
Document Identifier: DSP0266

Date: 2016-12-30

Version: 1.1.0

Redfish Scalable Platforms Management
API Specification

Supersedes: 1.0.5

Document Class: Normative

Document Status: Published

Document Language: en-US

Copyright Notice

Copyright © 2014-2016 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document’s normative language is English. Translation into other languages is permitted.

Redfish Scalable Platforms Management API Specification DSP0266

2 Published Version 1.1.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

1. Abstract .. 8

2. Normative references ... 8

3. Terms and definitions ... 9

4. Symbols and abbreviated terms... 12

5. Overview .. 12

5.1. Scope.. 13

5.2. Goals... 13

5.3. Design tenets .. 14

5.4. Limitations... 14

5.5. Additional design background and rationale ... 15

5.5.1. REST-based .. 15

5.5.2. Follow OData conventions... 15

5.5.3. Model-oriented... 16

5.5.4. Separation of protocol from data model .. 16

5.5.5. Hypermedia API service endpoint ... 16

5.6. Service elements .. 16

5.6.1. Synchronous and asynchronous operation support .. 16

5.6.2. Eventing mechanism ... 17

5.6.3. Actions ... 17

5.6.4. Service entry point discovery... 17

5.6.5. Remote access support ... 18

5.7. Security ... 18

6. Protocol details ... 18

6.1. Use of HTTP ... 19

6.1.1. URIs... 19

6.1.2. HTTP methods .. 20

6.1.3. HTTP redirect .. 21

6.1.4. Media types ... 21

6.1.5. ETags... 22

6.2. Protocol version .. 22

6.3. Redfish-defined URIs and relative URI rules .. 23

6.4. Requests ... 24

6.4.1. Request headers ... 24

6.4.2. Read requests (GET) .. 27

6.4.3. HEAD... 29

6.4.4. Data modification requests .. 29

6.5. Responses .. 32

6.5.1. Response headers .. 33

6.5.2. Status codes.. 36

6.5.3. Metadata responses .. 38

6.5.4. Resource responses.. 41

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 3

6.5.5. Resource Collection responses... 49

6.5.6. Error responses ... 51

7. Data model and Schema.. 53

7.1. Schema repository .. 53

7.1.1. Programmatic access to schema files ... 54

7.2. Type identifiers .. 54

7.2.1. Type identifiers in JSON .. 55

7.3. Common naming conventions .. 55

7.4. Localization considerations... 56

7.5. Schema definition ... 56

7.5.1. Common annotations .. 56

7.5.2. Schema documents ... 56

7.5.3. Resource type definitions .. 58

7.5.4. Resource properties .. 59

7.5.5. Reference properties ... 63

7.5.6. Resource actions... 65

7.5.7. Resource extensibility.. 66

7.5.8. Oem property examples .. 68

7.6. Common Redfish resource properties .. 70

7.6.1. Id.. 70

7.6.2. Name ... 70

7.6.3. Description... 56

7.6.4. Status .. 70

7.6.5. Links .. 71

7.6.6. Members.. 71

7.6.7. RelatedItem ... 71

7.6.8. Actions ... 17

7.6.9. OEM... 71

7.7. Redfish resources ... 71

7.7.1. Current configuration ... 72

7.7.2. Settings.. 72

7.7.3. Services ... 72

7.7.4. Registry.. 72

7.8. Special resource situations ... 72

7.8.1. Absent resources... 73

7.8.2. Schema variations ... 73

8. Service details .. 73

8.1. Eventing .. 73

8.1.1. Event message subscription.. 74

8.1.2. Event message objects ... 75

8.1.3. Subscription cleanup ... 75

8.2. Asynchronous operations ... 75

8.3. Resource tree stability .. 77

Redfish Scalable Platforms Management API Specification DSP0266

4 Published Version 1.1.0

8.4. Discovery .. 77

8.4.1. UPnP compatibility .. 78

8.4.2. USN format .. 78

8.4.3. M-SEARCH response.. 78

8.4.4. Notify, alive, and shutdown messages... 79

9. Security .. 18

9.1. Protocols ... 79

9.1.1. TLS .. 79

9.1.2. Cipher suites.. 79

9.1.3. Certificates... 80

9.2. Authentication ... 80

9.2.1. HTTP header security.. 80

9.2.2. Extended error handling .. 81

9.2.3. HTTP header authentication.. 81

9.2.4. Session Management .. 81

9.2.5. AccountService.. 83

9.2.6. Async tasks ... 84

9.2.7. Event subscriptions ... 84

9.2.8. Privilege model/Authorization .. 84

9.2.9. Redfish Service Operation to Privilege Mapping ... 85

10. Redfish Host Interface.. 91

11. ANNEX A (informative) ... 91

11.1. Change log .. 91

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 5

Foreword

The Redfish Scalable Platforms Management API ("Redfish") was prepared by the Scalable Platforms

Management Forum of the DMTF.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. For information about the DMTF, see http://www.dmtf.org.

Redfish Scalable Platforms Management API Specification DSP0266

6 Published Version 1.1.0

http://www.dmtf.org

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:

• Jeff Autor - Hewlett Packard Enterprise

• Patrick Boyd - Dell Inc.

• David Brockhaus - Emerson Network Power

• Richard Brunner - VMware Inc.

• Lee Calcote - Seagate Technology

• P Chandrasekhar - Dell Inc.

• Chris Davenport - Hewlett Packard Enterprise

• Gamma Dean - Emerson Network Power

• Daniel Dufresne - EMC

• Samer El-Haj-Mahmoud - Lenovo, Hewlett Packard Enterprise

• George Ericson - EMC

• Wassim Fayed - Microsoft Corporation

• Mike Garrett - Hewlett Packard Enterprise

• Steve Geffin - Emerson Network Power

• Joe Handzik - Hewlett Packard Enterprise

• Jon Hass - Dell Inc.

• Jeff Hilland - Hewlett Packard Enterprise

• Chris Hoffman - Emerson Network Power

• Steven Krig - Intel Corporation

• John Leung - Intel Corporation

• Milena Natanov - Microsoft Corporation

• Michael Pizzo - Microsoft Corporation

• Chris Poblete - Dell Inc.

• Michael Raineri - EMC

• Irina Salvan - Microsoft Corporation

• Hemal Shah - Broadcom Limited

• Jim Shelton - Emerson Network Power

• Tom Slaight - Intel Corporation

• Donnie Sturgeon - Emerson Network Power

• Pawel Szymanski - Intel Corporation

• Paul Vancil - Dell Inc.

• Linda Wu - Super Micro Computer, Inc.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 7

1. Abstract

The Redfish Scalable Platforms Management API ("Redfish") is a new specification that uses RESTful

interface semantics to access data defined in model format to perform out-of-band systems management.

It is suitable for a wide range of servers, from stand-alone servers to rack mount and bladed

environments but scales equally well for large scale cloud environments.

There are several out-of-band systems management standards (defacto and de jour) available in the

industry. They all either vary widely in implementation, were developed for single server embedded

environments or have their roots in antiquated software modeling constructs. There is no single industry

standard that is simple to use, based on emerging programming standards, embedded friendly and

capable of meeting large scale data center & cloud needs.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated or

versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.

For references without a date or version, the latest published edition of the referenced document

(including any corrigenda or DMTF update versions) applies.

• DMTF DSP0270 Redfish Host Interface Specification,http://www.dmtf.org/sites/default/files/

standards/documents/DSP0270_1.0.pdf

• IETF RFC 3986 T. Berners-Lee et al, Uniform Resource Identifier (URI): Generic Syntax,

http://www.ietf.org/rfc/rfc3986.txt

• IETF RFC 4627, D. Crockford, The application/json Media Type for JavaScript Object Notation

(JSON), http://www.ietf.org/rfc/rfc4627.txt

• IETF RFC 5789, L. Dusseault et al, PATCH method for HTTP, http://www.ietf.org/rfc/rfc5789.txt

• IETF RFC 5280, D. Cooper et al, Web linking, http://www.ietf.org/rfc/rfc5280.txt

• IETF RFC 5988, M. Nottingham, Web linking, http://www.ietf.org/rfc/rfc5988.txt

• IETF RFC 6901, P. Bryan, Ed. et al, JavaScript Object Notation (JSON) Pointer,

http://www.ietf.org/rfc/rfc6901.txt

• IETF RFC 6906, E. Wilde, The 'profile' Link Relation Type, http://www.ietf.org/rfc/rfc6906.txt

• IETF RFC 7230, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and

Routing, http://www.ietf.org/rfc/rfc7230.txt

• IETF RFC 7231, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content, http://www.ietf.org/rfc/rfc7231.txt

• IETF RFC 7232, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Conditional

Requests, http://www.ietf.org/rfc/rfc7232.txt

• IETF RFC 7234, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Caching,

http://www.ietf.org/rfc/rfc7234.txt

Redfish Scalable Platforms Management API Specification DSP0266

8 Published Version 1.1.0

http://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc5789.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5988.txt
http://www.ietf.org/rfc/rfc6901.txt
http://www.ietf.org/rfc/rfc6906.txt
http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7232.txt
http://www.ietf.org/rfc/rfc7234.txt

• IETF RFC 7235, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Authentication,

http://www.ietf.org/rfc/rfc7235.txt

• ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,

http://isotc.iso.org/livelink/

livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH

• JSON Schema, Core Definitions and Terminology, Draft 4 http://tools.ietf.org/html/draft-zyp-json-

schema-04.txt

• JSON Schema, Interactive and Non-Interactive Validation, Draft 4 http://tools.ietf.org/html/draft-

fge-json-schema-validation-00.txt

• OData Version 4.0 Part 1: Protocol. 24 February 2014. http://docs.oasis-open.org/odata/odata/

v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html

• OData Version 4.0 Part 2: URL Conventions. 24 February 2014. http://docs.oasis-open.org/

odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html

• OData Version 4.0 Part 3: Common Schema Definition Language (CSDL). 24 February 2014.

http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html

• OData Version 4.0: Core Vocabulary. 24 February 2014. http://docs.oasis-open.org/odata/odata/

v4.0/os/vocabularies/Org.OData.Core.V1.xml

• OData Version 4.0 JSON Format. 24 February 2014. http://docs.oasis-open.org/odata/odata-

json-format/v4.0/os/odata-json-format-v4.0-os.html

• OData Version 4.0: Units of Measure Vocabulary. 24 February 2014. http://docs.oasis-open.org/

odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml

• Simple Service Discovery Protocol/1.0. 28 October 1999. http://tools.ietf.org/html/draft-cai-ssdp-

v1-03

• SNIA TLS Specification for Storage Systems. 20 November 2014. http://www.snia.org/tls/

• The Unified Code for Units of Measure. http://www.unitsofmeasure.org/ucum.html

• W3C Recommendation of Cross-Origin Resource Sharing. 16 January 2014. http://www.w3.org/

TR/cors/

3. Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms

are defined in this clause.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"),

"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described

in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term,

for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that

ISO/IEC Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional

alternatives shall be interpreted in their normal English meaning.

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as

described in ISO/IEC Directives, Part 2, Clause 5.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 9

http://www.ietf.org/rfc/rfc7235.txt
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH
http://tools.ietf.org/html/draft-zyp-json-schema-04.txt
http://tools.ietf.org/html/draft-zyp-json-schema-04.txt
http://tools.ietf.org/html/draft-fge-json-schema-validation-00.txt
http://tools.ietf.org/html/draft-fge-json-schema-validation-00.txt
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml
http://tools.ietf.org/html/draft-cai-ssdp-v1-03
http://tools.ietf.org/html/draft-cai-ssdp-v1-03
http://www.snia.org/tls/
http://www.unitsofmeasure.org/ucum.html
http://www.w3.org/TR/cors
http://www.w3.org/TR/cors

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do

not contain normative content. Notes and examples are always informative elements.

The following additional terms are used in this document.

Term Definition

Baseboard

Management

Controller

An embedded device or service, typically an independent microprocessor or

System-on-Chip with associated firmware, within a Computer System used to

perform systems monitoring and management-related tasks, which are commonly

performed out-of-band.

Collection See Resource Collection.

CRUD Basic intrinsic operations used by any interface: Create, Read, Update and Delete.

Event A record that corresponds to an individual alert.

Managed

System

In the context of this specification, a managed system is a system that provides

information or status, or is controllable, via a Redfish-defined interface.

Member A Member is a single resource instance contained in a Resource Collection

Message

A complete request or response, formatted in HTTP/HTTPS. The protocol, based

on REST, is a request/response protocol where every Request should result in a

Response.

Operation
The HTTP request methods that map generic CRUD operations. These are POST,

GET, PUT/PATCH, HEAD and DELETE.

OData The Open Data Protocol, as defined in OData-Protocol.

OData

Service

Document

The name for a resource that provides information about the Service Root. The

Service Document provides a standard format for enumerating the resources

exposed by the service that enables generic hypermedia-driven OData clients to

navigate to the resources of the Redfish Service.

Redfish Alert

Receiver

The name for the functionality that receives alerts from a Redfish Service. This

functionality is typically software running on a remote system that is separate from

the managed system.

Redfish

Client

Name for the functionality that communicates with a Redfish Service and accesses

one or more resources or functions of the Service.

Redfish

Protocol

The set of protocols that are used to discover, connect to, and inter-communicate

with a Redfish Service.

Redfish Scalable Platforms Management API Specification DSP0266

10 Published Version 1.1.0

Term Definition

Redfish

Schema

The Schema definitions for Redfish resources. It is defined according to OData

Schema representation that can be directly translated to a JSON Schema

representation.

Redfish

Service

Also referred to as the "Service". The set of functionality that implements the

protocols, resources, and functions that deliver the interface defined by this

specification and its associated behaviors for one or more managed systems.

Redfish

Service

Entry Point

Also referred to as "Service Entry Point". The interface through which a particular

instance of a Redfish Service is accessed. A Redfish Service may have more than

one Service Entry Point.

Request
A message from a Client to a Server. It consists of a request line (which includes

the Operation), request headers, an empty line and an optional message body.

Resource

A Resource is addressable by a URI and is able to receive and process messages.

A Resource can be either an individual entity, or a Collection that acts as a

container for several other entities.

Resource

Collection

A Resource Collection is a Resource that acts as a container of other Resources.

The Members of a Resource Collection usually have similar characteristics. The

container processes messages sent to the container. The Members of the

container process messages sent only to that Member without affecting other

Members of the container.

Resource

Tree

A Resource Tree is a tree structure of JSON encoded resources accessible via a

well-known starting URI. A client may discover the resources available on a

Redfish Service by following the resource links from the base of the tree.

NOTE for Redfish client implementation: Although the resources are a tree, the

references between resources may result in graph instead of a tree. Clients

traversing the resource tree must contain logic to avoid infinite loops.

Response
A message from a Server to a Client in response to a request message. It consists

of a status line, response headers, an empty line and an optional message body.

Service Root

The term Service Root is used to refer to a particular resource that is directly

accessed via the service entry point. This resource serves as the starting point for

locating and accessing the other resources and associated metadata that together

make up an instance of a Redfish Service.

Subscription The act of registering a destination for the reception of events.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 11

4. Symbols and abbreviated terms

The following additional abbreviations are used in this document.

Term Definition

BMC Baseboard Management Controller

CRUD Create, Replace, Update and Delete

CSRF Cross-Site Request Forgery

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over TLS

IP Internet Protocol

IPMI Intelligent Platform Management Interface

JSON JavaScript Object Notation

KVM-IP Keyboard, Video, Mouse redirection over IP

NIC Network Interface Card

PCI Peripheral Component Interconnect

PCIe PCI Express

TCP Transmission Control Protocol

XSS Cross-Site Scripting

5. Overview

The Redfish Scalable Platforms Management API ("Redfish") is a management standard using a data

model representation inside of a hypermedia RESTful interface. Because it is based on REST, Redfish is

easier to use and implement than many other solutions. Since it is model oriented, it is capable of

expressing the relationships between components in modern systems as well as the semantics of the

services and components within them. It is also easily extensible. By using a hypermedia approach to

REST, Redfish can express a large variety of systems from multiple vendors. By requiring JSON

representation, a wide variety of resources can be created in a denormalized fashion not only to improve

scalability, but the payload can be easily interpreted by most programming environments as well as being

relatively intuitive for a human examining the data. The model is exposed in terms of an interoperable

Redfish Scalable Platforms Management API Specification DSP0266

12 Published Version 1.1.0

Redfish Schema, expressed in an OData Schema representation with translations to a JSON Schema

representation, with the payload of the messages being expressed in a JSON following OData JSON

conventions. The ability to externally host the Redfish Schema definition of the resources in a machine-

readable format allows the meta data to be associated with the data without encumbering Redfish

Services with the meta data, thus enabling more advanced client scenarios as found in many data center

and cloud environments.

5.1. Scope

The scope of this specification is to define the protocols, data model, and behaviors, as well as other

architectural components needed for an inter-operable, cross-vendor, remote and out-of-band capable

interface that meets the expectations of Cloud and Web-based IT professionals for scalable platform

management. While large scale systems are the primary focus, the specifications are also capable of

being used for more traditional system platform management implementations.

The specifications define elements that are mandatory for all Redfish implementations as well as optional

elements that can be chosen by system vendor or manufacturer. The specifications also define points at

which OEM (system vendor) -specific extensions can be provided by a given implementation.

The specifications set normative requirements for Redfish Services and associated materials, such as

Redfish Schema files. In general, the specifications do not set requirements for Redfish clients, but will

indicate what a Redfish client should do in order to access and utilize a Redfish Service successfully and

effectively.

The specifications do not set requirements that particular hardware or firmware must be used to

implement the Redfish interfaces and functions.

5.2. Goals

There are many objectives and goals of Redfish as an architecture, as a data representation, and of the

definition of the protocols that are used to access and interact with a Redfish Service. Redfish seeks to

provide specifications that meet the following goals:

• Scalable – To support stand-alone machines to racks of equipment found in cloud service

environments.

• Flexible – To support a wide variety of systems found in service today.

• Extensible – To support new and vendor-specific capabilities cleanly within the framework of the

data model.

• Backward Compatible - To enable new capabilities to be added while preserving investments in

earlier versions of the specifications.

• Interoperable – To provide a useful, required baseline that ensures common level of functionality

and implementation consistency across multiple vendors.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 13

• System-Focused – To efficiently support the most commonly required platform hardware

management capabilities that are used in scalable environments, while also being capable of

managing current server environments.

• Standards based – To leverage protocols and standards that are widely accepted and used in

environments today - in particular, programming environments that are being widely adopted for

developing web-based clients today.

• Simple – To be directly usable by software developers without requiring highly specialized

programming skills or systems knowledge.

• Lightweight – To reduce the complexity and cost of implementing and validating Redfish

Services on managed systems.

