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The development of a simple statistical tropical cyclone (TC) intensity forecast 
model is described. The primary purpose of this model, called southern hemi-
sphere five-day statistical typhoon intensity forecast scheme (SH ST5D), is to 
provide a skill/no-skill control forecast for verifying other TC intensity forecasts. 
However, it also provides useful and always-available forecasts of TC intensity in 
the southern hemisphere. The model is created by fitting an optimal combination 
of factors related to climatology and persistence (or CLIPER) using multiple linear 
regression. These CLIPER factors are determined from the best track tropical cy-
clone dataset produced by the United States of America’s Joint Typhoon Warning 
Center (JTWC) in the years 1980-2002. In 2004 the SH ST5D model became part 
of the operational suite of tropical cyclone intensity guidance run at JTWC. The 
forecasts from the model since that time have outperformed both climatology (i.e. 
a constant 65 knots or 33 ms-1 forecast) and the persistence of initial conditions 
in a statistically significant manner in independent testing during 2004-2007. This 
documentation is provided to promote the use of this model’s output and provide 
adequate background for the development of similar models.
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Introduction

The Joint Typhoon Warning Center (JTWC) makes tactical 
tropical cyclone forecasts in the southern hemisphere to 
support the United States of America’s military and civilian 
operations in this part of the world. These forecasts typically 
are made every 12 hours (h), extend through 48 h and con-
sist of position, intensity and significant (e.g. gale-force, etc.) 
wind radii. Until recently the intensity forecast was based 

on very few objective forecast aids and heavily depended on 
trends in the satellite analysis. Table 1 shows the objective 
intensity guidance available for forecasting southern hemi-
sphere tropical cyclones and when these became available.
	 In 2004 and 2005 new statistical models were developed 
to help forecast intensity in the southern hemisphere. These 
new models, one based on climatology and persistence (or 
CLIPER) and the other based on a statistical-dynamical ap-
proach (SH STIPS) where forecast fields from global models 
are used to statistically forecast intensity change (e.g. Part 
II of this series; Knaff and Sampson 2009), were based on 
similar models operating in other basins. It is important 
to note that due to changes in operational capabilities, the 
SH STIPS output, which was created in real-time using the 
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Table 1.  A list of objective tropical cyclone intensity guidance techniques available at the Joint Typhoon Warning Center, its inter-
polated aid, a brief description, and the year of first availability.  Part III, Sampson and Knaff (2009), provides details about 
how interpolated aids are created.

JTWC official track forecast at the Naval Research Labora-
tory in Monterey, was never available to JTWC for consid-
eration in making their operational intensity forecasts. The 
documentation and verification of SH STIPS is still provided 
in Part II because it utilized in consensus-base intensity guid-
ance methods discussed in Part III of this series, Sampson 
and Knaff (2009), which are the most recent southern hemi-
sphere intensity guidance made available to operations.
	 The CLIPER model, called the southern hemisphere sta-
tistical typhoon intensity forecast (or SH ST5D1) after its 
counterpart used in the western North Pacific, is based on 
the design documented in Knaff et al. (2003) and is the sub-
ject of this paper. As in other TC basins, the CLIPER mod-
els, including SH ST5D, are considered to have no skill by 
design as they are formulated by combining the optimum 
no-skill verification options of persistence and climatology. 
The SH ST5D model, while its forecast ability is somewhat 
limited and by design has no skill, is an important member 

1The 4-letter identifier of this model in the Automated Tropical Cyclone 
Forecast (ATCF; Sampson and Schrader 2000) is ST5D.  Similar intensity 
CLIPER models have been developed for the western North Pacific and 
North Indian Ocean basins.  Those models also have the same 4-letter 
identifier.

of the JTWC forecast intensity guidance suite. First, since 
the model requires only a few routinely and operationally 
available inputs, SH ST5D is always available for forecast-
ers. More importantly however, SH ST5D is used as a control 
model or baseline for other intensity forecasting methods. 
The development and use of CLIPER-based forecasts to pro-
vide operationally available control forecasts that are used 
to evaluate forecast skill is a common practice in tropical 
cyclone forecast verification (e.g. Neumann 1972; Jarvinen 
and Neumann 1979; Merrill 1980; Chu 1994; Aberson 1998; 
Knaff et al. 2003). The need for such a model prior to the 
development of other intensity guidance methods like those 
discussed in Knaff and Sampson (2009) and Sampson and 
Knaff (2009) was the primary factor that led to its develop-
ment.
	 While implemented in JTWC operations in 2004, the SH 
ST5D has not been formally documented. It is also notewor-
thy that while the SH ST5D was developed for forecasting 
and evaluating intensity forecasts produced by the JTWC, 
the forecast made by this model could be used by other 
tropical cyclone forecast centres in the southern hemisphere 
with little modification (e.g. accounting for wind averaging 
times). Also the developmental methods could be applied 

