

- 1

Document Identifier: DSP2032 2

Date: 2015-02-19 3

Version: 2.0.0 4

CIM-RS White Paper 5

Supersedes: 1.0 6

Document Type: White Paper 7

Document Class: Informative 8

Document Status: Published 9

Document Language: en-US 10
 11

CIM-RS White Paper DSP2032

2 Published Version 2.0.0

Copyright Notice 12

Copyright © 2012, 2015 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 13

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 14
management and interoperability. Members and non-members may reproduce DMTF specifications and 15
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 16
time, the particular version and release date should always be noted. 17

Implementation of certain elements of this standard or proposed standard may be subject to third party 18
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 19
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 20
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 21
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 22
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 23
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 24
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 25
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 26
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 27
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 28
implementing the standard from any and all claims of infringement by a patent owner for such 29
implementations. 30

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 31
such patent may relate to or impact implementations of DMTF standards, visit 32
http://www.dmtf.org/about/policies/disclosures.php. 33

http://www.dmtf.org/about/policies/disclosures.php

DSP2032 CIM-RS White Paper

Version 2.0.0 Published 3

CONTENTS 34

Abstract ... 4 35

Foreword ... 5 36

Executive summary ... 6 37

1 Terminology ... 7 38

2 Why build a RESTful interface for CIM ... 9 39

3 Characteristics of a RESTful protocol and CIM-RS .. 9 40

4 Resources in CIM-RS .. 11 41

5 Resource identifiers in CIM-RS ... 13 42

6 Operations in CIM-RS ... 14 43

7 Data representation in CIM-RS ... 14 44

8 When would a site consider implementing CIM-RS .. 15 45

9 Conclusion ... 16 46

ANNEX A Change log ... 17 47

Bibliography .. 18 48

 49

Tables 50

Table 1 – CIM-RS resource types and what they represent ... 13 51

Table 2 – CIM-RS protocol payload elements .. 15 52

 53

CIM-RS White Paper DSP2032

4 Published Version 2.0.0

Abstract 54

This white paper provides background information for CIM-RS as defined in the DMTF specifications CIM-55
RS Protocol (DSP0210) and CIM-RS Payload Representation in JSON (DSP0211). This white paper will 56
provide some explanation behind the decisions made in these specifications and give the reader insight 57
into when the use of CIM-RS may be appropriate. There is also discussion of some of the considerations 58
in choosing payload encodings such as JSON or XML. 59

This paper is targeted to potential users of CIM-RS who are considering developing a server-side 60
interface to a CIM implementation that follows REST principles, or a client that consumes such an 61
interface. 62

DSP2032 CIM-RS White Paper

Version 2.0.0 Published 5

Foreword 63

The CIM-RS White Paper (DSP2032) was prepared by the DMTF CIM-RS Working Group, based on 64
work of the DMTF CIM-RS Incubator. 65

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 66
management and interoperability. For information about the DMTF, see http://www.dmtf.org. 67

Acknowledgments 68

The DMTF acknowledges the following individuals for their contributions to this document: 69

 Cornelia Davis, EMC 70

 George Ericson, EMC 71

 Johannes Holzer, IBM 72

 Robert Kieninger, IBM 73

 Wojtek Kozaczynski, Microsoft 74

 Lawrence Lamers, VMware 75

 Andreas Maier, IBM (editor) 76

 Bob Tillman, EMC 77

 Marvin Waschke, CA Technologies (editor) 78

Document conventions 79

Typographical conventions 80

The following typographical conventions are used in this document: 81

 Document titles are marked in italics. 82

Deprecated and experimental material 83

A white paper has informative character. Therefore, material is not marked as experimental or deprecated 84
as it would be in normative DMTF specifications. 85

http://www.dmtf.org/

CIM-RS White Paper DSP2032

6 Published Version 2.0.0

Executive summary 86

The DMTF Common Information Model (CIM) is a conceptual information model for describing computing 87
and business entities in Internet, enterprise, and service-provider environments. CIM uses object-oriented 88
techniques to provide a consistent definition of such entities: A CIM model describes the state, relations, 89
and behaviors of such managed objects. The CIM Schema published by DMTF is one such CIM model, 90
establishing a common description of certain managed objects. 91

CIM and the CIM Schema provide a foundation for IT management software that can be written in one 92
environment and easily converted to operate in a different environment. It also facilitates communication 93
between software managing different aspects of the IT infrastructure. In this way, CIM and CIM Schema 94
provide a basis for an integrated IT management environment that is more manageable and less complex 95
than environments based on narrower and less consistent information. 96

