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Abstract. This paper presents an analysis of observed and
simulated historical snow cover extent and snow mass, along
with future snow cover projections from models participating
in the World Climate Research Programme Coupled Model
Intercomparison Project Phase 6 (CMIP6). Where appropri-
ate, the CMIP6 output is compared to CMIP5 results in order
to assess progress (or absence thereof) between successive
model generations. An ensemble of six observation-based
products is used to produce a new time series of histori-
cal Northern Hemisphere snow extent anomalies and trends;
a subset of four of these products is used for snow mass.
Trends in snow extent over 1981–2018 are negative in all
months and exceed − 50× 103 km2 yr−1 during November,
December, March, and May. Snow mass trends are approxi-
mately −5 Gtyr−1 or more for all months from December to
May. Overall, the CMIP6 multi-model ensemble better repre-
sents the snow extent climatology over the 1981–2014 period
for all months, correcting a low bias in CMIP5. Simulated
snow extent and snow mass trends over the 1981–2014 pe-
riod are stronger in CMIP6 than in CMIP5, although large
inter-model spread remains in the simulated trends for both
variables. There is a single linear relationship between pro-
jected spring snow extent and global surface air temperature
(GSAT) changes, which is valid across all CMIP6 Shared
Socioeconomic Pathways. This finding suggests that North-
ern Hemisphere spring snow extent will decrease by about
8 % relative to the 1995–2014 level per degree Celsius of
GSAT increase. The sensitivity of snow to temperature forc-
ing largely explains the absence of any climate change path-
way dependency, similar to other fast-response components

of the cryosphere such as sea ice and near-surface permafrost
extent.

1 Introduction

It is imperative that Earth system models properly treat sea-
sonal snow cover in order to account for a number of impor-
tant energy and water cycle processes.

1. Like summer sea ice in the Arctic, spring snow cover
over land has a cooling effect on the climate system
(Flanner et al., 2011). The magnitude of this cooling in-
fluence has declined alongside observed reductions in
spring snow cover over recent decades (Zhang et al.,
2019; Letterly et al., 2018).

2. Snow cover influences the carbon balance across
biomes and seasons. Across tundra regions in winter,
snow cover insulation of the underlying soil is a key fac-
tor in driving winter season carbon fluxes from northern
permafrost (Natali et al., 2019). Across the boreal forest
in spring, gross primary production and carbon uptake
during the subsequent months are directly related to the
timing of spring melt such that earlier snow loss drives
greater carbon uptake (Pulliainen et al., 2017). The net
effect of these processes on large-scale carbon budgets
remains uncertain.

3. Freshwater from snowmelt is a volatile natural resource,
subject to interannual variability and trends in tempera-
ture and precipitation. Observed and projected changes
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to seasonal snow cover, particularly in mountain re-
gions, have profound impacts on the quantity, quality,
and timing of water availability (Verfaillie et al., 2018;
Fyfe et al., 2017; Marty et al., 2017).

Observational evidence shows that snow cover is chang-
ing across midlatitude (Mudryk et al., 2017), alpine (Hock
et al., 2020), and subarctic and Arctic regions (Brown et al.,
2017; Meredith et al., 2020). These changes are challenging
to synthesize because of a high degree of region-to-region
and season-to-season variability in trends and because of the
range of metrics by which snow can be characterized in-
cluding snow extent, snow cover duration, and snow mass.
While snow extent anomalies and trends are strongly related
to surface temperature (Mudryk et al., 2017; Brutel-Vuilmet
et al., 2013; Robinson and Dewey, 1990), snow mass changes
are more challenging to diagnose because of the compet-
ing influences of temperature and precipitation and the in-
fluence of additional processes such as sublimation through
the snow accumulation season (Sospedra-Alfonso and Mer-
ryfield, 2017).

Over the past three generations of climate models (as-
sessed through subsequent phases of the Coupled Model In-
tercomparison Project – CMIP3, CMIP5, and CMIP6), land
surface models have increased in complexity, while moving
to a finer spatial resolution. The treatment of snow within
these models has grown more sophisticated, particularly with
respect to sub-grid heterogeneity and snow layering and pa-
rameterizations involving albedo, thermal conductivity, snow
density, surface exchange, and snow–vegetation interactions
(Essery et al., 2012; Qu and Hall, 2007). Some improvements
in the simulation of snow extent and snow mass were noted
between the Atmospheric Model Intercomparison Project
Phase 1 (AMIP-1) and Phase 2 (AMIP-2) models (Frei et al.,
2005, 1998). An assessment of the literature, however, shows
relatively small differences in Coupled Model Intercompar-
ison Project Phase 3 (CMIP3) vs. Phase 5 (CMIP5) model
performance at the continental scale, indicating that our un-
derstanding of how key snow processes influence model per-
formance has improved only modestly (Cécile Ménard, per-
sonal communication, 2019, based on forthcoming analysis
of point-scale simulations).

In general, CMIP3 and CMIP5 historical simulations have
reasonable snow extent and snow mass climatologies, albeit
with greater uncertainty in alpine areas (particularly western
Canada, Norway, and the Tibetan Plateau–Himalayas; Brown
et al., 2017; Brown and Mote, 2009). Both generations of
models tend to underestimate observed spring snow extent
reductions compared to observations (Derksen and Brown,
2012; Flanner et al., 2009; Frei et al., 2003). Explanations
include reduced snow sensitivity (snow loss per degree of
warming; Mudryk et al., 2017), underestimated spring warm-
ing over extra-tropical land (Brutel-Vuilmet et al., 2013),
and biases in climatological snow cover (low bias in sim-
ulated snow means there is less snow to lose; Thackeray

et al., 2016). Projected spring snow extent loss in CMIP5
models was primarily explained by extratropical temperature
trends, so scenario dependence for the magnitude of snow
loss emerges after 2050 (Thackeray et al., 2016; Meredith
et al., 2020). The patterns of snow cover duration and sea-
sonal maximum snow mass projections are similar between
CMIP3 and CMIP5 models (Brown and Mote, 2009; Brown
et al., 2017). Snow mass is projected to increase in the cold-
est parts of the Northern Hemisphere continents and decrease
across most midlatitude (Brown et al., 2017; Raisanen, 2008)
and alpine areas (Fyfe et al., 2017; Verfaillie et al., 2018),
while snow cover duration is expected to decrease every-
where (Brown et al., 2017; Brown and Mote, 2009). An in-
creased frequency of low-snow years emerges at 2 ◦C global
warming (Diffenbaugh et al., 2013).

