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ABSTRACT

The launch of the NASA CloudSat in April 2006 enabled the first satellite-based global observation of

vertically resolved cloud information. However, CloudSat’s nonscanning W-band (94GHz) Cloud Profiling

Radar (CPR) provides only a nadir cross section, or ‘‘curtain,’’ of the atmosphere along the satellite ground

track, precluding a full three-dimensional (3D) characterization and thus limiting its utility for certain model

verification and cloud-process studies. This paper details an algorithm for extending a limited set of vertically

resolved cloud observations to form regional 3D cloud structure. Predicated on the assumption that clouds of

the same type (e.g., cirrus, cumulus, and stratocumulus) often share geometric andmicrophysical properties as

well, the algorithm identifies cloud-type-dependent correlations and uses them to estimate cloud-base height

and liquid/ice water content vertical structure. These estimates, when combined with conventional retrievals

of cloud-top height, result in a 3D structure for the topmost cloud layer. The technique was developed on

multiyear CloudSat data and applied to Moderate Resolution Imaging Spectroradiometer (MODIS) swath

data from the NASA Aqua satellite. Data-exclusion experiments along the CloudSat ground track show

improved predictive skill over both climatology and type-independent nearest-neighbor estimates. More

important, the statistical methods, which employ a dynamic range-dependent weighting scheme, were also

found to outperform type-dependent near-neighbor estimates. Application to the 3D cloud rendering of

a tropical cyclone is demonstrated.

1. Introduction and background

Clouds give visual testimony to the unseen dynamics

of the atmosphere; they are the manifestation of a com-

plex underlying environmental state defined by distri-

butions of temperature, moisture, stability, energy balance,

and the myriad nonlinear feedback processes taking

place simultaneously within all parts of the earth–

atmosphere system. Clouds play an integral role in the

radiative, chemical, dynamic, and thermodynamic feed-

back processes describing the current state of the atmo-

sphere and its short-term evolution (i.e., weather) and

long-term averages/trends (i.e., climate). Understanding

these interactions and capturing them in numerical

weather prediction (NWP) models, particularly in the

context of climate simulations (e.g., Arakawa 1975), re-

main at the cutting edge of atmospheric research (e.g.,

Randall 1989; Ramanathan and Collins 1991; Wallace

1992; Stephens et al. 2004).

Despite clouds being among the first meteorological

features to be considered scientifically (Luke Howard

first classified them in 1802; see Stephens 2003), they in

many ways remain a fundamental challenge to the re-

search and operational communities who study work

among them. Most NWP models consider cloud water

as part of the model state vector (a prognostic variable;

e.g., Tiedtke 1993; Zhao and Carr 1997) rather than as

a diagnosed quantity. Given the observing system limi-

tations of a three-dimensional global field, the analysis
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of cloud parameters in NWP models is challenging. The

need for improved cloud analyses is of particular im-

portance to the operational community. For example,

cloud vertical structure, cloud-base height (ceiling), and

liquid–ice–mixed phase are key parameters to aviation.

Improving our ability to predict clouds in numerical

models requires foundational advances to our knowl-

edge of cloud microphysics, macrophysics, and spatial–

temporal distribution. Environmental satellites provide

the most tractable means to compiling these observa-

tions globally. However, limitations of contemporary

operational environmental satellite observing systems

(e.g., passive optical and microwave spectrum radiom-

eters) to provide detailed, vertically resolved cloud in-

formation remains one of the main roadblocks to

advancing our understanding of cloud processes.

Recognizing the importance of cloud vertical struc-

ture information, researchers have pushed the limits of

passive sensor technology. Wang et al. (2009) estimate

cirrus cloud particle size profiles based onmultiple near-

infrared (NIR) channels from the Moderate Resolution

Imaging Spectroradiometer (MODIS; King et al. 1992)

that provide sensitivity to different levels within the

cloud (e.g., Platnick 2000). Based on these same NIR

sensitivity principles, King and Vaughan (2012) show

that hyperspectral measurements hold the potential to

improve further upon the multispectral MODIS re-

trievals. Adopting the findings of Nakajima and King

(1990), Miller et al. (2001) reconcileCloudSat (Stephens

et al. 2002) radar-derived cirrus particle effective radii

with cloud-top-biased retrievals from Geostationary Op-

erational Environmental Satellite (GOES; e.g., Menzel

and Purdom 1994). Information about the vertical dis-

tribution of cloud has also been approximated from

passive microwave measurements (Pandey et al. 1983),

combined microwave and infrared (Liu et al. 1995), and

spectral/textural features via fuzzy logic to identify multi-

layered cloud (e.g., cirrus overlying low-level stratus;

Baum et al. 1995). Related to the latter, Pavolonis and

Heidinger (2004) present a practical multispectral tech-

nique for the daytime detection of overlapping cloud

layers.

Work in 3D cloud generation (i.e., simulation of re-

alistic cloud fields for use in radiative transfer calcula-

tions) includes the stochastic modeling of cirrus (Hogan

and Kew 2005) and enlisting of rendering of stratocu-

mulus via Fourier methods (Venema et al. 2006). In

terms of geometric boundary estimates for an observed

cloud distribution, Hutchison et al. (2006) offer a satellite-

based method for cloud ceiling retrieval for the up-

permost cloud layer predicated on a priori knowledge

of cloud-top height, the column-integrated cloud water

path, and a cloud-type-dependent assumption made on

cloud water content. Their algorithm has been applied

to the Visible/Infrared Imager/Radiometer Suite (VIIRS)

on the Suomi National Polar-Orbiting Partnership (NPP)

satellite, and its performance is currently being evalu-

ated. Forsythe et al. (2000) combine GOES imager data

with spatially limited surface observations of cloud

ceilings to provide ceiling estimates for all clouds in the

satellite field of view, using a simple bispectral (visible

and infrared) cloud classification constraint and nearest-

neighbor assignment. They find improvements over

estimates based simply on interpolated surface obser-

vations. However, their analysis is restricted to low clouds

(below ;3km above ground level) because of limitations

in the surface observation dataset.

Barker et al. (2011) estimate cloud ceilings using a

radiation-similarity approach based on thermal infrared

and visible channels to relate donor pixels (from the

active sensor data) to recipient pixels in the surrounding

scene. The column properties of the closest matching

donor pixel are assigned in their entirety to the recipient

column, and we adopt this terminology hereafter. Their

technique produces radiatively consistent results when

compared to Clouds and the Earth’s Radiant Energy

System (CERES; Wielicki et al. 1996) measured top-of-

atmosphere broadband fluxes, and provides best results

to distances of ;20 km away from the active sensor

data.

The current algorithm offers a new approach to cloud-

base height estimation and includes estimates of cloud

water content profile, thereby converting a conventional

two-dimensional cloud field to a full 3D structure of

the topmost cloud layer. It does so by combining in-

stantaneous passive and active sensor observations with

globally compiled statistics relating cloud type to char-

acteristic water content profiles and correlation of

cloud-base heights. Passive sensor-retrieved cloud-top

height and integrated water path constrain the 3D struc-

ture. The algorithmcontains built-in uncertainty estimates,

derived from the statistically derived weighting factors,

and dynamically adjusts the constraints of estimate

with range from the nearest active sensor information

(defaulting to climatologically defined cloud geometric

thicknesses at ranges beyond the ability of the algorithm

to offer improved skill).

