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Executive summary   
This report describes the quality assessment of the FAO’s data portal to monitor Water Productivity through Open 

access of Remotely sensed derived data (WaPOR 1.0). The WaPOR 1.0 data portal has been prepared as a major 

output of the project: ́ Using Remote Sensing in support of solutions to reduce agricultural water productivity gaps’, 

funded by the Government of The Netherlands. The WaPOR database is a comprehensive database that provides 

information on biomass production (for food production) and evapotranspiration (for water consumption) for 

Africa and the Near East in near real time covering the period 1 January 2009 to date. This report is the result of an 

independent quality assessment of the different datasets available in WaPOR prepared by IHE-Delft. The quality 

assessment checks the consistency of the different layers and compares the individual layers to various other 

independent data sources, including: spatial data; auxiliary data and in-situ data. The report describes the results of 

the quality assessment per data layer for each specific theme as available on the portal:

Precipitation (PCP)
The PCP dataset posted on the WaPOR data portal is a copy of CHIRPS, with a few modifications for data gaps 

in agricultural areas. This dataset has been validated by different independent and international science teams. 

The CHIRPS database is among the top PCP databases available online and performs specifically well on decadal 

timescales. 

Reference Evapotranspiration (RET)
The WaPOR RET data is able to correctly express RET climatic evapotranspiration across the continent. On the 

continental level, variations in RET between years are low (varying less than 25 mm per year, 0.6%). A similar trend 

is also observed for one weather station. The WaPOR RET data is able to identify the impacts of 2009 El Nino event, 

with higher than average RET in Southern and West Africa and lower RET values in East Africa, consistent with El 

Nino anomalies. However, some more validation with ground-based weather station data remains necessary.

Actual Evapotranspiration and Interception (AETI)
Compared to similar remote sensing databases of actual evapotranspiration, WaPOR AETI is reliable for a longer 

period (e.g. a year) and larger areas (e.g. a sub-basin). The annual AETI for Litani basin in Lebanon is excellent. The 

quality reduces with a higher aridity such as in Egypt and South Africa. The 250m and 100m pixels are less suitable 

for detecting AETI of vegetables and fruit crops; 30 m pixels add a lot of value. However there are several challenges 

with the breakdowns of annual AETI into monthly and decadal values, and also spatially for local agricultural fields. 

The latter is manifested in the validation with individual flux tower data (eddy covariance and surface renewal). 

WaPOR AETI for the crop season is systematically underestimated (20-60%). Hence, a spatial and temporal 

refinement of AETI is required. It is fair to note that field measurements on AETI often have their own uncertainties.

Transpiration, Evaporation, Interception (T, E, I)
All three products individually showed reasonable ranges in values and spatial variability. Compared to ETMonitor, 

WaPOR T estimates are high and WaPOR E estimates are low. The high WaPOR ratio of T/AETI is consistent with 

the Budyko approach, exceeding at the continental scale 0.7 ratio. While this does not always match with the general 
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opinion, 0.7 ratio and higher for tropical forest and permanent crops are very acceptable. For the selected irrigation 

systems in Ethiopia, Egypt, Lebanon and Ghana similar high T/AETI are found (>0.73), consistent for vegetated 

areas. 

Above Ground Biomass Production (AGBP)
Agro-ecological production is commonly expressed as Net Primary Production (NPP) in remote sensing 

terminology, or crop yield in agronomic terms. A direct comparison against AGBP from other sources is difficult. 

The comparison against NPP from MODIS and global ecological production models does not identify serious 

problems at the continental scale: the absolute values and aerial patterns of NPP are very acceptable. This is 

confirmed from the crop yield analysis for sugarcane (Ethiopia), grapes (Lebanon), rice and bananas (Ghana) and 

wheat (Egypt). Fresh crop yield could be very well approximated, provided that local calibration of Harvest Index 

and the moisture content of the harvestable product is considered and the cropping season is defined on the basis 

of local information. This implies that local agronomical knowledge is necessary to convert AGBP into crop yield. 

Some warning on the role of the default 0.65 shoot-root ratio and default C3 crop maximum light use efficiency of 

2.49 gr/MJ of total dry matter for all C3 and C4 crops should be mentioned in the information section of the WaPOR 

website.

Land cover classification
Land cover classification, as all data layers, has been created with different spatial resolutions. The single most 

relevant class for water productivity is the distinction between rainfed and irrigated crops. While the WaPOR 

irrigated area extent is at times comparable to the GMIA from FAO AQUASTAT, verification with other sources and 

field measurements indicated that a serious underestimation occurs. The procedure applied for mapping irrigated 

areas may need to be improved.

Phenology
The crop phenology is essential for assessing the accumulated values of biomass production (AGBP and TBP) and 

water consumption (AETI). This study finds that the accuracy of the phenology is poor and does not match with 

local cropping calendars. This is a serious limitation for approximating the accumulated values between dates 

of emergence and date of harvest. This part of WaPOR can currently not be used without local information or 

validation, and an appropriate warning should be provided through the WaPOR portal. 

Water productivity
The water productivity layer in WaPOR is a compilation of other WaPOR layers (phenology, land use, AGBP, AETI 

and T), errors in those layers are therefore compounded in the water productivity layer. The errors in the phenology 

and land cover classification layers were overcome by applying the start and end date of the season and using a 

polygon of the field obtained from observations. The analyses show very good comparisons with a slight deviation 

due to the inclusion of fallow land within the polygons. For example the WP analyses for sugarcane (Ethiopia) 

is therefore underestimated with non farm land (fallow land, buildings, roads and open water) showing low WP. 

On the other hand, WP for wheat and maize (Egypt) can be overestimated as included fallow areas show high WP. 

Finally, WP analyses in a humid zone (Southern Ghana) shows little distinction between the agricultural lands and 

the surrounding natural vegetation. It is clear that detailed cropping maps are required to exclude this kind of noise 

from the WP analyses.
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1. Introduction

A. Overview
This report is an output of the project “Using Remote Sensing in support of solutions to reduce agricultural water 

productivity gaps”, funded by the Government of The Netherlands. The project is lead by FAO with the following 

project partners: FRAME consortium, IHE Delft and IWMI. The objective of the project is monitoring water 

productivity, identifying water productivity gaps, proposing solutions to reduce these gaps and contributing 

to a sustainable increase of agricultural production. The main output is to develop an open access data portal 

on remotely sensed derived water productivity in Africa and the MENA region, hosted by FAO. The FRAME 

consortium, consisting of eLEAF, VITO, ITC, and the WaterWatch Foundation, is responsible for creating and 

providing the remote sensing data for the project. In April 2017, FAO’s portal to monitor Water Productivity through 

Open access of Remotely sensed derived data (WaPOR) was launched as a Beta version. Two parallel independent 

quality assessments of the Beta version were implemented by IHE Delft and ITC. Recommendations from these 

assessments were used to prioritize improvements for WaPOR version 1.0. In August 2018, this improved version 

was made available through the link: https://wapor.apps.fao.org (version 1.0), in December 2018 some additional 

improvements on the user interface of the portal were made available through version 1.1. An overview of the 

available WaPOR data is provided in Table 1.



2 WaPOR quality assessment

The WaPOR database is the first comprehensive dataset that combines biomass production (for food production) 

and AETI information (for water consumption) at continental scale near real time covering the period 1 January 

2009 to date. It should be emphasized that the Gross WP and Net WP are based on Above Ground Biomass 

Production and not on the fresh crop yield as is often done for international WP studies. The reason for avoiding 

crop dependent information is the lack of accuracy to determine crop layers from earth observation data. The 

validation of AGBP and WP can however only be done through conversion into crop yield data, because AGBP is 

rarely measured under actual field conditions.  

B. Quality Assessment
Output 2 of the project includes a quality assessment of the WaPOR database. Results of this independent 

assessment by IHE Delft are presented in this report. It is meant for an independent verification of WaPOR version 

1.0 data and it forms a basis for including improvements in WaPOR version 2.0. This quality assessment checks the 

consistency of the different layers and compares the individual layers to various products:

Table 1  
Thematic areas and WaPOR data components available for different spatial resolutions*

Thematic area Layers Level 1 (250 m) Level 2 (100 m) Level 3 (30 m)

Climate Precipitation (PCP) Daily/decadal/
annual (5km)

Reference 
Evapotranspiration (RET)

Daily/decadal/
annual (20km) 

Water Actual Evapotranspiration 
and Interception (AETI) 

Decadal/annual Decadal/ seasonal/ 
annual

Decadal/ 
seasonal/ annual

Transpiration (T)

Evaporation (E)

Interception (I)

Land Above ground biomass 
production (AGBP)

Annual Decadal/ seasonal Decadal/ seasonal

Land cover classification 
(LCC)

Annual Annual Decadal

Phenology Seasonal Seasonal

Net Primary Production 
(NPP)

Decadal Decadal Decadal

Water 
Productivity 
(WP) 

Gross WP Annual Seasonal Seasonal

Net WP Annual Seasonal Seasonal

* currently available products in the WaPOR portal
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-	 Spatial data products

-	 Auxiliary data comparison

-	 In-situ data comparison

Table 2 presents an overview of the comparisons made between the WaPOR database and other data sources.

 
Consistency check
For each layer the general spatial trend is analysed, as well as the range of values in the layer. This is implemented 

at continental level (WaPOR Level 1, 250 m resolution). The authors used their expert judgement to evaluate if the 

values are in reasonable ranges.  

Table 2  
Overview of comparisons made for each layer

Thematic 
area

Layers Spatial data Auxiliary data In situ observations 

Climate PCP CRU

RET GLDAS, TerraClimate Weather station 
data (Bekaa and Port 
Said)

Water AETI Various remote sensing 
data products, SWAT 
modelling output

Water balance for large river 
basins in Africa, Litani River 
Basin, Nile sub-basins, Fayoum 
irrigation scheme, field scale soil 
water (Jordan, Israel)

Flux towers (South 
Africa, Ghana, 
Senegal, Egypt)

T Remote sensing data 
products (ETMonitor, 
GLDAS),  Budyko approach

Sap flow Tunisia

E

I

Land AGBP Remote sensing products 
(MODIS)

Comparisons with known yields 
(Wonji, Fayoum, Kpong, Bekaa 
Valley irrigation scheme) 

LCC Other databases (GMIA, 
GIAM)

National statistics Rwanda GIAM Ground truth 
data points for 
Benin, Ethiopia

Phenology FAO crop calendarsa , case study 
information (Wonji, Fayoum, 
Kpong, Bekaa)

WP Gross WP WP MODIS & Servir 
Mekong

Case study data (Wonji, Fayoum, 
Bekaa)

Net WP

  a http://www.fao.org/agriculture/seed/cropcalendar/welcome.do
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Spatial data 
Next to the WAPOR data, there are many other spatial data products available that monitor various WaPOR param-

eters. These spatial data products are either derived from remote sensing, similarly to WaPOR, or derived through 

other means (e.g. modelling). The products were compared on their general trends and statistical properties and 

differences with the WaPOR data were calculated and analysed.  These analyses were done at continental level using 

the WaPOR Level 1 data (250 m resolution).

