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ABSTRACT

Satellite analysts at the Satellite Services Division (SSD) of the National Environmental, Satellite, Data,
and Information Service (NESDIS) routinely generate 24-h rainfall potential for all tropical systems that are
expected to make landfall within 24 to at most 36 h and are of tropical storm or greater strength (�65 km
h�1). These estimates, known as the tropical rainfall potential (TRaP), are generated in an objective manner
by taking instantaneous rainfall estimates from passive microwave sensors, advecting this rainfall pattern
along the predicted storm track, and accumulating rainfall over the next 24 h.

In this study, the TRaPs generated by SSD during the 2002 Atlantic hurricane season have been validated
using National Centers for Environmental Prediction (NCEP) stage IV hourly rainfall estimates. An ob-
jective validation package was used to generate common statistics such as correlation, bias, root-mean-
square error, etc. It was found that by changing the minimum rain-rate threshold, the results could be
drastically different. It was determined that a minimum threshold of 25.4 mm day�1 was appropriate for use
with TRaP. By stratifying the data by different criteria, it was discovered that the TRaPs generated using
Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, with its optimal set of
measurement frequencies, improved spatial resolution, and advanced retrieval algorithm, produced the best
results. In addition, the best results were found for TRaPs generated for storms that were between 12 and
18 h from landfall. Since the TRaP is highly dependent on the forecast track of the storm, selected TRaPs
were rerun using the observed track contained in the NOAA/Tropical Prediction Center (TPC) “best
track.” Although some TRaPs were not significantly improved by using this best track, significant improve-
ments were realized in some instances. Finally, as a benchmark for the usefulness of TRaP, comparisons
were made to Eta Model 24-h precipitation forecasts as well as three climatological maximum rainfall
methods. It was apparent that the satellite-based TRaP outperforms the Eta Model in virtually every
statistical category, while the climatological methods produced maximum rainfall totals closer to the stage
IV maximum amounts when compared with TRaP, although these methods are for storm totals while TRaP
is for a 24-h period.

1. Introduction

Damage and deaths resulting from the direct and in-
direct effects of rainfall associated with landfalling
tropical systems in the United States exceed those that
are caused by both wind and wave damage (Rappaport
2000). Current operational numerical weather predic-
tion (NWP) forecast models are believed not to accu-
rately predict the rainfall associated with such systems.

Satellite techniques are relied upon by operational
forecasters in the National Oceanic and Atmospheric
Administration’s (NOAA), National Centers for Envi-
ronmental Prediction (NCEP), National Weather Ser-
vice (NWS) Weather Forecast Offices (WFOs), and
River Forecast Centers (RFCs) to get a better assess-
ment of the rainfall potential of systems that are ap-
proaching land, in particular, those out of range of
coastal radar. Such was the motivation in the develop-
ment of the NOAA’s National Environmental Satellite,
Data, and Information Service (NESDIS), Satellite
Services Division (SSD), tropical rainfall potential
(TRaP) technique, which has been run in its current
experimental mode for the past few years and recently
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became operational during the 2003 Western Hemi-
sphere hurricane season.

TRaP is described in detail in the first part (Kidder et
al. 2005, hereafter Part I) of this two-part paper series.
It is the purpose of this paper, Part II, to describe the
validation of TRaP for the 2002 Atlantic hurricane sea-
son. This study improves upon an original validation ef-
fort for the 2001 season (Ferraro et al. 2002) where the
validation methodology was standardized and made more
robust. In addition, the 2002 season offered many more
opportunities with several landfalling systems over the
United States than were available during the 2001 season.

Section 2 of this paper presents a brief overview of
the TRaP technique. Section 3 describes in detail the
validation of TRaP followed by a summary and sugges-
tions for future work in section 4.

2. TRaP overview

Part I presents a historical evolution of TRaP from its
earliest roots to its present, operational status. For com-
pleteness in this paper, a brief discussion of the current
NESDIS/SSD operational TRaP is presented.

