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Abstract

This paper presents a photometric stereo method that
is purely pixelwise and handles general isotropic surfaces
in a stable manner. Following the recently proposed sum-
of-lobes representation of the isotropic reflectance function,
we constructed a constrained bivariate regression problem
where the regression function is approximated by smooth,
bivariate Bernstein polynomials. The unknown normal vec-
tor was separated from the unknown reflectance function
by considering the inverse representation of the image for-
mation process, and then we could accurately compute
the unknown surface normals by solving a simple and ef-
ficient quadratic programming problem. Extensive evalu-
ations that showed the state-of-the-art performance using
both synthetic and real-world images were performed.

1. Introduction
Photometric stereo estimates the surface normals of an

object from appearance variations under different lighting
conditions. Since Woodham [20] first introduced the photo-
metric stereo for Lambertian scenes, the extension to real-
world objects which exhibit diverse appearances beyond
Lambertian model has drawn significant interest.

Traditionally, certain parametric reflectance models are
assumed to inversely solve the photometric stereo problem.
One of the most popular classes assumes a basic Lambertian
model but augmented with outlier detection for handling all
non-Lambertian regions of the scene [21, 11]. This strategy
is numerically stable and relatively robust to shadows and
image noises, but complex reflections such as rough specu-
larities can be highly disruptive. In contrast to the first class,
a second class of methods treats non-Lambertian reflections
as inliers using the nonlinear bidirectional reflectance dis-
tribution function (BRDF) [9, 16]. While these methods are
more capable of handling a wide variety of objects includ-
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ing rough surfaces, they may suffer from numerical insta-
bilities derived from the complex nonlinear optimization.

Instead of explicitly modeling the parametric form of
reflectance, the monotonicity property of reflectance has
been recently integrated in the photometric stereo prob-
lem [2, 10, 17]. Chandraker and Ramamoorthi [6] show
that an isotropic BRDF consists of a sum of lobes whose
contribution to the reflected intensity decreases monotoni-
cally as the surface normal deviates away from the direction
where the reflectance lobe is concentrated (i.e., referred to
as a preferred direction). Following this remark, the surface
normal has been recovered utilizing the monotonicity of the
reflectance function under the assumption that the number
of lobes is one and its preferred directions are known (e.g.,
the lighting direction in [10] and half vector in [2, 17]).
While effective, these methods are highly disruptive when
the assumption on the preferred direction is incorrect or
the reflectance function is composed of two or more lobes.
Furthermore, to our knowledge, simultaneous estimation of
both azimuth and elevation angles has never been achieved
by enforcing the monotonicity of a reflectance function that
has a preferred direction that is different from the lighting
vector (note that [2, 17] assume that the azimuth angle of
the surface normal is known).

This paper presents a photometric stereo algorithm for
accurate estimation of surface normals of a general isotropic
scene by enforcing the monotonicity of a reflectance func-
tion with an unknown lobe number and preferred directions.
For this purpose, the bivariate reflectance model is devel-
oped in Section 2 where pixelwise appearances are well
approximated by a bivariate monotonic (and therefore in-
vertible) smooth function of the dot products between the
surface normal and the lighting direction, and between the
lighting and viewing directions. We may then consider
the inverse representation of the image formation process,
where the unknown normal vector is separated from the un-
known monotonic inverse reflectance function. By parame-
terizing the latter using the Bernstein polynomials [13], we
obtain a set of constrained linear equations in both the sur-
face normals and reflectance parameters, leading to a sim-



ple, quadratic programming problem.
The proposed framework benefits from an efficient pix-

elwise optimization that is easily amenable to parallel pro-
cessing and does not require typical smoothness constraints
for both object structure and reflectance, which could dis-
rupt the recovery of fine details.

2. Photometric stereo using constrained bivari-
ate regression

In this section, we formulate the photometric stereo as
a constrained bivariate regression problem. Henceforth we
rely on the following assumptions:
(1) The relative position between the camera and the object
is fixed across all images.
(2) The object is illuminated by a point light source at infin-
ity from varying and known directions.
(3) The camera view is orthographic, and the radiometric
response function is linear.