In part, the lack of dramatic forward progress between
CMIP3 and CMIP5 is directly tied to continued problem-
atic approaches to snow modeling. For instance, unrealistic
vegetation parameters and distribution are related to errors
in snow albedo simulations (Wang et al., 2016; Thackeray
et al., 2015; Loranty et al., 2014), and some CMIP5 mod-
els continue to use physically unrealistic snow albedo val-
ues (Thackeray et al., 2019). Also, despite increases in model
resolution since CMIP3, even the highest-resolution models
in CMIP6 are still expected to have challenges simulating
snow in mountain regions without appropriate downscaling
(Verfaillie et al., 2018). In addition to these continuing is-
sues, the choice of evaluation data may also play a role, in
that nearly all CMIP3 and many CMIP5 studies used a single
snow product for evaluation; hence interpretation is prone to
biases in the chosen dataset. In this study, we quantify histor-
ical trends in Northern Hemisphere snow extent and snow
mass from an updated ensemble of gridded datasets. We
compare these trends to historical simulations from the multi-
model ensemble available from CMIP6 (Eyring et al., 2016)
and CMIP5 (Taylor et al., 2012) to identify changes in model
performance relative to historical observations. Projections
of snow extent and snow mass from a range of Shared So-
cioeconomic Pathways (SSPs) from the CMIP6 ScenarioMIP
(O’Neill et al., 2016) illustrate the potential range in future
snow conditions.

2 Methods

2.1 Multi-dataset historical snow extent and snow mass
time series

There are numerous gridded products that utilize various
combinations of surface observations, remote sensing, land
surface models, and reanalysis products to provide long time
series for quantifying continental trends in snow extent and
snow mass and assess climate model simulations. However,
all these datasets have uncertainties related to sparse obser-
vation networks, satellite retrieval algorithm uncertainties,
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simplified model parameterizations, and/or forcing uncer-
tainty. Overall, this means there is no single “best” dataset
from which variability and trends in seasonal snow can be
diagnosed. Instead, the challenge is to combine indepen-
dent datasets in a meaningful way to mitigate uncertainty
attributed to individual techniques (Krinner et al., 2018;
Mudryk et al., 2015), much like multi-model ensembles and
large initial condition ensembles (e.g., Kay et al., 2015)
are used across the climate modeling community. The ideal
dataset for comparison with coupled model ensembles would
be a single, bias-free, observational record with uncertainty
due only to interannual variability. Analysis of such a record
would yield an accurate trend with a simply interpretable un-
certainty due to record length and sampling uncertainty and
would provide the most straightforward way to compare the
observed trend with those from coupled model ensembles
(which contain further spread due to model structure and
parametrization as well and internal variability). In reality,
observational records are not ideal and different datasets may
contain additional uncertainty in their variability due to tech-
nical issues. Our goal here is to combine anomalies from an
ensemble of observation-based estimates in order to mitigate
the most prominent trend biases of the individual datasets
and estimate the irreducible interannual variability.

The use of multiple observation-based snow datasets
(Mudryk et al., 2018, 2017; Thackeray et al., 2016) evalu-
ated through coordinated experiments like the Satellite Snow
Product Intercomparison and Evaluation Exercise (Snow-
PEx; Mortimer et al., 2020) represents a shift from the
use of single snow datasets typical of many CMIP3 and
early CMIP5 model evaluation studies (Brutel-Vuilmet et al.,
2013; Derksen and Brown, 2012; Brown and Mote, 2009).
As discussed in Sect. 4.1, this shift results in a different inter-
pretation of the ability of the models to reproduce historical
trends. In this study, we construct a representation of his-
torical snow extent and snow mass using six datasets that
all cover the complete 1981–2018 time period. For snow ex-
tent we can extend the record back to 1967 based on one of
these six component datasets, and for certain months we can
further extend the record back to 1922. A summary of the
datasets is provided in Table 1.

The NOAA and JASMES datasets provide a direct esti-
mate of snow extent and were obtained from the references
noted in Table 1 as total Northern Hemisphere (NH) snow
extent time series. The four gridded snow mass datasets were
regridded to 0.5◦ resolution, and time series were calculated
for each product by integrating the volume of snow water
over the NH land area and multiplying by the density of wa-
ter. Because the GlobSnow product is masked over complex
topography at the native GlobSnow grid spacing of 25 km,
snow mass was replaced in the 0.5◦ grid cells which contain
mountains with a blend of the GlobSnow data (if any) and the
mean value from the other three data sources. The weight-
ing for the blend was determined by the mountain fraction
of the grid cell area (defined using a 5 arcmin resolution to-

pographic map as regions with a slope greater than 2◦). For
grid cells with no mountainous terrain, unaltered regridded
GlobSnow data were used. As the fraction of mountainous
terrain increases, the weight applied to the GlobSnow data
is linearly reduced, reaching zero for grid cells containing
only mountainous terrain. In midwinter, approximately 25 %
of snow-covered grid cells are blended with less than 50 %
GlobSnow.

Snow extent time series were also calculated from these
four snow mass datasets by applying a threshold of 4 mm
to daily snow water equivalent fields, averaging to yield
monthly fractional snow cover and summing the average
monthly land area under snow. In order to merge all six
snow extent datasets, the climatology and standard devia-
tion of each dataset were adjusted as follows based in part
on the methodology used in Brown et al. (2010) and Brown
and Robinson (2011). Each dataset’s climatology was re-
placed by the climatology of the NOAA data record, and
each dataset’s variability was adjusted to that of the ensemble
mean standard deviation. This was accomplished by first cal-
culating standardized anomalies using each dataset’s own cli-
matology and standard deviation (1981–2014) and then de-
standardizing using the ensemble mean standard deviation
and the climatology of the NOAA data record. The NOAA
climatology was used because lacking additional verifica-
tion data we assume it is the best estimate of the true his-
torical snow extent. By contrast, we expect the variability of
the six-component dataset to be more accurate than any sin-
gle dataset and in particular more accurate than that of the
NOAA dataset alone, which may be artificially high during
the spring based on several lines of evidence (e.g., Mudryk
et al., 2017).

These adjusted time series were averaged over the 1981–
2018 period and this average time series was merged with the
adjusted NOAA time series over the 1967–1980 period. This
methodology ensures that the transition between the pre- and
post-1981 periods does not contain any discontinuities due
to changes in climatology (e.g., whether the full time series
were simply averaged together) or variability (e.g., whether
unadjusted anomalies were averaged together).

Over the 1981–2018 period, 95 % uncertainty bounds were
determined from the standard error:

SE= s/
√
n− 1, (1)

which depends on the standard deviation, s, of the n datasets
included.

Over the 1967–1980 period, 95 % uncertainty bounds were
determined from the standard error of forecast:

SEf(x)= SEres(x)

√
1+

1
n
(1+ x2), (2)

where SEres(x) is the standard error of the residuals from
a best-fit line, x is the standardized anomaly of the sequence
of years of the analysis period, and n is the number of years
of the analysis period.
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Table 1. Snow products combined to produce multi-dataset snow cover extent and snow mass datasets.

