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ABSTRACT: The radius of maximum wind (Rmax) in a tropical cyclone governs the footprint of hazards, including dam-
aging wind, surge, and rainfall. However, Rmax is an inconstant quantity that is difficult to observe directly and is poorly
resolved in reanalyses and climate models. In contrast, outer wind radii are much less sensitive to such issues. Here we pre-
sent a simple empirical model for predicting Rmax from the radius of 34-kt (1 kt ≈ 0.51 m s21) wind (R17.5ms). The model
only requires as input quantities that are routinely estimated operationally: maximum wind speed, R17.5ms, and latitude.
The form of the empirical model takes advantage of our physical understanding of tropical cyclone radial structure and is
trained on the Extended Best Track database from the North Atlantic 2004–20. Results are similar for the TC-OBS data-
base. The physics reduces the relationship between the two radii to a dependence on two physical parameters, while the
observational data enables an optimal estimate of the quantitative dependence on those parameters. The model performs
substantially better than existing operational methods for estimating Rmax. The model reproduces the observed statistical
increase in Rmax with latitude and demonstrates that this increase is driven by the increase in R17.5ms with latitude. Overall,
the model offers a simple and fast first-order prediction of Rmax that can be used operationally and in risk models.

SIGNIFICANCE STATEMENT: If we can better predict the area of strong winds in a tropical cyclone, we can better
prepare for its potential impacts. This work develops a simple model to predict the radius where the strongest winds in
a tropical cyclone are located. The model is simple and fast and more accurate than existing models, and it also helps us
to understand what causes this radius to vary in time, from storm to storm, and at different latitudes. It can be used in
both operational forecasting and models of tropical cyclone hazard risk.
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1. Introduction

The radius of maximum wind (Rmax) in a tropical cyclone (TC)
principally determines the location and areal extent of storm haz-
ards, including extreme wind and coastal rainfall (Lonfat et al. 2007;
Lu et al. 2018; Xi et al. 2020) and storm surge (Penny et al. 2021;
Irish et al. 2008; Irish and Resio 2010). Hence, a simple first-order
prediction of Rmax has significant value for both operational fore-
casting and risk assessment. However, Rmax is a noisy quantity and
difficult to observe directly in real storms due to the turbulent
nature of the moist convective inner-core boundary layer (Shea and
Gray 1973; Kossin et al. 2007; Sitkowski et al. 2011; Kepert 2017;
Stern et al. 2020). TheRmax is also poorly resolved by most numeri-
cal weather prediction models, especially climate models, as low
horizontal resolution acts to smooth the inner-core structure radially
outward (Reed and Jablonowski 2011; Gentry and Lackmann
2010; Rotunno and Bryan 2012). In contrast, the outer storm circu-
lation is relatively quiescent and hence less variable in space and
time (Frank 1977; Cocks and Gray 2002; Chavas and Lin 2016). As
a result, a measure of the size of the broad outer circulation (“outer

size”), such as the radius of 34-kt (1 kt ≈ 0.51 m s21) wind, is much
easier to resolve, less sensitive to turbulence, and is predictable
operationally (Knaff and Sampson 2015). Could we use information
about outer size to help predictRmax?

To do so, we use storm structure to link outer size toRmax. Fun-
damentally, Rmax is strongly dependent on the outer circulation
because the source of angular momentum atRmax is inward advec-
tion from larger radii (Palmén and Riehl 1957). Moreover,
because surface friction removes angular momentum from air par-
cels as they spiral inward toward Rmax, angular momentum must
gradually decrease moving inward toward Rmax. Chavas et al.
(2015) developed a physical model for the complete radial struc-
ture of the low-level angular momentum distribution and, in turn,
the cyclonic wind field (we refer to this model hereafter as
“C15”). Chavas and Lin (2016) demonstrated that the C15 model
predicts the qualitative dependence of Rmax on key parameters
that are found in observations: Rmax tends to be larger for storms
that are weaker (smaller Vmax), whose outer circulation is larger,
or that are farther poleward. This result complements preceding
empirical work showing similar dependencies on intensity and lati-
tude (Kossin et al. 2007; Knaff et al. 2015). Hence, the C15 model
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appears to capture the fundamental first-order physics linking
outer size to Rmax. The structural model also has been used to
explain the relationship between the TC minimum central pres-
sure and maximum wind speed (Knaff and Zehr 2007; Courtney
and Knaff 2009; Chavas et al. 2017). Moreover, the C15 model
explicitly identifies a small number of physical parameters that
govern howRmax depends onVmax, latitude, and outer size.

In principle, the C15 wind structure model could be used to
directly predict Rmax from outer size (e.g., Davis 2018). How-
ever, the C15 model is idealized and thus has biases relative
to observations in representing the relationships between
radii (Chavas et al. 2015; Chavas and Lin 2016). In contrast,
one may predict Rmax using purely empirical regression mod-
els based on observed quantities such as storm intensity or
satellite-derived quantities based on visible, infrared, or
microwave imagery (Mueller et al. 2006; Willoughby et al.
2006; Kossin et al. 2007; Vickery and Wadhera 2008; Knaff
et al. 2015). However, a purely empirical approach ignores
valuable information encoded in the physics of storm struc-
ture described in the C15 model that can help relate Rmax to
other, larger wind radii.

An ideal alternative is a hybrid model that takes advantage of
both observations and physical theory simultaneously. One way to
do this is to exploit the theoretical basis for the C15 structuremodel,
rather than the model itself, in the design of an empirical regression
model fit to observations. This approach would use C15 physical
theory to dictate model predictors and predictands but then use
observations to define their true relationship in nature. Moreover,
such a model may potentially be applied to predict how Rmax may
change in a future climate state, where no observational
data are available.

Given the above knowledge gap, the principal objectives of
this work are:

1) To develop a simple predictive model for Rmax from outer
size (here the radius of 34-kt wind) that exploits the bene-
fits of both observations and physical theory,

2) To estimate model parameters from historical tropical
cyclone data in the North Atlantic basin,

3) To evaluate the model against the observational record,
and

4) To compare model performance against existing predic-
tive models for Rmax.

In pursuing these objectives, our primary goal is to develop
a simple model that can both predict Rmax for TC applications
across research, forecasting, and risk analysis, and also help
explain the underlying physics linking Rmax to outer size
(Shmueli et al. 2010).

Section 2 describes the methodology. Section 3 presents the
results of our model and comparison with other existing pre-
dictive models. Finally, section 4 summarizes our findings and
discusses avenues for future work.

