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commentary and analysis

Comments on “The Differentiation
between Grid Spacing and Resolution
and Their Application to Numerical
Modeling”

Abstract

The comments of Grasso are extended to show that
the minimum wavelength that is resolved by a numeri-
cal model is typically longer than the shortest unfil-
tered wave in the model. This result occurs because
the numerical grid is unable to accurately describe the
amplitudes and horizontal derivatives of short wave-
lengths in the numerical solution. The numerical
scheme may also introduce phase and dispersion er-
rors that cause short wavelengths to be inaccurate.

1. Introduction

Grasso (2000) provides good discussion of the dis-
tinction between the resolution of a numerical model
and the model’s grid resolution or grid increment.
These points are well motivated. While numerical
modelers typically understand these differences, some
users of model output may not truly understand the
distinction and may overestimate the actual resolution
of a numerical model as a result. As Grasso (2000)
points out, forecasters should be aware that the small-
est wavelength resolvable by a numerical model is
typically longer than twice the numerical grid spac-
ing. He states that waves of at least 4∆x may be re-
solved, after making the assumption that shorter
wavelengths have been removed from the numerical
solution to prevent nonlinear instability or for other
reasons. In this paper, we extend Grasso’s comments
to show that assuming a grid resolution of even 4∆x
may be quite optimistic. As a result, the shortest wave-
length that can be effectively resolved by a gridpoint
numerical model is usually considerably longer than

4∆x, which is representative of the shortest unfiltered
wavelength allowed by typical numerical models as
discussed by Grasso (2000).

2. Discussion

Here we define a numerical model’s effective reso-
lution as the minimum wavelength the model can de-
scribe with some required level of accuracy (not
defined). Errors in either amplitude or phase (or both)
will limit the effective resolution of the numerical
solution. This definition of effective resolution is
closely tied to the concept of the numerical scheme’s
accuracy, which can be related to both the spatial varia-
tion of the structure of the error at a given time level
and the behavior of the amplitude of the error as a func-
tion of time (Anderson 1995). As noted by Grasso
(2000), the numerical grid is unable to represent the
amplitude of small wavelength features accurately.
Although the theoretically minimum resolvable wave-
length is 2∆x, the amplitude of a 2∆x wave may be zero
if such a wave is completely out of phase with the
numerical grid. For a 4∆x wave, only 71% of the am-
plitude is resolved if the solution is π /4 out of phase
with the grid (assuming without loss of generality that
the solution is harmonic). These results show that the
amplitude resolution of the true solution may be less
than optimum at short wavelengths.

Similar errors result in estimating horizontal de-
rivatives using finite differences. For example, using
centered finite differences, the ratio of the numerical
first derivative to the true derivative for a harmonic
wave is (sink∆x)/(k∆x) where k = 2π /L is the wave-
number and L is the wavelength (Pielke 1984). For ∆x
= 2, the resulting numerical derivative has an ampli-
tude of zero relative to the true derivative; for a 4∆x
wave, the ratio of the amplitudes is 2/π. Therefore,
the numerical derivative is approximately 64% of the
true value. Errors in estimating derivatives are intro-
duced by the time and space differencing of the par-
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ticular finite difference scheme, which may result in
the numerical model having a lower effective resolu-
tion than the theoretical grid resolution of 2∆x. As an
example, the numerical solution of the linear advec-
tion equation
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with centered space differencing, shows a numerical
phase response that is a function of wavenumber. In
Eq. (2), f is the dependent variable, c is the phase speed,
∆t is the time step, and ∆x is the horizontal grid spac-
ing. Superscripts n refer to the time level, and sub-
scripts i refer to the spatial grid index. It can be seen
easily from Eq. (2) that a 2∆x wave is stationary since
f n

i + 1
 − f n

i − 1
 = 0. Although the theoretical resolution of

the numerical grid in this example is 2∆x, a true solu-
tion with that wavelength is clearly not resolved ac-
curately because it does not propagate correctly,
despite the fact that its amplitude may be well
described. Haltiner and Williams (1980) show that the
phase error of the leapfrog scheme as applied to the
linear advection equation is worse at smaller wave-
lengths and is also a function of the Courant number
c∆t/∆x. For example, a wavelength of 4∆x with a Cou-
rant number of 0.8 has phase speed that is 74% of the
true solution. Numerical schemes may also have am-
plitude responses that are a function of wavenumber
(Mesinger and Arakawa 1976; Haltiner and Williams
1980), resulting in a further decrease in the ability of
the numerical solution to resolve the solution ampli-
tude at short wavelengths. Pielke (1984) provides a
similar analysis of phase and amplitude errors as a
function of wavelength for various numerical schemes.
Mesinger and Arakawa (1976) also show that phase
errors can be introduced by the nature of the time
differencing. For example, numerical solutions of the
oscillation equation

df

dt
i f= ω (3)

using the leapfrog time differencing scheme are accel-
erating compared to the analytical solutions, despite
the absence of horizontal space differencing. If a nu-
merical scheme is inaccurate at short wavelengths due
to such model-induced phase or amplitude errors, it
can be claimed that those particular features are not
adequately resolved, despite the theoretical resolution
of the numerical grid.