CIM is built on object oriented principles and provides a consistent and cohesive programming model for 97
IT management software. One of the developing trends in enterprise network software architecture in 98
recent years has been Representational State Transfer (REST). REST represents a set of architectural 99
constraints that have risen from the experience of the World Wide Web. Developers have discovered that 100
the architecture of the web offers some of the same benefits in simplicity and reliability to enterprise 101
software as it has provided over the Internet. IT management is an important application of enterprise 102
software and there is growing interest in using CIM and CIM Schema based software in an architecture 103
that follows REST constraints. 104

Fortunately, CIM follows basic architectural principles that largely fit well into RESTful architectures. As a 105
result, the RESTful protocol defined by CIM-RS is tailored to the needs of CIM. 106

DSP2032 CIM-RS White Paper

Version 2.0.0 Published 7

1 Terminology 107

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 108
are defined in this clause. 109

Some of the terms and abbreviations defined in DSP0198 (such as "WBEM", "CIM", "URI", and others) 110
are used in this document but are not repeated in this clause. 111

1.1 112

application state 113

the state that indicates where an application is in completing a task. In a RESTful system, the client is 114
solely responsible for application or session state. The server is only responsible for resource state, the 115
state of the resources managed by the service. An example of resource state is the account balance in a 116
banking service, which would be maintained by the server. An example of application state is a specific 117
client that has posted a deposit and is waiting for it to clear. Only the client would track the fact that it has 118
posted a deposit request. 119

1.2 120

CIM-RS 121

CIM RESTful Services 122

the RESTful protocol for CIM covered by this white paper and related documents. 123

1.3 124

HATEOAS 125

Hypertext As The Engine Of Application State 126

the practice of using links embedded in resource representations to advertise further possible activities or 127
related resources to the application. For example, an “order” link might be placed in the resource 128
representation for an item offered in a catalog. The presence of the order link indicates that the item is 129
orderable and represents a path to order the item. In a visual representation, the “order” link would 130
appear as a button on the screen. Pushing the button, a POST or PUT HTTP method targeting the 131
resource identifier provided in the link would be issued and would cause the item to be ordered. The 132
returned resource represents the next application state, perhaps a form for entering quantity and shipping 133
method. CIM-RS supports this concept by returning resource identifiers to related resources, for details 134
see DSP0210. 135

1.4 136

HTTP content negotiation 137

negotiation between HTTP clients and HTTP servers to determine the format of the content transferred. 138
When a client makes a request, they list acceptable response formats by specifying media types in an 139

Accept header. Thus, the server is able to supply different representations of the same resource 140

identified with the same resource identifier. A common example is GIF and PNG images. A browser that 141

cannot display PNGs can be served GIFs based on the Accept header. In a RESTful system, the choice 142

is more often between XML and JSON. For details, see RFC2616. Its use in CIM-RS is described in 143
DSP0210. 144

1.5 145

JSON 146

JavaScript Object Notation, defined in RFC7159. 147

1.6 148

idempotent HTTP method 149

an HTTP method with the behavior that (aside from error or expiration issues) the side-effects of N 150
consecutive identical requests are the same as for a single one of those requests. RFC2616 requires the 151

CIM-RS White Paper DSP2032

8 Published Version 2.0.0

HTTP methods GET, HEAD, PUT and DELETE to be idempotent. HTTP methods that have no side 152
effects (that is, safe methods) are inherently idempotent. For details, see RFC2616. 153

1.7 154

Internet media type 155

a string identification for representation formats in Internet protocols. Originally defined for email 156
attachments and termed "MIME type". Because CIM-RS is based on HTTP, it uses the definition of media 157
types from section 3.7 of RFC2616. 158

1.8 159

resource 160

in CIM-RS, an entity that can be referenced using a resource identifier and thus can be the target of an 161
HTTP method. Example resources are systems, devices, or configurations. 162

1.9 163

resource identifier 164

in CIM-RS, a URI that is a reference to (or an address of) a resource. Generally, a resource may have 165
more than one resource identifier; however in CIM-RS that is not the case. 166

1.10 167

resource representation 168

a representation of a resource or some aspect thereof, in some format. A particular resource may have 169
any number of representations. The format of a resource representation is identified by a media type. In 170
CIM-RS, the more general term "payload representation" is used, because not all protocol payload 171
elements are resource representations. 172

1.11 173

resource state 174

the state of a resource managed by a RESTful service, in contrast to application state. 175

1.12 176

REST 177

Representational State Transfer 178

a style of software architecture for distributed systems that is based on addressable resources, a uniform 179
constrained interface, representation orientation, stateless communication, and state transitions driven by 180
data formats. Usually REST architectures use the HTTP protocol, although other protocols are possible. 181
See Architectural Styles and the Design of Network-based Software Architectures for the original 182
description of the REST architectural style. 183

