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ABSTRACT

In this paper four simple computationally inexpensive, direct insertion data assimilation schemes are

presented, and evaluated, to assimilate Moderate Resolution Imaging Spectroradiometer (MODIS) snow

cover, which is a binary observation, and Advanced Microwave Scanning Radiometer for Earth Observing

System (EOS) (AMSR-E) snow water equivalent (SWE) observations, which are at a coarser resolution than

MODIS, into a numerical snow evolution model. The four schemes are 1) assimilate MODIS snow cover on

its own with an arbitrary 0.01 m added to the model cells if there is a difference in snow cover; 2) iteratively

change the model SWE values to match the AMSR-E equivalent value; 3) AMSR-E scheme with MODIS

observations constraining which cells can be changed, when both sets of observations are available; and 4)

MODIS-only scheme when the AMSR-E observations are not available, otherwise scheme 3. These schemes

are used in the winter of 2006/07 over the southeast corner of Colorado and the tri-state area: Wyoming,

Colorado, andNebraska. It is shown that the inclusion ofMODIS data enables themodel in the north domain

to have a 15% improvement in number of days with a less than 10% disagreement with the MODIS obser-

vation 24 h later and approximately 5% for the south domain. It is shown that the AMSR-E scheme has more

of an impact in the south domain than the north domain. The assimilation results are also compared to station

snow-depth data in both domains, where there is up-to-a-factor-of-5 underestimation of snow depth by the

assimilation schemes compared with the station data but the snow evolution is fairly consistent.

1. Introduction

Snow plays an important part in geoscience modeling

and forecasting issues. It is critical for meteorological

modeling as a boundary condition, and as a water re-

source for meltwater runoff into river systems for urban

and agricultural uses. The presence and distribution of

snow is a key earth system variable affecting energy and

water budgets as well as ecosystems.

When modeling snow evolution, it is important to

have information from areas that are difficult to observe,

or are sparsely populated, where weather stations are

not as abundant. There are models that approximate the

processes involved in the evolution of snow, given dif-

ferent atmospheric forcings, types of snow, terrain, and

vegetation properties. SnowModel is one such model

that has been developed at Colorado State University

(Liston and Elder 2006a) and is detailed in the next

section. Owing to various limitations in initialization,

source, and sink functions for adding/removing snow

mass, and parameterization describing the evolution of

snow, these models may not completely represent the

observed deposition/melt properties of snow.

One way to constrain a model’s analysis of snow pa-

rameters is through some form of data assimilation,

which enables information from observations to modify

the model’s state vector for these parameters, but it

should be noted that these observations come with er-

rors of their own. However, the areas of interest may be
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inaccessible to traditional ground-based observations,

and when available, only on irregular and coarse tem-

poral intervals or where the ground-based measuring

resources are limited. One way to overcome this is to

introduce remote sensing data from satellites. The Na-

tional Aeronautics and Space Administration (NASA)

has a number of remote sensing devices that provide

snow information. Commonly employed sensors include

the twoModerateResolution Imaging Spectroradiometers

(MODIS) on theAqua andTerra satellites andAdvanced

Microwave Scanning Radiometer for Earth Observing

System (EOS) (AMSR-E) on the Aqua satellite.

One of the products available from MODIS is a snow

cover mask. This product is at a resolution of 500 m,

which is useful in constraining snow evolution models

like SnowModel that can run at high spatial and tem-

poral resolution. However, snow cover is not a model

variable but a binary function of the state variable: snow

water equivalent (SWE). A problem with assimilating

snow cover observations is that these are not a unique

function of SWE. Any value of SWE that has an asso-

ciated snow depth providing a measurable signal above

the background vegetation will trigger a nonzero value

in the MODIS snow cover mask. However, SnowModel

can model snow under forest canopies (Liston and Elder

2006a) where satellites have known difficulties observ-

ing snow (Hall and Riggs 2007).

AMSR-E provides some information about SWE, but

it is in the form of spatial averages over 25 km3 25 km

areas. This averaging gives rise to significant ambiguity

due to the likely presence of snow heterogeneity at these

scales. Another problem associated with AMSR-E for

assimilation is its temporal coverage. There are often

days during the year when the satellite provides partial

or no coverage for the area of interest. There are also

known errors associated with AMSR-E observations in

forested areas (Foster et al. 2005; Clifford 2010). How-

ever, AMSR-E can observe through clouds while

MODIS cannot.

There are many other factors besides vegetation af-

fecting the accuracy of passivemicrowave SWEretrievals.

As shown in Foster et al. (2005), the morphology of the

snow changes retrieval accuracy as well as the brightness

temperature calibration. Markus et al. (2006) investigate

the impact of weather effects and snow evolution on the

accuracy of snow-depth retrievals. Clifford (2010) pro-

vides a good summary of factors affecting accuracy of

passive microwave SWE retrievals including snow mor-

phology, presence of liquid water in the snowpack, soil

properties, and land cover.

Data assimilation is becoming more common in snow

applications, especially as it often results in improved

snow estimates and model simulations. Data assimilation

is used to create better snow-depth and SWE estimates

from passive microwave data (Pulliainen 2006) and to

enrich coarse-scalemicrowave data with higher-resolution

visible datasets likeMODIS (Liang et al. 2009; Goa et al.

2010;Durand et al. 2008).Model-centric approaches have

been implemented to assimilate SWE ground and re-

motely sensed observations.Molotch andMargulis (2008)

combined various sources of snow-covered area (SCA)

[MODIS, Enhanced Thematic Mapper (ETM), and the

AdvancedVeryHighResolutionRadiometer (AVHRR)]

with a snow depletion curve and snowmelt model to cal-

culate SWE. Ensemble Kalman filters have been used to

assimilate MODIS snow-covered fraction (Andreadis and

Lettenmaier 2006) to update SWE estimates or SWE

estimates from passive microwave sensors (De Lannoy

et al. 2010) into land surface or hydrological models.

The ensemble Kalman filter has been used to assimi-

late MODIS snow cover fraction to enhance continental-

scale snow water equivalent (Su et al. 2008). A form of

optimal interpolation data assimilation is used with

SnowModel in Liston and Hiemstra (2008), where the

corrections that the scheme finds are applied retroac-

tively to create improved fields prior to the assimilated

observations. Kuchment et al. (2010) combined SCA,

passive microwave SWE estimates, and interpolated

ground measurements to initialize and perform snow-

pack model simulations yielding runoff estimates.

