
Document Identifier: DSP2052

Date: 2018-04-05

Version: 1.0.0

Redfish and OData White Paper

Document Class: Informative

Document Status: Published

Document Language: en-US

Copyright Notice

Copyright © 2018 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

Redfish and OData White Paper DSP2052

2 Published Version 1.0.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

1. Introduction... 6

2. Schema files ... 6

2.1. CSDL format ... 6

2.1.1. The Property element .. 7

2.1.2. The NavigationProperty element ... 8

2.1.3. The Collection type.. 8

2.1.4. The EnumType element .. 9

2.1.5. The ComplexType element.. 10

2.1.6. The EntityType element ... 11

2.1.7. The Action element.. 12

2.1.8. The Annotation element .. 14

2.1.9. Inheritance... 15

2.2. Redfish modeling practices ... 16

2.2.1. Core Redfish definitions .. 16

2.2.2. Defining Redfish resources ... 16

2.2.3. Referenceable Members ... 19

2.2.4. Schema versioning .. 20

2.3. CSDL vs. JSON Schema .. 22

3. Payload annotations... 22

3.1. Annotating a single property in a response... 22

3.2. Annotating an object in a response... 23

4. OData service document .. 24

5. Metadata document.. 25

6. Appendix .. 26

6.1. Primitive OData types used in Redfish ... 26

6.2. Schema annotations used in Redfish ... 27

6.2.1. Core annotations defined by OData .. 27

6.2.2. Redfish annotations defined in RedfishExtensions_v1.xml 28

6.3. Sample OData service document ... 29

6.4. Sample metadata document ... 30

6.5. References.. 34

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 3

Foreword

The Redfish and OData White Paper was prepared by the Redfish Forum of the DMTF.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. For information about the DMTF, see http://www.dmtf.org.

Redfish and OData White Paper DSP2052

4 Published Version 1.0.0

http://www.dmtf.org/

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:

• Jeff Hilland - Hewlett Packard Enterprise

• Michael Raineri - Dell Inc.

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 5

1. Introduction

Redfish is a management standard using a data model representation inside of a hypermedia RESTful

interface. It adheres to the OData v4 standard for defining schema and payload formats. This was done in

order to allow off-the-shelf OData clients to interact natively with Redfish services. While the Redfish

Specification only calls out a minimal set of OData functionality, implementations are allowed to extend

their capabilities into the full range of OData support though doing so is outside the scope of Redfish and

may provide interoperability challenges with non-OData clients. This white paper will provide details about

how the Redfish Specification conforms to OData, such as how schema files are constructed and how

services can construct required OData resources. For those interested in OData functionality that is

outside the scope of Redfish, refer to the OData documentation link in the References section.

2. Schema files

Redfish defines its payload definitions in the Common Schema Definition Language (CSDL) as defined by

OData v4. CSDL is designed to allow for clients to dynamically scan and adapt to a service's data model.

It also provides documentation for developers when writing purpose built clients. Redfish CSDL files are

written in XML, and the structures in the XML file define the JSON properties and objects that a service

uses in its payloads. Inline annotations are also used to provide clients and users with more detailed

information about a given property or object.

2.1. CSDL format

The primary body of a schema file contains namespace definitions; this is found between the

<edmx:DataServices> tags. A namespace is a unique name for a set of type definitions being

declared, which include things like enum definitions and JSON objects. Multiple namespaces can be

defined in a single file, and they can reference each other's definitions. Type definitions are referenced as

Namespace.TypeDefinition, where Namespace is the string name of the namespace, and

TypeDefinition is the name of the definition being referenced.

If a schema file requires references to namespaces defined in other schema files, a reference to the

namespace must be included. This is typically done at the top of the document within a

<edmx:Reference> section using an <edmx:Include> statement. The reference includes the URI of

the schema file being referenced in addition to which namespaces in the schema file to include. Primitive

types defined by OData, which begin with Edm., do not need additional files to be included.

Below is a sample schema file showing the general format discussed above. In the example below, there

are references to the external file "ExternalSchema.xml", which is calling out references to two

Namespaces: ExternalNamespace and Other.Namespace. In the DataServices section, one

Namespace is defined: MyNewNamespace. There is a single ComplexType definition called

Redfish and OData White Paper DSP2052

6 Published Version 1.0.0

MyDataType, and it contains three properties: MyProperty, MyProperty2, and MyProperty3.

MyProperty and MyProperty2 both reference external definitions found in the ExternalNamespace

and Other.Namespace namespaces. Those definitions would be found by going into the

ExternalSchema.xml file. MyProperty3 has the type set to Edm.Int64, which is simply a 64-bit integer.

The following sections will describe the different elements found in the namespace definition in detail.

<edmx:Edmx xmlns:edms="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<edmx:Reference Uri="http://contoso.org/schemas/ExternalSchema.xml">

<edmx:Include Namespace="ExternalNamespace"/>

<edmx:Include Namespace="Other.Namespace"/>

</edmx:Reference>

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyNewNamespace">

<ComplexType Name="MyDataType">

<Property Name="MyProperty" Type="ExternalNamespace.ReferencedDataType"/>

<Property Name="MyProperty2" Type="Other.Namespace.OtherDataType"/>

<Property Name="MyProperty3" Type="Edm.Int64"/>

</ComplexType>

</Schema>

</edmx:DataServices>

</edmx:Edmx>

2.1.1. The Property element

The <Property> element is used to define a property inside of a JSON object. It provides the name of

the property and the data type of the property.

In the CSDL sample shown below, a Property named SerialNumber is defined, and the type is

Edm.String. This defines a name-value pair in a JSON object where the name is SerialNumber and

the data type to expect for that name is a string.

CSDL sample:

<Property Name="SerialNumber" Type="Edm.String"/>

The JSON representation for the above CSDL sample is shown below. It contains a JSON object with a

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 7

property that has the name SerialNumber and its value is the string 123456789.

JSON representation:

{

"SerialNumber": "123456789",

...

}

2.1.2. The NavigationProperty element

The <NavigationProperty> element is used to define a property inside of a JSON object that

provides a link to another resource within the service. It provides the name of the property and the data

type of the resource it links.