2. Methodology

We begin with a conceptual overview of our model design.
We then describe the theory for the physical component of
the model. Finally, we describe the datasets and regression
methodology used to define the final predictive model.

For our purposes, we focus in this paper exclusively on the
maximum extent of the radius of 34-kt wind (17.5 m s21; here-
after R17.5ms) as our measure of outer size. The R17.5ms along
with the intensity (Vmax), the maximum sustained 1-min wind,
are routinely estimated in operations (OFCM 2020). The
R17.5ms is also typically located in the outer circulation where
convection is minimal (with the exception of very weak
storms) and thus it tends to covary minimally with Vmax (Merrill
1984; Chavas and Lin 2016). However, this approach can in prin-
ciple be applied to any wind radius if given appropriate data
(e.g., R8ms; Schenkel et al. 2017).

a. Conceptual overview

A conceptual diagram of our model is shown in Fig. 1. A
TC is an overturning circulation in which boundary layer air
parcels at larger radii flow radially inward toward the center
in the presence of background rotation (Riehl 1950; Wing
et al. 2016). The absolute angular momentum (hereafter
simply “angular momentum”) of an air parcel is given by

FIG. 1. (a) Example radial structure of azimuthal wind speed (black) and absolute angular momentum (red), with
R17.5ms and Rmax denoted in blue. (b) Conceptual framework of our model for predicting Rmax from R17.5ms via the
radial structure of absolute angular momentum [Eqs. (2)–(4)].
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M 5 rV 1
1
2
fr2, (1)

where r is radius, V is the azimuthal wind speed, f = 2Vsinf is
the Coriolis parameter, V = 7.292 3 1025 s21 is Earth’s rota-
tion rate, and f is the latitude of the storm center. The first
term is the relative angular momentum associated with the
storm circulation. The second term is the planetary angular
momentum associated with the projection of Earth’s rotation
onto the TC’s axis of rotation (vertical) at the latitude of the
storm center1. Given the value of the Coriolis parameter f,
the radial structure of angular momentum can be directly
translated to the radial structure of the azimuthal wind via
Eq. (1) (Fig. 1a).

As air parcels spiral inward from larger radii toward Rmax,
they gradually lose angular momentum due to surface friction
(Fig. 1a). Hence M decreases moving radially inward (this is
also necessary in order to be inertially stable). Thus, we may
understand the relationship between Rmax and R17.5ms in
terms of the fraction of absolute angular momentum that has
been lost between R17.5ms and Rmax: Mmax/M17.5ms. This quan-
tity will always be less than or equal to one. Given values for
R17.5ms and f (with V17.5ms = 17.5 m s21), we can define
M17.5ms. Given a value of Mmax/M17.5ms, we can calculate
Mmax. Finally, given a value of Vmax and f we can solve for
Rmax. The quantities Vmax, R17.5ms, and f are already esti-
mated in operations every 6 h (OFCM 2020). These steps are
summarized conceptually in Fig. 1b.

Mathematically, our model is defined as follows:

1) Calculate M17.5ms: (Inputs: R17.5ms and f)

M17:5ms 5 R17:5ms 3 17:5m s21( ) 1 1
2
fR2

17:5ms: (2)

2) Calculate Mmax: (Inputs: M17.5ms)

Mmax 5
Mmax

M17:5ms

( )
M17:5ms: (3)

3) Solve for Rmax from Mmax: (Inputs: Vmax and f)

Rmax 5
Vmax

f

����������������
1 1

2fMmax

V2
max

√
2 1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠: (4)

The only missing information in the model is an estimate of
Mmax/M17.5ms in Eq. (3), which we describe in section 2b.

Note that it is important to average across quadrants rather
than considering individual quadrants, for two reasons. First,
the air at Rmax is expected to be a mix of inflowing air parcels
from all azimuths. This is because air at Rmax and R17.5ms

within the same quadrant are not directly linked: air parcels

complete one rotation around the storm center very quickly
at Rmax [∼1 h for (Rmax, Vmax) = (30 km, 50 m s21)] and much
more slowly at R17.5ms (∼1 day for R17.5ms = 300 km). Second,
averaging quadrants reduces noise associated with azimuthal
asymmetries in storm structure (e.g., Uhlhorn et al. 2014).
More practically, operational estimates of Rmax are currently
not quadrant specific. Quadrant-specific data could in princi-
ple be used to model the relationship, but this would require
detailed information about the provenance of air parcels at
Rmax, which is quite complex to ascertain and not readily
available.

As an aside, the above Lagrangian perspective does not
imply that the radius of maximum wind itself follows a mate-
rial M-surface. Indeed, radial inflow remains strong at Rmax

itself, and the precise location of Rmax is not easily ascertained
but rather emerges from the interplay between the radial dis-
tributions of the inward flux of angular momentum and the
loss of angular momentum due to surface friction (Chen and
Chavas 2020).

b. Model for Mmax/M17.5ms

The C15 model provides a physical model for the complete
low-level radial structure of M that combines the solution of
Emanuel and Rotunno (2011) for the inner deep-convecting
region and the solution of Emanuel (2004) for the outer non-
convecting region (see Fig. 1a for an example solution). The
C15 model does not have a true analytic solution, as it
requires two fast numerical integrations to solve for the outer
solution and to match it to the inner solution. As noted ear-
lier, Chavas and Lin (2016) showed that this model can cap-
ture the characteristic modes of variability in the wind field
found in nature.

The C15 model predicts that Mmax/M17.5ms depends only on
two physical parameters: Vmax and (1/2)fR17.5ms. The second
parameter is a velocity scale that combines information about
outer size (R17.5ms) and storm center latitude (f).2 Figure 2a
displays the C15 model prediction for Mmax/M17.5ms as a func-
tion of Vmax and (1/2)fR17.5ms. For this calculation, following
C15, in the inner region we set the ratio of surface exchange
coefficients Ck/Cd = 1 constant, and in the outer region we set
the drag coefficient Cd = 0.0015 constant and the radiative-
subsidence rate wcool = 2 mm s21 constant; Cd and wcool prin-
cipally modulate the structure of the far outer circulation and
so have a minimal effect, while Ck/Cd is uncertain in nature
and is commonly set to a value near one (e.g., Tang and
Emanuel 2012). The Mmax/M17.5ms monotonically decreases,
indicating a greater loss of angular momentum, when moving
from bottom left to top right in the figure, i.e., for higher
intensities (Vmax) and for higher latitude and/or outer size
[(1/2)fR17.5ms]. The lone exception is at very high Vmax and

1 The planetary angular momentum term can be written as
(Vsinfr) 3 r, where the term in parentheses is the azimuthal
velocity of Earth’s rotation projected onto the local vertical. Thus,
even at the outer edge of the storm where the circulation vanishes
(V = 0), an air parcel still has non-zero absolute angular momen-
tum (except if the storm center is on the equator).

