
Revision: 11/2024
Copyright © 2024
Campbell Scientific, Inc.

Modbus
Troubleshooting Guide

APPLICATION NOTE

Table of contents
1. RS-232, RS-485, and Ethernet wiring 1
1.1 Connecting via RS-232 1
1.2 Connecting via RS-485 1
1.2.1 Half-duplex mode 2
1.2.2 Full-duplex server configuration 2
1.2.3 Full-duplex client configuration 3

1.3 Connecting via Ethernet 3

2. Power considerations for data logger and Modbus device 4

3. Choosing the correct Modbus instruction: ModbusServer() or
ModbusClient() 4

4. ModbusServer() parameter details 5

5. Modbus client troubleshooting 8
5.1 Modbus client credentials checklist for third-party Modbus server device 8
5.2 Setting up the communication port for Modbus communications 10
5.3 ModbusClient() parameter details 11
5.4 Result code descriptions 16

6. Watch Modbus RTU traffic from the data logger terminal mode 17

7. Watch Modbus TCP traffic from the data logger terminal mode 22

8. Troubleshooting IP connectivity for Modbus TCP communications 27

Appendix A. CR1000X example program for ModbusClient() over TCP/IP
(Modbus TCP) 30

Appendix B. CR1000X example programs for ModbusServer() 31

Appendix C. CR1000X example program for ModbusClient() over serial
(Modbus RTU) 33

Appendix D. Serial formatting 34

Appendix E. Modbus setup flowchart 38

Table of Contents - i

1. RS-232, RS-485, and Ethernet
wiring
Modbus can run on multiple interfaces on Campbell Scientific devices, including RS-232, RS-485,
and Ethernet. Ensure the correct cable is connected to the appropriate port on both the data
logger and the Modbus device by tracing the cable and verifying the leads are securely
connected to the designated ports on the data logger.

1.1 Connecting via RS-232
When connecting a Modbus device to your data logger using RS-232 over C or U ports, verify the
Modbus TX wire is connected to the data logger RX port and the Modbus RX wire connects to
the data logger TX port.

1.2 Connecting via RS-485
When connecting a Modbus device using RS-485 communication, ensure the data logger ports
support RS-485. On a CR1000X data logger, C5 to C8 ports support RS-485 communication while
C1to C4 ports do not.

NOTE:
The CR1000Xe data logger supports RS-485 on C1 to C8 ports.

In RS-485 communications, data is transmitted using either two wires for half-duplex or four
wires for full-duplex. These wires are labeled as: A (or A–) and B (or B+). In full-duplex setups, TD

Modbus Troubleshooting Guide 1

A– specifically refers to the inverted terminal or wire used for transmitting data signals from a
device, while TD B+ refers to the non-inverting wire used for transmit. The RD A– wire refers to
the inverted receive wire, and the RD B+ refers to the non-inverted receive wire.

1.2.1 Half-duplex mode
When wiring your logger for RS-485 in half-duplex mode, ensure the A and B wires of the
Modbus device connect to the designated A and B ports on the data logger.

NOTE:
Some manufacturers don’t adhere to the RS-485 standard and may label their A and B wires
backwards. If your setup isn’t operating correctly, you can try swapping the wires on the
Modbus device. Often, a manufacturer labels the A port as negative (–) and the B port as
positive (+).

1.2.2 Full-duplex server configuration
If wiring your data logger for RS-485 full-duplex mode in Server configuration, ensure the
following connections:

l Connect the Modbus TD A– wire to the data logger RD A– port.
l Connect the Modbus TD B+ wire to the data logger RD B+ port.
l Connect the Modbus RD A– wire to the data logger TD A– port.
l Connect the Modbus RD B+ wire to the data logger TD B+ port.

Modbus Troubleshooting Guide 2

1.2.3 Full-duplex client configuration
If wiring your data logger for RS-485 in full duplex mode in Client configuration, ensure the
following connections:

l Connect the Modbus RD A– wire to the TD A– port on the data logger.
l Connect the Modbus RD B+ wire to the TD B+ port on the data logger.
l Connect the Modbus TD A- wire to the RD A– port on the data logger.
l Connect the Modbus TD B+ wire to the RD B+ port on the data logger.

1.3 Connecting via Ethernet
When connecting your data logger directly to a Modbus device over Ethernet or to an Ethernet
network, verify the Ethernet cable is connected to the RJ45 Ethernet port (not the RJ45 CPI port).

Modbus Troubleshooting Guide 3

2. Power considerations for data
logger and Modbus device
To verify the data logger has sufficient power, connect to it and check the battery voltage in the
Status table. A healthy voltage typically exceeds 12 V; for example, a reading of 13.5 V is
acceptable. However, lower readings, such as 11 V or 10.5 V, may impair or completely disrupt
communications. You can check the battery voltage using the following path: Device
Configuration Utility > Data Monitor [tab] > Status > Battery.

If voltage is low, check the 12 V power input to the data logger. Disconnect the cable from the
data logger side, then check the charging regulator, solar panel, battery, and other power input
to identify the source of the power issue.

See a video on Measuring Data Logger Output Voltage With a Multimeter here:
www.campbellsci.com/videos/basic-troubleshooting-01 .

3. Choosing the correct Modbus
instruction: ModbusServer()
or ModbusClient()
The terminology for Modbus instructions has been updated. If you're familiar with the previous
terms "Modbus Slave" and "Modbus Master," here’s a quick reference to the new terminology
and their functions. It's crucial to use the appropriate instruction for your application.

l If the device you're communicating with is operating as a Modbus Server, you must
configure your system as a Modbus Client.

l If the device is set up as a Modbus Client, your system must be configured as a Modbus
Server.

NOTE:
The old instruction names are still supported in the CRBasic Editor and data logger operating
systems, though they won’t highlight blue in the CRBasic Editor.

Modbus Troubleshooting Guide 4

https://www.campbellsci.com/videos/basic-troubleshooting-01

ModbusServer() = ModbusSlave()
Typically, it stores data and shares it with the
Client or Master, primarily serving as a data
provider.

ModbusClient() = ModbusMaster()
Generally, it requests and receives data from
the Server or Slave, primarily functioning as a
data recipient.

