Pak. J. Statist.
2013 Vol. 29(2), 139-153
A GENERALIZATION OF HYPERGEOMETRIC AND GAMMA FUNCTIONS
1
2
G. Mustafa Habibullah1, Abdus Saboor1 and Munir Ahmad1
National College of Business Administration and Economics, Lahore, Pakistan.
Email: mustafa1941@yahoo.com; drmunir@ncbae.edu.pk
Department of Mathematics, Kohat University of Science and Technology,
Kohat, Pakistan. Email: dr.abdussaboor@kust.edu.pk; saboorhangu@gmail.com
ABSTRACT
Al-Saqabi et al. [4] defined a gamma-type function and its probability density
function involving a confluent hypergeometirc function 1 of two variables [7], where
1 a, b; c; x
, x
a k l b k x
l , k0
c l k k !l !
k
l
x
, x 1
and discussed some of its statistical functions. We propose extension of 1 by
introducing more parameters in following form:
b b+1 d d +1
a, ,
,c; ,
,e, f; -αx-δ , βxδ
2 2
2 2
m
b b 1
a m n
c n x
x
2 m 2 m
d d 1
m, n 0
2 2 e n f n m !n !
m
m
n
, x 1 .
We then define gamma-type function involving newly defined hypergeometric
function of two variables and discuss its probability density function along with some of
its associated statistical functions. We use inverse Mellon transform technique to derive
closed form of gamma-type function and moment generating function.
KEYWORDS
Gamma function; inverse Mellon transform; hypergeometric function of two
variables; moment generating function; moments.
1. INTRODUCTION
Kobayashi [11] considered a generalized gamma function, m (u, v) . Galue et al. [8]
generalized Kobayashi [11] gamma function by introducing Gauss hypergeometric
function in it. Agarwal and Kalla [1] defined and studied a generalized gamma
distribution. They used a modified form of the generalized gamma function of Kobayashi
[11, 12]. Ghitany [9] discussed additional properties for gamma function defined by
© 2013 Pakistan Journal of Statistics
139
140
A generalization of hypergeometric and gamma functions
Agarwal and Kalla [1]. Al-Musallam and Kalla [2, 3] extended gamma function by
involving Gauss hypergeometric function. Al-Musallam and Kalla [2, 3] and Kalla et al.
[10] then discussed some of its properties. Provost et al. [14], Saboor and Ahmad [16]
and Saboor et al. [17] discussed such generalizations.
The remainder of this section is devoted to the inverse Mellin transform technique,
which is central to the derivation of the closed form of gamma-type function and the
moment generating function of the gamma-type distribution.
If f x is a real piecewise smooth function that is defined and single valued almost
everywhere for x 0 and such that 0 x k 1 f x dx converges for some real value k ,
then M f s 0 x s 1 f x dx is the Mellin transform of f x . Whenever f x is
continuous, the corresponding the inverse Mellin transform is
f x
1 c i s
x M f s ds
2i c i
(1.1)
which together with M f s ; constitute a transform pair. The path of integration in the
complex plane is called the Bromwich path where Bromwich path is a part of integration
in the complex plane running from c i to c i , where c is a real positive number
chosen so that the path lies to the right of all singularities of the analytic. Equation (1.1)
determines f x uniquely if the Mellin transform is an analytic function of the complex
variable s for c1 s c c2 where c1 and c2 are real numbers and s denotes
the real part of s . In the case of a continuous nonnegative random variable whose density
function is f x , the Mellin transform is its moment of order s 1 and the inverse
Mellin transform yields f x . Letting
M f s
in1 1 ai s
,
qj m1 1 b j s ipn1 ai s
m
j 1
bj s
(1.2)
where m, n, p, q are nonnegative integers such that 0 n p, 1 m q, are positive
number
and
ai , i 1,..., p, b j ,
j 1,..., q ,
are
complex
number
such
that
b j v 1 ai and v, 0,1, 2,..., j 1,..., m , and i 1,..., n , the G -function
can be defined as follows in terms of the inverse Mellin transform of M f s :
a1 ,..., a p
1 c i
f x G pm,,qn x
M f s x s ds ,
b1 ,..., bq 2i c i
(1.3)
where M f s is as defined in (1.2) and the Bromwich path c i, c i separates the
points s b j , j 1,..., m , 0,1, 2,... , the poles of b j s , j 1,..., m , from
Habibullah, Saboor and Ahmad
141
the points s 1 ai , i 1,..., n , 0,1, 2,..., the poles of 1 ai s , i 1,..., n .