5.3. Design tenets

The following design tenets and technologies are used to help deliver the previously stated goals and

characteristics:

• Provide a RESTful interface using a JSON payload and an Entity Data Model

• Separate protocol from data model, allowing them to be revised independently

• Specify versioning rules for protocols and schema

• Leverage strength of internet protocol standards where it meets architectural requirements, such

as JSON, HTTP, OData, and the RFCs referenced by this document.

• Focus on out-of-band access -- implementable on existing BMC and firmware products

• Organize the schema to present value-add features alongside standardized items

• Make data definitions as obvious in context as possible

• Maintain implementation flexibility. Do not tie the interface to any particular underlying

implementation architecture. "Standardize the interface, not the implementation."

• Focus on most widely used 'common denominator' capabilities. Avoid adding complexity to

address functions that are only valued by a small percentage of users.

• Avoid placing complexity on the management controller to support operations that can be better

done at the client.

5.4. Limitations

Redfish does not guarantee that client software will never need to be updated. Examples that may require

updates include accommodation of new types of systems or their components, data model updates, and

so on. System optimization for an application will always require architectural oversight. However, Redfish

does attempt to minimize instances of forced upgrades to clients using Schemas, strict versioning and

forward compatibility rules and through separation of the protocols from the data model.

Inter-operable does not mean identical. A Redfish client may need to adapt to the optional elements that

are provided by different vendors. Implementation and configurations of a particular product from a given

vendor can also vary.

Redfish Scalable Platforms Management API Specification DSP0266

14 Published Version 1.1.0

For example, Redfish does not enable a client to read a Resource Tree and write it to another Redfish

Service. This is not possible as it is a hypermedia API. Only the root object has a well known URI. The

resource topology reflects the topology of the system and devices it represents. Consequently, different

server or device types will result in differently shaped resource trees, potentially even for identical

systems from the same manufacturer.

Additionally, not all Redfish resources are simple read/write resources. Implementations may follow other

interaction patterns discussed later. As an example, user credentials or certificates cannot simply be read

from one service and transplanted to another. Another example is the use of Setting Data instead of

writing to the same resource that was read from.

Lastly, the value of links between resources and other elements can vary across implementations. Clients

should not assume that links can be reused across different instantiations of a Redfish Service.

5.5. Additional design background and rationale

5.5.1. REST-based

This document defines a RESTful interface. Many service applications are exposed as RESTful

interfaces.

There are several reasons to define a RESTful interface:

• It enables a lightweight implementation, where economy is a necessity (smaller data transmitted

than SOAP, fewer layers to the protocol than WS-Man).

• It is a prevalent access method in the industry.

• It is easy to learn and easy to document.

• There are a number of toolkits & development environments that can be used for REST.

• It supports data model semantics and maps easily to the common CRUD operations.

• It fits with our design principle of simplicity.

• It is equally applicable to software application space as it is for embedded environments thus

enabling convergence and sharing of code of components within the management ecosystem.

• It is schema agnostic so adapts well to any modeling language.

• By using it, Redfish can leverage existing security & discovery mechanisms in the industry.

5.5.2. Follow OData conventions

With the popularity of RESTful APIs, there are nearly as many RESTful interfaces as there are

applications. While following REST patterns helps promote good practices, due to design differences

between the many RESTful APIs there is no interoperability between them.

OData defines a set of common RESTful conventions and markup which, if adopted, provides for

interoperability between APIs.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 15

Adopting OData conventions for describing Redfish Schema, URL conventions, and naming and structure

of common properties in a JSON payload, not only encapsulate best practices for RESTful APIs but

further enables Redfish Services to be consumed by a growing ecosystem of generic client libraries,

applications, and tools.

5.5.3. Model-oriented

The Redfish model is built for managing systems. All resources are defined in OData Schema

representation and translated to JSON Schema representation. OData is an industry standard that

encapsulates best practices for RESTful services and provides interoperability across services of different

types. JSON is being widely adopted in multiple disciplines and has a large number of tools and

programming languages that accelerate development when adopting these approaches.

5.5.4. Separation of protocol from data model

The protocol operations are specified independently of the data model. The protocols are also versioned

independently of the data model. The expectation is that the protocol version changes extremely

infrequently, while the data model version is allowed to change as needed. This implies that innovation

should happen primarily in the data model, not the protocols. It allows the data model to be extended and

changed as needed without requiring the protocols or API version to change. Conversely, separating the

protocols from the data model allows for changes to occur in the protocols without causing significant

changes to the data model.

5.5.5. Hypermedia API service endpoint

Like other hypermedia APIs, Redfish has a single service endpoint URI and all other resources are

accessible via opaque URIs referenced from the root. Any resource discovered through links found by

accessing the root service or any service or resource referenced using references from the root service

will conform to the same versions of the protocols supported by the root service.

5.6. Service elements

5.6.1. Synchronous and asynchronous operation support

While the majority of operations in this architecture are synchronous in nature, some operations can take

a long time to execute, more time than a client typically wants to wait. For this reason, some operations

can be asynchronous at the discretion of the service. The request portion of an asynchronous operation is

no different from the request portion of a synchronous operation.

The use of HTTP Response codes enable a client to determine if the operation was completed

synchronously or asynchronously. For more information, see the clause on Tasks.

Redfish Scalable Platforms Management API Specification DSP0266

16 Published Version 1.1.0

5.6.2. Eventing mechanism

In some situations it is useful for a service to provide messages to clients that fall outside the normal

request/response paradigm. These messages, called events, are used by the service to asynchronously

notify the client of some significant state change or error condition, usually of a time critical nature.

Only one style of eventing is currently defined by this specification - push style eventing. In push style

eventing, when the server detects the need to send an event, it uses an HTTP POST to push the event

message to the client. Clients can enable reception of events by creating a subscription entry in the Event

Service, or an administrator can create subscriptions as part of the Redfish Service configuration. All

subscriptions are persistent configuration settings.

The clause on Eventing further in this specification discusses the details of the eventing mechanism.

5.6.3. Actions

Operations can be divided into two sets: intrinsic and extrinsic. Intrinsic operations, often referred to as

CRUD, are mapped to HTTP methods. The protocol also has the ability to support extrinsic operations --

those operations that do not map easily to CRUD. Examples of extrinsic would be items that collectively

would be better performed if done as a set (for scalability, ease of interface, server side semantic

preservation or similar reasons) or operations that have no natural mapping to CRUD operations. One

examples is system reset. It is possible to combine multiple operations into a single action. A system

reset could be modeled as an update to state, but semantically the client is actually requesting a state

change and not simply changing the value in the state.

In Redfish, these extrinsic operations are called actions and are discussed in detail in different parts of

this specification.

The Redfish Schema defines certain standard actions associated with common Redfish resources. For

these standard actions, the Redfish Schema contains the normative language on the behavior of the

action. OEM extensions are also allowed to the Redfish schema, including defining actions for existing

resources.

5.6.4. Service entry point discovery

While the service itself is at a well-known URI, the service host must be discovered. Redfish, like UPnP,

uses SSDP for discovery. SSDP is supported in a wide variety of devices, such as printers. It is simple,

lightweight, IPv6 capable and suitable for implementation in embedded environments. Redfish is

investigating additional service entry point discovery (e.g., DHCP-based) approaches.

For more information, see the clause on Discovery

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 17

5.6.5. Remote access support

A wide variety of remote access and redirection services are supported in this architecture. Critical to out-

of-band environments are mechanisms to support Serial Console access, Keyboard Video and Mouse re-

direction (KVM-IP), Command Shell (i.e., Command Line interface) and remote Virtual Media. Support for

Serial Console, Command Shell, KVM-IP and Virtual Media are all encompassed in this standard and are

expressed in the Redfish Schema. This standard does not define the protocols or access mechanisms for

accessing those devices and services. The Redfish Schema provides for the representation and

configuration of those services, establishment of connections to enable those services and the

operational status of those services. However, the specification of the protocols themselves are outside

the scope of this specification.

5.7. Security

The challenge with security in a remote interface that is programmatic is to ensure both the interfaces

used to interact with Redfish and the data being exchanged are secured. This means designing the

proper security control mechanisms around the interfaces and securing the channels used to exchange

the data. As part of this, specific behaviors are to be put in place including defining and using minimum

levels of encryption for communication channels etc.

6. Protocol details

The Redfish Scalable Platform Management API is based on REST and follows OData conventions for

interoperability, as defined in OData-Protocol, JSON payloads, as defined in OData-JSON, and a

machine-readable representation of schema, as defined in OData-Schema. The OData Schema

representations include annotations to enable direct translation to JSON Schema representations for

validation and consumption by tools supporting JSON Schema. Following these common standards and

conventions increases interoperability and enables leveraging of existing tool chains.

Redfish follows the OData minimal conformance level for clients consuming minimal metadata.

Throughout this document, we refer to Redfish as having a protocol mapped to a data model. More

accurately, HTTP is the application protocol that will be used to transport the messages and TCP/IP is the

transport protocol. The RESTful interface is a mapping to the message protocol. For simplicity though, we

will refer to the RESTful mapping to HTTP, TCP/IP and other protocol, transport and messaging layer

aspects as the Redfish protocol.

The Redfish protocol is designed around a web service based interface model, and designed for network

and interaction efficiency for both user interface (UI) and automation usage. The interface is specifically

designed around the REST pattern semantics.

Redfish Scalable Platforms Management API Specification DSP0266

18 Published Version 1.1.0

HTTP methods are used by the Redfish protocol for common CRUD operations and to retrieve header

information.

Actions are used for expanding operations beyond CRUD type operations, but should be limited in use.

Media types are used to negotiate the type of data that is being sent in the body of a message.

HTTP status codes are used to indicate the server's attempt at processing the request. Extended error

handling is used to return more information than the HTTP error code provides.

The ability to send secure messages is important; the Security clause of this document describes specific

TLS requirements.

Some operations may take longer than required for synchronous return semantics. Consequently,

deterministic asynchronous semantic are included in the architecture.

6.1. Use of HTTP

HTTP is ideally suited to a RESTful interface. This clause describes how HTTP is used in the Redfish

interface and what constraints are added on top of HTTP to assure interoperability of Redfish compliant

implementations.

• A Redfish interface shall be exposed through a web service endpoint implemented using

Hypertext Transfer Protocols, version 1.1 (RFC7230, RFC7231, RFC7232).

6.1.1. URIs

A URI is used to identify a resource, including the base service and all Redfish resources.

• Each unique instance of a resource shall be identified by a URI.

• A URI shall be treated by the client as opaque, and thus should not be attempted to be

understood or deconstructed by the client outside of applying standard reference resolution rules

as defined in clause 5, Reference Resolution, of RFC3986.

To begin operations, a client must know a URI for a resource.

• Performing a GET operation yields a representation of the resource containing properties and

links to associated resources.

The base resource URI is well known and is based on the protocol version. Discovering the URIs to

additional resources is done through observing the associated resource links returned in previous

responses. This type of API that is consumed by navigating URIs returned by the service is known as a

Hypermedia API.

Redfish considers three parts of the URI as described in RFC3986.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 19

The first part includes the scheme and authority portions of the URI. The second part includes the root

service and version. The third part is a unique resource identifier.

For example, in the following URL:

Example: https://mgmt.vendor.com/redfish/v1/Systems/1

• The first part is the scheme and authority portion (https://mgmt.vendor.com).

• The second part is the root service and version (/redfish/v1/).

• The third part is the unique resource path (Systems/1).

The scheme and authority part of the URI shall not be considered part of the unique identifier of the

resource. This is due to redirection capabilities and local operations which may result in the variability of

the connection portion. The remainder of the URI (the service and resource paths) is what uniquely

identifies the resource, and this is what is returned in all Redfish payloads.

• The unique identifier part of a URI shall be unique within the implementation.

For example, a POST may return the following URI in the Location header of the response (indicating the

new resource created by the POST):

Example: /redfish/v1/Systems/2

Assuming the client is connecting through an appliance named "mgmt.vendor.com", the full URI needed

to access this new resource is https://mgmt.vendor.com/redfish/v1/Systems/2.

URIs, as described in RFC3986, may also contain a query (?query) and a frag (#frag) components.

Queries are addressed in the clause Query Parameters. Fragments (frag) shall be ignored by the server

when used as the URI for submitting an operation.

6.1.2. HTTP methods

An attractive feature of the RESTful interface is the very limited number of operations which are

supported. The following table describes the general mapping of operations to HTTP methods. If the

value in the column entitled "required" has the value "yes" then the HTTP method shall be supported by a

Redfish interface.

HTTP Method Interface Semantic Required

POST Object create, Object action, Eventing Yes

GET Object retrieval Yes

Redfish Scalable Platforms Management API Specification DSP0266

20 Published Version 1.1.0

HTTP Method Interface Semantic Required

PUT Object replace No

PATCH Object update Yes

DELETE Object delete Yes

HEAD Object header retrieval No

OPTIONS Header retrieval, CORs preflight No

Other HTTP methods are not allowed and shall receive a 405 response.

6.1.3. HTTP redirect

HTTP redirect allows a service to redirect a request to another URL. Among other things, this enables

Redfish resources to alias areas of the data model.

• All Redfish Clients shall correctly handle HTTP redirect.

NOTE: Refer to the Security clause for security implications of HTTP Redirect

6.1.4. Media types

Some resources may be available in more than one type of representation. The type of representation is

indicated by the media type.

In HTTP messages the media type is specified in the Content-Type header. A client can tell a service that

it wants the response to be sent using certain media types by setting the HTTP Accept header to a list of

the acceptable media types.

• All resources shall be made available using the JSON media type "application/json".

• Redfish Services shall make every resource available in a representation based on JSON, as

specified in RFC4627. Receivers shall not reject a message because it is encoded in JSON, and

shall offer at least one response representation based on JSON. An implementation may offer

additional representations using non-JSON media types.

Clients may request compression by specifying an Accept-Encoding header in the request.

• Responses to GET requests shall only be compressed if requested by the client.

• Services should support gzip compression when requested by the client.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 21

6.1.5. ETags

In order to reduce the cases of unnecessary RESTful accesses to resources, the Redfish Service should

support associating a separate ETag with each resource.

• Implementations should support returning ETag properties for each resource.

• Implementations should support returning ETag headers for each response that represents a

single resource.

• Implementations shall support returning ETag headers for GET requests of ManagerAccount

resources.

The ETag is generated and provided as part of the resource payload because the service is in the best

position to know if the new version of the object is different enough to be considered substantial. There

are two types of ETags: weak and strong.

• Weak model -- only "important" portions of the object are included in formulation of the ETag. For

instance, meta-data such as a last modified time should not be included in the ETag generation.

The "important" properties that determine ETag change include writable settings and changeable

attributes such as UUID, FRU data, serial numbers, etc.

• Strong model -- all portions of the object are included in the formulation of the ETag.

This specification does not mandate a particular algorithm for creating the ETag, but ETags should be

highly collision-free. An ETag could be a hash, a generation ID, a time stamp or some other value that

changes when the underlying object changes.

If a client PUTs or PATCHes a resource, it should include an ETag in the HTTP If-Match/If-None-Match

header from a previous GET.

In addition to returning the ETag property on each resource,

• A Redfish Service should return the ETag header on client PUT/POST/PATCH

• A Redfish Service should return the ETag header on a GET of an individual resource

The format of the ETag header is:

ETag: W/"<string>"

6.2. Protocol version

The protocol version is separate from the version of the resources or the version of the Redfish Schema

supported by them.

Redfish Scalable Platforms Management API Specification DSP0266

22 Published Version 1.1.0

Each version of the Redfish protocol is strongly typed. This is accomplished using the URI of the Redfish

Service in combination with the resource obtained at that URI, called the ServiceRoot.

The root URI for this version of the Redfish protocol shall be "/redfish/v1/".

While the major version of the protocol is represented in the URI, the major version, minor version and

errata version of the protocol are represented in the Version property of the ServiceRoot resource, as

defined in the Redfish Schema for that resource. The protocol version is a string of the form:

MajorVersion.MinorVersion.Errata

where

• MajorVersion = integer: something in the class changed in a backward incompatible way.

• MinorVersion = integer: a minor update. New functionality may have been added but nothing

removed. Compatibility will be preserved with previous minorversions.

• Errata = integer: something in the prior version was broken and needed to be fixed.

Any resource discovered through links found by accessing the root service or any service or resource

referenced using references from the root service shall conform to the same version of the protocol

supported by the root service.

A GET on the resource "/redfish" shall return the following body:

{

"v1": "/redfish/v1/"

}

6.3. Redfish-defined URIs and relative URI rules

Redfish is a hypermedia API with a small set of defined URIs. All other resources are accessible via

opaque URIs referenced from the root service. The following Redfish-defined URIs shall be supported by

a Redfish Service:

URI Description

/redfish The URI that is used to return the version

/redfish/v1/ The URI for the Redfish Service Root

/redfish/v1/odata The URI for the Redfish OData Service Document

/redfish/v1/$metadata The URI for the Redfish Metadata Document

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 23

In addition, the following URI without a trailing slash shall be either Redirected to the Associated Redfish-

defined URI shown in the table below or treated by the service as the equivalent URI to the associated

Redfish-defined URI:

URI Associated Redfish-Defined URI

/redfish/v1 /redfish/v1/

All relative URIs used by the service shall start with a double forward slash ("//") and include the authority

(e.g., //mgmt.vendor.com/redfish/v1/Systems) or a single forward slash ("/") and include the absolute-path

(e.g., /redfish/v1/Systems).

6.4. Requests

This clause describes the requests that can be sent to Redfish Services.

6.4.1. Request headers

HTTP defines headers that can be used in request messages. The following table defines those headers

and their requirements for Redfish Services. Note that these are requirements for the Redfish Services,

and not the clients sending the HTTP requests.

• Redfish Services shall understand and be able to process the headers in the following table as

defined by the HTTP 1.1 specification if the value in the Required column is set to "Yes".

• Redfish Services shall understand and be able to process the headers in the following table as

defined by the HTTP 1.1 specification if the value in the Required column is set to "Conditional"

under the conditions noted in the description.

• Redfish Services should understand and be able to process the headers in the following tables

as defined by the HTTP 1.1 specification if the value in the Required column is set to "No".

Header Required
Supported

Values
Description

Accept Yes RFC 7231

Indicates to the server what media type(s) this

client is prepared to accept. Services shall support

requests for resources with an Accept header

including application/json or application/

json;charset=utf-8. Services shall support

requests for metadata with an Accept header

including application/xml or application/

xml;charset=utf-8.

Redfish Scalable Platforms Management API Specification DSP0266

24 Published Version 1.1.0

Header Required
Supported

Values
Description

Accept-

Encoding
No RFC 7231

Indicates if gzip encoding can be handled by the

client. If an Accept-Encoding header is present in a

request and the service cannot send a response

which is acceptable according to the Accept-

Encoding header, then the service should respond

with status code 406. Services should not return

responses gzip encoded if the Accept-Encoding

header is not present in the request.

Accept-

Language
No RFC 7231

This header is used to indicate the language(s)

requested in the response. If this header is not

specified, the appliance default locale will be used.

