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ABSTRACT

Knowledge of cloud-base height (CBH) is important to describe cloud radiative feedbacks in numerical

models and is of practical relevance to the aviation community. Whereas satellite remote sensing with passive

radiometers traditionally has provided a ready means for estimating cloud-top height (CTH) and cloud water

path (CWP), assignment of CBH requires heavy assumptions on the distribution of CWP within the cloud

profile. An attempt to retrieve CBH has been included as part of the VIIRS environmental data records,

produced operationally as part of the Suomi–National Polar-Orbiting Partnership (SNPP) and the forthcoming

Joint Polar Satellite System. Through formal validation studies tied to the program, it was found that the

operational CBH algorithm failed to meet performance specifications in many cases. This paper presents a new

methodology for retrieving CBH of the uppermost cloud layer, developed through statistical analyses relating

cloud geometric thickness (CGT) toCTHandCWP.The semiempirical approach, which relates these parameters

via piecewise fitting, enlists A-Train satellite data [CloudSat cloud profiling radar (CPR), CALIPSO/CALIOP,

and Aqua MODIS]. CBH is provided as the residual difference between CTH and CGT. By eliminating cloud

type–dependent assumptions on CWP distribution, artifacts common to the operational algorithm (which

contribute to high errors) are reduced. Special accommodations aremade for handling optically thin cirrus anddeep

convection. An application to SNPPVIIRS is demonstrated, and the results are compared against globalCloudSat

observations. From the VIIRS–CloudSat daytime matchups (September–October 2013 and January–May 2015),

the new algorithm outperforms the operational SNPPVIIRS algorithm, particularly when the retrieved CTH is

accurate. Best performance is expected for single-layer liquid-phase clouds.

1. Introduction

Clouds in the atmosphere are of fundamental impor-

tance to many theoretical and applied science topics. As

clouds have significant effects on radiative, chemical,

and thermodynamic feedback processes, information on

the complete vertical distribution structure of clouds is
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necessary to improve weather and climate models

(Slingo and Slingo 1988; Randall 1989). Such in-

formation may be also used as input to generate satellite

operational products, such as cloud cover fraction and

cover layer retrievals (e.g., low–mid–high cloud layer

information), that are used byNationalWeather Service

(NWS) forecasters. Vertical cloud distributions, and

particularly cloud-base height (mostly referred to as

‘‘cloud ceiling’’ when referring to the cloud layer closest

to the surface), is a key parameter for the aviation

community (Vislocky and Fritsch 1997; Forsythe et al.

2000; Hansen 2007; Marzban et al. 2007; Miller et al.

2014). Knowledge of the cloud-base height (CBH) with

respect to the freezing level is of prime importance to

identify the vertical extent of potential aircraft icing

hazards as well as pilot visibility (e.g., Ellrod 2002;

Mecikalski et al. 2007).

Next-generation satellite sensors are well suited to

characterizing many properties of global cloud. The

Visible Infrared Imaging Radiometer Suite (VIIRS) on

board the Suomi–National Polar-Orbiting Partnership

(SNPP) mission launched on 28 October 2011 (Hillger

et al. 2013), for example, is the first next-generation

polar-orbiting satellite of the Joint Polar Satellite Sys-

tem (JPSS; Goldberg et al. 2013) series. VIIRS provides

valuable atmospheric, cloud, and surface information

for both weather and climate applications. The original

JPSS CBH environmental data record (EDR), based on

the algorithm of Hutchison (2002) and Hutchison et al.

(2006), was adapted to VIIRS as a first attempt to re-

trieve three-dimensional cloud fields on a large scale

from an operational satellite platform (Baker 2011).

Validation to assess the original CBH product processed

operationally by the interface data processing segment

(IDPS) has been conducted using orbital matchups with

CloudSat (Seaman et al. 2017), which carries a non-

scanning 94-GHz cloud radar capable of observing

multilayered cloud profiles at 250-m vertical resolution.

These evaluations revealed that the IDPSCBH retrieval

performs poorly for all cloud types, and standard de-

viations of error for the individual granules are often

greater than the JPSS measurement uncertainty re-

quirements for the VIIRS CBH product [62km; per

specifications outlined in Baker (2011)]. Strong de-

pendencies of the IDPS algorithm on inputs such as

cloud phase and cloud type–dependent water content

contribute to the uncertainties.

With insight gained from these validation efforts, we

have developed a new method that improves the per-

formance of CBH retrievals and meets JPSS specifica-

tions for this product. This study describes a statistical

approach for deriving CBH (for the uppermost cloud

layer) from visible and infrared satellite measurements.

The approach contains similarities to the operational

IDPS algorithm for CBH in terms of retrieving a cloud

geometric thickness (CGT) and subtracting this value

from cloud-top height (CTH), but it follows a different

method to assign CGT. Namely, it enlists satellite-based

active sensing data to relate measured CGT to passive

sensor retrievals of cloud water path. We assess the

performance of this new CBH algorithm against the

operational IDPS algorithm using independent truth

data from CloudSat. The CBH retrieval algorithm is

implemented in the framework of the Clouds from

Advanced Very High Resolution Radiometer (AVHRR)

Extended (CLAVR-x) system with VIIRS, which is

NOAA’s operational cloud algorithm processing frame-

work for the AVHRR on the NOAA Polar-orbiting Op-

erationalEnvironmental Satellite and is expected tobeused

for the NOAA Geostationary Operational Environmental

Satellite–R Series (GOES-R) Advanced Baseline Imager

(ABI; Walther and Heidinger 2012). The results are also

evaluatedwithin the context ofCLAVR-x againstCloudSat

observations.