The NESDIS/SSD Areal TRaP is generated auto-
matically for any tropical disturbance worldwide when-
ever a new microwave rain-rate image or a new track
forecast is received. Currently, SSD uses microwave
rain-rate estimates from the Advanced Microwave
Sounding Unit (AMSU) on the NOAA polar-orbiting
satellites, from the Special Sensor Microwave Imager
(SSM/I) on the Defense Meteorological Satellite Pro-
gram (DMSP) satellites, and from the Microwave Im-
ager (TMI) on the Tropical Rainfall Measuring Mission
(TRMM) satellite. The latest rain-rate image and the
latest tropical cyclone center track forecast is used only
if they are less than 6 h from the time of the latest track
forecast and the rain-rate image, respectively. NESDIS/
SSD operational analysts, working around the clock (24
h day�1, 7 days week�1, 365 days yr�1 provide quality
assurance of the automated TRaPs and send the final
product to their Internet home page (http://www.ssd.
noaa.gov/PS/TROP/trap-img.html) only when a storm
has wind speeds greater than 65 km h–1 (35 kt) and is
within 24 to 36 h of landfall. The quality assurance is to
guarantee that the final TRaP includes a full (better
than 75% coverage) rain-rate image over the storm.
This quality assurance results in only a portion of all the
automated TRaPs generated at NESDIS becoming op-
erational.

3. 2002 validation

Selected for the 2002 validation study were a total of
42 operational TRaPs that were generated for five U.S.

landfalling tropical cyclones. Although the automated
TRaP program operationally generated many more
TRaP products, this study focuses only on those storms
that affected the United States, were within 24 to at
most 36 h of landfall, and passed the quality assurance
performed by the satellite analyst. These are summa-
rized in Table 1. As one can see, 16 were generated
from SSM/I, 11 from AMSU, and 15 from TMI. In
contrast to the Ferraro et al. (2002) validation study for
the 2001 hurricane season, the validation strategy for
the 2002 storms was much more objective in nature
because of the uniformity of the data sources available.
First, NCEP stage IV analysis fields were used as the
ground reference datasets (Fulton et al. 1998). These
hourly rain estimates were accumulated to best match
the 24-h period of the TRaP. Second, a single validation
package was used that objectively computes a number
of statistical parameters between the two rain fields
(Ebert et al. 2003). Third, since the TRaP software was
run in a quasi-operational mode for the 2002 hurricane
season, all input and output data were archived, so it
was simple to rerun any TRaPs for the variety of analy-
ses that were employed in this study. As an example,
Fig. 1 presents a four-panel sequence that shows the
input satellite rain field, the derived TRaP, and then the
output from the statistical comparison versus the stage
IV hourly rain field. It should be noted that the original
stage IV estimates are on a higher spatial resolution
grid (�4 km grid) than the TRaP estimates (�25 km
grid), but the validation is performed at the higher spa-
tial resolution (i.e., the TRaP estimates are bilinearly
interpolated to a finer grid). This “upscaling” of the
TRaP was done in order to try to identify its perfor-
mance at the highest rainfall values: those that can con-
tribute to life-threatening flash flooding.

The three sources of satellite data all have different
sensor configurations: footprint size [field of view
(FOV)], sampling rate across the scan, scanning geom-
etry, etc. We attempt to minimize the differences by
mapping them, with bilinear interpolation, to a com-
mon 25-km grid at NOAA/NESDIS, where they are
generated operationally for a number of applications,

TABLE 1. Summary of the number of TRaPs generated for each
of the 2002 Atlantic tropical systems used in this analysis.

2002 storm name Dates SSM/I AMSU TMI

Bertha 4–5 Aug 3 0 1
Fay 6–7 Sep 4 0 4
Hanna 13–14 Sep 4 2 5
Isidore 25–26 Sep 1 7 1
Lili 2–3 Oct 4 2 4
Total 16 11 15
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including TRaP. However, this does come with risks,
the so-called “representativeness error” as described by
Tustison et al. (2001), which can sometimes cause mis-
leading statistical results. Since the comparisons are
done for 24-h rainfall, the spatial correlation length of
the rainfall for large precipitation systems like hurri-
canes should tend to reduce this effect. Studying the
impact of these sensor characteristics would form the
basis for another study and is beyond the scope of this
paper. However, this concept is elaborated upon in the
last section.