Data assimilation systems can be very computationally

expensive to run and can require estimates of background

errors covariances, ensemble member generation tech-

niques, or being able to run an ensemble of numerical

models. In this paper, four assimilation schemes are

presented and tested that are based upon direct insertion

techniques. This approach is computationally inexpensive

and relatively quick but does assume that the observa-

tions are perfect, even though they are not. In this work

snow cover observations are used to assess direct insertion

techniques with MODIS and SnowModel. Direct in-

sertion techniques have been used before to assimilate

MODIS snow cover fraction observations to update SWE

estimates (Rodell and Houser 2004; Zaitchik and Rodell

2009).

The four schemes just mentioned are based upon 1)

using only MODIS observations and assigning an arbi-

trary correction to the model if the model’s snow cover

mask does not match MODIS’s, or setting the model

cell’s SWE value to zero if needed; 2) an iterative

scheme assimilating AMSR-E observations over the

model equivalent area and adjusting the model’s SWE

value such that the average of the model equivalent area

matches the AMSR-E observations; 3) a combined

scheme wherein the MODIS snow cover data are as-

similated first, followed by the assimilation of AMSR-E
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SWE data for spatially modified snow cover (applied

when there is an AMSR-E image available on that day);

and 4) a scheme that is similar to 3 but the Aqua

MODIS data are assimilated on the days AMSR-E is

not available and the Aqua MODIS/AMSR-E ap-

proach from 3 is followed when the dual observations

are available.

The four schemes are compared to a run of Snow-

Model where no observations are assimilated over two

different areas of Colorado during the winter 2006/07.

During this period two large blizzards hit the high plains

of eastern Colorado and the Front Range, depositing on

average 0.6 m of snow that persisted for 2 months or

more in some locations. The two areas of study have dif-

ferent topography and vegetation and as such pose inter-

esting problems for the evolution of snow as well as for the

detection of snow from the satellite’s instruments.

The two locations that have been selected contain

areas of sparse populations, limiting the number of

ground-based observations; also, the snow cover per-

sisted for over 60 days in areas where the vegetation in

the domains should incur minimal error to the quality of

the MODIS and AMSR-E observations. However,

there appears to be problems in the latter part of the

season relative to the melting snow signals. To evaluate

the performance of the schemes with data that are in-

dependent of the satellite observations, snow-depth

output from the assimilation schemes and the control

run are compared to station snow-depth data in the

domains.

Therefore, the remainder of the paper is set as follows:

Section 2 is a brief overview of SnowModel, and section

3 is a summary of the MODIS and AMSR-E observa-

tions along with the pros and cons of both sets of ob-

servations relative to known errors associated with both

sensors. In section 4 the details of the experiments, the

model domains, and the assimilation approaches that

were followed are summarized. In section 5 the results

from the different assimilation experiments are pre-

sented. Section 6 comprises of conclusions and discus-

sion of this work.

2. SnowModel

SnowModel (Liston and Elder 2006a; Liston et al.

2007; Liston and Mernild 2012) consists of four sub-

models that describe different physical processes in the

prognostic evolution of snow parameters. The four

submodels are MicroMet, EnBal, SnowPack, and

SnowTran-3D. SnowModel is designed to run on spatial

increments of 1–500 m and temporal resolution ranging

from 10 min to 1 day. It can be applied usingmuch larger

grid increments (up to 10s of km) if the inherent loss in

high-resolution (subgrid) information (Liston 2004) is

acceptable. The processes that are represented in

SnowModel are accumulation of snow from frozen

precipitation, blowing snow redistribution and sub-

limation, interception, unloading and sublimation

within forest canopies, snow density evolution, and

snowpack ripening and melt. SnowModel includes the

first order physics, which allow for the evolution of the

snow with each of the global snow classes as defined in

Sturm et al. (1995) and G. E. Liston andM. Sturm (2012,

unpublished manuscript)—that is, ice, tundra, taiga,

alpine/mountain prairie, maritime, and ephemeral.

a. MicroMet

MicroMet is a quasi-physically based, high-resolution,

meteorological distribution model (Liston and Elder

2006b). This downscaling model is designed specifically

to produce high-resolution meteorological forcing dis-

tributions required to run spatially distributed terrestrial

models over a wide variety of landscapes. The outputs

from MicroMet are air temperature, relative humidity,

wind speed, wind direction, incoming solar radiation,

incoming longwave radiation, surface pressure, and

precipitation. All of these fields have different features

that may or may not be easy to interpolate over different

topography and vegetation. These atmospheric forcing

fields were spatially interpolated to the 500-m Snow-

Model grid using standard MicroMet procedures for the

experiments shown later.

b. EnBal

Enbal performs a surface energy balance calculation

based upon the available model state information. This

program simulates surface temperatures and energy and

moisture fluxes in response to observed and/or modeled

near-surface atmospheric conditions provided from

MicroMet. The surface latent and sensible heat flux and

snowmelt calculations are made using a surface energy

balance model dependent on the solar radiation reach-

ing Earth’s surface, the surface albedo, the downwelling

longwave radiation at the surface, the upward emitted

longwave radiation from the surface, the turbulent ex-

change of latent heat, the conductive energy transport,

and the residual energy available for melt. For snow and

ice surfaces, SnowModel defines different surface albe-

dos for the snow below forest canopies, the snow in

forest-free areas, and for glacier ice.

c. SnowPack

SnowPack (Liston and Hall 1995) is a single-layer,

snowpack evolution model that defines snowpack

changes in response to the precipitation and melt

fluxes defined byMicroMet. In this model the snowpack
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density changes with time in response to snow temper-

ature and weight of overlying snow. There is also a sec-

ond density modifying process that results from the

snow melting. The melted snow decreases the snow

depth and the associated meltwater is redistributed

through the snowpack until a maximum snow density is

reached. Any additional meltwater is assumed to reach

the ground at the base of the snowpack. Static surface

sublimation calculations are performed in EnBal to

adjust the snowpack depth. Sublimation of blowing

snow is calculated in SnowTran-3D, described below.

The specific forcings used in this work are mentioned in

section 4.

d. SnowTran-3D

SnowTran-3D (Liston and Sturm 1998; Liston et al.

2007) is a three-dimensional model that simulates snow-

depth evolution resulting from wind-blown snow. The

primary components of the SnowTran-3D model are 1)

the wind-flow forcing fields, 2) the wind shear stress on

the surface, 3) the transport of snow by saltation, 4) the

transport of snow by turbulent suspension, 5) the sub-

limation of saltation and suspended snow, and 6) the

accumulation and erosion of snow at the snow surface.