Dataset Time period Variable Resolution Method Reference

NOAA Snow Chart
Climate Data Record

1967–2018 Snow extent 190 km Manual analysis of primarily
optical satellite imagery

Estilow et al. (2015)
Robinson et al. (2012)

JAXA JASMES 1981–2018 Snow extent 5 km Objective analysis of AVHRR
imagery

Hori et al. (2017)
http://www.eorc.jaxa.jp/cgi-bin/
jasmes/monthly/jasmes_main_
v3r3.cgi?area=GL&lang=en (last
access: 13 November 2019)

Crocus 1981–2018 Snow mass 0.5◦× 0.5◦ Crocus physical snow model
driven by ERA-Interim reanal-
ysis

Brun et al. (2013)

MERRA-2 1981–2018 Snow mass 0.5◦× 0.625◦ Reanalysis (catchment land
surface model)

Gelaro et al. (2017)
GMAO (2015)

GlobSnow 1981–2018 Snow mass 25 km Satellite passive microwave
data and surface snow depth
observations

Takala et al. (2011)
http://www.globsnow.info (last ac-
cess: 12 November 2018)

Brown 1981–2018 Snow mass 0.75◦× 0.75◦ Temperature-index snow model
driven by ERA-Interim reanal-
ysis

Brown et al. (2003)

B2000 1922–1992 Snow extent 190 km Monthly snow cover index for
NA and Eurasia based on
gridded, observed, and recon-
structed daily snow depth at
surface climate stations

Brown (2000)

For certain months, the Northern Hemisphere snow extent
time series can be extended back to 1922 through the interpo-
lation of a fixed network of surface snow depth observations,
described in Brown (2000) and labeled as B2000 in Table 1.
These observations have sufficient spatial coverage to esti-
mate relative changes in snow extent from year to year in the
form of an index, but they are not estimates of the actual snow
extent. Limitations in the mutual availability and coverage of
surface observations over North America and Eurasia mean
that hemispheric estimates are only available for March and
April. These March and April indices are converted into units
of snow extent separately over each continent using the same
process described above. Each index is standardized based on
the 1972–1991 period. The index climatology is matched to
NOAA’s climatology calculated over the same period for the
appropriate month and continent. We chose the 1972–1991
reference period because we expect that the NOAA clima-
tology over 1972–1991 is more representative of earlier 20th
century snow cover (whereas snow cover will have already
responded to warming temperatures by the latter portion of
the record). We rescale the variability of each index using
the six-member ensemble mean standard deviation for the
appropriate month and continent. This process has an im-
plicit assumption that the variability sampled in the B2000
index over 1972–1991 is comparable to that from the ensem-
ble mean snow extent time series over the 1981–2014 period.

The rescaled indices for each continent are then summed to-
gether to obtain a historical estimate of Northern Hemisphere
snow cover extent from 1922 to 1991. Uncertainty is calcu-
lated using the standard error of forecast; however we con-
sider additional uncertainty due to the choice of reference
periods used for matching the climatology and standard de-
viation. The 95 % uncertainty bounds are calculated for all
possible selections of sequential 20-year climatological pe-
riods from the NOAA record in combination with all possi-
ble sequential 20-year estimates of variability from the six-
member ensemble. The maximum and minimum uncertainty
bounds calculated from these combinations are used to define
the range for each year.

Monthly snow extent trends were computed from the aver-
age of the six adjusted time series described above; monthly
snow mass trends were computed from the average of the
four unadjusted snow mass time series.

2.2 Model simulations and analyses

The standard period used in this paper for evaluating the
CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et al., 2016)
model outputs is 1981 to 2014. The historical period for
which simulations were driven by observed climate forcing
data ends in 2014 for CMIP6 and 2005 for CMIP5. Ob-
served CO2 emissions between 2006 and 2014 reasonably
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follow those of the RCP8.5 emission scenario (Hayhoe et al.,
2017); therefore we use the first 9 years (2006–2014) of the
RCP8.5 simulations to complement the historical simulations
for CMIP5. For CMIP6 projections, we restrict our analy-
sis to the four Tier 1 SSPs (O’Neill et al., 2016): SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5.

To evaluate climatological means, we analyze the “first”
ensemble member for each model (r1i1p1 in CMIP5 and
r1i1p1f1 in CMIP6, respectively). A handful of models had
no r1i1p1f1 variant. In these cases the r1i1p1f2 variant was
chosen (e.g., the CNRM models, MIROC-ESM, UKESM)
and barring that the r1i1p1f3 variant (HadGEM). For trend
analyses, the least-squares median trend of each model’s en-
semble is used. NorESM realization r1i1p1f1 had 10 years of
missing data and was ignored for trends; realization r2i1p1f1
was used for its climatology. A special treatment is applied
to CMIP5, because the 1981–2014 reference period covers
both the historical and the RCP8.5 scenario simulations. In
order to identify the median CMIP5 simulation over this
reference period, we concatenated the first ensemble mem-
bers of the historical and the RCP8.5 scenario simulations
for analyses of climatological means. For analyses of trends,
we constructed a bootstrap pseudo-ensemble for each model
by combining all historical and scenario ensemble members,
yielding nH× nS bootstrap ensemble members for a model
that had nH members in its historical ensemble and nS mem-
bers in its scenario ensemble. We then identified the median
snow cover and snow mass trend from this bootstrap ensem-
ble.

In this paper, snow cover fraction (variable “snc”), snow
mass (“snw”), and surface air temperature (“tas”) are used.
Snow extent is not obtained from snow water equivalent by
applying a threshold of 5 mm, as suggested in Brutel-Vuilmet
et al. (2013). Instead, snow extent is computed directly from
the snow cover fraction calculated in the models. Implica-
tions of this choice are evaluated in the discussion section.

Because we focus on seasonal snow cover, model output
is masked to only take into account ice-free continental grid
points. Unfortunately, not all model groups had made these
time-independent model masks (land fraction, “sftlf”; ice-
sheet fraction, “sftgif”) available at the time of writing. We
therefore used the masks from the CNRM-CM6-1 coupled
model (Voldoire et al., 2019) for all other models by interpo-
lating these masks to the corresponding grid of each model.
Some models accumulate permanent snow in specific areas
such as the northern parts of the Canadian Archipelago or
Tibet. This means that very high snow mass can occur in
the specific areas where snow does not melt entirely in sum-
mer, effectively transforming the corresponding model grid
points into ice caps. This would alter our hemispheric snow
mass diagnostics that are supposed to be limited to seasonal
snow. We therefore limit model snow mass to a maximum of
500 kgm−2. Although this value can be exceeded for sea-
sonal snow cover in localized regions, it should represent

a reasonable maximum for snow mass at the resolution of
the model simulations.

