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Abstract. We introduce the notion of “δ-complete decision procedures”
for solving SMT problems over the real numbers, with the aim of handling
a wide range of nonlinear functions including transcendental functions
and solutions of Lipschitz-continuous ODEs. Given an SMT problem
ϕ and a positive rational number δ, a δ-complete decision procedure
determines either that ϕ is unsatisfiable, or that the “δ-weakening” of
ϕ is satisfiable. Here, the δ-weakening of ϕ is a variant of ϕ that allows
δ-bounded numerical perturbations on ϕ. We establish the existence and
complexity of δ-complete decision procedures for bounded SMT over reals
with functions mentioned above. We propose to use δ-completeness as
an ideal requirement for numerically-driven decision procedures. As a
concrete example, we formally analyze the DPLL⟨ICP⟩ framework, which
integrates Interval Constraint Propagation in DPLL(T), and establish
necessary and sufficient conditions for its δ-completeness. We discuss
practical applications of δ-complete decision procedures for correctness-
critical applications including formal verification and theorem proving.

1 Introduction

Given a first-order signature L and a structure M, the Satisfiability Modulo The-
ories (SMT) problem asks whether a quantifier-free L-formula is satisfiable over
M, or equivalently, whether an existential L-sentence is true in M. Solvers for
SMT problems have become the key enabling technology in formal verification
and related areas. SMT problems over the real numbers are of particular inter-
est, because of their importance in verification and design of hybrid systems,
as well as in theorem proving. While efficient algorithms [10] exist for decid-
ing SMT problems with only linear real arithmetic, practical problems normally
contain nonlinear polynomials, transcendental functions, and differential equa-
tions. Solving formulas with these functions is inherently intractable. Decision
algorithms [9] for formulas with nonlinear polynomials have very high complex-
ity [6]. When the sine function is involved, the SMT problem is undecidable, and
only partial algorithms can be developed [2,1].
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Recently much attention has been given to developing practical solvers that
incorporate scalable numerical computations. Examples of numerical algorithms
that have been exploited include optimization algorithms [4,28], interval-based
algorithms [13,11,12,17], Bernstein polynomials [26], and linearization algorithms
[14]. These solvers have shown promising results on various nonlinear bench-
marks in terms of scalability.

However, for correctness-critical problems, there is always the concern that
numerical errors can result in incorrect answers from numerically-driven solvers.
For example, safety problems for hybrid systems can not be decided by numeri-
cal methods [29]. The problem is compounded by, for instance, the difficulty in
understanding the effect of floating-point arithmetic in place of exact computa-
tion. There are two common ways of addressing these concerns. One is to use
exact versions of the numerical algorithms, replacing floating-point operations
by exact symbolic arithmetic [26]; the other is to use post-processing (validation)
procedures to ensure that only correct results are returned. Both options reduce
the full power of numerical algorithms and are usually hard to implement as
well. For instance, in the Flyspeck project [19] for the formal proof of the Kepler
conjecture, validating the numerical procedures used in the original proof turns
out to be the hardest computational part (and unfinished yet). In general, there
has been no framework for understanding the actual performance guarantees of
numerical algorithms in the context of decision problems.

In this paper we aim to fill this gap by formally establishing the applicability
of numerical algorithms in decision procedures, and the correctness guarantees
they can actually provide. We do this as follows.

First, we introduce “the δ-SMT problem” over the real numbers, to capture
what can in fact be correctly solved by numerically-driven procedures. Given an
SMT formula ϕ, and any positive rational number δ, the δ-SMT problem asks
for one of the following decisions:

– unsat: ϕ is unsatisfiable.
– δ-sat: The δ-weakening of ϕ is satisfiable.

Here, the δ-weakening of ϕ is defined as a numerical relaxation of the original
formula. For instance, the δ-weakening of x = 0 is |x| ≤ δ. Note that if a formula
is satisfiable, its δ-weakening is always satisfiable. Thus, when a formula is δ-sat,
either it is indeed satisfiable, or it is unsatisfiable but a δ-perturbation on its
numerical terms would make it satisfiable. The effect of this slight relaxation is
significant. In sharp contrast to the undecidability of SMT for any signature ex-
tending real arithmetic by sine, we show that the bounded δ-SMT problem for a
wide range of nonlinear functions is decidable. In fact, we show that the bounded
δ-SMT problem for the theory with exponentiation and trigonometric functions
is NP-complete, and PSPACE-complete for theories with Lipschitz-continuous
ODEs. We use techniques from computable analysis [31,5]. These results pro-
vide the theoretical basis for our analysis of numerically-driven procedures.

Next, if a decision algorithm can solve the δ-SMT problem correctly, we say
it is “δ-complete”. We propose to use δ-completeness as the ideal correctness re-
quirement on numerically-driven procedures, replacing the conventional notion
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of complete solvers (which can never be met in this context). This new notion
makes it worthwhile to formally analyze numerical methods for decision problems
and compare their strength, instead of viewing them as partial heuristics. As an
example, we study DPLL⟨ICP⟩, the integration of Interval Constraint Propaga-
tion (ICP) [20] in DPLL(T) [25]. It is a general solving framework for nonlinear
formulas and has shown promising results [13,17,12]. We obtain conditions that
are sufficient and necessary for the δ-completeness of DPLL⟨ICP⟩.