1.13 184

RPC 185

Remote Procedure Call 186

an RPC is an implementation of a function in which a call to the function occurs in one process and the 187
function is executed in a different process, often in a remote location linked by a network. RPC-based 188
systems are often contrasted with RESTful systems. In a RESTful system, the interactions between client 189
and server follow the REST constraints and the design focus is on the resources. In an RPC-based 190
system, the design focus is on the functions invoked, and there is not necessarily even the notion of well-191
defined resources. 192

1.14 193

safe HTTP method 194

an HTTP method that has no side-effects. RFC2616 requires the HTTP methods GET and HEAD to be 195
safe. By definition, an HTTP method that is safe is also idempotent. 196

DSP2032 CIM-RS White Paper

Version 2.0.0 Published 9

1.15 197

SOAP 198

Simple Object Access Protocol, defined by the W3C. 199

2 Why build a RESTful interface for CIM 200

There has been a great deal of interest in constructing RESTful enterprise applications in the last few 201
years and this interest has inspired the specification of CIM-RS. To understand the origins of this interest, 202
the nature of REST and its relationship to IT management must be explored. 203

Enterprise applications are being built more and more frequently on architectures that involve remote 204
network connections to some part of the implementation of the application. These connections are often 205
via the Internet. This is especially true with the rise of cloud computing. 206

REST is a set of architectural constraints that were designed around the features of the Internet. For 207
example, REST constraints are designed to assure that applications that follow constraints will have 208
maximum benefit from typical Internet features like caches, proxies, and load balancers. 209

In addition, REST constraints are closely tied to the design of HTTP, the primary application level protocol 210
of the Internet. In fact, the prime formulator of REST, Roy Fielding, was also an author of the HTTP 211
standard. Consequently, REST was designed to take full advantage of HTTP and HTTP meets the needs 212
of REST. 213

Some of the specific benefits that have been experienced in RESTful applications are: 214

 Simplicity. REST limits itself to the methods implemented in HTTP and runs directly on the 215
HTTP stack. Note, however, that this simplicity can be deceptive. The design effort to comply 216
with REST may engender its own complexity. 217

 Resilience in the face of network disturbance. One of the hallmarks of a RESTful application 218
is a stateless relationship between the server and the client. Each request from the client 219
contains all the history the server needs to respond to the client. Therefore recovery when a 220
server becomes inaccessible does not require unwinding a stack and complex recovery logic 221
when requests are self-contained and independent. 222

 Upgradability. The operations available in RESTful application are discovered by the client as 223
the processes occur. Consequently, in some cases, the server implementation often may be 224
upgraded transparently to the client. In some cases, a well-designed client may be able to take 225
advantage of new features automatically. 226

Although these are important benefits, it is important to note that REST is not a panacea. Not all activities 227
are easily compatible with its constraints. Not every operation fits easily into the stateless paradigm. The 228
discoverability of RESTful applications may breakdown as applications become more complex and 229
transactions become more elaborate. 230

Nevertheless, as a result of these benefits and others, a substantial number of developers of IT 231
management applications that use CIM and CIM Schema have turned to REST. Therefore, there is a 232
need for a specification for a uniform protocol that will promote interoperability between RESTful CIM and 233
CIM Schema based applications. 234

3 Characteristics of a RESTful protocol and CIM-RS 235

The characteristics of a RESTful protocol are not standardized or otherwise defined normatively. The 236
principles and constraints of the REST architectural style have originally been described by Roy Fielding 237
in chapter 5 of Architectural Styles and the Design of Network-based Software Architectures. The BLOG 238
entry REST APIs must be hypertext driven authored by Roy Fielding provides further insight into REST 239

CIM-RS White Paper DSP2032

10 Published Version 2.0.0

principles. While that description of the REST architectural style is not limited to the use of HTTP, the 240
HTTP protocol comes close to supporting that style and obviously has a very broad use. 241

The CIM-RS protocol is based on HTTP and supports the REST architectural style to a large degree. The 242
following list describes to what extent the typical REST constraints are satisfied by the CIM-RS protocol: 243

 Client-Server: The participants in the CIM-RS protocol are WBEM client, WBEM server, and 244
WBEM listener. WBEM stands for Web Based Enterprise Management and is a set of protocols 245
for systems management defined by the DMTF. There is a client-server relationship between 246
WBEM client and WBEM server, and one between WBEM server and WBEM listener, where 247
the WBEM server acts as a client to the WBEM listener. Thus, the WBEM server has two roles: 248
To act as a server in the interactions with the WBEM client, and to act as a client in the 249
interactions with the WBEM listener. 250
This REST constraint is fully satisfied in CIM-RS. 251

 Stateless: Interactions in CIM-RS are self-describing and stateless in that the servers (that is, 252
the WBEM server in its server role, and the WBEM listener) do not maintain any application 253
state or session state. 254
This REST constraint is fully satisfied in CIM-RS. 255

