
MOLECULAR INTEGRALS 

OVER GAUSSIAN BASIS FUNCTIONS 

Peter M . W .  Gi l l  

Depar tment  of Chemis try  

Carnegie  Mel lon  Univers i ty  

Pi t t sburgh ,  PA 15213,  U S A  

ADVANCES IN QUANTUM CHEMISTRY 
VOLUME 25 

Copyright 0 1994 By Academic Press, Inc. 
All rights of reproduction in any form resewed. 141 



142 Peter M. W. Gill 

Table of Contents 

1. Quantum Chemical Procedures 

2. Basis Functions 
2.1 Slater Functions 
2.2 Gaussian Functions 
2.3 Contracted Gaussian Functions 
2.4 Gaussian Lobe Functions 
2.5 Delta Functions 

3. A Survey of Gaussian Integral Algorithms 
3.1 Performance Measures 

3.1.1 mop-Cost 
3.1.2 Mop-Cost 
3.1.3 CPU-Time 

3.2 Fundamental Integrals 
3.2.1 The Overlap Integral 
3.2.2 The Kinetic-Energy Integral 
3.2.3 The Electron-Repulsion Integral 
3.2.4 The Nuclear-Attraction Integral 
3.2.5 The Anti-Coulomb Integral 

3.3 The Boys Algorithm 
3.4 The Contraction Problem 
3.5 The Pople-Hehre Algorithm 
3.6 Bras, Kets and Brakets 
3.7 The McMurchie-Davidson Algorithm 
3.8 The Obara-Saika-Schlegel Algorithm 
3.9 The Head-Gordon-Pople Algorithm 
3.10 Variations on the HGP Theme 

4. The PRISM Algorithm 
4.1 Shell-Pair Data 
4.2 Selection of Shell-Quartets 
4.3 Generation of the [O](m)Integrals 
4.4 Contraction Steps 
4.5 Transformation Steps 

4.5.1 Two-Electron Transformations on the MD PRISM 
4.5.2 One-Electron Transformations on the MD PRISM 
4.5.3 Two-Electron Transformations on the HGP PRISM 
4.5.4 One-Electron Transformations on the HGP PRISM 

4.6 Loop Structure of PRISM in Gaussian 92 
4.7 Performance of PRISM in Gaussian 92 

5. Prospects for the Future 

6. Acknowledgments 

7. References 



Molecular Integrals over Gaussian Basis Functions 143 

1. QUANTUM CHEMICAL PROCEDURES 

The major goal of Quantum Chemistry is to obtain solutions to atomic and 
molecular Schrodinger equations [l]. To be useful to chemists, such solutions 
must be obtainable at a tolerable computational cost and must be reasonably 
accurate, yet devising solution methods which meet both of these requirements 
has proven remarkably difficult. Indeed, although very many variations have 
been developed over the years, almost every currently existing method can be 
traced to a prototype introduced within ten years of Schrodinger's seminal paper. 

The most uniformly successful family of methods begins with the simplest 
possible n-electron wavefunction satisfying the Pauli antisymmetry principle - a 
Slater determinant [2] of one-electron functions x i(r,w) called spinorbitals. Each 
spinorbital is a product of a molecular orbital yi(r) and a spinfunction a(o) 
or p(o). The yi(r)  are found by the self-consistent-field (SCF) procedure 
introduced [3] into quantum chemistry by Hartree. The Hartree-Fock (HF) [4] 
and Kohn-Sham density functional (KS) [5,6] theories are both of this type, as are 
their many simplified variants [7-161. 

In SCF methods, the n-electron Schrodinger equation is replaced by a set 
of n coupled integro-differential one-electron equations. The HF equations are a 
well-defined approximation to the Schrodinger equation and constitute the starting 
point for a variety of subsequent treatments [ 171: the equations of KS theory are 
formally equivalent [ 181 to the original Schrodinger equation for the ground state. 
In both cases, the equations are highly non-linear and require iterative techniques 
for their solution. 

Commonly, initial guesses for the molecular orbitals are obtained and 
these are then used to compute the potential felt by an electron in the field of the 
nuclei and the other electrons. The corresponding one-electron Schrodinger 
equation is then solved to determine another set of orbitals and the process is 
continued until successive sets of orbitals differ negligibly, at which point self- 
consistency is said to have been achieved. The most time-consuming part of this 
procedure is the evaluation of the potential which, within a basis set (Section 2), 
is represented by various types of integrals (Section 3). Moreover, even if we 
proceed beyond the HF SCF level, to correlated levels of theory, these integrals 
remain central to the problem of determining the energy and wavefunction [ 171. 
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The result of any quantum chemical procedure is the molecular energy, 
parametrically determined by the nuclear geometry. To locate equilibrium and 
transition structures, we usually compute the first derivatives of the energy with 
respect to nuclear motion [ 191; harmonic vibrational frequencies can be obtained 
if second derivatives are available [20]; third and higher derivatives are 
needed [21] for higher-level studies of potential surfaces. Not surprisingly, nth- 
derivatives of the integrals are required to compute nth-derivatives of the energy 
and the efficient generation of integrals and their nth-derivatives is the focus of 
this Review. 

2. BASIS FUNCTIONS 

Because computers can represent numbers, but not functions, the 
molecular orbitals at each stage of the SCF procedure have to be represented by 
an expansion in a finite set of basis functions qi(r) ,  i = 1 ,2 ,  _.. N. If the set is 
mathematically complete, the result of the SCF procedure is termed the HF or KS 
limit: otherwise the result is dependent on the basis set used. Many types of basis 
funtion have been explored, and several are currently used in routine applications. 
However, their interrelationships and relative strengths and weaknesses are not 
often clarified and it may be instructive to do so here. 

2.1 Slater Functions 

Until the 1960's, Slater basis functions [22] 

$;later(r) = ( x - A ~ ) ~ X ( ~ - A ~ )  a Y(z -A, )aze~p[ -a l r -Al ]  (1) 

were very popular. Like exact wavefunctions, they exhibit cusps at the nuclei and 
decay exponentially but their use necessitates the evaluation of integrals which are 
very time-consuming to compute. Although several groups have made useful 
progress in developing efficient algorithms for the evaluation of such integrals, 
explicit use of Slater basis functions is presently restricted to rather small 
molecules. It should be noted, however, that any Slater function can be 
approximated, to any desired accuracy, by a sum of Gaussian functions and the 
difficult Slater integrals then become relatively easy contracted Gaussian integrals 
(see below). This is the philosophy of the STO-nG basis sets [23]. In a similar 
vein, the product of a pair of Slater functions can also be approximated to any 
accuracy by a sum of Gaussians and this approach has been suggested and 
explored by Harris and Monkhorst [24]. 
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2.2 Gaussian Functions 

A primitive Gaussian function 

has center A = (Ax, A,, A,), angular momentum a = (ax, a,, a,), and exponent a. 
The suggestion by Boys [25] to use Gaussians as basis functions was a crucial 
step in the progression of quantum chemistry from a largely qualitative, to a 
largely quantitative, discipline. The use of a Gaussian basis set in a HF or KS 
calculation leads to very much simpler integrals (see below) than those which 
arise within a Slater basis and, although it is known [26] that more Gaussian than 
Slater functions are required to achieve a given basis set quality, the simplicity of 
Gaussian integrals more than compensates for this. 

A set of primitive basis functions with the same center and exponent are 
known as a primitive shell. For example, a set of p-functions (pn, pr, pz} on an 
atom is termed a primitive p-shell and, if an s-function (with the same exponent) 
is added, the shell becomes a primitive sp-shell. The most commonly occuring 
shells in modern computational chemistry are s, p ,  sp, d and$ 

2.3 Contracted Gaussian Functions 

It is found that contracted Gaussian functions (CGFs) [27] 

where KA is the degree of contraction and the D d  are contraction coefiicients, are 
even more computationally effective [26]  than Slater functions. It is crucial to 
note that, although they have different contraction coefficients and exponents, all 
of the primitive functions in a contracted function share the same center A and 
angular momentum a. A set of CGFs with the same center and the same set of 
exponents is termed a contracted shell by analogy with a primitive shell (defined 
above). 
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Over the years, many contracted Gaussian basis sets have been constructed 
and the interested reader will find the excellent review by Davidson and 
Feller [26] very illuminating. As a rule, one or two CGFs are used to model each 
of the core atomic orbitals (Is for lithium to neon; Is, 2s and 2p for sodium to 
argon; erc.) and the CGFs are often highly contracted (a typical K value is 6). 
Each valence atomic orbital (Is for hydrogen and helium; 2s and 2p for lithium to 
neon; erc.) is generally more weakly contracted (K less than about 4). Finally, 
high-quality basis sets contain functions whose angular momenta are higher than 
that of the valence orbitals (e.g. p for hydrogen and helium, d for lithium to argon, 
erc.) and, in most cases, these functions are uncontracted (K = 1). 

Two distinct classes of contracted Gaussian functions are in common use. 
In general contraction schemes, different contracted functions share the same 
primitive exponents (with different contraction coefficients) while, in segmented 
schemes, different contracted functions are constructed from primitive functions 
with different exponents. As a rule, basis functions of the former type tend to 
have higher degrees of contraction but the higher computational cost implied by 
this can be partially ameliorated by the use of algorithms which are carefully 
constructed to take maximum advantage of the exponent sharing. In this Review, 
we will confine our attention to the efficient treatment of segmented basis sets: 
we will extend our analysis to the generally contracted case in a future paper. 

2.4 Gaussian Lobe Functions 

Many of the programming complexities which arise when general 
contracted Gaussian functions are used disappear if all of the functions are 
constrained to be s-functions, i.e. 

