Auagust 2006

Passive-Microwave-Enhanced Statistical Hurricane Intensity Prediction Scheme

JONES ET AL.

THOMAS A. JONES AND DANIEL CECIL

Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

MARK DEMARIA
NOAA/NESDIS, Fort Collins, Colorado

(Manuscript received 26 January 2003, in final form 23 September 2005)

ABSTRACT

The formulation and testing of an enhanced Statistical Hurricane Intensity Prediction Scheme (SHIPS)
using new predictors derived from passive microwave imagery is presented. Passive microwave imagery is
acquired for tropical cyclones in the Atlantic and eastern North Pacific basins between 1995 and 2003.
Predictors relating to the inner-core (within 100 km of center) precipitation and convective characteristics
of tropical cyclones are derived. These predictors are combined with the climatological and environmental
predictors used by SHIPS in a simple linear regression model with change in tropical cyclone intensity as
the predictand. Separate linear regression models are produced for forecast intervals of 12, 24, 36, 48, 60,
and 72 h from the time of a microwave sensor overpass. Analysis of the resulting models indicates that
microwave predictors, which provide an intensification signal to the model when above-average precipita-
tion and convective signatures are present, have comparable importance to vertical wind shear and SST-
related predictors. The addition of the microwave predictors produces a 2%-8% improvement in perfor-
mance for the Atlantic and eastern North Pacific tropical cyclone intensity forecasts out to 72 h when
compared with an environmental-only model trained from the same sample. Improvement is also observed
when compared against the current version of SHIPS. The improvement in both basins is greatest for
substantially intensifying or weakening tropical cyclones. Improvement statistics are based on calculating
the forecast error for each tropical cyclone while it is held out of the training sample to approximate the use
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of independent data.

1. Introduction

Current statistical tropical cyclone intensity forecast
models are primarily based on climatology, persistence,
and synoptic-environmental parameters (DeMaria and
Kaplan 1994 hereafter DK94; DeMaria and Kaplan
1999, hereafter DK99; DeMaria et al. 2005; Knaff et al.
2005). Missing from these models is explicit informa-
tion about the characteristics of a tropical cyclone’s in-
ternal structure. Passive microwave imagery has been
suggested as a very useful tool for deriving these char-
acteristics (e.g., Rao and MacArthur 1994; Cecil and
Zipser 1999). These characteristics include the presence
and intensity of eyewall convection and rainfall, the

Corresponding author address: Thomas Jones, Dept. of Atmo-
spheric Science, University of Alabama in Huntsville, Rm. 4015,
320 Sparkman Dr., Huntsville, AL 35805.

E-mail: tjones@nsstc.uah.edu

© 2006 American Meteorological Society

areal coverage of tropical cyclone-related clouds and
precipitation, the location and size of rainbands, and
their relative homogeneity. Passive microwave imagery
is able to observe these phenomena due to the emission
and scattering properties of atmospheric water vapor,
raindrops, and precipitation ice. The primary goal of
this work is the creation of an improved tropical cy-
clone intensity forecast model based on incorporating
microwave-derived tropical cyclone characteristics into
the statistical forecasting process. This work focuses on
creating microwave-enhanced models for the Atlantic
and eastern North Pacific tropical cyclone basins.
Statistical intensity forecast models such as Climatol-
ogy and Persistence (CLIPER) and the Statistical Hur-
ricane Intensity Forecast (SHIFOR) were developed
using only climatology and persistence parameters to
forecast tropical cyclone intensity change using a simple
linear regression model (Neumann 1972; Jarvinen and
Neumann 1979; Knaff et al. 2003). The primary opera-
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tional hurricane intensity model after SHIFOR was cre-
ated by DK94 and labeled the Statistical Hurricane In-
tensity Prediction Scheme (SHIPS). SHIPS incorpo-
rated oceanic and environmental (in additional to
climatological) parameters into intensity change fore-
casts for tropical cyclones out to 72 h. Since 1994,
SHIPS has been improved significantly with additional
predictors, better environmental analyses, larger train-
ing datasets, increased forecast times out to 120 h, and
the addition of an eastern Pacific model (DK99; De-
Maria et al. 2005).

A further refinement to intensity prediction is the
addition of tropical cyclone observations to the statis-
tical models. Fitzpatrick (1997) was the first to attempt
the feat on a large scale by adding infrared satellite
observations of western North Pacific tropical cyclones
into a linear regression scheme similar to that used by
DK99. The resulting model showed significant im-
provement in forecast skill over a model derived solely
from climatology, persistence, and environmental pa-
rameters. DeMaria et al. (2005) proceeded to include
infrared (10.7 wm) imagery and ocean heat content
(OHC) into SHIPS with operational implementation
beginning during the 2004 Atlantic and eastern Pacific
tropical cyclone seasons. However, these additions are
currently only able to provide a 3%-4% improvement
in operational intensity forecast skill for the Atlantic
basin and a 4%-8% improvement for the eastern Pa-
cific (DeMaria et al. 2005). In the Atlantic, only half of
this improvement can be attributed to the infrared data
alone. The eastern Pacific model does not include OHC
data; hence, all of its improvement is derived from the
infrared data.

One significant limitation of using infrared data is
that low- and midlevel tropical cyclone characteristics
are often obscured by cirrus outflow (Lee et al. 2002).
Passive microwave imagery on the other hand has the
ability to observe tropical cyclone characteristics at sev-
eral levels and scales. Several previous works focused
on associating 85-GHz information with current and
future intensity (Glass and Felde 1992; Rao and McCoy
1997; Cecil and Zipser 1999; Bankert and Tag 2002; Lee
et al. 2002). The primary reasons for using 85-GHz
brightness temperatures 7}, are their relatively high spa-
tial resolution (compared with other microwave chan-
nels) and their sensitivity to precipitation ice such as
graupel and hail. Precipitation ice is produced in re-
gions of deep convection where updrafts carry water
drops above the freezing level. Larger concentrations
of precipitation ice indicate regions of stronger updrafts
and more vigorous convection whose magnitude can be
related to current and future tropical cyclone intensity.
Smaller ice particles such as those associated with cirrus

WEATHER AND FORECASTING

VOLUME 21

outflow do not significantly scatter microwave radiation
and are transparent in this part of the microwave spec-
trum. The results of these works suggest a modest cor-
relation with 24-h tropical cyclone intensity change us-
ing mean 85-GHz brightness temperature values calcu-
lated within the first 1.0° (or ~100 km) from the center.

Other works used information from multiple micro-
wave frequencies (e.g., 19 and 37 GHz) to derive rain-
fall rate information associated with tropical cyclones
(Spencer et al. 1989; Rao and MacArthur 1994; Rodg-
ers et al. 1994; Rodgers and Pierce 1995; Bankert and
Tag 2002). Rainfall rate has been noted as an estimator
of the amount of diabatic heating occurring within the
inner-core region. Diabatic heating resulting from la-
tent heat release is a key factor associated with the
intensification process. The addition of latent heat to a
tropical cyclone acts to warm the column, increasing
thicknesses in the midtroposphere while hydrostatically
decreasing pressure near the surface. The pressure de-
crease near the center increases the pressure gradient
between the center and the surrounding environment.
The “response” to the increased pressure gradient is an
increase in the velocities associated with the low-level
circulation so that near-gradient balance is maintained.
Modest correlations with tropical cyclone intensity
change were observed using rainfall rate information
within 1.0° from the center. In some cases, the correla-
tion between rainfall rate characteristics and intensity
change was higher than that between 85-GHz charac-
teristics and intensity change.