2.1. Problem Statement

Diverse appearances of real-world objects can be en-
coded by a BRDF (ρ) that relates the observed intensity I at
a given point on the object to the associated surface normal
n ∈ R3, the incoming lighting direction l ∈ R3, and the
outgoing viewing direction v ∈ R3 via

I = ρ(n, l,v)max (nT l, 0), (1)

where max (nT l, 0) accounts for attached shadows. There
is a problem for photometric stereo in recovering the sur-
face normaln of a scene by inversely solving Eq. (1) from a
collection of m observations under different lighting condi-
tions. Note that except for uncalibrated photometric stereo
problems such as [8], l and v are usually known.

Recently Chandraker and Ramamoorthi [6] have pre-
sented a semiparametric model of an isotropic BRDF that
is represented as a sum of K different functions giving

ρ =

K∑
k=1

ρk(n
Tαk). (2)

Here ρk are (unknown) nonlinear functions, and αk (i.e.,
||αk|| = 1) are called preferred directions, along which
ρk are concentrated. It is known that physically valid re-
flectance functions satisfy the following requirements.
(L1) Monotonicity: ρk′ > 0.
(L2) Nonnegativity: ρk ≥ 0.
(L3) Passing thorough the origin: ρk(0) = 0.

Chandraker and Ramamoorthi [6] have shown that in-
versely solving Eq. (2) under known surface normals gives
good estimates of a wide variety of isotropic BRDFs with-
out suffering from the curse of dimensionality. Unfortu-
nately, however, solving Eq. (2) directly is prohibitively dif-

ficult in the context of the photometric stereo problem be-
cause of the numerous unknown parameters, some of which
are coincident in the same term (i.e.,n,αk, ρk). There-
fore, most of the conventional photometric stereo algo-
rithms have assumed that the dominant preferred direction
of the reflectance function is unique and known [10, 2, 17].

Instead of this approach, we only assume that the pre-
ferred direction (αk) of each function (ρk) is lying on the
plane spanned by the lighting and viewing directions as

αk =
pkl+ qkv

||pkl+ qkv||
, (3)

where pk and qk are nonnegative unknown values (i.e.,
pk ≥ 0 and qk ≥ 0). The degree of freedom of αk is
actually 1 because ||αk|| = 1. 1 Then, this assumption
provides us following important result.

Theorem: Suppose there is no shadow at a surface
point (i.e., ∀i nT li, lTi v ≥ 0 and Ii ≥ 0, where i is the
index of the light) and ρ(n, l,v) in Eq. (1) has the form
of Eq. (2), whose parameters satisfy the requirements of
a physically valid BRDF (L1)–(L3) and Eq. (3). Then,
it is guaranteed that there exists at least one continuous
bivariate function f(x, y) ∀x, y ∈ [0, 1], which satisfies
f ≥ 0, ∂f/∂x > 0, ∂f/∂y ≤ 0 and ∀i Ii = f(nT li, l

T
i v).

Proof : From Eq. (3), nTαk is transformed into

nTαk =
pkn

T l+ qkn
Tv√

p2k + q2k + 2pkqklTv
. (4)

Here we used ||l|| = ||v|| = 1. Eq. (4) illustrates that
nTαk is non-decreasing for nT l with fixed lTv and
non-increasing for lTv with fixed nT l since p, q are
non-negative constant values and nTv is constant over
different lightings. From (L1), it is guaranteed that each
ρk(n

Tαk) is also non-decreasing/non-increasing for
nT l and lTv when either of them is fixed. Integrating
these results into Eq. (1) and Eq. (2), it is proved that
I is monotonic increasing for nT l with fixed lTv and
non-increasing for lTv with fixed nT l, which implies
we can always define continuous functions f(x, y)
which satisfy f ≥ 0, ∂f/∂x > 0, ∂f/∂y ≤ 0
and ∀i Ii = f(nT li, l

T
i v) since Ii ≥ 0 and

∀i 0 ≤ nT li, lTi v ≤ 1.

We illustrate this theorem in Fig. 1-(a). We note that
assuming that f(x, y) is always passing through the y-axis
(i.e., f(0, y) = 0) does not limit any kind of isotropic
BRDF represented by Eq. (1) because I = nT lρ.

Following this theorem, we formulate the photometric
stereo as a constrained bivariate regression problem whose

1Note that this assumption does not violate most existing BRDF models
such as [7, 19, 15, 12, 3].



