
Document Identifier: DSP0266

Date: 2021-09-15

Version: 1.14.0

Redfish Specification

Supersedes: 1.13.1

Document Class: Normative

Document Status: Published

Document Language: en-US

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2015-2021 DMTF. All rights reserved.

Redfish Specification DSP0266

2 Published Version 1.14.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

Foreword. 6

Acknowledgments . 6

Introduction . 8

1 Scope. 9

2 Normative references. 10

3 Terms, definitions, symbols, and abbreviated terms . 12

3.1 Hardware terms . 12

3.2 Web development terms . 13

3.3 Redfish terms . 16

4 Typographical conventions . 18

5 Overview . 19

5.1 Goals . 19

5.2 Design tenets. 20

5.3 Limitations . 20

5.4 Additional design background and rationale . 21

5.5 Service elements . 22

5.6 Security . 23

6 Protocol details . 24

6.1 Universal Resource Identifiers. 24

6.2 HTTP methods . 26

6.3 HTTP redirect . 27

6.4 Media types . 27

6.5 ETags. 27

6.6 Protocol version. 28

6.7 Redfish-defined URIs and relative reference rules . 29

7 Service requests . 31

7.1 Request headers . 31

7.2 GET (read requests) . 35

7.3 Query parameters . 37

7.4 HEAD. 45

7.5 Data modification requests . 45

7.6 PATCH (update). 46

7.7 PATCH on array properties . 47

7.8 PUT (replace) . 48

7.9 POST (create) . 49

7.10 DELETE (delete) . 49

7.11 POST (action) . 50

7.12 Operation apply time . 52

7.13 Deep operations . 54

8 Service responses . 59

8.1 Response headers . 59

DSP0266 Redfish Specification

Version 1.14.0 Published 3

8.2 Link header . 62

8.3 Status codes . 62

8.4 OData metadata responses. 65

8.5 Resource responses . 68

8.6 Error responses . 68

9 Data model. 70

9.1 Resources . 70

9.2 Resource types . 70

9.3 Resource collections . 71

9.4 OEM resources . 71

9.5 Common data types . 72

9.6 Properties . 79

9.7 Naming conventions . 85

9.8 Extending standard resources. 87

9.9 Payload annotations . 91

9.10 Settings resource. 99

9.11 Special resource situations . 101

9.12 Registries. 102

9.13 Schema annotations . 103

9.14 Versioning . 107

9.15 Localization . 107

10 File naming and publication . 109

10.1 Registry file naming . 109

10.2 Profile file naming . 109

10.3 Dictionary file naming . 109

10.4 Localized file naming . 110

10.5 DMTF Redfish file repository . 110

11 Schema definition languages . 112

11.1 OData Common Schema Definition Language . 112

11.2 JSON Schema . 123

11.3 OpenAPI . 130

11.4 Schema modification rules. 137

12 Service details . 138

12.1 Eventing. 138

12.2 Asynchronous operations . 143

12.3 Resource tree stability . 144

12.4 Discovery. 145

12.5 Server-sent events . 146

12.6 Update service. 151

13 Security details. 154

13.1 Transport Layer Security (TLS) protocol . 154

13.2 Sensitive data . 155

13.3 Authentication . 155

Redfish Specification DSP0266

4 Published Version 1.14.0

13.4 Authorization . 159

13.5 Account service . 171

13.6 Asynchronous tasks . 172

13.7 Event subscriptions . 172

14 Redfish Host Interface . 173

15 Redfish composability . 174

15.1 Composition requests . 175

15.2 Updating a composed resource. 177

16 Aggregation . 178

16.1 Classes of aggregators . 178

16.2 Aggregation service. 179

17 ANNEX A (informative) Change log. 182

18 Bibliography . 206

DSP0266 Redfish Specification

Version 1.14.0 Published 5

Foreword

The Redfish Forum of the DMTF develops the Redfish standard.

DMTF is a not-for-profit association of industry members that promotes enterprise and systems management and

interoperability. For information about the DMTF, see DMTF.

This version supersedes version 1.13.1. For a list of the changes, see ANNEX A (informative) Change log.

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to the Redfish standard, including this

document and Redfish schemas, interoperability profiles, and message registries:

• Rafiq Ahamed - Hewlett Packard Enterprise

• Richelle Ahlvers - Broadcom Inc.

• Jeff Autor - Hewlett Packard Enterprise

• David Black - Dell Inc.

• Jeff Bobzin - Insyde Software Corp.

• Patrick Boyd - Dell Inc.

• David Brockhaus - Vertiv

• Richard Brunner - VMware Inc.

• Sean Byland - Cray Inc.

• Lee Calcote - Seagate Technology

• Keith Campbell - Lenovo

• P Chandrasekhar - Dell Inc.

• Barbara Craig - Hewlett Packard Enterprise

• Chris Davenport - Hewlett Packard Enterprise

• Gamma Dean - Vertiv

• Daniel Dufresne - Dell Inc.

• Samer El-Haj-Mahmoud - Arm Limited, Lenovo, Hewlett Packard Enterprise

• George Ericson - Dell Inc.

• Wassim Fayed - Microsoft Corporation

• Kevin Ferguson - Vertiv

• Mike Garrett - Hewlett Packard Enterprise

• Steve Geffin - Vertiv

• Joe Handzik - Hewlett Packard Enterprise

• Jon Hass - Dell Inc.

Redfish Specification DSP0266

6 Published Version 1.14.0

https://www.dmtf.org/

• Jeff Hilland - Hewlett Packard Enterprise

• Chris Hoffman - Vertiv

• Cactus Jiang - Vertiv

• Barry Kittner - Intel Corporation

• Steven Krig - Intel Corporation

• Jennifer Lee - Intel Corporation

• John Leung - Intel Corporation

• Magnus Lundmark - Ericsson AB

• Steve Lyle - Hewlett Packard Enterprise

• Gunnar Mills - IBM

• Jagan Molleti - Dell Inc.

• Milena Natanov - Microsoft Corporation

• Scott Phuong - Cisco Systems, Inc.

• Michael Pizzo - Microsoft Corporation

• Chris Poblete - Dell Inc.

• Michael Raineri - Dell Inc.

• Joseph Reynolds - IBM

• Irina Salvan - Microsoft Corporation

• Bill Scherer - Hewlett Packard Enterprise

• Hemal Shah - Broadcom Inc.

• Jim Shelton - Vertiv

• Tom Slaight - Intel Corporation

• Josiah Smith - Eaton

• Donnie Sturgeon - Vertiv

• Pawel Szymanski - Intel Corporation

• Paul Vancil - Dell Inc.

• Joseph White - Dell Inc.

• Linda Wu - NVIDIA Corporation, Super Micro Computer, Inc.

DSP0266 Redfish Specification

Version 1.14.0 Published 7

Introduction

Redfish is a standard that uses RESTful interface semantics to access a schema based data model to conduct

management operations. It is suitable for a wide range of devices, from stand-alone servers, to composable

infrastructures, and to large-scale cloud environments.

The initial Redfish scope targeted servers. The DMTF and its alliance partners expanded that scope to cover most

data center IT equipment and other solutions, and both in- and out-of-band access methods.

Additionally, the DMTF and other organizations that use Redfish as part of their industry standard or solution have

added educational material.

This document defines the RESTful interface protocol and the various concepts and services necessary to implement

a Redfish interface. The definition of the schema based data model and standard messages for the Redfish interface

are covered separately in the following documents:

• DMTF DSP8010, Redfish Schema Bundle, https://www.dmtf.org/dsp/DSP8010 contains the individual schema

definition files in multiple schema description languages.

• DMTF DSP0268, Redfish Schema Supplement, https://www.dmtf.org/dsp/DSP0268 contains the normative

descriptions and example payloads for all standard Redfish schema in a single reference guide.

• DMTF DSP8011, Redfish Standard Registries Bundle, https://www.dmtf.org/dsp/DSP8011 contains the

message registries used for error reporting and event messages.

Redfish Specification DSP0266

8 Published Version 1.14.0

https://www.dmtf.org/dsp/DSP8010
https://www.dmtf.org/dsp/DSP0268
https://www.dmtf.org/dsp/DSP8011

1 Scope

This specification defines the required protocols, data model, behaviors, and other architectural components for an

interoperable, multivendor, remote, and out-of-band capable interface. This interface meets the cloud-based and

web-based IT professionals' expectations for scalable platform management. While large and hyperscale

environments are the primary focus, clients can use the specification for individual system management.

The specification defines the required elements for all Redfish implementations, and the optional elements that

system vendors and manufacturers can choose. This specification also defines at which points an implementation

can provide OEM-specific extensions.

The specification sets normative requirements for Redfish services and associated materials, such as Redfish

schema files. In general, the specification does not set requirements for Redfish clients but indicates how a client can

successfully and effectively access and use a Redfish service.

The specification does not require that implementations of the Redfish interfaces and functions require particular

hardware or firmware.

DSP0266 Redfish Specification

Version 1.14.0 Published 9

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes

requirements of this document. For dated references, only the edition cited applies. For undated references, the

latest edition of the referenced document (including any amendments) applies.

• DMTF DSP0270, Redfish Host Interface Specification, https://www.dmtf.org/sites/default/files/standards/

documents/DSP0270_1.0.0.pdf

• Redfish Schema: RedfishExtensions v1.0.0, https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml

• Transport Layer Security (TLS) Parameters, https://www.iana.org/assignments/tls-parameters/tls-

parameters.xhtml

• JSON Schema: A Media Type for Describing JSON Documents draft-handrews-json-schema-01,

https://tools.ietf.org/html/draft-handrews-json-schema-01

• JSON Schema Validation: A Vocabulary for Structural Validation of JSON draft-handrews-json-schema-

validation-01, https://tools.ietf.org/html/draft-handrews-json-schema-validation-01

• IETF RFC1738, T. Berners-Lee et al, Uniform Resource Locators (URL), https://tools.ietf.org/html/rfc1738

• IETF RFC3986, T. Berners-Lee et al, Uniform Resource Identifier (URI): Generic Syntax, https://tools.ietf.org/

html/rfc3986

• IETF RFC5280, D. Cooper et al, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile,

• IETF RFC6585, M. Nottingham et al, Additional HTTP Status Codes, https://tools.ietf.org/html/rfc6585

• IETF RFC6749, D. Hardt, Ed., The OAuth 2.0 Authorization Framework, https://tools.ietf.org/html/rfc6749

• IETF RFC6901, P. Bryan, Ed. et al, JavaScript Object Notation (JSON) Pointer, https://tools.ietf.org/html/rfc6901

• IETF RFC7230, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing,

https://tools.ietf.org/html/rfc7230

• IETF RFC7231, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,

https://tools.ietf.org/html/rfc7231

• IETF RFC7232, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests,

https://tools.ietf.org/html/rfc7232

• IETF RFC7234, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Caching, https://tools.ietf.org/html/

rfc7234

• IETF RFC7519, M. Jones et al, JSON Web Token (JWT), https://tools.ietf.org/html/rfc7519

• IETF RFC7525, Y. Sheffer et al, Recommendations for Secure Use of Transport Layer Security (TLS) and

Datagram Transport Layer Security (DTLS), https://tools.ietf.org/html/rfc7525

• IETF RFC7578, L. Masinter et al, Returning Values from Forms: multipart/form-data, https://tools.ietf.org/html/

rfc7578

• IETF RFC7617, J. Reschke et al, The 'Basic' HTTP Authentication Scheme, https://tools.ietf.org/html/rfc7617

• IETF RFC8259, T. Bray, Ed., The JavaScript Object Notation (JSON) Data Interchange Format,

Redfish Specification DSP0266

10 Published Version 1.14.0

https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7617

https://tools.ietf.org/html/rfc7617

• IETF RFC8288, M. Nottingham, Web Linking, https://tools.ietf.org/html/rfc8288

• ISO 639-1:2002, Codes for the representation of names of languages - Part 1: Alpha-2 code,

https://www.iso.org/standard/22109.html

• 24 February 2014, OData Version 4.0 Part 1: Protocol, https://docs.oasis-open.org/odata/odata/v4.0/os/

part1-protocol/odata-v4.0-os-part1-protocol.html

• 24 February 2014, OData Version 4.0 Part 3: Common Schema Definition Language (CSDL), https://docs.oasis-

open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html

• 10 March 2016, OData Version 4.0 Plus Errata 03 OASIS Standard incorporating Draft 01 of Errata 03,

https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/

Org.OData.Measures.V1.xml

• 20 November 2014, SNIA TLS Specification for Storage Systems, https://www.snia.org/tech_activities/

standards/curr_standards/tls

• The OpenAPI Specification, https://swagger.io/specification/

• The Unified Code for Units of Measure, https://ucum.org/ucum.html

• 24 December 2020, Fetch Living Standard, https://fetch.spec.whatwg.org/

• 9.2 Server-sent events in the HTML Living Standard, https://html.spec.whatwg.org/multipage/server-sent-

events.html

DSP0266 Redfish Specification

Version 1.14.0 Published 11

https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8288
https://www.iso.org/standard/22109.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://swagger.io/specification/
https://ucum.org/ucum.html
https://fetch.spec.whatwg.org/
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://html.spec.whatwg.org/multipage/server-sent-events.html

3 Terms, definitions, symbols, and abbreviated terms

Some terms and phrases in this document have specific meanings beyond their typical English meanings. This

clause defines those terms and phrases.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",

"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional

cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7

specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal

English meaning.

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative

content. Notes and examples are always informative elements.

The term "deprecated" in this document is to be interpreted as material that is not recommended for use in new

development efforts. Existing and new implementations may use this material, but they should move to the favored

approach. Deprecated material may be implemented in order to achieve backwards compatibility. Deprecated

material should contain references to the last published version that included the deprecated material as normative

material and to a description of the favored approach. Deprecated material may be removed from the next major

version of the specification.

This document defines these additional terms:

3.1 Hardware terms

3.1.1 baseboard management controller (BMC)

embedded device or service

Note 1 to entry: Typically an independent microprocessor or system-on-chip with associated firmware in a computer

system that completes out-of-band systems monitoring and management-related tasks.

3.1.2 IPMI

Intelligent Platform Management Interface

Redfish Specification DSP0266

12 Published Version 1.14.0

3.1.3 KVM-IP

keyboard, video, mouse redirection over IP

3.1.4 NIC

network interface controller

3.1.5 PCI

Peripheral Component Interconnect

3.1.6 PCIe

Peripheral Component Interconnect Express

3.2 Web development terms

3.2.1 CORS

cross-origin resource sharing

3.2.2 CRUD

basic Create, Read, Update, and Delete operations that any interface can support

3.2.3 CSRF

cross-site request forgery

3.2.4 event

data structure that corresponds to one or more alerts

3.2.5 excerpt

subset of data that is copied from one resource and presented in another resource

Note 1 to entry: An excerpt provides data in convenient locations without duplication of entire resources.

DSP0266 Redfish Specification

Version 1.14.0 Published 13

3.2.6 HTTP

Hypertext Transfer Protocol

3.2.7 HTTPS

Hypertext Transfer Protocol Secure

Note 1 to entry: TLS secures HTTP.

3.2.8 hypermedia API

API that enables you to navigate through URIs that a service returns

3.2.9 IP

Internet Protocol

3.2.10 JSON

JavaScript Object Notation

3.2.11 member

single resource instance in a resource collection

3.2.12 message

complete HTTP-formatted or HTTPS-formatted request or response

Note 1 to entry: In the REST-based Redfish protocol, every request results in a response.

3.2.13 OData

Open Data Protocol (OData), as defined in OData Version 4.0 Part 1: Protocol

3.2.14 OData service document

resource that provides information about the service root for generic OData clients

Redfish Specification DSP0266

14 Published Version 1.14.0

3.2.15 operation

HTTP POST , GET , PUT , PATCH , HEAD , and DELETE request methods that map to generic CRUD operations

3.2.16 parent resource

parent to another resource if the initial segment of the resource URI is the same as the URI of the other resource, but

is at least one level higher

Note 1 to entry: For example, /redfish/v1/Chassis/A88 is a parent resource of /redfish/v1/Chassis/A88/

Assembly .

3.2.17 property

name-value pair in a Redfish-defined request or response

Note 1 to entry: A property can be any valid JSON data type.

3.2.18 request

message from a client to a service

3.2.19 response

message from a service to a client in response to a request message

3.2.20 subscription

registration of a destination to receive events

3.2.21 task

representation of a long-running operation

3.2.22 task monitor

opaque service-generated URI that the client who initiates the request can use to monitor an asynchronous operation

3.2.23 TCP

Transmission Control Protocol

DSP0266 Redfish Specification

Version 1.14.0 Published 15

3.2.24 TLS

Transport Layer Security

3.2.25 XSS

cross-site scripting

3.3 Redfish terms

3.3.1 collection

see resource collection

3.3.2 Redfish client

communicates with a Redfish service and accesses one or more of the service's resources or functions

3.3.3 Redfish protocol

discovers, connects to, and inter-communicates with a Redfish service

3.3.4 Redfish schema

a set of human and machine-readable documents that define Redfish resources using one or more of the supported

schema definition languages

3.3.5 Redfish service

implementation of the protocols, resources, and functions that deliver the interface that this specification defines and

its associated behaviors for one or more managed systems

Note 1 to entry: Also known as the service.

3.3.6 resource

URI-addressable Redfish data structure

Redfish Specification DSP0266

16 Published Version 1.14.0

3.3.7 resource collection

set of similar resources where the number of instances can shrink or grow

3.3.8 resource tree

tree structure of resources accessible through a well-known starting URI

Note 1 to entry: A client can discover the available resources on a Redfish service by following the resource

hyperlinks from the base of the tree.

3.3.9 resource type

set of definitions for properties and actions contained within a resource and documented in the Redfish schema files

3.3.10 service root

starting-point resource for locating and accessing the other resources and associated metadata that make up an

instance of a Redfish service

3.3.11 subordinate resource

is subordinate to another resource if the initial segment of the resource URI is the same as the URI of the other

resource, but is at least one level deeper

Note 1 to entry: For example, /redfish/v1/Chassis/A88/Assembly is a subordinate resource of the Chassis

resource named A88 .

DSP0266 Redfish Specification

Version 1.14.0 Published 17

4 Typographical conventions

The following typographical convention indicates deprecated material:

DEPRECATED

Deprecated material appears here.

END DEPRECATED

In places where this typographical convention cannot be used, such as tables or figures, the "DEPRECATED" label

is used alone.

Redfish Specification DSP0266

18 Published Version 1.14.0

5 Overview

Redfish is a management standard that uses a data model representation with a RESTful interface.

Being RESTful, Redfish is easier to use and implement.

Being model-oriented, it can express the relationships between components and the semantics of the Redfish

services and components within them. The model is also easy to extend.

By requiring JSON representation, Redfish enables easy integration with programming environments. It is also easy

to interpret by humans.

An interoperable Redfish schema defines this model, which is freely available and published in OpenAPI YAML,

OData CSDL, and JSON Schema formats.

5.1 Goals

As an architecture, data model, and set of protocols that enable a client to access Redfish services, Redfish has

these goals.

Table 1 describes these goals:

Table 1 — Redfish goals

Goal Purpose

Scalable Can scale on stand-alone machines or racks of equipment.

Flexible
Can implement through existing hardware or entirely as a software

service.

Extensible
Can easily add new and vendor-specific capabilities to the data

model.

Backward-compatible
Can add capabilities while preserving investments in earlier

implementations.

Interoperable
Provides consistent functionality across multiple vendor

implementations.

Standards-based
Built on ubiquitous and secure protocols. Leverages other standards

where applicable.

Simple
Easy-to-use without the need for highly specialized programming

skills or systems knowledge.

DSP0266 Redfish Specification

Version 1.14.0 Published 19

Goal Purpose

Lightweight
Designed to reduce complexity and implementation costs. Minimizes

the required footprint for implementations.

5.2 Design tenets

To deliver these goals, Redfish:

• Provides a RESTful interface by using a JSON payload and a data model.

• Separates the protocol from the data model, which enables the independent revision and use of each.

• Specifies versioning rules for protocols and schema.

• Leverages strength of ubiquitous standards where it meets architectural requirements, such as JSON, HTTP,

OData, OpenAPI, and the RFCs that this document references.

• Organizes the data model so that it provides clearly demarcated and value-add features in the same payload as

standardized items.

• Makes data in payloads as obvious in context as possible.

• Maintains implementation flexibility. Does not tie the interface to any particular underlying implementation or

architecture.

• Focuses on widely used capabilities. To avoid complexity, does not add functions that only a small percentage of

users value.

5.3 Limitations

Redfish minimizes the need for clients to complete upgrades by using strict versioning and forward-compatibility

rules, and separation of the protocols from the data model. However, Redfish does not guarantee that clients never

need to update their software. For example, clients might need to upgrade to manage new system or component

types, or update the data model.

Interoperable does not mean identical. Many elements of Redfish are optional. Clients should be prepared to

discover the optional elements by using the built-in discovery methods.

The resource tree reflects the topology of the system and its devices. Consequently, different hardware or device

types result in different resource trees, even for identical systems from the same manufacturer. References between

resources may result in a graph instead of a tree. Clients that traverse the resource tree should provide logic to avoid

infinite loops.

Additionally, not all Redfish resources use simple REST read-and-write semantics. Different use cases may follow

other types of client logic. For example, clients cannot simply read user credentials or certificates from one service

and write them to another service.

Redfish Specification DSP0266

20 Published Version 1.14.0

Finally, the hyperlink values between resources and other elements can vary across implementations. Clients should

not assume that they can reuse hyperlinks across different Redfish service instances.

5.4 Additional design background and rationale

5.4.1 REST-based interface

Redfish exposes many service applications as RESTful interfaces. This document defines a RESTful interface.

Redfish defines a RESTful interface because it:

• Enables a lightweight implementation, using fewer layers than previous standards.

• Is a prevalent access method in the industry.

• Is easy to learn, document, and implement in modern programming languages.

• Has a number of development environments and a healthy tooling ecosystem.

• Fits with the design goal of simplicity.

• Equally applies to software application space as it does to embedded environments, which enables convergence

and sharing of code within the management ecosystem.

• Adapts well to any data modeling language.

• Has industry-provided security and discovery mechanisms.

5.4.2 Data-oriented

The Redfish data model is developed by focusing on the contents of the payload. By concentrating on the contents of

the payload first, Redfish payloads are easily mapped to schema definition languages and encoding types. The data

model is defined in various schema languages, including OpenAPI YAML, OData CSDL, and JSON Schema.

5.4.3 Separation of protocol from data model

Redfish separates the protocol operations from the data model and versions the protocol independently from the data

model. This enables clients to extend and change the data model as needed without requiring the protocol version to

change.

5.4.4 Hypermedia API service root

Redfish has a single service root URI and clients can discover all resources through referenced URIs. The

hypermedia API enables the discovery of resources through hyperlinks.

5.4.5 OpenAPI v3.0 support

The OpenAPI v3.0 provides a rich ecosystem of tools for using RESTful interfaces that meet the design requirements

DSP0266 Redfish Specification

Version 1.14.0 Published 21

of that specification. Starting with Redfish Specification v1.6.0, the Redfish schemas support the OpenAPI YAML file

format and URI patterns that conform to the OpenAPI Specification were defined. Conforming Redfish services that

support the Redfish protocol version v1.6.0 or later implement those URI patterns to enable use of the OpenAPI

ecosystem.

For details, see OpenAPI Specification v3.0.

5.4.6 OData conventions

With the popularity of RESTful APIs, there are nearly as many RESTful interfaces as there are applications. While

following REST patterns helps promote good practices, due to design differences between the many RESTful APIs

there few common conventions between them.

To provide for interoperability between APIs, OData defines a set of common RESTful conventions and annotations.

Redfish follows OData conventions for describing schema, URL conventions, and definitions for typical properties in

a JSON payload.

5.5 Service elements

5.5.1 Synchronous and asynchronous operation support

Some operations can take more time than a client typically wants to wait. For this reason, some operations can be

asynchronous at the discretion of the service. The request portion of an asynchronous operation is no different from

the request portion of a synchronous operation.

To determine whether an operation was completed synchronously or asynchronously, clients can review the HTTP

status codes. For more information, see the Asynchronous operations clause.

5.5.2 Eventing mechanism

Redfish enables clients to receive messages outside the normal request and response paradigm. The service uses

these messages, or events, to asynchronously notify the client of a state change or error condition, usually of a time

critical nature.

This specification defines two styles of eventing:

• Push-style eventing.

When the service detects the need to send an event, it calls HTTP POST to push the event message to the

client. Clients can enable reception of events by creating a subscription entry in the event service, or an

administrator can create subscriptions as part of the Redfish service configuration.

• Server-sent events (SSE)-style eventing.

Redfish Specification DSP0266

22 Published Version 1.14.0

The client opens an SSE connection to the service through a GET on the ServerSentEventUri -specified URI

in the event service.

For information, see the Eventing clause.

5.5.3 Actions

Actions are Redfish operations that do not easily map to RESTful interface semantics. These types of operations

may not directly affect properties in the Redfish resources. The Redfish schema defines certain standard actions for

common Redfish resources. For these standard actions, the Redfish schema contains the normative language on the

behavior of the action.

5.5.4 Service discovery

While the service itself is at a well-known URI, clients need to discover the network address of the service. Like

UPnP, Redfish uses SSDP for discovery. A wide variety of devices, such as printers and client operating systems,

support SSDP. It is simple, lightweight, IPv6 capable, and suitable for implementation in embedded environments.

For more information, see the Discovery clause.

5.5.5 Remote access support

Remote management functionality typically includes access mechanisms for redirecting operator interfaces such as

serial console, keyboard video and mouse (KVM-IP), command shell, or command-line interface, and virtual media.

While these mechanisms are critical functionality, they cannot be reasonably implemented as a RESTful interface.

Therefore, this standard does not define the protocols or access mechanisms for those services but encourages

implementations that leverage existing standards. However, the Redfish schema includes resources and properties

that enable client discovery of these capabilities and access mechanisms to enable interoperability.

5.6 Security

The challenge of remote interface security is to protect both the interface and exchanged data. To accomplish this,

Redfish provides authentication and encryption. As part of this security, Redfish defines and requires minimum levels

of encryption.

For more information, see the Security details clause.

DSP0266 Redfish Specification

Version 1.14.0 Published 23

6 Protocol details

In this document, the Redfish protocol refers to the RESTful mapping to HTTP, TCP/IP, and other protocol, transport,

and messaging layer aspects. HTTP is the application protocol that transports the messages and TCP/IP is the

transport protocol. The RESTful interface is a mapping to the message protocol.

The Redfish protocol is designed around a web service-based interface model, which provides network and

interaction efficiency for both user interface (UI) and automation usage. Specifically, the protocol can leverage

existing tool chains.

Table 2 describes the items that the Redfish protocol uses:

Table 2 — Redfish protocol

Item Description

HTTP methods Maps to common CRUD operations.

Actions Expands operations beyond CRUD-type operations.

Media types Negotiates the type of data sent in the message body.

HTTP status codes Indicates the success or failure of the server's request.

Error responses Returns more information than HTTP status codes.

TLS Secures messages. See Security details.

Asynchronous semantics Manages long-running operations.

A Redfish interface shall be exposed through a web service endpoint implemented by using HTTP version 1.1. See

RFC7230, RFC7231, and RFC7232.

The subsequent clauses describe how the Redfish interface uses and adds constraints to HTTP to ensure

interoperability of Redfish implementations.

6.1 Universal Resource Identifiers

A Universal Resource Identifier (URI) identifies a resource, including the service root and all Redfish resources.

• A URI shall identify each unique instance of a resource.

• URIs shall not include any RFC1738-defined unsafe characters.

◦ For example, the { , } , , | , ^ , ~ , [,] , ` , and \ characters are unsafe because gateways and

other transport agents can sometimes modify these characters.

Redfish Specification DSP0266

24 Published Version 1.14.0

◦ Do not use the # character for anything other than the start of a fragment.

• URIs shall not include any percent-encoding of characters. This restriction does not apply to the query

parameters portion of the URI.

A GET operation on a URI returns a representation of the resource with properties and hyperlinks to associated

resources. The service root URI is well known and is based on the protocol version.

To discover the URIs to additional resources, extract the associated resource hyperlinks from earlier responses. The

hypermedia API enables the discovery of resources through hyperlinks.

Redfish considers the RFC3986-defined scheme, authority, service root, and version, and unique resource path

component parts of the URI.

For example, this URI:

https://mgmt.vendor.com/redfish/v1/Systems/1

Contains these component parts:

• https: is the scheme.

• mgmt.vendor.com is the authority to which to delegate the URI.

• redfish/v1 is the service root and version.

• Systems/1 is the unique resource path.

In a URI:

• The scheme and authority component parts are not part of the unique resource path because redirection

capabilities and local operations may cause the connection portion to vary.

• The service root and resource path component parts uniquely identify the resource in a Redfish service.

In an implementation:

• The resource path component part shall be unique.

• A relative reference in the body and HTTP headers payload can identify a resource in that same implementation.

• An absolute URI in the body and HTTP headers payload can identify a resource in a different implementation.

For the absolute URI definition, see RFC3986.

For example, a POST operation may return the /redfish/v1/Systems/2 URI in the Location header of the

response, which points to the POST -created resource.

DSP0266 Redfish Specification

Version 1.14.0 Published 25

Assuming that the client connects through the mgmt.vendor.com appliance, the client accesses the resource

through the https://mgmt.vendor.com/redfish/v1/Systems/2 absolute URI.

URIs that conform to RFC3986 may also contain the query, ?query , and frag, #frag , components. For information

about queries, see Query parameters. When a URI includes a fragment (frag) to submit an operation, the server

ignores the fragment.

If a property in a response references another property within a resource, use the RFC6901-defined URI fragment

identifier representation format. If the property is a reference property in the schema, the fragment shall reference a

valid resource identifier. For example, the following fragment identifies a property at index 0 of the Fans array in the

/redfish/v1/Chassis/MultiBladeEncl/Thermal resource:

{
"@odata.id": "/redfish/v1/Chassis/MultiBladeEncl/Thermal#/Fans/0"

}

For requirements on constructing Redfish URIs, see the resource URI patterns annotation clause.

6.2 HTTP methods

Table 3 describes the mapping of HTTP methods to the Redfish-supported operations. If the Required column

contains Yes, a Redfish interface shall support the HTTP method. If the Required column contains No, a Redfish

interface may support the HTTP method.

Table 3 — Mapping of HTTP methods to Redfish-supported operations

HTTP method Interface semantic Required

POST

Create resource

Resource action

Eventing

Yes

GET Retrieve resource Yes

PUT Replace resource No

PATCH Update resource Yes

DELETE Delete resource Yes

HEAD Retrieve resource header No

OPTIONS
Retrieve header

Cross-origin resource sharing (CORS) preflight
No

Redfish Specification DSP0266

26 Published Version 1.14.0

For HTTP methods that the Redfish service does not support or that Table 3 omits, the Redfish service shall return

the HTTP 405 Method Not Allowed status code or the HTTP 501 Not Implemented status code.

6.3 HTTP redirect

HTTP redirect enables a service to redirect a request to another URL. Among other things, HTTP redirect enables

Redfish resources to alias areas of the data model.

All Redfish clients shall correctly handle HTTP redirect.

The service for the redirected resource shall enforce the authentication and authorization requirements for the

redirected resource.

6.4 Media types

Some resources may be available in more than one type of representation. The media type indicates the

representation type.

In HTTP messages, the media type is specified in the Content-Type header. To tell a service to return the response

through certain media types, the client sets the HTTP Accept header to a list of the media types.

• All resources shall be available through the JSON application/json media type.

• Redfish services shall make every resource available in a JSON-based representation as a JSON object, as

specified in RFC8259. Receivers shall not reject a JSON-encoded message, and shall offer at least one JSON-

based response representation. An implementation may offer additional non-JSON media type representations.

To request compression in the response body, clients specify an Accept-Encoding request header.

6.5 ETags

To reduce unnecessary RESTful accesses to resources, the Redfish service should support the association of a

separate entity tag (ETag) with each resource.

• Implementations should support the return of ETag properties for each resource.

• Implementations should support the return of ETag headers for each single-resource response.

• Implementations shall support the return of ETag headers for GET requests of ManagerAccount resources.

Because the service knows whether the new version of the object is substantially different, the service generates and

provides the ETag as part of the resource payload.

The ETag mechanism supports both strong and weak validation. If a resource supports an ETag, it shall use the

RFC7232-defined ETag.

DSP0266 Redfish Specification

Version 1.14.0 Published 27

This specification does not mandate a particular algorithm for ETag creation, but ETags should be highly collision-

free.

An ETag can be:

• A hash

• A generation ID

• A time stamp

• Some other value that changes when the underlying object changes

If a client performs a PUT operation or PATCH operation to update a resource, it should include an ETag from a

previous GET in the HTTP If-Match or If-None-Match header. Both strong and weak ETags are allowed in

these headers. If a service supports the return of the ETag header on a resource, it may respond with the HTTP 428

Precondition Required status code if the If-Match or If-None-Match header is missing from the PUT or

PATCH request for the same resource, as specified in RFC6585.

In addition to the return of the ETag property on each resource, a Redfish service should return the ETag header on:

• A client PUT , POST , or PATCH operation

• A GET operation for an individual resource

The format of the ETag header is:

ETag: <string>

6.6 Protocol version

The protocol version is separate from the resources' version or the Redfish schema version that the resources

support.

Each Redfish protocol version is strongly typed by using the URI of the Redfish service in combination with the

resource obtained at that URI, called the ServiceRoot resource.

The root URI for this version of the Redfish protocol shall be /redfish/v1/ .

The URI defines the major version of the protocol.

The RedfishVersion property of the ServiceRoot resource defines the protocol version, which includes the major

version, minor version, and errata version of the protocol, as defined in the Redfish schema for that resource.

The protocol version is a string in the format:

Redfish Specification DSP0266

28 Published Version 1.14.0

<MajorVersion>.<MinorVersion>.<ErrataVersion>

where

• <MajorVersion> is an integer that represents the major version. Indicates a backward-incompatible change.

• <MinorVersion> is an integer that represents the minor version. Indicates a minor update. Redfish introduces

functionality but does not remove any functionality. The minor version preserves compatibility with earlier minor

versions.

• <ErrataVersion> is an integer that represents the errata version. Indicates a fix to the earlier version.

Any resource that a client discovers through hyperlinks that the service root or any service root-referenced service or

resource returns shall conform to the same protocol version that the service root supports.

A GET operation on the /redfish resource shall return this response body:

{
"v1": "/redfish/v1/"

}

6.7 Redfish-defined URIs and relative reference rules

Table 4 describes the Redfish-defined URIs that a Redfish service shall support:

Table 4 — Redfish-defined URIs

URI Returns Note

/redfish

Version. A major update that does not

preserve compatibility with earlier minor

versions.

Services shall support this URI.

/redfish/v1/ Redfish service root. Services shall support this URI.

/redfish/v1/odata Redfish OData service document. Services shall support this URI.

/redfish/v1/$metadata Redfish metadata document. Services shall support this URI.

/redfish/v1/openapi.yaml Redfish OpenAPI YAML document. Services should support this URI.

/redfish/v1/Schemas/<SchemaFile>

Local copy of a Redfish schema file, where

<SchemaFile> is the file name of the local

schema file.

Services should support this URI.

In addition, Table 5 describes the URIs that services shall process without a trailing slash in one of these ways:

• Redirect it to the associated Redfish-defined URI.

DSP0266 Redfish Specification

Version 1.14.0 Published 29

• Treat it as the equivalent URI to the associated Redfish-defined URI.

Table 5 — Redfish-defined URIs without trailing slashes

URI Associated Redfish-defined URI

/redfish/v1 /redfish/v1/

/redfish/ /redfish

All other Redfish service-supported URIs shall match the resource URI patterns definitions, except the supplemental

resources that the @Redfish.Settings , @Redfish.ActionInfo , and @Redfish.CollectionCapabilities payload

annotations reference. The client shall treat the URIs for these supplemental resources as opaque.

All Redfish-defined URIs and URIs starting with /redfish are reserved for future standardization by DMTF and

DMTF alliance partners, except OEM extension URIs, which shall conform to the requirements of the OEM URIs

clause.

All relative references that the service uses shall start with either:

• A double forward slash (//) and include the authority (network-path), such as //mgmt.vendor.com/redfish/

v1/Systems .

• A single forward slash (/) and include the absolute-path, such as /redfish/v1/Systems .

For details, see RFC3986.

Redfish Specification DSP0266

30 Published Version 1.14.0

7 Service requests

This clause describes the requests that clients can send to Redfish services.

7.1 Request headers

The HTTP Specification defines headers for request messages. Table 6 defines those headers and their

requirements for Redfish services and clients.

For Redfish services:

• Redfish services shall process the headers in Table 6 as defined by the HTTP 1.1 Specification if the Service

requirement column contains Yes or Conditional.

• Redfish services should process the headers in Table 6 and Table 7 as defined by the HTTP 1.1 Specification if

the Service requirement column contains No.

For Redfish clients (sending the HTTP requests):

• Redfish clients shall include the headers in Table 6 as defined by the HTTP 1.1 Specification if the Client

requirement column contains Yes or Conditional.

• Redfish clients should transmit the headers in Table 6 and Table 7 as defined by the HTTP 1.1 Specification if

the Client requirement column contains No.

