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Introduction

The United States of America’s Joint Typhoon Warning 
Center (JTWC) makes tropical cyclone (TC) forecasts in the 
southern hemisphere. These forecasts are typically produced 
every 12 h, extend through 48 h, and consist of position, in-

tensity and significant (e.g. gale-force, etc.) wind radii. These 
tactical forecasts support the United States of America’s mil-
itary and civilian operations in this part of the world. Until 
recently, few objective forecast aids for TC intensity existed 
and operational intensity forecasts heavily depended on 
trends in the satellite analysis. For more information about 
objective intensity guidance techniques used at JTWC and 
when they became available, a comprehensive list is pro-
vided in Table 1 of the Part I companion paper, Knaff and 
Sampson (2009). 
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In 2005, a TC intensity model based on a statistical – dynami-
cal approach was developed for use in the southern hemi-
sphere. The model was called the Southern Hemisphere 
Statistical Typhoon Intensity Prediction Scheme (or SH 
STIPS) after its counterpart used in the western North Pacific 
(STIPS; Knaff et al. 2005) and is the subject of this paper. The 
SH STIPS model was designed to make statistical forecasts 
of intensity using environmental forecast information from a 
global forecast model (the dynamical component) along the 
official JTWC tracks and static predictors provided by the 
operational best track. In addition to the actual forecast of 
intensity, the model output provides information about envi-
ronmental conditions along the forecast track and potential 
influences of land by employing an inland decay model. The 
development of the SH STIPS model is nicely complemented 
by the purely statistical model based on climatology and per-
sistence referred to as SH ST5D and described in Knaff and 
Sampson (2009). For this discussion, it is important to note 
that due to changes in JTWC operational capabilities, the SH 
STIPS output along the JTWC forecast track, which has been 
created in real-time since June 20051, was never available to 
JTWC for consideration in making their operational inten-
sity forecasts. The SH STIPS model however is an important 
part of a consensus-based method to predict TC intensity 
using track and analysis/forecast fields from a number of 
models discussed in the Part III companion paper Sampson 
and Knaff (2009); again creating capabilities similar to those 
available in the western North Pacific (Sampson et al. 2008).
	 The SH STIPS model, because of its continued use in the 
consensus intensity forecast methods, needs to be formally 
documented. The following sections provide such documen-
tation by giving details about the datasets and techniques 
used to develop the SH STIPS model. In addition, the depen-
dent or expected performance is compared to an indepen-
dent sample of forecasts made from July 2005 to July 2007. 
Documentation is provided for potential users2 of forecasts 
based on this methodology as well as those seeking to create 
similar models.

Datasets 

Seven years of Navy Operational Global Atmospheric Pre-
diction System (NOGAPS) (Hogan et al. 2002; Hogan and 
Rosmond 1991) analyses were used in the development of 
SH STIPS. Specifically, temperature, wind, water vapor pres-
sure and geopotential height data were collected twice daily 
for the period 21 July 1997 through 30 July 2004 at 100, 150, 
200, 250, 300, 400, 500, 700, 850, 925, and 1000 hPa. Surface 

skin temperature fields were also collected for the same peri-
od, which are used as sea surface temperature (SST). Surface 
type (i.e. land or ocean) is determined from a digitized land 
file that contains the continental areas and large islands in 
the southern hemisphere. For operational and developmen-
tal purposes a climatological SST derived from the Reynolds 
and Smith (1995) SST is used when the NOGAPS skin tem-
perature field is unavailable.
	 The tropical cyclone position and intensity informa-
tion used for the development of this model came from the 
JTWC’s “best track”, which is a post-season reanalysis using 
additional information not available in the operational time 
frame (JTWC, cited 2008). These files contain the date, time, 
latitude, longitude and intensity every six hours for all storms 
designated by JTWC as being tropical depression3 strength 
or greater. Because routine aircraft reconnaissance has never 
been available in this region, one caveat concerning the best 
track intensities is that they are determined solely from sat-
ellite-based methods (e.g., Dvorak 1984; Demuth et al. 2006, 
2004; Olander et al. 2007; Velden et al. 1998) the majority of 
the time. The actual errors associated with the use of satellite 
intensity estimation methods have been quantified in Olan-
der et al. (2007), Velden et al. (1998) and Demuth et al. (2006). 
Those results, which show all of the satellite techniques are 
capable of capturing intensification trends, give some confi-
dence in the operational and best track intensity estimates. 
The intensity archived in these historical datasets, as well as 
operational intensity forecasts, are estimated to the nearest 
5 knots (kn – nautical miles per hour) at 6 h intervals. For 
this reason, model formulation as well as any discussion of 
intensity in this paper will be in terms of kn instead of ms-1 (1 
ms-1 = 1.94 kn).