NOTE:
Your data logger can simultaneously function as both a ModbusServer(), sharing or
providing data to one device, and a ModbusClient(), requesting data from another
device over a separate connection.

4. ModbusServer() parameter
details
The ModbusServer() instruction enables a data logger configured as a Modbus Server to
communicate with a device configured as a Modbus client. In the data logger program, the
ModbusServer() instruction should be placed after the BeginProg instruction and before
the Scan() instruction.

The ModbusServer() instruction has the following syntax:

ModbusServer (COMPortMB, BaudRate, MBAddr, ModbusVariable, ModbusBooleanVar,
ModbusOption)

Ensure each parameter is configured correctly:

1. ComPortMB: Ensure the COMPortMB setting matches the physical port the Modbus device
is wired into. Valid settings depend on the data logger model. Examples include
COMRS232, ComC1, ComC3, and ComC5. To view the full list of available options, right-
click the blue-highlighted word ModbusServer in the CRBasic Editor.

Modbus Troubleshooting Guide 5

ModbusServer (ComRS232,9600,1,ModIn(),0,0)

When using Modbus over TCP/IP, setting the COMPort parameter to 502 or higher
designates the Modbus TCP/IP service port your data logger will monitor for incoming
Modbus connections.

2. BaudRate: If using RS-232 or RS-485 for Modbus, check the Modbus Server baud rate
matches the Modbus client baud rate. If they do not match, they will not be able to
communicate with each other. This parameter is not relevant when using Modbus over a
TCP/IP connection, and therefore will be ignored.

ModbusServer (ComRS232,9600,1,ModIn(),0,0)

3. MBAddress: Verify the Modbus address for the data logger is correct. Each device in a
Modbus network must have a unique Modbus address. Record this address so other
devices can be configured to connect to the data logger using the correct address.

ModbusServer (ComRS232,9600,1,ModIn(),0,0)

4. Modbus Variable: Ensure the Modbus variable is set and dimensioned to the correct size.
The dimension size depends on the Modbus command. For instance, if the device is
receiving three values, configure the Public variable array to three at the start of your
program. For example: PublicModIn(3)

ModbusServer (ComRS232,9600,1,ModIn(),0,0)

Modbus Troubleshooting Guide 6

The array values must be assigned within the program's Scan section, specifically between
the Scan and NextScan statements. The following example demonstrates assigning three
values:

ModIn(1) = Batt_volt
ModIn(2) = PTemp
ModIn(3) = ModResult

NOTE:
When values are retrieved from or sent to the Modbus Server, the data logger does
not distinguish between holding and input registers. The primary difference lies in the
address offset. The specified array is used for both input registers (with an address
offset of 30000) and holding registers (with an address offset of 40000).
Consequently, the first address for input registers is 30001, while the first address for
holding registers is 40001.

NOTE:
Floating point variables take two Modbus registers.

5. Modbus Boolean Variable: This variable is used to hold the value of any discreet on/off
commands sent to your Modbus Server. This parameter can be a variable or a variable
array. If you’re not using this function, set this value to 0. You may see a compile warning
when using a 0; you can safely ignore the warning.

ModbusServer (ComRS232,9600,1,ModIn(),0,0)

6. ModbusOption: Verify the correct ModbusOption has been selected. Specifying a value
for this parameter is optional. If you don’t specify a value, ModbusOption will default to a
32-bit float or long with the reversed CDAB byte order.

ModbusServer (ComRS232,9600,1,ModIn(),0,0)

The options for this parameter in CRBasic are:

32-bit float or Long/reversal of byte order (CDAB)

16-bit signed integer

32-bit float or Long/no reversal of byte order (ABCD)

16-bit unsigned integer

Modbus ASCII 4 bytes (CDAB)

Modbus Troubleshooting Guide 7

Modbus ASCII 2 bytes

Modbus ASCII 4 bytes (ABCD)

NOTE:
Record the parameters used in the ModbusServer() instruction for future reference
when setting up a Modbus client.

5. Modbus client
troubleshooting
Refer to the following when troubleshooting a data logger that is set up as a Modbus client:

5.1 Modbus client credentials checklist for third-party Modbus server device 8

5.2 Setting up the communication port for Modbus communications 10

5.3 ModbusClient() parameter details 11

5.4 Result code descriptions 16

5.1 Modbus client credentials checklist for third-
party Modbus server device

To enable the data logger to communicate with the Modbus (Server) device, you must gather key
information about the device. This information can be found in the manufacturer's
documentation, the device configuration, or by consulting the person who programmed the
device. Use the following checklist to ensure you have all the necessary details:

☐ Physical interface the Modbus (Server) device will use to connect to the data logger.

Interface: _________________________

☐ Baud rate of the Modbus (Server) device. This parameter is ignored if using an IP
connection.

Baud rate: _________________________

☐Modbus address of the Modbus Server your data logger will be communicating with.

Server address: _________________________ Client address: _________________________

Modbus Troubleshooting Guide 8

☐ Starting register number for the Modbus data being retrieved from the Modbus Server.

Starting register: _________________________

☐ Determine the number of values to be received from the Modbus Server and the order in
which they are received. Each value will have a specific address that you need to identify. In
your CRBasic program, multiple ModbusClient() instructions are needed to retrieve
data from non-sequential addresses.

Number of values: _________________________

☐ DataType of the Modbus data provided by the Modbus Server device. This includes
understanding both the bit length and the byte order. The default is a 32-bit float or long
with a reversed byte order of CDAB. The DataType will be one of the following:

32-bit float or Long/reversal of byte order (CDAB)
16-bit signed integer
32-bit float or Long/no reversal of byte order (ABCD)
16-bit unsigned integer
Modbus ASCII 4 bytes (CDAB)
Modbus ASCII 2 bytes
Modbus ASCII 4 bytes (ABCD)
Modbus Data Type: _________________________

☐ If making a connection over TCP/IP (Ethernet, Wi-Fi, or Cellular), you will need the IP
address of the server.

Modbus Server IP address: _________________________

☐When connecting over TCP/IP (Ethernet, Wi-Fi, or Cellular), you will need to know the
port number the Modbus Server uses to provide the data. The default is 502, but you
should confirm correct port number.

