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Abstract. We describe the construction of a new version of the Europe-

wide E-OBS temperature (daily minimum, mean and maximum values) and

precipitation dataset. This version provides an improved estimation of in-

terpolation uncertainty through the calculation of a 100-member ensemble

of realizations of each daily field. The dataset covers the period back to 1950,

and provides gridded fields at a spacing of 0.25◦ x 0.25◦ in regular latitude/longitude

coordinates. As with the original E-OBS dataset, the ensemble version is based

on the station series collated as part of the ECA&D initiative. Station den-

sity varies significantly over the domain, and over time, and a reliable esti-

mation of interpolation uncertainty in the gridded fields is therefore impor-

tant for users of the dataset. The uncertainty quantified by the ensemble dataset

is more realistic than the uncertainty estimates in the original version, al-

though uncertainty is still underestimated in data-sparse regions. The new

dataset is compared against the earlier version of E-OBS and against regional

gridded datasets produced by a selection of National Meteorological Services

(NMSs). In terms of both climatological averages and extreme values, the

new version of E-OBS is broadly comparable to the earlier version. Nonethe-

less, users will notice differences between the two E-OBS versions, especially

for precipitation, which arises from the different gridding method used.

Keypoints:

• An improved uncertainty estimate is provided through the generation

of multiple realizations

• The new dataset is broadly consistent with the original version
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• The largest differences occur in the precipitation grids
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1. Introduction

Gridded datasets formed from the interpolation of station-derived meteorological obser-

vations remain a principal source of information for monitoring the climate system. While

global, monthly and often anomaly-based datasets provide information about large-scale

forcing of the climate, datasets that resolve synoptic-to-meso-scale processes through the

provision of daily values at a relatively fine spatial resolution are vital for many ap-

plications, especially those involving extremes. Such datasets require a high density of

stations — especially when gridding precipitation — and are generally only produced for

individual countries due to restrictions concerning the full sharing of daily meteorological

observations. Nonetheless, several initiatives have constructed high-resolution datasets

for larger regions through the cooperation of National Meteorological Services (NMSs)

across neighbouring countries [e.g. Isotta et al., 2014, for the European Alpine region].

However, high-spatial resolution daily gridded data that cover continental regions in a

consistent manner are required by many users and it is in this context that the E-OBS

dataset was developed for Europe [Haylock et al., 2008].

E-OBS originally consisted of daily mean, minimum and maximum temperature values,

and daily precipitation totals gridded at a resolution of ca. 25km and was developed

to provide validation for the suite of Europe-wide climate model simulations produced

as part of the EU ENSEMBLES project [Hofstra et al., 2008]. In later work Mean Sea-

Level Pressure (MSLP) was added as a gridded variable [van den Besselaar et al., 2011].

While E-OBS remains an important dataset for model validation [Nikulin et al., 2011;

Lenderink , 2010; Min et al., 2013], it is also used more generally for monitoring the

©2018 American Geophysical Union. All Rights Reserved.



climate across Europe [van der Schrier et al., 2013; van Oldenborgh et al., 2016; Lavaysse

et al., 2017], particularly with regard to the assessment of the magnitude and frequency

of daily extremes.

In recent years several regional reanalysis datasets have become available that provide

high-resolution, sub-daily datasets for the European domain. These reanalyses have drawn

upon the experience gained in the generation of global-scale reanalyses and have retained

many of the desirable properties of their global counterparts through the provision of

a range of meteorological variables in a consistent manner, for both the surface and at

intervals throughout the vertical atmospheric profile. For Europe significant progress has

been made in the development of regional reanalysis datasets in two European Union sev-

enth Framework Programme (EU FP7) projects: ‘European Reanalyses and Observations

for Monitoring’ (EURO4M) and ‘Uncertainties in Ensembles of Regional Re-Analyses

(UERRA)’ [Jermey and Renshaw , 2016]. In contrast to global-scale reanalyses, regional

reanalyses are able to resolve meteorological processes at a much finer scale and solve

many of the limitations of station-based gridding exercises with respect to providing spa-

tial and temporal generalizations of climate fields. However, while regional reanalysis

datasets have shown great potential, the computing resources required to produce such

datasets are considerable, and this has meant that the reanalyses can, in practice, only

currently generate data for the last ∼20 years. Furthermore, regional reanalyses still show

large systematic errors [Isotta et al., 2015; Dahlgren et al., 2016; Bach et al., 2016], partic-

ularly for precipitation since rain-gauge data are not currently assimilated into reanalysis

datasets. Hence Europe-wide datasets, such as E-OBS, that are relatively quick to pro-

duce and which stretch back over longer time periods, remain important tools for climate
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monitoring and model validation. Indeed, much of the work described in this paper was

carried out as part of the UERRA project, with the aim of providing a more consistent

dataset against which the reanalysis datasets constructed during the project could be

evaluated. This evaluation role of E-OBS will remain important for the ERA5 global

reanalysis, which is currently in production and will ultimately provide a high-resolution

(31km) dataset back to 1950.

In this paper we describe and evaluate a new interpolation method for the E-OBS

temperature and precipitation dataset. A particular focus in this study is the provision of

a better estimate of uncertainty of the gridded data through the generation of an ensemble

of daily realizations. Few gridded climate datasets provide estimates of uncertainty, with

even fewer estimating this value from an ensemble of realizations. Notable exceptions are

the works of Clark et al. [2006] and Newman et al. [2015] (who created ensemble datasets

for a region of western Colorado and for the conterminous US respectively), the global

HadCRUT4 dataset [Morice et al., 2012] and the gridded dataset for Finland constructed

by Aalto et al. [2016]. In addition to the more rigorous estimation of uncertainty afforded

by such ensemble datasets [Begueŕıa et al., 2016], they also allow uncertainty estimates

to be propagated through derived products, such as extremes indices.