Model development

The development of the SH STIPS model closely follows the 
development of the STIPS model in the western North Pa-
cific tropical cyclone basins (Knaff et al. 2005), but incorpo-
rates some additional low-level thermodynamic predictors 
similar to those used by DeMaria et al. (2005). SH STIPS is a 
multiple linear regression model. The dependent variables 
(predictands) are the intensity changes from the initial fore-
cast time (DELV) at 12 hour intervals of all storms not mak-
ing landfall. Potential predictors (independent variables), or 
more precisely parameters that have been documented in 
the literature to be associated with tropical cyclone inten-
sity change, are created. The potential model predictors are 
then evaluated for their combined statistical ability to predict 
tropical cyclone intensity change. This process yields ten 
predictive equations that are used to make forecasts at each 

 1The SH STIPS model based on JTWC forecast tracks was never provid-
ed to JTWC due to latency issues, but SH STIPS has been provided as a 
STIPS ensemble and as part of a multi-model consensus as documented 
in Sampson and Knaff (2009). 
 2Forecasts from the operational intensity consensus (Sampson and 
Knaff 2009) are being provided to the Australian Bureau of Meteorology.  

 3Tropical Depression:  A weak tropical cyclone with a definite closed 
surface circulation and highest sustained wind speeds (averaged over 
one minute or longer period) of less than 17 m s-1 (34 knots) (Elsberry 
1987)
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of the ten 12-hourly time periods, 12 h through 120 h. 
	 The resulting equations can predict the intensity changes 
associated with environmental and climatological tenden-
cies, but not the intensity changes caused by landfall. It is 
known however that the intensity change of some tropical 
cyclones is strongly influenced by rapid weakening associ-
ated with landfall. To account for landfall effects on intensity 
along the forecast track, the empirical inland decay model 
discussed in DeMaria et al. (2006) is used. The coefficients 
used for inland decay come from Kaplan and DeMaria (1995) 
and Kaplan and DeMaria (2001) where they are used north of 
36°S, and south of 40°S, respectively. Between these two lati-
tudes, a linear weighting of two sets of coefficients is used.
	 The details concerning the development of the SH STIPS 
model are contained in the following subsections which, 
firstly, outline the predictors used in the model development, 
secondly, describe the statistical methodology and finally 
discuss how the final model predictors were selected along 
with the discussion of their relative importance. 

Potential predictors

The potential predictors used in model development can be 
divided into two categories: (1) those related to climatology, 
persistence, current/past motion and trends of intensity – 
“static predictors” and (2) those related to current and fu-
ture environmental and SST conditions – “time dependent 
predictors”. All of the time dependent predictors are derived 
along the tropical cyclone track. The various predictors are 
developed using a “perfect prognosis” methodology (Ka-
lnay 2003) where the analyses and actual tropical cyclone 
best tracks are used to create the statistical model. Howev-
er, when SH STIPS is run in real-time, the NOGAPS model 
forecasts are used to create the predictors along the JTWC 
tropical cyclone track forecast. Therefore, errors in both the 
NOGAPS forecast fields and the JTWC track forecast repre-
sent additional sources of SH STIPS intensity forecast errors 
not accounted for in the developmental data.		
	 The potential static predictors are derived from the cur-
rent date and intensity, and the 12 h change in intensity, mo-
tion, and location. Predictors determined during the develop-
ment of climatology and persistence based models (Knaff et 
al. 2003; Knaff and Sampson 2009) were included as potential 
static predictors in STIPS. However, since SST information 
is used in the development of this model, predictors related 
to location (a proxy for SST in the SH ST5D CLIPER model) 
were not included in the static predictor pool. In addition 
the pressure corresponding to the steering level (PSLV) is 
also examined as a static predictor. The PSLV was estimated 
from the steering flow at all the analysis levels at 0 h. It has 
been found that a lower PSLV is a favourable condition for 
intensification in other basins (Knaff et al. 2005, DeMaria et 
al. 2005). A lower value of PSLV is likely to be associated with 
wind environments that are generally more uniform in the 

vertical, and thus more conducive to intensification. Static 
predictors used for model development are listed in Table 1. 

