
Semantic Import Versioning
Go & Versioning, Part 3

Russ Cox
February 21, 2018

research.swtch.com/vgo-import

How do you deploy an incompatible change to an existing package? This is the
fundamental challenge, the fundamental decision, in any package management
system. The answer decides the complexity of the resulting system It decides
how easy or difficult package management will be to use. (It also decides how
easy or difficult package management will be to implement, but the user expe-
rience is more important.)

To answer this question, this post first presents the import compatibility rule
for Go:

If an old package and a new package have the same import path,
the new package must be backwards compatible with the old package.

We’ve argued for this principle from the start of Go, but we haven’t given it a
name or such a direct statement.

The import compatibility rule dramatically simplifies the experience of using
incompatible versions of a package. When each different version has a different
import path, there is no ambiguity about the intended semantics of a given im-
port statement. This makes it easier for both developers and tools to understand
Go programs.

Developers today expect to use semantic versions to describe packages, so
we adopt them into the model. Specifically, a module my/thing is imported as
my/thing for v0, the incompatibility period when breaking changes are expect-
ed and not protected against, and then also during v1, the first stable major ver-
sion. But when it’s time to add v2, instead of redefining the meaning of the now-
stable my/thing, we give it a new name: my/thing/v2.

v2.3.4

Major version: increment for backwards-incompatible changes.

Minor version: increment for new features.

Patch version: increment for bug fixes.

import "my/thing/v2/sub/pkg"

(semantic versioning)

(semantic import versioning)

I call this convention semantic import versioning, the result of following the im-
port compatibility rule while using semantic versioning.

A year ago, I believed that putting versions in import paths like this was ug-
ly, undesirable, and probably avoidable. But over the past year, I’ve come to un-
derstand just how much clarity and simplicity they bring to the system. In this
post I hope to give you a sense of why I changed my mind.

A Dependency Story

To make the discussion concrete, consider the following story. The story is hypo-
thetical, of course, but it’s motivated by a real problem. When dep was released,
the team at Google that wrote the OAuth2 package asked me how they should
go about introducing some incompatible improvements they’ve wanted to do for
a long time. The more I thought about it, the more I realized that this was not



vgo
https://research.swtch.com/vgo-import


S I V

as easy as it sounded, at least not without semantic import versioning.

Prologue

From the perspective of a package management tool, there are Authors of code
and Users of code. Alice, Anna, and Amy are Authors of different code packages.
Alice works at Google and wrote the OAuth2 package. Amy works at Microsoft
and wrote the Azure client libraries. Anna works at Amazon and wrote the AWS
client libraries. Ugo is the User of all these packages. He’s working on the ulti-
mate cloud app, Unity, which uses all of those packages and others.

As the Authors, Alice, Anna, and Amy need to be able to write and release
new versions of their packages. Each version of a package specifies a required
version for each of its dependencies.

As the User, Ugo needs to be able to build Unity with these other packages;
he needs control over exactly which versions are used in a particular build; and
he needs to be able to update to new versions when he chooses.

There’s more that our friends might expect from a package management
tool, especially around discovery, testing, portability, and helpful diagnostics, of
course, but those are not relevant to the story.

As our story opens, Ugo’s Unity build dependencies look like:

AWS r1

(by Anna at Amazon)

import "oauth2"

Azure r1

(by Amy at Microsoft)

import "oauth2"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

Chapter 1

Everyone is writing software independently.
At Google, Alice has been busy designing a new, simpler, easier-to-use API for

the OAuth2 package. It can still do everything that the old package can do, but
with half the API surface. She releases it as OAuth2 r2. (The ‘r’ here stands for
revision. For now, the revision numbers don’t indicate anything other than se-
quencing: in particular, they’re not semantic versions.)

At Microsoft, Amy is on a well-deserved long vacation, and her team decides
not to make any changes related to OAuth2 r2 until she returns. The Azure
package will keep using OAuth2 r1 for now.

At Amazon, Anna finds that using OAuth2 r2 will let her delete a lot of ugly
code from the implementation of AWS r1, so she changes AWS to use OAuth2
r2. She fixes a few bugs along the way and issues the result as AWS r2.