We used the CMIP5–CMIP6 database as available on the
Institut Pierre et Simon Laplace Calcul Intensif pour le Cli-
mat, l’Atmosphère et la Dynamique (IPSL CICLAD; http:
//ciclad-web.ipsl.jussieu.fr/, last access: 31 December 2019)
computer center in December 2019. Snow cover fraction,
snow water equivalent, and surface temperature over the
1981–2014 period were available for 23 CMIP5 models at
the time of writing (see Table 2). This is a somewhat more
extensive ensemble of opportunity than analyzed by Mudryk
et al. (2017) and Thackeray et al. (2016). For CMIP6 (see
again Table 2), 21 models have these variables available
over the 1981–2014 period. Contrary to Krinner and Flanner
(2018), we did not restrict the multi-model ensemble to only
one model per modeling group. Because of strong similarity
between multiple models emanating from a single modeling
group or sharing a common development history (Masson
and Knutti, 2011), this decision could result in effectively
overweighting certain groups of models that in reality are
only slightly different versions of one another. However, by
using medians of the multi-model ensemble for both clima-
tological means and trends, we reduce possible misleading
effects of this choice. For analysis of model projections we
do not examine simulated trends. Hence the multi-model en-
sembles are based on the first realization available for each
model.

3 Results

3.1 Observation-based trends of snow extent and snow
mass

While the NOAA climate record represents an established
“baseline” dataset for assessing climatological snow extent
at the hemispheric scale, no such equivalent dataset exists
for climatological snow mass. Furthermore, the potential for
biases in trends calculated from reanalysis due to abrupt
changes in input (e.g., Mortimer et al., 2020) and the pres-
ence of established trend biases in the NOAA record (see
Sect. 4.1 for a discussion) have prompted the use of the multi-
dataset approach described in Sect. 2.1. We argue that this
approach should reduce the potential for biased model evalu-
ation related to uncertainty in an individual product. Previous
applications of similar approaches have resulted in improved
model verification of seasonal forecasts (Sospedra-Alfonso
et al., 2016) and have produced more robust diagnosis of
historical climate model simulations (e.g., Thackeray et al.,
2016) compared to the use of a single dataset (Derksen and
Brown, 2012).

Before evaluating the model simulations, we illustrate the
monthly snow extent and snow mass trends and anoma-
lies (1981–2018) from the multi-dataset ensemble in Fig. 1.
Snow extent trends are negative in all months and exceed
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Table 2. Number of CMIP5 and CMIP6 model realizations with available snow cover fraction (“snc”), snow water equivalent (“snw”), and
surface air temperature (“tas”) for both historical and RCP8.5 and SSP5–8.5 experiments.

CMIP5 model Available realizations CMIP6 model Available realizations

Historical RCP8.5 Historical SSP5-8.5

BCC-CSM1.1 3 1 BCC-CSM2-MR 3 1

BNU-ESM 1 1

CanESM2 5 5 CanESM5 25 25

CMCC-CM 1 1
CMCC-CMS 1 1

CCSM4 9 6
CESM1-BGC 1 1 CESM2 11 2
CESM1-CAM5 3 3
CESM1-WACCM 4 3 CESM2-WACCM 3 1

CNRM-CM5 10 5 CNRM-CM6-1 18 6
CNRM-ESM2-1 5 5

CSIRO-Mk3.6.0 10 10

EC-Earth3 24 7
EC-Earth3-Veg 4 3

FGOALS-g2 5 1 FGOALS-f3-L 3 1

GFDL-ESM4 1 1
GFDL-CM4 1 1

GISS-E2-H 6 2 GISS-E2-1-G 10 10
GISS-E2-R 6 2 GISS-E2-1-H 10 10

HadGEM3-GC31-LL 4 4

INM-CM4 1 1

IPSL-CM6A-LR 32 6

MIROC5 5 5 MIROC6 10 3
MIROC-ESM 3 1 MIROC-ES2L 3 1
MIROC-ESM-CHEM 1 1

MPI-ESM-MR 3 1 MPI-ESM1-2-HR 10 1

MRI-CGCM3 3 1
MRI-ESM1 1 1 MRI-ESM2-0 5 1

NorESM1-M 3 1 NorESM2-LM 3 1
NorESM1-ME 1 1

UKESM1-0-LL 9 5

−50× 103 km2 during November, December, March, and
May. Snow mass trends are consistently negative: trends are
approximately −5 Gtyr−1 or more for all months between
November and June. Both snow extent and snow mass trends
are near zero during the summer because there is very little
land area with snow cover.

Figure 2 shows a nearly 100-year time series of North-
ern Hemisphere snow extent, produced by combining grid-
ded station observations (1922–1992; Brown, 2000) avail-

able for March and April with the multi-dataset record shown
in Fig. 1 (described in Sect. 2.1). The overlap period shows
good agreement between the two independent time series,
albeit with greatly reduced uncertainty during the recent era.
There is a high degree of interannual variability through the
full data record. NH snow extent peaked over the 1950 to
1970 period (particularly evident in March), with reductions
since 1980 consistent with the combined datasets shown in
Fig. 1.
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Figure 1. Observation-based NH snow extent (a, b) and snow mass (c, d) trends (a, c) and anomalies (b, d) for January 1981 through
December 2018 relative to 1981–2014.

Figure 2. Northern Hemisphere snow extent spanning 1922–2018 for March (a) and April (b). Snow extent estimates (solid) and uncertainty
(shading) are based on station observations (blue) over the 1922–1991 period and the multi-dataset record (black) over the 1967–2018 period.

3.2 Historical simulations

Examining the historical model output, Fig. 3 indicates that
overall the CMIP6 multi-model ensemble better represents
the snow extent climatology over the 1981–2014 period for
all months (Fig. 3b), correcting a low bias in CMIP5 rela-
tive to the multi-dataset observational ensemble (Fig. 3a).
One model family (EC-Earth3 and EC-Earth3-Veg; Wyser
et al., 2019) is a clear outlier due to the simulation of very
high snow cover extent (dots above the box and whiskers in
Fig. 3b). These climatologies are statistical outliers from Jan-
uary to October; while not statistical outliers during Novem-
ber and December, they are still at the origin of the large
spread towards high values. This high snow extent is linked
to very high snow cover fractions even for low snow mass
values (see Sect. 4.2). If this obvious outlier is not consid-

ered, the inter-model spread is lower for CMIP6 compared to
CMIP5.