The paper is structured as follows. Section 2 provides

a brief background on the National Aeronautics and

Space Administration (NASA) A-Train sensors used

for algorithm development and demonstration. Section

3 details the physical basis for compiling cloud-type-

dependent statistics from the satellite data. The

approach followed in applying these statistics to the es-

timation of cloud vertical structure properties is discussed

in section 4, and section 5 presents examples and evaluates
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performance. Section 6 concludes the paper with a

summary and roadmap for future improvements to this

algorithm.

2. The A-Train observing system

The 3D algorithm assumes an observing system

composed of one or more sensors (remote or in situ),

used in synergy to characterize geometric structure of

the regional cloud field. Considering the ephemeral

nature of clouds, it is imperative that the multisensor

observations be matched closely in space and time.

Here, we used the NASA A-Train (e.g., L’Ecuyer and

Jiang 2010), so called for the early afternoon (;1330)

local time ascending node. The A-Train flies in a sun-

synchronous orbit (705 km altitude; 98.148 inclination),
with an orbital period of;105min, and completes;14.4

orbits per day. The A-Train constellation members

considered in this study were Aqua and CloudSat, de-

scribed briefly below.

The Aqua satellite includes the 36-band MODIS

(King et al. 1992), providing the passive swath cloud

information (i.e., cloud cover, top height, and integrated

water path) for this study. CloudSat (Stephens et al.

2002) was used to obtain detailed cloud vertical struc-

ture over a small portion of the MODIS 2330-km-wide

swath. The CloudSat Cloud Profiling Radar (CPR)

provides vertically resolved information about cloud

occurrence and properties, including cloud geometric

boundaries, internal water content structure, and light

precipitation. Kahn et al. (2008) provide an assessment

of the performance of cloud geometric boundary in-

formation derived from CloudSat, Cloud–Aerosol Lidar

and InfraredPathfinder SatelliteObservations (CALIPSO)

lidar (Winker et al. 2003), and the Atmospheric Infrared

Sounder (AIRS; Aumann et al. 2003) as a function of

cloud type. CALIPSO provides information about op-

tically thin cirrus and boundary layer clouds that the

CPR can miss because of either sensitivity limitations

or surface clutter, making the two sensors comple-

mentary (e.g., Haynes et al. 2005). For lack of a com-

bined CloudSat 1 CALIPSO cloud-type product at the

time of this research, our focus was on a CPR-only

method for 3D cloud approximation. However, we note

in passing that the current approach is readily extend-

able to CALIPSO.

3. Physical basis and statistical tools

This algorithm augments the work of Forsythe et al.

(2000) and complements that of Barker et al. (2011),

emphasizing cloud geometric boundary assignment, ver-

tical water content profile, and extending these estimates

to the limits of climatological skill (.100km for some

cloud types). It enlists detailed local cloud profile infor-

mation from active sensors to approximate properties of

the surrounding regional cloud field. The bases for the

information transfer are statistical relationships drawn

between cloud type and (i) geometric boundary, and

(ii) cloud water content profile. Because passive satellite

observing systems provide limited information about

clouds in the vertical dimension (i.e., cloud-top height/

pressure and in some cases the discernment of over-

lapping cloud layers), the technique can only be applied

to the uppermost cloud layer observed. However, in prin-

ciple it is generally applicable to observations collected

both within the atmosphere and from the surface (e.g.,

aircraft and ceilometers).

a. Physical basis

The underpinning hypothesis of this algorithm is that

regional clouds of a similar type often share similar prop-

erties of morphology (e.g., shape, size, and uniformity/

heterogeneity). Cloud type can be derived objectively

from multispectral satellite observations using both

spectral- and spatial-based tests (e.g., Stowe et al. 1999).

Cloud type is thus related to cloud radiative properties,

but differs in some important ways. Foremost among

these differences is the general relationship between

cloud type and the underlying dynamic–thermodynamic

environmental state. For a given region, the atmospheric

conditions responsible for producing clouds of a partic-

ular type may represent conditions that exist well be-

yond the spatial scale of individual cloud elements, tied

to airmass properties (e.g., Holton 1992) that vary on

much broader spatial scales. The validity of this assump-

tion may decrease with increasing distance between the

locally and remotely observed clouds, and we seek here to

quantify this assertion.

b. Cloud geometric boundary statistics

To understand the connection between locally ob-

served cloud geometric boundaries (i.e., cloud top and

base) and those of similar cloud types in the surrounding

region, we introduce the concept of ‘‘traces’’ applied

to the CloudSat curtain data. Figure 1 walks the reader

through an example of trace construction. We begin by

isolating the clouds of a given type in the CloudSat 2B-

CLDCLASS data. Starting at a reference location and

advancing along track, we compute differences between

the reference cloud boundary height (e.g., green dots of

Fig. 1c) and clouds of that same type found at increasing

ranges from the reference location. As shown in Fig. 1d,

clouds with little vertical variation produce smaller dif-

ferences at long ranges from the reference location,

whereas clouds exhibiting high variation produce larger
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differences. The geometric boundary differences, plot-

ted as a function of range from the reference location,

are referred to as traces. The ensemble of traces, shown

for the examples of cirrus and stratocumulus in Fig. 2,

provides a general sense for the variance of the growth

of cloud boundary variability as a function of range from

the reference location.

Standard deviations [s(d)] of the difference between

the reference and locally observed cloud height at dis-

tance (d) were computed from the ensemble trace sta-

tistics for cloud bases. The data were separated by cloud

type [based on the 2B-CLDCLASS product: cirrus (CI),

altostratus (AS), altocumulus (AC), stratus (ST), stra-

tocumulus (SC), cumulus (CU), nimbostratus (NS), and

deep convection (DC)], by latitudinal zone [bands de-

fined as 908–758S (SHEM3), 758–458S (SHEM2), 458–158S
(SHEM1) 158S–158N (TROPICS), 158–458N (NHEM1),

458–758N (NHEM2), and 758–908N (NHEM3)], by sea-

son [December–February (DJF), March–May (MAM),

June–August (JJA), and September–November (SON)],

and by surface type (land vs ocean). CloudSat data

spanning 2006–11 were used for these statistics to pro-

vide sampling of the seasonal stratifications. In addition,

we produced a global version of the statistics with no

stratification.