In the CSDL sample shown below, a NavigationProperty named Thermal is defined, and the data type of

the resource it links will follow the Thermal.Thermal definition.

CSDL sample:

<NavigationProperty Name="Thermal" Type="Thermal.Thermal"/>

In JSON, shown below, this is represented as a property named Thermal whose value contains an

object with the property @odata.id. The value of the @odata.id property is a URI to the resource

being linked. In this case, the URI is /redfish/v1/Chassis/1/Thermal, so a client can expect to

receive a payload conforming to the Thermal.Thermal definition if they perform a GET on that URI.

JSON representation:

{

"Thermal": {

"@odata.id": "/redfish/v1/Chassis/1/Thermal"

},

...

}

2.1.3. The Collection type

When defining Property or NavigationProperty elements, the keyword Collection can be used to turn

the Property or NavigationProperty element into an array. This is done in the Type field using the format

Redfish and OData White Paper DSP2052

8 Published Version 1.0.0

Collection(TypeDefinition), where TypeDefinition is the underlying type of the instances in

the array.

It should be noted that a "CSDL Collection" should not be confused with a "Resource Collection". In

JSON terms, a "CSDL Collection" is a JSON array, and a "Resource Collection" is a JSON object that

contains a set of links to "Resources" of a given type. The Defining Redfish resources section contains

more information about "Resource Collections".

In the CSDL sample shown below, a Property named AllowedSpeedsMHz is defined, and the type is

Collection(Edm.Int64). This means that the value for the property AllowedSpeedsMHz in a JSON

payload will be an array of 64-bit integers.

CSDL sample:

<Property Name="AllowedSpeedsMHz" Type="Collection(Edm.Int64)"/>

The JSON representation for the above CSDL sample is shown below. It contains a JSON object with a

property that has the name AllowedSpeedsMHz and its value is an array containing the numbers 2133,

2400, and 2667.

JSON representation:

{

"AllowedSpeedsMHz": [

2133,

2400,

2667

],

...

}

2.1.4. The EnumType element

The <EnumType> element is used to define a set of valid values for a given property. Within the

EnumType definition, a set of Members define the string values that are allowed when using the

EnumType. An EnumType definition is referenced by a Property definition using the Type field for the

property.

In the first sample shown below, an EnumType called IndicatorLED is defined as part of the

namespace called Resource.v1_1_0. Within that definition are three Members: Lit, Blinking, and

Off. Those three Members are the three string values that a service is allowed to use for that EnumType.

The second sample shows how to use that EnumType with a Property. In this case, we have a Property

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 9

defined called IndicatorLED, and it's referencing the IndicatorLED definition found in the

Resource.v1_1_0 Namespace via the Type field.

CSDL sample:

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Resource.v1_1_0">

<EnumType Name="IndicatorLED">

<Member Name="Lit"/>

<Member Name="Blinking"/>

<Member Name="Off"/>

</EnumType>

</Schema>

EnumType usage sample:

<Property Name="IndicatorLED" Type="Resource.v1_1_0.IndicatorLED"/>

When representing the above property in JSON, this means that when the service provides the

IndicatorLED property in its JSON object, it must return one of the three values specified by the

IndicatorLED EnumType definition. An example of this is shown below.

JSON representation:

{

"IndicatorLED": "Blinking",

...

}

2.1.5. The ComplexType element

The <ComplexType> element is used to define a JSON object. Inside of the ComplexType definition,

there will be Property and NavigationProperty elements that describe the different properties that will be

found inside of the JSON object.

In the first sample shown below, a ComplexType called ProcessorId is defined as part of the

Namespace called Processor.v1_0_0. Within that definition are six Property elements named

VendorId, IdentificationRegisters, EffectiveFamily, EffectiveModel, Step, and

MicrocodeInfo, all of which are strings. The second sample shows how to use that ComplexType with

a Property. In this case, we have a Property defined called ProcessorId, and it's referencing the

ProcessorId definition found in the Processor.v1_0_0 Namespace via the Type field.

Redfish and OData White Paper DSP2052

10 Published Version 1.0.0

CSDL sample:

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Processor.v1_0_0">

<ComplexType Name="ProcessorId">

<Property Name="VendorId" Type="Edm.String"/>

<Property Name="IdentificationRegisters" Type="Edm.String"/>

<Property Name="EffectiveFamily" Type="Edm.String"/>

<Property Name="EffectiveModel" Type="Edm.String"/>

<Property Name="Step" Type="Edm.String"/>

<Property Name="MicrocodeInfo" Type="Edm.String"/>

</ComplexType>

</Schema>

ComplexType usage sample:

<Property Name="ProcessorId" Type="Processor.v1_0_0.ProcessorId"/>

A service represents the above structure in a payload with the property ProcessorId, and the value is

an object containing the six properties specified in the ComplexType definition. An example of this is

shown below.

JSON representation:

{

"ProcessorId": {

"VendorId": "GenuineIntel",

"IdentificationRegisters": "0x34AC34DC8901274A",

"EffectiveFamily": "0x42",

"EffectiveModel": "0x61",

"Step": "0x1",

"MicrocodeInfo": "0x429943"

},

...

}

2.1.6. The EntityType element

The <EntityType> element is used to define a JSON object while also defining a uniquely identifiable

key for that object. Inside of the EntityType definition, there will be Property and NavigationProperty

elements that describe the different properties that will be found inside of the JSON object. Within

Redfish, the EntityType definitions are used to define the Redfish resources.

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 11

In the CSDL sample shown below, an EntityType named Processor is defined. Within the definition are

four Property elements: Id, Name, MaxSpeedMhz, and TotalCores. Id and Name are both strings, and

MaxSpeedMhz and TotalCores are both 64-bit integers. Using the <Key> element, the Property named

Id is established to be the key. This means that if there are a set of Processor instances, the Id property

must be a unique value amongst the individual Processor instances.

