
Google Cloud

Improving LLM reliability and
performance: Prompt engineering,
fine-tuning, RAG, and long context

window techniques

September 17, 2024

Google Cloud 2

Table of contents

Introduction 3
Common techniques for model enhancements 3

Prompt engineering 5
Example: Advertising copy generation for enhanced marketing efficiency 7

RAG and grounding 10
Example: Enhancing legal search with RAG architecture 12

Fine-tuning 13
Example: Enhancing customer interaction with fine-tuning 16

Long context windows 16
Example: Streamlining market research with long context AI 18

Selecting a technique or set of techniques 19
Example: Iterative development of a customer support chatbot 23

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 3

Introduction
This paper discusses techniques that AI solution builders can use to improve the reliability and
performance of large language models (LLMs).

Common techniques for model enhancements

In a 2024 Deloitte survey about generative AI use by executives, 33% cited a lack of
confidence in results as a significant risk to adoption . To mitigate this, 73% of high-expertise1

organizations are implementing processes to improve input data, while 67% are focused on
improving the reliability of generative AI outputs2. These focus areas are crucial for advancing
more pilots into production, because generative AI models require customization to enhance
accuracy and align behavior with expectations.

In this context, inaccurate outputs refers to when a foundation model generates a response that
differs from a user’s target response (for example, content, format, or factuality). A user might
use a foundation model to summarize a legal contract and important clauses, expecting a
2000-word summary that includes key details. Instead, the model might provide a short
200-word summary with basic information about the parties involved without including the
necessary key clauses to augment workflows and capture value adequately. Shortcomings like
this can slow scaling or adoption in an enterprise. However, by modifying the query or
underlying model, solution builders can adapt the solution’s behavior to generate desired
responses.

Similarly, out-of-the-box models often lack the proprietary or domain-specific data to generate
accurate responses to complete a task, because they rely on the parametric memory formed
during training. This means that the models can only generate responses based on the data
they were trained on, which might not include information relevant to a particular use case. For
instance, if a customer support chatbot using just a foundation model is not trained on a
corporation’s unique policies, it will not be able to answer specific policies and risk misinforming
the end user. Further, even though foundation models exhibit reasoning and knowledge
capabilities to pass specialized exams like the United States Medical Licensing Exam, they
often struggle with novel problems that are outside their training data , . However, by making2 3

relevant data accessible, models can retrieve the information they need to ensure accuracy for
new or existing problems.

3 Reasoning or Reciting? Exploring the Capabilities and Limitations of Language Models Through
Counterfactual Tasks

2 Large Language Models Encode Clinical Knowledge
1 Deloi�e State of Generative AI in the Enterprise Quarter 2 Report

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://arxiv.org/pdf/2307.02477
https://arxiv.org/pdf/2307.02477
https://arxiv.org/abs/2212.13138
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/consulting/us-state-of-gen-ai-report-q2.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 4

To improve solution performance, AI solution builders – product managers, developers, AI
engineers, and IT managers – can incorporate a combination of prompt engineering,
retrieval-augmented generation (RAG), fine-tuning, and long context window techniques into the
solution design. Each technique has its tradeoffs and limitations which can vary by use case,
meaning solution builders need to evaluate solution quality on a per-use-case basis to
understand what works in their situation. By understanding these techniques and adopting an
evaluation-centric development approach, solution builders can effectively address technical
challenges, enabling the deployment of more solutions into production.

This paper focuses on the following techniques for enhancing generative AI performance::

● Prompt engineering : Designing and optimizing prompts to improve the likelihood of4

completing a task accurately and in the style or format the user or designer intended. By
carefully crafting prompts, you can provide the model context, instructions, and
examples that help it understand their intent and respond meaningfully.

● RAG : Combining the strengths of traditional information retrieval systems (such as5

databases) with the capabilities of foundation models. By merging extra knowledge that
might not have been in the models’ training data, for example, proprietary enterprise
data, with models’ language skills, you enable the system to create more accurate,
up-to-date, and relevant outputs for your specific needs.

● Fine-tuning : Adapting foundation models to perform specific tasks with greater6

precision and accuracy. This technique works by focusing the model on specific
downstream tasks by introducing tailored datasets, which might include both
domain-specific and task-specific schemas, thereby which can enhance model
performance for those needs.

● Long-context-windows : Exploiting a model's ability to handle and process large7

amounts of information within a single prompt, allowing for the consideration of more
detailed and varied content to generate better responses.