DSP0266 Redfish Specification

Version 1.14.0 Published 31

Table 6 — Request headers

Header Service requirement Client requirement Supported values Description

Accept Yes No RFC7231

Communicates to the server the

media type or types that this client

is prepared to accept.

Services shall support resource

requests with Accept header

values of application/json or

application/

json;charset=utf-8 .

Services shall support XML

metadata requests with Accept

header values of application/

xml or application/

xml;charset=utf-8 .

Services shall support OpenAPI

YAML schema requests with

Accept header values of

application/yaml or

application/

yaml;charset=utf-8 or

application/vnd.oai.openapi

or application/

vnd.oai.openapi;charset=utf-8 .

Services shall support SSE

requests with Accept header

values of text/event-stream or

text/event-

stream;charset=utf-8 .

Services shall support any request

with Accept header values of

application/* ,

application/*;charset=utf-8 ,

/ , or */*;charset=utf-8 .

Accept-Encoding No No RFC7231

Indicates whether the client can

handle gzip-encoded responses. If

a service cannot return an

acceptable response to a request

with this header, it shall respond

with the HTTP 406 Not

Acceptable status code. If the

request omits this header, the

service should not return gzip-

encoded responses.

Redfish Specification DSP0266

32 Published Version 1.14.0

Header Service requirement Client requirement Supported values Description

Accept-Language No No RFC7231

The languages that the client

accepts in the response. If the

request omits this header, uses

the service's default language for

the response.

Authorization Conditional Conditional RFC7617, RFC6749

Required for HTTP Basic

authentication and OAuth 2.0.

A client can access unsecured

resources without this header on

systems that support Basic

authentication.

Content-Length No No RFC7231

The size of the message body.

To indicate the size of the body, a

client can use the Transfer-

Encoding: chunked header.

If a service needs to use

Content-Length and does not

support Transfer-Encoding , it

responds with the HTTP 406 Not

Acceptable status code.

Content-Type Conditional Conditional RFC7231

The request format. Required for

operations with a request body.

Services shall accept the

Content-Type header set to

either application/json or

application/

json;charset=utf-8 .

It is recommended that clients use

these values in requests because

other values can cause an error.

Host Yes No RFC7230
Enables support of multiple origin

hosts at a single IP address.

If-Match Conditional No RFC7232

To ensure that clients update the

resource from a known state, PUT

and PATCH requests for resources

for which a service returns ETags

shall support If-Match .

While not required for clients, it is

highly recommended for PUT and

PATCH operations.

DSP0266 Redfish Specification

Version 1.14.0 Published 33

Header Service requirement Client requirement Supported values Description

If-None-Match No No RFC7232

A service only returns the resource

if the current ETag of that resource

does not match the ETag sent in

this header.

If the ETag in this header matches

the resource's current ETag, the

GET operation returns the HTTP

304 Not Modified status code.

Last-Event-ID No No HTML5 SSE

The event source's last id field

from the SSE stream. Requests

history event data.

See Server-sent events.

Max-Forwards No No RFC7231

Limits gateway and proxy hops.

Prevents messages from

remaining in the network

indefinitely.

OData-MaxVersion No No 4.0

The maximum OData version that

an OData-aware client

understands.

OData-Version Yes No 4.0

The OData version.

Services shall reject requests that

specify an unsupported OData

version.

If a service encounters an

unsupported OData version, it

should reject the request with the

HTTP 412 Precondition Failed

status code.

Origin Yes No
Fetch Living Standard,

3.1. Origin header

Enables web applications to

consume a Redfish service while

preventing CSRF attacks.

User-Agent Yes No RFC7231

Traces product tokens and their

versions.

The header can list multiple

product tokens.

Redfish Specification DSP0266

34 Published Version 1.14.0

https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header

Header Service requirement Client requirement Supported values Description

Via No No RFC7230

Defines the network hierarchy and

recognizes message loops.

Each pass inserts its own Via

header.

Redfish services shall understand and be able to process the headers in Table 7 as defined by this specification if

the Service requirement column contains Yes.

Table 7 — Request headers part 2

Header Service requirement Client requirement Supported values Description

X-Auth-Token Yes Conditional
Opaque encoded octet

strings

Authenticates user

sessions.

The token value shall be

indistinguishable from

random.

While services shall

support this header, a

client can access

unsecured resources

without establishing a

session.

7.2 GET (read requests)

7.2.1 GET (read requests) overview

The GET operation retrieves resources from a Redfish service. Clients make a GET request to the individual

resource URI. Clients may obtain the resource URI from published sources, such as the OpenAPI document, or from

a resource identifier property in a previously retrieved resource response, such as the links property.

The service shall return the resource representation using one of the media types listed in the Accept header,

subject to the requirements of the media types. If the Accept header is absent, the service shall return the

resource's representation as application/json . Services may but are not required to support the convention of

retrieving individual properties within a resource by appending a segment containing the property name to the URI of

the resource.

• The HTTP GET operation shall retrieve a resource without causing any side effects.

• The service shall ignore the content of the body on a GET .

• The GET operation shall be idempotent in the absence of outside changes to the resource.

DSP0266 Redfish Specification

Version 1.14.0 Published 35

If supported by the service, clients can perform a conditional GET operation by specifying an If-None-Match

request header that contains the ETag of the resource.

7.2.2 Resource collection requests

Clients retrieve a resource collection by making a GET request to the resource collection URI. The response

includes the resource collection's properties and an array of its members.

No requirements are placed on implementations to return a consistent set of members when a series of requests that

use paging query parameters are made over time to obtain the entire set of members. These calls can result in

missed or duplicate elements if multiple GET requests use paging to retrieve the Members array instances.

• Clients shall not make assumptions about the URIs for the members of a resource collection.

• Retrieved resource collections shall always include the count (Members@odata.count) property to specify the

total number of entries in its Members array.

• Regardless of the next link (Members@odata.nextLink) property or paging, the count (Members@odata.count)

property shall return the total number of resources that the Members array references.

A subset of the members can be retrieved using client paging query parameters.

A service might not be able to return all of the contents of a resource collection request in a single response body. In

this case, the response can be paged by the service. If a service pages a response to a resource collection request,

the following rules shall apply:

• Responses can contain a subset of the full resource collection's members.

• Individual members shall not be split across response bodies.

• A next link (Members@odata.nextLink) property annotation shall be supplied in the response body with the URI

to the next set of members in the collection.

• The next link (Members@odata.nextLink) property shall adhere to the rules in the Next link property clause.

• GET operations on the next link (Members@odata.nextLink) property shall return the subsequent section of the

resource collection response.

7.2.3 Service root request

The root URL for Redfish version 1.x services shall be /redfish/v1/ .

The service returns the ServiceRoot resource, as defined by this specification, as a response for the root URL.

Services shall not require authentication to retrieve the service root and /redfish resources.

Redfish Specification DSP0266

36 Published Version 1.14.0

7.2.4 OData service and metadata document requests

Redfish services expose two OData-defined documents at specific URIs to enable generic OData clients to navigate

the Redfish service.

• Service shall expose an OData metadata document at the /redfish/v1/$metadata URI.

• Service shall expose an OData service document at the /redfish/v1/odata URI.

• Service shall not require authentication to retrieve the OData metadata document or the OData service

document.

7.3 Query parameters

7.3.1 Query parameter overview

To paginate, retrieve subsets of resources, or expand the results in a single response, clients can include the query

parameters. Some query parameters apply only to resource collections.

Services:

• Shall only support query parameters on GET operations.

• Should support the $top , $skip , only , and excerpt query parameters.

• May support the $expand , $filter , and $select query parameters.

• Shall include the ProtocolFeaturesSupported object in the service root, if the service supports query

parameters.

◦ This object indicates which parameters and options have been implemented.

• Shall ignore unknown or unsupported query parameters that do not begin with $.

• Shall use the & operator to separate multiple query parameters in a single request.

Services shall return:

• The HTTP 501 Not Implemented status code for any unsupported query parameters that start with $.

• An extended error that indicates the unsupported query parameters for this resource.

• The HTTP 400 Bad Request status code for any query parameters that contain values that are invalid, or

values applied to query parameters without defined values, such as excerpt or only .

Services should return:

• The HTTP 400 Bad Request status code with the QueryNotSupportedOnResource message from the Base

Message Registry for any implemented query parameters that are not supported on a resource in the request.

• The HTTP 400 Bad Request status code with the QueryNotSupportedOnResource message from the Base

DSP0266 Redfish Specification

Version 1.14.0 Published 37

Message Registry for any supported query parameters that apply only to resource collections but are used on

singular resources. This includes query parameters such as $filter , $top , $skip , and only .

• The HTTP 400 Bad Request status code with the QueryNotSupportedOnOperation message from the Base

Message Registry for any supported query parameters on operations other than GET .

Services shall process query parameters in this order:

• $filter

• $skip

• $top

• Apply server-side pagination

• $expand

• excerpt

• $select

Table 8 describes the query parameters:

Table 8 — Query parameters

Query parameter Description and example

excerpt

Returns a subset of the resource's properties that match the defined

Excerpt schema annotation.

If no Excerpt schema annotation is defined for the resource, the

entire resource is returned.

Example:

https://resource?excerpt

$expand=<string>

Returns a hyperlink and its contents in-line with retrieved resources,

as if a GET call response was included in-line with that hyperlink.

See The $expand query parameter.

Example:

https://resource?$expand=*($levels=3)

https://resourcecollection?$expand=.($levels=1)

Redfish Specification DSP0266

38 Published Version 1.14.0

Query parameter Description and example

$filter=<string>

Applies to resource collections. Returns a subset of collection

members that match the $filter expression.

See The $filter query parameter.

Example:

https://resourcecollection?$filter=SystemType eq

'Physical'

only

Applies to resource collections. If the target resource collection

contains exactly one member, clients can use this query parameter

to return that member's resource.

If the collection contains either zero members or more than one

member, the response returns the resource collection, as expected.

Services should return the HTTP 400 Bad Request with the

QueryCombinationInvalid message from the Base Message

Registry if only is being combined with other query parameters.

Example:

https://resourcecollection?only

$select=<string>

Returns a subset of the resource's properties that match the

$select expression.

See The $select query parameter.

Example:

https://resource?$select=SystemType,Status

$skip=<integer>

Applies to resource collections. Returns a subset of the members in

a resource collection, or an empty set of members if the $skip

value is greater than or equal to the member count. This paging

query parameter defines the number of members in the resource

collection to skip.

Example:

https://resourcecollection?$skip=5

DSP0266 Redfish Specification

Version 1.14.0 Published 39

Query parameter Description and example

$top=<integer>

Applies to resource collections. Defines the number of members to

show in the response.

Minimum value is 0 , though a value of 0 returns an empty set of

members.

Example:

https://resourcecollection?$top=30

Services may support OEM-defined query parameters. OEM-defined query parameter names shall not contain

characters that conflict with syntax for query parameter parsing, such as & . OEM-defined query parameters shall be

in the form:

OEM-<OemIdentifier>-<ParameterName>

where

• <OemIdentifier> is the unique indentifier of the OEM, including possible subdivisioning, that follows the same

naming as defined in the OEM-specified object naming clause. Separator underscores (_) may be excluded for

improved readability.

• <ParameterName> is the parameter name.

For example, if Contoso defined a StatusOnly parameter, the query parameter would be OEM-Contoso-

StatusOnly .

7.3.2 The $expand query parameter

The $expand query parameter enables a client to request a response that includes not only the requested resource,

but also includes the contents of the subordinate or hyperlinked resources. The definition of this query parameter

follows the OData Protocol Specification.

The $expand query parameter has a set of possible options that determine which hyperlinks in a resource are

included in the expanded response. Some resources may already be expanded due to the resource's schema

annotation AutoExpand , such as the Temperature object in the Thermal resource.

Table 9 describes the Redfish-supported options for the $expand query parameter. The service may implement

some of these options but not others. Any other supported syntax for $expand is outside the scope of this

specification.

Redfish Specification DSP0266

40 Published Version 1.14.0

Table 9 — The $expand query parameter options

Option Description Example

asterisk (*)

Shall expand all hyperlinks, including

those in payload annotations, such as

@Redfish.Settings ,

@Redfish.ActionInfo , and

@Redfish.CollectionCapabilities .

https://resource?$expand=*

$levels

Number of levels the service should

cascade the $expand operation.

The default level shall be 1.

For example, $levels=2 expands both

the hyperlinks in the current resource

(level 1), and the hyperlinks in the

resulting expanded resources (level 2).

https://resourcecollection?$expand=.($levels=2)

period (.)

Shall expand all hyperlinks not in any

links property instances of the resource,

including those in payload annotations,

such as @Redfish.Settings ,

@Redfish.ActionInfo , and

@Redfish.CollectionCapabilities .

https://resourcecollection?$expand=.

tilde (~)
Shall expand all hyperlinks found in all

links property instances of the resource.
https://resourcecollection?$expand=~

Examples of $expand usage include:

• GET of a SoftwareInventoryCollection .

With $expand , the client can request multiple SoftwareInventory collection member resources in one request

rather than fetching them one at a time.

• GET of a ComputerSystem .

With $levels , a single GET request can include the subordinate resource collections, such as Processors

and Memory .

• GET all UUIDs in members of the ComputerSystem collection.

To accomplish this result, include both $select and $expand on the URI.

The syntax is GET /redfish/v1/Systems?$select=UUID&$expand=.($levels=1)

When services execute $expand , they may omit some of the referenced resource's properties.

DSP0266 Redfish Specification

Version 1.14.0 Published 41

When clients use $expand , they should be aware that the payload may increase beyond what can be sent in a

single response.

If a service cannot return the payload due to its size, it shall return the HTTP 507 Insufficient Storage status

code.

If a service cannot return the payload corresponding to an individual member of a resource collection, it should return

the @odata.id property for that member and should return extended information indicating the reason that member

was not returned, such as when a provider internal to the service returns an error or times out.

The following example expands the RoleCollection resource with the level set to 1:

{
"@odata.id": "/redfish/v1/AccountService/Roles",
"@odata.type": "#RoleCollection.RoleCollection",
"Name": "Roles Collection",
"Members@odata.count": 3,
"Members": [{

"@odata.id": "/redfish/v1/AccountService/Roles/Administrator",
"@odata.type": "#Role.v1_1_0.Role",
"Id": "Administrator",
"Name": "User Role",
"Description": "Admin User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureManager",

"ConfigureUsers", "ConfigureSelf", "ConfigureComponents"]
}, {

"@odata.id": "/redfish/v1/AccountService/Roles/Operator",
"@odata.type": "#Role.v1_1_0.Role",
"Id": "Operator",
"Name": "User Role",
"Description": "Operator User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureSelf",

"ConfigureComponents"]
}, {

"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnly",
"@odata.type": "#Role.v1_1_0.Role",
"Id": "ReadOnly",
"Name": "User Role",
"Description": "ReadOnly User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureSelf"]

}]
}

Redfish Specification DSP0266

42 Published Version 1.14.0

7.3.3 The $select query parameter

The $select query parameter indicates that the implementation should return a subset of the resource's properties

that match the $select expression. If a request omits the $select query parameter, the response returns all

properties by default. The definition of this query parameter follows the OData Protocol Specification.

The $select expression shall not affect the resource itself.

The $select expression defines a comma-separated list of properties to return in the response body.

The syntax for properties in objects or properties in arrays of objects shall be the object and property names

concatenated with a slash (/).

An example of $select usage is:

GET /redfish/v1/Systems/1?$select=Name,SystemType,Status/State

When services execute $select , they shall return all requested properties of the referenced resource. If a

requested property is an object, the service shall return the entire object. The @odata.id and @odata.type

properties shall be in the response payload and contain the same values as if $select was omitted. If the

@odata.context property is supported, it shall be in the response payload and should be in the context property

recommended format. If the @odata.etag property is supported, it shall be in the response payload and contain the

same values as if $select was omitted.

Any other supported syntax for $select is outside the scope of this specification.

7.3.4 The $filter query parameter

The $filter parameter enables a client to request a subset of the resource collection's members based on the

$filter expression. The definition of this query parameter follows the OData Protocol Specification.

The $filter query parameter defines a set of properties and literals with an operator.

A literal value can be:

• A string enclosed in single quotes.

• A number.

• A boolean value.

If the literal value does not match the data type for the specified property, the service should reject $filter

requests with the HTTP 400 Bad Request status code.

DSP0266 Redfish Specification

Version 1.14.0 Published 43

The $filter section of the OData ABNF Components Specification contains the grammar for the allowable syntax

of the $filter query parameter, with the additional restriction that only built-in filter operations are supported.

Table 10 lists the Redfish-supported values for the $filter query parameter. Any other supported syntax for

$filter is outside the scope of this specification.

Table 10 — The $filter query parameter options

Value Description Example

() Precedence grouping operator.

(Status/State eq 'Enabled' and Status/

Health eq 'OK') or SystemType eq

'Physical'

and Logical and operator.

ProcessorSummary/Count eq 2 and

MemorySummary/TotalSystemMemoryGiB gt

64

eq Equal comparison operator. ProcessorSummary/Count eq 2

ge
Greater than or equal to comparison

operator.
ProcessorSummary/Count ge 2

gt Great than comparison operator. ProcessorSummary/Count gt 2

le Less than or equal to comparison operator.
MemorySummary/TotalSystemMemoryGiB le

64

lt Less than comparison operator.
MemorySummary/TotalSystemMemoryGiB lt

64

ne Not equal comparison operator. SystemType ne 'Physical'

not Logical negation operator. not (ProcessorSummary/Count eq 2)

or Logical or operator.
ProcessorSummary/Count eq 2 or

ProcessorSummary/Count eq 4

When evaluating expressions, services shall use the following operator precedence:

• Grouping

• Logical negation

• Relational comparison. gt , ge , lt , and le all have equal precedence.

• Equality comparison. eq and ne both have equal precedence.

• Logical and

• Logical or

If the service receives an unsupported $filter query parameter, it shall reject the request and return the HTTP

501 Not Implemented status code.

Redfish Specification DSP0266

44 Published Version 1.14.0

7.4 HEAD

The HEAD method differs from the GET method in that it shall not return message body information.

However, the HEAD method completes the same authorization checks and returns all the same meta information and

status codes in the HTTP headers as a GET method.

Services may support the HEAD method to:

• Return meta information in the form of HTTP response headers.

• Verify hyperlink validity.

Services may support the HEAD method to verify resource accessibility.

Services shall not support any other use of the HEAD method.

The HEAD method shall be idempotent in the absence of outside changes to the resource.

Services shall reject HEAD requests that contain query parameters. Services should return the HTTP 400 Bad

Request status code if provided with a query parameter in a HEAD request.

7.5 Data modification requests

7.5.1 Data modification requests overview

To create, modify, and delete resources, clients issue the following operations:

• POST (create)

• PATCH (update)

• PUT (replace)

• DELETE (delete)

• POST (action) on the resource

The following clauses describe the success and error response requirements common to all data modification

requests.

7.5.2 Modification success responses

For create operations, the response from the service, after the create request succeeds, should be one of these

responses:

DSP0266 Redfish Specification

Version 1.14.0 Published 45

• The HTTP 201 Created status code with a body that contains the JSON representation of the newly created

resource after the request has been applied.

• The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when the

processing of the request requires additional time to be completed.

◦ After processing of the task is complete, the created resource may be returned in response to a request to

the task monitor URI with the HTTP 201 Created status code.

• The HTTP 204 No Content status code with empty payload in the event that the service cannot return a

representation of the created resource.

For update, replace, and delete operations, the response from the service, after successful modification, should be

one of the following responses:

• The HTTP 200 OK status code with a body that contains the JSON representation of the targeted resource after

the modification has been applied, or, for the delete operation, a representation of the deleted resource.

• The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when the

processing of the modification requires additional time.

◦ After processing of the task is complete, the modified resource may be returned in response to a request to

the task monitor URI with the HTTP 200 OK status code.

• The HTTP 204 No Content status code with an empty payload in the event that service cannot return a

representation of the modified or deleted resource.

For details on successful responses to action requests, see POST (action).

7.5.3 Modification error responses

If the resource exists but does not support the requested operation, services shall return the HTTP 405 Method Not

Allowed status code.

Otherwise, if the service returns a client 4XX or service 5XX status code, the service encountered an error and the

resource shall not have been modified or created as a result of the operation.

7.6 PATCH (update)

To update a resource's properties, the service shall support the PATCH method.

The request body defines the changes to make to one or more properties in the resource that the request URI

references. The PATCH request does not change any properties that are not in the request body. Services may

accept a PATCH method with an empty JSON object, which indicates that the service should make no changes to the

resource.

For resources that allow for properties to not be updated immediately, clients can perform PATCH requests to a

designated settings resource. For more information, see the Settings resource clause.

Redfish Specification DSP0266

46 Published Version 1.14.0

See the Modification success responses clause for behavior when the PATCH operation is successful.

If supported by the service, clients can perform a conditional PATCH operation by specifying an If-Match or If-

None-Match request header that contains the ETag of the resource.

The implementation may reject the update on certain properties based on its own policies and, in this case, not make

the requested update.

A partial success of a PATCH operation occurs when a modification request for multiple properties results in at least

one property updated successfully, but one or more properties could not be updated. In these cases, the service

shall return the HTTP 200 OK status code and a resource representation with extended information that lists the

properties that could not be updated. Examples include:

• A property is read-only, unknown, or unsupported.

• A service-side error occured, such as a write failure for an EEPROM.

If all properties in the update request are read-only, unknown, or unsupported, but the resource can be updated, the

service shall return the HTTP 400 Bad Request status code and an error response with messages that show the

non-updatable properties.

The service shall ignore OData annotations in the request body, such as the resource identifier, type, and ETag

properties, except for the conditions listed below. If the update request only contains OData annotations, the service

should return the HTTP 400 Bad Request status code with the NoOperation message from the Base Message

Registry, except for the conditions listed below.

• Writable reference properties.

• In deep operations when specifying subordinate resources.

In the absence of outside changes to the resource, the PATCH operation should be idempotent, although the original

ETag value may no longer match.

7.7 PATCH on array properties

The Array properties clause describes the three styles of array properties in a resource.

Within a PATCH request, the service shall accept null to remove an element, and accept an empty object {} to

leave an element unchanged. Array properties that use the fixed or variable length style remove those elements,

while array properties that use the rigid style replace removed elements with null elements. A service may indicate

the maximum size of an array by padding null elements at the end of the array sequence.

When processing a PATCH request, the order of operations shall be:

• Modifications

• Deletions

DSP0266 Redfish Specification

Version 1.14.0 Published 47

• Additions

A PATCH request with fewer elements than in the current array shall remove the remaining elements of the array.

For example, a fixed length-style Flavors array indicates that the service supports a maximum of six elements, by

padding the array with null elements, with four populated.

{
"Flavors": ["Chocolate", "Vanilla", "Mango", "Strawberry", null, null]

}

A client could issue the following PATCH request to remove Vanilla , replace Strawberry with Cherry , and add

Coffee and Banana to the array, while leaving the other elements unchanged.

{
"Flavors": [{}, null, {}, "Cherry", "Coffee", "Banana"]

}

After the PATCH operation, the resulting array is:

{
"Flavors": ["Chocolate", "Mango", "Cherry", "Coffee", "Banana", null]

}

7.8 PUT (replace)

To completely replace a resource, services may support the PUT method. The service may add properties to the

response resource that the client omits from the request body, the resource definition requires, or the service

normally supplies.

The PUT operation should be idempotent in the absence of outside changes to the resource, with the possible

exception that the operation might change ETag values.

See the Modification success responses clause for behavior when the PUT operation is successful.

If supported by the service, clients can perform a conditional PUT operation by specifying an If-Match or If-

None-Match request header that contains the ETag of the resource.

Services may reject requests that do not include properties that the resource definition (schema) requires.

Redfish Specification DSP0266

48 Published Version 1.14.0

7.9 POST (create)

To create a resource, services shall support the POST method on resource collections.

The POST request is submitted to the resource collection to which the new resource will belong. See the Modification

success responses clause for behavior when the POST operation is successful.

The body of the create request contains a representation of the object to create. The service may ignore any service-

controlled properties, such as Id , which would force the service to overwrite those properties. Additionally, the

service shall set the Location header in the response to the URI of the new resource.

• Submitting a POST request to a resource collection is equivalent to submitting the same request to the

Members property of that resource collection. Services that support the addition of Members to a resource

collection shall support both forms.

◦ For example, if a client adds a member to the resource collection at /redfish/v1/EventService/

Subscriptions , it can perform a POST request to either /redfish/v1/EventService/Subscriptions or

/redfish/v1/EventService/Subscriptions/Members .

• The POST operation shall not be idempotent.

• Services may allow the inclusion of @Redfish.OperationApplyTime property in the request body. See

Operation apply time.

• Services should return the HTTP 400 Bad Request status code for requests containing properties with the

value null .

7.10 DELETE (delete)

To remove a resource, the service shall support the DELETE method. Resources subordinate to the resource

removed by a DELETE method are typically removed, as the contents of subordinate resources are dependent on

the parent resource. In some cases, related resources may also be relocated in the resource tree based on their

definition and usage. Other resources in the resource tree may also be removed or incur side effects of a resource

removal.

See the Modification success responses clause for behavior when the DELETE operation is successful.

• If the resource was already deleted, the service may return the HTTP 404 Not Found status code or a success

code.

• The service may allow the inclusion of the @Redfish.OperationApplyTime property in the request body. See

Operation apply time.

DSP0266 Redfish Specification

Version 1.14.0 Published 49

7.11 POST (action)

Services shall support the POST method as a way for clients to send actions to resources.

• The POST operation may not be idempotent.

• Services may allow the inclusion of the @Redfish.OperationApplyTime property in the request body. See

Operation apply time.

To request actions on a resource, send the HTTP POST method to the URI of the action. The target property in

the resource's Actions property shall contain the URI of the action. The URI of the action shall be in the format:

<ResourceUri>/Actions/<QualifiedActionName>

where

• <ResourceUri> is the URI of the resource that supports the action.

• Actions is the name of the property that contains the actions for a resource, as defined by this specification.

• <QualifiedActionName> is the qualified name of the action. Includes the resource type.

To determine the available actions and the valid parameter values for those actions, clients can query a resource

directly.

Clients provide parameters for the action as a JSON object within the request body of the POST operation. For

information about the structure of the request and required parameters, see the Actions property clause. Some

parameter information may require that the client examine the Redfish schema that corresponds to the resource.

If the action request does not contain all required parameters, the service shall return the HTTP 400 Bad Request

status code. If the action request contains unsupported parameters, the service shall ignore the unsupported

parameters or return the HTTP 400 Bad Request status code. If an action does not have any required parameters,

the service should accept an empty JSON object in the HTTP body for the action request.

Table 11 describes the HTTP status codes and additional information that the service shall return a response to a

successful POST (action) request:

Redfish Specification DSP0266

50 Published Version 1.14.0

Table 11 — POST (action) status codes

To indicate HTTP status code Additional information

Success, and the schema does not contain a

response definition.
200 OK

An error response, with a message that

indicates success or any additional relevant

messages. If the action was successfully

processed and completed without errors,

warnings, or other notifications for the client,

the service should return the Success

message from the Base Message Registry in

the code property in the response body.

Success, and the schema contains a

response definition for the action.
200 OK

The response body conforms to the action

response defined in the schema.

A new resource was created, and the

schema does not contain a response

definition.

201 Created

A Location response header set to the URI

of the created resource. An error response,

with a message that indicates success or any

additional relevant messages. If the action

was successfully processed and completed

without errors, warnings, or other notifications

for the client, the service should return the

Success message from the Base Message

Registry in the code property in the

response body.

A new resource was created, and the

schema contains a response definition for the

action.

201 Created

A Location response header set to the URI

of the created resource. The response body

conforms to the action response defined in

the schema.

Additional time is required to process. 202 Accepted
A Location response header set to the URI

of a task monitor.

Success, and the schema does not contain a

response definition.
204 No Content No response body.

If an action requested by the client has no effect, such as a reset of a ComputerSystem where the ResetType

parameter is set to On and the ComputerSystem is already On , the service should respond with the HTTP 200 OK

status code and return the NoOperation message from the Base Message Registry.

If an error was detected and the action request was not processed, the service shall return an HTTP 4XX or HTTP

5XX status code. The response body, if provided, shall contain an error response that describes the error or errors.

Example successful action response:

{
"error": {

"code": "Base.1.8.Success",

DSP0266 Redfish Specification

Version 1.14.0 Published 51

"message": "Successfully Completed Request",
"@Message.ExtendedInfo": [{

"@odata.type": "#Message.v1_1_1.Message",
"MessageId": "Base.1.8.Success",
"Message": "Successfully Completed Request",
"Severity": "OK",
"MessageSeverity": "OK",
"Resolution": "None"

}]
}

}

7.12 Operation apply time

Services may accept the @Redfish.OperationApplyTime annotation in the POST (create), DELETE (delete), or

POST (action) request body. This annotation enables the client to control when an operation is carried out.

For example, if the client wants to delete a particular Volume resource, but can only safely do so when a reset

occurs, the client can use this annotation to instruct the service to delete the Volume on the next reset.

If multiple operations are pending, the service shall process them in the order in which the service receives them.

Services that support the @Redfish.OperationApplyTime annotation for create operations on a resource collection

and delete operations on members of a resource collection shall include the @Redfish.OperationApplyTimeSupport

response annotation for the resource collection.

The following example response for a resource collection supports the @Redfish.OperationApplyTime annotation in

requests to create new members and delete existing members:

{
"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes",
"@odata.type": "#VolumeCollection.VolumeCollection",
"Name": "Storage Volume Collection",
"Description": "Storage Volume Collection",
"Members@odata.count": 2,
"Members": [{

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/1"
}, {

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2"
}],
"@Redfish.OperationApplyTimeSupport": {

"@odata.type": "#Settings.v1_2_0.OperationApplyTimeSupport",
"SupportedValues": ["Immediate", "OnReset"]

}

Redfish Specification DSP0266

52 Published Version 1.14.0

}

In the previous example, a client can annotate their create request body on the VolumeCollection itself, or a delete

operation on the Volumes within the VolumeCollection .

The following sample request deletes a Volume on the next reset:

DELETE /redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2 HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

{
"@Redfish.OperationApplyTime": "OnReset"

}

Services that support the @Redfish.OperationApplyTime annotation for an action shall include the

@Redfish.OperationApplyTimeSupport response annotation for the action.

The following example response for a ComputerSystem resource supports the @Redfish.OperationApplyTime

annotation in the reset action request:

{
"@odata.id": "/redfish/v1/Systems/1",
"@odata.type": "#ComputerSystem.v1_5_0.ComputerSystem",
"Actions": {

"#ComputerSystem.Reset": {
"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",
"ResetType@Redfish.AllowableValues": ["On", "ForceOff", "ForceRestart",

"Nmi", "ForceOn", "PushPowerButton"],
"@Redfish.OperationApplyTimeSupport": {

"@odata.type": "#Settings.v1_2_0.OperationApplyTimeSupport",
"SupportedValues": ["Immediate", "AtMaintenanceWindowStart"],
"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",
"MaintenanceWindowDurationInSeconds": 600,
"MaintenanceWindowResource": {

"@odata.id": "/redfish/v1/Systems/1"
}

}
}

},
...

}

DSP0266 Redfish Specification

Version 1.14.0 Published 53

In the previous example, a client can annotate their reset action request body on the ComputerSystem in the

payload.

The following sample request completes a reset at the start of the next maintenance window:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

{
"ResetType": "ForceRestart",
"@Redfish.OperationApplyTime": "AtMaintenanceWindowStart"

}

Services that support the @Redfish.OperationApplyTime annotation for a resource collection or action shall create

a task, and respond with the HTTP 202 Accepted status code with a Location header set to the URI of a task

monitor, if the client's request body contains @Redfish.OperationApplyTime in the request.

The Settings Redfish schema defines the structure of the @Redfish.OperationApplyTimeSupport object and the

@Redfish.OperationApplyTime annotation value.

7.13 Deep operations

Implementations may support operations that modify the current resource as well as subordinate resources. These

operations are known as deep operations. They give the client the ability to modify more than one resource with a

single operation.

Table 12 describes the types of deep operations that this specification defines:

Table 12 — Deep operations

Operation Description Example

Deep PATCH (update)
Modify a resource and one or more

subordinate resources.

Modify a ComputerSystem resource as well

as subordinate Storage and

NetworkInterface resources.

Deep POST (create)
Create multiple resources in a resource

collection.
Create ManagerAccount resources.

• Services that support deep PATCH for updating resources shall set the value of the DeepPATCH property in the

DeepOperations property in the ProtocolFeaturesSupported property within the service root to true .

• Services that support deep POST for creating resources shall set the value of the DeepPOST property in the

DeepOperations property in the ProtocolFeaturesSupported property within the service root to true .

Redfish Specification DSP0266

54 Published Version 1.14.0

• The Members property in resource collections shall not be removed when using a deep PATCH .

• Action URIs shall not support deep POST operations.

• If the service supports deep operations, the MaxLevels property in the DeepOperations property in the

ProtocolFeaturesSupported property in the service root shall indicate the maximum number of levels that the

service supports for deep operations.

• To request deep operations on a resource, send the HTTP method to the deep operation URI of the resource.

The URI for deep operations on any resource shall be in the format: <ResourceUri>.Deep .

• The schema used for validating the root level of the request body shall be the schema of the resource in the

resource URI.

◦ The subordinate resources included in the request body shall be validated against their corresponding

schema.

The body of deep operations contains the resource being modified as well as the subordinate resources being

modified. This resource can be a collection or a single instance. These resources could be subordinate resources,

subordinate resource collections, or subordinate members of resource collections. The client can omit properties

from the request such as those it does not want to modify or that the service controls. Requests that include

references to multiple instances, such as members of a collection, shall include the Members property as part of the

request body.

To determine which members of subordinate resource collections are to be modified by a deep PATCH , services

shall use the @odata.id property provided by the client to identify the member of the resource collection to be

modified.

Clients may provide the @odata.etag property in subordinate resources being modified by a deep PATCH . If the

request contains the If-Match or If-None-Match header, the service shall compare the ETag in the request

header with the ETag of the resource specified by the URI. If this check passes, the operation can proceed using the

@odata.etag values contained in the body of the subordinate resources. In this case, the operation on each

subordinate resource shall be completed independently, where some subordinate values that pass the condition

check proceed and the resources that fail do not proceed. In this case, annotated extended information shall be

included in the subordinate resource representation of the response.

Failure semantics for deep operations are similar to that of other operations of similar type. If any properties in a

deep PATCH operation succeeded, the result is a 200 OK with the results returned in the response, and the service

should include extended information indicating warnings or errors. For a deep POST operation, if any member of the

collection was created then a 201 Created shall be returned, and any members that were not created should have

extended information in their place holders with sufficient identifying information, such as returning all of the

properties provided in the POST request body for that member, as well as extended information indicating why the

creation was not successful. When sending a deep POST request, the value of the Location header shall be that of

one of the URIs created and should be that of one of the least subordinate URIs, such as that of a ComputerSystem

resource and not one of the devices subordinate to the ComputerSystem resource.

If the request body for a deep operation contains resources that are not modifiable, but no modifications are

requested for those resources, services shall not treat this as a modification request for those resources. For

DSP0266 Redfish Specification

Version 1.14.0 Published 55

example, if the service root is not modifiable, meaning PATCH is not accepted on the resource, a client is allowed to

provide the service root in the deep operation request body if there are no modifications to the service root.

Deep POST shall not be allowed on the SessionCollection resource.

The following deep PATCH example modifies two members of the RoleCollection resource:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

{
"Members": [{

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted",
"AssignedPrivileges": ["Login", "ConfigureComponents"]

}, {
"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted",
"AssignedPrivileges": ["Login"]

}]
}

The following deep POST example creates two members in the RoleCollection resource:

POST /redfish/v1/AccountService/Roles.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

{
"Members": [{

"RoleId": "OperatorRestricted",
"AssignedPrivileges": ["Login", "ConfigureComponents"]

}, {
"RoleId": "ReadOnlyRestricted",
"AssignedPrivileges": ["Login"]

}]
}

The following deep PATCH example modifies the asset tag and BIOS settings of a ComputerSystem resource:

PATCH /redfish/v1/Systems/47832.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

Redfish Specification DSP0266

56 Published Version 1.14.0

{
"AssetTag": "Inventory Tag 12394783431",
"Bios": {

"@odata.id": "/redfish/v1/Systems/47832/Bios",
"@Redfish.Settings": {

"SettingsObject": {
"@odata.id": "/redfish/v1/Systems/47832/Bios/SD",
"Attributes": {

"AdminPhone": "(123) 456-789",
"BootMode": "Uefi"

}
}

}
}

}

The following example shows a deep PATCH with ETags in the request:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
If-Match: <Collection ETag>
OData-Version: 4.0

{
"Members": [{

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted",
"@odata.etag": "W/\"ABCDEFG\"",
"AssignedPrivileges": ["Login", "ConfigureComponents"]

}, {
"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted",
"@odata.etag": "W/\"ABCDEFG\"",
"AssignedPrivileges": ["Login"]

}]
}

The following example response shows a partial failure of a deep PATCH where the ETag provided in the request for

the Role resource named ReadOnlyRestricted was incorrect:

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
ETag: <Resource collection ETag>
OData-Version: 4.0

DSP0266 Redfish Specification

Version 1.14.0 Published 57

{
"Members": [{

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted",
"@odata.etag": "W/\"ABCDEFG\"",
"AssignedPrivileges": ["Login", "ConfigureComponents"]

}, {
"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted",
"@Message.ExtendedInfo": [{

"@odata.type": "#Message.v1_1_1.Message",
"MessageId": "Base.1.8.PreconditionFailed",
"RelatedProperties": ["#/AssignedPrivileges"]

}]
}]

}

Redfish Specification DSP0266

58 Published Version 1.14.0

8 Service responses

This clause describes the responses that Redfish services can return to clients.