CSDL sample:

<EntityType Name="Processor">

<Key>

<PropertyRef Name="Id"/>

</Key>

<Property Name="Id" Type="Edm.String"/>

<Property Name="Name" Type="Edm.String"/>

<Property Name="MaxSpeedMhz" Type="Edm.Int64"/>

<Property Name="TotalCores" Type="Edm.Int64"/>

</EntityType>

A service represents the above definition as a JSON object with four properties: Id, Name,

MaxSpeedMhz, and TotalCores. An example of this is shown below.

JSON representation:

{

"Id": "CPU0",

"Name": "Processor in Socket 0",

"MaxSpeedMhz": 2000,

"TotalCores": 16

}

2.1.7. The Action element

The <Action> element is used to define an operation that a client can perform by submitting a POST

request to the URI specified by the Action. As part of the definition, the parameters for the Action are

established. A service advertises supported Actions for a given resource by supplying the information as

part of the response to a GET on the resource.

In the CSDL sample shown below, an Action named Reset is defined. The IsBound facet is set to true

in the Action definition; this means that this Action has an association with a particular resource. The first

parameter is the binding parameter, which shows this Action is being bound to the Actions object for a

Manager instance. As a matter of convention, Redfish only uses bound Actions, and they are bound to

the Actions object for a given resource. The second parameter is named ResetType, and is an enum

Redfish and OData White Paper DSP2052

12 Published Version 1.0.0

defined by ResetType in the Resource Namespace.

CSDL sample:

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Manager">

<Action Name="Reset" IsBound="true">

<Parameter Name="Manager" Type="Manager.v1_0_0.Actions"/>

<Parameter Name="ResetType" Type="Resource.ResetType"/>

</Action>

</Schema>

When a client performs a GET on the Manager instance with the Action, the service responds with the

Action representation in the Actions object, which is shown below. The Action itself is represented as a

JSON object with the name in the format #Namespace.ActionName, where Namespace is the string

name of the Namespace where the Action is defined, and ActionName is the name of the Action. In this

case, because the CSDL definition shows the Action is named Reset and is within the Manager

Namespace, the property name used is #Manager.Reset. Inside of the object a property named

target, which shows the URI the client uses in the POST request to perform the Action; in this case the

URI is /redfish/v1/Managers/1/Actions/Manager.Reset. The object also contains payload

annotations to help the client identify constraints on the parameters; in this case, it shows the client is

allowed to submit requests with the ResetType parameter set to On, ForceOff, GracefulShutdown,

GracefulRestart, ForceRestart, or ForceOn. These annotations are discussed further in the

Payload annotations section.

JSON representation:

{

"Actions": {

"#Manager.Reset": {

"target": "/redfish/v1/Managers/1/Actions/Manager.Reset",

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff",

"GracefulShutdown",

"GracefulRestart",

"ForceRestart",

"ForceOn"

]

}

},

...

}

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 13

Using the above information, if a client wants to perform a Reset of the Manager by using a

GracefulRestart, it will submit a POST request to the URI given in target, and the body of the

request will contain a JSON payload that contains the property ResetType with the value

GracefulRestart. An example of this is shown below.

Client POST sample:

POST /redfish/v1/Managers/1/Actions/Manager.Reset HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"ResetType": "GracefulRestart"

}

2.1.8. The Annotation element

The <Annotation> element is used to provide inline documentation for anything defined in the schema

file. Annotation elements give guidance to developers, and can also express conformance rules for clients

and services. Annotation elements contain a Term to describe what type of annotation is being used, and

sometimes contains data to go along with it. Redfish uses only two types of annotations: those defined in

OData and those defined by Redfish. OEM annotations are not allowed.

In the CSDL example below, the Property UserName contains three Annotations:

Redfish.RequiredOnCreate, OData.Permissions, and OData.Description. The first

Annotation contains the term Redfish.RequiredOnCreate; it contains no data, but its presence

indicates that a client is required to supply the UserName property when creating a new resource. The

second Annotation contains the term OData.Permissions, which has the enum value

OData.Permission/ReadWrite to indicate that UserName can be read and written by a client. The

third Annotation contains the term OData.Description, which contains a string description of what this

Property represents.

<Property Name="UserName" Type="Edm.String">

<Annotation Term="Redfish.RequiredOnCreate"/>

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/ReadWrite"/>

<Annotation Term="OData.Description" String="This property contains the user name

for the account."/>

</Property>

Redfish and OData White Paper DSP2052

14 Published Version 1.0.0

2.1.9. Inheritance

EntityType and ComplexType elements are both allowed to use a BaseType in their definition. The value

for the BaseType is the name of the EntityType or ComplexType in which the new type is referencing. It's

not possible to mix EntityType or ComplexType references; the BaseType value in an EntityType must

reference another EntityType, and likewise for a ComplexType definition. All properties defined by the

BaseType become available to the newly defined type.

In the CSDL sample below, two ComplexType elements are defined: Protocol and SSDProtocol.

Protocol contains the Property elements ProtocolEnabled and Port, and SSDProtocol contains

the Property elements NotifyMulticastIntervalSeconds and NotifyTTL. SSDProtocol is

defined with the BaseType set to ManagerNetworkProtocol.v1_0_0.Protocol.

CSDL sample:

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"

Namespace="ManagerNetworkProtocol.v1_0_0.Protocol">

<ComplexType Name="Protocol">

<Property Name="ProtocolEnabled" Type="Boolean"/>

<Property Name="Port" Type="Edm.Int64"/>

</ComplexType>

<ComplexType Name="SSDProtocol" BaseType="ManagerNetworkProtocol.v1_0_0.Protocol">

<Property Name="NotifyMulticastIntervalSeconds" Type="Edm.Int64"/>

<Property Name="NotifyTTL" Type="Edm.Int64"/>

</ComplexType>

</Schema>

Using the above CSDL definitions, the JSON representation of SSDProtocol is shown below. Note that

the JSON object contains the properties defined by both SSDProtocol and Protocol.

JSON representation:

{

"ProtocolEnabled": true,

"Port": 1900,

"NotifyMulticastIntervalSeconds": 600,

"NotifyTTL": 5

}

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 15

2.2. Redfish modeling practices

2.2.1. Core Redfish definitions

Redfish created two core schema files: Resource_v1.xml and RedfishExtensions_v1.xml. All other

schema files published by Redfish leverage these files in some form.