Ugo gets a bug report about behavior on Azure and tracks it down to a bug
in the Azure client libraries. Amy already released a fix for that bug in Azure r2
before leaving for vacation. Ugo adds a test case to Unity, confirms that it fails,
and asks the package management tool to update to Azure r2.





S I V

After the update, Ugo’s build looks like:

AWS r1

(by Anna at Amazon)

import "oauth2"

Azure r2

(by Amy at Microsoft)

import "oauth2"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

Note: only change
since last diagram
is Azure version, 

even though newer 
versions of AWS 
and OAuth2 are 

available.

He confirms that the new test passes and that all his old tests still pass. He locks
in the Azure update and ships an updated Unity.

Chapter 2

To much fanfare, Amazon launches their new cloud offering, Amazon Zeta
Functions. In preparation for the launch, Anna added Zeta support to the AWS
package, which she now releases as AWS r3.

When Ugo hears about Amazon Zeta, he writes some test programs and is
so excited about how well they work that he skips lunch to update Unity. To-
day’s update does not go as well as the last one. Ugo wants to build Unity with
Zeta support using Azure r2 and AWS r3, the latest version of each. But Azure
r2 needs OAuth2 r1 (not r2), while AWS r3 needs OAuth2 r2 (not r1). Classic
diamond dependency, right? Ugo doesn’t care what it is. He just wants to build
Unity.

Worse, it doesn’t appear to be anyone’s fault. Alice wrote a better OAuth2
package. Amy fixed some Azure bugs and went on vacation. Anna decided AWS
should use the new OAuth2 (an internal implementation detail) and later added
Zeta support. Ugo wants Unity to use the latest Azure and AWS packages. It’s
very hard to say any of them did something wrong. If these people aren’t wrong,
then maybe the package manager is. We’ve been assuming that there can be only
one version of OAuth2 in Ugo’s Unity build. Maybe that’s the problem: maybe
the package manager should allow different versions to be included in a single
build. This example would seem to indicate that it must.





S I V

Ugo is still stuck, so he searches StackOverflow and finds out about the pack-
age manager’s -fmultiverse flag, which allows multiple versions, so that his
program builds as:

AWS r3

(by Anna at Amazon)

import "oauth2"

Azure r2

(by Amy at Microsoft)

import "oauth2"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

OAuth2 r2 

(by Alice at Google)

Note: multiple versions
of same package

built into program

Ugo tries this. It doesn’t work. Digging further into the problem, Ugo discovers
that both Azure and AWS are using a popular OAuth2 middleware library called
Moauth that simplifies part of the OAuth2 processing. Moauth is not a complete
API replacement: users still import OAuth2 directly, but they use Moauth to
simplify some of the API calls. The details that Moauth helps with didn’t change
from OAuth2 r1 to r2, so Moauth r1 (the only version that exists) is compatible
with either. Both Azure r2 and AWS r3 use Moauth r1. That works fine in pro-
grams using only Azure or only AWS, but Ugo’s Unity build actually looks like:

AWS r3

(by Anna at Amazon)

import "oauth2"

Azure r2

(by Amy at Microsoft)

import "oauth2"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

OAuth2 r2 

(by Alice at Google)

Moauth r1

(by Moe)

import "oauth2"

import "moauth" import "moauth"

?

Note: needs to mean
r1 for use by Azure,
r2 for use by AWS

Unity needs both copies of OAuth2, but then which one does Moauth import?





S I V

In order to make the build work, it would seem that we need two identical
copies of Moauth: one that imports OAuth2 r1, for use by Azure, and a second
that imports OAuth2 r2, for use by AWS. A quick StackOverflow check shows
that the package manager has a flag for that: -fclone. Using this flag, Ugo’s pro-
gram builds as:

AWS r3

(by Anna at Amazon)

import "oauth2"

Azure r2

(by Amy at Microsoft)

import "oauth2"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

OAuth2 r2 

(by Alice at Google)

Moauth r1

(by Moe)

import "oauth2"

import "moauth" import "moauth"

Moauth r1

(by Moe)

import "oauth2"

Note: two copies of same 
version of package,

with different meanings 
for imports.

This actually works and passes its tests, although Ugo now wonders if there are
more problems lurking. He heads home for a late dinner.