Modbus Server port number: _________________________

Once you have the necessary information, you can program your data logger using the
ModbusClient() instruction to communicate with the Modbus Server device. The information
provided in this check list serves as a guide for programming your Modbus device and is
especially helpful for verifying parameters during troubleshooting. For more details on these
parameters, refer to the CRBasic Editor help.

Modbus Troubleshooting Guide 9

5.2 Setting up the communication port for
Modbus communications
NOTE:
Skip this section if using Modbus over an IP connection.

To set up the data logger as a Modbus Server, you must configure the communication port for
Modbus communication. The is typically done using the SerialOpen() instruction in CRBasic.

1. The COMPort parameter in your SerialOpen() instruction must match the physical port
where you have wired your Modbus device. The example below uses COMRS232. Valid
values include, but are not limited to: COMRS232, COMC1, COMC3, and COMC5. The
COMPort options will vary depending on the data logger model you are working with. The
full list of options available can be viewed by right clicking the COMPort parameter in the
SerialOpen() instruction in the CRBasic Editor.

SerialOpen (COMRS232,-9600,0,0,50)

2. The baud rate specified in the SerialOpen() instruction must match the other Modbus
device baud rate. The example below uses –9600. A negative sign in front of the baud rate
value indicates the interfaces will autobaud if the specified baud rate doesn’t match.
Autobaud is only compatible with the RS-232 port. Right clicking the value in the CRBasic
Editor will show you all the available baud rate options.

SerialOpen (COMRS232,-9600,0,0,50)

3. The SerialOpenFormat parameter is only used for an RS-232 connection. The example
below uses the default value of zero, which sets the format to RS232 No Parity/one stop
bit/8 data bits/no error checking with concurrent Pakbus over the port. This format is used
for most RS-232 connections. However, consult the manufacturer’s documentation for
your Modbus device to verify you are using the correct format.

SerialOpen (COMRS232,-9600,0,0,50)

Modbus Troubleshooting Guide 10

4. The CommsMode of the interface must match the serial protocol you intend to use. The
example below uses code 0, which configures the port as RS232. Available modes include
RS-232, TTL, RS-485 Half-Duplex Pakbus, RS-485 Half-Duplex transparent, and RS-485
Full-Duplex transparent. Note not all modes are applicable to every physical interface. For
instance, an RS-232 interface typically cannot support RS-485 protocols. However, the
C5/C6 terminal pair on a CR1000X can be configured for either RS-232 or RS-485
communications options.

SerialOpen (COMRS232,9600,0,0,50,0)

5.3 ModbusClient() parameter details
The ModbusClient() instruction should be placed in your program scan loop after the Scan
statement and before the NextScan statement.

1. Declare and reference a variable to store the ModbusResultCode. In the example, the
variable Result is used.. The ModbusResultCode indicates if the instruction failed and
provides the reason for the failure (see Result code descriptions [p. 16]).

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

2. The COMPort is the port the Modbus device is wired into. The following example uses
RS232. Other valid ports include, but are not limited to, ComSDC7, ComC1, ComC2,
ComC3, and ComC4.

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

You can also use an IP connection for communication by specifying a variable that contains
an open IP socket to the remote device as the COMPort. For example, declare a variable
named TCPSocket at the top of your program in the Public variables.

Public TCPSocket

In your program, use the TCPOpen() instruction before the ModbusClient()
instruction to establish a TCP/IP connection with the remote device. Specify a TCPSocket
variable as the fifth parameter (ConnectHandle) in the TCPOpen() instruction as shown in
the following example:

TCPOpen ("192.168.1.2",502,1,,TCPSocket)'In this example the optional 4th
parameter, IPTimeOut, is not used. Hence ,, between 1 and TCPSocket.

Modbus Troubleshooting Guide 11

Using ConnectHandle with ModbusClient() is preferred because it automatically
reconnects the socket if the connection is lost.

NOTE:
The first parameter in the TCPOpen() instruction is the IP address of the remote
Modbus device. The second parameter is the port number the device is using to listen
for Modbus traffic, typically port. The third parameter is a memory buffer that is not
used for Modbus communications and should be set to 1 when performing Modbus
communications. The fourth parameter is an optional IP time out.

The ModbusClient() instruction should specify the TCPSocket, as shown in the
following example:

ModbusClient (Result,TCPSocket,115200,3,3,ModbusData(),1,10,3,100)

NOTE:
When using an IP Socket, the baud rate parameter is ignored.

If you are using Modbus over an IP connection, refer to the CR1000X example program for
ModbusClient() over TCP/IP (Modbus TCP) (p. 30) for more information.

3. The baud rate must match the rate used on the other Modbus device. In the example, the
baud rate is 115200 bps. If you are using Modbus over a TCP/IP connection, this parameter
is ignored.

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

4. The Modbus address must match the Modbus address of the other Modbus (Server)
device. If unsure of the address of the other device, check the documentation,
configuration, or programming of the Modbus device.

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

5. For the ModBusFunction, the example uses Option 3, which reads the holding Registers
from the Modbus Server. Option 3 is the most common option. Descriptions of all the
options are provided in Table 5-1 (p. 13).

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

Modbus Troubleshooting Guide 12

Table 5-1: Modbus function options

Option Name Description

1 Read Coil/Port Status Reads the On/Off status of discrete output(s) in the
ModbusServer

2 Read Input Status Reads the On/Off status of discrete input(s) in the
ModbusServer

3 Read Holding Registers Reads the binary contents of holding register(s) in
the ModbusServer

4 Read Input Registers Reads the binary contents of input register(s) in the
ModbusServer

5 Force Single Coil/Port Forces a single Coil/Port in the ModbusServer to
either On or Off

6 Write Single Register Writes a single register value (16-bit long) to a
ModbusServer (ModbusOption must be set to 1)

15 Force Multiple Coils/Ports Forces multiple Coils/Ports in the ModbusServer to
either On or Off

16 Write Multiple Registers Writes values into a series of holding registers in the
ModbusServer

6. If your Modbus option is set to read data, the ModbusVariable stores the data received
from the Modbus Server. If you are writing to the Modbus Server, this variable is the source
of the data being sent.