2. Data

a. Best-track data

Intensity and location data for each tropical cyclone
are taken from postanalysis “best track” files produced
by the National Hurricane Center (NHC). Several cen-
tral Pacific tropical storms are included in the eastern
Pacific sample to correspond with operational practice.
Postanalysis combines all available tropical cyclone
data (e.g., surface observations, ship and buoy reports,
aircraft measurements, dropsonde measurements, and
satellite observations) to produce files that contain
maximum sustained wind speed (MSW), location, and
minimum sea level pressure for the lifespan of a tropi-
cal cyclone from depression stage to either its dissipa-
tion or transition into an extratropical system. Data are
smoothed and reported in 6-h intervals at 0000, 0600,
1200, and 1800 UTC with wind speed values rounded to
the nearest 5-kt (1 kt-0.5144 m s~ ') interval. For the
purposes of this work, “intensity” is classified as the
wind speed of a tropical cyclone at a particular point in
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time. The 1-min-average wind speed 10 m above the
surface defines intensity for all observations.

In the Atlantic, a significant portion of tropical cy-
clone observations is based on measurements from air-
craft and dropsondes. Otherwise, most intensity obser-
vations are based on the Dvorak (1984) technique.
Franklin et al. (2003) note the uncertainties associated
with estimating intensity from aircraft flight level or
dropsonde measurements. Brown and Franklin (2004)
report an 11-kt rms error for Dvorak estimates when
compared with more reliable aircraft-based estimates.
Location errors of ~20 km are also common due to
smoothing and/or lack of a well-defined center. An at-
tempt is made to correct for location errors when well-
defined eyes are present, though this is only possible for
~10% of the sample. Intensity estimates are not modi-
fied and are accepted as is.

b. Environmental data

Environmental data are taken from National Centers
for Environmental Prediction—National Center for At-
mospheric Research (NCEP-NCAR) reanalysis or ar-
chived model output and written to diagnostic files de-
signed for SHIPS training (DK94; DeMaria et al. 2005).
Diagnostic data used by the 2004 version of SHIPS exist
back to 1982 for the Atlantic and eastern Pacific. Cli-
matological and environmental data associated with
each tropical cyclone are sampled at 12-h intervals at
0000 and 1200 UTC, respectively. Each environmental
parameter is computed at the observation time and for
“future” times at 12-h intervals out to 120 h. In real-
time operation, these parameters are derived from the
NCEP Global Forecasting System (DeMaria et al.
2005). All environmental fields are modified such that
the circulation signature of the tropical cyclone itself is
removed to produce a better estimate of a tropical cy-
clone’s environment and remove errors associated with
the often poor representation of tropical cyclone circu-
lations within numerical models (DK99).

Environmental predictors are based on spatial aver-
ages of the resulting environmental data fields out to a
radius of 1000 km from a tropical cyclone’s center.
Many environmental predictors are time averaged
along the projected track of the tropical cyclone so that
the conditions it may encounter along its path may be
factored into the forecast. The “perfect prog” assump-
tion is made implying that best-track and environmen-
tal data within the training sample are a “perfect” rep-
resentation of the actual event (Wilks 1995). This is not
the case in real-time operation, resulting in a forecast
whose accuracy is very dependent on the quality of the
input data.

Data available in the diagnostic files can be broken
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down into several major categories, which include cli-
matology, persistence, and environmental parameters
(Table 1). A more detailed explanation of these param-
eters as well as the rationale for their use can be found
in DK94, DK99, Knaff et al. (2005), and DeMaria et al.
(2005).

¢. Microwave imagery

Passive microwave imagery collected from the De-
fense Meteorological Satellite Program (DMSP) and
Tropical Rainfall Measuring Mission (TRMM) satel-
lites forms the basis of this work. The relevant sensors
include the Special Sensor Microwave Imager (SSM/I;
Hollinger et al. 1987), aboard the DMSP satellites and
the TRMM Microwave Imager (TMI; Kummerow et al.
1998). Both sensors measure upwelling microwave ra-
diation emitted from the earth’s surface and atmo-
sphere. The measured radiances are then converted
into brightness temperature values using a form of
Planck’s law. Raindrops emit (absorb) radiation over a
large portion of the microwave spectrum. Water vapor
emits microwave radiation near 22 GHz. Areas of sig-
nificant rain and high water vapor content would ap-
pear warmer than the surrounding environment due to
the greater atmospheric emission of microwave radia-
tion as compared with a low-emissivity ocean back-
ground at these frequencies. Precipitation ice and large
raindrops scatter (in the Mie regime) upwelling ra-
diation at higher frequencies such as 37 and 85 GHz.
Increased scattering occurs in areas of large raindrop
and/or precipitation ice concentrations resulting in
these areas appearing colder than the surrounding en-
vironment.

SSM/I data from four DMSP satellites (F10, FI3,
F14, and F15) from 1995 to 2003 are collected for this
research. Passive microwave channels observed by the
SSM/I sensor include horizontally (H) and vertically
(V) polarized 19.35-, 22.235- (V only), 37.0-, and 85.5-
GHz frequencies. Hereafter, these channels are re-
ferred to as H- or V19, 22, 37, and 85 GHz for simplic-
ity. Pixel resolution is a function of frequency with 85
GHz being the highest at 16 km X 14 km and 19 GHz
being the lowest at 70 km X 45 km. Data are over-
sampled by the satellite producing approximately 12
km X 12 km high-resolution pixels for 85-GHz data
with the remaining three channels oversampled to low-
resolution 24 km X 24 km pixels.

TMI data are collected from December 1997
(launch) to 2003. The TRMM satellite was launched in
a unique orbit to maximize observations of tropical re-
gions, but has the limitation of not being able to ob-
serve latitudes beyond *38°. TRMM’s lower altitude
improves the spatial resolution to 7 km X 5 km at 85
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GHz and to 30 km X 18 km at 19 GHz (oversampled to
5Skm X 5 km and 10 km X 10 km, respectively).

For both instruments, vertically and horizontally po-
larized 85- and 37-GHz T, are combined to form po-
larization corrected brightness temperatures (PCT8S5,
PCT37), which are defined by Spencer et al. (1989) and
Cecil et al. (2002). Polarization correction reduces the
effect of the background (e.g., land or water) on the
meteorological signal being studied.

d. Microwave parameters

Many parameters derived from the raw TMI and
SSM/I microwave brightness temperature data are con-
sidered. All parameters are calculated from data within
a radius of 0-100 km centered around the best-track-
defined tropical cyclone center. Parameters are also
calculated from larger radii, but they are disregarded
after confirming they have lower correlation values
with intensity and intensity change than do the 0-100-
km parameters. This result is in agreement with Rao
and McCoy (1997) and Cecil and Zipser (1999). Data
for the 0-100-km area are considered valid if at least
90% of the possible pixels within this area exist and are
not over land. The highly variable emission properties
of land in the microwave spectrum lead to the contami-
nation of the meteorological signals being observed.

Parameters considered for use include mean and
minimum (or maximum) brightness temperature values
from each channel. These parameters roughly corre-
spond to the average and maximum concentration of
rainfall (19, 37 GHz), water vapor (22 GHz), and pre-
cipitation ice (85 GHz) within the 0-100-km area. The
same parameters are also calculated for the four quad-
rants (northeast, northwest, southeast, southwest) of
the 0-100-km area to give an estimate of tropical cy-
clone symmetry. The standard deviation of the four
quadrant means relative to the overall mean is calcu-
lated and used as the measure of symmetry because the
standard deviation of the raw brightness temperatures
would be dependant on the horizontal resolution of a
particular sensor. TMI minimum and maximum param-
eters are spatially averaged to approximate the SSM/I
resolution.

An automated eye-detection algorithm is developed
and used to correct tropical cyclone best-track locations
so the microwave data are centered on an eye at the
satellite overpass time. The algorithm determines the
presence of an eye by searching for a ring of PCT85
below 260 K surrounding at least 75% of a tropical
cyclone’s center. The radius at which the eye detection
criteria are satisfied is defined as the eyewall radius.
This parameter usually represents the inner edge of
eyewall precipitation in the mid- to upper troposphere.
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Data within the eyewall radius are considered to be in
the “eye region” of a tropical cyclone. The 0-100-km
parameters discussed above are recalculated using the
recentered location with pixels representing the eye re-
gion removed from the averaging process. Removing
them gives a better measure of the rainfall and convec-
tive characteristics associated with the eyewall and sur-
rounding convection.