There are 23 predefined vegetation types and 7 user-

defined types that are used in SnowModel. The 23

predefined types are shown in Table 1 along with their

associated snow-holding depths, which describe the

minimum depths that the snow must be in the grid cell of

a given vegetation classification such that the snow above

this depth is available for wind transport. It should be

noted that SnowTran-3D is not used in the experiments

shown because of the 500-m resolution used, but this is to

highlight that it is available.

3. Snow observation sensors and products

a. MODIS snow cover product

MODIS uses a cross-track scan mirror to image Earth

and its atmosphere.MODIS features 36 discrete, narrow

spectral bands in the optical portion of the electromag-

netic spectrum, from approximately 0.4 m to 14.0 mm

(Hall and Riggs 2007). MODIS flies on both the Aqua

and Terra satellites. The Terra orbit, for example, has

a local equatorial crossing at approximately 1030 LT on

its descending node, while the Aqua satellite has a local

equatorial crossing time at approximately 1330 LT on its

ascending node. For this work the data from the Aqua’s

MODIS sensor are used since the AMSR-E sensor is

only present on the Aqua satellite. The simultaneous

observations allow for the evaluation of assimilation

methods 3 and 4 described in section 4.

MODIS snow and sea ice products are distributed

through the National Snow and Ice Data Center in

Boulder, Colorado. The MODIS product used in the

experiments shown in section 5 is daily snow cover

product, MYD10A1, which is provided at a 500-m res-

olution. The standard snow cover product is based upon

the normalized difference snow index (Hall and Riggs

2007).

b. AMSR-E snow water equivalence

The AMSR-E sensor is a 12-channel, six-frequency,

passive microwave radiometer system that measures

microwave brightness temperature from radiation re-

leased from the underlying surface, the snowpack, and

the atmosphere. The snow crystals in the snowpack

scatter microwave radiation, where deeper snowpacks

have more snow crystals available to scatter microwave

energy. Hence the microwave brightness temperatures

are lower than for shallow snowpacks, where there are

fewer snow crystals to scatter the microwave radiation.

In general, observed microwave brightness tempera-

tures are a function of snow grain size, stratigraphy,

density, physical temperature, liquid water content, as

well as soil properties, vegetation, and atmospheric

properties (Kelly 2009).

The baseline AMSR-E SWE retrieval algorithm is

based upon methods that are described in Chang et al.

TABLE 1. The 23 predefined vegetation types and the associated

snow-holding depth for use in SnowModel.

Class Description

Snow-holding

depth (m)

1 Forest Coniferous forest 15.00

2 Forest Deciduous forest 12.00

3 Forest Mixed forest 14.00

4 Forest Scattered short conifer 8.00

5 Forest Clearcut conifer 4.00

6 Shrub Mesic upland shrub 0.50

7 Shrub Xeric upland shrub 0.25

8 Shrub Playa shrubland 1.00

9 Shrub Shrub wetland/riparian 1.75

10 Shrub Erect shrub tundra 0.65

11 Shrub Low shrub tundra 0.30

12 Grass Grassland rangeland 0.15

13 Grass Subalpine meadow 0.25

14 Grass Tundra (nontussock) 0.15

15 Grass Tundra (tussock) 0.20

16 Grass Prostrate shrub tundra 0.10

17 Grass Arctic gram, wetland 0.20

18 Bare Bare 0.01

19 Water Water/possibly frozen 0.01

20 Water Permanent snow/glacier 0.01

21 Human Residential/urban 0.01

22 Human Tall crops 0.40

23 Human Short crops 0.25
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(1987) and Chang et al. (1997). A snow-depth retrieval is

applied to each snow-detected brightness temperature

pixel and projected into a 25 km 3 25 km EASE grid

cell. The number of instantaneous field-of-view re-

trievals comprising the accumulated snow-depth total is

used to convert the total from all daily descending

granules into an average snow depth. This snow depth is

then converted to SWE through some preassigned snow

density climatology.

c. Pros and cons of both sensors

Two strengths of the MODIS data are 1) its 500-m

spatial resolution, which then provides high-resolution

snow cover data for a snow evolution model, and 2) the

temporal resolution with snow cover information being

available twice a day (when not obscured by clouds). In

addition, fractional snow cover observations also pro-

duced by MODIS are strongly related to SWE and the

melt rates that snowpacks have experienced in the past,

and these relationships have been used with consider-

able success in previous snow distribution studies (e.g.,

Cline et al. 1998; Liston 1999; Molotch 2009). On the

downside, snow cover has a nonunique correspondence

with SWE.

A strength of the AMSR-E observations is that the

retrieved SWE corresponds directly to a model variable,

allowing for direct comparisons between the two. An-

other strength is that the AMSR-E sensor is not affected

by clouds in the same way as the MODIS sensor. How-

ever, the spatial resolution ofAMSR-ESWEobservations

is coarse at 25 km, compared to SnowModel’s resolution,

and introduces another form of nonuniqueness. There are

2500 model cells nested inside each of the AMSR-E ob-

servation and each of these cells can contribute toward the

model equivalent average of the AMSR-E observation. If

there are no constraints for the location of the changes in

SWE then each cell is treated equally. This can be miti-

gated to some extent by introducting the MODIS snow

cover as an a priori constraint to this SWEdistribution, but

even here the problem of reconciling model-averaged and

AMSR-E SWE remains a grossly ill-posed problem. It

should also be noted that there are errors associated with

the AMSR-E SWE and MODIS snow cover retrievals

related to vegetation, snow morphology, and meteoro-

logical factors.

Another problem with the AMSR-E observations is

the resolution of the temporal sampling. UnlikeMODIS,

AMSR-E observations are not available every day be-

cause of the smaller swath width of AMSR-E and its

availability on the Aqua satellite. There are at most 3–4

consecutive days when complete AMSR-E observations

over the domains of interest for our experiments are

available, followed by observation gaps. It should be

noted as well that several days can occur between avail-

able MODIS images, when cloud cover persists, espe-

cially in winter and early spring months.

4. Experimental design

The aim of this section is to present the different

configurations of SnowModel along with the combina-

tions of the satellite data used in the assimilation algo-

rithms. The geographic location and topographical and

vegetation features of the two domains that are used for

the experiments are described in sections 4b and 4a. The

configuration for SnowModel are described in section

4c. Finally, in sections 4d–g the observation operators

for MODIS snow cover and AMSR-E SWE are de-

scribed, along with the assimilation algorithms to use

these operators.