Declare the variable at the top of your CRBasic program along with the other Public
variable declarations. The following is an example of the PublicModbus variable
declaration, assuming 20 floating point Modbus values are being read from the
ModbusServer() or held to be written to the Modbus Server:

Public ModbusData(20)

The type of variable you declare as the Public variable will affect its function. Be sure to
declare the variable as the correct type based on the ModbusFunction and
ModbusOption you are using. Refer to the ModbusFunction, which is the last
parameter in the ModbusClient() instruction shown in the following example. If the
values you are reading or writing are declared as four-byte floating-point (Float) data

Modbus Troubleshooting Guide 13

types, and a register function code of 3, 4, or 16 is used, the data points will be mapped to a
Modbus Holding or Input register as floating-point data.

This parameter can also be declared as Boolean data type, which is used to represent
conditions or hardware that have only two states (true or false), such as flags and control
ports. A register function code (coil) of 1, 2, 5, or 15 will be mapped to a Modbus coil in the
other device.

Public ModbusData(2) As Boolean

If this parameter is declared as a Long data type (used for integer variables), and a register
function code of 3, 4, or 16 is used, it will be mapped to Modbus Holding or Input registers
as an integer. Longs are treated as signed integers, meaning the values will range from –
32,768 to +32,767.

Public ModbusData(2) As Long

This is the parameter as it appears in the ModbusClient() instruction in your data
logger program.

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

7. Ensure you have specified the correct Modbus start register. This is the 16-bit address of
the first register that will be requested (or acted upon). The start parameter is entered as a
number in the range of 1 to 65535. The start parameter in the example is 1. The data
address, or offset, in the Modbus frame sent to the server will be equal to "Start-1". For
example, if you are reading the first starting register of a Modbus device, you should
specify 1 for this parameter. For a Modbus function code 3, the manufacturer
documentation might indicate the starting address is 40001, but you should specify 1 in
your data logger. Setting the value to 40001 will tell your data logger to start reading 40,001
records into the holding register instead of the first one. This is a common mistake when
using the ModbusClient() instruction.

NOTE:
Campbell Scientific data loggers use "Start-1" addressing to determine the address
being used. Some manufacturers might start their addressing at 0 or 1, which can create
confusion. If you specify the starting address, but do not receive correct values, it’s a
good practice to attempt reading a fixed value from the Modbus registers. Then, adjust
the address incrementally until you receive the correct data from the other Modbus

Modbus Troubleshooting Guide 14

device.

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

8. Verify the ModbusLength parameter is correct. This is the number of CRBasic variables to
act on with this instruction. When reading coils or using a 16-bit ModbusOption (Options
1, 3, 11, or 13), the ModbusLength will match the number of 16-bit register values to be
requested or processed. When using a 32-bit or 4-byte ModbusOption (Options 0, 2, 10,
or 12), the data logger will automatically double the ModbusLength value to request 32-
bit data for each CRBasic variable. In summary, specify the number of values needed, and
the data logger will handle the rest automatically, as long as the correct ModbusOption
parameter is selected. See item 11 to verify the appropriate ModbusOption parameter.

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

9. Verify the ModbusTries parameter. This value is the number of times the data logger will
attempt to communicate with the Modbus Server before moving on to the next instruction
in the program.

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

10. The ModbusTimeOut parameter specifies the amount of time the data logger will wait for
a response before considering the attempt a failure. This value is indicated in units of .01
seconds. Therefore, a value of 100 equals one second. If you are using Modbus over an IP
connection with some latency, you may want to increase this value to a few seconds. For
local serial connections, one second is typically sufficient.

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

11. Verify the correct ModbusOption has been selected. If you don’t apply a value for this
parameter, it will default to 32-bit float or Long/reversal of byte order (CDAB). This
parameter needs to match the other Modbus device your data logger is communicating
with.

ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100,0)

Check the manufacturer manual for the other Modbus device or consult the person who
programmed it to verify the correct format.Manufacturers may not always provide clear
instructions on the format they use. Some may only specify the bit size, such as 16-bit or
32-bit. Others might mention "reverse byte order," "reverse endian," or simply "CDAB." If

Modbus Troubleshooting Guide 15

the format is not listed, you may need to contact the person who programmed the system
to determine the byte order used. Alternatively, you can try different formats until it works.
For more information on big-endian and little-endian formats in communications, see
Serial formatting (p. 34).

The options for this parameter in CRBasic are:

32-bit float or Long/reversal of byte order (CDAB)

16-bit signed integer

32-bit float or Long/no reversal of byte order (ABCD)

16-bit unsigned integer

Modbus ASCII 4 bytes (CDAB)

Modbus ASCII 2 bytes

Modbus ASCII 4 bytes (ABCD)

5.4 Result code descriptions
Table 5-2 (p. 16) describes the result codes provided by the ModbusClient() instruction.
When Modbus communications fail, the result code often provides an indication of what is
wrong with your Modbus communications. A similar table is available in the CRBasic Editor help.

Table 5-2: Result code descriptions

Code Descriptions

–1

Illegal function. The function code received in the query is not an allowable action for
the device. The device may not support the function, or it may not be in a state to
process the request. Check your ModbusFunction in the Modbus client
troubleshooting (p. 8)

–2

Illegal data address. The data address received in the query is not an allowable address
for the device. The combination of the reference number and transfer length may be
invalid. Check the manufacturer documentation of your Modbus Server and match the
setting in the Modbus client troubleshooting (p. 8) section, item 7.

–3 Illegal data value. The value contained in the query data field is not an allowable value
for the device.

–4 Server device failure. An unrecoverable error occurred while the device was attempting
to perform the requested action.

Modbus Troubleshooting Guide 16

Table 5-2: Result code descriptions

Code Descriptions

–5
Acknowledge. The device has accepted the request and is processing it, but a long
duration of time will be required to do so. This is a specialized function used in
conjunction with programming commands.

–6 Server device busy. The device is engaged in processing a long-duration program
command.

–8 Memory parity error. The device attempted to read a record file but detected a parity
error in the memory. Used in conjunction with function codes 20 and 21.

–9 Gateway path unavailable. Indicates the gateway was unable to allocate an internal
communications path from the input port to the output port for processing the request.

–10 Modbus Client error. Received an unexpected function code response from server.

