

Research Article

Cloud Base Height Estimation from ISCCP Cloud-Type Classification Applied to A-Train Data

Yao Liang,1 Xuejin Sun,1 Steven D. Miller,² Haoran Li,1 Yongbo Zhou,1 Riwei Zhang,³ and Shaohui Li¹

1 College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China 2 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA 3 State Key Laboratory of Aerospace Dynamics, Xi'an 710043, China

Correspondence should be addressed to Xuejin Sun; xjsun @sina.com

Received 16 May 2017; Accepted 10 August 2017; Published 14 September 2017

Academic Editor: Nir Y. Krakauer

Copyright \heartsuit Yao Liang et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud base height (CBH) is an important cloud macro parameter that plays a key role in global radiation balance and aviation ight. Building on a previous algorithm, CBH is estimated by combining measurements from CloudSat/CALIPSO and MODIS based on the International Satellite Cloud Climatology Project (ISCCP) cloud-type classi cation and a weighted distance algorithm. Additional constraints on cloud water path (CWP) and cloud top height (CTH) are introduced. e combined algorithm takes advantage of active and passive remote sensing to e ectively estimate CBH in a wide-swath imagery where the cloud vertical structure details are known only along the curtain slice of the nonscanning active sensors. Comparisons between the estimated and observed CBHs show high correlation. \cdot e coe cient of association (R^2) is . with separation distance between donor and recipient points in the range of to μ and falls ot otherwhen the separation distance increases to the range of to km. Also, dievences are mainly within km when separation distance ranges from km to km. e CBH estimation method was applied to the D cloud structure of Tropical Cyclone *Bill*, and the method is further assessed by comparing CTH estimated by the algorithm with the MODIS CTH product.

1. Introduction

Clouds in uence Earth's energy balance by re ecting incoming short-wave solar radiation and absorbing outgoing longwave thermal radiation $[-\,]$ and comprise the main source of uncertainty in climate models [\[4\]](#page-11-2). As an acknowledgement of their inherent importance to forecast models and operational meteorology in general, *Understanding Clouds* was adopted as the theme of World Meteorological Day $[\]$. In particular, the cloud vertical structure (CVS) impacts the atmospheric circulation through determining the vertical gradient of radiative budget and latent heating [\[6](#page-12-1), [7](#page-12-2)] and also represents a key parameter to the aviation community $[,]$. Gaining better insight on CVS, including parameters such as the cloud top height (CTH), cloud base height (CBH), and the cloud layer thickness (CLT), under various environmental conditions is thus crucial to the research and operational communities alike. Is paper focuses on satellite-based estimation of CBH of the topmost cloud layer, building upon a growing body of work that combines the strengths of passive and active sensors.

Many methods of retrieving CBH can be found in the literature. Surface-based sounding instruments such as ceilometers, millimeter-wavelength radar, radiosonde, and whole-sky infrared cloud-measuring systems provide good vertical resolution of CBH but for discrete location $[-1,1]$. CBH information over the ocean from the surface-based observations is inherently sparse [\[16](#page-12-7)]. Satellite remote sensing is well established as a valuable platform for observing cloud structure globally. Efon et al. [14] analyzed CVS during active and break spells of the West African Summer Monsoon from CloudSat-CALIPSO measurements. Hutchison et al. [,] present a satellite-based method for CBH retrieval for the uppermost cloud layer, and the algorithm has been applied to CBH products of the Visible Infrared Imager Radiometer Suite (VIIRS). Fitch et al. [\[20\]](#page-12-11) and Seaman et al. [\[21\]](#page-12-12) evaluated the CBH retrieval performance, nding that VIIRS CBH retrieval does not meet the performance speci cations de ned by the Joint Polar Satellite System (JPSS). To address the issue, Noh et al. [\[22](#page-12-13)] propose an alternative CBH estimation method via a semiempirical method that relates CLT to the CloudWater Path (CWP), with relationship between the two conditioned on CTH. e method has been demonstrated to meet speci cations and has been implemented provisionally as part of NOAA's enterprise operational cloud product system.

Satellite-based active remote sensing (e.g., radar and lidar) can acquire accurate CVS information, but currently available systems provide only nadir-viewing, nonscanning (and hence, nonvolumetric) cross-sections (or "curtain slices") through the atmosphere. While passive remote sensing (e.g., scanning imaging radiometers) provides cloud top information over a relatively large spatial swath, the nature of passive observations presents inherent challenges for retrieving CLT and deriving CBH [-]. e National Aeronautics and Space Administration (NASA) A-Train satellite constellation has Aqua/MODIS, CloudSat/CPR, and CALIPSO/ CALIOP remote sensing instruments, providing the convenience of observing CBH with a combination of active and passive sensors $[-1,25]$.

For sy the et al. $\lceil \cdot \rceil$ estimate CBH for regional domains, combining with ground-based radar data and GOES satellite data. eir algorithm performs better when using cloud types as a constraint than when estimates are based simply on unconstrained interpolations. However, due to the limited coverage of ground-based radar systems, their technique is limited to low clouds, residing below about km above the surface. Barker et al. [\[26](#page-12-16)] estimate CVS using a radiationsimilarity approach based on thermal infrared and visible channels to relate donor pixels (from the active sensor) to recipient pixels in the surrounding region. Sun et al. [\[25](#page-12-15)] proposed a spectral matching method based on the cloud top pressure constraint for further accurate estimation of CBH. Miller et al. [\[27\]](#page-12-17) propose a cloud-type-dependent decorrelation-length and distance-weighting method to reduce CVS estimation error due to dramatic changes in CVS based on regional clouds of a similar type having similar morphological properties. Here, CloudSat-de ned cloud categories: cirrus, altostratus, stratus, stratocumulus, cumulus, nimbostratus, and deep convection. As demonstrated by $\lceil \quad \rceil$, application of these relationships to observations which may not provide the same suite of cloud types requires remapping of cloud types, introducing a potentially large source of uncertainty.

