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ABSTRACT

A new and improved method for estimating tropical-cyclone (TC) flight-level winds using globally

and routinely available TC information and infrared (IR) satellite imagery is presented. The

developmental dataset is composed of aircraft reconnaissance (1995–2012) that has been analyzed to

a 1 km 3 108 polar grid that extends outward 165 km from the TC center. The additional use of an

azimuthally average tangential wind at 500 km, based on global model analyses, allows the estimation of

winds at larger radii. Analyses are rotated to a direction-relative framework, normalized by dividing the

wind field by the observed maximum, and then decomposed into azimuthal wavenumbers in terms of

amplitudes and phases. Using a single-field principal component method, the amplitudes and phases of

the wind field are then statistically related to principal components of motion-relative IR images and

factors related to the climatological radius of maximum winds. The IR principal components allow the

wind field to be related to the radial and azimuthal variability of the wind field. Results show that this

method, when provided with the storm location, the estimated TC intensity, the TC motion vector, and

a single IR image, is able to estimate the azimuthal wavenumber 0 and 1 components of the wind field.

The resulting wind field reconstruction significantly improves on the method currently used for satellite-

based operational TC wind field estimates. This application has several potential uses that are discussed

within.

1. Introduction

The estimation of surface winds associated with

tropical cyclones (TCs) is important to a variety of

public, private, and governmental stakeholders and ap-

plications. However, the surface wind field of TCs is

rarely, if ever, instantaneously measured with sufficient

resolution to provide enough detail for most users and

applications. The best depictions of the TC wind field

come from storm-centric temporal composite analyses

that make use of aircraft-reconnaissance-based (and

other) observations over a relatively short time period

(e.g., Powell et al. 2009). Fortunately, many of the high

temporal resolution (1 and 10Hz) digital records of

flight-level wind vectors and more recently surface wind

speed estimates from the Stepped Frequency Micro-

wave Radiometer (SFMR; Uhlhorn et al. 2007) have

been archived and exist in sufficient quantities that

analyses of flight-level wind fields can be created for a

variety of TC cases. Several studies have also provided

guidance on how flight-level wind speeds are related to

surface wind speeds (e.g., Powell and Black 1990;

Franklin et al. 2003; Powell et al. 2009) and what the

surface wind inflow angles are as a function of azimuth

and radius based on global positioning system drop-

windsonde and SFMR data (Zhang and Uhlhorn 2012).

Collectively, these data and techniques allow for the
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estimation of the flight-level wind fields associated with

a large sample of TCs.

Geostationary satellites have also provided over 30 yr

of routine infrared (IR) window (;11mm) observations

of TCs in the Atlantic and eastern North Pacific Oceans,

where most of the digital aircraft reconnaissance data

are available. The coincidence of both the IR and air-

craft reconnaissance data has already led to methods for

estimating the azimuthally averaged flight-level wind

profiles and other aspects of TC structure from the azi-

muthally averaged IR brightness temperature profiles

[e.g., Mueller et al. (2006, hereinafterM06); Kossin et al.

(2007, hereinafter K07)]. Using simple assumptions of

wind asymmetries as a function of motion, both theM06

and K07 methods produce estimates of two-dimensional

flight-level winds. From those flight-level wind esti-

mates, flight-level to surface wind reductions can be

applied and the surface wind field can be estimated.

Both methods provide IR-based proxies to flight-level

winds within 200 km of the TC center. These methods

can estimate the high wind speed conditions near the TC

center that often cannot be accurately estimated from

other satellite platforms or methods, as discussed in

Knaff et al. (2011). Thus, these IR-based flight-level

wind estimate methods, at the time, represented a new

satellite data capability. For instance, modified M06-

based wind estimates are used to generate the National

Environmental Satellite, Data, and Information Ser-

vice’s (NESDIS) Multiplatform Tropical Cyclone Sur-

face Wind Analysis (MTCSWA; Knaff et al. 2011),

which provides operational 6-hourly surface wind field

estimates for all active global TCs.

While these methods represented a unique observa-

tional capability, they estimate the two-dimensional

wind field in a rather crude manner. The only azi-

muthal asymmetries in those wind fields were due to

motion and those asymmetries were not a function of

radius. The accuracy and minimum size of the radius of

maximum wind (RMW) were also hampered by the

radial resolution (4 km) and smoothing (half-power

wavelengths of 90 km) used to analyze the flight-level

winds used in bothM06 andK07, as described inM06. In

this paper, we look to improve upon these two methods

and create a superior depiction of the flight-level field by

1) using several more years of aircraft reconnaissance

data; 2) using a higher-resolution wind analysis system

to create the developmental wind fields, one that can

better depict the radial and azimuthal variations of the

winds; and 3) statistically relating two-dimensional IR

information to the amplitude and phase of wave-

numbers 0, 1, and 2 of the TC wind field on a TC-motion

relative polar analysis grid to better represent TC wind

field asymmetries.

2. Data and methodology

With the aforementioned goal in mind, the description

of the development of an algorithm that estimates flight-

level winds in TCs by interrelating two-dimensional

features in digital IR imagery to a two-dimensional

representation of observed flight-level TC winds is now

described.

There are several key pieces of information used to

develop such an algorithm, including flight-level TC

wind analyses, relationships between storm properties

and the RMW, and spatial information from IR satellite

imagery. To interrelate such information, a single-field

principal component analysis (SFPCA; Bretherton et al.