	 The potential time dependent predictors are more nu-
merous and require more explanation. These predictors are 
divided into three basic categories, namely those related to 
the SST, those related to atmospheric stability and those re-
lated to the wind fields. SST values are determined at the 
storm centre by interpolating from oceanic NOGAPS skin 
temperature values, while atmospheric stability and wind 
related predictors are area averaged around the centre. Time 
dependent predictors are also averaged with respect to time 
along the track from the initial time to the forecast time, pro-
viding the mean conditions the storm will experience along 
its track. 
	 The primary use of the SST is to determine the upper 
bound of tropical cyclone intensity as a function of SST. 
This upper bound is commonly referred to as the maximum 
potential intensity (MPI) and can be estimated theoretically 
(e.g. Miller, 1958; Malkus and Reihl 1960; Emanuel 1988; Hol-
land 1997) or empirically (e.g. Merrill 1987; DeMaria and Ka-
plan 1994; Whitney and Hobgood 1997). For the purposes of 
developing SH STIPS, the empirical approach is chosen fol-
lowing the methodology employed in DeMaria and Kaplan 
(1994), which fits an exponential function to the maximum 
observed tropical cyclone intensity with respect to SST. The 
SST used to develop this MPI function for the southern hemi-
sphere is derived from a 21-year climatology of Reynolds 
SST (Reynolds and Smith 1995), which contained data from 
the period 1982-2002. This 1° latitude by 1° longitude resolu-
tion SST climatology is then interpolated to the storm centre 
following the best track for a 22-year period (1980-2002) to 
find the SST corresponding to the storm intensity. The storm 
intensity used is actually the best track intensity minus the 
storm speed following the convention used by DeMaria and 
Kaplan (1994), though a potentially more accurate method 
to remove the effect of storm translation on intensity is pro-
vided by Schwerdt et al. (1979). The maximum values in each 
half-degree temperature interval are then used to determine 
the coefficients in the MPI function described in Eqn 1. Us-

Table 1.  The potential static predictors used in SH STIPS de-
velopment.

predictor description

VMAX Initial intensity

VMAX2 Initial intensity squared

DVMX 12-hour change in intensity

JDAY Absolute number of day before or after the 
45th day of the year

SPD Storm translational speed

PSLV The pressure level of the layer mean flow that 
most closely approximates the initial steering 
motion
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the tropical cyclone from the analysis where the NOGAPS 
model uses synthetic observations to initialize the tropical 
cyclone (Goerss and Jefferies 1994). The size of the annulus 
was chosen to maximize the predictive ability of the verti-
cal wind shear, and thus provides a good estimate for the 
average-sized tropical cyclone. 
	 At 200 hPa, the zonal wind (U200), temperature (T200), di-
vergence (D200) and relative eddy flux convergence (REFC) 
are examined. The zonal wind and the temperature are again 
averaged in the same 200 – 800 km annulus as the relative 
humidity, and the divergence is averaged within a slightly 
larger 1000 km circle. The REFC is calculated within 600 km 
using Eqn 2, 

					       ,	                 …(2)