KA 
$,“““(r) = D & e ~ p [ - u k l r - A 1 ~ ]  

k=l 
(4) 

Such basis functions were advocated by a number of authors [28] on the basis of 
their manifest simplicity and because an array of variously centered s functions 
can mimic functions of higher angular momentum @. d , f ,  etc.). However, for 
obvious reasons, Gaussian Lobe basis sets have to be rather large to yield useful 
results and become unwieldy in high angular momentum cases. They are rarely 
used nowadays because of the availability of highly efficient algorithms and 
programs which can handle CGFs of arbitrary angular momentum. 
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2.5 Delta Functions 

Still more of the programming complexities vanish if another constraint is 
applied to the Gaussian basis set, namely that its exponents be infinite, which 
yields a basis composed entirely of Dirac delta functions 

The set of delta functions at all points in space is mathematically complete and 
procedures based on these simplest of basis functions have been devised and 
implemented, first [29-331 for diatomics and, more recently, [34-361 for arbitrary 
polyatomic systems. 

The manifest simplicity of delta functions is both their strength and 
weakness: computer programs based on them are refreshingly straightforward 
but, to yield results of chemical significance, delta basis sets must be large, 
typically thousands of functions per atom. The construction of efficient delta 
basis sets (i.e. 3-dimensional grids) remains an active area of research but, most 
commonly, they consist of points on concentric spheres about each atom. Most 
workers use the results of Lebedev [37] who has found optimal quadrature 
formulae for the surface of a sphere. However, agreement has not yet been 
reached on which spherical radii are best [38-42]. 
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3. SURVEY OF GAUSSIAN INTEGRAL ALGORITHMS 

What are these "integrals" to which we have referred? From the fact that 
the Schrodinger Hamiltonian contains only one- and two-electron operators, it is 
straightforward to show [ 171 that most of the matrix elements [43] which arise in 
computing the SCF energy and its derivatives with respect to nuclear motion can 
be written in terms of integrals of the general form 

and their nth-derivatives with respect to displacement of the basis functions. Each 
of the integrations in (6) is over 3-dimensional space and, thus, the integral is 
6-dimensional. The function f(x) is normally very simple - for example, 
f(x) E l/x in the familiar case of two-electron repulsion integrals -but it suffices 
for our present purposes to consider a general function. 

The integral (6) is based on two pairs of basis functions, one describing 
electron 1 and the other describing electron 2. Since there are N functions in the 
basis set, there are N(N + 1)/2distinct basis function pairs and, similarly, there are 

Ntod = :[ 1 N(N+l )  ][ N ( N + l )  +1] = 8 N ( N + 1 ) ( N 2 + N + 2 )  1 (7) 

distinct integrals of the form (6). A class of integrals (and/or their nth-derivatives) nth-der13aoe7053 260a8c5 0T1_8151 Tm4_20 1 Tf
07813 0 Td
(on )3
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It is convenient to divide the evolution of two-electron integral methods 
into three generations which are distinguished from one another by the general 
goals which motivated their development. In the 1950's and early 1960's, the 
target was simply to be able to perform SCF calculations at the most primitive 
level. The first algorithm for Gaussian functions was outlined by Boys in his 
classic paper [25] on the use of such functions in SCF calculations and his 
methodology was subsequently developed and elaborated by a number of 
workers, including Shavitt [46], Taketa, Huzinaga and O-ohata [47] and Clementi 
and Davis [48]. Probably the most remarkable achievements of these First 
Generation methods were Clementi's minimal-basis SCF calculations on pyrrole, 
pyridine and pyrazine [49] which, while trivial by today's standards, must have 
used an astonishing amount of computer time in 1967. However, despite opening 
the door to computational quantum chemistry, these early algorithms and their 
implementations were both inefficient and slow. 

The "axis-switch" method of Pople and Hehre (PH), which was the 
centerpiece of the Gaussian 70 program [50], revolutionized notions in the early 
1970's of the range of chemical systems which could routinely be submitted to a 
H F  calculation. It constitutes a Second Generation method because, unlike its 
predecessors, its objective was to enable quantum chemical SCF calculations to 
become a standard tool in the repetoire of practising chemists. To achieve this, 
the algorithm had to be fully optimized and the implementation carefully designed 
with contemporary computer architectures in mind. The PH algorithm, which was 
constructed principally to deal with basis functions of low angular momentum and 
high degree of contraction, becomes very inefficient under other conditions and 
this deficiency motivated the development of the Dupuis-Rys-King (DRK) [5 11 
and McMurchie-Davidson (MD) [52] schemes in the mid-1970s. Until the mid- 
1980's, many computer programs included both PH for s and p functions and one 
of DRK and MD for higher functions (d,f, etc.). These Second Generation 
approaches enabled quantum chemists to perform high-quality SCF calculations 
on an enormous variety of molecular systems and paved the way for rigorous 
quantum chemistry to become established as a part of mainstream chemistry. 

The success of the Second Generation methods soon spawned a number of 
new algorithms [53-611, each of which sought to improve upon the ones which 
had preceded it. The primary goal for these Third Generation methods has been 
maximum computational efficiency and the main driving force behind their 
development has been the desire to apply rigorous SCF methods to molecular 
systems with tens, hundreds, or even thousands, of atoms. 
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The most recent integral algorithms evolved with, and were influenced by, 
the advent of supercomputer technologies - if a new method cannot be 
"vectorized" and/or "parallelized", it faces a cool reception these days - and, of 
these, the Obara-Saika-Schlegel (0s) [53, 541, Head-Gordon-Pople (HGP) [55] 
and PRISM [61] algorithms are the most significant. 

3.1 Performance Measures 

Every integral method exhibits certain strengths and certain weaknesses 
and there is always a trade-off between the complexity of an algorithm (which is 
normally directly related to the difficulty of implementing it) and its 
computational performance. For example, the original Boys algorithm is not very 
difficult to understand or to code into a computer program but, as we have seen, 
its practical performance leaves plenty of room for improvement. At the 
other extreme, while the performance of the PRISM algorithm is much 
more satisfactory, it is also greatly more complicated conceptually and 
implementationally. However, since performance is ultimately more important to 
more people than is the difficulty of writing the underlying computer program, we 
will take a pragmatic stance and ignore the latter in this Review. 

If we wish to compare a variety of integral algorithms, it is certainly 
highly desirable to be able to quantify their relative performances. Hitherto, three 
measures of performance have been proposed and used in the literature and, 
although related, they are distinct and it is instructive to describe each briefly at 
this point. 

3.1.1 Flop-Cost 

The ubiquitous measure of the theoretical performance of an integral 
algorithm is its Flop-cost. More precisely, this is the number of Flops which are 
required to form a specified class of integrals from a defined set of starting 
quantities and a Flop (Floating-point Operation) is defined to be a floating-point 
add, subtract, multiply or divide. For example, (using values quoted by 
Head-Gordon and Pople [55 ] ) ,  the Flop-cost of computing a @plpp) class, i.e. 81 
@plpp) integrals, where each of the p-functions is a sum of two primitive 
functions (i.e. K = 2). is 20,000 using MD but only 15,170 using HGP. 
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It should be re-emphasized that a Flop-cost is a theoretical measure and 
that comparisons like the one above are practically useful only if the two 
algorithms have been implemented equally well: a well-written MD program 
would undoubtedly generate a (pplpp) class much more rapidly then a poorly 
written HGP program. Thus, establishing that a given algorithm has a small Flop- 
cost for a certain integral class tells us only that the potential exists for an 
implementation of that algorithm to perform well. It is prudent to view with 
considerable skepticism claims which are based exclusively on a purely 
theoretical measure like a Flop-count. 

3.1.2 Mop-Cost 

A newer measure of an algorithm's theoretical performance is its Mop- 
Cost which is defined exactly as the Flop-cost except that Memory Operations 
(Mops) are counted instead of Floating-point Operations (Flops). A Mop is a load 
from, or a store to, fast memory. There are sound theoretical reasons why Mops 
should be a better indicator of practical performance than Flops, especially on 
recent computers employing vector or RISC architectures, and this has been 
discussed in detail by Frisch et af.  [62] :  to cut a long story short, the Mops 
measure is useful because, on modern computers and in contrast to older ones, 
memory traffic generally presents a tighter bottleneck than floating-point 
arithmetic. 

The Mop-cost of forming an integral class depends on the intrinsic 
expense of the algorithm and on implementational detail. Consider, for example, 
the following two versions of a subroutine: 

Version # I  DO 1 0  I = l,N 

A(1) = B(1) + C(1) * D(1) 
10 CONTINUE 

DO 20 I = l,N 

E(1) = A(1) + F(1) 
20 CONTINUE 

Version #2 DO 1 0  I = l,N 

A(1) = B(1) + C(1) * D(1) 
E(1) = A(1) + F(1) 

10 CONTINUE 
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The two versions achieve the same results but the second will run faster on many 
computers. Both versions have Flop-costs of 3N but their Mop-costs are 
different, 7N and 6N, respectively. This is because, in the second version, A(1) 
does not need to be loaded from fast memory since, having just been produced, it 
will already reside in a register. This example is certainly a very simplistic one 
but it serves to illustrate the principle of Mop reduction. 

Mop comparisons between integral programs have not yet begun to appear 
in the literature but these may be anticipated in the near future. As a design rule 
for the future, an algorithm which minimizes Mops is a better target than one 
which minimizes Flops. A particularly striking example of the usefulness of this 
approach is the recent discovery by Johnson et al. that a certain family of novel 
recurrence relations, which appear uncompetitive with older recurrence relations 
on the basis of Flop-cost, are exceedingly competitive in Mop-cost and in actual 
timings [63]. 