A related type of phase error is due to inaccurate
dispersion caused by the spatial arrangement of vari-
ables on the grid, which affects the frequency response
of the numerical solution as a function of wavenumber.
The one-dimensional shallow water equations provide
the simplest case for discussing this type of dispersion
in numerical schemes (Mesinger and Arakawa 1976;
Arakawa and Lamb 1977). Their results show that the
dispersion characteristics of numerical inertial grav-
ity wave solutions have frequency responses that dif-
fer from the true analytical solution of the linearized
equations, and that the nature of the difference depends
on the specific Arakawa grid (Winninghoff 1968;
Arakawa 1972) that is used. For example, Fig. 1 shows
the nondimensional frequency response ν /f for the
simplest one-dimensional case based on finite differ-
ence solutions of the linearized shallow water equa-
tions where f is the Coriolis parameter. In Fig. 1, the
nondimensional frequency is plotted against the num-
ber of grid intervals per wavelength, N, rather than
against the nondimensional wavenumber (described
below) that is more typical for presentation of these
results (Mesinger and Arakawa 1976; Arakawa and
Lamb 1977). The quantity N can also be defined as N
= 2π /α, where α = k∆x = 2π∆x/L is the nondimen-
sional horizontal wavenumber. The nondimensional
frequency has a maximum at N = 4 on both the A grid
and the D grid where the group velocity of the solu-
tion (which is proportional to ∂ω /∂α) is therefore zero.
This result indicates that inertial gravity waves of this
wavelength will have zero group velocity, unlike the
analytical solution. For N < 4, the group velocity is
actually negative on the A and D grids, which implies
energy propagation in a direction opposite to the di-
rection of the true group velocity. On the B and C grids
the situation is somewhat better; however, the ratio of
the dimensionless frequency to the true analytical fre-
quency drops off more rapidly at smaller wavelengths.
At N = 4 the numerical frequency is approximately
93% of the true frequency on the B and C grids, indi-
cating that the numerical group velocity is slower than
that of the actual solution. Using two-dimensional
solutions of the shallow water equations, similar re-
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sults can be found that also show that the dispersive
properties of the numerical solutions are less accurate
at small grid resolutions. For detailed discussions of
these results including their derivation, see Mesinger
and Arakawa (1976), Arakawa and Lamb (1977), and
Haltiner and Williams (1980). These results indicate
the numerical dispersion at short grid intervals may be
very unsatisfactory on some grids, and that therefore
important geostrophic adjustment processes may not
be well represented at certain scales (i.e., small grid
intervals). This problem occurs in addition to the poor
amplitude resolution at small grid scales described
above. In addition to the problems described here, the
numerical solution may also introduce high-frequency
noise (Mesinger and Arakawa 1976).

3. Conclusions

For a finite difference numerical model, the reso-
lution of the numerical solution at short wavelengths
may be unsatisfactory for several reasons. Due only
to the geometric relationship between the numerical
grid and the true solution, as many as 10 grid points
may be required to assure a reasonable (e.g., greater
than 95%) representation of the true solution’s ampli-

tude and its first horizontal derivative. The accuracy
of numerical solutions of small-scale features may be
further hampered due to both phase and amplitude
errors in the numerical solution (which are generally
a function of N for finite difference schemes) and re-
lated dispersion errors introduced by the spatial ar-
rangement of variables on the computational grid. As
a result, the shortest wavelength that can be effectively
resolved by a gridpoint numerical model may be con-
siderably longer than 4∆x, which is representative of
the shortest unfiltered wavelength allowed by typical
numerical models as discussed by Grasso (2000).
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FIG. 1. Nondimensional inertial gravity wave frequency ν/f
of the numerical solution of the one-dimensional shallow water
equations on four different Arakawa grids labeled A through D.
Here, N is the number of grid intervals per wavelength, f is the
Coriolis parameter, and α = k∆x is the nondimensional
wavenumber where k = 2π/L and L is wavelength. Adapted from
Mesinger and Arakawa (1976).
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Comments on “The Differentiation
between Grid Spacing and Resolution
and Their Application to Numerical
Modeling”

Grasso (2000) suggests that the terminology “grid
resolution and grid spacing should not be used inter-
changeably.” Following Pielke (1991), who proposed
a definition of resolution in which “resolution within
a numerical model should refer to at least four times
the grid interval,” Grasso states that waves must have
“a scale of at least 4∆x” to be “resolved.” In formulat-
ing these definitions Grasso and Pielke attempt to
highlight the important fact that the error in all numeri-
cal methods increases as the number of grid points per
wavelength decreases, and that these errors can be-
come quite large in the limiting case in which the
wavelength approaches 2∆x. I agree with Grasso and
Pielke that the numerical analyst should never lose
sight of the difficulties generated by poor numerical
resolution, but I do not agree that the problems asso-
ciated with 2∆x waves require us to create imprecise
and artificial distinctions in the English language.