The interpolation method described in this paper marks a major departure from the

method used in the current operational version of E-OBS, as documented by Haylock

et al. [2008]. In the following section we describe the station data used in the dataset,

and particularly how the density of stations has changed with successive versions of E-

OBS. The technique used to calculate the ensemble is also described in that section. In

Section 3 the quality of the interpolation is assessed against a selection of withheld station
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data, against the current operational version of E-OBS (v16.0) and against a selection of

national/supra-national gridded datasets produced by NMSs across Europe. Throughout

this paper the term ‘v16.0e’ is used to denote the ensemble dataset, while ‘v16.0’ refers

to the current operational version. The variables maximum, minimum and mean daily

temperature are referred to as ‘tx’, ‘tn’ and ‘tg’ respectively; ‘rr’ is used to denote the

daily total of precipitation variable.

2. The Station Data and Gridding Method

2.1. The Underlying Station Data

The station data collated by the ECA&D initiative [Klein Tank et al., 2002; Klok and

Klein Tank , 2009] form the basis of E-OBS. These data are supplied by many NMSs and

other providers across Europe and the Middle East, although due to restrictions concern-

ing the exchange of data the number of stations available to E-OBS is generally lower than

the total number potentially available, or the number that is used in most national/supra-

national gridded datasets. Although most station series are quality-controlled by the re-

spective agencies, the series are subjected to a further quality-control procedure following

incorporation into ECA&D. These data are then blended with neighbouring series to form

more temporally complete series [van der Schrier et al., 2013; The ECA&D Team, 2012]

and these blended series are used in E-OBS. To update the series to near real-time, data

are used from synoptic messages (SYNOP) distributed via the Global Telecommunications

System (GTS). The SYNOP data are replaced when validated data become available from

the NMSs but these validated series are often delayed due to the data being subjected to

additional quality-control procedures by the respective agencies [van den Besselaar et al.,

2012]. A range of different methods are used to calculate the daily values, and this is often
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dependent upon the convention used by a given data provider. For example, daily mean

temperatures may be the average of maximum and minimum temperatures, or may be the

average of hourly readings, or another frequency such as three-hourly. This variation is

not accounted for in the gridding of the data. Furthermore, uncertainties in the measure-

ment of the variables are not taken into account in the gridding, or in the ensemble-based

uncertainty estimates, which only quantify interpolation uncertainty. While such errors

are likely to be present in both the temperature and precipitation data, measurement

errors in precipitation may be substantial, particularly at high-elevation or high-latitude

stations [Neff , 1977; Legates and Willmott , 1990; Yang et al., 1999a].

Since the initial construction of E-OBS by Haylock et al. [2008] many more station

series have been added to ECA&D (Figure 1a), with an increase from ca. 1200 to ca.

3700 stations for temperature, and from ca. 2500 to ca. 9000 stations in the case of

precipitation. However, since only certain agencies have increased the number of stations

in ECA&D, there has been an increasing disparity in station density across the domain,

with relatively many stations across central Europe and Scandinavia, and many fewer

towards the south and east of the domain. It should also be noted that many more

stations are available in ECA&D east of 50◦E but since these are not incorporated into E-

OBS they are not plotted in Figure 1a. In addition to the highly variable station-density,

the number of stations available for gridding also varies significantly over time with many

fewer stations before ca. 1961 and a decrease in density after ca. 2000; this has been a

deficiency in E-OBS since its inception (Figure 1 b, c.f. Figure 2 in Haylock et al. [2008]).

The network of stations shown in Figure 1 for v16.0 are also used in this paper for the

©2018 American Geophysical Union. All Rights Reserved.



new ensemble dataset (v16.0e). Hence comparisons in this paper between the datasets

only relate to the different gridding methods used.

2.2. The Gridding Method

In the original version of E-OBS [Haylock et al., 2008] the gridding procedure consisted

of the following five stages:

1. Daily proportions or anomalies were calculated at each station relative to the station

monthly total (precipitation) or mean (temperature)

2. The monthly values were interpolated to a high-resolution grid (0.1◦ rotated-pole

grid) using a trivariate thin-plate spline

3. The daily proportions or anomalies were gridded to the same high-resolution grid

using ordinary kriging

4. The gridded daily values were multiplied or added to the respective gridded monthly

totals or means to form the daily absolute values

5. The high-resolution gridded data were averaged to a coarser grid resolution to pro-

vide grid-box spatial averages

In E-OBS v16.0e we adopt a two-stage process to produce the daily fields: (1) the

daily values are initially fitted with a deterministic model, to capture the long-range spa-

tial trend in the data; (2) the residuals from this model are then interpolated using a

stochastic technique (Gaussian Random Field simulation) to produce the daily ensem-

ble. Monthly values are also used in the interpolation, since the relationship of altitude

to the meteorological fields can be difficult to discern in daily resolution data, particu-

larly for precipitation [Masson and Frei , 2014]. However, in E-OBS v16.0e these values
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are incorporated as a covariate in the deterministic model. As in E-OBS v16.0, each

day is gridded independently, and in the case of temperature independent of the other

temperature elements.

2.2.1. The spatial trend model used for the temperature variables

The spatial trend in the daily temperature variables (tn, tg and tx) is captured by

fitting a Generalized Additive Model (GAM) to the station values:

y = f1(lon, lat, alt) + f2(bg) + ε

where the daily temperature data (y) are modelled as a smoothed function of longi-

tude (lon), latitude (lat) and altitude (alt) using a reduced-rank thin-plate spline, plus

a smoothed function of the monthly mean, background field values of temperature (bg)

using a cubic spline [Wood , 2003, 2006]. GAMs are an extension of generalized linear

models, which extend simple linear regression by allowing the independent variable to

take a distribution other than Gaussian. GAMs extend this further by allowing the use of

non-linear functions between the response variable and the independent variables [Hastie

and Tibshirani , 1990]. In the models used in this paper we only make use of the smooth-

ing feature of the GAMs, and assume that the dependent data (transformed in the case

of precipitation) are normally distributed.