Chapter 3

Back at Microsoft, Amy has returned from vacation. She decides that Azure can
keep using OAuth2 r1 for a while longer, but she realizes that it would help users
to let them pass Moauth tokens directly into the Azure API. She adds this to
the Azure package in a backwards-compatible way and releases Azure r3. Over
at Amazon, Anna likes the Azure package’s new Moauth-based API and adds a
similar API to the AWS package, releasing AWS r4.

Ugo sees these changes and decides to update to the latest version of both
Azure and AWS in order to use the Moauth-based APIs. This time he blocks off
an afternoon. First he tentatively updates the Azure and AWS packages without
modifying Unity at all. His program builds!

Excited, Ugo changes Unity to use the Moauth-based Azure API, and that
builds too. When he changes Unity to also use the Moauth-based AWS API,
though, the build fails. Perplexed, he reverts his Azure changes, leaving only the
AWS changes, and the build succeeds. He puts the Azure changes back, and the
build fails again. Ugo returns to StackOverflow.





S I V

Ugo learns that when using just one Moauth-based API (in this case, Azure)
with -fmultiverse -fclone, Unity implicitly builds as:

AWS r3

(by Anna at Amazon)

import "oauth2"

Azure r2

(by Amy at Microsoft)

import "oauth2"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

OAuth2 r2 

(by Alice at Google)

Moauth r1

(by Moe)

import "oauth2"

import "moauth" import "moauth"

Moauth r1

(by Moe)

import "oauth2"

import "moauth"

Note: imported for Azure, 
matches meaning in Azure

but when he is using both Moauth-based APIs, the single import "moauth" in
Unity is ambiguous. Since Unity is the main package, it cannot be cloned (in
contrast to Moauth itself):

AWS r4

(by Anna at Amazon)

import "oauth2"

Azure r3

(by Amy at Microsoft)

import "oauth2"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

OAuth2 r2 

(by Alice at Google)

Moauth r1

(by Moe)

import "oauth2"

import "moauth" import "moauth"

Moauth r1

(by Moe)

import "oauth2"

import "moauth"

?

Note: main package,
cannot clone like Moauth

Note: needs one meaning 
when being used with Azure, 
another when used with AWS





S I V

A comment on StackOverflow suggests moving the Moauth import into two dif-
ferent packages and having Unity import them instead. Ugo tries this and, in-
credibly, it works:

AWS r4

(by Anna at Amazon)

import "oauth2"

import "moauth"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "unity/aws"

import "unity/azure"

OAuth2 r2 

(by Alice at Google)

Moauth r1

(by Moe)

import "oauth2"

Azure r3

(by Amy at Microsoft)

import "oauth2"

import "moauth"

Moauth r1

(by Moe)

import "oauth2"

Unity/Azure

(by Ugo)

import "moauth"

import "azure"

Unity/AWS

(by Ugo)

import "moauth"

import "aws"

Note: main Unity package 
split only to enable

package management magic

Ugo makes it home on time. He’s not terribly happy with his package manager,
but he’s now a big fan of StackOverflow.

A Retelling with Semantic Versioning

Let’s wave a magic wand and retell the story with semantic versions, assuming
that the package manager uses them instead of the original story’s ‘r’ numbers.

Here’s what changes:

– OAuth2 r1 becomes OAuth2 1.0.0.

– Moauth r1 becomes Moauth 1.0.0.

– Azure r1 becomes Azure 1.0.0.

– AWS r1 becomes AWS 1.0.0.

– OAuth2 r2 becomes OAuth2 2.0.0 (partly incompatible API).

– Azure r2 becomes Azure 1.0.1 (bug fix).

– AWS r2 becomes AWS 1.0.1 (bug fix, internal use of OAuth2 2.0.0).

– AWS r3 becomes AWS 1.1.0 (feature update: add Zeta).

– Azure r3 becomes Azure 1.1.0 (feature update: add Moauth APIs).

– AWS r4 becomes AWS 1.2.0 (feature update: add Moauth APIs).

Nothing else about the story changes. Ugo still runs into the same build prob-
lems, and he still has to turn to StackOverflow to learn about build flags and
refactoring techniques just to keep Unity building. According to semver, though,
Ugo should have had no trouble at all with any of his updates: not one of





S I V

the packages that Unity imports changed its major version during the story.
Only OAuth2 did, deep in Unity’s dependency tree. Unity itself does not import
OAuth2. What went wrong?

