the model fields to the kinematic and thermody-
namic diagnostic quantities to dropwindsondes.

To understand the kinematic and thermodynamic represen-
tation of the tropical cyclone environment in ERA5, we use
G-IV dropwindsonde data. Because dropwindsondes have
more degrees of freedom than ERA5 in sampling the atmo-
sphere at 2 Hz and do not represent a large-scale quantity, we
process both datasets to create a realistic comparison that of-
fers insight into any potential systematic biases in ERA5 and
capture the spread or uncertainty in diagnostic quantities. To
do this, we apply a vertical smoothing to the dropwindsondes
to be more indicative of the vertical resolution of the ERA5
pressure-level product, conduct a storm-relative analysis by inter-
polating ERA5 to the storm-relative radius and azimuth of the
dropwindsonde launch, and area-average profiles and diagnostic
quantities for flights where dropwindsondes encircle a storm.

To create an ERA5–dropwindsonde composite analysis, we
smooth the dropwindsonde observations in the vertical with a

Gaussian weighted-averaging technique [i.e., the first pass in
the analysis in Barnes (1964)]. We calculate the Gaussian
weighted average with

gk �

∑M
m�1

wmfm∑M
m�1

wm

, (8)

where k is a grid point representing a fixed pressure surface,
p, ranging from 100 to 1000 hPa at 50-hPa intervals with the
addition of 925 and 975 hPa, g is the value of the Gaussian
weighted average at k, m is a dropwindsonde measurement,
M is the total number of dropwindsonde measurements, f is
the observed state variable at m, and w is the weight assigned
to m as a known function of vertical displacement, rm. Here,
we define the vertical displacement of the measurement m
and the grid point k in terms of the pressure p. We define the
weights as

FIG. 6. Time series showing the mean (thick curve) and 6one standard deviation (thin curves) of the differences between ERA5 diag-
nostics and the SHIPS developmental dataset from the 1998–2019 season. (a) Wind-based (kt) diagnostics: 200–850-hPa deep-layer verti-
cal wind shear (SHDC; green), generalized wind shear (SHGC; blue), and 0–500-km 200-hPa zonal (U20C; purple) and meridional
(V20C; orange) wind. (b) 200–800-km relative humidity (%) diagnostics for 1000 hPa (R000; orange), 700–850 hPa (RHLO; green),
500–700 hPa (RHMD; blue), and 300–500 (RHHI; purple). (c) 200–800-km temperature (8C) diagnostics for 1000 hPa (T000; orange),
250 hPa (T250; green), 200 hPa (T200; blue), and 150 hPa (T150; purple).
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wm � exp 2
r2m
r2e

( )
if r # rc,

0 if r . rc,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (9)

where re is the e-folding displacement and rc is the critical
value of the displacement in which a measurement influences
the weighted average. We approximate the critical value
as rc ≈


20r2e

√
, which is where wm = 2 3 1029. Here, we select

re = 2.5 hPa, which means that rc ≈ 11 hPa.
After processing, we interpolate the ERA5 product fields to

the radius and azimuth location and time of the dropwindsonde

launch. While ERA5 output is available hourly, we only use the
synoptic hour analyses from TC PRIMED. We take the fields
from the two nearest synoptic times and apply weighting using

f (t) � f1(t1)S
t 2 t1
Dt

( )
1 f2(t2)S

t2 2 t
Dt

( )
, (10)

where t1 # t # t2, Dt = t2 2 t1 = 6 h, S(s) = 1 2 3s2 1 2s3 is the
basic cubic Hermite shape function that satisfies S(0) = 1 and
S(1) = 0 as well as S′(0) = S′(1) = 0, and f1(t1) and f2(t2) are
the values of the ERA5 field at the specific location for times
t1 and t2, respectively. For a location in space for the fields

FIG. 7. Probability distribution (frequency shaded) of diagnostic metrics calculated from the area-averaged SHIPS
developmental dataset (abscissa) and ERA5 (ordinate) for (a) 0–500-km generalized wind shear, (b) 200–800-km con-
vective mass flux calculated from temperature and relative humidity with an entrained plume model, (c) 0–500-km
700–850-hPa temperature gradient, and (d) 0–500-km 700–850-hPa temperature advection. Each panel shows the least
squares regression for the North Atlantic (AL; green curve), eastern North Pacific (EP; purple curve), western North
Pacific (WP; blue curve), north Indian Ocean (IO; orange curve), and Southern Hemisphere (SH; red curve). Each
panel shows the one-to-one line (thin black curve) and r, the Pearson correlation coefficient for all basins.