3.1.3 CPU-Time 

The most popular measure of the practical performance of an algorithm is 
the amount of CPU time which a specified computer requires to complete a 
specified task, commonly a single iteration of a specified SCF procedure. While 
this is certainly a very appealing measure (it directly reflects an expense which is 
uppermost in the minds of most computational chemists), it will be extremely 
difficult for another worker to reproduce the timing unless the specifications are 
very complete. 

It is important not only to specify precisely the computer whose CPU time 
has been measured, but also to record the compiler version, any non-default 
compiler options that were used and the operating system. Specification of the 
task which was performed is even more demanding. To write, for example, that 
the timing pertains to one cycle of a HF calculation is far from complete. It is 
necessary also to state clearly exactly what was timed: Was it the integral 
generation only? Was Fock matrix formation included? Was the diagonalization 
included? And, even more important, which integrals were actually computed? 
As we shall shortly see, most modern integral programs use sophisticated 
"screening" techniques to avoid computing very small integrals. Unless a clear 
description of the screening procedure used is given, including the cutoff 
threshold, any quoted CPU-time is obviously meaningless. However, provided 
that all of the various requirements above are met, a CPU-time measurement can 
be a very useful indication of the performance of an integral algorithm. 
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The optimal strategy to adopt when comparing algorithms is to employ as 
many measures as possible in the comparison. Previous reviews of integral 
algorithms [64-67] have been helpful in this regard, that of Hegarty and van der 
Velde [66] being particularly noteworthy. 

3.2 Fundamental Integrals 

One of the problems which plagues the two-electron integral literature is 
that of notation and we certainly hope that this Review does not add to the 
confusion. W e  will adopt a notation system which appears (slowly!) to be 
becoming the standard and will introduce it as the need arises. We will use A, B, 
C and D to represent the position vectors of the centers of the four basis functions 
in ( 6 )  and will use a, P, y and 6 to represent exponents of generic primitives 
within these functions. 

All discussion of two-electron integrals ultimately begins by considering 
the special case of the integral ( 6 )  in which each of the four functions is a 
primitive s-Gaussian, i.e. 

and we will refer to this as the Fundamental Integral. The first step in its 
evaluation is to invoke the Gaussian Product Rule ([17], p. 411) which 
immediately reduces the integral to 

where 

a A + P B  P =  
a+P 

y C + G D  

Y+6 
Q =  
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The reduction from (8) to (9) is a crucial simplification because it transforms a 
four-center (A, B ,  C, D) problem into a two-center (P, Q) one. Most of the 
difficulties associated with the use of Slater functions can be traced to the fact that 
a corresponding reduction is not possible for these functions. 

Next, we replace each of the three factors in the integrand of (9) by its 
Fourier representation 

Substituting (13) - (15) into (9) and reordering the integrations yields 

The fourth and fifth integrals in (16) are Fourier representations of the three- 
dimensional Dirac delta function, whence 
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By virtue of the "sampling" property of the delta function, the triple integral in 
(17) collapses to a single integral, yielding 

m 

I =  I u sin u e-u2'4T 3(u/R) du 
2(5q) R 

where 

T = fi2R2 

Our evaluation of the Fundamental Integral cannot proceed further than (18) 
unless we now specify the two-electron function f(x). We are now in a position to 
consider some of the integral types which arise in quantum chemical calculations: 
overlap, kinetic-energy, electron-repulsion, nuclear-attraction and anti-coulomb. 

3.2.1 The Overlap Integral 

The Fundamental Overlap Integral is given by 

and the first task which arises is to write this in the form (8). To achieve this, we 
choose 

p = s = o  (23) 

in order to convert a four-center problem into a two-center one and to convert a 
two-electron integral into a one-electron one. This simple trick enables us to treat 
overlap integrals on an equal footing with any other integrals which we may be 
able to cast in the form (8). 
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The Fourier transform of (24) is easily shown to be 

3 ° V e r 1 ~ ( k )  = 1 (25) 

and the expression which is obtained if (25) is substituted into (18) is readily 

(26) 

integrable by parts, finally yielding 

which is the familiar formula for the overlap of two s-Gaussians. 

3.2.2 T h e  Kine t i c -Energy  I n t e g r a l  

The Fundamental Kinetic-Energy Integral is given by 

Peter M. W. Gill 

where the Laplacian denotes differentiation with respect to r .  I1awever, it is 
clearly equivalent to differentiate with respect to C, from which it immediately 
follows that 

Thus, the Fundamental Kinetic-Energy Integral can be obtained from the second 
derivatives of the Fundamental Overlap Integral with respect to motion of the 
center C. Since we are interested in algorithms which offer nth-derivatives of 
two-electron integrals, the problem of generating kinetic-energy integrals and 
their nth-derivatives is subsumed into the problem of generating overlap integrals 
and their nth-derivatives. 
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3.2.3 The Electron-Repulsion Integral 

The Fundamental Electron-Repulsion Integral is given by 

157 

which is obviously already of the form (8) with 

EE f (r) = r-l 

The Fourier transform of (30) is 

3EE(k) = 4nkP2 

and, upon substituting (31) into (18). we obtain 

which is related to the error function and is often re-written 

where 

1 

FEE(T) = j e-Tu2 du = 1 -T/3+T2/10-... (34) 
0 

The efficient computation of the function (34) has been discussed in a number of 
papers [46,50-52, 54, 55,61,68-711 and i t  is generally agreed that a carefully 
constructed interpolation scheme, such as that described in [71], is the most 
effective approach. 
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3.2.4 The N u c l e a r - A t t r a c t i o n  I n t e g r a l  

The Fundamental Nuclear-Attraction Integral is given by 

and, as with the Fundamental Overlap Integral, we must begin by casting this in 
the form (8). This can be accomplished by taking 

y = w  (36) 

6 = 0  (37) 

which replaces the nuclear center by a Gaussian with an extremely large exponent 
and thereby transforms the problem into that of the Fundamental Electron- 
Repulsion Integral. 

3.2.5 T h e  A n t i - C o u l o m b  I n t e g r a l  

Recently, we have developed a straightforward least-squares method [72] 
for modeling the potential of a charge distribution using a second, simpler, 
distribution and Kutzelnigg and coworkers have developed a promising method 
[73] to enhance the rate of convergence of CI-type expansions. Curiously, both of 
these methods are ultimately based on the Fundamental Anti-Coulomb Integral 

W e  note that the only feature which distinguishes (39) from (29) is the two- 
electron function 

(40) 
AC +1 f (r)  3 r 

and the evaluation of the Fundamental Anti-Coulomb Integral is similar [74-761 
to that of the Fundamental Electron-Repulsion Integral. 
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3.3 The Boys Algorithm [25] 

Boys noted in his original paper that, if one differentiates the Fundamental 
Integral with respect to one of the coordinates of one of the centers, one obtains a 
primitive integral over a p and three s functions. Moreover, further 
differentiations lead to primitive integrals over still higher angular momentum 
functions. Based on this observation, Boys proposed that formulae for general 
primitive integrals be obtained by the repeated differentiation of the formula for 
the Fundamental Integral. 

In the event that we wish to compute an integral (6) in which one or more 
of the four Gaussian basis functions is contracted, the Boys algorithm expresses 
the contracted integral as a sum of primitive integrals and then computes each of 
the latter using the formulae described in the foregoing paragraph. 

The Boys algorithm is pedagogically useful and also serves to emphasize 
the highly important connection between the derivatives of Gaussian integrals and 
Gaussian integrals over higher angular momentum functions. However, its 
practical usefulness is limited by three important considerations: 

(a) It rapidly becomes exceptionally tedious (and error-prone) to generate 
formulae by repeated differentiation of expressions such as (26) and (33); 

The resulting formulae are inefficient because they fail to make use of the 
fact that integrals in the same class share many common intermediates; 

The resulting formulae are inefficient because they fail to make use of the 
fact that the primitives in a contracted basis function all share the same 
center. The task of making the best possible use of this is called the 
Contraction Problem. 

(b) 

(c) 

More recent integral algorithms have sought to ameliorate, to a greater or 
lesser degree, each of these three deficiencies. As we will see, all of these 
algorithms employ recurrence relations (RR's) to express integrals of high angular 
momentum in terms of integrals of lower angular momentum. This tactic 
automatically improves consideration (a) and (b) above. Addressing (c) is more 
difficult but the rewards are very significant: the greatest improvements in 
computational efficiency over the last decade have almost all resulted from new 
solutions to the Contraction Problem. 
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3.4 The Contraction Problem 

Suppose that we wish to form a class of contracted integrals and that each 
of the basis functions is K-fold contracted, i.e. is a sum of K primitive functions. 
Then, in a straightforward method (such as the Boys algorithm), each contracted 
integral (ablcd) is expressed as a sum of its component primitive integrals [ablcd] 
which, in turn, are computed individually, i.e. 

It is clear from (41) that the computational effort to construct the desired class of 
(ablcd) integrals will rise with the fourth power of K. In fact, it is easily shown 
[66] that the total Flop-cost of forming the class can always be expressed as 

(42) 
4 2 Flop-cost = XK +yK + Z  

Of course, an analogous expression for the Mop-cost also exists. 