The GAM is fitted using penalized likelihood maximization using the penalized iterative

least squares (PIRLS) method [Wood , 2006]. An optimal fitting of the functions (f1 and

f2) is achieved by minimizing the Generalized Cross Validation (GCV) statistic, which is

equivalent to a leave-one-out cross validation [Hastie and Tibshirani , 1990], and is used

to select an optimal smoothing parameter (λ1, λ2) in each of the functions f1 and f2

respectively. The values of λ1 and λ2 in the penalized regression models used here range
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between zero and one, with zero indicating an exact fit to the data and one indicating a

least-squares regression fit. An eigen-decomposition is used to achieve the rank-reduction

in the functions f1 and f2, which requires the prior-selection of the parameter k to provide

an upper limit of k − 1 to the EDF of the model; the actual EDF is still selected using

GCV and the parameter λ retains its control on the flexibility of the spline under this

limit [Wood , 2006]. Since the function f1 is used in this analysis to remove the long-range

spatial trend from the data, we restrict the effective degrees of freedom (EDF, i.e. the

inverse of λ) of the function by setting a deliberately low basis-dimension (k = 50) relative

the number of stations (n > 1000). Since k is set to a low number relative to the true

spatial variation in temperature, the model residual (ε) contains significant local-scale

spatial autocorrelation, which is modelled using Gaussian Random Fields [GRFs, e.g.

Schabenberger and Gotway , 2005, see Section 2.3]. In the function f2, a value of k = 10

is chosen using the heuristic tests described by Wood [2006, 2014].

The background field (bg) is used in these models to simplify the field for establishing

the fitting of the trivariate spline. Tests with and without bg indicated improved model fit

through its inclusion as a model variable. While the background field includes an altitude

element, the addition of station altitude is still necessary in f1. This captures the day-to-

day variation in the environmental lapse-rate, and its incorporation as a third variable in

the function f1 generates a spatially varying lapse-rate [Hutchinson, 1995a; Hutchinson

et al., 2009]. The original version of E-OBS also incorporated a daily lapse-rate but since

the variable was used as the drift element in the kriging of the daily anomaly values, the

lapse-rate was fixed across the domain.
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The monthly background field values (bg) used in the GAM are produced using a full

trivariate spline in the same way as the original E-OBS dataset (c.f. the reduced-rank

approximations used here for the daily fields). As with E-OBS v16.0, and following the

work of Hutchinson [1995b], altitude was scaled in the unit of kilometres, with latitude

and longitude scaled in degrees longitude/latitude; this scaling was also used in the daily

model (f1). Interpolated monthly values, rather than actual station monthly means,

are used in the daily model so that stations without complete monthly values could be

used in the daily model. This also allows the use of more monthly values — which

are generally more widely available than daily data — in the formation of bg in future

updates. As in the earlier versions of E-OBS, station-based altitude values are used for

model-fitting, while GTOPO30 Digital Elevation Model (DEM) values of altitude are

used for the interpolation. Although GTOPO30 has been superseded by GMTED2010

[Danielson and Gesch, 2011], we continue to use GTOPO30 in this analysis to ensure

against the introduction of a confounding effect resulting from the use of differing elevation

data. We note, however, that the use of the different DEMs has a significant effect on

the interpolation, and needs to be investigated further. In earlier versions of E-OBS, the

monthly thin-plate spline suffered from overfitting, and in most cases an exact interpolator

was produced, i.e. with zero smoothing and a spline that fitted exactly through each data

point. This is often a feature of such splines, and results in a model that performs poorly

in data-sparse regions and is vulnerable to outliers in the station data [Hutchinson, 1998a].

To guard against this in E-OBS v16.0e, the degrees of freedom of the thin-plate spline

were inflated by a factor of 1.1. To prevent over-fitting of spline models Kim and Gu

[2004] suggested applying an inflation factor of 1.4, but this produced fields that were
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too smooth in this case. The value of 1.1 was determined by comparing the interpolation

against the monthly fields used in E-OBS v16.0.

2.2.2. The spatial trend model used for precipitation

To calculate the long-range spatial trend for precipitation, a model similar to the tem-

perature GAM was used, however this was applied to non-zero precipitation values (y):

√
y = f1(lon, lat) + f2(

√
bg) + ε

In contrast to the spatial-trend model for the temperature models, altitude was not

directly incorporated into the daily precipitation models, as this did not significantly

improve the fitting of the model. This corresponds to assertions made by Masson and Frei

[2014] that the precipitation-altitude relationship is often difficult to ascertain at the daily

resolution since the variability is dominated by synoptic-scale weather systems. To remove

some of the skewness in the data, the precipitation values (y) and monthly background

precipitation totals (bg) were square-root transformed prior to fitting [Hutchinson et al.,

2009]. This also ensures that all interpolated values, when converted back to the unit of

mm, are non-negative. In this model k = 100 is used in the function f1.

The occurrence of precipitation (as a binary field where rr >0mm was set to 1) was

gridded separately from accumulations using a full thin-plate spline. This was then used

to mask the daily fields. Precipitation was deemed to have occurred at a given grid-box

where the gridded value exceeded 0.5, after Hutchinson et al. [2009]. The gridding of

precipitation accumulation and occurrence separately follows the method used in earlier

versions of E-OBS and reduces the inflation of the numbers of wet days. This inflation is a

common problem in interpolations of daily precipitation and occurs as a result of the differ-

ent spatial scales of precipitation accumulations and precipitation occurrence [Hutchinson
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et al., 2009], and ultimately arises from the zero-bounding nature of precipitation [He-

witson and Crane, 2005]. The use of the thin-plate spline method for determining the

occurrence of precipitation in the gridded fields produces a result that is similar to the

indicator-kriging method used in the original version of E-OBS. To prevent over-fitting of

this spline model, an EDF inflation factor of 1.4 was used after Kim and Gu [2004].

