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ABSTRACT

In a previous paper, the authors discussed the dynamics of an instability that occurs in inviscid, axisymmetric,
two-dimensional vortices possessing a low-vorticity core surrounded by a high-vorticity annulus. Hurricanes,
with their low-vorticity cores (the eye of the storm), are naturally occurring examples of such vortices. The
instability is for asymmetric perturbations of azimuthal wavenumber-one about the vortex, and grows in amplitude
as t1/2 for long times, despite the fact that there can be no exponentially growing wavenumber-one instabilities
in inviscid, two-dimensional vortices. This instability is further studied in three fluid flow models: with high-
resolution numerical simulations of two-dimensional flow, for linearized perturbations in an equivalent shallow-
water vortex, and in a three-dimensional, baroclinic, hurricane-like vortex simulated with a high-resolution
mesoscale numerical model.

The instability is found to be robust in all of these physical models. Interestingly, the algebraic instability
becomes an exponential instability in the shallow-water vortex, though the structures of the algebraic and
exponential modes are nearly identical. In the three-dimensional baroclinic vortex, the instability quickly leads
to substantial inner-core vorticity redistribution and mixing. The instability is associated with a displacement of
the vortex center (as defined by either minimum pressure or streamfunction) that rotates around the vortex core,
and thus offers a physical mechanism for the persistent, small-amplitude trochoidal wobble often observed in
hurricane tracks. The instability also indicates that inner-core vorticity mixing will always occur in such vortices,
even when the more familiar higher-wavenumber barotropic instabilities are not supported.

1. Introduction

In certain experimental apparatuses, the equations of
motion describing the dynamics of electron plasmas
guided by a magnetic field are identical to the equations
of motion for inviscid, incompressible fluid flow in two
dimensions. This remarkable equivalence allows ex-
perimental physicists to simulate two-dimensional flu-
id flow in the laboratory, at Reynolds numbers many
orders of magnitude higher than can be simulated ac-
curately with numerical models or with actual fluids.
A number of such experiments have provided insight
into (nearly) inviscid two-dimensional vortex dynam-
ics (Driscoll 1990; Huang et al. 1995; Driscoll et al.
1996; Schecter et al. 1999). In the context of this work,
Smith and Rosenbluth (1990; hereafter SR) found an
exact solution, in terms of quadratures, describing the
evolution of azimuthal wavenumber-one perturbations
to inviscid vortices. Furthermore, the long-time as-
ymptotic limit of this solution predicts the appearance
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of an algebraically growing instability (streamfunction
amplitudes growing like t1/2 for long times) for any
vortex that possesses an angular velocity maximum
other than at the center axis.

Moderate to intense hurricanes, with their low-vor-
ticity centers (the eye), are naturally occurring examples
of vortices with angular velocity maxima away from
their center axis. [While observationally obtained vor-
ticity profiles have only recently been available—e.g.,
Reasor et al. (2000); or Kossin and Eastin (2001)—an
angular velocity maximum can be inferred from any
velocity profile which is concave up, or ‘‘U-shaped,’’
near the center, and many such profiles have been pre-
sented, e.g., Shea and Gray (1973, Fig. 3).] Furthermore,
the close relationship between wavenumber-one pertur-
bations and vortex motion indicates the importance of
wavenumber-one instabilities (Willoughby 1992; Smith
and Weber 1993; Reznik and Dewar 1994; Montgomery
et al. 1999). To determine whether or not the SR insta-
bility could be significant in tropical cyclone dynamics,
Nolan and Montgomery (2000a; hereafter NM) inves-
tigated its dynamics in two-dimensional vortices with
dimensional scales similar to those of a weak tropical
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FIG. 1. Basic-state profiles for the Nolan and Montgomery (2000a) stable, hurricane-like vortex: (a) velocity, (b) vorticity, (c) angular
velocity, and (d) vorticity gradient.

storm and a medium strength hurricane. Since NM
wished to observe only the algebraic wavenumber-one
instability, both the tropical storm and hurricane-like
vortices were carefully constructed to be stable to ex-
ponentially growing, two-dimensional disturbances for
all azimuthal wavenumbers. This was achieved in part
through trial and error, using as a guide the stability
analyses of Schubert et al. (1999) for two-dimensional
vortices with stair-step vorticity profiles. The velocity,
vorticity, vorticity gradient, and angular velocity pro-
files of the NM hurricane-like vortex are shown in Fig.
1. This vortex and modifications of it are used through-
out the rest of this paper.

Nolan and Montgomery found that the instability
does indeed have significant growth rates in hurricane-
like vortices. Since the streamfunction and vorticity per-
turbation amplitudes grow as t1/2, the perturbation ki-
netic energy grows linearly in time, and NM found that
a wavenumber-one perturbation in the hurricane-like

vortex could increase 20 times in energy within 24 h.
(As SR showed, the growth rate of the algebraic insta-
bility depends both on the shape of the angular velocity
profile and the structure of the initial perturbation, so
one cannot make general statements about the growth
rate of the instability.) Nolan and Montgomery further
clarified a number of very interesting properties of the
SR algebraic instability.
1) The solution can be divided into three parts: (i) a

growing mode whose perturbation vorticity is ex-
actly proportional to the basic-state vorticity gradient
up to the radius of the maximum angular velocity
(referred to hereafter as the RMV), but is zero be-
yond that point, and whose contribution to the total
streamfunction grows as t1/2; (ii) an excitation of a
neutral mode, which represents a displacement of the
entire vortex (a.k.a the ‘‘pseudo-mode’’); and (iii) a
collection of sheared disturbances whose associated
streamfunction decays as t21/2.
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FIG. 2. The path of Hurricane Carla (1961) as reanalyzed by Jar-
vinen et al. (1984), showing four trochoidal oscillations just before
landfall. Also shown (thick line) is the ‘‘best track path,’’ displaced
northward for comparison. The range markers are at 20 n mi intervals.
Original figure was adapted from Weatherwise, Oct 1961.

2) The instability can only be excited by initial con-
ditions with vorticity inside the RMV. Perturbations
whose vorticity is entirely outside the RMV will not
result in instability.

3) Furthermore, algebraic growth will not result if the
initial perturbation is exactly proportional to the
growing part of the asymptotic solution. The ‘‘grow-
ing part’’ of the solution is in fact, by itself, a neutral
mode. This is shown in the appendix of this paper.

4) The algebraic growth occurs due to an interaction,
via the basic-state vorticity gradient, between this
neutral mode and the disturbances whose associated
streamfunction decays as t21/2. These disturbances
are in fact a collection of sheared vortex-Rossby
waves that are trapped in the vicinity of the vortex
core by the angular velocity maximum (hereafter,

max), and their slow decay is due to their diminishedV
shearing in the vicinity of max.V

5) The instability represents an oscillating displacement
of the low-vorticity core of the vortex relative to the
surrounding flow, that is, a wobble of the eye of the
storm.

It is this last property of the algebraic instability that
makes it clearly relevant to the known behaviors of
tropical cyclones. The tracks of such storms often show
a substantial oscillation, or wobble, with respect to some
time-averaged motion vector, referred to as the tro-
choidal motion of the storm center. Such behavior has
been documented in a number of observational studies
dating back to the early use of radar to determine storm
centers (Jordan and Stowell 1955; Jordan 1966) and was
also identified in satellite images (Lawrence and May-
field 1977). The trochoidal motion of the center has
since been often observed in studies of the inner cores
of hurricanes (Willoughby et al. 1984; Muramatsu 1986;
Griffin et al. 1992; Roux and Viltard 1995), and is also
seen in numerical simulations (Jones 1977; Abe 1987;
Liu et al. 1999). The amplitude of the trochoidal oscil-
lation can be quite small, so as to be lost in the temporal
smoothing process that is used to produce ‘‘best track’’
records of tropical cyclones. An example of the tro-
choidal oscillation is shown in Fig. 2, which shows the
motion of Hurricane Carla (1961) as deduced from radar
observations and also its best track path (taken from
Jarvinen et al. 1984).

A number of previous studies have addressed the
oscillation of a tropical cyclone’s path about its mean
motion vector. Yeh (1950) and Kuo (1950, 1969) used
classical hydrodynamics to treat such storms as iso-
lated, barotropic vortices interacting with the mean
flow and planetary rotation of the surrounding envi-
ronment. In addition to the well-known rightward de-
flection of cyclonic vortices relative to the environ-
mental flow, their solutions predicted trochoidal mo-

tion.1 Flatau and Stevens (1993) predicted that wave-
number-one instabilities in a hurricane’s outflow layer
would cause trochoidal motion. Vertical shear in the
environment has also been linked to storm motion.
When the vortex is barotropic, vertical shear leads to
a perturbation vorticity structure which can be inter-
preted as two like-signed potential vorticity (PV)
anomalies, one at the surface and one near the tro-
popause, which are slightly displaced from one another.
The PV anomalies tend to corotate, leading to tro-
choidal motion of the low-level center (Jones 1995;
Reasor and Montgomery 2001). When the vortex is
baroclinic, the upper and lower PV anomalies are of
opposite sign, and instead induce propagation rather
than corotation (Wu and Emanuel 1993; Flatau et al.
1994). For a realistic vertical structure, the impact of
vertical shear would likely be a combination of these
two effects.

