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Abstract. We present an algorithm for retrieving aerosol
layer height (ALH) and aerosol optical depth (AOD) for
smoke over vegetated land and water surfaces from measure-
ments of the Earth Polychromatic Imaging Camera (EPIC)
onboard the Deep Space Climate Observatory (DSCOVR).
The algorithm uses Earth-reflected radiances in six EPIC
bands in the visible and near-infrared and incorporates flexi-
ble spectral fitting that accounts for the specifics of land and
water surface reflectivity. The fitting procedure first deter-
mines AOD using EPIC atmospheric window bands (443,
551, 680, and 780 nm), then uses oxygen (O2) A and B bands
(688 and 764 nm) to derive ALH, which represents an optical
centroid altitude. ALH retrieval over vegetated surface pri-
marily takes advantage of measurements in the O2 B band.
We applied the algorithm to EPIC observations of several
biomass burning events over the United States and Canada in
August 2017. We found that the algorithm can be used to ob-
tain AOD and ALH multiple times daily over water and veg-
etated land surface. Validation is performed against aerosol
extinction profiles detected by the Cloud–Aerosol Lidar with
Orthogonal Polarization (CALIOP) and against AOD ob-
served at nine Aerosol Robotic Network (AERONET) sites,
showing, on average, an error of 0.58 km and a bias of
−0.13 km in retrieved ALH and an error of 0.05 and a bias
of 0.03 in retrieved AOD. Additionally, we show that the

aerosol height information retrieved by the present algorithm
can potentially benefit the retrieval of aerosol properties from
EPIC’s ultraviolet (UV) bands.

1 Introduction

Aerosol vertical distribution is an important but poorly con-
strained variable that strongly influences how aerosol parti-
cles affect Earth’s energy budget. In particular, absorption of
solar radiation by smoke and dust particles can result in dia-
batic heating, alter atmospheric stability, and affect cloud for-
mation and life cycle. These effects depend critically on the
altitude of aerosol layers (Babu et al., 2011; Ge et al., 2014;
Koch and Del Genio, 2010; Satheesh et al., 2008; Wendisch
et al., 2008). Consequently, the aerosol profile factors into
the magnitude and even the sign of aerosol direct and indi-
rect effects. An accurate representation of aerosol altitude is
thus essential for model prediction of weather and climate
(Choi and Chung, 2014; Samset et al., 2013). The thermal
signature of dust, in particular, can likewise influence the
Earth’s longwave budget and, through the interference of re-
trievals of water vapor and temperature, influence the mea-
surement of atmospheric state (Maddy et al., 2012). Addi-
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tionally, knowledge of ALH is essential for retrieving aerosol
absorption properties in the ultraviolet (UV) channels (Tor-
res et al., 1998), aerosol microphysical properties from multi-
angular photopolarimetric measurements (Chowdhary et al.,
2005; Waquet et al., 2009), and for atmospheric correction
for ocean color remote sensing (Duforêt et al., 2007).

Despite the importance of aerosol vertical distribution, the
simulation of aerosol layer height (ALH) in current climate
models is subject to large inter-model variation and uncer-
tainty (Kipling et al., 2016; Koffi et al., 2012). Although
the assimilation of spaceborne lidar (e.g., CALIOP, or the
Cloud–Aerosol Lidar with Orthogonal Polarization) observa-
tions can improve the prediction of vertical allocation (Zhang
et al., 2011), a significant challenge remains due to the spar-
sity of lidar observations over space and time. Therefore, fre-
quent satellite observations of global aerosol vertical distri-
bution based on more abundant observation sources are crit-
ically needed.

One such source, the recently launched Deep Space
Climate Observatory (DSCOVR) mission, has introduced
an unprecedented opportunity to acquire ALH information
multiple times daily. Launched on 11 February 2015, the
DSCOVR spacecraft flies a Lissajous orbit around the Sun–
Earth L1 Lagrangian point about 1.5 million kilometers
from Earth in the direction of the Sun. While its primary
payload is the plasma magnetometer that measures solar
wind, DSCOVR also carries the Earth Polychromatic Imag-
ing Camera (EPIC) to image the sunlit disk of Earth ev-
ery 60–100 min from its stable L1 vantage point. EPIC cap-
tures its imagery at a resolution of 2048 by 2018 pixels, with
about 8 km of pixel resolution at the disk’s center. EPIC was
equipped with a double-wheel filter to sequentially measure
Earth-reflected solar radiance in 10 narrow bands spanning
from the UV to the near-infrared (NIR) spectrum (Fig. 1a),
with central wavelengths at 318, 325, 340, 388, 443, 551,
680, 688, 764, and 780 nm (Marshak et al., 2018).

As shown in Fig. 1b–c, two of EPIC’s bands are lo-
cated within the oxygen (O2) “A” and “B” bands (764 and
688 nm), each associated with a reference continuum band
at 780 and 680 nm, respectively. These four bands, offer-
ing spectral contrasts between absorption bands and contin-
uum bands (known as differential optical absorption spectro-
scopic, or DOAS, ratios), were originally designed for de-
termining cloud height (Yang et al., 2013). Recently, Xu et
al. (2017) presented an algorithm to simultaneously retrieve
aerosol optical depth (AOD) and ALH using the EPIC mea-
surements via these four bands and, for the first time, demon-
strated EPIC’s promising application for determining dust
plume height over ocean surfaces during daytime hours.

The present study, building upon the development of Xu
et al. (2017) for determining dust ALH over ocean, extends
the algorithm to retrieve ALH from EPIC measurements over
land surfaces as well. The new developments in this study
include implementing smoke aerosol optical properties, land
surface characterization, and more robust strategies for the

Figure 1. EPIC instrument filter response function (blue) and at-
mospheric spectral transmission (orange). Panel (a) includes all
10 EPIC bands, whereas panels (b) and (c) show zoomed-in views
for the 688 nm channel in the O2 B band and the 764 nm channel
in the O2 A band, respectively. Here the atmospheric transmission
is simulated by the UNL-VRTM, with a spectral step size and a
spectral full-width at half maximum of 0.02 nm.

procedures of pixel selection and spectral fitting. The aug-
mentation of the Xu et al. (2017) algorithm takes an impor-
tant additional step towards our goal of providing more fre-
quent global ALH and AOD information for multi-species
global aerosol.

The paper is outlined as follows. Section 2 briefly re-
views the physical principle for remote sensing of ALH in
the O2 absorption bands and explains the challenges for re-
trieving ALH over land surfaces, limiting our algorithm de-
velopment to water and vegetated land surface. Section 3 de-
scribes the key elements, procedures, and assumptions of the
updated ALH retrieval algorithm. ALH retrievals of smoke
events over Canada and the United States in August 2017
are demonstrated in Sect. 4. Section 5 evaluates the retrieved
smoke ALH and AOD from EPIC against aerosol extinc-
tion profiles measured by CALIOP and AOD measured at
AERONET sites. Section 6 discusses the potential applica-
tion of ALH retrievals for determining UV aerosol proper-
ties. Section 7 summarizes our findings and discusses poten-
tial broader applications of this new ALH information.