Auxiliary data 
Several WaPOR layer products can be compared indirectly with auxiliary and independently gathered datasets. One 

such example is the water balance calculations, which derives actual ET using observed data for a specific area. The 

advantage of this method is that it integrates parameters over a specific area using observed and often validated 

datasets. Depending on the scale of the analyses, the WaPOR data with the highest available resolution was used.

In situ observations
Where possible, the WaPOR data layers are compared with in situ observations. As the WaPOR data has very high 

resolution (250 m to 30 m on selected pilot areas), it is possible to validate the product using point observations. 

This comparison has the highest value as it compares the same parameter using observed data. Depending on the 

location of the in situ observation, the WaPOR data with the highest resolution was used for the comparison.

Robustness analyses
Finally, the analyses focus on the consistency between the different WaPOR layers, in particular those that are 

independently developed. 

The selection of data for comparison and robustness analyses were dependent on the availability of data products 

online and on willingness of our partners to share their data. 

As can be seen from Table 2, the report provides a wide range of analyses to validate the WaPOR dataset. It combines 

comparative analyses at continental level, various analyses at country, basin and field scale to the highest resolution 

of comparison at pixel resolution. The report provides a first indication of the quality of the individual data layers. 

The following chapters will describe the results of the quality assessment in three different thematic areas, similar 

to the portal: climate, water, and land. Each chapter will contain an assessment of the data layers found in the 

specific theme (Table 1). 
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2. Climate

A. Precipitation
A.1 Introduction
There are various remote sensing products of precipitation (PCP) available in the open domain and in near-real-

time for Africa (Table 3). Some started in the 1980s and are continuing into the present. Increasingly remote sensing 

data products have included bias-corrections using ground observations (e.g. Xie et al., 2011). Various studies 

evaluated the performance of satellite-derived products. At continental scale, Awange et al. (2016) found that the 

various products performed better at different time scales and different geographical locations. There is not one 

product which outperforms the other products across temporal and spatial scales, although TRMM and CHIRPS 

are often found to be among the more reliable products (e.g. Cheema and Bastiaanssen, 2011; Simons et al., 20016; 

Ha et al., 2018). Generally, satellite remote sensing products that correct biases using ground observation performed 

better compared to those that use remote sensing alone (Awange et al., 2016; Pomeon et al., 2017).

 

The CHIRPS dataset, used for the WaPOR database, is an existing data product and has a spatial resolution of 5 

km (Funk et al., 2015). This database was modified for data gaps for WaPOR important agricultural areas (FAO, 
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2018). The dataset combines remote sensing information with ground observations. In various studies, CHIRPS 

data has been compared to observed PCP and other similar satellite PCP products. For example, in Burkina Faso, 

daily products generally performed poorly compared to ground observations. Aggregated products at monthly 

and annual scale performed much better (>0.8) (Dembele and Zwart, 2016). Data with higher spatial resolution 

performed better at station to pixel level (Dembele and Zwart, 2016). For decadal scale, Dembele and Zwart (2016) 

found that RFE performed best, closely followed by ARC and CHIRPS. Similarly, Hessels (2015) compared various 

remotely sensed PCP products with weather station data from the Blue Nile region and found that the CHIRPS 

data product displays the best correlation with station data. For East Africa, Dinku et al (2018) found that CHIRPS 

performed better than ARC and slightly better than TAMSAT at decadal and monthly timescales (whereas TAMSAT 

performed better at daily time scales).  

A.2. Data analyses
The average annual PCP for the African continent lies between 537 and 597 mm per year (Table 4). The standard 

deviation of the mean annual PCP is 18 mm per year, which shows at a continental scale a relatively constant annual 

PCP. However, locally large variations in PCP occur between years with far reaching consequences for rainfed 

cropping systems and flood risks. A few areas in the vicinity of steep mountain ranges show very high annual PCP 

amounts (>3 000 mm per year) throughout the entire period. This is around the coast of West Africa and Cameroon 

and the east coast of Madagascar (which are more visible when adjusting the legend) (Figure 1; right). The general 

spatial variation in PCP at the continental scale is consistent with known PCP trends, low values are found across 

the Sahel and the Middle East region. Also high amounts of PCP occur around the West Coast of Africa, around 

the equator and the inlands of the Democratic Republic of Congo and highlands in East Africa (Uganda, Rwanda, 

Ethiopia) and the east coast of Madagascar (Figure 1).

Table 3  
Example of available real time PCP data products over Africa

Satellite product Temporal 
coverage

Spatial 
coverage

Spatial 
resolution

Temporal 
resolution

Reference 

ARC Version 2.0 1983–present Africa 0.1° (~10 km) Daily Xie and Arkin, 1995

CHIRPS Version 
2.0

1981–present Near global 0.05° (~5 km) Daily Funk et al., 2015

CMORPH 1998-present Africa 0.1° (~10 km) 3-hourly Joyce et al., 2004; Xie et 
al., 2011

PERSIANN-CDR 1983–present Near global 0.25°(~27 km) Daily Hsu et al., 1997; Novella 
and Thiaw, 2013, 2010

RFE Version 2.0 2001–present Africa 0.1° (~10 km) Daily Herman et al., 1997

TAMSAT 1983–present Africa 0.0375° (~4 km) Decal Maidment et al., 2014; 
Tarnavsky et al., 2014

TRMM 3B42 
version 7

1998–present Near global 0.25°(~27 km) 3-hourly Maidment et al., 2014
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Table 4  
Average annual WaPOR PCP statistics (mm/yr) for the African continent

2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

Min 0 0 0 0 0 0 0 0 0 0

Max 4 789 5 257 4 787 4 576 4 330 5 004 4 735 4 759 5 876 4 901

Mean 572 597 587 590 566 565 537 562 584 573

Sd 603 632 624 621 611 599 580 597 626 604

Comparison with other spatial data products

A comparison was made between the average annual PCP of Harvest Choice (HC) (Harvest Choice, 2011) and the 

average annual precipitation of the WaPOR database (Figure 2). The HC dataset is based on the reanalysis dataset 

from the University of East Anglia Climatic Research Unit (CRU) that essentially is interpolating and extrapolating 

between measured rainfall at gauges (New et al., 2000). This dataset shows similar high PCP areas in West Africa 

and Madagascar (Figure 2 left). Considering the difference in the period of observation (1901-2005 vs 2009-2017), 

the general trend of PCP is similar between the two datasets, except for a few areas (Figure 2 right). These areas 

were found in Madagascar and Eastern part of the Democratic Republic of Congo. We have more trust in the 

CHIRPS data because many locations in Africa are not equipped with a rain gauge, and this affects the quality of the 

CRU-based PCP dataset.

Figure 1  
Average annual WaPOR PCP (2009-2017) using two different legends  
(based on quartiles, left and based on equal intervals, right).

WaPOR PCP (mm/yr)
0
75
315
1000
3500

WaPOR PCP (mm/yr)
0
750
1500
2250
3000
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A.3 Conclusion
The PCP dataset posted on the WaPOR data portal is based on the CHIRPS dataset. This dataset from USGS has 

been validated and tested for many years by different independent science teams. The CHIRPS dataset is among 

the top PCP products available online and performs specifically well on decadal timescales as shown by Dembele 

and Zwart (2016). 

B. Reference Evapotranspiration
B.1. Introduction
After the introduction by FAO of the global standard Reference evapotranspiration (RET) (Allen et al., 1998), RET 

became a well-recognized concept to express the climatologic variability of crop ET. The attractive character of RET 

is that it is only affected by climatic factors, excluding other factors like for example crop and soil typology (Allen et 

al., 1998). Over the past decades various approaches have been developed to calculate RET, often based on simpler 

input data (e.g. Hargreaves and Samani, 1985; de Bruin et al., 2016). However, the Penman-Monteith equation (Allen 

et al., 1998) is the most applied approach, after it was selected to be the best performing equation in a variety of 

climates by an FAO expert consultation in 1990. The drawback is that more detailed climatological information is 

required (radiation, humidity, temperature and wind speed), which is not always everywhere available in weather 

stations over the African continent.

Solar radiation is nowadays available with an unprecedented accuracy from Second Generation Meteosat (MSG) 

measurements over Africa and Near East. What remains is local prevailing humidity, temperature and wind speed, 

that are more commonly taken from numerical climatic and weather forecasting models to fill the voids of in situ 

Figure 2  
Average annual PCP Harvest Choice (HC) and difference between the HC (1901-2005) and 
WaPOR data (2009-2017)

HC PCP (mm/yr) WaPOR-  HC PCP (mm/yr)
0
750
1500
2250
3000

-1500
-750
0
750
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Figure 3  
3 WaPOR Average Annual RET for the years 2009-2017 and difference between average 
annual RET and RET 2009.WaPOR data (2009-2017)

weather stations. The RET provided by WaPOR is based on the standardized FAO Penman-Monteith equation 

(Allen et al., 1998) and input retrieved from MERRA, which utilizes MSG (solar radiation). The data is available at a 

spatial resolution of 20 km. 

B.2. Data analysis
The average annual WaPOR RET ranges between 2 047 and 2 071 mm per year (see Table 5). The map shows large 

variations of average RET (Figure 3). The highest RET values (3 500 mm/yr) can be found across the Saharan desert 

and Middle East countries. These high values are controversial because due to the desert conditions, values for 

air humidity are low and the values for air temperature are high which at actual evaporation rates of 3 500 mm/yr 

would immediately result in a higher air humidity and lower air temperature and as such suppressing RET. This 

also the basis of Bouchet’s complementary relationship in evaporation processes (Bouchet, 1963). This implies that 

the extremely high RET values will never be reached. The very high RET values in desert conditions are therefore a 

consequence of the chosen standard methodology (Allen et al., 1998) and not an error of WaPOR. Lower RET values 

(825 mm/yr) are found in coastal areas, highlands of Ethiopia and the tropical forest in the Democratic Republic of 

Congo. Lower RET values occur due to low solar radiation (many clouds) and high humidity due to frequent rainfall 

events. Therefore, PCP and RET are inversely related (compare Figures 1 and 3).