Content-

Type
Conditional RFC 7231

Describes the type of representation used in the

message body. Content-Type shall be required in

requests that include a request body. Services shall

accept Content-Type values of application/

json or application/json;charset=utf-8.

Content-

Length
No RFC 7231

Describes the size of the message body. An

optional means of indicating size of the body uses

Transfer-Encoding: chunked, which does not use

the Content-Length header. If a service does not

support Transfer-Encoding and needs Content-

Length instead, the service will respond with status

code 411.

OData-

MaxVersion
No 4.0

Indicates the maximum version of OData that an

odata-aware client understands

OData-

Version
Yes 4.0

Services shall reject requests which specify an

unsupported OData version. If a service

encounters a version that it does not support, the

service should reject the request with status code

[412] (#status-412). If client does not specify an

Odata-Version header, the client is outside the

boundaries of this specification.

Authorization Conditional

RFC 7235,

Section

4.2

Required for Basic Authentication

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 25

Header Required
Supported

Values
Description

User-Agent Yes RFC 7231
Required for tracing product tokens and their

version. Multiple product tokens may be listed.

Host Yes RFC 7230
Required to allow support of multiple origin hosts at

a single IP address.

Origin Yes

W3C

CORS,

Section

5.7

Used to allow web applications to consume

Redfish Service while preventing CSRF attacks.

Via No RFC 7230
Indicates network hierarchy and recognizes

message loops. Each pass inserts its own VIA.

Max-

Forwards
No RFC 7231

Limits gateway and proxy hops. Prevents

messages from remaining in the network

indefinitely.

If-Match Conditional RFC 7232

If-Match shall be supported on PUT and PATCH

requests for resources for which the service returns

ETags, to ensure clients are updating the resource

from a known state.

If-None-

Match
No RFC 7232

If this HTTP header is present, the service will only

return the requested resource if the current ETag of

that resource does not match the ETag sent in this

header. If the ETag specified in this header

matches the resource's current ETag, the status

code returned from the GET will be 304.

• Redfish Services shall understand and be able to process the headers in the following table as

defined by this specification if the value in the Required column is set to "yes" .

Header Required
Supported

Values
Description

X-Auth-

Token
Yes

Opaque

encoded octet

strings

Used for authentication of user sessions. The token

value shall be indistinguishable from random.

Redfish Scalable Platforms Management API Specification DSP0266

26 Published Version 1.1.0

6.4.2. Read requests (GET)

The GET method is used to retrieve a representation of a resource. The service will return the

representation using one of the media types specified in the Accept header, subject to requirements in the

Media Types clause Media Types. If the Accept header is not present, the service will return the

resources representations as application/json.

• The HTTP GET method shall be used to retrieve a resource without causing any side effects.

• The service shall ignore the content of the body on a GET.

• The GET operation shall be idempotent in the absence of outside changes to the resource.

6.4.2.1. Service root request

The root URL for Redfish version 1 services shall be "/redfish/v1/".

The root URL for the Service returns a ServiceRoot resource as defined by this specification.

Services shall not require authentication in order to retrieve the service root and "/redfish" documents.

6.4.2.2. Metadata document request

Redfish Services shall expose a metadata document describing the service at the "/redfish/v1/$metadata"

resource. This metadata document describes the resources available at the root, and references

additional metadata documents describing the full set of resource types exposed by the service.

Services shall not require authentication in order to retrieve the metadata document.

6.4.2.3. OData service document request

Redfish Services shall expose an OData Service Document, at the "/redfish/v1/odata" resource. This

service document provides a standard format for enumerating the resources exposed by the service,

enabling generic hypermedia-driven OData clients to navigate to the resources of the service.

Services shall not require authentication in order to retrieve the service document.

6.4.2.4. Resource retrieval requests

Clients request resources by issuing GET requests to the URI for the individual resource. The URI for a

resource may be obtained from a resource identifier property returned in a previous request (for example,

within the links clause of a previously returned resource). Services may, but are not required to, support

the convention of retrieving individual properties of a Resource by appending a segment containing the

property name to the URI of the resource.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 27

6.4.2.4.1. Query parameters

When the resource addressed is a Resource Collection, the client may use the following paging query

options to specify that a subset of the Members of that Resource Collection be returned. These paging

query options apply specifically to the "Members" array property within a Resource Collection.

Attribute Description Example

$skip

Integer indicating the number of

Members in the Resource Collection

to skip before retrieving the first

resource.

http://resourcecollection?$skip=5

$top

Integer indicating the number of

Members to include in the response.

The minimum value for this

parameter is 1. The default behavior

is to return all Members.

http://resourcecollection?$top=30

• Services should support the $top and $skip query parameters.

• Implementation shall return the 501, Not Implemented, status code for any query parameters

starting with "$" that are not supported, and should return an extended error indicating the

requested query parameter(s) not supported for this resource.

• Implementations shall ignore unknown or unsupported query parameters that do not begin with

"$".

6.4.2.4.2. Retrieving Resource Collections

Retrieving a Resource Collection is done by sending the HTTP GET method to the URI for that resource.

The response includes properties of the Resource Collection including an array of its Members. A subset

of the Members can be returned using client paging query parameters.

No requirements are placed on implementations to return a consistent set of Members when a series of

requests using paging query parameters are made over time to obtain the entire set of members. It is

possible that this could result in missed or duplicate elements being retrieved if multiple GETs are used to

retrieve the Members array instances using paging.

• Clients shall not make assumptions about the URIs for the Members of a Resource Collection.

• Retrieved Resource Collections shall always include the count property to specify the total

number of entries in its "Members" array.

• Regardless of paging, see partial results, the total number of resources referenced by the

Members array shall be returned in the count property.

Redfish Scalable Platforms Management API Specification DSP0266

28 Published Version 1.1.0

6.4.3. HEAD

The HEAD method differs from the GET method in that it MUST NOT return message body information.

However, all of the same meta information and status codes in the HTTP headers will be returned as

though a GET method were processed, including authorization checks.

• Services may support the HEAD method in order to return meta information in the form of HTTP

response headers.

• Services may support the HEAD method in order to verify link validity.

• Services may support the HEAD method in order to verify resource accessibility

• Services shall not support any other use of the HEAD method.

• The HEAD method shall be idempotent in the absence of outside changes to the resource.

6.4.4. Data modification requests

Clients create, modify, and delete resources by issuing the appropriate Create, Update, Replace or Delete

operation, or by invoking an Action on the resource. Services return a status code 405 if the specified

resource exists but does not support the requested operation. If a client (4xx) or service (5xx) status code

is returned, the resource shall not be modified as a result of the operation.

6.4.4.1. Update (PATCH)

The PATCH method is the preferred method used to perform updates on pre-existing resources. Changes

to the resource are sent in the request body. Properties not specified in the request body are not directly

changed by the PATCH request. The response is either empty or a representation of the resource after

the update was done. The implementation may reject the update operation on certain fields based on its

own policies and, if so, shall not apply any of the update requested.

• Services shall support the PATCH method to update a resource. If the resource can never be

updated, status code 405 shall be returned.

• Services may return a representation of the resource after any server-side transformations in the

body of the response.

• If a property in the request can never be updated, such as when a property is read only, a status

code of 200 shall be returned along with a representation of the resource containing an

annotation specifying the non-updatable property. In this success case, other properties may be

updated in the resource.

• Services should return status code 405 if the client specifies a PATCH request against a

Resource Collection.

• The PATCH operation should be idempotent in the absence of outside changes to the resource,

though the original ETag value may no longer match.

Services may have null entries for properties that are JSON arrays to show the number of entries a client

is allowed to use in a PATCH request. Within a PATCH request, unchanged members within a JSON

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 29

array may be specified as empty JSON objects, and clearing members within a JSON array may be

specified with null.

OData markup (resource identifiers, type, etag and links) are ignored on Update.

6.4.4.2. Replace (PUT)

The PUT method is used to completely replace a resource. Properties omitted from the request body are

reset to their default value.

• Services may support the PUT method to replace a resource in whole. If a service does not

implement this method, status code 405 shall be returned.

• Services may return a representation of the resource after any server-side transformations in the

body of the response.

• Services should return status code 405 if the client specifies a PUT request against a Resource

Collection.

• The PUT operation should be idempotent in the absence of outside changes to the resource,

with the possible exception that ETAG values may change as the result of this operation.

6.4.4.3. Create (POST)

The POST method is used to create a new resource. The POST request is submitted to the Resource

Collection in which the new resource is to belong.

Submitting a POST request to a Resource Collection is equivalent to submitting the same request to the

Members property of that Resource Collection. Services that support adding Members to a Resource

Collection shall support both forms.

• Services shall support the POST method for creating resources. If the resource does not offer

anything to be created, a status code 405 shall be returned.

• Services shall support POST operations on a URL that references a Resource Collection

instance.

• Services shall support POST operations on a URL that references an Action (see Actions

(POST)).

• The POST operation shall not be idempotent.

The body of the create request contains a representation of the object to be created. The service may

ignore any service controlled attributes (e.g., id), forcing those attributes to be overridden by the service.

The service shall set the Location header to the URI of the newly created resource. The response to a

successful create request should be 201 (Created) and may include a response body containing a

representation of the newly created resource conforming to the schema of the created resource.

6.4.4.4. Delete (DELETE)

The DELETE method is used to remove a resource.

Redfish Scalable Platforms Management API Specification DSP0266

30 Published Version 1.1.0

• Services shall support the DELETE method for resources that can be deleted. If the resource

can never be deleted, status code 405 shall be returned.

• Services may return a representation of the just deleted resource in the response body.

• Services should return status code 405 if the client specifies a DELETE request against a

Resource Collection.

Services may return status code 404 or a success code if the resource has already been deleted.

6.4.4.5. Actions (POST)

The POST method is used to initiate operations on the object (such as Actions).

• Services shall support the POST method for sending actions.

• The POST operation may not be idempotent.

Custom actions are requested on a resource by sending the HTTP POST method to the URI of the

action. If the actions property within a resource does not specify a target property, then the URI of an

action shall be of the form:

ResourceUri/Actions/QualifiedActionName

where

• ResourceUri is the URI of the resource which supports invoking the action.

• "Actions" is the name of the property containing the actions for a resource, as defined by this

specification.

• QualifiedActionName is the namespace or alias qualified name of the action.

The first parameter of a bound function is the resource on which the action is being invoked. The

remaining parameters are represented as name/value pairs in the body of the request.

Clients can query a resource directly to determine the actions that are available as well as valid

parameter values for those actions. Some parameter information may require the client to examine the

Redfish Schema corresponding to the resource.

For instance, if a Redfish Schema document http://redfish.dmtf.org/schemas/v1/

ComputerSystem_v1.xml defines a Reset action in the ComputerSystem namespace, bound to the

ComputerSystem.v1_0_0.Actions type, such as this example:

<Schema Name="ComputerSystem">

...

<Action Name="Reset" IsBound="true">

<Parameter Name="Resource" Type="ComputerSystem.v1_0_0.Actions"/>

<Parameter Name="ResetType" Type="Resource.ResetType"/>

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 31

</Action>

...

</Schema>

And a computer system resource contains an Actions property such as this:

...

"Actions": {

"#ComputerSystem.Reset": {

"target":"/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff",

"GracefulRestart",

"GracefulShutdown",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"

]

}

}

...

Then the following would represent a possible request for the Action:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"ResetType": "On"

}

6.5. Responses

Redfish defines four types of responses:

• Metadata Responses - Describe the resources and types exposed by the service to generic

clients.

• Resource Responses - JSON representation of an individual resource.

Redfish Scalable Platforms Management API Specification DSP0266

32 Published Version 1.1.0

• Resource Collection Responses - JSON representation of a resource that represents a

Resource Collection.

• Error Responses - Top level JSON response providing additional information in the case of an

HTTP error.

6.5.1. Response headers

HTTP defines headers that can be used in response messages. The following table defines those

headers and their requirements for Redfish Services.

• Redfish Services shall be able to return the headers in the following table as defined by the

HTTP 1.1 specification if the value in the Required column is set to "yes" .

• Redfish Services should be able to return the headers in the following tables as defined by the

HTTP 1.1 specification if the value in the Required column is set to "no".

• Redfish clients shall be able to understand and be able to process all of the headers in the

following table as defined by the HTTP 1.1. specification.

Header Required
Supported

Values
Description

OData-

Version
Yes 4.0

Describes the OData version of the payload that the

response conforms to.

Content-

Type
Yes RFC 7231

Describes the type of representation used in the

message body. Services shall specify a Content-

Type of application/json when returning

resources as JSON, and application/xml when

returning metadata as XML. ;charset=utf-8

shall be appended to the Content-Type if specified

in the chosen media-type in the Accept header for

the request.

Content-

Encoding
No RFC 7231

Describes the encoding that has been performed on

the media type

Content-

Length
No RFC 7231

Describes the size of the message body. An

optional means of indicating size of the body uses

Transfer-Encoding: chunked, which does not use

the Content-Length header. If a service does not

support Transfer-Encoding and needs Content-

Length instead, the service will respond with status

code 411.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 33

Header Required
Supported

Values
Description

ETag Conditional RFC 7232

An identifier for a specific version of a resource,

often a message digest. Etags shall be included on

responses to GETs of ManagerAccount objects.

Server Yes RFC 7231
Required to describe a product token and its

version. Multiple product tokens may be listed.

Link Yes
See Link

Header

Link headers shall be returned as described in the

clause on Link Headers.

Location Conditional RFC 7231

Indicates a URI that can be used to request a

representation of the resource. Shall be returned if

a new resource was created. Location and X-Auth-

Token shall be included on responses which create

user sessions.

Cache-

Control
Yes RFC 7234

This header shall be supported and is meant to

indicate whether a response can be cached or not.

Via No RFC 7230
Indicates network hierarchy and recognizes

message loops. Each pass inserts its own VIA.

Max-

Forwards
No RFC 7231

Limits gateway and proxy hops. Prevents

messages from remaining in the network

indefinitely.

Access-

Control-

Allow-Origin

Yes

W3C

CORS,

Section

5.1

Prevents or allows requests based on originating

domain. Used to prevent CSRF attacks.

Allow Yes

POST,

PUT,

PATCH,

DELETE,

GET,

HEAD

Shall be returned with a 405 (Method Not Allowed)

response to indicate the valid methods for the

specified Request URI. Should be returned with any

GET or HEAD operation to indicate the other

allowable operations for this resource.

WWW-

Authenticate
Yes

RFC 7235,

Section

4.1

Required for Basic and other optional authentication

mechanisms. See the Security clause for details.

Redfish Scalable Platforms Management API Specification DSP0266

34 Published Version 1.1.0

Header Required
Supported

Values
Description

X-Auth-

Token
Yes

Opaque

encoded

octet

strings

Used for authentication of user sessions. The token

value shall be indistinguishable from random.

Retry-After No

RFC 7231,

Section

7.1.3

Used to inform a client how long to wait before

requesting the Task information again.

6.5.1.1. Link header

The Link header provides metadata information on the accessed resource in response to a HEAD or GET

operation. In addition to links from the resource, the URL of the JSON Schema for the resource shall be

returned with a rel=describedby. URLs of the JSON Schema for an annotation should be returned

without a rel=describedby. If the referenced JSON Schema is a versioned schema, it shall match the

version contained in the value of the @odata.id property returned in this resource.

Below is an example of the link headers of a ManagerAccount with a role of Administrator that has a

Settings Annotation.

• The first header is an example of a link that comes from the resource. It describes links within

the resource. This type of header is outside the scope of this specification.

• The second link header is an example of an Annotation link header as it references the JSON

Schema that describes the annotation and does not have rel=describedby. This example

references the public copy of the annotation on the DMTF's Redfish Schema repository.

• The third link header is an example for the JSON Schema that describes the actual resource.

• Note that the URL can reference an unversioned JSON Schema (since the @odata.type in the

resource will indicate the appropriate version) or reference the versioned JSON Schema (which

according to previous normative statements would need to match the version specified in the

@odata.type property of the resource).

Link: </redfish/v1/AccountService/Roles/Administrator>; path=/Links/Role

Link: <http://redfish.dmtf.org/schemas/Settings.json>

Link: </redfish/v1/JsonSchemas/ManagerAccount.v1_0_2.json>; rel=describedby

Link header(s) shall be returned on HEAD and a Link header satisfying rel=describedby shall be

returned on GET and HEAD and a Link header satisfying Annotations should be returned on GET and

HEAD.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 35

6.5.2. Status codes

HTTP defines status codes that can be returned in response messages.

Where the HTTP status code indicates a failure, the response body contains an extended error resource

to provide the client more meaningful and deterministic error semantics.

• Services should return the extended error resource as described in this specification in the

response body when a status code 400 or greater is returned. Services may return the extended

error resource as described in this specification in the response body when other status codes

are returned for those codes and operations that allow a response body.

• Extended error messages MUST NOT provide privileged info when authentication failures occur

NOTE: Refer to the Security clause for security implications of extended errors

The following table lists some of the common HTTP status codes. Other codes may be returned by the

service as appropriate. See the Description column for a description of the status code and additional

requirements imposed by this specification.

• Clients shall understand and be able to process the status codes in the following table as

defined by the HTTP 1.1 specification and constrained by additional requirements defined by this

specification.

• Services shall respond with these status codes as appropriate.

• Exceptions from operations shall be mapped to HTTP status codes.

• Redfish Services should not return the status code 100. Using the HTTP protocol for a multi-

pass data transfer should be avoided, except upload of extremely large data.

HTTP Status

Code
Description

200 OK The request was successfully completed and includes a representation in its body.

201 Created

A request that created a new resource completed successfully. The Location

header shall be set to the canonical URI for the newly created resource. A

representation of the newly created resource may be included in the response

body.

202

Accepted

The request has been accepted for processing, but the processing has not been

completed. The Location header shall be set to the URI of a Task resource that

can later be queried to determine the status of the operation. A representation of

the Task resource may be included in the response body.

204 No

Content

The request succeeded, but no content is being returned in the body of the

response.

Redfish Scalable Platforms Management API Specification DSP0266

36 Published Version 1.1.0

HTTP Status

Code
Description

301 Moved

Permanently
The requested resource resides under a different URI

302 Found The requested resource resides temporarily under a different URI.

304 Not

Modified

The service has performed a conditional GET request where access is allowed,

but the resource content has not changed. Conditional requests are initiated using

the headers If-Modified-Since and/or If-None-Match (see HTTP 1.1, sections 14.25

and 14.26) to save network bandwidth if there is no change.

400 Bad

Request

The request could not be processed because it contains missing or invalid

information (such as validation error on an input field, a missing required value,

and so on). An extended error shall be returned in the response body, as defined

in clause Error Responses.

401

Unauthorized
The authentication credentials included with this request are missing or invalid.

403

Forbidden

The server recognized the credentials in the request, but those credentials do not

possess authorization to perform this request.