𝑥 

𝑧 

𝑦 𝑦 

𝑥 

𝑧 

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 = {𝒏𝑇𝒍𝑖 , 𝒍𝑖
𝑇𝒗, 𝐼𝑖} 

(a) (b) 

𝑧 = 𝑓(𝑥, 𝑦) 𝑥 = 𝑔(𝑦, 𝑧) 

1.0 1.0 1.0 1.0 

0.0 0.0 

Figure 1. (a) Collections of {x, y, z} = {nT l, lTv, I} are lying
on a continuous function of z = f(x, y) which satisfies ∂f/∂x >
0, ∂f/∂y ≤ 0 and f(0, y) = 0. (b) 3-d points lying on f are also
lying on a inverse function (x = g(y, z)).

goal is to recover an unknown surface normal n and a con-
tinuous bivariate function f from a collection of lighting
directions li and associated appearances Ii (i = 1, . . . ,m),
which satisfy the following equations and constraints:

Ii = f(nT li, l
T
i v) i = 1, . . . ,m. (5)

(L4) Monotonicity (x): ∂f/∂x > 0.
(L5) Monotonicity (y): ∂f/∂y ≤ 0.
(L6) Nonnegativity: f ≥ 0.
(L7) Passing through y-axis: f(0, y) = 0.

We call Eq. (5) the forward bivariate reflectance model.
The major benefit of this formulation is that we do not need
to explicitly approximate the number of lobes K and their
preferred directions αk. However, there is a critical issue,
namely the coincidence of unknown parameters n and f
in the same term. We overcome this difficulty by a conve-
nient, inverse representation of the imaging model applied
through a constrained bivariate regression framework.

2.2. Inverse Bivariate Reflectance Model

Strict monotonicity of f(x, y) (L4) guarantees the
unique existence of the function giving x = g(y, f(x, y)) =
g(y, z), which obeys the following requirements.
(L8) Monotonicity (y): ∂g/∂y ≥ 0.
(L9) Monotonicity (z): ∂g/∂z > 0.
(L10) Nonnegativity: g ≥ 0.
(L11) Passing through the y-axis: g(y, 0) = 0.
The proof, which has been omitted for brevity, is obvious
by seeing Fig. 1-(b). From the definition, each 3-D point
of {x, y, z} = {nT li, lTi v, Ii}(i = 1, . . . ,m) lying on f is
also lying on g as follows.

nT li = g(lTi v, Ii) i = 1, . . . ,m. (6)

In contradiction to Eq. (5), we call Eq. (6) the inverse bivari-
ate reflectance model. Our goal is now updated to recover
the surface normal n and a continuous bivariate function g

with some shape restrictions (L8)–(L11). The fundamental
advantage of Eq. (6) is that unknown variables of n and g
are separated, which contributes to simplifying the problem.

Constraints on g limit the solution space of Eq. (6), but
there are still multiple feasible solutions of a pair of n and g
because {lTi v, Ii} are sparsely distributed on the valid range
of {y, z}. To reduce the inherent ambiguity of the prob-
lem, we further assume a parametric model of the inverse
bivariate reflectance function g(y, z). Given that the left-
hand side of Eq. (6) is linear in the unknown normal vector
n, for computational simplicity we would like to impose a
similar linearity on the right-hand side in our parameterized
representation of g(lTv, I) (we have omitted subscripts for
simplicity). For this purpose, we then choose to express
g(lTv, I) as a summation over p known nonlinear basis
functions gk(lTv, I) weighted by an unknown coefficient
vector β , [β1, . . . , βp]

T , leading to the representation

g(lTv, I) =

p∑
k=1

βkgk(l
Tv, I). (7)

While nonlinear in lTv and I , g(lTv, I) is clearly linear
in β. We need to choose gk carefully because estimating
a multivariate regression function subject to shape restric-
tions with compact support is challenging and usually very
time-consuming [18]. Here we adopt the bivariate Bern-
stein polynomials [13], where the shape-restricted regres-
sion function estimation is shown to be the solution of a
quadratic programming problem [5, 18], making it compu-
tationally attractive. Furthermore, the Bernstein polynomi-
als approximation naturally selects smooth functions with
little computational effort, unlike other nonparametric re-
gression functions (e.g., smoothing spline [4]), which im-
plicitly enforces the smoothness of BRDF as in [2].