All microwave tropical cyclone observations are
“snapshot” observations. No time continuity is cur-
rently taken into account. In many cases, microwave
predictors are inadequately and irregularly sampled for
the reliable calculation of microwave-derived time rate
of change predictors.

3. Methodology

a. Valid forecasts and sample size

Intensity change forecasts are only computed for
times when tropical cyclones are located over water, as
the effects of land on intensity change are beyond the
scope of this work. A decay algorithm currently exists
to account for land interaction, which is applied to
SHIPS output in real-time operation (DeMaria et al.
2005). Tropical cyclone observations located within 100
km of a significant landmass at the time of a satellite
overpass are removed due to the requirement of non-
contaminated microwave data, which is discussed in
section 2. Training samples include observations of all
tropical cyclone stages from depression to hurricane
strength including subtropical storms. Data are valid
until either the final dissipation of the tropical cyclone
or to the point where it has been declared extratropical.

Best-track and environmental data are interpolated
to the overpass time corresponding to each microwave
tropical cyclone observation. Environmental param-
eters vary somewhat smoothly over a period of a few
hours, but microwave observations may change signifi-
cantly during the same period of time. For this reason,
other interpolation schemes such as interpolating the
microwave overpasses to the nearest synoptic time
(0000 or 1200 UTC) are not pursued. Using microwave
overpasses “as is” in a time window (~3 h) before a
synoptic time also proved ineffective.

To ensure that each microwave overpass in the
sample represents some degree of independent infor-
mation, an overpass that lies within a certain time win-
dow to another overpass is removed from the sample.
The time window is determined by comparing the au-
tocorrelation coefficients () for several microwave and
environmental predictors. The goal is to calculate the
interval between overpasses where the microwave au-
tocorrelation roughly corresponds to the 12-h environ-
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mental autocorrelation. The rapidly changing nature of
inner-core characteristics results in the microwave au-
tocorrelation decreasing much more rapidly than for
the environmental predictors. The environmental auto-
correlation value at 12 h is used as a threshold since this
is the maximum degree of autocorrelation currently
present within SHIPS. The autocorrelation for impor-
tant microwave predictors reaches the 12-h environ-
mental threshold (r ~ 0.65) for an overpass interval of
between 4 and 5 h. Being conservative, all overpasses
that occur within 6 h of each other for a particular
tropical cyclone are removed from the sample. For a
6-h interval, the approximate microwave autocorrela-
tion is ~0.6, resulting in a reduction in sample size of
approximately 30%. Still, autocorrelation must be
taken into account prior to the formulation and inter-
pretation of statistical models by using the effective
sample size in place of the actual sample size (Aberson
and DeMaria 1994).

The effective sample size N, of the training sample is
determined by calculating the variance inflation factor
and multiplying by the actual sample size N [Eq. (1);
Wilks (1995)]. The average time between observations
after the removal of serially correlated scans is approxi-
mately 14 h indicating that the autocorrelation between
12-hourly observations would provide a conservative
estimate of the variance inflation factor. The 12-h in-
terval also corresponds to the environmental data spac-
ing and the model forecast interval. The autocorrela-
tion of 12-h intensity change results in a 50% reduction
in sample size applied to all forecast times. The effec-
tive sample size replaces the actual sample size in all
calculations of statistical significance:

1-r
Ne=Na77

(1)

b. Regression

Tropical cyclone intensity change forecast models are
produced in a fashion similar to that of DK94 and
DK99. Separate forecast models are created for fore-
cast intervals of 12, 24, 36, 48, 60, and 72 h from the
microwave overpass time using a multiple linear regres-
sion technique [Eq. (2)]. Coefficients b, are multiplied
by predictor values xx to produce a forecast change in
intensity for a tropical cyclone y, where K is the num-
ber of predictors used in the regression:

Vv =by+ byx; + byx, + ...+ bpxg.

)

Models extending beyond 72 h are not derived since a
snapshot of tropical cyclone characteristics is unlikely
to have a significant impact on intensity change beyond
3 days (Fitzpatrick 1997). Prior to regression, predictors

ET AL. 617

and the predictand are normalized by subtracting their
means and dividing by their standard deviations. This
allows the direct comparison of the coefficients result-
ing from the regression process.

About 40 predictors, selected based on their physical
relevance to tropical cyclone intensity change and their
independence from other predictors, are fed into a
backward stepwise linear regression process (Table 1).
Different forecast intervals produce regression models
with different sets of significant predictors. For simplic-
ity of physical interpretation, it is desired that models
for a particular basin contain the same predictors over
all forecast times. For the final regression models, pre-
dictors are retained for all times if they are significant
to the 99% confidence level for at least two forecast
intervals. Remaining predictors that only marginally
pass this threshold are subtracted from the model on a
predictor-by-predictor basis to determine whether or
not the predictor adds significant skill. If the predictor
does not, it is removed from the final regression, keep-
ing with the goal of having a model with as few predic-
tors as possible. The high threshold for predictor reten-
tion and a degree of subjectivity are necessary to keep
the total number of predictors to a minimum, reducing
artificial skill (Neumann et al. 1977). The use of more
objective means such as principle component analysis
failed to produce superior results. Once the final set of
predictors is chosen, regression models are recomputed
for all forecast intervals. Hereafter, the microwave-
enhanced intensity forecast model is referred to as
SHIPS-MI. Separate SHIPS-MI models are derived for
the Atlantic and eastern Pacific basins.

This methodology differs from the residual adjust-
ment produced by DeMaria et al. (2005). DeMaria et al.
(2005) added infrared and oceanic heat content predic-
tors to the forecast after the SHIPS forecast had been
produced. The adjustment is calculated by regressing
the new predictors against the residual errors present in
the statistical-dynamical-only model. This technique
has the advantage of retaining the information from
tropical cyclones prior to 1995, where the satellite im-
agery is not available for model training. The same ad-
justment technique is also applied here with microwave
data to compare the advantages and disadvantages of
both the pure regression and the adjustment modeling
techniques. Hereafter, the microwave form of the ad-
justment model is referred to as SHIPS-MA.

c. Verification

To approximate an independent dataset, a jackknif-
ing procedure is used as in DK94 and DK99. A tropical
cyclone is withheld from the training sample and the
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TaBLE 1. Climatological, environmental, and microwave predictors available from the SHIPS diagnostic files or computed from
microwave data. “Time avg” defines whether or not (Y or N) the predictors are averaged from the initial observation to the forecast
time. Predictors retained in the final Atlantic and eastern Pacific models are denoted with an A or E, respectively. Operational
predictors are denoted with an O. Those used in stepwise regression that are not retained are denoted with an R. Predictors with no
denotation were subjectively removed prior to stepwise regression. Microwave parameters retained by SHIPS-MI include MAXH19
(both basins), MEANH19 (Atlantic), and MEANPCTS85 and STDQMBSS5 (eastern Pacific).