The hurricane track motions discussed in these studies,
while consistent with the general meandering motion ob-
served in virtually all tropical cyclones, are fundamentally
different in a number of ways from the wavenumber-one
instability and trochoidal motion presented in this paper.
For the most part, the trochoidal motions discussed in these
previous studies are of substantially longer time scales

1 The trochoidal motions predicted by Yeh (1950) and Kuo (1950,
1969) are not in fact necessary consequences of the vortex-environ-
ment interaction. Rather, they are a function of the initial conditions.
Trochoidal motion is predicted only when the initial vortex motion
is different from the environmental flow, much like the inertial mo-
tions of a particle disturbed on an f plane.
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(12–48 h), and substantially larger distance scales (20–
200 km) than the trochoidal motion of Hurricane Carla
demonstrated in Fig. 2 or predicted in NM. Second, with
the possible exception of the barotropic instability dis-
cussed by Flatau and Stevens (1993), these large-scale
oscillations are a side effect of the hurricane’s interaction
with its environment, rather than fundamental to the vortex
itself. Last, the wavenumber-one instability discussed by
NM represents a displacement of the low-vorticity core
relative to the surrounding eyewall structure, while the
previous papers describe trochoidal motions of the entire
hurricane vortex.

Preliminary nonlinear simulations of the instability
by NM using a semispectral model showed that the
continued growth of the instability ultimately leads to
inner-core vorticity redistribution so as to remove the
vorticity deficit from the center of the vortex, and per-
haps ultimately to a complete redistribution of the vor-
ticity into a nearly axisymmetric profile which decreases
monotonically from the center. This is yet another way
in which the present wavenumber-one dynamics are dif-
ferent from those reviewed above. When eyewall vor-
ticity is mixed into the eye, the azimuthal wind profile
is modified from that of a ‘‘hollow vortex’’ or ‘‘stagnant
core’’ toward a profile with solid-body rotation at the
center. From purely kinematic effects, this results in a
lowering of the central pressure in the vortex. Emanuel
(1997) has suggested that such inner-core vorticity mix-
ing is necessary for a tropical cyclone to reach its max-
imum intensity (MPI), because this lowering of the cen-
tral pressure increases the equivalent potential temper-
ature (ue) of the air at the surface, essentially resulting
in more heat being transferred from the ocean to the
atmosphere. Inner-core asymmetries and the mixing as-
sociated with them have become more frequently ob-
served due to the ever increasing resolution of both
observational methods (Reasor et al. 2000; Kossin and
Eastin 2001; Daida and Barnes 2000) and numerical
simulations (Liu et al. 1997, 1999; Braun and Tao 2000;
Braun et al. 2000; Fulton et al. 2000). As the wave-
number-one instability may play a role in the redistri-
bution of vorticity in the eye and eyewall regions and
thus also in intensity changes, it is important to develop
a basic understanding of its dynamics.

In this paper, we present the results of further analyses
of the wavenumber-one instability in a number of dif-
ferent fluid flow models. In section 2, the nonlinear
dynamics of the instability in purely two-dimensional
flow is further studied with high-resolution, low-vis-
cosity simulations. In section 3, the behavior and dy-
namics of wavenumber-one perturbations are examined
in an equivalent vortex in a shallow-water fluid. In sec-
tion 4, the wavenumber-one instability is studied using
the dynamical core of a mesoscale numerical model
(RAMS, see section 4a) to simulate the evolution of a
three-dimensional, balanced vortex whose wind field is
modeled after a mature hurricane. The cumulative result
of these investigations is that the wavenumber-one in-

stability occurs in all types of vortices with low-vorticity
cores, and is likely an important aspect of the inner-
core dynamics of tropical cyclones.

2. High-resolution simulations in two dimensions

a. The model

Nolan and Montgomery found that the algebraic wave-
number-one instability was very sensitive to the presence
of viscous dissipation. This implies that very high res-
olution is necessary to capture the long-term growth of
the instability in a fully nonlinear model. It would also
be ideal to simulate the instability in a very large domain,
so as to limit or eliminate any boundary effects. For these
reasons, we use a numerical model of incompressible
two-dimensional fluid flow that has the special feature
of adaptive mesh refinement (AMR). AMR provides for
the utilization of an arbitrary number of refined, two-way
nested grids. Furthermore, these grids are not necessarily
fixed in time but rather can be moved and generated
spontaneously by the model as determined by some ar-
bitrary refinement criterion; however, in all the simula-
tions presented here, the refinement boxes are essentially
stationary. The model is based on a velocity-pressure
formulation of the equations, is second-order accurate in
space and time, and uses flux limiters to prevent the
generation of spurious oscillations. Further presentations
and discussions of the model are available in Almgren
et al. (1998) and Nolan et al. (2000).

b. Initial conditions

The model domain is the square region within 2400
km # x, y # 400 km. The velocity profile of the original
NM vortex is modified so that its velocity field goes to
zero at some finite radius, well within the confines of
the model domain. This is achieved by multiplying the
original velocity profile by a suitable exponentially de-
caying factor; that is,

8r*V (r) 5 V(r) exp 2 (2.1)1 2[ ]rc

where for the simulations here we use rc 5 250 km.
The resulting modified velocity and vorticity profiles
are shown in Fig. 3.2 As an initial perturbation to the
basic-state vortex, we use the same wavenumber-one
perturbation used throughout NM:

2 Following the suggestion of a reviewer, we examined the stability
of this vortex using the same methodology described in NM. It turns
out that forcing the velocity profile to go to 0 near r 5 300 km causes
the appearance of unstable modes for wavenumbers n 5 2, 3, and 4.
These unstable modes are due to interactions between the inner and
outer vorticity regions, and appear analogous to the ‘‘type 2’’ insta-
bilities discussed by Kossin et al. (2000). However, the growth rates
of these modes are relatively slow, with e-folding times of 12 h or
more.
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FIG. 3. Basic-state velocity (a) and vorticity (b) profiles for the
two-dimensional nonlinear simulations.

FIG. 4. Shaded contour plot of the initial vorticity field for the
nonlinear simulations. The locations of the refinement grids are also
shown, for (a) the entire domain, and (b) a close-up of the inner-core
vorticity. Vorticity units: s21. This initial condition was used for all
the simulations.

2r 2 reye
z (r, t 5 0) 5 A exp 2 , (2.2)1 1 2[ ]w /4eye

where reye 5 20 km is the center of the eyewall region,
weye 5 24 km is the width of the eye-wall region, and
the maximum initial amplitude of the perturbation is
10% of the local basic state flow vorticity

A 5 0.1 3 z(r ).eye (2.3)

The simulations presented here use a base grid with
128 3 128 grid points, such that the base grid spacing
is 6.25 km. The simulation also uses three levels of
refinement. The first two levels have factors of 2 de-
creases in the grid spacing, while the third level has a
factor of 4 decrease in grid spacing, such that the grid
spacing on the innermost grid is 390.625 m. The initial
vorticity field, along with the locations of the refinement
boxes at t 5 0, is shown in Fig. 4. The criterion used
to determine the locations of the refined grids is that
the vorticity difference across any two grid points be

no greater than 1% of the value of the average vorticity
in the eyewall region. This requirement may not always
be met within the innermost grid, since the number of
refinement boxes is limited to three in these simulations.

c. Results

We performed four simulations of the instability,
varying only the viscosity for each simulation, with val-
ues of n 5 10, 20, 40, and 80 m2 s21. For short times,
the evolution of the vortex was nearly identical for all
values of n, and the early evolution of the vortex with
n 5 40 m2 s21 is shown every 20 min from t 5 2 h to
t 5 3 h 40 min in Fig. 5. As expected, the initial per-
turbation results in a steadily growing wobble of the
low-vorticity core. Associated with this wobble is a sim-
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FIG. 5. Vertical vorticity fields in the inner core of the fully nonlinear simulation with y 5 40 m2 s21 at (a) 120, (b)
140, (c) 160, (d) 180, (e) 200, and (f ) 220 min. Units of vorticity: s21. Contour levels and shading are as in Fig. 4.

ilar wobble in the location of the center of the vortex
as defined by both the minima of the streamfunction
and pressure fields. The x coordinates of these minima
are shown as functions of time in Fig. 6. It is perhaps
confusing to see that the amplitude of the wobble only
grows for a few hours and then begins to decay with
time. This is not due to a decline of the algebraic in-

stability mechanism, but rather is a feature of the non-
linear dynamics of the instability. As time evolves the
low-vorticity core moves outward from the center not
simply as a growing wavenumber-one perturbation, but
rather as a coherent ‘‘vortex hole,’’ as is evident from
Fig. 5. The vorticity at the vortex center is replaced by
higher vorticity from the eyewall region, and the stream-
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FIG. 6. The x coordinate of the location of the minimum stream-
function (a) and pressure (b) for the high-resolution nonlinear sim-
ulation with y 5 80 m2 s21.

function and pressure minima slowly migrate back to-
ward the center as the low vorticity core moves away.