The paper is outlined as follows: Section 2 summarizes

previous work on CBH retrievals. Section 3 describes

the satellite datasets used in the construction and im-

plementation of theCBHalgorithm. Section 4 outlines the

statistical CBH algorithm and quality-control measures.

Section 5 presents examples of the algorithm applied to

VIIRS and compares its performance against the opera-

tional IDPS results. Section 6 concludes the paper.

2. Cloud-base height retrievals

While CTH estimation from passive imaging radiome-

ters on environmental satellites have been conducted suc-

cessfully for many years (McCleese and Wilson 1976;

Menzel et al. 1983; Weisz et al. 2007; Menzel et al. 2008;

Heidinger and Pavolonis 2009), CBH is a much more dif-

ficult problem fromthese samemeasurements.Conventional

satellite remote measurements, such infrared and visible ra-

diance, are not able to profile clouds from top to base.

Rather, they provide information about cloud-top properties

andvertically integratedwater content.Acentral challenge is

relating this column-integrated quantity—the cloud water

path (CWP; gm22)—to CGT. Empirically based assump-

tions on the per-volume distribution of cloud water content

(CWC; gm23) for a given cloud type can be used to convert

CWP to CGT, but the assumption that a single CWC can

represent the great diversity of clouds found in nature (even

among clouds of a given ‘‘type’’) is fraught with uncertainty.

In spite of the understood physical limitations, several

studies attempted to retrieve CBH from passive satellite

observations with varying levels of success. The approaches

can be divided into two broadly defined categories: 1) direct
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measurement extrapolation and 2) semiempirical estima-

tion. The first approach involves relating a spatially limited

subset of direct CBHmeasurements to other clouds in the

scene through correlative techniques (e.g., Forsythe et al.

2000; Barker et al. 2011; Miller et al. 2014). The second

approach utilizes a combination of retrieved cloud prod-

ucts and ancillary data to inferCBHs for every cloudypixel

in the satellite image (e.g., Hutchison 2002; Hutchison

et al. 2006; Minnis et al. 2011; and the current work).

Initial research to retrieve CBH was focused on

ground observation–based methods with limited cover-

age (e.g., ceilometers and radiosondes), or methods that

combine satellite-based and surface-based platforms

(Forsythe et al. 2000). These techniques use direct

measurements of cloud base along with spatial context

from passive imager data to extrapolate measurements

away from their source. Specifically, spatially limited

CBH observations from active sensors (radar and lidar)

provide ‘‘donor’’ pixels that are used to estimate the

CBH of cloudy pixels distributed throughout the scene

(‘‘recipients’’) as observed from passive imagers. Barker

et al. (2011) presented a 3D construction algorithm of

cloud properties from the active–passive retrieved cross-

sectional information by spectral radiance matching.

Sun et al. (2016) expanded this approach to estimate

CBH constrained by spectral radiance matching, which

assigned donor columns observed by CloudSat/Cloud–

Aerosol Lidar and Infrared Pathfinder Satellite Obser-

vations (CALIPSO) to recipient pixels across MODIS

imagery. Similarly, Miller et al. (2014) developed a sta-

tistical algorithm for extending a limited set of vertically

resolved cloud observations (cloud-base and cloud wa-

ter contents) fromCloudSat to form 3D cloud structures

from Aqua MODIS 2D swath measurements via cloud

type–dependent statistics on decorrelation length.

Satellite retrieval–based methods have employed a

variety of approaches. Wilheit and Hutchison (2000)

investigated a method to estimate cloud bases of single-

layer liquid clouds from a space-based combination of

microwave and infrared measurements. Ellrod (2002)

developed a methodology to retrieve nighttime low

CBHs significant for aviation operations using two IR

bands of 3.9 and 10.7 mm from the GOES imager.

Chakrapani et al. (2002) derived empirical parameteri-

zations for a few specific single-layer clouds (stratus,

deep cumulus, and cirrus) by using ground observations

and estimated cloud thickness from GOES-8 cloud re-

trieval products. Hutchison (2002) introduced a meth-

odology to retrieve CBHs from electro-optical imagery

and applied the approach toModerateResolution Imaging

Spectroradiometer (MODIS) data on board the National

Aeronautics and Space Administration (NASA) Terra

mission. Hutchison et al. (2006) offered a satellite-based

method for the uppermost layer base estimate with

the numerous upstream cloud retrievals of CTH and

other optical properties, which has been applied to

SNPP VIIRS.