With the objective of producing a wide range of CBH information, we examine the approach of Miller et al. $[$ $]$ for CBH estimation using cloud-type classi cation of International Satellite Cloud Climatology Project (ISCCP). ISCCP as the rst project of the World Cli-mate Research Program (WCRP) [\[28\]](#page-12-18) and it is one of the most promising datasets in the global cloud climate research for parameter retrieval and climate analysis [2011]. At present, the satellites used for generating ISCCP datasets include

NOAA- / , METOP-, FY-E, GOES- / , MTSAT-, and METEOSAT- $\frac{7}{3}$. e algorithm is proposed as a complement to existing methods in the satellite-based remote sensing of CBH. We assess the performance of this new CBH algorithm using A-Train data.

is paper is outlined as follows. Section describes the data used here and ISCCP cloud-type de nitions. Section validates the feasibility of extending CBH based on ISCCP cloud type. Section introduces the algorithm and the CBH estimation results are validated against CloudSat/CALIPSO in Section [5.](#page-6-0) Section [6](#page-7-0) presents a 5D structure of a Tropical Cyclone and makes an assessment. Section provides a conclusion and discussion.

2. Data and Method

2.1. CPR and CALIOP. e Cloud Pro le Radar (CPR) is a GHz millimetric radar onboard CloudSat, its beam produces a pro le footprint of about . km (along the track) \times . km (across track), and profiles are reported every 1.1 km \lceil 1. e CPR pro les have vertical bins and each bin represents a distance of \qquad m (oversampled from a \qquad m range gate). e CPR can e ectively penetrate optically thick clouds but tends to miss optically thin cloud whose reectivity resides below the minimum sensitivity of about − dBZ. The cloud-aerosol lidar with orthogonal polarization (CALIOP) instrument onboard CALIPSO holds the advantage over the CPR in observing optically thin cloud for its short wavelength but comes at the expense of resolving the vertical pro les of most meteorological cloud systems []. B-CLDCLASS-LIDAR used in this paper is a combined CPR and CALIOP derived product that provides information on the number of cloud layers and CTH and CBH of each identi ed layer. Although CPR and CALIOP complement each other well, there are problems with CloudSat's ability to detect low clouds because of surface clutter [\[32](#page-12-22)]. To avoid surface contamina-tion on cloud detection, following [\[33\]](#page-12-23), only the information at heights *m* above the terrain altitude is considered. In addition, observations are inaccurate for the case of heavy precipitation due to strong signal attenuation. At such, only the pro les which are agged as nonprecipitation are used.

2.2. MODIS. e moderate-resolution imaging spectroradiometer (MODIS) sensors are carried onboard Terra and Aqua solar synchronous polar-orbiting satellites [\[34\]](#page-12-24). Aqua, CloudSat, and CALIPSO are members of the A-Train constellation, which v in formation. e time interval between Aqua and CloudSat is only min, and the mean separation time between CloudSat and CALIPSO is s. e level cloud production (MYD) , from Aqua) is used for combining observation. MYD provides cloud top pressure (CTP) and cloud optical thickness (COT) information with a horizontal resolution of km for ISCCP cloud-type classi cation. In addition, the MODIS-retrieved CTP and cloud water path (CWP) are used simultaneously as a constraint for algorithm.

2.3. ISCCP Cloud-Type Definitions. ISCCP classi es clouds into nine categories based on CTP and COT. Low and middle cloud are recognized into liquid and ice phases; All high

F : Cloud-type de nitions used in this paper for daytime.

clouds are considered as being in the ice phase $[$]. Since surface-de ned cloud types (e.g., cirrus and stratus) do not correspond uniquely to de ned cloud-type name of COT-CTP space $[$], following $[$], we would rather name cloud types such as "Hgh \parallel n" and "Low \parallel k." Ranging vertically over low ($\leq CTP <$ hPa, "Low"), middle ($\leq CTP <$ hPa, "Hgh")
 \lt hPa, "Mid"), and high ($\leq CTP <$ hPa, "Hgh") $\langle \text{hPa}, \text{``Mid''} \rangle$, and high ($\langle \text{CTP} \rangle$ and optically over thin $(0 < COT < 3.6, 10th)$, moderate (3.6, \leq COT $<$ 3.6, \leq COT $<$ 3.6, \leq \leq 7.6, \leq \leq COT \lt , "Mod"), and thick (\leq COT \lt ISCCP-like cloud-type de nitions are used in this paper for daytime shown in Figure.

Following these ISCCP-based de nitions, we use CTP and COT information from MYD to produce an ISCCPlike cloud-type classi cation for MODIS imagery. An example of MODIS cloud classication is shown in Figure \cdot e overlaid black line indicates the location of the CloudSat ground track within the MODIS swath and hence the slice that provides relatively accurate cloud vertical pro le information.