1992) methodology is used. However, before SFPCA is

attempted, the aircraft reconnaissance data and IR data

need to be prepared and climatological RMW re-

lationships need to be reviewed.

The TC wind fields are provided by an analysis that

makes use of temporally composited flight-level winds

(along with SFMR winds when available) following the

TC during the compositing interval. SFMR wind speed

observations provide additional and independent in-

formation about the wind field. This study uses a com-

bination of 1- and 10-Hz aircraft reconnaissance data

from two sources, the NOAA research and U.S. Air

Force aircraft, from 1995 through 2012, which are

available from the NOAA/Hurricane Research Division.

These high-temporal-resolution data are tracked follow-

ing the storm motion and a classical time-to-space com-

positing technique to convert observations collected over

a multiple-hour time ‘‘window’’ to a ‘‘range and bear-

ing’’ location relative to the storm center at the 6-hourly

synoptic times starting at 0000 UTC. For this study, the

compositing is done over a 9-h window starting 6 h be-

fore and extending 3 h following the analysis/synoptic

time.

To more accurately composite flight-level observa-

tions, center locations or ‘‘fix’’ locations from the opera-

tional observation platforms, available in the Automated

Tropical Cyclone Forecast (ATCF; Sampson and

Schrader 2000) databases, are used to supplement the

smoothed depiction of TC location information pro-

vided by the best track, also from ATCF. A tensioned

cubic spline is used to obtain estimates of the TC posi-

tions following the combination of best track and fix

positions as a function of time. Incorporating these ad-

ditional location points from both aircraft reconnaissance

and coastal radar installations allows the aircraft data to

be more accurately composited with respect to the TC

center.

Flight-level-to-surface reduction factors at multiple

vertical levels create a basis function to account for
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observations being made at multiple vertical levels. For

this study, maximum flight-level-to-surface reduction

factors are chosen for the eyewall, outer, and far-field

regions at four pressure layers, as recommended by per-

sonnel at the National Hurricane Center (NHC) and

based on Franklin et al. (2003) (Table 1). These reduction

factors also assume that the winds are observed in a con-

vectively active environment. For this study, the eyewall

region is considered to be located within 2 times the

azimuthally averaged RMWor a maximum of 37km (20n

mi, 1n mi 5 1.85 km), whichever is smaller. The outer

region is the region located beyond the eye region and

its outermost extent is 4 times the radius of maximum

wind or 148 km, whichever is smaller. This outer region

typically captures the inner rainbands (see Rogers et al.

2012). The far field is considered to be all radii beyond

twice the outer region. Reduction factors for locations

between regions are estimated via linear interpolation.

Following the findings of Franklin et al. (2003),

asymmetries to the reduction factors are applied. The

asymmetries consist of a 4% variation of the eyewall

region reduction factors and a 17% variation of the

outer and far-field reduction factors with the maximum

being on the left of the TC motion. SFMR flight-level-

equivalent winds are estimated by dividing the wind

speed by the appropriate flight-level-to-surface wind

reduction factor. Similarly, observation at other vertical

levels can be adjusted to a common level for analysis.

The analysis of aircraft reconnaissance data follows

the variational data-fitting method on a polar grid de-

scribed in Knaff et al. (2011), which allows for the

combined treatment of scalar and vector wind quantities.

For these analyses, only observations taken at pressures

higher than 600hPa are used. These observations are

adjusted to a common level using the flight-level-to-

surface reduction factors as a basis. The analyses are

performed at a common 700-hPa level on a polar grid

with a resolution of 108 azimuthally by 1 km radially, out

to a radius of 165 km from the center. Performing the

analysis at 700 hPa, or above the boundary layer, mini-

mizes variations of surface roughness, when composited

data are relocated over land. To fit data to an analysis,

two additional parameters are set, namely data weights

and filter weights.

Data weights are used to provide the relative weights

of the data types. Different data weights are prescribed

to flight-level wind vectors and SFMR wind speeds

based on the corresponding flight-level wind speed, as

shown in Table 2. The data weights used here were

recommended by personnel at the NHC to preferen-

tially weight SFMR surface wind speeds when flight-

level wind speeds exceed hurricane strength ($64 kt,

1 kt 5 0.51m s21; C. Landsea 2013, personal communi-

cation) and are based on results fromKlotz andUhlhorn

(2010). This implies that SFMR provides more in-

formation in hurricane-force wind conditions, where

flight-level-to-surface reduction factors have a greater

influence on the analysis.

This analysis method also uses filter weights for the

radial and azimuthal directions. The filter weights, in

this case, were chosen so that the half-power wave-

lengths were 4 km and 708 in the radial and azimuthal

directions, respectively. These filter weight choices re-

sult in relatively little smoothing being applied in the

radial direction and enough smoothing in the azimuthal

direction to make optimal use of the incomplete spatial

coverage of aircraft data (e.g., an alpha or figure-four

pattern).

For each composited flight-level dataset, the analysis

scheme was run three times. Initially the analysis uses

winds that are adjusted to the 700-hPa level using a 50-km

RMW. The initial analysis provides an updated esti-

mate of the RMW. This updated RMW is then used

to readjust data to a common 700-hPa level. A second

analysis is then performed for gross error checking to

remove potentially erroneous data. A final analysis that

uses the updated RMW and the quality controlled data

is then created.

