
Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

1 Introduction

Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it is a database that shards data
across many sets of Paxos [21] state machines in data-
centers spread all over the world. Replication is used for
global availability and geographic locality; clients auto-
matically failover between replicas. Spanner automati-
cally reshards data across machines as the amount of data
or the number of servers changes, and it automatically
migrates data across machines (even across datacenters)
to balance load and in response to failures. Spanner is
designed to scale up to millions of machines across hun-
dreds of datacenters and trillions of database rows.

Applications can use Spanner for high availability,
even in the face of wide-area natural disasters, by repli-
cating their data within or even across continents. Our
initial customer was F1 [35], a rewrite of Google’s ad-
vertising backend. F1 uses five replicas spread across
the United States. Most other applications will probably
replicate their data across 3 to 5 datacenters in one ge-
ographic region, but with relatively independent failure
modes. That is, most applications will choose lower la-

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37].) Many applications at Google
have chosen to use Megastore [5] because of its semi-
relational data model and support for synchronous repli-
cation, despite its relatively poor write throughput. As a
consequence, Spanner has evolved from a Bigtable-like
versioned key-value store into a temporal multi-version
database. Data is stored in schematized semi-relational
tables; data is versioned, and each version is automati-
cally timestamped with its commit time; old versions of
data are subject to configurable garbage-collection poli-
cies; and applications can read data at old timestamps.
Spanner supports general-purpose transactions, and pro-
vides a SQL-based query language.

As a globally-distributed database, Spanner provides
several interesting features. First, the replication con-
figurations for data can be dynamically controlled at a
fine grain by applications. Applications can specify con-
straints to control which datacenters contain which data,
how far data is from its users (to control read latency),
how far replicas are from each other (to control write la-
tency), and how many replicas are maintained (to con-
trol durability, availability, and read performance). Data
can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
age across datacenters. Second, Spanner has two features
that are difficult to implement in a distributed database: it

Published in the Proceedings of OSDI 2012 1

provides externally consistent [16] reads and writes, and
globally-consistent reads across the database at a time-
stamp. These features enable Spanner to support con-
sistent backups, consistent MapReduce executions [12],
and atomic schema updates, all at global scale, and even
in the presence of ongoing transactions.

These features are enabled by the fact that Spanner as-
signs globally-meaningful commit timestamps to trans-
actions, even though transactions may be distributed.
The timestamps reflect serialization order. In addition,
the serialization order satisfies external consistency (or
equivalently, linearizability [20]): if a transaction T1
commits before another transaction T2 starts, then T1’s
commit timestamp is smaller than T2’s. Spanner is the
first system to provide such guarantees at global scale.

The key enabler of these properties is a new TrueTime
API and its implementation. The API directly exposes
clock uncertainty, and the guarantees on Spanner’s times-
tamps depend on the bounds that the implementation pro-
vides. If the uncertainty is large, Spanner slows down to
wait out that uncertainty. Google’s cluster-management
software provides an implementation of the TrueTime
API. This implementation keeps uncertainty small (gen-
erally less than 10ms) by using multiple modern clock
references (GPS and atomic clocks).

Section 2 describes the structure of Spanner’s imple-
mentation, its feature set, and the engineering decisions
that went into their design. Section 3 describes our new
TrueTime API and sketches its implementation. Sec-
tion 4 describes how Spanner uses TrueTime to imple-
ment externally-consistent distributed transactions, lock-
free read-only transactions, and atomic schema updates.
Section 5 provides some benchmarks on Spanner’s per-
formance and TrueTime behavior, and discusses the ex-
periences of F1. Sections 6, 7, and 8 describe related and
future work, and summarize our conclusions.

2 Implementation

This section describes the structure of and rationale un-
derlying Spanner’s implementation. It then describes the
directory abstraction, which is used to manage replica-
tion and locality, and is the unit of data movement. Fi-
nally, it describes our data model, why Spanner looks
like a relational database instead of a key-value store, and
how applications can control data locality.

A Spanner deployment is called a universe. Given
that Spanner manages data globally, there will be only
a handful of running universes. We currently run a
test/playground universe, a development/production uni-
verse, and a production-only universe.

Spanner is organized as a set of zones, where each
zone is the rough analog of a deployment of Bigtable

Figure 1: Spanner server organization.

servers [9]. Zones are the unit of administrative deploy-
ment. The set of zones is also the set of locations across
which data can be replicated. Zones can be added to or
removed from a running system as new datacenters are
brought into service and old ones are turned off, respec-
tively. Zones are also the unit of physical isolation: there
may be one or more zones in a datacenter, for example,
if different applications’ data must be partitioned across
different sets of servers in the same datacenter.

Figure 1 illustrates the servers in a Spanner universe.
A zone has one zonemaster and between one hundred
and several thousand spanservers. The former assigns
data to spanservers; the latter serve data to clients. The
per-zone location proxies are used by clients to locate
the spanservers assigned to serve their data. The uni-
verse master and the placement driver are currently sin-
gletons. The universe master is primarily a console that
displays status information about all the zones for inter-
active debugging. The placement driver handles auto-
mated movement of data across zones on the timescale
of minutes. The placement driver periodically commu-
nicates with the spanservers to find data that needs to be
moved, either to meet updated replication constraints or
to balance load. For space reasons, we will only describe
the spanserver in any detail.

2.1 Spanserver Software Stack

This section focuses on the spanserver implementation
to illustrate how replication and distributed transactions
have been layered onto our Bigtable-based implementa-
tion. The software stack is shown in Figure 2. At the
bottom, each spanserver is responsible for between 100
and 1000 instances of a data structure called a tablet. A
tablet is similar to Bigtable’s tablet abstraction, in that it
implements a bag of the following mappings:

(key:string, timestamp:int64)→ string

Unlike Bigtable, Spanner assigns timestamps to data,
which is an important way in which Spanner is more
like a multi-version database than a key-value store. A

Published in the Proceedings of OSDI 2012 2

Figure 2: Spanserver software stack.

tablet’s state is stored in set of B-tree-like files and a
write-ahead log, all on a distributed file system called
Colossus (the successor to the Google File System [15]).

To support replication, each spanserver implements a
single Paxos state machine on top of each tablet. (An
early Spanner incarnation supported multiple Paxos state
machines per tablet, which allowed for more flexible
replication configurations. The complexity of that de-
sign led us to abandon it.) Each state machine stores
its metadata and log in its corresponding tablet. Our
Paxos implementation supports long-lived leaders with
time-based leader leases, whose length defaults to 10
seconds. The current Spanner implementation logs ev-
ery Paxos write twice: once in the tablet’s log, and once
in the Paxos log. This choice was made out of expedi-
ency, and we are likely to remedy this eventually. Our
implementation of Paxos is pipelined, so as to improve
Spanner’s throughput in the presence of WAN latencies;
but writes are applied by Paxos in order (a fact on which
we will depend in Section 4).

The Paxos state machines are used to implement a
consistently replicated bag of mappings. The key-value
mapping state of each replica is stored in its correspond-
ing tablet. Writes must initiate the Paxos protocol at the
leader; reads access state directly from the underlying
tablet at any replica that is sufficiently up-to-date. The
set of replicas is collectively a Paxos group.

At every replica that is a leader, each spanserver im-
plements a lock table to implement concurrency control.
The lock table contains the state for two-phase lock-
ing: it maps ranges of keys to lock states. (Note that
having a long-lived Paxos leader is critical to efficiently
managing the lock table.) In both Bigtable and Span-
ner, we designed for long-lived transactions (for exam-
ple, for report generation, which might take on the order
of minutes), which perform poorly under optimistic con-
currency control in the presence of conflicts. Operations

Figure 3: Directories are the unit of data movement between
Paxos groups.

that require synchronization, such as transactional reads,
acquire locks in the lock table; other operations bypass
the lock table.

At every replica that is a leader, each spanserver also
implements a transaction manager to support distributed
transactions. The transaction manager is used to imple-
ment a participant leader; the other replicas in the group
will be referred to as participant slaves. If a transac-
tion involves only one Paxos group (as is the case for
most transactions), it can bypass the transaction manager,
since the lock table and Paxos together provide transac-
tionality. If a transaction involves more than one Paxos
group, those groups’ leaders coordinate to perform two-
phase commit. One of the participant groups is chosen as
the coordinator: the participant leader of that group will
be referred to as the coordinator leader, and the slaves of
that group as coordinator slaves. The state of each trans-
action manager is stored in the underlying Paxos group
(and therefore is replicated).