Model Interpolated Description Year first available

NOGAPS NGPI 	U.S. Navy global model (Hogan and Rosmond 1991) 2004

UKM UKMI UK global model (Heming et al. 1995) 2003

GFS AVNI 	NWS global model (Lord 1993) 2002

GFDN GFNI Geophysical Fluid Dynamic Lab initialized by the Navy Operational 	
Global Analysis and Prediction System model (Rennick 1999)

1998

TC-LAPS TCLI Australian TC-Limited Area Prediction System 	  
(Davidson and Weber 2000)

2002

TX-LAPS TXLI 	Australian Tropical eXtended Area Prediction System 
(Australian Bureau of Meteorology 2005)

2005

US. Air Force 
regional model

AFWI Air Force mesoscale model (Grell et al. 1995) 2002

ST5D None 	Statistical model (Knaff and Sampson 2009) 2004

S1xx None 	STIPS ensemble members 2006

ST10 None STIPS ensemble 2006

ST11 None Multi-model consensus that combines the ensemble members of 
ST10 and GFNI

2007

CHIPS CHII Coupled  dynamical hurricane model (Emanuel et al. 2004) 2003
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to other historical datasets or best tracks to create more 
tailored intensity CLIPER models. To provide the necessary 
background information for such efforts, the following sec-
tions discuss the datasets used, the model’s design and de-
velopment and the past and expected performance of this 
model. 

Datasets

The primary dataset used for both the development and the 
independent verification of SH ST5D is the tropical cyclone 
best track produced by JTWC following each season (JTWC, 
cited 2008). These “best tracks” represent the best post-
season analysis available and made use of all observations 
available for each storm at each time. The years 1980-2002 
were used to develop SH ST5D and the years 2004-2007 were 
used for independent verification. To remove the potential 
influence of land effects during development, all cases 
that came within 50 km of land were excluded from the 
dependent data. This resulted in 7231, 6622, 6027, 5461, 4919, 
4404, 3912, 3460, 3047, and 2671 cases for the development 
of the 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 h forecast 
models, respectively. Because the best tracks as well as 
forecasts of TC intensity are given in terms of knots (kn – 
nautical miles per hour, where 1 kn = 0.51 ms-1), this unit will 
be used through the remainder of the text. Intensities are 
also considered maximum 1-minute sustained winds, which 
is the convention in the United States of America. 

It is also important to note that the best track intensity record 
has many shortcomings. Some earlier tracks did not have 
intensity estimates associated with each track record, but 
by the mid-1980s all storms had intensity estimates every 
six hours. Errors in the track locations were corrected by 
Chu et al. (2002), but no attempt to reanalyse intensity was 
attempted. Shortcomings of the best track intensities were 
also the topic of recent literature as they relate to climate 
change (e.g. Landsea et al. 2006, Kossin et al. 2007). It is also 
noteworthy that almost all of the intensity estimates are 
based on the Dvorak method (Dvorak 1975, 1984) and thus 
are susceptible to the shortcomings of that methodology. 
The authors, however, believe the data are of acceptable 
quality for the development of simple models of intensity 
change since the sample size is sufficiently large so that 
stable statistical relationships between intensity change and 
the factors of climatology and persistence can be diagnosed. 
Potentially more important to this study is that all of the 
storms in the best track eventually reach an intensity of 35 
kn (18 ms-1), because a climatology of un-named systems 
(tropical cyclones that were tracked but never reached 35 kn 
intensity) is unavailable. This data issue biases the SH ST5D 
forecasts of weaker systems toward intensification.	

Statistical methodology

The methods used to develop the SH ST5D mirror those 

used to develop similar models in the Atlantic, East Pacific 
and western North Pacific as described in Knaff et al. (2003). 
The dependent variable, or predictand (DELV), is the change 
in intensity from the initial conditions. The independent 
variables, or predictors, are developed using seven primary 
measurements as follows:

1)	 Date: (JDAY), is given as a Gaussian function about day 	
	 45 of the year as given by

 				     ...1

 where d is the day of the year.
2)	 Latitude (LAT), 0° – 90°S, south latitude is negative
3)	 Longitude (LON) in terms of degrees east (i.e. 0° – 360°)
4)	 Zonal speed of the storm (U) [kn] where motion toward 	
	 the east is positive.
5)	 Meridional speed of the storm (V) [kn] where motion to	
	 ward the north is positive
6)	 Current intensity (VMAX) [kn] as 1-minute sustained 	
	 winds
7)	 12-hour change in intensity (DVMX) [kn].
 