The statistical results of the 42 TRaPs were compiled
and stratified by a number of criteria, including by
storm, by the number of hours prior to landfall (i.e., 6,

12, 18, or 24 h), and by the instrument from which the
input rain fields were obtained (i.e., SSM/I, AMSU, or
TMI). In addition, statistics were computed using only
those points with observed rainfall that exceeded a
minimum threshold value. Several thresholds were
used and it was determined that two such thresholds
would be presented: 1 and 25.4 mm day�1. The latter of
the two was deemed to be more important to the ap-
plication of TRaP, namely, for use in heavy rainfall
prediction. The interpretation of the results from the
two thresholds changes since statistical tools such as
correlation are highly dependent upon the data range.
Because the number of samples is relatively small, it
was not practical to apply significance testing to the

FIG. 1. (b) An example of an operational TRaP (in.) generated for Hurricane Lili using the TRMM overpass from (a) 1029 UTC on
3 Oct 2002 (in. h�1). The output from the images (c) of TRaP (mm) and (d) of stage IV rainfall (mm); (c) and (d) also include the
statistical parameters generated.
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results. However, graphical representation of many of
the results to follow is shown through the use of “box
and whisker” charts (Tukey 1977) where the range of
the data is presented along with the median and lower
and upper quartiles, so some general conclusions can
still be made.

a. 24-h rainfall threshold results

The statistics generated by the validation package
include a variety of measures of fit including correla-
tion, root-mean-square (rms) error, bias, etc. (Informa-
tion regarding statistical parameters used in the valida-
tion of satellite-based rainfall estimates can be found
online at http://www.bom.gov.au/bmrc/wefor/staff/eee/
verif/verif_web_page.html.)

These were computed for 24-h rainfall based on
TRaP and stage IV. The geographic region of valida-
tion for each TRaP was subjectively determined so that
rainfall associated with other precipitation systems, not
directly related to the tropical system, would be mini-
mal. Thus, the statistics would best represent TRaP per-
formance. Shown in Tables 2 and 3 are the results for 1
and 25.4 mm day�1 minimum thresholds, respectively,
as a function of tropical cyclone. It should also be men-
tioned here that image comparison is also a validation
method and that it is part of the standard package of
information that is illustrated in Fig. 1. However, there

is no way to quantify such results in an objective man-
ner.

Overall, it was seen that for all storms except Fay, the
TRaP underestimates both the area-wide rain rate and
volume, for both thresholds. Using the 25.4 mm day�1

threshold generally brings the two totals in closer
agreement, apparently due to the removal of lighter
rain rates that the passive microwave satellite estimates
may not be able to retrieve. It is also obvious that the
TRaP grossly underestimates the maximum rainfall,
but this is at least partly due to the differing spatial
resolution of the two data types, in particular, to the
coarse resolution of the passive microwave sensors used
as input into TRaP (which can range from 5 to 50 km
depending upon the sensor and nature of the retrieval)
versus the higher resolution of the stage IV data. A
more fair overall statistical comparison would have
been to average the stage IV up to the 25-km TRaP grid
as suggested in the study by Tustison et al. (2001); how-
ever, as previously mentioned, one of our purposes is to
determine the TraP’s ability to capture the extreme rain
rates.

The interpretation of the other statistical parameters
can vary widely between the two thresholds used, and
this has always been an issue, in general, when trying to
validate satellite-based rainfall estimates (e.g., Ebert et
al. 1996). The correlation coefficient—perhaps the most

TABLE 2. Statistical summary (mean value for all TRaPs for each storm) of the TRaP compared to the stage IV analysis for a 1 mm
day�1 minimum threshold. The rain rate and rain volume (area of rain times the rain magnitude) represent the TRaP value normalized
by the stage IV mean. MAE is mean absolute error, rms is root-mean-square error (normalized by the stage IV mean), R is correlation
coefficient, POD is probability of detection, FAR is false alarm ratio, and ETS is equitable threat score.

2002
storm
name

Rain rate
(TRaP/

stage IV)

Rain volume
(TRaP/

stage IV)
TRaP max

(mm day�1)
Stage IV max
(mm day�1)

MAE
(mm day�1) Rms R

Bias
score POD FAR ETS

Bertha 0.33 0.32 66.8 330.1 25.2 1.16 0.22 0.63 0.49 0.22 0.10
Fay 1.28 0.88 220.3 359.1 20.6 1.26 0.54 0.69 0.57 0.16 0.15
Hanna 0.53 0.46 88.9 473.8 22.8 1.06 0.47 0.82 0.76 0.07 0.28
Isidore 0.47 0.49 87.0 340.4 29.0 0.95 0.40 1.02 0.91 0.11 0.24
Lili 0.72 0.70 92.5 225.1 17.8 0.80 0.62 0.85 0.76 0.11 0.33
Average 0.64 0.54 112.5 352.7 22.9 1.06 0.47 0.82 0.72 0.12 0.24

TABLE 3. As in Table 2, but for a 25.4 mm day�1 minimum threshold.