2 Remote sensing principle and challenges

The ALH retrieval from EPIC takes advantage of the absorp-
tion features of molecular O2 in the A band at 759–771 nm
and the B band at 686–695 nm. The electronic transitions
from the ground state to two excited states of an O2 molecule,
coupled with vibrational–rotational transitions, produce O2
absorption lines in the A and B bands with distinct spectral
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Figure 2. Schematic diagram of the physical principle of the remote
sensing of aerosol layer height in the O2 absorption bands. Shown
is the same aerosol layer located at two different altitudes in the at-
mosphere. Due to the scattering by aerosol particles, light scattered
by a higher aerosol layer (b) would travel a shorter path length to
reach the satellite sensor than those scattered by the lower-altitude
aerosol (a), resulting in less absorption by O2 and thus a higher
radiance value detected by the satellite (i.e., IH > IL).

variability (Fig. 1b–c). As a result, the large variability of at-
mospheric opacity within the O2 A and B bands leads to a
wide range of penetration depths of solar radiation (Ding et
al., 2016). The spectroscopic characteristics in the O2 bands
are related to how scattered light from aerosol particles inter-
acts with O2 absorption at different altitudes. Furthermore,
since O2 molecules are well mixed in the atmospheric col-
umn, the altitude dependence of O2 absorption can provide
information on the path length of light scattered by aerosol
particles and is thus related to the height of aerosol layers.
The premise of this retrieval dates back to Hanel (1961)
and Yamamoto and Wark (1961), who estimated cloud-top
pressure based on the amount of absorption by molecular
CO2 and O2 above the cloud layer. More recently, a num-
ber of satellite sensors have been designed to capture the
O2 absorption feature to provide cloud-top height and ALH;
among those are GOME, SCIAMACHY, MERIS, POLDER,
DSCOVR, and most recently the TROPOspheric Monitor-
ing Instrument (TROPOMI; Xu et al., 2018a, and references
therein).

Figure 2 illustrates the physical principle for sensing ALH
using the O2 absorption spectroscopic approach, which relies
on the fact that a scattering aerosol layer can scatter sunlight
back to space, shortening the path length of light traveling in
the atmosphere and reducing the chance of that light being
absorbed by O2 molecules. As a result, an elevated scatter-
ing layer enhances the top-of-atmosphere (TOA) reflectance
within the O2 absorption bands as detected by a satellite. In
other words, for a given aerosol layer of fixed AOD placed
at different altitudes, the higher the altitude, the larger the
TOA reflectance, i.e., IH > IL in Fig. 2. This relationship
contrasts with that of the reference continuum band, wherein

the TOA reflectance is not sensitive to the vertical location
of the aerosol layer but depends only on the column AOD,
i.e., IH ≈ IL for a given AOD. Based on this principle, the
ratio of TOA reflectance between in-band and the continuum
band, or the DOAS ratio, provides a practical way to infer the
ALH (e.g., Dubuisson et al., 2009b; Duforêt et al., 2007; Xu
et al., 2017).

To build the links between DOAS ratios and ALH, we sim-
ulate TOA reflectance as observed by EPIC measurements
with the state-of-the-art Unified Linearized Vector Radiative
Transfer Model (UNL-VRTM; described in Sect. 3.5). Fig-
ure 3 shows simulations of the relationship between smoke
ALH (y axis) and DOAS ratios (x axis) for EPIC channels
in O2 A and B bands and for various AOD values and sur-
face reflectance (As, indicated by different colors). Those
simulations were performed for a typical biomass burning
aerosol model as observed by EPIC for the geometry of
[θ0,θ, 1φ] = [42, 37, 165◦], where θ0 and θ are solar and
viewing zenith angles, and1φ the relative azimuth angle be-
tween the Sun and the viewer. As seen from Fig. 3, the DOAS
ratios in general increase with the rise of ALH. Meanwhile,
the relationship is strongly dependent on the aerosol loading
and surface reflectivity.

The sensitivity of DOAS to ALH is enhanced for lower
surface reflectance and larger AOD. Conversely, the sensitiv-
ity decreases rapidly for smaller AOD (e.g., AOD= 0.1 in
Fig. 3a, d) or as As increases, a condition under which it is
difficult to discriminate between the aerosol scattering con-
tribution to TOA reflectance and the contribution from the
surface. Therefore, it is challenging to obtain ALH informa-
tion for low aerosol loading conditions and over bright sur-
faces. This is consistent with the findings of many previous
information content studies for determining ALH from O2
A and B band measurements (Ding et al., 2016; Dubuisson
et al., 2009b). Duforêt et al. (2007) showed that the centroid
altitude of a single aerosol layer over a dark surface can be
retrieved from Polarization and Directionality of the Earth’s
Reflectances (POLDER) measurements with an error of less
than 1 km when AOD is over 0.2. Similarly, Dubuisson et
al. (2009b) suggested AOD> 0.3 and As < 0.06 in order to
achieve a retrieval accuracy of 0.5 km from POLDER.

With the above retrieval principles and challenges in mind,
for our algorithm development we need to determine over
what underlying Earth surfaces EPIC measurements have
sufficient information to allow for a practical retrieval of
ALH. First and foremost, the surface reflectance must be
low enough in one of the O2 A and B bands to provide an
unambiguous signal from the aerosol. According to Fig. 3,
the DOAS–ALH sensitivity becomes substantial when As <

0.1 in moderate aerosol loading conditions (i.e., τ680 = 0.4).
Hence, As = 0.1 is set as the upper threshold, above which
an ALH retrieval will not be attempted, despite the sensitivity
increases in high aerosol loading (e.g., τ680 = 1.0) for higher
As.
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Figure 3. Sensitivity of DOAS ratios of TOA reflectance around the O2 A and B bands to smoke ALH as simulated by UNL-VRTM for
different AOD and surface reflectance (As) values. Simulations were performed for a typical biomass burning aerosol model as observed by
EPIC for the geometry of

[
θ0,θ, 1φ

]
= [42, 37, 165◦], where θ0 and θ are solar and viewing zenith angles, and 1φ the relative azimuth

angle.

Figure 4. Surface reflectance spectra (from the ASTER spectral li-
brary; Baldridge et al., 2009) for various surface types in the visible
to NIR range, with selected EPIC spectral bands within this range
shown in gray.