2 Theoretically, the second parameter should also be multiplied
by the quantity Cd/wcool, which is the ratio of the drag coefficient
to the clear-sky free tropospheric subsidence rate due to radiative
cooling outside of the convective inner core. This term can be
neglected though as it may be taken as approximately constant
from storm to storm; this assumption was also made for predicting
the minimum central pressure in Chavas et al. (2017).
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very small (1/2)fR17.5ms (top-left corner of the plot) where the
angular momentum loss fraction can actually increase with
increasing intensity; we return to this briefly below.

The theory (Fig. 2a) can in principle be used directly to
model Mmax/M17.5ms. However, doing so will inherently incor-
porate any biases in the theoretical model structure relative
to that found in real storms in nature. Indeed, C15 showed
that the model captures the first-order radial structure,
but it also has nonnegligible biases, particularly an over-

estimation of wind speeds at intermediate radii beyond
Rmax. Moreover, C15 theory lacks a simple analytic solution
and must be solved numerically, which makes it less practi-
cal for everyday use.

Instead, we use the underlying theoretical basis of
15 theory in the design of a simple empirical model for
Mmax/M17.5ms. We choose a log-link linear regression model
for Mmax/M17.5ms that depends on Vmax and (1/2)fR17.5ms as
follows:

FIG. 2. Theory and empirical model prediction fit to theory. (a) Theoretical distribution of angular momentum loss
fraction, Mmax/M17.5ms, as a function of two velocity scales, Vmax and (1/2)fR17.5ms, given by the TC wind structure
model of Chavas and Lin (2016). (b) Empirical model prediction of Mmax/M17.5ms [Eq. (6)] fit to the theory shown in
(a); fitting is performed by first interpolating the theory of (a) to the values of [Vmax, (1/2)fR17.5ms] in the EBT dataset
for closest analog to observations. (c) Empirical model prediction of Rmax (y axis) vs “observed” Rmax (x axis) from
Eqs. (2)–(4) using the model [Eq. (6)] shown in (b); color = relative frequency (i.e., sample size in hexagon divided
by largest sample size value on plot); black line = 1-to-1 line; gray solid/dashed/dotted lines denote conditional
median, interquartile range, and 5%–95% range, respectively, within 10-km bins of the observed value starting from
0; and pink dashed line 1 equation = linear regression of the conditional median prediction (R̃max;stat) vs observed
(R̃max;obs; gray dots). (d) As in (c), but for fractional error relative to the known value. Deviation of the slope of the
pink line from the black 1-to-1 line in (c) indicates systematic bias.

WEATHER AND FORECAS T ING VOLUME 37566

Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 07/05/22 03:48 PM UTC



ln
Mmax

M17:5ms

( )
5 b0 1 bVmax Vmax 2 17:5m s21

( )

1 bVfR Vmax 2 17:5m s21
( ) 1

2
fR17:5ms

( )
1 �, (5)

where bVmax and bVfR are the regression coefficients to
(Vmax 2 17.5 m s21) and (Vmax 2 17.5 m s21)[(1/2)fR17.5ms],
respectively; b0 is a constant; and � is the model residual
error.

We can solve Eq. (5) for Mmax/M17.5ms to yield our final
model equation:

Mmax

M17:5ms
5 b exp

[
bVmax Vmax 2 17:5m s21

( )

1 bVfR Vmax 2 17:5m s21
( ) 1

2
fR17:5ms

( )]
, (6)

where b5 eb0 and we drop the error term. Model coefficients
b, bVmax, and bVfR will be estimated from observational data.
Coefficient estimation is performed using the MATLAB func-
tion “fitglm” using the link option “log.”

We choose a log-link model (natural logarithm on the left
hand side) because Mmax/M17.5ms is a positive definite quan-
tity, which an exponential model always reproduces but is not
guaranteed when using standard linear regression. We choose
the intensity predictor to be (Vmax 2 17.5 m s21) and the
(1/2)fR17.5ms predictor to be multiplied by (Vmax 2 17.5 m s21)
to better capture the nonlinear dependence on the two param-
eters that can be seen visually in Fig. 2a: the sensitivity of
Mmax/M17.5ms to (1/2)fR17.5ms increases moving from lower to
higher intensity (larger Vmax); at Vmax 2 17.5 m s21, this sensi-
tivity is zero because (Mmax/M17.5ms) = 1 by definition regard-
less of the value of (1/2)fR17.5ms. The latter is a fundamental
constraint that is not specific to the C15 theory. The form of
our model explicitly builds in this nonlinear dependence.
These assumptions allow us to incorporate the underlying
physics constrainingMmax/M17.5ms into our empirical model.

We first demonstrate that Eq. (6) is appropriate for model-
ing Mmax/M17.5ms. This is accomplished by applying Eq. (6) to
C15 theory itself shown in Fig. 2a, and then predicting Rmax.
This allows us to compare the empirical predictions for
Mmax/M17.5ms and Rmax with the “true” values given by the
theory. We emphasize that the theory is not the truth, but
rather provides a reasonable first-order representation of the
relationship among our structural parameters. This offers a
first test of our empirical model in which all parameters are
known. To fit Eq. (6), we calculate Mmax/M17.5ms by interpo-
lating the theory to the values of [Vmax, (1/2)fR17.5ms] in the
Extended Best Track dataset discussed below; this provides
the closest analog to observations. Figure 2b displays the
empirical prediction ofMmax/M17.5ms [Eq. (6); regression coef-
ficients are listed in Table 2]. Equation (6) can closely repro-
duce the relatively complex structure found in the theory.
Figure 2c compares the final empirical model prediction of
Rmax to the theoretical value predicted by the C15 model, and
Fig. 2d displays fractional errors as a function of the known
Rmax. Systematic bias is defined as the slope of the linear

regression of the conditional median predicted value
(R̃max;stat) versus observed value (R̃max;obs); a slope of 1 indi-
cates no systematic bias. These results demonstrate that our
empirical model can reliably reproduce the “true” Rmax with
very small error across all values of Rmax, spanning a range
from 10 to over 200 km, and with nearly zero systematic bias
(pink dashed line, Fig. 2c; linear regression slope of 0.97).
Note that the empirical model does not reproduce the
increase in Mmax/M17.5ms at very high Vmax and very small (1/
2)fR17.5ms in the theory. Overall, this outcome indicates that
the form of our empirical model for Mmax/M17.5ms is well
suited for the task and may be applied to real data below.