2.3. Generating the ensemble

In the original version of E-OBS a measure of uncertainty for each daily field was pro-

vided. These values were calculated by summing a climatological standard error value,

calculated over a fixed base period (1961–90, after the method described by Hutchinson

and Tingbao [2013]), and the daily kriging uncertainty (derived using the technique de-

veloped by Yamamoto [2000]). Climatological standard error values were used instead of

the monthly standard error, which would match the monthly background field interpola-

tion, due to the significant computation time required for this calculation. The possibility

of providing a better estimate of uncertainty in the interpolated field through the gen-

eration of an ensemble of grids for each day was explored in the initial construction of

E-OBS [Haylock et al., 2008; Hofstra et al., 2009]. This was rejected, however, due to the

significant computational burden that the procedure entails.

In E-OBS v16.0e uncertainty is estimated using stochastic simulation to produce an

ensemble of realizations of each daily field. A set of 100 spatially correlated Gaussian

Random Fields (GRFs) are generated for each day that are conditional on the residuals

(ε) from the deterministic spatial-trend model described above. The spatial structure

of the random fields is defined through the calculation of an empirical variogram up

to a maximum lag-distance of 1000km for temperature and 900km for precipitation. A
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distance-decay model for each day was then calculated by fitting an exponential variogram

model to the distance classes:

c = c0 + c(1− e−h/a)

The nugget (c0) was fixed at 30% of the precision of the variables to take into consider-

ation measurement precision [Aalto et al., 2016] (i.e. 0.03 for both temperature (◦C) and

precipitation (mm)), while the sill (c) and range (a) parameters were determined using

a weighting that placed a higher weight on distance lags with more observations. This

weighting was also used in the variogram-model fitting in the original version of E-OBS

[Haylock et al., 2008]. Prior to fitting of the variogram and generation of the random fields,

the coordinates of the data had been converted to a Lambert Equal-area projection.

In the use of a single variogram across the domain an assumption is made that the

correlation structure is only dependent on the spatial lag, and not the location. This

assumption is often made in such applications [e.g. Haylock et al., 2008; Newman et al.,

2015], but can be an over-simplification for continental-scale data as the spectral char-

acteristics of the true fields can vary considerably across the domain, particularly for

precipitation. This assumption of stationarity may also be unrealistic in the present ap-

plication on account of the varying characteristics of the spatial trend captured by the

GAM, which results from the large variations in station coverage across the domain; this

is assessed in Section 3.2. Testing was carried out using different variograms across the

domain, this however introduced artefacts in the gridded data, and particularly in the

ensemble spread.

The GRFs were produced on a uniform grid at ca. 12km regular grid spacing, which

is equivalent to the grid-spacing of the master grid used in earlier versions of E-OBS.
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The spatial-trend values were interpolated to the same grid and these values were added

to each of the ensemble fields. The precipitation values were then squared to convert

the units of the interpolated field to mm. For the temperature variables, grid-cells with

fewer than four stations in a distance of 500km were set to missing. For precipitation the

cut-off distance was set to 450km. These distances are similarly used in E-OBS v16.0, but

in v16.0e the values represent half the distance used in the calculation of the empirical

variograms; in the case of E-OBS v16.0 these values mark the maximum lag distance.

To produce “best-guess” fields, the mean across the 100 ensemble members is calculated.

The ensemble spread (90% confidence range) was calculated as the difference between the

95th and 5th percentiles calculated from the 100 members at each grid-box.

Since the GRF simulations are conditioned on point (station) values the simulation

produces values that are representative of point values [Hewitson and Crane, 2005]. In E-

OBS the aim is to produce values that represent area-average values. This is achieved by

aggregating the fields from 0.1◦ to the 0.2◦ resolution. These fields were then interpolated

to the E-OBS v16.0 grid using bilinear interpolation. This method was preferred to simply

averaging all values from the 0.1◦ grid that fall within the 0.25◦ final grid as that method

produced spurious grid patterns in the precipitation fields that resulted from discrepancies

in the number of grid-points that fell within each final grid box.

In the production of the precipitation dataset, the fixed precipitation occurrence mask

for the respective day (Section 2.2.2) is used to mask all of the ensemble members. This

method was chosen as it reduces the overall computing time for the production of the

gridded fields, and produces consistency across the ensemble, but means that the ensem-
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ble does not provide an estimate of the likelihood of precipitation occurrence and hence

neglects the uncertainty in occurrence of small-scale precipitation events.

A particular challenge in the production of E-OBS is the spatio-temporal variation in

station coverage (see Section 2.1), and this is particularly the case in producing a reliable

measure of uncertainty through the use of GRFs. The GAMs are used to satisfy the

assumption of spatial stationarity in the GRFs. However, with the variation in station

coverage being large, a question arises as to the relative proportion of spatial variance

that is captured by the GAM compared to that captured by the GRF. As described in

Section 2.2.1, the EDF of the f1 function are deliberately restricted so that only the long-

range spatial trend is captured by the model. There is a risk, however, with the variation

in station coverage that the GAM will explain more short-scale variance in the field in

areas of high station density, compared to regions of sparse coverage. As a consequence

the ensemble spread could be over- (under)estimated in areas of dense (sparse) station

coverage. The value of k was chosen in the function f1 to be low enough to only capture the

large-scale spatial trend. This is more successful for temperature than for precipitation,

as in the case of precipitation only non-zero values are interpolated, which results in large

variations in sampling. Two possible improvements to the gridding method could be made

to alleviate this problem: 1) a fixed set of stations could be used that are complete over the

entire 1950–2016 period; or 2) the spatial trend and residual simulation could be jointly

estimated. The first option would result in a very small sample of available stations,

and the gridding would be largely confined to central-northern European areas. The

embedding of the ensemble simulation into the GAM would provide a more feasible course
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of action, but such models are notoriously computationally demanding. Nonetheless, this

could be investigated for future updates of E-OBS.