2002
storm
name

Rain rate
(TRaP/

stage IV)

Rain volume
(TRaP/

stage IV)
TRaP max

(mm day�1)
Stage IV max
(mm day�1)

MAE
(mm day�1) Rms R

Bias
score POD FAR ETS

Bertha 0.57 0.79 66.8 330.1 42.9 0.80 �0.07 0.33 0.21 0.25 0.12
Fay 1.37 1.33 220.3 359.1 58.0 1.00 0.29 0.67 0.46 0.29 0.28
Hanna 0.53 0.64 88.8 473.8 45.7 0.77 0.17 0.52 0.38 0.22 0.20
Isidore 0.50 0.49 87.0 340.4 41.2 0.74 0.06 0.74 0.57 0.23 0.25
Lili 0.67 0.74 92.5 225.1 32.9 0.78 0.07 0.78 0.57 0.25 0.33
Average 0.71 0.65 112.5 352.7 44.1 0.78 0.13 0.64 0.47 0.25 0.25
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commonly used statistical measure of “goodness of fit”
between two datasets—is much higher for the 1 mm
day�1 threshold than for the 25.4 mm day�1 threshold.
The explanation is quite simple: the removal of low end
rainfall values that dominate the dataset (refer to Fig.
1) and usually exhibit less scatter around the perfect fit
line significantly impacts the correlation. Hence, this
parameter alone is probably not appropriate in deter-
mining the usefulness of TRaP at the higher rain
threshold.

Other parameters such as the mean absolute error
(MAE), rms, bias score (BS), probability of detection
(POD), false alarm rate (FAR), and equitable threat
score (ETS) are also useful. The MAE measures the
mean of the absolute value of the difference between
the TRaP and stage IV; the lower this value, the better
the TRaP. The MAE is essentially twice as high with
the 25.4 mm day�1 threshold as with the 1 mm day�1

threshold and, in general, is fairly consistent from storm
to storm. The MAE is also higher at the 25.4 mm day�1

threshold because regions of light precipitation (which
have lower errors) have been eliminated. The rms
shown here is normalized by the stage IV mean in order
to place some perspective on the magnitude of the er-
ror. The rms is significantly lower for all instances at the
25.4 mm day�1 threshold than for the 1 mm day�1

threshold and is approximately 80% of the observed
mean rainfall.

The next sets of statistical measures indicate the fre-
quency of occurrence of various rain forecasts. The BS,
which is the ratio of the forecasts above a particular
rain threshold to observations above the same thresh-
old and can range from zero to infinity, indicates wheth-
er the TRaP has a tendency to under-forecast (BS � 1)
or overforecast (BS � 1) rainfall at a particular thresh-
old. A BS equal to one indicates an unbiased forecast.
The BS is worse for the 25.4 mm day�1 threshold than
the 1 mm day�1 threshold, indicating that either the
number of false alarms decreases (a positive indicator)
or that the number of misses increases (a negative in-
dicator). Inspection of the images indicates that the de-
crease in the BS arises from the decrease in false alarms
at the lower rainfall values. The POD is the ratio of the
number of correct forecasts (i.e., values above the rain-
fall threshold) to the number of observations above the
same threshold, that is, the fraction of observations
above the threshold that were correctly predicted to be
above that threshold. The POD ranges from zero to
one, with POD � 1 indicating that all of the observa-
tions above the threshold were correctly predicted to be
above that threshold. The POD should be used in con-
junction with the FAR, which is the ratio of the number
of false alarms (i.e., values above the rainfall threshold

that did not occur) to the number of forecasts above the
threshold, that is, the fraction of forecasts above the
threshold that corresponded to values below the thresh-
old. Like with POD, FAR can range from zero to one,
with FAR � 0 indicating that all of the forecasts above
the threshold were correct. Using these two parameters
together is needed since a forecast of no rain every-
where would yield a FAR � 0, but also a POD � 0;
conversely, rain forecasted everywhere would yield a
POD � 1, but a FAR � 1. Thus, examination of the two
together eliminates any misleading interpretation of the
forecast performance. As can be seen from Tables 2
and 3, both the POD and FAR are worse as the rain
threshold is increased from 1 to 25.4 mm day�1. Over-
all, over 70% of the rainfall above 1 mm day�1 is de-
tected by TRaP, while approximately 10% of the TRaP
forecasts are false alarms; nearly 50% of the rainfall
above 25.4 mm day�1 is detected and 25% is incorrectly
forecasted by TRaP.