Eventually, the low vorticity core reaches the outer
edge of the eyewall, where it is sheared apart by the
large angular velocity gradients in that part of the vortex.
The low vorticity is then quickly redistributed around
the outer edge of the eyewall region, while the high
vorticity associated with the positive part of the initial
wavenumber-one perturbation finds its way to the vortex
center. Thus, the azimuthally averaged vorticity profile
is redistributed into one that is monotonically decreasing
from the center.

The time required for this redistribution to take place
is rather sensitive to the value of the viscosity. The
vorticity fields at t 5 24 h, 36 h, and 48 h are shown
for each simulation with n 5 80, 40, 20, and 10 m2

s21, respectively, in Figs. 7 and 8. At each time, we can

see that the redistribution process is further along in the
simulations with higher viscosity. It appears that the rate
at which the low-vorticity core moves outward through
the eyewall region decreases with decreasing viscosity.
The slow outward movement of the low-vorticity core
is quite similar to the behavior of vortex holes observed
by Huang et al. (1995) that were produced by the growth
of a wavenumber-two instability in a similar, but ex-
ponentially unstable, vortex modeled by an electron
plasma. In their experiments, the vortex holes remained
coherent for hundreds of vortex circulation times, but
also slowly migrated outward from the vortex core until
they were destroyed by the strong shear at the outer
edge of the vortex. A theoretical basis for understanding
the motion of vortex holes in an inviscid fluid has been
provided by Schecter and Dubin (1999), who showed
that vortex holes tend to move down the vortex gradient
of the surrounding flow, while positive vortex anomalies
(‘‘clumps’’) tend to move up the gradient. In this case,
since the background vorticity is increasing outward,
the hole should then move inward, or at the very least,
remain trapped in the vortex core. Since the vortices do
move outward, and their rate of outward motion is clear-
ly dissipation-dependent, it seems that the outward mi-
gration is related to dissipative effects. The hole may
survive indefinitely in a truly inviscid fluid. Perhaps
there exists a steady, nonlinear solution of the Euler
equations that emulates the observed wobble, much as
the well-known Kirchoff’s vortex solution (Lamb 1932,
section 159) for an elliptical, piecewise constant vor-
ticity patch emulates the long-lived wavenumber-two
asymmetry simulated by Huang et al. (1995), often re-
ferred to as the ‘‘tripole.’’

Such behavior is probably irrelevant for the inner
cores of hurricanes, due to asymmetries in the environ-
ment, baroclinic aspects of the vortex, the effects of
convection, and turbulent diffusion. Nonetheless we
have identified the fully nonlinear behavior of the wave-
number one algebraic instability for two-dimensional,
hurricane-like vortices. The instability causes the low
vorticity core of the vortex to wobble outwards from
the center, resulting in a small-amplitude wobble of the
vortex center as defined both by streamfunction and
pressure minima. Eventually the instability leads to a
complete rearrangement of the inner-core vorticity, such
that the vorticity profile is monotonically decreasing
from the center and the core of the vortex is nearly in
solid-body rotation. Similar rearrangement of inner-core
vorticity has in fact been inferred from observational
data of hurricanes (Kossin and Eastin 2001).

3. The wavenumber-one instability in a shallow-
water fluid

a. The equations of motion and their numerical
solution

The equations of motion in cylindrical (r, l) coor-
dinates for the evolution of a shallow-water fluid on an
f plane are,
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FIG. 7. Snapshots of the vorticity field at 24, 36, and 48 h for nonlinear simulations with y 5 40 and 80 m2 s21, as
labeled. Units of vorticity: s21. Contour levels and shading are as in Fig. 4.

2Du y ]h
2 2 fy 1 g 5 0, (3.1)

Dt r ]r

Dy uy g ]h
1 1 fu 1 5 0, and (3.2)

Dt r r ]l

Dh 1 ] 1 ]y
1 h (ru) 1 5 0, (3.3)[ ]Dt r ]r r ]l

where r is the distance from the center axis, l is the
azimuthal angle about the axis, u and y are the radial
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FIG. 8. As in Fig. 7, but for y 5 20 and 10 m2 s21.

and azimuthal winds, h is the height of the free surface,
g is the gravitational acceleration, f is the Coriolis pa-
rameter, and D/Dt 5 ]/]t 1 u(]/]r) 1 (y/r)(]/]l) is the
material derivative.

We consider the evolution of small perturbations
about a basic-state vortex in gradient wind balance,

2]h y
g 5 f y 1 , (3.4)

]r r

where 5 (r) is the basic-state azimuthal wind field,y y
and 5 (r) is the basic-state height of the free surface.h h
The equations of motion (3.1)–(3.3) are linearized about
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the basic state (3.4), and the perturbation u9, y9, and h9
fields are then written in terms of azimuthally varying
harmonics for each azimuthal wavenumber n:

inl[u9, y9, h9] 5 [u (r, t), y (r, t), h (r, t)]e ,n n n (3.5)

where, rather than assuming exponential time depen-
dencies, we have left the time dependence explicit in
the complex functions un, y n, hn. For each azimuthal
wavenumber n, the equations of motion become

]u ]hn n1 inVu 2 ( f 1 2V)y 1 g 5 0, (3.6)n n]t ]r

]y ]y inn 1 inVy 1 f 1 V 1 u 1 g h 5 0, (3.7)n n n1 2]t ]r r

and

]h 1 ] in ]hn 1 inVh 1 h (ru ) 1 h y 1 u 5 0, (3.8)n n n n]t r ]r r ]r

where 5 /r is the basic-state angular velocity.V y
We solve for the stability and time evolution of the

system (3.6)–(3.8) numerically in a manner following
Montgomery and Lu (1997) and Flatau and Stevens
(1989). A finite domain is prescribed from r 5 0 to
some large outer radius r 5 R. On this domain we define
values of hn to exist at the points r 5 jDr, where j 5
0,1, . . . N, and Dr 5 R/N. Here un and y n values exist
at the ‘‘half’’ points r 5 (k 2 1/2)Dr, with k 5 1, 2,
. . ., N. Derivatives computed from centered differences
between two adjacent grid points on the h grid fall nat-
urally on the uy grid, and similar derivatives on the uy
grid fall naturally on the h grid. Where data must be
interpolated from one grid to another, as in the last terms
of (3.7) and (3.8), a simple average of adjacent points
is used. Explicit boundary conditions are needed for the
hn only. At the outer wall, we set hn(N) 5 0. At r 5 0
the natural boundary condition for the perturbation
height must be hn(0) 5 0, so that singular behavior does
not occur as one moves around the azimuth as r → 0.
[For n 5 0 we would use the condition ]hn/]r 5 0, but
no calculations with symmetric perturbations are pre-
sented here.] For most of the calculations presented
here, we use a grid spacing Dr 5 500 m and we place
the outer boundary at r 5 250 km. For all calculations
we use f 5 5.0 3 1025 s21, which corresponds to a
latitude of 208N.

Gravity waves are an essential aspect of the dynamics
of the shallow water equations. As we will show below,
both balanced and unbalanced initial conditions (the
meaning of ‘‘balanced’’ will be discussed shortly) will
produce gravity waves that radiate outward from the
vortex core. To prevent substantial gravity-wave reflec-
tion from the outer boundary, we use a Rayleigh-damp-
ing sponge layer at the outer limits of the domain, which
is implemented by adding the terms 2«(r)un, 2«(r)y n,
and 2«(r)hn to the right-hand sides of (3.6)–(3.8), re-
spectively. The damping function is defined by,

0 r , rstart r 2 rend«(r) 5 « S r # r # r (3.9)max start end1 2r 2 rend start
« r . r , max end

where rstart is the beginning of the transition region into
the sponge layer, rend is the end of the transition region,
S(x) 5 1 2 3x2 1 2x3 is the cubic Hermite polynomial,
which has S9(0) 5 S9(1) 5 0, S(0) 5 1, S(1) 5 0, and
«max 5 1/tmin is the maximum damping rate with time
scale tmin. For all simulations presented here, we use
rstart 5 190 km, rend 5 240 km, and tmin 5 30 s.

Through standard techniques, the system of coupled
linear equations (3.6)–(3.8), represented in terms of fi-
nite differences, can be expressed as a linear dynamical
system:

dx
5 T x, (3.10)ndt

where Tn is the time evolution operator and the column
vector x contains the values of hn on the interior of the
h grid and un and y n on the uy grid. This representation
serves two purposes. First, the stability properties and
the eigenfunctions of the system can be determined di-
rectly from numerical analysis of the matrix Tn; and
second, numerical integration of (3.10) is straightfor-
ward with either explicit (such as Runge–Kutta) or im-
plicit (such as Crank–Nicholson) schemes, or even with
matrix exponentiation.

b. Potential vorticity, divergence, and balanced flow

Potential vorticity is a useful concept since it is con-
served by parcels in the flow. If, in addition, the flow
is in quasigeostrophic balance, the height and velocity
fields can be uniquely determined from the PV. This
result can be generalized to the case of quasi-gradient
balance as will be discussed shortly. Indeed, whether or
not the inner-core dynamics of intense geophysical vor-
tices obey similar balance principles has been a topic
of some research (McWilliams 1985; Raymond 1992;
Shaprio and Montgomery 1993; Montgomery and Lu
1997; Möller and Montgomery 2000), and we will show
that balanced dynamics also apply to asymmetric per-
turbations to our shallow-water vortex.