Thus, one must have
Max1 j m R b j c Min1i n R 1 ai .
(1.4)
The integral (1.3) converges absolutely when m n
1
p q 0 .
2
Moreover,
a1 ,..., a p
1 1 b1 ,...,1 bq
Gqn,,m
.
G pm,,qn x
p
b1 ,..., bp
x 1 a1 ,...,1 a p
(1.5)
For example, when p q , the G -function is defined for 0 x 1 , and the identity
(1.5) can be used to evaluate the hypergeometric functions for x 1 . For the main
properties of the G -function as well as applications to various disciplines, the reader is
referred to Mathai [13].
2. NEW FUNCTION
We introduce an extension of hypergeometric function of two variables in following
form:
b b+1 d d +1
a, ,
,c; ,
,e, f; -αx-δ , βxδ
2 2
2 2
m, n 0
a n c n x
e n f n n ! m 0
n 0
n
Using Lemma 5, [15, p.22], (2.1) becomes
1
22 k
.
2 k 2 k
(2.1) becomes,
n
b b 1
2 x
2
m
m
d d 1
2 2 m!
m
m
a n m
where x 1 .
2 k
m
b b 1
c n x x
2 m 2 m
d d 1
2 2 e n f n m !n !
n
m
a m n
m
,
(2.1)
142
A generalization of hypergeometric and gamma functions
b b+1 d d +1
a, ,
,c; ,
,e, f; -αx-δ , βxδ
2 2
2 2
a n c n x a n m b 2m x
e n f n n ! m 0
d 2 m m !
n 0
n
m
.
a n c n x a n m x
b d b n 0 e n f n n ! m 0
m!
n
d
(2.2)
m
1
b 2 m 1
t1
1 t1 d b 1 dt1
0
a n m x t12
a n c n x 1 b1
d b 1
t1 1 t1
b d b n 0 e n f n n ! 0
m!
m 0
d
n
m
dt1 .
(2.3)
a n c n x 1 b1
a n
d b 1
1 x t12
dt1
t1 1 t1
b d b n 0 e n f n n ! 0
d
n
d
1
b 1
t1
b d b 0
1 t1 d b1 1 x t12
a
n 0
d
e
x
2
1 x t1
n
a n c n
e n f n n !
dt1 .
(2.4)
f
b d b a e a c f c
111
t1b 1t2a 1t3c 1 1 t1
d b 1
000
xt2t3
exp
1 x t 2
1
1 t2 ea 1 1 t3 f c1 1 x t12
dt1dt2 dt3 ,
a
(2.5)
since
x
a n c n
1 x t 2
1
e
f
n
!
n n
n 0
e
n
f
a e a c f c
11
a 1 c 1
t2 t3 1 t2
00
e a 1
xt2t3
dt dt .
2 2 3
1 x t1
1 t3 f c1 exp
(2.6)
Habibullah, Saboor and Ahmad
143
3. A GAMMA-TYPE FUNCTION
We define a following gamma-type function involving newly defined hypergeometric
function of two variables .
b b+1 d d +1
H a, b, c, d , e, f ; , , ; p, x1e px a, ,
,c; ,
,e, f;-αx-δ , βxδ dx ,
2
2
2
2
0
(3.1)
where,
Re p 0, Re 0, Re 1 0, Arg x .