3. Validation of the Feasibility of Extending CBH Based on ISCCP Cloud Type

According to Miller et al. [²⁷], regional clouds of a similar type may be expected to have similar morphological properties with the domain over which this assumption holds being a function of the cloud type. erefore, they argue that it should be possible to extend the cloud base information observed by the active observations (considered as "donor" pixels) to the surrounding passive observations ("recipient" pixels) which share the same cloud type, and details are in next section. Doing so provides cloud base information with relatively large cloud coverage. e feasibility of applying this approach to ISCCP cloud types should be validated before the algorithm is established.

F : ISCCP cloud-type classi cation derived from MODIS data with CloudSat ground track overlaid for an example case collected at : UTC on March

To evaluate whether CBH extending results based on ISCCP cloud-type-constrained outperforms simple nearestneighbor methods, experiments were carried out along the CloudSat/CALIPSO cross-section. We chose MODIS and CloudSat/CALIPSO matching data from March and June

for experiments. To avoid uncertainty caused by variation of the underlying surface, only data over the Paci c Ocean were used in the experiments. Based on these matchups, the following comparison schemes were designed:

- (1) Match CloudSat/CALIPSO and MODIS datasets in space and time. Because of diefrent horizontal resolution, Wang et al. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and that over $\%$ of the CloudSat/CALIPSO and MODIS collocated pixels/footprints are separated within . km distance and over % are within . km. In order to carry out the most accurate comparison with the smallest spatial and temporal sampling biases, collocated pix $els/footprints$ that are separated within \ldots km distance are chosen.
- (2) Classify the collocated pixels based on CTP and COT provided from MYD , according to ISCCP cloudtype de nitions in Figure.
- (a) Consider only data identi ed as single-layer cloud pro le by MODIS and CBH of the collocated Cloud-Sat/CALIPSO data. If one footprint is identi ed as a multilayer cloud by CloudSat/CALIPSO, the CBH of the uppermost layer is recorded as the validation value. Wang et al. [] nd that only % of the singlelayer clouds identi ed by MODIS are consistent with CloudSat/CALIPSO. MODIS has di culties observing the properties of the underlying cloud in some cases of the existence of multilayer clouds. Cloud-Sat/CALIPSO are active remote sensing satellites with vertical pro ling. erefore, it is considered that CBH of the uppermost layer from CloudSat/CALIPSO is to be recorded.
- (4) Select one pixel/footprint (denoted as REFER) from datasets derived from step (3), and then, respectively,

away from $REFER$ km, km , km , and km along the same track nd two pixels/footprints: (a) closest to REFER with same cloud type (denoted as TYPE); (b) closest to REFER no matter with any cloud type (denoted as DIST). Output the CBH of the REFER point as the referenced CBH, and the CBHs of TYPE and DIST are as the estimated values of the REFER point, respectively. Here, CBHs are all from collocated CloudSat/CALIPSO measured results. Repeat this process to get enough samples. If there was no condition to meet the DIST or TYPE, then no estimate was made at the REFER location.

(5) To evaluate the performance of the datasets (REFER, DIST, and TYPE) found in step (4), root mean square error (RMSE) statistics were used follows:

RMSE =
$$
\sqrt{\frac{\sum_{i=1}^{n} (H'_i - H_i)^2}{n}}
$$
, ()

where H'_i and H_i denote estimated and referenced CBH, respectively.

Following these steps, we can compare the performance of cloud-type-constrained and simple nearest-neighbor methods for estimating CBH. ese CBH comparisons are presented as scatterplots of REFER versus DIST and REFER versus TYPE. We subdivided these results by screening distance between REFER and DIST/TYPE.

Figure shows scatterplots of REFER CBH observations versus DIST (a) and TYPE (b), using the matching data restricted from the above steps. Figure (a) shows the DIST plots and Figure [3\(b\)](#page-4-2) contains the TYPE results. 1, 2, 3, and 4 denote the screening distance of km, km, km, and

 km , respectively. In each plot, the \therefore line and RMSE are given.

e value of RMSE represents the goodness of t; the smaller the value, the better the t. e results indicate that the TYPE method is superior to DIST, with RMSE value being relatively smaller at various donor point distances, especially when the distance exceeds $km.$ As expected from $[$], RMSE increases with distance, so weighted distance is used for the algorithm in next section.

4. (*Constrained Maximum Donors*) **Algorithm for CBH Estimation**

4.1. Algorithm Description. From Section and [1, we know that the performance of CBH estimation is related to cloud type and separation distance from reference points. At dierent distances, the standard deviation of the various types of CBH has di erent behaviors of variation. Following the example of $\lceil \quad \rceil$, Figure presents the dependence of mean standard deviation of the various ISCCP types of CBH on range from the point of observation, which was obtained by making statistics of A-Train matching data from the rst day of every month in

In this section, a CBH estimation method based on cloud type and weighted distance constraints is described. Miller et al. [\[27](#page-12-17)] introduce a *"Maximum Donors"* approach for this weighting. e main idea of "Maximum Donors" is to select all of the points (donors) along the CloudSat track that share the same cloud type with that of the recipient point, starting from the minimum exclusion distance out to a maximum allowed distance and combine the CBHs from these donors using distance-dependent weightings (shown in Figure).