–11
The specified ComPort (or TCP socket) is not opened. There is no connection to the
Modbus Server. Verify the correct parameter is specified in the Modbus client
troubleshooting (p. 8) section, item 2.

–16 ModbusClient error. Out of comms memory.

–20 ModbusClient error. Variable not dimensioned large enough to store results from
server.

1..2..n

Communications with the Modbus Server has failed. This can be due to incorrect serial
communications settings or incompatible data types. See Setting up the
communication port for Modbus communications (p. 10) and Modbus client
troubleshooting (p. 8).

6. Watch Modbus RTU traffic
from the data logger terminal
mode
You can verify your data logger and the other Modbus device are exchanging Modbus traffic.
This procedure uses the data logger terminal mode to watch the outgoing and incoming

Modbus Troubleshooting Guide 17

Modbus traffic from a Campbell Scientific data logger. Although the example shows a Modbus
Client, the steps are the same for a Modbus Server.

1. Open Device Configuration Utility and connect to your data logger.

2. Click the Terminal tab.

3. Press Enter until you see the data logger you are using. In this example, the CR1000X was
used.

Modbus Troubleshooting Guide 18

4. Type the capital letter W and press Enter.

5. Enter the number that corresponds to the COM port you are using and press Enter. If you
are using IP for Modbus communications, go to Watch Modbus TCP traffic from the data
logger terminal mode (p. 22).

Modbus Troubleshooting Guide 19

6. You will be prompted for ASCII (Y)?; answer with a capital letter N and press Enter.

7. You should now see a message that says opening followed by the port you specified.
After that you will see the hit ESC to exit, any other key to renew
timeoutmessage. Now wait for your Modbus instruction to trigger or manually trigger it
in your program. If the results begin to fill up the screen quickly, clicking the Pause check
box at the bottom of the Device Configuration Utility window will pause the display,
allowing you to take your time reading what’s already been displayed.

To export the results for later analysis, click the Start Export button. In the Choose an export
file window, select a location to save the results of the sniff. Enter a file name (e.g.,
myModbussniff.txt) in the File name field at the bottom of the window, and then click Save.

Modbus Troubleshooting Guide 20

Here is a screenshot of a sniff from the Terminal mode of the data logger:

This sniff shows the data logger we are monitoring (a Modbus Client) has sent out a transmission,
as indicated by the T in the results.

hit ESC to exit, any other key to renew timeout
05:43:00.003 T 03 03 00 00 00 06 C4 2A *
05:43:00.038 R 03 03 OC 04 36 41 C5 66 CA 41 54 04 36 41 C5 FE 6A.f.AT.6A..
05:43:00.038 R 9C .
05:44:00.003 T 03 03 00 00 00 06 C4 2A *
05:44:00.041 R 03 03 0C 8A F2 41 C5 CO 20 41 53 8A F2 41 C5 E2 A.. AS..A..
05:44:00.041 R 8F .

In the next screenshot, a serial device has responded to the transmission request sent by the data
logger running Modbus. This response is indicated by the R or received serial traffic. In this case,
it represents the Modbus Server response to the Modbus Client request.

hit ESC to exit, any other key to renew timeout
05:43:00.003 T 03 03 00 00 00 06 C4 2A *
05:43:00.038 R 03 03 OC 04 36 41 C5 66 CA 41 54 04 36 41 C5 FE 6A.f.AT.6A..
05:43:00.038 R 9C .
05:44:00.003 T 03 03 00 00 00 06 C4 2A *
05:44:00.041 R 03 03 0C 8A F2 41 C5 CO 20 41 53 8A F2 41 C5 E2 A.. AS..A..
05:44:00.041 R 8F .

Modbus Troubleshooting Guide 21

Now that we have confirmed that traffic is being sent and received from our data logger
operating as a Modbus Client, and we are receiving responses, how can we verify this traffic is
Modbus traffic?

The easiest way to recognize Modbus serial traffic (Modbus RTU) is to look for transmissions that
start with the Modbus Server address and function code. Similarly, the server response will also
begin with its address and function code. Since we are monitoring the Modbus Client, notice that
immediately after the initial T, the Modbus address of the server (03 or "3") is followed by the
function code (03 or "3"). This confirms the traffic we are observing is Modbus traffic.

hit ESC to exit, any other key to renew timeout
05:43:00.003 T 03 03 00 00 00 06 C4 2A *
05:43:00.038 R 03 03 OC 04 36 41 C5 66 CA 41 54 04 36 41 C5 FE 6A.f.AT.6A..
05:43:00.038 R 9C .
05:44:00.003 T 03 03 00 00 00 06 C4 2A *
05:44:00.041 R 03 03 0C 8A F2 41 C5 CO 20 41 53 8A F2 41 C5 E2 A.. AS..A..
05:44:00.041 R 8F

With Modbus Client, if you are not seeing responses from the Modbus Server, verify your
configuration by following the first seven steps of this document and ensure the Modbus Server
is configured correctly. This process can also be applied to an IP connection.

7. Watch Modbus TCP traffic
from the data logger terminal
mode
This example uses a CR1000 data logger operating as a Modbus Server. The process is the same
for a Modbus Client operating on an IP connection.

Follow these steps to use Device Configuration Utility to see the Modbus polls over your IP
connection:

Modbus Troubleshooting Guide 22

1. Open Device Configuration Utility and connect to your data logger.

2. Click the Terminal tab.

3. Press Enter on your keyboard until you see a prompt on your screen.

Modbus Troubleshooting Guide 23

4. Type the capital letter W and press Enter.

5. Select TCP/IP and press the Enter key.

6. You will be prompted for ASCII (Y)?; answer with a capital letter N and press Enter.

Modbus Troubleshooting Guide 24

7. If your data logger is not receiving any Modbus polls, your screen will likely look something
like this:

If no Modbus traffic is detected over TCP/IP and the only message on the screen is hit ESC to
exit, any other key to renew timeout, this situation could indicate one or more of
the following conditions:

l The SCADA system or other Modbus device (Modbus Client) is not polling the data logger
(Modbus Server), or the data logger (Modbus Server) is not responding to the Modbus
Client's requests.

l The SCADA system or other Modbus device is polling a different IP address.
l The data logger has been assigned an incorrect IP address.
l A cable is not plugged in.
l Modbus traffic is being blocked by the network.