Using (2.1), one has
H a, b, c, d , e, f ; , , ; p,
a n c n x
e n f n n ! n 0
n 0
n
x1e px
0
a n c n n n1 px
e
x
n 0 e n f n n ! 0
3 F2
b b 1
2 x
2
m
m
d d 1
2 2 m!
m
m
a n m
x
n 1 px
e
0
3 F2 a n,
b b 1 d d 1
,
; ,
; x dx
2 2 2 2
d d 1
1 n 1 px
2 2
e
x
b b 1 2i 0
a n
2 2
x
b
b 1
s a n s s
s
2
2
ds dx
d
d 1
c i
s
s
2
2
d d 1
2 2
b b 1
a n
2 2
c i
s
m
dx (3.2)
b b 1 d d 1
a n, 2 , 2 ; 2 , 2 ; x dx . (3.3)
Note that
144
A generalization of hypergeometric and gamma functions
c i
1
2i c i
x
b
b 1
s
s
2
2
d
d 1
s
s
2
2
s s a n s
n s 1 px
e
dx ds
0
1
p
n /
d d 1
2 2
b b 1
a n
2 2
1 c i
2i c i
b
b 1
s
sn s
2
2
ds .
d
d 1
s
s
2
2
p s s a n s
Hence,
x
0
n 1 px
e
3 F2 a n,
b b 1 d d 1
,
; ,
; x dx
2 2 2 2
d d 1
1
2 2
p n / a n b b 1
2 2
b
b 1
s a n s s
s n / s
s
1
1 c i
2
2
ds ,
2i c i
d
d 1
p
s
s
2
2
d d 1
d d 1
1 n ,1, ,
1
2 2
2 2
3,2 1
G
. (3.4)
4,3
b b 1
p
p n / a n b b 1
a n, ,
2 2
2 2
where Re p 0, Re 0, Re n s 0 .
Equivalently, in light of (1.5), one has
Habibullah, Saboor and Ahmad
145
H a, b, c, d , e, f ; , , ; p,
1
p /
d d 1
b
b 1
n
1 a n,1 ,1
2
2 .
2 2 c n / p G 2,3 p
3,4
d
d 1
b b 1 n 0 e n f n n !
a
0, n ,1 ,1
2
2
2 2
(3.5)
Since by Slater’s theorem [13], on can express Meijer G-function as a sum of residues
in terms of generalized hypergeometric functions p Fq 1
b j bh 1 bh a j z
m
m
G pm,,qn
a1 , a2 ,....., a p m j 1
j 1
z
b1 , b2 ,......, bq h 1 q
1 bh b j
j m 1
bh
a j bh
p
j n 1
1 bh a1 ,1 bh a2 ,.......,1 bh a p
p mn
p Fq 1
; 1
1 bh b1 ,1 bh b2 ,.......,1 bh b p
z
,
(3.6)
where p q,or p q and z 1 , and for the poles to be distinct no pair among
b j , j 1, 2,....., m , may differ by an integer or zero. The asterisks in (3.6) remind us to
ignore the contribution with index j h . For m 2, n p 3, q 4, a1 1 a n,
b
b 1
d
d 1
, we have from
a2 1 , a3 1
, b1 0, b2 n , b3 1 , b4 1
2
2
2
2
(3.6)
d d 1
n
c / p
1
2 2
n
H a, b, c, d , e, f ; , , ; p,
p / a b b 1 n 0 e n f n n !