2.2 Directories and Placement

On top of the bag of key-value mappings, the Spanner
implementation supports a bucketing abstraction called a
directory, which is a set of contiguous keys that share a
common prefix. (The choice of the term directory is a
historical accident; a better term might be bucket.) We
will explain the source of that prefix in Section 2.3. Sup-
porting directories allows applications to control the lo-
cality of their data by choosing keys carefully.

A directory is the unit of data placement. All data in
a directory has the same replication configuration. When
data is moved between Paxos groups, it is moved direc-
tory by directory, as shown in Figure 3. Spanner might
move a directory to shed load from a Paxos group; to put
directories that are frequently accessed together into the
same group; or to move a directory into a group that is
closer to its accessors. Directories can be moved while
client operations are ongoing. One could expect that a
50MB directory can be moved in a few seconds.

The fact that a Paxos group may contain multiple di-
rectories implies that a Spanner tablet is different from

Published in the Proceedings of OSDI 2012 3

a Bigtable tablet: the former is not necessarily a single
lexicographically contiguous partition of the row space.
Instead, a Spanner tablet is a container that may encap-
sulate multiple partitions of the row space. We made this
decision so that it would be possible to colocate multiple
directories that are frequently accessed together.

Movedir is the background task used to move direc-
tories between Paxos groups [14]. Movedir is also used
to add or remove replicas to Paxos groups [25], be-
cause Spanner does not yet support in-Paxos configura-
tion changes. Movedir is not implemented as a single
transaction, so as to avoid blocking ongoing reads and
writes on a bulky data move. Instead, movedir registers
the fact that it is starting to move data and moves the data
in the background. When it has moved all but a nominal
amount of the data, it uses a transaction to atomically
move that nominal amount and update the metadata for
the two Paxos groups.

A directory is also the smallest unit whose geographic-
replication properties (or placement, for short) can
be specified by an application. The design of our
placement-specification language separates responsibil-
ities for managing replication configurations. Adminis-
trators control two dimensions: the number and types of
replicas, and the geographic placement of those replicas.
They create a menu of named options in these two di-
mensions (e.g., North America, replicated 5 ways with
1 witness). An application controls how data is repli-
cated, by tagging each database and/or individual direc-
tories with a combination of those options. For example,
an application might store each end-user’s data in its own
directory, which would enable user A’s data to have three
replicas in Europe, and user B’s data to have five replicas
in North America.

For expository clarity we have over-simplified. In fact,
Spanner will shard a directory into multiple fragments
if it grows too large. Fragments may be served from
different Paxos groups (and therefore different servers).
Movedir actually moves fragments, and not whole direc-
tories, between groups.

2.3 Data Model

Spanner exposes the following set of data features
to applications: a data model based on schematized
semi-relational tables, a query language, and general-
purpose transactions. The move towards support-
ing these features was driven by many factors. The
need to support schematized semi-relational tables and
synchronous replication is supported by the popular-
ity of Megastore [5]. At least 300 applications within
Google use Megastore (despite its relatively low per-
formance) because its data model is simpler to man-

age than Bigtable’s, and because of its support for syn-
chronous replication across datacenters. (Bigtable only
supports eventually-consistent replication across data-
centers.) Examples of well-known Google applications
that use Megastore are Gmail, Picasa, Calendar, Android
Market, and AppEngine. The need to support a SQL-
like query language in Spanner was also clear, given
the popularity of Dremel [28] as an interactive data-
analysis tool. Finally, the lack of cross-row transactions
in Bigtable led to frequent complaints; Percolator [32]
was in part built to address this failing. Some authors
have claimed that general two-phase commit is too ex-
pensive to support, because of the performance or avail-
ability problems that it brings [9, 10, 19]. We believe it
is better to have application programmers deal with per-
formance problems due to overuse of transactions as bot-
tlenecks arise, rather than always coding around the lack
of transactions. Running two-phase commit over Paxos
mitigates the availability problems.

The application data model is layered on top of the
directory-bucketed key-value mappings supported by the
implementation. An application creates one or more
databases in a universe. Each database can contain an
unlimited number of schematized tables. Tables look
like relational-database tables, with rows, columns, and
versioned values. We will not go into detail about the
query language for Spanner. It looks like SQL with some
extensions to support protocol-buffer-valued fields.

Spanner’s data model is not purely relational, in that
rows must have names. More precisely, every table is re-
quired to have an ordered set of one or more primary-key
columns. This requirement is where Spanner still looks
like a key-value store: the primary keys form the name
for a row, and each table defines a mapping from the
primary-key columns to the non-primary-key columns.
A row has existence only if some value (even if it is
NULL) is defined for the row’s keys. Imposing this struc-
ture is useful because it lets applications control data lo-
cality through their choices of keys.

Figure 4 contains an example Spanner schema for stor-
ing photo metadata on a per-user, per-album basis. The
schema language is similar to Megastore’s, with the ad-
ditional requirement that every Spanner database must
be partitioned by clients into one or more hierarchies
of tables. Client applications declare the hierarchies in
database schemas via the INTERLEAVE IN declara-
tions. The table at the top of a hierarchy is a directory
table. Each row in a directory table with key K, together
with all of the rows in descendant tables that start with K
in lexicographic order, forms a directory. ON DELETE
CASCADE says that deleting a row in the directory table
deletes any associated child rows. The figure also illus-
trates the interleaved layout for the example database: for

Published in the Proceedings of OSDI 2012 4

CREATE TABLE Users {
uid INT64 NOT NULL, email STRING

} PRIMARY KEY (uid), DIRECTORY;

CREATE TABLE Albums {
uid INT64 NOT NULL, aid INT64 NOT NULL,
name STRING

} PRIMARY KEY (uid, aid),
INTERLEAVE IN PARENT Users ON DELETE CASCADE;

Figure 4: Example Spanner schema for photo metadata, and
the interleaving implied by INTERLEAVE IN.

example, Albums(2,1) represents the row from the
Albums table for user id 2, album id 1. This
interleaving of tables to form directories is significant
because it allows clients to describe the locality relation-
ships that exist between multiple tables, which is nec-
essary for good performance in a sharded, distributed
database. Without it, Spanner would not know the most
important locality relationships.

3 TrueTime

Method Returns

TT.now() TTinterval: [earliest, latest]
TT.after(t) true if t has definitely passed

TT.before(t) true if t has definitely not arrived

Table 1: TrueTime API. The argument t is of type TTstamp.

This section describes the TrueTime API and sketches
its implementation. We leave most of the details for an-
other paper: our goal is to demonstrate the power of
having such an API. Table 1 lists the methods of the
API. TrueTime explicitly represents time as a TTinterval,
which is an interval with bounded time uncertainty (un-
like standard time interfaces that give clients no notion
of uncertainty). The endpoints of a TTinterval are of
type TTstamp. The TT.now() method returns a TTinterval
that is guaranteed to contain the absolute time during
which TT.now() was invoked. The time epoch is anal-
ogous to UNIX time with leap-second smearing. De-
fine the instantaneous error bound as ε, which is half of
the interval’s width, and the average error bound as ε.
The TT.after() and TT.before() methods are convenience
wrappers around TT.now().

Denote the absolute time of an event e by the func-
tion tabs(e). In more formal terms, TrueTime guaran-
tees that for an invocation tt = TT.now(), tt.earliest ≤
tabs(enow) ≤ tt.latest, where enow is the invocation event.

The underlying time references used by TrueTime
are GPS and atomic clocks. TrueTime uses two forms
of time reference because they have different failure
modes. GPS reference-source vulnerabilities include an-
tenna and receiver failures, local radio interference, cor-
related failures (e.g., design faults such as incorrect leap-
second handling and spoofing), and GPS system outages.
Atomic clocks can fail in ways uncorrelated to GPS and
each other, and over long periods of time can drift signif-
icantly due to frequency error.