3. Data

Our approach to estimating CBH begins with globally

compiled statistics between CWP and CGT by combining

instantaneous passive and active sensor observations from

multiple satellites of the NASA A-Train constellation

(Stephens et al. 2002; L’Ecuyer and Jiang 2010), a con-

stellation so-called for its early afternoon [1330 local time

(LT) ascending node] sun-synchronous orbit. The CWP

information comes from the official NASA retrievals of

AquaMODIS (King et al. 1997).Vertically resolved cloud

geometric boundary information is derived from the

combined products of CloudSat radar (Stephens et al.

2002) andCALIPSO lidar (Winker et al. 2009). The cloud

profiling radar (CPR; 94-GHz nadir-looking radar) on

CloudSat can typically penetrate all nonprecipitating

clouds but has little sensitivity to optically thin cirrus and

boundary layer clouds, which the CALIPSO Cloud–

Aerosol Lidar with Orthogonal Polarization (CALIOP)

lidar is able to detect well, making the two sensors com-

plementary to reveal detailed vertical structures of clouds

(Forsythe et al. 2012; Yao et al. 2013; Miller et al. 2014).

The curtain of CloudSat/CALIPSO observations was

used to obtain detailed cloud vertical structures coinciding

with the CWP information from MODIS.

Several CloudSat standard data products provided by

the CloudSat Data Processing Center (http://www.

cloudsat.cira.colostate.edu) were used for the algo-

rithm development and validation. Level 2B CloudSat

geometric profile product (2B-GEOPROF-LIDAR)

was used to obtain the thickness of the clouds from the

CloudSat CPR–CALIPSO/CALIOP observing system

and to develop relationships between CWP and CGT.

The 2B-GEOPROF data (Marchand et al. 2008) offers

cloud mask and radar reflectivity, which was used to

assess the algorithm performance.

The CloudSat bus began experiencing issues with its

main battery in 2011. Since then, the CPR has been

configured to operate only during daylight (ascending

overpasses). The CloudSat CPR is also sensitive to

precipitation-sized hydrometeors, which when present

will obscure the true CBH and introduce a low bias

(lower CPR-reported CBH compared to the ‘‘true’’

CBH that would be defined by the cloud droplet size

distribution cutoff). Because of the strong dependency

of radar reflectivity on the largest hydrometeors present

in the range gate, there is no effective way to determine

the CBH in the presence of precipitation. To minimize
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consideration of precipitating cloud profiles, precipitation

flags in the CloudSat 2C precipitation column algorithm

(2B-PRECIP-COLUMN) product are also utilized. For

CWP information,MODISLevel 2CWPvalues (MYD06)

that overlap and surround each CloudSat CPR foot-

print are used.

The new CBH algorithm is applied to SNPP VIIRS.

VIIRS is an optical-spectrum scanning radiometer, one

of the five instruments aboard the SNPP satellite that

is a sun-synchronous orbit satellite with an inclination of

98.78. It crosses the equator at about 0130 LT (de-

scending) and 1330 LT (ascending). VIIRS has 16

moderate resolution bands (M bands) with a spatial

resolution of about 750m at nadir, five imagery bands (I

bands) with a resolution of about 375m, and the day–

night band (DNB) in the visible and infrared spectral

range (0.4–12mm) with a swath width of ;3000km

(Hillger et al. 2013).

4. Algorithm description

a. Statistical construct

The VIIRS CBH product described in this paper is an

estimate of the height of the base of the topmost cloud

layer above mean sea level, obtained by subtracting the

derived CGT from VIIRS-retrieved CTH. The CTH

and the CWP that is used in estimation of CGT come

from upstream retrieval products. CBH is retrieved only

for pixels that are classified as cloudy or probably cloudy

by the VIIRS cloud mask.

Our CBH retrieval is predicated on the assumption

that a relationship exists between CGT and column-

integrated water path, and that this relationship varies

with cloud location in the vertical. To first order, these

assumptions are similar to those of the original IDPS

CBH algorithm (Hutchison et al. 2006). The IDPS CBH

algorithm uses numerous upstream cloud retrievals,

such as CTH and CWP (liquid and ice), along with

specific assumptions about cloud type–dependent water

contents. CGT is computed via a ratio of the retrieved

CWP and the cloud type–dependent water content.

Cloud type is a discretely defined quantity and the as-

sociation of a characteristic liquid or ice water content

gives rise to large uncertainties, reflected in findings

from our validation work (Seaman et al. 2017). With the

insight from the validation results and statistical ana-

lyses to obtain 3D cloud structures from CloudSat

observations shown in Miller et al. (2014), we have

developed an alternative regressionmethod to improve

CBH retrievals by using directly measured CGT

global statistics, stratified by CTH, and expressed as a

function of CWP.

The basis of the new statistical CBH algorithm is illus-

trated in Fig. 1. Geometric thickness of the uppermost

layer, as provided by 2B-GEOPROF-LIDAR, is plotted

versus MYD06 for a set of 100 daytime orbits from July

2007. MODIS was used in this analysis because of the for-

mation flight ofAqua with CloudSat/CALIPSO and for its

similarity in terms of retrieved cloud optical property (e.g.,

King et al. 1997) information to VIIRS. Sample matchups

for CTHs residing between 0 and 14km are plotted here.