where U is the radial wind, V is the tangential wind, r is ra-
dius, the overbar represents an azimuthal mean, the primes 
indicate a departure from the azimuthal mean, and the sub-
script L indicates that the calculation is done following the 
storm motion. The T200 is thought to help correct any short-
comings of using a climatological MPI that is solely related 
to SST conditions. U200 is an indicator of the direction of 
vertical wind shear, which has been shown to be important 
to tropical cyclone structure and intensification (Frank and 
Ritchie 2001). REFC is a measure of atmospheric torque and 
has been shown to be related to TC intensity change (DeMa-
ria et al. 1993).
	 In addition to these potential predictors at 200 hPa, the 
850 hPa vorticity (Z850) is averaged within a radius of 1000 
km and several measurements of vertical wind shear are cal-
culated within the 200 – 800 km annulus. As was the case 
with relative humidity, the core region of the storm is re-
moved for the measurement of environmental vertical wind 
shear. A traditional approach for calculating vertical wind 
shear is to simply use the magnitude of the vector difference 
between layers. Using this approach, two time dependent 
predictors were created: the 200 hPa minus 850 hPa wind 
difference (SHRD) and the 500 hPa minus 850 hPa wind dif-
ference (SHRS). In addition to the scalar values of shear (i.e. 
SHRD and SHRS), the zonal components (USHRD, USHRS) 
of the shear in these layers were also created. As an alter-
native to the traditional measures of vertical wind shear, a 
generalized vertical wind shear can be calculated and tested. 
The generalized shear at a point (SHRG) is calculated from 
the mass weighted root mean square deviations of the winds 
from the mass weighted deep layer mean winds times a fac-
tor of four to make the values equivalent to the more conven-
tional measure of 200-850 hPa for the case when the shear is 
linear with respect to pressure, as shown in Eqn 3.

 						                     … (3)
 
 where

ing this procedure, the coefficients are A=–42.1 kn, B=220.58 
kn, C=0.0792°C–1 and T0=30.0°C.

 							       …(1)

In the formulation of STIPS the maximum value of MPI al-
lowed is 185 kn. Figure 1 shows this MPI function and its fit 
to the 99th percentile of the data. 

Fig. 1 	 The empirical maximum potential intensity (MPI) 
function used in SH STIPS given by the solid line 
along with the binned 99th percentile of intensity ob-
served in the JTWC best track dataset (1980-2000).

MPI = A + Be
C(T–T  )0

	 Atmospheric stability is known to affect tropical cyclone 
intensification and development. The effect of middle-level 
moisture (e.g. moist entropy) is subtle and is fundamen-
tally related to the ventilation (as defined by Simpson and 
Reihl (1958)) of the storm (Emanuel et al. 2004). Variations 
of environmental relative humidity (RH) will affect convec-
tive buoyancy through entrainment of subsaturated air. In 
tropical cyclones, convective available potential energy is 
relatively small and decreases to almost zero near the centre 
(Bogner et al. 2000). Therefore, relative humidity values and 
thus moist entropy in the middle atmosphere should be rela-
tively large, which reduces the entrainment of dry air into 
cumulus convection. Since convection is the direct source 
of the tropical cyclone’s energy, variations of mid and up-
per level RH should affect tropical cyclone intensification 
rates. To examine the potential effects of environmental mid 
and upper level moisture on tropical cyclone intensity, aver-
age RH was calculated in atmospheric layers 850 – 700 hPa 
(RHLO) and 500 – 300 hPa (RHHI) within an annulus of 200 
- 800 km from the centre of the cyclone. To further examine 
the combined effects of low-level moisture and temperature 
on the atmospheric stability the equivalent potential tem-
perature at 925 hPa (E925) is also used as a potential pre-
dictor and is calculated in the same annulus. This annular 
average is used to estimate environmental parameters. The 
200 km radius is used to remove the inner-most regions of 
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STIPS model formulation 

The stepwise predictor selection procedure was performed 
on the two predictor pools and resulted in thirteen predictors 
being selected for use in model formulation (Tables 3 and 4). 
There were 2181 cases available at 12 h and 860 cases at 120 
h in the developmental dataset. The thirteen predictors cho-
sen came from the predictor pool containing the SHRD and 
SHRS terms. It was found that the regression results were 
slightly better using this vertical shear parameterization (i.e. 
SHRD, SHRS, USHRD, USHRS) than using the generalized 
shear parameterization (SHRG), as was also the case in the 
western North Pacific STIPS (Knaff et al. 2005). The predic-
tor selection procedure also found that the REFC term is not 
significant at any time period, in agreement with Fitzpatrick 
(1997) and Knaff et al. (2005). Storm translation speed (SPD) 
also was found to be an unimportant factor, but the pressure 
of the steering level (PSLV) was found to be important. The 
potential predictors D200, RHLO and all the 500 - 850 hPa 
shear measures were also found to be statistically unimport-
ant at all forecast times. Interesting is the inclusion of RHHI 
(i.e. relative humidity in the 500-300 hPa layer), but not RHLO 
(i.e. relative humidity in the 850 – 700 hPa layer), which is 
identical to the relationships used in the 2002 version of the 
SHIPS model (DeMaria et al. 2003) and the western North 