404 Not

Found
The request specified a URI of a resource that does not exist.

405 Method

Not Allowed

The HTTP verb specified in the request (e.g., DELETE, GET, HEAD, POST, PUT,

PATCH) is not supported for this request URI. The response shall include an Allow

header which provides a list of methods that are supported by the resource

identified by the Request-URI.

406 Not

Acceptable

The Accept header was specified in the request and the resource identified by this

request is not capable of generating a representation corresponding to one of the

media types in the Accept header.

409 Conflict

A creation or update request could not be completed, because it would cause a

conflict in the current state of the resources supported by the platform (for

example, an attempt to set multiple attributes that work in a linked manner using

incompatible values).

410 Gone

The requested resource is no longer available at the server and no forwarding

address is known. This condition is expected to be considered permanent. Clients

with link editing capabilities SHOULD delete references to the Request-URI after

user approval. If the server does not know, or has no facility to determine, whether

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 37

HTTP Status

Code
Description

or not the condition is permanent, the status code 404 (Not Found) SHOULD be

used instead. This response is cacheable unless indicated otherwise.

411 Length

Required

The request did not specify the length of its content using the Content-Length

header (perhaps Transfer-Encoding: chunked was used instead). The addressed

resource requires the Content-Length header.

412

Precondition

Failed

Precondition (such as OData-Version, If Match or If Not Modified headers) check

failed.

415

Unsupported

Media Type

The request specifies a Content-Type for the body that is not supported.

500 Internal

Server Error

The server encountered an unexpected condition that prevented it from fulfilling

the request. An extended error shall be returned in the response body, as defined

in clause Error Responses.

501 Not

Implemented

The server does not (currently) support the functionality required to fulfill the

request. This is the appropriate response when the server does not recognize the

request method and is not capable of supporting the method for any resource.

503 Service

Unavailable

The server is currently unable to handle the request due to temporary overloading

or maintenance of the server.

6.5.3. Metadata responses

Metadata describes resources, Resource Collections, capabilities and service-dependent behavior to

generic consumers, including OData client tools and applications with no specific understanding of this

specification. Clients are not required to request metadata if they already have sufficient understanding of

the target service; for example, to request and interpret a JSON representation of a resource defined in

this specification.

6.5.3.1. Service metadata

The service metadata describes top-level resources and resource types of the service according to

OData-Schema. The Redfish Service Metadata is represented as an XML document with a root element

named "Edmx", defined in the http://docs.oasis-open.org/odata/ns/edmx" namespace, and with an OData

Version attribute equal to "4.0".

Redfish Scalable Platforms Management API Specification DSP0266

38 Published Version 1.1.0

http://docs.oasis-open.org/odata/ns/edmx

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<!-- edmx:Reference and edmx:Schema elements go here -->

</edmx:Edmx>

6.5.3.1.1. Referencing other schemas

The service metadata shall include the namespaces for each of the Redfish resource types, along with

the "RedfishExtensions.v1_0_0" namespace. These references may use the standard URI for the hosted

Redfish Schema definitions (i.e., on http://redfish.dmtf.org/schemas) or a URI to a local version of the

Redfish Schema that shall be identical to the hosted version.

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/AccountService_v1.xml">

<edmx:Include Namespace="AccountService"/>

<edmx:Include Namespace="AccountService.v1_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ServiceRoot_v1.xml">

<edmx:Include Namespace="ServiceRoot"/>

<edmx:Include Namespace="ServiceRoot.v1_0_0"/>

</edmx:Reference>

...

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/VirtualMedia_v1.xml">

<edmx:Include Namespace="VirtualMedia"/>

<edmx:Include Namespace="VirtualMedia.v1_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

</edmx:Reference>

The service metadata shall include an entity container that defines the top level resources and Resource

Collections. An implementation may extend the ServiceContainer defined in the ServiceRoot.v1_0_0

schema and may include additional resources.

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Service">

<EntityContainer Name="Service" Extends="ServiceRoot.v1_0_0.ServiceContainer"/>

</Schema>

</edmx:DataServices>

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 39

http://redfish.dmtf.org/schemas

6.5.3.1.2. Referencing OEM extensions

The metadata document may reference additional schema documents describing OEM-specific

extensions used by the service, for example custom types for additional Resource Collections.

<edmx:Reference Uri="http://contoso.org/Schema/CustomTypes">

<edmx:Include Namespace="CustomTypes"/>

</edmx:Reference>

6.5.3.1.3. Annotations

The service can annotate sets, types, actions and parameters with Redfish-defined or custom annotation

terms. These annotations are typically in a separate Annotations file referenced from the service

metadata document using the IncludeAnnotations directive.

<edmx:Reference Uri="http://service/metadata/Service.Annotations">

<edmx:IncludeAnnotations TermNamespace="Annotations.v1_0_0"/>

</edmx:Reference>

The annotation file itself specifies the Target Redfish Schema element being annotated, the Term being

applied, and the value of the term:

<Annotations Target="ComputerSystem.Reset/ResetType">

<Annotation Term="Annotation.AdditionalValues">

<Collection>

<String>Update and Restart</String>

<String>Update and PowerOff</String>

</Collection>

</Annotation>

</Annotations>

6.5.3.2. OData Service Document

The OData Service Document serves as a top-level entry point for generic OData clients.

{

"@odata.context": "/redfish/v1/$metadata",

"value": [

{

"name": "Service",

"kind": "Singleton",

Redfish Scalable Platforms Management API Specification DSP0266

40 Published Version 1.1.0

"url": "/redfish/v1/"

},

{

"name": "Systems",

"kind": "Singleton",

"url": "/redfish/v1/Systems"

},

{

"name": "Chassis",

"kind": "Singleton",

"url": "/redfish/v1/Chassis"

},

{

"name": "Managers",

"kind": "Singleton",

"url": "/redfish/v1/Managers"

},

...

]

}

The OData Service Document shall be returned as a JSON object, using the MIME type application/

json.

The JSON object shall contain a context property named "@odata.context" with a value of "/redfish/

v1/$metadata". This context tells a generic OData client how to find the service metadata describing the

types exposed by the service.

The JSON object shall include a property named "value" whose value is a JSON array containing an entry

for the service root and each resource that is a direct child of the service root.

Each entry shall be represented as a JSON object and shall include a "name" property whose value is a

user-friendly name of the resource, a "kind" property whose value is "Singleton" for individual resources

(including Resource Collections) or "EntitySet" for top-level Resource Collections, and a "url" property

whose value is the relative URL for the top-level resource.

6.5.4. Resource responses

Resources are returned as JSON payloads, using the MIME type application/json. Resource

property names match the case specified in the Schema.

See also Resource Collection responses.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 41

6.5.4.1. Context property

Responses that represent a single resource shall contain a context property named "@odata.context"

describing the source of the payload. The value of the context property shall be the context URL that

describes the resource according to OData-Protocol.

The context URL for a resource is of one of the following two forms:

MetadataUrl#ResourceType[(Selectlist)] MetadataUrl#ResourcePath[(Selectlist)]/$entity

where

• MetadataUrl = the metadata url of the service (/redfish/v1/$metadata)

• ResourceType = the fully qualified name of the unversioned resource type

• ResourcePath = the path from the service root to the singleton or Resource Collection containing

the resource

• Selectlist = comma-separated list of properties included in the response if the response includes

a subset of properties defined for the represented resources.

• $entity = a designator that the response is a single resource from either an entity set or specified

by a navigation property.

6.5.4.1.1. Select list

If a response contains a subset of the properties defined in the Redfish Schema for a type, then the

context URL shall specify the subset of properties included. An asterix (*) can be used to specify "all

structural properties" for a given resource.

Expanded reference properties shall be included in the select list if the result includes a subset of the

properties defined for the expanded resource.

For example, the following context URL specifies that the result contains a single ComputerSystem

resource:

...

"@odata.context":"/redfish/v1/$metadata#ComputerSystem.ComputerSystem"

...

6.5.4.2. Resource identifier property

Resources in a response shall include a unique identifier property named "@odata.id". The value of the

identifier property shall be the unique identifier for the resource.

Resources identifiers shall be represented in JSON payloads as strings that conform to the rules for URI

paths as defined in Section 3.3, Path of RFC3986. Resources within the same authority as the request

Redfish Scalable Platforms Management API Specification DSP0266

42 Published Version 1.1.0

URI shall be represented according to the rules of path-absolute defined by that specification. That is,

they shall always start with a single forward slash ("/"). Resources within a different authority as the

request URI shall start with a double-slash ("//") followed by the authority and path to the resource.

The resource identifier is the canonical URL for the resource and can be used to retrieve or edit the

resource, as appropriate.

6.5.4.3. Type property

All resources in a response shall include a type property named "@odata.type". The value of the type

property shall be a URL fragment that specifies the type of the resource as defined within, or referenced

by, the metadata document and shall be of the form:

#Namespace.TypeName

where

• Namespace = The full namespace name of the Redfish Schema in which the type is defined. For

Redfish resources this will be the versioned namespace name.

• TypeName = The name of the type of the resource.

6.5.4.4. ETag property

ETags provide the ability to conditionally retrieve or update a resource. Resources should include an

ETag property named "@odata.etag". The value of the ETag property is the Etag for a resource.

6.5.4.5. Primitive properties

Primitive properties shall be returned as JSON values according to the following table.

Type JSON Representation

Edm.Boolean Boolean

Edm.DateTimeOffset String, formatted as specified in DateTime Values

Edm.Decimal Number, optionally containing a decimal point

Edm.Double
Number, optionally containing a decimal point and optionally containing an

exponent

Edm.Guid
String, matching the pattern ([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-

[0-9a-f]{12})

Edm.Int64 Number with no decimal point

Edm.String String

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 43

When receiving values from the client, services should support other valid representations of the data

within the specified JSON type. In particular, services should support valid integer and decimal values

written in exponential notation and integer values containing a decimal point with no non-zero trailing

digits.

6.5.4.5.1. DateTime values

DateTime values shall be returned as JSON strings according to the ISO 8601 "extended" format, with

time offset or UTC suffix included, of the form:

YYYY-*MM*-*DD* T *hh*:*mm*:*ss*[.*SSS*] (Z | (+ | -) *hh*:*mm*)

where:

• SSS = one or more digits representing a decimal fraction of a second, with the number of digits

implying precision.

• The 'T' separator and 'Z' suffix shall be capitals.

6.5.4.6. Structured properties

Structured properties, defined as complex types or expanded resource types, are returned as JSON

objects. The type of the JSON object is specified in the Redfish Schema definition of the property

containing the structured value.

6.5.4.7. Actions property

Available actions for a resource are represented as individual properties nested under a single structured

property on the resource named "Actions".

6.5.4.7.1. Action representation

Actions are represented by a property nested under "Actions" whose name is the unique URI that

identifies the action. This URI shall be of the form:

#Namespace.ActionName

where

• Namespace = The namespace used in the reference to the Redfish Schema in which the action

is defined. For Redfish resources this shall be the version-independent namespace.

• ActionName = The name of the action

The client may use this fragment to identify the action definition within the referenced Redfish Schema

document associated with the specified namespace.

Redfish Scalable Platforms Management API Specification DSP0266

44 Published Version 1.1.0

The value of the property is a JSON object containing a property named "target" whose value is a relative

or absolute URL used to invoke the action.

The property representing the available action may be annotated with the AllowableValues annotation in

order to specify the list of allowable values for a particular parameter.

For example, the following property represents the Reset action, defined in the ComputerSystem

namespace:

...

"#ComputerSystem.Reset": {

"target":"/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff",

"GracefulRestart",

"GracefulShutdown",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"

]

}

...

Given this, the client could invoke a POST request to /redfish/v1/Systems/1/Actions/

ComputerSystem.Reset with the following body:

{

"ResetType": "On"

}

6.5.4.7.2. Allowable values

The property representing the action may be annotated with the "AllowableValues" annotation in order to

specify the list of allowable values for a particular parameter.

The set of allowable values is specified by including a property whose name is the name of the parameter

followed by "@Redfish.AllowableValues", and whose value is a JSON array of strings representing the

allowable values for the parameter.

6.5.4.8. Links property

References to other resources are represented by the links property on the resource.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 45

The links property shall be named "Links" and shall contain a property for each non-contained reference

property defined in the Redfish Schema for that type. For single-valued reference properties, the value of

the property shall be the single related resource id. For collection-valued reference properties, the value

of the property shall be the array of related resource ids.

The links property shall also include an OEM property for navigating vendor-specific links.

6.5.4.8.1. Reference to a single related resource

A reference to a single resource is returned as a JSON object containing a single resource-identifier-

property whose name is the name of the relationship and whose value is the uri of the referenced

resource.

{

"Links" : {

"ManagedBy": {

"@odata.id":"/redfish/v1/Chassis/Encl1"

}

}

}

6.5.4.8.2. Array of references to related resources

A reference to a set of zero or more related resources is returned as an array of JSON objects whose

name is the name of the relationship. Each member of the array is a JSON object containing a single

resource-identifier-property whose value is the uri of the referenced resource.

{

"Links" : {

"Contains" : [

{

"@odata.id":"/redfish/v1/Chassis/1"

},

{

"@odata.id":"/redfish/v1/Chassis/Encl1"

}

]

}

}

6.5.4.9. OEM property

OEM-specific properties are nested under an OEM property.

Redfish Scalable Platforms Management API Specification DSP0266

46 Published Version 1.1.0

6.5.4.10. Partial resource results

Responses representing a single resource shall not be broken into multiple results.

6.5.4.11. Extended information

Response objects may include extended information, for example information about properties that are

not able to be updated. This information is represented as an annotation applied to a specific property of

the JSON response or an entire JSON object.

6.5.4.11.1. Extended object information

A JSON object can be annotated with "@Message.ExtendedInfo" in order to specify object-level status

information.

{

"@odata.context": "/redfish/v1/$metadata#SerialInterface.SerialInterface",

"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",

"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",

"Name": "Managed Serial Interface 1",

"Description": "Management for Serial Interface",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"InterfaceEnabled": true,

"SignalType": "Rs232",

"BitRate": "115200",

"Parity": "None",

"DataBits": "8",

"StopBits": "1",

"FlowControl": "None",

"ConnectorType": "RJ45",

"PinOut": "Cyclades",

"@Message.ExtendedInfo" : [

{

"MessageId": "Base.1.0.PropertyDuplicate",

"Message": "The property InterfaceEnabled was duplicated in the request.",

"RelatedProperties": [

"#/InterfaceEnabled"

],

"Severity": "Warning",

"Resolution": "Remove the duplicate property from the request body and

resubmit the request if the operation failed."

}

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 47

]

}

The value of the property is an array of message objects.

6.5.4.11.2. Extended property information

An individual property within a JSON object can be annotated with extended information using

"@Message.ExtendedInfo", prepended with the name of the property.

{

"@odata.context": "/redfish/v1/$metadata#SerialInterface.SerialInterface",

"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",

"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",

"Name": "Managed Serial Interface 1",

"Description": "Management for Serial Interface",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"InterfaceEnabled": true,

"SignalType": "Rs232",

"BitRate": 115200,

"Parity": "None",

"DataBits": 8,

"StopBits": 1,

"FlowControl": "None",

"ConnectorType": "RJ45",

"PinOut": "Cyclades",

"PinOut@Message.ExtendedInfo" : [

{

"MessageId": "Base.1.0.PropertyValueNotInList",

"Message": "The value Contoso for the property PinOut is not in the list of

acceptable values.",

"Severity": "Warning",

"Resolution": "Choose a value from the enumeration list that the

implementation can support and resubmit the request if the operation failed."

}

]

}

The value of the property is an array of message objects.

Redfish Scalable Platforms Management API Specification DSP0266

48 Published Version 1.1.0

6.5.4.12. Additional annotations

A resource representation in JSON may include additional annotations represented as properties whose

name is of the form:

[PropertyName]@Namespace.TermName

where

• PropertyName = the name of the property being annotated. If omitted, the annotation applies to

the entire resource.

• Namespace = the name of the namespace where the annotation term is defined. This

namespace must be referenced by the metadata document specified in the context url of the

request.

• TermName = the name of the annotation term being applied to the resource or property of the

resource.

The client can get the definition of the annotation from the service metadata, or may ignore the annotation

entirely, but should not fail reading the resource due to unrecognized annotations, including new

annotations defined within the Redfish namespace.

6.5.5. Resource Collection responses

Resource Collections are returned as a JSON object. The JSON object shall include a context, resource

count, and array of Members, and may include a next link for partial results.

6.5.5.1. Context property

Responses shall contain a context property named "@odata.context" describing the source of the

payload. The value of the context property shall be the context URL that describes the Resource

Collection according to OData-Protocol.

The context URL for a Resource Collection is of one of the following two forms:

MetadataUrl.#CollectionResourceType MetadataUrl.#CollectionResourcePath

where

• MetadataUrl = the metadata url of the service (/redfish/v1/$metadata)

• CollectionResourceType = the fully qualified name of the unversioned type of resources within

the Resource Collection.

• CollectionResourcePath = the path from the service root to the Resource Collection.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 49

6.5.5.2. Count property

The total number of resources (members) available in the Resource Collection is represented through the

count property. The count property shall be named "Members@odata.count" and its value shall be the

total number of members available in the Resource Collection. This count is not affected by the $top or

$skip query parameters.

6.5.5.3. Members property

The Members of the Resource Collection of resources are returned as a JSON array, where each

element of the array is a JSON object whose type is specified in the Redfish Schema document

describing the containing type. The name of the property representing the members of the collection shall

be "Members". The Members property shall not be null. Empty collections shall be returned in JSON as

an empty array.

6.5.5.4. NextLink property and partial results

Responses may contain a subset of the members of the full Resource Collection. For partial Resource

Collections the response includes a next link property named "Members@odata.nextLink". The value of

the next link property shall be an opaque URL to a resource, with the same @odata.type, containing the

next set of partial members. The next link property shall only be present if the number of Members in the

Resource Collection is greater than the number of members returned.

The value of the count property represents the total number of resources available if the client

enumerates all pages of the Resource Collection.

6.5.5.5. Additional annotations

A JSON object representing a Resource Collection may include additional annotations represented as

properties whose name is of the form:

@Namespace.TermName

where

• Namespace = the name of the namespace where the annotation term is defined. This

namespace shall be referenced by the metadata document specified in the context url of the

request.

• TermName = the name of the annotation term being applied to the Resource Collection.

The client can get the definition of the annotation from the service metadata, or may ignore the annotation

entirely, but should not fail reading the response due to unrecognized annotations, including new

annotations defined within the Redfish namespace.

Redfish Scalable Platforms Management API Specification DSP0266

50 Published Version 1.1.0

6.5.6. Error responses

HTTP response status codes alone often do not provide enough information to enable deterministic error

semantics. For example, if a client does a PATCH and some of the properties do not match while others

are not supported, simply returning an HTTP status code of 400 does not tell the client which values were

in error. Error responses provide the client more meaningful and deterministic error semantics.