TrueTime is implemented by a set of time master ma-
chines per datacenter and a timeslave daemon per ma-
chine. The majority of masters have GPS receivers with
dedicated antennas; these masters are separated physi-
cally to reduce the effects of antenna failures, radio in-
terference, and spoofing. The remaining masters (which
we refer to as Armageddon masters) are equipped with
atomic clocks. An atomic clock is not that expensive:
the cost of an Armageddon master is of the same order
as that of a GPS master. All masters’ time references
are regularly compared against each other. Each mas-
ter also cross-checks the rate at which its reference ad-
vances time against its own local clock, and evicts itself
if there is substantial divergence. Between synchroniza-
tions, Armageddon masters advertise a slowly increasing
time uncertainty that is derived from conservatively ap-
plied worst-case clock drift. GPS masters advertise un-
certainty that is typically close to zero.

Every daemon polls a variety of masters [29] to re-
duce vulnerability to errors from any one master. Some
are GPS masters chosen from nearby datacenters; the
rest are GPS masters from farther datacenters, as well
as some Armageddon masters. Daemons apply a variant
of Marzullo’s algorithm [27] to detect and reject liars,
and synchronize the local machine clocks to the non-
liars. To protect against broken local clocks, machines
that exhibit frequency excursions larger than the worst-
case bound derived from component specifications and
operating environment are evicted.

Between synchronizations, a daemon advertises a
slowly increasing time uncertainty. ε is derived from
conservatively applied worst-case local clock drift. ε also
depends on time-master uncertainty and communication
delay to the time masters. In our production environ-
ment, ε is typically a sawtooth function of time, varying
from about 1 to 7 ms over each poll interval. ε is there-
fore 4 ms most of the time. The daemon’s poll interval is
currently 30 seconds, and the current applied drift rate is
set at 200 microseconds/second, which together account

Published in the Proceedings of OSDI 2012 5

Timestamp Concurrency
Operation Discussion Control Replica Required

Read-Write Transaction § 4.1.2 pessimistic leader

Read-Only Transaction § 4.1.4 lock-free
leader for timestamp; any for
read, subject to § 4.1.3

Snapshot Read, client-provided timestamp — lock-free any, subject to § 4.1.3
Snapshot Read, client-provided bound § 4.1.3 lock-free any, subject to § 4.1.3

Table 2: Types of reads and writes in Spanner, and how they compare.

for the sawtooth bounds from 0 to 6 ms. The remain-
ing 1 ms comes from the communication delay to the
time masters. Excursions from this sawtooth are possi-
ble in the presence of failures. For example, occasional
time-master unavailability can cause datacenter-wide in-
creases in ε. Similarly, overloaded machines and network
links can result in occasional localized ε spikes.

4 Concurrency Control

This section describes how TrueTime is used to guaran-
tee the correctness properties around concurrency con-
trol, and how those properties are used to implement
features such as externally consistent transactions, lock-
free read-only transactions, and non-blocking reads in
the past. These features enable, for example, the guar-
antee that a whole-database audit read at a timestamp t
will see exactly the effects of every transaction that has
committed as of t.

Going forward, it will be important to distinguish
writes as seen by Paxos (which we will refer to as Paxos
writes unless the context is clear) from Spanner client
writes. For example, two-phase commit generates a
Paxos write for the prepare phase that has no correspond-
ing Spanner client write.

4.1 Timestamp Management
Table 2 lists the types of operations that Spanner sup-
ports. The Spanner implementation supports read-
write transactions, read-only transactions (predeclared
snapshot-isolation transactions), and snapshot reads.
Standalone writes are implemented as read-write trans-
actions; non-snapshot standalone reads are implemented
as read-only transactions. Both are internally retried
(clients need not write their own retry loops).

A read-only transaction is a kind of transaction that
has the performance benefits of snapshot isolation [6].
A read-only transaction must be predeclared as not hav-
ing any writes; it is not simply a read-write transaction
without any writes. Reads in a read-only transaction ex-
ecute at a system-chosen timestamp without locking, so
that incoming writes are not blocked. The execution of

the reads in a read-only transaction can proceed on any
replica that is sufficiently up-to-date (Section 4.1.3).

A snapshot read is a read in the past that executes with-
out locking. A client can either specify a timestamp for a
snapshot read, or provide an upper bound on the desired
timestamp’s staleness and let Spanner choose a time-
stamp. In either case, the execution of a snapshot read
proceeds at any replica that is sufficiently up-to-date.

For both read-only transactions and snapshot reads,
commit is inevitable once a timestamp has been cho-
sen, unless the data at that timestamp has been garbage-
collected. As a result, clients can avoid buffering results
inside a retry loop. When a server fails, clients can inter-
nally continue the query on a different server by repeat-
ing the timestamp and the current read position.

4.1.1 Paxos Leader Leases

Spanner’s Paxos implementation uses timed leases to
make leadership long-lived (10 seconds by default). A
potential leader sends requests for timed lease votes;
upon receiving a quorum of lease votes the leader knows
it has a lease. A replica extends its lease vote implicitly
on a successful write, and the leader requests lease-vote
extensions if they are near expiration. Define a leader’s
lease interval as starting when it discovers it has a quo-
rum of lease votes, and as ending when it no longer has
a quorum of lease votes (because some have expired).
Spanner depends on the following disjointness invariant:
for each Paxos group, each Paxos leader’s lease interval
is disjoint from every other leader’s. Appendix A de-
scribes how this invariant is enforced.

The Spanner implementation permits a Paxos leader
to abdicate by releasing its slaves from their lease votes.
To preserve the disjointness invariant, Spanner constrains
when abdication is permissible. Define smax to be the
maximum timestamp used by a leader. Subsequent sec-
tions will describe when smax is advanced. Before abdi-
cating, a leader must wait until TT.after(smax) is true.

4.1.2 Assigning Timestamps to RW Transactions

Transactional reads and writes use two-phase locking.
As a result, they can be assigned timestamps at any time

Published in the Proceedings of OSDI 2012 6

when all locks have been acquired, but before any locks
have been released. For a given transaction, Spanner as-
signs it the timestamp that Paxos assigns to the Paxos
write that represents the transaction commit.

Spanner depends on the following monotonicity in-
variant: within each Paxos group, Spanner assigns times-
tamps to Paxos writes in monotonically increasing or-
der, even across leaders. A single leader replica can triv-
ially assign timestamps in monotonically increasing or-
der. This invariant is enforced across leaders by making
use of the disjointness invariant: a leader must only as-
sign timestamps within the interval of its leader lease.
Note that whenever a timestamp s is assigned, smax is
advanced to s to preserve disjointness.

Spanner also enforces the following external-
consistency invariant: if the start of a transaction T2
occurs after the commit of a transaction T1, then the
commit timestamp of T2 must be greater than the
commit timestamp of T1. Define the start and commit
events for a transaction Ti by estart

i and ecommit
i ; and

the commit timestamp of a transaction Ti by si. The
invariant becomes tabs(e

commit
1) < tabs(e

start
2)⇒ s1 < s2.

The protocol for executing transactions and assigning
timestamps obeys two rules, which together guarantee
this invariant, as shown below. Define the arrival event
of the commit request at the coordinator leader for a
write Ti to be eserver

i .
Start The coordinator leader for a write Ti assigns
a commit timestamp si no less than the value of
TT.now().latest, computed after eserver

i . Note that the
participant leaders do not matter here; Section 4.2.1 de-
scribes how they are involved in the implementation of
the next rule.
Commit Wait The coordinator leader ensures that
clients cannot see any data committed by Ti until
TT.after(si) is true. Commit wait ensures that si is
less than the absolute commit time of Ti, or si <
tabs(e

commit
i). The implementation of commit wait is de-

scribed in Section 4.2.1. Proof:

s1 < tabs(e
commit
1) (commit wait)

tabs(e
commit
1) < tabs(e

start
2) (assumption)

tabs(e
start
2) ≤ tabs(e

server
2) (causality)

tabs(e
server
2) ≤ s2 (start)

s1 < s2 (transitivity)

4.1.3 Serving Reads at a Timestamp

The monotonicity invariant described in Section 4.1.2 al-
lows Spanner to correctly determine whether a replica’s
state is sufficiently up-to-date to satisfy a read. Every
replica tracks a value called safe time tsafe which is the

maximum timestamp at which a replica is up-to-date. A
replica can satisfy a read at a timestamp t if t <= tsafe.