Figure 4 shows the magnitude of surface reflectance from
the ASTER spectral library for typical Earth surface types
(Baldridge et al., 2009). The water surface is dark, with re-
flectance lower than 0.03 in both the O2 A and B bands. Over
land, green vegetation is the only surface type that offers a re-
flectance below 0.1 in the O2 B band (As = 0.1 is indicated
by the red dotted line). In fact, As in the O2 A band is con-
siderably above 0.1 for all land types considered in Fig. 4.
These findings provide important guidance on the ALH algo-
rithm design. Specifically, EPIC can retrieve ALH only over
water and vegetated surfaces. In particular, ALH retrieval
over vegetated surface would enlist DOAS ratios in the O2

B band. Additionally, retrieval of ALH requires a sufficiently
high aerosol loading. We set AOD thresholds for retrieving
ALH over both the water and vegetation per the algorithm
overview to follow.

3 EPIC aerosol layer height retrieval algorithm

3.1 Algorithm overview

Figure 5 illustrates the processing of EPIC data and the ALH
retrieval procedure. Briefly, the retrieval algorithm entails the
following steps.

1. Calculate TOA reflectance in six EPIC visible and NIR
bands (443, 551, 680, 688, 764, and 780 nm) from the
calibrated EPIC level 1B digital data.

2. Identify EPIC pixels that are suitable for aerosol height
retrieval. Through various tests, this step screens out
pixels having clouds, over-water sun glints, and bright
land surfaces, which are performed separately for water
and land pixels. Surface pressure comes from MERRA-
2 reanalysis data and we determine surface reflectance
in EPIC bands using GOME-2 and Moderate-resolution
Imaging Spectroradiometer (MODIS) surface products.

3. Aggregate the original EPIC pixels into a box of 3× 3
individual pixels, an area with a size of about 24 km at
nadir. In many cases, not all pixels within a box are suit-
able for retrieval (i.e., cloud, glint, and bright land). If
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Figure 5. Flowchart of the AOD–ALH retrieval algorithm.

the number of available pixels within a box is not less
than four (of the total of nine), calculate mean values
of TOA reflectance, satellite geometries, and surface re-
flectance for the available pixels. Otherwise, do not con-
duct an aerosol retrieval for the box.

4. Invert the aggregated EPIC observations using pre-
calculated lookup tables to obtain smoke ALH and
AOD. The inversion uses a flexible spectral fitting strat-
egy that considers the specific surface type.

While the retrieval procedure is based on our algorithm for
retrieving dust ALH over ocean from EPIC measurements
(Xu et al., 2017), it was upgraded in several ways. First, the
algorithm is extended to retrieve ALH over vegetated land
surface. The capability of inferring ALH over vegetation is
predicated on the O2 B band, where the surface reflectance is
sufficiently low. Accordingly, the new algorithm uses meth-
ods separated for land and water surfaces in determining sur-
face reflectance and screening cloud. Second, the algorithm
incorporates a smoke aerosol optical model in order to re-

trieve biomass burning smoke ALH. Third, rather than ag-
gregating EPIC data from satellite pixels to regular latitude–
longitude grids, the new algorithm retrieves over aggregated
boxes, each consisting of an array of 3×3 EPIC pixels. This
change is based on the consideration that the geolocation of
EPIC data has made significant improvements in the new
version of level 1B data (Geogdzhayev and Marshak, 2018).
Lastly, to obtain AOD and ALH the new algorithm employs
a flexible spectral fitting strategy by considering the under-
lying surface reflectivity. In the following procedural subsec-
tions, we describe these changes in full detail.

3.2 Obtaining EPIC TOA reflectance

For this algorithm development, we used the EPIC level 1B
(L1B) version 02 imagery data, available from NASA’s At-
mospheric Science Data Center (ASDC) at https://eosweb.
larc.nasa.gov (last access: 26 November 2018). Various
prelaunch and postlaunch calibrations were applied to the
L1B EPIC data. EPIC visible and near-IR (NIR) chan-
nels at 443, 551, 680, and 780 nm were cross-calibrated
with independent LEO satellite instruments, including the
MODIS onboard the Terra and Aqua satellites (Geogdzhayev
and Marshak, 2018). The two O2 absorption channels (688
and 764 nm) were calibrated using lunar surface reflectiv-
ity with EPIC lunar observations at the time of full moon
as seen from Earth (Ohtake et al., 2010). The image data in
EPIC L1B products are in digital units of counts per sec-
ond that are converted into reflectance for each visible and
NIR channel using calibration factors provided at ASDC on-
line: https://eosweb.larc.nasa.gov/project/dscovr/DSCOVR_
EPIC_Calibration_Factors_V02.pdf (last access: 26 Novem-
ber 2018). The TOA reflectance values are calculated as

Rλ =
K(λ)C(λ)

µ0
, (1)

where C(λ) is the EPIC measured signal in units of counts
per second at the wavelength of λ, K(λ) is a calibration fac-
tor, and µ0 is the cosine of solar zenith angle, θ0. Addition-
ally, pixels that are far from nadir and strongly distorted by
the Earth ellipsoid (e.g., view zenith angle θ > 70◦ or solar
zenith angle θ0 > 70◦) are excluded.

3.3 Determining surface albedo and pressure

Past studies show that an accurate ALH retrieval critically de-
pends on the appropriate assumption of surface reflectance
(Corradini and Cervino, 2006; Ding et al., 2016; Dubuis-
son et al., 2009a). As discussed in the preceding section,
our retrievals are confined to water and dark vegetated sur-
faces. Land and water mask information for each EPIC pixel
was determined using the GSHHG coastline database (Wes-
sel and Smith, 1996). Following Xu et al. (2017), surface re-
flectance over water surface was obtained from the GOME-
2 surface Lambert-equivalent reflectivity (LER) database
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(Koelemeijer et al., 2003; Tilstra et al., 2017). GOME-2 LER
products contain spectral LER albedo at 21 channels that are
1 nm wide, available globally for each month of the year at
0.25◦× 0.25◦ grid spacing (∼ 25× 25 km cells). From these
data, we selected LER albedos at 440, 555, 670, 758, and
780 nm to represent surface reflectance for the nearest EPIC
bands.