The higher climatological snow extent in CMIP6 models
relative to CMIP5 might in part be due to a climatological
snow mass increase relative to CMIP5 (Fig. 4). Hemispheric-
scale snow extent and snow mass are not always correlated
in observational datasets (e.g., Ge and Gong, 2008). Higher
simulated snow mass, however, tends to lead to higher sim-
ulated snow extent due to the connected parameterizations
of these variables (e.g., snow cover fraction increases with
snow mass until a critical threshold when complete snow
cover occurs on the grid cell scale). The reduced spread in
the lower part of the simulated snow mass range (third and
fourth quartiles) in CMIP6 leads to a more significant high
bias in the more recent CMIP exercise (in the sense of a re-
duced overlap of the inter-model distribution with the inter-
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Figure 3. Simulated CMIP5 (a) and CMIP6 (b) monthly mean 1981–2014 NH snow extent. The green violins (yellow bar: median year)
represent the observed interannual distribution. The boxes and whiskers represent the individual models’ (first ensemble member) 1981–2014
average from the CMIP5–CMIP6 multi-model ensembles (red bar: median model).

annual range of observed NH snow mass). Correspondingly,
the upper part of the CMIP6 ensemble range (first and sec-
ond quartiles) features models with higher biases than seen
in CMIP5. An important consideration, however, is that the
observational snow mass ensemble is likely biased low due to
underestimation of snow mass in high-elevation areas (Wrze-
sien et al., 2018; see Sect. 4.1 for a more complete discussion
of this issue).

Differences in the geographic patterns of CMIP5 and
CMIP6 spring and autumn snow cover (Fig. 5) reflect the
overall higher CMIP6 snow extent evident in Fig. 3. The
proportion of models simulating more than 50 % snow cover
in spring and autumn increases along the southern border of
the snow-covered regions in both northern Eurasia and North
America. The increase is particularly strong and widespread
in autumn (Fig. 5d–f), resulting in the reduced CMIP6 bias
from October onwards. CMIP6 also has an increased fraction
of models simulating overly extensive snow cover in Eurasia
and North America during both seasons consistent with the
outlier models already mentioned.

There is a notable increase in the simulated spring snow
cover across the Tibetan Plateau in CMIP6, which strength-
ens a regional positive bias already present in CMIP5 sim-
ulations (Fig. 5a–c). This bias persists through the summer:
more than 20 % of CMIP6 models simulate persistent sum-
mer snow cover on the Tibetan Plateau, and more than half
of the models simulate persistent snow cover in excess of
50 % areal fraction in the Hindu Kush area further west
(Fig. 5h). In South America (not shown), the CMIP6 en-
semble simulates a median annual maximum snow extent
of about 295 000 km2 (mean of approximately 400 000 km2,
heavily influenced by some outliers), which is in good agree-
ment with the average 1979–2006 annual maximum extent

of about 320 000 km2 estimated from satellite passive mi-
crowave data (Foster et al., 2009).

In summary, while some regional differences in snow
cover are evident, the improved hemispheric statistics for
snow extent seen in Fig. 3 are generally consistent with the
geographic patterns shown in Fig. 5. While there is some ap-
parent skill degradation in some areas such as the Tibetan
Plateau, there is a clear improvement in the mean model
agreement with observations at the hemispheric scale, partic-
ularly in October–November, that is not due to compensation
of biases in different regions.

Simulated snow extent and snow mass trends over the
1981–2014 period (Fig. 6) are stronger for most months in
CMIP6 than in CMIP5 with respect to the inter-model me-
dian (note that the observed trends are computed over the
1981–2014 period for consistency with the CMIP6 ensem-
ble and thus slightly different from the 1981–2017/18 trends
given in Fig. 1). As discussed in Sect. 2.1, the observational
uncertainty shown on the graph is meant to estimate un-
certainty due to historical interannual variability and does
not represent the larger spread in trends among individual
datasets. Differences between CMIP5 and CMIP6 are most
apparent during the autumn months of October and Novem-
ber and during the spring months of April and May. This
change is not simply due to the increased snow extent (Fig. 3)
because the CMIP6 trends are approximately twice as strong
as CMIP5, while the increase in climatological snow extent
was more modest. The observed snow extent and snow mass
trends generally fall within the range of both ensembles,
although this is expected given the very large inter-model
spread in the simulated trends for both variables.

In order to determine whether the 34-year trends calcu-
lated above are representative of an anthropogenic forcing
signal, CMIP6 ensemble-mean values for monthly NH snow
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Figure 4. As in Fig. 3 but for snow mass.

extent trends were computed over periods of various lengths
(starting in 1981) from 5 to 34 years as shown in Fig. 7a.
When considering very short periods (5 years), the ensemble-
mean monthly trends span random values that can be ei-
ther positive or negative. Over longer periods, these trends
all converge toward negative values with magnitudes that are
stronger during the autumn and spring seasons. The trends all
become more positive after the 10th year (1991), following
the eruption of Mount Pinatubo, an indication of the response
of NH snow extent to the subsequent tropospheric cooling
forced by the eruption. The probability of obtaining a neg-
ative trend is shown in Fig. 7b, estimated from the range
of trends in the 178-member ensemble. After 5 years, this
probability is close to 0.5 (roughly equal numbers of positive
and negative trends found within the ensemble), highlighting
the influence of internal climate variability on snow extent at
these short timescales. After 20 years, this probability ranges
between 0.7 and 0.9, with lower values in spring compared to
autumn, suggesting a higher interannual variability in spring
than in autumn. Finally, after 30 years the probability of ob-
taining a negative trend is larger than 95 % for all months.
This result indicates that requiring a minimum of 30 years
would be justified in order to confidently differentiate anthro-
pogenically driven snow extent trends from internal variabil-
ity.

3.3 Model projections

The projected CMIP6 snow cover extent and snow mass
changes shown in Fig. 8 share the broad features of the
CMIP5 projections (e.g., Brutel-Vuilmet et al., 2013; not
shown here). The different scenarios start to diverge in about
2040, approximately 25 years after the start of the projec-
tion period. Under SSP1-2.6, stabilization of the multi-model
mean snow cover extent occurs around 2060 at about −18 %
(±7 %) relative to the 1995–2014 average in spring (Fig. 8a),
and at about −20 % (±7 %) in autumn (Fig. 8b). Unabated

greenhouse gas emissions underlying SSP5-8.5 lead to con-
tinuous and ongoing snow cover losses which reach −55 %
(±10 %) in spring and −60 % (±10 %) in autumn by the end
of the 21st century. The stabilized loss of snow cover by
mid-century under SSP1-2.6 compared to continued reduc-
tions to the end of the century under SSP5-8.5 is consistent
with CMIP5 simulations under RCP2.6 vs. RCP8.5 (Mered-
ith et al., 2020).