Similar relationships were calculated for CTH residing in

2-km vertical bins ranging from the surface to the top of the

troposphere. Owing to the lack of the MODIS CWP re-

trieval at night [which is reliant on cloud optical thickness

(COT) and effective particle size (EPS) from the solar re-

flectance bands], all cases are from daytime. In the figure,

CGT rapidly increases in a nearly linear fashion for CWP

values between 0 and 0.2kgm22. A flattening and broad-

ening of scatter occurs above 0.2kgm22, reflecting the

saturation of measurements and the weaker relationship

between the CWP and CGT for optically thicker clouds.

An initial two-piece linear regression was constructed

for July data from 2007 to 2010, based on a total of 1743

granules (orbits) of CloudSat/CALIPSO data (59 036

profiles). The regression fits were calculated in 2-km

range bins of CTH from the lowest range (0–2 km) up

to 20 km as derived from the MODIS cloud-top pres-

sure (CTP) product. Please note that these were derived

with the combined lidar–radar product (2B-GEOPROF-

LIDAR), so theCALIPSO lidar has information on bases

closer to the surface, although the CloudSat radar has

the ground clutter issue. For the purpose of determining

which range bin to populate, CTPwas converted to CTH

via coincident temperature profiles from the ECMWF

model analysis [CloudSat ECMWF auxiliary (ECMWF-

AUX) data; see Partain 2007 for more details]. The

median value of the MODIS CWP in each 2-km CTH

range bin was determined, and a linear regression above

and below this threshold value was performed. This

approach preserves the linear response at low CWP in

Fig. 1 and provides the capability for estimating cloud

thickness for deeper clouds. The results based on the

two-piece linear fit are summarized in Table 1.

b. Algorithm implementation in theNOAACLAVR-x
system

For the purpose of facilitating demonstrations on

VIIRS (and potentially other satellite platforms), the

new CBH algorithm has been implemented in the

CLAVR-x processing system. A schematic diagram of

the algorithm flow is shown in Fig. 2. The CBH product

requires a priori information on CTH and CWP. The

CWP is derived using VIIRS retrievals of COT and EPS.

These algorithms are embedded in the current CLAVR-x
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system. Currently, the daytime cloud optical and micro-

physical properties (DCOMP; Walther and Heidinger

2012) and nighttime lunar cloud optical and microphysical

properties (NLCOMP;Walther et al. 2013) algorithms are

available in the CLAVR-x system. CTH is produced from

the NOAA Algorithm Working Group (AWG) cloud

height algorithm (ACHA; Heidinger 2013) using IR

channels, which is also part of the CLAVR-x. In rare cases

when both DCOMP and NLCOMP products are not

available, an IR-based cloud optical property output from

ACHA is used for the CBH algorithm.

The CBH algorithm uses the CTH and CWP parameters

to interrogate the height-dependent lookup table of piece-

wise linear coefficients (Table 1) that relates them to CGT.

Once the appropriate coefficients are determined for the

(CTH–CWP) pairing, CGT is computed according to

CGT5 a3CWP1 b . (1)

This geometric thickness is then subtracted from the

retrieved CTH to yield the final estimate of CBH:

CBH5CTH2CGT. (2)

For pixels where VIIRS is incapable of retrieving valid

CWP, the corresponding NWP field values could be

used as supplementary data.

c. Handling of deep convection

Very large COT (and commensurately large CWP)

occurs for most deep convective clouds. Here, the

CGT estimates are likely to not be as accurate as

a simple estimate of cloud base predicated on the

FIG. 1. MODIS cloud water path vs CloudSat/CALIPSO cloud geometric thickness of the uppermost layer for tops

between 0 and 14 km for matchups in July 2007.
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thermodynamic factors governing convective cloud-

base formation. In such cases of optically thick deep

convection (defined experimentally as CWP $

1000 gm22 when CTH # 6.5 km, CWP $ 1200 gm22

when CTH $ 7.5 km, and linearly changing CWP

thresholds in between those bounds), the CBH esti-

mate is tied to the convective condensation level as

derived from numerical weather prediction analysis

data (CCL_NWP) corresponding to the cloud’s

location,

TABLE 1. Regression coefficients andmedian CWPs binning by CTH (every 2 km) derived fromCloudSat/CALIPSO andMODIS data

(59 036 profile samples in July 2007–10), which are used to compute CGT for CBH. The slope/intercept data in the second row of each

grouping apply to CWP at or above the CWP threshold shown in the second column.

