
AlloyDB Omni for PostgreSQL - Transactional

(OLTP) Benchmarking Guide

July 2024

Disclaimer 2
Overview 3

Benchmarking Process 3
Infrastructure Setup 5

Provision the server and client VMs 5

Provision Server on GCE 5

Provision Client on GCE 8

Install AlloyDB Omni 9

Install Docker 9
Create an ext4 filesystem 10
Set up VM configurations 10
Start AlloyDB Omni 11
Allow access from the client VM 11

Update database configuration 12
Start AlloyDB Omni 13

Setup of Benchmark Driver Machine (Client) 13

Install PostgreSQL tools 13

Install Docker 14

TPC-C Benchmark 15

Benchmark configurations 15
Prerequisites 16

Initial Setup on Client Machine 16

Script to load TPC-C data 17

Running the TPC-C benchmark 18

Analyzing TPC-C Results 19

TPC-B Benchmark 20
Benchmark configurations 20
Load data 21
Run TPC-B 21

Appendix 1: Observability 22
Appendix 2: Notes on performance benchmarking 24

Benchmark Cleanup 24

Understanding system performance 24

CPU performance 25

Disk performance 25

Network latency 25

AlloyDB Omni OLTP Benchmark User Guide 1

Disclaimer

This AlloyDB Omni benchmark guide provides best practices for running an Online Transactional Processing

(OLTP) benchmark. Your results may vary depending on several factors including, but not limited to the

machine specifications of your AlloyDB Omni instance, type of client machine driving the benchmark, region,

zone, and network bandwidth at the time of tests. Nothing in this user guide should be construed as a

promise or guarantee about the results you’ll derive from measuring the OLTP performance of AlloyDB Omni.

AlloyDB Omni OLTP Benchmark User Guide 2

https://www.lawinsider.com/clause/promise
https://www.lawinsider.com/clause/guarantee

Overview

AlloyDB Omni is a downloadable edition of AlloyDB, designed to run anywhere — in your data center, on your

laptop, at the edge, and in any cloud. AlloyDB Omni has several components and features, such as

state-of-the-art log and transaction management, dynamic memory management, and a built-in columnar

engine. As a whole, these features enable high performance for your transactional (OLTP), analytical

(OLAP), and hybrid (HTAP) workloads.

Relational database systems typically require a database administrator (DBA) to optimize them for

benchmarking, which includes configuring the transaction log settings, establishing the right buffer pool

sizes, and tweaking other important database parameters (flags) and characteristics. These settings also

vary based on machine hardware.

During installation, AlloyDB Omni chooses settings that are likely to be optimal for the number of CPUs and

memory on your system. It requires minimal to no tuning of flags at the database level to achieve high OLTP

performance. Users may further adjust the settings to optimize performance for their specific workload.

This document describes step-by-step procedures and best practices to configure AlloyDB Omni, a client

machine, and scripts to setup, load and run benchmarks. We will be running HammerDB TPROC-C (derived

from TPC-C) and Pgbench TPC-B like benchmarks with different test parameters.

NOTE: Since HammerDB’s TPROC-C implementation is a close variant of the official TPC-C benchmark, we

will use the terms TPC-C and TPROC-C interchangeably throughout this user guide.

Similarly, we will use TPC-B and "TPC-B like" interchangeably throughout.

Benchmarking Process

We'll go through the following steps to set up and run various OLTP benchmarks.

1. Configure AlloyDB Omni running on a Google Compute Engine (GCE) VM. We describe running on 2

different VM shapes:

a. N2D series: n2d-standard-8 and n2d-standard-16

b. N2 series: n2-highmem-8 and n2-highmem-16

2. Setup a separate benchmark driver client running on a GCE VM, where we will install benchmarking

tools like HammerDB.