2 2
b b 1
a n
2 2 F a n, b , b 1 ; n 1, d , d 1 ; p
n
3 3
2 2
2 2
d d 1
2 2
b
b 1
n /
n /
2
2
d
d 1
n /
n /
2
2
p n / a 2n / n /
146
A generalization of hypergeometric and gamma functions
b
1 b
1
d d
3 F3 a 2n , n , n ; n , n , n 1; p .
2
2
2
2
2
2
After some simple steps, we get
H a, b, c, d , e, f ; , , ; p,
1 / a n / n c n / p
p / n 0
e n f n n !
n
b b 1
d d 1
3 F3 a n, ,
; n 1, ,
; p
2 2
2
2
a n c n n a 2n / n / b 2 n /
b n 0 e n f n n !
a n d 2 n /
/ d
b
1 b
1
d d
3 F3 a 2n , n , n ; n , n , n 1; p .
2
2
2
2
2
2
(3.7)
3.1 Particular Cases
For 0 , we get from (3.2) and (3.7)
H a, c, e, f ;0, , ; p,
x
0
1 px
e
a n c n x
e n f n n !
n 0
x n 1e px
2
1
p
dx
F2 a, c; e, f ; x dx
0
n
3 F2
a, , c; e, f ; /
p .
For c f ,
1
H a, e;0, , ; p, p
a, ; e; / p . (3.9)
2 F1
R.H.S of (3.9) is generalized gamma function considered by Al-Zamel [5].
For 0 , we obtain from (3.2) and (3.7)
H a, b, c, d ; ,0, ; p,
(3.8)
Habibullah, Saboor and Ahmad
x1e px
0
147
3 F2 a,
b b 1 d d 1
,
; ,
; x dx
2 2 2 2
1 /
d d 1
b b 1
; 1, ,
; p
3 F3 a, ,
p /
2
2
2
2
/ d a / / b 2 /
b
a d 2 /
b 1 b 1 d d
3 F3 a , , ; , , 1; p . (3.10)
2 2 2 2 2 2
If we set b d in (3.10) to get
H a, c; ,0, ; p,
x1e px 1 F0 a; ; x dx
0
1 /
F a; 1; p
/ 1 1
p
/ a / /
a
1 F1
a
; 1; p .
(3.11)
If we put 0 , p 1/ k and k in (3.1) then we obtain
1 x / k
dx k ,
0 x e
k
which is k-gamma function [6].
3.2 The Incomplete Gamma-Type Function
The incomplete bivariate gamma-type function is defined as
x
u
1 pu
e
0
b b+1 d d +1
a, ,
,c; ,
,e, f; -αu -δ , βu δ du
2
2
2
2
H0x a, b, c, d , e, f ; , , ; p, ,
(3.12)
and the complimentary incomplete gamma-type function is defined as
u
x
1 pu
e
b b+1 d d +1
a, ,
,c; ,
,e, f; -αu -δ , βu δ du
2 2
2 2
H x a, b, c, d , e, f ; , , ; p, ,
(3.13)
148
A generalization of hypergeometric and gamma functions
4. A GAMMA-TYPE PROBABILITY FUNCTION USING A NEWLY DEFINED
HYPERGEOMETRIC FUNCTION OF TWO VARIABLES
We define the following gamma-type probability density function involving the
newly defined hypergeometric function of two variables specified by (2.1):
b b+1 d d +1
f x C x1e p x a, ,
,c; ,
,e, f; -αx-δ , βxδ , x 0 ,
2 2
2 2
(4.1)
where C 1 H a, b, c, d , e, f ; , , ; p, , 1 0, p 0, p, 0, Arg .
As f x 0 , lim f x 0 ; lim f x 0 and f x dx 1 , f x defines a bona
x 0
x
0
fide probability density function.
0.5
0.4
0.3
0.2
0.1
1
2
3
4
5
6
Fig. 4.1: The gamma-type pdf. a = 1.3; b = 0.6; c = 2.7; = 0.4; d = 3.4;
e = 2.4; h = 4.6; g = 3.4; f = 1.7; = 0.3; p = 2.2; = 1.2;
4.2(solid line); 5.2(dotted line); 6.2 (thick line) .