The current algorithm is an extension of *Maximum Donors* that includes an additional CTP and CWP simultaneous constraint, namely, *Constrained Maximum Donors*. Sun et al. [\[25](#page-12-15)] suggest that cloud parameters retrievable by passive radiometers may help express cloud geometric information and develop a spectral matching method based on CTP constraint for estimating CBH. Similarly, Li and Sun [44] select the most appropriate donor to a recipient for estimating CBH based on CWP and CTP. We follow these approaches in assuming that clouds of the same type might be expected to share similar CWP and CTP. e assumption is tied closely to the cloud type and we use CTP and CWP as controlling factors may o er further improvement to estimation of CBH in some cases.

Following $\lceil \quad \rceil$, a distance-weighting function is applied, based on the standard deviations computed for a given cloud type:

$$
W(d) = \frac{1}{\sigma^2(d)},
$$
 ()

where d is the geometric distance in kilometers from donor to the recipient location and $\sigma(d)$ is the standard deviation of CBH on estimating distance from curve ts (shown in Figure).

Figure shows a schematic of how the donor points are weighted in forming the nal estimate. Again following $[-]$, the estimated CBH at the recipient point is formed by

$$
H = \frac{\sum_{i=1}^{N} H(i) W(d_i)}{\sum_{i=1}^{N} W(d_i)},
$$
 ()

where N represents the number of donor points and $H(i)$ is the measured CBH at donor point *i*. e variable d_i denotes the geometric distance between donor point i and the recipient point. $W(d_i)$ represents the weight of donor point i , per $()$.

Our similarity constraint is introduced as follows:

$$
\left| \frac{\widehat{C}(\text{donor}) - \widehat{C}(\text{recipient})}{\widehat{C}(\text{recipient})} \right| \leq \alpha, \tag{1}
$$

where \widehat{C} (donor) and \widehat{C} (recipient) are MODIS-retrieved cloud characteristics (e.g., CWP and CTP) of recipient and donor, respectively, and α is a constraint factor for allowing the maximum cloud characteristic di erences between donor and recipient points. Sun et al. [\[25\]](#page-12-15) consider the performance of CBH estimation for dievent values for α , nding that α = 0.3 provides the most suitable value for his algorithm. choices of α for *Constrained Maximum Donors* method will be discussed later.

F : Comparison CBH estimation of DIST (a) and TYPE (b). , , , and denote donor point distances of km, km, 10 km, and km, respectively.

F : Dependence of mean standard deviation of CBH on range from the point of observation. e dashed tted curve is a piecewise continuous function.

F : Conceptual rendering of CloudSat/CALIPSO ground tracks nested within the MODIS swath. Arrows map CBH typeconstrained donor points (colors denote di erent cloud types) along the active sensor track to the MODIS recipient point.

4.2. Discussion about the Constraint. In order to evaluate the performance of [\(4\)](#page-3-2) for CBH estimation and determine the most suitable α for di erent constraints, experiments were carried out along the CloudSat/CALIPSO cross-section. Data from the second day of every month in were used in these experiments. Basically, an attempt was made to reconstruct CBH along the CloudSat/CALIPSO track by excluding the search for potential donors from a dataexclusion window in close proximity to the recipient. As such, the exclusion distance is equivalent to the smallest geometric distance between a recipient and the cross-sectional track. If fewer than three donor points were available within a given range, then no estimate was made for the recipient point. Root mean square error (RMSE) (shown in [\(1\)\)](#page-3-3) and mean deviation (MD) are used to evaluate performance of the di erent constraints. MD is de ned as

MD =
$$
\frac{1}{n} \sum_{i=1}^{n} |H'_i - H_i|,
$$
 ()

where H'_i and H_i denote estimated and observed CBH, respectively. E ects of the constraints on estimating CBH were evaluated by

$$
\eta_{\rm MD}(c) = \frac{\rm MD_0 - MD_c}{\rm MD_0} \times 100\%,
$$
\n
$$
\eta_{\rm RMSE}(c) = \frac{\rm RMSE_0 - RMSE_c}{\rm RMSE_0} \times 100\%,
$$
\n()

where $RMSE_0$ and $RMSE_c$ denote RMSE of estimated CBH without constraint and with constraint, respectively; $MD₀$ and MD_c denote MD of estimated CBH without constraint and with constraint, respectively. Meanwhile, the rate of Reduced Estimable Recipients (RER) is used and de ned as

$$
\eta_{\text{RER}}(c) = \frac{n(\text{recipient}_0) - n(\text{recipient}_c)}{n(\text{recipient}_0)} \times 100\%,\qquad(1)
$$

where n (recipient_o) and n (recipient_o) denote the number of samples of e ect estimable recipients without constraint and with constraint, respectively.

Figure shows variations of η_{MD} , η_{RMSE} , and η_{RER} , respectively, for CTP and CWP constraints as a function of exclusion distances ($\,$, $\,$, $\,$, and $\,$ km) when $\alpha = 0.3$. exclusion distances (θ , θ , and θ km) when $\alpha = 0.3$. ese gures show that two constraints almost always have a positive e ect on CBH estimation. In general, improvements for CBH estimation with a CWP constraint are more signi cant than with a CTP constraint, and the decrease of estimable recipients is larger for CWP constraint. Although the CTP constraint does not perform as well as the CWP constraint, it has an obvious improvement over no constraint at all. Hence, both CTP and CWP were utilized here as constraints.

