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ABSTRACT

A regional hybrid variational–ensemble data assimilation system (HVEDAS), the maximum likelihood

ensemble filter (MLEF), is applied to the 2011 version of the NOAA operational Hurricane Weather Re-

search and Forecasting (HWRF) model to evaluate the impact of direct assimilation of cloud-affected Ad-

vanced Microwave Sounding Unit-A (AMSU-A) radiances in tropical cyclone (TC) core areas. The forward

components of both the gridpoint statistical interpolation (GSI) analysis system and the Community Radi-

ative Transfer Model (CRTM) are utilized to process and simulate satellite radiances. The central strategies

to allow the use of cloud-affected radiances are (i) to augment the control variables to include clouds and

(ii) to add the model cloud representations in the observation forward models to simulate the microwave

radiances. The cloudy AMSU-A radiance assimilation in Hurricane Danielle’s (2010) core area has pro-

duced encouraging results with respect to the operational cloud-cleared radiance preprocessing procedures

used in this study. Through the use of the HVEDAS, ensemble covariance statistics for a pseudo-AMSU-A

observation in Danielle’s core area show physically meaningful error covariances and statistical couplings

with hydrometeor variables (i.e., the total-column condensate in Ferrier microphysics). The cloudy radi-

ance assimilation in the TC core region (i.e., ASR experiment) consistently reduced the root-mean-square

errors of the background departures, and also generally improved the forecasts of Danielle’s intensity as

well as the quantitative cloud analysis and prediction. It is also indicated that an entropy-based information

content quantification process provides a useful metric for evaluating the utility of satellite observations in

hybrid data assimilation.

1. Introduction

Tropical cyclone (TC) is a generally inclusive term

that includes hurricanes in theAtlantic basin and typhoons

in the western Pacific. As one of the most destructive

natural hazards on Earth, TCs are often accompanied by

severe winds, torrential rainfall, and flooding and can

dramatically impact a society.

Given their enormous economic and social impacts,

the demand for more accurate TC track and intensity

forecasts with longer lead times is greater than ever.

Over the past two decades, significant progress has been

made in TC track prediction but TC intensity and struc-

ture forecasts remain a challenge for most operational

numerical weather prediction (NWP) centers (DeMaria

2009). The apparent lag in skills between track and in-

tensity forecasts is the result of many factors. First of all,

vortex initialization in the current generation of hurri-

cane models [e.g., Hurricane Weather Research and

Forecasting (HWRF), Geophysical Fluid Dynamics

Laboratory (GFDL)], which appears to work well for

synoptic-scale TC forecasts, is not adequate for creating

realistic vortex structures. One of the reasons is that these

same models do not assimilate high-resolution obser-

vations in the core region of TCs, which can be a key to

intensity prediction (e.g., Rogers et al. 2006; Zhang et al.

2009). Observational analyses (Wakimoto and Black

1994; Gall et al. 1998) and numerical simulations (Yau

et al. 2004; Rogers 2010) indicate that hurricanes often
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have strong asymmetries in deep convection in the

eyewall and in the spiral rainbands. In general, these

clouds in a TC are intricately connected with the dy-

namics of the cyclone itself. As indicated in an idealized

but typical array of rainbands and eyewall in a TC in

Houze (2010, Fig. 30), the inner-core region with an

approximately 150-km radius is dynamically constrained

by the strong cyclonic vortex circulation, while the outer-

core region is the ambient region of the vortex, depicted

as broken lines of convective cells spiraling around the

TC. Kurihara et al. (1993) found that adding the asym-

metric component to the axisymmetric vortex yields

marked improvements in the forecasting of hurricane

track and intensity. One potential solution to this prob-

lem is in assimilating remotely sensed observations of

clouds into the TC core area, especially when the storm is

over the open ocean where there are not sufficient in situ

observations available.

Recently, considerable effort and progress has been

made in the area. Through the Advanced Research core

of theWeather Research and ForecastingModel (ARW-

WRF; Skamarock et al. 2005) with its three-dimensional

variational data assimilation system (3DVAR; Barker

et al. 2004), Xiao et al. (2009) and Pu et al. (2009) suc-

cessfully assimilated airborne Doppler radar (ADR)

data into the TC core area. Both studies highlighted

a need for data assimilation techniques with vortex-

specific flow-dependent forecast error estimations, such

as the ensemble Kalman filter (EnKF) or 4DVAR.More

recently, using a WRF-based EnKF data assimilation

system, Zhang et al. (2011) examined the assimilation

of high-resolution ADR observations for convection-

permitting hurricane initialization and forecasting in

real time and showed a very promising level of perfor-

mance over the past three Atlantic hurricane seasons in

terms of averaged mean absolute intensity forecast

errors. However, ADR observations are only occasion-

ally available when National Oceanic and Atmospheric

Administration (NOAA) research aircraft are conduct-

ing hurricane reconnaissance.

As an essential part of the earth observing system,

satellite observations are ideal for TC studies because of

the temporal and spatial coverage. Currently, the cloud-

cleared radiance assimilation has become a routine

practice in most NWP centers. Cloud-cleared radiance

observations are important since they provide critical

information about the temperature and water vapor

structure surrounding cloudy and rainy areas. How-

ever, using only cloud-cleared data represents a major

underutilization of high-cost satellite instruments, since

satellite measurements in cloudy and rainy regions con-

tain valuable information pertinent to the atmospheric

hydrological cycle. For TC modeling, cloud-cleared

radiance assimilation also does not provide information

needed to improve the TC vortex initialization. Such

shortcomings have recently led to a growing interest in

assimilating satellite observations in cloudy and rainy

regions at operational NWP centers (e.g., McNally 2009;

Bauer et al. 2010).

In this study, the prototype regional hybrid data as-

similation system is based on the 2011 version of the

NOAA operational HWRFmodel (Gopalakrishnan et al.

2011), and the maximum likelihood ensemble filter

(MLEF; Zupanski 2005; Zupanski et al. 2008). Specifi-

cally, observations from the Advanced Microwave

Sounding Unit-A (AMSU-A) (Robel 2009) on board the

NOAA-18 satellite and the European Organization

for the Exploitation of Meteorological Satellites

(EUMETSAT)MeteorologicalOperational-A (MetOp-A)

satellite have been utilized. For the purpose of dis-

cussion, direct assimilation of cloudy AMSU-A radi-

ances in the HWRF (2011) inner domain with a 68 3 68
domain, which is referred to as the ‘‘TC core area’’ in

this study. Thus, the TC core area typically covers both

the TC’s eyewall (i.e., the inner-core region) and its

spiral rainbands (i.e., the outer-core region). The cur-

rent study thus focuses on evaluating the added value

of directly assimilating cloud-affected AMSU-A radi-

ances in the TC core area using an operational hurri-

cane guidance model with the goal of developing a

coherent framework to assess the optimal set of chan-

nels and forwardmodel biases for model state estimation.