Bivariate Bernstein polynomials [13] are composed of
multiple basis functions of the form

bk1,k2(x1, x2, N1, N2) = bk1(x1, N1)bk2(x2, N2),

bki(xi, Ni) =

(
Ni
ki

)
xki(1− xi)Ni−ki (i = 1, 2),

(8)

where 0 ≤ xi ≤ 1 and Ni is the order of the polynomial as
for xi, which will be chosen as a function of the sample size
m (e.g., Ni = o(mγ

i ) with γi > 0 suitably chosen via the
popular V-fold cross-validation method as shown in [18]).
We transform Ii(i = 1, . . . ,m) to lie in the unit [0, 1] via
a simple linear equation as Ii ← Ii/max (I). Note that
lTi v naturally lies in [0, 1] as we only consider the case
v = [0, 0, 1]T and lz > 0. Then, the bivariate Bernstein
polynomials approximation of g is represented as

x = g(y, z) = βT bNy,Nz (y, z)

=

Ny∑
ky=0

Nz∑
kz=0

βky,kzbky,kz (y, z,Ny, Nz),
(9)



where bNy,Nz , [b0,0, . . . , bNy,Nz ]
T ∈ R(Ny+1)(Nz+1)×1

and β , [β0,0, . . . , βNy,Nz ]
T ∈ R(Ny+1)(Nz+1)×1.

Unlike the B-splines procedure (which may require
quadratic constraints on the coefficients) [4], shape re-
strictions (e.g., monotonicity, nonnegativity) on Eq. (9)
are easily encoded via linear constraints, that is Aβ ≥ 0
and Cβ = 0, where A,C are shape restriction matrices.
Following [18], the shape restriction matrices required for
our problem are defined as follows.

(1) Monotonicity: ∂g/∂y ≥ 0 and ∂g/∂z ≥ 0. (L8), (L9)
The first-order partial derivatives of g with respect to y
in Eq. (9) can be represented as

∂g(y, z)/∂y (10)

= Ny

Nz∑
kz=0

Ny−1∑
ky=0

(βky+1,kz − βky,kz )bky,kz (y, z,Ny − 1, Nz).

From the definition in Eq. (8), it is easy to show that
all Bernstein basis polynomials are nonnegative with
respect to 0 ≤ y, z ≤ 1. Hence, the non-decreasing
constraint (i.e., ∂g/∂y ≥ 0) is simply achieved by
enforcing βky+1,kz ≥ βky,kz . The non-decreasing
constraint with respect to z (i.e., ∂g/∂z ≥ 0) is
also achieved in the same manner. The restriction
matrix for linear constraint Amonoβ ≥ 0 is repre-
sented as Amono = [ATyA

T
z ]
T , which is composed

of submatrices Ay ∈ RNy(Nz+1)×(Ny+1)(Nz+1) and
Az ∈ RNz(Ny+1)×(Ny+1)(Nz+1), where Ar ensures the
monotonicity of the function with respect to r. 2 Note that
the strict monotonicity constraint ∂g/∂z > 0 was eased to
∂g/∂z ≥ 0 for computational simplicity.

(2) Nonnegativity: g ≥ 0. (L10)
The nonnegativity of g is guaranteed when ∀i βi ≥ 0.
Hence, the restriction matrix for a linear constraint
Anonnegβ ≥ 0 is as Anonneg , diag([1, . . . , 1]) ∈
R(Ny+1)(Nz+1)×(Ny+1)(Nz+1).

(3) Passing through the y-axis: g(y, 0) = 0. (L11)
From the definition in Eq. (8), bky,kz (y, 0) = 0 for all kz 6=
0. Therefore g(y, 0) =

∑Ny

ky=0 βky,0bky,0(y, 0, Ny, Nz)
becomes zero for all y when ∀ky βky,0 = 0.
This constraint is encoded via a linear constraint
Cβ = 0, where C ∈ R(Ny+1)(Nz+1)×(Ny+1)(Nz+1) ,
diag([1, 0, . . . , 1, 0, . . . , 1, . . .]) with Nz of 0 between 1.