We also tested two other forms of log-link regression
model: 1) linear model with two predictors, (Vmax 2 17.5 m s21)
and (1/2)fR17.5ms; and 2) nonlinear model with three predictors
(Vmax 2 17.5 m s21), (1/2)fR17.5ms, and (Vmax 2 17.5 m s21)
(1/2)fR17.5ms. The linear model is viable, as it can capture the
first-order pattern of monotonic decrease from bottom left to
top right (online supplemental Fig. S01b), but it exhibits a
larger systematic bias (supplemental Fig. S01c). This larger
bias arises because by definition it cannot capture the nonlin-
ear dependence on the predictors and so it misses the detailed
structure in Mmax/M17.5ms at low intensities. Thus, the added
complexity of Eq. (6) compared to a linear model is both valu-
able for explaining variations in Mmax/M17.5ms and useful for
making predictions (Shmueli et al. 2010). Results from the lin-
ear model will be included in the discussion below for context
and comparison. In contrast, the three-predictor nonlinear
model is rejected because it is more complex than Eq. (6) but
does not perform better in terms of error or bias. Moreover,
while it can also reproduce the theoretical distribution of
Mmax/M17.5ms, when it is applied to observations it produces a
qualitatively different structure that is concave down rather
than concave up because the coefficient of the nonlinear term
is found to be positive rather than negative. Thus, in the con-
text of the results for both the linear and two-variable nonlin-
ear model, the added complexity of the three-variable model
is at best unhelpful and may in fact be detrimental.

To summarize, our model predicts Rmax from R17.5ms via
Eqs. (2)–(4) and (6), whose coefficients are estimated from
data in the Results section below [Eq. (7)]. An optional final
bias adjustment is given by Eq. (8) below as well. The physical
basis of our model offers three key advantages: 1) Choosing
angular momentum loss fraction as the predictand constrains
the model (in theory) to be a value the range (0, 1]; 2) Theory
indicates that this predictand should decrease smoothly and
monotonically toward zero; 3) This monotonic dependence
can be reduced to two physical predictors. We use these
advantages to define the form of our empirical model. Ulti-
mately, the empirical basis of our model acknowledges that
we do not fully understand the details of how angular momen-
tum is lost in the inflow approaching Rmax; it is undoubtedly
more complex than idealized theory, and the representation
and implications of these complexities remains highly uncer-
tain. Hence, using data to directly estimate the true depen-
dence allows us to capture the final outcome as found in
nature despite the current gaps in our understanding.
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c. Observational data

We test our model against data for the North Atlantic basin
from the Extended Best Track v2021–03–01 (Demuth et al.
2006, hereafter EBT) which is by far the longest and most
widely used wind structure database available. The EBT data-
set provides 6-hourly estimates of storm location, storm inten-
sity, storm type, wind radii (including R17.5ms) in four
quadrants (northeast, northwest, southeast, southwest), and
Rmax (single value) for the life cycle of each storm during the
period 1988–2020 in the North Atlantic. We calculate R17.5ms

as the mean of all available nonzero values in each quadrant
then multiplied by a factor of 0.85. This reduction factor
accounts for the fact that R17.5ms is defined operationally as
the outermost value within each quadrant, and hence the
mean value has been estimated to be approximately 15%
smaller (DeMaria et al. 2009). For 2004 onward, all data
except Rmax are final best track data that are reanalyzed by
the National Hurricane Center post-storm (Landsea and
Franklin 2013); prior to 2004, wind radii data are not reana-
lyzed post-storm and are simply taken from the Automated
Tropical Cyclone Forecast (ATCF; Sampson and Schrader
2000). All Rmax data are subjective forecaster estimates based
on available aircraft and remotely sensed data in near–real
time and are not reanalyzed post-storm. The 2021–03–01 ver-
sion of EBT replaces some advisory-based data contained in
the a-deck CARQ (Combined Automated Request Query)
entries with superior best track data contained in the b-deck
(G. Chirokova 2021, personal communication). Our results
presented below are nonetheless quantitatively similar when
using the preceding version with data only through 2018.

To provide the optimal data subset for our work, we use
the years 2004–20, corresponding to the period in which the
wind radii are best tracked (Knaff et al. 2021). Moreover, we
focus our analysis in the western half of the North Atlantic
basin to limit ourselves to the subset of storms that were of
immediate interest to forecast agencies and hence were most
likely to have garnered dedicated attention from forecasters
and reconnaissance (Demuth et al. 2006). Specifically, we fil-
ter the dataset as follows: 1) storm center longitude , 508W
(to focus on the dominant aircraft reconnaissance region);
2) f , 308N (to minimize effects from extratropical transition);
3) storm center distance from coast $ R17.5ms (to minimize
land effects on inner-core structure); 4) at least 3 valid quad-
rant values of R17.5ms (to ensure a reasonable estimate of the
azimuthal-mean value); 5) 0 , Mmax/M17.5ms # 1.1 (to remove
unphysical values while allowing for values slightly above 1
that may be due to noise); 5) 6 km # Rmax # 250 km (to
remove extreme outliers); and 6) Vmax $ 20 m s21 (to retain
storms with intensities above 17.5 m s21). All data are con-
verted to MKS units. The distance from the coast is taken
directly from the EBT database, which is defined using a
coastline that includes all large islands (the Leeward and
Windward Islands and the Azores are excluded). Figure 3a
displays a map of the resulting data subset, and Figs. 4a–c dis-
plays histograms of Vmax, Rmax, and R17.5ms. We do not
remove any translation speed effect on Vmax, though we
tested the method of Lin and Chavas (2012) which had

minimal effect on the final model structure. How best to rep-
resent this effect is uncertain and it can yield odd outcomes
for weak, fast-moving storms, and hence we elect to avoid it
altogether. The final sample size is N = 1366. This sample size
is much larger than the number of degrees of freedom in our
model (three: the two predictor velocities and the initial angu-
lar momentum M17.5ms), which greatly limits the potential for
overfitting.