During December of 2006, two storms occurred, often

referred to as ‘‘four corners’’ storms, since the centers of

the low-pressure system were over the four corners of

Colorado, Utah, New Mexico, and Arizona. The posi-

tions of these two lows enabled a counterclockwise flow

that advected moisture from the Gulf of Mexico toward

the Rocky Mountains, creating an upslope motion re-

sulting in heavy snowfall along the front range of Colo-

rado. The two storms occurred within 10 days of each

other. The first of the two storms resulted in large amounts

of snow being deposited along the Front Range, the

mountains, and the eastern plains of Colorado. The second

storm took a more southerly route than the first, slowing

down as it headed northeastward across the Colorado–

Kansas border. As such this second storm deposited large

amounts of snow near the Colorado–Kansas border in

a largemostly rural area and contrary to the topographical

gradient. Therefore, the time period for the experiments

performed for this work is the winter season of 2006/07.

a. North domain

The first domain, referred to hereafter as the north

domain, is bounded by the latitudes and longitudes 408–
428N, 1058–1038W. Inside the north domain are the

cities of Greeley, Colorado; Cheyenne, Wyoming; and

Scottsbluff, Nebraska. Topographically the north do-

main has some challenges, with part of the Laramie

Mountains in the west; the Cheyenne Ridge in the cen-

ter, which is nearly contained by the field of view of a

single AMSR-E pixel; and the South Platte River cut-

ting across from the east. The topographical contour

plot for this domain is shown in Fig. 1a.

The north domain is covered by a majority of grass-

lands and croplands (Fig. 1a). However, there is also

wheat stubble, along with reservoirs near Greeley and

the South Platte River and its tributaries.
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b. South domain

The second experimental area, referred to hereafter

as the south domain, covers the southeastern corner of

Colorado with latitude–longitude boundaries 378–388N,

1048–1028W. The topographical plot of the south

domain is shown in Fig. 1b. A clear feature in this do-

main is the Purgatory River and the Picketwire Canyon

in the western half. This canyon is approximately 100 m

lower than the surrounding terrain. Also present in

the domain are the two small cities, Springfield and

La Junta, Colorado. There are also two small mountains

FIG. 1. Topographical and vegetation plots: (a) north domain and (b) south domain, where north is represented by

increasing along the y axes.
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in the southern part of the domain that rise about 350 m

above the surrounding terrain. The elevation of the

domain decreases from west to east and from south to

north. The highest point is approximately 2100 m while

the lowest point is approximately 1000 m. Predominant

land covers include grassland, cropland, and shrubland

(second plot in Fig. 1b).

The southern domain was selected in part because the

two storms during the winter of 2006/07, mentioned above,

deposited large amounts of snow here. As such, there

was significant snow cover for a considerable time where

MODIS was able to observe the evolution of the snow

with effectively minimum interference from vegetation,

as only a small part of this domain is covered in tree

canopies. For a summary of both domains’ vegetation

class and land use coverage percentages, refer to Table 2.

Given the previous work on the errors associated with

MODIS and AMSR-E and their snow products and

observations, the errors associated with respect to veg-

etation should be small but not zero, so they will affect

the direct insertion techniques that are used. However,

there are still errors associated with snow morphology,

liquid water present in the snow, or soils that can affect

the accuracy of the observations.

c. SnowModel configurations

SnowModel is configured to have a 500-m horizontal

resolution for the domains described in sections 4a and

4b, which results in 152 427 grid cells in the north do-

main and 82 340 in the south domain. The temporal time

step is 1 h, with the model SWE fields outputted every

6 h. The model uses the Universal Transverse Mercator

(UTM) projection, where this projection partitions the

globe into 60 zones along the equator into transverse

projections. The two domains used in this paper are in

zone 13. All of the observations are projected into the

UTM projection to be assimilated directly into the

model. The atmospheric external forcings come from

the North American Land Data Assimilation System

version 2 forcings (Mitchell et al. 2004), which are air

temperature, relative humidity,wind speed,winddirection,

and precipitation, and available hourly on a 1/88 grid

covering the United States. These atmospheric forcings

are interpolated in the MicroMet program allowing for

variation according to topography and land cover.

Topographical data is derived from the 30-m United

States Geological Survey National Elevation Dataset

(2008) covering the study area. These data are resam-

pled to 500 m (cubic interpolation) and matched with

the land cover. Land cover data used in the simulations

are from the 30-m, 2001 National Land Cover Data

dataset (Homer et al. 2007). The data are also resampled

(nearest neighbor) to 500 m and reclassified into cor-

responding SnowModel land cover and height classes

(Table 1).

To illustrate the temporal coverage of snow in

SnowModel for these experiments, the spatial average

SWE for both the north and south domains are shown in

Fig. 2. The SnowModel SWE spatial distributions for the

north and south domains for 1 January 2007, which is

after the two blizzards, are shown in Fig. 3a and Fig. 3b,

respectively. This is to illustrate the effects the geo-

graphical features described in sections 4a and 4b have

on SnowModel’s SWE fields.

d. Assimilation of MODIS snow cover observations

For the assimilation of the MODIS observations a di-

rect insertion technique is used where the observations

are assumed to be perfect. Hereafter, ym denotes the

MODIS observations and ya for the AMSR-E observa-

tions. The observation operators are hm(x) for MODIS

and ha(x) for AMSR-E. The model SWE is contained in

the state vector x.

There are five values that ym can have: 200 for snow-

covered land, 100 for snow-covered frozen water, 50

TABLE 2. Percentage of each vegetation class for both the north

and south domains.

Vegetation class % North domain South domain

Forest 0.31% 3.4%

Shrub 2.65% 13.98%

Grass 62.53% 65.27%

Bare 0.85% 0.23%

Water 1.72% 0.4%

Human residential 1.21% 0.28%

Human crops 30.71% 16.45%

FIG. 2. Spatial average model SWE (m) for the north and south

domains for the 2006/07 winter season.
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indicates cloud cover, 37 for unfrozen water, and finally

25 for snow-free land.

Although snow cover is not a state variable in Snow-

Model, it is possible to create a snow cover variable from

the SWE values for each model grid cell. Therefore, if

xi,j . 0 then [hm(x)]i,j 5 200 else [hm(x)]i,j 5 25, where

i and j are the indices for the model grid points in the

latitudinal and longitudinal directions, respectively.