A final statistical measure that is widely used in as-
sessing forecasting skill and rainfall validation is the
ETS (Schaefer 1990). The ETS ranges in value from
�1/3 to 1, with an ETS � 0 indicating no skill and ETS
� 1 being a perfect score. The ETS is sensitive to cor-
rect forecasts and penalizes for both misses and false
alarms. It also accounts for a climatological event fre-
quency. On average, the ETS values are essentially the
same for both rainfall thresholds. However, there is
noticeable difference for two storms: Fay and Hanna.
For Fay, the 25.4 mm day�1 threshold forecast was su-
perior to the 1 mm day�1 forecast, while for Hanna, the
opposite was true. Fay was a short-lived storm that had
erratic movement while Hanna was in a strong sheer
environment; these factors may have contributed to the
performance of the ETS at the two rainfall thresholds.

b. Intersatellite comparisons

The first stratification of the 42 TRaPs (Table 1) that
was performed was sorting the TRaPs by sensor type.
Overall, there were 11 TRaPs generated from AMSU,
16 from SSM/I, and 15 from TMI. Table 4 and Fig. 2
summarize these results using a 25.4 mm day�1 thresh-
old. As can be seen, the SSM/I TRaPs were generally
the poorest, while on average, TMI performed better
than AMSU, although the two were comparable for a
number of categories. Some possible explanations for
this are as follows. The SSM/I operational algorithm
(Colton and Poe 1994) has been virtually unchanged for
a number of years and is most recently described by
Ferraro (1997). A number of deficiencies have been
found in that algorithm (e.g., McCollum et al. 2002),
although the algorithm is still instrumental in a number

AUGUST 2005 F E R R A R O E T A L . 469



of applications (e.g., Xie et al. 2003). Thus it is not
surprising that it performed more poorly than TRaPs
using the other two sources of microwave information.

The TRMM TMI rain algorithm [i.e., the Goddard
profiling algorithm (GPROF)]—in particular, the oce-
anic component—provides the best passive microwave
rain-rate estimate from all available sensors because of
the set of frequencies that it observes (nine measure-
ments between 10.7 and 85.5 GHz), plus its overall bet-
ter spatial resolution (i.e., as low as 5 km at 85 GHz;

Kummerow et al. 2001). Thus, it is not surprising that it
performed at least as well as the other algorithms. In-
terestingly, the AMSU-based TRaPs performed com-
petitively, which is a testimony to the success of the
high-frequency retrieval algorithm developed for a sen-
sor that was not specifically designed for quantitative
precipitation estimation (Weng et al. 2003). In the near
future, a version of GPROF developed for use with
SSM/I will be available to users that should improve its
performance with TRaP.

FIG. 2. Box and whisker plots comparing the rms (mm day�1), BS, POD, FAR, and ETS parameters as a function of sensor type (S �
SSM/I, A � AMSU, and T � TMI). A 25.4 mm day�1 threshold was used with the stage IV estimates being the reference dataset.

TABLE 4. As in Table 3, but as a function of sensor.

Sensor
(cases)

Rain rate
(TRaP/

stage IV)

Rain volume
(TRaP/

stage IV)
TRaP max

(mm day�1)
Stage IV max
(mm day�1)

MAE
(mm day�1) Rms R

Bias
score POD FAR ETS

AMSU (11) 0.59 0.55 90.1 351.8 37.0 0.70 0.10 0.79 0.60 0.24 0.30
SSMI (16) 0.71 0.65 106.1 345.0 49.8 0.81 0.16 0.36 0.29 0.18 0.16
TMI (15) 0.84 0.77 140.5 355.9 42.7 0.78 0.11 0.83 0.56 0.32 0.31
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c. Time before landfall