3. Run TPC-C like benchmark using HammerDB, and TPC-B like benchmark using Pgbench.

Unless otherwise specified, we used the following setup for performance benchmarking:

Component Value

Machine Type N2D (AMD Milan or later)

n2d-standard-8 (8 vCPUs / 32GB) and n2d-standard-16 (16vCPU /

64GB)

Boot disk: 100 GB PD-SSD

AlloyDB Omni OLTP Benchmark User Guide 3

https://www.hammerdb.com/index.html
https://www.hammerdb.com/docs/ch03s02.html
https://www.hammerdb.com/docs/ch03s02.html
https://www.postgresql.org/docs/current/pgbench.html

Data disk: 1 x 375GB local SSD

N2 (Intel Icelake or later)

n2-highmem-8 (8 vCPU / 64 GB)

n2-highmem-16 (16 vCPU / 128GB)

Boot disk: 100 GB PD-SSD

Data disk: 4TB PD-SSD

Operating system Ubuntu 22.04 (Linux kernel 6.5)

AlloyDB Omni Version 15.5.5

Region / Zone us-central1 (Iowa) / us-central1-f

Client VM — Machine Type n2-standard-32 (32 vCPU/ 128GB)

Boot disk: 128 GB, PD-SSD

Ubuntu 22.04

Zone of Client VM us-central1-f [same as AlloyDB Omni instance]

Connectivity Private IP (same VPC)

Test tools HammerDB-4.10

Pgbench

Psql

Workloads Benchmarks: TPC-C and TPC-B

Database size: Smaller than memory and larger than memory

Number of Clients: Low and high

TPC-C benchmark and TPC-B benchmark

In your own testing, you can also run AlloyDB Omni on other platform configurations (as long as they meet

these system requirements). Your benchmarking results will vary based on your specific hardware. Some

crucial factors that can affect performance include the CPU model, number of cores/vCPUs, available

memory, disk performance (IOPS and throughput), and network performance (latency and bandwidth)

between the server and client.

AlloyDB Omni is 100% compatible with PostgreSQL. To aid in doing performance comparisons between

AlloyDB Omni and PostgreSQL, this document also shows you the small changes that you need to make in

order to run the same benchmarks on PostgreSQL. These changes are shown in a box with the PostgreSQL

icon as follows:

Instructions for PostgreSQL will show up in a box like this.

AlloyDB Omni OLTP Benchmark User Guide 4

https://cloud.google.com/alloydb/docs/omni/install#before_you_begin

Infrastructure Setup

Provision the server and client VMs

Note: The next section describes how to provision the VMs through the GCP cloud console. You may skip this

section if running on your own hardware.

Provision Server on GCE

1. Create or select your GCP project: Go to https://console.cloud.google.com and select your project

from the drop down menu or create a new one.

2. Follow these links on the portal: “Products and Solutions” → “All Products” → “Compute Engine”.

3. Click on the following button to create an instance to run AlloyDB Omni.

4. Choose a name for your server VM, and select your desired region and zone.

5. Under "Machine Configuration", select your desired machine type:

a. For N2D: Select "N2D" for "Series", and "n2d-standard-8" or "n2d-standard-16" for the "Machine

type".

b. For N2: Select "N2" for "Series", and "n2-highmem-8" or "n2-highmem-16" for the "Machine

type".

AlloyDB Omni OLTP Benchmark User Guide 5

https://console.cloud.google.com

6. For best performance, expand "Advanced Configurations":

a. For N2D: Select "AMD Milan or later"

b. For N2: Select "Intel Icelake or later"

You may leave the other options empty, as they are not needed.

7. Under "Boot disk", ensure you are using a Ubuntu 22.04 image, on a "SSD persistent disk", and 100 GB

provisioned for the boot disk.

AlloyDB Omni OLTP Benchmark User Guide 6

8. Under "Observability - Ops Agent", select "Install Ops Agent for Monitoring and Logging". This agent

helps gather system metrics during the benchmark run.

9. Under "Advanced options" -> "Disks":

a. If using local SSDs: click "+ Add Local SSD". Then, under "Disk capacity", select the "375 GB (1 *

375 GB)" option.

b. If using PD-SSDs: click "+ Add New Disk". Then, under "Disk settings", select "SSD persistent

disk" for "Disk type", and enter "4096" for "Size".

Click "Save" at the bottom to confirm your choices.

AlloyDB Omni OLTP Benchmark User Guide 7

10. Now click "Create" at the bottom of the create instance page, and a new VM will begin to be

provisioned for you. Wait until the VM is fully created, which will be indicated by a green check mark

under the "Status" column.

Provision Client on GCE

To run the OLTP benchmarks, you will require a client machine with enough processing power. We need to

provision a client machine that is powerful enough that it is not the bottleneck in a benchmark.