The Resource_v1.xml schema file contains the base definitions for all Redfish resources, which includes:

• The base type definitions for all resources

◦ "Resources" inherit from Resource.v1_0_0.Resource

◦ "Resource Collections" inherit from Resource.v1_0_0.ResourceCollection

• Common properties found in all resources

◦ Id: The unique identifier for a "Resource" in a given "Resource Collection"

◦ Name: The string name for the "Resource" or "Resource Collection"

◦ Description: The string description for the "Resource" or "Resource Collection"

◦ Oem: An empty object that vendors are allowed to fill with custom properties

• Common structures and definitions leveraged by particular resources

◦ Status: Contains health information for a given resource

◦ Location: Contains information relating to how a user can find the physical equipment

◦ Common enumerated lists such as IndicatorLED, PowerState, and ResetType

The RedfishExtensions_v1.xml scheme file contains Annotation elements to further enhance

documentation and rules regarding payloads. See the Schema annotations used in Redfish in the

Appendix for a list of terms defined by Redfish.

2.2.2. Defining Redfish resources

As a matter of convention, Redfish creates a single CSDL file per resource type, and the file is named

after the resource. For example, the CSDL for the ComputerSystem resource can be found in the file

ComputerSystem_v1.xml.

All resources are put into two categories: "Resources" or "Resource Collections".

A "Resource" represents a single resource, such as the Thermal EntityType defined in the

Thermal_v1.xml schema file. All "Resources" inherit from Resource.v1_0_0.Resource. The Id property is

defined as the key property in the EntityType definition.

"Resource Collections" represent a set of "Resources", such as the ComputerSystemCollection

EntityType defined in the ComputerSystemCollection_v1.xml schema file. All "Resource Collections"

inhert from Resource.v1_0_0.ResourceCollection. The Name property is defined as the key property in

the EntityType definition. All "Resource Collections" contain a single NavigationProperty called Members,

which is an array of references to the underlying "Resources" in the collection. For example, the

Redfish and OData White Paper DSP2052

16 Published Version 1.0.0

ComputerSystemCollection will have an array of references to ComputerSystem resources.

"Resources" typically contain a Links property. Links is a JSON object that contains different types of

NavigationProperty elements to show how different resources in data model relate to one another. For

example, in the ComputerSystem definition, there is a NavigationProperty called ManagedBy that is of

type Collection(Manager.Manager). This allows a ComputerSystem instance to reference a set of

Managers in a different portion of the service in order to show which Managers are used to manage the

given ComputerSystem. The CSDL for this is shown below.

Links CSDL sample:

<NavigationProperty Name="ManagedBy" Type="Collection(Manager.Manager)">

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="OData.Description" String="An array of references to the

Managers responsible for this system."/>

<Annotation Term="OData.AutoExpandReferences"/>

</NavigationProperty>

All "Resources" and "Resource Collections" have an optional Oem property. This property is an empty

object that organizations are allowed to populate with their own data structure. In order to do this, the

organization uses another object named after their organization within the Oem object; this is done in

order to allow multiple organizations to make extensions on the same resource simultaneously without

collisions. Inside the organization's object are all the properties being added to the resource. The example

below shows the Contoso organization adding new properties to a ComputerSystem instance.

OEM example:

{

"@odata.type": "#ComputerSystem.v1_5_0.ComputerSystem",

"Id": "437XR1138R2",

"Name": "WebFrontEnd483",

"SystemType": "Physical",

"Oem": {

"Contoso": {

"@odata.type": "#Contoso.v1_2_0.AnvilType1",

"slogan": "Contoso anvils never fail",

"disclaimer": "* Most of the time"

}

},

...

}

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 17

2.2.2.1. Resources in multiple Resource Collections

There are certain cases where a single "Resource" might belong in multiple "Resource Collections". The

simple example is with the Systems and StorageSystems properties found on the Service Root. Both

of these links go to resources that contain a collection of ComputerSystems. While these "Resource

Collections" have their own unique URIs, the intent of the data model is that all instances of

ComputerSystems found in the "Resource Collection" found via the StorageSystems property will also

be found in the "Resource Collection" found via the Systems property. This type of practice is not

common in generic OData implementations.

The two payloads below show samples of "Resource Collections" for the Systems and

StorageSystems links respectively. Notice that the URIs in the StorageSystems payload are a subset

of the URIs in the Systems payload.

{

"@odata.id": "/redfish/v1/Systems",

"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",

"Name": "Systems Collection",

"Members": [

{

"@odata.id": "/redfish/v1/Systems/1"

},

{

"@odata.id": "/redfish/v1/Systems/2"

},

{

"@odata.id": "/redfish/v1/Systems/3"

},

{

"@odata.id": "/redfish/v1/Systems/4"

}

]

}

{

"@odata.id": "/redfish/v1/StorageSystems",

"@odata.type": "#StorageSystemCollection.StorageSystemCollection",

"Name": "Storage Systems Collection",

"Members": [

{

"@odata.id": "/redfish/v1/Systems/2"

},

{

"@odata.id": "/redfish/v1/Systems/4"

Redfish and OData White Paper DSP2052

18 Published Version 1.0.0

}

]

}

2.2.3. Referenceable Members

In some cases, Redfish uses EntityType elements to define embedded objects within a given Resource.

These EntityType elements inherit from Resource.v1_0_0.ReferenceableMember, which is defined in the

Resource_v1.xml schema file. All "Referenceable Members" contain a "MemberId" property. A client is

not able to perform HTTP operations, such as GET, on these EntityType elements. AutoExpand is also

included to ensure the properties of the resource are populated within the JSON body. The purpose of

defining these embedded objects as EntityType elements as opposed to ComplexType elements is to

leverage the @odata.id property in order to allow other portions of the Redfish data model to provide a

URI to an individual structure, such as a RelatedItem link pointing to a single Temperature object. The

@odata.id property is structured as a URI with a JSON fragment identifier in these cases.

In the CSDL sample below, the Resource Thermal is defined. It contains a single NavigationProperty

element named Temperatures, which is an array of Thermal.v1_0_0.Temperature elements. This

NavigationProperty also contains the OData.AutoExpand Annotation element, meaning that the

properties defined by Thermal.v1_0_0.Temperature will be contained in the payload for

Thermal.v1_0_0.Thermal.