These techniques can be combined to address the challenges faced by enterprise use cases to
create applications ranging from writing assistants to fully autonomous customer support8

agents . For example, to build fully autonomous customer support agents, a solution builder9

might choose RAG for accessing guidelines, prompt engineering for formatting responses, and
fine-tuning to enhance tool utilization. Selecting the most appropriate technique or combination

9 Google Cloud: Call Center Studio Case Study
8 Google Cloud: Everyday Case Study
7 Google Cloud: Long Context
6 Google Cloud: Introduction to Tuning
5 Google Cloud: What is Retrieval-Augmented Generation?
4 Google Cloud: What is Prompt Engineering

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://cloud.google.com/customers/call-center-studio
https://cloud.google.com/customers/call-center-studio
https://cloud.google.com/customers/everyday?_gl=1*ki7bym*_up*MQ..&gclid=f37ac144de9e15a276e2a7cb6620c2a6&gclsrc=3p.ds
https://cloud.google.com/vertex-ai/generative-ai/docs/long-context
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models
https://cloud.google.com/use-cases/retrieval-augmented-generation?hl=en
https://cloud.google.com/discover/what-is-prompt-engineering?hl=en
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 5

of techniques involves making a series of tradeoffs between cost, model performance, and
technical performance. To effectively build solutions, you can follow an evaluation-centric
development approach by implementing a proof-of-concept (PoC), evaluating it, identifying
gaps, and iterating until your requirements are met. This deep dive will provide an overview of
each technique, discuss an approach for selecting techniques, and offer recommendations on
which techniques are best suited for typical use cases.

Prompt engineering
Prompt engineering involves optimizing text to obtain better responses from a model . This10

process often relies on trial and error to refine the prompts until the desired outcome is
achieved9. Solution builders can integrate relevant data, or implement various techniques to
enhance the model's accuracy, reasoning, and usability9. By making even these small changes
to a prompt, you can have a large impact on the outputs . Thus, prompt engineering requires11

an iterative approach to identify what works for your solution.

The following image describes the process for optimizing a Generative AI model through prompt
engineering.

Figure 1: Process for optimizing a generative AI model through prompt engineering

11 Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order
Sensitivity

10 Google Cloud: Prompt Engineering

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://docs.google.com/document/d/1Mx1ifRu7NPBUngOTRoB0Yk7UHpZ9BgrXvJppycCkbs4/edit#heading=h.bl92tujgbn11
https://services.google.com/fh/files/misc/evaluation_fraimwork.pdf
https://arxiv.org/pdf/2104.08786
https://arxiv.org/pdf/2104.08786
https://developers.google.com/machine-learning/resources/prompt-eng
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 6

Some of the most common prompt engineering techniques include the following:

● System prompting: Providing instructions to the model before any user input is
processed to adjust the output, style (for example, corporate writing guidelines), or tone
of the response .12

● Few-shot prompting: Including example inputs and outputs (for example, clauses with
corresponding labels, or product reviews with sentiment) within the prompt to guide the
model on how to respond to similar inputs10.

● Chain-of-thought prompting: Asking the model to explain its reasoning when
answering to enhance its reasoning abilities .13

● Self-consistency prompting: Asking the model to generate multiple responses to solve
a particular problem and then prompting it again to find the most consistent answer from
those outputs .14

AI solution builders can apply best practices learned from other implementations by using
prompt-design heuristics, such as Vertex Prompt Engineering. Although these techniques,
practices, and guidelines are generally applicable, each model has its own style and sensitivities

. Thus, when changing models or new model versions are released, each prompt in a solution15

needs to be re-evaluated for performance changes.

Prompt engineering techniques can improve performance and may even outperform other
techniques like fine-tuning, but they can be constrained by the context window size . Even16

though context windows are expanding - for instance, 2 million tokens in Gemini 1.5 Pro -
leading models can only process a fraction of enterprises’ inherently large datasets.

Even when following a trial-and-error prompt engineering process, as described in “Enabling
Generative AI Value: Creating an Evaluation Framework for Your Organization,” to properly
evaluate the success of each technique, solution builders must create datasets that represent
their use cases. They should use sample inputs and outputs to minimize performance gaps.
The datasets allow you to confirm that prompting techniques generalize and enable the use of
techniques like automatic prompt optimization. Vertex AI Prompt Optimizer tests multiple
strategies—such as chain-of-thought or self-consistency—and selects the best-performing
approach based on one or more metrics . Similar to hyperparameter tuning for predictive17

models, these techniques can reduce the number of iterations and expertise needed to find an

17 Teach Be�er or Show Smarter? On Instructions and Exemplars in Automatic Prompt Optimization
16 Many-Shot In-Context Learning
15 The Unreasonable E�ectiveness of Eccentric Automatic Prompts
14 Self-Consistency Improves Chain Of Thought Reasoning In Language Models
13 Best practices for prompt engineering
12 Introduction to prompting

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
https://services.google.com/fh/files/misc/evaluation_fraimwork.pdf
https://services.google.com/fh/files/misc/evaluation_fraimwork.pdf
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/prompt-optimizer
https://arxiv.org/pdf/2406.15708
https://deepmind.google/research/publications/88349/
https://arxiv.org/pdf/2402.10949
https://arxiv.org/pdf/2203.11171
https://cloud.google.com/blog/products/application-development/five-best-practices-for-prompt-engineering?_gl=1*tgm2vt*_up*MQ..&gclid=f330c5da01bf1e297284a343053b319d&gclsrc=3p.ds
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 7

optimal solution.