We use an n2-standard-32 machine (32 vCPUS, 128 GB memory) with 128 GB SSD persistent disk (pd-ssd) as

the client in this document. We use Ubuntu 22.04 as the OS for the client.

Important: The client must be provisioned in the same region, zone, and VPC as AlloyDB Omni’s primary

instance. Benchmarking tools directly access the AlloyDB Omni instance over private IP. This setup reduces

network latency between the server and client.

Below is a screenshot of the client machine we provisioned for the purpose of this benchmarking guide.

AlloyDB Omni OLTP Benchmark User Guide 8

Install AlloyDB Omni

Install Docker

SSH to the server VM:

gcloud compute ssh --zone "<primary zone>" "<server machine name>" --project "<google-project>"

AlloyDB Omni is packaged as a Docker image. First, install docker:

sudo apt update -y

sudo apt install -y docker.io

sudo usermod -aG docker $USER # This requires a re-login to take effect

AlloyDB Omni OLTP Benchmark User Guide 9

Exit the SSH session, and re-login. Test that docker is installed by running:

docker run --rm hello-world

The following message shows Docker is installed successfully and can be run by the current user:

Hello from Docker! This message shows that your installation appears to be
working correctly.

Download the AlloyDB Omni image:

docker pull google/alloydbomni:15

To run PostgreSQL, download its image from Docker Hub instead:

docker pull postgres:15

Create an ext4 filesystem

The disks are attached to the VM as raw devices. To use them, we have to create a filesystem on top of the

devices.

By default, the devices are listed as /dev/nvme0n1 (for local SSDs) and /dev/sdb (for PD-SSDs) on the

GCE VM.

For local SSD

export DEVICE="/dev/nvme0n1"

For PD-SSD

export DEVICE="/dev/sdb"

Format an ext4 filesystem on the virtual device:

sudo mkfs.ext4 -m 0 -F -E lazy_itable_init=0,lazy_journal_init=0 ${DEVICE}

Create a data directory for AlloyDB Omni:

mkdir /home/$USER/alloydb-data

Mount the filesystem onto this directory:

sudo mount --make-shared -o noatime,discard,errors=panic ${DEVICE} /home/$USER/alloydb-data

Set up VM configurations

Swap: AlloyDB Omni uses swap to efficiently manage memory on the VM. For optimal performance, you

should set swap to roughly 20% of available memory. To enable swap, run:

export SWAPSIZE=$(awk '/MemTotal/ { printf int($2 * 0.2 /1024/1024) }' /proc/meminfo)

sudo -E fallocate -l ${SWAPSIZE}G /swapfile

sudo chmod 600 /swapfile

AlloyDB Omni OLTP Benchmark User Guide 10

https://hub.docker.com/_/postgres

sudo mkswap /swapfile

sudo swapon /swapfile

Huge pages: Enable huge pages on the VM by running:

sudo docker run --rm --privileged google/alloydbomni:15 setup-host

The setup-host script is just a convenience script to set up huge pages. You may run the above

step, even if you are benchmarking PostgreSQL instead.

Note that sudo is required for both the "Swap" and "Huge pages" steps above, as they configure OS level

settings.

Start AlloyDB Omni

Start AlloyDB Omni with the following command (replace [PASSWORD] with an appropriate password):

export PASSWORD=[PASSWORD]

docker run --detach \

--name alloydb-omni \

-e POSTGRES_PASSWORD=${PASSWORD} \

-e PGDATA=/var/lib/postgresql/data/pgdata \

-v "/home/$USER/alloydb-data":/var/lib/postgresql/data \

-v /dev/shm:/dev/shm \

--ulimit=nice=-20:-20 \

-p 5432:5432 \

google/alloydbomni:15

To start PostgreSQL instead, replace the last line with postgres:15.

You may further customize the installation by following the steps in Customize your AlloyDB Omni

installation.