The problem here is that the semver spec is really not much more than a way
to choose and compare version strings. It says nothing else. In particular, it says
nothing about how to handle incompatible changes after incrementing the ma-
jor version number.

The most valuable part of semver is the encouragement to make backwards-
compatible changes when possible. The FAQ correctly notes:

“Incompatible changes should not be introduced lightly to software
that has a lot of dependent code. The cost that must be incurred to
upgrade can be significant. Having to bump major versions to release
incompatible changes means you’ll think through the impact of your
changes and evaluate the cost/benefit ratio involved.”

I certainly agree that “incompatible changes should not be introduced lightly.”
Where I think semver falls short is the idea that “having to bump major ver-
sions” is a step that will make you “think through the impact of your changes
and evaluate the cost/benefit ratio involved.” Quite the opposite: it’s far too easy
to read semver as implying that as long as you increment the major version
when you make an incompatible change, everything else will work out. The ex-
ample shows that this is not the case.

From Alice’s point of view, the OAuth2 API needed backwards-incompatible
changes, and when she made them, semver seemed to promise it would be fine
to release an incompatible OAuth2 package, provided she gave it version 2.0.0.
But that semver-approved change triggered the cascade of problems that befell
Ugo and Unity.

Semantic versions are an important way for authors to convey expectations to
users, but that’s all they are. By itself, it can’t be expected to solve these larger
build problems. Instead, let’s look at an approach that does solve the build prob-
lems. Afterward, we can consider how to fit semver into that approach.

A Retelling with Import Versioning

Once again, let’s retell the story, this time using the import compatibility rule:

In Go, if an old package and a new package have the same import path,
the new package must be backwards compatible with the old package.

Now the plot changes are more significant. The story starts out the same way,
but in Chapter 1, when Alice decides to create a new, partly incompatible
OAuth2 API, she cannot use "oauth2" as its import path. Instead, she names the
new version Pocoauth and gives it the import path "pocoauth". Presented with
two different OAuth2 packages, Moe (the author of Moauth) must write a sec-
ond package, Moauth for Pocoauth, which he names Pocomoauth and gives the
import path "pocomoauth". When Anna updates the AWS package to the new
OAuth2 API, she also changes the import paths in that code from "oauth2" to
"pocoauth" and from "moauth" to "pocomoauth". Then the story proceeds as
before, with the release of AWS r2 and AWS r3.

In Chapter 2, when Ugo eagerly adopts Amazon Zeta, everything just works.
The imports in all the packages code exactly match what needs to be built. He
doesn’t have to look up special flags on StackOverflow, and he’s only five min-
utes late to lunch.





S I V

AWS r3

(by Anna at Amazon)

import "pocoauth"

Azure r2

(by Amy at Microsoft)

import "oauth2"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

Pocoauth r1

(by Alice at Google)

Pocomoauth r1

(by Moe)

import "pocoauth"

import "moauth" import "pocomoauth"

Moauth r1

(by Moe)

import "oauth2"

Note: new APIs, new names and import paths:
no conflict between Azure and AWS

Note: Moauth exposes 
OAuth2 in API, so Moe 

must create Pocomoauth 
fork to expose Pocoauth 

instead.

In Chapter 3, Amy adds Moauth-based APIs to Azure while Anna adds equiva-
lent Pocomoauth-based APIs to AWS.

When Ugo decides to update both Azure and AWS, again there’s no problem.
His updated program builds without any special refactoring:

AWS r3

(by Anna at Amazon)

import "pocoauth"

Azure r2

(by Amy at Microsoft)

import "oauth2"

OAuth2 r1 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

Pocoauth r1

(by Alice at Google)

Pocomoauth r1

(by Moe)

import "pocoauth"

import "moauth" import "pocomoauth"

Moauth r1

(by Moe)

import "oauth2"

Note: Ugo added
two new imports,

not just one

import "moauth"

import "pocomoauth"

At the end of this version of the story, Ugo doesn’t even think about his pack-
age manager. It just works; he barely notices that it’s there.