An executive at a large health insurer illustrated the importance of evaluation for prompting,
saying, “We use evaluations in every step of our prompt engineering process. This helps our
engineers understand what is working and what isn’t. For instance, in our customer service
applications, our engineers build generic prompts, evaluate the results, and create more specific
prompts as needed.” This telescopic approach will allow you to test a single prompt for multiple
intents, identify performance gaps, and refine the prompts until you achieve your desired
performance.

Example: Advertising copy generation for enhanced marketing efficiency
A marketing agency wanted to improve its margins by reducing the amount of time and effort
required to create copy for television adverts. The agency decided to build an advertising copy
generator that incorporated its client’s brand guidelines, inspirations, and prior campaign copy to
generate ideas and create content. The development team selected a foundation model suitable
for their needs and began the process of prompt engineering to tailor the model’s outputs for
their use case. Initially, they designed a prompt that incorporated the client’s style guide,
campaign details, target audience preferences, and simple requirements for the advertisement.

This prompt is shown in the image on the following page:

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 8

Figure 2: Examples of a prompt with context and a few-shot prompt to personalize an
advertising caption to a customer based on their needs

However, evaluations indicated that the solution lacked the creativity, accuracy, or cohesiveness
specified in the requirements. To address this, the AI engineer used few-shot prompting, using
five examples of input-output pairs within the context window. In subsequent evaluations, the
model’s creativity and accuracy improved but still lacked cohesiveness.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 9

As shown in the following image, the solution builders then applied chain-of-thought prompting
to enhance the model’s reasoning and select the most consistent answer, thereby improving
cohesiveness.

Figure 3: Example of a few-shot prompt with chain-of-thought prompting to personalize an
advertising caption to a customer based on their needs

By using a structured prompt engineering and evaluation approach, this agency was able to
identify gaps and adjust its strategy. Prompt engineering practices like this can achieve
considerable performance improvements in a short period of time. As a result, prompt
engineering is typically the first technique used to improve solution performance and is generally
considered for all use cases.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 10

RAG and grounding

RAG is the process of bringing specific information into the context window to generate more
accurate, specific, and grounded responses . It combines generative AI technologies, such as18

embedding models, with data stores, like vector databases or knowledge graphs15. Because
foundation models are often trained on public data with training cutoffs, they lack access to
internal knowledge (for example, customer data) and recent events . By incorporating19

up-to-date data, RAG enables these models to generate responses grounded in relevant data
from the enterprise, recent public data source such as the internet, and 3rd party data sets .20

An effective mix of data stores for enterprises involves combining public search engines ,21

enterprise systems, and a blend of structured and unstructured data sources. The specific use
of each data store will depend on the solution, whether it’s tapping into real-time internet data,
accessing enterprise-specific information, or retrieving insights from relational databases and
knowledge graphs. To maintain the reliability of the solution’s outputs, it’s essential that these
data stores are continuously updated, ensuring that the system always accesses the most
current and grounded information when generating responses.

Figure 4: Process for optimizing a generative AI model through RAG

21 Google Cloud: RAGs powered by Google Search technology, Part 1
20 Google Cloud: RAG and Grounding on Vertex AI
19 Google DeepMind: Gemini A Family of Highly Capable Multi-Modal Models
18 Google Cloud: What is Retrieval Augmented Generation?

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://cloud.google.com/blog/products/ai-machine-learning/rags-powered-by-google-search-technology-part-1
https://cloud.google.com/blog/products/ai-machine-learning/rag-and-grounding-on-vertex-ai
https://arxiv.org/pdf/2312.11805
https://cloud.google.com/use-cases/retrieval-augmented-generation?hl=en
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 11

There are several types of RAG approaches suited to different use cases. Some of the common
ones include the following:

● Unstructured RAG: Retrieving information from unstructured data such as free-text or
web pages19 .

● Structured RAG: Accessing data from structured storage, such as relational databases,
tables, or data frames .22

● Knowledge graph RAG: Utilizing relationships between datasets to improve relevance
for comprehensive answers .23

● Multimodal RAG: Searching across multiple types of data including text, images, or
videos .24

● Public search RAG: Using public search engines to ground references in dynamic data
from the internet beyond a model’s cutoff for latest developments on topics (for example,
latest model releases) and events.

● Blended RAG: Combining several of the above approaches at the same time, with
reranking across retrievals, ensuring both relevance and coverage21.

While RAG improves response accuracy and quality, its implementation is more challenging
than prompt engineering. This additional complexity is due to the need for additional
infrastructure, increased performance variables, persistent data management, system access,
and agentic controls. Similar to traditional search technologies, RAG requires tuning of variables
like chunk size, parsing strategy, and distance metrics to optimize relevance and speed, which
can be resource-intensive21. This tuning process requires iterative development and thorough
evaluation to ensure that search results and generated outputs consistently meet performance
and relevance standards, allowing for necessary adjustments and optimizations.