The Moderate-resolution Imaging Spectroradiometer
(MODIS) BRDF/Albedo product (MCD43) provides param-
eters that can be used to determine surface reflectance over
land in the first seven MODIS channels (Lucht et al., 2000;
Schaaf et al., 2002). Those parameters, including surface
bidirectional reflectance distribution function (BRDF) and
albedos, were inverted from the atmospherically corrected
(i.e., Rayleigh and aerosol components removed) MODIS
reflectance observations from both the Terra and Aqua
satellites over a 16 d period. We used black-sky albedo and
white-sky albedo compiled in the level 3 daily Climate
Modeling Grid (CMG) Albedo Product (MCD43C3) at a
spatial resolution of 0.1◦× 0.1◦. Here, black-sky albedo is
the directional hemispherical reflectance if the illumination
comes only from the Sun at solar noon. White-sky albedo
is the bi-hemispherical reflectance under isotropic skylight
illumination. The actual bi-hemispherical reflectance can
be computed from white-sky and black-sky albedos via a
weighting coefficient that depends primarily on solar angle
and columnar optical depth (Kokhanovsky et al., 2005;
Lewis and Barnsley, 1994; Schaaf et al., 2002). Following
Kokhanovsky et al. (2005), we calculated the Lambertian
surface albedo in the 469, 555, 645, and 858 nm MODIS
bands by weighting the contributions of white-sky and
black-sky albedos. It should be noted that the effect of non-
Lambertian surface reflection may bias the ALH retrieval
because uncertainty in surface reflectance can substantially
affect the ALH retrieval accuracy (see Appendix A). Never-
theless, this type of impact could be limited as EPIC’s Earth
observations are confined within an almost constant viewing
geometry with scattering angles between 165 and 178◦.
Further studies are needed to examine the detailed impacts,
which will be one of our future efforts.

The differences in the spectral position and width of corre-
sponding EPIC and MODIS channels may result in discrep-
ancies. To compensate, we adjust MODIS reflectance val-
ues to equivalent EPIC bands. The adjustment factors, in the
form of linear regression coefficients, were determined from
analyzing USGS (United States Geological Survey) hyper-
spectral data for green vegetation. Figure 6a shows the se-
lected reflectance spectra of 47 vegetation samples from the
USGS Spectral Library version 7 (Kokaly et al., 2017) and
the spectral locations of EPIC (blue) and MODIS (red dot-
ted) bands. The linear regression of reflectance values in each
EPIC band and corresponding MODIS band is illustrated as
scatterplots in Fig. 6c–h. The regression slope and offset, as
well as coefficient of determination (R2), are listed in Fig. 6b.
As shown, the reflectances between EPIC bands and their

closest MODIS bands are highly correlated (R2 from 0.96 to
1.0), and therefore the best-fitting equations in Fig. 6b can
be used to empirically derive EPIC surface reflectance from
MODIS surface reflectance products.

The retrieval also requires auxiliary meteorological in-
formation to realistically characterize O2 absorption prop-
erties. Surface pressure strongly affects the reflectance in
O2 absorption bands as observed from space because it is
a direct proxy for the columnar loading of air (and thus
oxygen) molecules. Here, we enlisted surface pressure in-
formation from the Modern-Era Retrospective analysis for
Research and Applications version 2 (MERRA-2) datasets
(Gelaro et al., 2017). MERRA-2’s 1-hourly surface pres-
sure at 0.5◦ by 0.675◦ grids were interpolated to the loca-
tion and scan time of each EPIC pixel. In addition, the atmo-
spheric temperature–pressure profile also impacts the width
and strength of O2 absorption lines. However, such an in-
fluence on the radiative transfer is negligible for EPIC’s 1
to 2 nm wide bands. In this study, our algorithm employs a
standard temperature–pressure profile representing the mid-
latitude summer atmosphere (McClatchey et al., 1972).

3.4 Masking clouds, sun glints, and bright land surface

After acquiring EPIC TOA reflectance and surface re-
flectance, the algorithm conducts a masking exercise to se-
lect clear-sky pixels suitable for aerosol retrieval. This in-
cludes the screenings of clouds, sun glint over water surfaces,
and highly reflective land surfaces. Over both land and water,
the cloud mask combines a set of brightness and homogene-
ity tests following Martins et al. (2002). The brightness tests
screen out cloud pixels for which EPIC TOA reflectance in
two or three visible bands (443 and 680 nm over land; 443,
680, and 780 nm over water) exceeds prescribed thresholds.
The homogeneity test, on the other hand, identifies cloud pix-
els by evaluating the standard deviation of TOA reflectance
at 443 and 551 nm within 3×3 neighboring pixels. Still, thin
and small subpixel clouds can be missed in the relatively
coarse resolution 8 km EPIC pixels, leading to an overesti-
mation of AOD and an underestimation of ALH. Therefore,
contamination by small-scale clouds is one of the known is-
sues of retrieval quality, and coupling higher-resolution cloud
mask information from geostationary sensors may help to
overcome this issue.

In addition, EPIC pixels affected by sun glint and highly
reflective land surface are also removed from consideration
by the mask. We identify the over-water glint area as those
pixels having a glint angle smaller than 30◦ (Levy et al.,
2013). Highly reflective land surface pixels are identified us-
ing MODIS land surface products. Any EPIC pixel having a
normalized difference vegetation index (NDVI) value below
0.2 or having a 680 nm surface reflectance larger than 0.1 is
flagged as being a bright surface and excluded from the re-
trievals.
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Figure 6. Determination of surface reflectance from MODIS surface albedo products. (a) USGS reflectance spectra for different vegetation
samples and (b) statistics for regression (i.e., slope, offset, and coefficient of determination, R2) of reflectance between different EPIC bands,
marked as red dotted lines in (a), and the respective closest MODIS bands, marked as blue lines in (a), according to the spectral library.
(c–f) Scatterplots of reflectance in each EPIC band versus reflectance in the corresponding MODIS bands. Linear regression lines are shown
in red.

3.5 Lookup tables

Following Xu et al. (2017), the revised algorithm retrieves
smoke ALH and AOD from EPIC measurements via a
set of lookup tables (LUTs) constructed using the UNL-
VRTM. The UNL-VRTM (https://unl-vrtm.org, last access:
15 June 2019) is a radiative transfer test bed developed
specifically for atmospheric remote sensing (Wang et al.,
2014). By integrating the VLIDORT vector radiative transfer
model (Spurr, 2006) and particulate scattering codes (Spurr
et al., 2012), UNL-VRTM can perform simulations for two or
more sets of aerosol microphysical properties, typically with
aerosols in one fine mode and one coarse mode. It also in-
corporates HITRAN spectroscopic gaseous absorption with
up to 22 trace gases (Rothman et al., 2013), allowing for ac-
curate hyperspectral simulations of remote sensing observa-
tions (Xu et al., 2018b).

The LUTs for the current retrieval consist of simulated
EPIC TOA reflectance at selected spectral bands for a set
of AOD and ALH values under various atmospheric and ob-
servation scenarios (e.g., Sun–Earth–sensor geometry, sur-
face reflectance, and surface pressure) as shown in Table 1.
To build the LUTs, hyperspectral monochromatic radiances

Table 1. Adopted parameters for generating LUTs.