J OURNAL OF CL IMATE VOLUME 353558

Unauthenticated | Downloaded 11/11/22 09:20 PM UTC



f1(t1) and f2(t2), we interpolate the values of the ERA5 fields
to the dropsonde radius and azimuth location using a bivari-
ate cubic spline. This smooth representation of the ERA5
fields will not reflect the values at the hourly analyses.

Figure 8a shows the frequency of dropwindsonde locations
binned by 100-km radius and 458 azimuth. The remaining pan-
els in Fig. 8 show cumulative frequency by altitude diagrams
of the difference between ERA5 and the dropwindsondes for
the 200–800-km (b) temperature and (c) relative humidity
and for the 0–500-km (d) zonal and (e) meridional wind com-
ponents as well as the (f) wind speed. While all fields are rela-
tively low biased, a notable exception to the low bias is in the
upper-level relative humidity where the moisture greatly ex-
ceeds observed values (Fig. 8c). For dropwindsondes, the fall
speed and the slow response rate of the moisture sensor in
cold temperatures of the upper-troposphere may contribute
to the moist bias. But in other tropical regions, Ciesielski et al.
(2014) shows the significant upper-tropospheric moist bias for

the Global Forecast System and Integrated Forecast System
analyses as compared with radiosonde observations. In the
lower troposphere below the trade inversion, the temperature
field has a 20.58C bias (Fig. 8b) that seems to be related to
the moist bias shown in the relative humidity field. Ciesielski
et al. (2014) shows a similar moisture bias in the boundary
layer from the Integrated Forecast System in the north Indian
Ocean. While not shown here, the ERA5 ocean surface tem-
perature is consistent with the sea surface temperature prod-
ucts used in the SHIPS developmental dataset. This leads us
to believe that the representation of boundary layer processes
and trade inversion is contributing to these biases in the lowest
levels of the modeled atmosphere around tropical cyclones.

To assess how these biases translate to the model diagnostic
quantities, we conduct a similar analysis to the individual
dropwindsonde composite analysis. However, we limit our anal-
ysis to G-IV flights that surround the storm. Here, we define
“surround” to mean that there is at least one dropwindsonde

FIG. 8. Storm-relative comparison of the differences between ERA5 product output and nearly 7500 G-IV dropwindsonde observations
during the 1998–2019 seasons released primarily in the North Atlantic with some releases in the central and eastern North Pacific. (a) The
100-km radius and 458 azimuth binned frequency of dropwindsonde launch locations out to 800 km relative to the storm center. The re-
maining panels are cumulative frequency by altitude diagrams that show shading of the binned frequency and the median (thick black
curve) and the 25th and 75th percentiles of diagnostic quantities (thin black curves) for (b) temperature (in 8C), (c) relative humidity
(in %), (d) zonal wind (in m s21), (e) meridional wind (in m s21), and (f) wind speed (in m s21).
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per storm-centered octant (458) within 800 km}a criterion that
limits our analysis to 188 flights. We average the dropwind-
sondes in each octant and take the average of the octants to
generate vertical profiles of temperature, relative humidity, and
wind. While the dropwindsonde profiles under sample the areas
represented by the model diagnostics, we repeat the same anal-
ysis in the paragraph above. Here, we use Eq. (10) to interpo-
late the ERA5 vertical profiles to the mean launch time of
the dropwindsonde profile. Figure 9 shows the median and
the 25th and 75th percentiles for the 200–800-km tempera-
ture and relative humidity and 0–500-km (c) zonal and
(d) meridional wind components. Comparing Figs. 8 and 9,
the deviations are largely the same, except for a 21 m s21