Allow access from the client VM

First, run the following command to get a shell inside the container:

docker exec -it alloydb-omni bash

Inside the shell, set an environment variable with your client's internal IP address. This can be found in the

GCP console UI:

AlloyDB Omni OLTP Benchmark User Guide 11

https://cloud.google.com/alloydb/docs/omni/install
https://cloud.google.com/alloydb/docs/omni/install

export CLIENT_IP=[CLIENT IP]

Then run:

sed -i '/host all all all scram-sha-256/i host all all '${CLIENT_IP}'/32 trust'

$PGDATA/pg_hba.conf

This adds a line near the end of pg_hba.conf like this:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only

local all all trust

IPv4 local connections:

host all all 127.0.0.1/32 trust

IPv6 local connections:

host all all ::1/128 trust

Allow replication connections from localhost, by a user with the

replication privilege.

local replication all trust

host replication all 127.0.0.1/32 trust

host replication all ::1/128 trust

host all all 1.2.3.4/32 trust # <-- ENTRY FOR CLIENT

host all all all scram-sha-256

NOTE: In this guide, we use the "trust" setting to simplify the benchmarking setup. However, note that

"trust" bypasses password protection, and should not be used for a production instance.

Update database configuration

Still inside the bash shell, run the following command to set the configurations for the database. Run the

following command to append these settings to the end of the file:

cat << EOF >> $PGDATA/postgresql.conf

huge_pages=on

max_connections=2000

EOF

Only required for AlloyDB Omni 15.5.5 and earlier.

Later versions include these settings out of the box.

lux_wal_writer_batch_size=0

enable_google_adaptive_autovacuum=off

AlloyDB Omni OLTP Benchmark User Guide 12

If you are setting configurations for PostgreSQL, also add the following settings, which are

generic rule-of-thumb settings when running PostgreSQL:

PostgreSQL (33% buffer cache)

shared_buffers=21436MB
effective_cache_size=25724MB

Run exit to exit the shell.

Start AlloyDB Omni

Now we may restart AlloyDB Omni to pick up the updated configurations:

docker restart alloydb-omni

If you do not see any errors, that means AlloyDB Omni is running. Verify by connecting to the database

locally:

docker exec -it alloydb-omni psql -h localhost -U postgres -c "SELECT 1"

You should see the output:

?column?

1

(1 row)

Setup of Benchmark Driver Machine (Client)

This section will guide you through the steps of configuring the client machine, where we will install

benchmarking tools such as HammerDB.

Connect to the client machine using the “gcloud compute ssh” command.

Sample command:

gcloud compute ssh --zone "<primary zone>" "<client machine name>" --project "<google-project>"

Install PostgreSQL tools

The following commands install psql which is used to connect to AlloyDB Omni. It also installs pgbench
which we will be using for the TPC-B benchmark.

Import the repository signing key

AlloyDB Omni OLTP Benchmark User Guide 13

sudo apt install -y curl ca-certificates

sudo install -d /usr/share/postgresql-common/pgdg

sudo curl -o /usr/share/postgresql-common/pgdg/apt.postgresql.org.asc --fail

https://www.postgresql.org/media/keys/ACCC4CF8.asc

Create the repository configuration file

sudo sh -c 'echo "deb [signed-by=/usr/share/postgresql-common/pgdg/apt.postgresql.org.asc]

https://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg main" >

/etc/apt/sources.list.d/pgdg.list'

Update the package lists

sudo apt update -y

Install tools for PostgreSQL 15

sudo apt -y install postgresql-15

By default, a Postgres database is launched. But we don't need that here.

sudo systemctl stop postgresql

sudo systemctl disable postgresql

Now ensure that it works and you are able to connect to the AlloyDB Omni. Use the “Private IP” address of

your AlloyDB Omni instance.

export SERVER_IP=[Private IP of AlloyDB Omni instance]

psql -h ${SERVER_IP} -U postgres -c "SELECT 1"

Install Docker

For this benchmarking guide, we will use the HammerDB test driver. HammerDB is packaged via Docker, so

we will install Docker on the client machine like above.

First, install docker:

sudo apt install -y docker.io

sudo usermod -aG docker $USER # This requires a re-login to take effect

Exit the SSH session, and re-login. Test that docker is installed by running:

docker run --rm hello-world

The following message shows Docker is installed successfully and can be run by the current user:

Hello from Docker! This message shows that your installation appears to be
working correctly.

Run the following command to download the HammerDB image:

docker pull tpcorg/hammerdb:postgres

AlloyDB Omni OLTP Benchmark User Guide 14

TPC-C Benchmark

HammerDB is a popular benchmarking tool that includes a TPC-C benchmark implementation for evaluating

the performance of OLTP systems. HammerDB's TPC-C implementation allows users to simulate a workload

similar to the TPC-C benchmark, including a mix of transactions that mimic the behavior of a wholesale

supplier environment. HammerDB measures the system's performance in terms of transactions per minute

(TPM) and generates reports that include detailed statistics and performance metrics. Additionally,

HammerDB supports customization of the benchmark parameters, allowing users to adjust the database size,

the number of warehouses, and other workload characteristics to simulate different scenarios.