The second set of data stratification applied to the 42
TRaPs was to examine the TRaPs by the time before
landfall. These were sorted in groups of 6-hourly peri-
ods prior to landfall. Table 5 and Fig. 3 summarize
these results using a 25.4 mm day�1 threshold. First
examining Table 5, it is apparent that the rain rate,
volume, and maximum value are superior for the
TRaPs generated 12 h prior to landfall. Overall, the

TRaPs generated between 12 and 18 h of landfall show
similar statistical values and outperformed the TRaPs
generated at the other two times (6 and 24 h). Figure 3
is a little less convincing than the mean values shown in
Table 5 in the sense that the 6-h TRaP can be competi-
tive at times (note the BS and ETS). Nonetheless,
based on both sources of information, we conclude that
on average the best TRaPs are those that are generated
between 12 and 18 h of landfall. However, from Table
5, it is noted that for any given TRaP at the other times,

TABLE 5. As in Table 4, but as a function of time before landfall (using 25.4 mm day�1 minimum threshold).

Time before
landfall
(cases)

Rain rate
(TRaP/

stage IV)

Rain volume
(TRaP/

stage IV)
TRaP max

(mm day�1)
Stage IV max
(mm day�1)

MAE
(mm day�1) Rms R

Bias
score POD FAR ETS

6 (6) 0.64 0.62 97.3 362.2 34.3 0.68 0.16 0.67 0.48 0.28 0.25
12 (12) 1.00 0.82 150.0 288.2 45.4 0.80 0.23 0.70 0.51 0.24 0.29
18 (17) 0.65 0.59 105.7 389.5 47.4 0.79 0.10 0.67 0.50 0.22 0.28
24 (7) 0.50 0.54 88.4 359.5 40.7 0.65 �0.03 0.48 0.34 0.30 0.15

FIG. 3. As in Fig. 2, but as a function of the time before landfall.

AUGUST 2005 F E R R A R O E T A L . 471

Fig 3 live 4/C



they too can be useful. Apparently, the satellite-derived
rain rates associated with the approaching storm are
most valid between 12 and 18 h prior to landfall. Also,
storms that are within 6 h of landfall already have part
of their circulation over land and are usually beginning
to decay; thus, the extrapolation of their rain fields for
the next 24 h is no longer a valid assumption. Finally, it
should be pointed out that coastal retrievals are prob-
lematic in the passive microwave (e.g., Bennartz 1999),
so this may also contribute to these findings.

d. Comparisons versus Eta Model forecasts

Without the TRaP or other “value added” forecasts,
the only other readily available means that a forecaster
has to predict both intensity and areal rainfall from an
impending landfalling tropical system is NWP model
forecasts. For the United States, the most commonly
used models are the Eta (Black 1994) and Global Fore-
cast System [GFS, previously Aviation (AVN)] models
(Kanamitsu et al. 1991) although there are other mod-
els, such as the Geophysical Fluid Dynamics Labora-
tory (GFDL; Kurihara et al. 1998), that are more ap-
propriate for tropical systems. To assess the value of the
TRaP, it is worthwhile to make comparisons to the Eta
Model forecasts to serve as a benchmark. As such, the
24-h rainfall forecasts made at the times closest to the
42 TRaPs were obtained and subjected to the same
statistical analysis. However, since the archived Eta
Model data came on a 50-km grid, a fair comparison
between the TRaP and Eta as if they were put on the
same grid (i.e., we linearly averaged the stage IV data
up to the Eta grid size) is not exact. However, it was felt
that upscaling the Eta Model rainfall fields to match
that of the stage IV would be inappropriate because of
the large differences in the spatial resolution (Tustison
et al. 2001). Nonetheless, the objective here is to see
whether there is a clear distinction between the values
of the TRaP versus the Eta, not a direct comparison in
terms of actual statistical measures.

Since the Eta forecasts are made at either 0000 or
1200 UTC, the closest 24-h rainfall to the time of the

TRaP was used in the comparison. TRaPs that were
generated more than �6 h from this nominal model’s
forecast times were not included in this analysis in or-
der to insure that there was a reasonable comparison
between the two rainfall estimates. Roughly 90% of the
TRaPs generated were within �3 h of the forecast
model times.