zonal wind component bias in ERA5 that is not present in
the individual dropwindsonde composite analysis. The bias
increase in the zonal wind component shown in Fig. 9c are
largely due to the subset representing midlatitude interactions.
For the surrounding cases, we conduct a paired, two-sided Stu-
dent’s t test. We note that the kinematic and thermodynamic
quantities are spatially correlated in the vertical and covarying.
While the fields are not statistically independent, we useWalker’s
criterion, a stricter threshold for evaluating significance, to reduce
the number of false rejections of the null hypothesis that the dis-
tribution of the dropwindsonde and ERA5 profiles at each pres-
sure level are the same (Katz 2002; Wilks 2016). Walker’s
criterion is defined as aWalker � 12 (12 a0)1/N0 � 1:3223 1024,
where the overall significance level is a0 = 0.01, and the total

number of true null hypotheses is N0 = 76 (19 levels and four
fields). Figure 9 shows where we have rejected the null hypothe-
sis with a red square and Table 3 shows the mean and standard
deviation of the ERA5 profile and the bias relative to the
dropwindsondes.

With diagnostic profile biases in mind, we calculate diag-
nostic quantities from the dropwindsonde profiles to compare
with ERA5 and SHIPS. The left column of Fig. 10 shows scat-
terplots of the deep-layer and generalized shear calculated us-
ing (1) and (3) with ERA5 in blue and SHIPS in orange. The
shear quantities for ERA5 (SHIPS) are highly correlated with
Pearson correlation coefficients, r, of 0.85 (0.85) and 0.81
(0.82), respectively. For ERA5, the shear quantities exhibit a
mean deviation of 20.4 and 0.0 kt, and standard deviations of
3.6 and 4.5 kt, respectively. SHIPS shows a positive bias in
generalized shear in comparison to the dropwindsondes and
ERA5, which is within the distribution shown of difference in
Fig. 5 but with an opposite signal with respect to the median.
The center column of Fig. 10 shows temperature gradient and ad-
vection with r = 0.56 (0.55) and 0.61 (0.65) for ERA5 (SHIPS).
For the ERA5 temperature gradient comparison, the mean and
standard deviation are 20.29 3 1026 and 1.02 3 1026 8C m21.
For the ERA5 temperature advection comparison, the mean and
standard deviation are 0.123 1025 and 0.773 1025 8C s21. With
shear and temperature gradient and advection using the wind
fields, the metrics are much more sensitive to the profile biases at
low levels than the larger wind speeds near the tropopause.

FIG. 9. A comparison of mean diagnostic profiles from ERA5 to 188 G-IV flights during the 1998–2019 North Atlantic and central and
eastern North Pacific seasons. The flights have at least one dropwindsonde in each octant (458) around and within 800 km of a time-
interpolated storm position from which a mean profile is calculated from the octant average. Each panel shows the median (thick black
curve) and the 25th and 75th percentiles of diagnostic quantities differences (thin gray curves) for the 200–800-km area-averaged
(a) temperature (in 8C) and (b) relative humidity (in %) as well as the 0–500-km area-averaged (c) zonal and (d) meridional compo-
nents of the wind (in m s21). The red squares denote pressure levels where individual paired, two-sided Student’s t tests with p values
less than aWalker = 1.3223 1024 (i.e., we reject the null hypothesis).
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The right panel of Fig. 10 shows the convective mass flux
for (a) the 0–500-km and (b) 200–800-km temperature and
relative humidity profiles. The Pearson correlation coeffi-
cients between ERA5 (SHIPS) are 0.60 (0.41) and 0.56 (0.42),
respectively. The convective mass flux from the ERA5 diag-
nostics has limited values on the upper end, suggesting that
the model diagnostics may poorly resolve the environmental
convective instability in comparison to the observations. This
may be caused by the cold bias in the boundary layer shown
in Figs. 8b and 9a. The convective mass flux in the SHIPS di-
agnostics has a similar slope to ERA5, but SHIPS captures
higher convective mass flux values and shifts the distribution
upward. This would indicate that SHIPS is more convectively
favorable than ERA5. However, the convective mass flux in
SHIPS also exhibits a weaker correlation to the dropwind-
sondes. While not shown here for other moisture and tempera-
ture quantities, the biases between ERA5 and SHIPS shown in
Fig. 5 extrapolate to SHIPS and dropwindsondes (e.g., SHIPS
has a positive moisture bias for RHLO, RHMD, and RHHI).