Parametera Prescribed values for LUTs

AOD at 680 nm 0.0, 0.1, 0.2, 0.4, 0.7, 1.0, 1.5,
2.0, and 3.0

ALH above surface (km) 0 to 15 km at 1 km interval
Surface reflectance 0, 0.05, 0.1, 0.2, 0.3, 0.4, and

0.6
θ0 and θ (◦) 0 to 72◦ at an interval of 6◦, and

|θ0− θ |< 15◦

1ϕ (◦) 0 to 180◦ at an interval of 12◦,
Surface pressure (hPa) 700, 800, 900, and 1050

a θ0 indicates the solar zenith angle, θ the satellite viewing zenith angle, and 1ϕ
the relative azimuth angle.

were simulated using UNL-VRTM and convolved with EPIC
instrumental filter response functions for the selected six
bands. Table 2 provides the spectral range, interval, and res-
olution (in terms of full-with at half maximum; FWHM) of
the UNL-VRTM simulations.

The UNL-VRTM simulations assume a Gaussian-like
aerosol profile characterized by a centroid altitude and a half-
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Table 2. Spectral settings of UNL-VRTM for constructing the
LUTs.

EPIC channel Spectral range Spectral interval FWHM
(nm) (nm) (nm) (nm)

443 440–445 0.1 0.2
551 549–555 0.1 0.2
680 675–685 0.1 0.2
688 685–690 0.01 0.02
764 760–766 0.01 0.02
780 776–782 0.1 0.2

width parameter (Spurr and Christi, 2014; Xu et al., 2017).
The centroid altitude is taken to represent ALH. A half-width
of 1 km is assumed following Xu et al. (2017). This value was
also used to derive AOD from UV observations by the Total
Ozone Mapping Spectrometer (TOMS) and the Ozone Mon-
itoring Instrument (OMI) (Torres et al., 1998). For this study,
we implemented smoke optical properties calculated based
on the Lorenz–Mie scattering theory. The smoke refractive
index was assumed to be 1.5–0.012i, following Dubovik et
al. (2002), and its spectral dependence was neglected. We
assumed smoke particles followed a bi-lognormal size dis-
tribution, as adopted for the MODIS dark-target aerosol al-
gorithm (Levy et al., 2013; Remer et al., 2005). Specifi-
cally, fine-mode volume median radius and standard devia-
tion were prescribed as 0.14+0.01τ680 µm and 0.44, respec-
tively. The coarse-mode counterparts are 0.14+ 0.01τ680 µm
and 0.80, respectively. The volume ratio between fine and
coarse modes is (0.01+ 0.3τ680)/(0.01+ 0.09τ680). Here,
τ680 is the total AOD at 680 nm.

3.6 Strategy of flexible spectral fitting

The retrieval procedure involves two steps over both water
and land surfaces and, at the same time, incorporates flexi-
ble spectral fitting that accounts for the specifics of surface
reflectivity. First, the TOA reflectance in the EPIC “atmo-
spheric window” channels are matched with LUTs to de-
termine AOD, since the TOA reflectance does not depend
on ALH in these channels. Second, based on this estimated
AOD, the DOAS ratios around the O2 bands are fitted to esti-
mate ALH. In each step, least-squared fitting is applied, and
fitting residuals are reported.

In general, retrieving aerosol information from reflected
solar radiation in visible to NIR wavelengths over land is
more challenging than over ocean, since the satellite signal
tends to be dominated by surface contributions over land. It
is thus often the case that, for the same satellite instrument,
separate over-land and over-ocean algorithms are developed
with different strategies for characterizing surface reflectiv-
ity and band selection for fitting, e.g., MODIS aerosol algo-
rithms (Remer et al., 2005). Similarly, our retrieval of smoke
ALH from EPIC uses different band combinations over land

versus over ocean, adjusted by surface type and the spectral
signature of smoke aerosol in the TOA reflectance.

In general, reflectance of water surfaces does not exceed
0.03 across the entire visible to NIR spectrum (Fig. 4). There-
fore, AOD can be determined by fitting TOA reflectance in
all four atmospheric window channels at 443, 551, 680, and
780 nm. In contrast, the 780 nm band is excluded for spec-
tral fitting over vegetated land surface because of the high
chlorophyll reflectance. Similarly, in the fitting of DOAS ra-
tios, different weights are given for the ratios in the O2 A
and B bands for different surfaces, adjusted by the sensitiv-
ity of the DOAS ratio to ALH (e.g., Fig. 3). The weighting
coefficients are 0.4 for R688/R680 and 0.6 for R764/R780
over water surface, whereas these values are 0.9 and 0.1 over
vegetated surface.

4 Retrieval demonstration

We apply our algorithm to six EPIC scenes over the Hudson
Bay–Great Lakes area obtained during 25–26 August 2017,
with three consecutive scenes considered on each day. We
chose these cases primarily because smoke plumes prevailed
over both water and vegetated surface, and there were avail-
able aerosol vertical profile measurements from CALIOP
that could be used to validate the ALH retrievals. As shown
in the EPIC RGB images (Figs. 7a and 8a), smoke aerosols
appeared as diffuse plumes emitted from wildfires in western
Canada and transported over the western and southern por-
tions of Hudson Bay (Peterson et al., 2018). The retrieved
smoke ALH is shown in Figs. 7b and 8b, and retrieved
680 nm AOD in Figs. 7c and 8c. It is noted that data gaps
in the AOD maps represent screened-out bright pixels due to
either cloud or bright land surface; ALH retrievals were only
available when AOD was larger than 0.2.

Obvious spatial variations are noted in retrieved smoke
ALH and AOD. On 25 August, smoke plumes had AOD val-
ues ranging from 0.1 to 0.45, with higher loading found at
downwind regions in the south (Fig. 7c). An ALH of 4–5 km
was found over Hudson Bay, whereas the smoke altitudes de-
creased to 2–4 km over land off the bay’s western and south-
ern shores (Fig. 7b). Southward, the ALH increased rapidly
to 4–6 km towards the Great Lakes. By 26 August, the smoke
plumes had traveled southeast (Fig. 8c). The smoke altitudes
remained at 3–5 km over the eastern part of Hudson Bay
and 2–4 km over the bay’s south side (Fig. 8b). Altitudes of
smoke plumes over the coast of the northeastern US were
higher than 5 km. Aside from spatial variations, the retrievals
also revealed diurnal changes in ALH and the evolution of
the smoke plumes. For instance, the ALH of smoke plumes
over the Hudson Bay and the north side of the Great Lakes
rose by about 0.5 km within 2 h from local morning to after-
noon on 25 August (Fig. 7b).
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Figure 7. Demonstration of ALH and AOD retrievals for three EPIC scenes acquired on 25 August 2017 around UTC times of 16:10, 17:26,
and 18:32. (a) Red–green–blue (RGB) composites of EPIC 443, 551, and 680 nm data. The gold line indicates the CALIOP sub-orbital track
with an overpass time of 19:05 UTC. (b) Retrieved smoke ALH when 680 nm AOD is larger than 0.2. (c) Retrieved 680 nm AOD. Small
circles on AOD maps represent AOD values observed at corresponding AERONET sites within 2 h of the EPIC scan time.