Predictor Description Units Time avg ~ Model
Climatology and persistence
MSWO0 Initial maximum sustained wind speed (1-min avg) kt N AE, O
WCG12 12-h change in intensity prior to MSW0 kt N E,O
USPD Zonal component of storm motion (12-h avg) ms~! N (0]
VSPD Meridional component of storm motion (12-h avg) ms! N E
LAT Storm-centered latitude ° N R,AE
LON Storm-centered longitude ° N R
ADAY Absolute value of Julian day — peak activity Julian day =~ Day N O
Environmental
D200 200-hPa divergence 107%s7! N o)
T200 200-hPa temperature °C Y A, O
U200 200-hPa zonal wind speed kt Y E
REFC 200-hPa eddy momentum flux m days™! N R
E000 1000-hPa equivalent potential temperature °C Y
EPOS 6, difference between lifted surface parcel and °C Y A,E, O
environment
RHLO 850-700-hPa relative humidity % Y R
RHHI 500-300-hPa relative humidity % Y O
SHRD 850-200-hPa vertical shear magnitude kt Y AE, O
SHRS 850-500-hPa vertical shear magnitude kt Y R
SHRG Generalized 850-200-hPa shear (average over all levels)  kt Y
USHRD Zonal component of SHRD kt Y R
VSHRD Meridional component of SHRD kt Y R
USHRS Zonal component of SHRS kt Y R
VSHRS Meridional component of SHRS kt Y R
73850 850-hPa absolute vorticity 105s7! Y A, O
PSLV Pressure steering level hPa N (0]
DTL Distance from land km N R
MPI Maximum potential intensity kt Y
POT MPI-MSWO0 kt Y AE,O
Nonlinear
MPI2 Square of MPI kt? Y
VMPI MSWO times MPI kt? Y
POT2 Square of POT kt? Y ALE, O
VPER MSWO times WCG12 kt*s™! Y A, 0
SHRDLAT SHRD times SIN(LAT) kt Y AE, O
SHRSLAT SHRS times SIN(LAT) kt Y R
SHRGLAT SHRG times SIN(LAT) kt Y
MSWSHRD SHRD times MSW kt? Y AE,O
MSWSHRS SHRS times MSW kt? Y R
MSWSHRG SHRG times MSW kt* Y
Microwave (0-100 km)
MEAN (H19, V19, V22, 37, 85) Mean T, K N AE
STD (H19, V19, V22, 37, 85) Standard deviation T}, K N
MIN (37, 85) Minimum 7}, (modified) K N R
MAX (H19, V19, V22) Maximum 7, (modified) K N AE
D19 Mean difference between V19 and H19 T, K N R
STDOM (H19, V19, V22, 37, 85)  Standard deviation of four-quadrant mean 7, K N E

regression coefficients are recomputed without it. Fore-
casts and associated errors are produced for that tropi-
cal cyclone. Then the process is repeated for every
other tropical cyclone. When forecast intensity falls be-
low 20 kt, the forecast time at which that threshold is

crossed and all those thereafter are removed from con-
sideration in error calculations. This is done to corre-
spond with operational practice since a tropical cyclone
is considered “dissipated” when the forecast intensity
falls below 20 kt. Errors derived this way are compared
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TABLE 2. A list of the various model acronyms used in this
work followed by a brief description of each.

Model Description

SHIPS Operational SHIPS coefficients for 2005 applied
to training sample

SHIPS-ENV  Operational SHIPS with infrared and heat
content adjustment removed

SHIFOR Operational SHIFOR coefficients for 2005
applied to training sample

SHIPS-MI Microwave-enhanced regression models

SHIPS-MA  Microwave enhancement using adjustment
scheme

SHIPS-85 Microwave-enhanced regressions using only
PCTS5 data

Base Microwave predictors in SHIPS-MI removed

Base-IR Microwave predictors in SHIPS-MI replaced by

infrared predictors

for several different forecast models listed in Table 2
and described below.

Comparisons with the operational SHIPS model are
limited because of the small homogeneous sample size.
We do not have the necessary infrared predictors for all
microwave overpass times. Some comparisons are
made, but any involving infrared data use a homoge-
neous sample that is about %5 the size of the full set of
microwave-based forecasts. To make use of the full
sample size, we also consider SHIPS forecasts that ex-
clude the infrared and oceanic heat content adjustment.
These are referred to as SHIPS-ENV. In both cases,
data from the interpolated environmental sample are
applied to the operational coefficients; hence, forecast
errors for SHIPS and SHIPS-ENV are not computed
using a jackknifing procedure.

Most comparisons utilize a “base” regression that ex-
cludes the microwave predictors from SHIPS-MI. Since
both the base regression and SHIPS-MI use the same
training sample and the same climatological and envi-
ronmental predictors, this comparison provides a direct
measure of the usefulness of microwave predictors.
This is not the case when comparing SHIPS-MI with
SHIPS-ENV. Similarly, the microwave adjustment
model, SHIPS-MA, is trained on base model errors to
solely examine the effect of the addition of microwave
data.

To directly compare the effectiveness of microwave
versus infrared predictors, a model is created that re-
places the microwave predictors in SHIPS-MI with the
operational infrared predictors (percentage of 50-200-
km radius pixels below —20°C and standard deviation
of T, over a 100-300-km radius). This model is labeled
Base-IR. (Note that this application does not use the
adjustment scheme.) These two models are compared
to determine whether the infrared or microwave pre-
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dictors provide the greatest increase in forecast skill.
However, the limited sample size prevents these com-
parisons from being statistically significant.

4. Atlantic results

a. Model interpretation

Valid tropical cyclone overpasses in the Atlantic
number 1034 for the 12-h forecast sample and decrease
to 552 for the 72-h forecast sample. Out of a total of 144
possible tropical cyclones, at least one valid 12-h fore-
cast exists for 120 tropical cyclones while only 68 have
valid forecasts out to 72 h. Stepwise regression and sub-
sequent application of threshold tests for significant
predictors across all forecast times results in a linear
regression model with 13 separate predictors (Table 3).

Climatological predictors include persistence multi-
plied by initial intensity (VPER), initial intensity alone
(MSWO0), and the tropical cyclone’s initial latitude
(LAT). Synoptic-environmental predictors include the
following: 200-hPa temperature (T200), deep-layer
shear (SHRD), potential (POT), 6, difference between
a lifted surface parcel and its environment (EPOS), and
850-hPa absolute vorticity (Z850). Several combina-
tions of environmental and climatological predictors
also exist to partially correct for nonlinear relationships
between the various predictors and the intensity change
(POT2, SHRDLAT, MSWSHRD).

Several differences exist between environmental pre-
dictors present in SHIPS-MI and those present in
SHIPS. SHIPS-MI includes initial latitude as a predic-
tor whereas SHIPS only includes it within a nonlinear
shear predictor. Other differences are cases where mar-
ginal SHIPS predictors fall out of the SHIPS-MI regres-
sion (e.g., ADAY, USPD). Persistence (WCG12) and
relative humidity (RHHI) in SHIPS are replaced by
VPER and EPOS in SHIPS-MI. Finally, 200-hPa diver-
gence (D200) and the pressure at the steering level
(PSLV) predictors are subjectively removed since they
do not provide any meaningful increase in skill by their
inclusion. These differences are primarily a result of
using a different training dataset than SHIPS and the
added influence of the microwave predictors. With the
exception of persistence, these predictors rarely con-
tribute more than *+5 kt to intensity change forecasts;
thus, the overall impact of their removal is limited. The
persistence contribution is retained by the nonlinear
VPER predictor in the base regression and SHIPS-MI.

Microwave predictors retained after stepwise regres-
sion include mean and maximum H19 T, for the area
0-100 km from the tropical cyclone center
(MEANH19, MAXH19), which represent the mean
and maximum rainfall and latent heat release present
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TABLE 3. Final Atlantic SHIPS-MI predictor standardized coefficient values at each forecast time (h) with the explained variance
(R?) statistic at the bottom.

Predictor t=12 t=24 t =36 t =48 t =60 t="172
MEANH19 0.39 0.50 0.47 0.35 0.22 0.11
MAXH19 0.07 0.03 0.04 0.09 0.15 0.15
POT 1.14 1.13 1.22 1.18 1.00 0.86
POT2 —0.77 —0.75 —0.78 —0.67 —0.55 —0.44
SHRD -0.19 —0.38 —0.50 -0.57 —-0.70 =0.77
SHRDLAT 0.41 0.67 0.88 0.91 1.02 1.01
MSWSHRD —0.38 —0.49 —0.63 —0.66 —0.65 —0.54
MSWO0 —0.03 —-0.10 0.00 0.09 0.05 0.00
VPER 0.31 0.22 0.16 0.15 0.10 0.09
LAT —-0.07 —0.18 —0.30 —0.33 -0.39 -0.41
EPOS 0.07 0.13 0.10 0.08 0.12 0.13
T200 -0.13 -0.17 -0.19 -0.19 -0.19 —-0.18
7850 0.14 0.15 0.16 0.19 0.18 0.21
RrR? 0.42 0.51 0.57 0.63 0.64 0.64

within the inner core of tropical cyclones. Predictors
relating to tropical cyclone symmetry did not stand out
as significant. Predictors from the H19 channel are fa-
vored by the stepwise regression, and the use of similar
predictors from other channels results in a somewhat
less skilled model.