CTH ranges (km) CWP threshold (gm22) Constant a (slope) Constant b (y intercept)

0 , CTH , 2 71 2.2581 0.4056

0.9970 0.5170

2 # CTH , 4 114 6.1098 0.6648

0.9130 1.3570

4 # CTH , 6 110 11.5574 1.2253

1.3792 2.5866

6 # CTH , 8 123 14.5382 1.7057

1.6871 3.6228

8 # CTH , 10 131 9.0986 2.1425

2.4595 3.8696

10 # CTH , 12 127 13.5772 1.8655

4.8309 3.5314

12 # CTH , 14 115 16.0793 1.6497

5.0517 3.9861

14 # CTH , 16 116 14.6030 2.0001

6.0644 4.0330

16 # CTH 99 9.2658 2.2964

6.6043 3.2644

FIG. 2. A schematic diagram of the statistical CBH algorithm for the uppermost cloud layer.
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CBH
deep_convection

5CCL
_NWP

. (3)

Determining the threshold for setting CBH to theNWP-

derived CCL remains an area of active research. The

current estimate of 1000 gm22 provides a reasonable

first-order assumption that is being investigated through

analysis of CloudSat observations of convective anvil

structure with relation to precipitation shafts. The re-

lationship of CWP to anvil depth and convective cloud

base formation has, in initial work, demonstrated some

variability; it is thought that different convective systems

(e.g., tropical vs midlatitude) may have different CWP

thresholds that could be used to more accurately de-

termine the crossover to CCL for CBH estimates.

d. Handling of thin cirrus

A cloud extinction–based method developed by using

CALIPSO data is employed for better CBHestimates of

thin cirrus. The extinction method is an effective way of

retrieving cloud base for upper-level thin cirrus cloud,

and its capability has been assessed using both ground-

based and space-based observations. Cirrus cloud has

COT less than 2 in general, and we assume that the

satellite passive-sensor-retrieved CTH is located at the

vertical center of the cloud. The geometric thickness can

be computed knowing COT and the extinction co-

efficient. The infrared-based COT retrieved in the

CLAVR-x system is discussed in detail in Heidinger

et al. (2015). Since cirrus is optically thin and therefore

the observations are sensitive to the entire extinction

profile through the cloud, it is also reasonable to

assume a constant extinction coefficient.

For computing the extinction coefficients, we take

advantage of CALIPSO/CALIOP data, which provide

the vertical profiles of cloud layers and are fairly accu-

rate in determining COT and cloud upper/lower

boundaries, particularly for high thin clouds. The

CALIPSO Level 2 5-km cloud layer product for Sep-

tember 2013 was used, and only single-layer clouds with

COT less than 2 were chosen for the analysis. The ex-

tinction coefficients are computed as dividing CALIOP-

derived CGT by COT. Table 2 shows the extinction

coefficients derived for five cloud-top temperature

(CTT) intervals.

For the performance test, CBH comparisons between

VIIRS (using the new CBH retrieval method but with-

out the specialized cirrus regression algorithm) and

CloudSat were conducted using September–October

2013 quality-controlled matchups (more details in sec-

tion 5). For thin cirrus clouds (COT less than 1), the

results with the extinction method provided statistically

better CBH estimates for thin cirrus than the original

regression method; the error (bias) was improved from

1.4 to 20.5 km, the root-mean-square error (RMSE)

improved from 1.9 to 1.3 km, the standard deviation of

the errors improved from 1.3 to 1.2 km, and correlation

coefficient r2 increased from 0.72 to 0.78. The extinction-

based method has been implemented in the current

version of the CBH algorithm for better CBH estimates

of thin cirrus, which are currently implemented in the

CLAVR-x system. It is found out that using CTT varied

coefficients show superior performances compared to a

fixed value. Efforts are still ongoing for deriving better

coefficients.

e. Quality control

As a quality-control filter, VIIRS pixels have been

excluded when the CBH retrieval produces an out-of-

range value (less than 0km or greater than 20km) or has

been assigned poor quality according to the granule’s

quality flags. It is considered that the quality flags are the

integrated outcome of the upstream quality flags as well

as the CBH algorithm itself. Specifically, the CBH

product is a strong function of CTH and CWP (derived

from COT and EPS). If these upstream input data enter

the CBH algorithm with out-of-range/poor-quality flags

triggered, thenwe assume that theCBHprocessing should

inherit that information and not attempt a valid CBH

estimate based on dubious information at that pixel.

5. Application to SNPP VIIRS

The CBH algorithm was applied to SNPPVIIRS data

and the performance was assessed through comparisons

with CloudSat measurements matched in space/time to

VIIRS. The retrievals are performed for two periods:

September–October 2013 and January–May 2015. We

assess the accuracies of CBH and CTH using CloudSat

data as truth, and the details for the VIIRS–CloudSat

matchups can be found in Seaman et al. (2017). In par-

ticular, since the CTH accuracy is critical to the CBH

retrieval in the algorithm, the results shown here are

primarily from ‘‘Within Spec’’ (or quality controlled)

analysis. Within Spec means only cloudy pixels where

the VIIRS CTH retrieval is within 1 km if the COT is

greater than 1, or within 2 km if the COT is less than 1

compared to CloudSat. In examining the comparison

results, it is noted that the VIIRS system specification

uncertainty requirement is 2 km for CBH (Baker 2011).

TABLE 2. Mean cirrus cloud extinction coefficients for five CTT

intervals.

CTT interval (K) ,200 200–220 220–240 240–260 .260

Cirrus extinction (km21) 0.13 0.25 0.39 0.55 0.67
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a. Case studies

Figure 3 shows sample VIIRS–CloudSat matchups

collected from the September–October 2013 cases.