In a shallow water fluid, potential vorticity can be
defined as

z 1 f
q 5 , (3.11)

h

where z is the relative vertical vorticity, f is the Cor-
iolis parameter, and h is the fluid depth (Pedlosky
1987). If we then expand the terms on the rhs of (3.11)
into basic state and perturbation parts, and neglect
second-order terms, the perturbation PV that naturally
appears is
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FIG. 9. Growth rate of the most unstable wavenumber-one mode
as a function of resting depth H, for calculations with Dr 5 1 km
(dash–dot, 1), Dr 5 0.5 km (dashed, x), and Dr 5 0.25 km. For Dr
5 1 km, H . 64 km, and Dr 5 0.5 km, H . 256 km, growth rates
were less than 10212, that is, effectively zero.

z9 qh9
q9 5 2 , (3.12)

h h

where 5 ( 1 f )/ is the basic-state PV. The vorticityq z h
and divergence for asymmetric perturbations are, re-
spectively,

1 ] in
z 5 (ry ) 2 u , and (3.13)n n nr ]r r

1 ] in
d 5 (ru ) 1 y . (3.14)n n nr ]r r

Using (3.6)–(3.8) and (3.11)–(3.14), one can derive PV
and divergence forms of the equations of motion:

]q ]qn 1 inVq 1 u 5 0, and (3.15)n n]t ]r

]d in ]V 1 ]n 1 inVd 1 u h 1 r 2 (r f̃y )n n n1 2]t r ]r r ]r
21 g¹ h 5 0, (3.16)n n

where 5 f 1 1/r ]/]r(r ) is the absolute meanh y
vorticity, f̃ 5 f 1 2 is the modified Coriolis pa-V
rameter, and the Laplacian operator for wavenumber
n is,

2 2] h 1 ]h nn n2¹ h 5 1 2 h . (3.17)n n n2 2]r r ]r r

(3.15) and (3.16), along with (3.8), describe an al-
ternative but complete set of equations for the asym-
metric perturbations, provided one also solves elliptic
equations that find the rotational and divergent parts
of the velocity fields from the PV and the divergence,
respectively. The system can be further simplified if
we assume that the divergence and its material time
rate of change (DV /Dt 5 ]/]t 1 in ) are small com-V
pared to the other terms in (3.16), consistent with scal-
ing analysis and theory of quasi-balanced flow, as dis-
cussed by McWilliams (1985), Raymond (1992), and
Montgomery and Franklin (1998). Then (3.16) be-
comes simply an elliptic equation for the perturbation
height field

1 ] in ]V
2g¹ h 5 (r f̃y ) 2 u h 1 r , (3.18)n n n n1 2r ]r r ]r

where un and y n are nondivergent velocities obtained
from the PV relationship

2¹ c 5 z 5 hq 1 qh , and (3.19)n n n n n

in ]cnu 5 2 c , y 5 . (3.20)n n nr ]r

Note that (3.18), (3.19), and (3.20) are in fact a coupled
set of linear equations, so that the exact solution for hn

and the nondivergent velocities cannot be computed im-
mediately from the PV as in quasigeostrophic theory.

Rather, to compute the balanced state, we first compute
cn from (3.19) using hn 5 0 as a first guess. The resulting
velocities are put into (3.18) to compute the next guess
for hn, and the process is repeated. In practice we have
found convergence is always achieved in just a few
iterations.

c. The basic-state shallow-water vortex and its
stability

For our shallow-water calculations we use the same
basic-state azimuthal velocity field used throughout NM
(shown in Fig. 1). We also compute the basic-state
height field (r) in gradient wind balance with (r) [cf.h y
(3.4)], given the ‘‘resting’’ height H at the outer bound-
ary. Changes in H only result in an equivalent upward
or downward displacement of (r).h

We first consider the stability of the vortex by com-
puting the eigenvalues and the eigenvectors of the time
evolution operator Tn. We find that, unlike the two-
dimensional vortex, the shallow-water vortex does in
fact support unstable modes; however, the growth rates
(real parts of the eigenvalues) of these modes are rel-
atively weak and decrease with increasing resting depth
H. This is demonstrated in Fig. 9, which shows the
growth rates of the most unstable mode for n 5 1 for
values of H 5 1 km, 2 km, 4 km. . . , up to 512 km.
Results are presented for calculations with Dr 5 1000
m, Dr 5 500 m, and Dr 5 250 m, and are very con-
sistent between these three resolutions for the smaller
depths. The growth rates appear to scale with the fluid
depth as H22/3, consistent with theory that will be dis-
cussed in section 3f. The e-folding times range from 9.5
h for H 5 1 km to 470.7 h for H 5 512 km. For the
physically relevant depth of H 5 8 km (approximately
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FIG. 10. Stability curves as a function of azimuthal wavenumber
n in the NM–shallow water vortex for H 5 8 km and Dr 5 1 km
(dash–dot, 1), Dr 5 0.5 km (dashed, x), and Dr 5 0.25 km (solid,
V).

FIG. 11. Structure of the most unstable mode for H 5 8 km, Dr
5 500 m, in terms of its (a) perturbation PV, in units of shallow-
water PV, which are s21 m21; (b) perturbation height field (m); and
(c) perturbation divergence (s21). The mode is normalized so that
maximum radial velocities are 1 m s21.

one scale height of the atmosphere), the e-folding time
of the fastest growing mode is 38.75 h, which is very
slow compared to the 1.25-h circulation time of the
vortex (or an equivalent hurricane).

Figure 10 shows the growth rates of the most un-
stable modes as a function of n for calculations with
H 5 8 km, for Dr 5 1000 m, Dr 5 500 m, and Dr
5 250 m. The extremely close correlation in the growth
rates of the most unstable mode for n 5 1 for the three
grid spacings indicates that, for wavenumber-one, this
mode is well-resolved and robust. Also indicated are
unstable modes for n 5 2 and n 5 3 whose growth
rates are highly dependent on the resolution. These
unstable modes are unphysical by-products of the dif-
fusion-free, finite-difference numerical method, in that
their vorticity fields contain delta-function-like struc-
tures on the scale of the grid spacing, and their struc-
tures and eigenvalues are highly sensitive to both the
grid spacing and the scheme used to interpolate be-
tween the uy and h grids.3

The most unstable mode for n 5 1, H 5 8 km, and
Dr 5 500 m is shown in terms of qn, hn, and dn in Fig.
11. The structure of the mode (which was virtually iden-
tical for different grid spacings) is extremely similar to
the growing part of the SR algebraic instability—pro-
portional to the basic-state vorticity gradient, up to
RMV. However, there appears to be some additional
structure to the unstable mode in the vicinity of the
RMV (the thin, outer PV anomalies), which will be
discussed below. The height field is also very similar
to the streamfunction field of the algebraic instability,

3 For example, cubic spline interpolation resulted in different ei-
genvalues and eigenvectors for n 5 2 and n 5 3, but virtually identical
results for n 5 1.

and there is a weak but nonzero divergence field, rough-
ly 3 orders of magnitude smaller than the vorticity (when
estimating the vorticity from the PV, recall that z9 ø

q9). Perhaps most importantly, we find that the heighth
and velocity fields of the unstable mode are virtually
identical to the same fields in balance with its PV. The
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FIG. 12. Evolution of perturbation PV (q9) and height (h9) fields for the wavenumber-one, balanced perturbation localized at r 5 20 km:
(a) PV, t 5 0 h; (b) height, t 5 0 h; (c) PV, t 5 2 h; and (d) height, t 5 2 h. (PV units, s21 m21 and height units, m.)

most unstable mode, computed from the linearized prim-
itive equations, is a quasi-balanced flow.

d. Evolution of the wavenumber-one perturbations

We first consider the evolution of a wavenumber-one
perturbation whose wind and height fields are in balance
with its initial vorticity. The perturbation PV is defined
in a manner analogous to the initial perturbation vor-
ticity for the simulations in NM and in section 2 above:
a Gaussian perturbation localized in the eyewall, with
peak amplitude 10% of the local basic-state flow [i.e.,
(2.2)–(2.3) with q substituted for z]. For these simu-
lations we used a Crank–Nicholson semi-implicit time
stepping scheme with Dt 5 10 s. While the time step

necessary to accurately resolve the dynamics of gravity
waves is just ( )/Dr 5 1.79 s, we will show laterÏgH
that these waves do not play a role in the evolution of
the asymmetric perturbations after the first 15 min. Fur-
thermore, simulations with much shorter time steps gave
nearly identical results.