As with SHIPS, predictors related to sea surface tem-
perature and vertical wind shear (POT, SHRD, and
related nonlinear terms) are the most important indi-
vidual predictors at most forecast times (DK94; DK99),
although there is often some cancellation between re-
lated predictors. The relative importance of every pre-
dictor can be defined by comparing the absolute value
of the normalized coefficients (Table 3). For forecast
intervals out to 48 h, the most important predictor be-
yond POT and SHRD (and related nonlinear predic-
tors) is MEANH19. The magnitude of the MEANH19
coefficient is such that substantial intensity change
(£10 kt) forecasts are possible from this one predictor.
Coefficient values for MEANH19 are positive, indicat-
ing that warmer 19-GHz T, are associated with future
intensification. This term increases the forecast inten-
sity for tropical cyclones with abundant inner-core rain-
fall, and decreases the forecast intensity for those with
relatively little rain signature present. The MAXH19
predictor acts much the same way as the MEANH19
predictor, but is much less important than MEANH19
out to 60 h. By the 72-h forecast interval, the impor-
tance of both 19-GHz predictors is small.

Since the POT, SHRD, and microwave signals are
present in multiple and sometimes offsetting predictors,
the true importance of these physical signals cannot be
determined by the coefficient value alone. To make this
determination, the total intensity change contributions
are calculated for POT + POT2, SHRD + SHRDLAT
+ MSWSHRD, and MEANH19 + MAXH19. The re-

sulting intensity change contributions indicate that out
of these three physical signals, microwave exceeds both
potential and shear for 12- and 24-h forecasts. At 24 h,
the microwave predictors contribute an average of 29%
of the total forecast. The potential and shear-related
predictors contribute 25% and 20%, respectively. Be-
yond 36 h, shear becomes the dominant signal followed
by potential with the influence of microwave decreasing
rapidly. While each of these contributions seems large,
the removal of any one only decreases model perfor-
mance by a small margin. For example, removing all the
shear terms would only increase the mean absolute er-
rors by a few percent. In this case, the remaining physi-
cal contributors take on a greater importance and offset
some of the lost information. Following these physical
signals in overall importance at the 12- and 24-h fore-
cast intervals is persistence (VPER). Refer to DK%,
DK99, and DeMaria et al. (2005) for a more in-depth
discussion of the physical interpretation of the remain-
ing nonmicrowave predictors.

For the final calculation of forecast intensity change,
the sample mean intensity change must be factored in.
The mean intensity change in the Atlantic is positive
due to the larger number of intensifying versus weak-
ening tropical cyclones in the sample. The sample mean
intensity change increases from 2 kt at 12 h to over 11
kt at 72 h. The implication of the substantial positive
mean is that SHIPS-MI will forecast 11 kt of intensifi-
cation at 72 h even if the total predictor contribution is
zero. When interpreting the final forecast, this contri-
bution must be taken into account.

Variance explained by SHIPS-MI, defined by the R?
coefficient, increases as a function of time from 42% at
12 h to 61% at 72 h (Table 3). These values are similar
to those reported for SHIPS by DeMaria et al. (2005).
The increase in variance explained does not represent
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SHIPS-MI, SHIPS-85, and SHIPS-MA forecasts for valid Atlantic

tropical cyclone overpasses (N).

Forecast (h) TCs N Base SHIPS-ENV SHIPS-MI SHIPS-85 SHIPS-MA
12 120 1034 54 5.3 5.2 5.3 5.3
24 111 916 9.0 8.6 8.4 8.6 8.7
36 99 793 11.8 11.4 10.8 11.1 11.3
48 87 702 13.7 13.2 12.9 13.3 13.3
60 75 620 15.8 15.0 15.0 15.4 15.4
72 68 552 17.4 16.2 16.6 17.0 17.0

an increase in model skill at longer forecast times. In-
stead, it is simply a reflection of the increased variabil-
ity of intensity change as a function of time.

b. Model performance

Table 4 and Fig. 1a give mean absolute errors for
various SHIPS models for the Atlantic sample. All
SHIPS-like models substantially outperform SHIFOR,
indicating that adding environmental data to climato-
logical and best-track predictors does increase forecast
skill (e.g., DK94). SHIPS-ENV, which is simply the use
of operational SHIPS coefficients without any adjust-
ment from infrared or oceanic heat content predictors,
outperforms the base model for all forecast times de-
spite the latter’s inclusion of the latitude predictor. This
is because of the larger training sample used in SHIPS-
ENV and the greater overall number of predictors (16).

SHIPS-MI outperforms both SHIPS-ENV and the
base model out to 60 h. Figure 1b shows percent im-
provement relative to the base regression model for
SHIPS-MI, SHIPS-85, SHIPS-MA, and SHIPS-ENV.
Comparison against the base model best highlights the
skill made available by the addition of the microwave
predictors. SHIPS-MI has mean absolute errors ranging
from 5.2 to 16.6 kt between 12 and 72 h compared with
5.4 and 17.4 kt for the base model, representing a 4%—
8% improvement. Maximum improvement occurs at
the 24- and 36-h forecast intervals, which is consistent
with both physical and mathematical expectations. Us-
ing a paired Student’s t-test statistic (Wilks 1995) with
the effective sample size, the improvement in mean ab-
solute error between the base model and SHIPS-MI is
statistically significant to the 95% significance level for
24-48-h forecasts. SHIPS-MI also outperforms SHIPS-
ENV by 2%-5% out to 60 h.

For the Atlanticc MEANH19 and MAXHI19 are re-
placed with MEANPCTS85 and MINPCTS85 in SHIPS-
MI to form SHIPS-85. Sample size is not expanded to
include the near-land observations so that error com-
parisons are all based upon the same sample size as
before. SHIPS-85 outperforms the base model by 3%—
4% at all forecast times. However, SHIPS-85 is not as

skillful as SHIPS-MI, indicating that some predictive
ability is lost by the substitution of 85-GHz predictors
in place of 19-GHz predictors. Given the lower corre-
lation between 85-GHz predictors and intensity relative
to 19-GHz predictors, the decreased performance re-
sulting from using 85-GHz predictors is of no surprise.
SHIPS-85 shows virtually no skill when compared
against SHIPS-ENV.

SHIPS-MA is the poorest performing microwave-
enhanced model, only showing a 2%-3% improvement
over the base model, which is not statistically signifi-
cant. Given the nature of the adjustment technique, the
limited improvement is not surprising. In fact, SHIPS-
MA differs from the base model by 5 kt or greater for
less than 13% of all forecasts (which compares with
~35% for SHIPS-MI forecasts).

To assess whether SHIPS-MI has skill relative to the
fully operational SHIPS model, Fig. 2a shows relative
errors for the subset of forecasts where infrared and
oceanic heat content predictors are available. Here,
forecasts for SHIPS-MI, SHIPS, and SHIPS-ENYV are
computed using regression coefficients from the full
SHIPS-MI (Table 3) and operational SHIPS and
SHIPS-ENV (DeMaria et al. 2005). Hence, forecast er-
rors in Fig. 2a are not computed using a jackknifing
procedure. SHIPS-MI outperforms SHIPS at all fore-
cast times with a maximum improvement of 6% at 36 h.
However, the differences in model training samples, the
number of predictors between SHIPS and SHIPS-MI,
and the use of an adjustment technique in SHIPS com-
plicate the interpretation of this comparison. Also note
that the difference between SHIPS-ENV and SHIPS
(with infrared) is only on the order of 1%-2% for this
limited sample.