The existing flight-level data result in 1466 six-hourly

analyses of 177 different TCs. Three well-known and

representative examples of the flight-level analyses are

shown in Fig. 1. Hurricane Ivan (2004) was a small very

TABLE 1. Description of the maximum flight-level-to-surface

wind reduction factors used in this study as a function of storm

region and pressure layer.

Pressure layer (PL; hPa) Eyewall Outer Far field

800 , PL # 600 0.88 0.83 0.75

900 , PL # 800 0.78 0.78 0.75

900 , PL # 990 0.73 0.73 0.75

PL $ 990 0.77 0.77 0.76

TABLE 2. Data weights for the variational wind analysis as a function of data type and the flight-level wind speed.

Flight-level wind speed (Vfl) criteria (kt) Flight-level tangential and radial wind data weight SFMR data weight

Vfl $ 64 0.175 1.000

50 , Vfl , 64 0.500 2 (Vfl 2 50)0.325/14 0.350 1 (Vfl 250)0.325/14

Vfl # 50 0.500 0.350
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intense hurricane as it moved through the Caribbean

Sea (Franklin et al. 2006), Hurricane Luis (1995) was an

annular hurricane (Knaff et al. 2003) with a large wind

field located in the eastern Atlantic (Lawrence et al.

1998), and Hurricane Ophelia (2005) was a slow-moving

convectively challenged tropical storm off the U.S. east

coast (Beven et al. 2008). In the case of Ivan, the storm

showed evidence of concentric eyewalls during the

compositing time and the analysis captures evidence of

a secondary ring of higher winds. The analysis of Luis

captures the large RMW and indicates a noticeable

asymmetry from northeast to southwest. The Ophelia

analysis depicts a very large RMW and a rather slowly

radially decaying wind field.

To further simplify the information found in the

flight-level polar grids, each wind analysis is decom-

posed into a direction-relative azimuthal wavenumbers

in terms of a normalized amplitude and phase. To ac-

count for differences in storm motion, the observed

storm direction is used to reorient the wind fields to

a common direction, in this case upward or northward,

which is also 908 in the x–y plane. Next, the maximum

wind speed in the field is used to normalize all other

wind speed values. A standard Fourier method is then

used to decompose the wind field at each radius into

terms of amplitude A and phase P for azimuthal

wavenumbers 0, 1, and 2.

The azimuthal (or angular) wavenumber is the

number of waves of a given wavelength required to

encircle the TC at a given radius. If L is the wavelength

and r is the radius, the angular wavenumber k is given

by k 5 2pr/L. One can think about wavenumber 0 as

the azimuthal mean value, wavenumber 1 as having one

maximum and one minimum in the azimuthal domain,

etc. Each wavenumber also has a phase shift that allows

the wave pattern to rotate in the azimuthal direction.

Mathematically, the normalized wind field (NW) at each

radius can be represented in a truncated form byNW(r)5
A0(r) 1 A1(r) cos[u 2 P1(r)] 1 A2(r) cos[2u 2 P2(r)],

where A0, A1, and A2 are the amplitudes of wavenumber

0, 1, and 2, respectively, and P1 and P2 are the phases as-

sociated with wavenumbers 1 and 2. With the wind fields

analyzed and decomposed into azimuthal wavenumbers

and normalized amplitudes, our focus is now shifted to-

ward accurate estimations of the RMW.

The RMW is arguably one of the most important

parameters for estimating the TC wind field as it has

a significant effect on the area affected by the strongest

winds (Vickery et al. 2009). The RMW along with the

radial decay of the wind speed defines many of the im-

portant aspects of a TC vortex. In fact, an estimate of

the RMW is a required parameter for many hurri-

cane parametric wind models [e.g., those discussed in

Depperman (1947), Willoughby et al. (2006), andWood

et al. (2013)] and is a key estimate provided by the

Holland (1980) model. Unfortunately, the RMW is also

one of the more elusive and difficult parameters to

accurately measure without aircraft reconnaissance,

aircraft/ground-based radar observations, or conven-

tional observations of chance proximity. As a result,

there are relatively few reliable observations of RMW.

For this work we endeavor to provide a quality estimate

of RMW and will develop climatological relationships

to constrain the algorithm developed here.

FIG. 1. Examples of flight-level wind speed analyses (kt; color shading). The aircraft-reconnaissancewind vectors, thinned to every 0.058,
are overlaid for comparison. The magnitudes of the vectors correspond to the colors beneath them. Storm names, dates, and times of the

examples are shown on the top of each panel.
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The flight-level wind analyses provided 1466 estimates

of the RMW with maximum winds ranging between 15

and 155 kt and latitudes ranging between 11.18 and 43.68
with a radial resolution of 1 km. Several studies have

documented the tendency for the RMW to become

smaller with increasing intensity (e.g., Weatherford and

Gray 1988; Kimball and Mulekar 2004) and to become

larger as the TC moves poleward (e.g., Mueller et al.

2006; Kossin et al. 2007). These two factors will be

considered in our statistical fit.