5 Retrieval validation

For the validation of the EPIC-retrieved ALH, we used
CALIOP level 2 version 4.10 aerosol extinction profiles at
5 km spatial resolution, retrieved from CALIOP observations
of attenuated backscatter at 532 nm (Young and Vaughan,
2009). To facilitate quantitative comparison of aerosol alti-
tude, we used a mean extinction height calculated from the
CALIOP extinction profile, following Koffi et al. (2012):

ALHCALIOP =

∑n
i=1βext,i Zi∑n
i=1βext,i

. (2)

Here, βext,i is the aerosol extinction coefficient (km−1) at
532 nm at level i, and Zi is the altitude (km) of level i. Thus,
ALHCALIOP represents an effective ALH weighted by the
aerosol extinction signal at each level and is consistent with
ALH as defined in our EPIC algorithm.

In the CALIOP level 2 products, aerosol extinction is only
retrieved for the layers in which aerosols are detected, as
permitted by the instrument’s signal-to-noise ratio (SNR).
Atmospheric layers with no aerosols detected are classi-

fied as “clear air” and assigned an aerosol extinction coef-
ficient of 0 km−1. The detection limits are defined in terms
of backscattering ratio, which depends on an aerosol lidar ra-
tio (Vaughan et al., 2009). As such, aerosol layers that span
a large altitude range frequently remain undetected (Toth et
al., 2018), particularly for absorbing aerosols in the daytime.
As indicated by Winker et al. (2013), the aerosol extinc-
tion threshold in a daytime CALIOP scan is 0.01–0.03 km−1

for 80 km horizontal averaging resolution and increases to
0.07 km−1 for 5 km horizontal averaging resolution. In re-
ality, aerosols are ubiquitous throughout the troposphere,
though the concentration can be very low in the free tropo-
sphere. However, excluding the clear-air layers would lead
to a biased estimate of ALHCALIOP, particularly for cases
of predominantly clear-air layers present below an elevated
aerosol layer. To compensate for this bias, we use an ex-
ponentially decayed background aerosol extinction profile
to provide a proxy for the aerosol extinction coefficients of
these undetected aerosol layers within the troposphere. The
background profile has a columnar AOD of about 0.07 at
532 nm according to Tomasi and Petkov (2014), who use
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Figure 8. Same as Fig. 7 but for three EPIC scenes captured on 26 August 2017 at UTC times of 16:11, 17:17, and 18:22. The CALIOP
overpass was at 18:15 UTC.

various lidar measurements to characterize the summertime
Arctic atmosphere. Though aerosol extinction within the
undetected aerosol layers by no means follows the back-
ground extinction profile identically, adding such a back-
ground aerosol extinction profile could, to the first order,
correct the potential bias in ALHCALIOP. Therefore, we con-
sider ALHCALIOP with and without the imposed background
aerosol in the following validation analysis.

Figure 9 presents the evaluation of our ALH retrieval
against CALIOP observations, showing that the ALH re-
trieval captures the overall spatial variability of ALH as seen
by CALIOP. Quantitatively, 67 % and 59 % of the retrievals
are within 0.5 km of difference from the counterparts of
ALHCALIOP on 25 and 26 August, respectively. Considering
all EPIC–CALIOP ALH pairs, over 65 % of ALH retrievals
are within an uncertainty envelope of 0.5 km (Fig. 10a–b),
and EPIC ALH has a mean bias of−0.13 km and a root mean
square error (RMSE) of 0.58 km, capturing 52 % of the vari-
ation of ALHCALIOP (Fig. 10a). If background aerosol is im-
posed in the CALIOP ALH calculation, our retrieved EPIC
ALH is found to have a bias of 0.23 km and an RMSE of
0.57 km (Fig. 10b).

Table 3. AERONET sites selected for AOD validation.

Site name Latitude (◦) Longitude (◦) Na
AOD

Billerica 42.53 −71.27 3
Churchill 58.74 −93.82 3
Egbert 44.23 −78.78 2
Lake_Erie 41.83 −83.19 2
LISCO 40.76 −73.34 4
NEON_UNDE 46.23 −89.54 2
Pickle_Lake 51.45 −90.22 1
Thompson_Farm 43.11 −70.95 3
Toronto 43.79 −79.47 2

a NAOD is the number of collocated AERONET AOD values.

The EPIC 680 nm AOD retrievals during the two days
were compared against 675 nm AOD observations at nine
AERONET sites (Table 3). The collocation method follows
Ichoku et al. (2002) but was modified to compare EPIC AOD
retrievals over 3× 3 pixels centered at the AERONET sites
with 1 h AERONET AOD observations around the EPIC scan
time. Collocated AERONET AOD values at each site are
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Figure 9. Comparison of ALH retrieved from EPIC and CALIOP level 2 aerosol extinction profile in both “curtain” view (a, c) and “scatter-
plot” view (b, d) for 2 d overpasses. The CALIOP orbital tracks are marked on EPIC RGB images in Figs. 7–8. Different EPIC scan times are
marked with different line and symbol colors in the comparison. The error bar for EPIC ALH represents the standard deviation for an array
of 3×3 24 km retrieval pixels, while that for CALIOP ALH represents the standard deviation of over five adjacent CALIOP 5 km footprints.
Also shown in panels (a, c) is the CALIOP* ALH (thin black curve) calculated with a background aerosol profile imposed for undetected
aerosol layers (see text for detail), whereas the bold black curve represents the CALIOP ALH without considering background aerosol.