Clouds detected by CloudSat are shaded in gray. The

VIIRS-retrieved CTHs and CBHs are colored by

VIIRS-defined cloud type over each matchup CloudSat

profile. In general, when CTH retrievals are accurate,

the statistical CBH retrievals are seen to show good

agreement with CloudSat for all cloud types. However,

as shown in the middle-left panel of Fig. 3, there is a

possibility that CloudSat observes multiple cloud layers,

such as cirrus over a thick low-level cloud, and CBH is

placed at the lower layer (or between the layers) due to

assigning the entire CGT to the upper layer by high

CWP retrieval. The algorithm will retrieve primarily the

FIG. 3. CBH retrievals from the statistical CBH retrieval algorithm for selected VIIRS granules during the September–October 2013

VIIRS CloudSatmatchup period. The CloudSat cloud boundaries from 2B-GEOPROF data are shown in gray, and the VIIRS CTH and

CBH retrievals are colored according to cloud type (obtained from CLAVR-x with VIIRS) for comparison purposes.
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cloud base of the uppermost layer cloud if lower clouds

are not well detected and the column-integrated CWP

retrieval is made for the topmost layer, which shows that

the accuracy and representativeness of the upstream

CWP retrieval is essential to the CBH estimate together

with the CTH accuracy. It should be noted that multi-

layer cloud scenes are typically more challenging for

CTH and CBH retrievals, and CLAVR-x CTH also of-

ten tends to be biased low for the multilayer situation.

b. Comparisons against the operational algorithm

We have analyzed the performance of the current

algorithm vis-à-vis the original VIIRS IDPS CBH al-

gorithm. Since any errors specific to the upstream IDPS

cloud products would propagate into CBH, introducing

ambiguity when comparing against the new algorithm

that uses CLAVR-x cloud products, we implemented a

stand-alone code of the IDPS CBH algorithm as based

on the original JPSS VIIRS CBH algorithm theoretical

basis document (ATBD) of Baker (2011) and utilized

the CLAVR-x-supplied ancillary cloud property input

data to provide a proxy to keep consistency in the com-

parison. The performance of this code has been verified

against the IDPS CBH algorithm as shown in Fig. 4. The

figure shows the CBHs from the stand-alone code with

the IDPS upstream are consistent with the operational

IDPS CBH product [Intermediate VIIRS CBH product

(IVCBH)].

For these comparisons, estimates in the lowest 1km

(above ground level), where ground clutter contaminates

the CloudSat CPR data (Marchand et al. 2008), were

excluded from the analysis. We also removed any

precipitation-contaminated (as identified by nonzero

CloudSat column precipitation retrievals) and error-filled

data. A total of 1 051 243 matchup profiles taken from

2077 VIIRS granules were considered. After the quality-

controlled filters were applied, 95145 Within Spec (with

regard toVIIRS agreement with active sensor CTHdata)

matchup points remained for use in our validation.

Figures 5 shows histograms of the original IDPS al-

gorithm (stand-alone code, with cloud and data supplied

FIG. 4. Sample histogram of CBH comparisons from the opera-

tional IDPSCBHproduct (IVCBH) vs the reconstructed stand-alone

code based on the IDPS CBH algorithm for 113 VIIRS granules in

September 2013 (in percentages of the total pixel number).

FIG. 5. (left) Quality-controlled two-dimensional histograms of VIIRS-retrieved and CloudSat-observed CBH

for the original IDPS CBH algorithm with CLAVR-x input, and (right) the statistical algorithm (implemented in

the CLAVR-x system) for September–October 2013. Colors represent the number of data points (N; shown on

a logarithmic scale). The comparisons are valid for all cloud types encountered globally.
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by CLAVR-x) and the new CBH algorithm using

CloudSat as ‘‘truth’’ data for CBH, compiled for

September–October 2013 VIIRS–CloudSat orbital

matchups. Initial results show the current statistical re-

gression method outperforms the original IDPS CBH

algorithm with CLAVR-x upstream input, with a tighter

clustering of points along the 1:1 agreement line (Fig. 5).

The validation period was extended to the January–May

2015matchups, with results shown in Fig. 6. Here, a total

of 2 718 982 matchup profiles from 5358 VIIRS granules

were examined, and 216 745Within Spec points survived

quality control. The general performance pattern is very

similar to the September–October 2013 matchups.

Analyzing the performance of the new CBH algo-

rithm for both matchup periods, we deduced that the

outlier points having high CloudSat-observed CBH

(.10 km) but very low VIIRS-reported CBH occurred

for cases when CloudSat identified a thin upper cloud

layer that was not detected or misrepresented by VIIRS.

Multilayered cloud systems, where the column-integrated

CWP factors into producing larger CGT, can also lead

to low biases in VIIRS-derived CBH in comparison to

the CBH of the uppermost cloud layer seen by CloudSat.

Another source of bias, where VIIRS-derived CBH is

high but CloudSat-observed CBH extends almost to

the surface, could be due to lingering precipitation-

contaminated CloudSat data. Although we are using

precipitation flags from 2C-PRECIP-COLUMN to filter

out those profiles in the comparisons, some unfiltered

profiles may remain. Further research is ongoing for the

algorithm refinement.