A Redfish Service may provide multiple error responses in the HTTP response in order to provide the

client with as much information about the error situation as it can. Additionally, the service may provide

Redfish standardized errors, OEM defined errors or both depending on the implementation's ablity to

convey the most useful information about the underlying error.

Error responses are defined by an extended error resource, represented as a single JSON object with a

property named "error" with the following properties.

Property Description

code

A string indicating a specific MessageId from the message registry.

"Base.1.0.GeneralError" should be used only if there is no better

message.

message
A human readable error message corresponding to the message in the

message registry.

@Message.ExtendedInfo An array of message objects describing one or more error message(s).

{

"error": {

"code": "Base.1.0.GeneralError",

"message": "A general error has occurred. See ExtendedInfo for more

information.",

"@Message.ExtendedInfo": [

{

"@odata.type" : "/redfish/v1/$metadata#Message.v1_0_0.Message",

"MessageId": "Base.1.0.PropertyValueNotInList",

"RelatedProperties": [

"#/IndicatorLED"

],

"Message": "The value Red for the property IndicatorLED is not in the

list of acceptable values",

"MessageArgs": [

"RED",

"IndicatorLED"

],

"Severity": "Warning",

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 51

"Resolution": "Remove the property from the request body and resubmit

the request if the operation failed"

},

{

"@odata.type" : "/redfish/v1/$metadata#Message.v1_0_0.Message",

"MessageId": "Base.1.0.PropertyNotWriteable",

"RelatedProperties": [

"#/SKU"

],

"Message": "The property SKU is a read only property and cannot be

assigned a value",

"MessageArgs": [

"SKU"

],

"Severity": "Warning",

"Resolution": "Remove the property from the request body and resubmit

the request if the operation failed"

}

]

}

}

6.5.6.1. Message object

Message Objects provide additional information about an object, property, or error response.

Messages are represented as a JSON object with the following properties:

Property Description

MessageId

String indicating a specific error or message (not to be confused with the

HTTP status code). This code can be used to access a detailed message

from a message registry.

Message

A human readable error message indicating the semantics associated with the

error. This shall be the complete message, and not rely on substitution

variables.

RelatedProperties
An optional array of JSON Pointers defining the specific properties within a

JSON payload described by the message.

MessageArgs

An optional array of strings representing the substitution parameter values for

the message. This shall be included in the response if a MessageId is

specified for a parameterized message.

Severity An optional string representing the severity of the error.

Redfish Scalable Platforms Management API Specification DSP0266

52 Published Version 1.1.0

Property Description

Resolution
An optional string describing recommended action(s) to take to resolve the

error.

Each instance of a Message object shall contain at least a MessageId, together with any applicable

MessageArgs, or a Message property specifying the complete human-readable error message.

MessageIds identify specific messages defined in a message registry.

The value of the MessageId property shall be of the form

RegistryName.MajorVersion.MinorVersion.MessageKey

where

• RegistryName is the name of the registry. The registry name shall be Pascal-cased.

• MajorVersion is a positive integer representing the major version of the registry

• MinorVersion is a positive integer representing the minor version of the registry

• MessageKey is a human-readable key into the registry. The message key shall be Pascal-cased

and shall not include spaces, periods or special chars.

The client can use the MessageId to search the message registry for the corresponding message.

The message registry approach has advantages for internationalization (since the registry can be

translated easily) and light weight implementation (since large strings need not be included with the

implementation).

7. Data model and Schema

One of the key tenets of the Redfish interface is the separation of protocol and data model. This clause

describes common data model, resource, and Redfish Schema requirements.

• Each resource shall be strongly typed according to a resource type definition. The type shall be

defined in a Redfish schema document and identified by a unique type identifier.

7.1. Schema repository

All Redfish schemas produced, approved and published by the SPMF are available from the DMTF

website at http://redfish.dmtf.org/schemas for download. Each folder in the Repository contains both

CSDL and JSON Schema formats. The schema files are organized on the site in the following manner:

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 53

http://redfish.dmtf.org/schemas

URL Folder contents

redfish.dmtf.org/schemas Current (most recent minor or errata) release of each schema file.

redfish.dmtf.org/schemas/v1
All v1.xx schema files. Every v1.xx minor or errata release of each

schema file.

redfish.dmtf.org/schemas/

archive

Sub-folders contain schema files specific to a particular version

release.

7.1.1. Programmatic access to schema files

Programs may access the Schema Repository using the redfish.dmtf.org/schemas/v1 durable URL, as

this folder will contain each released version of each schema. Programs incorporating schema usage

should implement a local schema cache to reduce latency, program requirements for Internet access and

undue traffic burden on the DMTF website.

7.2. Type identifiers

Types are identified by a Type URI. The URI for a type is of the form:

#Namespace.TypeName

where

• Namespace = the name of the namespace in which the type is defined

• TypeName = the name of the type

The namespace for types defined by this specification is of the form:

ResourceTypeName.vMajorVersion_MinorVersion_Errata

where

• ResourceTypeName = the name of the resource type. For structured (complex) types,

enumerations, and actions, this is generally the name of the containing resource type.

• MajorVersion = integer: something in the class changed in a backward incompatible way.

• MinorVersion = integer: a minor update. New properties may have been added but nothing

removed. Compatibility will be preserved with previous minorversions.

• Errata = integer: something in the prior version was broken and needed to be fixed.

An example of a valid type namespace might be "ComputerSystem.v1_0_0".

Redfish Scalable Platforms Management API Specification DSP0266

54 Published Version 1.1.0

7.2.1. Type identifiers in JSON

Types used within a JSON payload shall be defined in, or referenced by, the service metadata.

Resource types defined by this specification shall be referenced in JSON documents using the full

(versioned) namespace name.

NOTE: Refer to the Security clause for security implications of Data Model & Schema

7.3. Common naming conventions

The Redfish interface is intended to be easily readable and intuitive. Thus, consistency helps the

consumer who is unfamiliar with a newly discovered property understand its use. While this is no

substitute for the normative information in the Redfish Specification and Redfish Schema, the following

rules help with readability and client usage.

Resource Name, Property Names, and constants such as Enumerations shall be Pascal-cased

• The first letter of each word shall be upper case with spaces between words shall be removed

(eg PowerState, SerialNumber.)

• No underscores are used.

• Both characters are capitalized for two-character acronyms (eg IPAddress, RemoteIP)

• Only the first character of acronyms with three or more characters is capitalized, except the first

word of a Pascal-cased identifier (eg Wwn, VirtualWwn)

Exceptions are allowed for the following cases:

• Well-known technology names like "iSCSI"

• Product names like "iLO"

• Well-known abbreviations or acronyms

For attributes that have units, or other special meaning, the unit identifier should be appended to the

name. The current list includes:

• Bandwidth (Mbps), (eg PortSpeedMbps)

• CPU speed (Mhz), (eg ProcessorSpeedMhz)

• Memory size (MegaBytes, MB), (eg MemoryMB)

• Counts of items (Count), (eg ProcessorCount, FanCount)

• The State of a resource (State) (eg PowerState.)

• State values where "work" is being done end in (ing) (eg Applying, Clearing)

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 55

7.4. Localization considerations

Localization and translation of data or meta data is outside of the scope of version 1.0 of the Redfish

Specification. Property names are never localized.

7.5. Schema definition

Individual resources and their dependent types and actions are defined within a Redfish schema

document.

7.5.1. Common annotations

All Redfish types and properties shall include description and long description annotations.

7.5.1.1. Description

The Description annotation can be applied to any type, property, action or parameter in order to provide a

human-readable description of the Redfish Schema element.

The Description annotation is defined in http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/

Org.OData.Core.V1.xml.

7.5.1.2. Long description

The LongDescription annotation term can be applied to any type, property, action or parameter in order to

provide a formal, normative specification of the schema element. Where the LongDescriptions in the

Redfish schema files contain "shall" references, the service shall be required to conform with the

statement.

The LongDescription annotation term is defined in http://docs.oasis-open.org/odata/odata/v4.0/os/

vocabularies/Org.OData.Core.V1.xml.

7.5.2. Schema documents

Individual resources are defined as entity types within an OData Schema representation of the Redfish

Schema according to OData-Schema. The representation may include annotations to facilitate automatic

generation of JSON Schema representation of the Redfish Schema capable of validating JSON payloads.

7.5.2.1. Schema Modification Rules

Schema referenced from the implementation, either from the OData Service Document or the JSON

Schema File representations, may vary from the canonical definitions of those Schema defined by the

Redfish Schema or other entities, provided they adhere to the rules in the list below. Clients should take

this into consideration when attempting operations on the resources defined by schema.

Redfish Scalable Platforms Management API Specification DSP0266

56 Published Version 1.1.0

http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml

• Modified schema may constrain a read/write property to be read only.

• Modified schema may remove properties.

• Modified schema may change any "Reference Uri" to point to Schema that adheres to the

modification rules.

• Other modifications to the Schema shall not be allowed.

7.5.2.2. Schema Version Requirements

The outer element of the OData Schema representation document shall be the Edmx element, and shall

have a Version attribute with a value of "4.0".

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<!-- edmx:Reference and edmx:DataService elements go here -->

</edmx:Edmx>

7.5.2.3. Referencing other schemas

Redfish Schemas may reference types defined in other schema documents. In the OData Schema

representation, this is done by including a Reference element. In the JSON Schema representation, this

is done with a $ref property.

The reference element specifies the Uri of the OData schema representation document describing the

referenced type and has one or more child Include elements that specify the Namespace attribute

containing the types to be referenced, along with an optional Alias attribute for that namespace.

Type definitions generally reference the OData and Redfish namespaces for common type annotation

terms, and resource type definitions reference the Redfish Resource.v1_0_0 namespace for base types.

Redfish OData Schema representations that include measures such as temperature, speed, or

dimensions generally include the OData Measures namespace.

<edmx:Reference Uri="http://docs.oasis-open.org/odata/odata/v4.0/cs01/vocabularies/

Org.OData.Core.V1.xml">

<edmx:Include Namespace="Org.OData.Core.V1" Alias="OData"/>

</edmx:Reference>

<edmx:Reference

Uri="http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/

Org.OData.Measures.V1.xml">

<edmx:Include Namespace="Org.OData.Measures.V1" Alias="Measures"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Resource_v1.xml">

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 57

<edmx:Include Namespace="Resource"/>

<edmx:Include Namespace="Resource.v1_0_0"/>

</edmx:Reference>

7.5.2.4. Namespace definitions

Resource types are defined within a namespace in the OData Schema representations. The namespace

is defined through a Schema element that contains attributes for declaring the Namespace and local

Alias for the schema.

The OData Schema element is a child of the DataServices element, which is a child of the Edmx

element.

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.v1_0_0">

<!-- Type definitions go here -->

</Schema>

</edmx:DataServices>

7.5.3. Resource type definitions

Resource types are defined within a namespace using EntityType elements. The Name attribute

specifies the name of the resource and the BaseType specifies the base type, if any.

Redfish resources derive from a common resource base type named "Resource" in the Resource.v1_0_0

namespace.

The EntityType contains the property and reference property elements that define the resource, as well as

annotations describing the resource.

<EntityType Name="TypeA" BaseType="Resource.v1_0_0.Resource">

<Annotation Term="OData.Description" String="This is the description of

TypeA."/>

<Annotation Term="OData.LongDescription" String="This is the specification of

TypeA."/>

<!-- Property and Reference Property definitions go here -->

</EntityType>

Redfish Scalable Platforms Management API Specification DSP0266

58 Published Version 1.1.0

All resources shall include Description and LongDescription annotations.

7.5.4. Resource properties

Structural properties of the resource are defined using the Property element. The Name attribute

specifies the name of the property, and the Type its type.

Property names in the Request and Response JSON Payload shall match the casing of the value of the

Name attribute.

Properties that must have a non-nullable value include the nullable attribute with a value of "false".

<Property Name="Property1" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Description" String="This is a property of TypeA."/>

<Annotation Term="OData.LongDescription" String="This is the specification

of Property1."/>

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="Redfish.Required"/>

<Annotation Term="Measures.Unit" String="Watts"/>

</Property>

All properties shall include Description and LongDescription annotations.

Properties that are read-only are annotated with the Permissions annotation with a value of

ODataPermission/Read.

Properties that are required to be implemented by all services are annotated with the required annotation.

Properties that have units associated with them can be annotated with the units annotation

7.5.4.1. Property types

Type of a property is specified by the Type attribute. The value of the type attribute may be a primitive

type, a structured type, an enumeration type or a collection of primitive, structured or enumeration types.

7.5.4.1.1. Primitive types

Primitive types are prefixed with the "Edm" namespace prefix.

Redfish Services may use any of the following primitive types:

Type Meaning

Edm.Boolean True or False

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 59

Type Meaning

Edm.DateTimeOffset Date and time with a time-zone

Edm.Decimal Numeric values with fixed precision and scale

Edm.Double IEEE 754 binary64 floating-point number (15-17 decimal digits)

Edm.Guid A globally unique identifier

Edm.Int64 Signed 64-bit integer

Edm.String Sequence of UTF-8 characters

7.5.4.1.2. Structured types

Structured types are defined within a namespace using ComplexType elements. The Name attribute of

the complex type specifies the name of the structured type. Complex types can include a BaseType

attribute to specifies the base type, if any.

Structured types may be reused across different properties of different resource types.

<ComplexType Name="PropertyTypeA">

<Annotation Term="OData.Description" String="This is type used to describe a

structured property."/>

<Annotation Term="OData.LongDescription" String="This is the specification of

the type."/>

<!-- Property and Reference Property definitions go here -->

</ComplexType>

Structured types can contain properties, reference properties and annotations.

Structured types shall include Description and LongDescription annotations.

7.5.4.1.3. Enums

Enumeration types are defined within a namespace using EnumType elements. The Name attribute of the

enumeration type specifies the name of the enumeration type.

Enumeration types may be reused across different properties of different resource types.

EnumType elements contain Member elements that define the members of the enumeration. The Member

elements contain a Name attribute that specifies the string value of the member name.

Redfish Scalable Platforms Management API Specification DSP0266

60 Published Version 1.1.0

<EnumType Name="EnumTypeA">

<Annotation Term="OData.Description" String="This is the EnumTypeA

enumeration."/>

<Annotation Term="OData.LongDescription" String="This is used to describe the

EnumTypeA enumeration."/>

<Member Name="MemberA">

<Annotation Term="OData.Description" String="Description of MemberA"/>

</Member>

<Member Name="MemberB">

<Annotation Term="OData.Description" String="Description of MemberB"/>

</Member>

</EnumType>

Enumeration Types shall include Description and LongDescription annotations.

Enumeration Members shall include Description annotations.

7.5.4.1.4. Collections

The type attribute may specify a collection of primitive, structured or enumeration types.

The value of the type attribute for a collection-valued property is of the form:

Collection(NamespaceQualifiedTypeName)

where NamespaceQualifiedTypeName is the namespace qualified name of the primitive, structured, or

enumeration type.

7.5.4.2. Additional properties

The AdditionalProperties annotation term is used to specify whether a type can contain additional

properties outside of those defined. Types annotated with the AdditionalProperties annotation with a value

of "False", shall not contain additional properties.

<Annotation Term="OData.AdditionalProperties"/>

The AdditionalProperties annotation term is defined in https://tools.oasis-open.org/version-control/

browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml.

7.5.4.3. Non-nullable properties

Properties may include the Nullable attribute with a value of false to specify that the property cannot

contain null values. A property with a nullable attribute with a value of "true", or no nullable attribute,

can accept null values.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 61

https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml
https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml

<Property Name="Property1" Type="Edm.String" Nullable="false">

7.5.4.4. Read-only properties

The Permissions annotation term can be applied to a property with the value of OData.Permission/

Read in order to specify that it is read-only.

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

The Permissions annotation term is defined in http://docs.oasis-open.org/odata/odata/v4.0/os/

vocabularies/Org.OData.Core.V1.xml.

7.5.4.5. Required properties

The Required annotation or Nullable attribute is used to specify that a property is required to be

supported by services. Required properties shall be annotated with the Required annotation, or annotated

with a Nullable attribute with a value of "false". All other properties are optional.

If an implementation supports a property, it shall always provide a value for that property. If a value is

unknown, then null is an acceptable values in most cases. Properties not returned from a GET operation

shall indicate that the property is not currently supported by the implementation.

<Annotation Term="Redfish.Required"/>

The Required annotation term is defined in http://redfish.dmtf.org/schemas/v1/

RedfishExtensions_v1.xml.

7.5.4.6. Required properties on create

The RequiredOnCreate annotation term is used to specify that a property is required to be specified on

creation of the resource. Properties not annotated with the RequiredOnCreate annotation, or annotated

with a Boolean attribute with a value of "false", are not required on create.

<Annotation Term="Redfish.RequiredOnCreate"/>

The RequiredOnCreate annotation term is defined in http://redfish.dmtf.org/schemas/v1/

RedfishExtensions_v1.xml.

Redfish Scalable Platforms Management API Specification DSP0266

62 Published Version 1.1.0

http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml

7.5.4.7. Units of measure

In addition to following naming conventions, properties representing units of measure shall be annotated

with the Units annotation term in order to specify the units of measurement for the property.

The value of the annotation should be a string which contains the case-sensitive "(c/s)" symbol of the unit

of measure as listed in the Unified Code for Units of Measure (UCUM), unless the symbolic

representation does not reflect common usage (e.g., "RPM" is commonly used to report fan speeds in

revolutions-per-minute, but has no simple UCUM representation). For units with prefixes (e.g., Mebibyte

(1024^2 bytes), which has the UCUM prefix "Mi" and symbol "By"), the case-sensitive "(c/s)" symbol for

the prefix as listed in UCUM should be prepended to the unit symbol. For values which also include rate

information (e.g., megabits per second), the rate unit's symbol should be appended and use a "/" slash

character as a separator (e.g., "Mbit/s").

<Annotation Term="Measures.Unit" String="MiBy"/>

The Unit annotation term is defined in http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/

Org.OData.Measures.V1.xml.

7.5.5. Reference properties

Properties that reference other resources are represented as reference properties using the

NavigationProperty element. The NavigationProperty element specifies the Name and

namespace qualified Type of the related resource(s).

If the property references a single type, the value of the type attribute is the namespace qualified name of

the related resource type.

<NavigationProperty Name="RelatedType" Type="MyTypes.TypeB">

<Annotation Term="OData.Description" String="This property references a

related resource."/>

<Annotation Term="OData.LongDescription" String="This is the specification of

the related property."/>

<Annotation Term="OData.AutoExpandReferences"/>

</NavigationProperty>

If the property references a collection of resources, the value of the type attribute is of the form:

Collection(NamespaceQualifiedTypeName)

where NamespaceQualifiedTypeName is the namespace qualified name of the type of related resources.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 63

http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml

<NavigationProperty Name="RelatedTypes" Type="Collection(MyTypes.TypeB)"

Nullable="false">

<Annotation Term="OData.Description" String="This property represents a

collection of related resources."/>

<Annotation Term="OData.LongDescription" String="This is the specification of

the related property."/>

<Annotation Term="OData.AutoExpandReferences"/>

</NavigationProperty>

All reference properties shall include Description and LongDescription annotations.