8.1 Response headers

HTTP defines headers for use in response messages. Table 13 defines those headers and their requirements for

Redfish services:

• Redfish services shall return the HTTP 1.1 Specification-defined headers if the Required column contains Yes.

• Redfish services should return the HTTP 1.1 Specification-defined headers if the Required column contains No.

• Redfish clients shall be able to both understand and process all the HTTP 1.1 Specification-defined headers.

Table 13 — Response headers

Header Required Supported values Description

Access-Control-Allow-Origin Yes
Fetch Living Standard, 3.2.3.

HTTP responses

Prevents or allows requests

based on originating domain.

Prevents CSRF attacks.

Allow Yes
POST , PUT , PATCH , DELETE ,

GET , HEAD

Shall be returned with the HTTP

405 (Method Not Allowed) status

code to indicate the valid

methods for the request URI.

Shall be returned with any GET

or HEAD operation to indicate the

other allowable operations for this

resource.

Cache-Control Yes RFC7234

Shall be supported and indicates

whether a response can or

cannot be cached.

Content-Encoding No RFC7231
Encoding used to compress the

message body.

DSP0266 Redfish Specification

Version 1.14.0 Published 59

https://fetch.spec.whatwg.org/#http-responses
https://fetch.spec.whatwg.org/#http-responses

Header Required Supported values Description

Content-Length No RFC7231

Size of the message body. An

optional means of indicating size

of the body uses Transfer-

Encoding: chunked , that does

not use the Content-Length

header. If a service does not

support Transfer-Encoding and

needs Content-Length instead,

the service shall respond with the

HTTP 411 Length Required

status code.

Content-Type Yes RFC7231

The message body's

representation type.

Services shall specify a

Content-Type of application/

json when returning resources

as JSON.

Services shall specify a

Content-Type of application/

xml when returning metadata as

XML.

Services shall specify a

Content-Type of application/

yaml or application/

vnd.oai.openapi when returning

OpenAPI schema as YAML.

Services shall specify a

Content-Type of text/event-

stream when returning an SSE

stream.

;charset=utf-8 shall be

appended to the Content-Type

if specified in the chosen media-

type in the Accept header for

the request.

ETag Conditional RFC7232

An identifier for a specific version

of a resource, often a message

digest. The ETag header shall

be included on responses to

GET s of ManagerAccount

resources.

Redfish Specification DSP0266

60 Published Version 1.14.0

Header Required Supported values Description

Link Yes RFC8288

Link headers shall be returned,

as described in the Link headers

clause.

Location Conditional RFC7231

URI of a newly created resource.

Shall be returned upon creation

of a resource. Location and X-

Auth-Token shall be included on

responses that create user

sessions.

Max-Forwards No RFC7231

Limits gateway and proxy hops.

Prevents messages from

remaining in the network

indefinitely.

OData-Version Yes 4.0
OData version of the payload to

which the response conforms.

Retry-After No RFC7231, Section 7.1.3

Informs a client how long to wait

before requesting the task

information again.

Server No RFC7231

A product token and its version.

Multiple product tokens may be

listed.

Note: Previous versions of the

Specification marked this header

as required. This has been

changed as no use cases for

requiring it have been identified.

Via No RFC7230

Defines the network hierarchy

and recognizes message loops.

Each pass inserts its own Via

header.

WWW-Authenticate Yes RFC7617

Required for Basic and other

optional authentication

mechanisms. For details, see the

Security details clause.

X-Auth-Token Yes Opaque encoded octet strings

Contains the authentication token

for user sessions. The token

value shall be indistinguishable

from random.

DSP0266 Redfish Specification

Version 1.14.0 Published 61

8.2 Link header

The Link header provides metadata information on the accessed resource in response to a HEAD or GET request.

The metadata information can include hyperlinks from the resource and JSON Schemas that describe the resource.

The following example shows the Link headers for a ManagerAccount with an Administrator role, in addition to

a Settings annotation:

Link: </redfish/v1/AccountService/Roles/Administrator>; path=/Links/Role
Link: <http://redfish.dmtf.org/schemas/Settings.json>
Link: </redfish/v1/JsonSchemas/ManagerAccount.v1_0_2.json>; rel=describedby

• The first Link header is an example of a hyperlink that comes from the resource. It describes hyperlinks within

the resource. This type of header is outside the scope of this specification.

• The second Link header is an example of an annotation Link header as it references the JSON Schema that

describes the annotation and does not have rel=describedby . This example references the public copy of the

annotation on the DMTF's Redfish schema repository.

• The third Link header is an example for the JSON Schema that describes the actual resource.

◦ Note that the URL can reference an unversioned JSON Schema because the @odata.type in the resource

indicates the appropriate version, or reference the versioned JSON Schema, which according to previous

normative statements need to match the version in the @odata.type property of the resource.

A Link header containing rel=describedby shall be returned on GET and HEAD requests. If the referenced

JSON Schema is a versioned schema, it shall match the version contained in the value of the @odata.type property

returned in this resource.

A Link header satisfying annotations should be returned on GET and HEAD requests.

8.3 Status codes

HTTP defines status codes that appear in responses. The status codes themselves provide general information

about how the request was processed, such as whether the request was successful, if the client provided bad

information, or the service encountered an error when processing the request.

• When the service returns a status code in the 4XX or 5XX range, services should return an extended error

response in the response body to provide the client more meaningful and deterministic error semantics.

• When the service returns a status code in the 2XX range and the response contains a representation of a

resource, services may use extended information to convey additional information about the resource.

• Extended error messages shall not provide privileged information when authentication failures occur.

Redfish Specification DSP0266

62 Published Version 1.14.0

Note: For security implications of extended errors, See Security details.

Table 14 lists HTTP status codes that have meaning or usage defined for a Redfish service, or are otherwise

referenced by this specification. Other codes may be returned by the service as appropriate, and their usage is

implementation-specific. For usage and additional requirements imposed by this specification, see the Description

column.

• Clients shall understand and be able to process the status codes in Table 14 as defined by the HTTP 1.1

Specification and constrained by additional requirements defined by this specification.

• Services shall respond with the status codes in Table 14 as defined in Description column.

• Redfish services should not return the HTTP 100 status code. Using the HTTP protocol for a multipass data

transfer should be avoided, except for the upload of extremely large data.

• If no other status code in the 4XX range is appropriate for client-side errors, the default status code should be

the HTTP 400 Bad Request status code.

• If no other status code in the 5XX range is appropriate for service-side errors, the default status code should be

the HTTP 500 Internal Server Error status code.

Table 14 — HTTP status codes

HTTP status code Description

200 OK
Request completed successfully and includes a representation in its

body.

201 Created

Request to create a resource completed successfully. The

Location header shall be set to the canonical URI for the newly

created resource. For POST (create) requests, the response body

may include a representation of the newly created resource. For

POST (action) requests, the response body shall include the action

response.

202 Accepted

Request has been accepted for processing but the processing has

not been completed. The Location header shall be set to the URI

of a task monitor that can later be queried to determine the status of

the operation. The response body may include a representation of

the Task resource.

204 No Content
Request succeeded, but no content is being returned in the body of

the response.

301 Moved Permanently Requested resource resides under a different URI.

302 Found Requested resource resides temporarily under a different URI.

304 Not Modified

Service has made a conditional GET request where access is

allowed but the resource content has not changed. Either or both the

If-Modified-Since and If-None-Match headers initiate

conditional requests to save network bandwidth if no change has

occurred. See HTTP 1.1, sections 14.25 and 14.26.

DSP0266 Redfish Specification

Version 1.14.0 Published 63

HTTP status code Description

400 Bad Request

Request could not be processed because it contains invalid

information, such as an invalid input field, or is missing a required

value. The response body shall return an extended error as defined

in the Error responses clause.

401 Unauthorized
Authentication credentials included with this request are missing or

invalid.

403 Forbidden

Service recognized the credentials in the request but those

credentials do not possess authorization to complete this request.

This code is also returned when the user credentials provided need

to be changed before access to the service can be granted. For

details, see the Security details clause.

404 Not Found Request specified a URI of a resource that does not exist.

405 Method Not Allowed

HTTP verb in the request, such as DELETE , GET , HEAD , POST ,

PUT , or PATCH , is not supported for this request URI. The response

shall include an Allow header that provides a list of methods that

the resource identified by the URI in the client request supports.

406 Not Acceptable

Accept header was specified in the request and the resource

identified by this request cannot generate a representation that

corresponds to one of the media types in the Accept header.

409 Conflict

Creation or update request could not be completed because it would

cause a conflict in the current state of the resources that the platform

supports. For example, a conflict occurred due to an attempt to set

multiple properties that work in a linked manner by using

incompatible values.

410 Gone

Requested resource is no longer available at the service and no

forwarding address is known. This condition is expected to be

considered permanent. Clients with hyperlink editing capabilities

should delete references to the URI in the client request after user

approval. If the service does not know or cannot determine whether

the condition is permanent, client should use the HTTP 404 Not

Found status code. This response is cacheable unless otherwise

indicated.

411 Length Required

Request did not use the Content-Length header to specify the

length of its content but perhaps used the Transfer-Encoding:

chunked header instead. The addressed resource requires the

Content-Length header.

412 Precondition Failed
Precondition check, such as check of the OData-Version , If-

Match , or If-Not-Modified header, failed.

415 Unsupported Media Type
Request specifies a Content-Type for the body that is not

supported.

Redfish Specification DSP0266

64 Published Version 1.14.0

HTTP status code Description

428 Precondition Required
Request did not provide the required precondition, such as an If-

Match or If-None-Match header.

431 Request Header Field Too Large

Service is unwilling to process the request because either an

individual header field or the collection of all header fields are too

large.

500 Internal Server Error

Service encountered an unexpected condition that prevented it from

fulfilling the request. The response body shall return an extended

error as defined in the Error responses clause.

501 Not Implemented

Service does not currently support the functionality required to fulfill

the request. This response is appropriate when the service does not

recognize the request method and cannot support the method for

any resource.

503 Service Unavailable

Service currently cannot handle the request due to temporary

overloading or maintenance of the service. A service may use this

response to indicate that the request URI is valid but the service is

performing initialization or other maintenance on the resource. A

service may also use this response to indicate that the service itself

is undergoing maintenance, such as finishing initialization steps after

reboot of the service.

507 Insufficient Storage
Service cannot build the response for the client due to the size of the

response.

8.4 OData metadata responses

8.4.1 OData metadata responses overview

OData metadata describes resources, resource collections, capabilities, and service-dependent behavior to generic

OData consumers with no specific understanding of this specification. Clients are not required to request metadata if

they already have sufficient understanding of the target service. For example, clients are not required to request

metadata to request and interpret a JSON representation of a resource that this specification defines.

A client can access the OData metadata at the /redfish/v1/$metadata URI.

A client can access the OData service document at the /redfish/v1/odata URI.

8.4.2 OData $metadata

The OData metadata describes top-level service resources and resource types according to OData Common

Schema Definition Language. The OData metadata is represented as an XML document with an Edmx root element

in the http://docs.oasis-open.org/odata/ns/edmx namespace with an OData version attribute set to 4.0 .

DSP0266 Redfish Specification

Version 1.14.0 Published 65

The service shall use the application/xml or application/xml;charset=utf-8 MIME types to return the OData

metadata document as an XML document.

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">
<!-- edmx:Reference and edmx:Schema elements go here -->

</edmx:Edmx>

8.4.2.1 Referencing other schemas

The OData metadata should include the namespaces for each of the Redfish resource types, along with the

RedfishExtensions.v1_0_0 namespace. Dynamic clients that reference the OData metadata document leverage

schema definitions that are referenced to understand the definitions of the resources in the service. However, there

are cases where it might not be practical to maintain an accurate document, such as when resources are dynamically

discovered by the service through devices that support Redfish Device Enablement.

These references shall use either:

• An absolute URI for the Redfish schema definitions, such as on http://redfish.dmtf.org/schemas or

http://developers.contoso.org/schemas .

• A relative URI to a local copy of the Redfish schema. See the Redfish-defined URIs and relative reference rules

clause for recommended URI patterns.

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ServiceRoot_v1.xml">
<edmx:Include Namespace="ServiceRoot"/>
<edmx:Include Namespace="ServiceRoot.v1_0_0"/>

</edmx:Reference>

...

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/VirtualMedia_v1.xml">
<edmx:Include Namespace="VirtualMedia"/>
<edmx:Include Namespace="VirtualMedia.v1_0_0"/>

</edmx:Reference>
<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>
</edmx:Reference>

The service's OData metadata document shall include an EntityContainer that defines the top-level resources and

resource collections.

8.4.2.2 Referencing OEM extensions

The OData metadata document may reference additional schema documents that describe OEM-specific extensions

that the service uses.

Redfish Specification DSP0266

66 Published Version 1.14.0

For example, the OData metadata document may reference custom types for additional resource collections.

<edmx:Reference Uri="http://contoso.org/Schema/CustomTypes">
<edmx:Include Namespace="CustomTypes"/>

</edmx:Reference>

8.4.3 OData service document

The OData service document serves as a top-level entry point for generic OData clients. More information about the

OData service document can be found in the OData JSON Format Specification.

{
"@odata.context": "/redfish/v1/$metadata",
"value": [{

"name": "Service",
"kind": "Singleton",
"url": "/redfish/v1/"

}, {
"name": "Systems",
"kind": "Singleton",
"url": "/redfish/v1/Systems"

}, ...]
}

The service shall use the application/json MIME type to return the OData service document as a JSON object.

The JSON object shall contain the @odata.context context property set to /redfish/v1/$metadata .

The JSON object shall include a value property set to a JSON array that contains an entry for the service root and

each resource that is a direct child of the service root.

Table 15 describes the properties that each JSON object entry includes:

Table 15 — JSON object properties

Property Description

name User-friendly resource name of the resource.

kind
Type of resource. Value is Singleton for all cases defined by

Redfish.

url Relative URL for the top-level resource.

DSP0266 Redfish Specification

Version 1.14.0 Published 67

8.5 Resource responses

Services use the application/json MIME type to return resources and resource collections as JSON payloads. A

service shall not break responses for a single resource into multiple results.

The format of these payloads is defined by the Redfish schema. For rules about the Redfish schema and how it

maps to JSON payloads, see the Data model and Schema definition languages clauses.

8.6 Error responses

HTTP status codes often do not provide enough information to enable deterministic error semantics. For example, if

a client makes a PATCH call and some properties do not match while others are not supported, the HTTP 400 Bad

Request status code does not tell the client which values are in error. Error responses provide the client more

meaningful and deterministic error semantics.

To provide the client with as much information about the error as possible, a Redfish service may provide multiple

error responses in the HTTP response. Additionally, the service may provide Redfish standardized errors, OEM-

defined errors, or both, depending on the implementation's ability to convey the most useful information about the

underlying error.

Table 16 describes the properties in the extended error response, which is a single JSON object:

Table 16 — Error properties

Property Description

code
String. Defines a MessageId from the message registry. See the

MessageId format clause for the format of MessageId .

message
Displays a human-readable error message that corresponds to the

message in the message registry.

@Message.ExtendedInfo
Displays an array of message objects. Describes one or more error

messages.

See the Schema definition languages clause for references to the schema definitions of the error response payload.

The @Message.ExtendedInfo property should be present in all error responses. If the @Message.ExtendedInfo

property is present, all information necessary to process the error should be provided in the

@Message.ExtendedInfo property. Clients should look for the @Message.ExtendedInfo property for error

processing first, and fallback on the code and message properties if @Message.ExtendedInfo is not present.

The following sample error response contains two messages in the @Message.ExtendedInfo property that describe

Redfish Specification DSP0266

68 Published Version 1.14.0

two different errors. The message described by the code and message properties do not provide actionable

information for the client.

{
"error": {

"code": "Base.1.8.GeneralError",
"message": "A general error has occurred. See Resolution for information on how to resolve the error.",
"@Message.ExtendedInfo": [{

"@odata.type": "#Message.v1_1_1.Message",
"MessageId": "Base.1.8.PropertyValueNotInList",
"RelatedProperties": ["#/IndicatorLED"],
"Message": "The value Red for the property IndicatorLED is not in the list of acceptable values.",
"MessageArgs": ["Red", "IndicatorLED"],
"Severity": "Warning",
"MessageSeverity": "Warning",
"Resolution": "Choose a value from the enumeration list that the implementation can support and resubmit the request if the operation failed."

}, {
"@odata.type": "#Message.v1_1_1.Message",
"MessageId": "Base.1.8.PropertyNotWritable",
"RelatedProperties": ["#/SKU"],
"Message": "The property SKU is a read only property and cannot be assigned a value.",
"MessageArgs": ["SKU"],
"Severity": "Warning",
"MessageSeverity": "Warning",
"Resolution": "Remove the property from the request body and resubmit the request if the operation failed."

}]
}

}

DSP0266 Redfish Specification

Version 1.14.0 Published 69

9 Data model

One of the key tenets of Redfish is the separation of protocol from the data model. This separation makes the data

both transport and protocol agnostic. By concentrating on the data transported in the payload of the protocol (in

HTTP, it is the HTTP body), Redfish can also define the payload in any encoding and the data model is intended to

be schema-language agnostic. While Redfish uses the JSON data-interchange format, Redfish provides a common

encoding type that ensures property naming conventions that make development easier in JavaScript, Python, and

other languages. This encoding type helps the Redfish data model be more easily accessible in modern tools and

programming environments.

The data model allows an OEM to extend the model by adding an OEM resource or extending a resource.

This clause describes common data model, resource, and Redfish schema requirements.

9.1 Resources

A resource is a single entity accessed at a specific URI. Services use the application/json MIME type to return

resources as JSON payloads.

Each resource shall be strongly typed, defined by a resource type in a Redfish schema document, and identified in

the response payload by the value of the type identifier property.

Responses for a single resource shall contain the following properties:

• @odata.id

◦ Registry resources are not required to provide @odata.id

• @odata.type

• Id

• Name

Responses may also contain other properties defined within that resource type. Responses shall not include any

properties not defined by that resource type.

9.2 Resource types

A resource type defines the set of properties that may be returned in the response payload of a Redfish resource

request. Each resource type is documented in a Redfish schema document, and those documents are known

collectively as the Redfish schema. The resource type may also include definitions for actions available for that

resource.

Redfish Specification DSP0266

70 Published Version 1.14.0

Resource types are named to match the contents and purpose of the resource that they define. For example the

Circuit resource type defines the properties and actions related to a single electrical circuit. Resource types

provide global uniqueness for definitions across multiple schema files and allow for schema files to reference each

other. Resource types may be defined by OEMs to extend the Redfish schema, and should follow the naming rules

specified by the OEM resource types clause.

9.3 Resource collections

A resource collection is a set of resources that share the same schema definition. Services use the application/

json MIME type to return resource collections as JSON payloads.

Resource collection responses shall contain the following properties:

• @odata.id

• @odata.type

• Name

• Members

• Members@odata.count

Responses for resource collections may contain the following properties:

• @odata.context

• @odata.etag

• Description

• Members@odata.nextLink

• Oem

Responses for resource collections shall not contain any other properties with the exception of payload annotations.

9.4 OEM resources

OEMs and other third parties can extend the Redfish data model by creating additional resource types. Extending the

data model is accomplished by defining an OEM resource type, and schema file, for each resource type, and

creating hyperlinks to connect instances of new resources to the resource tree.

Companies, OEMs, and other organizations may also use the Oem property in resources, the links property, and the

actions property to define additional properties, hyperlinks, and actions for standard Redfish resource types.

While the information and semantics of these extensions are outside of the standard, the schema representing the

data, the resource itself, and the semantics around the protocol shall conform to the requirements in this

specification. OEMs are encouraged to follow the design tenets and naming conventions in this specification when

defining OEM resources or properties.

DSP0266 Redfish Specification

Version 1.14.0 Published 71

9.5 Common data types

9.5.1 Primitive types

Table 17 describes the primitive data types for properties and action parameters in the data model:

Table 17 — Primitive data types

Type Description

Boolean A variable with a value of true or false .

Number

A number with optional decimal point or exponent. Number

properties may restrict the representation to an integer or a number

with decimal point.

String A sequence of characters enclosed with double quotes (").

Array
A comma-separated set of the previous types enclosed with square

braces ([and]). See the Array properties clause.

Object
A set of properties enclosed with curly braces ({ and }). See the

Structured properties clause.

Null

null value, which the service uses when it is unable to determine

the property's value due to an error or other temporary condition, or if

the schema has requirements for using null for other special

conditions.

When receiving values from the client, services should support other valid representations of the data in the specified

JSON type. In particular, services should support valid integer and decimal values in exponential notation and integer

values that contain a decimal point with no non-zero trailing digits.

9.5.2 Enumerations

Enumerations are frequently used in Redfish to promote readability and interoperability, especially compared to the

use of string values when used for similar purposes. Enumerations aren't optimal in all cases. Properties with two

values that are likely to not have additional values should consider the boolean type if the true and false values

can be described by the property name. The following design tenets apply to enumerations:

• Enumeration values can be added to existing properties. Client software should be prepared to receive

enumeration values that are not known if the resource schema version is higher than the client's supported

version.

• Enumeration properties should avoid definition of "unknown", "other", or similar generic or placeholder values as

these reduce interoperability.

• Feedback is encouraged for adding enumeration values to existing properties to cover new technologies or use

Redfish Specification DSP0266

72 Published Version 1.14.0

cases.

◦ Enumeration values are generally defined to support existing or newly developed products.

◦ Enumeration values that are obsolete or highly unlikely to appear in implementations are not included, but

they can be added.

◦ Enumerations may include vendor-specific values when they apply to multiple products or implementations.

◦ Sometimes the value OEM is included as an enumeration value. When this is in the enumeration, client

software should be aware that there is likely an Oem property with additional information. In some cases,

standard schema contains a standard value to further describe this enumeration value when additional OEM

data is unlikely.

9.5.3 Empty string values

String properties should return an empty string ("") for properties configured by a user or external service that have

not been set to an initial value. This allows client software to identify the property as supported by the service, and

avoids the use of null , which indicates an error condition. For example, the AssetTag property must be set by the

end user, and therefore would return an empty string ("") until assigned a value by the user, while a failure to read the

stored AssetTag value due to a non-volatile memory error would return null . To improve interoperability,

implementations should avoid the use of filler strings, such as N/A or <Empty> , to represent a value not set by a

user.

9.5.4 GUID and UUID values

Globally Unique Identifier (GUID) and Universally Unique Identifier (UUID) values are unique identifier strings and

shall use the format:

([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})

9.5.5 Date-Time values

Date-Time values are strings according to the ISO 8601 extended format, including the time offset or UTC suffix.

Date-Time values shall use the format:

<YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>[.<SSS>](Z|((+|-)<HH>:<MM>))

where

• <YYYY> is the four-digit year.

• <MM> is the two-digit month (1 to 12).

• <DD> is the two-digit day (1 to 31).

• T is the time separator. Shall be a capital T .

• <hh> is the two-digit hour (0 to 23).

DSP0266 Redfish Specification

Version 1.14.0 Published 73

• <mm> is the two-digit minute (0 to 59).

• <ss> is the two-digit second (0 to 59).

• <SSS> is optional and is the decimal fraction of a second. Shall be one or more digits where the number of

digits implies the precision.

• Z is the zero offset indicator. Shall be a capital Z .

• <HH> is the two-digit hour offset (0 to 23).

• <MM> is the two-digit minute offset (0 to 59).

For example, 2015-03-13T04:14:33+06:00 represents March 13, 2015 at 4:14:33 with a +06:00 time offset.

When the time of day is unknown or serves no purpose, the service shall report 00:00:00Z for the time of day value.

9.5.6 Duration values

Duration values are strings according to the ISO 8601 duration format, with the exception of not expressing a

representation for years, months, or weeks. Duration values shall use the format:

P[<d>D][T[<h>H][<m>M][<s>[.<f>]S]]

where

• <d> is the number of days.

• <h> is the number of hours.

• <m> is the number of minutes.

• <s> is the number of seconds.

• <f> is the fractional seconds.

Each field is optional and can contain more than one digit.

For example, Table 18 describes the following durations:

Table 18 — Durations

Value Duration

P90D Ninety days.

P3D Three days.

PT6H Six hours.

PT10S Ten seconds.

PT0.001S 0.001 seconds.

PT1H30M One hour and 30 minutes.

Redfish Specification DSP0266

74 Published Version 1.14.0

DEPRECATED: Duration values shall use the format:

P[<y>Y][<m>M][<w>W][<d>D][T[<h>H][<m>M][<s>[.<f>]S]] . This definition allows for specifying years,

months, and weeks. ISO 8601 does not specify an exact value for the duration of a year or of a month, which

introduces interoperability challenges.

9.5.7 Reference properties

Reference properties provide a reference to another resource in the data model. Reference properties are JSON

objects that contain an @odata.id property. The @odata.id property value is the URI of the referenced resource.

9.5.8 Non-resource reference properties

Non-resource reference properties provide a URI to services or documents that are not Redfish-defined resources.

These properties shall include the Uri or URI term in their property name and shall be of type string. For example,

AssemblyBinaryDataUri in the Assembly schema. The access protocol, request headers, response headers, and

data format of the referenced URI may be defined in schema for that property. Non-resource reference properties

that refer to local HTTP/S targets shall follow the Redfish protocol, including use of Redfish sessions and access

control, unless otherwise specified by the property definition in schema.

9.5.9 Array properties

Array properties contain a set of values or objects, and appear as JSON arrays within a response body. Array

elements shall all contain values of the same data type.

Table 19 describes the array types, regardless of the data type of the elements:

Table 19 — Array types

Array type Description

Fixed length
Contains a static number of elements. The property definition sets or

the implementation chooses the size of the array.

Variable length

Contains a variable number of elements. The array size is not

specified and the size varies among instances. The array size may

change. This array style is the most common style.

Rigid

The array index is meaningful. When elements are added to or

removed from the array, the elements do not change their position,

or index, in the array. An element that is removed from a rigid array

shall be replaced by a null element and all other elements shall

remain at their current index.

Empty elements in a rigid array property shall be represented by

null elements. Any array property that uses this style shall indicate

the rigid style in the long description of its schema definition.

DSP0266 Redfish Specification

Version 1.14.0 Published 75

Services may pad an array property with null elements at the end of the sequence to indicate the array size to

clients. This practice is useful for small fixed length arrays, and for variable or rigid arrays with a restrictive maximum

size. Services should not pad array properties if the maximum array size is not restrictive. For example, an array

property typically populated with two elements, that a service limits to a maximum of 16 elements, should not pad the

array with 14 null elements.

9.5.10 Structured properties

Structured properties are JSON objects within a response body.

Some structured properties inherit from the Resource.v1_0_0.ReferenceableMember definition. Structured

properties that follow this definition shall contain the MemberId and resource identifier properties.

Because the definition of structured properties can evolve over time, clients need to be aware of the inheritance

model that the different structured property definitions use.

For example, the Location property definition in the Resource schema has gone through several iterations since

the Resource.v1_1_0 type was introduced, and each iteration inherits from the earlier version so that existing

references in other schemas can leverage the additions.

Structured property references need to be resolved for both local and external references.

A local reference is a resource that has a structured property in its own schema, such as ProcessorSummary in the

ComputerSystem resource. In these cases, the type property for the resource is the starting point for resolving the

structured property definition.

To find the latest applicable version, clients can step the version of the resource backwards.

For example, if a service returns #ComputerSystem.v1_4_0.ComputerSystem as the resource type, a client can step

backwards from ComputerSystem.v1_4_0 , to ComputerSystem.v1_3_0 , to ComputerSystem.v1_2_0 , and so on,

until it finds the ProcessorSummary structured property definition.

An external reference is a resource that has a property that references a definition found in a different schema, such

as the Location property in the Chassis resource.

In these cases, clients can use the latest version of the external schema file as a starting point to resolve the

structured property definition.

For example, if the latest version of the Resource schema is 1.6.0 , a client can go backward from

Resource.v1_6_0 , to Resource.v1_5_0 , to Resource.v1_4_0 , and so on, until it finds the Location structured

property definition.

Redfish Specification DSP0266

76 Published Version 1.14.0

9.5.11 Message object

9.5.11.1 Overview

A message object provides additional information about an object, property, or error response.

Table 20 describes the properties of the message object, which is a JSON object:

Table 20 — Message object properties

Property Type Required Defines

MessageId String Yes

Error or message. Do not confuse

this value with the HTTP status

code. Clients can use this code to

access a detailed message from

a message registry.

Message String No

Human-readable error message

that indicates the semantics

associated with the error. This

shall be the complete message,

and not rely on substitution

variables.

RelatedProperties An array of JSON pointers No
Properties in a JSON payload

that the message describes.

MessageArgs An array of strings No

Substitution parameter values for

the message. If the

parameterized message defines

a MessageId , the service shall

include the MessageArgs in the

response.

MessageSeverity String (enumeration) No

Severity of the error. Services

can replace the value of the

MessageSeverity property

defined in the message registry

with a value more applicable to

the implementation.

DSP0266 Redfish Specification

Version 1.14.0 Published 77

Property Type Required Defines

Severity String No

Severity of the error. Services

can replace the value of the

Severity property defined in the

message registry with a value

more applicable to the

implementation.

DEPRECATED: This property

has been deprecated in favor of

MessageSeverity .

Resolution String No

Recommended actions to take to

resolve the error. Services can

replace the value of the

Resolution property defined in

the message registry with a

service-defined resolution.

Each instance of a message object shall contain at least a MessageId , together with any applicable MessageArgs ,

or a Message property that defines the complete human-readable error message.

A MessageId identifies a specific message that a message registry defines.

9.5.11.2 MessageId format

The MessageId property value shall be in the format:

<RegistryName>.<MajorVersion>.<MinorVersion>.<MessageKey>

where

• <RegistryName> is the name of the registry. The registry name shall be Pascal-cased, except for any

prepended unique OEM identifier which may include underscore (_) characters. The registry name shall be

exposed in the RegistryPrefix property in the message registry.

• <MajorVersion> is a non-negative integer that represents the major version of the registry.

• <MinorVersion> is a non-negative integer that represents the minor version of the registry.

• <MessageKey> is a human-readable key into the registry. The message key shall be Pascal-cased and shall not

include spaces, periods, or special characters.

To search the message registry for a message, the client can use the MessageId .

The message registry approach has advantages for internationalization because the registry can be translated easily,

and is lightweight for implementations because large strings need not be included with the implementation.

The use of GeneralError from the Base Message Registry as a MessageId in ExtendedInfo is discouraged. If no

Redfish Specification DSP0266

78 Published Version 1.14.0

better message exists or the ExtendedInfo array contains multiple messages, use GeneralError from the Base

Message Registry only in the code property of the error object.

When an implementation uses GeneralError from the Base Message Registry in ExtendedInfo , the

implementation should include a service-defined value for the Resolution property with this error to indicate how to

resolve the problem.

9.6 Properties

9.6.1 Properties overview

Every property included in a Redfish response payload shall be defined in the schema for that resource. The

following attributes apply to all property definitions:

• Property names in the request and response payload shall match the casing of the Name attribute value in the

defining schema.

• Required properties shall always be returned in a response.

• Properties not returned from a GET operation indicate that the property is not supported by the implementation,

or by that particular resource instance. Differences in underlying product support or configuration varies among

resource instances, and therefore the properties returned by each instance vary accordingly.

• If an implementation supports a property, it shall always provide a value for that property. If a value is unknown

at the time of the operation due to an internal error, or inaccessibility of the data, the value of null is an

acceptable value if supported by the schema definition.

• Resource instances should omit properties if the underlying product, service, or current configuration does not

provide the function described by the property. For example, a chassis resource instance might not provide a

serial number, and therefore should omit the SerialNumber property, while other chassis resource instances

that have a serial number provide this property. See the Special resource situations clause for handling special

resource situations.

• A service may implement a writable property as read-only.

This clause also contains a set of common properties across all Redfish resources. The property names in this

clause shall not be used for any other purpose.

9.6.2 Resource identifier (@odata.id) property

Registry resources in a response may include an @odata.id property. All other resources and resource collections

in a response shall include an @odata.id property. The value of the identifier property shall be the resource URI.

9.6.3 Resource type (@odata.type) property

All resources and resource collections in a response shall include an @odata.type type property. To support

generic OData clients, all structured properties in a response should include an @odata.type type property.

DSP0266 Redfish Specification

Version 1.14.0 Published 79

The value of the type property for resources and structured properties shall be in the format:

#<ResourceType>.<Version>.<TermName>

where

• <ResourceType> is the resource type in the Redfish schema that defines the resource.

• <Version> is the resource type version, in the format: v<MajorVersion>_<MinorVersion>_<ErrataVersion> .

• <TermName> is the specific type defined within the resource type definition. For most Redfish resources, the

specific type name is the same as the resource type name.

An example of a resource type value is #ComputerSystem.v1_0_0.ComputerSystem , where

ComputerSystem.v1_0_0 denotes the version 1.0.0 of the ComputerSystem resource type, and the specific type is

ComputerSystem .

The value of the type property for resource collections shall be in the format:

#<ResourceType>.<ResourceType>

where

• <ResourceType> is the resource type in the Redfish schema that defines the resource collection.

An example of a resource collection type value is #ComputerSystemCollection.ComputerSystemCollection for the

ComputerSystemCollection resource collection.

9.6.4 Resource ETag (@odata.etag) property

ETags enable clients to conditionally retrieve or update a resource. Resources should include an @odata.etag

property. For a resource, the value shall be the ETag.

9.6.5 Resource context (@odata.context) property

Responses for resources and resource collections may contain an @odata.context property that describes the

source of the payload.

If the @odata.context property is present, it shall be the context URL that describes the resource, according to

OData Protocol.

The context URL for a resource should be in the format:

/redfish/v1/$metadata#<ResourceType>.<ResourceType>

where

Redfish Specification DSP0266

80 Published Version 1.14.0

• <ResourceType> is the resource type of the resource or resource collection.

For example, the following context URL specifies that the results show a single ComputerSystem resource:

{
"@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",
...

}

The context URL for a resource may be in one of the other formats that OData Protocol specifies.

9.6.6 Id

The Id property of a resource uniquely identifies the resource within the resource collection that contains it. The

value of Id shall be a string that is unique across a resource collection. Since URIs are constructed from the value

of the Id property, the value shall not contain any RFC1738-defined unsafe characters.

9.6.7 Name

The Name property conveys a human-readable moniker for a resource. The data type of the Name property shall be

string. The value of Name is NOT required to be unique across resource instances within a resource collection.

9.6.8 Description

The Description property conveys a human-readable description of the resource. The data type of the

Description property shall be string.

9.6.9 MemberId

The MemberId property uniquely identifies an element within an array, where a reference property can reference the

element. The value of MemberId shall be a string that is unique across the array.

9.6.10 Count (Members@odata.count) property

The count property defines the total number of resource, or members, that are available in a resource collection. The

count property shall be named Members@odata.count and its value shall be the total number of members available

in the resource collection. The $top or $skip query parameters shall not affect this count. If the number of

members available in the resource collection is reduced due to filtering, such as in response to the $filter query

parameter, the count should be the total number of members available in the resource collection after the filter is

applied.

DSP0266 Redfish Specification

Version 1.14.0 Published 81

mailto:Members@odata.count

9.6.11 Members

The Members property of a resource collection identifies the members of the collection. The Members property is

required and shall be returned in the response for any resource collection. The Members property shall be an array

of JSON objects named Members . The Members property shall not be null . Empty collections shall be an empty

JSON array.

9.6.12 Next link (Members@odata.nextLink) property

The next link (Members@odata.nextLink) property value shall be an opaque URL to a resource, with the same

@odata.type , which contains the next set of partial members from the original operation. The next link property shall

only be present if the number of members in the resource collection is greater than the number of members returned,

and if the payload does not represent the end of the requested resource collection.

The Members@odata.count property value is the total number of resources available if the client enumerates all

pages of the resource collection.

9.6.13 Links

The Links property represents the hyperlinks associated with the resource, as defined by that resource's schema

definition. All associated reference properties defined for a resource shall be nested under the links property. All

directly (subordinate) referenced properties defined for a resource shall be in the root of the resource.

The links property shall be named Links and contain a property for each related resource.

To navigate vendor-specific hyperlinks, the Links property shall also include an Oem property.

9.6.13.1 Reference to a related resource

A reference to a single resource is a JSON object that contains a single resource identifier property. The name of this

reference is the name of the relationship. The value of this reference is the URI of the referenced resource.

{
"Links": {

"ManagedBy": {
"@odata.id": "/redfish/v1/Chassis/Encl1"

}
}

}

Redfish Specification DSP0266

82 Published Version 1.14.0

mailto:Members@odata.nextLink

9.6.13.2 References to multiple related resources

A reference to a set of zero or more related resources is an array of JSON objects. The name of this reference is the

name of the relationship. Each element of the array is a JSON object that contains a resource identifier property with

the value of the URI of the referenced resource.