Table 5  
Mean annual WaPOR RET and standard deviations (for all regions)

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean

Mean 2 068 2 071 2 051 2 050 2 058 2 060 2 047 2 062 2 057 2 059

Sd   518    514 518 497 512 535 521 510 519 511

WaPOR RET (mm/yr)
WaPOR AETI 2009 minus 
average (mm/yr)

750
1375
2000
2625
3250

-350
-175
0
175
350
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The annual WaPOR RET is very consistent and the inter-annual variability is very low because average climatic 

conditions hardly change. However, when comparing WaPOR RET in 2009 to the long-term average (Figure 3 right), 

large parts of southern Africa and West Africa show value well below average RET, while East Africa RET values are 

above average. This is consistent with 2009/10 being determined an El Nino year, which is often associated with 

drought conditions in Southern and West Africa and wet conditions in East Africa (Conway, 2009; Richard et al., 

2000; FAO, 2019). Even though the two periods do not overlap completely, the difference of WaPOR RET in 2009 

compared to the overall average shows similar impacts as reported for El Nino events.  

Comparison with other spatial data products

WaPOR RET was compared with the TerraClimate (TC) database (Abatzoglou et al., 2018). TC RET is calculated 

by using FAO Penman Monteith using reanalysis data from the Climate Research Unit (CRU) time series data 

version 4.0 (Harris and Jones, 2017). TC RET values were validated using 50 FLUXNET stations, but these were 

mainly found in USA and Europe. The two datasets provide significantly different patterns and values (Figure 4). 

Especially the transition zone between the Sahel and humid tropics is underestimated by TC RET as compared to 

WaPOR RET. For some reason, there is a substantial disagreement for Algeria and Sudan. TC uses air temperature 

for the analyses, which could be the root cause for these type of differences, and this dispute could be solved by using 

satellite thermal measurements in future studies.

To complete the comparison, RET data directly downloadable on the GLDAS website has been consulted as well 

(Figure 5). The GLDAS RET values are substantially higher compared to WaPOR. This could be related to the 

GLDAS formulation of RET or the solar radiation that they use from atmospheric circulation models (instead of 

MSG). Considering the fact that these values are very high, more trust to WaPOR RET is given.

Figure 4  
TerraClimate RET Comparison WaPOR RET and TerraClimate RET (average for 2009-2017)

TC RET (mm/yr) TC WaPOR RET (mm/yr)
750
1375
2000
2625
3250

-500
-250
0
250
500



112. Climate

Figure 5  
GLDAS RET and comparison with WaPOR RET for the year 2010

Point data comparison

Full-fledged weather stations generally measure all parameters required to calculate RET using the Penman-

Monteith equation. Therefore, station RET was compared to WaPOR RET for a number of locations. Since the 

WaPOR RET data has a spatial resolution of 20 km following MERRA no perfect correlation with station data can be 

expected. The first comparison uses data from a weather station at Port Said, Egypt. Results are displayed in Figure 

6. The linear regression indicates that the station data and WaPOR data have a good correlation with an R2 of 0.94. In 

comparison with the 1:1 line the WaPOR RET data is consistently lower by 17 percent compared to the station data. 

A second location is the Tal Amara weather station in the Bekaa Valley in Lebanon. For this station, surrounded 

by agricultural fields, a longer time series of data was available, but for some periods data was not recorded (e.g. 

radiation in early 2016) resulting in gaps (Figure 7). The WaPOR RET data follow the seasonality of the station data. 

The r2 between the two datasets (2014-2016) is lower than for the Port Said station at 0.89, but is still relatively good. 

Tests with more weather stations should be done to improve the accuracy of the quality assessment.

B.3 Conclusions
On the continental level, variations in RET are low (varying less than 25 mm per year, 0.6%), due to similarity in 

climatology between consecutive years. The WaPOR RET data is able to identify the impacts of the 2009 El Nino 

event, with higher than average RET in Southern and Western Africa and lower RET values in East Africa. The 

station comparison (only two stations) gives high correlation with the WaPOR data. This suggests that MERRA 

is a good choice for computing RET, being an attractive solution for areas not being equipped with routine and 

complete weather stations.

GLDAS RET (mm/yr) GLDAS - WaPOR RET (mm/yr)
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1375
2000
2625
3250

-200
-1500
-100
-500
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Figure 6  
RET from Egypt Port Said Station and WaPOR RET for 2014 – 2015

Figure 7  
RET station data and WaPOR RET data for Tal Amara, Lebanon
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3. Water

A. Actual Evapotranspiration and Interception 
A.1 Introduction
The Actual Evapotranspiration and Interception (AETI) flux is dependent on the availability of energy, the prevailing 

Leaf Area Index (LAI) and soil moisture. AETI is an important component in the water balance, accounting for up 

to 90 percent of the consumption of incoming precipitation in river basins such as the Nile system. It is of major 

importance for disciplines ranging from hydrology to agricultural and climate sciences (Łabędzki, 2011; Trambauer 

et al., 2014). Scientists have struggled to measure AETI in the field and have resorted to calculating it indirectly 

through crop coefficients assuming conditions and crop development stages that follow certain specific standards 

not considering diseases nor nutrient status (Allen et al., 1998). Direct measurements of AETI by for instance flux 

towers, surface renewal or scintillometers are scarce in Africa and only available for a few point locations (flux 

towers) or for small spatial extents (<5 km) for limited periods of time (scintilometer) as part of academic research 

(Trambauer et al., 2014; Kongo et al., 2011). For the AETI at field and river basin scale, it is customary to use remote 

sensing techniques to assess AETI because hydrological and crop growth models cannot capture the complex 

ecosystem and biophysical dynamics induced by humans (land use and soil moisture) and nature (diseases; fungi; 

salinity). 

D
et

ai
l o

f W
aP

O
R

 M
ap

 “
A

ct
ua

l E
va

po
T

ra
ns

pi
ra

ti
on

 a
nd

 In
te

rc
ep

ti
on

 (
E

T
Ia

) 
- 1

- 1
0 

M
ay

 2
01

9 
- C

en
tr

al
 a

nd
 s

ub
 S

ah
ar

an
 A

fr
ic

a”



14 WaPOR quality assessment

AETI is not directly measured by satellites. Instead, AETI can be determined from other terms of the surface energy 

balance, calculated through physical variables that can be observed from space. Therefore various types of remote 

sensing algorithms for the estimation of AETI have been developed. IHE Delft is making ensemble predictions of 

AETI using seven different standard models. In addition, there exist AETI data layers based on flux measurements, 

climate models and machine learning algorithms. A recent overview is provided by Pôcas et al. (2015) and Paca et al. 

(2019).  

Various studies evaluate AETI at large scales using inter-comparison of AETI estimations derived from different 

types of models (Fisher et al., 2017; Jiménez et al., 2011; Kiptala et al., 2013; Miralles et al., 2016; Mu et al., 2011; Schuol 

et al., 2008; Trambauer et al., 2014; Vinukollu et al., 2011; Wartenburger et al., 2018; Zhang et al., 2016). The differences 

found between the models arise from inconsistencies in the use of forcing data, model conceptualization and user 

defined parameter estimations and in the calculation method for AETI. Thus, when comparing magnitudes and 

spread of AETI between the different approaches it is difficult to assess which model is more accurate than others, 

specifically since there is limited ground observations to validate the data. 

The WaPOR AETI data estimates Transpiration (T), Evaporation (E) and Interception (I) individually and sums 

them up as AETI = T + E + I. WaPOR is based on the ETLook model (Bastiaanssen et al., 2012; Samain et al., 2012 ). 

ETLook is designed for automated processing, and is versatile as it allows for soil moisture as an input data layer. 

I is calculated independently using parameters for vegetation cover, leaf area index and precipitation. Most other 

multi-layer surface energy balance models require more input data that are either not available, or the model 

schematization is too simple so that the outputs are no longer reliable. The FRAME consortium has developed 

ETLook into an operational model.

A.2 	 Data analysis
WaPOR AETI shows similarities to the PCP dataset (Figure 8), the availability of water is clearly the constraining 

factor for AETI. Energy (RET) plays a key role in equatorial Africa with frequent cloud cover and moist atmosphere. 

Other areas with high AETI values are locations where water is available from surface runoff, flooding or groundwa-

ter presence for example the Inner Niger Delta in Mali, the Sudd wetland in Sudan, the Nile Delta and River in Egypt 

and the Okavango Delta in Botswana (Figure 8). At continental scale, average annual AETI shows little variation 

from 496-519 mm per year (Table 6). 

Table 6  
WaPOR AETI 2009-2017

2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

Min 0 0 0 0 0 0 0 0 0 0

Max 2 336 2 243 2 213 2 217 2 154 2 183 2 191 2 216 2 285 2 226

Mean 505 497 496 497 488 500 499 513 519 502

Sd 516 490 508 492 497 505 504 513 521 505
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Figure 8  
Average annual WaPOR AETI (2009-2017)

Comparison with other spatial data products

There are numerous spatially distributed AETI products available for Africa (Table 7). The products use different 

input data and different approaches and vary in quality and spatial resolution. The WAter Cycle Observation Multi-

mission Strategy - EvapoTranspiration - WACMOS-ET (Michel et al., 2016), LandFlux-EVAL (Mueller et al., 2013), 

and Model Tree Ensemble (MTE) (Jung, 2009) should also be mentioned in this regard. The LandFlux-EVAL covers 

the period of 1989 to 2005, with a spatial resolution of 1o × 1o (Mueller et al., 2013)1. The MTE product is upscaled 

from the database of the FLUXNET. The MTE ran for a longer period, from 1982 until 2011, spatially distributed on 

a 0.5o × 0.5o grid (Jung et al., 2010)2. The WACMOS-ET Project has a better spatial resolution of 0.25o × 0.25o, for the 

period 2005 to 2007 (Michel et al., 2016). The WACMOS-ET product is a combination of LandFlux-EVAL and MTE, 

1  https://data.iac.ethz.ch/landflux/
2  https://www.bgc-jena.mpg.de/geodb/projects/Home.php
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and thus expected to be superior. The development of each product has been peer reviewed, however with limited 

observed AETI data to validate the accuracy over Africa and the Middle East.

Table 7  
Statistics of AETI products over Africa 2010

Satellite product AETI estimation approach Source of input 
data

Reference 

ETMonitor Process based model implementing  processes of 
energy balance, plant physiology, and Soil water 
balance

 MODIS, 
Microwave data

Hu and Jia, 2015

CMRSET Based on Priestley-Taylor Equation and relation 
between EVI and GVMI

 MODIS Guerschman et al., 
2009

SEBS Calculates the energy balance, by calculating the 
sensible heat flux based on local maxima and 
minima of surface temperature

 MODIS Su, Z. 2002

GLEAM v3.2 Based on Priestley-Taylor Equation (ETpot) 
multiplied by soil stress factors based on soil 
properties and interception is added based on 
CMORPH and TRMM

 AMSR-E, LPRM, 
CMORPH, 
TRMM

Miralles et al., 2011a 
and b

SSEBop v4 Combines ET fractions generated from RS LST with 
reference ET using a thermal index approach. 