Table I: Flop-cost parameters for generating integral classesa 
~~ 

Class Parameter PH MD HGP 

(PPbP) X 

Y 

( d l d d )  X 

Y 
c 

0 X 

Y 
Z 

220 
2,300 
4,000 

220 
2,300 
4,000 

- 

1,100 
600 

0 

1,500 
1,700 

0 

27.300 
24,000 

0 

342,000 
383,000 

0 

920 
30 

330 

1,400 
30 

800 

14,600 
30 

11,300 

108,000 
30 

135,000 

a) Taken from [55]. 
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The x, y and z parameters for various algorithms and various integral 
classes have been tabulated in a number of papers [55 ,  57, 59,611 and are 
valuable in rationalizing the observed performances of different integral methods. 
In Table I, for example, we list Flop-cost parameters for the PH, MD and HGP 
methods to generate various integral classes. Clearly, each method is 
characterized by unique sets of parameters and these yield important information 
about the method’s theoretical performance behavior. For example, the 
remarkably small x parameter and remarkably large z parameter for PH argue that 
it should be a very powerful method for generating highly contracted @plpp) 
integrals but a wasteful one for forming uncontracted ones. Similar qualitative 
analyses for other methods are summarized in Table II. 

I Table 11: Algorithmic costs as a function of degree of contraction 

PH HGP 0s MD DRK I I  small^ High Low Moderate Moderate Moderate 

I Low Moderate High High High 

I Contractiona ~ a r l y   idw way Late Late Late 

(a) At what point in the algorithm, the contraction step occurs. 

It is clear from Table I1 that none of the five algorithms included is the 
universal panacea for all integral problems. The best single method is HGP but, 
since typical SCF calculations on large molecules involve highly contracted, 
mildly contracted and weakly contracted integrals (see Section 2), a program 
which seeks to be near-optimal under all circumstances has to switch from one 
integral algorithm to another, basing its decision upon the type of integral under 
consideration at any moment. The Gaussian 82 [77] and Gaussian 86 [78] 
programs adopted this hybrid approach, employing a PH routine (Link 31 1) for all 
integrals involving only s and p functions and a DRK routine (Link 3 14) for any 
others. However, such strategies are not only arbitrary and artificial but also 
render the program complicated and difficult to improve. 

The third row of Table I1 reveals that there is a very simple correlation 
between the performance behaviour of an algorithm and the point at which the 
primitive integrals are added together into contracted integrals: early-contraction 
methods are best suited to highly contracted integrals; late-contraction methods 
are best suited to weakly contracted integrals. This observation underlies the 
PRISM algorithm which we will discuss shortly. 
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3.5 The Pople-Hehre Algorithm [50] 

We have seen that PH is exceptionally efficient for highly contracted 
classes, exhibiting x parameters (for classes involving only s and p functions) 
which are very much smaller than those of other, more recent, methods. How is 
this efficiency achieved? 

Pople and Hehre showed that, given the position vectors A, B, C and D 
and two exponents y and 6, there exists a unique Cartesian axis system [79] in 
which many primitive integrals vanish by symmetry. Moreover, because this axis 
system is independent of the exponents a and p. it can be used for all a$ pairs. 
After looping over these, the accumulated integral combinations are rotated into a 
second Cartesian system [80] which depends only on A, B, C and D, and the next 
y,6 pair is then selected. When all y,6 pairs have been treated, the desired 
integrals are finally obtained by rotating back to the original Cartesian system of 
the molecule. 

The x parameter in (42) measures the work required to form and 
manipulate exclusively primitive quantities. Thus, of the steps in the PH method, 
only the computation and accumulation of the non-vanishing primitive integrals 
contributes to x and, since the unique axis system described in the foregoing 
paragraph was carefully designed to minimize the number of such integrals, x is 
correspondingly small. 

The y and z parameters in (42) measure the computational effort to rotate 
from the first Cartesian frame to the second, and from the second to the third, 
respectively, and to accumulate them therein. These are relatively substantial 
tasks and this explains the large y and z parameters in Table I for PH. 

Only if the basis functions are sufficiently contracted ( i .e .  K is large 
enough), does the work saved by the use of special axis systems outweigh the 
effort which must be expended to perform the two rotations and it is interesting to 
determine the value of K at which PH becomes cheaper than HGP. For a @plpp) 
class, using the parameters in table I, one finds that PH is competitive with HGP 
even when K is as small as 2. 

Notwithstanding the impressive performance of PH on integral classes 
involving contracted basis functions with low angular momentum, it founders 
when applied to uncontracted classes with high angular momentum, for example 
[ddldd], because of the huge costs incurred in the two rotation steps [81]. For 
such classes, new techniques had to be developed and we will discuss some of 
these in the next few sections of this Review. 
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3.6 Bras, Kets and Brakets [61] 

Before proceeding further, it is useful to introduce a simple but powerful 
notation for integrals and their nth-derivatives. All of the modern integral 
algorithms can be easily represented within this notation and, of course, uniform 
descriptions greatly facilitate any algorithmic comparisons which we may make. 

In (6) we defined a general two-electron integral over the two-electron 
operator f. However, it has long been realized that such an equation defines an 
inner product between two functions 

Thus, taking inspiration from the notation introduced by Dirac, we will refer to 
(abl and Icd) as a "bra" and "ket", respectively, and to (ablcd) as a "braket". 

For the purposes of defining bras and kets, it is useful to generalize (43) 
and (44) substantially. Though the resulting definitions may appear complicated, 
it should be borne in mind that, like (43) and (44), bras and kets are simply 
functions of the positions of electrons 1 and 2, respectively. 

We define a primitive bra 

... (45) 
where 
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and Hn is the nth Hermite polynomial. The other symbols in (45) and (46) have 
been defined earlier in this Review. The Hermite polynomials are defined by 
Ho(x) I 1, Hl(x) I 2x and 

(47) Hn+l(x) = 2xH,(x) - 2nHn-l(x) 

and possess the useful property that dHn(x) / dx = 2n Hn-l(x). 

Certain special cases of (45) arise sufficiently often that it is useful to 
introduce more concise notations for them. In particular, a Hermite function on 
center P is denoted by 

[PI = [: : 
0 0 0  

a product of Cartesian Gaussian primitives on A and B is 

and the product of Cartesian Gaussian primitives on A and B and a Hermite 
function on P is 

[abpl = [: p l  

0 0 0  

A bra in which a = 6 = a = b = 0 will be termed a p-bra. 
Having defined a primitive bra, we define a contracted bra by 
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and its various special cases by 

(abl I (: 01 

0 0 0  
(53) 

The definitions of primitive and contracted kets are entirely analogous to 
(45)-(54). As previously discussed, a braket is then an inner product between a 
bra and a ket 

a' b' p' c' d' q' 

... ( 5 5 )  

and apq-braket, which results from a p-bra and a q-ket, is an important special 
case. It should be noted that the symbols which we use to represent bras, kets and 
brakets, although "matrix-like'' in appearance, have no connection whatever to 
matrices. They are, we emphasize, nothing more than compact notations for very 
general one-electron functions and their inner products. 
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3.7 The McMurchie-Davidson Algorithm [52] 

Whereas the principal concern expressed in the paper by Pople and Hehre 
[50] was extremely high efficiency for a limited set of integral classes, the main 
emphasis of McMurchie and Davidson was generality and extendability. 
Not surprisingly, then, their respective algorithms are, to a large degree, 
complementary. 

The target (ablcd) are made from bra-contracted (ablcd] using 

k=l  1=1 

MD used elementary properties of Hermite polynomials to derive a three-term RR 

by which the (ablcd] can be formed from (ablq]. (Note that the subscript i 
represents a Cartesian direction (x,  y or z )  and l i  is the unit 3-vector in the ith 
direction.) Since it has no effect on the bras, we describe this step as a "ket- 
transformation". 

The (ablq] are formed from [ablq] using 

and, in the bra-transformation step, the [ablq] are formed from [plq] using the bra 
version 

of the RR (57). 

To evaluate the [plq], one can follow the procedure discussed in Section 
3.2. This turns out to be straightforward because the Fourier Transform of a p-bra 
is just a Cartesian Gaussian function and it is not difficult to show that 
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[Phi = (-l>q[P+ql 

where, for repulsion integrals, 

which is a generalization of (33). By invoking the elementary RR for 
differentiation of Hermite polynomials, MD showed that [r] = [r](O) integrals can 
be generated from [0](m) integrals using the two-term RR 

where 2i denotes twice the unit vector in the ith direction, 

and 
1 

Fm(T) = u2me-Tu2du 
0 

MD advocated the use of seven-term Taylor interpolation to evaluate (64) 
for the largest value of m, followed by downward recursion using 

to compute (64) for smaller m values. 
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3.8 The Obara-Saika-Schlegel Algorithm [53, 541 

Four years before the appearance of the first paper by Obara and Saika, 
Schlegel published an important article concerning the rapid computation of first 
derivatives of two-electron integrals with respect to nuclear motion. However, 
although his method was in widespread use for some years, it was apparently not 
recognized that it is equivalent to a completely new algorithm for computing 
integrals themselves: only after Obara and Saika independently discovered the 
same algorithm did the penny drop. 

The target (ablcd) are generated from [ablcd] according to 

and [ablcd] = (ablcd)(O) are formed from (OO1OO)(m) using the eight-term OS RR 

((a+ li)blcd)‘m’ = (Pi - A i )  (ablcd)(m) + -Ri rl (ablcd) @+I) 
c+rl  

((a - li)blcd)(m) - - ‘ ((a - 1i)blcd) (m+U 

c+rl 
(67) 1 (a(b- li)lcd)(m) - - rl (a(b - li)lcd) (m+U 

c+rl  

and its analogues which increment b, c and d. The (00100)(m), which are closely 
related to the [O](m) in (63), are defined by 

When generating a class of integrals with non-trivial angular momentum, 
there are usually very many sequences in which (67) can be applied and the task 
of determining the most efficient sequence can be discussed as a tree-search 
problem. OS did not provide a solution to this problem however and, as such, the 
OS algorithm is not completely well-defined. 
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3.9 The Head-Gordon-Pople Algorithm [55] 

Although no clear prescription was given by 0s for the use of their RR, it 
was clearly a significant advance and immediately received considerable 
attention. The next major step forward was taken by HGP who not only 
introduced a second RR but also gave a precise description of how the two RR’s 
can be used in tandem to good effect. 