Define tsafe = min(tPaxos
safe , tTM

safe), where each Paxos
state machine has a safe time tPaxos

safe and each transac-
tion manager has a safe time tTM

safe. tPaxos
safe is simpler: it

is the timestamp of the highest-applied Paxos write. Be-
cause timestamps increase monotonically and writes are
applied in order, writes will no longer occur at or below
tPaxos
safe with respect to Paxos.
tTM
safe is ∞ at a replica if there are zero prepared (but

not committed) transactions—that is, transactions in be-
tween the two phases of two-phase commit. (For a par-
ticipant slave, tTM

safe actually refers to the replica’s leader’s
transaction manager, whose state the slave can infer
through metadata passed on Paxos writes.) If there are
any such transactions, then the state affected by those
transactions is indeterminate: a participant replica does
not know yet whether such transactions will commit. As
we discuss in Section 4.2.1, the commit protocol ensures
that every participant knows a lower bound on a pre-
pared transaction’s timestamp. Every participant leader
(for a group g) for a transaction Ti assigns a prepare
timestamp sprepare

i,g to its prepare record. The coordinator
leader ensures that the transaction’s commit timestamp
si >= sprepare

i,g over all participant groups g. Therefore,
for every replica in a group g, over all transactions Ti pre-
pared at g, tTM

safe = mini(s
prepare
i,g)− 1 over all transactions

prepared at g.

4.1.4 Assigning Timestamps to RO Transactions

A read-only transaction executes in two phases: assign
a timestamp sread [8], and then execute the transaction’s
reads as snapshot reads at sread. The snapshot reads can
execute at any replicas that are sufficiently up-to-date.

The simple assignment of sread = TT.now().latest, at
any time after a transaction starts, preserves external con-
sistency by an argument analogous to that presented for
writes in Section 4.1.2. However, such a timestamp may
require the execution of the data reads at sread to block
if tsafe has not advanced sufficiently. (In addition, note
that choosing a value of sread may also advance smax to
preserve disjointness.) To reduce the chances of block-
ing, Spanner should assign the oldest timestamp that pre-
serves external consistency. Section 4.2.2 explains how
such a timestamp can be chosen.

4.2 Details

This section explains some of the practical details of
read-write transactions and read-only transactions elided
earlier, as well as the implementation of a special trans-
action type used to implement atomic schema changes.

Published in the Proceedings of OSDI 2012 7

It then describes some refinements of the basic schemes
as described.

4.2.1 Read-Write Transactions

Like Bigtable, writes that occur in a transaction are
buffered at the client until commit. As a result, reads
in a transaction do not see the effects of the transaction’s
writes. This design works well in Spanner because a read
returns the timestamps of any data read, and uncommit-
ted writes have not yet been assigned timestamps.

Reads within read-write transactions use wound-
wait [33] to avoid deadlocks. The client issues reads
to the leader replica of the appropriate group, which
acquires read locks and then reads the most recent
data. While a client transaction remains open, it sends
keepalive messages to prevent participant leaders from
timing out its transaction. When a client has completed
all reads and buffered all writes, it begins two-phase
commit. The client chooses a coordinator group and
sends a commit message to each participant’s leader with
the identity of the coordinator and any buffered writes.
Having the client drive two-phase commit avoids send-
ing data twice across wide-area links.

A non-coordinator-participant leader first acquires
write locks. It then chooses a prepare timestamp that
must be larger than any timestamps it has assigned to pre-
vious transactions (to preserve monotonicity), and logs a
prepare record through Paxos. Each participant then no-
tifies the coordinator of its prepare timestamp.

The coordinator leader also first acquires write locks,
but skips the prepare phase. It chooses a timestamp for
the entire transaction after hearing from all other partici-
pant leaders. The commit timestamp s must be greater or
equal to all prepare timestamps (to satisfy the constraints
discussed in Section 4.1.3), greater than TT.now().latest
at the time the coordinator received its commit message,
and greater than any timestamps the leader has assigned
to previous transactions (again, to preserve monotonic-
ity). The coordinator leader then logs a commit record
through Paxos (or an abort if it timed out while waiting
on the other participants).

Before allowing any coordinator replica to apply
the commit record, the coordinator leader waits until
TT.after(s), so as to obey the commit-wait rule described
in Section 4.1.2. Because the coordinator leader chose s
based on TT.now().latest, and now waits until that time-
stamp is guaranteed to be in the past, the expected wait
is at least 2 ∗ ε. This wait is typically overlapped with
Paxos communication. After commit wait, the coordi-
nator sends the commit timestamp to the client and all
other participant leaders. Each participant leader logs the
transaction’s outcome through Paxos. All participants
apply at the same timestamp and then release locks.

4.2.2 Read-Only Transactions

Assigning a timestamp requires a negotiation phase be-
tween all of the Paxos groups that are involved in the
reads. As a result, Spanner requires a scope expression
for every read-only transaction, which is an expression
that summarizes the keys that will be read by the entire
transaction. Spanner automatically infers the scope for
standalone queries.

If the scope’s values are served by a single Paxos
group, then the client issues the read-only transaction to
that group’s leader. (The current Spanner implementa-
tion only chooses a timestamp for a read-only transac-
tion at a Paxos leader.) That leader assigns sread and ex-
ecutes the read. For a single-site read, Spanner gener-
ally does better than TT.now().latest. Define LastTS() to
be the timestamp of the last committed write at a Paxos
group. If there are no prepared transactions, the assign-
ment sread = LastTS() trivially satisfies external consis-
tency: the transaction will see the result of the last write,
and therefore be ordered after it.

If the scope’s values are served by multiple Paxos
groups, there are several options. The most complicated
option is to do a round of communication with all of
the groups’s leaders to negotiate sread based on LastTS().
Spanner currently implements a simpler choice. The
client avoids a negotiation round, and just has its reads
execute at sread = TT.now().latest (which may wait for
safe time to advance). All reads in the transaction can be
sent to replicas that are sufficiently up-to-date.

4.2.3 Schema-Change Transactions

TrueTime enables Spanner to support atomic schema
changes. It would be infeasible to use a standard transac-
tion, because the number of participants (the number of
groups in a database) could be in the millions. Bigtable
supports atomic schema changes in one datacenter, but
its schema changes block all operations.

A Spanner schema-change transaction is a generally
non-blocking variant of a standard transaction. First, it
is explicitly assigned a timestamp in the future, which
is registered in the prepare phase. As a result, schema
changes across thousands of servers can complete with
minimal disruption to other concurrent activity. Sec-
ond, reads and writes, which implicitly depend on the
schema, synchronize with any registered schema-change
timestamp at time t: they may proceed if their times-
tamps precede t, but they must block behind the schema-
change transaction if their timestamps are after t. With-
out TrueTime, defining the schema change to happen at t
would be meaningless.

Published in the Proceedings of OSDI 2012 8

latency (ms) throughput (Kops/sec)
replicas write read-only transaction snapshot read write read-only transaction snapshot read

1D 9.4±.6 — — 4.0±.3 — —
1 14.4±1.0 1.4±.1 1.3±.1 4.1±.05 10.9±.4 13.5±.1
3 13.9±.6 1.3±.1 1.2±.1 2.2±.5 13.8±3.2 38.5±.3
5 14.4±.4 1.4±.05 1.3±.04 2.8±.3 25.3±5.2 50.0±1.1

Table 3: Operation microbenchmarks. Mean and standard deviation over 10 runs. 1D means one replica with commit wait disabled.

4.2.4 Refinements

tTM
safe as defined above has a weakness, in that a single

prepared transaction prevents tsafe from advancing. As
a result, no reads can occur at later timestamps, even
if the reads do not conflict with the transaction. Such
false conflicts can be removed by augmenting tTM

safe with
a fine-grained mapping from key ranges to prepared-
transaction timestamps. This information can be stored
in the lock table, which already maps key ranges to
lock metadata. When a read arrives, it only needs to be
checked against the fine-grained safe time for key ranges
with which the read conflicts.