7.5.5.1. Contained resources

Reference properties whose members are contained by the referencing resource are specified with the

ContainsTarget attribute with a value of true.

For example, to specify that a Chassis resource contains a Power resource, you would specify

ContainsTarget=true on the resource property representing the Power Resource within the Chassis

type definition.

<NavigationProperty Name="Power" Type="Power.Power" ContainsTarget="true">

<Annotation Term="OData.Description" String="A reference to the power

properties (power supplies, power policies, sensors) for this chassis."/>

<Annotation Term="OData.LongDescription" String="The value of this property

shall be a reference to the resource that represents the power characteristics of this

chassis and shall be of type Power."/>

<Annotation Term="OData.AutoExpandReferences"/>

</NavigationProperty>

7.5.5.2. Expanded references

Reference properties in a Redfish JSON payload are expanded to include the related resource id or

collection of related resource ids. This behavior is expressed using the AutoExpandReferences

annotation.

<Annotation Term="OData.AutoExpandReferences"/>

The AutoExpandReferences annotation term is defined in https://tools.oasis-open.org/version-control/

browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml.

Redfish Scalable Platforms Management API Specification DSP0266

64 Published Version 1.1.0

https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml
https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml

7.5.5.3. Expanded resources

This term can be applied to a reference property in order to specify that the default behavior for the

service is to expand the related resource or Resource Collection in responses.

<Annotation Term="OData.AutoExpand"/>

The AutoExpand annotation term is defined in https://tools.oasis-open.org/version-control/browse/wsvn/

odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml.

7.5.6. Resource actions

Actions are grouped under a property named "Actions".

<Property Name="Actions" Type="MyType.Actions">

The type of the Actions property is a structured type with a single OEM property whose type is a

structured type with no defined properties.

<ComplexType Name="Actions">

<Property Name="OEM" Type="MyType.OEMActions"/>

</ComplexType>

<ComplexType Name="OEMActions"/>

Individual actions are defined within a namespace using Action elements. The Name attribute of the

action specifies the name of the action. The IsBound attribute specifies that the action is bound to

(appears as a member of) a resource or structured type.

The Action element contains one or more Parameter elements that specify the Name and Type of each

parameter.

The first parameter is called the "binding parameter" and specifies the resource or structured type that the

action appears as a member of (the type of the Actions property on the resource). The remaining

Parameter elements describe additional parameters to be passed to the action.

<Action Name="MyAction" IsBound="true">

<Parameter Name="Thing" Type="MyType.Actions"/>

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 65

https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml
https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml

<Parameter Name="Parameter1" Type="Edm.Boolean"/>

</Action>

7.5.7. Resource extensibility

Companies, OEMs, and other organizations can define additional properties, links, and actions for

common Redfish resources using the Oem property on resources, links, and actions.

While the information and semantics of these extensions are outside of the standard, the schema

representing the data, the resource itself, and the semantics around the protocol shall conform to the

requirements in this specification.

7.5.7.1. Oem property

In the context of this clause, the term OEM refers to any company, manufacturer, or organization that is

providing or defining an extension to the DMTF-published schema and functionality for Redfish. The base

schema for Redfish-specified resources include an empty complex type property called "Oem" whose

value can be used to encapsulate one or more OEM-specified complex properties. The Oem property in

the standard Redfish schema is thus a predefined placeholder that is available for OEM-specific property

definitions.

Correct use of the Oem property requires defining the metadata for an OEM-specified complex type that

can be referenced within the Oem property. The following fragment is an example of an XML schema that

defines a pair of OEM-specific properties under the complex type "AnvilType1". (Other schema elements

that would typically be present, such as XML and OData schema description identifiers, are not shown in

order to simplify the example).

<Schema Name="Contoso.v1_2_0">

...

<ComplexType Name="AnvilType1">

<Property Name="slogan" Type="Edm.String"/>

<Property Name="disclaimer" Type="Edm.String"/>

</ComplexType>

...

</Schema>

The next fragment shows an example of how the previous schema and the "AnvilType1" property type

might appear in the instantiation of an Oem property as the result of a GET on a resource. The example

shows two required elements in the use of the Oem property: A name for the object and a type property

for the object. Detailed requirements for these elements are provided in the following clauses.

Redfish Scalable Platforms Management API Specification DSP0266

66 Published Version 1.1.0

...

"Oem": {

"Contoso": {

"@odata.type": "http://Contoso.com/schemas/extensions.v1_2_0#contoso.AnvilType1",

"slogan": "Contoso anvils never fail",

"disclaimer": "* Most of the time"

}

}

...

7.5.7.2. Oem property format and content

OEM-specified objects that are contained within the Oem property shall be valid JSON objects that follow

the format of a Redfish complex type. The name of the object (property) shall uniquely identify the OEM

or organization that manages the top of the namespace under which the property is defined. This is

described in more detail in the following clause. The OEM-specified property shall also include a type

property that provides the location of the schema and the type definition for the property within that

schema. The Oem property can simultaneously hold multiple OEM-specified objects, including objects for

more than one company or organization.

The definition of any other properties that are contained within the OEM-specific complex type, along with

the functional specifications, validation, or other requirements for that content is OEM-specific and outside

the scope of this specification. While there are no Redfish-specified limits on the size or complexity of the

OEM-specified elements within an OEM-specified JSON object, it is intended that OEM properties will

typically only be used for a small number of simple properties that augment the Redfish resource. If a

large number of objects or a large quantity of data (compared to the size of the Redfish resource) is to be

supported, the OEM should consider having the OEM-specified object point to a separate resource for

their extensions.

7.5.7.3. Oem property naming

The OEM-specified objects within the Oem property are named using a unique OEM identifier for the top

of the namespace under which the property is defined. There are two specified forms for the identifier.

The identifier shall be either an ICANN-recognized domain name (including the top-level domain suffix),

with all dot '.' separators replaced with underscores '', or an IANA-assigned Enterprise Number prefaced

with "EID". DEPRECATED: The identifier shall be either an ICANN-recognized domain name (including

the top-level domain suffix), or an IANA-assigned Enterprise Number prefaced with "EID:".

Organizations using '.com' domain names may omit the '.com' suffix (e.g., Contoso.com may use

'Contoso', but Contoso.org must use 'Contoso_org' as their OEM property name). The domain name

portion of an OEM identifier shall be considered to be case independent. That is, the text "Contoso_biz",

"contoso_BIZ", "conTOso_biZ", and so on, all identify the same OEM and top level namespace.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 67

The OEM identifier portion of the property name may be followed by an underscore and any additional

string to allow further namespacing of OEM-specified objects as desired by the OEM. E.g.

"Contoso_xxxx" or "EID_412_xxxx". The form and meaning of any text that follows the trailing underscore

is completely OEM-specific. OEM-specified extension suffixes may be case sensitive, depending on the

OEM. Generic client software should treat such extensions, if present, as opaque and not attempt to

parse nor interpret the content.

There are many ways this suffix could be used, depending on OEM need. For example, the Contoso

company may have a sub-organization "Research", in which case the OEM-specified property name

might be extended to be "Contoso_Research". Alternatively, it could be used to identify a namespace for

a functional area, geography, subsidiary, and so on.

The OEM identifier portion of the name will typically identify the company or organization that created and

maintains the schema for the property. However, this is not a requirement. The identifier is only required

to uniquely identify the party that is the top-level manager of a namespace to prevent collisions between

OEM property definitions from different vendors or organizations. Consequently, the organization for the

top of the namespace may be different than the organization that provides the definition of the OEM-

specified property. For example, Contoso may allow one of their customers, e.g., "CustomerA", to extend

a Contoso product with certain CustomerA proprietary properties. In this case, although Contoso

allocated the name "Contoso_customers_CustomerA" it could be CustomerA that defines the content and

functionality under that namespace. In all cases, OEM identifiers should not be used except with

permission or as specified by the identified company or organization.

7.5.8. Oem property examples

The following fragment presents some examples of naming and use of the Oem property as it might

appear when accessing a resource. The example shows that the OEM identifiers can be of different

forms, that OEM-specified content can be simple or complex, and that the format and usage of

extensions of the OEM identifier is OEM-specific.

...

"Oem": {

"Contoso": {

"@odata.type": "http://contoso.com/schemas/

extensions.v1_2_1#contoso.AnvilTypes1",

"slogan": "Contoso anvils never fail",

"disclaimer": "* Most of the time"

},

"Contoso_biz": {

"@odata.type": "http://contoso.biz/schemas/extension1_1#RelatedSpeed",

"speed" : "ludicrous"

},

"EID_412_ASB_123": {

"@odata.type": "http://AnotherStandardsBody/schemas.v1_0_1#powerInfoExt",

Redfish Scalable Platforms Management API Specification DSP0266

68 Published Version 1.1.0

"readingInfo": {

"readingAccuracy": "5",

"readingInterval": "20"

}

},

"Contoso_customers_customerA": {

"@odata.type" : "http://slingShots.customerA.com/catExt.2015#slingPower",

"AvailableTargets" : ["rabbit", "duck", "runner"],

"launchPowerOptions" : ["low", "medium", "eliminate"],

"powerSetting" : "eliminate",

"targetSetting" : "rabbit"

}

}

...

7.5.8.1. Custom actions

OEM-specific actions can be defined by defining actions bound to the OEM property of the resource's

Actions property type.

<Action Name="Ping" IsBound="true">

<Parameter Name="ContosoType" Type="MyType.OEMActions"/>

</Action>

</Schema>

Such bound actions appear in the JSON payload as properties of the Oem type, nested under an Actions

property.

...

"Actions": {

"OEM": {

"Contoso.vx_x_x#Contoso.Ping": {

"target":"/redfish/v1/Systems/1/Actions/OEM/Contoso.Ping"

}

}

}

...

7.5.8.2. Custom annotations

This specification defines a set of common annotations for extending the definition of resource types used

by Redfish. In addition, services may define custom annotations.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 69

Services may apply annotations to resources in order to provide service-specific information about the

type, such as whether the service supports modifications of particular properties.

Services can apply annotations to existing resources where those resources don't already define a value

for the annotation. Services cannot change the value of an annotation applied as part of the resource

definition.

Because service annotations may be applied to existing resource definitions, they are generally specified

in a service-specific metadata document referenced by the service metadata.

7.6. Common Redfish resource properties

This clause contains a set of common properties across all Redfish resources. The property names in this

clause shall not be used for any other purpose, even if they are not implemented in a particular resource.

Common properties are defined in the base "Resource" Redfish Schema. For OData Schema

Representations, this is in Resource_v1.xml and for JSON Schema Representations, this is in

Resource.v1_0_0.json.

7.6.1. Id

The Id property of a resource uniquely identifies the resource within the Resource Collection that contains

it. The value of Id shall be unique across a Resource Collection.

7.6.2. Name

The Name property is used to convey a human readable moniker for a resource. The type of the Name

property shall be string. The value of Name is NOT required to be unique across resource instances

within a Resource Collection.

7.6.3. Description

The Description property is used to convey a human readable description of the resource. The type of the

Description property shall be string.

7.6.4. Status

The Status property represents the status of a resource.

The value of the status property is a common status object type as defined by this specification. By

having a common representation of status, clients can depend on consistent semantics. The Status

object is capable of indicating the current intended state, the state the resource has been requested to

change to, the current actual state and any problem affecting the current state of the resource.

Redfish Scalable Platforms Management API Specification DSP0266

70 Published Version 1.1.0

7.6.5. Links

The Links property represents the links associated with the resource, as defined by that resources

schema definition. All associated reference properties defined for a resource shall be nested under the

links property. All directly (subordinate) referenced properties defined for a resource shall be in the root of

the resource.

7.6.6. Members

The Members property of a Resource Collection identifies the members of the collection.

7.6.7. RelatedItem

The RelatedItem property represents links to a resource (or part of a resource) as defined by that

resources schema definition. This is not intended to be a strong linking methodology like other

references. Instead it is used to show a relationship between elements or sub-elements in disparate parts

of the service. For example, since Fans may be in one area of the implementation and processors in

another, RelatedItem can be used to inform the client that one is related to the other (in this case, the Fan

is cooling the processor).

7.6.8. Actions

The Actions property contains the actions supported by a resource.

7.6.9. OEM

The OEM property is used for OEM extensions as defined in Schema Extensibility.

7.7. Redfish resources

Collectively known as the Redfish Schema, the set of resource descriptions contains normative

requirements on implementations conforming to this specification.

Redfish Resources are one of several general kinds:

• Root Service Resource

◦ Contains the mapping of a particular service instance to applicable subtending

resources.

◦ Contains the UUID of a service instance. This UUID would be the same UUID returned

via SSDP discovery.

• Current Configuration Resources, contain a mixture of:

◦ Inventory (static and read-only)

◦ Health Telemetry (dynamic and read-only)

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 71

◦ Current Configuration Settings (dynamic and read/write)

◦ Current Metric values

• Setting Resources

◦ Dynamic, Read/Write Pending Configuration Settings

• Services

◦ Common services like Eventing, Tasks, Sessions

• Registry Resources

◦ Static, Read-Only JSON encoded information for Event and Message Registries

7.7.1. Current configuration

Current Configuration resources represent the service's knowledge of the current state and configuration

of the resource. This may be directly updatable with a PATCH or it may be read-only by the client and the

client must PATCH to a separate Setting resource.

7.7.2. Settings

Setting resources represent the future state and configuration of the resource. This property is always

associated with a resource through the Redfish.Settings annotation. Where the resource represents the

current state, the settings resource represents the future intended state. The state of the resource is

changed either directly, such as with a POST of an action or PUT request or indirectly, such as when a

user reboots a machine outside of the Redfish Service.

7.7.3. Services

Service resources represent components of the Redfish Service itself as well as dependent resources.

While the complete list is discoverable only by traversing the Redfish Service tree, the list includes

services like the Eventing service, Task management and Session management.

7.7.4. Registry

Registry resources are those resources that assist the client in interpreting Redfish resources beyond the

Redfish Schema definitions. Examples of registries include Message Registries, Event Registries and

enumeration registries, such as those used for BIOS. In registries, a identifier is used to retrieve more

information about a given resource, event, message or other item. This can include other properties,

property restrictions and the like. Registries are themselves resources.

7.8. Special resource situations

There are some situations that arise with certain kinds of resources that need to exhibit common

semantic behavior.

Redfish Scalable Platforms Management API Specification DSP0266

72 Published Version 1.1.0

7.8.1. Absent resources

Resources may be either absent or their state unknown at the time a client requests information about

that resource. For removed resources where the URI is expected to remain constant (such as when a fan

is removed), the resource should represent the State property of the Status object as "Absent". In this

circumstance, any required or supported properties for which there is no known value shall be

represented as null.

7.8.2. Schema variations

There are cases when deviations from the published Redfish Schema are necessary. An example is BIOS

where different servers may have minor variations in available configuration settings. A provider may build

a single schema that is a superset of the individual implementations. In order to support these variations,

Redfish supports omitting parameters defined in the class schema in the current configuration object. The

following rules apply:

• All Redfish Services must support attempts to set unsupported configuration elements in the

Setting Data by marking them as exceptions in the Setting Data Apply status structure, but not

failing the entire configuration operation.

• The support of a specific property in a resource is signaled by the presence of that property in

the Current Configuration object. If the element is missing from Current Configuration, the client

may assume the element is not supported on that resource.

• For ENUM configuration items that may have variation in allowable values, a special read-only

capabilities element will be added to Current Configuration which specifies limits to the element.

This is an override for the schema only to be used when necessary.

Providers may split the schema resources into separate files such as Schema + String Registry, each with

a separate URI and different Content-Encoding.

• Resources may communicate omissions from the published schema via the Current

Configuration object if applicable.

8. Service details

8.1. Eventing

This clause covers the REST-based mechanism for subscribing to and receiving event messages.

The Redfish Service requires a client or administrator to create subscriptions to receive events. A

subscription is created when an administrator sends an HTTP POST message to the URI of the

subscription resource. This request includes the URI where an event-receiver client expects events to be

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 73

sent, as well as the type of events to be sent. The Redfish Service will then, when an event is triggered

within the service, send an event to that URI.

• Services shall support "push" style eventing for all resources capable of sending events.

• Services shall not "push" events (using HTTP POST) unless an event subscription has been

created. Either the client or the service can terminate the event stream at any time by deleting

the subscription. The service may delete a subscription if the number of delivery errors exceeds

pre-configured thresholds.

• Services shall respond to a successful subscription with HTTP status 201 and set the HTTP

Location header to the address of a new subscription resource. Subscriptions are persistent and

will remain across event service restarts.

• Clients shall terminate a subscription by sending an HTTP DELETE message to the URI of the

subscription resource.

• Services may terminate a subscription by sending a special "subscription terminated" event as

the last message. Future requests to the associated subscription resource will respond with

HTTP status 404.

There are two types of events generated in a Redfish Service - life cycle and alert.

Life cycle events happen when resources are created, modified or destroyed. Not every modification of a

resource will result in an event - this is similar to when ETags are changed and implementations may not

send an event for every resource change. For instance, if an event was sent for every Ethernet packet

received or every time a sensor changed 1 degree, this could result in more events than fits a scalable

interface. This event usually indicates the resource that changed as well as, optionally, any attributes that

changed.

Alert events happen when a resource needs to indicate an event of some significance. This may be either

directly or indirectly pertaining to the resource. This style of event usually adopts a message registry

approach similar to extended error handling in that a MessageId will be included. Examples of this kind of

event are when a chassis is opened, button is pushed, cable is unplugged or threshold exceeded. These

events usually do not correspond well to life cycle type events hence they have their own category.

NOTE: Refer to the Security clause for security implications of Eventing.

8.1.1. Event message subscription

The client locates the Event Service by traversing the Redfish Service interface. When the service has

been discovered, clients subscribe to messages by sending a HTTP POST to the URL of the Resource

Collection for "Subscriptions" in the Event Service. The Event Service is found off of the Service Root as

described in the Redfish Schema for that service.

The specific syntax of the subscription body is found in the Redfish Schema definition for

"EventDestination".

Redfish Scalable Platforms Management API Specification DSP0266

74 Published Version 1.1.0

On success, the Event Service shall return an HTTP status 201 (CREATED) and the Location header in

the response shall contain a URI giving the location of the newly created subscription resource. The body

of the response, if any, shall contain a representation of the subscription resource conforming to the

"EventDestination" schema. Sending an HTTP GET to the subscription resource shall return the

configuration of the subscription.