 MODIS  Senay et al. 2014

ALEXI Calculates the evaporative fraction based on the 
morning and evening overpass of MODIS. Based on 
this fraction the ETa is determined.

 MODIS, GOES Anderson et al., 2007

MODIS16 Combines the Penman Monteith equation and the 
surface conductance model. 

 MODIS Mu et al., 2007; 
2011b

LandFlux-EVAL The LandFlux-EVAL covers the period of 1989 to 
2005, with a spatial resolution of 1o × 1o (https://
data.iac.ethz.ch/landflux/)

- Mueller et al., 2013

WACMOS-ET The WACMOS-ET product is a combination of 
LandFlux-EVAL and MTE, and thus expected to be 
superior

Various Michel et al., 2016

Model Tree 
Ensemble

The MTE product is upscaled from the database of 
the FLUXNET

Various Jung et al., 2009

GLDAS NOAH land surface models with remote sensing 
data assimilation

MODIS and 
ASCAT

Rodell et al., 2004

TerraClimate Water Balance Model outlined by Dobrowski et al. 
2013

WorldClim 
version 2 

Abatzoglou et al., 
2018

WECANN Artificial Neural Network MODIS Alemohammad et al., 
2017
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Table 8 shows the general statistical values of 11 remote sensing AETI products and Figure 9 shows the annual AETI 

for WaPOR and ten similar databases for the year 2010. All products have similar spatial variabilities, identifying the 

arid regions (Sahel and Middle East) and the majority can pick up high AETI values in the Nile Delta and the irrigated 

agriculture along the Nile River. The average AETI of ten non-WaPOR product is 442 mm/yr with a minimum of 323 

mm/yr (GLEAM) and a maximum of 570 mm/yr (CMRSET). The WaPOR estimate is 497 mm/yr, and this is a rather 

average value, being 12 percent different from the average value.

Table 8  
Statistics of AETI products over Africa 2010

WaPOR ETMonitor CMRSET SEBS GLEAM SSEBop ALEXI MODIS16 MTE GLDAS WECANN

Min 0 0 0 0 0 0 0 0 0 0 0

Max 2 243 2 414 2 567 1 730 1 953 2 808 2 010 1 828 1 407 1 689 1 177

Mean 497 402 570 376 323 497 519 402 418 468 434

Sd 490 423 466 396 1425 498 492 279 407 415 359

Figure 9  
Comparison of the spatial distribution of AETI for 2010 from different products
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Comparing the AETI products, the following observations can be made. The spatial resolution of GLEAM, 

WECANN, MTE and GLDAS is too low to pick up detailed spatial variations, such as the irrigated areas around the 

Nile River. The MODIS16 product compared to the other products generally underestimates AETI, and does not 

provide data for the arid regions. From the other six products, the main differences occur in the central part of the 

African continent. ETmonitor and SEBS underestimate AETI in central Africa compared to the other four products. 

This area has a high percentage of cloud cover, which affects also the WaPOR AETI data. ETmonitor combines 

optical and microwave sensors and as such being capable of calculating AETI during cloudy periods. Similarly, 

CMRSET and ALEXI seem to overestimate AETI in the arid areas, with some unrealistic values observed in Libya 

and Chad. The spatial distribution of AETI in WaPOR and SSEBop are remarkably similar. This can be attributed 

to the fact that both algorithms are based on the surface energy balance principles and make use of an internal 

calibration of hot and cold edges. 

It can be concluded that the WaPOR AETI data does not contain obvious flaws such as it is witnessed for some of 

the other AETI databases. At continental level WaPOR AETI provides data that is at par with the other high quality 

products. It also provides it at very high spatial and temporal resolution. 

Comparison of AETI product based on water balance model (TerraClimate)

The WaPOR AETI was compared with the TerraClimate AETI product (Figure 10). This product is derived using 

the water balance approach (Abatzoglou et al., 2018). The overall trend between the two products is very similar; 

the major differences are found in irrigated areas, such as the Nile Delta, and in the Sudd Wetland in Sudan. 

TerraClimate AETI is not able to pick up the increase in AETI due to irrigation and flooding in those areas, which 

WaPOR does. 

Figure 10  
TerraClimate AETI product compared to WaPOR AETI
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Comparison using continental scale water balance 
The WaPOR AETI was evaluated at river basin level using the classical water balance approach (WB). The long term 

WB assumes a negligible change in storage, and therefore the total inflow (PCP) should be equal to the total outflow 

(AETI and discharge (Q)) and therefore AETI should be equal to PCP minus Q (equation 1): 

AETI=PCP-Q								        eq 1

The information on Q and PCP was obtained from external datasets. WB AETI was compared to WaPOR AETI. For 

the comparison in Figure 11, the observed Q was obtained from the Global Runoff Data Centre (GRDC)3 (see Annex 

A for locations of the data points) and for PCP we used the EWEMBI reanalysis PCP data (Dee et al., 2011). Figure 11 

shows the value of AETI inferred from the WB for three key river basins in Africa (Congo, Niger and Nile basin), as 

well as for two sub-basins in the Nile basin (inset of Figure 11). The Nile basin covers an area of 3.17 M km2, which 

represents some 10 percent of the African continent. With 6 825 km, the Nile is the longest river in the world. It 

has two main tributaries: (i) the White Nile originating from the Equatorial plateau of East Africa and (ii) the Blue 

Nile, with its sources in the Ethiopian highlands. WB AETI for Congo, Niger and Nile are 1 206, 607 and 667 mm/yr 

respectively. The corresponding WaPOR AETI estimates are 1 266 mm/yr (5.0% difference), 591 mm/yr (2.6% differ-

ence) and 668 mm/yr (0.0% difference) which is very encouraging.

s in charge of water management (Needs Assessment Report, 2016).  

3  The Global Runoff Data Centre, 56068 Koblenz, Germany

Figure 11  
GRDC stations in Africa and the spatially averaged AETI determined from the water balance of 
the Congo, Niger and Nile basins

Source: GRDC
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A similar WB approach has been executed for an additional 28 basins in Africa (Figure 12). The average absolute 

difference between the two datasets is 14 percent (ranging between 0 and 58%); combining all river basins the 

difference is 0.2 percent (the over- and underestimation for individual basins is evened out at the continental 

level). The largest difference occurs in smaller river basins. It can be noticed that WaPOR AETI is systematically 

under-estimated in the in semi-arid climate zones such as Groot, Olifants and Orange. These South African basins 

are all containing sparse vegetation areas, likely the cause factor for low basin-wide AETI values. Considering that 

the method did not consider longer-term water storage changes in the water balance analysis, the difference of 14 

percent is remarkably good.

Five other AETI data layers have been consulted for a comparative analysis in the same 28 river basins (with varying 

periods of available data) (Table 9). While WaPOR AETI was 846 mm/yr, PCP-Q for the same basins was 847 mm/

yr. This is a very good agreement and shows congruency of WaPOR AETI with basin scale water balances. Next to 

WaPOR, SSEBop provided a good match with 811 mm/yr. WaPOR and WECANN (Alemohammad et al., 2017) have 

the highest correlation, but on overall, WaPOR AETI performs best.

Figure 12  
Comparison of WaPOR and WB AETI for 28 selected river basins covering the period 2009 to 2017
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Table 9  
Comparison of various AETI products for the 28 river basins specified in Figure 12  
(See Annex B for details per basin)

PCP-Q 
(observed)*

WaPOR 
(2009-
2017)

GLEAM 
(1980-
2013)

MOD16
(2000-
2014)

SSEBop
(2003-
2017)

WECANN
(2007-
2015)

MTE
(1983-
2012)

Average [mm/yr] 847.21 845.64 550.39 676.75 810.54 697.71 694.18

Average [mm/yr] 787.45 822.3 550.10 575.90 760.99 636.77 661.23

Correlation 0.92 0.89 0.90 0.89 0.92 0.89

Difference [mm/yr]  34.83 237.34 211.55 26.45 150.67 126.22

* Different time periods
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Comparison with SWAT+ for Africa

A hydrological SWAT+ model was set up for Africa to compare the WaPOR AETI layers with AETI outputs from 

the SWAT+ model. SWAT+ has been widely used to support water resources and agricultural management at river 

basin scale (Arnold et al., 1998). A detailed description of the model setup is provided in Annex A. The comparison 

of WaPOR and SWAT+ AETI shows areas where SWAT+ AETI is significantly lower than WaPOR AETI (green areas 

in Figure 13). These areas correspond with irrigation areas and wetlands (e.g. Lake Chad and Inner Niger Delta in 

arid zones), which are not implemented in SWAT+ and which are known to have high evapotranspiration. Global 

irrigation maps also indicate these areas as irrigation areas. For that reason, we conclude that the values of WaPOR 

are more realistic than SWAT outputs. 

Figure 13  
Long-term annual average AETI estimates by (left) WaPOR (2009-2017) and (right) SWAT+ 
(2010-2016) and difference between WaPOR and SWAT+ AETI for Africa (below)
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In some areas, we see that the SWAT+ AETI is significantly higher compared to WaPOR AETI (in red in Figure 13). 

These areas are predominantly located in forested areas (Annex A) where high evaporation can be expected. One 

of these areas is located in the Congo basin. We compared WaPOR and SWAT+ AETI with a mass balance analysis 

(PCP-Q) for the three major basins in Africa and a selected number of sub-basins (Table 10). The results suggest 

that the WaPOR AETI results are more realistic. It is however advised to further explore and evaluate the WaPOR 

AETI results of forested areas.

As a general conclusion, the comparison of SWAT+ and WaPOR leads to a confirmation of the WaPOR results. In 

most areas, the difference between the two methods is small and within the range of uncertainties of both methods. 

At locations with large differences, the WaPOR results seem to be more realistic. This confirms the advantage of 

using indirect earth observations of the AETI process.

Basin comparison – Litani River Basin 

The Litani River Basin is located in Lebanon and covers an area of 2 170 km2. The basin is the focus of a Water 

Accounting study using WaPOR data inputs (Tran et al., 2019). This section validates the overall water balance using 

WaPOR data. Table 11 has been compiled to evaluate WaPOR PCP and AETI data for the entire basin. The average 

WaPOR PCP-AETI value is 624 - 436 being 188 mm/yr, or 408 Mm3/yr. 

The Litani River Authority (LRA) provided outflow data at the Qasmiye (Sea Mouth) gauging station to support the 

analysis of this project. During the wet year 2012, the total outflow was 360 Mm3/yr, but the flow into the sea reduced 

to 60 Mm3/yr during 2014, a dry year. The 5-year average outflow between 2011 and 2015 is 193 Mm3/yr. For an area of 

2 170 km2, this represents a water yield of 89 mm/yr. This is equivalent to 14 percent of the gross rainfall. 