LastTS() as defined above has a similar weakness: if
a transaction has just committed, a non-conflicting read-
only transaction must still be assigned sread so as to fol-
low that transaction. As a result, the execution of the read
could be delayed. This weakness can be remedied sim-
ilarly by augmenting LastTS() with a fine-grained map-
ping from key ranges to commit timestamps in the lock
table. (We have not yet implemented this optimization.)
When a read-only transaction arrives, its timestamp can
be assigned by taking the maximum value of LastTS()
for the key ranges with which the transaction conflicts,
unless there is a conflicting prepared transaction (which
can be determined from fine-grained safe time).
tPaxos
safe as defined above has a weakness in that it cannot

advance in the absence of Paxos writes. That is, a snap-
shot read at t cannot execute at Paxos groups whose last
write happened before t. Spanner addresses this problem
by taking advantage of the disjointness of leader-lease
intervals. Each Paxos leader advances tPaxos

safe by keeping
a threshold above which future writes’ timestamps will
occur: it maintains a mapping MinNextTS(n) from Paxos
sequence number n to the minimum timestamp that may
be assigned to Paxos sequence number n + 1. A replica
can advance tPaxos

safe to MinNextTS(n) − 1 when it has ap-
plied through n.

A single leader can enforce its MinNextTS()
promises easily. Because the timestamps promised
by MinNextTS() lie within a leader’s lease, the disjoint-
ness invariant enforces MinNextTS() promises across
leaders. If a leader wishes to advance MinNextTS()
beyond the end of its leader lease, it must first extend its

lease. Note that smax is always advanced to the highest
value in MinNextTS() to preserve disjointness.

A leader by default advances MinNextTS() values ev-
ery 8 seconds. Thus, in the absence of prepared trans-
actions, healthy slaves in an idle Paxos group can serve
reads at timestamps greater than 8 seconds old in the
worst case. A leader may also advance MinNextTS() val-
ues on demand from slaves.

5 Evaluation

We first measure Spanner’s performance with respect to
replication, transactions, and availability. We then pro-
vide some data on TrueTime behavior, and a case study
of our first client, F1.

5.1 Microbenchmarks
Table 3 presents some microbenchmarks for Spanner.
These measurements were taken on timeshared ma-
chines: each spanserver ran on scheduling units of 4GB
RAM and 4 cores (AMD Barcelona 2200MHz). Clients
were run on separate machines. Each zone contained one
spanserver. Clients and zones were placed in a set of dat-
acenters with network distance of less than 1ms. (Such a
layout should be commonplace: most applications do not
need to distribute all of their data worldwide.) The test
database was created with 50 Paxos groups with 2500 di-
rectories. Operations were standalone reads and writes of
4KB. All reads were served out of memory after a com-
paction, so that we are only measuring the overhead of
Spanner’s call stack. In addition, one unmeasured round
of reads was done first to warm any location caches.

For the latency experiments, clients issued sufficiently
few operations so as to avoid queuing at the servers.
From the 1-replica experiments, commit wait is about
5ms, and Paxos latency is about 9ms. As the number
of replicas increases, the latency stays roughly constant
with less standard deviation because Paxos executes in
parallel at a group’s replicas. As the number of replicas
increases, the latency to achieve a quorum becomes less
sensitive to slowness at one slave replica.

For the throughput experiments, clients issued suffi-
ciently many operations so as to saturate the servers’

Published in the Proceedings of OSDI 2012 9

latency (ms)
participants mean 99th percentile

1 17.0 ±1.4 75.0 ±34.9
2 24.5 ±2.5 87.6 ±35.9
5 31.5 ±6.2 104.5 ±52.2
10 30.0 ±3.7 95.6 ±25.4
25 35.5 ±5.6 100.4 ±42.7
50 42.7 ±4.1 93.7 ±22.9

100 71.4 ±7.6 131.2 ±17.6
200 150.5 ±11.0 320.3 ±35.1

Table 4: Two-phase commit scalability. Mean and standard
deviations over 10 runs.

CPUs. Snapshot reads can execute at any up-to-date
replicas, so their throughput increases almost linearly
with the number of replicas. Single-read read-only trans-
actions only execute at leaders because timestamp as-
signment must happen at leaders. Read-only-transaction
throughput increases with the number of replicas because
the number of effective spanservers increases: in the
experimental setup, the number of spanservers equaled
the number of replicas, and leaders were randomly dis-
tributed among the zones. Write throughput benefits
from the same experimental artifact (which explains the
increase in throughput from 3 to 5 replicas), but that ben-
efit is outweighed by the linear increase in the amount of
work performed per write, as the number of replicas in-
creases.

Table 4 demonstrates that two-phase commit can scale
to a reasonable number of participants: it summarizes
a set of experiments run across 3 zones, each with 25
spanservers. Scaling up to 50 participants is reasonable
in both mean and 99th-percentile, and latencies start to
rise noticeably at 100 participants.

5.2 Availability
Figure 5 illustrates the availability benefits of running
Spanner in multiple datacenters. It shows the results of
three experiments on throughput in the presence of dat-
acenter failure, all of which are overlaid onto the same
time scale. The test universe consisted of 5 zones Zi,
each of which had 25 spanservers. The test database was
sharded into 1250 Paxos groups, and 100 test clients con-
stantly issued non-snapshot reads at an aggregrate rate
of 50K reads/second. All of the leaders were explic-
itly placed in Z1. Five seconds into each test, all of
the servers in one zone were killed: non-leader kills Z2;
leader-hard kills Z1; leader-soft kills Z1, but it gives no-
tifications to all of the servers that they should handoff
leadership first.

Killing Z2 has no effect on read throughput. Killing
Z1 while giving the leaders time to handoff leadership to

0 5 10 15 20

Time in seconds

200K

400K

600K

800K

1M

1.2M

1.4M

C
u

m
u

la
ti

v
e

re
a
d

s
co

m
p

le
te

d

non-leader

leader-soft

leader-hard

Figure 5: Effect of killing servers on throughput.

a different zone has a minor effect: the throughput drop
is not visible in the graph, but is around 3-4%. On the
other hand, killing Z1 with no warning has a severe ef-
fect: the rate of completion drops almost to 0. As leaders
get re-elected, though, the throughput of the system rises
to approximately 100K reads/second because of two ar-
tifacts of our experiment: there is extra capacity in the
system, and operations are queued while the leader is un-
available. As a result, the throughput of the system rises
before leveling off again at its steady-state rate.

We can also see the effect of the fact that Paxos leader
leases are set to 10 seconds. When we kill the zone,
the leader-lease expiration times for the groups should
be evenly distributed over the next 10 seconds. Soon af-
ter each lease from a dead leader expires, a new leader is
elected. Approximately 10 seconds after the kill time, all
of the groups have leaders and throughput has recovered.
Shorter lease times would reduce the effect of server
deaths on availability, but would require greater amounts
of lease-renewal network traffic. We are in the process of
designing and implementing a mechanism that will cause
slaves to release Paxos leader leases upon leader failure.

5.3 TrueTime
Two questions must be answered with respect to True-
Time: is ε truly a bound on clock uncertainty, and how
bad does ε get? For the former, the most serious prob-
lem would be if a local clock’s drift were greater than
200us/sec: that would break assumptions made by True-
Time. Our machine statistics show that bad CPUs are 6
times more likely than bad clocks. That is, clock issues
are extremely infrequent, relative to much more serious
hardware problems. As a result, we believe that True-
Time’s implementation is as trustworthy as any other
piece of software upon which Spanner depends.

Figure 6 presents TrueTime data taken at several thou-
sand spanserver machines across datacenters up to 2200

Published in the Proceedings of OSDI 2012 10

Mar 29 Mar 30 Mar 31 Apr 1

Date

2

4

6

8

10
E

p
si

lo
n

 (
m

s)

99.9

99

90

6AM 8AM 10AM 12PM

Date (April 13)

1

2

3

4

5

6

Figure 6: Distribution of TrueTime ε values, sampled right
after timeslave daemon polls the time masters. 90th, 99th, and
99.9th percentiles are graphed.

km apart. It plots the 90th, 99th, and 99.9th percentiles
of ε, sampled at timeslave daemons immediately after
polling the time masters. This sampling elides the saw-
tooth in ε due to local-clock uncertainty, and therefore
measures time-master uncertainty (which is generally 0)
plus communication delay to the time masters.