			   is the deep layer zonal wind,

 			   is the deep layer meridional wind,

and 	 are mass weights.
Potential predictors in STIPS also include several quadratic 
terms. The MPI squared as well as the MPI times the initial 
intensity VMAX, were added following the notion that these 
terms may account for some inherent non-linearity in the 
same way they do in STIPS (Knaff et al. 2005), SHIPS (DeMa-
ria and Kaplan 1999) and in ST5D (Knaff et al. 2003; Knaff and 
Sampson 2009). The terms SHRG times the cosine of the lati-
tude (along the storm track) and SHRD times the cosine of 
the latitude (along the storm track) were also tested because 
storms at higher latitude tended to be less sensitive to verti-
cal wind shear (DeMaria 1996). Since the potential effect of 
vertical wind shear is somewhat determined by the current 
storm intensity, a quadratic term combining these effects is 
also tested (VXSH). This results in 13 synoptic predictors be-
ing available for testing in SH STIPS, as listed in 
Table 2. 	

Statistical methodology

When developing a multiple regression model one com-
monly uses a method to select predictors based upon their 
combined ability to predict the dependent variable or pre-
dictand. For this model a stepwise procedure is used to se-
lect variables from the predictor pool at each forecast time 
(see IMSL 1987 and Wilks 2006). Significance of individual 
predictors is based on a standard F-test (Panofsky and Brier 
1968). A 99 per cent statistical significance level is required 
for an individual predictor to be included initially in the 
model. Once in the model, a predictor can only be removed 
if its significance level becomes less than 98 per cent by the 
addition/removal of another predictor. Because the model 
development uses two different ways of measuring vertical 
wind shear, namely the SHRG term and two-layer scalar dif-
ferences SHRD and SHRS, two pools of predictors were cre-
ated. These pools were identical except for the treatment of 
vertical wind shear predictors that are listed in Table 2. The 
stepwise procedure identifies important predictors at each 
forecast time, which sometimes results in erratic forecasts. 
To avoid this problem, all of the predictors chosen for any 
forecast period by the stepwise selection procedure are in-
cluded in the final group of predictors. Using the predictors 
in this final group, a single multiple regression model is cre-
ated for each forecast time. In the next subsection the results 
of this regression procedure, including the predictors and 
their relative importance through 120 hours, are discussed.

Table 2.  Potential synoptic predictors available for predictor 
selection for the SH STIPS model.

Predictor Description

MPI Maximum potential intensity based upon 
Eqn 1

MPI2 MPI squared

MPI*VMAX MPI times the initial intensity

RHLO Area-averaged (200 km to 800 km) relative 
humidity 850 – 700 hPa

RHHI Area-averaged (200 km to 800 km) relative 
humidity 500 – 300 hPa

E925 Area-averaged (200 km to 800 km) equiva-
lent potential temperature at 925 hPa

U200 Area-averaged (200 km to 800 km) zonal 
wind at 200 hPa

T200 Area-averaged (200 km to 800 km) tempera-
ture at 200 hPa

D200 Area-averaged (0 km to 1000 km) 200 hPa 
divergence

REFC Relative eddy flux convergence within 600 
km (see Eq. 2)

SHRG Generalized 200 to 850 hPa vertical wind 
shear (see Eq. 3)