Even if your data logger is set up and programmed correctly, it will not transmit data as expected
if it is not receiving polling requests from the SCADA client. In this case, direct your
troubleshooting efforts toward the SCADA network, client configuration, and other factors
external to the data logger.You might observe TCP/IP traffic that is not related to Modbus. For

Modbus Troubleshooting Guide 25

example, you may see PakBus traffic from a LoggerNet Server if there is a LoggerNet-to-data-
logger connection on the network. Once network or SCADA system problems are resolved, a
successful trace will appear as follows:

The easiest way to identify Modbus TCP traffic and differentiate it from other protocols is by
noting that transmissions from the client always begin with an identifier in the first two bytes. For
example, in the trace, the first recognized poll started with 00 16, and the data logger
responded with this same unique identifier (00 16). On the next poll, the client used an identifier
of 00 17, and the data logger responded with 00 17.

NOTE:
There is a difference between Modbus TCP traffic and Modbus RTU traffic. The easiest way to
recognize Modbus RTU traffic is to look for a transmission from the client that starts with the
Modbus Server address and function code. The server response will also start with its address
and function code.

Modbus Troubleshooting Guide 26

Modbus polls marked as (T) originate from the data logger you are running the terminal
connection on, while polls marked as (R) come from the other device. If your data logger is acting
as a Modbus Server and you are not seeing communication from it, there may be an error in your
setup, such as:

l The data logger is not programmed as a Modbus server.
l The data logger has been given a Modbus server ID that does not match what the client is
polling.

At this point, you’ll need to examine your data logger setup for further troubleshooting.

NOTE:
This section is derived from a blog post written by Paul Smart and is available on the
Campbell Scientific website here: www.campbellsci.com/blog/diagnose-modbus-
communication .

8. Troubleshooting IP
connectivity for Modbus TCP
communications
Work with your IT department to confirm that your Modbus devices, including your data logger,
are configured correctly and communicating on the network. The following is a list of common
troubleshooting steps to help determine network connectivity issues.

1. Verify the data logger IP address, subnet Mask, and gateway address are correct.

2. If the data logger is polling a Modbus Server, verify the Modbus Server address matches
the Modbus address specified in your data logger program.

3. Confirm the IP address, subnet mask, and gateway address settings on other Modbus
devices.

4. Examine the Ethernet cable to ensure it is plugged in, and confirm that Wi-Fi connections
on both devices are properly established, if applicable.

5. Look at the Ethernet LEDs near the data logger Ethernet port. A green light and a flashing
amber light indicate traffic is passing between the device and the network.

Modbus Troubleshooting Guide 27

https://www.campbellsci.com/blog/diagnose-modbus-communication
https://www.campbellsci.com/blog/diagnose-modbus-communication

6. If the data logger is directly connected to the other Modbus device using Ethernet, set the
Ethernet Power setting to Always on to keep the interface from going to sleep. This setting
is found here: Device Configuration Utility > Deployment > Ethernet > Ethernet Power.

7. To check if the data logger and the other Modbus device are communicating, connect a
computer to the same network subnet and try to ping the IP address of both devices from
the Command Prompt of your computer.

NOTE:
For security, the data logger ping function is turned off by default. This setting is found
here: Device Configuration Utility > Deployment > Network Services > Ping (ICMP)
Enabled.

8. If the data logger is connected to the network, set its IP address in the Ethernet tab (or
relevant IP interface) to 0.0.0.0 and apply the change. Setting 0.0.0.0 as the IP address
enables DHCP on the data logger. If the network is assigning addresses using DHCP, the
data logger will receive an IP address, which will appear in the status area of the Ethernet
tab (or the corresponding IP interface) in the Device Configuration Utility. When the data
logger receives an address from the network, compare it with your existing address, subnet
mask, and gateway address. The subnet mask and gateway address should match exactly,
and the IP address should be very similar.

NOTE:
If the data logger receives an IP address that starts with 169.254, this indicates the
network is not assigning addresses using DHCP. This may also mean the data logger
and computer are directly connected to each other.

Modbus Troubleshooting Guide 28

Example results follow:

Expected results:

IP Address: 172.91.23.45

Subnet Mask: 255.255.0.0

Gateway Address: 172.91.25.100

Results from Status area of Ethernet tab:

IP: 192.168.1.2

Mask: 255.255.255.0

GW: 192.168.1.1

The addresses 192.168.1.2 and 172.91.23.45 are from different networks and cannot
communicate with each other. If your data logger receives an address like this, contact your
IT department to request a new IP address and inform them the network configuration is
incorrect.

Modbus Troubleshooting Guide 29

Appendix A. CR1000X example
program for ModbusClient()
over TCP/IP (Modbus TCP)
This program reads in two floating point values from the Modbus Server at IP Address 192.168.1.1
every 60 seconds and writes them to the ModbusData floating point variable. The
ModbusClient() instruction is placed within a SlowSequenceto ensure that measurement
instructions continue to operate in the scan without being slowed down.

Public Temp, batt_volt, ModResult
Public ModbusData(2)
Public TCPSocket

'Main Program
BeginProg
Scan (2,Sec,0,0)

Battery(batt_volt) 'Simple diagnostic instructions to record
PanelTemp(Temp)

NextScan
SlowSequence
Scan (60,Sec,3,0)

If TCPSocket = 0 Then
TCPOpen ("192.168.1.1",502,1,,TCPSocket)
'Check every time if the socket is still open. If not, reopen the socket and
'assign the handle to a variable called TCPSocket.

EndIf
'Utilize the handle from the TCPOpen instruction as the COM port and read in
'values from the Modbus server. These values are stored in the ModbusData
'variable.
ModbusClient (ModResult,TCPSocket,-9600,3,3,ModbusData(),1,2,3,200,0)

NextScan
EndProg

Modbus Troubleshooting Guide 30

Appendix B. CR1000X example
programs for ModbusServer()
Following are two examples of the ModbusServer() instruction.