Projections of March snow mass (which captures the ap-
proximate timing of maximum NH snow mass) evolve simi-
larly to snow extent, with somewhat lower losses relative to
1995–2014 (−40%±10% by the end of the century in SSP5-
8.5). Similar to snow cover extent, March snow mass reduc-
tions plateau after mid-century in SSP1-2.6 but continue to
decline under all other SSPs. This overall reduction in peak
NH snow mass will cause notable water cycle impacts (e.g.,
Berghuijs et al., 2014; Diffenbaugh et al., 2013). A more
detailed analysis is required to confirm whether snow mass
is projected to increase for the same high-latitude regions
and scenarios as simulated by CMIP5 models (e.g., Eurasian
and North American Arctic under RCP8.5; see Brown et al.,
2017).

The difference in snow cover evolution projected for the
various greenhouse gas concentration pathways can be dis-
tilled down to a rather simple relationship when the projected
snow extent is plotted as a function of the global-mean sur-
face air temperature (GSAT), as shown in Fig. 9 for projected
spring snow extent changes under four scenarios. There is
a single linear relationship between spring snow extent and
GSAT changes valid across all scenarios. This finding sug-
gests that Northern Hemisphere spring snow extent will de-
crease by about 8 % relative to the 1995–2014 level per de-
gree Celsius of GSAT increase, which is somewhat weaker
than the currently observed sensitivity (Mudryk et al., 2017).
We also note that there is no significant difference in this
linear relationship between CMIP6 models with high equi-
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Figure 5. Percentage of models simulating more than 50 % snow cover in the Northern Hemisphere during March–April (a–c) and October–
November (d–e) for 1981–2014, for CMIP5 (a, d) and CMIP6 (b, e). The 50 % snow cover frequency line from the NOAA data for the
same months during that period is shown in pink. Percentage of models simulating more than 50 % snow cover in high-mountain Asia during
July–August for 1981–2014, for CMIP5 (g) and CMIP6 (h). Differences (CMIP6 minus CMIP5) are shown in panels (c, f, and i).

librium climate sensitivity and those with low equilibrium
climate sensitivity (not shown).

Given this single linear relationship for all scenarios, we
thus restrict further analysis to SSP5-8.5. This scenario leads
to the strongest GSAT changes over the 21st century and
thereby allows exploration of the sensitivity of snow cover
to GSAT across the largest range of projected temperature
changes. Figure 10 demonstrates that the snow cover reduc-
tions projected as a function of GSAT change are nearly lin-
ear for all months in the multi-model mean over the entire
SSP5-8.5 temperature projection range, except for summer
months (July to September), for which linearity necessar-

ily breaks down when the land surface is essentially snow-
free. While there appears to be a slightly stronger sensitiv-
ity (increased snow loss) during autumn months compared
to spring, further investigation shows this is due to larger
simulated warming in the Northern Hemisphere during these
months. Scaling snow loss by Northern Hemisphere extrat-
ropical warming (> 30◦ N) rather than GSAT shows slightly
stronger sensitivity during the spring than during autumn
consistent with Mudryk et al. (2017). The kink in the time
series near 3.5 K (relative to 1995–2014) is due to changes
in the number of models available as this level of warming
corresponds roughly to the end of the 21st century beyond
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Figure 6. Northern Hemisphere trends of snow extent (a) and snow mass (b) between 1981 and 2014, for CMIP5 (blue) and CMIP6 (red).
The violins span the model range after the removal of outliers. The observed trends are represented by the black crosses, with the height of
the cross representing the 1σ uncertainty of the observed trend.

Figure 7. (a) Northern Hemisphere monthly trends of snow extent in CMIP6 models over 1981–2014 computed with 178 members from 21
CMIP6 models as a function of the number of years from 1981 and starting from a 5-year time series. (b) Probability of negative monthly
trends estimated from the full ensemble members. The horizontal bar highlights a probability of 95 %, and the vertical bars correspond to the
year of the Pinatubo eruption.

which fewer modeling groups contributed realizations. The
increase in the snow-free season in the Northern Hemisphere
can be traced by examining when total snow extent drops
below a given threshold. For example, using a threshold of
3 million km2 as shaded in the figure, June and September
are projected to be essentially snow-free at 2.5 K of warming
relative to 1995–2014.

4 Discussion

4.1 Observation-based trends

Strong snow extent trends are apparent over the 1981–2018
period based on an ensemble of six observation-based prod-
ucts. An extended dataset covering 1922 to 2018 provides
no evidence of previous multi-decadal periods of sustained

loss of snow cover during March and April comparable to
that observed in recent decades. This loss of snow cover is
consistent with numerous studies over the past decade which
have documented the emergence of dramatic snow cover ex-
tent reductions (e.g., Allchin and Dery, 2019; Hernández-
Henríquez et al., 2015; Dery and Brown, 2007). Historical
trends in snow extent are strongly associated with extrat-
ropical surface temperature warming (Mudryk et al., 2017;
Thackeray et al., 2016). The strong negative snow extent
trends during October and November in Fig. 1 are consis-
tent with dramatically warmer surface temperatures across
the Arctic during autumn driven by summer sea ice loss (Ser-
reze et al., 2009).

The six-dataset ensemble used in this study provides clear
evidence that snow extent reductions from October to De-
cember are comparable to or even larger than those in
March–June. However, negative autumn snow extent trends
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Figure 8. Time series of (a) NH spring (April–June) and (b) autumn (October–December) snow cover extent and (c) March snow mass
changes (relative to the 1995–2014 average); multi-model mean of the first ensemble members of the historical and scenario runs with
inter-model standard deviation.

have not been consistently reported previously in the litera-
ture, with some studies even reporting a snow extent increase
during October (e.g., Cohen et al., 2014). While the NOAA
snow chart data record continues to show a positive trend in

October, it is not replicated by other datasets (Mudryk et al.,
2017, 2014; Brown and Derksen, 2013), including the recent
Hori et al. (2017) dataset based on optical satellite data. In-
creased snow extent in October remains physically unrealis-
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Figure 9. Spring (March to May) NH snow cover extent against
GSAT (relative to the 1995–2014 average) for the CMIP6 Tier 1
scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), with lin-
ear regressions. Each data point represents the average snow extent
from one CMIP6 simulation (first ensemble member for each avail-
able model). The average is taken over all pentads from the given
simulation which fall into the given temperature bin.

Figure 10. Multi-model mean CMIP6 projected Northern Hemi-
sphere snow extent as a function of 5-year mean GSAT for SSP5-
8.5. The shaded region delineates when projected Northern Hemi-
sphere snow extent drops below 3 million km2. This threshold is ap-
proximately the same fraction of the maximum snow extent as the
corresponding fraction used to define the Arctic Ocean as ice-free.

tic given the concurrent surface temperature trends (Mudryk
et al., 2017). While the NOAA dataset remains an important
component of the observational ensemble used in this study,
it provides a cautionary tale against relying on single datasets
to establish a climate baseline, particularly for trends.