Both SHIPS-MI and Base-IR outperform the base
regression model, each computed from the smaller
training sample (Fig. 2b). Here, all errors are computed
using a jackknifing procedure. The microwave predic-
tors in SHIPS-MI provide almost twice as much im-
provement as the infrared terms in Base-IR. This result
indicates that the advantages of microwave data (re-
solving inner-core precipitation features) compared
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FiG. 1. (a) Atlantic mean absolute errors for SHIFOR, SHIPS-ENV, SHIPS-MI, SHIPS-85,
and SHIPS-MA and (b) percent improvement of SHIPS-ENV and various microwave-
enhanced models normalized against the base regression.

with infrared data (resolving cloud-top features) do
translate into improved model performance on a ho-
mogeneous sample.

Mean absolute error and forecast improvement are
stratified by initial storm intensity and subsequent in-
tensity change to determine model performance as a
function of storm type. Figure 3a shows 24-h mean ab-
solute error binned in 5-kt intervals as a function of
initial intensity. SHIPS-MI outperforms the base model
for all initial intensities with the exception of very
strong (MSW > 130 kt) hurricanes. However, the

sample size for this type is very small. Improvement is
maximized for tropical depressions and for hurricanes
below 110 kt. Strong convective bursts near the center
of forming and intensifying tropical depressions pro-
vide a positive signal to the forecast, thereby increasing
skill. The strong precipitation signal for intensifying
hurricanes produces similar results. The improvement
for tropical storms is somewhat less and is a result of
larger variability in intensity change for this portion of
the sample. Figure 3b shows the same 24-h mean abso-
lute error, this time binned as a function of subsequent
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Fi1G. 2. Comparisons of mean absolute errors for the smaller, homogeneous, sample where
infrared and oceanic heat content are available. (a) Percent improvement of SHIPS-MI nor-
malized against SHIPS, which includes the infrared and oceanic heat content adjustment.
SHIPS-ENV (no infrared of heat content adjustment applied) is shown for comparison. Re-
gression coefficients are derived from the full training samples with no jackknifing applied
here. (b) Improvements of SHIPS-MI and Base-IR normalized against the base model. Co-
efficients for these three models are computed from the homogenous sample and jackknifing

is applied.

intensity change from the overpass time to a particu-
lar forecast time. Over 80% of the observations at
24 h fall within an intensity change range of =20 kt.
Mean absolute error for SHIPS-MI is smaller than for

the base model for all intensity change bins except
0-10 kt.

Base model and SHIPS-MI 24-h forecast errors are
also stratified in 5-kt bins for intensifying, weakening,
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and relatively steady state tropical cyclone types (Fig.
4). Relatively steady state tropical cyclones are those
that undergo less than *10 kt intensity change over a
particular forecast duration. Tropical cyclones that un-
dergo greater than *10 kt intensity change are classi-
fied as those that “intensify” and “weaken.” For all
types, fewer SHIPS-MI errors fall into the largest error
bins (Fig. 4a). Thus, SHIPS-MI errors are generally
slightly smaller than corresponding base model errors.

Both models have a substantial underforecasting bias
for intensifying tropical cyclones, with SHIPS-MTI’s bias
being smaller (Fig. 4b). However, SHIPS-MI does
somewhat overforecast 24-h intensity compared with
the base model in some instances. Similar results were
observed for weakening tropical cyclones (Fig. 4c).
Models tended to not forecast enough weakening, with
SHIPS-MI again having a larger number of smaller er-
rors. Errors are generally small and show a slight posi-
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tive bias for relatively steady state tropical cyclones
(Fig. 4d).

For about 55% of all 24-h forecasts, SHIPS-MI has
smaller errors than the base model (Fig. 5a). In most
cases, however, SHIPS-MI and the base model gener-
ally do agree with each other and have similar errors.
When the forecasts are substantially different, SHIPS-
MI is usually the more accurate. In 14% of the fore-
casts, SHIPS-MI is at least 5 kt more accurate than the
base model. The base model is at least 5 kt more accu-
rate than SHIPS-MI in only 7% of all forecasts. This
discrepancy is more pronounced in substantially inten-
sifying (Fig. 5b) or substantially weakening storms (Fig.
5c). SHIPS-MI is at least 5 kt more accurate in 18% of
the intensifying cases and 18% of the weakening cases.
The base model is at least 5 kt more accurate in only
8% of the intensifying cases and 5% of the weakening
cases.

The percent improvement of SHIPS-MI over the
base model is also stratified as a function of subsequent
intensity change and time (Fig. 6). Improvement is
maximized for 12-h forecasts of intensifying cyclones
and 24-48-h forecasts of weakening cyclones. Some im-
provement for steady state tropical cyclones occurs for
24-48-h forecasts. Generally, the improvement is
greater for intensifying or weakening tropical cyclones

than for relatively steady state cyclones, and SHIPS-MI
is never significantly worse than the base regression
model. Also, where base model and SHIPS-MI are
most different, SHIPS-MI generally produces the bet-
ter forecasts indicating that the addition of microwave
data more often helps rather than hurts the forecast.
Overall, SHIPS-MI performs best for tropical cyclones
that show substantial changes in intensity over a 24—
48-h period.

c. Forecast example

An example of the forecast improvement that
SHIPS-MI provides is given by a specific forecast for
Hurricane Lenny on 16 November 1999. The micro-
wave data for this forecast were taken from the DMSP
F14 SSM/T at 1350 UTC (Fig. 7). A strong liquid rain
signature surrounds Lenny’s center with H19 T}, in ex-
cess of 260 K. Collocated with the high H19 T, are low
PCTS85 indicating the presence of ice aloft associated
with deep convection, though not as low as the PCT85
associated with the rainband convection to the east of
the inner core.

Lenny was undergoing rapid intensification from 85
kt at the time of the overpass to 128 kt 36 h later (Fig.
8). Forecasts are calculated by applying the perfect
prog data for Lenny to the SHIPS and SHIPS-MI
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model coefficients. SHIPS, with the infrared adjust-
ment included, only forecasts intensification in the first
24 h with a forecast intensity of 104 kt at 24 h followed
by modest weakening with a 48-h forecast intensity of

only 97 kt. The base model forecasts intensification out
to 36 h before weakening Lenny and is generally stron-
ger than SHIPS. This difference is partially a result of
the training sample used to train the base model (and
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Fi1G. 6. Percent improvement relative to the base model for SHIPS-MI forecasts of inten-
sifying (DELV > 10 kt), weakening (DELV < —10 kt), and relatively steady state (=10 =

DELV = 10 kt) cases.
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F1G. 7. DMSP F14 SSM/I (left) H19 and (right) PCT85 for Hurricane Lenny at 1350 UTC 16 Nov 1999. The small
ring at the center represents the interpolated best-track position at this time. Large rings indicated radials of 100
km from the center. H19 and PCTS8S are contoured at 20 and 25 K, respectively. PCT85 contours below 200 K are
not shown to increase clarity. All microwave parameters are calculated by using data within the first 100-km ring.
At this time, the interpolated intensity for Lenny was 85 kt.

SHIPS-MI) having a slightly greater proportion of in- contributions from each predictor in SHIPS-MI, reveals
tensifying versus weakening tropical cyclones than does  a 18-kt intensification signal from the MEANH19 pre-
the sample used to train SHIPS. SHIPS-MI outper- dictor at 36 h (Table 5). The difference between the
formed both the base model and SHIPS with the fore- base model and SHIPS-MI is only 5 kt because the
cast intensity reaching 113 kt at 36 h. Analyzing the microwave predictors take over some of the contribu-
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F1G. 8. Interpolated best-track intensity for Lenny beginning at the overpass time of 1350
UTC 16 Nov 1999. The 0-72-h base model, SHIPS-MI, SHIPS, and Base-IR forecasts are also
plotted. The SHIPS forecast represents the forecast produced by applying reanalysis data to
the 2005 operational coefficients with infrared adjustment and oceanic heat content and not
the operational forecast produced in real time in 1999.
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TABLE 5. Predictor contributions (kt) to the SHIPS-MI Hurricane Lenny forecast originating at 1350 UTC 16 Nov 1999. Note that
the MEANH19 predictor provides a strong intensification signal for the 24-60-h forecasts.