Table 10  
Comparison of AETI estimates using PCP-Q, WAPOR and SWAT+ for basins in Africa

PCP-Q WAPOR SWAT+ 

Basin Name AETI [mm/yr] Period AETI [mm/yr] Period AETI [mm/yr] Period

Nile 667 1912-1984 668 2009-2017 578 2010-2016

Blue Nile 937 1960-1982 822 911

Upper Blue Nile 1 135 1980-1982

1999-2002

955 1 114

Niger 607 1970-2006 591 630

Congo 1 206 1903-2010 1 266 1 276

Lake Victoria 1 091 1950-2005 1 035 976

Lake Victoria (lake 
surface) 

1 539* 1993-2014 1 138 893

* based on study by Vanderkelen et al., 2018
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Table 11  
Comparison of annual P and ET values for the  
entire Litani Basin based on the original WaPOR data. 

Year PCP
(mm/yr)

PCP
(Mm3/yr)

AETI
(mm/yr)

AETI
(Mm3/yr)

PCP - AETI
(mm/yr)

PCP – AETI
(Mm3/yr)

2009 746 1 619 484 1 050 262 569

2010 638 1 384 496 1 076 142 308

2011 633 1 374 439 953 194 421

2012 816 1 772 441 957 375 815

2013 741 1 608 491 1 066 250 542

2014 456 990 361 784 95 206

2015 530 1 150 424 921 106 229

2016 594 1 290 399 865 196 425

2017 461 1 000 387 839 74 161

Average 624 1 354 436 946 188 408

Next to the river discharge into the ocean, the Litani Basin also has a significant interbasin transfers. The main 

interbasin transfer is the water drawn from Qaraoun Lake after hydropower production at the Abd el Al station. 

Through Markaba and Awali tunnels water is delivered to the urban settlements of Beirut and irrigated land outside 

the watershed of the Litani. The discharge capacity of the tunnels is 22 m3/s4. However, the actual discharge in this 

tunnel varies greatly between years (Figure 14), with an average discharge of 200 Mm3/yr from 2012-2016. Litani 

water is also transferred into the Hasbani River, that lies in southern Lebanon and flows to Israel. There is also 

water conveyed to Marjayoun, which is in the middle of the basin boundaries. The Qasimiya and Ras Al Ain irrigation 

project, which is one of the most important irrigation projects in Lebanon, draws water from the river before the 

basin outlet at sea mouth with discharge capacity of approximately 5 m3/s. The water is conveyed to villages in Sidon 

and Maachouk, both are outside of the basin5.  Since monthly discharge by these several inter-basin water allocation 

projects are not reported, it is infeasible to quantify the total inter-basin transfer on a monthly basis. 

The uncertainty in inter-basin transfer makes it difficult to estimate actual water availability. In the Litani Basin, 

the long-term water storage trend should be considered in the analyses. This information was obtained from the 

GRACE satellite, which shows a negative trend in storage (∆S) (Figure 15). The trend of water storage for a single 

GRACE pixel that covers central Lebanon from 2009 to 2016 is -21mm/yr, which is translated into -43.5 Mm3/yr in 

the Litani Basin.

4  The Litani River Authority - Power Stations and Tunnels (http://www.litani.gov.lb/en/?page_id=95)
5  The Litani River Authority - Qasimiya and Ras Al Ain Irrigation Project (http://www.litani.gov.lb/en/?page_id=117)
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Figure 14  
Discharge in Markaba tunnel after hydropower turbines at Abd el Al station

Figure 15  
Longer-term trend of declining water storage in Lebanon based on GRACE gravity measurements 

The uncertainty in inter-basin transfer makes it difficult to estimate actual water availability. Nevertheless, 

total discharge measured at the sea mouth outlet and Markaba tunnel is approximately equal to PCP – AETI - ∆S 

for the year 2012 and 2013 (Figure 16; Table 12), which means that the total WaPOR AETI for the basin covering 

heterogeneous land use is reasonable.

Source: https://ccar.colorado.edu/grace/gsfc.html
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Figure 16  
Total discharge from Litani outlet at sea mouth and Markaba tunnel  
compared with PCP – AETI – ΔS, based on remote sensing data

Sub-basin comparison – Nile Basin
The AETI in the Nile basin has been estimated by various authors using various methods (NBI, 2014; Belete et al., 

2018; Bastiaanssen et al., 2014; Hilhorst et al., 2011; Senay et al., 2009; Jung et al., 2017). The WaPOR AETI values (entire 

basin, Blue Nile and Upper Blue Nile) were compared to the estimates of the other studies and compared to the 

Water Balance using observed data (Table 13). 
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Table 12  
Average annual water balance components of the Litani River Basin using WaPOR data inputs 

Year Qseamouth QMarkaba PCP ΔS PCP-ΔS-Q WaPOR AETI

2010 183.0 200 1,319 -65 1,001 1,026

2011 194.3 200 1,310 -72 988 908

2012 357.2 400 1,689 35 897 912

2013 196.1 381 1,533 -77 1,033 1,016

2014 62.6 73 943 -25 832 747

2015 167.9 116 1,096 -99 911 878

2016 91.2 120 1,229 -38 1,056 825

Average 178.9 213 1,303 -49 960 902
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Even-though the AETI estimates refer to different time periods, the WaPOR AETI values (688 mm/yr) are similar 

to the WB AETI values (667 mm/yr). Bastiaanssen et al. (2014) used a calibrated version of the SSEBop model and 

concluded that the total AETI was 633 mm/yr for the period 2005 to 2010. Karimi et al. (2012) for a single year (2017) 

estimated the basin-wide AETI to be 622 mm/yr. Senay et al. (2014) estimated the average AETI to be 702 mm/yr and 

the volume 2 056*109 m3/yr. The WaPOR AETI estimates of 668 mm/yr are within the expected range (545 to 700 

mm/yr; average 638 mm/yr). Considering that WaPOR AETI is within 5 percent of the other estimates, it is believed 

that the AETI volume for the Nile Basin by WaPOR is highly accurate. This is in agreement with the other finding of 

the Congo, Niger, Litani and the 28 basins presented in Figure 12.

A more detailed breakdown comparison of the Nile System could be achieved from comparison against the FAO 

Nile study (Hilhorst et al., 2011). The program for the hydrology and water resources management of the Nile Basin 

ran between 2004 and 2009. The main project objective was to contribute to the establishment of a common knowl-

edge base at the Nile Basin level. The AETI under FAO Nile was computed by a combined approach of water balance 

(rainfall, discharge) and crop water requirements. There are thus no direct measurements of AETI, yet this will be 

considered as “ground truth”. For the climatic inputs of this study, the average observation period between 1960 to 

1990 has been used in FAO Nile. 

Table 13  
Comparison of AETI estimates using the water balance, WaPOR and past studies in the Nile Basin

Basin 
Name

WaPOR Water Balance (WB) Other Studies

AETI 
[mm/yr]

Period AETI 
[mm/yr]

Period Model AETI 
[mm/
yr]

Period reference

Nile

668

2009-2017

667 1912-1984

Improved 
MOD16 
algorithm

545 2000-
2012

Nile Basin Initiative, 
2014

InVEST 700 1950-
2000 Belete et al. 2018

Nile-DST 628 1960-
1990 Hilhorst et al. 2011

Adjusted 
SSEBop 633 2005-

2010
Bastiaanssen et al. 
2014

ETLook 622 2017 Karimi et al., 2014

SSEBop 702 2000-
2012 Senay et al. 2014

Blue Nile 

 822 937 1960-1982

Adjusted 
SSEBop 737 2005-

2010
Bastiaanssen et al. 
2014 

Nile-DST 863 1960-
1990 Hilhorst et al. 2011

Upper Blue 
Nile

955 1 135
1980-1982

1999-2002

VegET 500 2001-
2007 Senay et al., 2009

Noah3.3-M2

CLSMF2-M2

ALEXI

GLEAM

909

1 010

979

675

2007-
2010 Jung et al. 2017
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Table 21 of the FAO Nile synthesis report describes the (i) AETI over land, (ii) AETI over open water and the (iii) 

AETI over wetlands. The total AETI is also provided and used for the validation of WaPOR. The FAO-Nile team has 

defined 11 sub-basins of the Nile. Since we did not have access to digital boundaries, the shape file provided by the 

Nile Basin Initiative has been used instead. The sub-basins between FAO Nile and NBI are not matching exactly as 

Figure 17  
Geographical location of the  
sub-basins according to NBI

can be observed from the area statistics presented in 

Table 14. FAO Nile covers a total area of 3.17 million 

km2 while NBI adds up to 3.24 million km2. For these 

reasons, the AETI data was compared per unit of 

land instead of considering a bulk volume. 

The total annual AETI for the Nile according to 

FAO Nile – here considered as ground truth – is 1 

991*109 m3/yr (i.e. 628 mm/yr). WaPOR AETI shows 

2 052*109 m3 for a 2.2 percent larger area. The differ-

ence in volumetric AETI of 61 109m3/yr is 3 percent, 

hence after correction for area the two values are 

remarkably similar.