The dependency of the global s on range from the

point of observation, as a function of seven different 2B-

CLDCLASS cloud types, is shown in Fig. 3a. The curves

for the various cloud types are characterized by differing

rates of growth and asymptotic magnitudes. The s

curves with the smallest slope at small ranges (denoting

higher correlation between heights at the reference lo-

cation and nearby clouds) are CI, AC, and AS. The NS

and SC type s values grow slowly but linearly with

range, while the CU and DC are nearly flat. Cloud types

with smaller s growth rates at close range tend to as-

ymptote to larger values of s, while cloud types with

flatter curves of growth tend to reach that value quickly

FIG. 1. Illustration of the approach to trace statistics compilation for a case over the North Pacific at 1435UTC 8Oct 2007: (a)CloudSat

track overlaid on Aqua MODIS, (b) the CPR reflectivity profile, (c) the corresponding 2B-CLDCLASS product used to isolate clouds

of different classes, with green dots designating the starting points for example cloud-base-height-difference ‘‘traces,’’ and (d) height-

difference traces computed as a function of range from the noted reference points.
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and asymptote to smaller values of s. Small values of s

at very close range to the reference location, while not

statistically significant in light of the CPR vertical res-

olution, provide mathematical continuity for the algo-

rithm (to follow), which enlists these values as weighting

terms.

The characteristics of these curves are largely consis-

tent with the understood morphology attributes of these

different cloud types. For example, cloud bases in the

convective CU and DC types are defined by the lifted

condensation level or convective condensation level,

which vary slowly within a regional air mass (except near

fronts or surface boundaries), and therefore s typically

is smaller. For these types, a local observation of cloud

base provides a generally good predictor of the bases of

other clouds in the region. Slight nonmonotonic struc-

tures of s in the CU and DC types at ranges within

;20 kmmay be due to the characteristic horizontal scale

of these clouds, as well as CloudSat’s sensitivity to pre-

cipitation, which often is associated with the DC cloud

type. In contrast to the CU and DC, the s values for the

CI and AS types are relatively large. CI and AS bases

appear to be more sensitive to local variations in the

thermodynamic environment, and may contain small-

scale morphology departures like ice fall streaks. For

these clouds, a local observation of cloud base is less

representative of surrounding clouds of the same type.

The curves of s growth were decomposed by cloud

type, surface type, latitudinal zone, and season. It was

found that surface type (land/ocean) had little influence

on s, so only the oceanic curves were retained. Log-

squared or linear curves, as appropriate, were fit to the

data to provide a smooth functional relationship between

s with range. These s values are used as weighting

factors and applied to each of the donor points used to

estimate the cloud-base height at a recipient point.

The fitted curves for the AC cloud type are shown in

Fig. 3b, and these results are representative of the other

cloud types in two important ways. First, s was found to

have significant latitudinal dependence, which is largest

in the tropics and smallest at high latitudes. Second, s

tends to be largest during the warm season. Both of these

effects are a direct result of the dependence of tropo-

spheric thickness on mean temperature: in a deeper tro-

posphere clouds have a wider range of vertical space to

occupy. Therefore, a warmer–deeper troposphere will

tend to have inherently larger s values, while a colder–

shallower troposphere will have a smaller s. These fitted

curves form the basis for the cloud-base-height estima-

tion algorithm described in section 4.

c. Defining the climatological limits of spatial
correlation

It was noted in Fig. 3 that the standard deviations

reach an asymptotic value at a long range from the ref-

erence point—suggesting a climatological limit on the

variation. We measured these climatological values of s

as a way of defining an upper bound to skill offered by

the current approach. Potential donor clouds that reside

beyond a given distance from the recipient pixel would

in principle offer no skill beyond climatology. As a way

of determining the climatological s values, we produced

probability density functions (PDFs) of cloud-top and

cloud-base heights for each cloud type (and stratified

by latitude and season). When building these PDFs,

we subtracted the above-ground-level altitude from

FIG. 2. The ensemble of cloud-base-height traces (e.g., building upon Fig. 1d) for the multiyear global CloudSat mission is used to

estimate the growth of standard deviation as a function of distance from a reference point, shown here for (a) cirrus and (b) stratocumulus

cloud types. The vertically confined nature of stratocumulus lends itself to a smaller standard deviation growth with distance in com-

parison with cirrus.
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the cloud boundary heights residing in the lower atmo-

sphere so as to avoid increasing variance due to terrain

artifacts.

We approximated normal (Gaussian) distribution fits

to these PDFs by first computing the equivalent cumu-

lative distribution functions (CDFs). The height value

at the 50% level in the CDF provided the distribution’s

median value. We examined the absolute difference

between themedian height and the heights at 15.8% and

84.2% levels in the CDF to determine a standard de-

viation (s). For non-Gaussian distributions, the 61 s

values will not be equal. The larger of the two values was

chosen here to provide a conservative estimate on the

width of the climatological distribution. In most cases

the resultant Gaussian-equivalent PDF produced a rea-

sonable fit to the primary mode of the observed PDFs.

FIG. 3. (a) Global dependency of the standard deviation (s) of cloud-base altitude on range from the point of observation, for various

CloudSat 2B-CLDCLASS defined cloud types during 2006–2011. (b)As in (a), but fitted curves are forAC only as a function of season and

zonal band.
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By design, the asymptotic standard deviations of the

trace statistics are similar to the climatological standard

deviations derived here. These climatological standard

deviations can be translated to an equivalent maximum

range via the fitted curves (e.g., Fig. 3). Beyond this

range, our method should in principle add no skill to

what could be approximated by climatology. These

values thus serve as an upper-bound range to the current

algorithm, beyond which a climatological geometric

thickness value is used for determining the cloud-base

height (described below).

d. Cloud water content profile statistics

The internal structure of cloud water (i.e., liquid–ice

water content) is related to cloud type via the underlying

cloud formationmechanisms and airmass characteristics

of the domain. We enlisted CloudSat data to charac-

terize statistically the structure cloud water profile as

a function of cloud type. Cloud-type-dependent vertical

structures of water content, based on theCloudSatLevel-

2 Cloud Water Content product (CWC; gm23; Austin

et al. 2009), were computed for the 2B-CLDCLASS

cloud types. Under the assumption of a single-layer

cloud, such statistics can be applied to the vertically

integrated liquid/ice water content (water path; gm22),

a quantity readily estimated by MODIS, to distribute

this water throughout the column. Combining the esti-

mate of cloud thickness with this vertical structure in-

formation provides an additional level of realism to

the 3D estimates attempted here. A caveat to this appli-

cation exists for multilayered cloud systems, wherein the

MODIS-retrieval cloud water path represents the entire

column as opposed to just the topmost cloud layer.

TheCloudSatCWCproduct was composited to create

statistical profiles versus normalized location within the

cloud. To construct these profiles for a given cloud type,

we first normalized the CloudSat-observed cloud-base

and cloud-top heights (base 5 0; top 5 1). Next, we in-

terpolated the observed CWC profiles to a set of 21

evenly spaced (i.e., 0.05 spacing in normalized height

units) vertical bins. The interpolated cloud liquid water

content for was accumulated at each vertical bin and

subsequently divided by the maximum accumulation

value in the column to obtain a normalized distribu-

tion. As with the cloud geometric boundary trace sta-

tistics, the climatology ofCWCprofilewas partitioned by

2B-CLDCLASS type, season, and latitudinal zone.

Example distributions of CWC profiles for DJF and

JJA seasons, overland from 158 to 458N, are shown in

Fig. 4. CU and SC have the most liquid water near cloud

base (potentially rain/drizzle contaminated), while DC,

AS, AC, and CI maximize CWC in midlevels of the

cloud. Whereas the shapes of the curves remain similar

from winter to summer, the peaks move toward slightly

higher in-cloud levels in summer particularly for the

convective cloud types. It is worth noting that the

CloudSat CWC product contains known positive biases

(e.g., Woods et al. 2008) due in part to the sensitivity of

the measurements to precipitation-sized hydrometeors.