Winter season snow extent trends are influenced by both
temperature and precipitation. While events such as cold-air
outbreaks related to the behavior of the stratospheric polar
vortex can have a notable impact on continental-scale snow
cover during the winter, the negative winter snow extent
trends in Fig. 1 indicate that warming temperatures across
the marginal snow cover zone have resulted in less snow
extent (and snow mass). Complete diagnosis of the snow
mass trend drivers requires coordinated analysis of tempera-
ture and precipitation datasets (e.g., Sospedra-Alfonso et al.,
2015), which is beyond the scope of the current study.

An ensemble of four datasets indicate reductions in total
Northern Hemisphere snow mass over the 1981–2018 period.
While we consider this mean trend robust, it is likely that the
historical snow mass climatology derived from the gridded
products used in this study is biased low. This low bias is ex-
pected because gridded products underestimate snow mass in
alpine areas due to coarse grid cell resolution and uncertainty
in precipitation forcing across these regions (Wrzesien et al.,
2018). While this may impact the climatology used for his-
torical model evaluation in Fig. 4, the same resolution-related
bias also influences climate models in mountain regions (e.g.,
Fyfe et al., 2017), which have an even coarser resolution than
the gridded products. In this sense, we expect climatological
biases relative to “reality” to be in the same direction for both
observations and models.

Further work is needed to explore provocative hydrolog-
ical impacts of changing snow cover that have emerged
from recent analysis. For example, observations from west-
ern North America show that when snow melt is initiated ear-
lier in spring due to warming surface temperatures the sub-
sequent melt rate is lower, which impacts the production of
meltwater volume (Musselman et al. 2017).

4.2 Historical simulations

Successive editions of the CMIP exercise provide an excel-
lent opportunity to evaluate progress in the realism of consec-
utive generations of climate models. In this study, we focused
on the most fundamental hemispheric-scale snow metrics:
snow extent and snow mass. Concerning snow extent, a low
bias during most months in CMIP5 is largely corrected in
CMIP6, even though some models simulate excessive snow
cover extent for all months (Fig. 3). Hemispheric snow mass
is overestimated in both CMIP5 and CMIP6 (Fig. 4), which
warrants an analysis of the relationship between snow cover
extent/fraction and snow mass at the continental and grid
point scales.

At the hemispheric scale, the main feature of the observed
month-to-month relationship between NH snow extent and
snow mass (Fig. 11) is a hysteresis arising from (1) a steep
snow extent increase in autumn at relatively low total snow
mass (corresponding to a thin snowpack but expanding snow
extent) and (2) quickly decreasing spring snow mass coinci-
dent with snow line retreat during the melt season. CMIP6
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Figure 11. Relationship between the 1981–2014 monthly mean hemispheric snow cover extent and monthly mean total hemispheric snow
mass in the observation-based ensemble mean and the CMIP6 models. Summer months are located near (0/0) and data run clockwise through
the annual cycle; that is, autumn is on the upper branch and spring is on the lower branch of the curves.

models necessarily capture this essential dynamic of global
snow cover at the seasonal scale because the annual snow cy-
cle begins and ends with an essentially snow-free NH. How-
ever, nearly all models increase snow extent too slowly given
increases in snow mass during the buildup to peak snow
mass and decrease the snow extent too slowly during the
snowmelt period (the slope for the model simulations falls
below observations in Fig. 11). Also, nearly all models over-
estimate the peak snow mass (as already shown in Fig. 4).
Only two model families (the ECMWF and Hadley Centre
models) systematically overestimate snow extent for a given
total snow mass.

To shed light on why most models incorrectly represent the
observed snow extent vs. snow mass relationship during the
snow onset season (upper branch of the hysteresis in Fig. 11),
we show the relationship between snow cover fraction and
snow mass at the model grid point scale for selected models
and observations during November in Fig. 12. The heat map
for observations (Fig. 12a) shows a rapid increase in snow
cover fraction for low values of snow mass, attaining 100 %
at about 10 kgm−2. EC-Earth3 (Wyser et al., 2019), which is
one of the models exhibiting too steep a hemispheric snow
extent increase in autumn (Fig. 12b), clearly overestimates
the grid-point-scale snow cover fraction at low values of
snow mass, reaching 100 % almost immediately. Conversely,
CESM2 (e.g., Gettelmann et al., 2019) is one of the models
exhibiting too weak a slope in the snow extent vs. snow mass
relationship at the hemispheric scale (Fig. 11). Consistently,
it seems to attain 100 % snow cover too late at the grid point

scale (at about 30 to 40 kgm−2; Fig. 12d), although the pa-
rameterization implemented in this model is observationally
based (Niu and Yang, 2007). MIROC6 (Tatebe et al., 2019),
which uses a relationship described by Nitta et al. (2014),
closely follows the observed relationships at both the hemi-
spheric (Fig. 11) and grid point (Fig. 12a) scales, as seen
in Fig. 12c. The analysis at the grid point scale effectively
reveals the model parameterizations linking the (usually di-
agnosed) snow cover fraction to the prognostic snow mass.
Based on this analysis, it is tempting to recommend imple-
menting a functional relationship that follows the maximum
of the observed distribution. However, while a simple linear
relationship attaining 100 % at 20 kgm−2 might be a satis-
factory representation at the hemispheric scale, more sophis-
ticated parameterizations are likely necessary for representa-
tion of snow cover fraction in mountainous areas (e.g., Hel-
big et al. 2015).

Excessive snow mass at the hemispheric scale is another
feature of the CMIP6 models (Figs. 4 and 11), although fur-
ther work is also needed to clarify the potential impact of
a low snow mass bias across mountain regions in the gridded
products used for evaluation. In addition to evaluation prod-
uct biases, several other reasons are possible for this overes-
timate: an underestimate of snowpack sublimation, excessive
simulated solid precipitation rates, insufficient melt of early-
season snow, or some combination of these issues. Exces-
sive solid precipitation rates have been reported as the main
reason for an overestimate of snow cover and snow depth
in an intercomparison of reanalyses on the Tibetan Plateau
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Figure 12. Relationship between autumn (November) snow mass and snow cover fraction at 1◦ resolution for Crocus–ERA-I snow mass
vs. NOAA snow cover (a, for 1995–2014) and on model grid scale for some selected CMIP6 models (b–d, 1981–2014). The color shading
indicates the relative density of grid points on an arbitrary logarithmic scale.