Figure 10. Comparison of EPIC ALH and AOD with the corresponding CALIOP and AERONET measurements. (a) Scatterplot of EPIC
ALH versus CALIOP ALH by including all EPIC–CALIOP pairs shown in Fig. 9. The color of each scatter point represents the EPIC 680 nm
AOD value for the same EPIC pixels. (b) Same as panel (a) but for CALIOP ALH calculated with a background aerosol profile imposed
for undetected aerosol layers. (c) Scatterplot of EPIC 680 nm AOD versus AERONET 675 nm AOD, collocated at the nine AERONET sites
listed in Table 3. The dotted lines in both the scatterplots represent error envelops, i.e.,±0.5 km for ALH and±(0.05+10%) for AOD. Also
annotated are the one-to-one line (solid black line), linear regression fit (red line), number of scatter points (N ), coefficient of determination
(R2), significance level (P ), linear regression equation, bias, percentage of scatter points within the error envelop (EE %), and root mean
square error (RMSE).
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Figure 11. EPIC UV aerosol index (UVAI) for the three scenes on 25 August 2017 shown in Fig. 7. Here the UVAI was obtained from EPIC
level 2 UV aerosol products.

shown as circles in Figs. 7c and 8c. A comparison of EPIC
and AERONET AODs is shown in Fig. 10c. The collocated
AOD pairs, though with limited data samplings, have over
77 % falling in an uncertainty envelope of±(0.05+0.1AOD)
with a coefficient of determination (R2) of 0.54. The EPIC
AOD shows a positive bias of 0.03 and an RMSE of 0.05,
which was dominated by four subsets of EPIC AODs and
was likely caused by cloud contamination.

6 Implication to the retrieval of UV absorbing aerosol
properties

One important implication of this study is that the retrieved
ALH can provide complementary height information for
determining absorbing aerosol properties from EPIC’s UV
bands. EPIC also measures backscattered UV radiances at
340 and 388 nm, which was designed to detect and retrieve
the optical properties of UV-absorbing aerosols like mineral
dust and smoke by using the UV aerosol index (UVAI) (Mar-
shak et al., 2018). UVAI quantifies the difference in spectral
dependence between measured and calculated near-UV ra-
diances assuming a purely molecular atmosphere (Torres et
al., 1998). Physically, inferring aerosol properties from those
UV bands requires the characterization of aerosol height,
since UV radiance is sensitive to aerosol vertical distribu-
tion. For example, Jeong and Hsu (2008) retrieved aerosol
single-scattering albedo (SSA) from OMI radiance via syn-
ergic use of AOD from MODIS and ALH from CALIOP.
Currently, EPIC’s UV aerosol algorithm utilizes a clima-
tological aerosol height dataset derived from CALIOP ob-
servations (Torres et al., 2013). However, these static cli-
matological data may fail to capture the dynamic variation
of aerosol height and thus induce uncertainties in the UV-
retrieved aerosol properties. With the aerosol height and
loading available from EPIC’s O2 A and B bands, these clo-
sures are now possible with measurements from a single in-
strument. Such synergy can be also applied to the TROPO-
spheric Monitoring Instrument (TROPOMI) and the Plank-
ton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite, both
of which obtain hyperspectral measurements from the UV to

the NIR covering the O2 A and B bands (Omar et al., 2018;
Veefkind et al., 2012).

Here, we compare our retrieved ALHs with EPIC UVAI
to illustrate the importance, as well the potential benefit, of
the ALH retrievals to EPIC’s UV aerosol products. The EPIC
UVAI data are publicly available at https://eosweb.larc.nasa.
gov/project/dscovr/ (last access: 26 November 2018). Fig-
ure 11 shows the UVAI of the same EPIC scenes on 25 Au-
gust. These smoke plumes are highlighted by large values
of UVAI, which are in contrast to clouds that typically ex-
hibit a UVAI close to zero (Torres et al., 1998). Since UVAI
is a function of ALH, AOD, and SSA, its correlation with
ALH varies with AOD. As shown in Fig. 12, the sensitivity
of UVAI to ALH, as well as the correlation between them,
increases as AOD increases. In particular, high AOD values
(e.g., over 0.4) may result in UVAI values from less than 1 to
about 4, depending on the ALH (Fig. 12, bottom right panel).
Therefore, the use of ALH derived from the EPIC O2 bands
is expected to improve EPIC UV aerosol retrievals.

7 Summary and discussion

We extend our retrieval algorithm for retrieving over-water
dust ALH from EPIC measurements (Xu et al., 2017) to
biomass burning smoke aerosols over both water and veg-
etated land surfaces. The new algorithm uses Earth-reflected
radiances in EPIC’s visible and NIR bands and incorporates
flexible spectral fitting that accounts for the specifics of veg-
etation and water surface reflectivity. The fitting procedure
first determines AOD using four EPIC atmospheric window
bands (443, 551, 680, and 780 nm) and then uses the DOAS
ratios formulated in the O2 A and B bands (688 and 764 nm)
to derive the ALH that represents an optical centroid altitude.
ALH retrieval over vegetated surface primarily takes advan-
tage of the measurements in the O2 B band, where surface re-
flectance is sufficiently low to yield aerosol height informa-
tion. Surface reflectance values are specified using MODIS
surface products over land and GOME-2 LER products over
ocean.
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Figure 12. Scatterplots of EPIC UVAI (Fig. 11) versus current retrievals of ALH (Fig. 7) on 25 August 2017 (17:26 UTC) under different
AOD values as indicated in the title of each panel. Also annotated are the linear regression fit, number of scatter points (N ), coefficient of
determination (R2), and significance level (P ).

We applied the algorithm to six EPIC images, with three
images on each day, having biomass burning plumes over the
United States and Canada acquired on 25–26 August 2017.
The algorithm is able to retrieve AOD and ALH multiple
times daily over both water and vegetated land surfaces. The
retrieved ALHs were validated against CALIOP extinction-
weighted aerosol height (ALHCALIOP), showing that EPIC-
retrieved ALH has an RMSE of 0.58 km and captures 52 % of
the variation of ALHCALIOP, and 65 % of EPIC and CALIOP
ALH pairs are within an uncertainty envelope of 0.5 km.
EPIC-retrieved AODs are validated against AERONET AOD
observed at nine sites, indicating an RMSE of 0.05, and over
77 % of EPIC AOD retrievals fall within the error envelope of
±(0.05+ 0.1AOD). In addition, by comparing the retrieved
ALH and EPIC UVAI, we show that the aerosol height in-
formation retrieved by the present algorithm can potentially
benefit the retrieval of aerosol properties from the EPIC UV
bands.

Over 3 years of data recorded thus far by EPIC
(July 2015–present) offer an opportunity to characterize
aerosol height from diurnal to seasonal scales. Such datasets
with well-characterized uncertainties are valuable for evalu-
ating aerosol vertical distribution simulated by climate mod-
els. A follow-on study, based on the current work and Xu
et al. (2017), will examine the long-term global retrieval of
ALH for dust and smoke aerosols. Challenges for such a
global retrieval include the heterogeneity of aerosol species,
whereas our efforts have been mainly focused on single-
species (dust or smoke) aerosol assumptions. In fact, mix-

tures of aerosol are more commonly found in nature. Fur-
thermore, the currently available EPIC UVAI products can
help identify elevated absorbing aerosols (mainly dust and
smoke), which can then be used to determine the retrieval
targets on any EPIC image.