The initial condition and evolution of this pertur-
bation is depicted in terms of its PV and height fields
in Figs. 12 and 13. The evolution is nearly identical
to that of the equivalent 2D vortex as shown in NM.
The 12-h and 24-h PV fields are again nearly identical
to the growing part of the SR instability, proportional
to ] /]r up to RMV. The perturbation kinetic energyz
versus time is shown in Fig. 14. For the first 24 h, the
kinetic energy shows almost exactly the same evolution
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FIG. 13. Evolution of perturbation PV (q9) and height (h9) fields for the wavenumber one, balanced perturbation localized at r 5 20 km: (a)
PV, t 5 12 h; (b) height, t 5 12 h; (c) PV, t 5 24 h; and (d) height, t 5 24 h. (PV units, s21 m21 and height units, m.)

as found by NM for 2D dynamics; however, after 24
h the energy growth appears to change from linear to
exponential, indicating the rise of the unstable mode.
The structure of the unstable mode is close to, but
slightly different than the SR instability, and their dif-
ferences will be shown explicitly. The high-frequency
oscillation in the perturbation kinetic energy is caused
by an interaction between the rapidly rotating growing
instability and the stationary pseudo-mode (see prop-
erty 2 of the SR instability described in section 1); as
these disturbances move in and out of phase with each
other the perturbation kinetic energy increases and de-
creases.

Before further analyzing the differences between the

algebraic and exponential instabilities, we first consider
the evolution of perturbations from certain special initial
conditions. As outlined in section 1, the SR instability
will not be excited if the initial perturbation vorticity
lies entirely outside of the RMV; this was also con-
firmed by NM with numerical calculations. NM also
showed that the initial condition may be adjusted so that
there is no excitation of the pseudo-mode, thus elimi-
nating the high-frequency oscillation in the perturbation
kinetic energy. This is possible in 2D flow because the
excitation of the pseudo-mode is proportional to

R

2h(R) 5 r z (r, 0) dr. (3.21)E 1

0
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FIG. 14. Perturbation kinetic energy as a function of time for the
balanced perturbation localized at r 5 20 km.

FIG. 15. Perturbation kinetic energies, normalized by initial values,
for three special initial conditions: with the pseudo-mode removed
(solid), initial PV localized at r 5 80 km (dashed), and the SR neutral
mode (dash–dot).

Thus, the excitation of the pseudo-mode may be elim-
inated by adding to the original initial condition (2.2)
an opposite-signed vorticity anomaly, localized outside
RMV, such that h(R) 5 0 (see NM section 4c for de-
tails). Here, we again replace z1 with q1 in our calcu-
lations.

Results of simulations of the NM–shallow-water vor-
tex with these two special initial conditions are shown
in Fig. 15. When the initial perturbation PV lies entirely
outside of the RMV, no instability is excited, and even-
tually the perturbation becomes constant in amplitude.
The structure of the final state, in fact, is simply the
pseudo-mode. Also, with the initial PV modified so that
the pseudo-mode is not excited, the high-frequency os-
cillation in the kinetic energy is eliminated.

The SR solution shows that if the initial vorticity
perturbation is exactly proportional to the basic-state
vorticity gradient up to RMV, that is, z1(r, 0) } ] /]rz
for r , RMV, then the instability will not be excited
and long-time growth will not occur. Nolan and Mont-
gomery confirmed this, and further demonstrated nu-
merically that a wavenumber-one perturbation with

]z
z (r, t) 5 C H(RMV 2 r), (3.22)1 ]r

where here H is the Heaviside step function, and C is
some complex constant, is in fact a neutral mode that
rotates around the center axis with an angular velocity
equal to that of max; that is, z1(r, t) 5 z1(r, 0) .2iV tmaxV e
This can be shown directly, and the proof is given in
the appendix.

Does a similar neutral mode exist in our shallow water
vortex? Almost, but not quite. We simulated a pertur-
bation with initial PV:

]q
q (r, 0) 5 C H(RMV 2 r). (3.23)1 ]r

We then defined the initial perturbation height field with
two distinct approaches. The first approach uses the ob-
servation that if both q1 and h1 are proportional to their
respective basic-state gradients for all r, then the time
evolution of the perturbations will be zero: this the pseu-
do-mode for a shallow-water vortex. In this spirit, we
define

]h
h (r, 0) 5 C H(RMV 2 r) (3.24)1 ]r

to represent a localized displacement of the inner-core,
up to RMV. [Note that if (3.23) and (3.24) hold, then
so does (3.22).] Alternatively, one can define the initial
hn to be that which holds the initial qn in balance, as
described in section 3b. Remarkably, both of these
choices result in virtually identical evolutions of the
perturbations and their kinetic energies (KE), which is
also shown in Fig. 15 (the energies as a function of time
of these two initial conditions are so close that they are
indistinguishable in the figure). This is because when
we use (3.24), there is a discontinuity in the initial height
field, and the solution immediately radiates a pulse of
inertia-gravity waves that quickly bring the disturbance
into balance; the resulting change in kinetic energy,
however, is negligible. For both cases, the kinetic energy
remains roughly constant for the first few hours (during
which the perturbation rotates without a noticeable
change in structure), but then begins to increase ex-
ponentially (albeit slowly, due to the slow growth rate
of the unstable mode). By 48 h the perturbation KE has
increased by a factor of only 5.44. At this time, the
structure of the disturbance is quite similar to the most
unstable mode. We note that linear growth in energy
does not seem to occur. Thus it appears that using the
shallow water equivalent to the SR neutral mode inhibits
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FIG. 16. Perturbation kinetic energies as a function of time from
unbalanced initial conditions: (a) evolution out to 48 h, for the per-
turbations localized at r 5 20 km (solid) and at r 5 80 km (dashed),
and (b) the evolution for the first hour for the perturbation localized
at r 5 20 km. Note the very different scales along the vertical axis
for the two plots, so that the long-time behavior can be analyzed in
(a) and the short-time behavior can be analyzed in (b).

the algebraic instability, but nonetheless excites the most
unstable mode.

e. Evolution from unbalanced initial conditions

Just as we can generate initial conditions that are
nearly balanced, we can also generate initial conditions
that are almost completely ‘‘unbalanced.’’ This is done
by first choosing an arbitrary height perturbation, then
computing an associated vorticity field

q
z 5 h , (3.25)n nh

such that qn 5 0 everywhere [cf. (3.12)], and then com-
puting the initial velocity fields from (3.19) and (3.20).
We performed two simulations, one with a height per-
turbation that is a Gaussian-localized at r 5 20 km and
a maximum amplitude of 50 m, congruent to (2.2), and
a similar perturbation localized at r 5 80 km. For these
simulations, we used a much shorter time step, Dt 5 2
s, so that the phase speeds of the resulting gravity waves
would be accurately captured. The perturbation kinetic
energies as a function of time for these two simulations
are shown in Fig. 16a. The ‘‘spikes’’ in the kinetic en-
ergy just after t 5 0 are associated with the rapid ap-
pearance, outward propagation, and dissipation of grav-
ity waves. While the freely propagating inertia-gravity
waves will not generate PV and/or balanced flow on a
quiescent f plane, such is not the case when a nontrivial
basic state is present (Montgomery and Lu 1997). By
interacting with the basic state, each of these solutions
projects a small amount of its energy onto the balanced,
‘‘slow manifold,’’ such that for the inner perturbation,
the wavenumber-one instability is marginally excited,
and for the outer perturbation, the final state is just the
pseudo-mode as it was for the similar balanced pertur-
bation above (as shown in Fig. 15). A close-up of the
early kinetic energy evolution is shown in Fig. 16b.
Once the initial gravity wave packet is developed, the
waves propagate outwards with nearly constant kinetic
energy, until they are dissipated in the damping region
beyond r 5 190 km [cf. (3.9)]. The outward propagation
of these waves is depicted in Fig. 17, which shows the
complex magnitude of hn and dn at t 5 0, 30 s, 4 min,
and 10 min. Observe that the outer edge of the hn wave
packet is at r 5 100 km at t 5 240 s, and at r 5 200
km at t 5 600 s. From these two points we can estimate
the simulated gravity wave speed to be 277.8 m s21,
less than 1% in error from the theoretical gravity wave
speed ( )1/2 5 280.1 m s21. After the waves spreadÏgH
into the damping region, only balanced flow is left be-
hind.

f. Mechanisms for algebraic and exponential
instability

Both algebraic and exponential instability mecha-
nisms appear to be present in the NM–shallow-water

vortex. Exponential instability for n 5 1 perturbations
in vortices with low-vorticity cores was first observed
in plasma physics experiments (Driscoll 1990), despite
the fact that linear theory predicts there can be no ex-
ponentially unstable modes in a two-dimensional, in-
viscid vortex for wavenumber-one (Reznik and Dewar
1994).4 The SR solution showed that secular growth can
occur, but could not account for the observed exponen-
tial growth. Efforts to understand this contradiction be-
tween theory and experiments have since followed.

4 It should be noted that wavenumber-one instabilities were also
found to exist in the presence of substantial viscosity by Nolan and
Farrell (1999a). Most statements on the existence of exponential in-
stabilities rely on analyses of the inviscid equations, and may not be
valid in the presence of viscous dissipation.
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FIG. 17. Evolution of the perturbation height and divergence fields
for the unbalanced perturbation localized at r 5 20 km: (a) complex
magnitude of hn at t 5 0 (solid), 30 s (dashed), 4 min (dash–dot),
and 10 min (dotted); and (b) complex magnitude of dn at t 5 30 s
(dashed), 4 min (dash–dot), and 10 min (dotted; values at t 5 0 are
negligible). Height units in meters and divergence units in s21.