The differences between the model andMODIS snow

covers are calculated next, with the following three cases

to consider:

d Case 1: Model snow covers equal MODIS.
d Case 2: Add SWE. Model has no snow-cover, MODIS

has snow cover.
d Case 3: Remove SWE.MODIS has no snow cover, but

the model does.

These are three cases considered in the following func-

tion to produce a new value for the model SWE, xnewi,j ,

respectively:

d if ym 2 hm(x) 2 [2150, 2100, 0, 12, 25] then

xnewi,j 5 xoldi,j ,
d if ym 2 hm(x) 2 [175, 75] then xnewi,j 5 0:01m, and
d if ym 2 hm(x) 2 [2175, 2163] then xnewi,j 5 0:0,

where xoldi,j is the current value for themodel SWE at grid

cell i, j.

As the MODIS snow cover product does not contain

information about how much SWE is present, the

amount of SWE that is added to the model cells is ar-

bitrary, highlighting the ill-posedness problem with

these observations.

e. Assimilation of AMSR-E 25 km 3 25 km SWE
observations

As mentioned earlier, the spatial resolution of

AMSR-E observations is 25 km 3 25 km. To assimilate

these observations the model equivalent, ha(x), is cal-

culated by averaging over all themodel cell values inside

the equivalent 25 km 3 25 km area in the model to the

AMSR-E observation. These areas inside the model are

referred to as the AMSR-E model domains hereafter.

As with the MODIS observations, a difference—Da,k,

m [ [ya 2 ha(x)]k,m, where k and m are indices for the

AMSR-E observation predictions in the east–west and

north–south directions of the model domain areas—is

calculated for each AMSR-E observation. As a direct

insertion technique is being used here, Da,k,m represents

the total amount of SWE to be added or subtracted from

the 2500 model cells in the AMSR-E model domain

where all cells are treated equally.

Therefore there are three possibilities that this algo-

rithm addresses:

d if Da,k,m . 0, calculate an average increment da,k,m 5
Da,k,m/2500. Then xnewi,j 5 xoldi,j 1 da,k,m and

Dnew
a,k,m 5Dnew

a,k,m 1 da,k,m,
d if Da,k,m 5 0 then xnewi,j 5 xoldi,j , and
d if Da,k,m , 0 then calculate da,k,m as above and remove

this increment for each model cell inside the AMSR-E

model domain.

It should be noted that Dnew is initialized as 0 m and the

indices i and j are for themodel cells inside theAMSR-E

model domains.

However, there are three situations that can occur

when removing SWE from a model cell: 1) xoldi,j . da,k,m,

2) xoldi,j 5 da,k,m, or 3) x
old
i,j , da,k,m. For the first two sit-

uations the algorithm follows the first two rules above.

However, for the third, a counter variable, tt, is used to

track the number of cells that have values of SWE

greater than zero that are available for more SWE to be

removed from the model cell on the next iteration if the

total amount of SWE removed does not equalDa,k,m. For

FIG. 3. SnowModel’s SWE (m) spatial distribution for 1 Jan 2007

for (a) north domain and (b) south domain.
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the third situation the cell’s amount of SWE is added to

Dnew
a,k,m and the cell’s SWE value is set to zero; this cell is

not available for any further reduction of Da,k,m.

After each cell has been checked inside the AMSR-E

model equivalent area, Da,k,m 2Dnew
a,k,m is calculated. If

Da,k,m 2Dnew
a,k,m 5 0 then the algorithm moves to the next

AMSR-E model domain and repeats the processes

above. If Da,k,m 2Dnew
a,k,m , 0 then Da,k,m 5Dnew

a,k,m, and

Dnew
a,k,m 5 0, calculate a new increment that is defined as da,

k,m 5 Da,k,m/tt, reset tt 5 0, and repeat all of the above

checks until the condition Da,k,m 2Dnew
a,k,m 5 0 is satisfied.

In summary, the MODIS algorithm provides in-

formation to the model of where there is a discrepancy

in snow coverage and corrects this with some arbitrary

increment of SWE added to the model cell. The AMSR-

E observations have information of the average SWE

over a 25 km 3 25 km area, but do not provide location

information for the SWE, as such the algorithm above

simply iterates around theAMSR-Emodel domain until

the model matches the AMSR-E observation, treating

each cell equally. This highlights the ill-posed nature of

assimilating these two sets of observations in-

dependently.

f. Combined AMSR-E SWE andMODIS snow cover
assimilation

The combined-observation approach starts by calcu-

lating hm(x) (section 4d). The next step is to start to

calculate ha(x) (section 4e), but now each model cell is

checked against its [hm(x)]i,j equivalent. If MODIS has

detected snow for this model cell and the model has

a zero SWE value, then a small amount of SWE is added

to that cell (simply to initialize that cell with some

nonzero SWE, the magnitude of which shall be ad-

justed by the AMSR-E SWE information). If there is

a cloud present in the MODIS observation cell then

that model cell is left untouched. If MODIS sees no

snow and the cell has snow then themodel cell’s SWE is

set to zero. The final part of the initialization is to

calculate [ha(x)]k,m.

The next part of the algorithm is to calculate the av-

erage increment for all 2500 model cells. The combined

algorithm follows the same iterative procedure from

section 4e but now eachmodel cell is checked against the

MODIS observation for that cell to see if it is snow

covered or not. This determines whether or not SWE

can be added or removed, but also howmuch. However,

it is possible that by subtracting the increment a model

cell could become snow free yet MODIS may have

detected snow here. Therefore, the algorithm removes

half of the increment (again this is arbitrary but enables

the cell to contribute to the SWE reduction). An algo-

rithmic description of this method is in the appendix.

g. MODIS and combined MODIS and AMSR-E
assimilation

This final assimilation scheme performs the MODIS

assimilation scheme from section 4d on the days that

there are no AMSR-E observations and then the com-

bination scheme from section 4f when both sets of ob-

servations are available. Hence, this approach is not

a redundant usage of MODIS data, but rather, a maxi-

mal usage of satellite data where and when they are

available for assimilation.