More specifically this study will (i) examine the perfor-

mance of the data preprocessing and direct assimilation

of the satellite radiances in the TC core area; (ii) assess

the value of cloud-affected satellite radiance using

Hurricane Danielle (2010); (iii) explore a multivariate

description of the ensemble error covariance in the TC

core area, especially involving the model hydrometeor

variables; and (iv) evaluate an entropy-based informa-

tion measure for determining the information content

of the observation datasets and assessing the effect of

forward model uncertainties.

The paper is organized as follows: Section 2 describes

the components of the regional hybrid variational–

ensemble data assimilation system (HVEDAS) used to

assimilate satellite radiances in theTC core area. Section 3

discusses the National Centers for Environmental Pre-

diction (NCEP) operational practice of assimilating cloud-

cleared AMSU-A radiances and recent implementations

that allow direct assimilation of cloudy AMSU-A radi-

ances. The experiment design is detailed in section 4,

and the results of the experiments performed to indicate

the performance of the new approach are presented in

section 5. The final section provides a summary of the

important findings and some concluding remarks.
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2. A regional HVEDAS for the TC core:
MLEF-HWRF (2011)

Before describing key strategies relevant to direct

satellite radiance assimilation in the TC core area, we

will first summarize the main components of the system.

There are three major components of a typical data

assimilation system: the NWP model, the observation

(forward) operators, and the data assimilation (DA)

algorithm.

a. NWP model: NOAA operational HWRF
(2011) model

We employ the atmospheric portion of the NOAA

operational HWRF (2011), which is based on the Non-

hydrostatic Mesoscale Model (NMM) dynamic solver

(Janji�c et al. 2001; Janji�c 2003). The HWRF (2011) is

configured with a parent domain with 27-km horizontal

grid spacing and a two-way interactive moving nest with

9-km spacing, covering a total area of 758 3 758 and 68 3
68, respectively. There are 42 vertical levels with the

model top at 50 hPa. Representations of atmospheric

physical processes in HWRF (2011) include the modi-

fied Ferrier microphysics scheme for the tropics (Ferrier

2005), the simplified Arakawa–Schubert (SAS) cumulus

parameterization, surface fluxes over water and land, and

atmospheric radiation parameterization (Gopalakrishnan

et al. 2011). In particular, the Ferrier scheme predicts

changes in water vapor and total condensate in the form

of cloud water, rain, cloud ice, and precipitation ice (snow/

graupel/sleet).

It is worth mentioning that in 2012 the operational

HWRF model has been upgraded to an ocean-coupled

triple-nested system operating at 3-km horizontal reso-

lution near the hurricane core, and has improved nest-

ing, dynamics, and physics compared to its earlier

versions.1 Significant improvements in the hurricane

track and intensity forecasts have been shown in the

Environmental Modeling Center (EMC) retrospective

tests for two seasons (2010 and 2011) in both the At-

lantic and eastern Pacific basins (Tallapragada et al.

2012; Bernardet et al. 2012).

b. Observation (forward) operators

Since satellite radiances are not components of at-

mospheric state vectors predicted by NWP models, di-

rect assimilation of radiance data requires a relationship

between the model-state vectors and the observed ra-

diances, as well as horizontal interpolation from the

model grid to the observations. At present, NCEP op-

erations use a three-dimensional variational data assim-

ilation system named the gridpoint statistical interpolation

(GSI; Wu et al. 2002; Kleist et al. 2009) to assimilate

satellite radiances, though only in cloud-cleared situa-

tions. In this study, however, only the forward compo-

nent of the GSI system, including data ingestion, thinning,

a prescribed bias correction scheme, and quality control

procedures was used to process the satellite observa-

tions. In other words, the GSI background error co-

variance, the adjoint model, and minimization were not

used in our method.

Satellite observations are simulated in GSI using the

Community Radiative Transfer Model (CRTM; Weng

2007). The CRTM, which includes both forward and

Jacobian radiative transfer (RT) models for all weather

conditions, is widely used in satellite data assimilation

and remote sensing applications. Given an atmospheric

profile of temperature, variable gas concentrations,

and cloud and surface properties, the forward component

of the radiative transfer model generates a pseudo-

observation of brightness temperature at the observa-

tion location. The clear and cloudy cases are treated with

different methods in CRTM. In clear-sky mode, a radia-

tive transfer model uses temperature, humidity, and

ozone as key inputs. In the presence of clouds, CRTM

also has a facility to compute cloud-affected radiances

using additional inputs of cloud content profiles, and

also to account for emission effects due to hydrome-

teors (Weng and Liu 2003). The current valid hydrome-

teor types includewater, ice, rain, snow, graupel, and hail.

As for GSI, we only utilize the forward component of

the CRTM.

c. Hybrid DA algorithm: MLEF

In this study, the maximum likelihood ensemble fil-

ter (Zupanski 2005; Zupanski et al. 2008) developed at

Colorado State University is used as the data assimila-

tion algorithm. The MLEF is a hybrid variational–

ensemble data assimilation system, which combines the

advantages of the variational and ensemble-based data

assimilationmethods. Compared to variational approaches,

the HVEDAS uses an ensemble of prior forecasts to

estimate the flow-dependent error covariance. Com-

pared to EnKF methods, the HVEDAS addresses the

nonlinearity of observation operators by employing an

iterative minimization of a cost function. An important

advantage of the iterative solution method is in its ap-

plications with nonlinear observation operators such as

cloud- and precipitation-affected satellite observations.

1Readers can refer to EMC HWRF website (available online at

http://www.emc.ncep.noaa.gov/index.php?branch5HWRF) for the

focal aspects of the HWRF (2012) implementation.
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The interested reader is directed to Zupanski (2005) for

details of MLEF equations.

The currentMLEF-HWRF (2011) systemwas designed

to assimilate cloud- and precipitation-affected observa-

tions in the TC core area. The forward component of

the GSI is adapted to access observations in an NCEP

operational environment. One advantage of using the

NCEP system to access observations is that we can as-

similate all operationally available data. There are two

steps in the MLEF-HWRF system (Fig. 1): the forecast

and the analysis. In the forecast step, MLEF calls sub-

routines to run HWRF (2011) ensemble 6-h forecasts to

the next analysis time, which are then translated into

MLEF state vectors. In addition to the ensemble, an

unperturbed forecast initiated from the optimal analysis

of the previous cycle is produced as the control forecast.