Data availability. The data presented in this paper can be ob-
tained by emailing the corresponding authors (Xiaoguang Xu and
Jun Wang).
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Appendix A: Sensitivity and error analysis

In this Appendix, we investigate the sensitivity of EPIC mea-
surements in the O2 A and B bands to the aerosol verti-
cal profile shape, aerosol optical properties, and surface re-
flectance assumed in the retrieval algorithm. Then, we esti-
mate potential ALH retrieval errors due to the uncertainties
in these parameters. For this case, ALH is derived from two
DOAS ratios (ρ) in the O2 A and B bands. Mathematically,
the retrieval error (ε̂) of ALH can be estimated using the op-
timal estimation approach (Xu and Wang, 2015):

ε̂−2
=KTS−1

ε K, (A1)

where K is the Jacobian matrix of ρ with respect to ALH, and
Sε is the observation error covariance matrix for ρ. In this
study, we assume no error correlation between the two DOAS
ratios. That is, Sε is a diagonal matrix with its elements equal
to the error variance for ρ. Observation error variance matrix
Sε can be characterized as a sum of two terms:

Sε = Sρ +Sm. (A2)

Here, Sρ is the error covariance matrix describing the un-
certainty for EPIC measurements. Sm is the covariance ma-
trix for forward model errors caused by inaccurate model as-
sumptions and uncertainties in model parameterizations, and
Sm can be calculated by

Sm =KT
bSbKb, (A3)

where Sb is the error covariance matrix describing uncertain-
ties of the vector of model parameters b, and Kb is Jacobian
matrix of ρ with respect to b. In the following analysis, we
consider four parameters for the vector b, i.e., the half-width
parameter (σH) defining the quasi-Gaussian aerosol verti-
cal profile, the 680 nm AOD (τ680), aerosol single-scattering
albedo (SSA), and surface reflectance As.

Figure A1 presents the UNL-VRTM-simulated DOAS ra-
tios ρ in the EPIC O2 A and B band (panel a) and their Jaco-
bian gradients with respect to ALH (panel b) and with respect
to the abovementioned four model parameters (panels c–f)
for the vector b for various surface and aerosol loading con-
ditions. Figure A2 shows the estimated ALH retrieval errors
owing to EPIC observation error and uncertainties in the as-
sumed model parameters for water (with As = 0.05 in both
O2 A and B bands) and vegetation (with As = 0.30 in the
A band and 0.05 in the B band) surfaces. The findings from
these Jacobian and error analysis results can be summarized
as follows.

– The sensitivity of ρ with respect to ALH (Fig. A1b)
is weak for aerosols confined in the lower atmosphere
(ALH below 1.5 km). The sensitivity increases rapidly
with the increase in ALH, peaks for ALH about 4 km,
and then deceases slightly for higher elevated aerosols.
The sensitivity in the O2 A band is stronger than that

in the O2 B band, and it is stronger for low surface re-
flectance and high aerosol loading. By considering 2 %
uncertainty for the EPIC DOAS ratios (Geogdzhayev
and Marshak, 2018), the ALH retrieval error (ε̂0) is
less than 0.5 km for the water surface and is less than
0.75 km for the vegetated surface if ALH is over 1.5 km
(black curves in Fig. A2a–b). This error characteriza-
tion is consistent with the retrieval error (0.57–0.58 km)
as estimated through the validation with CALIOP data.

– The DOAS ratios ρ have a negative sensitivity to σH for
elevated aerosol, and the sensitivity turns to positive for
ALH below 1.5 km (Fig. A1c). An error of 0.5 km σH
may cause up to 0.3 km of retrieval error for ALH (blue
curves in Fig. A2c–d).

– The DOAS ratios ρ have a positive sensitivity to
τ680, and the sensitivity increases as ALH increases
(Fig. A1d). An error of 0.05 in τ680 can lead to a re-
trieval error from 0 to 0.6 km for ALH, depending on
the aerosol loading and surface type (orange curves in
Fig. A2c–d).

– DOAS ratios are sensitive to SSA to some degree, es-
pecially for large AOD values (Fig. A1e). However, the
sensitivity to SSA is much less significant than the sen-
sitivity to AOD and surface reflectance because the re-
flectance at TOA depends more on surface reflectance
and AOD (than SSA in a relative sense). As a result,
SSA only has a marginal impact on the ALH retrieval
error (green curves in Fig. A2c–d), which is consistent
with findings by Sanders et al. (2015).

– The DOAS ratio ρ has a negative sensitivity to As, and
the sensitivity increases as ALH increases (Fig. A1f).
An error of 0.01 in As can result in a retrieval error of
0.1–0.6 km for ALH over water surface and 0.1–0.4 km
over vegetation surface, depending on the aerosol load-
ing (purple curves in Fig. A2c–d).

– If including possible uncertainties from these four pa-
rameters in vector b and EPIC measurement error, the
estimated ALH retrieval errors (ε̂All) are shown as red
curves in Fig. A2a–b. For elevated smoke aerosols with
τ680 = 0.4, ε̂All ranges from 0.4 to 1.0 km for water sur-
face and from 0.7 to 1.25 km for vegetation surface; the
ε̂All range for τ680 = 1.0 is reduced to 0.3–0.5 km for
water and 0.4–0.6 km for vegetation surface.
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Figure A1. UNL-VRTM-simulated DOAS ratios ρ in EPIC O2 A and B band (a) and their Jacobian gradients with respect to ALH (b),
half-width parameter σH for the quasi-Gaussian aerosol vertical profile (c), 680 nm AOD τ680 (d), SSA (e), and surface reflectance As (f).
The y axis represents aerosols being present at various ALH values. Three colors indicate ρ and its Jacobians for the O2 A band with
As = 0.05 (blue), the O2 A band with As = 0.30 (green), and the O2 B band with As = 0.05 (red). Two AOD loadings are indicated by
the solid (τ680 = 0.4) and dotted (τ680 = 1.0) lines, respectively. Simulations are performed with the same aerosol model and observation
geometry in Fig. 3.
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Figure A2. Estimated ALH retrieval errors owing to EPIC measurement errors and uncertainties in aerosol and surface assumptions. Panels
(a) and (c) are for a surface with As = 0.05 reflectance in both the O2 A and B bands (close to a water surface), and panels (b) and (d)
are for As = 0.30 in the A band and As = 0.05 in the B band (close to a vegetation surface). (a–b) ALH retrieval errors due to 2 % EPIC
measurement error alone (black curves) and with model uncertainty from all four parameters added (red curves). (c–d) The error in retrieved
ALH due to uncertainty from each of the parameters: 0.5 km in σH (blue), 0.05 in τ680 (orange), 0.03 in SSA (green), and 0.01 inAs (purple).
In all panels, the solid and dotted curves represent 0.4 and 1.0 τ680, respectively.
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