{
"Links": {

"Contains": [{
"@odata.id": "/redfish/v1/Chassis/1"

}, {
"@odata.id": "/redfish/v1/Chassis/Encl1"

}]
}

}

9.6.14 Actions property

The Actions property contains the actions supported by a resource.

9.6.14.1 Action representation

Each supported action is represented as a property nested under Actions . The unique name that identifies the

action is used to construct the property name.

This property name shall be in the format:

#<ResourceType>.<ActionName>

where

• <ResourceType> is the resource where the action is defined.

• <ActionName> is the name of the action.

The client may use this fragment to identify the action definition in the referenced Redfish schema document.

The property for the action is a JSON object and contains the following properties:

• The target property shall be present, and defines the relative or absolute URL to invoke the action.

• The title property may be present,and defines the action's name.

The OData JSON Format Specification defines the target and title properties.

DSP0266 Redfish Specification

Version 1.14.0 Published 83

To specify the list of supported values for a parameter, the service may include the @Redfish.AllowableValues

annotation.

For example, the following property defines the Reset action for a ComputerSystem :

{
"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",
"title": "Computer System Reset",
"ResetType@Redfish.AllowableValues": ["On", "ForceOff", "GracefulRestart",

"GracefulShutdown", "ForceRestart", "Nmi", "ForceOn",
"PushPowerButton"]

},
...

}

Given this, the client could invoke a POST request to /redfish/v1/Systems/1/Actions/ComputerSystem.Reset

with the following body:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

{
"ResetType": "On"

}

The resource may provide a separate @Redfish.ActionInfo resource to describe the parameters and values that a

particular instance or implementation supports. Use the @Redfish.ActionInfo annotation to specify the

ActionInfo resource, which contains a URI to the @Redfish.ActionInfo resource for the action. For details, see

the Action info annotation clause.

9.6.14.2 Action responses

Response payloads for actions may contain a JSON body that is described by the schema definition for the action.

See the Schema definition languages clause for the representation of these definitions. Actions that do not define a

response body may provide an error response in the response payload.

9.6.15 Oem

The Oem property is used for extending standard resources with OEM extensions.

Redfish Specification DSP0266

84 Published Version 1.14.0

9.6.16 Status

The Status property represents the status of a resource. The Status property shall follow the definition for

Status in the Resource schema.

By having a common representation of status, clients can depend on consistent semantics. The Status property is

capable of indicating the current state, health of the resource, and the health of subordinate resources.

9.7 Naming conventions

The Redfish interface is intended to be easily readable and intuitive. Thus, consistency helps the consumer

understand the use of a newly discovered property. While consistency is no substitute for the normative information

in the Redfish Specification and Redfish schema, the following naming rules help with readability and client usage. In

general, names in Redfish are designed and intended to be human-readable and convey the meaning of the name,

in context, without the need to consult schema definitions or other documentation.

9.7.1 Naming rules

Standard Redfish schema and registries defined and published by the DMTF, and those created by others and

republished by the DMTF, shall follow a set of naming conventions. These conventions are intended to ensure

consistent naming and eliminate naming collisions. For schema files, the resource type is used to construct the type

property and the schema file name.

Standard Redfish properties follow similar naming conventions, and should use a common definition when defined in

multiple schemas across the Redfish data model. This consistency enables code re-use across resources and

increases interoperability. New resource definitions should leverage existing property definitions whenever possible.

The general Redfish naming rules for resource types, registries, properties, action parameters, and enumerations are

as follows:

• Names shall be Pascal-cased. The first letter of each word in a name shall be uppercase and spaces between

words shall be removed. For example, ComputerSystem , PowerState , and SerialNumber .

• Names of array properties or reference properties for resource collections should use a plural form of the name.

All other names should use the singular form of the name.

• Reference properties for resource collections should omit the term "collection" in the name.

• Names shall not contain spaces or underscore characters. Names should not contain any special characters that

violate naming rules for supported schema description languages or programming languages.

• Both characters should be capitalized for two-character acronyms. For example, IPAddress or RemoteIP .

• Names constructed from a single acronym or mixed-case name, such as LDAP , PCIe , or SNMP , should use

the typical capitalization for that name.

• Names incorporating acronyms with three or more characters should follow the capitalization used in related

DSP0266 Redfish Specification

Version 1.14.0 Published 85

names for consistency. For example, EnableSNMPv1 and EnableSNMPv2 follow the pattern used for SNMP .

• Pascal-casing may be used for acronyms longer than two characters to improve readability, especially when two

or more acronyms appear together in a name, which should be avoided.

• Enumeration names should start with a letter and be followed by letters or numbers to conform to schema

description language requirements. Underscore characters may be used to replace other special characters, or

to significantly improve readability, but this usage is discouraged.

• Enumeration names should prioritize readability as they may appear unmodified on user interfaces, whereas

property or schema names should follow conventions and strive for consistency.

• The names Settings and SD are reserved for use for settings resources and shall not be used for schema

names.

Exceptions are allowed for the following cases:

• Well-known technology abbreviations, acronyms, or product names should follow their defined capitalization.

Examples include iSCSI , iSCSITarget , and iLO .

• OEM appears as Oem in schema and property names either alone or as a portion of a name, but should be

OEM when used alone as an enumeration value.

• Underscore characters are allowed in the construction of OEM-specified object property names when required,

and in OEM-defined resource types or OEM-defined registry names.

For properties that have units or other special meaning, append a unit identifier to the name. Examples include:

• Bandwidth (Mbps). For example, PortSpeedMbps .

• CPU speed (Mhz). For example, ProcessorSpeedMhz .

• Memory size (MB). For example, MemoryMB .

• Counts of items (Count). For example, ProcessorCount or FanCount .

• The state of a resource (State). For example, PowerState .

• State values where work is in process. For example, Applying or ClearingLogic .

9.7.2 URI naming rules

The following rules apply to Redfish schema-defined URIs:

• URI segments should generally follow the naming rules, and for each segment, follow the name of the property

that provides the hyperlink.

• URI segments for resource collections should use the plural form of the resource collection schema name, with

the Collection term omitted. For example, Processors for a ProcessorCollection .

• URI segments for resource collections shall not be named Members , as this value will conflict with POST

operations on the required Members property. See the POST (create) clause for more information.

• If a hyperlink to a subordinate resource is not found at the root of the resource, the URI segments should contain

the property path. For example, for the Certificates hyperlink found in ManagerNetworkProtocol within the

HTTPS object, HTTPS should be one of the URI segments.

Redfish Specification DSP0266

86 Published Version 1.14.0

9.8 Extending standard resources

9.8.1 Extending standard resources overview

In the context of this clause, the OEM term refers to any company, manufacturer, or organization that provides or

defines an extension to the DMTF-published schema and functionality for Redfish. All Redfish-specified resources

include an empty structured Oem property. The value of this predefined placeholder can encapsulate one or more

OEM-specified object properties, which can contain OEM-specific property definitions.

9.8.2 OEM property format and content

Each property contained within the Oem property shall be an OEM-specified JSON object. The name of each object

property shall uniquely identify the OEM or organization that defines the properties contained by that object. The

OEM-specified object naming clause describes this naming convention.

The OEM-specified object shall include a type property if the object:

• Is not contained in an array of objects.

• Is contained in the first object within an array of objects.

• In subsequent array members containing an OEM-specified object, whose type is different than the first array

member.

The Oem property can simultaneously hold multiple OEM-specified objects, including objects for more than one

company or organization.

The definition of any other properties that are contained within the OEM-specified object, along with the functional

specifications, validation, or other requirements for that content is OEM-specific and outside the scope of this

specification. While there are no Redfish-specified limits on the size or complexity of the elements within an OEM-

specified object, it is intended it is typically used for only a small number of simple properties that augment the

Redfish resource. If a large number of objects or a large quantity of data compared to the size of the Redfish

resource is to be supported, the OEM should consider creating a subordinate resource for their extensions.

9.8.3 OEM-specified object naming

The OEM-specified object properties within the Oem property are named by using a unique OEM identifier. There

are two specified forms for the identifier. The identifier shall be either an ICANN-recognized domain name (including

the top-level domain suffix), with all dot (.) separators replaced with underscores (_), or an IANA-assigned

Enterprise Number prefixed with "EID_."

DEPRECATED: The identifier shall be either an ICANN-recognized domain name including the top-level

domain suffix, or an IANA-assigned Enterprise Number prefixed with EID: .

DSP0266 Redfish Specification

Version 1.14.0 Published 87

Organizations that use .com domain names may omit the .com suffix. For example, Contoso.com would use

Contoso instead of Contoso_com , but Contoso.org would use Contoso_org . The domain name portion of an OEM

identifier shall be considered to be case independent. That is, the text Contoso_biz , contoso_BIZ , conTOso_biZ ,

and so on all identify the same OEM.

The OEM identifier portion of the object name may be followed by an underscore (_) and any additional string to

enable further subdivisions of OEM-specified objects as desired. For example, Contoso_xxxx or EID_412_xxxx .

The form and meaning of any text that follows the trailing underscore is completely OEM-specific. OEM-specified

extension suffixes may be case sensitive, depending on the OEM. Generic client software should treat such

extensions, if present, as opaque and not try to parse nor interpret the content.

This suffix could be used in many ways, depending on OEM need. For example, the Contoso company may have a

Research suborganization, in which case the OEM-specified property name might be extended to

Contoso_Research. Alternatively, it can identify a unique resource type for a functional area, geography, subsidiary,

and so on.

The OEM identifier portion of the name typically identifies the company or organization that created and maintains

the schema for the property. However, this practice is not a requirement. The identifier is only required to uniquely

identify the party that is the top-level manager of a resource type to prevent collisions between OEM property

definitions from different vendors or organizations. Consequently, the organization for the top of the resource type

may be different than the organization that provides the definition of the OEM-specified property. For example,

Contoso may allow one of their customers, such as CustomerA , to extend a Contoso product with certain

CustomerA proprietary properties. In this case, although Contoso allocated the name Contoso_CustomerA , it could

be CustomerA that defines the content and functionality within that resource type. In all cases, OEM identifiers

should not be used except with permission or as specified by the identified company or organization.

9.8.4 OEM resource types

Companies, OEMs, and other organizations can define additional resources and link to them from an Oem property

in a standard Redfish resource, preferably from the Oem property within the Links property. To avoid naming

collisions with current or future standard Redfish resource types or schema files, the defining organization's unique

OEM identifier, including possible subdivisioning, should be prepended to the OEM resource type name with an

optional underscore (_) as separator. This unique OEM identifier should follow the same naming as defined in the

OEM-specified object naming clause. The name of the OEM resource type, including the unique OEM identifier,

should also be prepended to the file name of OEM schema file that specify the OEM resource type. Separator

underscores (_) may be excluded from the OEM resource type name or schema file name for improved readability.

For example, OEM resource type ContosoDrive or Contoso_CustomerA_Drive would not conflict with the standard

Redfish Drive resource type, or conflict with another OEM's drive-related definition.

9.8.5 OEM registries

Companies, OEMs, and other organizations can define additional registries and utilize them in message objects,

privileges or for BIOS attributes. To avoid naming collisions with current or future standard Redfish message

Redfish Specification DSP0266

88 Published Version 1.14.0

registries, the defining organization's unique OEM identifier, including possible subdivisioning, should be prepended

to the registry name with an optional underscore (_) as separator. This unique OEM identifier should follow the

same naming as defined in the OEM-specified object naming clause. Separator underscores (_) may be excluded

from the OEM registry name for improved readability. The OEM registry name, including the unique OEM identifier,

should also be used to construct the registry file name as defined in the Registry file naming clause.

For example, OEM registry name ContosoDriveEvent or Contoso_CustomerB_DriveEvent would not conflict with a

possible future standard Redfish DriveEvent message registry name, or conflict with another OEM's drive-related

registry name.

9.8.6 OEM URIs

To avoid URI collisions with other OEM resources and future Redfish standard resources, the URIs for OEM

resources within the Redfish resource tree shall be in the form:

<BaseUri>/Oem/<OemIdentifier>/<ResourcePath>

where

• <BaseUri> is the URI segment of the standard Redfish resource starting with /redfish/ where the Oem

property is used. For example, /redfish/v1/Systems/3AZ38944T523 .

• <OemIdentifier> is the unique indentifier of the OEM, including possible subdivisioning, that follows the same

naming as defined in the OEM-specified object naming clause. Separator underscores (_) may be excluded for

improved readability.

• <ResourcePath> is the path to the OEM-defined resource. This path might contain multiple segments for cases

where OEM-defined resources are subordinate to an OEM-defined resource. Each segment in the path contains

the name of an OEM-defined resource.

For example, if Contoso defined a new ContosoAccountServiceMetrics OEM resource type to be linked through

the Oem property at the /redfish/v1/AccountService URI, the OEM resource has the /redfish/v1/

AccountService/Oem/Contoso/AccountServiceMetrics URI. If Contoso uses a subdivision of their OEM identifier

such as Contoso_CustomerA the OEM resource has the URI /redfish/v1/AccountService/Oem/

Contoso_CustomerA/AccountServiceMetrics or /redfish/v1/AccountService/Oem/ContosoCustomerA/

AccountServiceMetrics .

9.8.7 OEM property examples

The following fragment shows examples of naming and the Oem property as it might appear when accessing a

resource. The example shows that the OEM identifiers can be of different forms, that OEM-specified content can be

simple or complex, and that the format and usage of extensions of the OEM identifier is OEM-specific.

{

DSP0266 Redfish Specification

Version 1.14.0 Published 89

"Oem": {
"Contoso": {

"@odata.type": "#ContosoAnvil.v1_2_1.AnvilTypes1",
"Slogan": "Contoso anvils never fail",
"Disclaimer": "* Most of the time"

},
"Contoso_biz": {

"@odata.type": "#ContosoBizEngine.v1_1_0.RelatedSpeed",
"Speed": "Ludicrous"

},
"EID_412": {

"@odata.type": "#AdatumPowerExtensions.v1_0_1.PowerInfoExt",
"ReadingInfo": {

"Accuracy": "5",
"IntervalSeconds": "20"

}
},
"Contoso_CustomerA": {

"@odata.type": "#ContosoCustomerASling.v1_0_0.SlingPower",
"AvailableTargets": ["Rabbit", "Duck", "Runner"],
"LaunchPowerOptions": ["Low", "Medium", "Eliminate"],
"LaunchPower": "Eliminate",
"Target": "Rabbit"

}
},
...

}

9.8.8 OEM actions

OEM-specific actions appear in the JSON payload as properties of the Oem object, nested under an Actions

property.

The name of the property that represents the action, which shall follow the form:

#<ResourceType>.<Action>

where

• <ResourceType> is the OEM resource type.

• <Action> is the action name.

{
"Actions": {

"Oem": {

Redfish Specification DSP0266

90 Published Version 1.14.0

"#Contoso_ABC_ComputerSystem.Ping": {
"target": "/redfish/v1/Systems/1/Actions/Oem/Contoso_ABC_ComputerSystem.Ping"

},
"#ContosoCustomerAComputerSystem.CustomPing": {

"target": "/redfish/v1/Systems/1/Actions/Oem/ContosoCustomerAComputerSystem.CustomPing"
}

}
},
...

}

The URI of the OEM action in the target property shall be in the form:

<ResourceUri>/Actions/Oem/<ResourceType>.<Action>

where

• <ResourceUri> is the URI of the resource that supports invoking the action. For example, /redfish/v1/

Systems/1/ .

• Actions is the name of the property containing the actions for a resource.

• Oem is the name of the OEM property within the Actions property.

• <ResourceType>.<Action> is the OEM resource type followed by the action name. For example,

Contoso_ABC_ComputerSystem.Ping .

9.9 Payload annotations

9.9.1 Payload annotations overview

Resources, objects within a resource, and properties may include additional annotations as properties with the name,

in the format:

[<PropertyName>]@<Namespace>.<TermName>

where

• <PropertyName> is the name of the property to annotate. If absent, the annotation applies to the entire JSON

object, which may be an entire resource.

• <Namespace> is the namespace that defines the annotation term.

• <TermName> is the annotation term to apply to the resource or property of the resource.

Services shall limit the annotation usage to the odata , Redfish , and Message namespaces. The OData JSON

DSP0266 Redfish Specification

Version 1.14.0 Published 91

Format Specification defines the odata namespace. The Redfish namespace is an alias for the

RedfishExtensions.v1_0_0 namespace.

The client can get the definition of the annotation from the OData metadata document, the HTTP Link header, or

may ignore the annotation entirely, but should not fail reading the resource due to unrecognized annotations,

including new annotations that the Redfish namespace defines.

9.9.2 Allowable values

To specify the list of allowable values for a property or action parameter, services may use the

@Redfish.AllowableValues annotation for properties or action parameters.

To specify the set of allowable values, include a property with the name of the property or action parameter, followed

by @Redfish.AllowableValues . The property value is a JSON array of strings that define the allowable values for

the property or action parameter.

9.9.3 Extended information

The following clauses describe the methods of providing extended information:

• Extended object information

• Extended property information

9.9.3.1 Extended object information

To specify object-level status information, services may annotate a JSON object with the @Message.ExtendedInfo

annotation.

{
"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",
"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",
"Name": "Managed Serial Interface 1",
"Description": "Management for Serial Interface",
"Status": {

"State": "Enabled",
"Health": "OK"

},
"InterfaceEnabled": true,
"SignalType": "Rs232",
"BitRate": "115200",
"Parity": "None",
"DataBits": "8",
"StopBits": "1",
"FlowControl": "None",
"ConnectorType": "RJ45",

Redfish Specification DSP0266

92 Published Version 1.14.0

"PinOut": "Cyclades",
"@Message.ExtendedInfo": [{

"MessageId": "Base.1.8.PropertyDuplicate",
"Message": "Indicates that a duplicate property was included in the request body.",
"RelatedProperties": ["#/InterfaceEnabled"],
"Severity": "Warning",
"MessageSeverity": "Warning",
"Resolution": "Remove the duplicate property from the request body and resubmit the request if the operation failed."

}]
}

The property contains an array of message objects.

9.9.3.2 Extended property information

Services may use @Message.ExtendedInfo , prepended with the name of the property to annotate an individual

property in a JSON object with extended information:

{
"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",
"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",
"Name": "Managed Serial Interface 1",
"Description": "Management for Serial Interface",
"Status": {

"State": "Enabled",
"Health": "OK"

},
"InterfaceEnabled": true,
"SignalType": "Rs232",
"BitRate": 115200,
"Parity": "None",
"DataBits": 8,
"StopBits": 1,
"FlowControl": "None",
"ConnectorType": "RJ45",
"PinOut": "Cyclades",
"PinOut@Message.ExtendedInfo": [{

"MessageId": "Base.1.8.PropertyValueNotInList",
"Message": "The value Contoso for the property PinOut is not in the list of acceptable values.",
"Severity": "Warning",
"MessageSeverity": "Warning",
"Resolution": "Choose a value from the enumeration list that the implementation can support and resubmit the request if the operation failed."

}]
}

DSP0266 Redfish Specification

Version 1.14.0 Published 93

9.9.4 Action info annotation

The @Redfish.ActionInfo term within the action representation conveys the parameter requirements and allowable

values on parameters for actions. This term contains a URI to the ActionInfo resource.

Example #ComputerSystem.Reset action with the @Redfish.ActionInfo annotation and resource:

{
"Actions": {

"#ComputerSystem.Reset": {
"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",
"@Redfish.ActionInfo": "/redfish/v1/Systems/1/ResetActionInfo"

}
},
...

}

The ResetActionInfo resource contains a more detailed description of the parameters and the supported values.

This resource follows the ActionInfo schema definition.

{
"@odata.id": "/redfish/v1/Systems/1/ResetActionInfo",
"@odata.type": "#ActionInfo.v1_0_0.ActionInfo",
"Id": "ResetActionInfo",
"Name": "Reset Action Info",
"Parameters": [{

"Name": "ResetType",
"Required": true,
"DataType": "String",
"AllowableValues": ["On", "ForceOff", "ForceRestart", "Nmi",

"ForceOn", "PushPowerButton"]
}]

}

9.9.5 Settings and settings apply time annotations

See the Settings resource clause.

9.9.6 Operation apply time and operation apply time support annotations

See the Operation apply time clause.

Redfish Specification DSP0266

94 Published Version 1.14.0

9.9.7 Maintenance window annotation

The settings apply time and operation apply time annotations enable an operation to be performed during a

maintenance window. The @Redfish.MaintenanceWindow term at the root of a resource configures the start time

and duration of a maintenance window for a resource.

The following example body for the /redfish/v1/Systems/1 resource configures the maintenance window to start

at 2017-05-03T23:12:37-05:00 and last for 600 seconds.

{
"@odata.id": "/redfish/v1/Systems/1",
"@odata.type": "#ComputerSystem.v1_5_0.ComputerSystem",
"@Redfish.MaintenanceWindow": {

"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",
"MaintenanceWindowDurationInSeconds": 600

},
...

}

9.9.8 Collection capabilities annotation

Resource collections may contain a collection capabilities annotation. The @Redfish.CollectionCapabilities term

at the root of a resource collection shows what properties a client is allowed to use in a POST request for creating a

resource.

The following ComputerSystemCollection example body contains the collection capabilities annotation. The

UseCase property contains the ComputerSystemComposition value, and the CapabilitiesObject property

contains the /redfish/v1/Systems/Capabilities value. The resource at /redfish/v1/Systems/Capabilities

describes the POST request format for creating a ComputerSystem resource for compositions.

{
"@odata.id": "/redfish/v1/Systems",
"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",
"Name": "Computer System Collection",
"Members@odata.count": 0,
"Members": [],
"@Redfish.CollectionCapabilities": {

"@odata.type": "#CollectionCapabilities.v1_1_0.CollectionCapabilities",
"Capabilities": [{

"CapabilitiesObject": {
"@odata.id": "/redfish/v1/Systems/Capabilities"

},
"UseCase": "ComputerSystemComposition",

DSP0266 Redfish Specification

Version 1.14.0 Published 95

"Links": {
"TargetCollection": {

"@odata.id": "/redfish/v1/Systems"
}

}
}]

}
}

The CapabilitiesObject resource follows the same schema for the resource that the resource collection contains.

It contains annotations to show which properties the client can use in the POST request body. Table 21 describes the

CapabilitiesObject resource annotations. These annotations describe which properties are required, optional, or

if other rules are associated with the properties.

Table 21 — CapabilitiesObject resource annotations

Annotation Description

<PropertyName>@Redfish.RequiredOnCreate Required in the POST request body.

<PropertyName>@Redfish.OptionalOnCreate Not required in the POST request body.

<PropertyName>@Redfish.SetOnlyOnCreate Cannot be modified after the resource is created.

<PropertyName>@Redfish.UpdatableAfterCreate Can be modified after the resource is created.

<PropertyName>@Redfish.AllowableValues Can be set to any of the listed values.

@Redfish.RequestedCountRequired

Required in the POST request body for the corresponding object to

indicate the number of requested object instances.

Used for composition requests.

@Redfish.ResourceBlockLimits

Indicates restrictions regarding quantities of ResourceBlock

resources of a given type in the POST request body.

Used for composition requests.

Example CapabilitiesObject resource:

{
"@odata.id": "/redfish/v1/Systems/Capabilities",
"@odata.type": "#ComputerSystem.v1_8_0.ComputerSystem",
"Id": "Capabilities",
"Name": "Capabilities for the system collection",
"Name@Redfish.RequiredOnCreate": true,
"Name@Redfish.SetOnlyOnCreate": true,

Redfish Specification DSP0266

96 Published Version 1.14.0

"Description@Redfish.OptionalOnCreate": true,
"Description@Redfish.SetOnlyOnCreate": true,
"HostName@Redfish.OptionalOnCreate": true,
"HostName@Redfish.UpdatableAfterCreate": true,
"Links@Redfish.RequiredOnCreate": true,
"Links": {

"ResourceBlocks@Redfish.RequiredOnCreate": true,
"ResourceBlocks@Redfish.UpdatableAfterCreate": true

},
"@Redfish.ResourceBlockLimits": {

"MinCompute": 1,
"MaxCompute": 1,
"MaxStorage": 8

}
}

9.9.9 Requested count and allow over-provisioning annotations

Table 22 describes the @Redfish.RequestedCount and @Redfish.AllowOverprovisioning annotations.

Clients use these annotations in composition requests to define the number of resource to allocate and to indicate

whether the Redfish service can provision more resources than the client requests:

Table 22 — RequestCount and AllowOverprovisioning annotations

Annotation Description

@Redfish.RequestedCount Number of requested resources.

@Redfish.AllowOverprovisioning

Boolean. If true , the service may provision more resources than

the @Redfish.RequestedCount annotation requests. Default is

false .

Example client request for at least four and possibly more Processor resources:

{
"Processors": {

"Members": [{
"@Redfish.RequestedCount": 4,
"@Redfish.AllowOverprovisioning": true

}]
},
...

}

DSP0266 Redfish Specification

Version 1.14.0 Published 97

9.9.10 Zone affinity annotation

The zone affinity annotation is used by clients in composition requests to indicate the components for the

composition come from the specified resource zone. The @Redfish.ZoneAffinity term in the request body

contains the value of the Id property of the requested resource zone.

Example client request for components to be allocated from the resource zone with the Id property containing 1 :

{
"@Redfish.ZoneAffinity": "1",
...

}

9.9.11 Supported certificates annotation

Resource collections of type CertificateCollection should contain a supported certificates annotation. The

@Redfish.SupportedCertificates term at the root of a resource collection shows the different certificate formats

allowed in the resource collection.

Example CertificateCollection that only supports PEM style certificates:

{
"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates",
"@odata.type": "#CertificateCollection.CertificateCollection",
"Name": "Certificate collection",
"Members@odata.count": 1,
"Members": [{

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates/1"
}],
"@Redfish.SupportedCertificates": ["PEM"]

}

9.9.12 Deprecated annotation

Services may annotate properties with @Redfish.Deprecated if the schema definition has the property marked as

deprecated.

Example deprecated property:

{

Redfish Specification DSP0266

98 Published Version 1.14.0

"VendorID": "0xABCD",
"VendorID@Redfish.Deprecated": "This property has been deprecated in favor of ModuleManufacturerID.",
...

}

9.10 Settings resource

A settings resource represents the future intended state of a resource. Some resources have properties that can be

updated and the updates take place immediately. However, some properties need to be updated at a future point in

time, such as after a system reset. While the active resource represents the current state, the settings resource

represents the future intended state.

For resources that support a future intended state, the response shall contain a property with the

@Redfish.Settings payload annotation. When a settings annotation is used, the following conditions shall apply:

• The settings resource shall be of the same schema definition as the active resource.

• The settings resource should contain a subset of updatable properties from the active resource. Additionally, it

shall contain required properties, which are always mandatory.

• The settings resource shall not contain the @Redfish.Settings annotation.

• The settings resource may contain the @Redfish.SettingsApplyTime annotation.

• The URI for the settings resource shall reflect that it is subordinate to the active resource. The URI should be in

the form <BaseUri>/Settings or <BaseUri>/SD where <BaseUri> is the URI of the active resource.

The settings resource shall contain the properties that are updated at a future point in time. For resources that

support a future intended state, Table 23 describes the behavior of supported properties in the resource and settings

resource that a service should support.

Table 23 — Active resource and settings resource property behavior

Property Active resource behavior Settings resource behavior

Read-only, required.
Returned in the resource response to a GET

request.

Returned in the settings resource response

to a GET request.

Read-only, not required.
Returned in the resource response to a GET

request.

Not returned in the settings resource

response to a GET request.

Writable, updates immediately, but not at a

future point in time.

Active value returned in the resource

response to a GET request.

Modification requests change the active

value immediately.

Not returned in the settings resource

response to a GET request.

Modification requests are rejected.

DSP0266 Redfish Specification

Version 1.14.0 Published 99

Property Active resource behavior Settings resource behavior

Writable, updates immediately or at a future

point in time.

Active value returned in the resource

response to a GET request.

Modification requests change the active

value immediately.

Future value returned in the settings resource

response to a GET request if a future value

is pending, otherwise not returned.

Modification requests change the future

value.

Writable, updates at a future point in time, but

not immediately.

Active value returned in the resource

response to a GET request.

Modification requests are rejected.

Future value returned in the settings resource

response to a GET request.

Modification requests change the future

value.

The @Redfish.Settings annotation includes several properties that help clients monitor when the service has

consumed the active resource and determine the success or failure of applying the values.

• The Messages property is a collection of messages that represent the results of the last time the values of the

settings resource were applied.

• The ETag property contains the ETag of the settings resource that was last applied. Immediate updates made

directly to the active resource are not reflected in it.

• The Time property indicates the time when the settings resource was last applied. Immediate updates made

directly to the active resource are not reflected in it.

The following active resource example body supports a settings resource. A client can use the SettingsObject

property to locate the URI of the settings resource.

{
"@Redfish.Settings": {

"@odata.type": "#Settings.v1_0_0.Settings",
"SettingsObject": {

"@odata.id": "/redfish/v1/Systems/1/Bios/SD"
},
"Time": "2017-05-03T23:12:37-05:00",
"ETag": "\"A89B031B62\"",
"Messages": [{

"MessageId": "Base.1.8.PropertyNotWritable",
"RelatedProperties": ["#/Attributes/ProcTurboMode"]

}]
},
...

}

If a service enables a client to indicate when to apply settings:

• The settings resource shall contain a property with the @Redfish.SettingsApplyTime annotation.

◦ Only settings resources shall contain the @Redfish.SettingsApplyTime annotation.

Redfish Specification DSP0266

100 Published Version 1.14.0

• The @Redfish.Settings annotation in the active resource shall contain the SupportedApplyTimes property for

showing the allowable values for ApplyTime within @Redfish.SettingsApplyTime .

• Clients can modify the @Redfish.SettingsApplyTime annotation to indicate when to apply the settings.

In the following example request, the client indicates that the settings resource values are applied on reset during the

specified maintenance window:

{
"@Redfish.SettingsApplyTime": {

"ApplyTime": "InMaintenanceWindowOnReset",
"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",
"MaintenanceWindowDurationInSeconds": 600

},
...

}

9.11 Special resource situations

9.11.1 Overview

Resources need to exhibit common semantic behavior whenever possible. This can be difficult in some situations

discussed in this clause.

9.11.2 Absent resources

Resources may be absent or their state unknown at the time a client requests information about that resource. For

resources that represent removable or optional components, absence provides useful information to clients because

it indicates a capability, such as an empty PCIe slot, DIMM socket, or drive bay, that would not be apparent if the

resource simply did not exist.

This also applies to resources that represent a limited number of items or unconfigured capabilities within an

implementation, but this usage should be applied sparingly and should not apply to resources limited in quantity due

to arbitrary limits. For example, an implementation that limits SoftwareInventory to a maximum of 20 items should

not populate 18 absent resources when only two items are present.

For resources that provide useful data in an absent state and where the URI is expected to remain constant, such as

when a DIMM is removed from a memory socket, the resource should exist and should return the Absent value for

the State property in the Status object.

In this circumstance, any required properties that have no known value shall be represented as null . Properties

whose support is based on the configuration choice or the type of component installed, and therefore unknown while

in the absent state, should not be returned. Likewise, subordinate resources for an absent resource should not be

DSP0266 Redfish Specification

Version 1.14.0 Published 101

populated until their support can be determined. For example, the Power and Thermal resources under a

Chassis resource should not exist for an absent Chassis.

Client software should be aware that when absent resources are later populated, the updated resource may

represent a different configuration or physical item, and previous data, including read-only properties, obtained from

that resource may be invalid. For example, the Memory resource shows details about an single DIMM socket and the

installed DIMM. When that DIMM is removed, the Memory resource remains as an absent resource to indicate the

empty DIMM socket. Later, a new DIMM is installed in that socket, and the Memory resource represents data about

this new DIMM, which could have completely different characteristics.

9.12 Registries

Registry resources assist the client in interpreting Redfish resources beyond the Redfish schema definitions. To get

more information about a resource, event, message, or other item, use an identifier to search registries. This

information can include other properties, property restrictions, and the like. Registries are themselves resources.

Table 24 describes the types of registries that Redfish supports:

Table 24 — Registries

Registry Description See

BIOS

Determines the semantics of each property in

a BIOS or BIOS settings resource. Because

BIOS information can vary from platform to

platform, Redfish cannot define a fixed

schema for these values. BIOS registries

should be assigned unique identifiers to allow

users to match a given registry with

compatible products.

This registry contains both property

descriptions and other information, such as

data type, allowable values, and user menu

information.

Message

Constructs a message from a MessageId

and other message information to present to

an end user. The messages in these

registries appear in both eventing and error

responses to operations.

This registry is the most common type of

registry.

• Error responses

• Eventing

Redfish Specification DSP0266

102 Published Version 1.14.0

Registry Description See

Privilege

Maps the resources in a Redfish service to

the privileges that can complete specified

operations against those resources.

A client can use this information to:

• Determine which roles should have

specific privileges.

• Map accounts to those roles so that the

accounts can complete operations on

Redfish resources.

Privilege model

9.13 Schema annotations

9.13.1 Schema annotations overview

The schema definitions of the data model use schema annotations to provide additional documentation for

developers. This clause describes the different types of schema annotations that the Redfish data model uses. For

information about how each of the annotations are implemented in their respective schema languages, see the

Schema definition languages clause.

9.13.2 Description annotation

The description annotation can be applied to any type, property, action, or parameter to provide a description of

Redfish schema elements suitable for end users or user interface help text.

All schemas that are published or republished by the DMTF's Redfish Forum shall include a description annotation

on the following schema definitions:

• Redfish types

• Properties

• Reference properties

• Enumeration values

• Resources and resource collections

• Structured types

9.13.3 Long description annotation

The long description annotation can be applied to any type, property, action, or parameter to provide a formal,

normative specification of the schema element.

DSP0266 Redfish Specification

Version 1.14.0 Published 103

When the long descriptions in the Redfish schema contain normative language, the service shall be required to

conform with the statement.

All schemas that are published or republished by the DMTF's Redfish Forum shall include a long description

annotation on the following schema definitions:

• Redfish types

• Properties

• Reference properties

• Resources and resource collections

• Structured types

9.13.4 Resource capabilities annotation

The resource capabilities annotation can be applied to resources and resource collections to express the different

type of HTTP operations a client can invoke on the given resource or resource collection.

• Insert capabilities indicate whether a client can perform a POST request on the resource to create a resource.

• Update capabilities indicate whether a client can perform a PATCH or PUT request on the resource.

• Delete capabilities indicate whether a client can perform a DELETE request on the resource.

• A service may implement a subset of the capabilities that are allowed on the resource or resource collection.

All schemas that are published or republished by the DMTF's Redfish Forum for resources and resource collections

shall include resource capabilities annotations.

9.13.5 Resource URI patterns annotation

The resource URI patterns annotation expresses the valid URI patterns for a resource or resource collection.

The strings for the URI patterns may use { and } characters to express parameters within a given URI pattern.

Items between the { and } characters are treated as identifiers within the URI for given instances of a Redfish

resource. Clients interpret this as a string to be replaced to access a given resource. A URI pattern may contain

multiple identifier terms to support multiple levels of nested resource collections. The identifier term in the URI pattern

shall match the Id string property for the corresponding resource, or the MemberId string property for the

corresponding object within a resource. The process for forming the strings that are concatenated to form the URI

pattern are in the URI naming rules clause.

The following string is an example URI pattern that describes a ManagerAccount resource: /redfish/v1/

AccountService/Accounts/{ManagerAccountId}

Using the previous example, {ManagerAccountId} is replaced by the Id property of the corresponding

ManagerAccount resource. If the Id property for a ManagerAccount resource is John , the full URI for that

resource is /redfish/v1/AccountService/Accounts/John .

Redfish Specification DSP0266

104 Published Version 1.14.0

The URI patterns are constructed based on the formation of the resource tree. When constructing the URI pattern for

a subordinate resource, the URI pattern for the current resource is used and appended. For example, the

RoleCollection resource is subordinate to AccountService . Because the URI pattern for AccountService is

/redfish/v1/AccountService , the URI pattern for the RoleCollection resource is /redfish/v1/

AccountService/Roles .

In some cases, the subordinate resource is found inside of a structured property of a resource. In these cases, the

name of the structured property appears in the URI pattern for the subordinate resource. For example, the

CertificateCollection resource is subordinate to the ManagerNetworkProtocol resource from the HTTPS

property. Because the URI pattern for ManagerNetworkProtocol is /redfish/v1/

Managers/{ManagerId}/NetworkProtocol , the URI pattern for the CertificateCollection resource is /redfish/

v1/Managers/{ManagerId}/NetworkProtocol/HTTPS/Certificates .

All schemas that are published or republished by the DMTF's Redfish Forum for resources and resource collections

shall be annotated with the resource URI patterns annotation.

All Redfish resources and Redfish resource collections implemented by a service shall match the URI pattern

described by the resource URI patterns annotation for their given definition.

9.13.6 Additional properties annotation

The additional properties annotation specifies whether a type can contain additional properties outside of those

defined in the schema. Types that do not support additional properties shall not contain properties beyond those

described in the schema.

9.13.7 Permissions annotation

The permissions annotation specifies whether a client can modify the value of a property, or if the property is read-

only.

A service can implement a modifiable property as read-only.

9.13.8 Required annotation

The required annotation specifies whether a service needs to support a property. Required properties shall be

annotated with the required annotation. All other properties are optional.

9.13.9 Required on create annotation

The required on create annotation specifies that a property is required to be provided by the client on creation of the

resource. Properties not annotated with the required on create annotation are not required to be provided by the

client on a create operation.