Example 1, FP and Coils not declared

Public PTemp, batt_volt, ModResult
Public ModIn(3)

'Main Program
BeginProg
ModbusServer (ComRS232,9600,1,ModIn(),0)
Scan (2,Sec,0,0)

Battery(batt_volt) 'Diagnostic instruction to record data logger battery
'voltage

PanelTemp(PTemp,1500) 'Diagnostic instruction to record data logger panel
'temperature

 ModIn(1) = batt_volt
 ModIn(2) = PTemp
 ModIn(3) = ModResult

NextScan
EndProg

Modbus Troubleshooting Guide 31

Example 2, Integer, and coils defined as Boolean array (Coils map to C1 to C8): :

Public PTemp, batt_volt, Counter
Public Port(8) as Boolean
Public ModIn(10) as Long 'Long provides integer conversion
'Main Program
BeginProg
ModbusServer (ComRS232,9600,1,ModIn(),Port())
Scan (2,Sec,0,0)

Battery(batt_volt) 'Diagnostic instruction to record data logger battery
'voltage

PanelTemp(PTemp,1500) 'Diagnostic instruction to record data logger panel
'temperature

 Counter=Counter+1

 ModIn(1) = batt_volt
 ModIn(2) = PTemp
 ModIn(3) = Counter

 PortSet(C1,Port(1))
 PortSet(C2,Port(2))
 PortSet(C3,Port(3))
 PortSet(C4,Port(4))
 PortSet(C5,Port(5))
 PortSet(C6,Port(6))
 PortSet(C7,Port(7))
 PortSet(C8,Port(8))

NextScan
EndProg

Modbus Troubleshooting Guide 32

Appendix C. CR1000X example
program for ModbusClient()
over serial (Modbus RTU)
This program uses SerialOpen to specify serial configurations and ModbusClient() to
query the Modbus Server over RS-232.

'Declare Public Variables
Public PTemp, batt_volt,ModbusData(20),Result

'Define Data Tables
DataTable (Test,1,-1)
DataInterval (0,15,Sec,10)
Minimum (1,batt_volt,FP2,0,False)
Sample (1,PTemp,FP2)
Sample (20,ModbusData(),IEEE4)

EndTable

'Main Program
BeginProg

SerialOpen (COMRS232,115200,1,0,50)

Scan (1,Sec,0,0)
PanelTemp (PTemp,15000)
Battery (Batt_volt)

'Retrieve Modbus Data
ModbusClient (Result,COMRS232,115200,3,3,ModbusData(),1,10,3,100)

'Enter other measurement instructions
'Call Output Tables
CallTable Test

NextScan
EndProg

Modbus Troubleshooting Guide 33

Appendix D. Serial formatting
Communication ports and Modbus configurations can vary between manufacturers. This section
outlines the key settings to check when reading data from a third-party sensor using the
ModbusClient() instruction.

1. Big-endian vs. little-endian

In terms of byte order, little-endian places the most significant byte on the right side, while
big-endian places the most significant byte on the left side. For example, the decimal
number 39,534, when written in big-endian binary, has the byte that most significantly
impacts the decimal value placed on the left side.

Big-endian

1001101001101110

MSB LSB

Little-endian flips this order with the leftmost byte being the least significant and the
rightmost byte being the most significant.

Little-endian

1001101001101110

Modbus follows the same concept of endianness when transmitting data. This can be seen
in the ModbusOption parameter within the ModbusClient() instruction.

Modbus Troubleshooting Guide 34

Modbus register data is transmitted in hexadecimal, with each hex digit representing a 4-
bit pattern. Therefore, two hex digits equal 1 byte. In little-endian format, this is represented
as CDAB, while in big-endian format, it is represented as ABCD. The default for most
Modbus servers is little-endian format.

2. Logic, parity, data bits, and stop bits

Modbus has several layers of communication parameters that must be configured
correctly. At the serial communication level, these include settings for logic, parity, data
bits, and stop bits.

a. Logic

The logic level determines whether a binary 0 is represented as a low or high voltage.
This is determined with either a pull-up or pull-down resistor of some kind. This
resistor ensures, when there is no signal, a floating value is either connected to a low
or high voltage source at all points in time to reduce errors. In simple terms, logic 1
low means that a 0 is formed from a low voltage level and logic 1 high means that 0 is
formed from a high voltage level. True RS-232 typically uses logic 1 low; TTL typically
uses logic 1 high.

Modbus Troubleshooting Guide 35

b. Parity

Parity is a form of error checking for frames that come in. Most devices do not use
parity; however, some utilize either odd or even parity. If parity is used, both the
transmitter and receiver count the amount of binary 1s in the frame. Odd parity will
contain an odd number of 1s in the frame. Even parity will contain an even number of
1s in the frame. An additional bit will be added to ensure the “even” or “odd”
parameter is met.

Example:

Parity Original byte Modified byte

Odd 00101101 (four 1s) 001011011 (five 1s)

Even 00101101 (four 1s) 00101101 (four 1s)

c. Data bits

Data bits determine how many bits there are in a singular frame without parity and
without the start and stop bits. Usually, this value is 8.

d. Stop bit

Stop bits signal the end of a data frame in serial communication. They help
differentiate one packet from the next by marking the frame's start with a "low" logic
level (start bit) and its end with a "high" logic level (stop bit). The change in logic
levels indicates the beginning and end of a frame. Typically, 1 stop bit is used in serial
communications.

3. Register types

Register types are determined by their address within the register map. This is denoted as
the Modicon notation.

Coil = 00001 to 09999

Discrete input = 10001 to 19999

Input register = 30001 to 39999

Holding register = 40001 to 49999

Holding registers are the most common if you are looking to read values from the server.

Modbus Troubleshooting Guide 36

4. Modbus address of the Modbus device

Modbus addresses can range from 0 to 65,535 and should be listed on your Modbus
device documentation. The address must be entered in the fourth parameter of the
ModbusClient() instruction.

Modbus Troubleshooting Guide 37

Appendix E. Modbus setup flowchart
Set up and verify power using Power considerations for

data logger and Modbus device (p. 4)

↓
Set up or verify your modbus server

↓
Data logger is server ← Data logger

function → Data logger is client

↓ ↓
See ModbusServer()

parameter details (p. 5).
Verify correct CRBasic
parameters in the
ModBusServer()

instruction

See Modbus client
credentials checklist for
third-party Modbus
server device (p. 8)

|__|

↓
Modbus RTU ← Modbus

communications →
Modbus TCP

↓ ↓
Set up and verify wiring
using RS-232, RS-485,
and Ethernet wiring (p.