Further, we show the applicability of δ-complete procedures in correctness-
critical practical problems. In bounded model checking [7,8], using a δ-complete
solver we return one of the following answers: either a system is absolutely safe
up to some depth (unsat answers), or it would become unsafe under some δ-
bounded numerical perturbations (δ-sat answers). Since δ can be made very
small, in the latter case the algorithm is essentially detecting robustness problems
in the system: If a system would be unsafe under some small perturbations, it
can hardly be regarded as safe in practice. Similar guarantees can be given for
invariant validation and theorem proving. The conclusion is that, under suitable
interpretations, the answers of numerically-driven decision procedures can indeed
be relied on in correctness-critical applications, as long as they are δ-complete.

Related Work. Our goal is to provide a formal basis for the promising trend
of numerically-driven decision procedures [4,28,13,11,12,17,26,14]. Related at-
tempts can be seen in Ratschan’s work [30], in which he investigated the sta-
bility of first-order constraints under numerical perturbations. Our approach is,
instead, to take numerical perturbations as a given and study its implications in
practical applications. Results in this paper are related to our more theoretical
results [16] for arbitrarily-quantified sentences, where we do not analyze practical
procedures. A preliminary notion of δ-completeness was proposed by us earlier
in [17], in which only polynomials are considered.

The paper is organized as follows. In Section 2 and 3 we define the bounded
δ-SMT problem and establish its decidability and complexity. In Section 4 we
formally analyze DPLL⟨ICP⟩ and discuss applications in Section 5.

2 SMT with Type 2 Computable Functions

2.1 Basics of Computable Analysis

Real numbers can be encoded as infinite strings, and a computability theory of
real functions can be developed with oracle machines that perform operations
using oracles encoding real numbers. This is the approach developed in com-
putable analysis (Type 2 Computability) [31,23,5]. We briefly review results of
importance to us.

Throughout the paper || · || denotes || · ||∞ over Rn for various n.

Definition 2.1 (Names). A name of a ∈ R is any function γa : N → Q satisfy-
ing that for every i ∈ N, |γa(i)−a| < 2−i. For a ∈ Rn, γa(i) = ⟨γa1(i), ..., γan(i)⟩.
Thus the name of a real number is a sequence of rational numbers converging
to it. For a ∈ Rn, we write Γ (a) = {γ : γ is a name of a}.
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A real function f is computable if there is an oracle Turing machine that can
take any argument x of f as an oracle, and output the value of f(x) up to an
arbitrary precision.

Definition 2.2 (Computable Functions). We say f :⊆ Rn → R is com-
putable if there exists an oracle Turing machine Mf , outputting rational num-
bers, such that

∀x ∈ dom(f) ∀γx ∈ Γ (x) ∀i ∈ N |Mγx

f (i)− f(x)| < 2−i.

In the definition, i specifies the desired error bound on the output of Mf with
respect to f(x). For any x ∈ dom(f), Mf has access to an oracle encoding the
name γx of x, and output a 2−i-approximation of f(x). In other words, the
sequence Mγx

f (1),Mγx

f (2), ... is a name of f(x). A key property of this notion
of computability is that computable functions over the reals are continuous [31].
Moreover, over any compact set D ⊆ Rn, computable functions are uniformly
continuous with a computable modulus of continuity defined as follows.

Definition 2.3 (Uniform Modulus of Continuity). Let f :⊆ Rn → R be a
function and D ⊆ dom(f) a compact set. The function mf : N → N is called a
uniform modulus of continuity of f on D, if

∀x,y ∈ D ∀i ∈ N ||x− y|| < 2−mf (i) → |f(x)− f(y)| < 2−i.

Proposition 2.1 ([31]). Let f :⊆ Rn → R be computable and D ⊆ dom(f) a
compact set. Then f has a computable uniform modulus of continuity over D.

Intuitively, if a function has a computable uniform modulus of continuity, then
fixing any desired error bound 2−i on the outputs, we can compute a global pre-
cision 2−mf (i) on the inputs from D such that using any 2−mf (i)-approximation
of any x ∈ D, f(x) can be computed within the error bound.

Most common continuous real functions are computable [31]: Addition, multi-
plication, absolute value, min, max, exp, sin and solutions of Lipschitz-continuous
ordinary differential equations are all computable functions. Compositions of
computable functions are computable.

Moreover, complexity of real functions can be defined over compact domains.

Definition 2.4 ([24]). Let D ⊆ Rn be compact. A real function f : D → R
is P-computable (PSPACE-computable), if it is computable by an oracle Turing

machine Mγ(x)
f (i) that halts in polynomial-time (polynomial-space) for every

i ∈ N and every x ∈ dom(f).