 Cache: The HTTP methods used in CIM-RS are used as defined in RFC2616. As a result, they 256
are cacheable as defined in RFC2616. 257
This REST constraint is fully satisfied in CIM-RS. 258

NOTE RFC2616 defines only the result of HTTP GET methods to be cacheable. 259

 Uniform interface: The main resources represented in CIM-RS are instances or collections 260
thereof, representing modeled objects in the managed environment. CIM-RS defines a uniform 261
interface for creating, deleting, retrieving, replacing, and modifying these resources and thus the 262
represented objects, based on HTTP methods. 263
This REST constraint is satisfied in CIM-RS, with the following deviation: 264

CIM methods can be invoked in CIM-RS through the use of HTTP POST. This may be 265
seen as a deviation from the REST architectural style, which suggests that any "method" 266
be represented as a modification of a resource. However, DMTF experience with a REST 267
like modeling style has shown that avoiding the use of methods is not always possible or 268
convenient. For this reason, CIM-RS supports invocation of methods. 269

 Layered system: Layering is inherent to information models that represent the objects of a 270
managed environment because clients only see the modeled representations and are not 271
exposed to the actual objects. CIM-RS defines the protocol and payload representations such 272
that it works with any model, and thus is well suited for implementations that implement a model 273
of the managed environment independently of protocols, and one or more protocols 274
independently of the model. CIM-RS supports the use of HTTP intermediaries (for example, 275
caches and proxy servers). 276
This REST constraint is fully satisfied in CIM-RS. 277

 Code-On-Demand: CIM-RS does not directly support exchanging program code between the 278
protocol participants. 279
This optional REST constraint is not satisfied. 280

DSP2032 CIM-RS White Paper

Version 2.0.0 Published 11

Beyond that, CIM-RS has the following other characteristics: 281

 Model independence: CIM-RS does not define or prescribe the use of a particular CIM model. 282
However, it does require the use of a CIM model defined using the CIM 283
infrastructure/architecture. This allows reusing the traditional DMTF technology stack and its 284
implementations, with only minimal impact to existing implementations. For details about CIM-285
RS resources, see clause 4. 286

 Opaqueness of resource identifiers: CIM-RS uses URIs as resource identifiers and defines 287
all but a top-level URI to be opaque to clients. That allows reuse of the URIs supported by 288
existing WBEM protocols without any remapping, as well as the use of new URI formats in the 289
future. It encourages a client style of programming that is more RESTful than when clients 290
parse resource URIs. For details about CIM-RS resource identifiers, see clause 5. 291

 Consistency of operations: Beyond following the REST constraints, the CIM-RS operations 292
are consistent with the generic operations defined in DSP0223. This allows implementing CIM-293
RS as an additional protocol in existing WBEM infrastructures, causing impact only where it is 294
necessary (that is, at the protocol level), leveraging existing investments. For details about CIM-295
RS operations, see clause 6. 296

 Supports use of new RESTful frameworks: Because CIM-RS is a RESTful protocol, it 297
supports the use of new RESTful frameworks both on the client side and on the server side, 298
without tying client application development to the use of traditional WBEM clients or CIM client 299
APIs, and without tying server instrumentation development to the use of traditional WBEM 300
servers, such as CIM object managers and providers. 301

4 Resources in CIM-RS 302

The REST architectural style allows for the representation of rather static entities such as disk drives, or 303
entities with highly varying state such as a metric measuring the amount of available disk space at a 304
specific point in time, or even entities that dynamically come into existence or cease to exist such as file 305
system mounts. 306

In CIM-RS, CIM elements such as instances and classes are the resources that can be accessed. 307
Because CIM instances represent managed objects in the managed environment, this provides direct 308
access to these managed objects. For example, a disk drive in the managed environment is accessible 309
as a resource in CIM-RS. CIM classes and CIM qualifier types (that is, the declaration of qualifiers) are 310
also accessible in CIM-RS, but they are not needed for discovery or use of the managed resources. The 311
reason they are accessible is for those clients that have a need to discover the structure of the CIM-RS 312
resources that represent managed objects. 313

The way managed objects are defined to be represented as resources in CIM-RS, is by using a 314
two-staged mapping approach: 315

 CIM models describe how managed objects in the managed environment are represented as 316
CIM instances. This part deals with the model and is independent of any protocols. 317

 CIM-RS describes how CIM instances are represented as CIM-RS resources. This part deals 318
with the protocol and is independent of any models. 319

This model independence allows CIM-RS to be implemented in an existing WBEM server as an additional 320
protocol, or as a gateway in front of an existing unchanged WBEM server, leveraging the investment in 321
that implementation. Specifically, in WBEM servers supporting a separation of CIMOM and providers, 322
adding support for CIM-RS typically drives change only to the CIMOM but does not drive any change to 323
the providers. On the client side, existing WBEM client infrastructures that provide client applications with 324
a reasonably abstracted API can implement CIM-RS as an additional protocol, shielding existing client 325
applications from the new protocol, should that be needed. 326