Twenty-eight additional predictors are constructed from the 
squares and cross products of the seven primary predictors. 
This method results in a pool of 35 potential predictors from 
which the best predictor combinations can be selected.
	 Variable selection for multiple regression schemes can 
be accomplished through a number of methods. Three such 
methods are combined to select or screen predictors in this 
study. The methods are forward selection, backward selec-
tion, and stepwise selection. In forward selection, predictors 
are added one-by-one to a model (forward step). A predictor 
is retained in the model if the F-test p-value is less than a 
predefined value, PIN. In backward selection, predictors are 
removed from the model (backward step) that is typically ini-
tialized with all the predictors. A predictor is removed if its 
p-value is greater than a predefined level, POUT. In stepwise 
selection, a backward step is attempted using POUT; if no 
variable is removed a forward step is attempted using PIN. 
The combination of a backward step followed by a forward 
step is referred to as a stepwise step. In stepwise selection 
only forced predictors enter the model initially and stepwise 
steps continue until no predictors can be removed from the 
model and no potential predictors that remain can be added. 
Forcing predictors into regression models refers to giving 
preference to a set of predictors by initializing the selec-
tion procedure with those predictors. If a set of predictors 
is forced into the model, those predictors must be evaluated 
before other potential predictors are allowed to enter the 
model (IMSL 1987). A more detailed discussion concerning 
the screening of regression variables can be found in Wilks 
(2006). One can also combine various variable selection 
methods and the use of forced predictors to create regres-

JDAY = e
– (d – 45)

    90
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Table 2.  Predictors and associated normalized coefficients for the five-day southern hemisphere ST5D model are listed for forecast 
times 12 to 120 hours.  The number of individual predictors used for each forecast is given in parentheses.

sion models with desired properties. Such a procedure is 
used in this study.  
	 The forecast equations are developed using multiple lin-
ear regression where the predictand is DELV and indepen-
dent variables are the 35 members of the potential predictor 
pool. The predictors at each forecast interval are chosen us-
ing a procedure designed to improve the forecast continuity 
from one interval to the next, and to provide a preference for 
the selection of primary predictors over quadratic combina-
tions for the first forecast interval (12 h). The first step is to 
choose from the primary variables (1-7) for the 12 h forecast 
in a forward selection process. For this first forecast time 
period PIN is set to 0.00001 and POUT is set to 0.00002 for 
this forward selection. Once primary predictors have been 
chosen they are then forced into the model and second-
ary predictors are then allowed to enter the model using a 
forward selection procedure with a PIN and POUT equal to 
0.000001 and 0.000001. To remove primary predictors that 
have lost their statistical significance, a backward selection 
procedure is performed removing all predictors that have a 
probability of being greater than 0.000001 by chance. Finally, 
the predictors in the model following the backward selection 
are forced into the model and a stepwise selection proce-

dure passes through the remaining potential predictors one 
last time, using the same significance levels as the previous 
backward and forward steps, thus adding any remaining po-
tential predictors made significant by the previous backward 
selection.
	 For forecast equations with lead times greater than 12 
hours, the predictors chosen for the previous forecast time 
are given preference in the same way primary predictors are 
given preference for 12 h forecast equations. This procedure 
was shown to provide more continuity among predictors 
and predictions with differing time lags than other variable 
selection procedures, and resulted in between four and ten 
predictors being chosen for each forecast equation. 
	 Table 2 lists the predictors used in the regression equa-
tion and the normalized coefficients associated with the pre-
dictors for forecast times 12 h through 120 h. Two predic-
tors, LATxVMAX and UxVMAX, are used for all the forecast 
equations. This is somewhat reassuring since LAT is a proxy 
for sea surface temperatures and weaker storms (i.e. those 
with lower VMAX) have greater potential to intensify. Thus 
LATxVMAX suggest that storms that have lower intensities 
and are located at lower latitudes are more favored for in-
tensification, noting that all latitudes are negative. The term 

Forecast (hr) 12 24 36 48 60 72 84 96 108 120

No. of Predictors (5) (8) (9) (10) (10) (8) (8) (8) (4) (4)