To add robustness to the choice of dataset, we perform an
identical analysis with the same filters using the Tropical
Cyclone Observations-Based Structure Database v0.40 (TC-
OBS; Vigh et al. 2016) for the North Atlantic. TC-OBS
merges aircraft and satellite data with Extended Best Track
data to provide a more objective and observationally con-
strained estimate of TC location, intensity, and sustained
near-surface wind radii and Rmax at hourly temporal resolu-
tion. The years 2004–14 are used in our analysis to align with
the start of best tracking of wind radii in EBT; 2014 is the final
year of the latest version of the database. For storm intensity
and storm central latitude, we simply use the linearly interpo-
lated values from the Best Track database (variables
“BT_Vmax_interp” and “BT_lat_interp”). For storm struc-
ture, R17.5ms is calculated as the mean of all available nonzero
values in each quadrant (variable “TCOBS_wind_radii”),
while near-surface Rmax has a single value (variable
“TCOBS_maximum_sustained_surface_wind_radius”). When
aircraft data are present, all wind radii and Rmax are an opti-
mally weighted blend of 1) the radius of the slant-adjusted
flight level wind observations, 2) the radius estimated
from the Stepped Frequency Microwave Radiometer

FIG. 3. Maps of each dataset used in this study; color denotes
Rmax (km). Raw datasets are (a) Extended Best Track (NOAA
CIRA) and (b) TC-OBS (v0.40; Vigh et al. 2016). Data filters are
listed in the text.
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(SFMR; Uhlhorn et al. 2007), and 3) the radius of maximum
wind value from b-deck file or wind radius from the EBT
database. When no nearby aircraft data are available, this
parameter is relaxed toward the interpolated b-deck value
(for Rmax) or EBT wind radius value with an e-folding time
scale of 4 h. Figure 3b displays a map of the resulting data sub-
set (N = 5574), and Figs. 4d–f display histograms of Vmax,
Rmax, and R17.5ms. The TC-OBS subset is statistically similar
to that of EBT.

Note that R17.5ms varies by more than a factor of 10
between smallest and largest values, whereas f is restricted to
vary by a factor of less than 3 between 108 and 308N. Hence,
the parameter (1/2)fR17.5ms varies primarily through varia-
tions in R17.5ms. Nonetheless, we apply our model to EBT
data poleward of 308N below to evaluate its performance for
high-latitude cases as well.

d. Comparison and validation

To demonstrate the utility of our model we compare the
performance of our model prediction of Rmax against three
existing predictive models used operationally: 1) the polyno-
mial empirical model of Knaff et al. (2015) [their Eq. (1)],
which depends only on Vmax and latitude; 2) the multi-
satellite-platform tropical cyclone surface wind analysis
(MTCSWA; Knaff et al. 2011); and 3) a two-regime statistical

method based on storm-centered infrared (IR) data (IR-2R).
We test all methods against observed EBT values for the
2018–20 Atlantic hurricane seasons (the 2020 values are pre-
liminary); for our model, we first refit the model coefficients
to the EBT dataset excluding the 2018 and 2019 seasons to
ensure an out-of-sample test.

The MTCSWA is a real-time surface wind analysis that
combines satellite atmospheric motion vectors below 600 hPa,
oceanic vector winds from scatterometry, 2D balanced winds
derived from microwave sounding instruments (Bessho et al.
2006), and an IR-based flight-level wind proxy (Knaff et al.
2015) as described in Knaff et al. (2011). The surface winds
are estimated every three hours using all of the available data,
and its Rmax estimates are routinely available to operational
centers. The routine availability and long history of MTCSWA
provide a nice comparison with a currently available technique.

The IR-2R method has not been formally documented else-
where, but has been running in real time since 2017. Here we
briefly document how that baseline model was developed.
The developmental data were divided into two regimes: 1)
storms with intensities less than 33 m s21, and 2) storms with
TC intensities ($33 m s21). The Rmax estimates used for
development (1995–2014) are based on a flight-level analysis
of aircraft reconnaissance flights described in Knaff et al.
(2015). The initial set of potential predictors are based on

FIG. 4. Histograms of R17.5ms, Rmax, and Vmax from (a)–(c) EBT and (d)–(f) TC-OBS. Dots and bars along the x axis denote the median
and interquartile (25th–75th percentile) ranges.
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current storm characteristics (Vmax and latitude) and those
derived from infrared satellite imagery that measure size, con-
vective vigor, and radial structure. IR-based TC size is defined
as an estimate of the radius of 5-kt wind (R5kt) described in
Knaff et al. (2014); convective vigor is measured by the per-
cent of pixels colder than 2108, 2208, 2308, 2408, 2508, and
2608C calculated within 200 km of the TC center. The radial
structure was estimated by azimuthally averaged principal
components of the IR brightness temperature field, also
described in Knaff et al. (2014), which provide radial wave-
numbers 0–4. The regression models for both regimes are
each multiple linear regression models whose predictors were
determined using a leaps and bounds approach (Furnival and
Wilson 2000) that systematically tests all possible regressions
of 1, 2, 3, … variables to identify the equation with the best
performance (variance explained). Variable selection is stopped
when adding an additional predictor results in an increase in
explained variance less than 2%. No independent verification or
retraining was conducted, as this model is meant to be a baseline
for the performance of other models. The resulting models are
as follows: the regime 1 model retains a predictor related to cur-
rent intensity, latitude, and principal component 2 (radial wave-
number 1). The regime 2 model is a function of current intensity,
TC size (R5kt), the percent pixels with brightness temperatures
less than2508C (PC50) and PC502. Both models are fit to the ln
of the Rmax and units are kilometers. The two regimes are
blended together using linear weighting between intensities of
23 and 33 m s21. Table 1 provides the regression coefficients and
statistics related to the linear fit.

3. Results

a. Model results

We now apply our model to the EBT dataset. Figure 5a dis-
plays the observed distribution of Mmax/M17.5ms [Eq. (2)]. The
Mmax/M17.5ms tends to decrease toward higher values of Vmax

and/or (1/2)fR17.5ms, consistent with theory. Figure 5b shows
the regression model [Eq. (6)] fit to the observed data, given by

Mmax

M17:5ms
� 0:699 exp

[
20:00618 Vmax 2 17:5m s21

( )

2 0:00210 Vmax 2 17:5m s21
( ) 1

2
fR17:5ms

( )]
: (7)

The regression model coefficients are also provided in
Table 2. The coefficients for the two predictors are negative,
which provides quantitative confirmation that Mmax/M17.5ms

tends to decrease toward higher values of each predictor. The
dependence on (1/2)fR17.5ms has wider uncertainties, which
arises in part because (1/2)fR17.5ms has a smaller range of
values than Vmax, but also indicates more variability in the
data. The structure of the dependence of the model fit to
EBT (Fig. 5b) looks remarkably similar to that for the the-
ory (Fig. 2b). Indeed, the EBT coefficients are qualitatively
similar to theory, but they are quantitatively a bit different:
this is precisely the bias in the theory that we avoid by using
an empirical model with coefficients estimated directly from
data.