3. Results and Discussion

3.1. Assessment against withheld station data

To assess the quality of the interpolation we have withheld 100 stations from the sample

of stations available for gridding and we have then compared interpolated values against

the recorded station values at those locations. Reference stations were selected initially

by only retaining stations that were more than 90% complete over the 1950–2016 period

for all four variables. A spatially even coverage of 100 stations was then selected using

minimax sampling, which selects stations from the total number of available stations such

that the maximum distance from the station to any of the other stations is minimized

(Figure 2 a). Since the density of stations varies significantly over the domain (Figure 1)

the use of a fixed sample of stations ensures that spatial bias in the testing is reduced,

and also ensures that the reference station values take no part in either the background

(monthly) field interpolation in the first stage of gridding, or the daily interpolations. A

full leave-one-out cross validation was not possible given the number of stations involved

and the time required to complete the interpolation.

We have calculated error statistics (RMSE and mean absolute error [MAE]) between

the interpolated values and reference stations over the period 1950–2016 (Table 1). In

this analysis the interpolated values are the mean across the 100 realizations. For the

temperature variables, RMSE values range from 1.15 ◦C to 2.41 ◦C. This error, however,

is highly dependent upon the temperature variable or season considered. The highest

errors are observed for daily minimum temperature and during the winter season. The
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error values also vary seasonally in the case of daily precipitation totals, with RMSE

values reaching a minimum of 2.74mm in the spring, and a maximum of 3.63mm in the

summer. This is a reflection of the fact that winter precipitation will be more associated

with fronts, and summer precipitation is more likely to be convective in nature.

The RMSE values also vary over time, although in the case of the temperature variables

the stratification in RMSE values remains constant over the time period (Figure 2). In the

case of precipitation the RMSE values exhibit relatively large year-to-year variation. The

results for the tx and tg variables display a gradual reduction in RMSE values since 1950,

although there is an indication of a step to slightly lower error values after 1990, especially

in the results for tx. Interestingly, in the case of tn there is a step to higher RMSE values

after the year 2001. An examination of the annual RMSE values on a station-by-station

basis (not shown) reveals that these step changes only occur in some of the reference

stations. Hence the temporal changes in RMSE are likely attributable to inhomogeneities

in the reference stations rather than any particular change in the gridding. In light of

these results, we reiterate the message of previous studies [Hofstra et al., 2009; Cornes

and Jones , 2013] that caution should be exercised when using the E-OBS dataset for the

examination of long-term trends across Europe as the station data have not undergone

any homogeneity correction at present. Homogeneity testing is carried out on the stations

[The ECA&D Team, 2012] but this information is not taken into account when gridding

the data. Inhomogeneities in the gridded data are also likely as a result of the marked

change in station numbers over time.

The discrepancy in error between tx and tn highlights a further feature of the E-OBS

data that must be taken into consideration by data-users: since tx and tn are gridded
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independently, there is no guarantee that individual daily tx values are greater than tn,

despite the input station data being checked for this property. Similarly, there is no

guarantee that interpolated tg values will be the mean of the tx and tn interpolations at

the respective grid boxes, as may be expected given that this is one of the more widely

used method of calculating tg in the station data. The number of occurrences of tx < tn

varies over the time period, with up to 0.4% of grid-cells experiencing the problem in the

last five years of the series, which seems to be a result of the use of more GTS-derived

data during that period; prior to that the average of yearly counts of tx < tn occurrences

is 0.06%.

3.2. Features of the ensemble

Rank histograms are a simple way of determining the reliability of an ensemble of real-

izations relative to observations [Wilks , 2006]. They are calculated by ranking an ensemble

from lowest to highest to form a series of n + 1 bins, given n ensemble realizations; the

highest and lowest bins are open-ended. The corresponding observed value is then allo-

cated to the appropriate bin. This procedure is then repeated for different observation

sites and/or different times to generate a large sample. Using the withheld station obser-

vations from Section 3.1, rank histograms have been calculated for the E-OBS ensemble

(Figure 3). In the case of precipitation, values are only used when non-zero precipitation

occurred in the ensemble members and observations, after Bach et al. [2016].

The rank histograms calculated for all of the 100 station sites over the period 1971–

2000 (Figure 3 a) show a distinctive U-shape, with a much higher proportion of the

observations falling in the first and last histogram bins compared to the central range

of bins. This indicates that overall the ensemble is too optimistic in representing the
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range of uncertainty, i.e. the ensemble samples are taken from a distribution with a lack

of variability compared to the observations [Hamill , 2001]. However, the nature of the

histograms varies considerably depending on the location of the observation station. For

stations in the regions of higher station density, such as Germany or Sweden (see Figure

1), the rank histograms typically show a higher relative frequency in the central bins,

which indicates an underestimation Typical examples are shown in Figure 3 b. This may

result from the calculation of the ensemble using a single variogram for the entire region,

which biases the spatial structure of the interpolated field, and hence the ensemble spread,

to the spatial variation observed in the regions of higher station density. This feature may

also result from a disparity in spatial variability captured in the GAM relative to the

GRFs (see Section 2.3). For precipitation the picture is more complicated, and even in

areas of high-station density an over-dispersion of observations occur in the outer bins

of the histogram, as demonstrated for the station ‘Mainburg’ in Germany in Figure 3

b. However, for that station a relatively high dispersion is also apparent in the central

bins. This pattern may indicate different degrees of spread-reliability under different

precipitation regimes.