These statistics are used here as a cloud-type-dependent

template for distributing the passively retrieved in-

tegrated cloud water path between the top and base of

the cloud. The current algorithm is not limited to using

CloudSat-derived information; alternative estimates

for type-dependent CWC profiles (from measurement

campaigns; e.g., Brenguier et al. 2000; Lynch et al. 2002)

could be applied within the current algorithm to provide

improved representation.

e. Cloud geometric thickness statistics

To approximate cloud-base height in situations where

no suitable donor information is available, statistics on

cloud-type-dependent geometric thickness were pro-

duced from the CloudSat full-mission data. The geo-

metric thickness was defined as the difference between

the top and base heights for a vertically contiguous cloud

layer. The results were compiled to form PDFs, assum-

ing the same set of stratifications (cloud types, season,

and latitudinal zone) used for other statistics. There was

a small subset (,2% of all cloud profiles considered) of

vertically contiguous layers that changed their type

part way through the profile, typically occurring in re-

gions of weak cloud detection, as explained in the 2B-

CLDCLASS documentation (Wang and Sassen 2007).

The three most frequently occurring in-cloud transitions

of this type are from CI to AS, AS to AC, and AS to NS.

In these cases the base of the upper cloud layer was

truncated at the type change interface.

Table 1 summarizes the cloud geometric thickness

PDF statistics. Mean, mode, and standard deviations are

based on Gaussian fits to those PDFs, using the same

method used to determine the climatological s esti-

mates described above. The strongest variations inmean

thickness correspond to latitudinal zonal stratification

and the convective–precipitating cloud types (likely re-

lated to the zonally dependent depth of the troposphere).

The CU type exhibits a distinct seasonal dependence,

with general increases in standard deviation during the

spring and summer months of both hemispheres. The

boundary layer-confined SC and geometrically thin AC

and CI types exhibit only small variations across season

and zonal band.

Although many of the features noted in Table 1 are

intuitive, it was not possible to obtain such global cloud

geometric thickness climatology data prior to the advent

of active sensors on the A-Train. The multiyear result
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shown here is a first attempt to quantify this information.

We apply these results in the current algorithm to ex-

pand the estimates of cloud-base height to an arbitrarily

large regional domain (wherein a subset of estimates

made in that domain will be improved over climatology

via the current algorithm, and the climatological geo-

metric thicknesses can be used elsewhere). In a broader

sense, the statistics could be useful to other interests, such

as evaluating model-produced cloud geometric thickness

climatology.

4. Algorithm description

Using the physical basis and algorithm tools devel-

oped in section 3, we conducted a series of experiments

to test the hypothesis that cloud-type-constrained cloud-

base estimates outperform simple nearest-neighbor

methods. Algorithm performance was evaluated along

the CloudSat ground track, using data-exclusion win-

dows of varying size to provide built-in validation.

a. Estimation techniques

In these experiments, only the uppermost cloud layers

were considered (consistent with the limitations of passive

satellite observing systems), and the 2B-CLDCLASS

product was used to define cloud type. Estimates were

made at the recipient locations, and the CloudSat-

observed cloud-base heights at these locations were

used as truth. A data-exclusion distance between donors

and the recipient was enforced to simulate the predic-

tion of a cloud base at arbitrary locations off the

CloudSat track. After each prediction, the recipient lo-

cation was translated 50 CloudSat profiles (;55 km

horizontal distance) forward along the CloudSat ground

track and a new estimate was made.

A total of five cloud-base-height estimation tech-

niques were considered here:

1) Using the cloud-base height of the nearest neighbor

of any cloud type. This is the most straightforward

(and presumably, least skillful) method.

2) Using the cloud-base height of the nearest neighbor

of the same cloud type. This provides a direct com-

parison against Forsythe et al. (2000).

3) Using climatology-based cloud geometric thickness,

based on the seasonally and zonally stratified analysis

shown in Table 1. Here, the cloud-base height at the

recipient location is obtained by subtracting the mean

FIG. 4. Normalized cloud water content profiles for the eight 2B-CLDCLASS types, shown for midlatitude Northern Hemisphere (158–
458N) summer and winter seasons (JJA and DJF, respectively) over land surfaces. Statistics are based on the uppermost cloud layer

encountered in the profile.
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geometric thickness from the radar-derived cloud-

top height.

4) A distance-weighted estimate based on all points

available in the donor point set. This method is

referred to as maximum donors.

5) A distance-weighted estimate created from a limited

set of donor points in the same cloud type as the re-

cipient. This method is referred to as few donors.

In all cases involving donor points, 400 km was the

greatest range allowed for a donor point to contribute

information to a recipient. This is near or beyond the

asymptotic climatological limits shown in Fig. 3a. The

nearest-neighbor techniques are considered the bench-

mark uponwhich to assess any improvement of skill, and

theCloudSat-derived climatology is a simple method that

may or may not add value. The cloud-type-constrained

few donors and maximum donors techniques, which

embody the new algorithm developed in this research,

are described below.

b. Maximum donors

The maximum donors technique selects all of the

points along the CloudSat track that share the same

cloud type as the recipient, starting from the minimum

exclusion distance out to a maximum allowed distance

of 400 km on either side of the recipient. A distance-

weighted average is applied, which is a function of the

spatial variability analysis in section 3. The weighting

function is

W(d)5 1/s(d)2 , (1)

where d is the distance in kilometers from the re-

cipient and s(d) is the cloud type, latitude zone, and

TABLE 1. Cloud-class-dependent climatology statistics on geometric cloud thickness (km) derived from CloudSat data. Mean (m), mode

(M), and standard deviation (s) are shown for each cloud type considered.

Geometric cloud

thickness

AC AS CI CU DC NS SC

m M s m M s m M s m M s m M s m M s m M s

NHEM3 All 1.7 1.2 0.8 2.8 1.7 1.4 1.5 1.2 0.7 2.2 0.5 1.5 6.8 6.0 1.5 4.7 3.1 1.8 1.1 0.5 0.6

DJF 1.7 0.5 0.9 2.5 1.4 1.2 1.3 1.2 0.5 1.5 0.5 0.5 7.2 8.6 1.4 4.5 3.1 1.7 1.2 0.5 0.6

MAM 1.6 1.0 0.7 2.7 1.7 1.3 1.4 1.2 0.5 1.5 0.5 0.6 6.5 6.5 1.0 4.5 3.1 1.7 1.1 0.5 0.5

JJA 1.8 1.2 0.8 3.3 2.2 1.4 1.7 1.2 0.7 2.8 1.0 1.9 6.8 6.0 1.5 5.2 4.8 1.9 1.0 0.5 0.5

SON 1.7 1.2 0.8 2.9 1.7 1.4 1.5 1.2 0.6 2.2 0.5 2.4 6.6 5.8 1.5 4.7 3.4 1.8 1.1 0.7 0.5

NHEM2 All 1.7 1.2 0.8 3.2 2.2 1.5 1.8 1.2 0.8 3.1 3.4 1.5 8.2 9.8 2.5 5.3 3.4 2.1 1.1 0.7 0.6