The ensemble perturbation is calculated at the end of

the 6-h forecast time from the difference between each

ensemble member and the control forecast. In the anal-

ysis step, we run an observation-forward model for all

ensemble members and the control forecast, and update

the forecast perturbations using the MLEF algorithm.

At the end of the analysis, MLEF provides both the

optimal analysis and uncertainty for this cycle. The up-

dated ensemble perturbations are then added to the

control forecast to generate initial ensemble members

for the next cycle. The forecast–analysis step is repeated

for each of the follow-on cycles.

The initial ensemble at the very beginning of the data

assimilation cycles was generated by the time-shifted

forecast technique, as described in Zupanski et al.

(2008). In the HWRF (2011) application, the param-

eters at lateral boundaries and the land surface for the

outer domains are unperturbed. Examination of the

inner domain is of major interest in this study, since it

contains the large gradients in pressure, temperature,

wind, and moisture that contribute to TC intensity var-

iations and uncertainty.

3. Methodology

In this section, the implementation of cloud-affected

AMSU-A radiance assimilation in the TC core area is

introduced by explaining how it differs from the current

data assimilation practices at NCEP operations [i.e., the

Global Forecast System (GFS) model and the opera-

tional HWRF system]. The AMSU-A measurements

have 15 channels (or frequencies) between 23.8 and

89GHz. It is generally assumed that microwave sounders

(i.e., AMSU-A) are all-weather instruments and are well

suited for studying and observing tropical storms (Kidder

et al. 2000).

FIG. 1. Schematic diagram of the MLEF-HWRF cycle for a hypothetical three-member

ensemble. Each member and control run assimilates the same observational datasets in both

the HWRF (2011) inner and outer domains.
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a. AMSU-A radiance assimilation in NCEP
operational systems

In this study, AMSU-A 1b radiance data within a 1.5-h

time window are ingested into the HWRF (2011) outer

and inner domains. The large volume of satellite data

and the expense of including them in the analysis usually

imply a need for thinning these observations prior to

assimilation. The size of the thinning box for theAMSU-A

radiances used in this study is 60 km. The individual

AMSU-A channels are carefully chosen based on prin-

ciples of radiative transfer theory.AMSU-A temperature

sounding channels in the 50–60-GHz oxygen band (i.e.,

channels 3–14) respond to the thermal radiation at vari-

ous altitudes within the atmosphere described by the

weighting functions (see Knaff et al. 2000, their Fig. 1).

For radiance assimilation in the TC core area, AMSU-A

temperature sounding channels are advantageous be-

cause they are less sensitive to the presence of clouds

when scattering is not detected (i.e., nonscattering

clouds), which is a desirable feature for traditional data

assimilation methods (i.e., variational methods). How-

ever, channels 10–14 are not assimilated in this study

because they peak above the top of the HWRF model

(i.e., 50hPa). In turn, AMSU-A channels at 23.8, 31.4,

and 89GHz (i.e., channels 1, 2, and 15), which are located

in window regions of the microwave spectrum, are sen-

sitive to the presence of cloud and precipitation, surface

emissivity, and water vapor effects. In the GSI forward

model, the cloud and precipitation detection procedures

use the window channels through a complex multichan-

nel algorithm to indicate the presence of thick clouds or

precipitation, and result in the rejection of some or all of

the sounding channels at that particular location. Nev-

ertheless, the window channels are of central importance

due to their sensitivity to cloud and rain. Additionally,

due to the different spatial and temporal coverage pat-

terns of each satellite,NOAA-18AMSU-A radiances are

captured in the HWRF (2011) inner domain every 12h

with MetOp-A radiances occasionally bound in between

(Table 2). NOAA-18 channel 9 and MetOp-A channel 7

are used in the quality control process, but not in analysis.

The radiance bias correction procedure may be one of

the most important aspects of satellite radiance assimi-

lation. In general, satellite channels may be prone to

systematic errors due to instrument or radiative transfer

problems, and these biases need to be corrected either

before the data enter into the minimization procedure

(statistical-basedmethod;Harris andKelly 2001) or during

minimization procedure (variational-based method; Dee

and Uppala 2009). Many research papers deal with the

removal of these biases and most of them are based on

global models and cloud-cleared radiances. Since direct

assimilation of satellite radiances with the regional

application is still in its infancy, our approach is to take

advantage of the radiance bias correction scheme de-

scribed by Derber and Wu (1998), in which predictor

coefficients are already generated for cloud-cleared

AMSU-A data using the GFS model. One of the major

concerns in using this method for cloudy radiance ap-

plications is that it was designed for processing the

cloud-cleared radiances, and thus cloudy radiances

could be inappropriately corrected.

Although the GSI data assimilation is used for all

storms in the NOAA operational HWRF (2012) ini-

tialization (Tallapragada et al. 2012; Bernardet et al.

2012), it is employed only for deep storms (classified by

TC vitals) in the HWRF (2011) system. However, in

both systems, assimilation of conventional data is ex-

cluded within a radius of 1200 km around the storm.

The utilization of all available datasets, especially storm-

scale observations used to define storm intensity and

structure, remains a challenge to the operational HWRF

modeling system.

b. Toward radiance assimilation in the TC core area

In this study, we have used the GSI data processing

procedures for cloud-cleared satellite radiance data as-

similation as closely as possible to avoid duplication and

maintenance of computer code (e.g., data ingestion and

thinning, channel selection, bias correction and quality

control). However, some departures are necessary when

this scheme is applied to the HWRF (2011) TC core

area, where satellite data commonly contain cloudy and/

or rainy conditions. In addition to using a hybrid data

assimilation method (i.e., MLEF), there are two other

strategies required for assimilating cloudy AMSU-A

radiances in the TC core area: (i) augmenting control

vector to include cloud variables (i.e., the total-column

condensate in Ferrier microphysics scheme), and (ii)

including cloud-guess profiles in themicrowave radiance

simulation.