2.3. Solution Method

By substituting Eq. (9) into the inverse bivariate re-
flectance model, Eq. (6) becomes

nT li = β
T bNy,Nz

(lTi v, Ii) i = 1, . . . ,m, (11)

2The concrete form of the shape restriction matrix is included in the
supplementary material.

where the coefficients of Bernstein polynomials (β) are re-
stricted via the following equation:

Aβ =

[
Amono
Anonneg

]
β ≥ 0, Cβ = 0. (12)

Collecting variations of observations at the same pixel
under different lighting directions, Eq. (11) can be merged
into following linear problem:

LTn = BTβ. (13)

Here, B , [bNy,Nz
(lT1 v, I1), . . . , bNy,Nz

(lTmv, Im)] and
L , [l1, . . . , lm]. By merging unknown variables (n,β),
this problem is transformed into

Px = [L −B]Tx = 0, (14)

where x , [nx, ny, nz, β0,0, . . . , βNy,Nz ]
T and nx, ny, nz

are the three elements of the surface normal. Without loss
of generality, we may avoid the degenerate x = 0 solu-
tion to Eq. (14) by constraining

∑
i xi = 1, which implies

cTx = 1 where c = [1, . . . , 1]T .
Given the appearance variations (I1, I2, . . . , Im) under

different known lighting conditions (l1, l2, . . . , lm), the op-
timal surface normal (n) and model parameters (β) are re-
covered by solving the constrained linear problem:

min
x
||Px||22, s.t. Ãx ≥ 0 and C̃x = 0, (15)

where Ã , [0 A] and C̃ ,

[
cT

0 C

]
. Note that Eq. (15) can

be effectively solved by the general quadratic programming.

3. Handling Retroreflective Materials
If the reflectance of a target object obeys Eq. (2), our

method reasonably recovers the surface normal of the ob-
ject by solving Eq. (15). However, one limitation of our
method is that this assumption is not satisfied in the pres-
ence of retroreflections that are often observed on rough
surfaces because Eq. (2) does not have the ability to rep-
resent this kind of reflection. In the presence of retrore-
flections, our surface normal estimation fails because of the
violation of (L5) by the behavior of retroreflections in that
the power of reflections increases as lTv increases. While
it may limit available materials, fortunately we have found
that our method practically handles retroreflective materi-
als by simply reversing the direction of the monotonicity
constraint on lTv in Eq. (15) (i.e., use (L8)’ ∂g/∂y ≤ 0
instead of (L8)) because the retroreflections do not affect
the monotonicity for nT l while they unify the direction of
the monotonicity for lTv over the BRDF space. The prob-
lem of course is that we do not know whether the mate-
rial is retroreflective or not. To overcome this difficulty,



we present a practical approach for handling both non- and
retroreflective materials. The important observation is that
when we incorrectly constrain the problem, the regression
usually fails. Therefore, after we have the regression out-
puts under both constraints, we can judge which constraint
was optimal by examining regression errors.

However, we have empirically found that comparing re-
gression errors in Eq. (15) does not work since the flexible
Bernstein polynomials are generally well fitted to observa-
tions even though the constraint was not correct; instead, we
compute the following linear regression error E for choos-
ing the optimal solution:

ã = arg min
a

m∑
i=1

‖n̂T li − aIi‖22, (16)

E =

m∑
i=1

‖n̂T li − ãIi‖22. (17)

Here, n̂ is a recovered surface normal by solving Eq. (15)
under the monotonicity constraint for lTv in either of two
directions. We simply choose the direction for which E is
smaller. This strategy is very simple but very efficient as we
will show in Section 4.

4. Experimental Results
In this section, we evaluate our method on synthetic and

real image data. All experiments were performed on an In-
tel Core i7-2640M (2.80GHz, single thread) machine with
8GB RAM and were implemented in MATLAB. For the
quantitative evaluation, we generated 32-bit HDR images of
a sphere (256×256) with foreground masks under different
BRDF settings: (A) common physical or phenomenologi-
cal BRDF (Cook–Torrance [7], Ward [19] , Lafortune [12],
Oren–Nayar [15] and Ashikhmin–Shirley [3]) and (B) the
measured MERL BRDF database [14]. Lighting directions
were randomly selected from a hemisphere with the ob-
ject placed at the center. Additionally, for the third dataset,
denoted (C), we used real images for qualitatively evalu-
ating our method in practical situations. For each dataset,
shadows were removed via simple thresholding as in other
works such as [16] (Thresholds for shadow removal were
fixed over algorithms but varied over objects manually). Be-
cause ground truth surface normals are provided in datasets
(A) and (B), we quantitatively evaluated our method by the
angular error between the recovered normal map and the
ground truth when using these datasets.