Table 6 and Fig. 4 summarize the statistical param-
eters from the Eta Model forecasts for 35 forecasts (out
of the 42 original TRaP forecasts) using the 25.4 mm
day�1 threshold. It is obvious that the Eta Model 24-h
forecasts were significantly worse than those from the
satellite-based TRaP in virtually every statistical cat-
egory. The Eta Model performance is not surprising
since it is not well suited for tropical systems. The low
ETS values reported here are similar in magnitude to
those found by Gallus (2002) using a 25.4 mm day�1

threshold in validating warm-season Eta Model quan-
titative precipitation forecasts on a 30-km grid scale.

e. Comparison to climatological schemes

Prior to the development of TRaP, various research-
ers established several “rules of thumb” regarding the
maximum rainfall associated with landfalling tropical
cyclones. Recently, Pfost (2000) discussed and com-
pared such techniques, all of which include a simple
relationship between rainfall and storm speed. It was
felt that some of these should be used in this study to
compare to the magnitude of the maximum rainfall
from TRaP. It should be noted that the obvious short-
coming of such techniques is predicting the location and
distribution of the heavy rainfall. To generate these
estimates, the storm speed based upon the Tropical
Prediction Center (TPC) advisory, closest to the time of
the TRaP, was used. Table 7 shows the results. It is
quite apparent that, in general, the climatological
schemes do in fact offer maximum rainfall totals much
closer to the maximums observed, although the loca-
tion of this rainfall is not provided. However, it should
be noted that since the microwave rain rates represent
relatively large areas on the surface (anywhere from 5

TABLE 6. As in Table 3, but for the Eta Model forecasts (using a 25.4 mm day�1 minimum threshold).

2002
storm
name

Rain rate
(Eta/

stage IV)

Rain volume
(Eta/

stage IV)
Eta max

(mm day�1)
Stage IV max
(mm day�1)

MAE
(mm day�1) Rms R

Bias
score POD FAR ETS

Bertha 0.46 0.48 40.1 201.7 50.7 1.11 �0.10 0.34 0.15 0.48 0.06
Fay 0.64 0.64 46.6 165.1 46.6 2.14 �0.01 0.89 0.08 0.92 �0.05
Hanna 0.43 0.43 31.4 419.5 23.0 0.37 0.14 0.06 0.05 0.17 0.03
Isidore 0.48 0.48 54.2 240.7 44.4 0.86 0.20 0.27 0.14 0.51 0.01
Lili 0.56 0.57 53.8 187.8 25.80 0.57 �0.20 0.28 0.12 0.52 0.04
Average 0.51 0.51 45.2 242.9 50.31 0.95 0.01 0.37 0.11 0.52 0.02
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to 25 km depending upon the sensor), the maximum
rainfall it can produce in TRaP does not represent a
point measurement like the climatological methods do.
Also, the climatological schemes may include rainfall
for periods in excess of 24 h, whereas the TRaPs used in
this study are strictly for 24 h.

f. Storm track sensitivity

As was suggested in Ferraro et al. (2002), the accu-
racy of the TRaP is dependent upon the accuracy of the
forecast storm speed and direction. This makes sense
since the TRaP formula in its simplest form (i.e., TraP
� RavgDV�1) implies that a slower forward speed
would mean an increase in rainfall. For example, an
error by 50% in storm speed alone would double the
rainfall, and any direction error would compound the
problem by putting the maximum rainfall at the wrong
location. Using the TPC “best track” of a particular

storm (e.g., the actual track of the storm as determined
in these cases by the Tropical Prediction Center), se-
lected TRaPs were rerun. It was found that interpola-
tion of the track to positions every 3 h produced the
best results. So in general, the results that we found
were mixed. In some cases, the TRaPs were vastly im-

TABLE 7. Comparison of the storm mean maximum rainfall
(mm day�1) derived from stage IV, TraP, and three climatological
schemes based on storm speed (x in kt; y in m h�1).

Storm
name

Stage
IV TRaP 100/x

31.1 �
(0.915)y 9.75 � 0.039x

Bertha 330.1 66.8 423.3 425.9 241.6
Fay 359.1 220.3 473.4 450.3 242.1
Hanna 473.8 88.8 327.2 356.3 239.8
Isidore 340.4 87.0 250.0 279.1 237.5
Lili 225.1 92.5 183.6 191.3 233.9
Average 352.7 112.5 330.2 240.4 239.0

FIG. 4. As in Fig. 2, but for the TRaP and Eta Model forecasts.
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proved; others exhibited very little change. Never did
we see degradation in performance. Most likely, in
those cases, the original TRaP was simply poor, most
likely due to the proximity of the storm to land, inten-
sity changes, error in the satellite rain-rate retrievals,
etc. (i.e., poor assumptions in the basic TRaP). This is
an area for further investigation.