We say f is in Type 2 complexity class C if it is C-computable. f is C-complete
if it is C-computable and C-hard [23]. If f : D → R is C-computable, then it has
a C-computable modulus of continuity over D. Polynomials, exp, and sin are all
P-computable functions. A recent result [22] established that the complexity of
computing solutions of Lipschitz-continuous ODEs over compact domains is a
PSPACE-complete problem.
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2.2 Bounded SMT over RF

We now let F denote any finite collection of Type 2 computable functions. LF
denotes the first-order signature and RF is the standard structure ⟨R,F⟩. We
can then consider the SMT problem over RF , namely, satisfiability of quantifier-
free LF -formulas over RF . We consider formulas whose variables take values
from bounded intervals. Because of this, it is more convenient to directly write
the bounds on existential quantifiers and express bounded SMT problems as
Σ1-sentences with bounded quantifiers.

Definition 2.5 (Bounded Σ1-Sentences). A bounded Σ1-sentence in LF is

ϕ : ∃I1x1 · · · ∃Inxn.ψ(x1, ..., xn).

– For all i, Ii ⊆ R is a bounded (open or closed) interval with rational end-
points.

– Each bounded quantifier ∃Iixi.φ denotes ∃xi.(xi ∈ Ii ∧ φ).
– ψ(x1, ..., xn) is a quantifier-free LF -formula, i.e., a Boolean combination of

atomic formulas of the form f(x1, ..., xn) ◦ 0, where f is a composition of
functions in F and ◦ ∈ {<,≤, >,≥,=, ̸=}.

– We write dom(ϕ) = I1× · · ·×In, and require that all the functions occurring
in ψ(x) are defined everywhere over its closure dom(ϕ).

We can write a bounded Σ1-sentence as ∃Ix.ψ(x) for short.

Lemma 2.1 (Standard Form). Any bounded Σ1-sentence ϕ in LF is equiva-
lent over RF to a sentence of the following form:

∃I1x1 · · ·∃Inxn

m∧

i=1

(
ki∨

j=1

fij(x) = 0).

Proof. Assume that ϕ is originally ∃Ix
∧m

i=1(
∨ki

j=1 gij(x) ◦ 0), where ◦ ∈ {<,≤
, >,≥,=, ̸=}. We apply the following transformations:

1. (Eliminate ̸=) Substitute each atomic formula of the form gij ̸= 0 by
gij < 0 ∨ gij > 0.

2. (Eliminate ≤, <) Substitute gij ≤ 0 by −gij ≥ 0, and gij < 0 by −gij > 0.

Now the formula is rewritten to ∃Ix.
∧m

i=1(
∨ki

j=1 g
′
ij(x)◦0), where ◦ ∈ {>,≥,=}.

(g′ij = −gij if the inequality is reversed; otherwise g′ij = gij .)
3. (Eliminate ≥, >) Substitute g′ij ≥ 0 (or g′ij > 0) by g′ij − vij = 0, where

vij is a newly introduced variable, and add an innermost bounded existential
quantifier ∃vij ∈ Ivij , where Ivij = [0,mvij ] (Iv = (0,mvij ]). Here, mvij ∈ Q
is any value greater than the maximum of g′ij over dom(ϕ). Note that such

maximum of g′ij always exists over dom(ϕ), since g′ij is continuous on dom(ϕ),
which is a compact, and is computable [23].

The formula is now in the form ∃Ix∃Ivv.
∧m

i=1(
∨ki

j=1 fij(x,v) = 0), where
fij = g′ij−vij if vij has been introduced in the previous step; otherwise, fij = g′ij .
The new formula is in the standard form and equivalent to the original one. ⊓1
Example 2.1. A standard form of ∃[−1,1]x∃[−1,1]y∃[−1,1]z (ez < x → y < sin(x))
is ∃[−1,1]x∃[−1,1]y∃[−1,1]z∃[0,10]u∃(0,10]v (ez − x− u = 0) ∨ (sin(x) − y − v = 0).
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3 The Bounded δ-SMT Problem

The key for bridging numerical procedures and SMT problems is to introduce
syntactic perturbations on Σ1-sentences in LF .

Definition 3.1 (δ-Weakening and Perturbations). Let δ ∈ Q+ ∪ {0} be a
constant and ϕ be a Σ1-sentence in the standard form:

ϕ := ∃Ix.
m∧

i=1

(
ki∨

j=1

fij(x) = 0).

The δ-weakening of ϕ defined as:

ϕδ := ∃Ix.
m∧

i=1

(
ki∨

j=1

|fij(x)| ≤ δ).

Also, a δ-perturbation is a constant vector c = (c11, ..., cmkm), cij ∈ Q, satisfying
||c|| ≤ δ, such that the c-perturbed form of ϕ is given by:

ϕc := ∃Ix.
m∧

i=1

(
ki∨

j=1

fij(x) = cij).

Proposition 3.1. ϕδ is true iff there exists a δ-perturbation c such that ϕc is
true. In particular, c can be the zero vector, and thus ϕ→ ϕδ.

We now define the bounded δ-SMT problem. We follow the convention that SMT
solvers return sat/unsat, which is equivalent to the corresponding Σ1-sentence
being true/false.