This section provides a comprehensive guide on how to execute the HammerDB TPC-C benchmark to gauge

the performance of the AlloyDB Omni database system.

Benchmark configurations

These tables show the benchmark configurations that we used, and the results we obtained in our internal

runs. Please note that the results may fluctuate across different runs. Nevertheless, your results should

generally align with the findings we have achieved.

On n2d-standard instances:

DataSet size #vCPUs / RAM (GB) #of Warehouses # of Virtual Users Throughput (TPM)

Small (< RAM) 8 vCPUs, 32GB 144 8 204139

8 vCPUs, 32GB 144 128 299822

16 vCPUs, 64GB 288 16 195353

16 vCPUs, 64GB 288 256 436412

Big (> RAM) 8 vCPUs, 32GB 800 8 125777

8 vCPUs, 32GB 800 128 190117

16 vCPUs, 64GB 1600 16 121513

16 vCPUs, 64GB 1600 256 220611

On n2-highmem instances:

DataSet size #vCPUs / RAM (GB) #of Warehouses # of Virtual Users Throughput (TPM)

Small (< RAM) 8 vCPUs, 64GB 288 8 146491

8 vCPUs, 64GB 288 128 356427

16 vCPUs, 128GB 576 16 210814

AlloyDB Omni OLTP Benchmark User Guide 15

https://www.hammerdb.com/index.html
http://www.tpc.org/tpcc

16 vCPUs, 128GB 576 256 903690

Big (> RAM) 8 vCPUs, 64GB 1600 8 66821

8 vCPUs, 64GB 1600 128 224327

16 vCPUs, 128GB 3200 16 109398

16 vCPUs, 128GB 3200 256 456404

Prerequisites

A. You need to run the following steps from a client (driver) machine. Ensure that you have completed

the setup steps listed in the "Setup of Benchmark Driver Machine (Client)" section (especially

installation of the HammerDB utility).

B. Cleanup: If you are running multiple benchmarks in succession, ensure you follow the "Benchmark

Cleanup" section before doing your subsequent run.

Initial Setup on Client Machine

Create a hammerdb/ directory for HammerDB configuration scripts.

mkdir hammerdb

cd hammerdb

Then create setup.env file by running the following:

export SERVER_IP=1.2.3.4 # Private IP of the AlloyDB primary instance

export PGPORT=5432 # Postgres default port address. You do not need to change it unless

you use non-default port address.

export NUM_WAREHOUSE=576 # Number of TPC-C warehouses to load. This determines the overall

database size.

export NUM_USERS=256 # Number of users for running the benchmark.

cat << EOF > setup.env

PGHOST=${SERVER_IP}

PGPORT=${PGPORT}

NUM_WAREHOUSE=${NUM_WAREHOUSE}

NUM_USERS=${NUM_USERS}

EOF

Edit the generated setup.env file and change all the highlighted parameter values to those that are

suitable to your test setup.

AlloyDB Omni OLTP Benchmark User Guide 16

Script to load TPC-C data

In the context of the TPC-C benchmark, a "load step" refers to the process of populating the benchmark

database with initial data before running the actual performance test.

During this step, the database is populated with a specified number of warehouses, customers, and other

entities according to the TPC-C specifications. The purpose of the load step is to create a realistic workload

for the performance test, and to ensure that the test results are comparable across different systems.

After the load step is completed, the database is pre-populated with a defined set of initial data, and ready

to be used for the TPC-C benchmark test.