In order to select the suitable α for constraints, the performance of estimating CBH with CTP constraint for dieferent values of α was analyzed, shown in Figure . As the exclusion distances increase, η_{RER} gradually increases. As expected, a stricter constraint results in fewer available recipients. Performances for $\alpha = 0.1$ exhibit the largest η_{MD} and $\eta_{\rm RMSE}$, that is, best estimates (), in estimating CBH when exclusion distances exceed km. However, when distances are km, it has the worst performance and imparts a negative e ect on results. A stricter constraint results in better estimates, but too strict a constraint worsens estimation of CBH in some cases $\begin{bmatrix} \end{bmatrix}$. e aim of this research is to achieve CBH estimation with large coverage. As such, the principle objective of constraint is to get a larger η_{MD} and η_{RMSE} with relatively small η_{RER} . Here, when $\alpha = 0$., the CTP constraint always has a positive e ect on CBH estimation and η_{MD} and $\eta_{\rm RMSE}$ are larger, comparing with $\alpha = 0.3, \alpha = 0.4, \alpha = 0.4$ = .. Meanwhile, its associated η_{RER} does not exceed %. erefore, $\alpha =$. was selected for the CTP constraint.

Figure 6: Statistical performances of CTP and CWP constraints for CBH estimation as functions of exclusion distances ($, \cdot, \cdot$ km) when $\alpha = 0.3$. e three columns show (le to right) η_{MD} (%), η_{RMSE} (%), and η_{RER} (%), respectively. Within each panel, the nine ISCCP cloud types are labeled.

0 20 40 $\eta_{\rm RMSE}$ (%)

50 100 200 400 (km)

Similar to Figure, the performance of estimating CBH with CWP constraint for di erent values of α is shown in Figure . Performances for $\alpha =$. and $\alpha =$. have larger η_{MD} and η_{RMSE} in estimating CBH when exclusion distances exceed km but have a worse performance and negative e ect when distances are km. When $\alpha = 0.3$, η_{MD} and η_{RMSE} of the CWP constraint are positive at all distances and have a relatively high value. \cdot e corresponding η_{RER} does not exceed %. erefore, $\alpha =$. was selected for the CWP constraint.

0 10 20 30 40 50 $\eta_{\rm MD}$ (%)

50 100 200 400 (km)

5. CBH Validation against CloudSat/CALIPSO

In order to quantify the algorithm's performance, sets of CloudSat/CALIPSO and MODIS matching data from January to December in were selected. e CBH value of B-CLDCLASS-LIDAR was considered as true. We then proceed to search for donor points along the CloudSat track in the ranges of \sim km, \sim km, \sim km, and km, respectively, using the algorithm described in Section . to estimate CBH. Similar to Section . , if fewer than three donor points were available within a given range, then no estimate was made for the recipient point.

0 20 40 $\eta_{\rm RER}$ (%)

50 100 200 400 (km)

Scatterplots of the estimated and observed CBHs following this procedure are shown in Figure . It can be seen that the scattered values of the estimated and observed CBHs are concentrated in the vicinity of the \cdot line denoting good agreement. As the donor point distances increase, the scatter points are gradually broadened, but even so most points accumulate around the : line. e coe cient of association (R^2) is . with separation distance between donor and recipient points in the range of to km and falls o to

Figure 1: Variations of η_{MD} (%), η_{RMSE} (%), and η_{RER} (%) as functions of exclusion distances (η_{ML} , η_{RMSE} and η_{RMSE} and η_{RMSE} (%), η_{RMSE} (%) as functions of exclusion dist of α when CTP constraint.

when the separation distance increases to the range of to km. Also, the bias of estimation is generally within \pm . km when separation distance is in the range of to km.

For this same analysis, the probability density of dierences between the estimated and observed CBHs was also calculated as a function of the di erent ranges. ese distributions are shown in Figure 11. It can be seen that the absolute error is mainly within km, and the probability density function is approximately a normal distribution. e frequency of absolute error within km is more than . in the range of to μ km and falls off to μ , when the separation distance increases to the range of to km.

6. Case Study

6.1. 3D View of Tropical Cyclone Bill. As a nal evaluation, we reconstruct the D cloud structure of a Tropical Cyclone, similar to Miller et al. [\[27](#page-12-17)] reconstruction of Super Typhoon Choi-Wan. For this case, Tropical Cyclone (TC) *Bill* in the North Atlantic, observed by A-Train at $\;\;$: UTC on August the ISCCP cloud-type shows the ISCCP cloud-type classi cation of TC *Bill*, which is obtained by using MODIS CTP and COT. It can be seen that the cloud tops associated with TC *Bill* are characterized mainly by Hgh n, HghMod, and Hgh k types. Figure shows the MODIS COT grayscale image of TC *Bill*. (a) is CloudSat ground track. (b)∼(e) are selected scans away from the CloudSat track by km, km, km, and km, respectively.

Figure illustrates the cloud typing and measured CloudSat/CALIPSO cloud pro le along the track, along with four predictions of cloud geometric boundaries for the uppermost layer for the uppermost layer for arbitrary crosssections through TC *Bill*. Here, MODIS-derived CTH constrains cloud top, and the CBH is derived by the algorithm. Every pro le is colored according to the ISCCP cloud type identi ed at cloud top. e horizontal scale of the entire cyclone is on the order of thousands of kilometers, while the vertical scale is on the order of kilometers (characteristic depth of the troposphere).