SHRS Area-averaged (200 km to 800 km) 500 hPa 
to 850 hPa wind shear

SHRD Area-averaged (200 km to 800 km) 200 hPa 
to 850 hPa wind shear
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Pacific STIPS model (Knaff et al. 2005). 
	 Table 3 lists the forecast time at which the thirteen pre-
dictors are most important (statistically significant) to the 
model’s forecast. Not surprisingly, the predictors related to 
current conditions, namely the static predictors, were most 
important to the model at the 12 h period, with the excep-
tion of the pressure of the steering level (PSLV). Most of the 

factors related to vertical wind shear (except VXSH), T200, 
RHHI and MPI, become most important at lead times be-
yond 24 hours.
	 The relative contribution of each predictor for each fore-
cast period is illustrated by the values associated with the 
normalized regression coefficient. A simple way to interpret 
these coefficients is: the larger the normalized coefficient, 
the greater its contribution to the individual forecast equa-
tion. To form normalized coefficients, all of the predictors, as 
well as the predictand (what is being predicted), are normal-
ized before they are incorporated in the regression equation. 
Subtracting the population mean and dividing this result by 
the population standard deviation accomplishes the normal-
ization. Table 4 lists the normalized coefficients associated 
with each predictor for each forecast equation through 120 
hours. The number of cases used to develop the regression 
equations are shown in parentheses at the top of the table 
with the forecast times, and the 99 per cent statistical signifi-
cance of each normalized coefficient is indicated by bold face 
italics. 
	 The thirteen predictors in Table 4 can be grouped by ef-
fect into those related to persistence (i.e. DVMX), the dy-
namic prediction of intensification and growth (i.e. Z850), the 
vertical wind shear, intensification potential and thermody-
namic effects. The predictors related to vertical wind shear 
are PSLV, SHRD, USHRD and VXSH, which when grouped 
together show that SHRD and PSLV are inversely related to 
intensification, whereas USHRD is preferred for intensifica-
tion. This final result, that increasing USHRD is related to in-

Predictor Most important forecast 
hour

1.  DVMAX 12

2.  PSLV 72

3.  VMAX2 12

4.  MPI 36

5.  MPI2 48

6.  MPI*VMAX 12

7.  SHRD 72

8.  USHRD 24

9.  T200 120

10. RHHI 36

11. Z850 36

12. E925 108

13. VXSH 12

Table 3.  The final predictors used in STIPS along with the fore-
cast hour when they are most statistically significant.  
The first three predictors are static while the others 
(4-13) are time dependent.

12 h

(2181)

24 h

(1995)

36 h

(1825)

48 h

(1661)

60 h

(1502)

72 h

(1354)

84 h

(1215)

96 h

(1088)

108 h

(970)

120 h

(860)

1.  DVMAX 0.35 0.28 0.20 0.15 0.10 0.07 0.04 0.02 0.01 0.00

2.  PSLV –0.06 –0.07 –0.08 –0.09 –0.10 –0.11 –0.11 –0.09 –0.10 –0.09

3.  VMAX2 –0.67 –0.81 –0.79 –0.76 –0.71 –0.69 –0.67 –0.65 –0.60 –0.57

4.  MPI –0.21 –0.35 –0.41 –0.45 –0.34 –0.19 –0.19 –0.04 0.29 0.40

5.  MPI2 0.17 0.33 0.43 0.54 0.48 0.38 0.43 0.30 0.00 –0.08

6.  MPI*VMAX 0.72 0.79 0.67 0.51 0.33 0.18 0.08 –0.02 –0.12 –0.17

7.  SHRD 0.11 0.08 0.00 –0.09 –0.16 –0.24 –0.27 –0.30 –0.31 –0.29

8.  USHRD 0.10 0.14 0.17 0.16 0.14 0.12 0.09 0.05 0.01 –0.02

9.  T200 –0.03 –0.03 –0.03 –0.03 –0.03 –0.04 –0.04 –0.05 –0.06 –0.08

10. RHHI 0.11 0.10 0.11 0.10 0.10 0.08 0.07 0.06 0.04 0.04

11. Z850 0.07 0.10 0.13 0.14 0.14 0.15 0.16 0.15 0.14 0.13

12. E925 0.04 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.14

13. VXSH –0.46 –0.52 –0.46 –0.34 –0.19 –0.01 0.11 0.22 0.32 0.36

Table 4.  Normalized regression coefficients used in the STIPS model.  The predictors are listed at the left side of the table and the 
forecast times are listed at the top with the number of dependent cases used to develop the equation displayed in paren-
theses.  The 99 per cent statistical significance level from an F-test is indicated by bold italic print. 
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tensification, may be related to intensification trends during 
extratropical transition or the propensity for South Pacific 
TCs to intensify post recurvature (Knaff 2009). The predic-
tors VMAX2, MPI, MPI2, and MPI*VMAX can be thought of 
as a potential for intensification and when grouped together 
show that weaker storms with larger MPI values can inten-
sify at greater rates, which is similar to results presented in 
Knaff et al. (2005). Finally, T200, E925, and RHHI form the 
basis of a correction to the MPI based on climatological SST, 
where T200 provides corrections related to variations in at-
mospheric temperature profiles, and E925 and RHHI give 
corrections related to the variability of moisture. 