Predictor t=12 t =24 t =36 t =48 t =60 t="172
MEANHI19 6.6 14.2 18.0 16.1 11.8 72
MAXH19 0.5 0.3 0.7 1.8 32 3.6
POT =5.0 —-94 —13.8 -16.5 —16.7 —16.6
POT2 4.7 8.3 11.8 12.4 12.2 11.4
SHRD 2.4 79 9.6 9.5 7.4 32
SHRDLAT —42 -11.9 -17.1 -17.9 —18.4 -16.7
MSWSHRD 2.6 53 3.6 —0.3 —6.1 —10.0
MSWO0 -03 —1.4 -0.2 1.7 0.8 —0.8
VPER 3.7 4.7 4.5 4.9 3.5 3.1
LAT 0.6 2.7 59 7.1 9.0 10.1
EPOS 0.8 1.8 1.8 1.5 2.4 2.8
T200 -0.8 —-1.8 -23 -3.0 -39 —4.2
7850 0.6 1.3 1.8 2.7 3.1 4.4
MEAN DELV 2.4 4.5 6.6 8.3 10.1 11.1
TOTAL DELV 14.4 26.5 30.8 28.3 18.3 8.6

tion from the initial intensity (MSW) related predictors
in the base model.

After 48 h, Lenny began to weaken as it encountered
greater shear. All models correctly capture this weak-
ening signal in SHRD-related terms (Table 5). In addi-
tion, some of the weakening is likely due to the inter-
action with the Lesser Antilles islands after the 48-h
forecast interval. Land interaction is not taken into ac-
count by either SHIPS or SHIPS-MI in this forecast. By
the 72-h forecast, MEANH19 and MAXHI19 are still
contributing a 10-kt positive signal, causing SHIPS-MI
not to weaken Lenny as quickly as SHIPS or as actually
happened. The end result is a 25-kt overforecast by
SHIPS-MI at 72 h with SHIPS overforecasting by only
10 kt. The intensification signal produced by SHIPS-MI
(>15 kt at 36 and 48 h) is clearly significant for this
forecast based on the physical association between the
microwave signature and the subsequent intensifica-
tion. Both SHIPS-85 and SHIPS-MA performed simi-
larly to SHIPS-MI for this example. The infrared ver-
sion of the base model, Base-IR, does forecast greater
intensification than the base model alone, but not as
much as the microwave-enhanced versions. The infra-
red adjustment applied to SHIPS-ENV adds ~3 kt to
36- and 48-h forecasts.

5. Pacific results

a. Model interpretation

In a fashion similar to that used for the Atlantic
SHIPS-MI model, an eastern Pacific version of SHIPS-
MI is produced. Valid forecast tropical cyclone over-
passes in the eastern Pacific number 913 for the 12-h
forecast sample and decrease to 425 for the 72-h fore-

cast sample. Out of a total of 140 possible tropical cy-
clones, at least one valid forecast at 12 h exists for 128
tropical cyclones while only 83 have valid forecasts out
to 72 h. Several of the missed tropical cyclones are a
result of central Pacific depressions not being included
in the SHIPS training data. While the number of tropi-
cal cyclones occurring in the eastern Pacific is roughly
equal to the number in the Atlantic during the same
period (1995-2003), eastern Pacific tropical cyclones
tended to be shorter lived than their Atlantic counter-
parts resulting in the smaller eastern Pacific sample
size. This also results in a larger number of dissipation
forecasts, which further reduces sample size as forecast
time increases. The resulting eastern Pacific model in-
cludes 14 predictors and is similar to, but not identical
to the Atlantic model (Table 6).

Among the environmental and climatological predic-
tors, differences between the Atlantic and east Pacific
models are a result of T200 and Z850 predictors falling
out and being replaced by meridional storm motion
(VSPD) and the zonal 200-hPa wind speed (U200). Per-
sistence (WCG12) also replaces VPER. The remaining
climatological and environmental predictors corre-
spond well with those in the Atlantic model in terms of
importance and physical interpretation (Table 3).
Three microwave predictors remain in the eastern Pa-
cific model: MEANPCTSS5, STDQMSS, and MAXH19.
MEANPCTS5 replaces the MEANH19 term found in
the Atlantic model. The 85-GHz scattering signal from
precipitation ice, instead of the 19-GHz emission signal
from liquid rain, produces a more important microwave
term for the eastern Pacific. Since lower PCT85 repre-
sent more intense convection, the coefficient values are
negative. STDQMSS5 has a negative coefficient showing
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TABLE 6. Final eastern Pacific SHIPS-MI predictor standardized coefficient values at each forecast time (h) with the explained
variance (R?) statistic at the bottom.

Predictor t=12 t =124 t =36 t =48 t =60 t="172
MEANPCTS85 -0.39 —0.30 —0.20 -0.11 —0.04 —0.01
STDQMS5S —0.16 —0.18 —0.15 —0.09 —0.06 —0.03
MAXH19 0.03 0.07 0.06 0.08 0.14 0.13
POT 0.85 1.10 1.23 1.15 1.02 0.97
POT2 —0.68 -0.71 -0.71 —0.65 —0.48 —0.48
SHRD —0.26 —0.52 —0.87 —0.77 —0.69 —0.68
SHRDLAT 0.36 0.56 0.83 0.62 0.52 0.47
MSWSHRD —0.16 -0.13 —0.07 —0.01 0.01 0.07
MSWO0 —0.17 —0.08 —0.06 -0.17 —0.21 -0.33
WCG12 0.37 0.25 0.15 0.09 0.05 0.05
LAT —0.18 —0.28 —0.37 —0.35 —0.31 —0.27
EPOS 0.09 0.10 0.11 0.15 0.18 0.20
VSPD 0.04 0.07 0.01 0.13 0.13 0.14
U200 —0.03 —0.04 —0.06 —0.08 —0.11 -0.13
R? 0.56 0.58 0.63 0.66 0.71 0.75

that low values (indicating greater symmetry) produce
an intensification signal. Still, the symmetry predictor is
less important that the overall mean value. Some tropi-
cal cyclones can and do intensify despite highly sheared
and asymmetric convective signatures, which reduces
the effectiveness of this type of symmetry predictor.
Liquid rain is still represented in the eastern Pacific
model with the MAXH19 term and it performs much
the same way as it does in the Atlantic model. The
85-GHz signals are most important at the 12-h forecast
time and decrease thereafter while MAXHI19 slowly
increases in importance as the forecast time increases.

The mean intensity change for the eastern Pacific
sample is less than +2 kt for all forecast times; it does
not have the built-in bias toward intensification that the
Atlantic version has. Explained variance ranges from
55% to 75% between 12- and 72-h forecast models
(Table 6). While these values are higher than for the
Atlantic, it is not an indicator of the relative perfor-
mance of SHIPS-MI between basins.

b. Model performance

The performance of all forms of eastern Pacific
SHIPS is somewhat worse than the corresponding At-
lantic versions (Table 7; Fig. 9a). Unlike the Atlantic,
the base model performs better than SHIPS-ENV for
24-72-h forecasts (Fig. 9b). This improvement exceeds
8% for forecasts beyond 48 h. Eastern Pacific predic-
tors for SHIPS were defined as the same ones used in
the Atlantic version of SHIPS for simplicity (DK99).
As a result, SHIPS is less tailored to eastern Pacific
tropical cyclones. Conversely, the predictors in the base
model are specific to the eastern Pacific. The largest
difference between the base model and SHIPS-ENV is

the inclusion of latitude in the base model. Initial tropi-
cal storm latitude shows a strong negative correlation
with intensity change, resulting in a statistically signifi-
cant predictor. The latitude predictor in the eastern
Pacific is a reflection of the sharp meridional tempera-
ture gradient near 15°N. Tropical cyclones that move
north of this latitude often weaken rapidly. Ideally, the
potential terms would capture this signal, but this turns
out not to be the case. As forecast time increases, so
does the importance of latitude, which is reflected by
the increasing skill of the base model over SHIPS-
ENV.