DSP0266 Redfish Specification

Version 1.14.0 Published 105

9.13.10 Units of measure annotation

In addition to following the naming rules, properties representing units of measure shall be annotated with the units of

measure annotation to specify the units of measurement for the property.

The value of the annotation shall be a string that contains the case-sensitive "(c/s)" symbol of the unit of measure as

listed in the Unified Code for Units of Measure (UCUM), unless the symbolic representation does not reflect common

usage. For example, RPM commonly reports fan speeds in revolutions-per-minute but has no simple UCUM

representation. For units with prefixes, the case-sensitive (c/s) symbol for the prefix as listed in UCUM should be

prepended to the unit symbol. For example, Mebibyte (1024^2 bytes), which has the UCUM Mi prefix and By

symbol, would use MiBy as the value for the annotation. For values that also include rate information, such as

megabits per second, the rate unit's symbol should be appended and use a slash (/) character as a separator. For

example, Mbit/s .

9.13.11 Expanded resource annotation

The expanded resource annotation can be applied to a reference property to specify that the default behavior for the

service is to include the contents of the related resource or resource collection in responses. This behavior follows

the same semantics of the expand query parameter with a level of 1.

Reference properties annotated with this term shall be expanded by the service, even if not requested by the client. A

service may page resource collections.

9.13.12 Owning entity annotation

The owning entity annotation can be applied to a schema to specify the name of the entity responsible for

development, publication, and maintenance of a given schema.

9.13.13 Deprecated annotation

The deprecated annotation specifies if a property, enumeration, or other schema element has been deprecated.

Schema elements marked as deprecated contain a schema version that shows when the element was deprecated,

as well as text that specifies the favored approach.

Existing and new implementations may use deprecated schema elements, but they should move to the favored

approach. Deprecated schema elements may be implemented to achieve backwards compatibility. Deprecated

schema elements may be removed from the next major version of the schema.

Redfish Specification DSP0266

106 Published Version 1.14.0

9.14 Versioning

As stated previously, a resource can be an individual entity or a resource collection, which acts as a container for a

set of resources.

A resource collection does not contain any version information because it defines a single Members property, and

the overall collection definition never grows over time.

A resource has both unversioned and versioned definitions.

References from other resources use the unversioned definition of a resource to ensure no version dependencies

exist between the definitions. The unversioned definition of a resource contains no property information about the

resource.

The versioned definition of a resource contains a set of properties, actions, and other definitions associated with the

resource. The version of a resource follows the format:

v<X>.<Y>.<Z>

where

• <X> is an integer that represents the major version. Indicates a backward-incompatible change.

• <Y> is an integer that represents the minor version. Indicates a minor update. Redfish introduces new

functionality but does not remove any functionality. The minor version preserves compatibility with earlier minor

versions. For example, a new property introduces a new minor version of the resource.

• <Z> is an integer that represents the errata version. Indicates a fix in an earlier version. For example, a fix to a

schema annotation on a property introduces an errata version of the resource.

9.15 Localization

The creation of separate localized copies of Redfish schemas and registries is allowed and encouraged. Localized

schema and registry files may be submitted to the DMTF for republication in the Redfish schema repository.

Property names, parameter names, and enumeration values in the JSON response payload are never localized but

translated copies of those names may be provided as additional annotations in the localized schema for use by client

applications. A separate file for each localized schema or registry shall be provided for each supported language.

The English-language versions of Redfish schemas and registries shall be the normative versions, and alterations of

meaning due to translation in localized versions of schemas and registries shall be forbidden.

Schemas and registries in non-English languages shall use the appropriate schema annotations to identify their

language. Descriptive property, parameter, and enumeration text not translated into the specified language shall be

DSP0266 Redfish Specification

Version 1.14.0 Published 107

removed from localized versions. This removal enables software and tools to combine normative and localized

copies, especially for minor schema version differences.

Redfish Specification DSP0266

108 Published Version 1.14.0

10 File naming and publication

For consistency in publication and to enable programmatic access, all Redfish-related files shall follow a set of rules

to construct the name of each file. The Schema definition languages clause describes the file name construction

rules, while the following clauses describe the construction rules for other file types.

10.1 Registry file naming

Redfish message registry files, privilege registry files, and BIOS attribute registry files shall use the registry name to

construct the file name, in this format:

<RegistryName>.<MajorVersion>.<MinorVersion>.<Errata>.json

For example, the file name of the Base Message Registry v1.0.2 is Base.1.0.2.json .

The registry name should be unique to avoid confict with other registry files. The clause OEM registries describes

registry name to use for OEM registry files.

10.2 Profile file naming

The document that describes a profile follows the Redfish schema file naming conventions. The file name format for

profiles shall be:

<ProfileName>.v<MajorVersion>_<MinorVersion>_<Errata>.json

For example, the file name of the BasicServer profile v1.2.0 is BasicServer.v1_2_0.json . The file name shall

include the profile name and version, which matches those property values within the document.

10.3 Dictionary file naming

The binary file describing a Redfish Device Enablement dictionary follows the Redfish schema file naming

conventions for the schema definition language that the dictionary is converted from. Because a single dictionary file

contains all minor revisions of the schema, only the major version appears in the file name. The file names for

Dictionaries shall be formatted as:

<DictionaryName>_v<MajorVersion>.dict

For example, the file name of the Chassis dictionary v1.2.0 is Chassis_v1.dict .

DSP0266 Redfish Specification

Version 1.14.0 Published 109

10.4 Localized file naming

Localized schemas and registries shall follow the same file naming conventions as the English language versions.

When multiple localized copies are present in a repository and which have the same file name, files in languages

other than English shall be organized into subfolders named to match the ISO 639-1 language code for those files.

English language files may be duplicated in an en subfolder for consistency.

10.5 DMTF Redfish file repository

All Redfish schemas, registries, dictionaries, and profiles published or republished by the DMTF's Redfish Forum are

available from the DMTF website for download. Programs may use the following durable URLs to access the

repository. Programs incorporating remote repository access should implement a local cache to reduce latency,

program requirements for Internet access and undue traffic burden on the DMTF website.

Organizations creating Redfish-related files such as OEM schemas, Redfish interoperability profiles, or message

registries are encouraged to use the form at https://redfish.dmtf.org/redfish/portal to submit those files to the DMTF

for republication in the DMTF Redfish file repository.

Table 25 describes how files are organized on the site:

Table 25 — Redfish file repository

URL Folder contents

redfish.dmtf.org/schemas
Current (most recent minor or errata) release of each schema file in

CSDL, JSON Schema, and/or OpenAPI formats.

redfish.dmtf.org/schemas/v1

Durable URL for programmatic access to all v1.xx schema files.

Every v1.xx minor or errata release of each schema file in CSDL,

JSON Schema, OpenAPI formats.

redfish.dmtf.org/schemas/v1/{code}

Durable URL for programmatic access to localized v1.xx schema

files. Localized schemas are organized in subfolders using the two-

character ISO 639-1 language code as the {code} segment.

redfish.dmtf.org/schemas/archive
Subfolders contain schema files specific to a particular version

release.

redfish.dmtf.org/registries Current (most recent minor or errata) release of each registry file.

redfish.dmtf.org/registries/v1
Durable URL for programmatic access to all v1.xx registry files.

Every v1.xx minor or errata release of each registry file.

redfish.dmtf.org/registries/v1/{code}

Durable URL for programmatic access to localized v1.xx registry

files. Localized schemas are organized in subfolders using the two-

character ISO 639-1 language code as the {code} segment.

Redfish Specification DSP0266

110 Published Version 1.14.0

http://redfish.dmtf.org/
https://redfish.dmtf.org/redfish/portal

URL Folder contents

redfish.dmtf.org/registries/archive
Subfolders contain registry files specific to a particular version

release.

redfish.dmtf.org/profiles
Current release of each Redfish interoperability profile (.json) file and

associated documentation.

redfish.dmtf.org/profiles/v1
Durable URL for programmatic access to all v1.xx Redfish

interoperability profile (.json) files.

redfish.dmtf.org/profiles/archive
Subfolders contain profile files specific to a particular profile version

or release.

redfish.dmtf.org/dictionaries
Durable URL for programmatic access to all v1.xx Redfish Device

Enablement dictionary files.

redfish.dmtf.org/dictionaries/v1
Durable URL for programmatic access to all v1.xx Redfish Device

Enablement dictionary files.

redfish.dmtf.org/dictionaries/archive
Subfolders contain dictionary files specific to a particular version

release.

DSP0266 Redfish Specification

Version 1.14.0 Published 111

11 Schema definition languages

Individual resources and their dependent types and actions are defined within a Redfish schema document. This

clause describes how these documents are constructed in the following formats:

• OData Common Schema Definition Language

• JSON Schema

• OpenAPI

11.1 OData Common Schema Definition Language

11.1.1 OData Common Schema Definition Language overview

OData Common Schema Definition Language (CSDL) is an XML schema format defined by the OData CSDL

Specification. The following clause describes how Redfish uses CSDL to describe resources and resource

collections.

11.1.2 File naming conventions for CSDL

Redfish CSDL schema files shall be named using the resource type name for the schema, followed by _v and the

major version of the schema. Because a single CSDL schema file contains all minor revisions of the schema, only

the major version appears in the file name. The file name shall be formatted as:

<ResourceType>_v<MajorVersion>.xml

For example, version 1.3.0 of the Chassis schema is Chassis_v1.xml .

11.1.3 Core CSDL files

Table 26 describes the core CSDL files:

Table 26 — Core CSDL files

File Description

RedfishError_v1.xml Payload definition of the Redfish error response.

RedfishExtensions_v1.xml All definitions for Redfish types and annotations.

Resource_v1.xml
All base definitions for resources, resource collections, and common

properties, such as Status .

Redfish Specification DSP0266

112 Published Version 1.14.0

11.1.4 CSDL format

The outer element of the OData schema representation document shall be the Edmx element, and shall have a

Version attribute with a value of 4.0 .

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">
<!-- edmx:Reference and edmx:DataService elements go here -->

</edmx:Edmx>

The Referencing other CSDL files and CSDL data services clauses describe the items that are found within the

Edmx element.

11.1.4.1 Referencing other CSDL files

CSDL files may use Reference tags to reference types defined in other CSDL documents.

The Reference element uses the Uri attribute to specify a CSDL file. The Reference element also contains one or

more Include tags that specify the Namespace attribute containing the types to be referenced, along with an

optional Alias attribute for that namespace.

Type definitions generally reference the OData and Redfish namespaces for common type annotation terms. Redfish

CSDL files always use the Alias attribute on the following namespaces:

• Org.OData.Core.V1 is aliased as OData .

• Org.OData.Measures.V1 is aliased as Measures .

• RedfishExtensions.v1_0_0 is aliased as Redfish .

• Validation.v1_0_0 is aliased as Validation .

<edmx:Reference Uri="http://docs.oasis-open.org/odata/odata/v4.0/cs01/vocabularies/Org.OData.Core.V1.xml">
<edmx:Include Namespace="Org.OData.Core.V1" Alias="OData"/>

</edmx:Reference>
<edmx:Reference Uri="http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml">
<edmx:Include Namespace="Org.OData.Measures.V1" Alias="Measures"/>

</edmx:Reference>
<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>
<edmx:Include Namespace="Validation.v1_0_0" Alias="Validation"/>

</edmx:Reference>
<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Resource_v1.xml">

<edmx:Include Namespace="Resource"/>
<edmx:Include Namespace="Resource.v1_0_0"/>

</edmx:Reference>

DSP0266 Redfish Specification

Version 1.14.0 Published 113

11.1.4.2 CSDL data services

Define structures, enumerations, and other definitions in CSDL within a namespace. Use a Schema tag to define the

schema and use the Namespace attribute to declare the name of the namespace.

Redfish uses namespaces to differentiate different versions of the schema. CSDL enables structures to inherit from

other structures, which enables newer namespaces to define only the changes. The Elements of CSDL namespaces

clause describes this behavior.

Namespaces containing unversioned resource and resource collection definitions shall use the resource type to

name the namespace, in this format:

<ResourceType>

For example, the unversioned namespace of the Chassis resource is Chassis .

Namespaces containing versioned resource definitions shall use the resource type to name the namespace, in this

format:

<ResourceType>.v<MajorVersion>_<MinorVersion>_<Errata>

For example, the version 1.3.0 namespace of the Chassis resource is Chassis.v1_3_0 .

The Schema element is a child of the DataServices element, which is a child of the Edmx element:

<edmx:DataServices>
<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.v1_0_0">

<!-- Type definitions for version 1.0.0 of MyTypes go here -->
</Schema>
<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.v1_1_0">

<!-- Type definitions for version 1.1.0 of MyTypes go here -->
</Schema>

</edmx:DataServices>

11.1.5 Elements of CSDL namespaces

The following clauses describe the definitions within each namespace:

• Qualified names

• Entity type and complex type elements

Redfish Specification DSP0266

114 Published Version 1.14.0

11.1.5.1 Qualified names

Many definitions in CSDL use references to qualified names. CSDL defines this as a string in the form:

<Namespace>.<TypeName>

where

• <Namespace> is the namespace name.

• <TypeName> is the name of the element in the namespace.

For example, if a reference is made to MyType.v1_0_0.MyDefinition , the definition can be found in the

MyType.v1_0_0 namespace with an element named MyDefinition .

11.1.5.2 Entity type and complex type elements

Use the EntityType and ComplexType tags to define the entity type and complex type elements, respectively.

These elements define a JSON structure and their set of properties by defining property elements and navigation

property elements within the EntityType or ComplexType tags.

All entity types and complex types contain a Name attribute, which specifies the name of the definition.

Entity types and complex types may have a BaseType attribute, which specifies a qualified name. When the

BaseType attribute is used, all definitions of the referenced BaseType are available to the entity type or complex

type being defined.

All resources and resource collections are defined with the entity type element. Resources inherit from

Resource.v1_0_0.Resource , and resource collections inherit from Resource.v1_0_0.ResourceCollection .

Most structured properties are defined with the complex type element. Some use the entity type element that inherits

from Resource.v1_0_0.ReferenceableMember . The entity type element enables references to be made by using the

Navigation Property element, whereas the complex type element does not allow for this usage.

Example entity type and complex type element:

<EntityType Name="TypeA" BaseType="Resource.v1_0_0.Resource">
<Annotation Term="OData.Description" String="The TypeA entity type description."/>
<Annotation Term="OData.LongDescription" String="The TypeA entity type normative description."/>
<!-- Property and navigation property definitions go here -->

</EntityType>
<ComplexType Name="PropertyTypeA">

<Annotation Term="OData.Description" String="The TypeA structured property description."/>
<Annotation Term="OData.LongDescription" String="The TypeA structured property normative description."/>

DSP0266 Redfish Specification

Version 1.14.0 Published 115

<!-- Property and navigation property definitions go here -->
</ComplexType>

11.1.5.3 Action element

Use the Action tag to define the action element. This element defines an action that can be performed on a

resource.

All action elements contain a Name attribute, which specifies the name of the action. The action shall be represented

in payloads as the qualified name of the action, preceded by # .

In Redfish, all action elements contain the IsBound attribute that is always set to true , which indicates that the

action appears as a member of a structured type.

The action element contains one or more Parameter tags that specify the Name and Type of each parameter.

Because all action elements in Redfish use the IsBound="true" term, the first parameter is called the binding

parameter and specifies the structured type to which the action belongs. In Redfish, this parameter is always one of

the following complex type elements:

• For standard actions, the Actions complex type for the resource.

• For OEM actions, the OemActions complex type for the resource.

The remaining Parameter elements describe additional parameters to be passed to the action. Parameters

containing the term Nullable="false" are required to be provided in the action request.

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyType">
<Action Name="MyAction" IsBound="true">

<Parameter Name="Thing" Type="MyType.Actions"/>
<Parameter Name="Parameter1" Type="Edm.Boolean"/>
<Parameter Name="Parameter2" Type="Edm.String" Nullable="false"/>

</Action>

<ComplexType Name="Actions">
...

</ComplexType>

...

</Schema>

Some action parameters may specify a type that is defined by an entity type element. In these cases, the parameter

in the request is a reference object to a resource within the service.

Redfish Specification DSP0266

116 Published Version 1.14.0

11.1.5.4 Action element for OEM actions

OEM-specific actions shall be defined by using the action element with the binding parameter set to the OemActions

complex type for the resource. For example, the following definition defines the OEM #Contoso.Ping action for a

ComputerSystem .

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Contoso">
<Action Name="Ping" IsBound="true">

<Parameter Name="ComputerSystem" Type="ComputerSystem.v1_0_0.OemActions"/>
</Action>

</Schema>

11.1.5.5 Action with a response body

A response body for an action shall be defined using the ReturnType tag within an Action element. For example, the

following definition defines the GenerateCSR action with a response that contains the definition specified by

GenerateCSRResponse .

<Action Name="GenerateCSR" IsBound="true">
<Parameter Name="CertificateService" Type="CertificateService.v1_0_0.Actions"/>

...
<ReturnType Type="CertificateService.v1_0_0.GenerateCSRResponse" Nullable="false"/>

</Action>

<ComplexType Name="GenerateCSRResponse">
<Annotation Term="OData.AdditionalProperties" Bool="false"/>
<Annotation Term="OData.Description" String="The response body for the GenerateCSR action."/>
<NavigationProperty Name="CertificateCollection"

Type="CertificateCollection.CertificateCollection" Nullable="false">
<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>
<Annotation Term="OData.Description"

String="The link to the certificate resource collection where the certificate is installed."/>
<Annotation Term="Redfish.Required"/>

</NavigationProperty>
<Property Name="CSRString" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>
<Annotation Term="OData.Description" String="The string for the certificate signing request."/>
<Annotation Term="Redfish.Required"/>

</Property>
</ComplexType>

Using the above example, the following payload is an example response for the GenerateCSR action.

DSP0266 Redfish Specification

Version 1.14.0 Published 117

{
"CSRString": "-----BEGIN CERTIFICATE REQUEST-----...-----END CERTIFICATE REQUEST-----",
"CertificateCollection": {

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates"
}

}

11.1.5.6 Property element

Properties of resources, resource collections, and structured properties are defined using the property element. The

Property tag defines a property element inside entity type and complex type elements.

All property elements contain a Name attribute, which specifies the name of the property.

All property elements contain a Type attribute specifies the data type. The Type attribute shall be one of the

following names or types:

• A qualified name that references an enum type element.

• A qualified name that references a complex type element.

• A primitive data type.

• An array of the previous names or types by using the Collection term.

Table 27 describes the primitive data types:

Table 27 — Primitive data types

Type Meaning

Edm.Boolean True or False.

Edm.DateTimeOffset Date-time string.

Edm.Decimal Numeric values with fixed precision and scale.

Edm.Double IEEE 754 binary64 floating-point number (15-17 decimal digits).

Edm.Duration Duration string.

Edm.Guid GUID/UUID string.

Edm.Int64 Signed 64-bit integer.

Edm.String UTF-8 string.

Property elements may specify a Nullable attribute. If the attribute is false , the property value cannot be null .

If the attribute is true or absent, the property value can be null .

Redfish Specification DSP0266

118 Published Version 1.14.0

Example property element:

<Property Name="Property1" Type="Edm.String" Nullable="false">
<Annotation Term="OData.Description" String="The Property1 property description."/>
<Annotation Term="OData.LongDescription" String="The Property1 property normative description."/>
<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>
<Annotation Term="Redfish.Required"/>
<Annotation Term="Measures.Unit" String="Watts"/>

</Property>

11.1.5.7 Navigation property element

Reference properties of resources, resource collections, and structured properties are defined using the navigation

property element. The NavigationProperty tag defines a navigation property element inside entity type and

complex type elements.

All navigation property elements contain a Name attribute, which specifies the name of the property.

All navigation property elements contain a Type attribute specifies the data type. The Type attribute is a qualified

name that references an entity type element. This can also be made into an array using the Collection term.

Navigation property elements may specify a Nullable attribute. If the attribute is false , the property value cannot

be null . If the attribute is true or absent, the property value can be null .

Unless the reference property is to be expanded, all navigation properties in Redfish use the

OData.AutoExpandReferences annotation element to show that the reference is always available.

Example navigation property element:

<NavigationProperty Name="RelatedType" Type="MyTypes.TypeB">
<Annotation Term="OData.Description" String="The RelatedType navigation property description."/>
<Annotation Term="OData.LongDescription"

String="The RelatedType navigation property normative description."/>
<Annotation Term="OData.AutoExpandReferences"/>

</NavigationProperty>

11.1.5.8 Enum type element

Use the EnumType tag to define the enum type element. This element defines a set of enumeration values, which

may be applied to one or more properties.

All enum type elements contain a Name attribute, which specifies the name of the set of enumeration values.

DSP0266 Redfish Specification

Version 1.14.0 Published 119

Enum type elements contain Member tags that define the members of the enumeration. The Member tags contain a

Name attribute that specifies the string value of the member name.

<EnumType Name="EnumTypeA">
<Annotation Term="OData.Description" String="The EnumTypeA enum type description."/>
<Annotation Term="OData.LongDescription" String="The EnumTypeA enum type normative description."/>
<Member Name="MemberA">

<Annotation Term="OData.Description" String="The description of MemberA"/>
</Member>
<Member Name="MemberB">

<Annotation Term="OData.Description" String="The description of MemberB"/>
</Member>

</EnumType>

11.1.5.9 Annotation element

Annotations in CSDL are expressed using the Annotation element. The Annotation element can be applied to

any schema element in CSDL.

The following examples show how each Redfish schema annotation is expressed in CSDL.

• The OData Core Schema defines terms with the OData prefix.

• The OData Measures Schema defines terms with the Measures prefix.

• The RedfishExtensions Schema defines terms with the Redfish prefix.

Example description annotation:

<Annotation Term="OData.Description" String="This property contains the user name for the account."/>

Example long description annotation:

<Annotation Term="OData.LongDescription" String="This property shall contain the user name for the account."/>

Example additional properties annotation:

<Annotation Term="OData.AdditionalProperties"/>

Example permissions annotation (read-only):

Redfish Specification DSP0266

120 Published Version 1.14.0

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

Example permissions annotation (read/write):

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/ReadWrite"/>

Example required annotation:

<Annotation Term="Redfish.Required"/>

Example required on create annotation:

<Annotation Term="Redfish.RequiredOnCreate"/>

Example units of measure annotation:

<Annotation Term="Measures.Unit" String="MiBy"/>

Example expanded resource annotation:

<Annotation Term="OData.AutoExpand"/>

Example insert capabilities annotation (showing POST is not allowed):

<Annotation Term="Capabilities.InsertRestrictions">
<Record>

<PropertyValue Property="Insertable" Bool="false"/>
</Record>

</Annotation>

Example update capabilities annotation (showing PATCH and PUT are allowed):

<Annotation Term="Capabilities.UpdateRestrictions">

DSP0266 Redfish Specification

Version 1.14.0 Published 121

<Record>
<PropertyValue Property="Updatable" Bool="true"/>
<Annotation Term="OData.Description"

String="Manager accounts can be updated to change the password and other writable properties."/>
</Record>

</Annotation>

Example delete capabilities annotation (showing DELETE is allowed):

<Annotation Term="Capabilities.DeleteRestrictions">
<Record>

<PropertyValue Property="Deletable" Bool="true"/>
<Annotation Term="OData.Description"

String="Manager accounts are removed with a Delete operation."/>
</Record>

</Annotation>

Example resource URI patterns annotation:

<Annotation Term="Redfish.Uris">
<Collection>

<String>/redfish/v1/AccountService/Accounts/{ManagerAccountId}</String>
</Collection>

</Annotation>

Example owning entity annotation:

<Annotation Term="Redfish.OwningEntity" String="DMTF"/>

Example deprecated annotation:

<Annotation Term="Redfish.Revisions">
<Collection>

<Record>
<PropertyValue Property="Kind" EnumMember="Redfish.RevisionKind/Deprecated"/>
<PropertyValue Property="Version" String="v1_3_0"/>
<PropertyValue Property="Description"

String="This property has been deprecated in favor of ModuleManufacturerID."/>
</Record>

</Collection>

Redfish Specification DSP0266

122 Published Version 1.14.0

</Annotation>

11.2 JSON Schema

11.2.1 JSON Schema overview

The JSON Schema Specification defines a JSON format for describing JSON payloads. The following clause

describes how Redfish uses JSON Schema to describe resources and resource collections.

11.2.2 File naming conventions for JSON Schema

Each Redfish JSON Schema file represents a single resource type.

Versioned Redfish JSON Schema files shall use the resource type to name the file, in this format:

<ResourceType>.v<MajorVersion>_<MinorVersion>_<Errata>.json

For example, version 1.3.0 of the Chassis schema is Chassis.v1_3_0.json .

Unversioned Redfish JSON Schema files shall use the resource type to name the file, in this format:

<ResourceType>.json

For example, the unversioned definition of the Chassis schema is Chassis.json .

11.2.3 Core JSON Schema files

Table 28 describes the core JSON Schema files:

Table 28 — Core JSON Schema files

File Description

odata-v4.json Definitions for common OData properties.

redfish-error.v1_0_0.json and its subsequent versions Payload definition of the Redfish error response.

redfish-schema-v1.json
Extensions to the JSON Schema that define Redfish JSON Schema

files.

Resource.json and its subsequent versions
All base definitions for resources, resource collections, and common

properties, such as Status .

DSP0266 Redfish Specification

Version 1.14.0 Published 123

11.2.4 JSON Schema format

Each JSON Schema file contains a JSON object to describe resources, resource collections, and other definitions for

the data model.

Table 29 describes the JSON object, which contains the following terms:

Table 29 — JSON Schema format

Term Description

$id Reference to the URI where the schema file is published.

$ref

For a schema file that describes a resource or resource collection,

the reference to the structural definition of the resource or resource

collection.

$schema

URI to the Redfish schema extensions for JSON Schema. The value

should be http://redfish.dmtf.org/schemas/v1/redfish-schema-

v1.json .

copyright
Copyright statement for the organization producing the JSON

Schema.

definitions
Structures, enumerations, and other definitions defined by the

schema.

title
For a schema file that describes a resource or resource collection,

the matching type identifier for the resource or resource collection.

11.2.5 JSON Schema definitions body

This clause describes the types of definitions found in the definitions term of a Redfish JSON Schema file.

11.2.5.1 Resource definitions in JSON Schema

To satisfy versioning requirements, the JSON Schema representation of each resource has one unversioned schema

file, and a set of versioned schema files.

The unversioned definition of a resource contains an anyOf statement. This statement consists of an array of $ref

terms, which point to the following definitions:

• The JSON Schema definition for a reference property.

• The versioned definitions of the resource.

The unversioned definition of a resource also uses the uris term to express the allowable URIs for the resource,

and the deletable , insertable , and updatable terms to express the capabilities of the resource.

Redfish Specification DSP0266

124 Published Version 1.14.0

The following example shows an unversioned resource definition in JSON Schema:

{
"ComputerSystem": {

"anyOf": [{
"$ref": "http://redfish.dmtf.org/schemas/v1/odata.v4_0_3.json#/definitions/idRef"

}, {
"$ref": "http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_0.json#/definitions/ComputerSystem"

}, {
"$ref": "http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_1.json#/definitions/ComputerSystem"

}, {
"$ref": "http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_6_0.json#/definitions/ComputerSystem"

}],
"deletable": true,
"description": "The ComputerSystem schema represents a general purpose machine or system.",
"insertable": false,
"longDescription": "This resource shall represent resources that represent a computing system.",
"updatable": true,
"uris": ["/redfish/v1/Systems/{ComputerSystemId}"]

},
...

}

The versioned definition of a resource contains the property definitions for the given version of the resource.

11.2.5.2 Enumerations in JSON Schema

Table 30 describes the terms that constitute definitions for enumerations:

Table 30 — JSON Schema enumerations

Term Description

enum String array that contains the possible enumeration values.

enumDescriptions
Object that contains the descriptions for each of the enumerations as

name-value pairs.

enumLongDescriptions
Object that contains the long descriptions for each of the

enumerations as name-value pairs.

enumDeprecated
Object that contains the deprecation guidance for each of the

enumerations as name-value pairs.

enumVersionDeprecated
Object that contains the deprecation version information for each of

the enumerations as name-value pairs.

type
Because all enumerations in Redfish are strings, the type term

always has the string value.

DSP0266 Redfish Specification

Version 1.14.0 Published 125

The following example shows an enumeration definition in JSON Schema:

{
"IndicatorLED": {

"enum": ["Lit", "Blinking", "Off"],
"enumDescriptions": {

"Blinking": "The Indicator LED is blinking.",
"Lit": "The Indicator LED is lit.",
"Off": "The Indicator LED is off."

},
"enumLongDescriptions": {

"Blinking": "This value shall represent the Indicator LED is in a blinking state where the LED is being turned on and off in repetition."
"Lit": "This value shall represent the Indicator LED is in a solid on state.",
"Off": "This value shall represent the Indicator LED is in a solid off state."

},
"type": "string"

},
...

}

11.2.5.3 Actions in JSON Schema

Versioned definitions of resources contain a definition called Actions . This definition is a container with a set of

terms that point to the different actions supported by the resource. The names of standard actions shall be in the

form:

#<ResourceType>.<ActionName>

Example Actions definition:

{
"Actions": {

"additionalProperties": false,
"description": "The available actions for this resource.",
"longDescription": "This type shall contain the available actions for this resource.",
"properties": {

"#ComputerSystem.Reset": {
"$ref": "#/definitions/Reset"

}
},
"type": "object"

},
...

}

Another definition within the same schema file describes the action itself. This definition contains a term called

Redfish Specification DSP0266

126 Published Version 1.14.0

parameters to describe the client request body. It also contains property definitions for the target and title

properties shown in response payloads for the resource.

The following example shows a definition of an action:

{
"Reset": {

"additionalProperties": false,
"description": "This action resets the system.",
"longDescription": "This action shall perform a reset of the ComputerSystem.",
"parameters": {

"ResetType": {
"$ref": "http://redfish.dmtf.org/schemas/v1/Resource.json#/definitions/ResetType",
"description": "The type of reset to be performed.",
"longDescription": "This parameter shall define the type of reset to be performed."

}
},
"properties": {

"target": {
"description": "Link to invoke action",
"format": "uri",
"type": "string"

},
"title": {

"description": "Friendly action name",
"type": "string"

}
},
"type": "object"

},
...

}

Some action parameters may specify a type that is a resource definition. In these cases, the parameter in the request

is a reference object to a resource within the service.

11.2.5.4 OEM actions in JSON Schema

OEM-specific actions shall be defined by using an action definition in an appropriately named JSON Schema file. For

example, the following definition defines the OEM #ContosoNetworkDevice.Ping action, assuming it's found in the

versioned ContosoNetworkDevice JSON Schema file, such as ContosoNetworkDevice.v1_0_0.json .

{
"Ping": {

"additionalProperties": false,
"parameters": {},

DSP0266 Redfish Specification

Version 1.14.0 Published 127

"properties": {
"target": {

"description": "Link to invoke action",
"format": "uri",
"type": "string"

},
"title": {

"description": "Friendly action name",
"type": "string"

}
},
"type": "object"

},
...

}

11.2.5.5 Action with a response body

A response body for an action shall be defined using the actionResponse term within the action definition. For

example, the following definition defines the GenerateCSR action with a response that contains the definition

specified by #/definitions/GenerateCSRResponse .

{
"GenerateCSR": {

"actionResponse": {
"$ref": "#/definitions/GenerateCSRResponse"

},
"parameters": {}

},
"GenerateCSRResponse": {

"additionalProperties": false,
"description": "The response body for the GenerateCSR action.",
"properties": {

"CSRString": {
"description": "The string for the certificate signing request.",
"readonly": true,
"type": "string"

},
"CertificateCollection": {

"$ref": "http://redfish.dmtf.org/schemas/v1/CertificateCollection.json#/definitions/CertificateCollection"
"description": "The link to the certificate resource collection where the certificate is installed.",
"readonly": true

}
},
"required": ["CertificateCollection", "CSRString"],
"type": "object"

}

Redfish Specification DSP0266

128 Published Version 1.14.0

}

In the previous example, the following payload is an example response for the GenerateCSR action.

{
"CSRString": "-----BEGIN CERTIFICATE REQUEST-----...-----END CERTIFICATE REQUEST-----",
"CertificateCollection": {

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates"
}

}

11.2.6 JSON Schema terms

Table 31 describes the JSON Schema terms that Redfish uses to provide schema annotations for Redfish JSON

Schema:

Table 31 — JSON Schema terms

JSON Schema term Related Redfish schema annotation

description

enumDescriptions
Description

longDescription

enumLongDescriptions
Long description

additionalProperties Additional properties

readonly Permissions

required Required

requiredOnCreate Required on create

units Units of measure

autoExpand Expanded resource

deletable

insertable

updatable

Resource capabilities

uris Resource URI patterns

owningEntity Owning entity

DSP0266 Redfish Specification

Version 1.14.0 Published 129

JSON Schema term Related Redfish schema annotation

deprecated

versionDeprecated
Deprecated

11.3 OpenAPI

11.3.1 OpenAPI overview

The OpenAPI Specification defines a format for describing JSON payloads and the set of URIs a client can access

on a service. The following clause describes how Redfish uses OpenAPI to describe resources and resource

collections.

11.3.2 File naming conventions for OpenAPI schema

Each Redfish OpenAPI file represents a single resource type.

Versioned Redfish OpenAPI files shall be named using the resource type name for the schema, following the format:

<ResourceType>.v<MajorVersion>_<MinorVersion>_<Errata>.yaml

For example, version 1.3.0 of the Chassis schema is Chassis.v1_3_0.yaml .

Unversioned Redfish OpenAPI files shall use the resource type name to name the file, in this format:

<ResourceType>.yaml

For example, the unversioned definition of the Chassis schema is Chassis.yaml .

11.3.3 Core OpenAPI schema files

Table 32 describes the core OpenAPI schema files:

Table 32 — Core OpenAPI schema files

File Description

odata-v4.yaml Definitions for common OData properties.

openapi.yaml URI paths and their respective payload structures.

Resource.yaml and its subsequent versions
All base definitions for resources, resource collections, and common

properties, such as Status .

Redfish Specification DSP0266

130 Published Version 1.14.0

11.3.4 openapi.yaml

The openapi.yaml file is the starting point for clients to understand the construct of the service.

Table 33 describes the terms that the openapi.yaml file contains:

Table 33 — openapi.yaml terms

Term Description

components
Global definitions. For Redfish, contains the format of the Redfish

error response.

info
Structure consisting of information about what the openapi.yaml is

describing, such as the author of the file and any contact information.

openapi Version of OpenAPI the document follows.

paths
URIs supported by the document, with possible methods, response

bodies, and request bodies.

The service shall return the openapi.yaml file, if present in the Redfish service, as a YAML document by using

either the application/yaml or application/vnd.oai.openapi MIME types. The service may append

;charset=utf-8 to the MIME type. Note that while the application/yaml type is in common use today, the

application/vnd.oai.openapi type was recently defined and approved specifically to support OpenAPI.

Implementations should use caution when selecting the MIME type as this specification may change in the future to

reflect adoption of the OpenAPI-defined MIME type.

The paths term contains an array of the possible URIs. For each URI, it also lists the possible methods. For each

method, it lists the possible response bodies and request bodies.

Example paths entry for a resource:

/redfish/v1/Systems/{ComputerSystemId}:
get:

parameters:
- description: The value of the Id property of the ComputerSystem resource

in: path
name: ComputerSystemId
required: true
schema:

type: string
responses:

'200':
content:

application/json:
schema:

DSP0266 Redfish Specification

Version 1.14.0 Published 131

$ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_6_0.yaml#/components/schemas/ComputerSystem
description: The response contains a representation of the ComputerSystem

resource
default:

content:
application/json:

schema:
$ref: '#/components/schemas/RedfishError'

description: Error condition

Example paths entry for an action:

/redfish/v1/Systems/{ComputerSystemId}/Actions/ComputerSystem.Reset:
post:

parameters:
- description: The value of the Id property of the ComputerSystem resource

in: path
name: ComputerSystemId
required: true

type: string
requestBody:

content:
application/json:

schema:
$ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_6_0.yaml#/components/schemas/ResetRequestBody

required: true
responses:

'200':
content:

application/json:
schema:

$ref: '#/components/schemas/RedfishError'
description: The response contains the results of the Reset action

'202':
content:

application/json:
schema:

$ref: http://redfish.dmtf.org/schemas/v1/Task.v1_4_0.yaml#/components/schemas/Task
description: Accepted; a task has been generated

'204':
description: Success, but no response data

default:
content:

application/json:
schema:

$ref: '#/components/schemas/RedfishError'
description: Error condition

Redfish Specification DSP0266

132 Published Version 1.14.0

11.3.5 OpenAPI file format

With the exception of openapi.yaml , each OpenAPI file contains a YAML object to describe resources, resource

collections, or other definitions for the data model. Table 34 describes the terms that the YAML object contains:

Table 34 — YAML object terms

Term Description

components
Structures, enumerations, and other definitions defined by the

schema.

x-copyright Copyright statement for the organization producing the OpenAPI file.

title
For a schema file that describes a resource or resource collection,

the matching type identifier for the resource or resource collection.

11.3.6 OpenAPI components body

This clause describes the types of definitions that can be found in the components term of a Redfish OpenAPI file.