4.1. Evaluation with Synthesized BRDF

We evaluated the performance using the synthesized im-
ages in dataset (A) generated under 100 different light-
ings using five common BRDFs3. Here we compared

3Details of BRDF models are described in the supplementary material.
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Figure 3. Experimental results of dataset (A) with a varying num-
ber of images. For a fair evaluation, we display the average num-
ber of nonshadowed pixels that join our algorithm on the x-axis
instead of the number of images.
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Figure 5. Evaluation of computational time. We illustrate the per-
pixel computational time for each combination of the number of
Bernstein basis functions and lightings.

our method with the standard Lambertian least-squares-
regression-based approach [20] (LS) and a recent Lamber-
tian sparse-regression-based approach implemented with
the sparse Bayesian learning [11] (SBL) (λ is fixed by
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Figure 2. Experimental results of dataset (A) with five different BRDFs with varying frequencies in observations.

10−6). Our method was also compared with a recent para-
metric non-Lambertian photometric stereo method with the
biquadratic reflectance model [16] (BQ). In this experiment,
we fixed (Ny , Nz) in Eq. (11) by (1, 5) to examine the ro-
bustness of our method against these parameters.
Evaluation with varying frequencies
We first evaluated our algorithm using observations with
varying frequency to present the flexibility of our model
in comparison with models used in previous works (e.g.,
BQ[16]) that only work for low-frequency reflectance val-
ues. Here high-frequency specularities were discarded by
using the nonshadowed pixels with intensities that were
ranked below the Tlow% (10 ≤ Tlow ≤ 100).

The result is illustrated in Fig. 2. Overall, we observed
that our method outperformed other algorithms for almost
all frequencies for the Lafortune, Ashikhmin–Shirley, and
Oren–Nayar models, and performed competitively with
SBL for the Cook–Torrance and Ward models. Interest-
ingly, because of our inverse reflectance model and the sim-
ple lTv constraint selection strategy, our method works well
for the Oren–Nayar model which exhibits strong retroreflec-
tive reflections, and it also works well when all the frequen-
cies are included unlike other methods4. Unfortunately,
however, our method did not work when the number of im-
ages was very small, as will be discussed below.
Valid number of input images
We also evaluated our algorithm using a varying number of
images to find the valid number required for effective recov-
ery. The results are displayed in Fig. 3. We observed that
the minimum number of images required to make the algo-

4The result of BQ is similar as LS since the optimization procedure of
BQ is nonlinear and strongly affected by the initial estimation by LS.

rithm work was around 20 and more than 60 were required
for stable reconstruction because our method could suffer
from the over-fitting when the number of the input images
was very small.
Comparison with another monotonicity-based approach
In this section, we compared our method with the recent
elevation-angle estimation algorithm [17] assuming that the
dominant reflectance lobe was pointing at the half-vector
direction. We generated a ground truth azimuth angle
map and azimuth angle maps with some radian errors be-
cause [17] requires an azimuth angle map as input whereas
our method simultaneously recovers all elements in the nor-
mal. The radian errors varied from 0.05 to 0.3 were added
to the ground truth azimuth angle values, where the sign of
the error was chosen randomly.

The results are illustrated in Fig. 4. We observed that
when true azimuth angles were given, [17] outperformed
our method in the Cook–Torrance and Ward datasets. How-
ever, as the amount of errors increased, the differences be-
came smaller and finally our method outperformed [17].
As we expected, [17] did not work for the Lafortune and
Ashikhmin–Shirley models because these models violate
their assumption.
Evaluation of computational time
Here, we examined the computational time required for our
computation. We tried various combinations of Ny and
Nz and m in Eq. (9) and solved our optimization prob-
lem Eq. (11) using the lsqlin function in MATLAB.