CIM-RS White Paper DSP2032

12 Published Version 2.0.0

In order to fit well into WBEM infrastructures, CIM-RS supports the same operation semantics as the 327
operations supported at client APIs, provider APIs, and existing WBEM protocols. The generic operations 328
defined in DSP0223 are a common definition of operation semantics for such purposes. The operations of 329
CIM-RS are described independently of DSP0223, but DSP0210 defines a mapping between generic 330
operations and CIM-RS operations. For more details about the operations supported by CIM-RS, see 331
clause 6. 332

Because CIM-RS is a RESTful protocol, it supports the use of new RESTful frameworks both on the client 333
side and on the server side, without tying client application development to the use of traditional WBEM 334
clients or CIM client APIs, and without tying server instrumentation development to the use of traditional 335
WBEM servers, such as CIMOMs and providers. 336

This allows CIM-RS to be implemented using typical REST frameworks, without using CIMOM or WBEM 337
infrastructure. In this case, the two-staged mapping approach still works well but requires the reading of 338
more documents in order to understand what to implement, compared to an approach that describes both 339
model and protocol in one document. 340

Of course, combinations of using new RESTful frameworks and traditional WBEM infrastructure are also 341
possible: A typical scenario would be the use of a new RESTful framework in a client application, with a 342
traditional WBEM server whose CIMOM portion got extended with CIM-RS protocol support. 343

It is important to understand that the model independence of CIM-RS and the resulting benefits are its 344
main motivation and are a key differentiator to other approaches in DMTF of using REST. The model 345
independence is what positions CIM-RS to be a first class member of the traditional DMTF technology 346
stack, leveraging a large amount of standards defined by DMTF and others (most notably, the CIM 347
architecture/infrastructure, the CIM Schema, and management profiles defined by DMTF and others). 348

On the downside, the model independence of CIM-RS causes a certain indirection in dealing with the 349
managed objects: CIM-RS resources representing CIM instances of CIM classes can be understood only 350
after understanding the CIM model they implement. The CIM model is defined by a CIM schema and 351
typically also by a number of management profiles that scope and refine the use of the CIM schema to a 352
particular management domain. So the number of documents that must be read before a client 353
application can reasonably be developed against a CIM instrumentation supporting CIM-RS may be quite 354
significant. On the other hand, this is no more complex than developing a client application against a CIM 355
instrumentation supporting other existing WBEM protocols. 356

Following the REST architectural style, any entity targeted by an operation in the CIM-RS protocol is 357
considered a resource, and the operations are simple operations such as the HTTP methods GET, 358
POST, PUT, and DELETE. 359

The simplicity of these operations requires details to be "encoded" such as the difference between 360
retrieving a single resource vs. a collection of resources, or retrieving a resource vs. navigating to a 361
related resource, into the resource definitions. This leads to a number of variations of resources. 362

Note that the real-world entities are not called "resources" in this document. Rather, the standard DMTF 363
terminology is used, where such real-world entities are termed "managed objects", and the real-world is 364
termed the "managed environment". This terminology allows distinguishing resources as represented in 365
the RESTful protocol from the managed objects they correspond to. 366

Table 1 lists the resource types of CIM-RS. 367

DSP2032 CIM-RS White Paper

Version 2.0.0 Published 13

Table 1 – CIM-RS resource types and what they represent 368

Resource Type Represents

Instance a CIM instance, representing a modeled object in the managed environment

Instance collection a collection of instances of a particular class

Instance associator collection a collection of instances associated to a particular instance

Instance reference collection a collection of association instances referencing a particular instance

Instance collection page a page of a paged instance collection

Class a CIM class, representing the type of a CIM instance

Class collection a collection of classes (top-level classes in a namespace, or subclasses of a class)

Class associator collection a collection of classes associated to a particular class

Class reference collection a collection of association classes referencing a particular class

Qualifier type a CIM qualifier type, representing the declaration of a metadata item

Qualifier type collection a collection of qualifier types in a particular namespace

Listener indication delivery a resource within a listener that is used to deliver indications to

Each of these resources can be addressed using a resource identifier; for details see clause 5. 369

Each of these resources has a defined set of operations; for details on that see clause 6. 370

Each of these resources has a defined resource representation in each of the supported representation 371
formats; for details on that see clause 7. 372

CIM-RS supports retrieval of parts of resources. These parts are selected through query parameters in 373
the resource identifier URI addressing the resource. That renders these parts to be separate resources, 374
following the principles in the REST architectural style. 375