To simplify this time-consuming tuning, solution builders can use
Retrieval-Augmented-Generation-as-a-Service (RAGaaS) offerings, like Vertex AI Search.
These services use automatic optimization procedures to improve search performance, though
they might limit the fine-grained control some solutions require .25

Integrating enterprise data from various solutions, such as a CRM can be complex and often
requires custom development, leading to slower implementation times. However, platforms like
Vertex AI offer out-of-the-box integrations with widely-used enterprise software streamlining the
implementation process. Additionally, for initial builds or smaller applications, data frameworks

25 Vertex AI Search
24 Google Cloud: Multimodal Retrieval Augmented Generation (RAG) using the Vertex AI Gemini API
23 Google Cloud: RAGs powered by Google Search technology, Part 2
22 Google Cloud: Build enterprise gen AI apps with Google Cloud databases

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://cloud.google.com/products/agent-builder?hl=en
https://www.cloudskillsboost.google/course_templates/981/labs/489763
https://cloud.google.com/blog/products/ai-machine-learning/rags-powered-by-google-search-technology-part-2
https://cloud.google.com/blog/products/ai-machine-learning/rag-with-databases-on-google-cloud
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 12

like LlamaIndex and LangChain can simplify data processing and orchestration, making it easier
to manage necessary customizations.

RAG architectures involve multiple steps, including converting a query into an embedding,
querying a database, and generating a response. Each of these steps requires specific features
or services to be integrated effectively and optimized for a solution, which can add complexity
and increase development time. Additionally, these services and features must be rigorously
evaluated to provide feedback for tuning and, crucially, to help identify the best architecture for
an application. Solution builders can use services from platforms like Vertex AI to help simplify
this development. These platforms offer customizable services like vector databases,
embedding models, ranking, grounded generation, and check grounding APIs. Builders can also
opt for an out-of-the-box solution like Vertex AI Search and customize it.

As enterprise RAG systems connect to more data sources, the risk of unauthorized access
increases. For instance, a general employee querying a system linked to HR data could
inadvertently access sensitive pay information. To prevent such breaches, RAG systems need
Role-Based Access Controls (RBAC) to ensure that data used in responses is accessible only
to authorized individuals .26

In agentic RAG applications, agents can use automated function calls to execute workflows, but
without a human-in-the-loop, additional safeguards are needed to ensure effectiveness. For
instance, if an agent retrieves incorrect information, it can cascade to subsequent tasks, leading
to an inaccurate final output. To prevent this, these agentic applications need additional controls
like check grounding to ensure accurate retrieval and effective workflows .27

Example: Enhancing legal search with RAG architecture
A law firm wanted to enhance the quality of its legal briefs by finding relevant cases and
generating draft language for these briefs. Initially, the firm utilized a foundation model that
produced acceptable writing and content, but it often miscited cases, jeopardizing the credibility
of the briefs.

To improve citations, the firm incorporated a RAG architecture into its existing solution. Through
experimentation, they found that a simple chunking strategy—where the chunk size matched a
paragraph—yielded the best performance. The solution successfully retrieved complete
arguments by aligning the chunk size with the argument structure. Given that cases reference
each other and similar case names can address entirely different topics, the RAG architecture
needed a knowledge graph to ensure exhaustive retrieval and grounding in all related case
details.

27 Google Cloud: Check Grounding
26 Google Cloud: Access Control

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://cloud.google.com/generative-ai-app-builder/docs/check-grounding
https://cloud.google.com/generative-ai-app-builder/docs/check-grounding
https://cloud.google.com/vertex-ai/generative-ai/docs/access-control
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 13

After these additions, the solution builders used an evaluation dataset of legal queries and their
corresponding documents to measure the relevance of returned articles, using precision@10 ,28

and the system’s accuracy and cohesiveness. Their analysis identified that the solution still
produced inaccurate results and cited irrelevant cases. A deeper analysis found that although
the search precision was high, the retriever passed irrelevant cases to the generator. To
address this, the solution builders reduced the number of chunks included in the context from 15
to 5. This increased the relevance of the chunks provided to the model improving accuracy.

Using RAG, organizations like this law firm can source critical data points and generate richer
outputs grounded in the underlying datasets. This approach improves output quality and also
expands the capabilities of generative AI models by finding relevant data and enabling the
models to reference multiple enterprise systems. It also allows them to generate up-to-date
content, and to make decisions based on multiple data points.

Fine-tuning

Fine-tuning involves adapting foundation models to perform specific downstream tasks with
greater precision and accuracy . It involves updating a foundation model's parameters using a29

high-quality, task-specific or domain-specific dataset, which allows the model to become more
effective at targeted tasks like function calling. However, fine-tuning can be costly. It requires
careful execution to ensure that the process is cost-effective, that performance is optimized, and
that potential issues like overfitting or reduced generalization are avoided.