CSDL sample:

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Thermal.v1_0_0">

<EntityType Name="Thermal" BaseType="Thermal.Thermal">

<NavigationProperty Name="Temperatures"

Type="Collection(Thermal.v1_0_0.Temperature)" ContainsTarget="true">

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/ReadWrite"/>

<Annotation Term="OData.Description" String="This is the definition for

temperature sensors."/>

<Annotation Term="OData.LongDescription" String="These properties shall be the

definition for temperature sensors for a Redfish implementation."/>

<Annotation Term="OData.AutoExpand"/>

</NavigationProperty>

</EntityType>

<EntityType Name="Temperature" BaseType="Resource.v1_0_0.ReferenceableMember">

<Property Name="Name" Type="Edm.String">

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="OData.Description" String="Temperature sensor name."/>

<Annotation Term="OData.LongDescription" String="The value of this property

shall be the name of the temperature sensor."/>

</Property>

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 19

</EntityType>

</Schema>

Using the above CSDL definitions, the JSON representation of Thermal.v1_0_0.Temperature is

shown below. It contains a property named Temperatures, which contains an array of objects. In this

case, there are two instances, each of which contain the properties @odata.id, MemberId, and Name.

The @odata.id property in each of the Temperature objects contains the URI of the Thermal resource,

and a JSON fragment identifier that identifies where in the JSON response the object resides.

JSON representation:

{

"@odata.id": "/redfish/v1/Chassis/1/Thermal",

"Temperatures": [

{

"@odata.id": "/redfish/v1/Chassis/1/Thermal#/Temperatures/0",

"MemberId": "0",

"Name": "CPU1 Temp"

},

{

"@odata.id": "/redfish/v1/Chassis/1/Thermal#/Temperatures/1",

"MemberId": "1",

"Name": "Intake Temp"

}

],

...

}

2.2.4. Schema versioning

As stated in the previous section, all resources are put into two categories: "Resources" or "Resource

Collections".

"Resource Collections" do not contain any version information. This is because "Resource Collections"

contain a single Members property, and the overall definition never grows over time. The Namespace

used in these definitions is always the same as the EntityType name. For example, the

ChassisCollection_v1.xml schema file contains a single Namespace called ChassisCollection, and

within that namespace is a single EntityType definition also called ChassisCollection.

"Resources" contain version information encoded in the name of the Namespaces used in the schema

files. The first Namespace for a "Resource" is unversioned, and is the same name of the "Resource"

itself. This Namespace also contains a single EntityType definition for the "Resource", and is defined to

Redfish and OData White Paper DSP2052

20 Published Version 1.0.0

be abstract. Subsequent Namespaces contain version information, and the definitions within each

Namespace inherits from the previous versions. Versioned Namespaces are in the format of

ResourceName.vX_Y_Z, where X is the major version, Y is the minor version, and Z is the errata

version.

When new functionality is added, such as adding a new Property, a new minor version of the "Resource"

is created. When an existing definition is corrected, such as fixing an Annotation term on a Property, a

new errata version is created. Major versions are reserved for definitions that break backward

compatibility with existing definitions. For a complete definition of versioning, see the Redfish

Specification.

The CSDL below contains a collapsed definition of the Session resource to highlight the versioning.

• The first Namespace is called Session, and contains a single EntityType definition also called

Session.

• The second Namespace is called Session.v1_0_0, which is the 1.0.0 definition, and the

Session EntityType inherits from Session.Session.

• The next two Namespaces are Session.v1_0_2 and Session.v1_0_3, which are versions

1.0.2 and 1.0.3 respectively. Their Session EntityType definitions inherit from the previous

versions. These were created to fix Annotations found in the 1.0.0 definition.

• The last Namespace is Session.v1_1_0, which is the 1.1.0 definition. The Session

EntityType added a new Actions property to the existing Session definition.

Session CSDL versioning:

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Session">

<EntityType Name="Session" BaseType="Resource.v1_0_0.Resource" Abstract="true"/>

</Schema>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Session.v1_0_0">

<EntityType Name="Session" BaseType="Session.Session"/>

</Schema>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Session.v1_0_2">

<EntityType Name="Session" BaseType="Session.v1_0_0.Session"/>

</Schema>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Session.v1_0_3">

<EntityType Name="Session" BaseType="Session.v1_0_2.Session"/>

</Schema>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Session.v1_1_0">

<EntityType Name="Session" BaseType="Session.v1_0_3.Session">

<Property Name="Actions" Type="Session.v1_1_0.Actions" Nullable="false"/>

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 21

</EntityType>

</Schema>

2.3. CSDL vs. JSON Schema

The DMTF publishes all Redfish schema files in two formats: CSDL and JSON Schema. Both formats are

functionally equivalent, and it's up to the client's design whether it uses one form versus the other.

Currently, the DMTF uses a tool to automatically generate all of the JSON Schema files based off the

CSDL definitions. Other than the language of the schema files themselves, the distinct difference between

the two formats is CSDL has one file per resource type, whereas JSON Schema uses one file per version

per resource type. For example, the Session CSDL file shown in the Schema versioning section will

generate five JSON Schema files: Session.json, Session.v1_0_0.json, Session.v1_0_2.json,

Session.v1_0_3.json, and Session.v1_1_0.json.

For those interested in CSDL to JSON Schema conversion process, refer to the Redfish Tools repository

link in the References section. A tool to convert from JSON Schema to CSDL has yet to be released.

3. Payload annotations

Payload annotations are a mechanism in which a service can provide additional information about a given

property or object within a response. The definitions for these annotations are the same as annotations

used in the CSDL files; an Annotation element in a given Namespace can be used to define payload

annotations.

Redfish limits the scope of these to only core terms defined by OData, as well as Annotation elements

defined in the Redfish and Message Namespaces. The Redfish Namespace is an alias for the

RedfishExtensions.v1_0_0 Namespace found in RedfishExtensions_v1.xml. The Message

Namespace is found in Message_v1.xml.