11.3.6.1 Resource definitions in OpenAPI

To satisfy versioning requirements, the OpenAPI representation of each resource has one unversioned schema file,

and a set of versioned schema files.

The unversioned definition of a resource contains an anyOf statement. This statement consists of an array of $ref

terms, which point to the following definitions:

• The OpenAPI definition for a reference property.

• The versioned definitions of the resource.

Example unversioned resource definition in OpenAPI:

ComputerSystem:
anyOf:
- $ref: http://redfish.dmtf.org/schemas/v1/odata.v4_0_3.yaml#/components/schemas/idRef
- $ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_0.yaml#/components/schemas/ComputerSystem
- $ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_1.yaml#/components/schemas/ComputerSystem
- $ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_6_0.yaml#/components/schemas/ComputerSystem
description: The ComputerSystem schema represents a general purpose machine

or system.
x-longDescription: This resource shall be used to represent resources that represent

a computing system.

DSP0266 Redfish Specification

Version 1.14.0 Published 133

The versioned definition of a resource contains the property definitions for the given version of the resource.

11.3.6.2 Enumerations in OpenAPI

Table 35 describes the terms in OpenAPI enumerations:

Table 35 — OpenAPI enumerations

Term Description

enum String array that contains the possible enumeration values.

type
Because all enumerations in Redfish are strings, the type term

always has the value string .

x-enumDescriptions
Object that contains the descriptions for each of the enumerations as

name-value pairs.

x-enumLongDescriptions
Object that contains the long descriptions for each enumeration as a

name-value pair.

x-enumDeprecated
Object that contains the deprecation guidance for each of the

enumerations as name-value pairs.

x-enumVersionDeprecated
Object that contains the deprecation version information for each of

the enumerations as name-value pairs.

Example enumeration definition in OpenAPI:

IndicatorLED:
enum:
- Lit
- Blinking
- 'Off'
type: string
x-enumDescriptions:

Blinking: The Indicator LED is blinking.
Lit: The Indicator LED is lit.
'Off': The Indicator LED is off.

x-enumLongDescriptions:
Blinking: This value shall represent the Indicator LED is in a blinking state

where the LED is being turned on and off in repetition.
Lit: This value shall represent the Indicator LED is in a solid on state.
'Off': This value shall represent the Indicator LED is in a solid off state.

11.3.6.3 Actions in OpenAPI

Versioned definitions of resources contain a definition called Actions . This definition is a container with a set of

Redfish Specification DSP0266

134 Published Version 1.14.0

terms that point to the different actions supported by the resource. The names of standard actions shall be in the

form:

#<ResourceType>.<ActionName>

Example Actions definition:

Actions:
additionalProperties: false
description: The available actions for this resource.
properties:

'#ComputerSystem.Reset':
$ref: '#/components/schemas/Reset'

type: object
x-longDescription: This type shall contain the available actions for this resource.

Another definition within the same schema file describes the action itself. This definition contains property definitions

for the target and title properties shown in response payloads for the resource.

The following example shows a definition of an action:

Reset:
additionalProperties: false
description: This action resets the system.
properties:

target:
description: Link to invoke action
format: uri
type: string

title:
description: Friendly action name
type: string

type: object
x-longDescription: This action shall reset the ComputerSystem.

The parameters for the action are shown in another definition with RequestBody appended to the name of the

action. This gets mapped from the openapi.yaml file for expressing the POST method for the URI of the action.

The following example shows a definition of parameters of an action:

ResetRequestBody:
additionalProperties: false
description: This action resets the system.
properties:

DSP0266 Redfish Specification

Version 1.14.0 Published 135

ResetType:
$ref: http://redfish.dmtf.org/schemas/v1/Resource.yaml#/components/schemas/ResetType
description: The reset type.
x-longDescription: This parameter shall define the type of reset to perform.

type: object
x-longDescription: This action shall reset the ComputerSystem.

11.3.6.4 OEM actions in OpenAPI

OEM-specific actions shall be defined by using an action definition in an appropriately named OpenAPI file. For

example, the following definition defines the OEM #ContosoNetworkDevice.Ping action, assuming it's found in the

versioned ContosoNetworkDevice OpenAPI file with a name, such as ContosoNetworkDevice.v1_0_0.yaml .

Ping:
additionalProperties: false
properties:

target:
description: Link to invoke action
format: uri
type: string

title:
description: Friendly action name
type: string

type: object
PingRequestBody:

additionalProperties: false
properties: {}
type: object

11.3.7 OpenAPI terms used by Redfish

Table 36 describes the OpenAPI terms that Redfish uses to provide schema annotations for Redfish OpenAPI files:

Table 36 — OpenAPI terms used by Redfish

OpenAPI term Related Redfish schema annotation

description

x-enumDescriptions
Description

x-longDescription

x-enumLongDescriptions
Long description

additionalProperties Additional properties

readOnly Permissions

Redfish Specification DSP0266

136 Published Version 1.14.0

OpenAPI term Related Redfish schema annotation

required Required

x-requiredOnCreate Required on create

x-units Units of measure

x-autoExpand Expanded resource

x-owningEntity Owning entity

deprecated

x-deprecatedReason

x-versionDeprecated

Deprecated

11.4 Schema modification rules

Schema referenced from the implementation may vary from the canonical definitions of those schema defined by the

Redfish schema or other entities, provided they adhere to the following rules. Clients should take this into

consideration when attempting operations on the resources defined by schema.

• Modified schema may constrain a read/write property to be read only.

• Modified schema may constrain a property by adding length annotations to properties that do not have those

annotations.

• Modified schema may constrain a property by adding a pattern annotation to properties that do not have that

annotation.

• Modified schema may constrain the capabilities of a resource or resource collection to remove support for HTTP

operations.

◦ Modified schema may change the update capabilities to indicate a client can perform a PATCH or PUT

request on the resource to support writable OEM properties.

• Modified schema may remove properties that are not required.

• Modified schema may remove actions.

• Modified schema may remove action parameters that are not required.

• Modified schema may change description annotations.

• Modified schema may change any external references to point to Redfish schema that adheres to the

modification rules.

• Modified schema may change the owning entity annotation to specify who made the modifications.

• Modified schema may remove URIs from the resource URI patterns annotation.

• Modified schema may add URIs to the resource URI patterns annotation to define OEM URIs for standard

resources and shall follow the OEM URI rules specified by the OEM URIs clause.

• Other modifications to the schema shall not be allowed.

DSP0266 Redfish Specification

Version 1.14.0 Published 137

12 Service details

12.1 Eventing

12.1.1 Eventing overview

This clause describes how to use the REST-based mechanism to subscribe to and receive event messages.

Note: For security implications of eventing, see the Security details clause.

The Redfish service requires a client or administrator to create subscriptions to receive events.

To create a subscription, use one of these methods:

• Directly HTTP POST to the subscription collection.

• Indirectly open a server-sent events (SSE) connection for the event service.

12.1.2 POST to subscription collection

To locate the event service, the client traverses the Redfish service interface. The event service is located in the

service root, as described in the ServiceRoot schema.

After the client discovers the service, they perform an HTTP POST on the resource collection URI for

Subscriptions in the event service to subscribe to events. For the subscription body syntax, see the Redfish

EventDestination schema. This request includes:

• The URI where an event-receiver client expects events to be sent. When an event is triggered within the Redfish

service, the service sends an event to that URI.

• The type of events to send.

If the subscription request succeeds, the service shall return:

• An HTTP 201 Created status code.

• The Location header that contains a URI of the newly created subscription resource.

If the subscription request succeeds, the service should return:

• A response body containing a representation of the subscription resource that conforms to the

EventDestination schema.

Redfish Specification DSP0266

138 Published Version 1.14.0

After a subscription is registered with the service, clients begin receiving events. Clients do not receive events

retroactively. The service does not retain historical events.

Services shall:

• Support push style eventing for all resources that can send events.

• Respond to a request to create a subscription with an error if the body of the request is conflicting. For instance,

if parameters in the request are not supported, the service shall return the HTTP 400 Bad Request status code.

• Respond to a request to create a subscription with an error if the body of the request contains both

RegistryPrefixes and MessageIds , and shall return the HTTP 400 Bad Request status code. These

properties are considered mutually exclusive.

• Retain subscriptions as persistent across service restarts.

Services shall not:

• Push events by using HTTP POST unless an event subscription has been created. To terminate the event

stream at any time, either the client or the service can delete the subscription.

• Send a push event payload larger than 1 Mebibyte (MiB). If more than 1 MiB of data is to be sent, the service

shall divide the payload on the nearest Event entry such that the total payload transmitted to the client is less

than 1 MiB. This restriction shall not apply to metric reports.

Services may:

• Terminate a subscription by sending a SubscriptionTerminated message from the Base Message Registry as

the last event.

• Terminate a subscription if the number of delivery errors exceeds preconfigured thresholds.

To unsubscribe from the events associated with this subscription, the client or administrator shall perform an HTTP

DELETE request to the subscription's resource URI.

Subsequent requests to subscription resources that have been terminated respond with the HTTP 404 Not Found

status code.

Some configurable properties define the behavior for all event subscriptions. For details, see the Redfish

EventService schema.

12.1.3 Open an SSE connection

A service may support the ServerSentEventUri property in the EventService resource. If a client performs a GET

request on the URI that the ServerSentEventUri contains, an SSE connection opens for the client. For details

about this method, see the server-sent events Event service clause.

DSP0266 Redfish Specification

Version 1.14.0 Published 139

12.1.4 EventType-based eventing

DEPRECATED: EventType -based eventing is deprecated in the Redfish schema in favor of using

RegistryPrefix and ResourceType .

DEPRECATED

Table 37 describes the types of events that Redfish generates:

Table 37 — EventType-based eventing

Event Occurs when Description

Life cycle

Resources are created, modified, or

destroyed.

Usually indicates that the resource and,

optionally, its properties have changed.

Not every modification of a resource results

in an event. This behavior is similar to when

ETags are changed and implementations

might not send an event for every resource

change.

For example, if an event is sent for every

Ethernet packet that is received or each time

that a sensor changes one degree, more

events than fit in a scalable interface are

generated.

Alert

An event of some significance happens.

Depending on the resource, may be

generated directly or indirectly.

Usually adopts a message registry approach

similar to extended error handling in that a

MessageId is included.

An example of an alert event is, a chassis is

opened, a button is pushed, a cable is

unplugged, or a threshold exceeded.

These events usually do not correspond well

to life cycle-type events. Therefore, alerts

have their own category.

Metric report
The telemetry service generates or updates a

metric report.

Generated as specified by the

MetricReportDefinition resources found

subordinate to the telemetry service. Can

occur periodically, on demand, or when

changes are detected in the metric

properties.

For details, see the Redfish

MetricReportDefinition schema.

Redfish Specification DSP0266

140 Published Version 1.14.0

END DEPRECATED

12.1.5 Subscribing to events

Table 38 describes the properties that a subscriber provides to subscribe to events and filter received messages:

Table 38 — Subscription properties

Property Description

RegistryPrefixes

An array of standard or OEM message registries.

An event is sent to the subscriber if one of the message registries

that RegistryPrefixes lists defines the event message.

To receive messages from all registries, pass an empty array. The

contents of the array does not include the registry version.

For example, if the registry is Base.1.5.0 , the property value is

Base .

ResourceTypes

An array of standard or OEM resource types.

An event is sent to the subscriber if the OriginOfCondition

resource type matches one of the ResourceTypes values.

The contents of the array does not include the schema version. For

example, if the resource type is Task.v1_2_0.Task , the property

value is Task .

To receive messages from any resource, pass an empty array.

OriginResources

An array of URIs to resources.

An event is sent to the subscriber if the OriginOfCondition

property matches one of the URIs listed in OriginResources .

To receive messages from any resource, pass an empty array.

To include subordinate resources regardless of depth, set the

SubordinateResources property to true .

EventFormatType

The format that can be sent by using the EventFormatTypes

property in the event service.

Represents the format of the payload sent to the event destination.

If the subscriber omits this value, the payload corresponds to the

Event schema.

DSP0266 Redfish Specification

Version 1.14.0 Published 141

12.1.6 Event formats

Table 39 describes the event formats:

Table 39 — Event formats

Event format Description

Metric report message objects

Used when the telemetry service generates a new or updates an

existing metric report. Metric report message objects sent to the

specified client endpoint shall contain the properties, as described in

the Redfish MetricReport schema.

Event message objects

Used for all other types of events. Event message objects POST ed

to the specified client endpoint shall contain the properties as

described in the Redfish Event schema. Supports a message

registry. In a message registry approach, a message registry lists the

MessageIds in a well-known format. These MessageIds are terse

in nature and thus they are much smaller than actual messages,

making them suitable for embedded environments.

The registry also contains a message. The message itself can have

arguments and default values for severity and recommended

actions. The MessageId property follows the format defined in the

MessageId format clause

Event messages may also have an EventGroupId property, which

lets clients know that different messages may be from the same

event. For instance, if a LAN cable is disconnected, they may get a

specific message from one registry about the LAN cable being

disconnected, another message from a general registry about the

resource changing, perhaps a message about resource state

change, and maybe more. For the client to determine whether these

have the same root cause, these messages have the same value for

the EventGroupId property.

12.1.7 OEM extensions

OEMs can extend both messages and message registries. Any individual message, per the MessageRegistry

schema definition, define OEM sections. Thus, if OEMs wish to provide additional information or properties, use the

OEM section.

OEMs shall not supply additional message arguments beyond those in a standard message registry. OEMs may

substitute their own message registry for the standard registry to provide the OEM section within the registry but shall

not change the standard values, such as messages, in such registries.

Redfish Specification DSP0266

142 Published Version 1.14.0

12.2 Asynchronous operations

Services that support asynchronous operations implement the TaskService and Task resources.

The task service describes the service that handles task. It contains a resource collection of zero or more Task

resources. The Task resource describes a long-running operation that is spawned when a request takes longer than

a few seconds, such as when a service is instantiated.

The Task schema defines task structure, including the start time, end time, task state, task status, and zero or more

task-associated messages.

Each task has a number of possible states. The Task schema defines the exact states and their semantics.

When a client issues a request for a long-running operation, the service returns the HTTP 202 Accepted status

code and a Location header that contains the URI of the task monitor and, optionally, the Retry-After header

that defines the amount of time that the client should wait before querying the status of the operation.

The task monitor is an opaque service-generated URI that the client who initiates the request can use. To query the

status of an operation and determine when the operation has been completed and whether it succeeded, the client

performs a GET request on the task monitor. The client should not include the application/http MIME type in the

Accept header.

The 202 Accepted response body should contain an instance of the Task resource that describes the state of the

task.

As long as the operation is in process, the service shall continue to return the HTTP 202 Accepted status code

when the client queries the task monitor URI.

If a service supports cancellation of a task, the Allow header shall contain DELETE for the task monitor. To cancel

the operation, the client may perform a DELETE request on the task monitor URI. The service determines when to

delete the associated Task resource.

To cancel the operation, the client may also perform a DELETE request to the Task resource. Deleting the Task

resource may invalidate the associated task monitor. A subsequent GET request on the task monitor URI returns

either the HTTP 410 Gone or 404 Not Found status code.

In the unlikely event that a DELETE of the task monitor or Task resource returns the HTTP 202 Accepted status

code, an additional task shall not be started and instead the client may monitor the existing Task resource for the

status of the cancellation request. When the task finally completes cancellation, operations to the task monitor and

Task resources shall return the HTTP 404 Not Found status code.

After the operation has been completed, the service shall update the TaskState with the appropriate value. The

Task schema defines the task completed values.

DSP0266 Redfish Specification

Version 1.14.0 Published 143

After the operation has been completed, the task monitor shall return:

• The appropriate HTTP status code, such as but not limited to 200 OK for most operations or 201 Created for

POST to create a resource.

• The headers and response body of the initial operation, as if it had completed synchronously.

If the initial operation fails, the response body shall contain an error response.

If the operation has been completed and the service has already deleted the task, the service may return the HTTP

410 Gone or 404 Not Found status code. This situation can occur if the client waits too long to read the task

monitor.

To continue to get status information, the client can use the resource identifier from the 202 Accepted response to

directly query the Task resource.

• Services that support asynchronous operations shall implement the Task resource.

• The response to an asynchronous operation shall return the HTTP 202 Accepted status code and set the

Location response header to the URI of a task monitor associated with the task. The response may also

include the Retry-After header that defines the amount of time that the client should wait before polling for

status. The response body should contain a representation of the Task resource.

• GET requests to either the task monitor or Task resource shall return the current status of the operation

without blocking.

• HTTP GET , PUT , and PATCH operations should always be synchronous.

• Clients shall be prepared to handle both synchronous and asynchronous responses for HTTP GET , PUT ,

PATCH , POST , and DELETE requests.

• Services shall persist pending tasks produced by client requests containing @Redfish.OperationApplyTime

across service restarts, until the task begins execution.

• Tasks that are pending execution should include the @Redfish.OperationApplyTime property to indicate when

the task will start. If the @Redfish.OperationApplyTime value is AtMaintenanceWindowStart or

InMaintenanceWindowOnReset , the task should also include the @Redfish.MaintenanceWindow property.

12.3 Resource tree stability

The resource tree, which is defined as the set of URIs and array elements within the implementation, should be

consistent on a single service across device resets or power cycles, and should withstand a reasonable amount of

configuration change, such as adding an adapter to a server.

The resource tree on one service might not be consistent across instances of devices. The client should traverse the

data model and discover resources to interact with them.

Some resources might remain very stable from system to system, such as manager network settings. However, the

architecture does not guarantee this stability.

Redfish Specification DSP0266

144 Published Version 1.14.0

• A resource tree should remain stable across service restarts and minor device configuration changes. Thus, the

set of URIs and array element indexes should remain constant.

• A client shall not expect the resource tree to be consistent between instances of services.

12.4 Discovery

12.4.1 Discovery overview

Automatic discovery of managed devices supporting Redfish may be accomplished by using the Simple Service

Discovery Protocol (SSDP). This protocol enables network-efficient discovery without resorting to ping-sweeps,

router table searches, or restrictive DNS naming schemes. Use of SSDP is optional, and if implemented, shall enable

the user to disable the protocol through the ManagerNetworkProtocol resource.

The objective of discovery is for client software to locate managed devices that conform to the Redfish Specification.

Therefore, the primary SSDP functionality is incorporated in the M-SEARCH query. Redfish also follows the SSDP

extensions and naming that UPnP uses, where applicable, so that systems that conform to the Redfish Specification

can also implement UPnP without conflict.

12.4.2 UPnP compatibility

For compatibility with general-purpose SSDP client software, primarily UPnP, the service should use UDP port 1900

for all SSDP traffic. In addition, the Time-to-Live (TTL) hop count setting for SSDP multicast messages should default

to 2 .

12.4.3 USN format

The UUID in the USN field of the service shall equal the UUID property in the service root. If multiple or redundant

managers exist, the UUID of the service shall remain static regardless of redundancy failover. The unique ID shall be

in the canonical UUID format, followed by ::dmtf-org .

12.4.4 M-SEARCH response

The Redfish service Search Target (ST) is defined as:

urn:dmtf-org:service:redfish-rest:1

The managed device shall respond to M-SEARCH queries for Search Target (ST) of the Redfish service, as well as

ssdp:all . For UPnP compatibility, the managed device should respond to M-SEARCH queries for Search Target

(ST) of upnp:rootdevice .

DSP0266 Redfish Specification

Version 1.14.0 Published 145

The URN provided in the ST header in the reply shall use the redfish-rest: service name followed by the major

version of the Redfish Specification. If the minor version of the Redfish Specification to which the service conforms is

a non-zero value, that minor version shall be appended with and preceded by a colon (:).

For example, a service that conforms to a Redfish Specification v1.4 would reply with a redfish-rest:1:4 service.

The managed device shall provide clients with the AL header that points to the Redfish service root URL.

For UPnP compatibility, the managed device should provide clients with the Location header that points to the

UPnP XML descriptor.

The response to an M-SEARCH multicast or unicast query shall use the following format:

HTTP/1.1 200 OK
CACHE-CONTROL:max-age=<seconds, at least 1800>
ST:urn:dmtf-org:service:redfish-rest:1
USN:uuid:<UUID of the service>::urn:dmtf-org:service:redfish-rest:1
AL:<URL of Redfish service root>
EXT:

A service may provide additional headers for UPnP compatibility. Fields in brackets are placeholders for device-

specific values.

12.4.5 Notify, alive, and shutdown messages

Redfish devices may implement the additional UPnP-defined SSDP messages to announce their availability to

software. If implemented, services shall allow the end user to disable the traffic separately from the M-SEARCH

response functionality. This capability enables users to use the discovery functionality with minimal amounts of

generated network traffic.

12.5 Server-sent events

12.5.1 General

Unsuccessful resource responses for SSE shall:

• Return an HTTP 400 or greater status code.

• Have a Content-Type header set as application/json or application/json;charset=utf-8 .

• Contain a JSON object in the response body, as described in Error responses, which details the error or errors.

A service may occasionally send a comment within a stream to keep the connection alive. Services shall separate

events with blank lines. Blank lines should be sent as part of the end of an event, otherwise dispatch may be delayed

in conforming consumers.

The following clauses describe how Redfish uses SSE in different Redfish data model contexts. For details about

SSE, see the HTML5 Specification.

12.5.2 Event service

A service's implementation of the EventService resource may contain the ServerSentEventUri property. If a

client performs a GET request on the URI specified by the ServerSentEventUri property, the service shall keep the

connection open and conform to the HTML5 Specification until the client closes the socket. Service-generated events

shall be sent to the client by using the open connection.

When a client opens an SSE stream for the event service, the service shall create an EventDestination resource

in the Subscriptions collection for the event service to represent the connection. The Context property in the

EventDestination resource shall be a service-generated opaque string.

The service shall delete the corresponding EventDestination resource when the connection is closed. The service

shall close the connection if the corresponding EventDestination resource is deleted.

The service shall use the id field in the SSE stream to uniquely identify a payload in the SSE stream. The value of

the id field is determined by the service. A service should accept the Last-Event-ID header from the client to

allow a client to restart the event stream in case the connection is interrupted.

The service shall use the data field in the SSE stream based on the payload format. The SSE streams have these

formats:

• Metric report SSE stream. Services shall use this format when the telemetry service generates or updates a

metric report.

• Event message SSE stream. Services shall use this format for all other types of events.

To reduce the amount of data returned to the client, the service should support the $filter query parameter in the

URI for the SSE stream.

Note: The $filter syntax shall follow the format in the $filter query parameter clause.

The service should support these properties as filter criteria:

DSP0266 Redfish Specification

Version 1.14.0 Published 147

• EventFormatType

The service sends events of the matching EventFormatType .

Example:

https://sseuri?$filter=EventFormatType eq 'Event'

Valid values are the EventFormatType enumerated string values that the Redfish EventService schema

defines.

• EventType

The service sends events of the matching EventType .

Example:

https://sseuri?$filter=EventType eq 'StatusChange'

Valid values are the EventType enumerated string values that the Redfish Event schema defines.

• MessageId

The service sends events with the matching MessageId .

Example:

https://sseuri?$filter=MessageId eq 'Contoso.1.0.TempAssert'

• MetricReportDefinition

The service sends metric reports generated from the MetricReportDefinition .

Example:

https://sseuri?$filter=MetricReportDefinition eq '/redfish/v1/TelemetryService/MetricReportDefinitions/PowerMetrics'

• OriginResource

Redfish Specification DSP0266

148 Published Version 1.14.0

The service sends events for the resource.

Example:

https://sseuri?$filter=OriginResource eq '/redfish/v1/Chassis/1/Thermal'

• RegistryPrefix

The service sends events with messages that are part of the RegistryPrefix .

Example:

https://sseuri?$filter=(RegistryPrefix eq 'Resource') or (RegistryPrefix eq 'Task')

• ResourceType

The service sends events for resources that match the ResourceType .

Example:

https://sseuri?$filter=(ResourceType eq 'Power') or (ResourceType eq 'Thermal')

• SubordinateResources

When SubordinateResources is true and OriginResource is specified, the service sends events for the

resource and its subordinate resources.

Example:

https://sseuri?$filter=(OriginResource eq '/redfish/v1/Systems/1') and (SubordinateResources eq true)

12.5.2.1 Event message SSE stream

The service shall use the data field in the SSE stream to include the JSON representation of the Event object.

The following example payload shows a stream that contains a single event with the id field set to 1 , and a data

field that contains a single Event object.

DSP0266 Redfish Specification

Version 1.14.0 Published 149

id: 1
data:{
data: "@odata.type": "#Event.v1_6_0.Event",
data: "Id": "1",
data: "Name": "Event Array",
data: "Context": "ABCDEFGH",
data: "Events": [
data: {
data: "MemberId": "1",
data: "EventType": "Alert",
data: "EventId": "1",
data: "Severity": "Warning",
data: "MessageSeverity": "Warning",
data: "EventTimestamp": "2017-11-23T17:17:42-0600",
data: "Message": "The LAN has been disconnected",
data: "MessageId": "Alert.1.0.LanDisconnect",
data: "MessageArgs": [
data: "EthernetInterface 1",
data: "/redfish/v1/Systems/1"
data:],
data: "OriginOfCondition": {
data: "@odata.id": "/redfish/v1/Systems/1/EthernetInterfaces/1"
data: },
data: "Context": "ABCDEFGH"
data: }
data:]
data:}

12.5.2.2 Metric report SSE stream

The service shall use the data field in the SSE stream to include the JSON representation of the MetricReport

object.

The following example payload shows a stream that contains a metric report with the id field set to 127 , and the

data field containing the metric report object.

id: 127
data:{
data: "@odata.id": "/redfish/v1/TelemetryService/MetricReports/AvgPlatformPowerUsage",
data: "@odata.type": "#MetricReport.v1_3_0.MetricReport",
data: "Id": "AvgPlatformPowerUsage",
data: "Name": "Average Platform Power Usage metric report",
data: "MetricReportDefinition": {
data: "@odata.id": "/redfish/v1/TelemetryService/MetricReportDefinitions/AvgPlatformPowerUsage"
data: },
data: "MetricValues": [
data: {

Redfish Specification DSP0266

150 Published Version 1.14.0

data: "MetricId": "AverageConsumedWatts",
data: "MetricValue": "100",
data: "Timestamp": "2016-11-08T12:25:00-05:00",
data: "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/PowerConsumedWatts"
data: },
data: {
data: "MetricId": "AverageConsumedWatts",
data: "MetricValue": "94",
data: "Timestamp": "2016-11-08T13:25:00-05:00",
data: "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/PowerConsumedWatts"
data: },
data: {
data: "MetricId": "AverageConsumedWatts",
data: "MetricValue": "100",
data: "Timestamp": "2016-11-08T14:25:00-05:00",
data: "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/PowerConsumedWatts"
data: }
data:]
data:}

12.6 Update service

12.6.1 Overview

This clause covers the mechanism for software updates by using the update service.

12.6.2 Software update types

Clients can use these methods to update software through the update service:

• Simple updates: The service pulls the update from a client-indicated network location.

• Multipart HTTP push updates: The client uses HTTP or HTTPS with a multipart-formatted request body to push

a software image to the service.

12.6.2.1 Simple updates

A service can support the SimpleUpdate action within the UpdateService resource. A client can perform a POST

request on the action target URI to initiate a pull-based update, as defined by the UpdateService schema. After a

successful POST , the service should return the HTTP 202 Accepted status code with the Location header set to

the URI of a task monitor. Clients can use this task to monitor the progress and results of the update, which includes

the progress of image transfer to the service.

DSP0266 Redfish Specification

Version 1.14.0 Published 151

12.6.2.2 Multipart HTTP push updates

A service may support the MultipartHttpPushUri property within the UpdateService resource. A client can

perform an HTTP or HTTPS POST request on the URI specified by this property to initiate a push-based update.

• Access to this URI shall require the same privilege as access to the update service.

• A client POST to this URI shall contain the Content-Type HTTP header with the value multipart/form-data ,

with the body formatted as defined by this specification. For more information about multipart/form-data

HTTP requests, see RFC7578.

• The client POST request shall contain the binary image as one of the parts in a multipart/form-data request

body, as defined by Table 40. In addition, the request shall include parameters for the update in a JSON

formatted part in the same multipart/form-data request body, as defined by Table 40. If the request has no

parameters, an empty JSON object shall be used.

• A service may require the Content-Length HTTP header for POST requests to this URI. In this case, if a client

does not include the required Content-Length header in the POST request, the service shall return the HTTP

411 Length Required status code.

• A service should return the HTTP 412 Precondition Failed status code if the size of the binary image is

larger than the maximum image size that the service supports, as advertised in MaxImageSizeBytes property in

the UpdateService resource.

• After a successful POST to this URI, the service shall return the HTTP 202 Accepted status code with a

Location header set to the URI of a task monitor. Clients can use this task to monitor the progress and results

of the update.

Table 40 describes the requirements of a multipart/form-data request body for an HTTP push software update:

Table 40 — Multipart HTTP push updates

Request body part HTTP headers
Header value and

parameters
Required Description

Update parameters JSON

part
Content-Disposition

form-data;

name="UpdateParameters"
Yes

JSON-formatted part for

passing the update

parameters. The value of

the name field shall be

"UpdateParameters" .

The format of the JSON

shall follow the definition

of the UpdateParameters

object in the

UpdateService schema.

Content-Type

application/

json;charset=utf-8 or

application/json

Yes

Media type format and

character set of this

request part.

Redfish Specification DSP0266

152 Published Version 1.14.0

Request body part HTTP headers
Header value and

parameters
Required Description

Update file binary part Content-Disposition

form-data;

name="UpdateFile";

filename=string

Yes

Binary file to use for this

software update. The

value of the name field

shall be "UpdateFile" .

The value of the

filename field should

reflect the name of the file

as loaded by the client.

Content-Type
application/octet-

stream
Yes

Media type format of the

binary update file.

OEM specific parts Content-Disposition
form-data;

name="OemXXXX"
No

Optional OEM part. The

value of the name field

shall start with "Oem .

Content-Type is

optional, and depends on

the OEM part type.

This example shows a multipart/form-data request to push an update image:

POST /redfish/v1/UpdateService/upload HTTP/1.1
Host: <host-path>
Content-Type: multipart/form-data; boundary=---------------------------d74496d66958873e
Content-Length: <computed-length>
Connection: keep-alive
X-Auth-Token: <session-auth-token>

-----------------------------d74496d66958873e
Content-Disposition: form-data; name="UpdateParameters"
Content-Type: application/json

{
"Targets": ["/redfish/v1/Managers/1"],
"@Redfish.OperationApplyTime": "OnReset",
"Oem": {}

}

-----------------------------d74496d66958873e
Content-Disposition: form-data; name="UpdateFile"; filename="flash.bin"
Content-Type: application/octet-stream

<software image binary>

DSP0266 Redfish Specification

Version 1.14.0 Published 153

13 Security details

13.1 Transport Layer Security (TLS) protocol

13.1.1 Transport Layer Security (TLS) protocol overview

Implementations shall support the Transport Layer Security (TLS) protocol v1.2 with RFC7525 recommendations or

later. Implementations may remove support for older versions for TLS in favor of newer versions.

DEPRECATED: Previous versions of this specification allowed for TLS v1.1.

Implementations should support:

• The Storage Networking Industry Association (SNIA) TLS Specification for Storage Systems.

• The latest version of the TLS v1.x specification.

13.1.2 Cipher suites

Implementations shall only support cipher suites listed as "Recommended" in the TLS Cipher Suites table defined

by the IANA TLS Parameters registry.

Cipher suites that are listed as mandatory in various RFCs, but are not "Recommended" in the TLS Cipher Suites

table defined by the IANA TLS Parameters registry, shall not be supported.

Implementations should consider the support of pre-shared key ciphers suites listed as "Recommended" in the TLS

Cipher Suites table defined by the IANA TLS Parameters registry, which enable authentication and identification

without trusted certificates.

DEPRECATED

Implementations should support AES-256-based ciphers from the TLS suites.

Redfish implementations should consider the support of ciphers, such as the following ciphers, which enable

authentication and identification without trusted certificates:

TLS_PSK_WITH_AES_256_GCM_SHA384
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384
TLS_RSA_PSK_WITH_AES_256_GCM_SHA384

Redfish Specification DSP0266

154 Published Version 1.14.0

The advantage of these recommended ciphers is:

AES-GCM is not only efficient and secure, but hardware implementations can achieve high speeds with low cost

and low latency because the mode can be pipelined.

Additionally, Redfish implementations should support the following cipher:

TLS_RSA_WITH_AES_128_CBC_SHA

For more information, see RFC5487 and RFC5288.

END DEPRECATED

13.1.3 Certificates

Redfish implementations shall support replacement of the default certificate if one is provided.

Redfish implementations shall use certificates that conform to X.509-v3, as defined in RFC5280.

13.2 Sensitive data

Operations that contain sensitive data should use HTTPS only. For example, a SimpleUpdate action with a user

name and password should use HTTPS to protect the sensitive data.

Properties in service responses that represent sensitive data, such as passwords, shall be null .

Responses from URIs that contain sensitive data may return the HTTP 404 Not Found status code instead of the

HTTP 401 Unauthorized status code or the HTTP 403 Forbidden status code to prevent attackers from obtaining

the sensitive data in the URI.

13.3 Authentication

13.3.1 Authentication overview

Services:

• Shall support both HTTP Basic authentication and Redfish session login authentication.

• Shall use only connections that conform to TLS to transport the data between any third-party authentication

service and clients.

DSP0266 Redfish Specification

Version 1.14.0 Published 155

• Shall not require a client that uses HTTP Basic authentication to create a session.

• May implement other authentication mechanisms.

13.3.2 Authentication requirements

13.3.2.1 Resource and operation authentication requirements

Services shall authenticate all write requests to Redfish resources. For example:

• POST , except to the Sessions resource collection for authentication

• PUT

• PATCH

• DELETE

Redfish resources shall not be available as unauthenticated, except for:

• The service root to identify the device and service locations.

• The Redfish metadata document to get resource types.

• The OData service document for compatibility with OData clients.

• The Redfish OpenAPI YAML document for compatibility with OpenAPI clients.

• The version object at /redfish .

Note: This specification does not cover external services that are linked through external references. These

services may have other security requirements.

13.3.2.2 HTTP header authentication requirements

An authentication header shall accompany every request that establishes a secure channel.

Services:

• Shall process HTTP headers for authentication before other headers that may affect the response. For example,

ETag , If-Modified , and so on.

• Shall not use HTTP cookies to authenticate any activity, such as GET , POST , PUT , PATCH , and DELETE .

13.3.2.3 Authentication failure requirements

When authentication fails, extended error messages shall not provide privileged information.

Redfish Specification DSP0266

156 Published Version 1.14.0

13.3.3 HTTP Basic authentication

Services shall support HTTP Basic authentication, as defined by RFC7617, and shall use only connections that

conform to TLS to transport the data between any third-party authentication service and clients.

All requests that use HTTP Basic authentication shall require HTTPS.

Note: The IETF has highlighted security concerns with HTTP Basic authentication. While HTTPS is required for

the usage of HTTP Basic authentication, there are other concerns implementors need to be aware of that are

documented in RFC7617.

13.3.4 Redfish session login authentication

Service shall provide login sessions that conform with this specification.

Session management is determined by the implementation of the Redfish service, which includes orphaned session

timeout and the management of the number of simultaneous open sessions.

13.3.4.1 Redfish login sessions

For improved performance and security, a client should use the session management interface to create a Redfish

login session. The session service specifies the URI for session management.

To establish a session, find the URI in either:

• The session service's Sessions property.

• The service root's links property under the Sessions property.

Both URIs shall be the same.

{
"SessionService": {

"@odata.id": "/redfish/v1/SessionService"
},
"Links": {

"Sessions": {
"@odata.id": "/redfish/v1/SessionService/Sessions"

}
},
...

}

DSP0266 Redfish Specification

Version 1.14.0 Published 157

13.3.4.2 Session login

To create a Redfish session without an authentication header, perform an HTTP POST request on the session

service's Sessions resource collection. The POST to create a session shall only be supported with HTTPS. If both

HTTP and HTTPS are enabled, a POST request to create a session through the HTTP port should redirect to the

HTTPS port. Include the following POST body:

POST /redfish/v1/SessionService/Sessions HTTP/1.1
Host: <host-path>
Content-Type: application/json;charset=utf-8
Content-Length: <computed-length>
Accept: application/json;charset=utf-8
OData-Version: 4.0

{
"UserName": "<username>",
"Password": "<password>"

}

Fields in brackets are placeholders for client-specific values.

To verify that the request has been initiated from an authorized client domain, services should save the Origin

header in reference to this session creation and compare it to subsequent requests using this session.

The response to the POST request to create a session shall include:

• X-Auth-Token header. Contains a session authentication token that the client can use in subsequent requests.

• Location header. Contains a hyperlink to the new Session resource.

• JSON response body. Contains the full representation of the new Session resource.

The following sample response shows a newly created session:

HTTP/1.1 201 Created
Location: /redfish/v1/SessionService/Sessions/1
X-Auth-Token: <session-auth-token>

{
"@odata.id": "/redfish/v1/SessionService/Sessions/1",
"@odata.type": "#Session.v1_0_0.Session",
"Id": "1",
"Name": "User Session",
"Description": "User Session",
"UserName": "<username>",
"Password": null

Redfish Specification DSP0266

158 Published Version 1.14.0

}

The client that sends the session login request should save the session authentication token from the X-Auth-Token

header and the contents of the Location header from the response of the login POST request.