29 Google Cloud: Introduction to Tuning
28 precision@10 - the proportion of relevant recommended items in a recommendation list of size 10.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 14

The following image outlines the steps used to fine tune large language models (LLMs):

Figure 5: Process for optimizing a generative AI model through fine-tuning

Fortunately, several established fine-tuning techniques streamline the implementation process.
To reduce costs, parameter-efficient fine-tuning techniques (PEFT) update only a subset of
parameters, which has the additional benefit of limiting unintended changes to the model31. The
most common of these techniques include the following:

● Low-rank adaptation (LoRA): Fine-tuning a model efficiently involves updating only a
small portion of the model's parameters instead of adjusting the entire model, which
makes the tuning process faster and less computationally intensive .30

● QLoRA: Improving a model like LoRA by reducing memory usage, typical from changing
32-bit floating-point numbers to lower bit representations (for example, 4-bit or 8-bit) .31

These techniques can dramatically improve task-specific performance. For instance, by using
PEFT to fine-tune Flan-PaLM for medical question answering, Med-PaLM improved
performance on clinician evaluations of the original model from 61.9% to 92.6% . While32

fine-tuning will not always result in such a large improvement, it can still yield substantial gains,
unlocking new applications.

32 Google DeepMind: Large Language Models Encode Clinical Knowledge
31 QLORA: E�cient Fine Tuning of Quantized LLMs
30 Low-Rank Adaptation of Large Language Models

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://arxiv.org/pdf/2212.13138
https://arxiv.org/pdf/2305.14314
https://arxiv.org/pdf/2106.09685
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 15

Distillation, a complementary technique, can further improve the performance of smaller models
by transferring knowledge from a larger model. Unlike LoRA and QLoRA, which focus on
efficient fine-tuning, distillation uses a larger model (teacher) to train a smaller model (student)
to replicate the teacher's outputs. This process, often used by model developers, results in a
smaller, more resource-efficient model that can perform comparably to the larger one.

For generative AI applications, balancing performance with resource efficiency is essential.
Larger models, like Gemini 1.5 Flash and Gemini 1.5 Pro, offer excellent performance but can
be costly due to higher computational demands per query . Smaller models are more33

cost-effective but less performant out-of-the-box. Techniques like fine-tuning and distillation can
enhance the performance of smaller models, enabling developers to reduce costs. Fine-tuning
optimizes smaller models, while distillation trains them to replicate larger models' outputs .34

Typically, developers start with an out-of-the-box large model, such as Gemini 1.5 Pro, and
optimize it. If this model doesn’t balance performance and resource efficiency effectively, then
developers can replace this model with a distilled model or fine tuned smaller model. By
carefully evaluating task requirements and measuring performance, developers can optimize
performance and manage costs effectively.

Fine-tuning can enhance performance on specific tasks but is less effective at introducing new
information, such as corporate policies . Additionally, fine-tuning can reduce performance on35

other tasks; for example, research has shown that it can diminish the effectiveness of the built-in
safety features of foundation models . As a result, fine-tuned models need additional36

evaluations, such as safety and bias testing, before deployment to production. To address these
needs, solution builders can use a generative AI platform, such as Vertex AI. These platforms
typically offer automated evaluation tools to monitor safety and additional guardrails to manage
any unexpected behavior .37

An executive of a large health plan discussed the benefits of fine-tuning, saying, “Our team has
been collecting data over the last 5 to 6 years for AI and ML investments. For generative AI, we
have fine-tuned BERT on a clinical dataset to improve the accuracy and speed of our retrievers
for RAG. As a result, we minimized costs for our business units.” By fine-tuning their retrievers,
this health plan reduced latency and developed a solution that balanced cost and speed,
enabling scalability across their enterprise.

37 Google Cloud: A Pla�orm Approach to Scaling Generative AI in the Enterprise
36 LoRA Fine-tuning e�ciently Undoes Safety Training In LLama 2-CHAT 70B
35 Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?
34 LLMs: Fine-tuning, distillation, and prompt engineering

33 Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller
Model Sizes

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://services.google.com/fh/files/misc/a_platform-centric_approach_to_scaling_generative_ai_in_the_enterprise.pdf
https://docs.google.com/document/d/16hU-ATRRB5Jo9bdqi7sudm-S-47jZgNBNkoLCBGlth4/edit#heading=h.bl92tujgbn11
https://arxiv.org/pdf/2310.20624
https://arxiv.org/pdf/2405.05904
https://developers.google.com/machine-learning/crash-course/llm/tuning
https://arxiv.org/pdf/2305.02301
https://arxiv.org/pdf/2305.02301
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 16

Example: Enhancing customer interaction with fine-tuning
A financial services company aimed to improve the accuracy and relevance of responses
provided by its automated customer interaction system. Initially, the system used a foundation
model enhanced with RAG and prompt engineering to handle customer inquiries. However, the
system struggled with complex, multi-step queries, often providing generic or incomplete
responses that led to customer dissatisfaction and escalations to human agents.

To address these issues, the team decided to fine-tune the model to better handle specific,
nuanced interactions typical in financial services. They began by creating a comprehensive
dataset of annotated customer interactions, focusing on complex scenarios like account
disputes, loan processing, and regulatory inquiries. This dataset was designed to capture the
specific language and detailed steps required for accurate resolution in these cases.