To account for the unequal distributions of RMW

measurements at various intensities and latitudes, the

1466 estimates were binned by intensity ranges and

latitude ranges. The bins for intensity are bounded by

the intensity ranges of the Dvorak (1984) current in-

tensity scale. To provide a similar measure of latitudinal

variability, the latitudes of each case are binned using

the same number of points as the intensity bins, which

results in the same number of bins as the intensity

stratification but variable latitudinal ranges. Table 3

shows the ranges and number of observations associated

with each bin. Figures 2a and 2b show themean values of

RMW associated with the intensity and latitude bins,

respectively. These binned results reconfirm that RMW

is both a function of intensity and latitude.

Multiple linear regression and quadratic and trigo-

nometric transformations are then used to develop the

best fit of the binned data. The best fit involves the in-

tensity Vmax, intensity squared, and intensity cubed

along with the cosine of the latitude u as shown in (1):

RMW5 218:37842 1:2014Vmax1

�
Vmax

10:9844

�2

2

�
Vmax

35:3052

�3

2 145:5090 cosu . (1)

Figure 2c shows the regressed result on the dependent

binned values of intensity and latitude. This relationship

defines the RMW climatology, which depicts a nearly

linear and one-to-one relationship that explains almost

all of the variance in the average–binned data. Figure 2d

shows the climatological relationship applied to the in-

dividual RMW estimates, which shows the scatter about

climatology—explaining a third of the variance.

To provide independent estimates of RMW and to

test the climatological RMW estimates developed

here, historical RMW estimates made from surface,

aircraft, and radar observations in the Atlantic and

western North Pacific have been digitized from Ho

et al. (1975) and Schwerdt et al. (1979). Figure 3 shows

the climatological RMW versus the RMW in the At-

lantic and RMW estimates based on eye radius in the

western North Pacific.1 These independent results

show that this climatological relationship explains

one-third of the variance in the Atlantic record and

17% of the variance in the less accurate western Pacific

record.2 Also note that the sample mean latitudes are

29.28 and 21.38 for the Atlantic and western Pacific

samples, respectively, which explains the smaller pre-

dicted and observed RMWvalues in the western Pacific

sample. From this analysis it seems justified to use the

prognostic factors in (1) as potential predictors for the

TABLE 3. The number of cases and means associated with the intensity- (Vmax) and latitude- (u) based bins of RMW.

Intensity bins Latitude bins

Range Count Mean (kt) Range Count Mean (8)

15 , Vmax # 30 181 25.1 11.00 , u # 15.92 181 14.3

25 , Vmax # 35 253 30.4 14.40 , u # 17.70 253 16.2

30 , Vmax # 45 404 37.0 15.92 , u # 21.01 404 18.5

35 , Vmax # 55 455 44.1 17.7 , u # 23.95 455 20.8

45 , Vmax # 65 355 54.2 21.01 , u # 26.09 355 23.6

55 , Vmax # 77 305 65.0 23.95 , u # 28.37 305 26.1

65 , Vmax # 90 280 76.8 26.09 , u # 30.18 280 28.2

77 , Vmax # 102 229 88.9 28.37 , u # 31.90 229 30.0

90 , Vmax # 115 182 101.2 30.18 , u # 35.11 182 32.1

102 , Vmax # 127 127 112.1 31.90 , u # 37.60 127 34.3

115 , Vmax # 140 58 123.7 35.11 , u # 40.7 58 36.9

127 , Vmax # 155 11 136.1 37.60 , u # 41.1 11 40.1

140 , Vmax # 170 6 145.3 40.7 , u # 43.6 6 42.1

1RMW is estimated in the western Pacific using the best fit shown

in Shea (1972, his Fig. 26) or RMW5 Reye 1 minimum [14, (1702
Vmax)0.12], where Reye is the eye radius in nautical miles and Vmax

is the intensity in knots.
2 It is noteworthy that western North Pacific RMW estimates

were based on radar eye-based radii times a factor of 1.25 for all

intensities (Schwerdt et al. 1979), which makes these estimates less

accurate.
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estimation of flight-level winds to help constrain the

estimated RMW.

The other diagnostic information used in this study

comes from IR satellite imagery contained in an archive

maintained at the NOAA Regional and Mesoscale

Meteorology Branch, which is collocated with the Co-

operative Institute for Research in the Atmosphere

(CIRA) at Colorado State University. The IR imagery

archive is referred to as the CIRA IR archive herein-

after and has been described in Mueller et al. (2006),

Zehr and Knaff (2007), and Knaff et al. (2014).

The CIRA IR archive and the best-track data were

used to create storm-centered IR imagery that had been

remapped onto a polar grid and rotated with respect to

motion. The polar grid has a 4 km 3 108 resolution and

extends to a radius of 602 km as described in Knaff et al.

(2014). From this imagery a principal component anal-

ysis was performed on the covariance matrix of bright-

ness temperatures. The normalized spatial loading

factors or empirical orthogonal functions (EOFs)

associated with the first 12 principal components (PCs)

are shown in Fig. 4. Table 4 provides the variance ex-

plained and interpretation of each of these PCs. Twelve

PCs were kept for algorithm development to allow the

potential of capturing the secondary wind maxima and

higher wavenumbers in the wind field. To this end, no-

tice (Fig. 4) that the 1st, 4th, 9th, 11th, and 12th PCs

contain what appear to be generally symmetric PCs

explaining the radial wavenumbers 0, 1, and 2. The

second and third PCs project onto the azimuthal wave-

number 1, whereas the remaining higher-order PCs ex-

plain larger azimuthal wavenumbers.