The correlation coefficient for all the sub-basins is 

with R2 of 0.93 very encouraging. The lower AETI 

rates of the lower Nile in Northern Sudan and 

Egypt is very accurate. More deviations arise in the 

tropical sub-basins of the Baro – Akobo – Sobat 

and Lake Victoria, which is most likely related to 

cloud cover as a disturbing factor on the determina-

tion of the land surface evapotranspiration. Over-

estimations and under-estimations are in perfect 

balance (Figure 18), which can also be related to the 

inaccuracy of the “ground truth” and ascribed to 

different study periods. This shows that the total 

WaPOR AETI for large sub-basins of typically 300 

000 km2 with rather diverging climates and land use 

is accurate.
Source: Nile Basin Initiative - http://www.nilebasin.org/
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Table 14  
AETI statistics per sub-basin according to FAO-Nile and WaPOR 

FAO Nile WaPOR

Area AETI Area AETI

(km2) (mm/yr) (109m3/yr) (km2) (mm/yr) (109m3/yr)

Main Nile d/s Atbara 877 866 124 109 986 111 120 119

Atbara 237 044 397 94 232 321 416 97

Main Nile d/s 
Khartoum

34 523 211 7 35 458 179 6

Blue Nile 308 198 863 266 308 474 792 244

White Nile 260 943 554 145 238 349 575 137

Bahr el Ghazal & el 
Arab

606 428 749 454 720 012 885 637

Pibor-Akabo-Sobat 246 779 907 224 231 352 1 147 265

Bahr el Jebel 136 400 1 196 163 80 789 1 196 97

Kyoga-Albert 197 253 1 124 222 157 541 1 250 197

Lake Victoria basin 264 985 1 160 307 250 549 1 013 254

Total 3 170 419 628 1 991 3 240 957 633 2 052

*slight difference in area is a result of the delineation of the sub-basins

Figure 18  
Relationship between the longer-term total FAO-Nile and WaPOR AETI per sub-basin of the Nile
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Table 15  
Annual AETI (mm/yr) of the land use class irrigated land in Fayoum Depression

 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

WaPOR 802 877 759 846 850 941 965 941 961 882

ALEXI 726 735 748 742 751 742 759 743

CMRSET 604 663 640 636 636

ETMonitor 423 430 458 435 466 441

MODIS 312 285 334 306 331 333 317

SSEBop 822 802 876 844 883 837 888 855 861 852

SEBS 194 216 149 198 187 159 191 147 180

ETensemble* 1 110 1 099 1 155 1 122 1 122

* Ensemble created using ETMonitor and SSEBop by Salvadore (2019)

Sub-basin comparison - Fayoum Depression
The Fayoum Depression in Egypt has a well established water balance due to its depression character and irrigation 

supply through one single main canal, and was therefore explored for validation purposes. Following Salvadore et 

al. (2019) - who summarized the water balance from various sources- the water balance for the gross area including 

Lake Qarun reads as:

AETI = PCP + Q - q

With 

PCP = 20 Mm3/yr

Irrigation supply Q = 2 900 Mm3/yr

Return flow q = 250 Mm3/yr

Over a year, the change in storage was assumed zero and the recharge to groundwater assumed negligible (Salvadore, 

2019). The resulting AETI from the total oasis then becomes 2 670 Mm3/yr, equivalent to 882 mm/yr (Table 15). This 

is much lower than the potential AETI of 1 420 mm/yr as suggested by Ramadan et al. (1989). The irrigation supply of 

2 900 Mm3/yr per unit of land is 1 827 mm/yr being equivalent to a planned irrigation efficiency of 78 percent to meet 

the crop water requirements (1,420/1,827 x 100%). It is likely that AETI is lower than 1 420 mm/yr because salinity 

persists and crops in Fayoum are not expected to evaporate at their potential rate. Wolters et al. (1989) approximated 

the AETI to be 1 100 mm/yr, and this seems more realistic than the 882 mm/yr found for WaPOR. 

For the irrigated area of 158 734 ha displayed in Figure 19, the total AETI from WaPOR is 1 400 Mm3/yr. Ramadan 

et al. (1989) estimated the total crop water consumption to be 1 460 Mm3/yr, being very close to WaPOR AETI. We 

believe however, that different areas are considered, which could explain the fact that the volumetric AETI values 

are similar, and the water depths are not. The irrigation efficiency becomes 48 percent (1.4/2.9 x 100%), which seems 

low for a classical flood irrigation scheme with reuse of drainage water. Even though WaPOR AETI estimates are 

about 20 percent lower than expected, other remote sensing products show even lower estimates for AETI (Table 

15). Salvadore (2019) created an ETensemble product using ETMonitor and SSEBop with a bias correction factor to 

be able to create an AETI product which resembles the actual situation. 
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Figure 19  
Location of the Fayoum Depression in Egypt. 
The polygons indicate irrigated areas

Field scale flux measurements
Observed AETI data in Africa is very limited, 

as flux towers are very expensive. Eddy covari-

ance flux data is often considered the “gold” 

standard for the estimation of AETI, however, 

even these measurements can have up to 15-20 

percent error. The eddy covariance data is 

compared with WaPOR data using the pixel 

available at the coordinates of the flux tower. 

The assumption is that the point data meas-

ured by the flux tower captures the average 

value of the grid cell (Marshall et al., 2013). This 

assumption is more likely when the station lies 

within homogeneous and flat terrain. If this is 

not the case, eddy covariance may vary signifi-

cantly and may not be representative for the 

grid cell value (Baldocchi et al., 1988).

We obtained data from seven stations. The FLUXNET database 6 provided data for three stations in Africa, in 

Ghana, Senegal and South Africa. The three sites have distinctive differences in land use. The site in Ghana is located 

in the Ankasa national park, which is located in a primary tropical forest (Chiti et al., 2010; Marchesini et al., 2011; 

Valentini et al., 2016). The site in Senegal is located in Dahra, a village at the verge of the Sahel (Tagesson et al., 2015; 

doi: 10.18140/FLX/1440188). The third site is located in the Kruger national park (Skukuza), with shrubs and other 

low vegetation (Archibald et al., 2009; doi: 10.18140/FLX/1440246). In addition, we got access to flux data from three 

stations in South Africa over irrigated crops from the Universities of KwaZulu Natal (grapes and sugarcane) and one 

station in Egypt from the University of Tsukuba (various crops typically found in Egypt). 

A 250 m (WaPOR Level 1) or 100 m (WaPOR Level 2 – only available for Ghana and Egypt) footprint is in fact too 

large for properly representing the footprint of flux towers because most contribution on the measured atmos-

pheric water vapor originates nearer to the location of the flux tower (this within a single pixel). The pixel value is 

in that case always a systematic underestimation, and this aspect needs to be considered in the analysis followed 

hereafter. The data is provided at daily time steps, whilst the WaPOR AETI data is available at decadal (10 days) time 

steps. For this reason, the eddy covariance data is first averaged per decadal and then compared with the WaPOR 

AETI time series.

The WaPOR AETI decadal data is plotted against the FLUXNET data in Figure 20 (time series comparison are found 

in Annex C). For each station there are periods where the station AETI values are not consistent with observed 

trends, and these periods were removed from the analyses (Annex C). Only one of the stations show good correla-

tion between the station data and WaPOR data (Senegal WaPOR Level 1 – r2 equals 0.7), for the other stations r2 

ranges between 0.1 and -1.1. The bias for the flux station in Senegal and South Africa are -3 percent and 4 percent, 

respectively. For the station in Ghana, WaPOR AETI is systematically overestimated by 21 percent and 67 percent 

for Level 1 and Level 2 respectively. Even though there is a large scatter between the flux tower and WaPOR AETI 

data (Figure 20), the WaPOR AETI data is within the same ballpark as the flux tower data. There is an exception for 

the flux tower in Ghana, compared with both the Level 1 and Level 2 data. 

6  https://fluxnet.fluxdata.org/
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Three other eddy covariance datasets were made available by the University of Kwazulu Natal. The three flux towers 

are located in agricultural areas: one in sugarcane and the other two in vineyards. Results of the comparison are 

shown in Figure 21. The dataset of Komati (sugarcane) is for 2011 – 2012; for Vergelegen and Kapel (vineyard) it is 

2013 – 2016. The dataset of Komati is a Surface Renewal system as described in Bastidas-Obando et al. (2017). The 

dataset of Kapel and Vergelegen are based on one-sensor eddy covariance systems.

Figure 21 shows that for the sugar cane (Komati) dataset the WaPOR AETI layer compares reasonably well with the 

flux tower results. Despite a good correlation, the WaPOR AETI estimates are higher than AETI values of the flux 

tower by 23 percent. The comparison for vineyard data (Vergelegen and Kapel) indicates essential differences. The 

values from WaPOR AETI are significantly lower than those found at the flux tower. Results show that the AETI 

ranges from 0 to 2 mm/day, whereas the observations range from 0 to 5 mm/day with an overall bias of 60 percent. 

In addition to cropland, the University of KwaZulu Natal installed a flux tower in the natural grasslands at Cathedral 

Peak in South Africa. The station data shows good correlation with the WaPOR AETI data for pastures (Figure 22). 

The largest outliers also have the highest number of missing days and potential error in the observations. During 

this period, WaPOR AETI estimates are lower compared to the flux tower observations (Figure 22). Excluding 

this period, the overall correlation between the WaPOR and observed AETI data is 0.66 with a bias of -33 percent, 

The general trend of WaPOR AETI for pastures is very similar to the flux tower observations, however there is a 

significant underestimation of the WaPOR AETI.

Figure 20  
Comparison Fluxnet tower and WaPOR AETI 
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Figure 21  
Comparison flux tower and WaPOR AETI in South Africa 

Figure 22  
Comparison flux tower AETI data and WaPOR AETI at Cathedral Peak, South Africa 

Although not presented here, a similar comparison with ten-day interval eddy covariance measurements was 

conducted for an unpublished flux dataset from Morocco, revealing an R2 of 0.58 and bias of +12 percent between 

WaPOR AETI and flux tower AETI, using the surface energy balance residual closure method. Using the direct 

latent heat flux measurements, R2 increased to 0.70 with a bias of 19 percent. 
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The comparisons between the observed flux tower data and WaPOR shows two different trends, a number of 

stations show very good correlation or small bias despite the challenges between the pixel size and footprint of 

the flux tower (e.g. Senegal, Skukuza, Komati and Cathedral Peak, South Africa). On the other hand, a number of 

stations do not show good correlation or large biases. There are a number of possible reasons related to the spatial 

uniformity of the land use. For example, sugarcane plantations have a more spatial uniform AETI behavior, which 

eliminates the disturbing role of footprints in the validation exercise. However, the Level 2 data for Ghana did not 

improve the correlation between the two datasets; in this case errors in the observed data could be an issue, and 

Twine et al. (2000) indicated that AETI can be underestimated from 10 up to 30 percent. The comparative analyses 

to point observations show that vineyards cannot be validated, but that sugarcane, grasslands and shrubs lay all 

within the range of 0 to 30 percent uncertainty. 

The University of Tsukuba (Japan) has installed various eddy covariance system in the Nile Delta of Egypt to 

measure the complete energy balance under actual growing conditions of irrigated fields (Sugita et al., 2017). 

While they have measured the energy balance under both traditionally irrigation methods and water savings using 

different schedules and drip irrigation, this section of the report only deals with the flux measurements conducted 

in the traditional irrigation treatments. The in situ fluxes were measured in the period 2010 to 2014, and we used 

the values reported in Sugita et al. (2017) for comparison with the WaPOR AETI. Maize and rice are the summer 

crops and fava beans and wheat the winter crops. Three different sites were installed with eddy covariance sensors, 

and these sites are referred to as Sakha-A, Sakha-B and Zankalon. The Sakha-B site was used mainly for adjusted 

irrigation schedules, so the analysis in this section mainly deals with Sakha-A. The annual AETI values measured 

vary between 875 to 1 225 mm/yr, with an average value of 972 mm/yr (see Table 16). Matching WaPOR pixels have 

been identified and a 3x3 window was selected for excluding the effect of geometrically inaccuracy. WaPOR suggest 

the average value for Sakha-A in the period 2010 to 2014 to be 1 000 mm/yr. For Sakha-B the average value is 1 011 

mm/yr and for Zankalon 1,295 mm/yr (Table 16). The ten-day data is presented in Figure 23. El-Quosy and El-Guindy 

(1989) reported a typical AETI range of 1 056 to 1 275 mm/yr, depending on the climatic zone in the Nile Delta and 

the associated cropping pattern in each of their four climate zones. The AETI of a single crop varies between 370 mm 

(wheat) to 880 mm (cotton), so the actual cropping pattern determines the total AETI of a certain pixel or group of 

pixels. This short synopsis reveals that the annual AETI totals of WaPOR are very close to the field measurements.