5. Results

In this section results are presented from the four as-

similation schemes described in sections 4d–g for both

the north and south domains. The observations are as-

similated at the local noon time step, which is an output

time for the model, and which allows the innovations

between the model and the observations to be calcu-

lated.

a. Root-mean-square differences results

In this first section of results, plots of the root-mean-

square differences (RMSD) defined as

RMSD5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M3N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
M

i51
�
N

j51

a2i,j

vuut (1)

are presented in Fig. 4, where A 2 RM3N, M is the

number of grid points in the longitudinal direction, N is

the number of grid points in the latitudinal direction,

and ai,j are the entries in A. For the results presented in

Fig. 4, A is the matrix of the difference in the SWE from

the control run, which is a run of the model without any

assimilation, and the assimilation runs for each domain.

This statistic is a measure of the average change in the

SWE (in meters) for the model cells for the different

schemes compared to the control run.

The interesting feature that is present in Fig. 4 is the

size of the average increment for the AMSR-E-only

assimilation schemes between the two domains (Figs. 4a

and 4e, respectively). The maximum increment for the

south domain is over a factor of 2 larger than the

equivalent increment for the north domain. While it is

clear that this increment is smaller than those associated

with the MODIS-based schemes, this indicates that in

the south domain there could be an underestimation of

the SWE by the model, but that the snow cover is fairly

consistent with theMODIS observations for most of the

experimental time period. This is reinforced by com-

paring the results for the MODIS-based schemes for the
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FIG. 4. Figure of the RMSD (m) between the control run and the four assimilation ap-

proaches for (a)–(d) the north domain and (e)–(h) the south domain, where AM stands for

AMSR-E assimilation,MO is forMODIS assimilation,MA stands for theMODIS andAMSR-

E assimilation when both are available, and MMA stands for MODIS and the combined as-

similation.
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north domain (Figs. 4b–d) with those for the south do-

main (Figs. 4f–h). When removing the spikes in the

south domain from the event in October, it is clear that

the maximum RMSD is a factor of 2 smaller for the

south domain than the north domain, where for the

north domain the maximum is almost the same size as

the arbitrary increment from the MODIS scheme of

0.01 m. This indicates that there are quite a few cells in

the control run that are snow clear yet MODIS indicates

that there is still snow cover there. This feature is not

present in the results for the MODIS-based schemes for

the south domain, suggesting that the snow cover is

better modeled here, but that the amount of SWE is not

as consistent with the AMSR-E observations.

It should be noted that similar work using more ad-

vanced data assimilation methods, with a different nu-

merical model, in different areas and over different

times, to the work presented here is shown in Andreadis

and Lettenmaier (2006), but where the assimilation of

the SWE observations degraded the model runs.

b. MODIS comparison

The results that are presented in this section assess the

change in the total percentage disagreement in snow

coverage from the control and assimilation runs with the

MODIS observation before they are assimilated. The

percentage is calculated from the total number of cloud-

free pixels in the MODIS observations for each domain.

A summary of the cloud coverage percentages in bins of

10% is presented for both domains in Table 3.

The north domain’s results from this assessment are

presented in Fig. 5a. The interesting feature here is the

increase of 18 days with a less than a 10% disagreement

in the snow cover compared to the control run. It is also

clear that the reduction in disagreement for the schemes

involving assimilating MODIS observations has a large

impact on reducing the snow cover disagreement

24 h later in the 10%–50% range. The specific reductions

relative to the control run are shown in Fig. 5c. There-

fore it appears that an increment of 0.01 m of SWE

added in the MODIS-based scheme is approximately

the correct amount, such that themelt rates in themodel

are not able to remove all the SWE added by the next

observation time for this domain.

For the south domain (Fig. 5b), the control run has

a better agreement with the MODIS images than the

north domain. However, there is still a positive increase

in the number of days with less than a 10%disagreement

with the futureMODIS observations whenMODIS data

is assimilated. Figure 5d shows the bar graph of the

differences between the control run and the four as-

similation schemes. Unlike with the north domain, it is

clear that the amount of SWE chosen a priori for these

experiments is not large enough, as suggested by the

increase in the number of days with between 11% and

30% disagreement. However, including the AMSR-E

observations appears to have a positive impact when

combined with the MODIS observations, allowing the

possiblity of a larger increment from the arbitrarily

chosen 0.01-m increment of SWE to be added.

It should be noted that there are more days for the

south domain where theMODIS images and the control

runs agree than for the north domain. This is consistent

with the results from the RMSD section.

Therefore, it appears that an increment of 0.01 m of

SWE added into the model may be suboptimal for the

south domain. To assess what may be the optimal in-

crement for the south domain, and to show that 0.01 m is

a near-optimal choice for the north domain, results are

presented for the MODIS-only assimilation scheme

with increments of 0.005 m (half), 0.01 m (modcontrol),

or 0.02 m (double). These results are in Figs. 6a and 6b

for the north and south domains, respectively.

The feature to note for the north domain is that the

0.005-m increment appears to be suboptimal compared

to the results for the 0.01-m increment in the 0%–10%

disagreement bin. The choice of 0.02 m for the in-

crement has a positive impact by reducing one of the

nearly 100% disagreement days.

For the south domain it appears in Fig. 6b that both

0.005- and 0.01-m increments are suboptimal. However,

using increments of 0.02 m appears to be nearer to an

optimal choice, where there are reductions in the larger

disagreements bins as well as a doubling of the number

of days with a 20% or less disagreement with the

MODIS snow cover observations.

c. Snow-depth comparisons to station data

In this subsection snow-depth outputs from the model

and the assimilation runs are compared to station data in

both domains. There is no reported SWE station data

TABLE 3. Total number of days for each cloud-covered per-

centage range of the MODIS observations for the north and south

domains.

Cloud coverage % North domain South domain

0–10 18 52

11–20 12 14

21–30 15 10

31–40 19 12

41–50 16 12

51–60 9 17

61–70 17 7

71–80 15 6

81–90 14 10

91–100 46 41
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available in either domain for the period of the experi-

ments. However, in the assimilation schemes the snow

depth is updated with the new SWE amounts and snow-

depth observations are available in the National Oce-

anic and Atmospheric Administration climatological

data reports, which are producedmonthly for each state,

available at http://www7.ncdc.noaa.gov/IPS/cd/cd.html.

In the north domain the snow depths from the as-

similation runs are compared to the Greeley University

of Northern Colorado (UNC) and Akron stations in

Colorado, Chugwater, Pine Bluffs 5W, and La Grange

stations in Wyoming and the Scottsbluff station in

Nebraska.

The results for the north domain are shown in Fig. 7.