The data shows that these two factors in determining
the base value of ε are generally not a problem. How-
ever, there can be significant tail-latency issues that cause
higher values of ε. The reduction in tail latencies begin-
ning on March 30 were due to networking improvements
that reduced transient network-link congestion. The in-
crease in ε on April 13, approximately one hour in dura-
tion, resulted from the shutdown of 2 time masters at a
datacenter for routine maintenance. We continue to in-
vestigate and remove causes of TrueTime spikes.

5.4 F1

Spanner started being experimentally evaluated under
production workloads in early 2011, as part of a rewrite
of Google’s advertising backend called F1 [35]. This
backend was originally based on a MySQL database that
was manually sharded many ways. The uncompressed
dataset is tens of terabytes, which is small compared to
many NoSQL instances, but was large enough to cause
difficulties with sharded MySQL. The MySQL sharding
scheme assigned each customer and all related data to a
fixed shard. This layout enabled the use of indexes and
complex query processing on a per-customer basis, but
required some knowledge of the sharding in application
business logic. Resharding this revenue-critical database
as it grew in the number of customers and their data was
extremely costly. The last resharding took over two years
of intense effort, and involved coordination and testing
across dozens of teams to minimize risk. This operation
was too complex to do regularly: as a result, the team had
to limit growth on the MySQL database by storing some

fragments # directories

1 >100M
2–4 341
5–9 5336

10–14 232
15–99 34

100–500 7

Table 5: Distribution of directory-fragment counts in F1.

data in external Bigtables, which compromised transac-
tional behavior and the ability to query across all data.

The F1 team chose to use Spanner for several rea-
sons. First, Spanner removes the need to manually re-
shard. Second, Spanner provides synchronous replica-
tion and automatic failover. With MySQL master-slave
replication, failover was difficult, and risked data loss
and downtime. Third, F1 requires strong transactional
semantics, which made using other NoSQL systems im-
practical. Application semantics requires transactions
across arbitrary data, and consistent reads. The F1 team
also needed secondary indexes on their data (since Span-
ner does not yet provide automatic support for secondary
indexes), and was able to implement their own consistent
global indexes using Spanner transactions.

All application writes are now by default sent through
F1 to Spanner, instead of the MySQL-based application
stack. F1 has 2 replicas on the west coast of the US, and
3 on the east coast. This choice of replica sites was made
to cope with outages due to potential major natural disas-
ters, and also the choice of their frontend sites. Anecdo-
tally, Spanner’s automatic failover has been nearly invisi-
ble to them. Although there have been unplanned cluster
failures in the last few months, the most that the F1 team
has had to do is update their database’s schema to tell
Spanner where to preferentially place Paxos leaders, so
as to keep them close to where their frontends moved.

Spanner’s timestamp semantics made it efficient for
F1 to maintain in-memory data structures computed from
the database state. F1 maintains a logical history log of
all changes, which is written into Spanner itself as part
of every transaction. F1 takes full snapshots of data at a
timestamp to initialize its data structures, and then reads
incremental changes to update them.

Table 5 illustrates the distribution of the number of
fragments per directory in F1. Each directory typically
corresponds to a customer in the application stack above
F1. The vast majority of directories (and therefore cus-
tomers) consist of only 1 fragment, which means that
reads and writes to those customers’ data are guaranteed
to occur on only a single server. The directories with
more than 100 fragments are all tables that contain F1
secondary indexes: writes to more than a few fragments

Published in the Proceedings of OSDI 2012 11

latency (ms)
operation mean std dev count

all reads 8.7 376.4 21.5B
single-site commit 72.3 112.8 31.2M
multi-site commit 103.0 52.2 32.1M

Table 6: F1-perceived operation latencies measured over the
course of 24 hours.

of such tables are extremely uncommon. The F1 team
has only seen such behavior when they do untuned bulk
data loads as transactions.

Table 6 presents Spanner operation latencies as mea-
sured from F1 servers. Replicas in the east-coast data
centers are given higher priority in choosing Paxos lead-
ers. The data in the table is measured from F1 servers
in those data centers. The large standard deviation in
write latencies is caused by a pretty fat tail due to lock
conflicts. The even larger standard deviation in read la-
tencies is partially due to the fact that Paxos leaders are
spread across two data centers, only one of which has
machines with SSDs. In addition, the measurement in-
cludes every read in the system from two datacenters:
the mean and standard deviation of the bytes read were
roughly 1.6KB and 119KB, respectively.

6 Related Work

Consistent replication across datacenters as a storage
service has been provided by Megastore [5] and Dy-
namoDB [3]. DynamoDB presents a key-value interface,
and only replicates within a region. Spanner follows
Megastore in providing a semi-relational data model,
and even a similar schema language. Megastore does
not achieve high performance. It is layered on top of
Bigtable, which imposes high communication costs. It
also does not support long-lived leaders: multiple repli-
cas may initiate writes. All writes from different repli-
cas necessarily conflict in the Paxos protocol, even if
they do not logically conflict: throughput collapses on
a Paxos group at several writes per second. Spanner pro-
vides higher performance, general-purpose transactions,
and external consistency.

Pavlo et al. [31] have compared the performance of
databases and MapReduce [12]. They point to several
other efforts that have been made to explore database
functionality layered on distributed key-value stores [1,
4, 7, 41] as evidence that the two worlds are converging.
We agree with the conclusion, but demonstrate that in-
tegrating multiple layers has its advantages: integrating
concurrency control with replication reduces the cost of
commit wait in Spanner, for example.

The notion of layering transactions on top of a repli-
cated store dates at least as far back as Gifford’s disser-
tation [16]. Scatter [17] is a recent DHT-based key-value
store that layers transactions on top of consistent repli-
cation. Spanner focuses on providing a higher-level in-
terface than Scatter does. Gray and Lamport [18] de-
scribe a non-blocking commit protocol based on Paxos.
Their protocol incurs more messaging costs than two-
phase commit, which would aggravate the cost of com-
mit over widely distributed groups. Walter [36] provides
a variant of snapshot isolation that works within, but not
across datacenters. In contrast, our read-only transac-
tions provide a more natural semantics, because we sup-
port external consistency over all operations.

There has been a spate of recent work on reducing
or eliminating locking overheads. Calvin [40] elimi-
nates concurrency control: it pre-assigns timestamps and
then executes the transactions in timestamp order. H-
Store [39] and Granola [11] each supported their own
classification of transaction types, some of which could
avoid locking. None of these systems provides external
consistency. Spanner addresses the contention issue by
providing support for snapshot isolation.

VoltDB [42] is a sharded in-memory database that
supports master-slave replication over the wide area for
disaster recovery, but not more general replication con-
figurations. It is an example of what has been called
NewSQL, which is a marketplace push to support scal-
able SQL [38]. A number of commercial databases im-
plement reads in the past, such as MarkLogic [26] and
Oracle’s Total Recall [30]. Lomet and Li [24] describe an
implementation strategy for such a temporal database.

Farsite derived bounds on clock uncertainty (much
looser than TrueTime’s) relative to a trusted clock refer-
ence [13]: server leases in Farsite were maintained in the
same way that Spanner maintains Paxos leases. Loosely
synchronized clocks have been used for concurrency-
control purposes in prior work [2, 23]. We have shown
that TrueTime lets one reason about global time across
sets of Paxos state machines.

7 Future Work

We have spent most of the last year working with the
F1 team to transition Google’s advertising backend from
MySQL to Spanner. We are actively improving its mon-
itoring and support tools, as well as tuning its perfor-
mance. In addition, we have been working on improving
the functionality and performance of our backup/restore
system. We are currently implementing the Spanner
schema language, automatic maintenance of secondary
indices, and automatic load-based resharding. Longer
term, there are a couple of features that we plan to in-

Published in the Proceedings of OSDI 2012 12

vestigate. Optimistically doing reads in parallel may be
a valuable strategy to pursue, but initial experiments have
indicated that the right implementation is non-trivial. In
addition, we plan to eventually support direct changes of
Paxos configurations [22, 34].