DJF 1.6 1.0 0.8 2.9 1.7 1.4 1.7 1.2 0.7 2.8 2.6 1.5 8.1 9.8 2.4 5.0 3.1 2.0 1.2 1.0 0.6

MAM 1.7 1.0 0.8 3.1 1.9 1.5 1.7 1.2 0.7 3.0 3.1 1.5 7.7 6.5 2.1 5.1 3.4 2.0 1.2 0.7 0.6

JJA 1.9 1.2 0.8 3.7 2.4 1.7 1.9 1.2 0.8 3.3 3.4 1.5 8.3 9.6 2.6 6.0 4.8 2.3 1.0 0.5 0.5

SON 1.7 1.2 0.8 3.3 2.2 1.6 1.8 1.2 0.8 3.0 3.4 1.5 8.3 9.8 2.6 5.3 3.4 2.2 1.1 0.7 0.5

NHEM1 All 1.8 1.2 0.8 4.0 2.4 2.0 2.2 1.2 1.0 3.0 2.6 1.5 9.7 10.8 3.2 5.5 3.4 2.3 1.1 0.5 0.6

DJF 1.7 1.2 0.8 3.7 2.2 1.7 2.1 1.2 1.0 2.9 2.6 1.4 8.8 10.6 2.7 5.2 3.4 2.1 1.2 1.0 0.6

MAM 1.8 1.2 0.8 3.9 2.2 1.9 2.2 1.2 1.0 3.0 2.6 1.5 9.2 10.8 2.9 5.7 3.4 2.4 1.1 0.5 0.6

JJA 2.0 1.2 0.8 4.5 2.4 2.3 2.3 1.4 1.1 3.2 3.1 1.7 10.3 12.5 4.0 6.0 3.4 2.6 1.0 0.5 0.5

SON 1.9 1.2 0.8 4.2 2.4 2.1 2.3 1.2 1.0 3.0 2.6 1.6 9.9 11.3 3.3 5.4 3.4 2.3 1.2 0.5 0.6

TROPICS All 2.0 1.0 0.9 5.3 6.0 2.8 2.4 1.4 1.1 3.3 2.9 1.7 11.0 13.7 4.2 6.8 3.1 3.5 1.1 0.5 0.6

DJF 2.0 1.0 0.9 5.3 2.9 2.8 2.4 1.4 1.1 3.3 2.9 1.7 10.9 13.4 4.4 6.7 3.1 3.3 1.2 0.5 0.6

MAM 2.0 1.0 0.9 5.3 5.8 2.8 2.4 1.4 1.1 3.3 2.9 1.7 11.0 13.7 4.3 7.3 3.1 3.5 1.2 0.5 0.6

JJA 2.0 1.0 0.9 5.3 6.2 2.9 2.4 1.4 1.1 3.2 2.6 1.6 11.0 13.4 4.1 6.4 3.1 3.5 1.1 0.5 0.5

SON 2.0 1.0 0.9 5.4 6.0 2.8 2.4 1.4 1.1 3.3 2.9 1.8 11.0 13.7 4.2 7.0 3.1 3.5 1.1 0.5 0.5

SHEM1 All 1.8 1.0 0.8 4.3 2.4 2.1 2.2 1.4 1.0 2.9 2.6 1.4 9.5 11.0 3.0 6.0 3.4 2.7 1.1 1.0 0.5

DJF 1.9 1.0 0.8 4.7 2.6 2.3 2.3 1.4 1.1 3.1 2.6 1.5 10.1 11.8 3.4 6.1 3.4 2.9 1.1 0.7 0.5

MAM 1.8 1.0 0.8 4.5 2.6 2.2 2.3 1.4 1.0 2.9 2.6 1.3 9.6 11.3 3.2 5.9 3.4 2.7 1.1 1.0 0.5

JJA 1.7 1.0 0.8 4.1 2.4 2.0 2.2 1.2 1.0 2.8 2.4 1.3 8.7 10.6 2.7 5.9 3.4 2.7 1.1 1.0 0.5

SON 1.8 1.2 0.8 4.2 2.4 2.0 2.2 1.2 1.0 2.9 2.4 1.3 9.3 10.8 2.9 6.0 3.4 2.7 1.1 1.0 0.5

SHEM2 All 1.7 1.0 0.8 3.3 1.9 1.6 1.8 1.2 0.8 2.9 2.9 1.5 8.2 10.1 2.5 5.5 3.4 2.3 1.1 0.7 0.5

DJF 1.7 1.2 0.8 3.4 2.2 1.6 1.8 1.2 0.8 2.9 2.9 1.5 8.3 10.6 2.6 5.4 4.1 2.1 1.1 0.7 0.5

MAM 1.7 1.0 0.8 3.3 1.9 1.6 1.8 1.2 0.8 2.9 2.6 1.4 8.2 9.8 2.5 5.4 3.4 2.2 1.1 0.7 0.5

JJA 1.6 1.0 0.7 3.2 1.7 1.6 1.8 1.2 0.8 2.9 2.6 1.4 7.8 6.5 2.3 5.5 3.4 2.4 1.1 0.7 0.5

SON 1.7 1.0 0.8 3.3 1.9 1.7 1.8 1.2 0.8 2.9 2.6 1.5 8.1 6.5 2.4 5.6 3.4 2.4 1.1 0.7 0.5

SHEM3 All 1.6 1.0 0.8 1.9 1.2 1.0 1.2 1.2 0.5 1.9 0.5 1.5 6.5 6.5 1.2 4.1 3.1 1.4 1.2 0.5 0.6

DJF 1.6 1.0 0.8 2.0 1.2 1.0 1.2 1.0 0.5 1.8 0.5 0.8 6.2 6.5 1.0 4.0 3.1 1.3 1.1 0.5 0.6

MAM 1.6 1.0 0.8 1.9 1.2 0.9 1.2 1.2 0.5 2.2 0.5 2.7 8.6 8.4 0.4 4.1 3.1 1.4 1.2 0.5 0.7

JJA 1.7 0.5 0.9 1.9 1.2 0.9 1.3 1.0 0.5 2.0 0.5 2.2 — 0.0 — 4.3 3.1 1.5 1.2 0.5 0.6

SON 1.7 0.5 0.9 2.0 1.2 1.0 1.2 1.2 0.5 1.8 0.5 1.5 8.0 8.2 0.6 4.2 3.1 1.6 1.2 0.5 0.6
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season-dependent standard deviation from the curve fits

(e.g., Fig. 3b). The estimated cloud-base height (for ex-

ample) at the recipient is formed by

Hb 5 �
N

i51

Hb(i)W(di) �
N

i51

W(di) ,

,
(2)

where Hb(i) is the measured cloud-base height at donor

point i. Since s(d) grows with increasing distance, this

weighting scheme assigns less impact on the final esti-

mate from more distant donor points. Cloud types with

inherently higher cloud-base variability (e.g., CI, AS,

and AC) have less impact at a given range than cloud

types exhibiting lower spatial variability (e.g., NS, SC,

DC, and CU).

c. Few donors

The few donors technique uses the same spatial

weighting as maximum donors, but the number of donor

points is dynamically limited. Few donors seeks to in-

crease the contribution weight of observations at closer

range. It is effectively a hybrid between maximum do-

nors and nearest neighbor, constrained by the subset of

neighbors sharing the same cloud type and allowing for

more than one donor. It was hypothesized that this hy-

brid approach would yield a better prediction, especially

at small exclusion distances and for spatially variable

cloud types.