Various statistical analyses were conducted to quan-

titatively investigate CBH algorithm performance for

the selected matchup periods. Tables 3 and 4 summarize

CBH error statistics (using CloudSat as truth) for all

clouds (values in boldface) and each cloud type for

September–October 2013 matchups (Table 3) and

January–May 2015 matchups (Table 4) for quality-

controlled data. Statistics (error magnitudes) derived

from CloudSat on CGTs as a function of VIIRS cloud

type was shown to examine skill with respect to con-

ventional climatology purposes, even though the

FIG. 6. As in Fig. 5, but for January–May 2015.

TABLE 3. Error statistics of CBHs for the new algorithm, taken from VIIRS–CloudSat matchups for September–October 2013 (95 145

quality-controlled matchup points).

CBH (km) Within

Spec only Samples (%)

Avg error

(bias)

Std dev

of error

Median

error RMSE r2
CBH within 250m

of CloudSat (%)

All 100 0.3 1.7 0.2 1.7 0.791 19.9

Cirrus 51 0.3 1.7 0.2 1.7 0.698 12.6

(thin) (6) (20.5) (1.2) (20.5) (1.3) (0.775) (15.4)

Opaque ice 14 0.3 2.3 0.1 2.3 0.515 11.4

Water 9 0.2 0.5 0.2 0.5 0.688 53.6

Supercooled 21 0.3 1.1 0.1 1.1 0.688 30.5

Overlap 4 0.4 2.1 0.3 2.1 0.502 10.6

Overshooting 1 0.8 2.8 0.6 3.0 0.295 9.1
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algorithm as currently designed is not cloud type de-

pendent (with the exception of thin cirrus). A few minor

types with negligible samples were not included in the

tables. The values for thin cirrus where the extinction-

based method has been adopted are shown in paren-

theses. In the tables, matchup points where the error is

less than 250m (the vertical resolution of CloudSat) are

considered to be accurate. In general, the new CBH

algorithm shows good agreement with CloudSat so long

as the CTH accuracy requirement is satisfied. More-

over, the performance of the new algorithm satisfies the

JPSS measurement uncertainty requirements for the

VIIRS CBH EDR product (62 km). The performance

is best for water clouds and leaves room for further

improvement in cases of overlapping (multilayered)

and tropopause-overshooting cloud systems as well as

opaque ice clouds (e.g., thick anvil cirrus that may have

sufficiently high CWP to trigger our NWP-based CCL

estimate, incurring large errors in the process). We take

care to point out via Tables 3 and 4 that the percentages

of opaque ice and overshooting-top cloud types are

relatively low compared to the majority of clouds en-

countered in our validation cases. For comparison pur-

poses, similar error statistics are summarized in Tables 5

and 6 for CBHs (values in boldface for all clouds) from

the IDPS algorithm shown in Figs. 5 and 6, respectively.

It is supposed that the decreased numbers of CBHs from

the IDPS algorithm are due to errors of upstream inputs

related to determining cloud type or cloud phase. From the

results, we can see the newCBHalgorithm outperform the

IDPS algorithm for all clouds. The IDPS algorithm shows

similar performance only for water clouds.

6. Conclusions

A statistical regression algorithm for estimating CGT

and CBH of the uppermost cloud layer has been de-

veloped and evaluated using multisensor observations

from the NASA A-Train constellation. It has been in-

tegrated into the NOAA CLAVR-x framework and is

now being implemented in the NOAA JPSS operational

cloud product system. The CGT is predicated on the

relationships drawn between observed CGT (from

CloudSat/CALIPSO) and CWP (from Aqua MODIS),

conditioned on CTH. The CBH is then calculated by

subtracting the derived CGT from a retrieved value of

CTH. The regression coefficients used for the piecewise

linear fit that relates CGT to CWP were computed to

form an a priori lookup table.

The most critical upstream inputs for the CBH re-

trieval are the CTH and CWP (which is derived from

COT and EPS). In addition, the accuracy of the CBH is

proportional to that of CTH. Thus, the errors in CTH

and CWP are added to the CBH retrieval output. The

new statistical approach avoids errors arising from in-

correct cloud type and phase assignment.We havemade

TABLE 4. As in Table 3, but for January–May 2015 (216 745 quality-controlled matchup points).

CBH (km) Within

Spec only Samples (%)

Avg error

(bias)

Std dev

of error

Median

error RMSE r2
CBH within 250m

of CloudSat (%)

All 100 0.4 1.6 0.3 1.7 0.803 19.8

Cirrus 49 0.5 1.7 0.3 1.7 0.729 12.2

(thin) (5) (20.4) (1.3) (20.4) (1.3) (0.770) (14.7)

Opaque ice 12 0.5 2.3 0.3 2.3 0.486 11.3

Water 10 0.2 0.5 0.1 0.6 0.770 51.2

Supercooled 23 0.4 1.1 0.2 1.2 0.671 29.2

Overlap 5 0.4 2.2 0.3 2.2 0.447 10.8

Overshooting 1 0.6 3.4 0.2 3.5 0.196 7.5

TABLE 5. As in Table 3, but for the IDPS CBHs shown in Fig. 5 (85 495 quality-controlled matchup points for September–October 2013

matchups).