6.2. Comparison with MODIS CTH Products. Because there is no reliable way to observe the full D cloud structure of a tropical storm, the estimates shown in Figure cannot be validated directly. However, the reconstructed D cloud structure of TC *Bill* can be compared directly against the MODIS CTH product. CTH is an important cloud macro-physical parameter available from MODIS [\[38\]](#page-13-3). Here, we assess the performance of the algorithm by comparing CTH retrieved by the *Constrained Maximum Donors* estimate (applied to CTH instead of CBH) with MODIS CTH product. Di erences between the CTH retrievals of MODIS and CloudSat/CALIPSO are shown in Figure

Figure shows that MODIS and CloudSat/CALIPSO are generally consistent with one another with some isolated outlier regions (°N∼°N, °N∼°N, °N∼°N, and ° N∼ °N). e comparison further rea rms the ndings of

previous studies $\begin{bmatrix} - & 1 \end{bmatrix}$ that there exist biases between the active and passive CTH retrievals. Namely, active sensor CTH values tend to be higher than those of passive retrievals.

is is because passive sensors detect an e ective CTH that corresponds to an integrated optical depth of about unity

F : e same as Figure , but for CWP constraint.

F : Scatterplots of the estimated and observed CBHs. Color bars indicate the number of data points. (a), (b), (c), (d) denote the range of separation distance between donor and recipient points which is \sim km, \sim km, \sim km, and \sim km, respectively.

Figure 10: The probability density functions of differences between the estimated and observed CBHs.

F: ISCCP cloud-type classication of TC *Bill* as observed by Aqua MODIS on August

 $\lceil \cdot \rceil$, which for many cirrus cloud types occurs a considerable (1) km) distance below the geometric cloud top owing to characteristically small ice water paths. For the pixels of CTH greater than km in the current example, these dievences were found to be about km, and the maximum dieferences are no more than km.

MODIS's CTH results are shown in Figure (a). CTH values estimated using the *Constrained Maximum Donors* algorithm described in Section (replacing CBH with CTH as the "donor" information) are shown in Figure \quad (b). \quad e results show that the reconstructed CTH eld is similar to those of MODIS. e retrieved CTH results are in Figure (b). Since the donor pixels in Figure (b) come from CloudSat/CALIPSO, the retrieval CTHs in Figure (b) are mostly higher than that in Figure (a), since there are few donor points whose CTH is less than km. e results are also consistent with Figure , which indicate a more uniform CTH than what was suggested by MODIS. e reconstructed CTH also shows a considerable di erence near thin cloud edges, such as area (° N∼°N, −. °W∼−°W) and at the periphery of the cirrus shelf throughout Figure (b).

7. Conclusions and Discussion

Combining CloudSat/CPR and CALIPSO/CALIOP with Aqua/MODIS active and passive sensors, CBH estimation algorithm based on ISCCP cloud-type classi cation and weighted distance is demonstrated. Following Miller et al. $\left[\right]$, the essence of this algorithm is the matching of the same cloud-type donor points (whose CVS were obtained from active sensor data) with recipient points within passive sensor eld of view. e weighted average of all donor CBH values is calculated and CTP and CWP constraints following Sun et al. $\lceil \cdot \rceil$ are introduced to ensure the credibility of the data. Combining active and passive sensors, we can e ectively estimate CBH in a wide-swath imagery where CVSs are available only along the narrow active sensor cross-section, or at discrete locations within the swath as might be available from aircra tracks or from point observations at the surface.

e ISCCP cloud classi cation is generally applicable to most contemporary satellite imaging radiometers and thus o ers the continuity of the best, longest time series of satellite data products [\[29\]](#page-12-19). By using ISCCP cloud types,

Advances in Meteorology

F : MODIS COT gray-scale image of TC *Bill* for the same domain presented in Figure (a) CloudSat track. (b), (c), (d), (e) denote the selected scans away from the CloudSat track by μ km, μ m, μ m, and μ m, respectively.

F : D view of *Bill* presented in Figure 1. (a)∼(e) have the same meanings with those of Figure [12.](#page-10-0)

CBH can be derived globally. And it is also suitable for other satellite remote sensors' CBH estimation if they can provide parameters of CTP, COT, and CWP.

e algorithm is validated by using A-Train matching datasets from January to December in 2010. Perobability density function of di erences between the estimated and observed CBHs is approximately normal distribution, and the absolute error is mainly within km (growing as a function of range between donor and recipient points). The 3D structure of tropical storm *Bill* was reconstructed and the results were validated by comparing CTH of reconstruction with MODIS CTH product. e results from these two ways have a good consistency in CTH distribution range but reconstructed CTHs are mostly higher than that of MODIS for higher CTH of donor points.

Although CBH can be estimated within a certain error range, only single-layer clouds identi ed by MODIS were considered in this paper. ere are some inherent di culties

F : Comparison of MODIS CTH product (a) and retrieved CTH results (b) using the algorithm.

in CBH estimation for multilayer clouds, and the technique should be used with caution with multilayered cloud systems which are suspected (either via multispectral detection techniques or as inferred from numerical weather prediction elds). In addition, estimated CBH results would be inaccurate for strong signal attenuation in the case of heavy precipitation. In future work, we will consider passive microwave data, which can help to identify multilayer cloud and observe precipitating cloud systems, so as to improve the general utility and accuracy of these important CBH estimates.

Conflicts of Interest

e authors declare that they have no con icts of interest.