The ten day WaPOR AETI values are compared to the in situ flux measurements for crop development stages 

(Sugita et al., 2017) and are presented in Figure 23. The peak flux measurements during summer are exceeding the 

WaPOR AETI estimates; the WaPOR AETI values do not exceed 5.5 mm/d during ten-day periods, while the in situ 

measurements suggest this can be as high as 6.5 mm/d for periods of ten days and longer (Sugita et al., 2017).

Table 16  
Comparison of annual WaPOR and measured AETI on traditionally irrigated crops in the Nile Delta  

Location Crop rotation Irrigation Measured AETI (mm/yr) WaPOR AETI (mm/yr)

Sakha-A Maize & Fava beans Flood 875 1 000

Sakha-B Rice & Wheat Basin 1 225 1 011

Zankalon Rice & Berseem Basin 816 1 295

Average 972 1 102
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A further breakdown of the annual AETI values is to evaluate the AETI fluxes per type of crop and per growing 

season (see Table 17). Flooded maize in Sakha-A should typically evaporate 680-720 mm/season (Sugita et al., 2017), 

whereas WaPOR AETI estimates 327-360 mm/season, typically 50 percent lower. The evaporation of the winter 

crops (wheat and berseem) in Sakha-A is 511-608 mm/season, whereas WaPOR AETI values lay in the range of 

391-487 mm/season, 9-26 percent lower. For Zankalon, the agreement for winter crops is much better with less 

than 3 percent deviation (AETI measured is 446-549 mm/season and WaPOR AETI is approximately 448-561 mm/

season). The interim conclusion is that AETI of WaPOR during winter period is reasonable but that during the 

summer it is significantly underestimated. Interestingly, at annual timescales, WaPOR AETI values are higher than 

the observed AETI (1 102 mm/yr compared to 972 mm/yr), this difference originates from the fallow periods. This 

is a point of attention, WaPOR AETI underestimates crop AETI (which is mainly T), and overestimates fallow land 

AETI (which is mainly E).

Field soil water balance measurements
The University of Oxford is conducting a special program in Jordan, Israel and Palestine on Water and Food Security 

in the Middle East7. As part of this program, field measurements and farm interviews on different irrigated crops in 

the Jordan Valley took place. Various field sites in Jordan and Israel were covered. Different vegetables are included 

in the analysis, namely onions, bananas, berhis, citrus, madjoul, lemons, grapefruits and oranges. Additional 

information can be found in Gilmont et al. (2018). Because of the wide variability in irrigation water supply gathered 

from the field campaigns, we used average values for the nine different fields in Jordan and ten fields in Israel.

In the field sites in Jordan, the average PCP is 389 mm/yr and the irrigation supply (Irr) based on interviews and 

measurements is 957 mm/yr (Table 18). The average WaPOR AETI is 728 mm/yr. The rest term of the soil water 

balance represents the total runoff and drainage (assuming storage changes over the year is small). This yields in a 

7  http://wanainstitute.org/en/publication/decoupling-national-water-needs-national-water-supplies-insights-and-potential-countries

Figure 23  
Temporal variability of flux measurements and WaPOR AETI for the flux site Sakha-A  
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large total runoff of 618 mm/yr. When assuming that 70 percent of PCP is available for AETI (runoff coefficient of 

30%), the average AETI from irrigation (AETIirr) becomes 455 mm/yr, resulting in an on-farm irrigation efficiency 

(Ieff) of 48 percent (455/957 x 100%). In reality, runoff is lower and efficiency higher. Because the calibration of the 

Fayoum Depression indicated a bias correction of 1.2, the data was analyzed again with 1.2 x WaPOR AETI. The 

result is a revised estimate of AETIirr_1.2 being 473 mm/yr and an associated Ieff_1.2 of 83 percent (Table 18). This seems 

to be realistic values for micro-irrigation in Jordan. Hence, a bias correction of 1.2 on WaPOR AETI is required for 

irrigated areas in Jordan.

For Israel, the amounts of applied water were acquired mainly from interviews and carefully verified in the field. 

Lemons, grapefruit and oranges are included in the dataset. PCP is with 283 mm/yr lower than for Jordan, and 

the irrigation supplies are higher 1 115 mm/yr. WaPOR AETI is with 549 mm/yr and derived irrigation efficiency of 

32 percent unrealistically low and not in agreement with the significant water supplies of 1 115 mm/yr, and in the 

presence of micro-irrigation (Table 19). Because a bias factor of 1.2 was insufficient, a correction factor 1.6 was 

used. The runoff and drainage reduces then from 849 mm/yr to 520 mm/yr and the efficiency doubles from 32 to 63 

percent. This is still a relatively low irrigation efficiency.

For both analyses (Jordan and Israel), the WaPOR AETI required a bias correction to obtain realistic results 

for the field soil water balance analyses. This bias correction is meant for relatively small corrections, and 

not as calibration coefficient. It must be noted that other components of the field soil water balance (PCP, Irr 

and runoff ) are estimated and not measured. There is also a discrepancy between the small-scale agricultural 

features of the Jordan Valley and the spectral resolution of 100 m and 250 m pixels, this may be fixed if the  

Table 17  
Seasonal measured and WaPOR AETI fluxes  

Site Irr Crop Season AETI (mm/season)

Start End Duration Observed* WaPOR

Sakha-A Flood Maize Summer 20-06-2010 01-10-2010 103 680 360

Sakha-A Flood Maize Summer 14-06-2011 17-09-2011 95 632 335

Sakha-A Flood Maize Summer 01-07-2013 10-10-2013 102 720 327

Sakha-A Basin Wheat Winter 25-11-2011 08-05-2012 164 511 391

Sakha-A Basin Wheat Winter 11-12-2012 13-05-2013 153 608 446

Sakha-A Flood Sugarbeet Winter 07-11-2013 09-05-2014 182 538 487

Zankalon Basin Berseem Winter 26-10-2011 25-05-2012 211 549 561

Zankalon Flood Fava 
beans

Winter 08-11-2012 18-04-2013 177 446 448

* Sugita et al., 2017
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Table 18 
Components of the field scale soil water balance in irrigated  
vegetables in the Jordan Valley (in mm/yr); the Jordan component   

Country Crop PCP Irr WaPOR 
AETI

Runoff AETIpcp AETIirr Ieff AETIirr_1.2 Ieff_1.2

Jordan Onion 400 567 937 30 280 657 116 844 149

Jordan Banana 400 856 909 347 280 629 74 811 95

Jordan Banana 400 1 433 683 1 150 280 403 28 540 38

Jordan Berhi 400 821 559 662 280 279 34 391 48

Jordan Citrus 350 881 780 451 245 535 61 691 78

Jordan Citrus 350 409 586 173 245 341 83 458 112

Jordan Berhi 400 2 022 686 1 736 280 406 20 543 27

Jordan Madjoul 400 374 734 40 280 454 121 601 161

Jordan Madjoul 400 1 248 674 974 280 394 32 529 42

Average 389 957 728 618 272 455 48 601 83

Source: Gilmont et al., 2019

Table 19 
Components of the field scale soil water balance in irrigated  
vegetables in the Jordan Valley (in mm/yr); the Israel component    

Country Crop PCP Irr WaPOR AETI Runoff AETIIrr Ieff AETIIrr_1.6 Ieff_1.6

Israel Onion 300 700 468 532 258 37  539  77 

Israel Lemon 350 1 100 496 954 251 23  549  50 

Israel Majool 215 1 600 650 1 165 500 31  890  56 

Israel Barhi 215 1 400 740 875 590 42  1 034  74 

Israel Banana 350 1 200 589 961 344 29  697  58 

Israel Grapefruit 250 1 000 500 750 325 33  625  63 

Israel Orange 250 1 000 505 745 330 33  633  63 

Israel Madjoul 300 1 200 516 984 306 26  616  51 

Israel Barhi 300 1 200 448 1 052 238 20  507  42 

Israel Onion 300 750 578 472 368 49  715  95 

Average 283 1 115 549 849 351 32  680  63 

Source: Gilmont et al., 2019
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WaPOR Level 3 (30 m resolution) is available in the area. We also believe that the high aridity may play an additional 

role in underestimating WaPOR AETI.

A.3 Conclusion 
Compared to similar remote sensing databases, the WaPOR AETI database is among the ones with the most realistic 

signatures at larger scale and for time-integrated values. The comparison with the water balance of 28 river basins 

is encouraging, and these findings were consistent with the basin analysis of the Congo, Niger and Nile system. The 

results of the Litani Basin shows proper concurrency with the measured outflows to the Mediterranean Sea and 

interbasin transfers.  More uncertainty arises for smaller areas such as Fayoum Depression and Jordan Valley where 

WAPOR AETI seems systematically underestimated by 20 percent and more. However, analyses of comparative 

remote sensing products for the Fayoum area shows that WaPOR AETI preforms better than the other products, 

with only SSEBop performing in similar fashion. Both Fayoum and Jordan Valley are located in semi-arid and arid 

climates, and WaPOR AETI appears to underperform under arid conditions. 

The advantage of flux towers is that shorter periods can be evaluated as well. The validation with individual flux 

tower data suggests that peak fluxes during hot Egyptian summers are not met. Rarely WaPOR estimates fluxes 

more than 5 mm/d during decadal time increments. The correlation with flux data for stations in South Africa varies 

by location and land use. The more arid Western Cape has a lower performance than Cathedral Peak that is lush 

green for the majority of the year. We conclude also that the performance of field measurements (flux towers and 

soil water balances) are not free from substantial errors, both related to methodology and second to the footprint 

mismatch with 100 m and 250 m pixels (Table 20). It remains to be a scientific challenge to collect reliable AETI data 

from field observations, which are representative for WaPOR pixel resolution. At continental and basin scale level, 

WaPOR AETI data is among the best AETI products available, and even better performance can be expected as the 

influence of seasons and vegetation can be improved for the version 2.0. 