There are three important distinctions between the
dynamics of two-dimensional and shallow-water vor-
tices: the presence of freely propagating inertia-gravity
waves, the variation of the basic-state height, and the
finite value of the Rossby radius of deformation. Inertia-
gravity waves clearly do not play a role in the dynamics
of either algebraic or exponential growth here, because
we have found that within the first few hours of all the
simulations the flow evolution occurs via quasi-bal-
anced flow. That the variation of the basic-state height
plays a role in the exponential instability has recently
been demonstrated by Finn et al. (1999a,b). They found
that the ends of the confinement region in the electron
plasma experiments are not perfectly flat, but have a
small variation with radius from the center of the ap-
paratus. As a result, the vertically averaged electron
density, which is equivalent to the two-dimensional ver-
tical vorticity, is not conserved by the flow, but instead
the potential density nL is conserved, where n is the
electron density and L 5 L(r) is the length of the con-

finement region. This obviously bears resemblance to
the conservation of potential vorticity (z 1 f )/h. Finn
et al. (1999a,b) have shown that wavenumber-one is
destabilized for hollow (low-vorticity core) vortices
when L(r) decreases with radius, which is equivalent to

(r) increasing with radius, as is the case for a balanced,h
shallow-water cyclonic vortex. This destabilization oc-
curs even when the perturbations to L(r) are neglected;
in most of their calculations, Finn et al. (1999a,b) con-
sider the ends of the confinement region to be fixed,
much like the motion of a shallow-water fluid between
two rigid lids of varying height.

How does the variation of (r) cause the appearanceh
of an exponentially unstable mode for n 5 1? Consider
the SR neutral mode (3.22), which rotates at the fre-
quency max. This frequency is faster than any otherV
perturbation can rotate (in the quasi-balanced regime),
and as a result, the SR neutral mode cannot couple with
any other perturbation. However, the radial gradient of

(r) modifies the PV gradient in such a way as to slowh
down the mode. To understand azimuthal propagation
of asymmetric perturbations on a shallow-water vortex,
we turn to asymmetric balance (AB) theory as devel-
oped by Shapiro and Montgomery (1993) and Mont-
gomery and Kallenbach (1997). It is well known that
in the core of intense vortices such as hurricanes, the
Rossby number is large and quasi-geostrophic theory is
not valid. However, the effect of rotation on linearized,
asymmetric perturbations is not merely f but rather is
described by the modified Coriolis parameter f̃ 5 f 1
2 and the absolute vorticity h 5 f 1 , [cf. (3.6)–V z
(3.7)] both of which will be substantially larger than f
(inside the RMV) due to the rapid rotation of the vortex
itself. As a result, such perturbations can be described
using a localized balance approximation, which is sim-
ilar to the balance described in section 3b, but which
may be extended through a series of approximations so
that the motions may be described in terms of a single
geopotential f9(r, l, z, t) (in the case of a continuous,
stratified fluid), much like in quasi-geostrophic theory.
Using the AB formulation, Montgomery and Kallen-
bach (1997) derived a local dispersion relation for the
propagation of vortex-Rossby waves in a shallow-water
vortex. In particular, consider some localized PV per-
turbation with azimuthal wavenumber n and radial
wavenumber k. The resulting phase velocity in the az-
imuthal direction is

f̃ (]q /]r)0 0C 5 R V 1 , (3.26)pl 0 0 2 2 2 2q {k 1 n /R ) 1 g }0 0

where the zero subscripts refer to local values at some
r 5 R0, and

h f̃0 02g 5 (3.27)0 gh0

is the square of the inverse of the local Rossby radius.
Both the SR–neutral mode and the shallow-water un-
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FIG. 18. Structure of the PV of the most unstable mode for H 5
8 km, Dr 5 0.5 km (solid, with x’s), and an amplitude-matched PV
equivalent SR neutral mode (dashed, with o’s). PV units in s21 m21.

stable mode have perturbation vorticity in two localized
regions—an inner anomaly associated with the region
of positive basic-state vorticity gradient, and an outer
region associated with negative basic-state vorticity gra-
dient and max (cf. Figs. 13a,c). In 2D flow, the innerV
vorticity anomaly can rotate at the speed of max becauseV
it is in a region of positive PV gradient; that is, it prop-
agates faster than the local mean flow [cf. (3.25)]. Nolan
and Montgomery found that the speed of the outer dis-
turbances, which would by themselves propagate slower
than max, are in fact increased due to local vorticityV
production caused by the inner anomalies interacting
with the basic-state vorticity gradient. The outer anom-
alies retard the speed of the inner anomalies, but the
effect is minimal due to their small scale.

Note, however, that in the shallow water case this rate
of propagation is diminished because

]q 1 ]z q ]h 1 ]z
5 2 , , (3.28)

]r h ]r h ]r h ]r

since is increasing monotonically from the center andh
is positive everywhere. The retardation of the motionq

of the shallow-water perturbation equivalent to the SR–
neutral mode [defined by (3.23)], allows it to couple
with other disturbances in the vicinity of max, and to-V
gether they form an unstable mode. In fact, the angular
velocity of the most unstable mode is 1.462 3 1023 s21,
just slightly less than the maximum angular velocity
which is 1.470 3 1023 s21. Figure 18 shows a com-
parison of the complex magnitude of qn of the unstable
mode and a nearly neutral perturbation (3.23) with phase
and amplitude chosen to match the most unstable mode
as closely as possible. If one subtracts this nearly neutral
mode (in terms of its qn and its associated balanced
fields) from the unstable mode, we can see in Fig. 19
the structure of the difference between them, which con-

sists of sheared disturbances in the vicinity of max. InV
the 2D case, NM showed that the velocity fields induced
by such disturbances decay in amplitude with time as
t21/2, allowing for the slow but secular growth of the
SR–neutral mode.5 In the shallow-water case, the nearly
neutral mode and these disturbances are phase locked
and amplifying each other, resulting in exponential in-
stability.

In fact, Finn et al. (1999a,b) showed that, in the fixed
depth (no free-surface) approximation, the inner-core
mode is slowed by an amount that scales as k2/3, where

L0(r)
k ; (3.29)

L(0)

is a measure of the curvature of the surface normalized
by the length of the plasma chamber. The exponential
growth, which depends on this slowing of the mode,
was also shown to scale as k2/3. As shown in Fig. 9,
the wavenumber-one growth rates approximately scale
with the resting depth as H22/3, consistent with these
findings.

The propagation speed is further diminished by the
term in the denominator, which is not present in the2g 0

purely 2D case [see Montgomery and Kallenbach (1997)
or NM]. This term may modify the growth rates as the
resting depth H is decreased, although we have not de-
termined the explicit relationship. As the free-boundary
effects decrease the angular velocity of the nearly neu-
tral SR mode, the mode can ‘‘interact’’ more efficiently
with the basic-state flow, allowing for an even faster
exponential growth. A similar effect was also observed
when free-boundary effects on the containment length
L(r, l, t) were considered in the electron plasma ex-
periments of Finn et al. (1999a,b).

4. The wavenumber-one instability in a three-
dimensional hurricane-like vortex

We have shown that an instability similar to the SR
algebraic instability also appears in a shallow-water vor-
tex with a low-vorticity core. The natural next step is
to ask whether a similar instability occurs in a three-
dimensional vortex with wind and temperature fields
that are representative of actual hurricanes. To answer
this question, we have performed fully three-dimen-
sional simulations of such a vortex in a high-resolution
mesoscale model.

a. The model

The numerical model used for this simulation is ver-
sion 3b of the Regional Atmospheric Modeling System
(RAMS), developed at Colorado State University (Piel-
ke et al. 1992). The following features of the model
were implemented:

5 The cumulative effect of t21/2 forcing is #t21/2 dt 5 2t1/2 1 C.
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FIG. 19. Spatial structure of the residual PV and balanced height fields computed from the difference between the most
unstable mode PV amplitude and phase-matched shallow-water perturbation equivalent to the SR neutral mode: (a) perturbation
PV difference, in s21 m21; and (b) perturbation height difference in m.

R The fluid motions are nonhydrostatic and compress-
ible (Tripoli and Cotton 1982).

R A hybrid time step scheme, where momentum is ad-
vanced using a leapfrog scheme and scalars are ad-
vanced using a forward scheme. Both use second-
order advection.

R Vertical and horizontal turbulence are parameterized
using a Smagorinsky (1963) deformation-based eddy
viscosity with Richardson number stability modifi-
cations (Lilly 1962).

R Prognostic variables are the three components of mo-
mentum u, y, and w, the perturbation Exner function
p, and potential temperature u.

R The model uses an Arakawa C fully staggered grid.
R Perturbation Exner function tendencies used to update

the momentum variables are computed using a time
split scheme, similar to Klemp and Wilhelmson
(1978).

R The Klemp–Wilhelmson radiation condition is used
on the lateral boundaries, in which the normal velocity
component specified at the lateral boundary is effec-
tively advected from the interior.

R The top of the domain has a solid-wall boundary with
a 3-km-deep friction (Rayleigh damping) layer below.

R The lower boundary condition is free-slip.