6. Discussion

Coupling the tropical cyclone with the large-scale environ-
ment has yielded and will continue to yield meaningful insight
into stages of tropical cyclone evolution. To investigate tropi-
cal cyclone environmental measures, we discuss calculating
the different variations with ERA5 that fall under the heading
of SHIPS large-scale diagnostics. Here, we choose the so-
called SHIPS model diagnostics variation to generate area-
averaged vertical profiles of temperature, relative humidity,
geopotential height, divergence, and relative vorticity as well
as to calculate single-value quantities and diagnostics metrics

such as shear, temperature gradient and advection, and con-
vective mass flux for global tropical cyclones that occurred
during the 1998–2019 seasons. ERA5 supplies a consistent
model at a fixed resolution, which is why we opt for the rean-
alysis when constructing TC PRIMED. However, a single
source for diagnostic information can have systematic biases
and does not address how well the reanalysis resolves diag-
nostic information. Also, these biases potentially impact how
best to combine the information in TC PRIMED into an in-
sightful analysis. Razin et al. (2022) provide an example use
case for TC PRIMED by leveraging the shear vector to create
a composite analysis of convection and precipitation that pro-
duces a result consistent with other tropical cyclone literature.
However, new insight into tropical cyclone evolution may not
benefit from prior literature, so ERA5’s ability to resolve the
tropical cyclone environment needs to be considered.

To understand the impact of these biases on resolving the
tropical cyclone environment, we compare ERA5-based
model diagnostics to the SHIPS developmental dataset. This
comparison highlights that the kinematic fields (i.e., wind) do
deviate}especially for the generalized wind shear in the
Southern Hemisphere}but are relatively low biased. And, while
position errors may cause some deviations, the center position in-
duced uncertainty is within the uncertainty between SHIPS and
ERA5. In the thermodynamic fields, we see that ERA5 has large
biases relative to the SHIPS developmental dataset with ERA5
showing colder temperatures and higher moisture in the bound-
ary layer and opposite biases in the free atmosphere. The differ-
ences in the thermodynamic fields are large relative to kinematic
quantities, which translate to ERA5 being less convectively ac-
tive than the source models used for SHIPS.

TABLE 3. The vertical profiles of temperature, relative humidity, and u and y wind components for ERA5 for the 188 G-IV flights
surrounding the tropical cyclone from 1998 to 2019 in the North Atlantic and eastern and central North Pacific. The mean and
standard deviation (in parentheses) for ERA5 (roman) and the difference between ERA5 and the mean dropwindsondes (italics).

Pressure (hPa) Temperature (8C) Relative humidity (%)

Wind

u (m s21) y (m s21)

200 252.2 (1.2) 71.9 (11.2) 21.44 (4.20) 3.62 (4.25)
20.3 (0.5) 52.7 (15.4) 21.58 (2.05) 0.35 (1.87)

250 240.2 (1.2) 61.6 (11.3) 21.56 (3.77) 3.03 (4.11)
20.5 (0.5) 16.1 (9.3) 21.70 (1.82) 0.40 (2.00)

300 230.4 (1.1) 52.6 (12.0) 21.73 (3.58) 2.21 (3.83)
20.8 (0.6) 8.3 (9.0) 21.47 (1.77) 0.36 (1.96)

400 215.6 (0.9) 46.9 (11.8) 22.33 (3.22) 1.73 (2.76)
20.6 (0.5) 21.5 (9.3) 21.59 (1.74) 0.44 (1.79)

500 25.4 (0.8) 50.1 (11.2) 23.00 (2.97) 2.15 (2.18)
20.4 (0.4) 28.3 (9.6) 21.54 (1.64) 0.26 (1.58)

600 2.4 (0.7) 58.6 (9.9) 23.42 (2.84) 2.72 (1.97)
20.4 (0.4) 27.3 (8.8) 21.30 (1.52) 0.16 (1.61)