The target (ablcd) are made from (ablnO) using a two-term RR 

which HGP derived from the eight-term RR of 0s and which they designated the 
horizontal recurrence relation (HRR). In fact, the same RR (termed a transfer 
relation) had been used for many years to transform the 2-dimensional integrals 
which arise in the DRK method [51] but, until the HGP paper, it had apparently 
not been applied to contracted integrals. This distinction is important, for it 
implies that the computational expense incurred by the use of (69) is independent 
of the contraction degree of the integrals, i.e. the work contributes only to the z 
parameter in (42). 

The (ablnO) are made from (mOInO), again using the HRR, i.e. 

( a (b+ l i ) l  = ( ( a+ l i )b I  +(Ai-Bi)(abI (70) 

and, as before, (70) contributes only to the z parameter in  (42). 

The (mOIn0) are made by simple contraction of [mOInO], i.e. 

and the [mOInO] = (mOlnO)(O) are generated using the 0s RR. Because the second 
and fourth indices in (mOln0) are 0, the 5th, 6th, and 8th terms of the 0s RR 
always vanish and HGP called this five-term special case the vertical recurrence 
relation (VRR). A simple method was given by HGP for deciding whether to 
reduce at the first or at the third index when applying the VRR and this completes 
the specification of their algorithm. 
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3.10 Variations on the HGP Theme 

Since the advent of HGP, there have been a number of attempts to 
improve upon it without changing its essential structure, viz. 

(OOIOO)(m) + [mOlnO] + (mOln0) + (ablcd) (72) 

Initially, it was suggested [82] that, instead of using the VRR, a DRK 
scheme (such as that of Saunders [65]) could be used to generate the [mOInO], 
after which the contraction and HRR steps could proceed as usual. This idea was 
explored by Lindh, Ryu and Liu (LRL) in a fascinating paper [59a] which 
convincingly argues that, for the construction of [mOInO], the HGP and DRK 
algorithms are essentially equivalent mathematically. This remarkable result was 
also supported by Flop-cost determinations, using each method, for (pplpp), 
(ddldd) and (fslff) classes. 

A second, and somewhat more successful, attempt to render the VRR 
obsolete was made independently by Hamilton and Schaefer (HS) [57] and 
LRL [59a]. By combining the translational invariance condition for first 
derivatives [83] with the HRR, HS discovered a six-term RR 

a. b. C .  
[abI(c+l i )d]  = -[(a-li)blcd] + -[a(b-li)lcd] + "abl(c-li)d] 

277 277 277 

+ "abl d .  c(d - l i ) ]  - -[(a 2c + 1i)bl cd] - 
277 277 

which, if applied to integrals in which b = d = 0, becomes 

... (74) 
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Both HS and LRL proposed that the 0s RR be used only to generate 
[m0100] (m0100)(0) and that (74) then be used to form [mOInO] from these. It 
seems probable from the estimates made by both groups (they disagree somewhat) 
of the Hop-cost of this new algorithm that it constitutes a marginal improvement 
over the HGP algorithm. 

In the same paper where they discuss an alternate derivation of (74), LRL 
also present the Reduced Multiplication Rys (RMR) scheme for computing 
[mOInO] and compare it with the DRK, HGP and HS algorithms. RMR is found 
to require noticeably fewer Flops than DRK and HGP (which, as mentioned 
above, are equivalent). The major source of this improvement is the sophisticated 
treatment of reusable intermediate data by RMR and the interested reader is 
referred to [59a] for further details. 

As a general rule, the construction of the [mOInO] using the VRR is 
considerably more expensive than the subsequent contraction and HRR steps. 
However, if one is dealing with integral classes of high angular momentum and 
low contraction or with derivatives of such classes with respect to nuclear motion, 
the HRR step can become sufficiently expensive to warrant optimization and Ryu, 
Lee and Lindh [59b] have recently studied this problem. Recognizing that 
efficient application of the HRR involves a complicated tree-search problem, they 
devised a heuristic solution which eliminates 13%, 25%, 38% and 44%, 
respectively, of the Flops which previous HRR implementations had needed for 
CfJlfJ). (gglgg), (hhlhh) and (iilii) classes. 

Recently, however, Johnson et al. [63] have found that, if one wishes to 
minimize the number of Mops (as opposed to Flops) in the transformation of 
(mOIn0) to (ablcd), it is often preferable to dispense with the HRR entirely and, in 
lieu of it, employ R R s  from a novel family which these authors term "nth-order 
transfer relations". We will say more about these later in the context of the 
PRISM algorithm. 
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4. THE PRISM ALGORITHM [61] 

In addition to stimulating a number of variations on the HGP theme, the 
seminal paper by Head-Gordon and Pople [55]  also served to catalyse the 
development of a completely different approach to the Contraction Problem called 
the PRISM algorithm. 

We recall from our discussion of the Contraction Problem (Section 3.4) 
that none of the algorithms hitherto suggested has proven optimal under all 
circumstances: the Pople-Hehre method is highly efficient for highly contracted 
classes but is very poor for weakly contracted ones; the Hamilton-Schaefer-Lindh- 
Ryu-Liu method employing (74) is extremely effective for mildly contracted 
classes but is otherwise grossly inferior to Pople-Hehre. However, we observed 
that there is a simple connection between the behavior of an algorithm and the 
point at which the primitive integrals are combined to yield contracted integrals: 
early-contraction methods are best suited to highly contracted classes and late- 
contraction methods are best suited to weakly contracted classes. 

Ideally, we would like an algorithm to choose dynamically, on the basis of 
the type of class being generated, the optimal point at which to perform the 
contraction step. The crucial insight that leads to the PRISM algorithm is the 
realization that some of the algorithms which we have already discussed can be 
generalized into forms in which such dynamic flexibity is possible. W e  call the 
generalizations of the MD and HGP methods the MD-PRISM and HGP-PRISM 
algorithms, respectively. 

The MD-PRISM [61] was discovered and implemented long before the 
HGP-PRISM (which has not previously been discussed in the literature) but, for 
the purposes of this Review, it is convenient to develop them together in order to 
emphasize their similarities and differences. 

We have already observed (Section 3.6) that any two-electron integral (6), 
and any nth-derivative of that integral with respect to motion of the basis 
functions, is an inner product between a function of the position of electron #1 
(which we term a bra) and a function of the position of electron #2 (which we 
term a ket). Henceforth, rather than explicitly considering integrals andor  their 
nth-derivatives, we will examine the more general problem of computing 
contracted brakets. 

After developing the mathematical foundations of the PRISM algorithm, 
we will discuss its implementation within the Gaussian 92 computer program 
~ 4 1 .  
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The MD-PRISM and HGP-PRISM algorithms are most easily understood 
when presented in terms of diagrams which resemble rectangular prisms - whence 
their names. To simplify the discussion, we will confine our attention to the 
“front” face of each prism. The generalizations to the complete prisms are neither 
difficult nor especially interesting: they are outlined in [61c]. 

The front face of the MD PRISM is shown below. As the arrows indicate, 
the MD-PRISM algorithm consists of a set of highly interrelated pathways from 
shell-pair data to the desired brakets. 

Shell-Pair Data 

Figure 1. The front face of the MD PRISM. 
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The front face of the HGP PRISM is shown below. Like the MD-PRISM 
algorithm, the HGP-PRISM algorithm consists of a set of highly interrelated 
pathways from shell-pair data to the desired brakets. 

Shell-Pair Data 

IITo 

TYGP 

CYGP 
II 

[bralno] &> 

CYGP 
(mOInO] 1-> (mOIn0) 

TgHGP a II CYGP a C p  

T p  T p P  

[bralket] I> (bralket] I-> (bralket) 

Figure 2. The front face of the HGP PRISM. 
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Figure 4. The Full HGP PRISM 
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In the subsections which follow, we will examine various aspects of the 
MD and HGP PRISMS but, before doing so, we may make some general 
observations. 

The first step (To), the generation of [O](m) integrals from shell-pair data, is 
common to both the MD- and HGP-PRISM algorithms. We will discuss To 
in detail in Section 4.3. 

In either algorithm, the metamorphosis of [O](m) to brakets involves exactly 
two Contraction steps (Ci, denoted by horizontal arrows and discussed in 
Section 4.4) and three Transformation steps (Ti, denoted by vertical arrows 
and discussed in Section 4.5) and, since these five steps can be performed in 
any order, there are 10 paths from [O](m) to brakets in Figure 1 and a further 
10 in Figure 2. We will use appropriate permutations of two “C”s and three 
‘7“’s to label these paths. For example, one of the paths in Figure 1 is MD- 
CC’ITT and one of those in Figure 2 is HGP-TCCTT. 

By comparing Figures 1 and 2 with the descriptions in Sections 3.7 and 3.9, 
it becomes immediately apparent that the classical McMurchie-Davidson 
and Head-Gordon-Pople algorithms correspond to the MD-TTCTC and 
HGP-TCCTT paths, respectively. 