A horizontal grid spacing of 1 km is used within a domain
covering 350 3 350 km. The domain extends to a height
of 23.0 km with vertical grid spacings of 1000 m. The
initial sounding is the Jordan (1958) mean hurricane sea-
son sounding. The simulation ran for 12 h with a time
step of 10 s. The Coriolis parameter has the uniform value
f 5 5.0 3 1025, which corresponds to 208N.

Furthermore, the model was utilized without a num-
ber of features typical of mesoscale simulations: no

moisture is included and there are no moist or radiative
processes involved. Thus the simulation is a highly ide-
alized representation of the evolution of a dry, balanced,
hurricane-like vortex.

b. The basic-state vortex

We wish to construct a basic state vortex that is similar
to that of an actual hurricane, and shares some of the
same stability properties as the NM vortex used above.
We begin by extending the NM velocity profile into the
vertical, by using analytic functions to cause an appro-
priate decay of the wind field with height; that is,

2.01.7z
V(r, z) 5 y (r) exp 21 2[ ]z top

2.7r
3 1.0 2 exp 2 , (4.1)5 1 2 6[ ]a 1 4z

where (r) is the NM velocity profile, r and z are they
distances from the center axis and the altitude, respec-
tively, and ztop 5 16 km is approximately the upper limit
of the wind field. The first multiplicative factor on the
rhs of (4.1) is a decay function, which causes the ve-
locity field to decay suitably with height, as is observed
in hurricanes (for examples of height–radius profiles of
observed hurricane wind fields, see e.g., Marks 1992;
Dodge et al. 1999). The second multiplicative factor has
an r dependence that causes the inner core wind field (i.e.,
the eyewall) to slope outward with height, as is also ob-
served. The parameter a serves only to prevent the last
bracketed term from being undefined at z 5 0; we use a
5 1.0 m. The basic-state wind field is shown in Fig. 20a.
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FIG. 20. Basic-state (a) azimuthal velocity in m s21, (b) potential temperature, and (c) Ertel’s PV for the balanced, hurricane-like vortex.

Next, we must find pressure temperature fields that
hold this vortex in hydrostatic,

]p(r, z)
5 2r(r, z)g, (4.2)

]z

and gradient wind,

2]p(r, z) V(r, z)
5 r(r, z) f V(r, z) 1 , (4.3)5 6]r r

balance. This is achieved with the following iterative
procedure. First, we initialize the axisymmetric pressure
and temperature fields using the Jordan (1958) observed
mean hurricane season soundings from the West Indies.
Next, we compute the pressure field by integrating (4.3)
inward from the outer boundary, while holding the tem-
perature field at its current value. Then, we correct the
temperature (and density) fields by enforcing the hy-
drostatic condition (4.2) everywhere, while holding the
pressure at its current value. This process is repeated

(typically 5–7 times) until the fields converge to a so-
lution. These computations are performed on a two-
dimensional, evenly spaced grid with 0.5-km resolution
in both the r and z directions, with a maximum radius
of 200 km and a maximum height of 22 km. The final
data is then interpolated onto the RAMS three-dimen-
sional Cartesian grid to provide the basic-state vortex.
The basic-state potential temperature and Ertel’s poten-
tial vorticity fields are shown in Figs. 20b and 20c. Note
the familiar warm core and the ‘‘hollow tower’’ of PV.
Although the vortex has been constructed without a
boundary layer, there is a local maximum in the PV
above the surface at z 5 2.5 km; this is quite similar
to the PV field produced in a recent high-resolution
simulation of an intensifying hurricane modeled after
Hurricane Andrew (1992; Chen and Yau 2001).

c. Initial conditions and results
For the initial conditions, we also add to this axi-

symmetric wind field a wavenumber-one perturbation
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similar to those used above. We first obtain the two-
dimensional wind field u9(r, l), y9(r, l) generated by
the same wavenumber-one vorticity perturbation used
in NM. We then extend the perturbation wind field into
the vertical with

[u9(r, l, z), y9(r, l, z)]

3.01.8z
5 [u9(r, l), y9(r, l)] exp 2 , (4.4)1 2[ ]zmode

where we have used a similar exponential decay factor
with height as in (4.1), and zmode 5 14 km. While the
pressure and temperature fields are not in balance with
this perturbation, its small amplitude prevents the re-
sulting adjustment process from affecting the results sig-
nificantly.

The evolution of this perturbed hurricane-like vortex
was simulated for 12 h. The initial conditions and early
evolution of the PV fields at 30-min intervals from t 5
0 h to t 5 2.5 h are shown in Figs. 21 and 22, both at
z 5 0.5 km and z 5 4.5 km. At z 5 0.5 km, we see
the familiar growing wobble of the low-vorticity core.
At z 5 4.5 km, the amplitude of the vorticity pertur-
bation and the resulting wobble are considerably less,
as is the speed at which they rotate around the center,
since the azimuthal winds are substantially slower at
this altitude (about 35 m s21). Unlike the two-dimen-
sional simulations, the growing disturbance begins to
develop some rather complex structure within the first
6–12 h, as is shown in Fig. 23. This is due to the different
rotation speeds with height of the vorticity perturba-
tions, leading to stronger vertical gradients in velocity
and vorticity, and ultimately to instabilities with com-
plex structures in the vertical as well as horizontal di-
rections. Even at this stage, however, the maximum ver-
tical velocities are 25 cm s21 or less (not shown), such
that the dynamics remain quasi-balanced. The effect of
these secondary instabilities is to cause an even more
rapid rearrangement of the inner-core vorticity. Note
how at t 5 12 h, some of the highest vorticity at z 5
0.5 km has arrived at the vortex center, similar to the
results for purely two-dimensional flow shown in Figs.
7 and 8. At z 5 4.5 km, the instability is not nearly as
robust and the low-vorticity core remains while the
wavenumber-one perturbations have been axisymmetri-
zed in the near field.

The wobble of the low-level center, as indicated by
the location of the minimum pressure, can also be seen
in the mesoscale simulation. This is demonstrated in
Fig. 24, where we show the lowest contourable pressure
level at the lowest model level (z 5 500 m) at 30-min
intervals in the simulation. These pressure contours give
a clearer indication of the location of the minimum pres-
sure rather than simply indicating the gridpoint locations
of the lowest pressure value, because such locations can
only fall on the 1-km-spaced grid points (consider what
the last 12 h of data in Fig. 6 would be like if the grid
spacing were three times larger in those simulations).

As we saw with the high-resolution, two-dimensional
simulations, the amplitude of the wobble only increases
for the first few hours, then steadily declines as the
instability transitions to nonlinear dynamics and inner-
core mixing. Another imporant point is that the mini-
mum pressure steadily declines as the inner-core vor-
ticity rearrangement proceeds; this is exactly the process
Emanuel (1997) requires for a hurricane to reach its
MPI.

5. Conclusions

We have investigated the instability of wavenumber-
one perturbations to hurricane-like vortices with low-
vorticity cores. We find that the instability is a robust
feature of such vortices.

In purely two-dimensional flow, the remarkable SR
solution predicts that the instability will grow in time
as t1/2, and was confirmed and studied in some detail by
NM. Here, high-resolution simulations of the instability
in purely two-dimensional flow show that the instability
leads to a redistribution of the inner-core vorticity, with
the highest vorticity accumulating at the center of the
vortex within 24 h. Given sufficient time, the low-vor-
ticity core is eventually ejected from the inner core of
the vortex and symmetrized in the surrounding envi-
ronment. While we found that the timescale for this
ejection process depended strongly on the viscosity,
such behavior is likely only relevant for related plasma
physics experiments and other effectively two-dimen-
sional flows.

The shallow-water equations allow for the important
additional phenomena of vortex stretching, gravity
waves, and gradient adjustment. In such an environ-
ment, the wavenumber-one instability becomes an ex-
ponential instability, with a structure nearly identical to
that of the algebraic instability, representing a displace-
ment of the low-vorticity core relative to the surround-
ing flow. The transition of the algebraic instability to
the exponential instability is caused by a slowing of the
propagation of vortex-Rossby waves, caused both by
the variation of the basic-state height, and also finite
Rossby radius effects. These effects allow the SR–neu-
tral mode to couple more effectively with other pertur-
bations and form an unstable mode. For fluid depths
relevant to hurricane-like vortices, the growth rates are
fairly slow such that the exponential growth is com-
parable to the algebraic growth on the relevant time
scales of 6 to 24 h.