700 9.7 (0.6) 61.9 (7.4) 23.98 (2.74) 3.10 (2.05)
20.2 (0.3) 25.1 (6.5) 21.23 (1.51) 0.06 (1.55)

850 18.2 (0.8) 73.9 (4.5) 24.82 (2.75) 3.08 (2.17)
20.1 (0.4) 23.6 (5.4) 21.35 (1.52) 20.10 (1.60)

925 21.9 (1.1) 81.1 (4.4) 25.25 (2.61) 2.21 (2.12)
20.1 (0.4) 21.8 (4.6) 21.41 (1.53) 20.26 (1.38)

1000 26.6 (1.0) 79.9 (3.0) 24.24 (1.81) 0.85 (1.53)
20.3 (0.6) 20.1 (4.1) 20.41 (1.44) 0.09 (1.27)
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While the comparison between two model-based diagnos-
tics is useful, it does not address our question about how
well ERA5 captures the synoptic-scale supporting structure
around tropical cyclones. To quantify biases, we use drop-
windsondes, which are mainly available in the North Atlantic
with occasional releases in the eastern and central North
Pacific. In conducting the analysis two ways with individual
and storm-surrounding dropwindsonde profiles, we see that
ERA5 is relatively low biased in kinematic and thermody-
namic fields. Across fields, the trade inversion stands out with
biases in the boundary layer. In the upper troposphere, the
model shows a moist bias aloft that Ciesielski et al. (2014) has
documented in the operational Integrated Forecast System
and Global Forecast System. In looking at derived quantities,
ERA5-based shear diagnostic metrics compare well to obser-
vations. The temperature gradient and advection}low-level
wind-derived metrics}show larger biases, suggesting that the
vertical variations of low-level winds are not as accurate.
However, SHIPS also shows a similar signature, which may
suggest that the resolution of global models cannot resolve the
observed variability. For temperature and relative humidity,
we assess convective instability with an entrained plume

model, and we note that the large-scale tropical cyclone
environment in ERA5 misses the upper end of the convec-
tive instability distribution. This may be caused by the cold
bias in the boundary layer. The combination of the cold,
moist boundary layer and dry free atmosphere creates an en-
vironmental pattern similar to the impact of daytime-only
solar radiation experiments on the tropical free atmosphere
(Melhauser and Zhang 2014). While ERA5 is less convec-
tively active, the convective mass flux calculated from ERA5
has a higher correlation to observations than the SHIPS de-
velopmental dataset, which suggest that the convective activ-
ity is more of a systematic bias.

Unfortunately, our comparison of ERA5 to the Gulfstream
IV-SP dropwindsondes is confined primarily to the North
Atlantic with some eastern and central North Pacific cases. The
North Atlantic has a greater density of observations, which
does make it challenging to extrapolate our North Atlantic
findings globally. The comparison between ERA5 and SHIPS
does however suggest that other basins, and particularly the
Southern Hemisphere, show larger variability. This raises some
questions. Is the observed large-scale environmental variabil-
ity related to the number and quantity of observations? Are

FIG. 10. Scatterplots of diagnostic metrics calculated from the area-averaged dropwindsonde (abscissa) and model-based diagnostics
(ordinate) for (a) 0–500-km deep-layer vertical wind shear, (b) 0–500-km generalized wind shear, (c) 0–500-km 700–850-hPa temperature
gradient, (d) 0–500-km 700–850-hPa temperature advection, and convective mass flux calculated from temperature and relative humidity
with an entrained plume model for (e) 0–500 km and (f) 200–800 km. Each panel shows the one-to-one line (thin black curve), least
squares regression (thick blue curve for ERA5 and orange curve for SHIPS) with r, the Pearson correlation coefficient, and scatter points
(light blue for ERA5 and light orange for SHIPS).
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the number of observations available in some basin inadequate
for resolving tropical cyclones in reanalyses? In addition, the
analysis shows that there is greater global interannual variability,
which could be related to true interannual variability or may re-
flect biases associated with upgrades of the GFS analyses and
mix of GFS analyses and CFSR used in creating the SHIPS de-
velopmental dataset. We hope to determine the causes of this
environmental variability in future work.