1.0
0.8
0.6
0.4
0.2
1
2
3
4
5
Fig. 4.2: The gamma-type pdf. a = 1.3; b = 0.6; c = 2.7; = 4.1; d = 3.4;
e = 2.4; h = 4.6; g = 3.4; f = 1.7; = 0.3; = 0.4; = 1.2;
p 2.2(solid line); p 3.2(dotted line); p 4.2 (thick line) .
Habibullah, Saboor and Ahmad
149
1.5
1.0
0.5
1
2
3
4
5
Fig. 4.3: The gamma-type pdf. a = 1.3; b = 0.6; c = 2.7; = 4.2; d = 3.4;
e = 2.4; h = 4.6; g = 3.4; f = 1.7; = 0.3; = 0.4; p = 2.2;
1.2(solid line); 2.2(dotted line); 3.2 (thick line) .
Figure 4.1, Figure 4.2 and Figure 4.3 illustrate how the parameters , p and effect
the gamma-type distribution.
4.1 Particular Cases of Probability Function
I. If we set 0 and c f , (4.1) becomes,
δ
p / x1e p x
1 F1 a; e; βx
f x
,
/
2 F1 a, / ; e; β / p
which is modified form of pdf defined by Al-Zamel [5].
II. If we set 0 and b d , (4.1) becomes,
f x
where,
x1e p x 1 F0 a;-;-x-δ
,
1 /
1; p .
1 F1 a;
p /
/ a / /
a
1 F1
a ; 1; p
5. STATISTICAL FUNCTIONS
Closed form representations of the moment generating function of a gamma-type
random variable which is denoted by X , as well as the associated moments are provided
in this section.
150
A generalization of hypergeometric and gamma functions
The Moment Generating Function of X
The moment generating function for density function is defined as
M X t E et X et x f x dx
0
The inverse Mellin transform technique will be used to derive the moment generating
function of the gamma-type distribution. Let X be a random variable whose pdf is
specified by (4.1).
The moment generating function with respect to the distribution specified by (4.1), is
given by
b b+1 d d +1
M X t C 0 et x x1e p x a, ,
,c; ,
,e, f;-αx-δ , βxδ dx .
2 2
2 2
a n c n n n1 p x t x
b b 1 d d 1
e
e 3 F2 a n, ,
; ,
; x dx .
x
e
f
n
!
2
2
2
2
n 0 n n
0
C
(5.1)
Letting 1 and using (3.8), (5.1) becomes
d d 1
n
C
2 2 c n
M X t
b b 1 n 0 e n f n n !
a
2 2
1 i
2i i
b b 1
s
s
n s 1 p t x
2 2
e
dx ds
x
d
d 1
0
s
s
2
2
s s a n s
n
d d 1
c n
C
1
2 2
p t
p t a b b 1 n 0 e n f n n !
2 2
s
p t s a n s b2 s b 2 1 s n s
1 i
ds ,
2i i
d
d 1
s
s
2
2
where, Re p Re t , Re Re s .
Habibullah, Saboor and Ahmad
151
Hence,
M X t
d d 1
C
1
2 2
p t
b b 1
a
2 2
p t
n
d d 1
1 n ,1, ,
1
2 2
3,2
G4,3
.
b b 1
p t
n 0 e n f n n !
a
n
,
,
2 2
c n
Equivalently, in light of (1.5), one has
d d 1
C
1
2 2
M X t
p t a b b 1
2 2
p t
n
b
b 1
1 a n,1 ,1
2
2 .
2,3
G3,4
p t
d
d 1
n 0 e n f n n !
0, n ,1 ,1
2
2
c n
(5.2)
The Moments
The r th moment about the origen of a continuous real random variables X with
density function, f x defined by
ur x r f x dx .
0
For the density function defined in (4.1), we have
r CH a, b, c, d , e, f ; , , ; p, r ,
(5.3)
where C 1 H a, b, c, d , e, f ; , , ; p, .