The MLEF control variables are chosen from the

HWRF model prognostic variables and include zonal

and meridional wind components, temperature, specific

humidity, hydrostatic pressure depth, and total-column

condensate (CWM). Since CWM is directly related to

clouds in HWRF, including this variable allows more

realistic adjustment of the analysis to cloudy observa-

tions. Also, since very little is known about the forecast

error characteristics of the hydrometer variable, imply-

ing a difficulty when applying variational methods, it is

anticipated that the use of a hybrid methodology will

provide an opportunity to explore the error distribu-

tion and evolution within the TC vortex scale. On the

other hand, if cloud-affected satellite observations are
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assimilated, clouds must be derived from the cloudy

atmospheric variables by the application of cloud radi-

ative property estimation as part of the forward model.

In this study, we take advantage of a prognostic cloud

scheme (Hou et al. 2002), which considers liquid and ice

phases of the cloud contents, and uses explicitly de-

termined condensate from the first guess to compute

cloud radiative properties such as the effective radius of

cloud particles. The microphysical properties (i.e., ex-

tinction coefficient, single-scattering albedo, and asym-

metry factor) of cloud particles are precalculated and

stored in lookup tables (Simmer 1994; Macke et al. 1996;

Mishchenko et al. 2000; Baum et al. 2005). The Mie

theory is assumed in all calculations for spherical liquid

and ice water cloud particles, and modified gamma dis-

tributions of practical sizes are assumed in the micro-

wave spectral region.

Note that adding model cloud representations may

substantially modify the simulated brightness tempera-

tures (TBs), and thus the error characteristics ofAMSU-A

radiances, especially with respect to using prescribed

bias correction and quality control procedures designed

for cloud-cleared radiance assimilation. Thus, before

being ingested into analysis, the simulated cloud data-

sets are required to accurately represent radiative prop-

erties of the cloud-affected atmosphere in the TC core

area. This is a very important and necessary step in the

application of cloudy radiances in a data assimilation

system.

4. Case description and experimental design

As an initial attempt to reveal the potential of hybrid

data assimilation for the direct assimilation of satellite

radiances in the TC core area, this methodology was ap-

plied for one major hurricane case, Hurricane Danielle

(2010). Danielle spanned the period of 21–30 August

2010 and maintained hurricane strength beginning at

1800 UTC 23 August (Fig. 2a). In response to a new

weakening in the subtropical ridge over the central At-

lantic, a decrease in shear led to a gradual strengthening

of the storm on 26August. Danielle reached an intensity

of 85 kt (1 kt 5 0.5144m s21) at 1200 UTC 26 August

with minimum central pressure of 973 hPa (Fig. 2b).

Danielle eventually recurved southeast of Bermuda,

never posing a threat to land (Beven and Blake 2013).

High-resolution visible satellite images from the Geo-

stationaryOperational Environmental Satellite-13 (GOES-

13) (Figs. 2a and 2b) show that the clouds in a mature

stage of Danielle are dominated by upper-level cirrus

and cirrostratus, and there are rough tops of convective

clouds penetrating through the smooth cirrostratus.

At 1215 UTC 26 August, Danielle is an increasingly

well-organized storm (Fig. 2b). The most striking fea-

ture around that time are the organized cloud bands

spiraling anticyclonically outward, with a visible eye in

the central core.

Since the aim of this study is to examine the impact of

assimilating AMSU-A radiances in the TC core area, no

other observations were assimilated. This approach

provides an uncomplicated way to examine analysis in-

crements of microphysical and thermodynamic vari-

ables induced by AMSU-A radiances. To evaluate the

assimilation of cloud-affectedAMSU-A radiances in the

TC core area, two primary experiments are designed:

FIG. 2. GOES-13 visible satellite images at (a) 1745 UTC 24 Aug

and (b) 1215 UTC 26 Aug 2010.
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(i) the control experiment (CTL), which corresponds

to the current operational practice of no data assim-

ilation in TC core, and

(ii) sounding and window channel radiance assimilation

(all channel radiances; ASR), which corresponds to

a possible extension of the operational practice to

assimilate both sounding and window channel ra-

diances in the TC core with the proposed cloudy

approach in section 3b.

Two sensitivity experiments were also conducted to

evaluate the impact of modeling clouds, by including

cloud-guess profiles, and of omitting cloud-relevant chan-

nels in observations:

(iii) clear-sky radiance (CSR) assimilation, which is

similar to ASR, but uses forward models in cloud-

cleared conditions as the operational setting (i.e.,

no cloud-guess profiles are incorporated in forward

models) and

(iv) sounding channels radiance assimilation (SND),

which is similar to ASR, but excludes channels

with weighting functions peaking below 700 hPa

(i.e., channels 1–4 and 15). Since the lower-level

peaking channels are more sensitive to cloud liquid

water than other temperature sounding channels,

the intention of this experiment is to identify if the

hybrid data assimilation method, by varying the

total-column condensate to fit channels 1–4, and 15,

will improve the exclusive use of the temperature

sounding channels. Observation errors used in anal-

ysis are taken from NCEP statistics.

Table 1 can be referred to for a more detailed descrip-

tion of the experimental design.

Direct assimilation of satellite radiances using hybrid

data assimilation with a regional model describing the

TC core is fairly new and to the authors’ knowledge has

not yet been evaluated in any of the peer-reviewed lit-

erature. This configuration makes it more difficult to

assess the benefits of satellite radiances because the as-

similation cycle and model integration time are usually

no longer than 3–4 days due to the small domain sizes. It

is important to include a sufficient number of cycles so

that (i) the accumulated statistics on analysis–forecast

performance are meaningful and (ii) representative storm

features are sampled. The MLEF-HWRF cycling sys-

tem provides enough cases and addresses both of these

issues. A total of nine cycles for each experiment were

conducted, starting at 1200 UTC 24 August 2010, and

ending at 1800 UTC 26 August 2010. The assimilation

cycle interval is 6 h. The HWRF initial conditions at

1200 UTC 24 August 2010 are interpolated from the

global analysis fields from GFS. The analysis is modi-

fied by the removal of the GFS vortex and the insertion

of a bogus vortex based on theoretical considerations

and HWRF climatology. This vortex is relocated and

modified so that the initial storm position, structure, and

intensity conform to theNationalHurricaneCenter (NHC)

storm message provided by the TC vitals. In the 2012

operational HWRF system, the storm is further modi-

fied using observations and the GSI system in the storm’s

environment. In this study, our initialization scheme skips

the GSI analysis step in the operational HWRF vortex

initialization. Note that the modified HWRF vortex ini-

tialization is only used at the start time of MLEF-HWRF

cycling runs to restrict the simulated storm. Once the

MLEF-HWRF cycling runs begin, the analysis increments

are influenced only by AMSU-A radiance assimilation

within MLEF.