Figure 5c compares the final prediction of Rmax against the
theoretical value, and Fig. 5d shows fractional errors as a
function of the observed Rmax. Model error and bias are pre-
sented in Table 3. The model can consistently capture the
first-order variability in Rmax over a wide range of values from
15 to 200 km. There is a slight systematic bias in the predic-
tion of Rmax (linear regression slope of 0.76) in which the
model overestimates Rmax at small values and underestimates
it at large values, with the transition point at approximately
40 km (pink dashed line). Above this threshold, the system-
atic underestimation is roughly constant at approximately
20% of the observed Rmax. Below this threshold, overestima-
tion can increase to very large values as Rmax becomes very
small; this is unsurprising given that estimates in the observed
Rmax itself carry substantial uncertainty whose relative errors

TABLE 1. Regression coefficients and statistics related to the IR-2R two regime models. Regime 1 is for intensities less than 33 m s21

and regime 2 for intensities above that threshold. Predictors are current intensity (Vmax), sine of storm center latitude [sin(lat)], IR principal
component 2 (PC2), IR-based estimate of TC size (radius of 5-kt wind, R5kt), percent of pixels colder than 2508C (PC50), and PC502. The
intercept (a) and regression coefficients are provided along with the percent variance explained R2 and the mean absolute error (MAE)
associated with the dependent fit (km).

Model a Vmax sin(lat) PC2 R5kt PC50 PC502 R2 3 100 MAE

Regime 1 4.23 29.1 3 1023 8.6 3 1021 1.8 3 1021 10 36.7
Regime 2 26.67 9.9 3 1023 7.8 3 1022 7.7 3 1022 1.4 3 1024 49 24.8

TABLE 2. Regression coefficients for our log-link nonlinear regression model [Eq. (6)] fit to theory, Extended Best Track (N = 1366),
and TC-OBS (N = 5574). The 95% confidence intervals are shown in parentheses. See text for details.

Coefficient Theory Extended Best Track TC-OBS

bVmax 24.84 3 1023 (25.22 3 1023,
24.47 3 1023)

26.18 3 1023 (28.93 3 1023,
23.44 3 1023)

26.57 3 1023 (27.89 3 1023,
25.25 3 1023)

bVfR 21.44 3 1023 (21.50 3 1023,
21.38 3 1023)

22.10 3 1023 (22.57 3 1023,
21.64 3 1023)

21.84 3 1023 (22.06 3 1023,
21.62 3 1023)

b 0.606 (0.603, 0.608) 0.699 (0.677, 0.721) 0.735 (0.724, 0.746)
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will be magnified as Rmax becomes very small. This uncertainty is
at least in part due to the tendency to discretize operational esti-
mates into 5 n mi bins (1 n mi = 1.852 km), though it may also
indicate real physical variability within compact inner cores of
TCs. Moreover, there is evidence of slight overestimation of
Rmax in the EBT (Combot et al. 2020).

Table 3 also compares our model performance statistics
against both the linear version of our model, with predictors
(Vmax 2 17.5 m s21) and (1/2)fR17.5ms, as well as the Knaff et al.
(2015) model. The nonlinear model yields a lower systematic
bias than the linear model (supplemental Fig. S02c). As noted
earlier, the linear model can capture the qualitative pattern of
Mmax/M17.5ms but the linear dependence on the predictors pre-
vents it from capturing the nonlinear structure at lower intensi-
ties (supplemental Fig. S02b). Our model also performs
substantially better than the model of Knaff et al. (2015),
whose conditional best-fit slope is only marginally higher than
zero, indicating strong systematic bias, due in part to the fact
that it predicts a relatively limited range of variability in Rmax

between 25 and 70 km.

FIG. 5. Empirical model prediction fit to Extended Best Track dataset for the North Atlantic 1988–2018; aesthetics
as in Fig. 2. (a) Observed distribution of angular momentum loss fraction, Mmax/M17.5ms. (b) Empirical model
prediction of Mmax/M17.5ms fit to the data shown in (a). (c) Empirical model prediction of Rmax (y axis) vs
observed Rmax (x axis) using the empirical model shown in (b). (d) As in (c), but for fractional error relative to
the observed value.

TABLE 3. Comparison of model performance statistics.
For systematic bias, a slope of one is unbiased.

Model rmse (km) Systematic bias (slope)

Our model [Eq. (7)] 19.9 0.76
Two-predictor linear log-link 18.3 0.66
Knaff et al. (2015) [Eq. (1)] 33.0 0.12
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Quantitatively similar results to EBT are found in TC-OBS
(Fig. 6). The empirical model structure and coefficient esti-
mates are quantitatively similar to those of EBT (Table 2),
and the final prediction of Rmax yields similar errors and sys-
tematic biases. This result lends greater confidence in the
robustness of our empirical modeling results.

One notable deviation from the empirical model is the
apparent slight increase in Mmax/M17.5ms moving toward very
high intensities at small values of (1/2)fR17.5ms evident in both
the EBT (Fig. 5a) and TC-OBS (Fig. 6a) databases. This
behavior is not predicted by the empirical model presented
here, but it does show up in a similar portion of the phase
space in the C15 theory (Fig. 2a) as noted above. Physically,
this behavior indicates that at very high intensity and for small
and/or high-latitude storms, less angular momentum is lost to
the surface between R17.5ms and Rmax at higher intensity than

at lower intensity. More generally, this result may suggest an
important change in the qualitative behavior of the boundary
layer and its interaction with the surface, which may be due
to e.g., a reduction in the drag coefficient at high wind speeds,
which is a topic of ongoing debate (Richter et al. 2021;
Richter and Stern 2014; Donelan et al. 2004). Here our
analysis suggests such effects occur specifically at very small
(1/2)fR17.5ms. More in-depth interpretation of this result and
its manifestation in C15 theory lies well beyond the scope of
this work.

b. Application to a historical case

We next provide an example application of the model to
Hurricane Michael (2018; Fig. 7), which formed at 1800 UTC
6 October 2018 and made landfall in Florida as a category-5
storm at 1800 UTC 10 October. Michael gradually and