With the input data readied, the focus now shifts to

algorithm development. However, there is one pre-

paratory step needed to allow for the estimation of

winds beyond the 165-km analysis domain. This is ac-

complished by adding a single azimuthally averaged

tangential wind at a radius of 500 km as an outward wind

speed anchor. The azimuthally averaged tangential wind

at 850 hPa is calculated from NOAA’s Global Forecast

FIG. 2. RMWbinned as a function of (a) intensity and (b) latitude. (c) The dependent comparison of observed and predicted values ofRMW

based on the binned averages, and (d) the dependent comparison of climatological RMWvs observedRMWfromaircraft-based analyses. The

goodness of fit is measured by the regression coefficient squared, which is provided for (c) and (d). RMW units are nautical miles.

468 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 54



System (GFS) analyses, is contained in the Statistical

Hurricane Intensity Prediction Scheme (DeMaria et al.

2005) developmental database, and is adjusted to 700hPa

using the same methodology as for the flight-level data.

This 500-km tangential wind provides important in-

formation about the overall size of the TC vortex, as

demonstrated in Knaff and Zehr (2007) and discussed

further in Knaff et al. (2014). Note that the 500-km

tangential wind speed is treated as being entirely com-

posed of azimuthal wavenumber 0.

The SFPCA method is then used to relate the motion-

oriented, two-dimensional wind field to two-dimensional

features in the IR imagery. In SFPCA, principal com-

ponents of one field are correlated with the amplitude of

another. In this study, IR PCs, and parameters related to

the climatological RMW (i.e., intensity, latitude, and

translation speed) are regressed onto the normalized

amplitudes and phases of the wavenumber 0–2 wind

field at radii from 1 to 165 km and one GFS-based tan-

gential wind estimate at 500 km. This procedure collec-

tively is referred to as SFPCA hereinafter.

To generate a wind field from the resulting SFPCA

regression equations, the maximum intensity, storm

translation speed, storm direction, and the first 12 nor-

malized principal components are needed. From these

inputs, normalized amplitudes and phases associated

with azimuthal wavenumber 0–2 are estimated. The

amplitudes and phases at radii from 1 to 165 km are then

smoothed using a simple binomial filter. Next a cubic

spline is applied to the amplitude and phase fields to

make estimates from 165- to 500-km radius, noting that

the amplitudes and phases of wavenumbers 1 and 2 at

500 km are zero. The observed maximum wind (from

best track or operational source) is adjusted to flight

level and multiplied by the normalized amplitudes. Fi-

nally, since the output from the algorithm is typically

unable to predict a normalized wind field with a value

of 1, a bias correction is needed. To allow the wind re-

construction to capture the maximum wind, an expo-

nentially decaying bias correction is applied to a small

region surrounding the maximum normalized wind es-

timate, which is bias corrected to a value of 1.0. The

normalized flight-level winds are then estimated on

a polar grid using the amplitudes and phases at each

radii. The observed flight-level wind (based on the ob-

served intensity) is then multiplied by the normalized

flight-level wind to estimate the wind speeds. Finally, the

wind field is rotated to the observed storm heading.

3. Results

a. Algorithm details

The first results examined are those related to mea-

sures of goodness of fit. Figure 5 shows the multiple

regression coefficients R2 associated with each vortex

parameter (A0, A1, A2, P1, and P2) as a function of

radius. The R2 metric is a measure of the percentage

variance explained by the SFPCA-based equations,

which is a measure of goodness of the fit ranging from

0 to 1.

Results for the SFPCA indicate that A0, A1, and A2

are statistically related to the factors used in the re-

gression, especially beyond 75 km. The azimuthal mean

conditions (A0) best explain the variability within

50 km. Beyond 50 km, A1 and A2 show R2 values that

are more similar to those of A0. This implies that the

algorithm produces the largest azimuthal wavenumber 1

and 2 asymmetries beyond 50 km, noting here that the

magnitudes ofA1 andA2 are on average about 30%and

12% of the magnitude of A0, respectively.

P1 and P2 proved to bemuch harder to predict. TheR2

values associated with P1 are on the order of 8%–10%

and are much smaller for P2. This poor predictability of

P2 was validated by results not shown here, which in-

dicate the inclusion of A2 and P2 degraded the estimates

of the overall wind field. For this reason, the wind re-

construction discussed hereinafter will be constrained to

the azimuthal wavenumber 0 and 1 contributions.

To provide the reader with an idea of what factors are

most important for the SFPCA, Fig. 6 provides the

normalized regression coefficients that are most im-

portant and/or informative to the estimates of A0, A1,

and P1. The colors of each of the dependent variables

and ranges are consistent from panel to panel.

FIG. 3. Independent comparison of RMW vs predicted climato-

logical value of RMW [i.e., (1)]. Blue points are valid in the North

Atlantic and come fromHo et al. (1975), and red points come from

the western North Pacific in Schwerdt et al. (1979) and are calcu-

lated from observations of eye radius following a relationship

found in Shea (1972) and provided in the text.

FEBRUARY 2015 KNAF F ET AL . 469



FIG. 4. The normalized loadings (EOFs) associated with the PCs associated with direction-relative and storm- centered IR

images of TCs. The TC translation direction is toward the top of the page.
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The top two panels in Fig. 6 show the normalized re-

gression coefficients associated with A0, with climato-

logical RMW factors on the left and IR PCs to the right.