Model performance

Model performance can be demonstrated from both the 
developmental dataset - which can be thought of as the 
model’s predictability limit - and by verification against an 
independent dataset. Table 5 shows the statistics related to 
the model developments. As is the case for other statisti-
cal models that predict the intensity change from the initial 
time or DELV (e.g. DeMaria et al. 2005; Knaff et al. 2005), the 
variance explained increases with increasing lead time and 
the model errors saturate near five days. Nonetheless, a sub-
stantial amount of the variance is explained even at shorter 
lead times and the dependent errors are smaller than those 
produced by the baseline model SH ST5D (Knaff and Samp-
son 2009). Both of these measures indicate that this model 
should be skillful in independent testing. 
	 To verify this assertion, the real-time SH STIPS forecasts 
were verified for the period July 2005 to June 2008 using fi-
nal best track intensities, noting that preliminary best track 
intensities are used for verification of storms occurring after 
July 20074. This results in 321, 282, 243, and 210 cases for the 
12, 24, 36, and 48 h forecast times, respectively. Figure 2(a) 
shows the forecast verification results in terms of mean ab-
solute error (MAE) through to 48 h. Real-time forecasts be-
yond 48 h are rare because SH STIPS is run off of the JTWC 
forecast track, which is typically run through to 48 h. Only 
twelve forecasts exist for the 72 h forecast period. For com-
parison, forecasts from persistence (PER), a constant 65 kn 
forecast (CLIM) and from the SH ST5D (Knaff and Sampson 
2009) model are also shown. Figure 2(b) shows the biases as-
sociated with these forecasts and Fig. 2(c) shows the percent 
improvement of SH STIPS achieved with respect to SH ST5D 
– all results are significant at the 95 per cent level. When a 30 
h serial correlation reduces the number of degrees of free-
dom, these improvements are statistically significant at the 
99, 97, 90, and 87 percent level for the 12, 24, 36, and 48 h 
forecast times, respectively. Biases for this sample suggest 

SH STIPS had a tendency to over forecast intensification 
which mirrors the biases associated with SH ST5D, suggest-
ing that the independent data may deviate from climatology. 
However, in this analysis the model is skillful through the 48 
h forecast. 
	 While Fig. 2 gives the independent statistical perfor-
mance of the SH STIPS model, it is important to supplement 
those findings with subjective, but potentially more impor-
tant information for potential users. From the statistical anal-
ysis of errors it is clear that, even with this model, intensity 
forecasts remain challenging. There are a few important ob-
servations that have been made pertaining to this and simi-
lar statistical-dynamical models. First, rapid intensification 
events will not be predicted by this type of model, which by 
design predicts the most likely outcome –not the outliers. 
Secondly, because of the time averaging employed in the SH 
STIPS model, large fluctuations in forecast intensity are less 
likely as the forecast lead time increases. The resulting in-
ability of the model to forecast large changes at longer lead 
times can lead to particularly poor forecasts when storms 
are forecast to rapidly weaken at short lead times and then 
encounter more favorable conditions at longer lead times. 
For instance, this sequence of events can occur when TCs 
make landfall on a large island (e.g. Madagascar) or penin-
sula (e.g. Cape York Peninsula) in the short term and then 
re-emerge into favourable marine conditions at longer lead 
times. Finally, these types of models, even with perfect de-
velopmental datasets, are ultimately dependent on reliable 
initial conditions and quality forecasts of environmental con-
ditions and future track. 
	 The 12-hourly intensity change (DELV) and current inten-
sity (VMAX) are relatively important to the SH STIPS model 
as shown in Table 4, so errors in intensity estimate are im-
portant – and intensity estimates are currently all satellite 
based in the southern hemisphere. Forecasts of environ-
mental conditions are likely to continue to improve, but are 
still problematic in intensity forecasting at longer lead times. 
Since the forecast track determines the timing of encounters 
with land, cooler SSTs, vertical wind shear etc., poor forecast 
tracks can also significantly degrade model performance. 
Some of the track based errors can and are being mitigated 
by the use of multi-track STIPS-based consensus forecasts 
(Sampson et al. 2008; Sampson and Knaff 2009). Ultimately, 
while the statistical-dynamic technique can be improved by 
higher quality forecast tracks, initial conditions, forecasts of 
environmental conditions and by the addition of predictors 
related to initial convective organization and oceanic heat 
content, it is likely that such methods are ultimately limited 
by the lack of detailed information about the tropical cyclone 
wind and thermal structure and the vigour and organization 
of convection. These later factors are more likely to be cap-
tured by the use of advanced data assimilation techniques 
and numerical modelling. For now, however, statistical-dy-
namical models remain viable tools for making operational 