JDAY 0.07 0.08 0.10

LON –0.40 –0.46 –0.47 –0.46 –0.45 –0.42

V –0.17 –0.16 –0.13

DVMAX 0.78 0.95 0.97 0.94 0.82 0.49 0.40 0.30

JDAY2 0.13 0.14 0.15 0.16 0.17 0.15 0.14

LATxV 0.10

LATxVMAX 0.32 0.34 0.43 0.51 0.59 0.71 0.73 0.75 0.62 0.59

LATxDVMAX 0.22 0.33 0.37 0.35 0.30

LON2 0.05 0.45 0.52 0.53 0.53 0.51 0.48

UxVMAX 0.07 0.10 0.12 0.12 0.12 0.12 0.11 0.10 0.09 0.08

VxVMAX 0.25 0.25 0.24 0.19

VxDVMAX 0.10 0.11 0.10

VMAXxDVMAX –0.16 –0.24 –0.32 –0.32 –0.29 –0.25 –0.19

VMAX2 –0.18 –0.21
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model is applied to independent data, where greater degra-
dation occurs with smaller sample sizes and greater num-
bers of predictors (Knaff and Landsea 1997). This over-fitting 
type of degradation should be relatively minimal given the 
relatively large sample sizes. Other degradation of statisti-
cal models in independent testing can be caused by noisy 
developmental and verification data, which is more likely. 
To assess the actual real-time performance of the SH ST5D 
model, the independent performance is also examined. The 
performance will be evaluated versus persistence as well as 
other intensity forecast techniques available in the southern 
hemisphere. 
	 Table 3 shows the statistics associated with SH ST5D’s 
forecasts based on the dependent sample. Shown are RMSE, 
variance explained and the number of cases used to create 
each forecast. The regression fit to the data explains 45 - 55 
per cent of the variance at all forecast periods with the per-
centage of variance explained increasing at the longer lead 
times. The RMSEs range from 4.8 kn for the 12 h forecast 
equation to 18.3 kn for the 108 h forecast equation with a sat-
uration of errors occurring between 96 h and 120 h forecasts. 
The model fit is comparable to similar models developed in 
the North Atlantic, eastern North Pacific and western North 
Pacific in Knaff et al. (2003).
	 The SH ST5D model has been run in operations at JTWC 
since July 2003 and independent verification statistics are 
available for the 2004 – 2007 southern hemisphere TC sea-
sons. Statistics of the verification of SH ST5D, persistence 
of initial conditions (PER) and with a climatological value of 
intensity (CLIM) are presented in Table 4. The mean absolute 
errors (MAEs) and biases are shown for the 12, 24, 36, 48, 72, 
96, and 120 h forecast periods. The intensity value of 65 kn is 
used for climatology as it closely approximates the mean val-
ues in the independent dataset at all forecast times indicated 
by the small biases for CLIM in Table 4. For completeness 

UxVMAX is a bit more complicated because U can be both 
positive (storm moving eastward) and negative (storm mov-
ing westward), but indicates that weaker westward moving 
and stronger eastward moving storms are more favorable 
conditions for further intensification. The latter may be re-
lated to the tendency of South Pacific storms to intensify fol-
lowing recurvature (Knaff 2009). The date, though in differ-
ent forms, is also used at all forecast times, suggesting that 
climatology still plays a role. 
	 The quadratic terms involving LAT and LON are related 
to spatial variability of intensity change as shown in Knaff 
et al. (2003). Figure 1 shows the spatial pattern that results 
from the 48 h forecast equations using terms LON, LATx-
VMAX, LATxDVMAX and LON2. For the creation of Fig. 
1 VMAX is set to 50 kn and DVMAX is set to 0 kn, which 
makes the results comparable to the results show in Fig. 3 
of Knaff et al. (2003). Figure 1 shows that a greater inten-
sity change is associated with storms that are located further 
north with a slight east-to-west gradient favouring greater 
intensity change east of the Dateline and to a lesser degree 
near the African coast. This spatial pattern appears to rep-
resent the combined effects of the climatological location of 
warm (>25°C) SSTs and the location of large land areas (i.e. 
Australia). 