As a result of the “perpendicular” separation of contraction and 
transformation steps in Figures 1 and 2, the steps which contribute to the x,  
y ,  and z cost-parameters of (42) are clearly delineated. Specifically, the To, 
Ti ,  T4, T7, C1, C3, C5 and C7 steps contribute to x ;  the T2, T5. T8, C2. C4, 
C6 and C8 steps contribute to y; and the T3, T6 and T9 steps contribute to z .  
This observation permits a computer program to compute x ,  y .  and z 
parameters (for a given braket class) for each of the paths on each of the 
prisms and, using (42), then very easily to determine the Flop- or Mop- 
cheapest path. 
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4.1 Shell-Pair Data 

Inspection of (6) reveals that it describes the interaction of two charge 
distributions, $a(r)$b(r) and $,Jr)qd(r>, and our first task is to collect 
information about all such charge distributions in the molecule. Because brakets 
are formed in classes, rather than individually, it is convenient to compile data for 
shell-pairs (rather than basis-function-pairs) and this shell-pair dataset is central to 
any modern integral program. To generate all of the desired brakets, we will later 
loop over all pairs of shell-pairs, that is, over all shell-quartets. 

We begin by considering all pairs [ 8 5 ]  of shells in the basis set, 
categorizing each shell-pair as either significant or negligible. A shell-pair is 
negligible if the shells involved are so far apart (relative to their diffuseness) that 
their overlap is negligible: otherwise, it is significant. Because all of the basis 
functions which we have discussed (Section 2) decay at least exponentially, most 
of the shell-pairs in a large molecule are negligible. Indeed, the number of 
significant pairs grows only linearly with increasing molecular size and it 
therefore follows that the number of significant shell-quartets grows only 
quadratically. This is a very important point for it is this, more than anything 
else, which permits rigorous SCF calculations to be performed on very large 
systems. 

Each time that we discover a significant shell-pair, we generate a model 
for that pair, i.e. a second shell-pair, with fewer primitives than the first. whose 
potential is as close as possible (in a least-squares sense) to that of the first. Only 
very recently has the theory necessary for such potential-fitting procedures been 
developed [72] and our methodology may be contrasted with previous approaches 
[86-921 in which many alternative modeling criteria have been employed. In 
particular, we note that it is common in Kohn-Sham calculations to expand the 
electronic density in an auxiliary basis set [89]. This is equivalent to modeling 
each charge distribution $a(r)$b(r) by an expansion in the auxiliary basis. The 
modeling scheme employed to obtain the results discussed later in this Review 
was the simple one described by Head-Gordon and Pople [%I: all primitives with 
amplitudes below are discarded while all others are kept. More elaborate 
modeling procedures are currently being developed [72b]. 

Once we have compiled a list of models for all of the significant shell- 
pairs, they are sorted by "type", i.e. by the angular momenta of the component 
shells and by the degree of contraction of the (modeled) shell-pair. Thus, all 
unconuacted ss-pairs are stored consecutively, followed by all doubly-contracted 
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(K=2) ss-pairs, and so forth. For each shell-pair, the parent shells and (A - B) 
vector are recorded; for each component primitive, we record (2a), (2p), 1/(2c), P 
and 

The last factor in (73 ,  which scales it according to the angular momentum (a + b) 
of the shell-pair, is termed the principal scaling and is included only if the 
MD-PRISM is used. For reasons which will become clearer below, its presence 
reduces the Flop- and Mop-costs of the algorithm. 

We have recently developed [93] an upper-bound on (6) 

where 

= (ablab)l’* (77) 

which is significantly stronger than the familiar [94-971 Schwarz bound (which is 
the first of the three braced quantities in (76)). Our next task is to compute shell- 
pair generalizations of (77)-(79) for each of the significant shell-pairs by 
evaluating (77)-(79) for each of their constituent basis-function-pairs and taking 
appropriate maxima [97]. 

The total computational effort involved in setting up the shell-pair data 
increases linearly with the size N of the basis. For tasks such as large Direct SCF 
calculations [44,45], it is entirely negligible compared with the subsequent work; 
for less computationally demanding tasks, such as finding potential-derived 
atomic charges [98], it typically constitutes 10% of the job time. 
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4.2 Selection of Shell-Quartets 

Given a sorted list of significant shell-pairs, we can construct all 
potentially important shell-quartets [99] by pairing the shell-pairs with one 
another. For the sake of vectorization, we deal with batches of shell-quartets of 
the same “type” and we utilize the memory which is available as effectively as 
possible in order to maximize the sizes of such batches [ 1001. 

Not every pair of shell-pairs, however, is necessarily accepted as a 
worthwhile shell-quartet. Although the shell-pair database has been carefully 
screened and contains no negligible shell-pairs, there are several ways in which a 
pair of significant shell-pairs may yield a shell-quartet which can be neglected ... 

The quartet may be equivalent, by point group symmetry, to another quartet 
which has already been treated. 

The largest braket associated with the quartet may be negligibly small. This 
can be anticipated by the upper-bound formula (76) if the cutoff parameters 
(77 j ( 7 9 )  have been precomputed as indicated in Section 4.1. 

The largest density matrix (or delta-density matrix) elements which will 
multiply any of the brakets associated with the quartet may be negligibly 
small [44,97]. This is particularly common in late SCF cycles when 
incremental Fock matrix formation is being used. 

Unfortunately, in general, it is not easy to vectorize the shell-quartet 
selection process because of the conditional nature of quartet acceptance. In the 
special case where one desires the electrostatic potential on a large grid, Johnson 
et al. have circumvented this problem by the so-called “fixed shell-pair” scheme 
[98] which is completely vectorizable. However, this approach is not directly 
applicable to the general case. 
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4.3 Generation of the [03(m) Integrals 

Given a batch of shell-quartets, the real computational work (denoted To 
in Figures 1 and 2) can begin. In the first stage of this, the seven basic shell- 
quartet parameters 

202 = 1 / [ & + & ]  

(83) 2 2  2T = 219 R 

are constructed. Given the shell-pair data which were generated earlier (Section 
4.1), (80)-(84) can be computed in just 12 Flops and 17 Mops and this accounts 
for a rather small fraction of the total CPU time in most Direct SCF calculations 
(less than 4% in the pentacene run described in Section 4.7). 

In the second stage, the [0](,) integrals (0 I m I L) are evaluated. If we 
desire two-electron repulsion integrals, i.e. f(x) E l/x in (6 ) ,  the relevant definition 
(Section 3.2.2) is 

[Ofm) = U ( 2 1 9 ~ ) ~ ’ ~ ’ ~  G ,  (T) 

where 

1 

G,(T) = (2 /  x ) ” ~  t2m exp(-Tt2) dt 
0 

( 8 5 )  
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For other types of integrals, (85)  and (86) must be appropriately modified but 
retain the same general form. 

If T (which measures the extent to which the bra and ket charge 
distributions overlap) is less than a critical value Tcrjt, GL(T) can be evaluated 
using an interpolation procedure. We follow Shipman and Christoffersen [68] in 
favoring Chebyshev interpolation as an effective means for computing such 
functions but we have adopted the approach of Elbert and Davidson [69] who 
prefer to employ approximations of lower degree. We have chosen cubic 
interpolation as our standard and have discussed our methodology in detail in 
[71]. Values of Gm(T) for 0 I m c L can then be obtained, with numerical 
stability, by downward recursion (see (65), for example). The function exp(-T) is 
needed for this and, for speed, we also compute this by interpolation [71]. 

On the other hand, if T is greater than Tcrit, the distributions overlap 
negligibly and (in the case of two-electron repulsion integrals) the [O](m) then 
reduce [ 1011 to classical multipole terms 

which can be computed recursively with great efficiency. 

The subroutine in Gaussian 92 which is responsible for the evaluation of 
the [0](m) in the context of Direct SCF is CalcOm. This routine accounts for a 
noticeable fraction of the total CPU time (7% in the pentacene run described in 
Section 4.7) and has been carefully optimized. It runs at roughly 160 MFlops on a 
single-processor Cray Y-MP (whose theoretical peak speed is 333 MFlops). 

In computations of the electrostatic potential on a grid, Gaussian 92 calls 
the subroutine CalcOG to compute the [O](m) and this routine accounts for roughly 
50% of the total CPU time. As a result of the use of the “fixed shell pair” scheme 
[98] and very careful optimization, CalcOG runs at approximately 180 MFlops on 
the Cray Y-MP. 

Given a batch of [O](m) integrals, it “only” remains to traverse one of the 
prisms in order to obtain the brakets which we seek. As mentioned earlier, this 
involves some combination of two Contraction steps and three Transformation 
steps and we now focus on these in detail. 
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4.4 Contraction Steps 

The horizontal arrows in Figures 1 and 2 correspond to contraction steps 
and, in typical Direct SCF calculations using PRISM, these account for a 
significant fraction of the total CPU time (15% in the pentacene run described in 
Section 4.7). In electrostatic grid calculations, the fraction is even higher. It is 
therefore very important that they be executed as efficiently as possible. 

As was indicated in Section 3.6, contraction within the braket framework 
involves the summation of primitive quantities which may, or may not, also need 
to be scaled before being added together. In the case where scaling is required, 
the contraction amounts to a dot product, i.e. 

where i loops over the members of the batch a n d j  loops over the length of the 
contraction. In Gaussian 92, (88) is implemented with i as the innermost loop and 
with the outer j loop unrolled sixfold. The resulting code, a representative kernel 
of which is 

DO 20 J=Jbeg,Jend,G 

DO 1 0  I = l , N  

A(1) = A(1) + S(1,J )*B(I,J ) + S ( I , J + l  

$ + S(I,J+2)*B(I,J+2) + S(I,J+3 

$ + S(I,J+4)*B(I,J+4) + S ( I , J + 5  

10 CONTINUE 

20 CONTINUE 

*B (I, J+1) 

*B(I,J+3) 

*B ( I, J + 5 )  

has a FlopRvIop ratio which approaches unity, possesses a good balance between 
adds and multiplies, is manifestly vectorizable and, not surprisingly, runs very fast 
on most platforms. 