Discrimination and reliability diagrams are also useful ways of indicating the character-

istics of an ensemble dataset and are used here to provide further information about the

v16.0e precipitation ensemble. Discrimination diagrams show the distribution of the es-

timated likelihood of events and non-events relative to the observed likelihood of events,

while reliability diagrams display the observed conditional probability of an event ex-

pressed as a function of the ensemble-estimated probability [Wilks , 2006]. Following the

example of Clark et al. [2006] and Newman et al. [2015] these diagrams have been calcu-
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lated using four thresholds (Figure 4). The discrimination diagrams (Figure 4 a) indicate

that a good degree of separation exists in the discrimination of observed events greater

than 0mm. It should be noted that the common masking of rainfall for all ensemble mem-

bers on a given day results in a binary likelihood for rr>0mm in the ensemble probability;

At the higher precipitation intensities a consistency is apparent in the probability of events

compared to non-events, although there is a much better discrimination of event proba-

bility when the estimated ensemble probability is equal to one. This feature also results

from the fixed precipitation masking, but the advantage comes at the expense of slightly

reduced discrimination at the lower ensemble-estimated probabilities (c.f. the results in

citet:Newman2015 who use a probabilistic method to estimate rainfall occurrence)

In accordance with the results from the discrimination diagrams, the reliability diagrams

(Figure 4 b) indicate a slight dry bias in ensemble-estimated probabilities of precipitation

occurrence below around 0.7 although these values are within the 5-95% consistency range.

Above probabilities of around 0.6-0.7, a wet bias is apparent in the results, which is most

apparent at the highest threshold level of rr>50.0mm.

In this section the ensemble values have been are compared against station values. In

contrast, the gridded dataset aims to provide values that are representative of grid-box

averages. Hence discrepancies would be expected in the comparisons, particularly for

precipitation, and the results are consistent with interpolated values that smooth over

station-scale values. The results for the temperature variables indicate, however, that the

scale that is depicted in the interpolated values likely varies over the domain, with gridded

values in areas with relatively high-station density resolving the temperature field at a

smaller scale than in data-sparse regions. A similar conclusion was reached by Hofstra
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et al. [2009] in their evaluation of the original version of E-OBS, but this discrepancy has

likely become more pronounced as more stations have been added to certain areas (see

Figure 1).

3.3. Comparison against the previous E-OBS version

In Figure 5 we compare the climatological annual averages (totals in the case of precip-

itation) calculated over the period 1981–2010 from E-OBS v16.0 and v16.0e. In the case

of temperature, the largest (negative) differences in the climatologies occur across North

Africa and the Middle East. This is the region of lowest station density and hence these

are the regions where the largest differences would be expected to occur. Across most

other regions of Europe the differences are generally in the range ± 0.5 ◦C, and across

many areas approach 0 ◦C. Larger differences tend to occur across mountainous regions,

particularly the Alps, and this is likely a result of the significantly different methods used

to incorporate the environmental lapse-rate in the two versions of E-OBS (as discussed in

Section 2.2.1).

In the case of precipitation (Figure 5 c/d) the largest differences also tend to occur

across North Africa and the Middle East, which likely result from a combination of the

low density of stations, the associated high degree of uncertainty in the interpolation

and the low average rainfall totals recorded in these regions. However, v16.0e is also

wetter than v16.0 by around 5–10%, particularly across eastern regions of the gridded

region. This is most probably a result of the method used to scale the daily precipitation

anomalies by monthly totals in v16.0, compared to the incorporation of altitude in the

spatial-trend model as a function of the monthly interpolation in v16.0e, and demonstrates
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the sensitivity of precipitation grids to the choice of interpolation method [Sun et al., 2014;

Herold et al., 2016].

To further illustrate the differences between the two versions of E-OBS we have ex-

amined the interpolations of maximum daily temperature for 4th August 2003 and daily

precipitation for 1st June 2013. Both of these events represent very extreme events in

the ECA&D record: the 2003 event was the climax of the exceptionally hot summer of

2003 [Garćıa-Herrera et al., 2010], and the precipitation event of 2013 led to significant

flooding across the Upper Danube catchment [Blöschl et al., 2013].

In the case of the 2003 event (Figure 6 a), the two versions of E-OBS are broadly

consistent, with differences being generally less than 1 ◦ C. As with the climatological

mean values, the largest differences tend to occur across North Africa, and likely reflects

the poor data coverage in this region. Differences of more than -4 ◦C are also evident in

certain other regions, notably southern Turkey and Western Russia, which also seem to

be a result of the response of the different gridding methods to interpolating across data

sparse regions.

The spatial structure of the precipitation event of 2013 is broadly similar between the

two versions of E-OBS, although differences of about 10 mm are apparent for certain grid-

cells (Figure 6 c). The most intense precipitation is more concentrated in v16.0e, whereas

the region experiencing >75 mm is larger in v16.0. As with the precipitation climatologies

described above, this is likely a result of the method used in v16.0 of scaling the daily

gridded field to the monthly precipitation totals. It should be noted, however, that there

is considerable uncertainty in the precipitation totals for this event in E-OBS since the

highest precipitation totals occurred in a region with relatively sparse data coverage as
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well as being in a mountainous region. This uncertainty is demonstrated in Figure 7,

which plots the first four ensemble members for this precipitation event.

In Figure 8 the uncertainty ranges for the two interpolations are plotted. In v16.0

this uncertainty is defined as 1.64 times the standard error (90% uncertainty, under the

assumption of a normal distribution), whereas in v16.0e this is more strictly defined as the

90% range across the ensemble (see Section 2.3). Despite this difference in uncertainty-

definition, in v16.0e these values are more closely related to station coverage than v16.0,

which shows a much more smoothed field of uncertainty. This difference in spread between

the two E-OBS versions is most pronounced for temperature, where the spread is much

reduced at grid-cells close to stations, and in data rich regions, but is much larger in

areas of low station density. In the rank histograms examined above, the ensemble was

shown to be generally overly optimistic, but this appears to be a more realistic measure of

uncertainty than was provided in E-OBS v16.0. The spread of uncertainty for precipitation

is also much larger in data sparse regions, and is more closely linked to station density in

v16.0e. However, the uncertainty for precipitation must also scale with interpolated totals

[Hutchinson, 1995b, 1998b]. Hence, in Figure 8 b the relationship to station coverage is

not as immediately apparent as in the temperature interpolation.