Definition 3.2 (Bounded δ-SMT). Let F be a finite collection of Type 2 com-
putable functions. Let ϕ be a bounded Σ1-sentence in LF in standard form, and
δ ∈ Q+. The bounded δ-SMT problem asks for one of the following decisions:

– unsat : ϕ is false.
– δ-sat : ϕδ is true.

When the two cases overlap, either decision can be returned.

Our main theoretical claim is that the bounded δ-SMT problem is decidable
for δ ∈ Q+. This is essentially a special case of our more general results for
arbitrarily-quantified LF -sentences [16]. However, different from [16], here we
defined the standard forms of SMT problems to contain only equalities in the
matrix, on which the original proof does not work directly. Also, in [16] we relied
on results from computable analysis that are not needed here. We now give a
direct proof for the decidability of δ-SMT and analyze its complexity.

Theorem 3.1 (Decidability). Let F be a finite collection of Type 2 computable
functions, and δ ∈ Q+ be given. The bounded δ-SMT problem in LF is decidable.
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Proof. We describe a decision procedure which, given any bounded Σ1-sentence
ϕ in LF and δ ∈ Q+, decides either ϕ is false or ϕδ is true. Assume that ϕ is in
the form of Definition 3.1.

First, we need a uniform bound on all the variables so that a modulus of
continuity for each function can be computed. Suppose each xi is bounded by
Ii, whose closure is Ii = [li, ui]. We write

ϕ := ∃[0,1]x1 · · ·∃[0,1]xn

m∧

i=1

(
ki∨

j=1

fij
(
l1 + (u1 − l1)x1, ..., ln + (un − ln)xn

)
= 0).

From now on, gij = fij(l1 +(u1 − l1)x1, ..., ln + (un − ln)xn). After the transfor-

mation, we have dom(ϕ) = [0, 1]× · · · × [0, 1], on which each gij is computable
and has a computable modulus of continuity mgij . We write ψ(x) to denote the
matrix of ϕ after the transformation.

Choose r ∈ N such that 2−r < δ/4. Then for each gij , we use mgij to obtain
eij = mgij (r). Choose e ∈ N such that e ≥ max(e11, ..., emkm) and write ε = 2−e.

We then have

∀x,y ∈ dom(ϕ) (||x− y|| < ε→ |gij(x)− gij(y)| < δ/4). (1)

We now consider a finite ε-net of dom(ϕ), i.e., a finite Sε ⊆ dom(ϕ), satisfying

∀x ∈ dom(ϕ) ∃a ∈ Sε ||x− a|| < ε. (2)

In fact, Sε can be explicitly defined as

Sε = {(a1, ..., an) : ai = k · ε, where k ∈ N, 0 ≤ k ≤ 2e}.

Next, we evaluate the matrix ψ(x) on each point in Sε, as follows. Let a ∈ Sε be
arbitrary. For each gij in ψ, we compute gij(a) up to an error bound of δ/8, and

write the result of the evaluation as gij(a)
δ/8

. Then |gij(a) − gij(a)
δ/8

| < δ/8.

Note gij(a)
δ/8

is a rational number. We then define

ψ̂(x) :=
m∧

i=1

ki∨

j=1

|gij(x)
δ/8

| < δ/2.

Then for each a, evaluating ψ̂(a) only involves comparison of rational numbers
and Boolean evaluation, and ψ̂(a) is either true or false. Now, by collecting the

value of ψ̂ on every point in Sε, we have the following two cases.
• Case 1: For some a ∈ Sε, ψ̂(a) is true. We show that ϕδ is true. Note that

ψ̂(a) ⇒
m∧

i=1

ki∨

j=1

|gij(a)
δ/8

| < δ/2 ⇒
m∧

i=1

ki∨

j=1

|gij(a)| < δ · 5/8.

We need to be careful about a, since it is an element in dom(ϕ), not dom(ϕ). If
a ∈ dom(ϕ), then ϕδ is true, witnessed by a. Otherwise, a ∈ ∂(dom(ϕ)). Then
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by continuity of gij , there exists a′ ∈ dom(ϕ) such that
∧m

i=1

∨ki

j=1 |gij(a′)| < δ.

(Just let a small enough ball around a intersect dom(ϕ) at a′.) That means ϕδ

is also true in this case, witnessed by a′.
• Case 2: For every a ∈ Sε, ψ̂(a) is false. We show that ϕ is false. Note that

¬ψ̂(a) ⇒
m∨

i=1

ki∧

j=1

|gij(a)
δ/8

| ≥ δ/2 ⇒
m∨

i=1

ki∧

j=1

|gij(a)| ≥ δ · 3/8.

Now recall conditions (1) and (2). For an arbitrary x ∈ dom(ϕ), there exists
a ∈ Sε such that |gij(x) − gij(a)| < δ/4 for every gij . Consequently, we have

|gij(x)| ≥ δ · 3/8− δ/4 = δ/8. Thus, ∀x ∈ dom(ϕ),
∨m

i=1

∧ki

j=1 |gij(x)| > 0. This
means ¬ϕ is true, and ϕ is false.