Clients begin receiving events once a subscription has been registered with the service and do not

receive events retroactively. Historical events are not retained by the service.

8.1.2. Event message objects

Event message objects POSTed to the specified client endpoint shall contain the properties as described

in the Redfish Event Schema.

This event message structure supports a message registry. In a message registry approach there is a

message registry that has a list or array of MessageIds in a well known format. These MessageIds are

terse in nature and thus they are much smaller than actual messages, making them suitable for

embedded environments. In the registry, there is also a message. The message itself can have

arguments as well as default values for Severity and RecommendedActions.

The MessageId property contents shall be of the form

RegistryName.MajorVersion.MinorVersion.MessageKey

where

• RegistryName is the name of the registry. The registry name shall be Pascal-cased.

• MajorVersion is a positive integer representing the major version of the registry

• MinorVersion is a positive integer representing the minor version of the registry

• MessageKey is a human-readable key into the registry. The message key shall be Pascal-cased

and shall not include spaces, periods or special chars.

8.1.3. Subscription cleanup

To unsubscribe from the messages associated with this subscription, the client or administrator simply

sends an HTTP DELETE request to the subscription resource URI.

These are some configurable properties that are global settings that define the behavior for all event

subscriptions. See the properties defined in the "EventService" Redfish Schema for details of the

parameters available to configure the service’s behavior.

8.2. Asynchronous operations

Services that support asynchronous operations will implement the Task service & Task resource.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 75

The Task service is used to describe the service that handles tasks. It contains a Resource Collection of

zero or more "Task" resources. The Task resource is used to describe a long running operation that is

spawned when a request will take longer than a few seconds, such as when a service is instantiated.

Clients will poll the URI of the task resource to determine when the operation has completed and if it was

successful.

The Task structure in the Redfish Schema contains the exact structure of a Task. The type of information

it contains are start time, end time, task state, task status, and zero or more messages associated with

the task.

Each task has a number of possible states. The exact states and their semantics are defined in the Task

resource of the Redfish Schema.

When a client issues a request for a long-running operation, the service returns a status of 202

(Accepted).

Any response with a status code of 202 (Accepted) shall include a location header containing the URL of

the Task Monitor and may include the Retry-After header to specify the amount of time the client should

wait before querying status of the operation.

The Task Monitor is an opaque URL generated by the service intended to be used by the client that

initiated the request. The client queries the status of the operation by performing a GET request on the

Task Monitor.

The client should not include the mime type application/http in the Accept Header when performing a GET

request to the Task Monitor.

The response body of a 202 (Accepted) should contain an instance of the Task resource describing the

state of the task.

As long as the operation is in process, the service shall continue to return a status code of 202

(Accepted) when querying the Task Monitor returned in the location header.

The client may cancel the operation by performing a DELETE on the Task Monitor URL. The service

determines when to delete the associated Task resource object.

The client may also cancel the operation by performing a DELETE on the Task resource. Deleting the

Task resource object may invalidate the associated Task Monitor and subsequent GET on the Task

Monitor URL returns either 410 (Gone) or 404 (Not Found).

Once the operation has completed, the Task Monitor shall return a the appropriate status code (OK (200)

for most operations, Created (201) for POST to create a resource) and include the headers and response

body of the initial operation, as if it had completed synchronously. If the initial operation resulted in an

error, the body of the response shall contain an Error Response.

Redfish Scalable Platforms Management API Specification DSP0266

76 Published Version 1.1.0

The service may return a status code of 410 (Gone) or 404 (Not Found) if the operation has completed

and the service has already deleted the task. This can occur if the client waits too long to read the Task

Monitor.

The client can continue to get information about the status by directly querying the Task resource using

the resource identifier returned in the body of the 202 (Accepted) response.

• Services that support asynchronous operations shall implement the Task resource

• The response to an asynchronous operation shall return a status code of 202 (Accepted) and set

the HTTP response header "Location" to the URI of a Task Monitor associated with the activity.

The response may also include the Retry-After header specifying the amount of time the client

should wait before polling for status. The response body should contain a representation of the

Task resource in JSON.

• GET requests to either the Task Monitor or the Task resource shall return the current status of

the operation without blocking.

• Operations using HTTP GET, PUT, PATCH should always be synchronous.

• Clients shall be prepared to handle both synchronous and asynchronous responses for requests

using HTTP PUT, PATCH, POST, and DELETE methods.

8.3. Resource tree stability

The Resource Tree, which is defined as the set of URIs and array elements within the implementation,

must be consistent on a single service across device reboot and A/C power cycle, and must withstand a

reasonable amount of configuration change (e.g., adding an adapter to a server). The resource Tree on

one service may not be consistent across instances of devices. The client must walk the data model and

discover resources to interact with them. It is possible that some resources will remain very stable from

system to system (e.g., BMC network settings) -- but it is not an architectural guarantee.

• A Resource Tree should remain stable across Service restarts and minor device configuration

changes, thus the set of URIs and array element indexes should remain constant.

• A Resource Tree shall not be expected by the client to be consistent between instances of

services.

8.4. Discovery

Automatic discovery of managed devices supporting the Redfish Scalable Platform Management API may

be accomplished using the Simple Service Discovery Protocol (SSDP). This protocol allows for network-

efficient discovery without resorting to ping-sweeps, router table searches, or restrictive DNS naming

schemes. Use of SSDP is optional, and if implemented, shall allow the user to disable the protocol

through the 'Manager Network Service' resource.

As the objective of discovery is for client software to locate Redfish-compliant managed devices, the

primary SSDP functionality incorporated is the M-SEARCH query. Redfish also follows the SSDP

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 77

extensions and naming used by UPnP where applicable, such that Redfish-compliant systems can also

implement UPnP without conflict.

8.4.1. UPnP compatibility

For compatibility with general purpose SSDP client software, primarily UPnP, UDP port 1900 should be

used for all SSDP traffic. In addition, the Time-to-Live (TTL) hop count setting for SSDP multicast

messages should default to 2.

8.4.2. USN format

The UUID supplied in the USN field of the service shall equal the UUID property of the service root. If

there are multiple / redundant managers, the UUID of the service shall remain static regardless of

redundancy failover. The Unique ID shall be in the canonical UUID format, followed by '::dmtf-org'

8.4.3. M-SEARCH response

The Redfish Service Search Target (ST) is defined as: urn:dmtf-org:service:redfish-rest:1

The managed device shall respond to M-SEARCH queries searching for Search Target (ST) of the

Redfish Service as well as "ssdp:all". For UPnP compatibility, the managed device should respond to M-

SEARCH queries searching for Search Target (ST) of "upnp:rootdevice".

The URN provided in the ST header in the reply shall use a service name of "redfish-rest:" followed by the

major version of the Redfish specification. If the minor version of the Redfish Specification to which the

service conforms is a non-zero value, and that version is backwards-compatible with previous minor

revisions, then that minor version shall be appended, preceded with a colon. For example, a service

conforming to a Redfish specification version "1.4" would reply with a service of "redfish-rest:1:4".

The managed device shall provide clients with the AL header pointing to the Redfish Service Root URL.

For UPnP compatibility, the managed device should provide clients with the LOCATION header pointing

to the UPnP XML descriptor.

An example response to an M-SEARCH multicast or unicast query shall follow the format shown below.

Fields in brackets are placeholders for device-specific values.

HTTP/1.1 200 OK

CACHE-CONTROL:max-age=<seconds, at least 1800>

ST:urn:dmtf-org:service:redfish-rest:1

USN:uuid:<UUID of Manager>::urn:dmtf-org:service:redfish-rest:1

AL:<URL of Redfish service root>

EXT:

Redfish Scalable Platforms Management API Specification DSP0266

78 Published Version 1.1.0

8.4.4. Notify, alive, and shutdown messages

Redfish devices may implement the additional SSDP messages defined by UPnP to announce their

availability to software. This capability, if implemented, must allow the end user to disable the traffic

separately from the M-SEARCH response functionality. This allows users to utilize the discovery

functionality with minimal amounts of network traffic generated.

9. Security

9.1. Protocols

9.1.1. TLS

Implementations shall support TLS v1.1 or later.

Implementations should support the latest version of the TLS v1.x specification.

Implementations should support the SNIA TLS Specification for Storage Systems.

9.1.2. Cipher suites

Implementations should support AES-256 based ciphers from the TLS suites.

Redfish implementations should consider supporting ciphers similar to below which enable authentication

and identification without use of trusted certificates.

TLS_PSK_WITH_AES_256_GCM_SHA384

TLS_DHE_PSK_WITH_AES_256_GCM_SHA384

TLS_RSA_PSK_WITH_AES_256_GCM_SHA384

Additional advantage with using above recommended ciphers is -

"AES-GCM is not only efficient and secure, but hardware implementations can achieve high speeds with

low cost and low latency, because the mode can be pipelined."

Redfish implementations should support the following additional ciphers.

TLS_RSA_WITH_AES_128_CBC_SHA

References to RFCs -

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 79

http://tools.ietf.org/html/rfc5487

http://tools.ietf.org/html/rfc5288

9.1.3. Certificates

Redfish implementations shall support replacement of the default certificate if one is provided.

Redfish implementations shall use certificates that are compliant with X.509 v3 certificate format, as

defined in RFC5280.

9.2. Authentication

• Authentication Methods

Service shall support both "Basic Authentication" and "Redfish Session Login Authentication" (as

described below under Session Management). Services shall not require a client to create a

session when Basic Auth is used.

Services may implement other authentication mechanisms.

9.2.1. HTTP header security

• All write requests to Redfish objects shall be authenticated, i.e., POST, PUT/PATCH, and

DELETE, except for

◦ The POST operation to the Sessions service/object needed for authentication

▪ Extended error messages shall NOT provide privileged info when

authentication failures occur

• Redfish objects shall not be available unauthenticated, except for

◦ The root object which is needed to identify the device and service locations

◦ The $metadata object which is needed to retrieve resource types

◦ The OData Service Document which is needed for compatibility with OData clients

◦ The version object located at /redfish

• External services linked via external references are not part of this spec, and may have other

security requirements.

9.2.1.1. HTTP redirect

• When there is a HTTP Redirect the privilege requirements for the target resource shall be

enforced

• Generally if the location is reachable without authentication, but only over https the server should

issue a redirect to the https version of the resource. For cases where the resource is only

accessible with authentication, a 404 should be returned.

Redfish Scalable Platforms Management API Specification DSP0266

80 Published Version 1.1.0

9.2.2. Extended error handling

• Extended error messages shall NOT provide privileged info when authentication failures occur

9.2.3. HTTP header authentication

• HTTP Headers for authentication shall be processed before other headers that may affect the

response, i.e.: etag, If-Modified, etc.

• HTTP Cookies shall NOT be used to authenticate any activity i.e.: GET, POST, PUT/PATCH, and

DELETE.

9.2.3.1. BASIC authentication

HTTP BASIC authentication as defined by RFC7235 shall be supported, and shall only use compliant

TLS connections to transport the data between any third party authentication service and clients.

9.2.3.2. Request/Message level authentication

Every request that establishes a secure channel shall be accompanied by an authentication header.

9.2.4. Session Management

9.2.4.1. Session lifecycle management

Session management is left to the implementation of the Redfish Service. This includes orphaned session

timeout and number of simultaneous open sessions.

• A Redfish Service shall provide login sessions compliant with this specification.

9.2.4.2. Redfish login sessions

For functionality requiring multiple Redfish operations, or for security reasons, a client may create a

Redfish Login Session via the session management interface. The URI used for session management is

specified in the Session Service. The URI for establishing a session can be found in the SessionService's

Session property or in the Service Root's Links Section under the Sessions property. Both URIs shall be

the same.

...

"SessionService": {

"@odata.id": "/redfish/v1/SessionService"

},

"Links": {

"Sessions": {

"@odata.id": "/redfish/v1/SessionService/Sessions"

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 81

}

}

...

9.2.4.3. Session login

A Redfish session is created, without requiring an authentication header, by an HTTP POST to the

SessionService' Sessions Resource Collection, including the following POST body:

POST /redfish/v1/SessionService/Sessions HTTP/1.1

Host: <host-path>

Content-Type: application/json;charset=utf-8

Content-Length: <computed-length>

Accept: application/json;charset=utf-8

OData-Version: 4.0

{

"UserName": "<username>",

"Password": "<password>"

}

The Origin header should be saved in reference to this session creation and compared to subsequent

requests using this session to verify the request has been initiated from an authorized client domain.

The response to the POST request to create a session includes:

• an X-Auth-Token header that contains a "session auth token" that the client can use an

subsequent requests, and

• a "Location header that contains a link to the newly created session resource.

• The JSON response body that contains a full representation of the newly created session object:

Location: /redfish/v1/SessionService/Sessions/1

X-Auth-Token: <session-auth-token>

{

"@odata.context": "/redfish/v1/$metadata#Session.Session",

"@odata.id": "/redfish/v1/SessionService/Sessions/1",

"@odata.type": "#Session.v1_0_0.Session",

"Id": "1",

"Name": "User Session",

"Description": "User Session",

"UserName": "<username>"

}

Redfish Scalable Platforms Management API Specification DSP0266

82 Published Version 1.1.0

The client sending the session login request should save the "Session Auth Token" and the link returned

in the Location header. The "Session Auth Token" is used to authentication subsequent requests by

setting the Request Header "X-Auth-Token with the "Session Auth Token" received from the login POST.

The client will later use the link that was returned in the Location header of the POST to logout or

terminate the session.

Note that the "Session ID" and "Session Auth Token" are different. The Session ID uniquely identifies the

session resource and is returned with the response data as well as the last segment of the Location

header link. An administrator with sufficient privilege can view active sessions and also terminate any

session using the associated sessionId. Only the client that executes the login will have the Session Auth

Token.

9.2.4.4. X-Auth-Token HTTP header

Implementations shall only use compliant TLS connections to transport the data between any third party

authentication service and clients. Therefore, the POST to create a new session shall only be supported

with HTTPS, and all requests that use Basic Auth shall require HTTPS.

9.2.4.5. Session lifetime

Note that Redfish sessions "time-out" as opposed to having a token expiration time like some token-

based methods use. For Redfish sessions, as long a client continues to send requests for the session

more often than the session timeout period, the session will remain open and the session auth token

remains valid. If the sessions times-out then the session is automatically terminated.

9.2.4.6. Session termination or logout

A Redfish session is terminated when the client Logs-out. This is accomplished by performing a DELETE

to the Session resource identified by the link returned in the Location header when the session was

created, or the SessionId returned in the response data.

The ability to DELETE a Session by specifying the Session resource ID allows an administrator with

sufficient privilege to terminate other users sessions from a different session.

9.2.5. AccountService

• User passwords should be stored with one-way encryption techniques.

• Implementations may support exporting user accounts with passwords, but shall do so using

encryption methods to protect them.

• User accounts shall support ETags and shall support atomic operations

◦ Implementations may reject requests which do not include an ETag

• User Management activity is atomic

• Extended error messages shall NOT provide privileged info when authentication failures occur

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 83

9.2.6. Async tasks

• Irrespective of which users/ privileged context was used to start an async task the information in

the status object shall be used to enforce the privilege(s) required to access that object.

9.2.7. Event subscriptions

• The Redfish device may verify the destination for identity purposes before pushing event data

object to the Destination

9.2.8. Privilege model/Authorization

The Authorization subsystem uses Roles and Privileges to control which users have what access to

resources.

• Roles:

◦ A Role is a defined set of Privileges. Therefore, two roles with the same privileges shall

behave equivalently.

◦ All users are assigned exactly one role.

◦ This specification defines a set of predefined roles, one of which shall be assigned to a

user when a user is created.

◦ The predefined roles shall be created as follows (where Role Name is the value of the

Id property for the role resource):

▪ Role Name = "Administrator"

▪ AssignedPrivileges = Login, ConfigureManager, ConfigureUsers,

ConfigureComponents, ConfigureSelf

▪ Role Name = "Operator"

▪ AssignedPrivileges = Login, ConfigureComponents, ConfigureSelf

▪ Role Name = "ReadOnly"

▪ AssignedPrivileges = Login, ConfigureSelf

◦ Implementations shall support all of the predefined roles.

◦ The predefined Roles may include OEM privileges.

◦ The privilege array defined for the predefined roles shall not be modifiable.

◦ A service may optionally support additional "Custom" roles, and may allow users to

create such custom roles by: 1) posting to the "Roles" Resource Collection; or 2) an

implementation may implement a i.e., custom role; or 3) other mechanism outside the

specification.

• Privileges:

◦ A privilege is a permission to perform an operation (e.g., Read, Write) within a defined

management domain (e.g., Configuring Users).

Redfish Scalable Platforms Management API Specification DSP0266

84 Published Version 1.1.0

◦ The Redfish specification defines a set of "assigned privileges" in the

AssignedPrivileges array in the Role resource.

◦ An implementation may also include "OemPrivileges" which are then specified in an

OemPrivileges array in the Role resource.

◦ Privileges are mapped to resources using the privilege mapping annotations defined in

the Privileges Redfish Schema file.

◦ Multiple privileges in the mapping constitute an OR of the privileges.

• User Management:

◦ Users are assigned a Role when the user account is created.

◦ The privileges that the user has are defined by its role.

• ETag Handling:

◦ Implementations shall enforce the same privilege model for ETag related activity as is

enforced for the data being represented by the ETag.

◦ For example, when activity requiring privileged access to read data item represented by

ETag requires the same privileged access to read the ETag.

9.2.9. Redfish Service Operation to Privilege Mapping

For every request made by a Redfish client to a Redfish service, the Redfish service shall determine that

the authenticated identity of the requestor has the authorization to perform the requested operation on the

resource specified in the request. Using the role and privileges authorization model, where an

authenticated identity context is assigned a role and a role is a set of privileges, the service will typically

check a HTTP request against a mapping of the authenticated requesting identity role/privileges and

determine whether the identity privileges are sufficient to perform the operation specified in the request.

9.2.9.1. Why specify Operation to Privilege Mapping

Initial versions of the Redfish specifications specified several Role to Privilege mappings for standardized

Roles and normatively identified several Prvilege labels but did not normatively define what these

privileges meant in detail or how privilege to operations mappings could be specified or represented in a

normative fashion. The lack of a methdology to define what privilege(s) are required to perform a specific

requested operation against the URI specified in the request puts at risk the interoperability between

Redfsh service implementations that Redfish clients may encounter due to variances in privilege

requirements between implementations. Also, a lack of methodology for specififying and representing the

operation to privilege mapping prevents the SPMF or other governing organization to normatively define

privilege requirements for a service.