Given that we expect many applications to replicate
their data across datacenters that are relatively close to
each other, TrueTime ε may noticeably affect perfor-
mance. We see no insurmountable obstacle to reduc-
ing ε below 1ms. Time-master-query intervals can be
reduced, and better clock crystals are relatively cheap.
Time-master query latency could be reduced with im-
proved networking technology, or possibly even avoided
through alternate time-distribution technology.

Finally, there are obvious areas for improvement. Al-
though Spanner is scalable in the number of nodes, the
node-local data structures have relatively poor perfor-
mance on complex SQL queries, because they were de-
signed for simple key-value accesses. Algorithms and
data structures from DB literature could improve single-
node performance a great deal. Second, moving data au-
tomatically between datacenters in response to changes
in client load has long been a goal of ours, but to make
that goal effective, we would also need the ability to
move client-application processes between datacenters in
an automated, coordinated fashion. Moving processes
raises the even more difficult problem of managing re-
source acquisition and allocation between datacenters.

8 Conclusions

To summarize, Spanner combines and extends on ideas
from two research communities: from the database com-
munity, a familiar, easy-to-use, semi-relational interface,
transactions, and an SQL-based query language; from
the systems community, scalability, automatic sharding,
fault tolerance, consistent replication, external consis-
tency, and wide-area distribution. Since Spanner’s in-
ception, we have taken more than 5 years to iterate to the
current design and implementation. Part of this long it-
eration phase was due to a slow realization that Spanner
should do more than tackle the problem of a globally-
replicated namespace, and should also focus on database
features that Bigtable was missing.

One aspect of our design stands out: the linchpin of
Spanner’s feature set is TrueTime. We have shown that
reifying clock uncertainty in the time API makes it possi-
ble to build distributed systems with much stronger time
semantics. In addition, as the underlying system en-
forces tighter bounds on clock uncertainty, the overhead
of the stronger semantics decreases. As a community, we
should no longer depend on loosely synchronized clocks
and weak time APIs in designing distributed algorithms.

Acknowledgements

Many people have helped to improve this paper: our
shepherd Jon Howell, who went above and beyond
his responsibilities; the anonymous referees; and many
Googlers: Atul Adya, Fay Chang, Frank Dabek, Sean
Dorward, Bob Gruber, David Held, Nick Kline, Alex
Thomson, and Joel Wein. Our management has been
very supportive of both our work and of publishing this
paper: Aristotle Balogh, Bill Coughran, Urs Hölzle,
Doron Meyer, Cos Nicolaou, Kathy Polizzi, Sridhar Ra-
maswany, and Shivakumar Venkataraman.

We have built upon the work of the Bigtable and
Megastore teams. The F1 team, and Jeff Shute in particu-
lar, worked closely with us in developing our data model
and helped immensely in tracking down performance and
correctness bugs. The Platforms team, and Luiz Barroso
and Bob Felderman in particular, helped to make True-
Time happen. Finally, a lot of Googlers used to be on our
team: Ken Ashcraft, Paul Cychosz, Krzysztof Ostrowski,
Amir Voskoboynik, Matthew Weaver, Theo Vassilakis,
and Eric Veach; or have joined our team recently: Nathan
Bales, Adam Beberg, Vadim Borisov, Ken Chen, Brian
Cooper, Cian Cullinan, Robert-Jan Huijsman, Milind
Joshi, Andrey Khorlin, Dawid Kuroczko, Laramie Leav-
itt, Eric Li, Mike Mammarella, Sunil Mushran, Simon
Nielsen, Ovidiu Platon, Ananth Shrinivas, Vadim Su-
vorov, and Marcel van der Holst.

References

[1] Azza Abouzeid et al. “HadoopDB: an architectural hybrid of
MapReduce and DBMS technologies for analytical workloads”.
Proc. of VLDB. 2009, pp. 922–933.

[2] A. Adya et al. “Efficient optimistic concurrency control using
loosely synchronized clocks”. Proc. of SIGMOD. 1995, pp. 23–
34.

[3] Amazon. Amazon DynamoDB. 2012.

[4] Michael Armbrust et al. “PIQL: Success-Tolerant Query Pro-
cessing in the Cloud”. Proc. of VLDB. 2011, pp. 181–192.

[5] Jason Baker et al. “Megastore: Providing Scalable, Highly
Available Storage for Interactive Services”. Proc. of CIDR.
2011, pp. 223–234.

[6] Hal Berenson et al. “A critique of ANSI SQL isolation levels”.
Proc. of SIGMOD. 1995, pp. 1–10.

[7] Matthias Brantner et al. “Building a database on S3”. Proc. of
SIGMOD. 2008, pp. 251–264.

[8] A. Chan and R. Gray. “Implementing Distributed Read-Only
Transactions”. IEEE TOSE SE-11.2 (Feb. 1985), pp. 205–212.

[9] Fay Chang et al. “Bigtable: A Distributed Storage System for
Structured Data”. ACM TOCS 26.2 (June 2008), 4:1–4:26.

[10] Brian F. Cooper et al. “PNUTS: Yahoo!’s hosted data serving
platform”. Proc. of VLDB. 2008, pp. 1277–1288.

[11] James Cowling and Barbara Liskov. “Granola: Low-Overhead
Distributed Transaction Coordination”. Proc. of USENIX ATC.
2012, pp. 223–236.

Published in the Proceedings of OSDI 2012 13

http://dl.acm.org/citation.cfm?id=1687627.1687731
http://dl.acm.org/citation.cfm?id=1687627.1687731
http://doi.acm.org/10.1145/223784.223787
http://doi.acm.org/10.1145/223784.223787
http://aws.amazon.com/dynamodb
http://dl.acm.org/citation.cfm?id=2078331.2078334
http://dl.acm.org/citation.cfm?id=2078331.2078334
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
http://doi.acm.org/10.1145/223784.223785
http://doi.acm.org/10.1145/1376616.1376645
http://dl.acm.org/citation.cfm?id=1267323
http://dl.acm.org/citation.cfm?id=1267323
http://doi.acm.org//10.1145/1454159.1454167
http://doi.acm.org//10.1145/1454159.1454167
https://www.usenix.org/system/files/conference/atc12/atc12-final118.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final118.pdf

[12] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: a flexible
data processing tool”. CACM 53.1 (Jan. 2010), pp. 72–77.

[13] John Douceur and Jon Howell. Scalable Byzantine-Fault-
Quantifying Clock Synchronization. Tech. rep. MSR-TR-2003-
67. MS Research, 2003.

[14] John R. Douceur and Jon Howell. “Distributed directory service
in the Farsite file system”. Proc. of OSDI. 2006, pp. 321–334.

[15] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The
Google file system”. Proc. of SOSP. Dec. 2003, pp. 29–43.

[16] David K. Gifford. Information Storage in a Decentralized Com-
puter System. Tech. rep. CSL-81-8. PhD dissertation. Xerox
PARC, July 1982.

[17] Lisa Glendenning et al. “Scalable consistency in Scatter”. Proc.
of SOSP. 2011.

[18] Jim Gray and Leslie Lamport. “Consensus on transaction com-
mit”. ACM TODS 31.1 (Mar. 2006), pp. 133–160.

[19] Pat Helland. “Life beyond Distributed Transactions: an Apos-
tate’s Opinion”. Proc. of CIDR. 2007, pp. 132–141.

[20] Maurice P. Herlihy and Jeannette M. Wing. “Linearizability: a
correctness condition for concurrent objects”. ACM TOPLAS
12.3 (July 1990), pp. 463–492.

[21] Leslie Lamport. “The part-time parliament”. ACM TOCS 16.2
(May 1998), pp. 133–169.

[22] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. “Reconfigur-
ing a state machine”. SIGACT News 41.1 (Mar. 2010), pp. 63–
73.

[23] Barbara Liskov. “Practical uses of synchronized clocks in dis-
tributed systems”. Distrib. Comput. 6.4 (July 1993), pp. 211–
219.

[24] David B. Lomet and Feifei Li. “Improving Transaction-Time
DBMS Performance and Functionality”. Proc. of ICDE (2009),
pp. 581–591.

[25] Jacob R. Lorch et al. “The SMART way to migrate replicated
stateful services”. Proc. of EuroSys. 2006, pp. 103–115.