Acknowledgments

e authors thank Yoo-Jeong Noh for helpful discussions. ey gratefully acknowledge the NASA CloudSat DPC and Goddard Space Flight Center for oering the data used in this study. is paper is supported by the National Natural Science Foundation of China (Grant no. $\qquad \qquad$).

References

- [] V. Ramanathan, R. D. Cess, E. F. Harrison et al., "Cloudradiative forcing and climate: results from the earth radiation budget experiment," *Science*, vol. 413, no. 487, pp. $-$
- [2] J. R. Norris, R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O'Dell, and S. A. Klein, "Evidence for climate change in the satellite cloud record," *Nature*, vol. 516, no. 51, pp.
- [\parallel X. Song, X. Zhai, L. Liu, and S. Wu, "Lidar and ceilometer observations and comparisons of atmospheric cloud structure at nagqu of tibetan plateau in Summer," *Atmosphere*, vol. , no., article no.,
- [4] S. K. Allen, G. Plattner, A. Nauels, Y. Xia, D. Qin, and T. F. Stocker, *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*, vol. , Cambridge Univ. Press,
- [¹] World Meteorological Day, " march pakistan day," https://public.wmo.int/en/WorldMetDay
- [\vert] P. J. Webster and G. L. Stephens, "Tropical upper-tropospheric extended clouds: inferences from winter MONEX.," *Journal of the Atmospheric Sciences*, vol. , no. , pp. $-$, .
- [] B. L. Madhavan, Y. He, Y. Wu, B. Gross, F. Moshary, and S. Ahmed, "Development of a ground based remote sensing approach for direct evaluation of Aerosol-Cloud interaction," *Atmosphere*, vol., no., pp. -, .
- [\parallel R. L. Vislocky and J. Michael Fritsch, "An automated, observations-based system for short-term prediction of ceiling and visibility," *Weather and Forecasting*, vol. 1, no. 1, pp. $-$ 1, 1997.
- [9] J. R. Mecikalski, W. F. Feltz, J. J. Murray et al., "Aviation applications for satellite-based observations of cloud properties, convection initiation, in- ight icing, turbulence, and volcanic ash," *Bulletin of the American Meteorological Society*, vol. , no. , pp.
- [\Box] O. Danne, M. Quante, E. Raschke, and C. Weitkamp, "Investigations of cloud layer base and top heights from GHz radar re ectivity data," *Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, vol.*, no., pp. 1999.
- [11] P. Kollias, E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, "Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research," *Bulletin of the American Meteorological Society*, vol. , no. , pp. $-$,
- [\Box] G. Martucci, C. Milroy, and C. D. O'Dowd, "Detection of cloud-base height using Jenoptik CHM K and Vaisala CL ceilometers," *Journal of Atmospheric and Oceanic Technology*, vol., no., pp. $-$,
- [13] X. Sun, C. Qin, J. Qin, L. Liu, and Y. Hu, "Ground-based infrared remote sensing based on the height of middle and low cloud," *International Journal of Remote Sensing*, vol. 16, pp. 2012.
- [\Box] J. Wang and W. B. Rossow, "Determination of cloud vertical structure from upper-air observations," *Journal of Applied Meteorology*, vol. , no. , pp. - , .
- [] J. M. Forsythe, T. H. Vonder Haar, and D. L. Reinke, "Cloud-base height estimates using a combination of meteorological satellite imagery and surface reports," *Journal of Applied Meteorology*, vol. , no. , pp.
- [\Box J. M. Li, Y. H. Yi, K. Stamnes et al., "A new approach to retrieve cloud base height of marine boundary layer clouds,"*Geophysical Research Letters*, vol. , no. , pp. – ,
- [] E. Efon, A. Lenouo, D. Monkam, and D. Manatsa, "Cloud properties during active and break spells of the West African summer monsoon from CloudSat-CALIPSO measurements," Journal of Atmospheric and Solar-Terrestrial Physics, vol. pp. $-1,$
- [1] K. D. Hutchison, "e retrieval of cloud base heights from MODIS and three-dimensional cloud elds from NASA's EOS aqua mission," *International Journal of Remote Sensing*, vol. 23, no. p p. $-$,
- [] K. Hutchison, E. Wong, and S. C. Ou, "Cloud base heights retrieved during night-time conditions with MODIS data," *International Journal of Remote Sensing*, vol. , no. , pp.

 $\ddot{}$

[] K. E. Fitch, K. D. Hutchison, K. S. Bartlett, R. S. Wacker, and K. C. Gross, "Assessing VIIRS cloud base height products with data collected at the Department of Energy Atmospheric Radiation Measurement sites," *International Journal of Remote Sensing*, vol. , no. , pp. **2016.** 2016.

- [^{21]} C. J. Seaman, Y.-J. Noh, S. D. Miller, A. K. Heidinger, and D. T. Lindsey, "Cloud-base height estimation from VIIRS. part I: Operational algorithm validation against CloudSat," *Journal of Atmospheric and Oceanic Technology*, vol. 51, no. 3, pp. $-$ 2017.
- [^{22]} Y.-J. Noh, J. M. Forsythe, S. D. Miller et al., "Cloud-base height estimation from VIIRS. part II: A statistical algorithm based on A-train satellite data," *Journal of Atmospheric and Oceanic Technology*, vol. , no. , pp. - ,
- [23] H. R. Li, X. J. Sun, L. Liu, and R. W. Zhang, "Cloud base height estimation based on template matching," *Journal of the Meteorological Sciences*, vol. 51, pp.
- [²] H.-R. Li and X.-J. Sun, "Retrieving cloud base heights via the combination of CloudSat and MODIS observations," in *Proceedings of the Remote Sensing of the Atmosphere, Clouds, and Precipitation V*, October
- [²] X. J. Sun, H. R. Li, H. W. Barker, R. W. Zhang, Y. B. Zhou, and L. Liu, "Satellite-based estimation of cloud-base heights using constrained spectral radiance matching," *Quarterly Journal of the Royal Meteorological Society*, vol. 51, no. 51, pp.