A 32-member ensemble is used in each experiment;

thus, the ensemble size is several orders of magnitude

smaller than the size of the control variable. To increase

the number of degrees of freedom for the signal (DFS)

in the assimilation, we employ error covariance locali-

zation (Yang et al. 2009) in the analysis, which includes

the interpolation of observation weights in ensemble

space. No vertical error covariance localization is ap-

plied in this study because of the possible interference

with the optimal use of microwave radiances due to the

fact that there is not explicit vertical position. Addi-

tionally, two minimization iterations of the nonlinear

conjugate-gradient algorithm (Zupanski et al. 2008) were

used in the data assimilation experiments.

5. Results

In this section, we first compare the simulated TBs

with the measured observations under different forward

model assumptions. Then, we investigate the structure

of the MLEF flow-dependent error estimations and the

implications for the cloudy satellite data assimilation.

Finally, we show how different configurations can influ-

ence the accuracy of TC intensity and structure analyses,

as well as short-range forecasts. We verify HWRF (2011)

inner-domain forecasts through the 54-h forecasts period

against various observations (e.g., NHC best-track data

TABLE 1. The experimental design for the MLEF-HWRF 6-h

cycling data assimilation system from 1200 UTC 24 Aug to 1800 UTC

26 Aug 2010. Different combinations of assimilated observations

and forward models are indicated in column 2 and 3, respectively.

Expt Obs (channel No.) Forward model

CTL — —

ASR 1–8, 15 Cloudy

CSR 1–8, 15 Clear

SND 5–8 Cloudy
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and satellite data), and examine information measures of

AMSU-A radiances. Finally, we evaluate the sensitivity

of the information content to channel selection and the

forward model errors.

a. Validation of the radiance simulations

In Figs. 3 and 4, the observed NOAA-18 AMSU-A

radiances in the HWRF (2011) TC core area are com-

pared to those simulated by the CRTM forward model

with and without the inputs of cloud content profiles

retrieved from the first guess. Since no bias correction is

applied in this step, these comparisons allow for quan-

tifying forward model biases based on different assump-

tions. Due to the low surface emissivity over the ocean

and the sensitivity to the surface temperature (or emis-

sivity), TBs fields simulated from cloud-clearedCRTMat

channels 1–3 and 15 (open black dots in Fig. 3) appear to

have a cold bias compared to the measured TBs. How-

ever, the inclusion of modeled clouds, which have higher

emissivities, results in a significant ‘‘warming’’ for warmer

atmospheres. Obviously, the overall agreement between

the measured and simulated radiances with cloudy radi-

ance simulation is more reasonable for cloudy and rainy

conditions. Since channels 4–8 are responsive to average

air temperature and atmospheric constituents at increas-

ingly higher altitudes through the troposphere, the simu-

lated TBs are less sensitive to the inclusion of modeling

clouds (Fig. 4) compared with those of window channels.

FIG. 3. Comparison of observed TBs with those simulated from the first guess with a cloud ice/water profile cal-

culation (red circles) and without the cloud ice/water profile calculation (black circles) for NOAA-18 AMSU-A

(a) channel 1 (i.e., 23.8GHz), (b) channel 2 (i.e., 31.4GHz), (c) channel 3 (i.e., 50.3GHz), and (d) channel 15 (i.e.,

89GHz), valid at 1800 UTC 24 Aug 2010 in the HWRF inner domain. The total number of observations is 75

following data thinning in a 60 km 3 60 km box. Dashed lines denote the trend lines for each scenario. The corre-

sponding red and black dots indicate those data that passed all of the QC procedures and were assimilated into the

analysis.
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It is also evident that some of the simulated cloudy TBs

in channels 5 and 6 have cold biases, although these

observations are not ingested into the analysis. The biases

are presumably due to the effects of the scattering of large

ice/liquid cloud particles that survived from the default

quality control procedures.

We further compare the TBs statistics after using

cloud-cleared bias correction (BC) and quality control

FIG. 4. As in Fig. 3, but for NOAA-18 AMSU-A (a) channel 4 (i.e., 52.8GHz), (b) channel 5 (i.e., 53.5GHz),

(c) channel 6 (i.e., 54.4GHz), (d) channel 7 (i.e., 54.9GHz), and (e) channel 8 (i.e., 55.5GHz).
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(QC) procedures. In Fig. 5, we demonstrate that the

prescribed BC scheme has a competitive degree of

performance in the cloudy radiance simulation. Fur-

thermore, the resulting distributions after BC and QC

are Gaussian, with the maximum number of observa-

tions at or near zero, which further confirms that the

agreement between the observed and simulated TBs

are very good. Simulations without cloud profile inputs

generally have low biases, and these errors are only

marginally increased in cloudy simulations. Also notice

that due to the use of operational QC procedures, the

AMSU-A observations are removed if thick clouds or

precipitation is detected, which is based on the retrieved

cloud liquid water and a retrieved scattering index.

Therefore, our assimilation results are valid only for

nonprecipitating thin clouds, which are also evident in

Fig. 6. In Figs. 6e–h, the areas of significant cloud ab-

sorption are highlighted by positive departures, since

cloud-cleared radiative transfer simulation for these

lower-level peaking channels underestimates the atmo-

spheric contribution added by relatively warm clouds

over the radiometrically cold surface. However, a colder

temperature departure is evident in Figs. 6a–d. It is

worth mentioning that the main differences between the

two simulations occur when thick clouds or precipitating

conditions prevail, even though only nonscattering/

nonprecipitating clouds are assimilated in this study.

Nevertheless, it is interesting to examine if the inputs

from the model cloud profiles lead to a better simulation

of the TC core area structure.

b. Forecast error covariance in hurricane core area

The formulation of the forecast error covariance and the

choice of control variables represent two important ele-

ments in a multivariate optimization problem. The struc-

ture of the forecast error covariance is fundamental since it

FIG. 5. As in Fig. 3, but for the comparison of observed TBs with the simulated TBs from channels (a) 1, (b) 2, (c) 3,

and (d) 4, after being processed using the prescribed bias correction (red circles, ASR; black circles, CSR). The

corresponding red and black dots indicate those data that passed all of the QC procedures and were assimilated into

the analysis.
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defines amathematical subspace where analysis correction

is performed.The square root of the diagonal of thismatrix

defines a standard deviation that can be used as a measure

of uncertainty. It is therefore important to investigate the

structure and uncertainty produced by a flow-dependent

forecast error covariance in the TC core area.