CBH (km) Within

Spec only Samples (%)

Avg error

(bias)

Std dev

of error

Median

error RMSE r2
CBH within 250m

of CloudSat (%)

All 100 0.7 2.6 20.1 2.7 0.452 18.0

Cirrus 37 1.9 3.0 1.3 3.5 0.111 8.4

Opaque ice 8 3.1 2.8 2.7 4.2 0.147 4.7

Water 17 20.2 0.5 20.2 0.6 0.747 50.2

Supercooled 33 21.1 1.1 20.8 1.6 0.719 15.4

Overlap 4 1.5 2.5 1.2 2.9 0.234 9.0

Overshooting 0.3 3.2 3.0 3.2 4.4 0.106 3.9
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special provisions for particularly challenging cloud

types, applying extinction-based method for cirrus

(COT , 1) to estimate better CBH retrievals and en-

listing NWP data to assign CCL_NWP as the CBH for

deep convection.

Given the understood physical limitations of any

passive-based approach to retrievingCBH, initial results

for the new algorithm as applied to SNPP VIIRS and

validated usingCloudSat are very encouraging. The new

CBH algorithm overall works well, optimally for single-

layered liquid-phase clouds and when CTH is in close

agreement with CloudSat. In particular, these compari-

sons show that the statistical retrieval approach out-

performs the operational IDPS algorithm for all cloud

types. The IDPS algorithm shows similar performance

only for water clouds. It should be noted CloudSat CPR

has relatively less sensitivity to optically thin clouds and

has a tendency to underestimate VIIRSCTH, compared

to CALIPSO. Further efforts to combine the in-

formation from both sensors are ongoing for more de-

tailed validation, which became challenging due to the

difficulty in maintaining tight formation flying of two

satellites since the CloudSat battery anomaly occurred

in April 2011 (Nayak et al. 2012).

Many problems remain to be solved to produce a

feasible algorithm for more complex cloud systems. The

retrieved CBH does not always correspond to what is

considered a ‘‘ceiling’’ in the aviation community.

Multilayered clouds (in cases where there is sufficient

optical and thermal separation) are possibly identified as

an output from the CLAVR-x system (Pavolonis and

Heidinger 2004), but the current CBH algorithm is

predicated on a single-layer cloud. Thus, there could

be a lower cloud layer below our retrieval base.

CBH is currently retrieved for both daytime and

nighttime as long as valid CTH and CWP values exist,

although the regression method has been developed

with daytime satellite data. Analyses with ground ob-

servations for nighttime performance are currently in

progress. These could not be accomplished with

CloudSat (no nighttime data due to a battery issue) in

the VIIRS era. Algorithm performance might be de-

graded at night depending on the CWP accuracy from

the nighttime cloud optical property retrievals.

Efforts to further improve the current CBH algorithm

are ongoing. We plan to stratify the regression statistics

by land and ocean as a way of accounting for continental

versus maritime airmass dependencies on cloud micro-

physics and morphology. We are working toward

higher-order piecewise fits to the CGT versus CWP for

the various CTH stratifications. While special handling

of cirrus and deep convection has already yielded sta-

tistical performance improvements, we also plan to ex-

amine adiabatic modeling of cloudwater distribution for

low marine clouds (e.g., Bennartz 2007).

Building on this work, the statistical CBH estimation

method will be used to improve the VIIRS cloud cover

and layers (CCL) EDR, which reports fractional cloud

cover for various prescribed tropospheric layers. The

new version of CCL will approximate the cloud amount

of middle/lower layers, more accurately incorporating

CGT, which spans the column, as opposed to using a

single value of CTH and no further information on cloud

vertical extent. This retrieval technique, demonstrated

here withVIIRS, can be applied to other sensors that are

able to retrieve CTH and CWP. The Himawari-8/9

Advanced Himawari Imager, the GOES-R Advanced

Baseline Imager, and a host of other next-generation

geostationary sensors have the capacity to workwith this

algorithm. Implementation of the algorithm on these

geostationary systems will increase opportunities for

calibration/validation of the algorithm against active

sensors flying on low-Earth-orbiting satellites.
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TABLE 6. As in Table 4, but for the IDPS CBHs shown in Fig. 6 (162 079 quality-controlled matchup points for January–May 2015).

CBH (km) Within

Spec only Samples (%)

Avg error

(bias)

Std dev

of error

Median

error RMSE r2
CBH within 250m

of CloudSat (%)

All 100 1.3 2.6 0.5 2.9 0.489 19.3

Cirrus 47 2.0 3.0 1.4 3.6 0.145 7.8

Opaque ice 10 3.1 2.7 2.8 4.2 0.176 4.0

Water 22 20.2 0.5 20.2 0.5 0.755 50.8

Supercooled 12 0.6 1.6 0.4 1.7 0.475 16.3

Overlap 5 1.4 2.6 1.2 2.9 0.212 8.4

Overshooting 0.4 3.1 3.2 2.9 4.5 0.166 4.5
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