We note, too, that things only improve under the “fixed shell-pair‘’ scheme 
which is used in electrostatic grid calculations because the scalings become loop- 
invariants [98]. 
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4.5 Transformation Steps 

As we indicated in Section 3.3, modem integral algorithms invariably 
employ recurrence relations to build complicated brakets from simple ones. Their 
use permits algorithms to deal (in principle) with brakets of arbitrarily high 
angular momentum and, additionally, to make good use of the intermediates that 
are shared by fraternal brakets. In the next four subsections, we will discuss the 
various recurrence relations which are used to move vertically on the prisms. 

4.5.1 T w o - E l e c t r o n  T r a n s f o r m a t i o n s  on t h e  MD PRISM 

The T P  step in Figure 1 transforms [0](m) to [r] integrals and the TYD 
and T P  ste s are the half-contracted and contracted variants of this. W e  will 
examine T$ in detail because, although it is the simplest transformation step on 
either prism, it nonetheless shares many features with the more complicated 
transformation steps and, therefore, has useful pedagogical value. 

The recurrence relation on which T F .  T F  and T P  are based is the 
one-center RR (62) 

which McMurchie and Davidson derived originally using the elementary 
properties of Hermite polynomials. It is easily shown that, if the total angular 
momentum of the desired braket class is L, there are (L+1) [O](m) and 
(L+3)!/L!/3! [r] integrals and that, in general, the efficient generation of the latter 
from the former involves a complicated tree-search problem. Johnson et al. have 
carefully analysed this and have constructed highly optimized solution-trees 
[102]. In Gaussian 92, the subroutine MakMDl employs these solutions in 
forming a "driver" for the TY step. 

In Gaussian 92, a "driver" is an array of instructions (coded as integers) for 
the formation of one set of integrals from another. Subroutine MakMD1 first 
constructs a driver (the MD1 driver) to form the [r] from the [O](m) using (89). 
Given this driver, a set of [O](m) andthe corresponding set of R vectors (80). 
subroutine DoMD1 then takes responsibility for the actual construction of the [r]. 
For the purposes of illustration, it is useful to work through a simple example, 
such as L = 2. 
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The explicit L = 2 solution-tree for (89) is [ 1021 

[,I(') = [ O ] ( ' )  

= R, [ 01 (2) 

[ p y ] ( ' )  = Ry[0](2) 

[PI](') = R [ 01 (2) 

[s] = [ O ] ( O )  

[ P z ]  = RZ[Ol(') 

[ P y ]  = Ry[OI (1) 

[Px] = R,[OI(') 

[dyz] = R,[Pzl(') 

[ ] (1) - [4 (1) P Y Y l  = RY PY 

[dxl = Rz[PxI(') 

[ 4 y ]  = Rx[Py](l) 

[dzJ  = R,[p,](') -[s](') 

185 

Thus, from [O](O), [0](1), [0](2), we form ten [r] integrals. We will assume 
(correctly) that the former are stored in locations 1, 2 and 3, respectively. 
Subroutines such as DoMDl are very simple, containing only a handful of basic 
DO-loops corresponding to all useful special cases of the RR (89). The driver is a 
two-dimensional integer array, each row of which (an instruction) specifies the 
DO-loop and the locations to use. The MDl driver for L = 2 is shown in Table III 
and DoMD1 is reproduced immediately below this. 
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Table III The MD1 driver for L = 2 

4 3 0 1 0 
5 3 0 2 0 
3 3 0 3 0 
6 4 2 1 1 
7 5 0 1 0 
4 4 0 3 0 
5 5 2 2 1 
8 3 0 2 0 
3 3 2 3 1 
9 2 0 1 0 
10 2 0 2 0 
2 2 0 3 0 

SUBROUTINE DoMDl (W, R, n, Driver, nDrive) 
IMPLICIT INTEGER (a-z)  
INTEGER Driver(5,nDrive) 
REAL*8 W(N,*) ,R(n,3) 
DO 40 knt = 1,nDrive 

Z = Driver ( 1, knt ) 
P1 = Driver(2,knt) 
P2 = Driver(3,knt) 
Axis = Driver(4,knt) 
j = Driver(5,knt) 
IF (j.eq.0) THEN 

DO 10 i = l,n 
W(i,Z) = R(i,Axis) * W(i,Pl) 

10 CONT I W E  
ELSE IF (j .eq. 1) THEN 

DO 20 i = 1,n 
W(i,Z) = R(i,Axis) * W(i,Pl) - W(i,P2) 

20 CONTINUE 
ELSE 

DO 30 i = l,n 
W(i,Z) = R(i,Axis) * W(i,Pl) - W(i,P2) j 

30 CONTINUE 
END IF 

40 CONTINUE 
RETURN 
END 



Molecular Integrals over Gaussian Basis Functions 187 

Each instruction in the driver is encoded by five integers: 

(1) The location in which to store the result; 

(2) The location of the first term in (89); 

(3) The location of the second term in (89); 

(4) The value of i in (89) (1 x, 2 y ,  3 z ) ;  

(5) The coefficient of the second term in (89). 

For example, the first instruction (4, 3.0, 1,O) corresponds to the fourth equation 
in (90) and the fourth instruction (6,4, 2, 1, 1) corresponds to the last equation in 
(90). We note the following: 

(a) DoMDl uses the coefficient of the second term in (89) to determine 
which of the three special cases of (89) to use. 

(b) Each instruction results in the appropriate RR being applied to an entire 
column (n elements) of the W array, not just to a single element. That is, 
DoMD1 actually forms n sets of [r], not just a single set. Of course, n is 
the batch size described in Section 4.2 and this is the device by which 
PRISM is vectorized. 

(c) The driver is frugal in its use of locations: to the greatest extent possible, 
it re-uses locations by overwriting intermediates when they are no longer 
needed. For example, instruction #I places [pXl(l) in location 4 but, after 
this has been used in instruction #4 to generate [&I, the [px ] ( l )  is 
overwritten in instruction #6 by [&I. 

The other PRISM subroutines whose names begin with Do (see Section 
4.6) operate very similarly to DoMD1. Each is handed the W array, a driver and, 
if necessary, some auxiliary arrays such as R in DoMDl and then proceeds to 
generate columns of W by combining columns with one another and, possibly, 
with the auxiliary arrays. 
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To complete this subsection, we must derive two further RRs. In order to 
undertake the T F  or T F  steps, we require RRs involving half-contracted or 
fully-contracted [r]cm). respectively. These are easily derived [6 lc] by replacing 
Ri in (89) by appropriate identities. Thus, if the easily verified identity 

2a 
Ri I -(Bi - Ai) + (Qi - Bi) 

2c 

is substituted into (89), we obtain the half-contracted RR 

which is suitable for use in the T F  step. Likewise, if the identity 

is substituted into (89), we obtain the fully-contracted RR 

which is suitable for use in the T F  step. 
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4.5.2 One-Electron Transformations on  the MD PRISM 

The T F ,  T F ,  and T F  steps in Figure 1 transform uncontracted 
p-bras (or q-kets) to uncontracted bras (or kets). There is little to say about such 
transformations except that they are accomplished by (57) and (59) and form the 
backbone of the classical MD algorithm [52]. Their chief weakness is that, 
because they are uncontracted transformations, they contribute to the x and y cost- 
parameters in (42) and therefore become very expensive when applied to braket 
classes of moderate or high degree of contraction. For such classes, it would 
obviously be more efficient to contract before transforming: this is precisely what 
the T F ,  T F  and T P  steps achieve. But how can this be done? 

It is only the second terms in (57) and (59) which prevent the application 
of these RRs to contracted bras and kets because the prefactors (Pi-Ai) and (Qj-Ci) 
vary from primitive to primitive. However, if we replace these by identities based 
on the definitions (12) of P and Q, as was first suggested in [61a], a new RR, 
which can be applied to contracted bras and kets, emerges. In bra notation, it can 
be expressed [61b] as 

+ (: "+ljl 
a' b' p'+ 1 

Eqn. (95) is the contracted analogue of (59) and is much more efficient for highly 
contracted braket classes. The corresponding contracted analogue of (57) is 
obvious. 

Thus, by using (59), (89), (92), (94) and (95) in judicious combinations, 
one can traverse any of the 10 paths in Figure 1 (and, indeed, with only trivial 
extensions, any of the 20 paths in Figure 3). By choosing always to go by the 
cheapest (in a Flops or Mops sense) path, one gains the full benefit of the PRISM 
algorithm. 
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4.5.3 Two-Electron Transformations on the HGP PRISM 

The TPGP step in Figure 2 transforms [O](m) to [mOInO] integrals and 
the TYGp and TtGp steps are the half-contracted and contracted variants of this. 
However, before we can even contemplate the HGP algorithm within a braket 
framework, it is necessary to recast the 0s RR (67), which involves (ablcd)(m) 
integrals, into a new form involving [ablcd](m) integrals. Although this is 
straightforward to do, it has not previously appeared in the literature. Upon 
substituting the connection formula 

which is easily derived by comparing (63) and (68), into (67) and simplifying, we 
discover a new RR 

by which any [ablcd] can be reduced to the [OO1OO](m) = [O](m) discussed in 
Section 4.3. Through this sleight of hand, we free ourselves of the necessity to 
consider the 0s (ablcd)(m) integrals any further and we greatly clarify the 
relationship between the MD and HGP algorithms. We note too that, in additon 
to being more aesthetically pleasing than (67). (97) is also computationally 
superior to it because all of thefour-center exponent factors in (67) are replaced 
by two-center factors in (97). Thus, each of the terms in (97) is now clearly a 
braket, i.e. of the form (55). 
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In the original HGP method (Section 3.9), a special case of the 0s RR, 
termed the VRR, is used to compute [mOlnO] from (OOlOO)(m) integrals. If, 
instead, we use the analogous special case of (97), we obtain a new RR 

by which we can compute [mOInO] from [00100](m) I [O](m). This, of course, is 
precisely what is needed to perform the TTGP step in Figure 2. 