(Orsolini et al., 2019). It might also be the reason for the
strong positive snow cover and snow duration bias seen in
the CMIP6 ensemble in that region; however, this hypothesis
requires further focused analyses. There is no apparent over-
estimate by the coupled models for winter season (November
to March) precipitation estimates (1981–2014) across North-
ern Hemisphere high-latitude (> 50◦ N) ice-free land areas
when compared to Global Precipitation Climatology Project
data (GPCP; Adler et al., 2003). On average, the models even
seem to underestimate the winter precipitation rates. The me-
dian CMIP6 value is about 93 % (range 65–104 %) of the
GPCP precipitation rate for these months. Although precipi-
tation climatologies are known to be problematic in high lati-
tudes and GPCP observations were reported to be biased high
in Eurasia (Behrangi et al., 2016), a high precipitation bias
seems unlikely to be the reason for the excessive snow mass
in most CMIP6 models. A full analysis of snow mass bud-
get terms (for example as carried out in Sospedra-Alfonso

et al., 2016) is required to fully address this issue. Historical
offline simulations from the “Land-Hist” experiment (part of
the CMIP6 Land Surface, Snow and Soil Moisture Model In-
tercomparison Project – LS3MIP; van den Hurk et al., 2016)
provide a useful resource for this future analysis.

4.3 Projections

The Earth system is highly complex and non-linear in many
aspects. Northern Hemisphere snow cover properties depend
on temperature and precipitation over the snow accumula-
tion and ablation seasons, but snowmelt, for example, is also
heavily determined by available solar radiation at the sur-
face, and the incoming top-of-the-atmosphere solar radiation
that this depends on is not a function of anthropogenic cli-
mate change. Surface characteristics such as vegetation and
topography vary regionally and latitudinally, which could be
expected to induce differential responses of snow cover to
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climate change. Furthermore, regional climate change (tem-
perature, precipitation) is not necessarily linearly related to
GSAT change. All these complexities make it a priori sur-
prising that the projected snow extent could essentially be
proportional to future GSAT changes. The CMIP6 ensem-
ble, however, strongly suggests that, on a hemispheric scale,
future snow extent changes can be rather unambiguously re-
lated to GSAT, the fundamental metric of future global cli-
mate change (Fig. 9).

Concerning other cryospheric elements of the climate sys-
tem, similar linear relationships have been reported for sea
ice (Notz and Stroeve, 2016) and near-surface (top 2 m) per-
mafrost (Burke et al., 2020). A common characteristic of sea
ice, near-surface permafrost, and seasonal snow is that they
respond quickly (in a few years or less, down to monthly
timescales for snow) to surface climate conditions. This fast
response largely explains the absence of any climate change
pathway dependency. However, the near linearity of the snow
cover response, which only breaks down once almost no
snow is left, remains remarkable. It clearly links future large-
scale snow cover changes to global temperature changes,
and thus via a linear relationship between global tempera-
ture changes and cumulative CO2 emissions (Collins et al.,
2013) to humanity’s future socioeconomic choices. However,
such a clear link on the hemispheric scale does not necessar-
ily imply that snow cover changes at regional to watershed
scales can be predicted in a similarly straightforward way.
It remains a challenge to produce trustworthy projections of
snow cover changes at the scale required for the management
of water resources and ecosystems. In this respect, regional
and even hemisphere-scale biases in the simulated current-
day snow extent and mass, as shown in Figs. 3–6, clearly
warrant continued caution in the interpretation and usage of
climate model output.

5 Conclusions

This paper presented an evaluation of first-order characteris-
tics of Northern Hemisphere snow cover by CMIP6 models
against an updated ensemble of gridded snow products (six
for snow extent; four for snow mass). This updated dataset
reveals strong negative NH snow extent trends in early win-
ter and spring and consistently strong, negative snow mass
trends from November through May. The spring snow ex-
tent reductions have continued unabated over the past 15
years and are strongly associated with extratropical tempera-
ture trends. The multi-dataset analysis in this paper provides
robust evidence of a similar decline during the snow on-
set season. Because NH land areas are essentially snow-free
through the summer period, warming temperatures in autumn
effectively delay the snowfall events required to initiate the
snow cover season and advance the snowline. Snow mass
trends are negative through the entire snow season, rapidly
increasing in magnitude during autumn to remain and re-

maining greater than −5 Gt yr−1 through May. Snow mass
trend attribution is more complicated than snow cover extent
since it is influenced by cumulative drivers over the entire ac-
cumulation season, including temperature, precipitation, and
sublimation.

Compared to CMIP5, the more recent CMIP6 ensem-
ble better represents the recent (1981–2014) observed mean
monthly NH snow extent. The increased climatological NH
snow extent in CMIP6 should have impacts on the simulated
radiative forcing and surface albedo feedback, particularly in
spring when solar radiation fluxes are rapidly increasing and
snow cover extent is still high; however, analysis of these ef-
fects is beyond the scope of this article.

The NH snow mass is biased high in both CMIP5 and
CMIP6, but because of the reduced spread in the CMIP6 en-
semble (as available at the time of writing), the high bias
appears more significant in CMIP6 than in CMIP5. The con-
tradiction between a correctly simulated snow extent and an
overestimated snow mass seems at least in part to be ex-
plained by skewed parameterized relationships between grid
point snow mass and snow cover fraction in many models.
Further work is also needed on the observational side to bet-
ter constrain uncertainty in the determination of snow mass
model bias.

Trends in snow mass and snow extent are both stronger in
CMIP6 than in CMIP5, particularly snow extent during the
shoulder seasons. While such trends appear generally realis-
tic when compared to observed monthly trends, the observed
trends cover a very large uncertainty range, so it is difficult
to determine if there are any notable differences between the
two ensembles.

NH snow extent exhibits a linear response to GSAT
changes for all months, only becoming nonlinear at higher
warming levels when NH snow cover completely vanishes
during some months. This remarkable linear relationship
shows no emission pathway dependency. In all scenarios,
a given GSAT change can be, within uncertainties, related
to the same NH snow extent change of about −2.0± 0.1×
106 km2 ◦C−1 for the winter months.

The analyses presented here will most certainly be fol-
lowed by more detailed focus on snow-related characteristics
of CMIP6 output, for example concerning attribution of ob-
served changes to human activity, snow–albedo feedback in-
tensity, the role of snow cover in regional climate change, and
others. In particular the existence of the new CMIP6 land-
only simulations, carried out within LS3MIP (van den Hurk
et al., 2016), will allow for a consistent analysis of snow-
related processes using a hierarchy of simulations of increas-
ing complexity. We hope that analysis of snow-related biases
in this suite of simulations will help in attributing model de-
ficiencies to shortcomings in the land models, the driving at-
mospheric models, or biases in the simulated coupled land–
atmosphere–ocean system.
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