3.1. Annotating a single property in a response

A payload annotation for a single property takes the form of Property@Namespace.Term, where

Property is the JSON property being annotated, Namespace is the Namespace in the CSDL file where

the definition is found, and Term is the name of the Annotation element found in the Namespace.

In the example below, the property ResetType is being annotated with the AllowableValues term,

which is defined in the Redfish Namespace. This is used to indicate to the client that the service

supports the values On and ForceOff for ResetType.

Property annotation example:

Redfish and OData White Paper DSP2052

22 Published Version 1.0.0

{

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff"

],

...

}

Common property annotations in payloads:

Term Usage

@Redfish.AllowableValues
Indicates to the client the different string values the service

accepts for a given action parameter

@Message.ExtendedInfo

Allows the service to provide a set of Message structures for a

given property to indicate additional information; this can be

useful when a property is null due to an error condition, and

the service wants to convey why the property is null

@odata.count
Can be used on properties that are arrays in order to indicate

their size so that a client does not need to count the array

members

3.2. Annotating an object in a response

A payload annotation for an object takes the form of @Namespace.Term, where Namespace is the

Namespace in the CSDL file where the definition is found and Term is the name of the Annotation

element found in the Namespace. These payload annotations are used to provide further information

about the object itself.

In the example below, the object is being annotated with the ActionInfo term, which is defined in the

Redfish Namespace. This is used to indicate to the client that it can find more information about the

given action, in this case #ComputerSystem.Reset, at the URI /redfish/v1/Systems/1/

ResetActionInfo.

Object annotation example:

{

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 23

"@Redfish.ActionInfo": "/redfish/v1/Systems/1/ResetActionInfo"

},

...

}

Common object annotations in payloads:

Term Usage

@Redfish.Settings
Gives the client a reference to the resource that represents the

future property settings to be applied to this object

@Redfish.ActionInfo
Used on actions to provide the client a reference to an ActionInfo

resource, which gives detailed information about a given action's

parameters

@Message.ExtendedInfo

Allows the service to provide a set of Message structures for a

given object to indicate additional information; this can be useful

when an error condition is reached, and the service wants to

convey what error was encountered

@odata.id Provides the unique URI for a given resource

@odata.type

Provides the type definition of the object in the format of

#Namespace.Type, where Namespace is the Namespace in the

CSDL file where the definition is found and Type is the name of the

ComplexType or EntityType element found in the Namespace

@odata.context

Provides an OData client with a descriptor for the content of the

payload; in Redfish, this is simply always going to be /redfish/

v1/$metadata#Namespace.Entity, where Namespace is the

unversioned Namespace in the CSDL file where the definition is

found and Entity is the name of the EntityType element being

used

4. OData service document

All services must provide the OData service document at the URI /redfish/v1/odata. This document

is not a Redfish resource, but rather is the entry point to the service for OData clients. The OData service

document is a JSON object and contains two properties: value and @odata.context. The value

property consists of an array of the top level entry points to the service, and the @odata.context

property contains the URI to the metadata document. A sample OData service document can be found in

Redfish and OData White Paper DSP2052

24 Published Version 1.0.0

the Appendix.

The CSDL definition for what is defined in the OData service document is found in the EntityContainer

element. Within Redfish, this is defined in the ServiceRoot_v1.xml file, and is given the name

ServiceContainer. As a general rule, any of the NavigationProperty elements defined in the

ServiceRoot EntityType definition are also put into the EntityContainer definition. Redfish also only uses

Singletons. Similar to how the BaseType term can be used to extend the definition of an existing

ComplexType or EntityType element, the Extends term can be used in an EntityContainer element to add

new definitions to an existing EntityContainer. Whenever new NavigationProperty elements are added to

the ServiceRoot resource, the ServiceContainer definition is also expanded accordingly.

The OData service document for a given service must match the ServiceRoot resource for that same

service. For example, if a service supports the AccountService resource, it must be in both the OData

service document as well as the ServiceRoot resource.

Vendors can also create their own OEM services and tie them into the OData service document. Using

the same methodology as when ServiceRoot is published with new standard services, a vendor can

extend the standard ServiceContainer definition for their own purposes. In the example below,

Contoso created their own extension to the ServiceContainer by basing it on the

ServiceContainer definition found in the ServiceRoot.v1_2_0 Namespace, and adding a new

service called TurboencabulatorService, which is of type

TurboencabulatorService.TurboencabulatorService.

Example of extending ServiceContainer:

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"

Namespace="ContosoExtensions.v1_0_0">

<EntityContainer Name="ServiceContainer"

Extends="ServiceRoot.v1_2_0.ServiceContainer">

<Singleton Name="TurboencabulatorService"

Type="TurboencabulatorService.TurboencabulatorService"/>

</EntityContainer>

</Schema>

5. Metadata document

All services must provide the metadata document at the URI /redfish/v1/$metadata. This document

is used by OData clients to resolve definitions for payloads it finds in the service. The metadata document

is an XML file, and in typical OData cases it contains the entire schema definition for the service.

However, Redfish uses this document to simply point to the CSDL files that the DMTF has published, as

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 25

well as any OEM CSDL files a given service may require. This is done in order to maintain consistency

with what has been published by the DMTF. In Redfish, this document is typically consists of a set of

references to Namespaces the service references, as well as the EntityContainer definition for the

service.

The metadata document does not need to include every Namespace ever defined by Redfish; it just

needs to include the Namespaces referenced by the service. There are a few things to examine to help a

developer construct the metadata document for their own service:

• Include the Namespaces referenced by the @odata.type properties returned by the service

◦ Example: if the service can return the @odata.type property with the value

#ComputerSystem.v1_5_0.ComputerSystem, it must include the Namespace

ComputerSystem.v1_5_0 in the metadata document

• Include the Namespaces referenced by the @odata.context properties returned by the

service

◦ Example: if the service can return the @odata.context property with the value

/redfish/v1/$metadata#ComputerSystem.ComputerSystem, it must include

the Namespace ComputerSystem in the metadata document

• Include the Namespaces referenced by payload annotations returned by the service

◦ This is limited to the Redfish and Message Namespaces

◦ The Redfish Namespace is an alias for the RedfishExtensions.v1_0_0

Namespace; the alias must be defined in the metadata document

• Do not forget to include Namespaces referenced by error responses

◦ Typically this is limited to the Message Namespace and one of the versioned

Namespaces inside Message_v1.xml, such as Message.v1_0_0.Message

• Do not forget to include the Namespace where the ServiceContainer will be referenced

The EntityContainer definition for the service is placed between the <edmx:DataServices> tags. This

definition will simply reference the ServiceContainer definition found in ServiceRoot_v1.xml, or the

OEM definition of the ServiceContainer if needed.