In contrast to the semantic versioning translation of the story, the use of im-
port versioning here changed two critical details. First, when Alice introduced
her backwards-incompatible OAuth2 API, she had to release it as a new pack-
age (Pocoauth). Second, because Moe’s wrapper package Moauth exposed the
OAuth2 package’s type definitions in its own API, Alice’s release of a new pack-
age forced Moe’s release of a new package (Pocomoauth). Ugo’s final Unity build





S I V

went well because Alice’s and Moe’s package splits created exactly the structure
needed to keep clients like Unity building and running. Instead of Ugo and
users like him needing incomplete package manager complexity like -fmulti-

verse -fclone aided by extraneous refactorings, the import compatibility rule
pushes a small amount of additional work onto package authors, and all users
benefit.

There is certainly a cost to needing to introduce a new name for each back-
wards-incompatible API change, but as the semver FAQ says, that cost should
encourage authors to more clearly consider the impact of such changes and
whether they are truly necessary. And in the case of Import Versioning, the cost
pays for significant benefits to users.

An advantage of Import Versioning here is that package names and import
paths are well-understood concepts for Go developers. If you tell an author that
making a backwards-incompatible change requires creating a different package
with a different import path, then—without any special knowledge of version-
ing—the author can reason through the implications on client packages: clients
are going to need to change their own imports one at a time; Moauth is not go-
ing to work with the new package; and so on.

Able to predict the effects on users more clearly, authors might well make dif-
ferent, better decisions about their changes. Alice might look for way to intro-
duce the new, cleaner API into the original OAuth2 package alongside the ex-
isting APIs, to avoid a package split. Moe might look more carefully at whether
he can use interfaces to make Moauth support both OAuth2 and Pocoauth,
avoiding a new Pocomoauth package. Amy might decide it’s worth updating to
Pocoauth and Pocomoauth instead of exposing the fact that the Azure APIs use
outdated OAuth2 and Moauth packages. Anna might have tried to make the
AWS APIs allow either Moauth or Pocomoauth, to make it easier for Azure users
to switch.

In contrast, the implications of a semver “major version bump” are far less
clear and do not exert the same kind of design pressure on authors. To be clear,
this approach creates a bit more work for authors, but that work is justified by
delivering significant benefits to users. In general, this balance makes sense, be-
cause packages aim to have many more users than authors, and hopefully all
packages at least have as many users as they do authors.

Semantic Import Versioning

The previous section showed how import versioning leads to simple, predictable
builds during updates. But choosing a new name at every backwards-incompat-
ible change is difficult and unhelpful to users. Given the choice between OAuth2
and Pocoauth, which should Amy use? Without further investigation, there’s no
way to know. In contrast, semantic versioning makes this easy: OAuth2 2.0.0 is
clearly the intended replacement for OAuth2 1.0.0.

We can use semantic versioning and follow the import compatibility rule by
including the major version in the import path. Instead of needing to invent a
cute but unrelated new name like Pocoauth, Alice can call her new API OAuth2
2.0.0, with the new import path "oauth2/v2". The same for Moe: Moauth 2.0.0
(imported as "moauth/v2") can be the helper package for OAuth2 2.0.0, just as
Moauth 1.0.0 was the helper package for OAuth2 1.0.0.





S I V

When Ugo adds Zeta support in Chapter 2, his build looks like:

AWS 1.1.0

(by Anna at Amazon)

import "oauth2/v2"

Azure 1.0.1

(by Amy at Microsoft)

import "oauth2"

OAuth2 1.0.0 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

OAuth2 2.0.0

(by Alice at Google)

Moauth 2.0.0

(by Moe)

import "oauth2/v2"

import "moauth" import "moauth/v2"

Moauth 1.0.0

(by Moe)

import "oauth2"

Note: new major versions,
new import paths:
no conflict between

Azure and AWS

Because "moauth" and "moauth/v2" are simply different packages, it is per-
fectly clear to Ugo what he needs to do to use "moauth" with Azure and
"moauth/v2" with AWS: import both.