Finally, just as  we derived RRs for T P  and T P  from the RR for 
T P  in Section 4.5.1, we can derive RRs for TTGp and TYGp from (98) by 
replacing Ri by the identities (91) and (93). In this way, we eventually obtain 
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0 0  (m+U 

+(Ci-Di)(o : 0 I c d 0 ) 
a’ b’ p’+1 c’+1 d’ q’+1 

(m+U 

+ai 

0 0  (m+U 

+ci(:: 0 lc--:i d‘q‘+l d 0 ) 
a’ b’ p’ + 1 

for TYGP. The derivation of the (slightly simpler) TYGP recurrence relation is 
left as an exercise for the reader ... 
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4.5.4 One-Electron Transformations on the HGP PRISM 

The TYGP, TYGP, TfGP, TYGP, TtGP and TFGp steps in Figure 2 
correspond to the transformation of [mOI and (m01 to [bral and (bral, respectively, 
and the analogous ket transformations. As Head-Gordon and Pople emphasized 
[%I, the RR (70) which achieves this for (bral = (abl in the uncontracted case is 
also applicable in the contracted case. This represents an important difference 
between the MD and HGP PRISMS because it is therefore always preferable to 
contract fully before the last two transformations on the HGP PRISM whereas this 
is not the case on the MD PRISM. 

At first glance, there is not much more that can be said about this 
transformation. The RR (70) is extremely simple and is easy to use and it might 
appear that our analysis can probe no further. However, as Ryu, Lee and Lindh 
have shown [59b], if one wishes to apply (70) in a way that minimizes the number 
of Flops involved, a complicated tree-search problem must first be solved. These 
authors were unable to solve the general problem but gave heuristic solutions 
which clearly indicated that substantial savings were available. However, this is 
not the approach which is followed in the HGP-PRISM algorithm ... 

As Johnson et al. have recently found [63 ] ,  if one seeks a transformation 
scheme which is Mop-optima2, rather than Flop-optimal, one is led to introduce an 
entire new family of RRs, which these authors terms “nth-order transfer relations”. 
The 1st-order transfer relation is simply (70); the 2nd-order transfer relations are 
obtained by applying (70) to itself; and so on. The interested reader is referred to 
the original literature for the explicit forms of the first few transfer relations. 

One is immediately led to ask why the Flop-optimal and Mop-optimal 
solutions should be so different and the answer, surprisingly, lies in the extreme 
simplicity of (70). Although it contains two Flops, it involves four Mops and this 
is an unhealthy balance: in essence, not enough “real work” is done between 
loading the right-hand-side and saving the left-hand-side. Instead, by the use of 
comparatively long nth-order transfer relations, we reduce the amount of memory 
traffic dramatically and, on many modem machines, the CPU cost falls. This is 
particularly revealing because the Mop-optimal solutions frequently boast Flop 
costs of disconcertingly large proportions. 
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4.6 Loop Structure of PRISM in Gaussian 92 

Call Lists2 to form list of significant shell-pairs 
Call Sorts2 to sort shell-pair data by type 
Call CutoS2 to compute cutoff parameters for each shell-pair 
Loop over LTot values 

Call TabGmT to set up appropriate interpolation tables 
Call MakMDl to make [O](m) + [r] driver 
Loop over bra angular momentum types 

Call several routines to form bra-transformation drivers 
Loop over ket angular momentum types 

Call several routines to form ket-transformation drivers 
Call FillAv to decide which paths to make available 
Call MkDrTp to make transposition drivers 
Call MakVRl to make [0](m) + [mOInO] driver 
Call MkDrPQ to make scatter drivers 
Call several routines to make (O)(m) + (r) drivers 
Call several routines to make contraction drivers 
Call MkCost to compute PRISM step-costs in Flops and Mops 
Loop over KBra values 

Form petite list of bra shell-pairs of current type 
Loop over KKet values 

Call Choose to select the cheapest path 
Call PthInf to determine info about the chosen path 
Call CalcSF to compute bra- and ket-scalings 
Compute maximum number of quartets per batch 
Loop over batches of quartets of current type 

Call Picks4 to select a batch of quartets 
Call Loads4 to form scaling and distance arrays 
Call CalcS4 to compute R2, T. Theta and U values 
Call CalcOm to compute [O](m) integrals 
Call DoMDl to transform [O](m) + [rl 
Call DoCont to contract [rl + (1-1 
Call DoCont to contract (r] + (r) 
Call DoShuf to scatter (r) + @Iq) 
Call DoTran to transform (plq) + (bralq) 
Call DoShuf to transpose (bralq) 
Call DoTran to transform (bralq) + (bralket) 
Call Gobbxx to digest (bra1ket)'s 
Call S c a b  to scatter Fock contributions etc. 
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4.7 Performance of PRISM in Gaussian 92 

Notwithstanding the apparently strong theoretical arguments in support of 
the utility of the PRISM philosophy, our efforts are in vain unless it can be 
demonstrated that a real computer program, employing the algorithm, runs fast. 
In their paper on the HGP algorithm [55],  Head-Gordon and Pople presented CPU 
timings on various computers which suggested that the HGP method was 
significantly faster than any other method which existed at that time (1988). with 
thepossible exception of the PH axis-switch technique (Section 3.5). On that 
basis, we have systematically used the HGP method as a performance target while 
developing the PRISM methods and have published results [61] which establish 
clearly that the MD-PRISM algorithm is generally superior to the HGP algorithm. 
However, it was noted in the conclusions of [61c] that the MD-PRISM “is 
substantially inferior to HGP for weakly contracted classes of high angular 
momentum” and that “a modified version of PRISM that does not suffer from this 
defect needs to be developed”. We believe that, by incorporating paths on the 
new HGP PRISM, we now have an algorithm which is uniformly and significantly 
superior to all existing methods. 

As an indication of the performance of our implementation [I031 of 
PRISM in Gaussian 92, we have measured the CPU time for a single Hartree- 
Fock SCF iteration on a number of polyacenes. Our aim in making these 
measurements is to establish some well-defined benchmarks against which other 
programs in the future can be tested. 

The precise specifications underlying our timings are: 

Computer: 

Procedure: 

Basis Set: 6-31G* 

Dedicated IBM RS/6000 Model 320 (AH) 

Direct RHF-SCF (1st cycle only) 

Accuracy: 10-10 

Symmetry Used: D2 

Initial Guess: Projected INDO 

Geometry: C-C bond lengths = 1.4 A 
C-H bond lengths = 1.1 8, 

All angles = 120 degrees. 
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Table IV: Timing9 for One Direct HF-SCF Cycle on Some Polyacenes 

Molecule Nb Integralsc Fockd Totale 

c6H6 102 38 (61) 13 52 (74) 

ClOH8 166 163 (269) 67 230 (336) 

C14HlO 230 403 (652) 191 594 (843) 

C18H12 294 747 (1215) 37 1 1118 (1585) 

c22H14 358 1192 (1956) 627 1819 (2583) 

(a) In CPU seconds with HGP values in parentheses. 
See text for detailed specifications. 

(b) Number of basis functions. 
(c) Time to construct all needed integrals. 
(d) Time to digest integrals into an RHF Fock matrix. 
(e) Sum of (c) and (d). 

We may infer from the data in Table IV that the cutoff scheme used in 
PRISM is working satisfactorily. Even though none of the molecules considered 
could be considered large, the CPU times are already increasing much less rapidly 
than N4: between C18H12 and C22H14 the functional dependence is close to N2-5. 

It is also interesting to note that the fraction of the Total time which is 
associated with Fock matrix construction becomes larger in the larger systems. 
Presumably, this is because (due to our modeling scheme) the average degree of 
contraction is less in the larger molecules. This renders the integrals cheaper to 
form but has no effect on the Fock construction time. 
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5. PROSPECTS FOR THE FUTURE 

The theory and practice of Molecular Integrals over Gaussian Basis 
Functions have come a long way since Boys’ 1950 proposal. However, 
notwithstanding the enormous progress that has been made, there is little 
justification for the notion that we have reached the end of the road. Today, one 
can undertake Quantum Chemical calculations which would have been 
inconceivable only a decade ago and, without a doubt, computational chemists 
will be making the same observation a decade from now. 

Advances in computer hardware will continue to catalyse and fuel the 
construction of novel software strategies. The advent of vector machines during 
the 1980s revolutionized the way in which integral programs were constructed 
and a second revolution is now underway in response to the possibilities afforded 
by the new Massively Parallel Processing (MPP) machines. The problem of 
effectively implementing PRISM within an MPP framework, which is presently 
under investigation in a number of groups, is a difficult one and it may eventually 
turn out that only radical departures from the conventional wisdom will yield 
efficient codes on the teraflop computers of the future. 

Another, equally important, avenue to future developments involves the 
importation of ideas from other disciplines. This type of cross-fertilization - a 
ubiquitous ingredient in the advance of science - is apparent in the papers of 
Feibelman [ 1041, Yang [ 1051, Panas and Almlof [ 1061, Galli and Parrinello [ 1071 
and others. Indeed, some of these workers provide tantalizing evidence that the 
Holy Grail of Quantum Chemistry - a practical scheme for SCF calculations 
whose expense increases asymptotically only linearly with the system size - may 
be achieved in the rather near future. 

Speculatively combining such hardware and software advances leads to 
the conclusion that accurate ab initio calculations on molecular systems with 
thousands of atoms may soon be routine and Quantum Chemistry will have come 
of age. 
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