FIG. 6. Empirical model prediction fit to TC-OBS dataset for the North Atlantic 2004–14; aesthetics as in Fig. 5.
Results are quantitatively similar to those for EBT shown in Fig. 5.
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monotonically intensified during its life cycle leading up to
landfall (Fig. 7a). Figure 7b compares the observed Rmax

against the prediction from our empirical model. Michael’s
Rmax was initially greater than 200 km and then decreased
rapidly to 64 km over the 12-h period from 1200 UTC 7 Octo-
ber to 0000 UTC 8 October before decreasing gradually with
time until landfall; this evolution is predicted well by our
model. During the early 12-h period of rapid decrease in
Rmax, storm outer size (R17.5ms) also decreased significantly
from 278 to 208 km while storm intensity (Vmax) increased
from 18 to 26 m s21. Thus, Rmax is predicted to decrease due
to both of these effects occurring simultaneously: contraction
of the inner core with intensification and shrinking of the
storm as a whole. Thereafter, Rmax decreases gradually with
time as the storm gradually intensifies, whereas outer size
(R17.5ms) remains relatively constant with values between 208
and 241 km and f increases only modestly as Michael moves
northward. Thus, Rmax is predicted to decrease principally
due to the increase in intensity. Note that Rmax changes much
more rapidly with changes in intensity for TCs at lower inten-
sity, a behavior captured by our model.

c. Application to higher-latitude storms

It is useful to further evaluate how our model performs
when applying it to data poleward of 308N. Though we trained
the model equatorward of 308N to avoid the messier details
associated with extratropical interactions, the theory is in
principle valid at any latitude. Figure 8 shows the result of
applying Eq. (7) to our EBT dataset filtered in the same way
as above except now for the latitude band 308–508N. The
model performs reasonably well overall given the greater
uncertainties both observationally and theoretically at these
higher latitudes, with slightly greater rmse (27.4 km) and sys-
tematic bias (conditional slope of 0.66). The transition from
overestimate to underestimate occurs at an observed value of
approximately 60 km, with median fractional errors toward
higher observed values again remaining relatively constant at
an underestimate of approximately 25%. These results sug-
gest that the model is suitable for application at higher lati-
tudes as well. The wider error at higher latitudes likely
reflects the increased complexity of storm interaction with

baroclinic and land features, as well as subtropical storm
formation, which can enhance storm asymmetries (Hart
2003; Guishard et al. 2009). Such asymmetries may induce
biases in estimating the azimuthal-mean R17ms particularly
when approaching the mid-Atlantic and northeastern U.S.
coastline where data may only exist on one side of the
storm.

d. Rmax versus latitude

Finally, we examine statistical changes in Rmax and other
storm parameters with latitude (Fig. 9). Observed median
Rmax increases with latitude, as has been noted in past studies,
from 28 km south of 158N to 74 km north of 358N (solid black
line). This behavior is quantitatively well captured by our
model (solid pink line), including poleward of 308N.

For the input parameters, median R17.5ms increases substan-
tially with latitude (118 km south of 15 N; 222 km north of
408N), whereas median Vmax is nearly constant with latitude
with a slight decrease from 33.4 m s21 within 158–308N to
30.8 m s21 moving north of 308N. This suggests that Rmax

tends to increase statistically with latitude principally because
R17.5ms increases significantly with latitude. We test this
hypothesis explicitly using our model. First, our model can
reproduce the increase in latitude in a simpler manner by
applying it directly to the median values of each input
parameter within each bin (pink X marks). This yields a
similar increase with latitude; the values are systematically
biased high relative to the true median within each bin, an
indication of the nonlinearity of the problem. We then per-
form the same model prediction from median values but
holding Vmax = 30 m s21 constant (pink triangles). The
result is a very similar increase in Rmax with latitude as
before, indicating that the small decrease in Vmax with lati-
tude is not important for this behavior. Finally, we further
hold f constant at its value at 208N (pink circles) to fully iso-
late the effect from the increase in outer size alone. The
result is only a modest effect on the trend with latitude,
indicating that variations in f are also not important. Taken
together, then, Rmax increases with latitude predominantly
because outer size (R17.5ms) increases with latitude.

FIG. 7. Example application of our model to Hurricane Michael (2018). (a) Map of storm track with best track
Vmax (color dots); dates shown at 0000 UTC. (b) Predicted Rmax (pink), EBT Rmax (black solid), EBT R17.5ms (black
dashed), and Vmax (light blue) prior to landfall (light gray line).
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e. Comparison with existing predictive models

We next compare out-of-sample predictions from our
model against three existing operational models: the Knaff
et al. (2015) model, MTCSWA, and IR-2R. We use the EBT
datasets for test period of 2018–20 using the same filters as
were applied above. To provide a true out-of-sample test of
our model, we refit our model coefficients to the EBT dataset
excluding the years 2018–20. The resulting coefficients (bVmax =
20.00607, bVfR = 0.00194, b = 0.688) are very similar to the

values for the full dataset (Table 2). Because this sample size
is much smaller, we define systematic bias using a simple lin-
ear regression fit to the predicted versus observed Rmax.

Overall, our model performs substantially better than all
three existing predictive models (Fig. 10). Our model has an
out-of-sample rmse of 18.2 km and systematic bias slope of
0.70, comparable to the full-dataset results of Fig. 5. As found
above for the full dataset (Table 3), the Knaff et al. (2015)
model has relatively little predictive power. Meanwhile,
MTCSWA and IR-2R both exhibit substantially larger rmse
(37.4 and 29.4 km, respectively) and systematic biases (0.40
and 0.49, respectively) than our model.

Between the two remote sensing-based models, IR-2R does
not predict Rmax values much larger than about 120 km,
though it does have a smaller error than MTCSWA. The
MTCSWA analysis, on the other hand, has much larger pre-
dicted values though often associated with moderate rather
than large values of Rmax and hence yield large errors.

f. Optional final bias adjustment

For the purposes of prediction, we may take one final step
and adjust our model prediction to remove the systematic
bias. This is done by solving the equation for the linear regres-
sion on the conditional median (pink line, Fig. 5c) for
R̃max;obs, which we will denote here as our bias-adjusted final
prediction Rmax,statadj:

Rmax;statadj 5
1

0:76
Rmax;stat 2 9:02 km
( )

: (8)

Doing so eliminates the systematic bias (Fig. 11), though it
slightly increases the overall rmse to 25.8 km. This outcome is
expected: by definition, this multiplicative adjustment will
increase the range of predicted values within each observa-
tional bin, and in particular will increase absolute errors in
overestimated predictions more strongly than it will decrease
the absolute errors in underestimated predictions. Such
behavior is an example of the “bias-variance trade-off,” in
which adding this additional complexity to our model reduces
bias but amplifies errors associated with noise in a dataset
(Shmueli et al. 2010). Since the goal of our model is to provide
a reasonable first-order prediction of Rmax across a wide range
of values, this bias adjustment may be desirable even at the
expense of a modest increase in rmse.