AWS 1.2.0

(by Anna at Amazon)

import "oauth2/v2"

Azure 1.1.0

(by Amy at Microsoft)

import "oauth2"

OAuth2 1.0.0 

(by Alice at Google)

Unity 

(by Ugo)

import "aws"

import "azure"

OAuth2 2.0.0

(by Alice at Google)

Moauth 2.0.0

(by Moe)

import "oauth2/v2"

import "moauth" import "moauth/v2"

Moauth 1.0.0

(by Moe)

import "oauth2"

import "moauth"

import "moauth/v2"

For compatibility with existing Go usage and as a small encouragement not to
make backwards-incompatible API changes, I am assuming here that major ver-
sion 1 is omitted from import paths: import "moauth", not "moauth/v1". Sim-
ilarly, major version 0, which explicitly disavows compatibility, is also omitted
from import paths. The idea here is that by using a v0 dependency, users are ex-
plicitly acknowledging the possibility of breakage and taking on the responsibil-
ity to deal with it when they choose to update. (Of course, it’s then important
that updates don’t happen automatically. We’ll see in the next post how minimal
version selection helps with that.)





S I V

Functional Names & Immutable Meanings

Twenty years ago, Rob Pike and I were modifying the internals of a Plan 9 C li-
brary, and Rob taught me the rule of thumb that when you change a function’s
behavior, you also change its name. The old name had one meaning. By using
a different meaning for the new name and eliminating the old one, we ensured
the compiler would complain loudly about every piece of code that needed to be
examined and updated, instead of silently compiling incorrect code. And if peo-
ple had their own programs using the function, they’d get a compile-time failure
instead of a long debugging session. In today’s world of distributed version con-
trol, that last problem is magnified, making the name change even more impor-
tant. A merge of concurrently-written code expecting the old semantics should
not silently get the new semantics instead.

Of course, deleting an old function works only when all the uses can be
found, or when users understand that they are responsible for keeping up with
changes, as was the case in a research system like Plan 9. For exported APIs,
it’s usually much better to leave the old name and old behavior intact and only
add a new name with new behavior. Rich Hickey made the point in his “Spec-
ulation” talk in 2016 that this approach of only adding new names and behav-
iors, never removing old names or redefining their meanings, is exactly what
functional programming encourages with respect to individual variables or data
structures. The functional approach brings benefits in clarity and predictability
in small-scale programming, and the benefits are even larger when applied, as in
the import compatibility rule, to whole APIs: dependency hell is really just mu-
tability hell writ large. That’s just one small observation in the talk; the whole
thing is worth watching.

In the early days of “go get”, when people asked about making backwards-in-
compatible changes, our response—based on intuition derived from years of ex-
perience with these kinds of software changes—was to give the import version-
ing rule, but without a clear explanation why this approach was better than not
putting the major version in the import paths. Go 1.2 added a FAQ entry about
package versioning that gave this basic advice (unchanged as of Go 1.10):

Packages intended for public use should try to maintain backwards com-
patibility as they evolve. The Go 1 compatibility guidelines are a good
reference here: don’t remove exported names, encourage tagged composite
literals, and so on. If different functionality is required, add a new name
instead of changing an old one. If a complete break is required, create a
new package with a new import path.

One motivation for this blog post is to show, using a clear, believable example,
why following the rule is so important.

Avoiding Singleton Problems

One common objection to the semantic import versioning approach is that
package authors today expect that there is only ever one copy of their package in
a given build. Allowing multiple packages at different major versions may cause
problems due to unintended duplications of singletons. An example would be
registering an HTTP handler. If my/thing registers an HTTP handler for /de-

bug/my/thing, then having two copies of the package will result in duplicate
registrations, which causes a panic at registration time. Another problem would
be if there were two HTTP stacks in the program. Clearly only one HTTP stack
can listen on port 80; we wouldn’t want half the program registering handlers
that will not be used. Go developers are already running into problems like this
due to vendoring inside vendored packages.



https://www.youtube.com/watch?v=oyLBGkS5ICk
https://golang.org/doc/go1compat.html


S I V

Moving to vgo and semantic import versioning clarifies and simplifies the
current situation though. Instead of the uncontrolled duplication caused by ven-
doring inside vendoring, authors will have a guarantee that there is only one
instance of each major version of their packages. By including the major ver-
sion into the import path, it should be clearer to authors that my/thing and
my/thing/v2 are different and need to be able to coexist. Perhaps that means
exporting debug information for v2 on /debug/my/thing/v2. Or perhaps it
means coordinating. Maybe v2 can take charge of registering the handler but
also provide a hook for v1 to supply information to display on the page. This
would mean my/thing importing my/thing/v2 or vice versa; with different im-
port paths, that’s easy to do and easy to understand. In contrast, if both v1 and
v2 are my/thing it’s hard to comprehend what it means for one to import its
own import path and get the other.