In all, the procedure decides either that ϕδ is true, or that ϕ is false. ⊓1

We now analyze the complexity of the δ-SMT problem. The decision procedure
given above essentially evaluates the formula on each sample point. Thus, us-
ing an oracle for evaluating the functions, we can construct a nondeterministic
Turing machine that randomly picks the sample points and decides the formula.
Most of the functions we are interested in (exp, sin, ODEs) are in Type 2 com-
plexity class P or PSPACE. In this case, the oracle only uses polynomial space on
the query tape (Proposition 3.2 below), and all the computations can be done
in polynomial-time. Thus, it should be clear that the δ-SMT problem is in NPC,
where C is the complexity of the computable functions in the formula.

Formally, to prove interesting complexity results, a technical restriction is that
we need to bound the number of function compositions in a formula, because
otherwise evaluating nested polynomial-time functions can be exponential in the
number of nesting. Formally we define:

Definition 3.3 (Uniformly Bounded Σ1-class). Let F be a finite set of Type
2 computable functions, and S a class of bounded Σ1-sentences in LF . Let l, u ∈
Q satisfy l ≤ u. We say S is uniformly (l, u,F)-bounded, if for all ϕ ∈ S of the

form ∃I1x1 · · · ∃Inxn
∧m

i=1

∨ki

j=1 fij(x) = 0 we have:

– ∀1 ≤ i ≤ n, Ii ⊆ [l, u].
– Each fij(x) is contained in F .

Proposition 3.2 ([23]). Let C be a Type 2 complexity class contained in
PSPACE. Then given any compact domain D, a C-computable function has a
uniform modulus of continuity over D given by a polynomial function.

The main complexity claim is as follows. We have sketched the intuition above
and a detailed proof is given in [15].

Theorem 3.2 (Complexity). Let F be a finite set of functions in Type 2
complexity class C, P ⊆ C ⊆ PSPACE. The δ-SMT problem for uniformly bounded
Σ1-classes in LF is in NPC.
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Corollary 3.1. Let F be a finite set of P-time computable real functions, such as
{+,×, exp, sin}. The uniformly-bounded δ-SMT problem for LF is NP-complete.

Corollary 3.2. Let F be a finite set of Lipschitz-continuous ODEs over compact
domains. Then the uniformly-bounded δ-SMT problem in LF is in PSPACE, and
there exists LF such that it is PSPACE-complete.

4 δ-Completeness of the DPLL⟨ICP⟩ Framework

We now give a formal analysis of the integration of ICP and DPLL(T) for solving
bounded δ-SMT with nonlinear functions. Our goal is to establish sufficient and
necessary conditions under which such an integration is δ-complete.

4.1 Interval Constraint Propagation

The method of Interval Constraint Propagation (ICP) [3] finds solutions of real
constraints using a “branch-and-prune” method, combining interval arithmetic
and constraint propagation. The idea is to use interval extensions of functions
to “prune” out sets of points that are not in the solution set, and “branch” on
intervals when such pruning can not be done, until a small enough box that may
contain a solution is found. A high-level description of the decision version of
ICP is given in Algorithm 1, and we give formal definitions below.

Definition 4.1 (Floating-Point Intervals and Hulls). Let F denote the fi-
nite set of all floating point numbers with symbols −∞ and +∞ under the con-
ventional order <. Let IF = {[a, b] ⊆ R : a, b ∈ F, a ≤ b} denote the set of
closed real intervals with floating-point endpoints, and BF =

⋃∞
n=1 IF

n the set of
boxes with these intervals. Let S ⊆ R be any set of real numbers, the hull of S
is written as Hull(S) =

⋂
{I ∈ IF : S ⊆ I}.

For I = [a, b] ∈ IF, we write |I| = |b− a| to denote its size.

Definition 4.2 (Interval Extension (cf. [3])). Let f :⊆ Rn → R be a real
function. An interval extension operator ♯(·) maps f to a function ♯f :⊆ BF →
IF, such that ∀B ∈ BF ∩ dom(♯f), {f(x) : x ∈ B} ⊆ ♯f(B).

Example 4.1. The natural extension of f = 2·(x+y)·z is given by ♯f = [2, 2]·(Ix+
Iy)·Iz , where the interval operations are defined as [a1, b1]+[a2, b2] = [a1+a2, b1+
b2] and [a1, b1] · [a2, b2] = [min(a1a2, a1b2, b1a2, b1b2),max(a1a2, a1b2, b1a2, b1b2)].

In Algorithm 1, Branch(B, i) is an operator that returns two smaller boxes B′ =
I1 × · · · × I ′i × · · · × In and B′′ = I1 × · · · × I ′′i × · · · × In, where Ii ⊆ I ′i ∪ I ′′i .
To ensure termination it is assumed that there exists some unifrom constant
0 < c < 1 such that in every branching operation, c · |Ii| ≤ |I ′i| and c · |Ii| ≤ |I ′′i |.