The evaluation results are illustrated in Fig. 5. Here we
present a per-pixel computational time to solve one opti-
mization problem. Therefore, the actual computational time
was twice that in the figure as we applied our algorithm
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Figure 6. Comparison between different methods with dataset (B). Results are aligned in ascending order of the mean angular error of our
method with the retroreflection detection algorithm.

twice to distinguish retroreflective materials. We observed
that the computational complexity depends on the number
of basis functions rather than the number of lightings.

4.2. Evaluation with Measured BRDF

Here we evaluated the performance of our method to
the dataset (B). We generated images under 300 different
lightings for 100 different materials from the MERL BRDF
database [14]. In this experiment, our method was also
compared with LS [20], SBL [11], and BQ [16]. LS,
SBL, and our method used all the frequencies in observa-
tions (i.e., Tlow = 100) whereas only BQ was performed
with both Tlow = 25 and Tlow = 100 as that model was
originally designed to represent the low-frequency observa-
tions. In this experiment, we fixed Ny = 3 and Nz = 5
and performed our method with/without the retroreflection
detection algorithm described in Section 3 to verify the ef-
fectiveness of this process.

The results are illustrated in Fig. 6. We observed that
our method with our efficient retroreflection detection out-
performed other algorithms for most of the materials. BQ
(Tlow = 25) is more effective for some materials, but we
emphasize that our method was capable of handling all fre-
quencies in observations because of our flexible reflectance
model, while BQ (Tlow = 100) does not work for most
materials. We also observed that the angular errors of
our method without retroreflection detection were relatively
larger than that of our method with retroreflection detection
for materials exhibiting strong retroreflections (e.g., MERL
fabrics), which indicated that our retroreflection detection
algorithm worked quite well for those materials. Finally, the

average angular errors over 100 materials were 12.5 (LS),
6.2 (SBL), 13.1 (BQ, Tlow = 100), 1.7 (BQ, Tlow = 25),
2.4 (our method without retroreflection detection) and 1.2
(our method with retroreflection detection), respectively.

4.3. Qualitative Evaluation with Real Images

We also evaluated our algorithm using real images: (1)
100 images of two-face (this dataset is from [21]), (2) 100
images of doraemon, and (3) 44 images of fatguy (these two
datasets are from [11]). In this experiment, we compared
our algorithm with LS [20], SBL [11] (λwas fixed by 10−1)
and BQ [16] (for Tlow = 25 and 100). Note that our method
used a retro-reflective detection scheme and we fixed (Ny ,
Nz) by (1, 5). The threshold of the shadow removal for each
dataset was chosen manually but fixed over algorithms.

The experimental results are illustrated in Fig. 7. Here
we show both recovered surface normal maps and surface
meshes reconstructed by a poisson solver [1] with a fixed
scale. We observe that our method succeeded to estimate
smoother and more reasonable normal maps and surface
meshes. We also observe that BQ (Tlow = 25) worked
poor for those datasets since shadows could not be com-
pletely removed by a simple thresholding therefore the low-
frequency component in the observation was not reliable.
In contrast to that, our method performed well since our
method could account all observations without discarding
the informative high-frequency component.

5. Conclusion
In this paper, we have proposed the constrained bivari-

ate regression-based photometric stereo, which worked for
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Figure 7. Experimental results using real data (two-face, doraemon and fatguy). We illustrate (a) example images of target objects, and
normal maps recovered by (b) LS, (d) SBL, (f) BQ (Tlow = 100), (h) BQ (Tlow = 25) and (j) Ours (with a retro-reflective detection). We
also show surface meshes generated from normal maps in (c), (e), (g), (i) and (k).

various kinds of isotropic surfaces by exploiting various
conditions shared among physically valid BRDFs. Our de-
tailed experimental results have shown the state-of-the-art
performance of our method for both synthetic and real data.
The current limitation is that the proposed method enforces
a global monotonic constraint with regard to lTv, which
might not be true for surfaces with both the retro and spec-
ular reflections though they are rarely observed in the real
world. Another limitation is that we assumed that shadows
were discarded from images in advance, and this might be
impractical in real scenes. To ease this condition, we are
interested in incorporating the data cleansing scheme in a
similar manner as [11].
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