4. Summary and suggestions for future work

This study has focused on the validation of the
NOAA/NESDIS operational TRaP product for the
2002 tropical Atlantic hurricane season. Forty-two op-
erational TRaPs that were generated within 24 h of five
landfalling storms over the continental United States
were validated using an automated objectively based
statistical package. A number of statistical parameters
were used in the comparison. It was recognized that a
number of limitations in this study exist, including the
relatively small number of storms analyzed and the
various spatial scales of the operational data sources
being compared that could impact the interpretation of
the statistics. Nonetheless, important results were
found that should aid operational users of the TRaP.

It was found that considering only those data points
with a minimum daily rainfall threshold of 25.4 mm
day�1 of observed precipitation was more insightful
than a 1 mm day�1 threshold since the main focus of the
TRaP is on heavy precipitation potential leading to
flooding. When this higher threshold is used, it changed
some of the statistical parameters quite drastically,
most notably, the correlation coefficient, due to the
elimination of the low-end values.

Despite the relatively small number of TRaPs being
analyzed, they were further stratified by satellite sensor
type (i.e., AMSU, SSM/I, and TMI) and time before
landfall to better understand their tendencies. It was
found that the TMI TRaPs performed the best, al-
though the AMSU-based TRaPs were a close second in
performance. The SSM/I TRaPs performed the worst
and this was attributed to a lack of upgrades in the
operational algorithm since the late 1990s. It was noted
that a much improved SSM/I algorithm, namely a ver-
sion of GPROF, is being run in an experimental mode
at NESDIS and will be available for use during the 2005
tropical season. Also, the TRaPs generated between 12
and 18 h of landfall, on average, performed better than
those within 6 h or later than 18 h. However, there are
instances where even those TRaPs performed compa-
rably.

To provide some sort of reference to the value of the
TRaP, we validated the performance of the Eta Model
24-h rainfall forecasts to the same stage IV datasets for

the majority of the TRaP cases. It was found that the
TRaP outperformed the Eta Model in virtually every
statistical category. In addition, three different clima-
tologically based techniques that estimate the maxi-
mum rainfall based on storm speed movement were
examined. On average, all of these methods produced
maximum rainfall forecasts closer to the stage IV than
did TRaP. This may simply be due to the large foot-
prints of the microwave rain-rate estimates, which rep-
resent area averages and not point rain rates. As noted,
these climatological techniques give no information as
to the location and distribution of the rainfall.

The TRaP is highly dependent on the forecast track
of the storm. A limited number of TRaPs were recom-
puted using 3-hourly time-interpolated positions based
on the actual track of the storm. Results were incon-
clusive due to the small sample of data examined, but
never did the TRaP perform any worse.

As described in Part I, there are a number of ways in
which the TRaP technique itself could be extended and
improved. This includes changing assumptions in the
technique, improving the microwave rain retrieval
schemes, in particular, to work better for tropical sys-
tems, and developing better ways to use storm track
information. All of these potential improvements
would add more credibility to future validation studies.
Additionally, future validation studies must consider
the following:

• The impact of the different spatial resolutions from
the various satellite sensors and comparison datasets
on the probability distribution function of the rain-
rate field and on the validation statistics.

• Tustison et al. (2001) and Gallus (2002) point out that
there are major difficulties in trying to compare rain-
fall observations on different spatial scales. Compar-
ing radar and rain gauge data is the classic problem in
this regard, but verifying model forecasts or TRaP
forecasts with radar data also have “representative-
ness” errors. These require further study.

• Expanding the scope of the validation in space (by
using ground-based rainfall estimates from other na-
tions) and in time (using data from multiple years).
These steps will improve the applicability and statis-
tical significance of the results.

• Closer examination of the impact of the storm track
forecast on the TRaP. Again, a larger sample size is
required to draw conclusions on this.

• Finally, it is noted that this study did not consider
other advanced tropical rainfall estimation schemes.
These include the Rainfall Climatology and Persis-
tence model (R-CLIPER) (Marks et al. 2002) and the
GFDL hurricane model (DeMaria and Tuleya 2001).
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It is imperative that future validation efforts include
comparisons from these models.
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