The key component of the algorithm is the Prune(B, f) operation. A simple
example of a pruning operation is as follows.
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Algorithm 1. High-Level ICPε (decision version of Branch-and-Prune)

input : Constraints f1(x1, ..., xn) = 0, ..., fm(x1, ..., xn) = 0, initial box
B0 = I01 × · · ·× I0n, box stack S = ∅, and precision ε ∈ Q+.

output: sat or unsat.

1 S.push(B0);
2 while S ̸= ∅ do
3 B ← S.pop() ;
4 while ∃1 ≤ i ≤ m,B ̸= Prune(B, fi) do
5 B ← Prune(B, fi) ;
6 end
7 if B ̸= ∅ then
8 if ∃1 ≤ i ≤ n, |Ii| ≥ ε then
9 {B′, B′′}← Branch(B, i);

10 S.push({B′, B′′});
11 end
12 return sat;
13 end

14 end
15 return unsat;

Example 4.2. Consider x− y2 = 0 with initial intervals x ∈ [1, 2] and y ∈ [0, 4].
Let ♯f(Ix, Iy) = Ix − I2y be the natural interval extension of the left hand side.
Since we know 0 ̸∈ ♯f([1, 2], [2, 4]), we can contract the interval on y from [0, 4]
to [0, 2] in one pruning step.

In principle, any operation that contracts the intervals on variables can be seen
as pruning. However, for correctness we need several formal requirements on the
pruning operator in ICPε.

Notation 4.1 For any f : Rn → R, we write Zf = {a ∈ Rn : f(a) = 0}.

Definition 4.3 (Well-defined Pruning Operators). Let F be a collection
of real functions, and ♯ be an interval extension operator on F . A well-defined
(equality) pruning operator with respect to ♯ is a partial function Prune♯ :⊆
BF× F → BF, such that for all f ∈ F and B ∈ BF,
– (W1) Prune♯(B, f) ⊆ B;
– (W2) If (Prune♯(B, f)) ̸= ∅, then 0 ∈ ♯f(Prune♯(B, f)).
– (W3) B ∩ Zf ⊆ Prune♯(B, f);

When ♯ is clear, we simply write Prune. It specifies the following conditions. (W1)
requires contraction, so that the algorithm always makes progress: branching
always decreases the size of boxes, and pruning never increases them. (W2)
requires that the result of a pruning is always a reasonable box that may contain
a zero. Otherwise B should have been pruned out. (W3) ensures that the real
solutions are never discarded in pruning (called “completeness” in [3]). We use
Prune(B, f1, ..., fm) to denote the iterative application of Prune(·, fi) on B for
all 1 ≤ i ≤ m, until a fixed-point is reached. (Line 4-6 in Algorithm 1.)
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Proposition 4.1. For all i, Prune(B, f1, ..., fm) ⊆ Prune(B, fi).

Lemma 4.1. Algorithm 1 always terminates. If it returns sat then there exists
nonempty boxes B,B′ ⊆ B0, such that ||B|| < ε and B = Prune(B′, f1, ..., fm).
If it returns unsat then for every a ∈ B0, there exists B ⊆ B0 such that a ∈ B
and Prune(B, f1, ..., fm) = ∅.

Remark 4.1. It is important to see that in sat answers, B is a result of pruning
on some B′ instead of the output of a simple branching.

Theorem 4.2 (δ-Completeness of ICPε). Let δ ∈ Q+ be arbitrary. We can
find an ε ∈ Q+ such that the ICPε algorithm is δ-complete for conjunctive Σ1-
sentences in LF (where sat is interpreted as δ-sat) if and only if the pruning
operator in ICPε is well-defined.

Proof. We consider an arbitrary bounded existential LF -sentence containing
only conjunctions, written as ϕ : ∃Ix.

∧m
i=1 fi(x) = 0. Let B0 = I be the initial

bounding box.
Since all the functions in ϕ are computable over B0, each fi has a uniform

modulus of continuity over B0, which we write as mfi . Choose any k ∈ N such
that 2−k < δ. Then for any εi < mfi(k), we have

∀x,y ∈ B0, ||x− y|| < εi → |fi(x)− fi(y)| < δ. (3)

We now fix ε to be any positive rational number smaller than min(ε1, ..., εm).
By the previous lemma, we know ICPε terminates and returns either sat or

unsat. We now prove the two directions of the biconditional.
⇐: Suppose the pruning operator in ICPε is well-defined.
Suppose ICPε returns “δ-sat”, then by Lemma 4.1, there exist B,B′ ⊆ B0

such that B = Prune(B′, f1, ..., fm) and ||B|| < ε. Then by the (W2), we know
that 0 ∈ ♯fi(B) for every fi. Now, by the definition of ε, we know from (3)
that for every i, ∀a ∈ B, |fi(a) − 0| < δ. Namely, any a ∈ B is a witness for
ϕδ : ∃Ix |f(x)| < δ. Thus the δ-weakening of ϕ is true.