3.4. Comparison against NMSs gridded datasets

To further examine the differences between E-OBS v16.0e and v16.0, we have evaluated

the datasets against several high-resolution regional datasets produced by various NMSs

across Europe (Table 2). A variety of different interpolation procedures are used to

construct these datasets but they are generally developed using many more station data

than are available to E-OBS, although this disparity varies by dataset. In addition,
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since these datasets are developed for discrete regions of Europe they suffer less from

the constraints in E-OBS of the need to generalize the meteorological field across a large

diverse domain, and with a greatly varying spatial density of station data. In the case of E-

OBS, spatial variability is generalized using smoothing parameters fixed across the region,

both in the GAM-derived spatial trend and in the simulated residuals (c.f. the piece-meal

method used by Lussana et al. [2017]). For these reasons the NMSs datasets would be

expected to provide a closer estimate of the true areal averages for their respective domains

than E-OBS [Hofstra et al., 2008]. The NMSs datasets were regridded to the E-OBS 0.25

◦ x 0.25 ◦ regular grid using box-averaging. The NMSs data are generally produced on a

much higher resolution grid than E-OBS (Table 2), and hence these aggregated values are

expected to be comparable to the box-average values of E-OBS. However, in the case of the

PORT02 the resolution of 20km is comparable to E-OBS. In that case nearest-neighbour

interpolation was used. No correction was applied for elevation differences between E-

OBS and the NMSs data, since the main reason for conducting this comparison was to

evaluate the two versions of E-OBS relative to the NMSs data.

In Figure 9 we have plotted the differences (E-OBS minus NMSs) in annual climatologies

between the datasets for the variables tg and rr. These have been calculated over the

period 1971–2010, which is common to all datasets. In general the differences in the two

versions of E-OBS are comparable; the results for tx and tn are similar to those shown

here for tg. In the case of tg, the smallest differences occur relative to the UKCP09

dataset, with the largest differences apparent when compared against the MeteoSwiss tg

dataset, where both E-OBS datasets are warmer on average by more than 5 ◦ C across the

high Alps. This is likely the result of there being more high-elevation stations available
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for the MeteoSwiss interpolation. In the case of precipitation, both E-OBS versions show

a dry bias relative to the NMSs datasets across most lower elevation regions, although a

wet bias is apparent across most mountainous regions. There is an indication that this

bias is substantially reduced in the new version of E-OBS when compared against the

CARPATCLIM, EURO4M APGD PORT02 and SPAIN02 datasets.

To examine differences in daily extremes between the two versions of E-OBS, relative to

the NMSs gridded datasets, we have sorted the absolute differences in daily values at each

grid-box into deciles (Figure 10). The deciles are determined by the NMSs grid-box values.

For precipitation the deciles are calculated for non-zero values, but a further category for

zero precipitation values is included. Hofstra et al. [2008] performed a similar comparison

in their examination of spatial interpolation methods, as a first stage in developing the

original version of E-OBS.

The results indicate little difference in bias between the two versions of E-OBS, relative

to the NMSs data. The differences between E-OBS v16.0 and v16.0e differ in only one case:

for the variable tx, slightly higher biases in v16.0e are evident relative to the MeteoSwiss

gridded data. In the case of precipitation, both of the datasets display the expected

scaling of error with interpolated precipitation totals. In general, the results from both

this analysis and the comparison of climatological biases indicate that the biases between

the two versions of E-OBS are generally small compared to the actual differences between

respective versions of E-OBS and the NMSs gridded data. This corresponds to the general

finding of Hofstra et al. [2009], who evaluated gridding techniques for the ECA&D stations

data relative to station data and NMSs gridded datasets in the development of the old

version of E-OBS. Their study concluded that the interpolation technique had less of

©2018 American Geophysical Union. All Rights Reserved.



an effect on the quality of the gridded data compared to the density and quality of

input station data. While station density governs the biases observed here, the different

interpolation methods and DEM data used in the NMSs gridded datasets probably also

have an effect on the results.

4. Conclusions

In this paper we have described the construction of a new version of the E-OBS tem-

perature (tn, tg and tx) and precipitation datasets. A 100-member ensemble of each daily

field has been generated, which provides an improved estimation of uncertainty. In terms

of both climatological averages and extreme values, the ensemble-mean grids in the new

version of E-OBS are broadly comparable to the ‘best-guess’ grids in the earlier version

and we stress that station coverage is the most important factor in determining the success

of the gridded data. Nonetheless, users will notice differences between the two E-OBS

versions, and this results from the different gridding methods used in the two versions of

the dataset. Furthermore, while the ensemble mean can be taken as grid-box averages,

the individual ensemble members display a spatial variation that is between a point and

a box average value, although this discrepancy varies across the domain in relation to

station density.

The uncertainty quantified by the ensemble dataset is more closely related to station

density than uncertainty values in the original dataset, although the uncertainty in data-

sparse regions, while much larger in these areas than in the original dataset, still appears to

be an underestimate of the true uncertainty. The uncertainty quantified by the ensemble

only relates to interpolation uncertainty, and improvements may be made in this estimate

through the quantification of other sources of uncertainty such as instrumentation error

©2018 American Geophysical Union. All Rights Reserved.



(e.g. Yang et al. [1999b]). More general improvements may be made to the E-OBS dataset

through the use of additional explanatory variables such as slope/aspect, in the case of

precipitation, or coastal proximity for temperature [Vose et al., 2014; Daly et al., 2008],

or the embedding of non-gaussian distributions such as the Tweedie distributions [Hasan

and Dunn, 2011] in the spatial trend model. Changes to the relative scaling of altitude

to longitude/latitude coordinates could also be investigated in further updates to the

dataset.