Ultimately, this bias adjustment has no obvious physical
explanation and is solely a means of improving the final pre-
diction. It may be most useful for risk prediction models
where the objective is to produce Rmax values that are statisti-
cally similar to observations rather than make predictions of
individual values directly from noisy observations.

4. Conclusions

The tropical cyclone radius of maximum wind (Rmax) is crit-
ical for estimating the magnitude and footprint of wind, surge,
and coastal rainfall hazards. However, Rmax is noisy in obser-
vations and poorly resolved in reanalyses and climate models.
In contrast, wind radii from the outer circulation are much

FIG. 8. (a),(b) As in Figs. 5c,d, but for our model prediction
of Rmax [from Eq. (7)] applied to North Atlantic EBT data
between 308 and 508N. (c) Map of data points; color denotes
Rmax (km).
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less sensitive to such issues. The radius of 34-kt wind (R17.5ms)
is the outermost wind radius that is routinely estimated opera-
tionally and has been reanalyzed postseason for the Best
Track database since 2004.

Here we have presented a simple model for predicting Rmax

from R17.5ms that combines the underlying physics of TC
radial structure with empirical data. The model is given by
Eqs. (2)–(4) and (7), with an optional final bias adjustment
given by Eq. (8). Our approach uses the physics of angular
momentum loss in the TC inflow to reduce the relationship
between the two radii to a dependence on two simple physical
parameters, and then uses observational data to estimate the
model coefficients. The form of the empirical model is chosen
purposefully to incorporate the mathematical constraints that
are imposed by the physics of our problem.

Our findings are summarized as follows:

1) Our model offers a promising first-order prediction of
Rmax from outer size (here R17.5ms) in real tropical cyclo-
nes. The model only requires as input quantities that are
routinely estimated operationally (Vmax, R17.5ms, and storm
center latitude).

2) Model results are consistent between Extended Best Track
and TC-OBS historical tropical cyclone databases for the
North Atlantic.

3) Model performance exceeds existing operational models
for predicting Rmax.

4) The model predicts the observed statistical increase in
Rmax with latitude and demonstrates that this is prin-
cipally driven by the statistical increase in R17.5ms

with latitude.

Our model is fast and straightforward to implement, and it
has value for a range of applications, and the operational

setting. The model can provide simple, observationally con-
strained first-order estimates of Rmax for TC forecasting. This
estimate could then be further refined in the presence of addi-
tional data as needed. The simplicity of the model may further
allow one to quantify how uncertainties in observational esti-
mates of input parameters, such as R34kt, translate to uncer-
tainties in the prediction of Rmax. The model can also be used
to estimate Rmax for TC risk applications using TC track mod-
els that are either empirical (Yonekura and Hall 2011) or
downscaled from climate models [Emanuel et al. 2006; Jing
and Lin 2020; Lee et al. 2018). Given Vmax and Rmax, a simple
parametric model (e.g., the C15 model presented here or that
of Willoughby and Rahn (2004)] may be used to model the
entire TC wind field in a manner that optimally captures the
strongest winds in the vicinity of Rmax, which is ideal for haz-
ard modeling. Finally, the model may also be useful for down-
scaling estimates of Rmax from coarser resolution weather
models with grid spacings on the order of Rmax itself (Davis
2018).

Here we have applied our model to R17.5ms given its numer-
ous advantages noted above. However, our model is not spe-
cific to this choice and can be easily applied to any other
desired wind radius if given sufficient data. Doing so simply
requires re-estimating the model coefficients from the new
dataset. Alternatively, one could also choose to first model
the relationship between the new wind radius and R17.5ms and
then apply our model as presented here. To link R17.5ms to a
larger wind radius in the outer circulation, a model similar to
that presented here could be used but with only the single
predictor (1/2)fRnew since the outer circulation structure is
largely independent of Vmax (Frank 1977; Merrill 1984; Cha-
vas and Lin 2016). Another option is to directly apply the
outer wind structure component of the C15 model since it has

FIG. 9. The model predicts the statistical increase in Rmax with latitude found in observations.
Median values of predicted Rmax (pink), EBT Rmax (black solid), EBT R17.5ms (black dashed),
and Vmax (light blue) vs median latitude in 58 latitude bins; lowest latitude bin includes all data
south of 158N and highest latitude bin includes all data north of 408N. Also shown, model predic-
tion direct from bin-median values of latitude, Vmax, and R17.5ms (pink X); this same prediction,
but holding Vmax = 30 m s21 constant (pink triangle); and further holding f constant at its value
at 208N (pink circle). The latter tests demonstrate how the statistical increase in Rmax with lati-
tude is due to the increase in R17.5ms with latitude.
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been shown to provide an excellent representation of the TC
outer wind structure when compared to QuikSCAT data
(Chavas et al. 2015).

While we have focused on the outermost available wind
radius (R34kt), one could also apply the model framework
using wind radii associated with stronger wind speeds such as
R50kt and R64kt, which are also routinely estimated operation-
ally and are available for more intense storms whose maxi-
mum wind speeds exceed this threshold. Note though that
observational uncertainty of these wind radii may be greater
as some observational instruments lose accuracy moving
toward higher wind speeds above 34 kt. We do not take this
step here, but this could be a useful avenue of future work to
better constrain the estimate of Rmax using wind radius data
closer to Rmax itself.

We highlight that the quantity Mmax/M17.5ms analyzed here
represents the radially integrated effect of surface drag on an

air parcel, which may hold useful information for helping to
constrain the variation of Cd in the inner core of a TC. To our
knowledge this quantity has yet to be applied in such a
context.

The model as presented here was applied to two historical
datasets owing to the highly variable methods for estimating
wind radii, especially at the surface. One promising new data-
set on the horizon is surface wind field data estimated from
synthetic aperture radar (SAR) (Mouche et al. 2017; Zhang
et al. 2021), which has the potential to provide a direct esti-
mate of the near-surface wind field that comes from a single
consistent source with minimal bias at all wind speeds in a
TC. The SAR dataset is currently limited in sample size but
has shown substantial promise for TC near-surface wind field
estimation (Combot et al. 2020). As this dataset grows, apply-
ing our model to SAR data is likely to be a fruitful avenue for
refining parameter estimates in future work.

FIG. 10. Scatterplots of out-of-sample predicted vs observed Rmax for EBT data 2018–20. (a) Our model (coefficients
refit to EBT excluding 2018–20), (b) Knaff et al. (2015) model, (c) MTCSWA, and (d) IR-2R. Black line = 1-to-1 line,
and red dashed line = linear fit to data.
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