Figures 7a and 7b are the two Colorado stations in the

order mentioned above. The first feature is the pattern

of melt and accumulation appear similar to the stations’

data. However, the snow depth is underestimated at

both stations. This smaller depth will affect the physics

in the model and will be different to the situation on the

ground because of feedback from temperature. An in-

teresting feature in late February is when the model,

MODIS, and AMSR-E detect snow and SWE yet the

Greeley station does not report snow. The assimilation

schemes that use MODIS observations allow for the

snow to be removed the next day, while the AMSR-E

assimilation keeps the SWE for two more days. The

results for theAkron station (Fig. 7b) show that all of the

assimilation and control simulations agree closely,

shown by only the last two colors on the legend being

visible; this is true for all panels in Figs. 7 and 8, but the

control run is similar to the AMSR-E run and does not

show in the figures.

The results from the three Wyoming stations are

shown in Figs. 7c–e in the order listed above. From the

Chugwater station results (Fig. 7c) it appears that snow

depth is underestimated for part of the season, for the

Pine Bluffs results there appears better agreement with

FIG. 5. (a) Plot of the number of days in the north domain that each of the four assimilation schemes and the control

run have a specific%disagreement in snowcoverwith theMODIS cloud clear pixels where comb15MAand comb25
MMA. (b) This plot description is similar to that in (a) but for the south domain. (c) Plot of the changes in the %

disagreement in the MODIS snow cover observations from the control run for the north domain. (d) This plot de-

scription is similar to that in (c) but for the south domain.
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the station data, while at the La Grange station there

appears a large discrepancy between the model and

station data. It should be noted that point source data

are not the same as a cell value, and that none of the

stations are located as the exact coordinates as the

model cell’s center.

For the first two Wyoming stations the accumulation/

melt patterns of the model appear quite similar to the

station data but as good agreement with the third sta-

tion. However, when the melting occurs the MODIS

base schemes match the station data quite closely for

Pine Bluffs, the delay in the Chugwater results is due to

the MODIS observation at this point being cloud cov-

ered, which means that the MODIS-based schemes are

designed to leave the model unchanged if this occurs.

The interesting result here is that the AMSR-E and

control run continue with the snow cover at least seven

more days after the station reports no snow.

The final station in Wyoming is La Grange (Fig. 7e).

This station shows a very clear difference between the

model and the station data. The results from this station

do highlight that while the snow depth is under-

estimated, the assimilation schemes are all increasing

the SWE and, hence, the snow depth compared to the

control run. The two assimilation runs where MODIS is

assimilated every day show an improvement, albeit

small, compared to the other assimilation schemes and

the control run.

The results for the last station for the north domain,

Scottsbluff in Nebraska, are shown in Fig. 7f. From this

figure it is clear that the model, and assimilation

schemes, all underestimate the snow depth here, but are

fairly consistent with the melt-accumulation pattern at

this location. An interesting feature of the plot is in

October where it appears that a small snow event is

missed by all of the assimilation schemes. The reason for

this is that the AMSR-E did not have a complete ob-

servation of the north domain that day, and the MODIS

image was cloud covered at the equivalent pixel.

In the south domain there are two stations that are

used to assess the assimilation schemes: these are Kim

15NNE andWalsh. The Kim station is in the west of the

domain and the Walsh station is near the large snow

accumulation in the east of the domain from the second

blizzard.

The results for the Kim station are in Fig. 8a. It ap-

pears that all of the assimilation schemes and the control

run are similar in underestimating the snow depth by

nearly a factor of 3 and have the general same pattern,

given the physics associated with assuming a snowpack

that is this deep, which is not the same as the observed.

Themelt events start to occur at approximately the same

time but are quicker than observed. The results for the

Walsh station are in Fig. 8b, where it appears that at this

location there is not a large difference between the

control run and the assimilation schemes, but it does

highlight that SnowModel is performing fairly well at

this location with the melt-accumulation pattern, but

again has a slight underestimation of the snow depth.

These plots also contain the results from MODIS as-

similation with the 0.02-m increment. It can clearly be

seen in both figures that this scheme is introducing SWE

to the model cells but that the model is melting it away

quickly.

As a final remark about these results, it should be

noted that snow depth is not assimilated in the experi-

ments, and that the average change to the SWE is over

2500 model cells for each AMSR-E model domain,

FIG. 6. Plot of the changes in the disagreement with theMODIS

snow cover observations from the control run for three different

choices for the increment for (a) north domain and (b) south

domain.
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which is where the snow-depth changes are coming

from, and hence at an individual cell point the amount

needed specifically there cannot come from MODIS

snow cover or AMSR-E SWE. Therefore, indicating

a third set of observations are required, specifically

snow depth.

6. Discussion and conclusions

a. Discussion

In this subsection, some caveats are provided about

this work along with some future work ideas about

transferability of these techniques along with some ideas

FIG. 7. Plot of north domain station snow-depth data with the control and assimilation runs snow depth for (a)

Greeley and (b) Akron, Colorado; (c) Chugwater, (d) Pine Bluffs, and (e) La Grange, Wyoming; and (f) Scottsbluff,

Nebraska; where the black solid line is the control run, the red solid line is the station data, solid green line is the

AMSR-E-only assimilation, blue solid line is theMODIS only, the cyan solid line is the first combined, and finally the

dashed black line is the second combination scheme.
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on how to constrain the amount of influence that the

observations have on the increments added or sub-

tracted from the model’s SWE amounts.

The techniques presented in this manuscript are of

the direct insertion family. These techniques are com-

putationally inexpensive and reasonably quick. In the

work here, the SWE amounts were updated with

a rule-based iterative approach, trying to utilize the

binary data from the MODIS snow cover observations

in conjunction with the SWE observations. There are,

however, more advanced techniques that could be

used to update the SWE: three- or four-dimensional

variational data assimilation, or ensemble Kalman fil-

ter, for example.

The direct insertion techniques used in this paper are

applicable to any snow evolution model; however, it

should be noted that the direct insertion techniques as-

sume perfect observations, which is not true for the two

observation sets used in the experiments shown. These

errors should be incorporated into some form of weighting

of the observations in a future application.

This weighted approach could address the trans-

ferability of these techniques to areas where there are

tree canopies, which are known to cause errors in

MODIS and AMSR-E observations. If the vegetation

index of SnowModel, or any land surface snow evolution

model, indicates that a tree canopy is present, then un-

less the snow is deeper than the trees, assume the model

is more accurate in these areas. Again the same rea-

soning could be used for the morphology of the snow. If

it is known that melting is occurring and this causes er-

rors with the AMSR-E observations then weight the

model more and reduce the impact of the AMSR-E

observations at this time.