The dynamic threshold for assigning the number of

donor points to consider in a given estimate of cloud-

base height at a recipient point was determined as fol-

lows. By inspection of the standard deviation curves

(e.g., Fig. 3a), we determined the distance at which the

spatial variability curves reached their asymptotic limits.

These values were determined for cloud types CI, AS,

AC, SC, CU, NA, andDC as 280, 300, 250, 100, 300, 300,

and 300 km, respectively. We also determined for each

cloud type the standard deviation at a range of 1 km

(s1km) from the trace curve as in Fig. 3b, selected by

season, and latitudinal zone. After determining the

geometric distance d between the recipient and nearest

CloudSat donor point of the same cloud type, we com-

puted theminimumnumber of donor points required for

a few donors estimate as

nMin 5maximum(s(d)/s1km, 2) . (3)

At close proximity to the donor pixel, s(d) converges

toward s1km and the ratio approaches unity, implying

usage of the two nearest neighbors. The minimum of 2

donor points (as opposed to only 1) was chosen to add

skill for the case of a sloping cloud base with donor

points that may straddle the recipient point. As distance

increases, s(d) increases toward the climatology value,

which is larger than s1km. The ratio of these two quan-

tities as defined in Eq. (3) thus becomes greater than 2,

and sowe progressively relax the few donors requirement

in favor of enlisting a larger number of donors.

Uncertainty in the nearest neighbor (any cloud type)

can be considered as the standard deviation of the dis-

tribution of all cloud heights in the troposphere, for that

latitude zone and season. Uncertainty in climatology

comes from either the standard deviations of the cloud-

base height distributions or from the geometric thick-

ness statistics of each cloud type. Uncertainty in the

maximum donors and few donors are estimated objec-

tively as the average of the range-dependent standard

deviations of the donor pixels. Here, a prediction using

more distant donors would have higher uncertainty since

the standard deviations (e.g., Fig. 3) grow with increasing

distance from the recipient.

5. Results

We begin the evaluation by considering a case study,

expand to a statistical evaluation, and finally present

enhanced applications.

a. Case study illustration

Figure 5 illustrates cloud-base-height predictions from

the various estimation methods outlined above over the

North Pacific on 8 October 2007, for a scene spanning a

horizontal distance of 1300 km. CloudSat-derived cloud

types from the top of the clouds extending to the base are

color coded. The SC type occurs at the north end of the

domain. An area of CI extends northward from deeper

clouds classified as AS and DC.

For this example, a data-exclusion distance of680 km

was selected. Several characteristics and limitations of

each estimation method are revealed. All methods ex-

cept nearest neighbor of any cloud type perform well for

the low SC cloud located between 0 and 100 km along

track, as well as for DC. These clouds display a more

horizontally consistent base height, as was seen in Fig. 3.

Climatology tends to underestimate the base of the AS

clouds. The maximum donors method shows the effects

of multidonor smoothing and is slow to vary within a

given cloud type, while in contrast the few donors

method changes more rapidly. The geometrically thick

clouds residing between 800 and 1000 km along the

track, alternating between AS and DC designation, pre-

sented a challenge to all four methods. This speaks to

the need for quality-controlled cloud-type information,

considered here as a priori input to the algorithm. All
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methods performed well for DC, particularly for the few

donors and maximum donors techniques.

b. Multiyear global statistics

To assess performance statistically, the data-exclusion

experiments were repeated for four years of July (2007–

10), using data from 508N to 508S. The correlation and

root-mean-square (RMS) error between the estimates

and the truth base value at the recipient location were

calculated. The data-exclusion experiment was run at

four arbitrarily selected exclusion windows: 20, 60, 100,

and 200 km. In this experiment, no cloud-base estimate

was allowed to exceed the radar-indicated top of the cloud.

Such an unphysical condition would unfairly penalize

FIG. 5. Cloud-base predictions (black points) for a frontal system in the North Pacific (8 Oct

2007; CloudSat granule 7692). The CloudSat 2B-CLDCLASS is indicated by the colors. An ex-

clusion distance of680kmwas used, as illustrated by the distance bar from the recipient point3,

plotted for example at 1000km. Only the uppermost, radar-detected base and top are shown.
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some estimates, particularly the nearest neighbor of any

type method where high clouds exist in close proximity

to low clouds, as illustrated with the CI and SC in Fig. 5b.

In the implementation of a cloud-base estimation tech-

nique to passive sensor satellite observations, there exist

a number of ways to accurately estimate the cloud top

(e.g., Kidder and Vonder Haar 1995).

Results of the data-exclusion experiment are shown in

Fig. 6. The four rows correspond to exclusion distances;

from top to bottom they are 20, 60, 100, and 200 km. The

three panels in each row correspond to the correlation

(r2), the RMS error, and the bias for the exclusion dis-

tance. Within each panel, a 4 3 7 display of values is

shown. These are the five prediction methods discussed

above and illustrated in Fig. 5. The hypothesis is that the

upper two rows in each panel of Fig. 6, representing the

statistical algorithm developed here, should outperform

the remaining rows of that panel. Notable attributes of

Fig. 6 include the following:

1) The type-constrained prediction methods (few do-

nors, maximum donors) and nearest neighbor of

same type exhibit higher r2 and lower RMS error

than nearest neighbor of any type or climatology.

This is true at all exclusion distances for SC, CU, NS,

and DC, and at 20 km for CI, AS, and AC. Beyond

60 km for CI, AS, and AC, r2 for any prediction

method is less than 0.5, denoting poor performance.

FIG. 6. Statistical results of data-exclusion experiment for cloud-base heights. The four rows correspond to increasing exclusion dis-

tances (20, 60, 100, and 200 km), and the three columns show (left to right) correlation (r2), RMS error, and bias (estimated2 observed),

respectively. Within each panel, the four prediction methods (as illustrated in Fig. 5) and the seven 2B-CLDCLASS types studied are

labeled.
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Climatology is competitive for CI, AS, and AC at

these ranges.

2) Nearest neighbor of any cloud type is never the top

performer. The findings are consistent with Forsythe

et al. (2000), who show that type-constrained tech-

niques outperform distance-based techniques. While

the nearest neighbor of any type may on occasion

include predictions of the same type as the recipient,

it is vulnerable to large errors because of contami-

nation by clouds of other types.

3) For the DC and NS cloud types, climatology fares

poorly for all ranges and exhibits a large positive bias

(estimated minus observed; meaning that the clima-

tological geometric thickness is too small, resulting

in base height estimates that are too high). Alterna-

tive methods, such as a model-derived convective of

lifting condensation level, may be more appropriate

to use here.