An example is show in Fig. 7 depicting ensemble errors

in Danielle’s core region valid at 0600 UTC 25 August

2010. The ensemble error quantifies sample standard de-

viations for a given variable, and represents the posterior

uncertainty provided by the MLEF. It is evident that the

forecast uncertainty is significantly larger in the TC core

region, not only in hydrometeor mass (i.e., column-

integrated CWM), but also in other kinematic and ther-

modynamic fields. For example, the forecast uncertainty of

CWM responds to the high-CWM region. In the vertical

cross section, the errors in temperature perturbation (Fig.

8a) are tilted with the radius of maximum wind (RMW),

shown in Fig. 8b. The significant forecast uncertainty in

low-level wind fields (Fig. 8b), which is related to varia-

tions of moist convection in the TC core region, is espe-

cially large near the ocean interface and close to the

RMW. Larger values indicate the potential for larger

corrections from observations in this area during the data

assimilation procedure. These results also indicate that the

forecast errors evolve with time, propagate with the flow,

and can be determined by the underlying storm dynamics.

Through auto- and cross covariance, the information

from a single observation can spread to nearby locations

and to other variables as well. To illustrate how error

covariance responds to an isolated unit perturbation

generated by a single observation, we consider a single

pseudo-observation of temperature at model level 23

(about 400 hPa) (Fig. 9). This would correspond to an

observation of AMSU-A channel 6 radiance sensitive to

temperature at location C (20.428N, 52.888W). Figures

9a and 9b show the horizontal responses of the tem-

perature and CWM fields, respectively, at the same

level. The autocovariance of the temperature indicates

a positive response at the observation location, as is ex-

pected. The same is true for the CWM response to

temperature perturbation (Fig. 9b), indicating that

warming implies more clouds. In addition, the horizon-

tal response between the temperature perturbation and

wind indicates a divergence, which is also evident as

vortex weakening. Figure 9c shows the vertical response

of CWM to temperature perturbation. It is evident that

there is strong vertical correlation between forecast er-

rors in temperature and hydrometeor content, implying

an impact on the analysis throughout the vertical col-

umn. In other words, if an AMSU-A channel 6 obser-

vation senses warming temperatures at one location,

this information will be extended to generate an analysis

response in the hydrometeor content in the nearby

FIG. 6. The NOAA-18AMSU-A TBs observations minus the cloudy CRTM-simulated background TBs (K; ASR experiment) before

bias correction and data thinning in a 60 km 3 60 km box, from channels (a) 1, (b) 2, (c) 3, and (d) 15 at 1800 UTC 24 Aug 2010.

Observation locations at which the observed radiances do and do not pass the QC process are indicated by solid dots and open circles,

respectively. (e)–(h) As in (a)–(d), but for the CSR experiment. The plus sign denotes the simulated storm, and the observed storm is also

indicated. (This is the same for the rest of the figures when applicable.)
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column and, therefore, influences the cloud analysis

throughout the troposphere.

c. Verification of assimilation results against
observations

Assimilation statistics in Table 2 shows that the ob-

servations minus the analysis (OMA) RMS errors over

the whole data assimilation period are indeed lower

than the observations minus the background (OMB)

ones for almost all active channels in the ASR experi-

ment, indicating a positive impact of analysis. Similar

results can be found in other radiance assimilation ex-

periments. The forecast tracks ofDanielle obtained from

theMLEF-HWRF 6-h cycling system are also compared

FIG. 7. The horizontal distribution of the optimal analysis state (solid/dashed lines) and the standard deviation

(shading) of (a) the vertical cumulatedCWM(kgm22), (b) the temperature perturbation (K) at 600 hPa, (c) u (m s21)

at 900 hPa, (d) y (m s21) at 900 hPa. All figures are valid for the analysis at cycle 3 (i.e., 0600 UTC 25 Aug 2010).

FIG. 8. As in Fig. 7, but for the vertical cross section of (a) T perturbation (K) and (b) y (m s21), along the latitude of

the storm center at 188N.
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with the NHC best-track data (Fig. 10). The forecast

tracks generally agree with the observed track, in which

the observed storm turned northwestward later on

25 August.

To further demonstrate the system’s capability in re-

producing rapid deepening of Danielle, the time series

of the minimum mean sea level pressure (MSLP) 6-h

forecasts are compared with the NHC best-track data

(Fig. 11).2 Since the 6-h forecast initialized with the

analysis obtained by the radiance assimilation at a pre-

vious analysis time was used as a background field, the

impact of AMSU-A radiance observations propagates

gradually into the atmospheric levels, where no obser-

vations are available (e.g., theMSLP fields). TheHWRF

vortex initialization tends to overestimate the MSLP of

Danielle at the start time of the data assimilation (i.e.,

1200 UTC 24 August 2010) in this study. Although the

CTL produced a deeper storm than was observed during

the 54-h data assimilation period, the MSLP forecast

trend is comparable to the observations. For both the

ASR and CSR experiments, during the first 24-h period,

the simulated MSLP decreased at a rate slower than the

CTL experiment, and more similar to the observed.

During the last 30 h, the storms in CSR and SND keep

weakening, while the deepening trend of the ASR storm

became closer to the observed after cycle 5, and even-

tually matched the best-track storm MSLP after cycle 8.

The difference is apparently due to the unique infor-

mation extraction capability of the ASR approach.

Now let us shift our attention to the verification of the

storm vortex-scale features, using the combined sum of

the hydrometeor variables (i.e., CWM). The simulated

column-integrated CWM indicates how well the model

predicts the precipitation field and the rainfall rate.

Figure 10a displays a MetOp-A AMSU-A-retrieved pre-

cipitation rate map valid at about 1 h later than those in

Figs. 12b–e. It is interesting to note that the precip-

itation pattern in Fig. 10a generally agrees with the

visible satellite imagery around this time (Fig. 2b) and

the idealized plan-view radar signature of a tropical

cycle presented in Hence and Houze (2012, their Fig.

1). In Fig. 12a, the eyewall with about 50-km radius is

shown as a semicircular ring of heavy convective pre-

cipitation. The rainbands closest to the eyewall, about

200 km from the TC center, are dominated by strati-

form precipitation, with broad uniform coverage and

very little convective precipitation. In the outer region,

organized rainbands spiraled outward in the northern
FIG. 9. Background error covariance, illustrated by plotting

a portion of the error covariance corresponding to a single obser-

vation perturbation on temperature at model level A 5 23 (about

400 hPa), 20.428N, 52.888W, valid at 1800 UTC 25 Aug 2010.