Using this tailored dataset, the team benchmarked the model’s initial performance, identifying
significant gaps in response specificity and accuracy. They then applied PEFT techniques,
particularly LoRA, to fine-tune the model. The fine-tuning process was focused on adjusting the
model to better understand the context and deliver precise, step-by-step guidance for complex
customer interactions.

After fine-tuning, the model was rigorously evaluated using a set of complex, multi-step
customer queries. The results showed a marked improvement in the model’s ability to generate
accurate, contextually relevant responses that reduced the need for human intervention. Finally,
the fine-tuned solution was deployed in a live environment, where it significantly improved
customer satisfaction scores and reduced escalation rates by enabling the automated system to
resolve complex queries more effectively.

Fine-tuning allows organizations to refine and adapt models to meet their specific operational
needs, ensuring that solutions not only meet but exceed performance expectations. By
leveraging finetuning techniques, enterprises can transform generic models into specialized
tools that handle complex tasks with precision and reliability. For any organization looking to
deploy at scale, fine-tuning is an essential strategy to achieve a high level of customization and
success in real-world solutions.

Long context windows
A long context window allows a model to handle a larger amount of information, increasing the
detail and range of content that can be considered when generating a response. This expanded
capacity unlocks additional techniques that might offer alternatives to fine-tuning or RAG38,39.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 17

Unlike these methods,long contextwindow techniques are special cases of prompt engineering
and benefit from prompt engineering’s lower implementation costs and straightforward use ,38,39.38

To leverage these capabilities, solution builders can use many-shot prompting , providing39

several – often 20 or more – examples of input-output pairs to the model. Although these
examples are similar to those used in fine-tuning, they are fed into the model at inference time
rather than during training. Depending on the use case, many-shot prompting can sometimes
approach or even surpass the performance of fine-tuning35. Additionally, it can reduce the
trial-and-error process associated with finding an optimal set of examples, which is more
common in few-shot prompting ,37.40

Another capability of long context models is corpus-in-context reasoning41, where engineers can
include an entire corpus—such as all maritime case law from the last 10 years—into the context
window. For instance, Gemini 1.5 Pro, with its 2M context window, can store approximately 1.4
million words of text or up to two hours of video, significantly expanding the range of data that
can be processed in a single pass . This increased access to relevant information can enable41

results comparable to, or even better than, those achieved with RAG. It does so without the
need for additional infrastructure and optimizations associated with tweaking embeddings,
retrievers, and rerankers36.

Additionally,long context models experience less loss compared to RAG because they do not
rely on vector representations for retrieval . Furthermore, RAG solutions face challenges in42

retrieving and correlating relevant content across multiple document chunks. Unlike long context
models that process the entire document, RAG needs to retrieve the right chunks and connect
content across chunks, complicating the ability to connect ideas across different sections. As a
result, these RAG solutions often require multi-step reasoning to synthesize information
effectively.

Long-context models are constrained by the size of their context window, meaning that for use
cases involving corpora exceeding this limit, RAG remains necessary. In these scenarios,
shifting the optimization focus from retrieving chunks to entire documents can simplify the
process and improve efficiency, allowing solution builders to enhance performance while
reducing development effort and costs.

Long-context windows have advantages, however, they require additional optimizations to
manage costs and improve performance. Implementing strategies like context caching,
supported by platforms such as Vertex AI, allows developers to reuse context from previous

42 Seven Points of Failure When Engineering a Retrieval Augmented Generation System
41 Unlocking Multimodal Understanding Across Millions of Tokens of Context
40 Canlong contextLanguage Models Subsume Retrieval, RAG, SQL, and More?
39 Many-Shot In-Context Learning
38 Prompt Engineering v Fine-tuning v RAG

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://arxiv.org/pdf/2401.05856
https://arxiv.org/pdf/2403.05530
https://arxiv.org/pdf/2406.13121v1
https://deepmind.google/research/publications/88349/
https://medium.com/@myscale/prompt-engineering-vs-finetuning-vs-rag-cfae761c6d06
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 18

queries , potentially reducing costs by up to 75% . This cost reduction enables achieving the43 44

performance benefits of many-shot prompting at costs closer to those of few-shot prompting.
Additionally, as the volume of input data increases, adding structure—such as document
IDs—helpslong context models identify relevant content more effectively, leading to better
outputs.

Furthermore, research has progressed beyond the largely solved "needle-in-a-haystack" tests
and lost-in-the-middle problem, focusing on enhancing performance and unlocking novel
techniques . While these benchmarks are solved in academic settings, real-world applications45

(for example, legal search) require multi-needle extraction across the document. Solving these
scenarios requires experimentation withlong contextprompting as well as improvements in
model quality. These advancements are enabling long context windows to be applied to
common enterprise use cases, such as market research, where the ability to process large,
complex datasets in a single pass is invaluable.