SHIPS-MI outperforms the base model for all fore-
cast times out to 72 h with a slight overforecasting bias
in the overall forecasts. Mean absolute error for
SHIPS-MI increases from 5.5 kt at 12 h to 16.2 kt at 72
h compared with 5.8 and 16.3 kt for the base model
(Table 7). Improvement is maximized at 12 h near 5%
and decreases to near 2% for 36-h forecasts and beyond
(Fig. 9b). The improvement is statistically significant to
a 95% confidence level for only 12-h forecasts. SHIPS-
85 is similar to SHIPS-MI out to 48 h after which it
performs slightly worse. The only difference between
SHIPS-MI and SHIPS-85 is the replacement of
MAXH19 by MINSS. Since the contribution from
MEANH19 increases as a function of time, so does the
difference between SHIPS-MI and SHIPS-85. As with
the Atlantic, SHIPS-MA is only able to provide a 1%—
2% improvement to the base model at all forecast
times.

As in the Atlantic, SHIPS-MI outperforms SHIPS
(with infrared adjustment applied) at all forecast times
(Fig. 10a). Improvement increases as a function of time,
primarily due to the inclusion of latitude in SHIPS-MI,
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TABLE 7. Jackknifed mean absolute errors (kt) for the base model, SHIPS-ENV, SHIPS-MI, SHIPS-85, and SHIPS-MA forecasts
for valid eastern Pacific tropical cyclone overpasses (N).

Forecast (h) TCs N Base SHIPS-ENV SHIPS-MI SHIPS-85 SHIPS-MA
12 128 913 5.8 5.8 55 5.5 5.8
24 118 794 10.2 10.3 9.8 9.8 10.0
36 108 690 13.6 14.3 13.3 13.3 134
48 102 607 15.8 17.0 15.6 15.6 15.5
60 97 514 16.9 18.2 16.6 16.8 16.5
72 83 425 16.3 18.1 16.2 16.5 16.0
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F1G. 10. Same as in Fig. 2 but for the eastern Pacific. The scaling is modified to better
highlight model characteristics for this basin. Note that no oceanic heat content adjustment is

applied to forecasts in Fig. 10a.

but not SHIPS. The relative skill of the microwave ver-
sus infrared enhancement is difficult to discern. How-
ever, comparing SHIPS-MI against base model and
Base-IR forecasts does show that the microwave-
enhanced model outperforms the infrared enhance-
ment on a homogeneous sample (Fig. 10b). Infrared

predictors are slightly less significant in the eastern Pa-
cific providing less that 50% of the increase in skill
produced by microwave predictors when compared
against SHIPS-MI. In fact, the addition of infrared pre-
dictors actually decreases skill below that of the base
model for 72-h forecasts.
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Analysis of 24-h mean absolute error for SHIPS-MI
stratified into 5-kt intensity change and initial intensity
bins reveals similar results to that seen for the Atlantic
version of SHIPS-MI (Fig. 11). The greatest intensity
forecast improvement is again observed in substantially
intensifying or weakening tropical cyclones. The east-
ern Pacific SHIPS-MI generally reduces error for tropi-
cal cyclone of all initial intensities, but large reductions
(or increases) in error for a particular intensity are not
apparent. Overall, SHIPS-MI performs best relative to
the base model for weakening tropical cyclones (Fig.

12). Substantial improvement is also observed for in-
tensifying tropical cyclones for 12- and 24-h forecasts.
In both cases, maximum improvement occurs for the
12-h forecast and decreases thereafter. Little difference
exists between base model and SHIPS-MI forecasts for
steady-state tropical cyclones.

The eastern Pacific version of SHIPS-MI is most
skillful for 12-24-h forecasts of substantially weakening
or intensifying tropical cyclones of any initial intensity.
Compared with the Atlantic, the improvement is less
and is concentrated at earlier forecast times. The latter
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F1G. 12. Same as in Fig. 6 but for the eastern Pacific.

may be a reflection of the shorter life cycle of many
eastern Pacific tropical cyclones.

6. Conclusions

The addition of microwave imagery provides a 4%—
8% percent improvement in intensity forecasts when
compared with a base regression incorporating only en-
vironmental and climatological predictors trained using
the same training sample. The improvement is greatest
for tropical cyclones with an intensity change greater
than =10 kt over a 24-48-h time period. Beyond 48 h,
the importance of the microwave data to the forecasts
decreases as environmental factors become dominant.
The improvement produced by SHIPS-MI is a result of
the inclusion of a crude representation of rainfall, con-
vective vigor, and most importantly latent heat release
into the intensity forecasts. The result of this added
information is a forecast of greater intensification in
tropical cyclones that have above-average rainfall and
convective signatures. When combined with favorable
environmental conditions for intensification, the micro-
wave predictors allow SHIPS-MI to better capture the
true intensification rate of tropical cyclones. The ability
to predict the onset of rapid intensification has been
one of the biggest weaknesses in current intensity fore-
cast models and SHIPS-MI does represents a partial
solution to this problem.

The pure regression form of the microwave-
enhanced SHIPS model, SHIPS-MI, proved to be the
best performer for both basins out to 60 h. SHIPS-MI

outperforms SHIPS in both basins; however, differ-
ences inherent in the training sample and predictors
included in each are responsible for a portion of this
improvement. The substitution of 85-GHz predictors in
place of 19-GHz predictors reduced skill by some de-
gree, but still left a model superior to the base regres-
sion at most forecast times. This is an important opera-
tional consideration as 19-GHz predictors cannot be
used in close proximity to land where intensity forecasts
are critical. The microwave adjustment model, SHIPS-
MA, shows only marginal improvement over the base
regression. The inclusion of microwave data into the
pure regression allows for much larger improvements
to be made.

The most important factor that must be taken into
account when incorporating microwave data into op-
erational intensity forecast models is the temporal
availability of the microwave data. Timely microwave
observations of a tropical cyclone may not be available
at or near the synoptic forecast times of 0000, 0600,
1200, and 1800 UTC. The question of how “old” a mi-
crowave tropical cyclone overpass is before the infor-
mation present becomes dated and unrepresentative re-
mains open. Given that SSM/I and TMI data latency is
on the order of 2-3 h, the longer an overpass can still be
considered representative increases the usefulness of
microwave data in an operational setting.

Despite this concern, preliminary results from
SHIPS-MI tested in near-real time during the 2004
tropical cyclone season suggest microwave availability
for nearly 50% of all possible forecasts for tropical cy-
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clones not over land assuming a best-case scenario for
data reception. The results of this testing also indicate
that when microwave data are available, improvement
in the intensity forecast does occur for several tropical
cyclone types and conditions.

The difference in SHIPS-MI between the Atlantic
and eastern Pacific basins provides an avenue for future
research. It is currently unclear whether the differences
in the number and types of microwave predictors are a
result of statistical randomness, or have their basis in
differing physical processes between the basins. One
possibility for the replacement of MEANHI19 by
MEANSS in the eastern Pacific model is that the
shorter life cycle of eastern Pacific storms is better cap-
tured by the shorter-term convective signatures present
in the PCTS85 data. The techniques used in this work
will be expanded to tropical cyclones in the western
North Pacific, Indian Ocean, and Southern Hemisphere
to answer this question as well as provide microwave-
enhanced models to those basins.

Additional work to extend the SSM/I dataset back to
1988 is being undertaken to produce a training sample
comparable in size to that used by SHIPS. The smaller
sample size used to train SHIPS-MI complicates com-
parisons with SHIPS and limits direct comparison of
their forecasts. Increasing the SHIPS-MI sample size
should help alleviate this concern.
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