After taking into account the errors associated with

theMODIS observations, the problem still remains how

much SWE to introduce into the model cells if there is

a negative difference between the model and MODIS.

One technique would be to use the vegetation index in

Table 1 to provide a minimum amount of SWE to be

added to the model cell such that the snow depth is

greater than the vegetation-holding depth. This same

information could be used as the criteria for the re-

moval of snow for the AMSR-E-based techniques.

Currently this is set to half of the model cell’s SWE

value, but instead could be set so that the SWE in the

cell is below the MODIS detection threshold and then

this cell would be treated as a zero cell for the re-

mainder of the iterations. Also what should be taken

into account is what size increment is needed relative

to the external forcing; that is, if the snow is in a melt

phase or an accumulation phase then the increment

required may not be the same and as such this in-

formation could be used to define the size of the

increment.

One feature that comes from using a direct insertion

technique is the fact that snowpack information is not

used to allocate the SWE increments in the AMSR-E-

based algorithms. Therefore a way to optimize the al-

location of SWE increments would be to use this model

information to have another weighting for the model

cells’ allocation of SWE due to snowpack depth. How-

ever, for the MODIS-only observation assimilation

scheme this information is not needed as it is snow cover

discrepancies that are being corrected.

FIG. 8. Plot of south domain station snow-depth data with the

control and assimilation snow depths for (a) Kim and (b) Walsh,

Colorado, where the black solid line is the control run, the red solid

line is the station data, solid green line is the AMSR-E-only as-

similation, blue solid line is the MODIS only, the cyan solid line is

the first combined, the dashed black line is the second combination

scheme, and finally the dashed blue line is the 0.02-m increment

MODIS-only assimilation.
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b. Conclusions

In this paper four simple and computationally in-

expensive direct insertion data assimilation schemes to

assimilate MODIS snow cover observations and/or

AMSR-E SWE observations into a high-resolution

snow evolution model have been presented. These four

schemes were tested over two domains: one in the

southeastern corner of Colorado and the other in the tri-

state area of Colorado, Wyoming, and Nebraska for the

winter of 2006/07. As these techniques are direct in-

sertion based, an arbitrary increment for the MODIS-

based assimilation schemes had to be allocated. For the

first set of experiments this was set to 0.01 m.

The experiments were assessed against three different

measures: root-mean-square differences between the

assimilation runs and the control, matching the cloud-

free MODIS image 24 h later, and finally against snow-

depth data from station data inside the two domains. It

was shown from the RMSD results that there appeared

to be an underestimation of the snow cover area in the

north domain—this was indicated by size of the RMSD

for the MODIS-based scheme, being almost the same

size as the arbitrary increment. Whereas for the south

domain, the RMSD was smaller for all four schemes

compared to the north domain, and never close to the

arbitrary increment—almost a factor of 3 smaller for

a majority of the time. This suggests that in the south

domain there is better agreement with MODIS snow

cover observations, but an underestimation of SWE.

The conclusion above was reinforced by the 24-h-later

MODIS cloud clear snow cover comparisons. For the

north domain there was an increase of 18 days with a less

than 10% disagreement in snow cover through using

MODIS observations, which is a 15% improvement in

snow coverage, relative to the MODIS images. In the

south domain there appears to be a better snow cover

agreement without the assimilation of MODIS obser-

vations than for the north domain, and there was only

a 5% improvement in snow cover when MODIS ob-

servations were assimilated.

The final measure of the performance of the assimi-

lation schemes was to compare the snow depth from the

schemes and the control to station data from the two

domains. It was shown that while the general accumu-

lation and melt patterns were fairly consistent, the snow

depth was underestimated at most locations by up to

a factor of 5 for some stations. This finding would in-

dicate that for a snow-depth improvements, given the

boundary conditions for SnowModel, the assimilation of

snow cover, SWE, and snow depth combined may yield

the best method for improving SnowModel’s snow-

depth representations.

It should be noted that in Liston and Hiemstra (2008)

it is mentioned that the precipitation forcings could be

causing SnowModel to underestimate the snow depth as

the amount of precipitation entering the model is un-

derestimated. Therefore, SnowModel can only work

with the boundary conditions that it is provided—if the

atmospheric forcings are incorrect then the associated

physics of the snow evolution will be constrained by this

accuracy as well as the interactions of the errors in the

numerics and these meteorological forcings.
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APPENDIX

Combined MODIS and AMSR-E Assimilation
Algorithm Description

As mentioned in section 4f, this approach calculates

an average increment to be added or subtracted from the

cells in theAMSR-Emodel domain, but now there is the

extra constraint of matching the snow cover observa-

tions fromMODIS. There are three situations that arise

involving the increment, denoted here as dc,k,m, and the

model cell’s SWE amounts in this algorithm and they are

described below.

If xoldi,j 1 dc,k,m . 0 then

If ymi,j 5 200, ymi,j 5 100 or ymi,j 5 50 then

xnewi,j 5 xoldi,j 1 dc,k,m,D
new
c,k,m 5Dnew

c,k,m 1 dc,k,m, tt5 tt1 1

Else

xnewi,j 5 xoldi,j

End If

Else if xoldi,j 1 dc,k,m 5 0 then

If ymi,j 5 25 or ymi,j 5 37 then

xnewi,j 5 xoldi,j 1 dc,k,m,D
new
c,k,m 5Dnew

c,k,m 1 dc,k,m

Else

xnewi,j 5 xoldi,j /2,D
new
c,k,m 5Dnew

c,k,m2 xi,j/2, tt5 tt1 1
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End If

Else

If ymi,j 5 200, ymi,j 5 100 or ymi,j 5 50 then

xnewi,j 5 xoldi,j /2,D
new
c,k,m 5Dnew

c,k,m 2 xi,j/2, tt5 tt1 1

Else

xnewi,j 5 0,Dnew
c,k,m 5Dnew

c,k,m 1 xoldi,j

End If

End If

Because of the extra constraint of satisfying the

MODIS snow cover observations, a different set of

stopping criteria for Dc,k,m 2Dnew
c,k,m are required. The

criterion Dc,k,m 2Dnew
c,k,m 5 0 is used, but if this cannot be

satisfied because of MODIS constraining the number of

snow-free cells, then the extra criterion of tt5 0, which is

stating that if there are now more cells available to be

used then exit this AMSR-E model domain.
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