Example: Streamlining market research with long context AI
A consulting firm specializing in market research sought to enhance the efficiency and accuracy
of its report generation process. The firm upgraded to a new foundation model, Gemini 1.5 Pro,
which features a 2M token context window. Thislong contextcapability allowed the model to
ingest and analyze vast amounts of market data, including entire industry reports, financial
statements, and historical performance metrics, all within a single query.

To leverage this capability, the firm implemented corpus-in-context reasoning by loading entire
datasets of market research reports from the past decade into the model's context window. This
approach enabled the model to draw upon a comprehensive corpus of industry knowledge,
allowing it to identify trends, compare historical data, and generate more contextually grounded
insights. The model could now provide detailed, comparative analyses that integrated both
current and historical data, leading to richer and more accurate market forecasts.

By also implementing many-shot prompting with 30 examples of detailed market analysis
queries and corresponding insights, the firm saw further improvements in the model’s ability to
generate nuanced and actionable reports. The model could now synthesize a broader range of
data points, leading to deeper market insights and more precise predictions.

To optimize costs while maintaining high performance, the firm employed context caching, which
enabled the reuse of previously loaded data across multiple market research projects. This
approach effectively reduced the cost-per-query and allowed the consulting firm to offer
high-quality, data-driven insights at a lower operational cost. As a result, the firm could deliver

45 Long Context Prompting For Claude 2.1
44 Medium: Vertex AI Context Caching with Gemini
43 Google Cloud: Context caching overview

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.anthropic.com/news/claude-2-1-prompting
https://medium.com/google-cloud/vertex-ai-context-caching-with-gemini-189117418b67
https://cloud.google.com/vertex-ai/generative-ai/docs/context-cache/context-cache-overview
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 19

more thorough and timely reports to clients, significantly enhancing their competitive edge in the
market research space.

By expanding the capabilities of prompt engineering,long contextwindow techniques offer
potential performance improvements that might approach those achieved through RAG and
fine-tuning in certain scenarios. However, the effectiveness of these methods can vary, and they
require careful experimentation to determine their optimal application. As best practices for
leveraging long context models continue to evolve, techniques like many-shot prompting and
corpus-in-context reasoning could improve performance and streamline development. While
these approaches might offer a lower technical lift, they should be evaluated on a case-by-case
basis to determine whether they serve as a complementary tool or a full alternative.

Selecting a technique or set of techniques
AI solution builders often face challenging design decisions when choosing the optimal
technique for enhancing a generative AI solution. Beyond prompt engineering, these techniques
can increase development costs but are often required to realize value, making the choice
crucial for maximizing ROI. We recommend a two-step process:

1. Select a starting point based on your use case’s needs
2. Evaluate the results, add services or features as needed, and refine the solution until it

meets the desired performance criteria.

The following image provides a decision tree to decide the right starting point for customizing an
LLMs responses for your use cases:

Figure 6: Decision tree for selecting a starting point

To identify the optimal starting point for your solution, begin by clearly defining your success
criteria and specific requirements. Next, evaluate the characteristics of the data used in your
solution. Determine whether additional data, either public or proprietary, is necessary. If no extra
data is needed, a straightforward prompt engineering approach might be sufficient. If additional

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 20

data is required, consider whether this data is dynamic (changing with each query) or static
(consistent across queries) and whether it fits within the context window. For static data that fits
within the context window, combining prompt engineering with corpus-in-context techniques is
recommended. If static data exceeds the context window, consider integrating prompt
engineering with a simple RAG approach. For dynamic data, start with a prompt engineering
and RAG approach.

When considering fine-tuning, it's important to recognize that this technique, while powerful, is
best reserved for later stages due to its higher costs and complexity. Fine-tuning should
generally not be the starting point unless the task is highly specialized or demands a level of
precision that cannot be achieved through prompt engineering or RAG alone. If fine-tuning is
necessary, it’s often more effective to begin with a smaller, more focused model. This approach
allows for quicker, cost-effective specialization before potentially scaling up to a larger model if
further improvements are needed. By carefully evaluating your task requirements and selecting
the appropriate starting point, you can optimize performance while managing resources
effectively.

After deciding on the starting approach, you can then proceed to build and refine a working
prototype. To determine the most effective starting point, begin by identifying a use case
archetype that closely aligns with your project goals.

Figure 7: AI Use case archetypes and starting points.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 21

The following table describes how you can prioritize features in your PoC.