[26] MarkLogic. MarkLogic 5 Product Documentation. 2012.

[27] Keith Marzullo and Susan Owicki. “Maintaining the time in a
distributed system”. Proc. of PODC. 1983, pp. 295–305.

[28] Sergey Melnik et al. “Dremel: Interactive Analysis of Web-
Scale Datasets”. Proc. of VLDB. 2010, pp. 330–339.

[29] D.L. Mills. Time synchronization in DCNET hosts. Internet
Project Report IEN–173. COMSAT Laboratories, Feb. 1981.

[30] Oracle. Oracle Total Recall. 2012.

[31] Andrew Pavlo et al. “A comparison of approaches to large-scale
data analysis”. Proc. of SIGMOD. 2009, pp. 165–178.

[32] Daniel Peng and Frank Dabek. “Large-scale incremental pro-
cessing using distributed transactions and notifications”. Proc.
of OSDI. 2010, pp. 1–15.

[33] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis
II. “System level concurrency control for distributed database
systems”. ACM TODS 3.2 (June 1978), pp. 178–198.

[34] Alexander Shraer et al. “Dynamic Reconfiguration of Pri-
mary/Backup Clusters”. Proc. of USENIX ATC. 2012, pp. 425–
438.

[35] Jeff Shute et al. “F1 — The Fault-Tolerant Distributed RDBMS
Supporting Google’s Ad Business”. Proc. of SIGMOD. May
2012, pp. 777–778.

[36] Yair Sovran et al. “Transactional storage for geo-replicated sys-
tems”. Proc. of SOSP. 2011, pp. 385–400.

[37] Michael Stonebraker. Why Enterprises Are Uninterested in
NoSQL. 2010.

[38] Michael Stonebraker. Six SQL Urban Myths. 2010.

[39] Michael Stonebraker et al. “The end of an architectural era: (it’s
time for a complete rewrite)”. Proc. of VLDB. 2007, pp. 1150–
1160.

[40] Alexander Thomson et al. “Calvin: Fast Distributed Transac-
tions for Partitioned Database Systems”. Proc. of SIGMOD.
2012, pp. 1–12.

[41] Ashish Thusoo et al. “Hive — A Petabyte Scale Data Ware-
house Using Hadoop”. Proc. of ICDE. 2010, pp. 996–1005.

[42] VoltDB. VoltDB Resources. 2012.

A Paxos Leader-Lease Management

The simplest means to ensure the disjointness of Paxos-
leader-lease intervals would be for a leader to issue a syn-
chronous Paxos write of the lease interval, whenever it
would be extended. A subsequent leader would read the
interval and wait until that interval has passed.

TrueTime can be used to ensure disjointness without
these extra log writes. The potential ith leader keeps a
lower bound on the start of a lease vote from replica r as
vleader
i,r = TT.now().earliest, computed before esend

i,r (de-
fined as when the lease request is sent by the leader).
Each replica r grants a lease at lease egrant

i,r , which hap-
pens after ereceive

i,r (when the replica receives a lease re-
quest); the lease ends at tend

i,r = TT.now().latest + 10,
computed after ereceive

i,r . A replica r obeys the single-
vote rule: it will not grant another lease vote until
TT.after(tend

i,r) is true. To enforce this rule across different
incarnations of r, Spanner logs a lease vote at the grant-
ing replica before granting the lease; this log write can
be piggybacked upon existing Paxos-protocol log writes.

When the ith leader receives a quorum of votes
(event equorum

i), it computes its lease interval as
leasei = [TT.now().latest,minr(vleader

i,r) + 10]. The
lease is deemed to have expired at the leader when
TT.before(minr(vleader

i,r) + 10) is false. To prove disjoint-
ness, we make use of the fact that the ith and (i + 1)th
leaders must have one replica in common in their quo-
rums. Call that replica r0. Proof:

leasei.end = minr(v
leader
i,r) + 10 (by definition)

minr(v
leader
i,r) + 10 ≤ vleader

i,r0 + 10 (min)

vleader
i,r0 + 10 ≤ tabs(e

send
i,r0) + 10 (by definition)

tabs(e
send
i,r0) + 10 ≤ tabs(e

receive
i,r0) + 10 (causality)

tabs(e
receive
i,r0) + 10 ≤ tend

i,r0 (by definition)

tend
i,r0 < tabs(e

grant
i+1,r0) (single-vote)

tabs(e
grant
i+1,r0) ≤ tabs(e

quorum
i+1) (causality)

tabs(e
quorum
i+1) ≤ leasei+1.start (by definition)

Published in the Proceedings of OSDI 2012 14

http://doi.acm.org/10.1145/1629175.1629198
http://doi.acm.org/10.1145/1629175.1629198
http://research.microsoft.com/apps/pubs/default.aspx?id=70023
http://research.microsoft.com/apps/pubs/default.aspx?id=70023
http://dl.acm.org/citation.cfm?id=1298455.1298486
http://dl.acm.org/citation.cfm?id=1298455.1298486
http://doi.acm.org/10.1145/1165389.945450
http://doi.acm.org/10.1145/1165389.945450
http://dl.acm.org/citation.cfm?id=910052
http://dl.acm.org/citation.cfm?id=910052
http://doi.acm.org/10.1145/2043556.2043559
http://doi.acm.org/10.1145/1132863.1132867
http://doi.acm.org/10.1145/1132863.1132867
http://www.cidrdb.org/cidr2007/index.html
http://www.cidrdb.org/cidr2007/index.html
http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/279227.279229
http://doi.acm.org/10.1145/1753171.1753191
http://doi.acm.org/10.1145/1753171.1753191
http://dx.doi.org/10.1007/BF02242709
http://dx.doi.org/10.1007/BF02242709
http://doi.ieeecomputersociety.org/10.1109/ICDE.2009.56
http://doi.ieeecomputersociety.org/10.1109/ICDE.2009.56
http://doi.acm.org/10.1145/1217935.1217946
http://doi.acm.org/10.1145/1217935.1217946
http://community.marklogic.com/docs
http://doi.acm.org/10.1145/800221.806730
http://doi.acm.org/10.1145/800221.806730
http://doi.acm.org/10.1145/1953122.1953148
http://doi.acm.org/10.1145/1953122.1953148
http://www.eecis.udel.edu/~mills/database/rfc/ien-173.txt
http://www.oracle.com/technetwork/database/focus-areas/storage/total-recall-whitepaper-171749.pdf
http://doi.acm.org/10.1145/1559845.1559865
http://doi.acm.org/10.1145/1559845.1559865
http://dl.acm.org/citation.cfm?id=1924943.1924961
http://dl.acm.org/citation.cfm?id=1924943.1924961
http://doi.acm.org/10.1145/320251.320260
http://doi.acm.org/10.1145/320251.320260
https://www.usenix.org/system/files/tech-schedule/atc12_proceedings_0.pdf
https://www.usenix.org/system/files/tech-schedule/atc12_proceedings_0.pdf
research.google.com/pubs/pub38125.html
research.google.com/pubs/pub38125.html
http://doi.acm.org/10.1145/2043556.2043592
http://doi.acm.org/10.1145/2043556.2043592
http://cacm.acm.org/blogs/blog-cacm/99512-why-enterprises-are-uninterested-in-nosql/fulltext
http://cacm.acm.org/blogs/blog-cacm/99512-why-enterprises-are-uninterested-in-nosql/fulltext
http://highscalability.com/blog/2010/6/28/voltdb-decapitates-six-sql-urban-myths-and-delivers-internet.html
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5447738
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5447738
http://voltdb.com/resources/whitepapers

	Introduction
	Implementation
	Spanserver Software Stack
	Directories and Placement
	Data Model

	TrueTime
	Concurrency Control
	Timestamp Management
	Paxos Leader Leases
	Assigning Timestamps to RW Transactions
	Serving Reads at a Timestamp
	Assigning Timestamps to RO Transactions

	Details
	Read-Write Transactions
	Read-Only Transactions
	Schema-Change Transactions
	Refinements

	Evaluation
	Microbenchmarks
	Availability
	TrueTime
	F1

	Related Work
	Future Work
	Conclusions
	Paxos Leader-Lease Management