To authenticate subsequent requests, the client sets the X-Auth-Token header to the session authentication token

that the POST login request returns.

Note: The session ID differs from the session authentication token, as follows:

• Session ID: The session ID uniquely identifies the Session resource. The response data with the last

segment of the Location header URI returns is the session ID. To view active sessions and terminate any

session, an administrator with sufficient privileges can use the session ID.

• Session authentication token: Only the client that executes the login has the session authentication

token.

13.3.4.3 Session lifetime

Unlike some token-based methods that use token expiration times, Redfish sessions time out. As long as a client

continues to send requests more frequently than the session timeout period, the session remains open and the

session authentication token remains valid. If the session times out, it is automatically terminated.

13.3.4.4 Session termination or logout

When the client logs out, the Redfish session terminates. The session terminates through a DELETE request to the

Session resource defined in either the Location header URI or the session ID in the response data.

This ability to DELETE a session through the Session resource enables an administrator with sufficient privileges to

terminate other users' sessions from a different session.

When a session is terminated, the service shall not affect independent connections established originally by this

session for other purposes, such as connections for server-sent events or transferring an image for the update

service.

13.4 Authorization

13.4.1 Authorization overview

The Redfish authorization subsystem controls which users have access to resources and the type of access that

users have. It consists of two parts: the privilege model and the operation-to-privilege mapping.

DSP0266 Redfish Specification

Version 1.14.0 Published 159

The privilege model maps users to roles and maps roles to privileges. A privilege is a permission to complete an

operation, such as read or write, within a defined management domain. For example the ConfigureUsers privilege

allows adding a user. A user is authorized to access a resource if they have the privileges required for that resource.

The operation-to-privilege mapping defines which privileges are required to access any given operation.

Redfish allows vendors to extend the standard privilege model with OEM privileges and custom OEM roles. OEM

privileges and custom roles participate in the privilege model the same as Redfish standard privileges and roles.

Services may also allow clients to create custom roles. Restricted roles and restricted privileges allow vendors to

further refine their authority model.

Services shall enforce the same privilege model for ETag-related activity as is enforced for the data being

represented by the ETag. For example, the privilege required to read an ETag shall be the same as the privilege to

read the data item that the ETag represents.

13.4.2 Privilege model

Each user shall be assigned exactly one role with the RoleId property in the ManagerAccount resource. The value

of the RoleId property identifies a Role resource in the RoleCollection resource, where a role defines a set of

privileges. A role shall be assigned to a user when a manager account is created. The client shall provide the

RoleId property when creating a manager account to select one of the standard or custom roles.

Services shall provide information about all roles through the RoleCollection resource. The AssignedPrivileges

and OemPrivileges arrays in the Role resource define a set of assigned privileges for the associated role. Two

roles with the same privileges shall behave equivalently.

13.4.2.1 Roles

Redfish defines a set of standard roles, allows a service to define custom OEM roles, and allows client-defined

custom roles.

A service shall support all of the standard roles in Table 41. The value of the Id and AssignedPrivileges

properties in the Role resource for the standard roles shall contain the Role name and Assigned privileges

column values, respectively. The AssignedPrivileges property for standard roles shall not be modifiable. The

IsPredefined property for standard roles shall contain the value true .

Table 41 describes the standard roles:

Table 41 — Roles

Role name Assigned privileges

Administrator
Login , ConfigureManager , ConfigureUsers ,

ConfigureComponents , ConfigureSelf

Operator Login , ConfigureComponents , ConfigureSelf

Redfish Specification DSP0266

160 Published Version 1.14.0

Role name Assigned privileges

ReadOnly Login , ConfigureSelf

A service may define custom OEM roles. The IsPredefined property for OEM roles shall contain the value true .

A service shall not allow users to modify predefined OEM roles. OEM role names should begin with a lowercase

character or "Oem" followed by a vendor name to avoid conflict with future Redfish predefined role names.

A service may allow custom client-defined roles to be created, modified, and deleted. If allowed, a user can perform a

POST request on the RoleCollection resource to create a role, indicating privileges in the AssignedPrivileges

and OemPrivileges properties in the Role resource. A service may restrict which privileges are allowed. The

IsPredefined property for client-defined roles shall contain the value false . A service shall not allow a client-

defined role to be deleted while it is in use, for example, when it is assigned to a local user or an LDAP

RemoteRoleMapping property.

The value of the RoleId property shall be unique across all roles within the RoleCollection resource.

Non-Redfish services, such as those enabled by the AccountTypes property within the ManagerAccount resource,

should map the Redfish RoleId to their permission system. For example, an SSH user with Administrator as the

value of the RoleId property could map to "root" for the SSH service. However, the privileges specified by the

AssignedPrivileges and OemPrivileges do not necessarily map to non-Redfish services.

13.4.2.2 Restricted roles and restricted privileges

Restricted roles and restricted privileges are intended to prevent privilege escalation. Restricted roles and restricted

privileges are not less functional, but their usage is restricted to particular users. For example, to have a security

administrator have privileges that the administrator does not have, you need to ensure the administrator cannot

escalate to the security administrator role. An implementation can help achieve this by restricting the

Administrator role and providing an alternate administrator role that lacks the security privilege.

A service may restrict any role. The Restricted property for restricted roles shall contain the value true . When a

standard role is restricted, services shall provide the AlternateRoleId property to reference a non-restricted

custom role intended for clients to use as an alternate. Services may predefine or create accounts that are

configured with a restricted role.

Services shall not allow:

• A RoleId value for a restricted role to be specified when creating or modifying a ManagerAccount resource.

This ensures administrators cannot create an account for themselves that has a restricted role.

• Modification of ManagerAccount resources with a RoleId property containing a value for a restricted role, with

the exception of the Enabled property. This ensures administrators cannot gain access to another account.

• Deletion of ManagerAccount resources with a RoleId property containing a value for a restricted role.

• A restricted role to be specified in the LocalRole property within the RemoteRoleMapping property within the

AccountService and ExternalAccountProvider resources.

DSP0266 Redfish Specification

Version 1.14.0 Published 161

A service may restrict any privilege, including standard and OEM privileges. The RestrictedPrivileges and

RestrictedOemPrivileges properties in the AccountService resource shall specify the restricted privileges.

Services shall not allow custom roles to specify restricted privileges. Services may contain predefined roles that are

configured with restricted privileges.

13.4.2.3 OEM privileges

OEM privileges allow a service to extend the privilege model by adding additional privileges to have additional control

of what operations are allowed. It can be used when a standard privilege is overly broad.

A service may define OEM privileges and may include OEM privileges in any predefined role, including standard and

custom OEM roles. The OemPrivileges property within the Role resource shall contain the OEM privileges that

are assigned to the role. The OemPrivileges property in the Role resource for the predefined roles shall not be

modifiable.

A service may allow OEM privileges to be assigned to client-defined roles.

13.4.3 Redfish service operation-to-privilege mapping

For every request that a client makes to a service, the service shall determine that the authenticated identity of the

requester has the authorization to complete the requested operation on the resource in the request.

Using the role and privileges authorization model where an authenticated identity context is assigned a role and a

role is a set of privileges, the service typically checks an HTTP request against a mapping of the authenticated

requesting identity role and privileges to determine whether the identity privileges are sufficient to complete the

operation in the request.

13.4.3.1 Why specify operation-to-privilege mapping?

Initial versions of the Redfish Specifications defined several role-to-privilege mappings for standardized roles and

normatively identified several privilege labels but did not normatively detail what these privileges or how privilege-to-

operations mappings could be specified or represented in a normative fashion.

The lack of a methodology to define which privileges are required to complete a requested operation against the URI

in the request puts at risk the interoperability between service implementations that clients may encounter due to

variances in privilege requirements between implementations.

Also, a lack of methodology for specifying and representing the operation-to-privilege mapping prevents the Redfish

Forum or other governing organizations from normatively defining privilege requirements for a service.

13.4.3.2 Representing operation-to-privilege mappings

A service should provide a Privilege Registry in the registry collection. This registry represents the privileges required

to complete HTTP operations against resources supported by the service.

Redfish Specification DSP0266

162 Published Version 1.14.0

The Privilege Registry is a JSON document that contains a Mappings array of where an individual entry exists for

every resource type that the service supports.

The operation-to-privilege mapping is defined for every resource type and applies to every resource the service

implements for the applicable resource type.

In several situations, specific resources or properties may have differing operation-to-privilege mappings than the

resource type-level mappings. In these cases, the resource type-level mappings need to be overridden. The

PrivilegeRegistry schema defines the methodology for resource type-level operation-to-privilege mappings and

related overrides.

If a service provides a Privilege Registry, the service shall use the Redfish Forum's Privilege Registry definition as a

base operation-to-privilege mapping definition for operations that the service supports to promote interoperability for

Redfish clients.

13.4.3.3 Operation map syntax

An operation map defines the set of privileges required to complete an operation on a resource-type.

The mapped operations are GET , PUT , PATCH , POST , DELETE , and HEAD . A privilege mapping is defined for

each operation, irrespective of whether the service or data model supports the operation on the resource-type.

The privilege labels may be the Redfish standardized labels that the PrivilegeType enumeration in the

Privileges schema defines and they may be OEM-defined privilege labels. The required privileges for an operation

are specified using logical AND and OR behavior. For more information, see the Privilege AND and OR syntax

clause.

The following example defines the privileges required for various operations on the Manager resource. Unless the

implementation defines mapping overrides to the OperationMap array, the specified operation-to-privilege mapping

represents behavior for all Manager resources in a service implementation.

{
"Entity": "Manager",
"OperationMap": {

"GET": [{
"Privilege": ["Login"]

}],
"HEAD": [{

"Privilege": ["Login"]
}],
"PATCH": [{

"Privilege": ["ConfigureManager"]
}],
"POST": [{

"Privilege": ["ConfigureManager"]

DSP0266 Redfish Specification

Version 1.14.0 Published 163

}],
"PUT": [{

"Privilege": ["ConfigureManager"]
}],
"DELETE": [{

"Privilege": ["ConfigureManager"]
}]

}
}

13.4.3.4 Mapping overrides syntax

Table 42 describes the operation-to-privilege mapping, which varies from the resource type-level mapping:

Table 42 — Mapping overrides syntax

Situation Description

Property override

Property has different privilege requirements than the resource in

which it resides. For example, the Password property in the

ManagerAccount resource requires the ConfigureSelf or

ConfigureUsers privilege to change, in contrast to the

ConfigureUsers privilege required for the other properties in

ManagerAccount resources. If multiple properties with the same

name are present in a resource, the property override applies to all

property instances.

Subordinate override

Resource is used in context of another resource and the contextual

privileges need to govern. For example, the privileges for PATCH

operations on EthernetInterface resources depend on whether

the resource is subordinate to the Manager resource, where

ConfigureManager is required, or the ComputerSystem resource,

where ConfigureComponents is required.

Resource URI override
Resource instance has different privilege requirements for an

operation than those defined for the resource type.

The overrides are defined in the context of the operation-to-privilege mapping for a resource type.

If multiple overrides are specified for a single resource type, the following precedence should be used for determining

the appropriate override to apply:

• Property override

• Resource URI override

• Subordinate override

Redfish Specification DSP0266

164 Published Version 1.14.0

13.4.3.5 Property override example

In the following example, the Password property on the ManagerAccount resource requires the ConfigureSelf or

ConfigureUsers privilege to change, in contrast to the ConfigureUsers privilege required for the other properties

in ManagerAccount resources:

{
"Entity": "ManagerAccount",
"OperationMap": {

"GET": [{
"Privilege": ["ConfigureManager"]

}, {
"Privilege": ["ConfigureUsers"]

}, {
"Privilege": ["ConfigureSelf"]

}],
"HEAD": [{

"Privilege": ["Login"]
}],
"PATCH": [{

"Privilege": ["ConfigureUsers"]
}],
"POST": [{

"Privilege": ["ConfigureUsers"]
}],
"PUT": [{

"Privilege": ["ConfigureUsers"]
}],
"DELETE": [{

"Privilege": ["ConfigureUsers"]
}]

},
"PropertyOverrides": [{

"Targets": ["Password"],
"OperationMap": {

"PATCH": [{
"Privilege": ["ConfigureUsers"]

}, {
"Privilege": ["ConfigureSelf"]

}]
}

}]
}

13.4.3.6 Subordinate override

The Targets property in SubordinateOverrides lists a hierarchical representation for when to apply the override.

In the following example, the override for an EthernetInterface resource is applied when it is subordinate to an

DSP0266 Redfish Specification

Version 1.14.0 Published 165

EthernetInterfaceCollection resource, which in turn is subordinate to a Manager resource. If a client were to

PATCH an EthernetInterface resource that matches this override condition, it requires the ConfigureManager

privilege. Otherwise, the client requires the ConfigureComponents privilege.

{
"Entity": "EthernetInterface",
"OperationMap": {

"GET": [{
"Privilege": ["Login"]

}],
"HEAD": [{

"Privilege": ["Login"]
}],
"PATCH": [{

"Privilege": ["ConfigureComponents"]
}],
"POST": [{

"Privilege": ["ConfigureComponents"]
}],
"PUT": [{

"Privilege": ["ConfigureComponents"]
}],
"DELETE": [{

"Privilege": ["ConfigureComponents"]
}]

},
"SubordinateOverrides": [{

"Targets": ["Manager", "EthernetInterfaceCollection"],
"OperationMap": {

"PATCH": [{
"Privilege": ["ConfigureManager"]

}],
"POST": [{

"Privilege": ["ConfigureManager"]
}],
"PUT": [{

"Privilege": ["ConfigureManager"]
}],
"DELETE": [{

"Privilege": ["ConfigureManager"]
}]

}
}]

}

13.4.3.7 Resource URI override

The following example demonstrates the resource URI override syntax to define operation privilege variations for

resource URIs.

Redfish Specification DSP0266

166 Published Version 1.14.0

The example defines both ConfigureComponents and OEMAdminPriv privileges as required to make a PATCH

operation on the two resource URIs listed as targets.

{
"Entity": "ComputerSystem",
"OperationMap": {

"GET": [{
"Privilege": ["Login"]

}],
"HEAD": [{

"Privilege": ["Login"]
}],
"PATCH": [{

"Privilege": ["ConfigureComponents"]
}],
"POST": [{

"Privilege": ["ConfigureComponents"]
}],
"PUT": [{

"Privilege": ["ConfigureComponents"]
}],
"DELETE": [{

"Privilege": ["ConfigureComponents"]
}]

},
"ResourceURIOverrides": [{

"Targets": ["/redfish/v1/Systems/VM6", "/redfish/v1/Systems/Sys1"],
"OperationMap": {

"GET": [{
"Privilege": ["Login"]

}],
"PATCH": [{

"Privilege": ["ConfigureComponents", "OEMSysAdminPriv"]
}]

}
}]

}

13.4.3.8 Privilege AND and OR syntax

The array placement of the privilege labels in the OperationMap GET , HEAD , PATCH , POST , PUT , and DELETE

operation element arrays define the logical combinations of privileges that are required to call an operation on a

resource or property.

For OR logical combinations, the privilege label appears in the operation element array as individual elements.

The following example defines either Login or OEMPrivilege1 privileges that are required to perform a GET

request.

DSP0266 Redfish Specification

Version 1.14.0 Published 167

{
"GET": [{

"Privilege": ["Login"]
}, {

"Privilege": ["OEMPrivilege1"]
}]

}

For logical AND combinations, the privilege label appears in the Privilege property array in the operation element.

The following example defines both ConfigureComponents and OEMSysAdminPriv that are required to perform a

PATCH request.

{
"PATCH": [{

"Privilege": ["ConfigureComponents", "OEMSysAdminPriv"]
}]

}

13.4.4 Delegated authorization with OAuth 2.0

Services may support the RFC6749-defined OAuth 2.0 authorization framework.

13.4.4.1 OAuth 2.0 overview

The OAuth 2.0 authorization framework allows a client to obtain access to a resource server from a resource owner

and an authorization server.

Clients request access from a resource owner and is given an authorization grant. The authorization grant is then

provided to the authorization server and an access token is provided to the client. The client provides the access

token to the resource server in order to access a protected resource.

A Redfish service is considered to be a resource server in the OAuth 2.0 authorization framework.

13.4.4.2 OAuth 2.0 data model requirements

Services that support OAuth 2.0:

• Shall support the OAuth2 property in the AccountService resource.

• May support additional OAuth 2.0 servers with ExternalAccountProvider resources.

Redfish Specification DSP0266

168 Published Version 1.14.0

13.4.4.3 OAuth 2.0 access tokens

Access tokens are the credentials the client provides to a service to access a protected resource. Clients provide the

access token to the service in the Authorization request header as a bearer token.

Services that support OAuth 2.0 shall support receiving an RFC7519-defined JSON Web Token (JWT) in the

Authorization request header.

JWTs are a compressed JSON structure that contain a JOSE Header, a set of claims that describe the type of

access that is granted to a client, and a signature. Each component of a JWT is Base64URL-encoded and

concatenated with a . to form the token string for the Authorization header.

Table 43 describes the JWT JOSE Header parameters and their requirements for services and clients. Any other

parameters are outside the scope of this specification.

Services shall process the parameters in Table 43 if the Service requirement column contains Yes. Services should

process other parameters.

The JWT provided by the client shall contain the parameters in Table 43 if the JWT requirement column contains

Yes. The JWT provided by the client may omit other parameters.

Table 43 — OAuth 2.0 JWT JOSE Header parameters

Parameter Service requirement JWT requirement Description

typ Yes No

Type of token. The string is case

insensitive. If not present,

services shall assume the value

is JWT .

alg Yes Yes

Algorithm for the signature of the

token. Services shall not accept

the value none .

Table 44 describes the claims and their requirements for services and clients. Any other claims are outside the scope

of this specification.

Services shall process the claims in Table 44 if the Service requirement column contains Yes. Services should

process other claims.

The JWT provided by the client shall contain the claims in Table 44 if the JWT requirement column contains Yes.

The JWT provided by the client may omit other claims.

DSP0266 Redfish Specification

Version 1.14.0 Published 169

Table 44 — OAuth 2.0 JWT claims

Claim Service requirement JWT requirement Description

iss Yes Yes

Issuer of the token. Identifies the

authorization server that signed

the token.

sub Yes Yes
Subject of the token. Identifies

the client issued the token.

aud Yes Yes

Audience of the token. Identifies

the resource server intended to

accept the token.

exp Yes No Expiration time of the token.

nbf Yes No "Not before" time of the token.

iat Yes No Issued time of the token.

jti Yes No Unique identifier of the token.

scope Yes Yes

Type of access the token grants.

See the Redfish OAuth2.0 scope

usage clause.

Example JOSE Header:

{
"typ": "JWT",
"alg": "RS256"

}

Example JWT claims:

{
"iss": "https://contoso.org/services/oauth2",
"sub": "Joe Smith",
"aud": "92384634-2938-2342-8820-489239905423",
"exp": 1735707600,
"scope": "Redfish.Role.Operator",
"jti": "97d52311-5f55-4482-b947-8a70c326fdfd"

}

Example token encoded in the Authorization request header:

Redfish Specification DSP0266

170 Published Version 1.14.0

Authorization: Bearer mF_9.B5f-4.1JqM

Note: The previous example does not reflect a real JWT and is provided to show encoding in the

Authorization request header.

13.4.4.4 Redfish OAuth2.0 scope usage

The value of the scope claim is expressed as a list of space-delimited, case-sensitive strings. Each value in the list

describes a type of access that was granted to the client.

This specification defines two formats for values in the scope claim: Redfish roles and Redfish privileges. Other

formats are outside the scope of this specification.

Redfish roles within the scope claim shall be in the form Redfish.Role.<RoleId> where <RoleId> is the identifier

of the Redfish role granted to the client.

Redfish privileges within the scope claim shall be in the form Redfish.Privilege.<PrivilegeId> where

<PrivilegeId> is the standard privilege or OEM privilege granted to the client.

Services shall ignore unsupported values in the scope claim. If the token provided by the client is valid, the service

shall apply roles and privileges in the scope claim to the operation.

13.5 Account service

13.5.1 Account service overview

• Implementations should store user passwords with one-way encryption techniques.

• Implementations may support exporting user accounts with passwords, but shall do so using encryption methods

to protect them.

• User accounts shall support ETags and atomic operations. Implementations may reject requests that do not

include an ETag.

• When authentication fails, extended error messages shall not provide privileged information.

13.5.2 Password management

A Redfish service provides local user accounts through a collection of ManagerAccount resources located under the

account service. The ManagerAccount resources enable users to manage their own account information, and for

administrators to create, delete, and manage other user accounts.

When account properties are changed, the service may close open sessions for this account and require re-

authentication.

DSP0266 Redfish Specification

Version 1.14.0 Published 171

13.5.3 Password change required handling

The service may require that passwords assigned by the manufacturer be changed by the end user prior to

accessing the service. In addition, administrators may require users to change their account's password upon first

access.

The ManagerAccount resource contains a PasswordChangeRequired boolean property to enable this functionality.

Resources that have the property set to true shall require the user to change the write-only Password property in

that resource before access is granted. Manufacturers including user credentials for the service may use this method

to force a change to those credentials before access is granted.

When a client accesses the service by using credentials from a ManagerAccount resource that has a

PasswordChangeRequired value of true , the service shall allow:

• A session login and include a @Message.ExtendedInfo object in the response containing the

PasswordChangeRequired message from the Base Message Registry. This indicates to the client that their

session is restricted to performing only the password change operation before access is granted.

• A GET operation on the ManagerAccount resource associated with the account.

• A PATCH operation on the ManagerAccount resource associated with the account to update the Password

property. If the value of Password is changed, the service shall also set the PasswordChangeRequired property

to false .

For all other operations, the service shall respond with the HTTP 403 Forbidden status code and include a

@Message.ExtendedInfo object that contains the PasswordChangeRequired message from the Base Message

Registry.

13.6 Asynchronous tasks

Irrespective of which user or privileged context starts a task, the information in the task object shall enforce the

privileges required to access that object.

13.7 Event subscriptions

Before pushing event data object to the destination, the service may verify the destination for identity purposes.

Redfish Specification DSP0266

172 Published Version 1.14.0

14 Redfish Host Interface

The Redfish Host Interface Specification defines how software that runs on a host computer system can interface

with a Redfish service that manages the host. For details, see DSP0270.

DSP0266 Redfish Specification

Version 1.14.0 Published 173

15 Redfish composability

A service may implement the CompositionService resource off of ServiceRoot to bind resources. One example is

disaggregated hardware, which allows for independent components, such as processors, memory, I/O controllers,

and drives, to be bound to create logical constructs that operate together. This enables a client to dynamically assign

resources for an application.

A service that supports composability shall implement resource blocks, defined by the ResourceBlock schema, and

resource zones, defined in the Zone schema, for the composition service. Resource blocks provide an inventory of

components available to the client for building compositions. Resource zones describe the binding restrictions of the

resource blocks that the service manages.

The resource zones within the composition service shall include the collection capabilities annotation in responses.

The collection capabilities annotation allows a client to discover which resource collections in the service support

compositions, the different composition request types allowed, how the POST request for the resource collection is

formatted, and which properties are required.

A service that supports composablity and client multi-tenancy shall:

• Implement the FreePool and ActivePool properties in the CompositionService resource.

• Implement the CompositionReservations property in the CompositionService resource.

• Filter GET requests for the ResourceBlocks , FreePool , ActivePool , ResourceZones , and

CompositionReservations resource collections where the value of the Client property in the

ResourceBlock resource or CompositionReservation resource matches the client identity.

• Ensure the resources in composition requests are assigned to the client specified by the Client property in the

ResourceBlock resource or CompositionReservation resource.

• Not filter any HTTP operations within the composition service for clients that contain the privilege

ConfigureCompositionInfrastructure unless specified by query parameters.

• Move resource blocks between the FreePool and ActivePool resource collections based on the outcome of

composition requests.

◦ A resource block is moved to the FreePool resource collection when it is not contributing to any composed

resources.

◦ A resource block is moved to the ActivePool resource collection when it is contributing to one or more

composed resources.

Redfish Specification DSP0266

174 Published Version 1.14.0

15.1 Composition requests

15.1.1 Composition requests overview

A service that implements the composition service, as defined by the CompositionService schema, shall support

one or more of the following types of composition requests:

• Specific composition

• Constrained composition

• Expandable resources

A service that supports the removal of a composed resource shall support the DELETE method on the composed

resource.

A service may implement the Compose action in the CompositionService resource for the above composition

requests.

15.1.2 Specific composition

A specific composition is when a client identifies an exact set of resources in which to build a logical entity.

A service that supports specific compositions shall support a POST request that contains an array of hyperlinks to

resource blocks. The schema for the resource being composed defines where the resource blocks are specified in

the request.

The following example shows a ComputerSystem being composed with a specific composition request:

POST /redfish/v1/Systems HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

{
"Name": "Sample Composed System",
"Links": {

"ResourceBlocks": [{
"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/ComputeBlock0"

}, {
"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock2"

}, {
"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/NetBlock4"

}]
}

DSP0266 Redfish Specification

Version 1.14.0 Published 175

}

15.1.3 Constrained composition

A constrained composition is when a client has identified a set of criteria, or constraints, in which to build a logical

entity. This includes criteria such as quantities of components, or characteristics of components. A service that

supports constrained compositions shall support a POST request that contains the set of characteristics to apply to

the composed resource. The specific format of the request is defined by the schema for the resource being

composed. This type of request may include expanded elements of resources subordinate to the composed

resource.

The following constrained composition request composes a ComputerSystem :

POST /redfish/v1/Systems HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

{
"Name": "Sample Composed System",
"PowerState": "On",
"BiosVersion": "P79 v1.00 (09/20/2013)",
"Processors": {

"Members": [{
"@Redfish.RequestedCount": 4,
"@Redfish.AllowOverprovisioning": true,
"ProcessorType": "CPU",
"ProcessorArchitecture": "x86",
"InstructionSet": "x86-64",
"MaxSpeedMHz": 3700,
"TotalCores": 8,
"TotalThreads": 16

}]
},
"Memory": {

"Members": [{
"@Redfish.RequestedCount": 4,
"CapacityMiB": 8192,
"MemoryType": "DRAM",
"MemoryDeviceType": "DDR4"

}]
},
"SimpleStorage": {

"Members": [{
"@Redfish.RequestedCount": 6,
"Devices": [{

Redfish Specification DSP0266

176 Published Version 1.14.0

"CapacityBytes": 322122547200
}]

}]
},
"EthernetInterfaces": {

"Members": [{
"@Redfish.RequestedCount": 1,
"SpeedMbps": 1000,
"FullDuplex": true,
"NameServers": ["names.redfishspecification.org"],
"IPv4Addresses": [{

"SubnetMask": "255.255.252.0",
"AddressOrigin": "Dynamic",
"Gateway": "192.168.0.1"

}]
}]

}
}

15.1.4 Expandable resources

An expandable resource is when a service has a baseline composition that cannot be removed. Instead of a client

making requests to create a composed resource, a client can only add or remove resources from the composed

resource. A service that supports expandable resources shall support one or more of the update methods that the

Updating a composed resource clause describes.

15.2 Updating a composed resource

A service that supports updating a composed resource shall provide one or more of the following methods to update

composed resources:

• The PUT or PATCH methods on the composed resource with a modified list of resource blocks.

• Actions on the composed resource for adding and removing resource blocks.

◦ If the actions for adding and removing resource blocks are present in the resource, clients should use this

method before attempting PUT or PATCH .

DSP0266 Redfish Specification

Version 1.14.0 Published 177

16 Aggregation

Aggregation has been a Redfish concept since its inception. Redfish uses collection for services that can represent

more than one system. As the scale of Redfish implementations increase, clients want to operate on Redfish

resources in bulk.

Aggregation is the representation of Redfish resources from a variety of sources so that they can be managed, in

whole or in part, by a Redfish client. Membership can be heterogeneous and arbitrary, but it is expected that most

aggregate members are the same resource type, such as an aggregate of ComputerSystem resource, which is

represented by an Aggregate resource where members of its Elements array are exclusively of type

ComputerSystem . The Redfish service proxies on behalf of the aggregated components to provide common

operations. The Redfish service is representing resources on behalf of the components and incoming operations

must be tracked by the Redfish service before being accomplished by communicating with the individual resources.

Thus, aggregation also allows a Redfish client to act on resources as a group using aggregates.

16.1 Classes of aggregators

16.1.1 Implicit and complex aggregators

There are at least two classes of Redfish aggregators:

• Implicit aggregators. An example of an implicit aggregator is an enclosure manager, such as a manager of

blades in an enclosure. This implementation has ComputerSystem resources representing blades in the

ComputerSystemCollection resource, and one or more Manager resources in the ManagerCollection

resource. It also would likely have a Chassis resource for each blade and a Chassis resource for the

enclosure, which would use the Contains property in Links to express the containment relationship to the

individual blades. This class of aggregator has tight coupling with system design, and proxies requests to and

from the blades to perform management functions.

• Complex aggregators. An example of a complex aggregator is a rack-level manager, fabric manager, or a

manager of similar scale, especially if it represents resources that it gathers through the proxy of information

from other managers, like BMCs. The sources that this manager aggregates are more complex in nature and

potentially varying. This manager probably has an interface to the resources and proxies the Redfish service on

behalf of each set of resources. At this scale, a Redfish client would prefer to provide common functions, such

as resetting a set of systems, to the Redfish service as a whole rather than invoking actions individually to

achieve scalability requirements. This class of service also may need assistance in adding members to the

service, such as providing address and account information for the aggregator to contact the components and

initiate the proxy of Redfish operations.

Redfish Specification DSP0266

178 Published Version 1.14.0

16.1.2 Use cases

Several use cases make explicit aggregator representation necessary. What they have in common is the need for

common functions for scalability. There are several classes of these common functions.

One use case is service-type functions. An example is a firmware update on a large number of systems. Rather than

invoke actions on individual resources, it is more efficient for a client to specify to which resources to apply the

image. In this case, a service already exists in the model so an aggregation service is not needed. Instead the

existing service must be augmented to enable the application of an image to a list of resources.

Another use case is common actions. Examples are the Reset or SetDefaultBootOrder actions. These actions

are defined in the ComputerSystem schema, but the Redfish URI structure requires that the action occur on each

ComputerSystem resource. Thus, an individual operation applies to each resource. It is more efficient for a client to

send one action with the list of the resources to which to apply the action. For example, to reset one thousand

systems, sending one thousand individual reset operations requires significant overhead as compared to sending a

single operation with a list of one thousand systems to reset.

A final use case is changing an attribute on multiple members of a collection. An example is changing the boot order

on a large number of systems. This use case requires one operation per system. However, assuming the resources

are in the same collection, the deep PATCH operation meets the requirements of this use case.

16.2 Aggregation service

16.2.1 Aggregation service overview

The AggregationService resource represents the Redfish aggregation service, which provides aggregation

functions.

The aggregation service contains the group actions that can apply to groups of resources. The

AggregationService schema defines the common actions that a client can take on groups of resources. These

actions take an array of resource URIs as one of the parameters to which the action applies. If all members of the

resource array do not support the method, a 4xx status code shall be returned and the body shall contain an error

response. If at least one member of the resource array successfully completed the action but others did not, the

status code should be 200 OK with @Message.ExtendedInfo objects for the failed members.

The aggregation service also contains Aggregate , AggregationSource , and ConnectionMethod resources.

16.2.2 Aggregator requirements

By implementing the AggregationService resource and including an AggregationSourceCollection resource, a

complex aggregator shall meet the following requirements:

DSP0266 Redfish Specification

Version 1.14.0 Published 179

• Proxy to the aggregated resources on behalf of the service.

• Provide error and state propagation, such as health roll-up, when needed to provide such data to the parent

resource.

• Combine resource collections from the aggregated resources.

◦ For example, ComputerSystem resources that were gathered through proxy shall be in one

ComputerSystemCollection resource.

◦ Services shall complete a URI fix-up for all aggregated resources because every system cannot be at

/redfish/v1/Systems/1 .

◦ It is advisable for Redfish implementations to use unique values for the Id properties. For example, base

the Id property of a ComputerSystem resource on something unique like a UUID or serial number, or the

manufacturer MAC address for network adapters, or WWN for Fibre Channel controllers.

• Unify other services.

◦ The aggregation implementation hosts only one event service. The implementation shall combine all events

into one stream. The implementation also hosts only one sessions service, telemetry service, update

service, and other services. Thus the aggregator represents unification of Redfish services with which it

communicates and proxies on the client's behalf to the providers of those services and information.

16.2.3 Aggregates

The Aggregate resource is the grouping mechanism that clients use to indicate to the service that this group of

resources can be treated the same for certain functions, such as the actions. Each aggregate contains the list of

individual resources that are to be treated as a single unit for operations. For example, if a client wishes to express

that a subset of the ComputerSystemCollection resource be treated as a single unit for certain operations like

reset, reset boot order, or firmware update, it can express the aggregate as the target URI for the operation.

The Aggregate schema defines the common actions that a client can make on an aggregate. The Aggregate

resource contains an Elements array that specifies the members of the aggregate. Actions that are supported on an

aggregate but not supported on all Elements , such as a Reset action that is not supported on an individual

member of the Elements array, are not silently skipped. If all members of the Elements array do not support the

method, a 4xx status code shall be returned and the body shall contain an error response. If at least one member of

the Elements array successfully completed the action, but others did not, the status code should be 200 OK with

@Message.ExtendedInfo objects for the failed members.

16.2.4 Aggregation sources and connection methods

The aggregation service model also includes a definition for the information used to access the resources being

represented by the aggregator. Two collections of resources are used to represent this. These are the

AggregationSource and ConnectionMethod resources.

The AggregationSource resource represents the source of information for the resources being reflected by the

aggregator. It typically represents a lower layer service provided by another manager. It contains information needed

to access that source, such as the address and account information. It also has a reference to the

ConnectionMethod resource used to access it.

Redfish Specification DSP0266

180 Published Version 1.14.0

The ConnectionMethod resource represents the protocol and other semantics required to communicate with the

resources being aggregated. Examples of connection methods are Redfish, IPMI, and proprietary access methods.

For methods such as IPMI, it's also possible to specify the variations and nuances from multiple vendors.

DSP0266 Redfish Specification

Version 1.14.0 Published 181

17 ANNEX A (informative) Change log

Version Date Description

1.14.0 2021-08-04

Extended Query parameter overview

clause to define how OEM query parameters

are constructed.

Added Delegated authorization with OAuth

2.0 clause to define how clients provide

OAuth 2.0 tokens to a service as a method of

authorization.

1.13.1 2021-08-04

Various clarifications to the Extending

standard resources clause to better

describe naming rules for OEM resources.

Added recommended URI for local schema

files to the Redfish-defined URIs and

relative reference rules clause.

Clarified the OData $metadata clause that

any absolute or relative URI is allowed for

referencing schema files.

Adding missing statement to the URI naming

rules clause that Members cannot be used

as the value of a URI segment for resource

collections.

Added missing exceptions to the PATCH

(update) clause for when @odata.id is to

not be ignored by the service.

Clarified the ETags clause that both strong

and weak ETags are allowed in If-Match

and If-None-Match request headers.

Clarified the Deep operations clause to

specify that services ignore resources in the

payload if no modifications are requested.

Added the Enumerations clause to clarify

the design patterns for creating

enumerations.

Clarified the Id clause that HTTP unsafe

characters are not permitted in the value of

the Id property due to its usage in URI

construction.

Redfish Specification DSP0266

182 Published Version 1.14.0

Version Date Description

Clarified the Non-resource reference

properties that these properties are strings

containing URIs.

1.13.0 2021-04-08

Added client multi-tenancy behavior to the

Redfish composability clause. This adds

free pool, active pool, and composition

reservation constructs to Redfish

composability.

Added Compose action as a method of

performing composition requests to the

Redfish composability clause.

1.12.1 2021-04-08
International Organization for Standardization

(ISO) updates:

Added paragraph numbering.

Added Foreword to the table of contents as

an unnumbered heading, and placed

Acknowledgments inside Foreword.

Made Scope a level-1 clause.

Normative references: Removed unused

normative references and moved some

references into Bibliography. The

Bibliography lists, for information, those

documents which are cited informatively in

the document, as well as other information

resources.

Changed Abstract to Introduction.

Corrected level-1 clauses to remove hanging

paragraphs and to correct the occurrence of

the single Use cases and Aggregator

requirements sub-clauses.

DSP0266 Redfish Specification

Version 1.14.0 Published 183

Version Date Description

Terms, definitions, symbols, and

abbreviated terms:

• Combined Symbols and abbreviated

terms clause with Terms and

definitions clause into Terms,

definitions, symbols, and abbreviated

terms clause.

• Formatted the clause correctly.

• Added the Hardware terms, Web

development terms, and Redfish

terms sub-clauses to this clause.

• Removed may, shall, and should from

definitions.

• Removed these terms: managed

system, Redfish event receiver, and

Redfish provider.

• Corrected definitions so none begin with

an article.

Changed may to can or might where

appropriate.

Changed one must to shall.

Added numbered captions to tables and

changed occurrences of the following table to

use precise references to the table numbers.

Fixed broken cross-references.

Corrected URIs in the deep PATCH example.

Fixed several query parameter examples

where string values were not properly

wrapped with single quotes.

Corrected Accept-Encoding usage to allow

for encoded responses if the client does not

provide the header to align with RFC7231.