Notice that A0 is best explained by the climatological

RMW factors, particularly those related to the intensity

(Vmax, V
2
max, and V3

max) shown in the top-left panel in

Fig. 6, and the more symmetric IR PCs (1, 4, 9, 11, and

12) shown in the top-right panel. One noteworthy item is

that larger values of cosine of latitude (i.e., lower lati-

tude) lead to higher winds toward the center or smaller

storms.

Similarly, the normalized regression coefficients as-

sociated with A1 are shown in the second pair of panels

in Fig. 6. Here, again, the factors related to intensity are

most important to A1, but in this case IR PCs 2, 3, 4, and

9 also appear to be relatively important. Increased storm

speed is shown to result in larger values of A1. Referring

back to Fig. 4, PCs 2 and 3 are related (as a pair) to the

wavenumber 1 variations of the IR scene, which are

related to a number of environmental factors including

storm translation and vertical wind shear. The structures

of PCs 4 and 9, combined together, provide information

about the existence and radial structure of an eye scene

in the imagery.

The regressions associated with P1 in the third pair of

panels (Fig. 6) indicate that variations in intensity and

PCs 2 and 3 are most important for estimating P1, again

suggesting the importance of asymmetries in the wave-

number 1 cold cloud asymmetries. Somewhat surprising

is the poor relationship with storm speed, which is shown

for completeness. Thus, the rotation of wavenumber 1

asymmetries in this algorithm primarily results from

changes in intensity and asymmetries in the IR imagery.

One of the primary justifications for developing this

algorithm was to better depict the wind asymmetries.

We now show in an idealized sense how the wavenumber

FIG. 5. TheR2 or percent variance explained for the amplitudes and phase of wavenumbers 0–2

of the wind field as a function of radius.

TABLE 4. Percent variance explained by the EOFs shown in Fig. 4

and their associated PCs.

IR

EOF/PC Interpretation

Percent

variance

explained

1 Size/intensity of the cloud shield 32.2

2 Azimuthal wavenumber 1 11.5

3 Azimuthal wavenumber 1 10.7

4 Symmetric pulsing variability 8.9

5 Azimuthal wavenumber 2 2.9

6 Azimuthal wavenumber 2 2.8

7 Azimuthal wavenumber 2 2.7

8 Azimuthal wavenumber 2 1 radial

wavenumber 1

2.4

9 Radial wavenumber 1 2.4

10 Azimuthal wavenumber 3 1.0

11 Azimuthal wavenumbers 2

and 3 1 radial wavenumber 2

1.0

12 Azimuthal wavenumbers 2

and 3 1 radial wavenumber 2

0.9
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FIG. 6. The normalized regression coefficients associated with the amplitudes and phases of azimuthal wavenumbers 0 and 1 of the wind

field. Those parameters that make the most important contribution and those that provide interpretive information are provided. In-

formation is shown in each pair of panels with climatological RMW factors on the left and PC contributions on the right. These pairs show

the normalized regression coefficients for A0, A1, and P1 descending from the top to the bottom of the figure. Line colors are consistent

between panels.
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1 asymmetries of IR brightness temperatures (i.e., PCs 2

and 3) change the predicted wind field. In this case the

idealized TC has an intensity of 65 kt, has a northward

movement of 10 kt, and is located at 258N and 08, PC 1 is

equal to 23.0 (a large storm), PCs 4–12 are all set to

a value of 0, and only PCs 2 and 3 are allowed to vary.

Figure 7 shows nine possible combinations of convective

asymmetries represented by values of PCs 2 and 3. Each

panel is located where the cold cloud tops would be

situated relative to the center panel. For instance, PC

2522 and PC 35 0 is the case in which wavenumber 1

cloud tops are coldest in the left-front quadrant of the

idealized storm. Notice how the wind asymmetries,

particularly at larger radii, mimic the convective asym-

metries when the cold IR asymmetries are located in the

front, rear, or right side of the system (e.g., right column

FIG. 7. Nine idealized flight-level wind depictions produced by the SFPCA. The idealized TC is located at 258N, 08; has an intensity of

65 kt (33.41m s21); and is moving northward at 10 kt (5.14m s21). The IR PCs 4–12 have a fixed value of 0.0, and PC 1 has a value of22.0.

PCs 2 and 3 are allowed to vary to produce azimuthally varying IR asymmetries. The nine panels are oriented in the same manner as the

cold IR asymmetries produced by the variation of PCs 2 and 3. Wind speeds are provided by the shaded contours (kt). The maximum

contour in all plots is 75 kt.
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in Fig. 5). Cold cloud asymmetries on the left side of the

storm appear to result in more symmetry in the wind

field (e.g., left column in Fig. 5). The region of the

maximum winds also appears to move from the right-

front region to the right-rear region as cloud-top tem-

perature asymmetries move from the front (PC 2 5 22

and PC 3522) to the rear portion of the storm (PC 25 2

and PC 3 5 2). These results are consistent with other

observational and modeling studies where weak and

moderate (,15m s21) vertical wind shear results in

downshear and left convective asymmetries in the rain-

band region (e.g., Corbosiero and Molinari 2003; Chen

et al. 2006; Reasor et al. 2013) and surface wind asym-

metries that are generally to the right of motion and ro-

tated in the downshear direction (Ueno and Bessho 2011;

Uhlhorn et al. 2014). In a similar manner, this algorithm

can also predict variations of vortex size and radial

structure including the RMW using the variations of the

symmetric IR PCs, namely PCs 1, 4, and 9, but this result

is not illustrated for brevity.