Follow the steps below to load the TPC-C database:

1. Create build-tpcc.tcl file by running the following:

cat << EOF > build-tpcc.tcl

CONFIGURE PARAMETERS FOR TPCC BENCHMARK

dbset db pg

dbset bm tpc-c

CONFIGURE POSTGRES HOST AND PORT

diset connection pg_host $::env(PGHOST)

diset connection pg_port $::env(PGPORT)

CONFIGURE TPCC

diset tpcc pg_superuser postgres

diset tpcc pg_user tpcc

diset tpcc pg_dbase tpcc

SET NUMBER OF WAREHOUSES AND USERS TO MANAGE EACH WAREHOUSE

THIS IMPORTANT METRIC ESTABLISHES THE DATABASE SCALE/SIZE

diset tpcc pg_count_ware $::env(NUM_WAREHOUSE)

diset tpcc pg_num_vu 10

LOG OUTPUT AND CONFIGURATION DETAILS

vuset logtotemp 1

print dict

CREATE AND POPULATE DATABASE SCHEMA

buildschema

vudestroy

AlloyDB Omni OLTP Benchmark User Guide 17

quit

EOF

2. Execute the load command as shown below and wait for the command to finish. During this

command, you may run docker logs -f build-tpcc to follow its progress.

docker run \

--detach \

--name build-tpcc \

--env-file setup.env \

-v $PWD/build-tpcc.tcl:/build-tpcc.tcl \

tpcorg/hammerdb:postgres ./hammerdbcli auto /build-tpcc.tcl

Running the TPC-C benchmark

In this step, we will initiate the actual TPC-C performance test. The TPC-C benchmark will be executed

using the populated database from the load step. The benchmark generates a series of transactions that

simulate a typical business environment, including order entry, payment processing, and inventory

management. The workload is measured in "transactions per minute" (TPM), which represents the number of

complete business transactions that the system can handle in one minute.

The run step is designed to stress the database system under realistic conditions and provide a standard way

of measuring performance that can be compared across different database systems. Vendors and customers

widely use the results of the TPC-C benchmark to evaluate the performance of different database systems

and hardware configurations.

The following script will run the TPC-C benchmark for about 1 hour after approximately 10 minutes of warm

up.

1. Create run-tpcc.tcl script by running the following:

cat << EOF > run-tpcc.tcl

dbset db pg

dbset bm tpc-c

CONFIGURE PG HOST and PORT

diset connection pg_host $::env(PGHOST)

diset connection pg_port $::env(PGPORT)

CONFIGURE TPCC DB

diset tpcc pg_superuser postgres

diset tpcc pg_user postgres

AlloyDB Omni OLTP Benchmark User Guide 18

diset tpcc pg_dbase tpcc

BENCHMARKING PARAMETERS

diset tpcc pg_driver timed

diset tpcc pg_rampup 10

diset tpcc pg_duration 60

diset tpcc pg_vacuum false

diset tpcc pg_partition false

diset tpcc pg_allwarehouse true

diset tpcc pg_timeprofile true

diset tpcc pg_connect_pool false

diset tpcc pg_dritasnap false

diset tpcc pg_count_ware $::env(NUM_WAREHOUSE)

diset tpcc pg_num_vu 1

loadscript

print dict

vuset logtotemp 1

vuset vu $::env(NUM_USERS)

vucreate

vurun

quit

EOF

2. Run the script as follows:

docker run \

--detach \

--name run-tpcc \

--env-file setup.env \

-v $PWD/run-tpcc.tcl:/run-tpcc.tcl \

tpcorg/hammerdb:postgres ./hammerdbcli auto /run-tpcc.tcl

Similar to before, you may run docker logs -f run-tpcc to follow the progress.

3. Now wait for the run-tpcc.sh script to finish. The script will take approximately 1.5 hours to

complete (pg_rampup = 10mins, pg_duration = 60mins, and time spent initializing and terminating

the HammerDB workers).

Analyzing TPC-C Results

In the context of the TPC-C benchmark, NOPM and TPM are performance metrics used to measure the

performance of a database system. NOPM stands for "New Orders Per Minute" and measures the number of

new order transactions that the system can handle in one minute. The New Order transaction is one of the

most important transactions in the TPC-C benchmark and involves creating a new order for a customer.

TPM stands for "Transactions Per Minute" and measures the total number of completed business

transactions that the system can handle in one minute. This includes not only New Order transactions but

also Payment, Delivery, Order Status, and other types of transactions defined in the TPC-C benchmark.

AlloyDB Omni OLTP Benchmark User Guide 19

In general, TPM is considered to be the primary performance metric for the TPC-C benchmark, as it provides

an overall measure of the system's ability to handle a realistic workload. However, NOPM can also be a

useful metric for systems that are heavily focused on processing new orders, such as e-commerce or retail

systems.