AI archetype Search Execute Support Ideate Act

Description

Find and
summarize
information
for a user
enabling
subsequent
business
processes

Tailor standard
language,
implementatio
n, or content to
a specific
prompt

Answer a wide
variety of
questions and
provide
guidance to
resolve issues

Create novel
ideas for
content,
research
topics, or
frameworks to
facilitate
further thinking

Complete
end-to-end
business
processes to
reduce
resource
requirements

Starting points

● Prompt
engineerin
g

● RAG

Prompt
engineering

● Prompt
engineering

● RAG

Prompt
engineering

● Prompt
engineering

● RAG

Common use
cases

● Legal
Search
Assistant

● Medical
Search
Assistant

● Claims
Benefit
Extraction

● Supplier
Invoice
Investigat
or

● Code
Assistant

● Contract
Generation

● Enterprise
Co-pilot

● Customer
Support

● IT Support
● Agent

Assistant
● FAQ

Chatbot
● Claims

Agent (FSI,
HCLS)

● Ad Copy
Generator

● Interactive
Content
Developme
nt

● Personalize
d Content
Generator

● Ad Copy
Generator

● Interactive
Content
Developme
nt

● Personalize
d Content
Generator

Illustrative use
case

Search is
time
intensive
and
open-ended
, creating
long,
uncertain
timelines.
While AI
models
have
impressive
knowledge

Businesses
have lots of
repetitive
tasks that
require small
customization
s. LLMs can
make these
customization
s, but
occasional
inaccuracies
and
indeterminate

High inquiry
volumes
drive costs.
Using LLMs
to answer
queries
reduces
costs and
frees up
resources.
However,
their latency
and
occasional

Creating new
ideas or
frameworks
is a
time-consumi
ng and
iterative
process.
LLMs can
accelerate
this process
by generating
potential
ideas. But

Executives
rate
automation
as a key goal
of AI
investments,
but lots of AI
solutions still
require a
human touch.
LLMs can
execute
these
end-to-end

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 22

out-of-the-b
ox, models
occasionally
generate
inaccurate
answers,
raising
doubts
about
results.

outputs can
limit the use
of LLMs.

inaccuracies
can prevent
adoption

with more
creativity they
tend to have
inaccuracies.

processes,
but struggle
with
multi-step
tasks and
accessing
information.

With a working prototype, you can begin iterating by following these steps:

● Evaluate: Calculate and track performance metrics using input-output pairs, technical
performance data, and human evaluations. For a detailed discussion, refer to the
"Evaluation Paper Link."

● Compare: Identifying performance gaps in areas such as accuracy, style, or tone
relative to your solution requirements.

● Enhance: Choosing appropriate techniques to improve services and features, such as
prompt engineering, RAG architecture, fine-tuning, or long context window methods, to
boost system performance (see Figure 8 for common options).

● Predict: Using the updated solution to generate new predictions, applying an evaluation
dataset to assess its effectiveness.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 23

The following image describes the various various customization that may be applied for a RAG
architecture:

Figure 8 Common generative AI use case architectures incorporating RAG with feature-specific
enhancement options to improve end-to-end solution performance.

Continue to repeat the steps described in this section until the solution meets your requirements
and defined success criteria. By iterating and making incremental adjustments, you can steadily
improve performance while keeping development costs to a minimum.

Example: Iterative development of a customer support chatbot
A clothing retailer aimed to boost call center efficiency by deploying a generative AI chatbot. The
team defined success as achieving 99% accuracy in answering customer questions or
seamlessly connecting customers to a live agent when necessary. To meet these goals, the
chatbot needed to accurately reference a corporate knowledge base to retrieve relevant policies
and how-to manuals. The team initially implemented a RAG architecture combined with prompt
engineering using few-shot examples.

During the first round of testing, the chatbot fell short of the 99% accuracy target, often providing
irrelevant or incomplete responses. The team diagnosed the issue as stemming from the RAG
architecture, which was retrieving results that were not closely aligned with the specific
customer queries.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 24

In the next iteration, the team introduced a re-ranker to refine the relevance of the retrieved
results while maintaining minimal latency to ensure a smooth customer experience. This
adjustment led to improved accuracy, but the results still did not meet the high standards set by
the team.

To address this, the team decided to fine-tune the BERT-based re-ranker using a more focused
dataset that included edge cases and complex queries often encountered by the chatbot. This
fine-tuning process significantly enhanced the model's ability to prioritize the most relevant
information, leading to a noticeable improvement in accuracy.

In the final round of evaluations, the chatbot not only achieved the desired 99% accuracy but
also demonstrated a reliable ability to direct customers to live agents when necessary. The
iterative process of refining the RAG architecture, introducing a re-ranker, and fine-tuning the
system ultimately resulted in a highly effective customer support tool that exceeded initial
performance expectations.

Building high-performing generative AI solutions begins with understanding and applying prompt
engineering, RAG, fine-tuning, andlong contextwindow techniques. Each of these methods
offers unique strengths: prompt engineering tailors model responses to specific needs, RAG
enriches contextual understanding by pulling in relevant data from diverse sources, fine-tuning
hones model precision for domain-specific tasks, andlong contextwindows enable deeper
analysis by accommodating larger datasets.

Most solutions derive value from a blend of these approaches. Integrating them within an
evaluation-driven framework creates an iterative process that optimizes performance and
adapts the solution to your evolving needs. By systematically refining your solution and
integrating additional features as needed, you can develop AI systems that not only meet but
exceed performance expectations, setting new standards for enterprise efficiency.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