In this paper, the ensemble dataset has been produced to match the 0.25 ◦ grid resolution

of earlier versions of E-OBS (regular grid spacing). A need exists to produce a version

of E-OBS at a higher spatial resolution than the current ca. 25km resolution [Moreno

and Hasenauer , 2016]. A higher-resolution version of E-OBS is planned. In addition,

the original E-OBS gridding scheme has been used to construct a dataset of temperature

and precipitation for southeast Asia [van den Besselaar et al., 2017], and the methods

demonstrated in this paper will also be tested for that region, with a view to developing

an ensemble dataset for the southeast Asia region. Furthermore, it remains the case that

many of the input station series have not been homogenized and at present we caution

against the use of E-OBS for evaluating trends. Efforts are currently underway to produce

a version of E-OBS using homogenized station data.
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Table 1. Seasonal and annual RMSE and MAE statistics between the 100 reference station

values and interpolated values. The statistics are calculated over the period 1950–2016 and are

in the units of ◦C for the temperature variables and mm for precipitation

Variable Season RMSE MAE
rr Winter 2.80 0.99

Spring 2.74 0.95
Summer 3.63 1.25
Autumn 3.52 1.16
Annual 3.20 1.09

tg Winter 1.78 0.93
Spring 1.25 0.76
Summer 1.15 0.74
Autumn 1.24 0.76
Annual 1.37 0.80

tn Winter 2.41 1.35
Spring 1.94 1.19
Summer 1.67 1.12
Autumn 1.89 1.21
Annual 2.00 1.22

tx Winter 1.71 0.96
Spring 1.44 0.92
Summer 1.53 0.98
Autumn 1.33 0.84
Annual 1.51 0.92
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Table 2. Details about the NMSs gridded datasets used for comparison against E-OBS. The

resolution refers to the native resolution of the dataset.
Dataset Region Version Resolution Reference

tn tg tx rr
CARPATCLIM Carpathian basin x x x x - 10km Spinoni et al. [2015]
EURO4M APGD Greater Alpine x 1.0 5km Isotta et al. [2014]
MeteoSwiss Switzerland x x x 1.2 1km Frei [2014]
MET NO Norway x x 1.1 1km Mohr [2009]
PORT02 Portugal x - ∼20km Belo-Pereira et al. [2011]
SAFRAN France x x - 8km Vidal et al. [2010]
SPAIN02 Spain x x x AA-3D v4 ∼10km Herrera et al. [2016]
UKCP09 United Kingdom x - 5km Perry et al. [2009]
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Figure 1. The location of stations used in the gridding of mean temperature and precipitation

in versions 2.0 (released August 2009) and 16.0 (released September 2017) of E-OBS (a). These

are stations that are used at least once in the gridding and may not be present for the full

duration of the gridded dataset. The dotted line indicates the gridding area used in the ensemble

version of E-OBS (in the Lambert Azimuthal Equal-Area projection, EPSG:3035). The plot in

(b) shows the numbers of stations for each month from January 1950 to August 2017.
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a) Test Stations
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b) Temperature Variables
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c) Precipitation

Figure 2. The locations of the 100 withheld test stations (a) and the yearly root mean-squared

error values between interpolated values and recorded values at those stations for the temperature

variables (b) and precipitation (c).
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Figure 3. Rank histograms calculated for the E-OBS v16.0e ensemble compared to the 100

withheld stations, across all stations over the period 1971–2000 (a) and for two selected stations

(b) over that period.

©2018 American Geophysical Union. All Rights Reserved.



●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

rr>25.0mm rr>50.0mm

rr>0.0mm rr>12.5mm

0.25 0.50 0.75 0.25 0.50 0.75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Ensemble Probability

R
el

at
iv

e 
F

re
qu

en
cy

● Events

Non.events

a)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

rr>25.0mm rr>50.0mm

rr>0.0mm rr>12.5mm

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Ensemble Probability

O
bs

er
ve

d 
R

el
at

iv
e 

F
re

qu
en

cy

b)

Figure 4. Discrimination diagrams (a) and reliability diagrams (b) for four observed precipi-

tation intensities. The gray vertical bars in (b) indicate the 5-95% uncertainty range calculated

after the method described in Bröcker et al. [2007].
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Figure 5. Climatology comparisons between E-OBS v16.0e and v16.0 for (a) mean annual

temperature (tg) and (c) annual precipitation totals, calculated over the period 1981–2010. In-

dicated in (b) and (d) are the differences between the new and old E-OBS versions. In the case

of precipitation (d) the difference is expressed as a proportion of mean precipitation totals from

the old dataset.
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Figure 6. The gridded fields in E-OBS v16.0e and v16.0 for tx on the 4th August 2003 (a) and

rr on the 1st June 2013 (c). The respective differences between the E-OBS versions are shown

in (b) and (d).
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Figure 7. The first four ensemble members from E-OBS v16.0e for the precipitation event of

1st June 2013.
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Figure 8. Uncertainty estimates in the tx gridded data for the 4th August 2003 event (a) and

for the 1st June 2013 precipitation event (b).
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Figure 9. Annual climatological differences between E-OBS v16.0e and v16.0 compared to a

selection of gridded datasets produced by NMS across Europe for tg (a) and rr (b). The annual

averages are calculated over the period 1971–2010 and then the differences are taken. In the

case of precipitation the differences are expressed as a proportion of the NMS average totals.

Grid-box values beyond the respective color ranges are marked in black.
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Figure 10. Absolute bias (E-OBS minus NMS data) in tg, tn and tx (a) and rr (b) calculated

from daily values over the period 1971–2010 grouped by decile determined by the NMS gridded

data. The points indicate the median in each category, and the lines indicate the 10th–90th

percentile.
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