For more details about CIM-RS resources, see DSP0210. 376

5 Resource identifiers in CIM-RS 377

The REST architectural style recommends that all addressing information for a resource be in the 378
resource identifier (and not, for example, in the HTTP header). In addition, it recommends that resource 379
identifiers be opaque to clients and clients should not be required to understand the structure (or format) 380
of resource identifiers or be required to assemble any resource identifiers. 381

CIM-RS generally follows these recommendations. In CIM-RS, resource identifiers are fully represented 382
in URIs, without any need for additional information in HTTP headers or HTTP payload. The structure of 383
URIs in CIM-RS is normatively defined and may be assembled or manipulated by clients. However, the 384
values of key properties of CIM instances are often created by the server side implementation, and are 385
undefined from a client perspective. 386

The URIs a client typically will need to assemble are those of instance collections to be retrieved. From 387
that point on, the returned instances have their URIs attached and are used as the target resource in 388
subsequent operations. 389

The main benefit of client-opaque URIs is that servers can use existing URI formats. However, the query 390
parameters are defined by CIM-RS, and so the URI could already not be entirely opaque. 391

For more details about resource identifiers in CIM-RS, see DSP0210. 392

CIM-RS White Paper DSP2032

14 Published Version 2.0.0

6 Operations in CIM-RS 393

The REST architectural style recommends that the operations on resources are simple and follow certain 394
constraints. Although the use of HTTP is not a requirement for REST, the HTTP methods satisfy these 395
constraints and are therefore a good choice for a RESTful system. 396

CIM-RS uses the HTTP methods GET, POST, PUT, and DELETE. An operation in CIM-RS is defined as 397
the combination of HTTP method and target resource type (see Table 1). 398

GET is used to retrieve the targeted resource. 399

PUT is used for replacing the targeted resource partially or fully. Partial update is performed by issuing 400
the PUT method against a resource identifier that uses query parameters to narrow the original resource 401
to exactly the properties that are intended to be updated. Because the narrowed resource is fully 402
replaced, this approach does not violate the idempotency constraint of the HTTP PUT method. 403

The alternative to use the HTTP PATCH method for partial update (see RFC5789) was originally chosen 404
in the work of the CIM-RS Incubator but ultimately dismissed in the CIM-RS specifications, because 405
support for the HTTP PATCH method is still limited in the industry at this point. 406

DELETE is used for removing the targeted resource. 407

POST is a non-idempotent operation in HTTP that can have many uses. The Request-URI in the header 408
of a POST identifies the resource that will handle the entity enclosed in the message of the request, not 409
necessarily the entity affected by the POST (see RFC2616, page 54). Following this pattern, POST is 410
used in CIM-RS as follows: 411

 for invoking CIM methods, by targeting an instance or class resource. 412

 for creating resources, by targeting the collection resource for the type of resource to be 413
created, which acts as a factory resource. 414

 for delivering indications to a listener. 415

For more details about operations in CIM-RS, see DSP0210. 416

7 Data representation in CIM-RS 417

The REST architectural style promotes late binding between the abstracted resource that is addressed 418
through a resource identifier and the resource representation that is chosen in the interaction between 419
client and server. 420

CIM-RS follows this by supporting multiple HTTP payload formats that are chosen through HTTP content 421
negotiation. 422

The set of payload formats supported by CIM-RS is open for future extension, and currently consists of 423
the following: 424

 JSON, as defined in DSP0211. 425

A payload format based on XML could be defined in the future. 426

JSON and XML are considered premier choices for a representation format of RESTful systems, 427
dependent on the REST framework used, and the technical and business environment. 428

It is important to understand that the entities to be represented in the HTTP payload are not only the 429
resource representations. For example, operations such as method invocation require the representation 430
of input and output data entities (MethodRequest and MethodResponse payload elements) that are not 431
resources (in the sense that they cannot be the target of CIM-RS operations). 432

DSP2032 CIM-RS White Paper

Version 2.0.0 Published 15

Table 2 lists the payload elements defined in CIM-RS. These are the entities that need to be represented 433
in any payload format of CIM-RS. 434

Table 2 – CIM-RS protocol payload elements 435

Payload element Meaning

Instance Representation of an instance resource; that is, a modeled object in
the managed environment

InstanceCollection A list of representations of instance resources

Class Representation of a class resource; that is, a class declaration

ClassCollection A list of representations of class resources

QualifierType Representation of a qualifier type

QualifierTypeCollection A list of representations of qualifier types

MethodRequest The data describing a method invocation request, including input
parameters

MethodResponse The data describing a method invocation response, including its
return value and output parameters

IndicationDeliveryRequest The data describing a request to deliver an indication to a listener