Variance
The variance for the distribution of X is given by
V X C H a, b, c, d , e, f ; , , ; p, 2 CH 2 a, b, c, d , e, f ; , , ; p, 1 ,
(5.4)
The Factorial Moments
Factorial moments for probability density function defined in (4.1) are as follows
152
A generalization of hypergeometric and gamma functions
E X X 1 X 2 ... X i 1
E X i 1 X i 1 2 X i 2 ... i 1 X
i 1
k 1 E X i k ,
k
k 0
(5.5)
where k is integer, k 0 ; which satisfy the first identity
Now,
E X X 1 X 2 ... X i 1
i 1
k 1 CH a, b, c, d , e, f ; , , ; p, i k .
k
(5.6)
k 0
The Negative Moments
Negative moments is defined as
1 1
E r r f x dx ,
X 0 X
(5.7)
using (5.5), we derive negative moments for density function defined in (4.1)
1
E r C H a, b, c, d , e, f ; , , ; p, r , r 1 .
X
(5.8)
REFERENCES
1. Agarwal, S.K. and Kalla, S.L. (1996). A generalized gamma distribution and its
application in reliability. Commun. in Statist.: Theo. and Meth., 25(1), 201-210.
2. Al-Musallam, F. and Kalla, S. (1997). Asymptotic expansions for generalized gamma
and incomplete gamma functions, Appl. Anal., 66, 173-187.
3. Al-Musallam, F. and Kalla, S.L. (1998). Further results on a generalized gamma
function occurring in diffraction theory. Integral Transforms and Special Functions,
7, 175-190.
4. Al-Saqabi, B.N., Kalla, S.L. and Tuan, V.K. (2003). Unified probability density
function involving a confluent hypergeometric function of two variables. Appl. Math.
Comput., 146, 135-152.
5. Al-Zamel. (2001). On a generalized gamma-type distribution with -confluent
hypergeometric function. Kuwait J. Sci. Eng., 28(1), 25-36.
6. Diaz, R. and Pariguan, E. (2007). On hypergeometric functions and Pochhammer
K-symbol. Divulgaciones Maemàticas, 15(2), 179-192.
7. Erdélyi, A., Magnus, W.; Oberhettinger, F. and Tricomi, F.G. (1953). Higher
Transcendental Functions Vol. I, McGraw-Hill Book Co, New York.
8. Galue, L., Alobaidi, S. and Kalla, S. (2001). Further generalizations of Kobayashi’s
gamma function, Serdica Math. J., 27, 303-316.
Habibullah, Saboor and Ahmad
153
9. Ghitany, M. (1998). On a recent generalization of gamma distribution. Commun. in
Statist.: Theo. and Meth., 27(1), 223-233.
10. Kalla, S.L., Al-Saqabi, B.N. and Khajah, H.G. (2001). A unified form of gamma-type
distributions. Appl. Math. Comput., 118, 175-187.
11. Kobayashi, K. (1991a). On a generlized gamma function occurring in diffraction
theory. J. Phys. Soc. Jpn., 60, 1501-1512.
12. Kobayashi, K. (1991). Plane way diffraction by a strip. Exact and asymptotic
solutions. J. Phys. Soc. Jpn., 60, 1891-1905.
13. Mathai, A. (1993). A Handbook of Generalized Special Functions for Statistical and
Physical Sciences. Oxford University Press, Oxford.
14. Provost, S.B., Saboor, A. and Ahmad, M. (2011). The gamma-Weibull distribution.
Pak. J. Statist., 27(2), 111-113.
15. Rainville, E.D. (1960). Special Functions. The Macmillan Company, New York.
16. Saboor, A. and Ahmad, M. (2012). Bivariate generalized gamma-type probability
function using a hypergeometric function of two variables. Pak. J. Statist., 28(1), 81-91.
17. Saboor, A., Provost, S.B. and Ahmad, M. (2012). The moment generating function of
a bivariate gamma-type distribution. Appl. Math. Comput., 218(24), 11911-11921.
View publication stats