2016.

- [26] H. W. Barker, M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan, "A D cloud-construction algorithm for the EarthCARE satellite mission," *Quarterly Journal of the Royal Meteorological Society*, vol. $\,$, no.
- [²⁷] S. D. Miller, J. M. Forsythe, P. T. Partain et al., "Estimating threedimensional cloud structure via statistically blended satellite observations," *Journal of Applied Meteorology and Climatology*, vol., no., pp. -,
- [²] R. A. Schi er and W. B. Rossow, "The International Satellite Cloud Climatology Project (ISCCP): the rst project of the World Climate Research Programme," *Bulletin - American Meteorological Society*, vol. , no. , pp.
- [²] I. I. Mokhov and M. E. Schlesinger, "Analysis of global cloudiness: . Comparison of Meteor, Nimbus, and International Satellite Cloud Climatology Project (ISCCP) satellite data," *Journal of Geophysical Research, vol.* , no. , pp. - ,
- [] G. L. Stephens, D. G. Vane, R. J. Boain et al., " e cloudsat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation," *Bulletin of the American Meteorological Society*, vol. 53, no. 53, pp. 1771-1742, 2002.
- [] J. M. Haynes, C. Mitrescu, and G. L. Stephens, "A combined lidar and radar retrieval of cloud optical properties," in *Proceedings of the Lidar Remote Sensing for Industry and Environmental Monitoring V*, pp. $-$, usa, November
- [] R. Marchand, G. G. Mace, T. Ackerman, and G. Stephens, "Hydrometeor detection using Cloudsat - An earth-orbiting 94-GHz cloud radar," *Journal of Atmospheric and Oceanic Technology*, vol. , no. , pp. - ,
- [\Box] D. L. Wu, S. A. Ackerman, R. Davies et al., "Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and Cloud-Sat," *Geophysical Research Letters*, vol., no., Article ID Γ
- [¹] J. Li, W. P. Menzel, Z. Yang, R. A. Frey, and S. A. Ackerman, "High-spatial-resolution surface and cloud-type classification from MODIS multispectral band measurements," *Journal of Applied Meteorology*, vol. , no. , pp.
- [] W. B. Rossow and R. A. Schi er, "Advances in Understanding Clouds from ISCCP," *Bulletin of the American Meteorological Society*, vol. , no. , pp. **2007. 2008. 2008. 2008. 2008. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2009. 2**
- [] C. J. Hahn, W. B. Rossow, and S. G. Warren, "ISCCP Cloud Properties Associated with Standard Cloud Types Identi ed in Individual Surface Observations," *Journal of Climate*, vol. 14, no. $, pp. - ,$
- [] T. Wang, E. J. Fetzer, S. Wong, B. H. Kahn, and Q. Yue, "Validation of MODIS cloud mask and multilayer ag using CloudSat-CALIPSO cloud pro les and a cross-reference of their cloud classifications," *Journal of Geophysical Research: Atmospheres*, vol. 121, no. 121, pp. 121, 121, 2016.
- [] W. P. Menzel and R. A. Frey, "Cloud top properties and cloud phase algorithm theoretical basis document,"
- [] S. D. Miller, G. L. Stephens, and R. T. Austin, "GOES cloud optical property retrievals in the context of vertically varying microphysics," *Journal of Geophysical Research Atmospheres*, vol. , no. π , Article ID 2D, pp. π - π ,
- [$|$ E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, B. H. Kahn, and C.-Y. Liu, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," *Geophysical Research Letters*, vol. , no. $\,$, Article ID L
- [41] H. B. Kahn, T. M. Chahine, L. G. Stephens et al., "Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount," *Atmospheric Chemistry & Physics Discussions*, vol. , no. , pp. -
- [] P. W. Menzel, R. A. Frey, H. Zhang et al., "MODIS global cloudtop pressure and amount estimation: Algorithm description and results," *Journal of Applied Meteorology and Climatology*, vol. 47, no. $, pp.$ $,$ $.$

World Journal

Earthquakes Journal of

Submit your manuscripts at https://www.hindawi.com

http://www.hindawi.com Volume 2014 ^{Advances in}
Meteorology

http://www.hindawi.com Volume 2014 **Mineralogy** International Journal of

http://www.hindawi.com Volume 2014 ^{Journal of}
Climatology

http://www.hindawi.com Volume 2014 ^{Journal of}
Geological Research

International Journal of
Atmospheric Sciences http://www.hindawi.com Volume 2014

Oceanography http://www.hindawi.com Volume 2014 Advances in

Kedari Politiking Carpendian Applied & Environmental Soil Science

KWYZ ZWANARANOWE

International Journal of
Oceanography http://www.hindawi.com Volume 2014

Computational Environmental Sciences