ErrorResponse The data describing an error response to any request

8 When would a site consider implementing CIM-RS 436

CIM-RS is implemented in two places: a centralized server and many clients (including event listeners). 437
The server provides access to CIM-RS resources and the client accesses those resources. One of the 438
goals of REST is enabling clients, such as generic HTTP browsers, to discover and access RESTful 439
services without specialized documentation or programming. CIM-RS enables this kind of access, but 440
realistically, such usage would be too granular and awkward for most tasks. More likely, CIM-RS will be 441
used in the background as a web service that performs operations and collects data on IT infrastructure. 442
The code that combines individual REST requests into task-oriented applications can be implemented 443
either on the server side or on the client side. 444

On the server side, SOAP implementations respond to SOAP calls that are usually transported by HTTP 445
as a layer under the SOAP stack. The RESTful stack is less elaborate because the layer corresponding 446
to the SOAP is eliminated and calls are received directly from the HTTP server. Correspondingly, on the 447
client, in SOAP implementation, calls are made via the SOAP stack and transported by HTTP. In REST, 448
calls are made using native HTTP verbs. REST simplicity comes with a price. The SOAP stack, and the 449
additional specifications that have been written over SOAP add rich functionality that may require extra 450
effort to implement the equivalent in REST. 451

With the addition of CIM-RS, applications based on objects defined using CIM models can be surfaced 452
via the CIM-RS RESTful protocol. The choice of protocol affects both the server implementation and the 453
client implementation. In theory, the applications that result should be the same, but in practice there may 454
be differences, based on factors such as the statelessness of RESTful and the ease of implementing 455
some interaction patterns. 456

Many implementations are expected to involve using CIM-RS with existing implementations. The ease of 457
these implementations will be largely dependent on the layering of the architecture of the CIM 458
implementation. Ideally, the implementation of the CIM objects should be crisply separated from the 459
transport mechanism. In that case, the CIM-RS implementation, using appropriate frameworks for 460
interfacing underlying code with HTTP such as JAX-RS, should be straightforward and relatively quick to 461
implement. 462

CIM-RS White Paper DSP2032

16 Published Version 2.0.0

Every implementation decision is based on many factors, including: 463

 The experiences of the personnel involved. A group accustomed to RESTful applications will be 464
better prepared to work with CIM-RS than a SOAP-based implementation. A group not familiar 465
with REST may experience difficulty. 466

 The environment. For example, implementation behind a corporate firewall will not get as many 467
advantages from a REST implementation as an implementation that spans widely separated 468
architectures involving many firewalls. 469

 The purpose of the implementation. Some implementations will involve management of massive 470
storms of events. Others will involve long lists of managed objects. Yet others will involve only 471
light traffic, but complex control operations. Every implementation has its own footprint. REST 472
architectures are designed to optimize the capacity, scalability, and upgradability of the server. 473
The archetypical REST implementation is a server that serves an enormous number of clients, 474
for example, a web storefront serving hundreds of thousands of clients simultaneously, but the 475
data exchange with each client is intermittent, granular, and relatively small. This is far different 476
from an enterprise IT management application that manages and correlates data from hundreds 477
of thousands of objects, but only has a handful of clients. RESTful interfaces have proven 478
themselves in the first example, but they have not yet acquired a long track record in the second 479
example. This is not to say that REST, and CIM-RS in particular, is not appropriate for the 480
second example, only that it may present new challenges. 481

CIM-RS provides an alternative to SOAP-based implementations and allows implementers to take 482
advantages of the unique characteristics of REST. The decision to use CIM-RS should be made in the full 483
context of the experience of the implementers, the environment, and purpose of the implementation. 484

9 Conclusion 485

CIM-RS is a set of specifications that describes a rigorous REST interface to resources modeled following 486
the principles of the CIM metamodel. The immediate and obvious consequence of this goal is to provide 487
REST access to management instrumentation based on the more than 1400 pre-existing classes in the 488
DMTF CIM Schema (or in any other schema that follows the CIM metamodel) and in management 489
profiles. 490

This addresses an important issue in the industry: RESTful interfaces have become an interface of choice 491
for application interaction over the Internet. With rising interest in cloud computing, which largely depends 492
on Internet communications, the importance of REST interfaces is also rising. Consequently, a protocol 493
that promises to give existing applications a RESTful interface with minimal investment is extremely 494
attractive. 495

CIM-RS provides more than an additional interface to existing CIM-based implementations. The CIM 496
metamodel is a general object oriented modeling approach and can be applied to many modeling 497
challenges. Thus, for any applications built using models that conform to the CIM metamodel, CIM-RS 498
specifies a standards-based RESTful interface that will increase interoperability. Developers can use the 499
CIM-RS specifications as the basis for a design pattern and avoid reinventing a RESTful API for each 500
application, saving time and effort and minimizing testing. 501