4) Performance varies dramatically by cloud type. The

SC, CU, NS, and DC types all show overall better

performance than CI, AS, and AC. A characteristic

shared by these types is the tendency for their cloud

bases to reside in the lower atmosphere and occur

uniformly over a region—lending themselves to better

prediction when the true base height is known for

even a small a subset of these clouds. The bias is

reduced by the few donors, maximum donors, and

nearest neighbor of the same type methods in com-

parison to the climatology and nearest neighbor of any

type methods.

The performance difference between few donors

and maximum donors is informative. Few donors was

expected to perform better at low exclusion distances,

since only a few relatively close proximity points of the

same cloud type were used [Eq. (3)]. For the cloud types

that typically have more nonuniform bases (CI, AS, and

AC), few donors does outperform maximum donors at

the 20-km exclusion distance. However, the maximum

donors method has equal or better performance for SC,

CU, NS, and DC. These are the cloud types with more

uniform bases, and they decorrelate spatially more

slowly than CI, AS, or AC (Fig. 3). The findings suggest

that a cloud type and range-dependent blend of the few

donors and maximum donors methods could optimize

performance.

Homing in further on improvements of the current

algorithm to the nearest neighbor of same cloud-type

method, Fig. 7 extracts from Fig. 6 the correlation co-

efficients as a function of the CloudSat along-track ex-

clusion distance for the CI and CU cloud types. The fact

that nearest neighbor of same type is never the top

performer is noteworthy. Whereas this method may

provide superior prediction for clouds in very close

proximity to the recipient cloud location (and likely part

of the same cloud object), this assumption begins to fall

apart for remote and unconnected clouds. As the stan-

dard deviation increases with distance, reasons to as-

sume that the nearest member of a suite of possible

donors will always provide the most representative es-

timate at the recipient location are less intuitive. The

few donors method strikes a compromise, reducing the

number of donors with decreasing range to the recipient,

but expanding the number of donors as the range in-

creases to provide a more diverse sampling of regional

clouds of that type.

Also noteworthy in Fig. 7 is the cloud-type-dependent

dichotomy of the two statistical algorithms. For CI, the

few donors technique outperforms maximum donors at

close range, but then gives way to maximum donors at

longer ranges. In contrast, for CU the maximum donors

technique prevails at all ranges. Consideration for the

characteristic scale of CU and CI is helpful in explaining

these differences; the slower varying nature of CI in

contrast to CU means that closer-proximity donors are

indeed more representative of the recipient. For CU,

whose horizontal scale is typically much finer than CI,

we rapidly enter a regime with increasing range where

a greater sampling of donors yields the best result. As

such, the selection of few donors and maximum do-

nors should be made in the context of cloud type and

range.

c. Application to 3D cloud rendering

To use cloud classification as a statistical constraint for

estimating cloud vertical structure, we require a uniform

definition for cloud type throughout the scene. The

CloudSat 2B-CLDCLASS cloud types are based in part

on the radar profile information itself, which is not

available throughout the MODIS swath. The possible

approaches for cloud-type reconciliation between Cloud-

Sat and MODIS include (i) developing trace statistics

based on MODIS-derived cloud types [e.g., the algo-

rithm of Pavolonis et al. (2005)] and (ii) mapping the

CloudSat-derived cloud types to those derived from

MODIS (e.g., Bankert et al. 2009) via a contingency

table approach. Here, we illustrate how the latter ap-

proach can be applied to estimating the 3D character-

istics of a tropical cyclone. The axially symmetric nature

and notionally understood structure of these storms

make them suitable for demonstrating the current al-

gorithm in the context of the limited, linearly oriented

sampling strategy of CloudSat curtain observations. In

the more general application of this 3D algorithm, the

active sensor observations may be spatially distributed,
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and afford improved capability to estimate a variety of

more complex–asymmetric cloud distributions.

The frequency of occurrence of each of the eight

CloudSat-defined (2B-CLDCLASS) types correspond-

ing to the six cloud types of Pavolonis et al. (2005) ap-

plied toMODIS data was constructed for July 2009. The

analysis was performed for daytime observations from

432 orbits of collocated CloudSat and Aqua MODIS

data. We enforced the constraint that each segment

must contain a consistent cloud type over 20 fields of

view (FOVs) (;22 km) in length, to focus our attention

on the most contiguous data at the expense of hetero-

geneous scenes. To ensure consistency with what the

passiveMODIS observations are capable of sensing, only

the 2B-CLDCLASS type corresponding to the upper-

most cloud layer was used.

The resulting contingency matrix (Table 2) relates

the 2B-CLDCLASS and MODIS-derived cloud types.

Table 2 shows that MODIS partly cloudy types map

most frequently into the 2B-CLDCLASS clear type.

FIG. 7. Comparison of the correlation coefficient for cloud-base-height estimates using the

methods of few donors, maximum donors, and nearest neighbor of same cloud type for (top) CI

and (bottom) CU cloud types, shown as a function of exclusion distance.

TABLE 2. Mapping of MODIS cloud types to the 2B-CLDCLASS

cloud types based on the July 2009 statistics.

2B-CLDCLASS Type

MODIS Type Clear CI AS AC SC CU NS Deep

Partly cloudy 15 0 1 4 0 0 0 0

Liquid 1985 238 58 260 3586 242 91 4

Supercooled 55 128 107 208 514 40 109 23

Opaque ice 0 78 368 0 7 4 86 460

Cirrus 196 2606 1031 91 11 7 303 103

Overlap 0 288 70 8 2 0 5 12
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MODIS liquid water most often occurs in the 2B-

CLDCLASS SC and clear types. Supercooled liquid

clouds map most often to SC but also occur in AC, AS,

and CI. Opaque ice maps primarily to DC but also maps

toAS. Themappings betweenCI from each classifier are

in fair agreement. The MODIS overlap cloud type de-

tects thin ice cloud over a lower liquid cloud (Pavolonis

and Heidinger 2004), and it is encouraging that it is

strongly associated with CI (recalling that for CloudSat

we selected the uppermost cloud-layer type).

The CloudSat–MODIS cloud-type mapping was used

to enable 3D scene construction. We considered a direct

pass of the A-Train over the eye of Super Typhoon Choi-

Wan in the east Pacific, which occurred at 0352 UTC

15September 2009 (Lee et al. 2012). Figure 8 illustrates the

cloud typing, the measured CloudSat cloud profile along

track, and two predictions of cloud geometric bound-

aries for the uppermost layer for arbitrary cross sections

through the storm. Here, MODIS-derived cloud-top

height constrains cloud top, and the cloud base is de-

rived by the few donors method. Figure 8a shows the

CloudSat track overlaid upon the MODIS classification.