At the end of the run, you can extract the performance results from the logs of run-tpcc:

$ docker logs run-tpcc |& grep NOPM

Vuser 1:TEST RESULT : System achieved 95033 NOPM from 218572 PostgreSQL TPM

From the sample output, we can see that the performance is 218572 TPM.

TPC-B Benchmark

pgbench is a simple program, provided by PostgreSQL, for running benchmark tests. It is simpler to run, and

hence more convenient. However, in our experience, the workload generated from pgbench can be less

representative of real-world usage.

Benchmark configurations

These tables show the benchmark configurations that we used, and the results we obtained in our internal

runs. Please note that the results may fluctuate across different runs. Nevertheless, your results should

generally align with the findings we have achieved.

On n2d-standard instances:

DataSet size #vCPUs / RAM (GB) Scale factor Clients Throughput (TPS)

Small (< RAM) 8 vCPUs, 32GB 800 8 4886

8 vCPUs, 32GB 800 128 13259

16 vCPUs, 64GB 1600 16 8993

16 vCPUs, 64GB 1600 256 21442

Big (> RAM) 8 vCPUs, 32GB 8500 8 3632

8 vCPUs, 32GB 8500 128 10208

16 vCPUs, 64GB 17000 16 6611

16 vCPUs, 64GB 17000 256 12539

On n2-highmem instances:

AlloyDB Omni OLTP Benchmark User Guide 20

https://www.postgresql.org/docs/current/pgbench.html

DataSet size #vCPUs / RAM (GB) Scale factor Clients Throughput (TPS)

Small (< RAM) 8 vCPUs, 64GB 1600 8 5339

8 vCPUs, 64GB 1600 128 12940

16 vCPUs, 128GB 3200 16 9507

16 vCPUs, 128GB 3200 256 22637

Big (> RAM) 8 vCPUs, 64GB 17000 8 2408

8 vCPUs, 64GB 17000 128 3383

16 vCPUs, 128GB 34000 16 3012

16 vCPUs, 128GB 34000 256 8410

Load data

To load the initial dataset, you pick a "scale factor". The larger the scale factor, the larger the database

size.

First, specify some parameters:

export SERVER_IP=1.2.3.4 # Private IP of the AlloyDB primary instance

export SCALE_FACTOR=100 # Scale factor for pgbench

Then, to load the initial dataset:

pgbench -h ${SERVER_IP} -U postgres postgres --initialize --scale=${SCALE_FACTOR}

Run TPC-B

We first run pgbench for 10 mins (warm-up phase), then 1 hour (actual run phase). The results from the run

phase will be used.

First, specify some parameters:

export SERVER_IP=1.2.3.4 # Private IP of the AlloyDB primary instance

export CLIENTS=16 # Number of parallel clients

Warm-up phase:

pgbench -h ${SERVER_IP} -U postgres postgres --time=600 --protocol=prepared --client=${CLIENTS}

--jobs=${CLIENTS}

Actual run phase:

pgbench -h ${SERVER_IP} -U postgres postgres --time=3600 --protocol=prepared --client=${CLIENTS}

AlloyDB Omni OLTP Benchmark User Guide 21

--jobs=${CLIENTS}

At the end of the run, pgbench will print an output like:

transaction type: <builtin: TPC-B (sort of)>

scaling factor: 8500

query mode: prepared

number of clients: 64

number of threads: 64

duration: 3600 s

number of transactions actually processed: 34028870

latency average = 6.770 ms

latency stddev = 17.611 ms

tps = 9452.335211 (including connections establishing)

tps = 9452.470670 (excluding connections establishing)

The final line (tps = ...) reports the TPS (transactions per second) that pgbench was able to perform on

the database.

Appendix 1: Observability

To further understand the behavior of the database system, you can use the GCE monitoring page to monitor

important system metrics, such as CPU usage, memory usage, etc. This monitoring information can be found

by navigating to the "Compute Engine -> VM instances -> Instance" page and/or navigating to the

Observability page on https://console.cloud.google.com.

For instance, the below picture shows the CPU/Memory/Disk/Network metrics of a GCE instance during the

TPC-C run.