Clarified usage of DELETE for the

@Redfish.OperationApplyTimeSupport

term.

Removed duplicative clauses for HTTP 405

Method Not Allowed usage in PATCH

(update) in favor of more general clauses.

Redfish Specification DSP0266

184 Published Version 1.14.0

Version Date Description

Replaced exception table in PATCH

(update) in favor of text.

Moved error cases from response table in

POST (action) to be with other text that

describes error cases.

Added linkage in the description for HTTP

201 Created to reference response bodies

for actions.

Added informative text regarding the usage

of If-Match and If-Match-None headers

in GET , PATCH , and PUT clauses.

Clarified the behavior of $select when an

object property is selected.

Added introductory text to guide readers to

other Redfish documents.

Clarified the ordering of processing query

parameters.

Clarified that update restrictions for a

resource can be modified to support writable

OEM properties.

Clarified the Settings resource clause to

show behavior of properties in the active

resource and settings resource based on the

service's capabilities.

Corrected behavior for usage of null based

on the configuration of a resource and other

special situations.

Clarified OEM naming rules for all OEM

definitions to ensure names don't collide.

Removed the term "namespace" from all

non-CSDL related clauses and replaced

them with references to a new resource type

term.

1.12.0 2020-12-01
Added introductory text to the Authorization

clause.

Clarified usage of RoleId and how there are

standard roles, custom OEM roles, and

client-defined custom roles.

DSP0266 Redfish Specification

Version 1.14.0 Published 185

Version Date Description

Added Restricted roles and restricted

privileges to describe behavior for when

roles and privileges are marked as restricted.

1.11.2 2020-12-01

Clarified that the Accept-Encoding header

is used to request compression of response

bodies.

Corrected the PATCH (update), PUT

(replace), and DELETE (delete) clauses to

leverage all normative statements for

successful operations found in the

Modification success responses clause.

Replaced RFC5988 reference with RFC8288.

Updated IETF links to use the "IETF Tools"

site.

Clarified that insert capabilities is just for

resource creation.

Fixed ETag examples to be

RFC7234-conformant.

Clarified that OEM resources can have

subordinate resources.

Replaced RFC4627 reference with RFC8259.

Replaced conflicting statements found in

"HTTP redirect authentication requirements"

with general clause for enforcing

authentication and authorization at the target

resource.

Clarified behavior of @odata.count when a

collection is filtered.

Created standalone "MessageId format"

clause.

Removed duplicative text found in the event

format table and referenced the message

object clauses as needed.

Corrected the response body specified for a

PATCH operation containing read-only

properties.

Redfish Specification DSP0266

186 Published Version 1.14.0

Version Date Description

Added informative text in the intro to the Data

model clause describing the methods for

OEM extensions.

Clarified that sensitive data in URIs can be

hidden from unauthorized users by returning

HTTP 404 Not Found .

Added embedded links to the Location

header entry in the response header table.

Corrected $select example in the The

$select query parameter clause.

Corrected several embedded links to direct to

the correct clause.

1.11.1 2020-08-04
Added missing clause requiring sensitive

data to be returned as null .

Clarified that Resolution , Severity , and

MessageSeverity in responses can be

service-defined and not come from a

message registry.

Relaxed schema rules to require description,

long description, URI, and capabilities

annotations only for schemas published or

republished by the DMTF.

Added clauses to Schema modification

rules to allow for properties, actions,

parameters, and URIs to be removed,

descriptions to be modified, and pattern and

length annotations to be added if not

specified.

Relaxed rule for the OData metadata

document to not require, but only recommend

that all referenced namespaces are included

in the document.

Added clause to clarify the usage of empty

strings.

Clarified behavior of $skip when the value

is greater than or equal to the number of

members in a resource collection.

Corrected the minimum value for $top to

align with OData.

DSP0266 Redfish Specification

Version 1.14.0 Published 187

Version Date Description

Clarified behavior of PATCH for partial

success scenarios.

Various clarifications and style fixes to the

Aggregation clause.

Clarified that HEAD requests shall be

rejected when a query parameter is provided.

Removed erroneous requirement for ETags

to be strong.

1.11.0 2020-04-30 Added Aggregation clause.

Clarified that services are allowed use HTTP

501 Not Implemented for unsupported

HTTP methods.

Clarified the normative semantics around the

term "deprecated".

Clarified clauses describing the usage of

null for properties versus not reporting a

property.

1.10.0 2020-03-27

Restructured the Security details clause for

ease of reading. Other than the changes

listed below, no other changes were

intended. Any clarifications that inadvertently

altered the normative behavior are

considered errata, and will be corrected in

future revisions to the specification.

Deprecated TLS v1.1, and set the minimum

TLS requirement to be TLS v1.2 with

RFC7525 recommendations.

Deprecated existing cipher suites clause in

favor of new clause to leverage IANA

recommendations.

Added requirement for supporting the

/redfish URI.

Added support for deep operations.

1.9.1 2020-03-27

Deprecated full ISO8601 duration format in

favor of a simplified version that does not

contain years, months, and weeks.

Redfish Specification DSP0266

188 Published Version 1.14.0

Version Date Description

Added missing normative language for how

actions with response bodies are defined in

schema.

Added HTTP 201 Created as valid

responses for actions.

Clarified the ~ operator for the $expand

query parameter to expand hyperlinks found

in all Links properties.

Clarified the * and . operators for the

$expand query parameter to expand

hyperlinks found in payload annotations,

such as @Redfish.Settings .

Clarified usage of action parameters that

point to resources; the expectation is a

reference object pointing to the resource in

question is passed by the client.

Clarified that DELETE on a resource likely

deletes subordinate resources.

Clarified best practices for naming rules, in

particular with regards to acronyms.

Clarified behavior for when individual

members of a resource collection cannot be

returned as part of a $expand request.

Clarified usage of @Message.ExtendedInfo

in error responses and provided guidance for

clients for handling error responses.

1.9.0 2019-12-06
Made change to no longer require the

Server response header.

Added clause to Schema modification rules

to allow for the addition of OEM URIs to

standard resources.

Loosened requirements on @odata.type

within Oem to not require it in arrays where

the type is used repeatedly.

DSP0266 Redfish Specification

Version 1.14.0 Published 189

Version Date Description

1.8.1 2019-12-06

Made many changes for style consistency,

grammar, and general clarity. Except for the

following additions, no normative changes

were made. Any clarifications that

inadvertently altered the normative behavior

are considered errata, and will be corrected

in future revisions to the Specification.

Clarified SSE with regards to requiring a

blank line after each event.

Clarified order of precedence for resolving

multiple operation overrides within the

Privilege Registry.

Clarified cases for property overrides in the

Privilege Registry where multiple objects in

the same resource contain the same property

name.

Updated references for HTTP Basic

authentication to use RFC7617 instead of

RFC7235.

Added text/event-stream , application/

yaml , and application/vnd.oai.openapi

usage to the Accept and Content-Type

header table entries.

Added clause that provides guidance on

service behavior when null is a property

value in POST (create) operations.

Loosened requirements on SSE id based

on client usage.

Added documentation for settings, settings

apply time, operation apply time, operation

apply time support, maintenance window,

collection capabilities, requested count, allow

over-provisioning, zone affinity, supported

certificates, and deprecated terms to the

Payload annotations clause.

Added clauses that document responses for

actions with a response body defined in

schema.

Clarified the allowable values payload

annotation to show it can be used for both

properties and action parameters.

Redfish Specification DSP0266

190 Published Version 1.14.0

Version Date Description

1.8.0 2019-08-08

Added clause for using /redfish/v1/

openapi.yaml as the well-known URI for the

OpenAPI document.

Added clause that specifies non-resource

reference properties with Uri in the name

are accessed using Redfish protocol

semantics.

Added SubordinateResources $filter

parameter for SSE.

Added Update service clause that describes

requirements for the SimpleUpdate action

and the MultipartHttpPushUri property.

1.7.1 2019-08-08

Added statements about the owning entity

annotation term and its usage in schema

modifications.

Clarified SSE id from Id in an event

payload and EventId within an event

record.

Fixed recommended sequencing of the SSE

id to be related to EventId within an event

record.

Clarified that services are allowed to close

sessions for an account when its password

has changed.

Corrected the Password management

clause to describe how a user can GET their

respective account resources when a

password change is required.

Clarified that registries are not required to

return @odata.id .

Clarified that services should use HTTP 400

Bad Request for invalid query requests.

Clarified that services should use HTTP 400

Bad Request when the only query is being

combined with other query parameters.

Clarified that services should use HTTP 400

Bad Request when query parameters are

used on non-GET operations.

DSP0266 Redfish Specification

Version 1.14.0 Published 191

Version Date Description

Added clause about how to construct

enumeration values.

Clarified references to specific messages to

also reference their Message Registry.

Added language about the construction of

action names in payloads.

Added informative text for how OEM actions

can be defined.

Added guidance for using HTTPS whenever

sensitive data is being transmitted.

Added clause restricting the maximum size of

an event payload to be 1MiB.

Clarified that auto expanded resource

collections can use paging.

Clarified error response format for SSE.

Clarified that charset=utf-8 is not required

within the Content-Type header for SSE.

Added clause about how URI patterns are

constructed.

Added Excerpt term.

1.7.0 2019-05-16

Made many changes for style consistency,

grammar, and general clarity. Except for the

following additions, no normative changes

were made. Any clarifications that

inadvertently altered the normative behavior

are considered errata, and will be corrected

in future revisions to the Specification.

Added normative statements about how to

handle array properties and PATCH

operations on arrays.

Separated data model and schema language

clauses.

Added clauses that describe how JSON

Schema and OpenAPI files are formatted.

Added clause that describes the schema

versioning methodology.

Redfish Specification DSP0266

192 Published Version 1.14.0

Version Date Description

Added clause about how URI patterns are

constructed based on the resource tree and

property hierarchy.

Added dictionary file naming rules and

repository locations.

Enhanced localization definitions and defined

repository locations.

Added statement about SSE to the Eventing

mechanism clause.

Added Constrained composition and

Expandable resources clauses to Redfish

Composability.

Added clause about requiring event

subscriptions to be persistent across service

restarts.

Added clause about persistence of tasks

generated as a result of using

@Redfish.OperationApplyTime across

service restarts.

Added clause about using

@Redfish.OperationApplyTime and

@Redfish.MaintenanceWindow within task

responses.

Removed @odata.context property from

example payloads.

Added Password management clause to

describe functional behavior for restricting

access when an account requires a

password change.

Added clause around the usage of the HTTP

403 Forbidden status code when an

account requires a password change.

1.6.1 2018-12-13
Added clause about percent encoding being

allowed for query parameters.

Changed $expand example to use

SoftwareInventory instead of LogEntry .

Added clause about the use of a separator

for multiple query parameters.

DSP0266 Redfish Specification

Version 1.14.0 Published 193

Version Date Description

Fixed $filter examples to use / instead

of . for property paths.

Clarified the usage of messages in a

successful action response; provided an

example.

Added clarification about services supporting

a subset of HTTP operations on resources

specified in schema.

Added clarification about services

implementing writable properties as read

only.

Added clarification about session termination

not affecting connections opened by the

session.

Added Redfish Provider term definition.

Updated JSON Schema references to point

to Draft 7 of the JSON Schema Specification.

Added clarifications about scenarios for when

a request to add an event subscription

contains conflicting information and how

services respond.

Removed language about ignoring the

Links property in PATCH requests.

Clarified usage of ETags to show that a client

is not supposed to PATCH @odata.etag

when attempting to use ETag protection for a

resource.

Clarified usage of the only query parameter

to show it's not to be combined with

$expand and not to be used with singular

resources.

Clarified the usage of the HTTP status codes

with task monitors.

Made various spelling and grammar fixes.

1.6.0 2018-08-23
Added methods of using $filter on the

SSE URI for the event service.

Redfish Specification DSP0266

194 Published Version 1.14.0

Version Date Description

Added support for the OpenAPI Specification

v3.0. This allows OpenAPI-conforming

software to access Redfish service

implementations.

Added strict definitions for the URI patterns

used for Redfish resources to support

OpenAPI. Each URI is now constructed using

a combination of fixed, defined path

segments and the values of Id properties

for resource collections. Also added

restrictions on usage of unsafe characters in

URIs. Implementations reporting support for

Redfish v1.6.0 conform to these URI

patterns.

Added support for creating and naming

Redfish schema files in the OpenAPI YAML-

based format.

Added URI construction rules for OEM

extensions.

Changed ETag usage to require strong ETag

format.

Added requirement for HTTP Allow header

as a response header for GET and HEAD

operations.

Added metric reports as a type of event that

can be produced by a Redfish service. Added

support for SSE streaming of metric reports

in support of new telemetry service.

Added registry, resource, origin, or

EventFormatType -based event subscription

methods as detailed in the Specification and

schema. Added an EventFormatType to

enable additional payload types for

subscription-based or streaming events.

Deprecated EventType -based event

subscription mechanism.

Added event message grouping capability.

Provided guidance for defining and using

OEM extensions for messages and Message

Registries.

DSP0266 Redfish Specification

Version 1.14.0 Published 195

Version Date Description

Added excerpt and only query

parameters.

Clarified requirements for resource collection

responses, which includes required

properties that were expected, but not listed

explicitly in the Specification.

Changed the requiredment for the

@odata.context annotation to be optional.

Removed requirement for clients to include

the OData-Version HTTP header in all

requests.

1.5.1 2018-08-10

Added clarifications to required properties in

structured properties derived from

ReferenceableMembers .

Reorganized Eventing clause to break out

the different subscription methods to

differentiate pub-sub from SSE.

Removed statements referencing OData

conformance levels.

Clarified terminology to explain usage of

absolute versus relative reference

throughout.

Clarified client-side HTTP Accept header

requirements.

Added evaluation order for supported query

parameters and clarified examples.

Clarified handling of annotations in response

payloads when used with $select queries.

Clarified service handling of annotations in

PATCH requests.

Clarified handling of various PATCH request

error conditions.

Clarified ability to create resource collection

members by POST operations to the

resource collection or the Members array

within the resource.

Corrected several examples to show required

properties in payload.

Redfish Specification DSP0266

196 Published Version 1.14.0

Version Date Description

Clarified usage of the Link header and

values of rel=describedBy .

Clarified that the HTTP status code table only

describes Redfish-specific behavior and that

unless specified, all other usage follows the

definitions within the appropriate RFCs.

Added entry for the HTTP 431 Request

Header Fields Too Large status code.

Added statement that the HTTP 503

Service Unavailable status code can be

used during reboot or reset of a service to

indicate that the service is temporarily

unavailable.

Clarified usage of the @odata.type

annotation within embedded objects.

Added statements about the required Name ,

Id , and MemberId properties, and the

common Description property, which have

always been shown as required in schema

files, but which the Specification did not

mention.

Added guidance for the value of time-date

properties when time is unknown.

Added the title property description in

actions.

Clarified usage of the @odata.nextLink

annotation at the end of resource collections.

Added additional guidance for naming

properties and enumeration values that

contain "OEM" or that include acronyms.

Corrected requirements for description and

long description annotations.

Corrected name of ConfigureComponents in

the Operation-to-privilege mapping clause.

Various typographical errors and grammatical

improvements.

1.5.0 2018-04-05

Added support for server-sent eventing for

streaming events to web-based GUIs or other

clients.

DSP0266 Redfish Specification

Version 1.14.0 Published 197

Version Date Description

Added @Redfish.OperationApplyTime

annotation to provide a mechanism for

specifying deterministic behavior for the

application of Create, Delete or Action

(POST) operations.

1.4.1 2018-04-05
Updated name of the DMTF Forum from

SPMF to Redfish Forum.

Consistently used the term, hyperlink.

Added example to clarify usage of $select

query parameter with $expand , and clarified

expected results when using AutoExpand .

Corrected order of precedence for $filter

parameter options.

Corrected terminology for OEM-defined

actions removing "custom" in favor of OEM,

and clarified that the action target property

is always required for an action, along with its

usage.

Corrected location header values for

responses to data modification requests that

create a task (Task resource vs. task

monitor). Clarified error handling of DELETE

operations on Task resources.

Removed references to obsolete and unused

Privilege annotation namespace.

Clarified usage of the

Base.1.0.GeneralError message in the

Base Message Registry.

Added durable URIs for registries and

profiles, and clarified intended usage for each

folder in the repository. Added file naming

conventions for registries and profiles, and

clarified file naming for schemas.

Added statement to clarify that additional

headers may be added to M-SEARCH

responses for SSDP to enable UPnP

compatibility.

Clarified assignment requirements for

predefined or custom roles when new

manager account instances are created,

using the RoleId property.

Redfish Specification DSP0266

198 Published Version 1.14.0

Version Date Description

1.4.0 2017-11-17

Added support for optional query parameters

($expand , $filter , and $select) on

requests to enable more efficient retrieval of

resources or properties from a Redfish

service.

Clarified HTTP status and payload responses

after successful processing of data

modification requests. This includes POST

operations to complete actions, and other

POST , PATCH , or PUT requests.

Added entries for the HTTP 428

Precondition Required and 507

Insufficient Storage status codes to

clarify the proper response to certain error

conditions. Added reference links to the

HTTP status code table throughout.

Updated the Abstract to reflect the current

state of the specification.

Added reference to RFC6585 and clarified

expected behavior when ETag support is

used in conjunction with PUT or PATCH

operations.

Added definition for Property term and

updated text to use term consistently.

Added Client requirement column and

information for HTTP headers on requests.

Clarified the usage and expected format of

the @odata.context property value.

Added clause to describe how to revise

structured properties and resolve their

definitions in schema.

Added more descriptive definition for the

settings resource. Added an example for the

SettingsObject . Added description and

example for using the

@Redfish.SettingsApplyTime annotation.

DSP0266 Redfish Specification

Version 1.14.0 Published 199

Version Date Description

Added Action example using the

ActionInfo resource in addition to the

simple @Redfish.AllowableValues

example. Updated example to show a proper

subset of the available enumerations to

reflect a real-world example.

Added statement explaining the updates

required to TaskState upon task

completion.

1.3.0 2017-08-11

Added support for a service to optionally

reject a PATCH or PUT operation if the If-

Match or If-Match-None HTTP header is

required by returning the HTTP 428

Precondition Required status code.

Added support for a service to describe when

the values in the settings object for a

resource are applied via the

@Redfish.SettingsApplyTime annotation.

1.2.1 2017-08-10
Clarified wording of the Oem object

definition.

Clarified wording of the Partial resource

results clause.

Clarified behavior of a service when receiving

a PATCH with an empty JSON object.

Added statement about other uses of the

HTTP 503 Service Unavailable status

code.

Clarified format of URI fragments to conform

to RFC6901.

Clarified use of absolute and relative URIs.

Clarified definition of the target property as

originating from OData.

Clarified distinction between hyperlinks and

the links property.

Corrected the JSON example of the privilege

map.

Clarified format of the @odata.context

property.

Redfish Specification DSP0266

200 Published Version 1.14.0

Version Date Description

Added clauses about the schema file naming

conventions.

Clarified behavior of a service when receiving

a PUT with missing properties.

Clarified valid values in the Accept header

to include wildcards per RFC7231.

Corrected ConfigureUser privilege to be

spelled ConfigureUsers .

Corrected the Session login clause to

include normative language.

1.2.0 2017-04-14
Added support for the Redfish composability

service.

Clarified service handling of the Accept-

Encoding header in a request.

Improved consistency and formatting of

example requests and responses throughout.

Corrected usage of the @odata.type

property in response examples.

Clarified usage of the required annotation.

Clarified usage of SubordinateOverrides in

the Privilege Registry.

1.1.0 2016-12-09

Added Redfish service operation-to-

privilege mapping clause. This functionality

enables a service to present a resource or

even property-level mapping of HTTP

operations to roles and privileges.

Added references to the Redfish Host

Interface Specification (DSP0270).

1.0.5 2016-12-09 Errata release. Various typographical errors.

Corrected the use of collection, resource

collection, and members throughout.

Added glossary entries for resource

collection and members.

DSP0266 Redfish Specification

Version 1.14.0 Published 201

Version Date Description

Corrected certificate requirements to

reference definitions and requirements in

RFC5280 and added a normative reference

to RFC5280.

Clarified usage of the HTTP POST and

PATCH operations.

Clarified usage of the HTTP status codes and

error responses.

1.0.4 2016-08-28 Errata release. Various typographical errors.

Added example of an HTTP Link Header

and clarified usage and content.

Added the Schema modification clause,

which describes the allowed usage of the

schema files.

Added recommendation to use TLS 1.2 or

later, and to follow the SNIA TLS

Specification. Added reference to the SNIA

TLS Specification. Added additional

recommended

TLS_RSA_WITH_AES_128_CBC_SHA cipher

suite.

Clarified that the Id property of a Role

resource matches the role name.

1.0.3 2016-06-17

Errata release. Fixed the missing numbering

in the table of contents and clauses.

Corrected URL references to external

specifications. Added missing normative

references. Corrected typographical error in

ETag example.

Clarified examples for

@Message.ExtendedInfo to show arrays of

messages.

Clarified that a POST to session service to

create a new session does not require

authorization headers.

1.0.2 2016-03-31 Errata release. Various typographical errors.

Corrected normative language for M-

SEARCH queries and responses.

Redfish Specification DSP0266

202 Published Version 1.14.0

Version Date Description

Corrected Cache-Control and USN format

in M-SEARCH responses.

Corrected schema namespace rules to

conform to OData namespace requirements

and updated examples throughout the

document to conform to this format.

Specifically, <namespace>.<n>.<n>.<n>

becomes <namespace>.v<n>_<n>_<n> . File

naming rules for JSON Schema and CSDL

(XML) schemas were also corrected to match

this format and to enable future major (v2)

versions to coexist.

Added clause that details the location of the

schema repository and lists the durable URLs

for the repository.

Added definition for the value of the Units

annotation, using the definitions from the

UCUM Specification. Updated examples

throughout to use this standardized form.

Modified the naming requirements for Oem

property naming to avoid future use of colon

: and period . in property names, which

can produce invalid or problematic variable

names when used in some programming

languages or environments. Both separators

have been replaced with underscore (_),

with colon (:) and period (.) usage now

deprecated (but valid).

Removed duplicative or out-of-scope

subclauses from the Security clause, which

made unintended requirements on Redfish

service implementations.

Added the requirement that property names

in resource responses match the casing

(capitalization) as specified in schema.

Updated normative references to current

HTTP RFCs and added clause references

throughout the document where applicable.

Clarified ETag header requirements.

Clarified that no authentication is required for

accessing the service root.

DSP0266 Redfish Specification

Version 1.14.0 Published 203

Version Date Description

Clarified description of retrieving resource

collections.

Clarified usage of charset=utf-8 in the

HTTP Accept and Content-Type headers.

Clarified usage of the Allow HTTP

response header and added a table entry for

the Retry-After header usage.

Clarified normative usage of the type

property and context property, explaining the

ability to use two URL forms, and corrected

the @odata.context URL examples

throughout.

Corrected inconsistent terminology

throughout the resource collection response

clause.

Corrected name of normative resource

Members property (Members , not value).

Clarified that error responses may include

information about multiple error conditions.

Corrected name of Measures.Unit

annotation term as used in examples.

Corrected outdated reference to Core OData

Specification in annotation term examples.

Added the Members property to the

Common Redfish resource properties

clause.

Clarified terminology and usage of the task

monitor and related operations in the

Asynchronous operations clause.

Clarified that implementation of the SSDP

protocol is optional.

Corrected typographical error in the SSDP

USN field's string definition (now ::dmtf-

org).

Added the OPTIONS method to the allowed

HTTP methods list.

Fixed nullablity in example.

Redfish Specification DSP0266

204 Published Version 1.14.0

Version Date Description

1.0.1 2015-09-17
Errata release. Various grammatical

corrections.

Clarified normative use of long description in

schema files.

Clarified usage of the rel-describedby

Link header.

Corrected text in example of "Select List" in

OData context property.

Clarified Accept-Encoding request header

handling.

Deleted duplicative and conflicting statement

on returning extended error resources.

Clarified relative URI resolution rules.

Clarified USN format.

1.0.0 2015-08-04 Initial release.

DSP0266 Redfish Specification

Version 1.14.0 Published 205

18 Bibliography

• R. Fielding, 2000, Architectural Styles and the Design of Network-based Software Architectures,

https://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm

• IETF RFC5288, J. Salowey et al, AES Galois Counter Mode (GCM) Cipher Suites for TLS, https://tools.ietf.org/

html/rfc5288

• IETF RFC5487, M. Badra et al, Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois

Counter Mode, https://tools.ietf.org/html/rfc5487

• IETF RFC5789, L. Dusseault et al, PATCH Method for HTTP, https://tools.ietf.org/html/rfc5789

• IETF RFC6906, E. Wilde, The 'profile' Link Relation Type, https://tools.ietf.org/html/rfc6906

• 28 October 1999, Simple Service Discovery Protocol/1.0 Operating without an Arbiter, https://tools.ietf.org/html/

draft-cai-ssdp-v1-03

• 10 March 2016, OData Version 4.0 Plus Errata 03: Core Vocabulary, https://docs.oasis-open.org/odata/odata/

v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml

• 24 February 2014, OData JSON Format Version 4.0, https://docs.oasis-open.org/odata/odata-json-format/v4.0/

os/odata-json-format-v4.0-os.html

• 24 February 2014, OData Version 4.0 Part 2: URL Conventions, https://docs.oasis-open.org/odata/odata/v4.0/

os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html

Redfish Specification DSP0266

206 Published Version 1.14.0

https://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc5487
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc6906
https://tools.ietf.org/html/draft-cai-ssdp-v1-03
https://tools.ietf.org/html/draft-cai-ssdp-v1-03
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml
https://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
https://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html

	Redfish Specification
	Foreword
	Acknowledgments
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions, symbols, and abbreviated terms
	3.1 Hardware terms
	3.1.1 baseboard management controller (BMC)
	3.1.2 IPMI
	3.1.3 KVM-IP
	3.1.4 NIC
	3.1.5 PCI
	3.1.6 PCIe

	3.2 Web development terms
	3.2.1 CORS
	3.2.2 CRUD
	3.2.3 CSRF
	3.2.4 event
	3.2.5 excerpt
	3.2.6 HTTP
	3.2.7 HTTPS
	3.2.8 hypermedia API
	3.2.9 IP
	3.2.10 JSON
	3.2.11 member
	3.2.12 message
	3.2.13 OData
	3.2.14 OData service document
	3.2.15 operation
	3.2.16 parent resource
	3.2.17 property
	3.2.18 request
	3.2.19 response
	3.2.20 subscription
	3.2.21 task
	3.2.22 task monitor
	3.2.23 TCP
	3.2.24 TLS
	3.2.25 XSS

	3.3 Redfish terms
	3.3.1 collection
	3.3.2 Redfish client
	3.3.3 Redfish protocol
	3.3.4 Redfish schema
	3.3.5 Redfish service
	3.3.6 resource
	3.3.7 resource collection
	3.3.8 resource tree
	3.3.9 resource type
	3.3.10 service root
	3.3.11 subordinate resource

	4 Typographical conventions
	5 Overview
	5.1 Goals
	5.2 Design tenets
	5.3 Limitations
	5.4 Additional design background and rationale
	5.4.1 REST-based interface
	5.4.2 Data-oriented
	5.4.3 Separation of protocol from data model
	5.4.4 Hypermedia API service root
	5.4.5 OpenAPI v3.0 support
	5.4.6 OData conventions

	5.5 Service elements
	5.5.1 Synchronous and asynchronous operation support
	5.5.2 Eventing mechanism
	5.5.3 Actions
	5.5.4 Service discovery
	5.5.5 Remote access support

	5.6 Security
	6 Protocol details
	6.1 Universal Resource Identifiers
	6.2 HTTP methods
	6.3 HTTP redirect
	6.4 Media types
	6.5 ETags
	6.6 Protocol version
	6.7 Redfish-defined URIs and relative reference rules
	7 Service requests
	7.1 Request headers
	7.2 GET (read requests)
	7.2.1 GET (read requests) overview
	7.2.2 Resource collection requests
	7.2.3 Service root request
	7.2.4 OData service and metadata document requests

	7.3 Query parameters
	7.3.1 Query parameter overview
	7.3.2 The $expand query parameter
	7.3.3 The $select query parameter
	7.3.4 The $filter query parameter

	7.4 HEAD
	7.5 Data modification requests
	7.5.1 Data modification requests overview
	7.5.2 Modification success responses
	7.5.3 Modification error responses

	7.6 PATCH (update)
	7.7 PATCH on array properties
	7.8 PUT (replace)
	7.9 POST (create)
	7.10 DELETE (delete)
	7.11 POST (action)
	7.12 Operation apply time
	7.13 Deep operations
	8 Service responses
	8.1 Response headers
	8.2 Link header
	8.3 Status codes
	8.4 OData metadata responses
	8.4.1 OData metadata responses overview
	8.4.2 OData $metadata
	8.4.2.1 Referencing other schemas
	8.4.2.2 Referencing OEM extensions

	8.4.3 OData service document

	8.5 Resource responses
	8.6 Error responses
	9 Data model
	9.1 Resources
	9.2 Resource types
	9.3 Resource collections
	9.4 OEM resources
	9.5 Common data types
	9.5.1 Primitive types
	9.5.2 Enumerations
	9.5.3 Empty string values
	9.5.4 GUID and UUID values
	9.5.5 Date-Time values
	9.5.6 Duration values
	9.5.7 Reference properties
	9.5.8 Non-resource reference properties
	9.5.9 Array properties
	9.5.10 Structured properties
	9.5.11 Message object
	9.5.11.1 Overview
	9.5.11.2 MessageId format

	9.6 Properties
	9.6.1 Properties overview
	9.6.2 Resource identifier (@odata.id) property
	9.6.3 Resource type (@odata.type) property
	9.6.4 Resource ETag (@odata.etag) property
	9.6.5 Resource context (@odata.context) property
	9.6.6 Id
	9.6.7 Name
	9.6.8 Description
	9.6.9 MemberId
	9.6.10 Count (Members@odata.count) property
	9.6.11 Members
	9.6.12 Next link (Members@odata.nextLink) property
	9.6.13 Links
	9.6.13.1 Reference to a related resource
	9.6.13.2 References to multiple related resources

	9.6.14 Actions property
	9.6.14.1 Action representation
	9.6.14.2 Action responses

	9.6.15 Oem
	9.6.16 Status

	9.7 Naming conventions
	9.7.1 Naming rules
	9.7.2 URI naming rules

	9.8 Extending standard resources
	9.8.1 Extending standard resources overview
	9.8.2 OEM property format and content
	9.8.3 OEM-specified object naming
	9.8.4 OEM resource types
	9.8.5 OEM registries
	9.8.6 OEM URIs
	9.8.7 OEM property examples
	9.8.8 OEM actions

	9.9 Payload annotations
	9.9.1 Payload annotations overview
	9.9.2 Allowable values
	9.9.3 Extended information
	9.9.3.1 Extended object information
	9.9.3.2 Extended property information

	9.9.4 Action info annotation
	9.9.5 Settings and settings apply time annotations
	9.9.6 Operation apply time and operation apply time support annotations
	9.9.7 Maintenance window annotation
	9.9.8 Collection capabilities annotation
	9.9.9 Requested count and allow over-provisioning annotations
	9.9.10 Zone affinity annotation
	9.9.11 Supported certificates annotation
	9.9.12 Deprecated annotation

	9.10 Settings resource
	9.11 Special resource situations
	9.11.1 Overview
	9.11.2 Absent resources

	9.12 Registries
	9.13 Schema annotations
	9.13.1 Schema annotations overview
	9.13.2 Description annotation
	9.13.3 Long description annotation
	9.13.4 Resource capabilities annotation
	9.13.5 Resource URI patterns annotation
	9.13.6 Additional properties annotation
	9.13.7 Permissions annotation
	9.13.8 Required annotation
	9.13.9 Required on create annotation
	9.13.10 Units of measure annotation
	9.13.11 Expanded resource annotation
	9.13.12 Owning entity annotation
	9.13.13 Deprecated annotation

	9.14 Versioning
	9.15 Localization
	10 File naming and publication
	10.1 Registry file naming
	10.2 Profile file naming
	10.3 Dictionary file naming
	10.4 Localized file naming
	10.5 DMTF Redfish file repository
	11 Schema definition languages
	11.1 OData Common Schema Definition Language
	11.1.1 OData Common Schema Definition Language overview
	11.1.2 File naming conventions for CSDL
	11.1.3 Core CSDL files
	11.1.4 CSDL format
	11.1.4.1 Referencing other CSDL files
	11.1.4.2 CSDL data services

	11.1.5 Elements of CSDL namespaces
	11.1.5.1 Qualified names
	11.1.5.2 Entity type and complex type elements
	11.1.5.3 Action element
	11.1.5.4 Action element for OEM actions
	11.1.5.5 Action with a response body
	11.1.5.6 Property element
	11.1.5.7 Navigation property element
	11.1.5.8 Enum type element
	11.1.5.9 Annotation element

	11.2 JSON Schema
	11.2.1 JSON Schema overview
	11.2.2 File naming conventions for JSON Schema
	11.2.3 Core JSON Schema files
	11.2.4 JSON Schema format
	11.2.5 JSON Schema definitions body
	11.2.5.1 Resource definitions in JSON Schema
	11.2.5.2 Enumerations in JSON Schema
	11.2.5.3 Actions in JSON Schema
	11.2.5.4 OEM actions in JSON Schema
	11.2.5.5 Action with a response body

	11.2.6 JSON Schema terms

	11.3 OpenAPI
	11.3.1 OpenAPI overview
	11.3.2 File naming conventions for OpenAPI schema
	11.3.3 Core OpenAPI schema files
	11.3.4 openapi.yaml
	11.3.5 OpenAPI file format
	11.3.6 OpenAPI components body
	11.3.6.1 Resource definitions in OpenAPI
	11.3.6.2 Enumerations in OpenAPI
	11.3.6.3 Actions in OpenAPI
	11.3.6.4 OEM actions in OpenAPI

	11.3.7 OpenAPI terms used by Redfish

	11.4 Schema modification rules
	12 Service details
	12.1 Eventing
	12.1.1 Eventing overview
	12.1.2 POST to subscription collection
	12.1.3 Open an SSE connection
	12.1.4 EventType-based eventing
	12.1.5 Subscribing to events
	12.1.6 Event formats
	12.1.7 OEM extensions

	12.2 Asynchronous operations
	12.3 Resource tree stability
	12.4 Discovery
	12.4.1 Discovery overview
	12.4.2 UPnP compatibility
	12.4.3 USN format
	12.4.4 M-SEARCH response
	12.4.5 Notify, alive, and shutdown messages

	12.5 Server-sent events
	12.5.1 General
	12.5.2 Event service
	12.5.2.1 Event message SSE stream
	12.5.2.2 Metric report SSE stream

	12.6 Update service
	12.6.1 Overview
	12.6.2 Software update types
	12.6.2.1 Simple updates
	12.6.2.2 Multipart HTTP push updates

	13 Security details
	13.1 Transport Layer Security (TLS) protocol
	13.1.1 Transport Layer Security (TLS) protocol overview
	13.1.2 Cipher suites
	13.1.3 Certificates

	13.2 Sensitive data
	13.3 Authentication
	13.3.1 Authentication overview
	13.3.2 Authentication requirements
	13.3.2.1 Resource and operation authentication requirements
	13.3.2.2 HTTP header authentication requirements
	13.3.2.3 Authentication failure requirements

	13.3.3 HTTP Basic authentication
	13.3.4 Redfish session login authentication
	13.3.4.1 Redfish login sessions
	13.3.4.2 Session login
	13.3.4.3 Session lifetime
	13.3.4.4 Session termination or logout

	13.4 Authorization
	13.4.1 Authorization overview
	13.4.2 Privilege model
	13.4.2.1 Roles
	13.4.2.2 Restricted roles and restricted privileges
	13.4.2.3 OEM privileges

	13.4.3 Redfish service operation-to-privilege mapping
	13.4.3.1 Why specify operation-to-privilege mapping?
	13.4.3.2 Representing operation-to-privilege mappings
	13.4.3.3 Operation map syntax
	13.4.3.4 Mapping overrides syntax
	13.4.3.5 Property override example
	13.4.3.6 Subordinate override
	13.4.3.7 Resource URI override
	13.4.3.8 Privilege AND and OR syntax

	13.4.4 Delegated authorization with OAuth 2.0
	13.4.4.1 OAuth 2.0 overview
	13.4.4.2 OAuth 2.0 data model requirements
	13.4.4.3 OAuth 2.0 access tokens
	13.4.4.4 Redfish OAuth2.0 scope usage

	13.5 Account service
	13.5.1 Account service overview
	13.5.2 Password management
	13.5.3 Password change required handling

	13.6 Asynchronous tasks
	13.7 Event subscriptions
	14 Redfish Host Interface
	15 Redfish composability
	15.1 Composition requests
	15.1.1 Composition requests overview
	15.1.2 Specific composition
	15.1.3 Constrained composition
	15.1.4 Expandable resources

	15.2 Updating a composed resource
	16 Aggregation
	16.1 Classes of aggregators
	16.1.1 Implicit and complex aggregators
	16.1.2 Use cases

	16.2 Aggregation service
	16.2.1 Aggregation service overview
	16.2.2 Aggregator requirements
	16.2.3 Aggregates
	16.2.4 Aggregation sources and connection methods

	17 ANNEX A (informative) Change log
	18 Bibliography