Using large-scale diagnostic metrics calculated from a single
source, like ERA5, is important because we can identify and
isolate the impact of systematic biases. However, it is equally
important to know the uncertainty in the environmental met-
rics. Here, we framed quantifying this as “Does ERA5 mark a
new era for resolving the tropical cyclone environment?” As
shown, the ERA5 product performance in resolving the syn-
optic-scale supporting structure is diagnostic metric specific,
which is important to consider when conducting metric-
dependent analyses as demonstrated by the shear-relative
composites in section 4 of Razin et al. (2022). Through this
analysis, we attempt to capture and convey the ability of
ERA5 to resolve the large-scale environment by providing
uncertainty context to aid users of TC PRIMED or other
sources of diagnostic metrics.
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Vömel, H., K. Young, and T. Hock, 2016: NCAR GPS dropsonde
humidity dry bias. NCAR Tech. Note NCAR/TN-5311STR,
8 pp, https://doi.org/10.5065/D6XS5SGX.

Wilks, D. S., 2016: “The stippling shows statistically significant grid
points”: How research results are routinely overstated and over-
interpreted, andwhat to do about it.Bull. Amer.Meteor. Soc., 97,
2263–2273, https://doi.org/10.1175/BAMS-D-15-00267.1.

Winterbottom, H. R., and E. P. Chassignet, 2011: A vortex isola-
tion and removal algorithm for numerical weather prediction
model tropical cyclone applications. J. Adv. Model. Earth
Syst., 3, M11003, https://doi.org/10.1029/2011MS000088.

Zipser, E. J., 2003: Some views on “hot towers” after 50 years of
tropical field programs and two years of TRMM data. Cloud
Systems, Hurricanes, and the Tropical Rainfall Measuring Mis-
sion, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58,
https://doi.org/10.1007/978-1-878220-63-9_5.

J OURNAL OF CL IMATE VOLUME 353564

Unauthenticated | Downloaded 11/11/22 09:20 PM UTC

http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf
http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/2009MWR2679.1
https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2
https://doi.org/10.1175/JCLI-D-16-0557.1
https://doi.org/10.1214/ss/1023799000
https://doi.org/10.1214/ss/1023799000
https://doi.org/10.1175/WAF863.1
https://doi.org/10.1175/WAF863.1
https://doi.org/10.1175/WAF-D-18-0012.1
https://doi.org/10.1175/WAF-D-18-0012.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/2008MWR2268.1
http://ams.confex.com/ams/pdfpapers/37628.pdf
http://ams.confex.com/ams/pdfpapers/37628.pdf
https://doi.org/10.1175/JAMC-D-20-0175.1
https://ams.confex.com/ams/pdfpapers/167993.pdf
https://doi.org/10.1175/JAS-D-13-0116.1
https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2
https://doi.org/10.2151/jmsj1965.60.1_369
https://doi.org/10.1175/1520-0469(1990)047<2580:ATFFMT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1990)047<2580:ATFFMT>2.0.CO;2
https://rammb.cira.colostate.edu/research/tropical_cyclones/ships/
https://doi.org/10.25921/dmy1-0595
https://doi.org/10.1175/BAMS-D-21-0052.1
https://doi.org/10.1175/BAMS-D-21-0052.1
https://doi.org/10.1175/MWR-D-18-0157.1
https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2
https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2
https://doi.org/10.1175/2008WAF2007109.1
https://doi.org/10.1175/2008WAF2007109.1
https://doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2
https://doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2
https://doi.org/10.1175/MWR-D-15-0313.1
https://doi.org/10.1175/MWR-D-15-0313.1
https://doi.org/10.1175/WAF-D-11-00085.1
https://doi.org/10.1175/WAF-D-11-00085.1
https://doi.org/10.1175/WAF-D-13-00147.1
https://doi.org/10.5065/D6XS5SGX
https://doi.org/10.1175/BAMS-D-15-00267.1
https://doi.org/10.1029/2011MS000088
https://doi.org/10.1007/978-1-878220-63-9_5