4Preliminary best tracks are an intermediate stage of the best tracking 
procedures. In some cases changes to the track and intensity estimates 
in the best track are made after the operational forecast is released (e.g. 
based on updated information), but before the best tracks are finalised.
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tropical cyclone intensity forecasts in 
the southern hemisphere and other ba-
sins as shown here and in DeMaria et 
al. (2007, see their Table 3).

Summary and future plans

The development of a statistical-dy-
namical model for forecasting TC in-
tensity change through five days in the 
southern hemisphere (SH STIPS) for 
use at the Joint Typhoon Warning Cen-
ter has been documented. The model 
makes use of an optimal combination 
of factors related to climatology and 
persistence, intensification potential, 
vertical wind shear, dynamic size/inten-
sity forecasts and atmospheric stability. 
SH STIPS is based on a multiple linear 
regression equation for each forecast 
time and forecasts the change in inten-
sity from the initial value. The model 
was developed to mirror similar capa-
bilities available to JTWC forecasters 
in the western North Pacific and Indian 
Ocean. SH STIPS is an improvement 
over other individual model intensity 
guidance methods in this basin. The 
statistics from both the dependent de-
velopmental data and from indepen-
dent verification during July 2005 to 
June 2008 indicate that the model pro-
vides forecasts superior to combined 
climatology and persistence (SH ST5D). 
These performance statistics suggest 
that the SH STIPS model is one of the 
better models available for making 
tropical cyclone intensity forecasts in 
the southern hemisphere.
	 More important to the opera-
tional meteorologist, this model has be-
come a pivotal part of an intensity con-
sensus forecasting method described 
in a companion paper (Sampson and 
Knaff 2009), which has been able to im-
prove the reliability, forecast length and 
skill of southern hemisphere intensity 

Fig. 2 	 The verification statistics for SH STIPS from July 2005 to the present. Mean 
absolute errors are shown along with similar statistics for the SH ST5D model, 
persistence (PER), and climatology (CLIM) in the top panel (a) and biases as-
sociated with SH STIPS, SH ST5D, PER and CLIM are shown in the central panel 
(b). The bottom panel (c) shows the percent improvement in the SH STIPS 
model when compared to climatology and persistence (i.e. SH ST5D). 

(a)

(b)

(c)

12 h 24 h 36 h 48 h 60 h 72 h 84 h 96 h 108 h 120 h

R2 (%) 41.1 49.5 53.3 55.0 56.5 57.8 59.2 59.0 59.4 58.4

MAE (kn) 5.3 9.0 12.1 15.0 17.3 18.9 20.0 20.8 21.1 21.7

Table 5.  Developmental statistics associated with the SH STIPS model.  Shown are percent variance explained (R2), and mean ab-
solute error of the model estimate (MAE). 
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forecasts at the JTWC. Consensus-based intensity forecasts 
are also available to the Australian Bureau of Meteorology 
in real-time. In the near future, there are also plans to incor-
porate oceanic heat content information into the SH STIPS 
model via the method described in Goni et al. (1996) and cre-
ated from the fields available from the Navy coupled ocean 
data assimilation (Cummings 2005). Testing of this formula-
tion of the model in a consensus-based approach is planned 
to start during the 2009 tropical cyclone season.
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