To summarize, the SFPCA-based algorithm uses the

observed intensity, storm translation speed, and 12 IR

PCs to predict the wind field in terms of A0, A1, and P1

at each radii. Much of the basic vortex structure is de-

scribed by factors related to the storm intensity and

motion. This basic vortex structure is modified by in-

formation provided by IR imagery that allows for vari-

ations in the size, radial structure, and location and

strength of wavenumber 1 asymmetries. Following the

steps provided at the end of section 2, a wind field can

FIG. 8. An illustration of the steps taken to estimate the wind field. The progression is from left to right and then top to bottom. Imagery

is mapped to a polar grid (step 1) and then rotatedwith respect to direction (step 2). Rotated imagery (via PCs), translation speed, latitude,

and intensity are then used to estimate the normalized wind field (step 3). The observed intensity is then applied to create a wind speed

field (step 4). Last, the wind field is rotated back to its Earth-relative directional component (step 5). This case is from Hurricane Ike

(2008) at 1145 UTC 12 Sep.
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then be estimated. To help better visualize the steps

involved, Fig. 8 shows an example of the input and

output of this algorithm for Hurricane Ike (2008) as it

approached the Texas coast.

b. Validation

An important aspect of estimating the wind field is

validation. Previous methods, namely those of M06 and

K07, provide a baseline upon which this study desires to

improve. However, since the developmental dataset,

domain, and validation data are different, it is difficult

to make one-to-one comparisons. Nonetheless, the

method of M06 provided mean absolute error estimates

of 9.85 and 10.40 kt and percent variance explained

values of 26% and 54% for dependent (1995–2003) and

independent cases (2004), respectively, for the total

flight-level wind field. K07 compared their results with

azimuthally averaged wind profiles and foundmaximum

mean absolute errors (MAE) on the order of 10 kt (cf.

their Fig. 7).

The method presented here has dependent (i.e., those

based on the dependent statistical fits) MAE values that

are slightly higher than the results in either the M06 or

K07 studies, but it is important to realize that the anal-

ysis used in this study has higher spatial resolution and

contains more variability (a good thing) than the rela-

tively smooth analyses used in the M06 and K07 studies.

Table 5 presents the dependent statistics stratified by

wind field maximum winds (intensity) based on the re-

constructedwind field based uponwavenumbers 0 and 1.

Categories of the flight-level intensity include tropical

depressions (TDs; y , 34 kt), tropical storms (TSs; 34 kt

# y , 64 kt), nonmajor hurricanes (nMHs; 64 kt # y ,
96 kt), major hurricanes (MHs; y $ 96 kt), and all hur-

ricanes (all H; y $ 64 kt). Since this method minimizes

the errors associated with the amplitudes and phases of

the wind field and not the wind field itself, there are

small (,1m s21) biases resulting from the dependent

validation. Overall, the MAEs and root-mean-square

errors (RMSE) are comparable to previous studies when

all cases are considered. In general, the correlation

between predicted and observed wind fields increases

with intensity (i.e., organization), while the errors in-

crease with increasing intensity.

The same statistics were calculated for the M06

method modified as explained in the appendix of

Knaff et al. (2011). Those statistics can then be com-

pared with the more-detailed flight-level analyses

used in this study. All bias, MAE, and RMSE statistics

from this new method improved upon those produced

by the modified M06 method in a statistically significant

way. For instance, RMSEs associated with the modified

M06 method were 8.53, 11.20, 14.55, 18.33, 16.57, and

14.39kt, for TD,TS, nMH,MH, allH, and all cases, which

are all larger in a statistically significant way than the

values shown in Table 5. The R2 statistics from the new

method were also larger for most flight-level intensity

stratifications.

To provide the reader some idea of where this method

may produce the largest errors, Fig. 9 shows the average

wind field (contours) and MAEs (shaded) for cases with

flight-level winds of TS, nMH, and MH strength. The

largest errors are found along the inner edge of the ra-

dius of maximum wind (magenta contours) where the

wind speed gradient is typically largest. This result is

somewhat expected because of errors in estimating the

exact RMW. Spatial biases (not shown) suggest that

the estimate of the RMW is generally too small and the

maximum wind is typically too high on the right side of

the circulation and too low at the rear of the circulation.

The largest biases are again located inside the observed

RMW. This underestimate of the RMW is similar to the

results presented in K07 (which also uses SFPCA) yet

unlike results found in M06, where RMW were often

overestimated.

The ability of this method to estimate secondary wind

maxima was also examined but not shown. Findings

suggest that this method cannot estimate secondary

wind maxima as defined in the literature (e.g., Kossin

and Sitkowski 2009). While this new method can pro-

duce secondary wind maxima per say, those maxima fail

to meet the criteria listed in the literature as the mini-

mum wind speed located between the primary and sec-

ondary maxima is not that different from either

maximum. So it appears that this method cannot resolve

the observed secondary wind maxima, but rather will

produce a wider region of more intense winds when

multiple wind maxima could be present.