AlloyDB Omni OLTP Benchmark User Guide 22

https://console.cloud.google.com

If you are running AlloyDB Omni on other hardware, you can use the iostats program to check real time

CPU/IO stats. (If you get an error iostat: command not found, install the program with sudo apt
install -y sysstat.)

iostat -m 10

This will print statistics about the I/O devices every 10 seconds, e.g.:

$ iostat -m 10

Linux 6.1.0-21-cloud-amd64 (omni-server-16vcpu) 06/26/24 _x86_64_ (16 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle

0.17 0.57 0.26 0.18 0.00 98.82

Device tps MB_read/s MB_wrtn/s MB_dscd/s MB_read MB_wrtn MB_dscd

sda 805.89 0.08 21.04 1.50 517 138491 9895

...

For details about the output of iostat, please refer to its documentation.

AlloyDB Omni OLTP Benchmark User Guide 23

https://linux.die.net/man/1/iostat

Appendix 2: Notes on performance benchmarking

Benchmark Cleanup

This step is important if you are planning to execute multiple benchmarks in succession. Performing a proper

cleanup between each benchmark is a critical prerequisite for accurate and reliable benchmarking results.

This includes deleting previous benchmark data (i.e. benchmark database), and rebooting the AlloyDB Omni

instance (that clears caches at database and operating systems level) before running another benchmark. A

proper benchmark cleanup ensures that residual effects from previous benchmarks do not affect the

performance measurements of the new benchmark. It also helps to ensure consistency and repeatability of

the benchmark results, which is essential for making meaningful comparisons between different systems or

identifying areas for optimization in hardware, software, or configuration.

Follow the URL https://cloud.google.com/compute/docs/instances/stop-start-instance to learn more about

how to reboot a GCE VM.

To drop the previous benchmark database, you can use the following psql command from the client

machine.

export SERVER_IP=[Private IP of AlloyDB Omni instance]

psql -h $SERVER_IP -U postgres -c "DROP DATABASE IF EXISTS [database_name];"

You may also need to remove docker containers left behind from earlier runs:

docker container prune

Understanding system performance

Since AlloyDB Omni can be run on many different environments, it is important to know that the transaction

performance is highly dependent on CPU/Memory/IO/Network latency.

1. When most data fits in memory, it is a CPU bound workload, and more CPUs will get more transaction

performance.

2. When most data can not fit in memory, it becomes an IO bound workload, more disk IOPS/throughput

will get more transaction performance. IO latency is also important for OLTP workload, when a

transaction commits, it needs to flush WAL to disk before commit, so IO latency is directly related to

commit latency.

3. Query latency is affected by network latency between client and server communication. It is

recommended to have the client and server located in the same local network or same zone for

benchmarking purposes.

Before benchmarking, It is useful to be able to characterize system performance of the hardware. In this

section, we list down some commands that can be used to measure:

1. Performance of the CPU

2. Performance of the disk

3. Network latency between client and server

AlloyDB Omni OLTP Benchmark User Guide 24

https://cloud.google.com/compute/docs/instances/stop-start-instance

CPU performance

CPU performance can be measured by sysbench benchmark, see https://github.com/akopytov/sysbench for

installation instructions.

Use the following command to measure cpu performance:

sysbench cpu --cpu-max-prime=10000 --threads=[Number of vCPUs] run

Disk performance

Fio can be used to measure disk performance.

Use the following commands to measure IOPS, throughput and latency.

IOPS

fio --time_based --runtime=60s --ramp_time=2s --ioengine=libaio --direct=1 --name=iops_test

--filename=/mnt/disks/pgsql/fio_test --bs=8k --iodepth=256 --size=4G --readwrite=randrw

--rwmixread=25 --verify=0 --group_reporting=1

Write Throughput

fio --name=write_throughput --filename=/mnt/disks/pgsql/fio_test --numjobs=16 --size=4G

--time_based --runtime=60s --ramp_time=2s --ioengine=libaio --direct=1 --verify=0 --bs=256k

--iodepth=256 --rw=randwrite --group_reporting=1

Latency

fio --time_based --runtime=60s --ramp_time=2s --ioengine=libaio --direct=1 --name=latency_test

--filename=/mnt/disks/pgsql/fio_test --bs=256k --iodepth=1 --size=4G --readwrite=randwrite

--verify=0

Network latency

Ping can be used to measure network latency.

ping [IP address] -c 100

AlloyDB Omni OLTP Benchmark User Guide 25

https://github.com/akopytov/sysbench