Finally, we have shown that a very similar instability
will appear when a three-dimensional, balanced vortex
with a hurricane-like wind field is initialized with a
wavenumber-one perturbation. For the first few hours,
the evolution of the low-level PV is nearly identical to
what has been seen in 2D flow and in the shallow-water
equations. However, within 12 h the differential rotation
of the vortex with height leads to three-dimensional
(though still quasi-balanced) instabilities and then to a
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FIG. 21. Early evolution of the Ertel’s PV in the mesoscale model simulation every 30 min, at z 5 0.5 km and z 5
4.5 km, as labeled. Contours at z 5 500 m are at 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, and 10.0 PV units (equal to 1026

m2 K s21 kg21). Contours at z 5 4500 m are 3, 6, 9, 12, 15, 18, and 21 PV units. The highest contour levels in each
case are thick, so that local maxima can be identified.
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FIG. 22. Early evolution of the Ertel’s PV in the mesoscale model simulation every 30 min, at z 5 0.5 km and z 5
4.5 km, as labeled. Contours are as in Fig. 21.
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FIG. 23. Later evolution of the Ertel’s PV in the mesoscale model simulation every 30 min, at z 5 0.5 km and z 5
4.5 km, as labeled. Contours are as in Fig. 21.
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FIG. 24. The lowest contourable pressure levels at the lowest grid
level (z 5 500 m) in the mesoscale model simulation of the wave-
number-one instability. For each contour, the numbers indicate the
time at 30-min intervals; that is, contour 1 is at t 5 30 min, 2 is at
t 5 60 min, etc. Plot (a) shows the results for the first 8 times after t
5 0, from t 5 30 min to t 5 4 h; the contour levels are 928.00, 927.33,
926.62, 925.74, 924.98, 924.32, 923.76, and 923.34 mb, respectively.
Plot (b) shows later times, from t 5 8 h 30 min to t 5 12 h; the
contour levels are 921.67, 921.54, 921.39, 921.24, 921.12, 921.04,
921.00, and 921.00 mb.

rapid mixing of the inner-core vorticity. Also, the wave-
number-one instability seems to be confined to the low-
est few kilometers of the vortex; above, only axisym-
metrization occurs. Nonetheless, the basic principle
holds that a low-vorticity core, hurricane-like vortex can
experience a wavenumber-one instability, and that this
instability leads to inner-core vorticity mixing. Initially,
the mixing proceeds due to the displacement of the low-

vorticity core and a net inward flux of higher, eyewall
vorticity, as was shown in the two-dimensional simu-
lations of section 2. This mixing is later enhanced by
smaller-scale, three-dimensional instabilities, which are
caused by the rapidly changing horizontal and vertical
structures of the PV field.

The vortices we have studied here have been con-
structed to be stable or at least only weakly unstable to
higher wavenumber perturbations. A valid question to
ask is whether or not, in the real atmosphere, the wave-
number-one instability would be dominated by higher
wavenumber instabilities. Indeed, higher wavenumber
instabilities in geophysical, hurricane-like, and tornado-
like vortices have been a topic of considerable research
(e.g., Rotunno 1978; Flierl 1988; Peng and Williams
1991; Smyth and McWilliams 1998; Schubert et al.
1999; Nolan and Farrell 1999a,b), and the authors are
currently extending such work into the realm of three-
dimensional, baroclinic, hurricane-like vortices similar
to the vortex simulated in our mesoscale model (Nolan
and Montgomery 2000b). However, the existence and
relevance of the wavenumber-one instability is not pre-
cluded by higher-wavenumber dynamics. The higher
wavenumber instabilities generally require that the eye-
wall have a certain structure—that the radius of the low-
vorticity core be larger than the width of the high-vor-
ticity eyewall annulus, and/or that the ratio of the eye-
wall to eye vorticity be above some value (see Schubert
et al. 1999, section 2). The small amplitude, high fre-
quency trochoidal motion of hurricanes, discussed in
section 1 of this paper, is observed at least as frequently
as higher-wavenumber instabilities and mesovortices
within hurricanes. The wavenumber-one instability only
requires the presence of an angular velocity maximum
other than at the center axis, and thus can occur in
hurricanes with very small eyes and also weaker storms.
Furthermore, while higher-wavenumber instabilities
may often be present, their smaller scales makes them
less effective in ameliorating the PV maximum in the
eyewall region (especially in light of the steady PV
generation caused by convection) as compared to the
larger displacements caused by the wavenumber-one in-
stability (similar to the smaller total heat fluxes asso-
ciated with short-wavelength baroclinic waves; see, e.g.,
Welch and Tung 1998).

The wavenumber-one instability presented here, and
its associated trochoidal motion, are fundamentally dif-
ferent from the larger-scale, lower frequency trochoidal
motions discussed in previous studies (e.g., Yeh 1950;
Kuo 1969; Abe 1987; Flatau and Stevens 1993; Jones
1995). Rather than being caused by an interaction with
the hurricane’s environment, this instability is funda-
mental to vortices with low-vorticity cores, and rep-
resents a growing displacement of the low-vorticity
center, which ultimately leads to inner-core vorticity
and angular momentum redistribution. Such inner-core
mixing also causes the minimum surface pressure to
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fall, which may have an important impact on the further
evolution of the storm.
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APPENDIX

Neutral Inner-Core Modes in Two-Dimensional
Vortices

We show that in a two-dimensional, inviscid vortex
with an angular velocity maximum, a disturbance whose
perturbation vorticity is exactly proportional to the ba-
sic-state vorticity gradient, up to the location of the
angular velocity maximum, and zero elsewhere, is a
neutral mode that rotates at the speed of the angular
velocity maximum. The linearized equations of motion
for inviscid perturbations are

]z ]zn 1 inVz 1 u 5 0, and (A.1)n n]t ]r

in
u 5 2 c , (A.2)n nr

where
R

c (r, t) 5 z (r, t)G (r, r) dr, (A.3)n E n n

0

and in a cylindrical domain of size R, the Green function
for wavenumber n is

n n11r r 1
n 2n112 r r 0 # r # r

2n2nR 2n
G (r, r) 5 (A.4)n n n11r r 1

2n n11 2 r r r # r # R
2n2nR 2n

(Carr and Williams 1989).
Now let us consider the case for n 5 1 and

]z
z (r, 0) 5 C H(RMV 2 r), (A.5)1 ]r

where C is some complex constant, RMV is the location
of the angular velocity maximum associated with the
neutral mode (if there is more than one angular velocity

maximum, there will be neutral modes associated with
each one; see the last paragraph of this appendix), and
H is the Heaviside step function. Without loss of gen-
erality we may consider the case with C 5 1. Then how
does the perturbation evolve? We must solve for the c1

associated with z1:

r 2]z rr 1
21 2c (r) 5 2 r r dr1 E 21 2]r 2R 20

RMV 2]z rr 1
1 2 r drE 21 2]r 2R 2r

r RMV]z 1 ]z 1
21 25 2 r r dr 1 2 r drE E1 2 1 2]r 2 ]r 20 r

RMV 2]z rr
1 dr 5 I 1 I 1 I .E 1 2 321 2]r 2R0

(A.6)

Let us consider the first integral,
r1 ]z

2I 5 2 r dr. (A.7)1 E2r ]r0

Using the definitions of vorticity and angular velocity,
one can show that

2]z ] V ]V
5 r 1 3 , (A.8)

2]r ]r ]r

and thus

]z ] ]V
2 3r 5 r . (A.9)1 2]r ]r ]r

Therefore,

r1 ] ]V 1 ]V
3 2I 5 2 r dr 5 2 r1 E 1 22r ]r ]r 2 ]r0

1 r ]y
5 y 2 . (A.10)

2 2 ]r

Using (A.9), we can write the third integral as

RMVr ] ]V
3I 5 r dr 5 0, (A.11)3 E2 1 22R ]r ]r0

even for finite R, due to the definition of RMV. We now
proceed with the second integral,

RMV1 ]z
I 5 2 r dr2 E2 ]rr

1
5 2 r[z (RMV) 2 z (r)]. (A.12)

2

Since 5 ] /]r 1 /r, we can rewrite I2 asz y y
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1 ]y y ]y y
I 5 2 r 1 2 1 . (A.13)2 1 2 1 2[ ]2 ]r r ]r r

r5RMV

The final step is to use the identity

]y ]V
5 V 1 r 5 V , (A.14)max1 2 1 2]r ]r

r5RMV r5RMV

so that we may arrive at the solution

c (r) 5 I 1 I 5 r[V(r) 2 V ].1 1 2 max (A.15)

In fact, (A.15) only applies for r # RMV; for r . RMV,
c1(r) 5 I1(r) 5 I1(RMV) 5 0.

Now, if we substitute (A.5) and (A.15) into (A.1) and
(A.2), we arrive at the equation of motion

]z1 1 iV z 5 0; (A.16)max 1]t

that is, the perturbation has fixed structure and rotates
at the maximum angular velocity.

Finally, we note that these arguments do not rely on
the uniqueness of the angular velocity maximum. That
is to say, for a vortex with an arbitrary number of an-
gular velocity maxima, there will be a neutral mode
associated with each maximum. The arguments above
will apply in each case, provided that the RMV used
throughout is the same as that in (A.5). As SR showed
in their original solution, there will also be an algebraic
instability associated with each of the angular velocity
maxima.
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Möller, J. D., and M. T. Mongomery, 2000: Tropical cyclone evolution
via potential vorticity anomalies in a three-dimensional balance
model. J. Atmos. Sci., 57, 3366–3386.

Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex
Rossby waves and its application to spiral bands and intensity
changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–
465.

——, and C. Lu, 1997: Free waves on barotropic vortices. Part I:
Eigenmode structure. J. Atmos. Sci., 54, 1868–1885.

——, and J. L. Franklin, 1998: An assesment of the balance ap-
proximation in hurricanes. J. Atmos. Sci., 55, 2193–2200.
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