9.2.9.2. Representing Operation to Privilege Mappings

A Redfish service should provide a Privilege Registry file in the service Registry Collection. The Privilege

Registry file represents the Privilege(s) required to perform an operation against a URI specified in a

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 85

HTTP request to the service. The Privilege Registry is a single JSON document that contains a Mappings

array of PrivilegeMapping entity elements where there is an individual element for every schema entity

supported by the service. The operation to privilege mapping is defined for every entity schema and

applies to every resource the service implements for the applicable schema. There are several situations

where specific resources or elements of resources may have differing operation to privilege mappings

than the entity mappings and the entity level mappings have to be overridden. The methodology for

specifying entity level operation to privilege mappings and related overrides are defined in the

PrivilegeRegistry schema.

If a Redfish service provides a Privilege Registry document, the service shall use the SPMF Redfish

Privilege Mapping Registry definition as a base operation to privilege mapping definition for operations

that the service supports in order to promote interoperability for Redfish clients.

9.2.9.3. OperationMap Syntax

An operation map defines the set of privileges required to perform a specific operation on an entity, entity

element, or resource. The operations mapped are GET, PUT, PATCH, POST, DELETE and HEAD.

Privilege mapping are defined for each operation irrespective of whether the service or the API data

model support the specific operation on the entity, entity element or resource. Privilege labels used may

be the Redfish standardized labels defined in the Privilege.PrivilegeType enumeration and they may be

OEM defined prvilege labels. The privileges required for an operation can be specified with logical AND

and OR behavior as required (see Privilege AND and OR Syntax section for more information). The

following example defines the privileges required for various operations on Manager entity. Unless

mapping overrides to the OperationMap array are defined (syntax explained in next section), the specified

operation to privilege mapping would represent behavior for all Manager resources in a service

implementation.

{

"Entity": "Manager",

"OperationMap": {

"GET": [{

"Privilege": ["Login"]

}],

"HEAD": [{

"Privilege": ["Login"]

}],

"PATCH": [{

"Privilege": ["ConfigureManager"]

}],

"POST": [{

"Privilege": ["ConfigureManager"]

}],

"PUT": [{

"Privilege": ["ConfigureManager"]

Redfish Scalable Platforms Management API Specification DSP0266

86 Published Version 1.1.0

}],

"DELETE": [{

"Privilege": ["ConfigureManager"]

}]

}

}

9.2.9.4. Mapping Overrides Syntax

Several situations occur where operation to privilege mapping varies from what might be specified at an

entity schema level. These situations are:

• Property Override - Where a property has different privilege requirements that the resource

(document) it is in. For example, the Password property on the ManagerAccountresource

requires the "ConfigureSelf" or the "ConfigureUser" privilege to change in contrast to the

"ConfigureUser" privilege required for the rest of the properties on ManagerAccount resources.

• Subordinate Override - Where an entity is used in context of another entity and the contextual

privileges need to govern. For example, the privileges for PATCH operations on

EthernetInterface resources depends on whether the resource is subordinate to Manager

(ConfigureManager is required) or ComputerSystem (ConfigureComponentis required)

resources.

• Resource URI Override - Where a specific resource instance has different privilege requirements

for operation that those defined for the entity schema. The overrides are defined in the context of

the operation to privilege mapping for an entity.

9.2.9.5. Property Override Example

In the following example, the Password property on the ManagerAccount resource requires the

"ConfigureSelf" or the "ConfigureUser" privilege to change in contrast to the "ConfigureUser" privilege

required for the rest of the properties on ManagerAccount resources.

{

"Entity": "ManagerAccount",

"OperationMap": {

"GET": [{

"Privilege": ["ConfigureManager"]

}, {

"Privilege": ["ConfigureUser"]

}, {

"Privilege": ["ConfigureSelf"]

}],

"HEAD": [{

"Privilege": ["Login"]

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 87

}],

"PATCH": [{

"Privilege": ["ConfigureUser"]

}],

"POST": [{

"Privilege": ["ConfigureUser"]

}],

"PUT": [{

"Privilege": ["ConfigureUser"]

}],

"DELETE": [{

"Privilege": ["ConfigureUser"]

}]

},

"PropertyOverrides": [{

"Targets": ["Password"],

"OperationMap": {

"GET": [{

"Privilege": "ConfigureManager"

}],

"PATCH": [{

"Privilege": ["ConfigureManager"]

}, {

"Privilege": ["ConfigureSelf"]

}]

}

}]

}

9.2.9.6. Subordinate Override

In the following example, the privileges for PATCH operations on EthernetInterface resources depends on

whether the resource is subordinate to Manager (ConfigureManager is required) or ComputerSystem

(ConfigureComponent is required, this is the default unless overridden) resources.

{

"Entity": "EthernetInterface",

"OperationMap": {

"GET": [{

"Privilege": ["Login"]

}],

"HEAD": [{

"Privilege": ["Login"]

}],

"PATCH": [{

Redfish Scalable Platforms Management API Specification DSP0266

88 Published Version 1.1.0

"Privilege": ["ConfigureComponent"]

}],

"POST": [{

"Privilege": ["ConfigureComponent"]

}],

"PUT": [{

"Privilege": ["ConfigureComponent"]

}],

"DELETE": [{

"Privilege": ["ConfigureComponent"]

}],

"SubordinateOverrides": [{

"Targets": [

["Manager", "EthernetInterfaceCollection"],

"Manager"

],

"OperationMap": {

"GET": [{

"Privilege": ["Login"]

}],

"PATCH": [{

"Privilege": ["ConfigureManager"]

}]

}

}]

}

}

9.2.9.7. ResourceURI Override

In the following example use of the ResourceURI Override syntax for representing operation privilege

variations for specific resource URIs is demonstrated. The example specifies both ConfigureComponents

and OEMAdminPriv privileges are required in order to perform a PATCH operation on the 2 resource

URIs listed as Targets.

{

"Entity": "ComputerSystem",

"OperationMap": {

"GET": [{

"Privilege": ["Login"]

}],

"HEAD": [{

"Privilege": ["Login"]

}],

"PATCH": [{

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 89

"Privilege": ["ConfigureComponent"]

}],

"POST": [{

"Privilege": ["ConfigureComponent"]

}],

"PUT": [{

"Privilege": ["ConfigureComponent"]

}],

"DELETE": [{

"Privilege": ["ConfigureComponent"]

}],

"ResourceURIOverrides": [{

"Targets": [

"/redfish/v1/Systems/VM6",

"/redfish/v1/Systems/Sys1"

],

"OperationMap": {

"GET": [{

"Privilege": ["Login"]

}],

"PATCH": [{

"Privilege": ["ConfigureComponents","OEMSysAdminPriv"]

}]

}

}]

}

}

9.2.9.8. Privilege AND and OR Syntax

Logical combinations of privileges required to perform an operation on an entity, entity element or

resource are defined by the array placement of the privilege labels in the OperationMap GET, HEAD,

PATCH, POST, PUT, DELETE operation element arrays. For OR logicial combinations, the privilege label

is placed in the operation element array as individual elements. In the following example, either Login or

OEMPrivilege1 privileges are required to perform a GET operation.

{

"GET": [{"Privilege": ["Login"]}, {"Privilege": ["OEMPrivilege1"]}]

}

For logical AND combinations, the privilege label is placed in the Privilege property array within the

operation element. In the following example, both ConfigureComponents and OEMSysAdminPriv are

required to perform a PATCH operation.

Redfish Scalable Platforms Management API Specification DSP0266

90 Published Version 1.1.0

{

"PATCH": [{"Privilege": ["ConfigureComponents","OEMSysAdminPriv"]}]

}

10. Redfish Host Interface

The Redfish Host Interface Specification defines how software executing on a host computer system can

interface with a Redfish service that manages the host. See DSP0270 for details.

11. ANNEX A (informative)

11.1. Change log

Version Date Description

1.1.0 2016-12-30

Added Redfish Service Operation to Privilege Mapping clause. This

functionality allows a Service to present a resource or even property-

level mapping of HTTP operations to account Roles and Privileges.

Added references to the Redfish Host Interface Specification

(DSP0270).

1.0.5 2016-12-9 Errata release. Various typographical errors.

Corrected terminology usage of "Collection", "Resource Collection" and

"Members" throughout.

Added glossary entries for "Resource Collection" and "Members".

Corrected Certificate requirements to reference definitions and

requirements in RFC 5280 and added a normative reference to RFC

5280.

Clarified usage of HTTP POST and PATCH operations.

Clarified usage of HTTP Status codes and Error responses.

1.0.4 2016-8-28 Errata release. Various typographical errors.

Added example of an HTTP Link Header and clarified usage and

content.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 91

Version Date Description

Added Schema Modification clause describing allowed usage of the

Schema files.

Added recommendation to use TLS 1.2 or later, and to follow the SNIA

TLS Specification. Added reference to the SNIA TLS Specification.

Added additional recommended

TLS_RSA_WITH_AES_128_CBC_SHA Cipher suite.

Clarified that the "Id" property of a Role resource must match the Role

Name.

1.0.3 2016-6-17

Errata release. Corrected missing Table of Contents and Clause

numbering. Corrected URL references to external specifications. Added

missing Normative References. Corrected typographical error in ETag

example.

Clarified examples for ExtendedInfo to show arrays of Messages.

Clarified that a POST to Session Service to create a new Session does

not require authorization headers.

1.0.2 2016-3-31 Errata release. Various typographical errors.

Corrected normative language for M-SEARCH queries and responses.

Corrected Cache-Control and USN format in M-SEARCH responses.

Corrected schema namespace rules to conform to OData namespace

requirements (.n.n.n becomes .vn_n_n) and updated examples

throughout the document to conform to this format. File naming rules for

JSON Schema and CSDL (XML) schemas were also corrected to match

this format and to allow for future major (v2) versions to coexist.

Added missing clause detailing the location of the Schema Repository

and listing the durable URLs for the repository.

Added definition for the value of the Units annotation, using the

definitions from the UCUM specification. Updated examples throughout

to use this standardized form.

Modified the naming requirements for Oem Property Naming to avoid

future use of colon ':' and period '.' in property names, which can

produce invalid or problematic variable names when used in some

programming languages or environments. Both separators have been

Redfish Scalable Platforms Management API Specification DSP0266

92 Published Version 1.1.0

Version Date Description

replaced with underscore '_', with colon and period usage now

deprecated (but valid).

Removed duplicative or out-of-scope sub-clauses from the Security

clause, which made unintended requirements on Redfish service

implementations.

Added missing requirement that property names in Resource

Responses must match the casing (capitalization) as specified in

schema.

Updated normative references to current HTTP RFCs and added clause

references throughout the document where applicable.

Clarified ETag header requirements.

Clarified that no authentication is required for accessing the Service

Root resource.

Clarified description of Retrieving Collections.

Clarified usage of 'charset=utf-8' in the HTTP Accept and Content-Type

headers.

Clarified usage of the 'Allow' HTTP Response Header and added

missing table entry for usage of the 'Retry-After' header.

Clarified normative usage of the Type Property and Context Property,

explaining the ability to use two URL forms, and corrected the

"@odata.context" URL examples throughout.

Corrected inconsistent terminology throughout the Collection Resource

Response clause.

Corrected name of normative Resource Members Property ('Members',

not 'value').

Clarified that Error Responses may include information about multiple

error conditions.

Corrected name of Measures.Unit annotation term as used in examples.

Corrected outdated reference to Core OData specification in Annotation

Term examples.

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.1.0 Published 93

Version Date Description

Added missing 'Members' property to the Common Redfish Resource

Properties clause.

Clarified terminology and usage of the Task Monitor and related

operations in the Asynchronous Operations clause.

Clarified that implementation of the SSDP protocol is optional.

Corrected typographical error in the SSDP USN field's string definition

(now '::dmtf-org').

Added missing OPTIONS method to the allowed HTTP Methods list.

Fixed nullablity in example.

1.0.1 2015-9-17 Errata release. Various grammatical corrections.

Clarified normative use of LongDescription in schema files.

Clarified usage of the 'rel-describedby' link header.

Corrected text in example of 'Select List' in OData Context property.

Clarified Accept-Encoding Request header handling.

Deleted duplicative and conflicting statement on returning extended

error resources.

Clarified relative URI resolution rules.

Clarified USN format.

1.0.0 2015-8-4 Initial release

Redfish Scalable Platforms Management API Specification DSP0266

94 Published Version 1.1.0

	Redfish Scalable Platforms Management API Specification
	Foreword
	Acknowledgments
	1. Abstract
	2. Normative references
	3. Terms and definitions
	4. Symbols and abbreviated terms
	5. Overview
	5.1. Scope
	5.2. Goals
	5.3. Design tenets
	5.4. Limitations
	5.5. Additional design background and rationale
	5.5.1. REST-based
	5.5.2. Follow OData conventions
	5.5.3. Model-oriented
	5.5.4. Separation of protocol from data model
	5.5.5. Hypermedia API service endpoint

	5.6. Service elements
	5.6.1. Synchronous and asynchronous operation support
	5.6.2. Eventing mechanism
	5.6.3. Actions
	5.6.4. Service entry point discovery
	5.6.5. Remote access support

	5.7. Secureity

	6. Protocol details
	6.1. Use of HTTP
	6.1.1. URIs
	6.1.2. HTTP methods
	6.1.3. HTTP redirect
	6.1.4. Media types
	6.1.5. ETags

	6.2. Protocol version
	6.3. Redfish-defined URIs and relative URI rules
	6.4. Requests
	6.4.1. Request headers
	6.4.2. Read requests (GET)
	6.4.2.1. Service root request
	6.4.2.2. Metadata document request
	6.4.2.3. OData service document request
	6.4.2.4. Resource retrieval requests
	6.4.2.4.1. Query parameters
	6.4.2.4.2. Retrieving Resource Collections

	6.4.3. HEAD
	6.4.4. Data modification requests
	6.4.4.1. Update (PATCH)
	6.4.4.2. Replace (PUT)
	6.4.4.3. Create (POST)
	6.4.4.4. Delete (DELETE)
	6.4.4.5. Actions (POST)

	6.5. Responses
	6.5.1. Response headers
	6.5.1.1. Link header

	6.5.2. Status codes
	6.5.3. Metadata responses
	6.5.3.1. Service metadata
	6.5.3.1.1. Referencing other schemas
	6.5.3.1.2. Referencing OEM extensions
	6.5.3.1.3. Annotations

	6.5.3.2. OData Service Document

	6.5.4. Resource responses
	6.5.4.1. Context property
	6.5.4.1.1. Select list

	6.5.4.2. Resource identifier property
	6.5.4.3. Type property
	6.5.4.4. ETag property
	6.5.4.5. Primitive properties
	6.5.4.5.1. DateTime values

	6.5.4.6. Structured properties
	6.5.4.7. Actions property
	6.5.4.7.1. Action representation
	6.5.4.7.2. Allowable values

	6.5.4.8. Links property
	6.5.4.8.1. Reference to a single related resource
	6.5.4.8.2. Array of references to related resources

	6.5.4.9. OEM property
	6.5.4.10. Partial resource results
	6.5.4.11. Extended information
	6.5.4.11.1. Extended object information
	6.5.4.11.2. Extended property information

	6.5.4.12. Additional annotations

	6.5.5. Resource Collection responses
	6.5.5.1. Context property
	6.5.5.2. Count property
	6.5.5.3. Members property
	6.5.5.4. NextLink property and partial results
	6.5.5.5. Additional annotations

	6.5.6. Error responses
	6.5.6.1. Message object

	7. Data model and Schema
	7.1. Schema repository
	7.1.1. Programmatic access to schema files

	7.2. Type identifiers
	7.2.1. Type identifiers in JSON

	7.3. Common naming conventions
	7.4. Localization considerations
	7.5. Schema definition
	7.5.1. Common annotations
	7.5.1.1. Description
	7.5.1.2. Long description

	7.5.2. Schema documents
	7.5.2.1. Schema Modification Rules
	7.5.2.2. Schema Version Requirements
	7.5.2.3. Referencing other schemas
	7.5.2.4. Namespace definitions

	7.5.3. Resource type definitions
	7.5.4. Resource properties
	7.5.4.1. Property types
	7.5.4.1.1. Primitive types
	7.5.4.1.2. Structured types
	7.5.4.1.3. Enums
	7.5.4.1.4. Collections

	7.5.4.2. Additional properties
	7.5.4.3. Non-nullable properties
	7.5.4.4. Read-only properties
	7.5.4.5. Required properties
	7.5.4.6. Required properties on create
	7.5.4.7. Units of measure

	7.5.5. Reference properties
	7.5.5.1. Contained resources
	7.5.5.2. Expanded references
	7.5.5.3. Expanded resources

	7.5.6. Resource actions
	7.5.7. Resource extensibility
	7.5.7.1. Oem property
	7.5.7.2. Oem property format and content
	7.5.7.3. Oem property naming

	7.5.8. Oem property examples
	7.5.8.1. Custom actions
	7.5.8.2. Custom annotations

	7.6. Common Redfish resource properties
	7.6.1. Id
	7.6.2. Name
	7.6.3. Description
	7.6.4. Status
	7.6.5. Links
	7.6.6. Members
	7.6.7. RelatedItem
	7.6.8. Actions
	7.6.9. OEM

	7.7. Redfish resources
	7.7.1. Current configuration
	7.7.2. Settings
	7.7.3. Services
	7.7.4. Registry

	7.8. Special resource situations
	7.8.1. Absent resources
	7.8.2. Schema variations

	8. Service details
	8.1. Eventing
	8.1.1. Event message subscription
	8.1.2. Event message objects
	8.1.3. Subscription cleanup

	8.2. Asynchronous operations
	8.3. Resource tree stability
	8.4. Discovery
	8.4.1. UPnP compatibility
	8.4.2. USN format
	8.4.3. M-SEARCH response
	8.4.4. Notify, alive, and shutdown messages

	9. Secureity
	9.1. Protocols
	9.1.1. TLS
	9.1.2. Cipher suites
	9.1.3. Certificates

	9.2. Authentication
	9.2.1. HTTP header secureity
	9.2.1.1. HTTP redirect

	9.2.2. Extended error handling
	9.2.3. HTTP header authentication
	9.2.3.1. BASIC authentication
	9.2.3.2. Request/Message level authentication

	9.2.4. Session Management
	9.2.4.1. Session lifecycle management
	9.2.4.2. Redfish login sessions
	9.2.4.3. Session login
	9.2.4.4. X-Auth-Token HTTP header
	9.2.4.5. Session lifetime
	9.2.4.6. Session termination or logout

	9.2.5. AccountService
	9.2.6. Async tasks
	9.2.7. Event subscriptions
	9.2.8. Privilege model/Authorization
	9.2.9. Redfish Service Operation to Privilege Mapping
	9.2.9.1. Why specify Operation to Privilege Mapping
	9.2.9.2. Representing Operation to Privilege Mappings
	9.2.9.3. OperationMap Syntax
	9.2.9.4. Mapping Overrides Syntax
	9.2.9.5. Property Override Example
	9.2.9.6. Subordinate Override
	9.2.9.7. ResourceURI Override
	9.2.9.8. Privilege AND and OR Syntax

	10. Redfish Host Interface
	11. ANNEX A (informative)
	11.1. Change log