Suppose ICPε returns “unsat”. Suppose ϕ is in fact satisfiable. Then there is
a point a ∈ B0 such that ψ(a) is true. However, following Lemma 4.1, a ∈ B for
some B ⊆ B0 and Prune(B0, f1, ..., fm) = ∅. However, this contradicts condition
(W3) of the pruning operator.

⇒: We only need to show that without any one of the three conditions in
Definition 4.3, we can define a pruning operator that fails δ-completeness.

Without (W1), we define a pruning operator that always outputs intervals
bigger than ε (such as the initial intervals). Then the procedure never terminates.
Note that the other two conditions are trivially satisfied in this case (for any f
andB0 satisfying 0 ∈ ♯f(B0)). Without (W2), consider the function f(x) = x2+1
with x ∈ [−1, 1]. We can define a pruning operator such that Prune([−1, 1], f) =
[1, 1]. This operator satisfies the other two conditions. However, the returned
result [1, 1] fails δ-completeness for any δ smaller than 2, since f(1) = 2. Without
(W3), we simply prune any set to ∅ and always return unsat. This violates δ-
completeness, which requires that if unsat is returned the formula must be indeed
unsatisfiable. The other two conditions are also satisfied in this case. ⊓1
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In practice, pruning operators are defined based on consistency conditions from
constraint propagation techniques. Many pruning operators are used in prac-
tice [3]. Following Theorem 4.2, we only need to prove their well-definedness to
ensure δ-completeness. For instance:

Definition 4.4 (Box-consistent Pruning [20]). We say πB : BF× F → BF
is box-consistent, if for all f ∈ F and B = I1 × · · · × In ⊆ dom(f), the i-th
interval of πB(B, f) is Ii ∩ Hull

(
{ai ∈ R : 0 ∈ ♯f(I1, ...,Hull({ai}), ..., In}

)
.

Proposition 4.2. The Box-consistent Pruning operator is well-defined.

4.2 Handling ODEs

In this section we expand our language to consider solutions of the initial value
problems (IVP) of Lipschitz-continuous ODEs. Let t0, T ∈ R and g : Rn → R
be a Lipschitz-continuous function, i.e., for all x1,x2 ∈ Rn, |g(x1) − g(x2)| ≤
c||x1 − x2|| for some constant c. Let t0, T ∈ R satisfy t0 ≤ T and y0 ∈ Rn. An
(autonomous) IVP problem is given by

dy

dt
= g(y(t)) and y(t0) = y0, where t ∈ [t0, T ].

where y : [t0, T ] → Rn is called the solution of the IVP. Consider y(t) as
(y1(t), ..., yn(t)), then each component yi : [t, T ] → R is a Type 2 computable
function, and can appear in some signature F . In fact, we can also regard y0

as an argument of yi and write yi(t0,y0). This does not change computabil-
ity properties of yi, since following the Picard-Lindelöf representation y(t) =∫ t
t0
g(y(s))ds + y0, yi(t) is only linearly dependent on y0.
In practice, with an ICP framework, we can exploit interval solvers for IVP

problems [27], for pruning intervals on variables that appear in constraints in-
volving ODEs. This direction has received much recent attention [12,11,18,21].

Consider the IVP problem defined above, with y0 contained in a box Bt0 ⊆
Rn. Let t0 ≤ t1 ≤ ... ≤ tm = T be a set of points in [t0, T ]. An interval-based
ODE solver returns a set of boxes Bt1 , ..., Btm such that

∀i ∈ {1, ...,m}, {y(t) : ti−1 ≤ t ≤ ti,y0 ∈ By0} ⊆ Bti .

Now let yi : [t0, T ] × B0 → R be the i-th component of the solution y of an
IVP problem. Then interval-based ODE solvers compute interval extensions of
yi. Thus, pruning operators that respect the interval extension computed by
interval ODE solvers can be defined. It can be concluded from Theorem 4.2 that
ICPε is δ-complete for equalities involving ODEs, as long as the pruning operator
is well-defined. A simplest strategy is just to prune out any set of points outside
the interval extension:

Proposition 4.3 (Simple ODE-Pruning). Let yi = f(t,y0) be the i-th com-
ponent function of an IVP problem. Suppose ♯f is computed by an interval
ODE solver. Then the pruning operator Prune(Iyi , f) = Iyi ∩ ♯f(It, By0) is well-
defined, where Iyi is an interval on yi and It is an interval on t.
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4.3 DPLL⟨ICP⟩
Now consider the integration of ICP into the framework of DPLL(T), so that
the full δ-SMT problem can be solved. Given a formula ϕ, a DPLL⟨ICP⟩ solver
uses SAT solvers to enumerate solutions to the Boolean abstraction ϕB of the
formula, and uses ICPε to decide the satisfiability of conjunctions of atomic
formulas. DPLL⟨ICP⟩ returns sat when ICPε returns sat to some conjunction of
theory atoms witnessing the satisfiability of ϕB, and returns unsat when ICPε

returns unsat on all the solutions to ϕB. Thus, it follows naturally that using a
δ-complete theory solver ICPε, DPLL⟨ICP⟩ is also δ-complete.