(a) Horizontal error autocovariance of Tc23 and T at Z 5 23.

(b) Horizontal error cross covariance of Tc23 and CWM at Z5 23.

(c) Vertical error cross covariance of Tc23 and CWM at 52.888W.

The horizontal error cross covariance of Tc23 and wind at Z5 23 is

also indicated in (a) and (b) by the vectors.

2MSLP is an integral quality and captures aspects of both the

magnitude wind and the structure of the wind field and is better

suited for intercomparisons of modeled TC structures.
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quadrant of the storm. All of these features are asym-

metric, with primary rainbands located on the down-

shear side. In Fig. 12c, the ASR-simulated storm size,

the cloud condensate distribution, and the area of in-

tense convection compare favorably to the distribution

of observed precipitation. In particular, the ASR re-

produced organized rainbands that spiraled outward

along the north edge of the eyewall with an intense

convective center embedded in the rainbands in the

northeastern quadrant. The active convection center

corresponds to the maximum rainfall core of greater

than 20mmh21 in Fig. 12a. Also well reproduced are

weaker centers embedded within the stratiform pre-

cipitation on the inner side of the maximum rainfall

center. Although the ASR experiment reproduces most

of the significant cloud features, a detailed comparison

shows a few deficiencies with the simulation. For ex-

ample, the observed precipitation rate map displays

an eyewall with a radius of about 50 km, which is not

reproduced in any experiment. Additionally, the ASR

experiment also underestimates the radius of the outer

rainbands in the northeastern quadrant. These de-

ficiencies are likely related to the relatively coarse

horizontal resolution (i.e., 9 km) of the HWRF (2011)

inner domain, which cannot resolve intense convective

cells at a scale of a few kilometers within the eyewall. It

is expected that the 2012 triple-nested HWRF system

with 3-km horizontal resolution near the hurricane core

can further address these shortcoming (Tallapragada

et al. 2012).

By contrast, the CTL-simulated cloud condensate

distribution differs markedly from the observations and

the ASR experiment. The CTL simulation exhibits two

convective centers embedded within the ‘‘distant rain-

bands’’ (Houze 2010) in the northern quadrant. In ad-

dition to the significant departures in storm deepening

after the first 24 h of integration in the CSR case, com-

pared with the CTL and ASR experiments (Fig. 12), it is

also obvious at cycle 7 that similar departures are seen in

the CSR cloud and MSLP distributions (Fig. 12d). It is

worth noting that the SND experiment, to a certain ex-

tent, reproduced the horizontal distribution of the col-

umn condensate in the northeast quadrant, such as the

intense convective center and the stratiform region on

its inner side. However, the deficiency of the SND ex-

periment in surface wind and MSLP intensity indicates

that the reproduction to the realistic cloud structure is

attributed to assimilating lower-peaking channels of

cloudy satellite radiances. Overall, the ASR approach

produced a storm that is most similar to the observed

TABLE 2. Data usage statistics related to the ASR experiment. These include the number of observations ingested after data thinning,

and passing all QC processes for all channels and cycles, as well as RMS errors of AMSU-A observation departures from the background

(OMB) and from the analysis (OMA). If theRMS error ofOMA is lower than that of OMB, it is in boldface. Calculations were carried out

in the HWRF inner domain over nine cycles from 1800 UTC 24 Aug to 1800 UTC 26 Aug 2010.

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8 Channel 15

Cycle 1

No. of obs 27 26 26 30 47 51 36 12 15

OMB 2.292 2.663 2.113 0.766 0.367 0.277 0.425 0.445 2.839

OMA 2.078 2.451 2.112 0.633 0.343 0.281 0.41 0.389 2.346

Cycle 3

No. of obs 20 20 22 22 41 48 51 10 18

OMB 2.16 2.028 1.442 0.643 0.338 0.24 0.354 0.418 2.538

OMA 2.103 1.63 1.388 0.641 0.287 0.204 0.349 0.406 2.267

Cycle 5

No. of obs 24 25 32 33 52 53 82 42 20

OMB 2.35 1.76 2.15 0.488 0.299 0.277 0.324 0.361 2.396

OMA 2.258 1.948 2.262 0.455 0.292 0.228 0.322 0.366 2.263

Cycle 6

No. of obs* 17 16 19 19 49 58 15 17

OMB 1.994 2.897 1.780 0.567 0.326 0.183 0.410 2.373

OMA 1.543 2.894 1.641 0.555 0.330 0.20 0.418 2.076

Cycle 7

No. of obs 27 30 32 32 62 65 75 29 27

OMB 2.726 2.099 1.439 0.39 0.282 0.182 0.294 0.341 1.619

OMA 2.651 2 1.475 0.369 0.278 0.171 0.289 0.329 1.849

Cycle 9

No. of obs 14 14 18 18 34 40 52 32 15

OMB 2.722 2.713 1.686 0.430 0.364 0.228 0.294 0.380 1.945

OMA 2.615 2.400 1.738 0.386 0.347 0.227 0.250 0.424 1.613

*AMSU-A observations from MetOp-A assimilated in this cycle; otherwise those from NOAA-18 are assimilated.
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storm in many aspects, compared to the other ex-

periments. In particular, the simulated asymmetry in

the convective structure has important implications

with respect to the improvement of quantitative pre-

cipitation forecasts (QPFs), wave height forecasts, and se-

vere wind warnings if the storm is about to make landfall.

Information content in ensemble subspace (Zupanski

et al. 2007) was developed using information theoretical

concepts elucidated by Shannon and Weaver (1949)

and through the application of their technique to at-

mospheric science by Rodgers (2000). In MLEF, the

amount of information contained in the observations

is quantified by comparing the effective signal to noise

ratios. This is accomplished practically through the

analysis of the information matrix in the ensemble

subspace, of dimensions Nens 3 Nens, which holds the

key the understanding and quantifying the differences

between various forward models and the observational

data. This study uses the same definition and formula

as Zupanski et al. (2007). The overall features of the

information content analysis (i.e., the spatial distribu-

tion of DFS) have been gathered together in Fig. 13,

which shows the information content that is added

through the combination of different forward models

and channel selection (i.e., ASR/CSR/SND experi-

ments; see Table 1). In Fig. 13, we plotted the DFS ob-

tained in experiments with 10 3 10 subdomains (e.g.,

pixels). The DFSs are calculated for each of the 100

local blocks and quantify the impact of the observations

in each local block. The flow-dependent DFS indicates

the utility of AMSU-A radiances in the HWRF (2011)

inner domain. In the first cycles, the correlated forecast

differences imply a reduction of DFS in the information

content or the forecast error covariance due to the utility

of the time-shifted ensemble perturbations at the be-

ginning of the data assimilation. However, the number

of DFSs quickly increases given that there is sufficient

error growth in ensemble prediction with HWRF. This

increase is particularly evident near the center of the TC

core area for the ASR experiment and to a lesser extent

FIG. 10. Tracks of Hurricane Danielle from the 6-h best-track data (denoted by the TC

symbol) from the NHC and the CTL/CSR/ASR/SND experiment forecasts are given between