In formulating their definitions, Grasso (2000) and
Pielke (1991) seem to assume that “resolve” means “to
deal with successfully.” Nevertheless, another mean-
ing for resolve, which actually precedes the “to deal
with successfully” entry in the Merriam-Webster
OnLine: WWWebster Dictionary (http://www.m-
w.com) is “break up, separate, to distinguish between
or make independently visible adjacent parts.” There
is therefore no basis in standard English usage for
Grasso’s objection to the phrases in Wicker and
Wilhelmson (1995) that read “fine-mesh simulation
with 250-m horizontal resolution” or “ the vertical
resolution was rather coarse (∆x = 500 m).” In both
cases, resolution can be replaced by separation with-
out any change in meaning or loss in clarity.

One might nevertheless argue that it is appropri-
ate to define specialized scientific terminology allow-
ing the cognoscente to speak with more precision, but
unfortunately the definitions proposed by Grasso and
Pielke are not precise. According to their definitions,
“grid resolution” is not necessarily 4∆x, but rather
some unspecified multiple of ∆x at which the speaker
feels waves are well represented in the numerical
model. This lack of specificity is inherent in any defi-
nition that attempts to separate those waves that are
successfully simulated from those whose representa-

tion is inadequate because there is no particular scale
that sharply divides these two cases. Grasso seems to
assume that the candidate scales are all integer mul-
tiples of the grid spacing when he states that filtering
all waves of wavelength 3∆x and shorter to prevent
nonlinear instability “means that the smallest resolv-
able wave is at least 4∆x, since 2∆x and 3∆x waves
have been removed.” In fact, any reasonable sized
domain will support lots of waves with wavelengths
between 3∆x and 4∆x, such as the 3.5∆x wave, which
corresponds to a disturbance in which two wave-
lengths occupy an interval of 7∆x.

As a consequence of the rich spectrum of waves
representable on the numerical mesh, there is no dra-
matic change in numerical performance as the wave-
length of a disturbance just begins to exceed 4∆x. The
behavior of a 3.9∆x wave will be very similar to that
of a 4.1∆x wave in any given application. Moreover,
the actual error associated with disturbances at wave-
lengths equal to some specific multiple of ∆x varies
from problem to problem and from numerical method
to numerical method. For example, in contrast to most
spatial differencing schemes, a sixth-order compact
difference approximation to the advection equation
will propagate a 3.5∆x wave with almost no phase
speed error (Durran 1999, pp. 86–88).

In summary, I note that standard English usage
permits grid resolution to be used in the sense of grid
separation or equivalently grid spacing. I suggest
adding an adjective (e.g., good numerical resolution)
when the speaker wishes to convey a value judgment.
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I would like to thank Mr. Durran and Mr. Walters
for their extended comments on the difference between
grid spacing and resolution by Grasso (2000).

Mr. Walters provided further detailed information
and references to support statements about the differ-
ence between grid spacing and resolution. The objec-
tion by Mr. Durran is well noted; however, he may
have misunderstood the focus of the recent article.

The main focus of the article was to distinguish
between the length scale between grid points and the
length scale of information simulated on a gridded
domain. Consider a numerical domain with 5-km hori-
zontal grid spacing and 100-m vertical grid spacing.
Let the domain extend from the surface to 20 km in
height and 200 km in each horizontal direction.
Suppose the domain is initialized horizontally homo-
geneously with a sounding that has 3000 J kg−1 of con-
vective available potential energy and vertical shear
of 10−2 s−1. Allow a warm bubble to trigger convec-
tion. This domain will support a convective updraft
from the boundary layer to the tropopause. Even
though the convective updraft exists within the do-
main, a supercell thunderstorm is said to be poorly
resolved.

LEWIS D. GRASSO

COOPERATIVE INSTITUTE FOR RESEARCH IN THE ATMOSPHERE

FORT COLLINS, COLORADO

One can also distinguish the footprint of a satel-
lite image and the resolution of features in the imag-
ery. Consider an infrared satellite image whose
footprint is 12 km. Suppose further that thunderstorms
are seen in the image. In this situation thunderstorms
are also said to be poorly resolved in the imagery.

I would like to reiterate that the main focus of the
recent article was to discuss the difference between
grid spacing and resolution. Although no definition of
resolution was offered in Grasso (2000), Mr. Durran
is correct in stating that no precise definition exists for
resolution in regards to numerical modeling.
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corrigenda

In section 3a of the article “Loss of Life in the United States Associated with Recent Atlantic Tropical
Cyclones,” by E. N. Rappaport (Bull. Amer. Meteor. Soc., 81, 2065–2073), the number of drowning deaths
was reported incorrectly. Drowning accounted for 488 of the 600 fatalities associated with Atlantic tropical
cyclones during 1970–99.

In the August issue of the Bulletin, Kevin E. Trenberth was erroneously listed as an editor for Earth Inter-
actions. Dr. Michael Manton replaced Dr. Trenberth as an Earth Interactions editor in 2000. Dr. Manton’s
contact information is

Dr. Michael Manton, Bureau of Meteorology Research Centre, GPO Box 1289K, Melbourne 3001, Australia.

The Bulletin apologizes for this error.