Automatic API Updates

One of the key reasons to allow both v1 and v2 of a package to coexist in a large
program is to make it possible to upgrade the clients of that package one at a
time and still have a buildable result. This is specific instance of the more gen-
eral problem of gradual code repair. (See my 2016 article, “Codebase Refactor-
ing (with help from Go),” for more on that problem.)

In addition to keeping programs building, semantic import versioning has a
significant benefit to gradual code repair, which I touched on in the previous
section: one major version of a package can import and be written in terms of
another. It is trivial for the v2 API to be written as a wrapper of the v1 imple-
mentation, or vice versa. This lets them share the code and, with appropriate de-
sign choices and perhaps use of type aliases, might even allow clients using v1
and v2 to interoperate. It may also help resolve a key technical problem in defin-
ing automatic API updates.

Before Go 1, we relied heavily on go fix, which users ran after updating to a
new Go release and finding their programs no longer compiled. Updating code
that doesn’t compile makes it impossible to use most of our program analysis
tools, which require that their inputs are valid programs. Also, we’ve wondered
how to allow authors of packages outside the Go standard library to supply “fix-
es” specific to their own API updates. The ability to name and work with mul-
tiple incompatible versions of a package in a single program suggests a possi-
ble solution: if a v1 API function can be implemented as a wrapper around the
v2 API, the wrapper implementation can double as the fix specification. For ex-
ample, suppose v1 of an API has functions EnableFoo and DisableFoo and v2
replaces the pair with a single SetFoo(enabled bool). After v2 is released, v1
can be implemented as a wrapper around v2:

package p // v1

import v2 "p/v2"

func EnableFoo() {

//go:fix

v2.SetFoo(true)

}

func DisableFoo() {

//go:fix

v2.SetFoo(false)

}



https://talks.golang.org/2016/refactor.article


S I V

The special //go:fix comments would indicate to go fix that the wrapper
body that follows should be inlined into the call site. Then running go fix

would rewrite calls to v1 EnableFoo to v2 SetFoo(true). The rewrite is easily
specified and type-checked, since it is plain Go code. Even better, the rewrite is
clearly safe: v1 EnableFoo is already calling v2 SetFoo(true), so rewriting the
call site plainly does not change the meaning of the program.

It is plausible that go fix might use symbolic execution to fix even the reverse
API change, from a v1 with SetFoo to a v2 with EnableFoo and DisableFoo.
The v1 SetFoo implementation could read:

package q // v1

import v2 "q/v2"

func SetFoo(enabled bool) {

if enabled {

//go:fix

v2.EnableFoo()

} else {

//go:fix

v2.DisableFoo()

}

}

and then go fix would update SetFoo(true) to EnableFoo() and Set-

Foo(false) to DisableFoo(). This kind of fix would even apply to API up-
dates within a single major version. For example, v1 could be deprecating (but
keeping) SetFoo and introducing EnableFoo and DisableFoo. The same kind
of fix would help callers move away from the deprecated API.

To be clear, this is not implemented today, but it seems promising, and this
kind of tooling is made possible by giving different things different names.
These examples demonstrate the power of having durable, immutable names at-
tached to specific code behavior. We need only follow the rule that when you
make a change to something, you also change its name.

Committing to Compatibility

Semantic import versioning is more work for authors of packages. They can’t
just decide to issue v2, walk away from v1, and leave users like Ugo to deal with
the fallout. But authors who do that are hurting their users. It seems to me a
good thing if the system makes it harder to hurt users and instead naturally
steers authors toward behaviors that don’t hurt users.

More generally, Sam Boyer talked at GopherCon 2017 about how package
managers moderate our social interactions, the collaboration of people building
software. We get to decide. Do we want to work in a community built around
a system that optimizes for compatibility, smooth transitions, and working well
together? Or do we want to work in a community built around a system that op-
timizes for creating and describing incompatibility, that makes it acceptable for
authors to break users’ programs? Import versioning, and in particular handling
semantic versioning by lifting the semantic major version into the import path,
is how we can make sure we work in the first kind of community.

Let’s commit to compatibility.