1800 UTC 24 Aug and 1800 UTC 26 Aug 2010 every 6 h.
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for the SND experiment, suggesting that the observa-

tions are influencing the region of the TC that is often

poorly observed in the current HWRF due to the clear-

sky assumption. It is also indicated that the ASR con-

figuration provides the most integrated information over

all of the cases shown. These results further demonstrated

that an entropy-based definition of information content

provides a powerful metric for evaluating the utility of

a set of observations and simulated satellite radiances in

a hybrid data assimilation method.

6. Conclusions and discussion

Currently, no inner-core satellite radiances are di-

rectly assimilated in NCEP operational NWP models,

including both GFS and HWRF systems. However,

these observations of clouds and precipitation may

hold the key to improving vortex initialization and ul-

timately TC intensity prediction. In this study, a pro-

totype hybrid variational–ensemble data assimilation

system (HVEDAS) is used to identify the impact of the

direct assimilation of satellite radiances in the TC core

area. The assimilation experiments are conducted using

MLEF with NOAA operational codes that include the

atmospheric component of the HWRF (2011) model

and the forward components of the GSI analysis system

and the CRTM. Specifically, the AMSU-A radiances

from NOAA-18 and MetOp-A are assimilated into

HurricaneDanielle (2010) with themaximum likelihood

ensemble filter (MLEF), which better addresses the

nonlinearity of the observation operators than more

common EnKF methodologies by employing an itera-

tiveminimization of a cost function. The new approach

has additional components required for allowing cloud-

affected radiance assimilation, such as augmenting the

analysis control variables to include clouds and adding

cloud-guess profiles in the forward models. The CRTM

forward model biases are first calculated in the HWRF

FIG. 11. Time series of the MSLP (hPa) and NHC best-track

data (thick gray line), and MLEF-HWRF 6-h forecasts between

1800 UTC 24 Aug and 1800 UTC 26 Aug 2010 every 6 h (i.e.,

cycles 1–9).

FIG. 12. (a) AMSU-retrieved precipitation rate map fromMetOp-A at 1311 UTC 26 Aug 2010 (mmh21). Distribution of the 6-h CWM

(colored; Kgm22) forecasts start from cycle 7 analyses of the (b) CTL, (c) ASR, (d) CSR, and (e) SND experiments, superposed with

MSLP and 10-m above wind barbs, valid at 1200 UTC 26 Aug 2010.
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FIG. 13. Information content results of the assimilated observations (DFSs) calculated in the distinct data assimilation configura-

tions are shown for cycles 1, 3, 5, and 7. TheDFS are nondimensional quantities. All figures are plotted in anHWRF inner domain (i.e.,

with a scale of 68 3 68) centered at the simulated storm center. Larger values indicate a greater influence of the observation in the data

assimilation.
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inner domain based on both cloud-cleared and cloudy

radiance simulation assumptions, which are required for

the assimilation of cloudy satellite radiances. The results

suggest that the cloudy AMSU-A radiance simulation

outperforms the cloud-cleared simulation across all

NOAA-18 AMSU-A channels and that the operational

data processing procedures are correctly adjusting for

any remaining systematic differences on a TC core area

basis. It is also shown that through the prescribed ‘‘cloud

cleared’’ bias correction and quality control procedures,

the simulated and observed TB fields show good agree-

ment for all NOAA-18 AMSU-A channels.

The ensemble uncertainty analysis is found to be

highly anisotropic and time dependent. The horizontal

autocorrelation of a pseudo-AMSU-A channel 6 obser-

vation produces an isotopic, Gaussian-like shape as a

function of distance. In turn, complex microphysical

processes in the TC core area imply that hydrometeor

mass variables will be cross correlated with temperature

and produce different horizontal and vertical structure

functions. The flow-dependent structures of error cross

covariance between temperature and hydrometeor vari-

ables provide a means for observation information on

temperature affected by nonscattering clouds to influ-

ence hydrometeor fields as well (e.g., Fig. 9). Further-

more, our results demonstrate the necessity of gaining

a better understanding of the error growth mechanism

and the related storm dynamics for the TC core region.

The performance of the HVEDAS and the value of

cloudy radiance assimilation added to the analyses and

forecasts of Danielle (2010) core area are assessed by

a comparison with observations. In particular, we per-

formed cycling data assimilation experiments at 6-h in-

tervals for a length of 54 h to examine the performance

when reproducing the observed storm track (Fig. 10),

intensity/MSLP (Fig. 11), and vortex-scale structure

(Fig. 12). In general, the impact on the storm track was

marginal. However, a particularly encouraging result

was the improvement in the storm intensity forecasts

over the operational control experiment. The proposed

ASR approach tends to outperform the operational and

cloud-cleared radiance experiments. With the cloud-

affected AMSU-A radiance assimilated, the system

reasonably captures the rapid deepening stage of Hur-

ricane Danielle, and reproduces a measurable positive

impact on the TC intensity prediction, as well as on the

hydrometeor structures through multivariate correla-

tions of microwave radiances and thermodynamical

fields, and model integration. The results also show that

the entropy-based information content of the data, as

measured by the degrees of freedom for signal (DFS),

was significantly increased, implying a more efficient use

of the observations in the ASR experiment (Fig. 13).

Although a case study, this study provides insights and

potential solutions for future TC prediction, especially

for the TC structure including intensity forecasts. Our

results suggest that a hybrid data assimilation algorithm

could provide an objective, observation-based way of

incorporating a dynamically consistent vortex with rea-

sonable asymmetries into the initial conditions of the

current triple-nested 2012 operational HWRF system

operating at 3-km horizontal resolution near the hurri-

cane core. This study paves the way for the assimilation

of other data types in the cores of TCs. Data from new

microwave sounders and scatterometers, as well as

aircraft-based data, if used within this framework, offer

even further opportunities to improve the TC vortex

initialization of operational forecast models.
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