1)

↓

↓ ↓

Modbus Troubleshooting Guide 38

Configure the serial
port using Setting up
the communication
port for Modbus

communications (p. 10)

Verify IP
communication

setup/wiring using RS-
232, RS-485, and

Ethernet wiring (p. 1)

↓ ↓
See ModbusClient()

parameter details (p. 11)
for ModbusClient help
and CR1000X example

program for
ModbusClient() over
serial (Modbus RTU) (p.
33) for example code

See ModbusClient()
parameter details (p. 11)
for ModbusClient help
and CR1000X example

program for
ModbusClient() over
TCP/IP (Modbus TCP)
(p. 30) for example

code

↓ ↓
Zero ← Result

code → Non-Zero Zero ← Result
code → Non-Zero

↓ ↓ ↓ ↓

Communication
successful

See Result code
descriptions (p. 16) for
more result code
information

Communication
successful

See Result code
descriptions (p. 16) for
more information

↓ ↓

Modbus Troubleshooting Guide 39

See Watch Modbus
RTU traffic from the
data logger terminal
mode (p. 17) for further

troubleshooting

See Watch Modbus
TCP traffic from the
data logger terminal
mode (p. 22) and
Troubleshooting IP
connectivity for
Modbus TCP

communications (p. 27)
for further

troubleshooting
|__|

↓
Zero ← Result

code → Non-Zero

↓ ↓
Communication
successful

Contact
technical
support

Modbus Troubleshooting Guide 40

Australia
Location:
Phone:
Email:
Website:

Garbutt, QLD Australia
61.7.4401.7700
info@campbellsci.com.au
www.campbellsci.com.au

Brazil
Location:
Phone:
Email:
Website:

São Paulo, SP Brazil
11.3732.3399
vendas@campbellsci.com.br
www.campbellsci.com.br

Canada
Location:
Phone:
Email:
Website:

Edmonton, AB Canada
780.454.2505
dataloggers@campbellsci.ca
www.campbellsci.ca

China
Location:
Phone:
Email:
Website:

Beijing, P. R. China
86.10.6561.0080
info@campbellsci.com.cn
www.campbellsci.com.cn

Costa Rica
Location:
Phone:
Email:
Website:

San Pedro, Costa Rica
506.2280.1564
info@campbellsci.cc
www.campbellsci.cc

France
Location:
Phone:
Email:
Website:

Montrouge, France
0033.0.1.56.45.15.20
info@campbellsci.fr
www.campbellsci.fr

Germany
Location:
Phone:
Email:
Website:

Bremen, Germany
49.0.421.460974.0
info@campbellsci.de
www.campbellsci.de

India
Location:
Phone:
Email:
Website:

New Delhi, DL India
91.11.46500481.482
info@campbellsci.in
www.campbellsci.in

Japan
Location:
Phone:
Email:
Website:

Kawagishi, Toda City, Japan
048.400.5001
jp-info@campbellsci.com
www.campbellsci.co.jp

South Africa
Location:
Phone:
Email:
Website:

Stellenbosch, South Africa
27.21.8809960
sales@campbellsci.co.za
www.campbellsci.co.za

Spain
Location:
Phone:
Email:
Website:

Barcelona, Spain
34.93.2323938
info@campbellsci.es
www.campbellsci.es

Thailand
Location:
Phone:
Email:
Website:

Bangkok, Thailand
66.2.719.3399
info@campbellsci.asia
www.campbellsci.asia

UK
Location:
Phone:
Email:
Website:

Shepshed, Loughborough, UK
44.0.1509.601141
sales@campbellsci.co.uk
www.campbellsci.co.uk

USA
Location:
Phone:
Email:
Website:

Logan, UT USA
435.227.9120
info@campbellsci.com
www.campbellsci.com

Campbell Scientific Regional Offices

mailto:info@campbellsci.com.au
http://www.campbellsci.com.au/
mailto:vendas@campbellsci.com.br
http://www.campbellsci.com.br/
mailto:dataloggers@campbellsci.ca
http://www.campbellsci.ca/
mailto:info@campbellsci.com.cn
http://www.campbellsci.com.cn/
mailto:info@campbellsci.cc
http://www.campbellsci.cc/
mailto:info@campbellsci.fr
http://www.campbellsci.fr/
mailto:info@campbellsci.de
http://www.campbellsci.de/
mailto:info@campbellsci.in
http://www.campbellsci.in/
mailto:jp-info@campbellsci.com
https://campbellsci.co.jp/
mailto:sales@campbellsci.co.za
http://www.campbellsci.co.za/
mailto:info@campbellsci.es
http://www.campbellsci.es/
mailto:info@campbellsci.asia
http://www.campbellsci.asia/
mailto:sales@campbellsci.co.uk
http://www.campbellsci.co.uk/
mailto:info@campbellsci.com
http://www.campbellsci.com/

	1. RS-232, RS-485, and Ethernet wiring
	1.1 Connecting via RS-232
	1.2 Connecting via RS-485
	1.2.1 Half-duplex mode
	1.2.2 Full-duplex server configuration
	1.2.3 Full-duplex client configuration

	1.3 Connecting via Ethernet

	2. Power considerations for data logger and Modbus device
	3. Choosing the correct Modbus instruction: ModbusServer() or ModbusClient()
	4. ModbusServer() parameter details
	5. Modbus client troubleshooting
	5.1 Modbus client credentials checklist for third-party Modbus server device
	5.2 Setting up the communication port for Modbus communications
	5.3 ModbusClient() parameter details
	5.4 Result code descriptions

	6. Watch Modbus RTU traffic from the data logger terminal mode
	7. Watch Modbus TCP traffic from the data logger terminal mode
	8. Troubleshooting IP connectivity for Modbus TCP communications
	Appendix A. CR1000X example program for ModbusClient() over TCP/IP (Modbus TCP)
	Appendix B. CR1000X example programs for ModbusServer()
	Appendix C. CR1000X example program for ModbusClient() over serial (Modbus RTU)
	Appendix D. Serial formatting
	Appendix E. Modbus setup flowchart