A sample metadata document can be found in the Appendix.

6. Appendix

6.1. Primitive OData types used in Redfish

Type JSON Representation

Edm.Boolean Boolean

Redfish and OData White Paper DSP2052

26 Published Version 1.0.0

Type JSON Representation

Edm.DateTimeOffset String, formatted as a date-time value with offset

Edm.Decimal Number, optionally containing a decimal point

Edm.Double
Number, optionally containing a decimal point and optionally containing

an exponent

Edm.Guid
String, matching the pattern ([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-

[0-9a-f]{12})

Edm.Int64 Number with no decimal point

Edm.String String

6.2. Schema annotations used in Redfish

6.2.1. Core annotations defined by OData

Term Usage

OData.Description
Provides a human-readable string to describe what a

Property, NavigationProperty, ComplexType, or other

definition is.

OData.LongDescription
Provides a string containing normative language

about a Property, NavigationProperty, ComplexType,

or other definition.

OData.Permissions
Dictates whether a given Property is writable or read

only.

OData.AdditionalProperties
Shows whether a given ComplexType or EntityType is

allowed to have more properties than what is defined

in the schema.

OData.AutoExpandReferences
Shows whether a given NavigationProperty contains

its reference (@odata.id property).

OData.AutoExpand
Shows whether the service will expand the properties

found in the NavigationProperty in the current

payload.

Measures.Unit Documents the units of measurement for a value; the

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 27

Term Usage

Unified Code for Units of Measure (UCUM) notation

used.

Capabilities.InsertRestrictions
Shows whether a client is allowed to add new

members for a given "Resource Collection".

Capabilities.UpdateRestrictions
Shows whether a client is allowed to modify the

resource.

Capabilities.DeleteRestrictions
Shows whether a client is allowed to delete a given

resource.

6.2.2. Redfish annotations defined in RedfishExtensions_v1.xml

Term Usage

Redfish.Required
Indicates whether a Property or NavigationProperty is

required to be implemented by the service.

Redfish.RequiredOnCreate
Indicates whether a Property or NavigationProperty is

required to be provided by the client as part of a

create request.

Redfish.IPv6Format
Indicates whether a Property follows IPv6 addressing

or formatting rules.

Redfish.Deprecated
Indicates whether a Property, NavigationProperty, or

other definition should no longer be used; also

provides guidance on what should be done instead.

Redfish.DynamicPropertyPatterns
Indicates whether a service can add additional

properties that conform to the patterns specified by

the schema file.

Validation.Pattern
Gives a regex string to show proper formatting for a

string property.

Validation.Minimum
Gives a minimum value a numeric property is allowed

to return.

Validation.Maximum
Gives a maximum value a numeric property is allowed

to return.

Redfish and OData White Paper DSP2052

28 Published Version 1.0.0

6.3. Sample OData service document

{

"@odata.context": "/redfish/v1/$metadata",

"value": [

{

"name": "Service",

"kind": "Singleton",

"url": "/redfish/v1/"

},

{

"name": "Systems",

"kind": "Singleton",

"url": "/redfish/v1/Systems"

},

{

"name": "Chassis",

"kind": "Singleton",

"url": "/redfish/v1/Chassis"

},

{

"name": "Managers",

"kind": "Singleton",

"url": "/redfish/v1/Managers"

},

{

"name": "TaskService",

"kind": "Singleton",

"url": "/redfish/v1/TaskService"

},

{

"name": "AccountService",

"kind": "Singleton",

"url": "/redfish/v1/AccountService"

},

{

"name": "SessionService",

"kind": "Singleton",

"url": "/redfish/v1/SessionService"

},

{

"name": "EventService",

"kind": "Singleton",

"url": "/redfish/v1/EventService"

},

{

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 29

"name": "Sessions",

"kind": "Singleton",

"url": "/redfish/v1/SessionService/Sessions"

}

]

}

6.4. Sample metadata document

<?xml version="1.0" encoding="UTF-8"?>

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ServiceRoot_v1.xml">

<edmx:Include Namespace="ServiceRoot"/>

<edmx:Include Namespace="ServiceRoot.v1_2_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/AccountService_v1.xml">

<edmx:Include Namespace="AccountService"/>

<edmx:Include Namespace="AccountService.v1_2_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Bios_v1.xml">

<edmx:Include Namespace="Bios"/>

<edmx:Include Namespace="Bios.v1_0_2"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Chassis_v1.xml">

<edmx:Include Namespace="Chassis"/>

<edmx:Include Namespace="Chassis.v1_5_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ChassisCollection_v1.xml">

<edmx:Include Namespace="ChassisCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ComputerSystem_v1.xml">

<edmx:Include Namespace="ComputerSystem"/>

<edmx:Include Namespace="ComputerSystem.v1_4_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/

ComputerSystemCollection_v1.xml">

<edmx:Include Namespace="ComputerSystemCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/EthernetInterface_v1.xml">

<edmx:Include Namespace="EthernetInterface"/>

<edmx:Include Namespace="EthernetInterface.v1_3_0"/>

</edmx:Reference>

Redfish and OData White Paper DSP2052

30 Published Version 1.0.0

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/

EthernetInterfaceCollection_v1.xml">

<edmx:Include Namespace="EthernetInterfaceCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/EventDestination_v1.xml">

<edmx:Include Namespace="EventDestination"/>

<edmx:Include Namespace="EventDestination.v1_2_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/

EventDestinationCollection_v1.xml">

<edmx:Include Namespace="EventDestinationCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/EventService_v1.xml">