CIM-RS has the potential to become a basic pattern for application communication within the enterprise, 502
between enterprises, and within the cloud. It applies to existing implementations of CIM objects, future 503
CIM object implementations, and implementations of new objects modeled following the CIM metamodel. 504

DSP2032 CIM-RS White Paper

Version 2.0.0 Published 17

ANNEX A 505

 506

Change log 507

 508

Version Date Description

1.0.0 2012-12-04

2.0.0 2015-02-19 Published as DMTF Informational

CIM-RS White Paper DSP2032

18 Published Version 2.0.0

Bibliography 509

Documents published by standards development organizations 510

DMTF DSP0004, CIM Infrastructure Specification 2.8, 511
http://www.dmtf.org/standards/published_documents/DSP0004_2.8.pdf 512

DMTF DSP0198, WBEM Glossary 1.0, 513
http://www.dmtf.org/standards/published_documents/DSP0198_1.0.pdf 514

DMTF DSP0210, CIM-RS Protocol 2.0, 515
http://www.dmtf.org/standards/published_documents/DSP0210_2.0.pdf 516

DMTF DSP0211, CIM-RS Payload Representation in JSON 2.0, 517
http://www.dmtf.org/standards/published_documents/DSP0211_2.0.pdf 518

DMTF DSP0223, Generic Operations 2.0, 519
http://www.dmtf.org/standards/published_documents/DSP0223_2.0.pdf 520

IETF RFC2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999, 521
http://tools.ietf.org/html/rfc2616 522

IETF RFC3986, Uniform Resource Identifier (URI): Generic Syntax, January 2005, 523
http://tools.ietf.org/html/rfc3986 524

IETF RFC5789, PATCH Method for HTTP, March 2010, 525
http://tools.ietf.org/html/rfc5789 526

IETF RFC7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014, 527
http://tools.ietf.org/html/rfc7159 528

ISO/IEC 10646:2003, Information technology -- Universal Multiple-Octet Coded Character Set (UCS), 529
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip 530

The Unicode Consortium, The Unicode Standard, Version 5.2.0, Annex #15: Unicode Normalization 531
Forms, 532
http://www.unicode.org/reports/tr15/ 533

Other documents 534

R. Fielding, Architectural Styles and the Design of Network-based Software Architectures, PhD thesis, 535
University of California, Irvine, 2000, 536
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm 537

R. Fielding, REST APIs must be hypertext driven, October 2008, 538
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven 539

J. Holzer, RESTful Web Services and JSON for WBEM Operations, Master thesis, University of Applied 540
Sciences, Konstanz, Germany, June 2009, 541
http://mond.htwg-konstanz.de/Abschlussarbeiten/Details.aspx?id=1120 542

A. Manes, Rest principle: Separation of representation and resource, March 2009, 543
http://apsblog.burtongroup.com/2009/03/rest-principle-separation-of-representation-and-resource.html 544

L. Richardson and S. Ruby, RESTful Web Services, May 2007, O’Reilly, ISBN 978-0-596-52926-0, 545
http://www.oreilly.de/catalog/9780596529260/ 546

http://www.dmtf.org/standards/published_documents/DSP0004_2.8.pdf
http://www.dmtf.org/standards/published_documents/DSP0198_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0210_2.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0211_2.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0223_2.0.pdf
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/rfc7159
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip
http://www.unicode.org/reports/tr15/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://mond.htwg-konstanz.de/Abschlussarbeiten/Details.aspx?id=1120
http://apsblog.burtongroup.com/2009/03/rest-principle-separation-of-representation-and-resource.html
http://www.oreilly.de/catalog/9780596529260/

	Term_WBEM
	Term_CIM
	Term_URI
	Term_application_state
	Term_CIMRS
	Term_CIM_RESTful_Services
	Term_HATEOAS
	Term_HTTP_content_negotiation
	Term_content_negotiation
	Term_JSON
	Term_idempotent
	Term_idempotent_HTTP_method
	Term_Internet_media_type
	Term_media_type
	Term_resource
	Term_resource_identifier
	Term_identifier
	Term_resource_representation
	Term_representation
	Term_payload_representation
	Term_resource_state
	Term_REST
	Term_RPC
	Term_safe
	Term_safe_HTTP_method
	Term_SOAP
	Ref_DMTF_DSP0004
	Ref_DMTF_DSP0198
	Ref_DMTF_DSP0210
	Ref_DMTF_DSP0211
	Ref_DMTF_DSP0223
	Ref_IETF_RFC2616
	Ref_IETF_RFC3986
	Ref_IETF_RFC5789
	Ref_IETF_RFC7159
	Ref_ISOIEC_10646
	Ref_Unicode_Annex_15
	Ref_Fielding_Dissertation
	Ref_Fielding_REST_APIs
	Ref_CIMRS_Master_Thesis