4. Summary and future work

In this paper, a new method for estimating tropical-

cyclone flight-level winds using operationally available

information and routine IR satellite imagery is presented.

TABLE 5. Wind field statistics stratified by flight-level intensity

categories and based on dependent data. Shown are the number of

cases used in each sample alongwith the bias,MAE, RMSE, andR2.

Intensity No. Bias (kt) MAE (kt) RMSE (kt) R2

TD 76 20.06 4.87 6.31 0.28

TS 530 0.22 6.77 8.69 0.48

nMH 387 0.06 9.99 12.79 0.49

MH 371 0.17 13.00 16.50 0.53

All H 758 0.12 11.46 14.77 0.59

All cases 1364 0.15 9.27 12.38 0.72
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Previous methods had relied on less detailed de-

velopmental data and ignored variations of the wave-

number 1 azimuthal wind asymmetries. Several steps

were taken to improve upon existing methods including

1) using several more years of aircraft reconnaissance

data; 2) creating a higher-resolution wind analysis sys-

tem for the developmental wind fields, one that can

better depict the radial and azimuthal variations of the

winds (examples shown in Fig. 1); and 3) statistically

relating two-dimensional IR information (i.e., PCs) to

the amplitude and phase of wavenumbers 0, 1, and 2 of

the TCwind field on a TC-motion-relative polar analysis

grid.

The algorithm developed is based on an SFPCA

methodology and uses spatial IR information contained

in PCs along with current storm conditions that are re-

lated to variations of the climatological RMW, which

were reexamined as part of this work (Figs. 2 and 3). The

inclusion of IR PCs (patterns shown in Fig. 4) allows for

radial and azimuthal variations (explicitly shown in

Fig. 7) of the wind field beyond the mean vortex related

to the current storm conditions (storm intensity, storm

motion, and storm latitude).

Results based on the dependent statistical analysis in-

dicate that this methodology can estimate the flight-level

winds accurately, but that incorporating the predicted

wavenumber 2 information degrades the prediction of

the wind field. Dependent error analysis of the recon-

structed wind speeds based on predicted wavenumbers

0 and 1 shows that errors increase as a function of in-

tensity (Table 5) and that the largest errors are located

on the inner edge of the radius of maximum winds

(Fig. 9). Field correlations also generally increase with

intensity, but the largest field correlations were found

when all cases were combined.

This method is also shown to be statistically superior

to the modifiedMueller et al. (2006) method that is used

in the NESDIS MTCSWA (Knaff et al. 2011). This im-

plies that MTCSWA can be improved by using this new

method. The same methods used to bring the aircraft

wind data to a common pressure level in this study could

also be used in the MTCSWA, representing another sig-

nificant improvement. The current version of MTCSWA

applies a constant inflow angle of 208 to the analyzed

flight-level wind vectors. Since that time, Zhang and

Uhlhorn (2012) have conducted a comprehensive study of

inflow angles from dropwindsonde records. Their findings

show similar mean inflow, but also indicate significant

variation of inflow as a function of stormmotion, RMW,

intensity, and azimuth around the storm. This formula-

tion of inflow angles could be used to further improve

satellite-reconnaissance-based surface wind estimates.

Future work will continue to focus on improving the

use of routine satellite reconnaissance to diagnose TC

structure. A number of efforts to do so are under way.

For instance, this methodology and aircraft-based wind

field dataset are being applied to microwave imagery.

Additionally, since this method can be applied to any IR

image, relatively high temporal resolution wind esti-

mates are possible and may help us to better understand

and diagnose rapid TC structure. Since routine Dvorak

intensity fixes, whether subjective (Dvorak 1984) or

objective (Olander andVelden 2007), rely on a single IR

image, work has started to use this and other IR-based

techniques (e.g., Knaff et al. 2014) to provide wind

structure estimates consistent with Dvorak fix intensity

FIG. 9. Dependentmean wind field (contours) andMAEs (color shading) stratified by flight-level analysis winds with cases having winds

(left).96 kt, (middle) between 64 and 95 kt, and (right) between 34 and 64 kt. Note that the motion of the composite errors is toward the

top of the page. The largest errors are found inside the RMWwhere the gradients in wind speed are the largest. The magenta contour in

each panel shows where the average RMW of flight-level wind is located in each composite. The scale is the same for all panels.
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estimates. Furthermore, to reduce the reliance on aircraft-

reconnaissance-basedwind analyses andbecause themodel

provides complete coverage of winds at multiple levels,

a study that uses high-resolution hurricane model wind

fields and accompanying synthetic IR imagery in place of

the observation-based developmental data used here is also

being explored. One possible outcome of that work is that

such algorithms could serve as a method to initialize model

TC vortices (using the observed IR imagery).

Although the wind field estimates from the algorithm

developed here respond to IR asymmetries, there still

remains a need to study the relationships between ver-

tical wind shear and asymmetries in both the TC wind

fields and IR imagery. This is a topic of future work.

Such work will lead not only to better scientific un-

derstanding but to improved operational products.

The method presented here along with improved

methods to reduce flight-level winds at the surface and to

estimate surface inflow angles is currently being proposed

as a way of improving the NESDIS MTCSWA product,

and the development of an experimental, real-time dis-

play of these capabilities is under way.
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