<edmx:Include Namespace="EventService"/>

<edmx:Include Namespace="EventService.v1_0_4"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/LogEntry_v1.xml">

<edmx:Include Namespace="LogEntry"/>

<edmx:Include Namespace="LogEntry.v1_2_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/LogEntryCollection_v1.xml">

<edmx:Include Namespace="LogEntryCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/LogService_v1.xml">

<edmx:Include Namespace="LogService"/>

<edmx:Include Namespace="LogService.v1_0_4"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/LogServiceCollection_v1.xml">

<edmx:Include Namespace="LogServiceCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Manager_v1.xml">

<edmx:Include Namespace="Manager"/>

<edmx:Include Namespace="Manager.v1_3_1"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ManagerCollection_v1.xml">

<edmx:Include Namespace="ManagerCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ManagerAccount_v1.xml">

<edmx:Include Namespace="ManagerAccount"/>

<edmx:Include Namespace="ManagerAccount.v1_1_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/

ManagerAccountCollection_v1.xml">

<edmx:Include Namespace="ManagerAccountCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/

ManagerNetworkProtocol_v1.xml">

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 31

<edmx:Include Namespace="ManagerNetworkProtocol"/>

<edmx:Include Namespace="ManagerNetworkProtocol.v1_2_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Memory_v1.xml">

<edmx:Include Namespace="Memory"/>

<edmx:Include Namespace="Memory.v1_2_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/MemoryCollection_v1.xml">

<edmx:Include Namespace="MemoryCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Message_v1.xml">

<edmx:Include Namespace="Message"/>

<edmx:Include Namespace="Message.v1_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Power_v1.xml">

<edmx:Include Namespace="Power"/>

<edmx:Include Namespace="Power.v1_3_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Processor_v1.xml">

<edmx:Include Namespace="Processor"/>

<edmx:Include Namespace="Processor.v1_1_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ProcessorCollection_v1.xml">

<edmx:Include Namespace="ProcessorCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Role_v1.xml">

<edmx:Include Namespace="Role"/>

<edmx:Include Namespace="Role.v1_1_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RoleCollection_v1.xml">

<edmx:Include Namespace="RoleCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/SerialInterface_v1.xml">

<edmx:Include Namespace="SerialInterface"/>

<edmx:Include Namespace="SerialInterface.v1_1_1"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/

SerialInterfaceCollection_v1.xml">

<edmx:Include Namespace="SerialInterfaceCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Session_v1.xml">

<edmx:Include Namespace="Session"/>

<edmx:Include Namespace="Session.v1_1_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/SessionCollection_v1.xml">

<edmx:Include Namespace="SessionCollection"/>

</edmx:Reference>

Redfish and OData White Paper DSP2052

32 Published Version 1.0.0

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/SessionService_v1.xml">

<edmx:Include Namespace="SessionService"/>

<edmx:Include Namespace="SessionService.v1_1_2"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Settings_v1.xml">

<edmx:Include Namespace="Settings.v1_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/SimpleStorage_v1.xml">

<edmx:Include Namespace="SimpleStorage"/>

<edmx:Include Namespace="SimpleStorage.v1_2_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/

SimpleStorageCollection_v1.xml">

<edmx:Include Namespace="SimpleStorageCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Task_v1.xml">

<edmx:Include Namespace="Task"/>

<edmx:Include Namespace="Task.v1_1_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/TaskCollection_v1.xml">

<edmx:Include Namespace="TaskCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/TaskService_v1.xml">

<edmx:Include Namespace="TaskService"/>

<edmx:Include Namespace="TaskService.v1_1_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Thermal_v1.xml">

<edmx:Include Namespace="Thermal"/>

<edmx:Include Namespace="Thermal.v1_3_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/VirtualMedia_v1.xml">

<edmx:Include Namespace="VirtualMedia"/>

<edmx:Include Namespace="VirtualMedia.v1_1_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/

VirtualMediaCollection_v1.xml">

<edmx:Include Namespace="VirtualMediaCollection"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/VLanNetworkInterface_v1.xml">

<edmx:Include Namespace="VLanNetworkInterface"/>

<edmx:Include Namespace="VLanNetworkInterface.v1_1_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/

VLanNetworkInterfaceCollection_v1.xml">

<edmx:Include Namespace="VLanNetworkInterfaceCollection"/>

</edmx:Reference>

DSP2052 Redfish and OData White Paper

Version 1.0.0 Published 33

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

</edmx:Reference>

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Service">

<EntityContainer Name="Service" Extends="ServiceRoot.v1_2_0.ServiceContainer"/>

</Schema>

</edmx:DataServices>

</edmx:Edmx>

6.5. References

• OData Documentation: [http://www.odata.org/documentation/]

• Redfish Tools Repo: [https://github.com/DMTF/Redfish-Tools]

Redfish and OData White Paper DSP2052

34 Published Version 1.0.0

http://www.odata.org/documentation/
https://github.com/DMTF/Redfish-Tools

	Redfish and OData White Paper
	Foreword
	Acknowledgments
	1. Introduction
	2. Schema files
	2.1. CSDL format
	2.1.1. The Property element
	2.1.2. The NavigationProperty element
	2.1.3. The Collection type
	2.1.4. The EnumType element
	2.1.5. The ComplexType element
	2.1.6. The EntityType element
	2.1.7. The Action element
	2.1.8. The Annotation element
	2.1.9. Inheritance

	2.2. Redfish modeling practices
	2.2.1. Core Redfish definitions
	2.2.2. Defining Redfish resources
	2.2.2.1. Resources in multiple Resource Collections

	2.2.3. Referenceable Members
	2.2.4. Schema versioning

	2.3. CSDL vs. JSON Schema

	3. Payload annotations
	3.1. Annotating a single property in a response
	3.2. Annotating an object in a response

	4. OData service document
	5. Metadata document
	6. Appendix
	6.1. Primitive OData types used in Redfish
	6.2. Schema annotations used in Redfish
	6.2.1. Core annotations defined by OData
	6.2.2. Redfish annotations defined in RedfishExtensions_v1.xml

	6.3. Sample OData service document
	6.4. Sample metadata document
	6.5. References