Corollary 4.1 (δ-Completeness of DPLL⟨ICP⟩). Let F be a set of real
functions. Then the pruning operators in ICPε are well-defined for F , if and
only if, DPLL⟨ICP⟩ using ICPε is δ-complete for bounded Σ1-sentences in LF .

In practice, correctness of numerical solvers is always a major concern. For com-
plete trustworthiness, it is important for numerically-driven decision procedures
to return certificates for their decisions δ-sat and sat. We outline methods for
producing certificates in DPLL⟨ICP⟩ in [15].

5 Applications

δ-Complete solvers return answers that allow one-sided, δ-bounded errors. The
framework allows us to easily understand the implications of such errors in prac-
tical problems. Indeed, δ-complete solvers can be directly used in the following
correctness-critical problems.

Bounded Model Checking and Invariant Validation. Let S = ⟨X, Init,Trans⟩
be a transition system over X , which can by continuous or hybrid. Then given
a subset U ⊆ X , the bounded model checking problem asks whether ϕn :=
∃x0, ...,xn(x0 ∧

∧n−1
i=0 Trans(xi,xi+1) ∧ xn ∈ U) is true. Here U denotes the

“unsafe” values of the system, and we say S is safe up to n if ϕn is false.
Thus, using a δ-complete solver for ϕn, we can determine the following: If ϕn

is unsat, then S is indeed safe up to n; on the other hand, if ϕn is δ-sat, then
either the system is unsafe, or it would be unsafe under a δ-perturbation, and a
counterexample is provided by the certificate for δ-sat. This δ can be set by the
user based on the intended tolerance of errors of the system. Thus, a δ-complete
solver can be directly used.

For invariant validation, a proposed invariant Inv can prove safety if the
sentence ϕ := ∀x,x′((Init(x) → Inv(x)) ∧ (Inv(x) ∧ Trans(x,x′) → Inv(x′)) ∧
Inv(x) → ¬(U(x))) is true. We then use a δ-complete solver on ¬ϕ, which is
existential. When unsat is returned, Inv is indeed an inductive invariant proving
safety. When δ-sat is returned, either Inv is not an inductive invariant, or under
a small numerical perturbation, Inv would violate the inductive conditions.

Theorem Proving. For theorem proving, one-sided errors are not directly useful
since no robustness problem is involved. We can still approach a statement ϕ
by making δ-decisions on ¬ϕ, and refine δ when needed. Starting from any δ,
whenever unsat is returned, ϕ is proved; when δ-sat, we can try a smaller δ. This
reflects the common practice in proving these statements.
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6 Conclusion

We introduced the notion of “δ-complete decision procedures” for solving SMT
problems the over real numbers. Our aim is to provide a general framework for
solving a wide range of nonlinear functions including transcendental functions
and solutions of Lipschitz-continuous ODEs. δ-Completeness serves as a replace-
ment of the conventional completeness requirement on exact solvers, which is
impossible to satisfy in this domain. We proved the existence of δ-complete
decision procedures for bounded SMT with Type 2 computable functions and
showed the complexity of the problem. We use δ-completeness as the standard
correctness requirement on numerically-driven decision procedures, and formally
analyzed the solving framework DPLL⟨ICP⟩. We proved sufficient and necessary
conditions for its δ-completeness. We believe our results serve as a foundation
for the development of scalable numerically-driven decision procedures and their
application in formal verification and theorem proving.
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24. Ko, K.-I.: On the computational complexity of integral equations. Ann. Pure Appl.

Logic 58(3), 201–228 (1992)
25. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.

Springer (2008)
26. Munoz, C., Narkawicz, A.: Formalization of an efficient representa-

tion of Bernstein polynomials and applications to global optimization,
http://shemesh.larc.nasa.gov/people/cam/Bernstein/

27. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Applied Mathematics and Computa-
tion 105(1), 21–68 (1999)

28. Nuzzo, P., Puggelli, A., Seshia, S.A., Sangiovanni-Vincentelli, A.L.: Calcs: Smt solv-
ing for non-linear convex constraints. In: Bloem, R., Sharygina, N. (eds.) FMCAD,
pp. 71–79. IEEE (2010)

29. Platzer, A., Clarke, E.M.: The Image Computation Problem in Hybrid Systems
Model Checking. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, pp. 473–486. Springer, Heidelberg (2007)

30. Ratschan, S.: Quantified constraints under perturbation. J. Symb. Comput. 33(4),
493–505 (2002)

31. Weihrauch, K.: Computable Analysis: An Introduction (2000)

http://arxiv.org/abs/1204.3513
http://shemesh.larc.nasa.gov/people/cam/Bernstein/

	δ-Complete Decision Procedures for Satisfiability over the Reals
	Introduction
	SMT with Type 2 Computable Functions
	Basics of Computable Analysis
	Bounded SMT over RF

	The Bounded -SMT Problem
	-Completeness of the DPLL"426830A ICP"526930B  Framework
	Interval Constraint Propagation
	Handling ODEs
	DPLL"426830A ICP"526930B 

	Applications
	Conclusion
	References