Model evaluation

The resulting regression equations form the basis of the 
SH ST5D intensity prediction model. In this section, the SH 
ST5D model is evaluated. To assess how well this model de-
scribes the developmental data, the dependent forecast abil-
ity is discussed in terms of root mean square error (RMSE) 
and percent variance explained in terms of R2. It is quite well 
known that the performance of statistical models based on 
dependent multiple linear regressions typically degrade as a 
function of number of predictors and sample size when the 

Fig. 1  	 Example of the resulting spatial distribution of DELV [kn] calculated from the predictors containing LAT and LON in the 
southern hemisphere ST5D 48 h forecast equations. To calculate these spatial distributions VMAX = 50 kn and 

		  DVMAX= 0 kn.   Note the contour intervals are 10 kn and negative DELV contours are dashed.
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variance explained (i.e. R2) is also provided, which shows a 
fairly large degradation when compared to the developmen-
tal data prior for shorter lead (<72 h) forecasts. Biases for 
all of these methods are rather small and there is consider-
able variability in the MAEs with PER shown to have smaller 
(larger) MAEs than CLIM for shorter (longer) forecast peri-
ods. The MAEs produced by SH ST5D are statistically lower 
than MAEs produced by either CLIM or PER at all forecast 
times using a 99 per cent confidence interval and accounting 
for an assumed 30 h serial correlation. The effective sample 
size used for the Student’s t test is estimated to be the number 
of 30 h samples contained in the dataset, which was described 
as the time between effectively independent samples (Leith 

1973). The SH ST5D model outperforms both climatology and 
persistence in this multiyear verification and is suitable for use 
as a control forecast for TC intensity verification as well as a 
simple omnipresent operational TC intensity forecast tool.

Summary 

The development of a simple statistical model for forecast-
ing TC intensity change through five days in the southern 
hemisphere (SH ST5D) for use at the Joint Typhoon Warn-
ing Center has been documented. The model makes use of 
an optimal combination of factors related to climatology 
and persistence and is based on a multiple linear regres-

Table 3.  Dependent statistics for the southern hemisphere ST5D model are listed.  Shown are the R2 (variance explained), RMSE and 
the number of cases used to develop the regression equation for each forecast period.  

Southern Hemisphere (1980 - 2002)

12 h 24 h 36 h 48 h 60 h 72 h 84 h 96 h 108 h 120 h

R2 (%) 45.8 48.0 47.8 48.8 50.0 50.4 52.1 52.7 53.6 54.8

RMSE (kn) 4.8 8.3 11.5 13.8 15.6 17.2 17.7 18.1 18.3 18.1

Number 7231 6622 6027 5461 4919 4404 3912 3460 3047 2671

Forecast 12 h 24 h 36 h 48 h 72 h 96 h 120 h

Cases (1163) (1049) (930) (818) (611) (451) (318)

MAE (kn)

SH ST5D 9.6 16.0 20.3 23.0 24.9 26.2 26.6

PER 10.7 19.5 26.3 31.0 36.0 37.6 40.8

CLIM 25.5 26.0 26.6 27.6 28.6 29.5 29.7

BIAS (kn)

SH ST5D 0.3 0.9 1.0 1.5 0.2 0.5 –5.1

PER –0.2 –0.5 –1.0 –1.3 –2.5 –1.1 –0.4

CLIM 1.8 –0.2 –1.9 –2.7 –3.0 –0.6 0.3

R2 (%)

SH ST5D 24.8 29.6 34.4 38.5 47.7 49.4 50.0

Table 4.  Verification statistics associated with forecasts of tropical cyclone intensity for the period 2004-2007.  Shown are the mean 
absolute error (MAE) and bias (BIAS) in units of kn (1 kn =0.54 ms-1) associated with the southern hemisphere ST5D model 
(ST5D), persistence of initial intensity (PER) and a climatological value of 65 kn (CLIM) for the 12 h, 24 h, 36 h, 48 h, 72 h, 
96 h and 120 h forecasts.  The number of forecasts for each time period is given in parentheses.   Verification is based on 
JTWC best tracks for the 2004-2007 tropical cyclone seasons in the southern hemisphere.
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sion equation for each forecast time. The model was devel-
oped primarily as a verification tool, but the simplicity of 
the model also provides TC intensity forecasts that are both 
useful and always available. The statistics from both the de-
pendent developmental data and from independent verifi-
cation during 2004-2007 indicate that the model provides 
forecasts superior to either climatology or persistence. Thus, 
since 2004 SH ST5D has become the skill/no-skill baseline 
for evaluating TC intensity change forecasts at JTWC. The 
documentation of the SH ST5D is provided (1) to encourage 
the use of CLIPER-based control models of intensity, includ-
ing the already available SH ST5D, as verification tools and 
(2) to provide background information for the development 
and use of similar models based on different developmental 
datasets. 
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