The core of Choi-Wan was classified as opaque ice, with

CI and overlap cloud types emerging away from the

typhoon center. Broken liquid clouds were detected far

away from the core of the storm. In Fig. 8b, the MODIS

visible image serves as a backdrop for the measured cloud

profile from the active sensor data for the uppermost cloud

FIG. 8. Example of 3D cloud-field generation for Super Typhoon Choi-Wan, 0353 UTC 15 Sep 2009. (a) The

MODIS cloud classification; the CloudSat ground track is shown by the purple line, and north is indicated by the

arrow. (b) TheMODIS visible image. The vertical extent of the uppermost cloud layer only is shown, as measured by

CloudSat. Dashed lines are at 2-km intervals up to 10 km. The colors on the cross section correspond to the MODIS

cloud type at cloud top from (a). (c),(d) The uppermost cloud layer is reconstructed along a line (brown) at two

different oblique angles to the CloudSat track, respectively.
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layer only. The profile is colored according to theMODIS

cloud type at cloud top. In general, the opaque ice cloud

type is present with deep convection, while CI and

overlap occur with thinner layers of cloud with bases

above 8 km.A few liquid clouds with tops below 4km are

also indicated.

Estimated cross sections of the uppermost cloud layer

away from the CloudSat track are shown in Figs. 7c and

7d. These arbitrarily selected cross sections were created

with the type-dependent statistics, the maximum donors

technique, and theMODIS–2B-CLDCLASS cloud-type

reconciliation shown in Table 2. The deep convective

core of the storm is represented in each cross section by

the opaque ice type. Thinner cirrus and overlap types

with tops between 10 and 15 km occur farther away from

the storm center. Additional deep convection is detected

in Fig. 8c in an outer band, well beyond the core of the

storm. Cloud top for this illustration was estimated using

the same method as base height estimation, although

MODIS-retrieved information was also available.

To estimate the internal structure of these clouds and

complete the 3D structural estimate, we combined the

cloud-top height and integrated water path (provided by

MODIS) with the cloud-base height estimated from our

algorithm. The integrated water was converted into a

profile of cloud water content using the cloud-type-

dependent normalized water content profiles shown

in Fig. 4. The result of this process is shown in Fig. 9,

FIG. 9. Synthesized cloud water content profile along the cross section in Fig. 8d through Super Typhoon Choi-Wan. TheMODIS liquid

water path and top and the estimated base of the uppermost cloud layer are shown in light blue, dark blue, and red lines respectively. The

MODIS cloud type through this cross section is indicated by the colored bar along 19-km height. Gray shadings indicate the estimated

liquid water content profile using the full mission statistics and the reconciliation between MODIS and 2B-CLDCLASS cloud types.
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corresponding to the estimated cross section of Fig. 8d.

The estimated base and top are shown as red and dark

blue lines, respectively. The MODIS-retrieved liquid wa-

ter path (LWP) from the standard MOD06 cloud product

is shown as a light blue line. The MODIS-derived cloud

types are shown in color across the profile. The cross sec-

tion passes through the relatively clear eye of Choi-Wan,

as indicated by a local minimum in liquid water path ad-

jacent to drastic increases in the eyewall. The estimated

CWC profile is shown in grayscale. The structures are

reminiscent of Fig. 4 distributions inmost areas, although

some issues emerge around ground-track distance of

200km, where discrepancies in cloud-base-height assign-

ment result in the ‘‘packing’’ of significant liquid water

path within a vertically constrained geometric thickness.

6. Conclusions and future work

A statistically based technique for estimating 3D cloud

structure from conventional 2D passive satellite imagery

and limited vertical structure information was developed.

At the heart of this quantitative approach is a simple

premise that appeals to the earliest rationales for qual-

itative cloud classification, as first articulated byHoward

(1802): the notion that cloud types, as ‘‘birds of a feather,’’

share quantitatively expressible attributes. Through its

simple conditioning of statistics upon cloud type (which

implicitly conditions upon a limited range of optical,

microphysical, and geometric properties characteristic

of each cloud type), the algorithm provides a straight-

forward method for myriad applications ranging from

simple visualizations for flight-training software or vir-

tual globes such as Google Earth, and evaluation of

NWP model cloud structures, to cloud entrainment and

3D radiative transfer studies. With that said, we caution

against using the 3D structures rendered by this algo-

rithm as a form of truth for model verification.

This research illustrates the general utility of the sat-

ellite ‘‘train’’ constellations in exploiting multisensor

observations in a synergistic way. The analysis suggests

that cloud-type dependency yields improved perfor-

mance over nearest-neighbor estimates ignorant to cloud

type, as well as to climatological estimates. The current

algorithm outperforms climatology and type-independent

nearest neighbor methods at the 200-km range. Less

skill was realized for the higher-level clouds (CI/AS/

AC), but the algorithm outperformed the benchmark

methods out to about the 60-km range. A full 3D cloud

construction remains possible beyond these ranges using

the current algorithm, but the estimates would not nec-

essarily provide skill beyond that of climatology.

There are inherent limitations to the CloudSat ob-

serving system. There are problemswith the detection of

low clouds because of surface clutter. Limitations in

radar sensitivity also result in the missing of some low

clouds as well as thin cirrus. The CPR’s sensitivity to

precipitation-sized hydrometeors can in some cases

obscure true cloud bases, lending to a possible confusion

for precipitating cloud types (e.g., NS,DC, and someCU

and SC). This sensitivity may also bias low the cloud

water content profile structures derived from global

CloudSat data for these same cloud types.

In terms of future research, use of other information

to gain insight on cloud similarity may very well improve

performance for particular cloud types, geographic re-

gions, or seasons. Such methods include (i) using direct

measurements of brightness temperature and visible

reflectance (e.g., Barker et al. 2011), (ii) enlisting re-

trieved cloud optical depth, retrieved particle size, and

cloud-type-dependent water content assumption (e.g.,

Hutchison et al. 2006), or (iii) including information

from NWP model fields or other sensor data that char-

acterize airmass regimes. Whereas the introduction of

multiple conditions provides a way of homing in on max-

imal similarity, doing so comes at the expense of increased

dimensionality and a need for considerably more ob-

servations to build robust statistical relationships.

There are additional tests that could be implemented

with either the few donors or maximum donors methods

to potentially improve their performance in specific

situations. The spatial structure and contiguity of the

donor points to the recipient point (e.g., members of the

same cirrus shield) might be a useful indicator of a con-

sistent, predictable cloud layer. The variability of the

donor points themselves could be indicative of the

complexity and hence the predictability of the recipient

point. In some cases this variability may reflect the

complexity of a particular meteorological situation, such

as the interface between two different air masses. In

other cases the variability may arise from dubious aux-

iliary information. For example, donor points identified

as DC but possessing a large variation of base heights

are more likely to be misclassified points and should

not be used. Such self-diagnosing quality-control metrics

could be used to apply the current technique only where

the expected confidence is high.

In ongoing research, direct comparisons will be made

against the VIIRS cloud-base-height retrieval, which

enlists the Hutchison et al. (2006) approach. We also

plan to augment these statistics with CALIPSO obser-

vations, which have recently become available. Doing so

should improve cirrus statistics based on superior lidar

detection, but additional information is limited for op-

tically thick clouds because of attenuation (e.g., Miller

and Stephens 1999). Enlisting CALIPSO will enable

application of the method to aerosol parameters such as
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mineral dust layers and 3D estimates of such features as

the Saharan air layer (e.g., Prospero and Carlson 1972;

Dunion and Velden 2004).
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