Table 20  
Synthesis of in situ comparison of WaPOR AETI data 

Country Methodology Land use Climate Deviation (%)

Ghana Eddy covariance Primary tropical forest Humid +22

Senegal Eddy covariance Sahel Arid -3

South Africa Eddy covariance Nature Park Semi-arid +4

South Africa Surface renewal Agriculture (sugarcane) Semi-arid +23

South Africa Eddy covariance Agriculture (grapes) Arid -60

South Africa Eddy covariance Pastures Humid +20

Egypt Eddy covariance Agriculture (cereals) Hyper-arid -20

Jordan Soil water balance Agriculture (vegetables and fruit trees) Arid -20

Israel Soil water balance Agriculture (vegetables and fruit trees) Arid -60
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B. Separation of Evaporation-Transpiration-Interception
B.1 	 Introduction
WaPOR AETI recognizes three evaporation components, transpiration (T) through the plants contributing to 

photosynthesis and biomass production, evaporation from soil, water bodies and built up areas (E) and interception 

(I). Each component is calculated separately, using the ETLook approach and added up to AETI (FAO, 2018). 

ETLook is based on a two-layer Penman-Monteith equation (Bastiaanssen et al., 2012). T is often considered to 

represent the productive component of AETI, whereas E and I are considered unproductive. Changing agricultural 

water management practices to increase T over E and I can increase agricultural productivity without increasing 

water use (Rockström et al., 2003) and this is also referred to as “the vapour shift”.  The availability of having T, E 

and I data is thus very attractive to support analysis in the agricultural water consumption debate.  Similar to AETI, 

there are relative few datasets that collect data on T, E and I on a long term and at a relatively large spatial resolution. 

It is therefore difficult to validate the individual WaPOR datasets of T, E and I with observed data. Validating AETI at 

field scale is difficult already, and validating the individual components is an even harder challenge.

B.2 	 Data analysis
The WaPOR T, E and I values for the year 2010 are presented in Figure 24 and Table 21. The maps show that for 

water bodies and the Sahara and Kalahari desert surfaces, WaPOR T is very low (see Lake Victoria), WaPOR T is 

high where there is abundant biologically active vegetation (such as Congo). The WaPOR E, T and I data layers show 

trends that are consistent with what is expected. The high values of I in the inland of the Democratic Republic of 

Congo are directly related to the high PCP values in the same area.

Partitioning of annual AETI over the land area by WaPOR for 2018 is estimated to be 71 percent transpiration, 21 

percent soil evaporation and 7 percent interception (Table 21).

Figure 24  
WaPOR T, E and I for the year 2010 
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Spatial data products
Three different spatial data products are used to compare the WaPOR split, ETMonitor, GLDAS and Budyko 

approach by Mianabadi et al. (2019). An overview of the continental values for each product is provided in Table 22. 

For the Budyko approach E and I are combined in the Budyko I values. The high ratio of T/AETI obtained using the 

Budyko approach is more realistic that the values for ETMonitor and GLDAS. WaPOR comes closes to this value 

of the remote sensing data products. Detailed comparison between WaPOR and the other AETI split products is 

provided below. 

The first comparative data product of E, T and I is the ETMonitor remote sensing model (Hu and Jia, 2015), using 

a process-based approach (Zheng et al., 2016). In this section we only present the comparison of T (Figure 25). The 

maps of E, I and AETI are provided in Annex D. The general trends for the different maps are similar for the two 

products, however WaPOR T is significantly higher than ETMonitor T (Figure 25) and this is also reflected in the 

AETI comparison (Annex D). At the same time, ETMonitor E is higher around the tropics of Cancer and Capricorn 

compared the WaPOR E. The split between E and T for ETMonitor seems to favour E over T and vice versa for the 

WaPOR data. Choudhury et al. (1998) computed also T, E and I globally using a land surface model being calibrated 

with remote sensing data. This lead publication suggests that T is the dominant component of AETI in 20 out of 

the 28 latitude bands. WaPOR I is also higher than ETMonitor I in central Africa and the inlands of the Democratic 

Republic of Congo.

Table 21  
Overview of continental values of WaPOR AETI, T, E and I per land use class in mm/yr for year 2010 

Land use class Area AETI T E I

Natural vegetation  12 585 800  795  626  107  73 

Rainfed agriculture  1 566 131  477  346  120  19 

Irrigated agriculture  336 983  496  376  119  15 

Urban  101 619  229  111  145  11 

Bare soil and sparse vegetation  16 012 249  48  7  43  0 

Water  211 623  1 033  25  1 049  2 

Total  30 814 405  517  368 (71.1%)  111 (21.5%)  38 (7.4%)

Table 22  
Overview of continental values of WaPOR AETI, T, E and I per land use class in mm/yr for year 2010 

AETI T E I T/AETI

WaPOR 495 355 104 34 0.72

ETMonitor 402 226 149 27 0.56

GLDAS 468 180 182 118 0.38

Budyko 350 271 77  0.77 
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The second remote sensing product to compare WaPOR T is the GLDAS T (Figure 26). Similar trends are found 

between the two products, T for the rain forest in Congo are very similar, whereas the area around it shows large 

deviations. In addition, GLDAS T is not able to capture the high T for irrigated areas (e.g. in the Nile Delta and 

along the Nile River in Egypt), flood plains, shallow groundwater table areas and for deeper rooting groundwater 

dependent ecosystems. The main reason is that the Land Surface Models of GLDAS consider rainfall as the only 

source of water. Seepage, capillary rise, flooding and irrigation processes are still ignored in Land Surface Models.   

GLDAS E is very similar to WaPOR E (see Annex D), however GLDAS I and WaPOR I differ significantly, with 

GLDAS estimating very high I across the coastal areas in West Africa and generally between latitude of +10o to 

–20o. GLDAS utilizes a canopy surface water storage (Rodell et al., 2004), this storage seems to be on the high side, 

thereby overestimating I compared to WaPOR I. 

Another just very recently published independent data source describing T comes from Mianabadi et al. (2019). 

These authors used a well-known approach to separate T from I using the Budyko curve (Figure 27). Even though 

the periods and the resolution differ (Budyko approach is an average over long time period for 0.25o), the values 

are quite comparable. The Budyko method is overestimating T compared to WaPOR T in the Congo Basin, as well 

as in the humid tropics of Ghana and Ivory Coast. The Budyko estimation of I, shows high values for areas in the 

Lake Victoria basin in East Africa, and coastal zones such as the east coast of Madagascar and the coastal zones 

in West Africa (see Annex D), which are also the same areas where WaPOR  estimates very high PCP values. We 

therefore believe that the larger picture of annual and absolute WaPOR T values for vast areas are good.  

Mianabadi et al. (2019) compared their T and I products to two other products, GLEAM v3.0a (Martens et al., 2017; 

Miralles et al., 2011a) and Simple Terrestrial Evaporation to Atmosphere Model (STEAM) (Wang-Erlandsson et al., 

2014, Wang-Erlandsson et al., 2016). The Budyko approach as presented here is in line with the two complex land 

surface models (Mianabadi et al., 2019). WaPOR provides not only T and I values for each decade, it also provides 

it at much higher resolution than the Budyko approach.

Figure 25  
WaPOR and ETMonitor comparison of annual T values
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Figure 26  
GLDAS T comparison with WaPOR T for the year 2010

Figure 27  
Budyko T and comparison with WaPOR T
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resulting sap flow is the sum of sap flow rates for inner and outer thermistors. The in situ measurements covers 

the period May to December 2015. 

The measured sapflow is approximately 1 mm/d during May when the LAI of the plantation is low (0.2 m2/m2). 

The LAI increase to 1.5 m2/m2 by the end of June. The relatively low value of LAI is caused by the row crop charac-

ter of grapevines where the average LAI of canopies and underground reduces the total LAI for a field. The associ-

ated sapflow during the summer is typically 4 to 5 mm/d, a value that is according to the expectations, so there is 

no doubt on the accuracy of the field measurements. At the end of December, the sapflow is again 1 mm/d, and it 

expected to be even lower when the grapevines go dorment between December and May (Figure 29).

Figure 29 shows the disagreement with WaPOR T values. While at low T fluxes the performance of WaPOR is 

at least realistic, the agreement disappears when the sapflow exceeds 2 mm/d. The T fluxes from WaPOR are in 

general only 43 percent of the field measurements, hence a serious under-estimation in T is occuring. From the 

entire period between 1 January 2009 and 11 January 2019, the maximum decadal T flux from WaPOR is 3.2 mm/d 

only (October 2018). The maximum decadal AETI flux is 3.9 mm/d (August 2018). Clearly, peak T-fluxes are not 

determined properly by WaPOR.

The accumulated T-flux from WaPOR for an average year is 503 mm/yr, the associated AETI-flux is 593 mm/

yr (hence T/AETI is 85% being a rather high value). The annual PCP is approximately 465 mm/yr. Indeed, the 

grapevines are  irrigated, and  AETI values seem low. Hence, at local fields during the irrigation season, T values 

from WaPOR are too low. The overall conclusion is that T from WaPOR is under-estimated at higher sapflow 

values.  

Figure 28  
Location of the sap flow measurements in Tunisia
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B.3 	 Conclusion
With limited available data to compare E, T and I, we focused on comparing the WaPOR data with alternative 

sources (ETMonitor, GLDAS, Budyko). All three T, E and I layers individually showed reasonable ranges in 

values and spatial variability. Compared to ETMonitor, WaPOR estimates of T are more realistic. With limited 

in situ observations available, the one comparison we did manage to do indicates that the T is underestimated 

during the cropping season. For cropland with lower LAI (LAI~2), there are signals from the field scale analysis 

that WaPOR T values are underestimated. Also, AETI was found to be at the lower side for several semi-arid and 

arid test sites which can also be ascribed to low E values. Because LAI and rainfall have both distinct intra-annual 

variabilities (that are not always related), it is recommended that T, E and I partitioning should be investigated 

in more detail on a monthly basis.  

The ETLook model applied in WaPOR separates the available energy into T and E depending on the factor α*LAI 

(equation 7 and 8 in FAO, 2018), where α is the light extinction factor for net radiation [-] and LAI is the leaf 

area index. As explained in FAO (2018), LAI is derived from a large number of similar functions compiled from 

literature, however the value of α seems to be a calibration factor, which needs to be critically reviewed. Zhang 

et al. (2014) identified different values for α based on a comprehensive analyses of different datasets. They found 

variations between different land use classes and within land use classes (Table 23). 

As the total bulk AETI is accurate (previous section), improving WaPOR T estimates can be achieved by refining 

α, the sensitivity of this parameter should therefore be evaluated. If less available energy will go to T, then more 

Figure 29  
Measurement of actual transpiration fluxes with sapflow devices in a grape plantation in 
northeastern Tunisia
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will go to E for maintaining conservation of partition-

ing. That will immediately modify the T fraction in the 

right direction. However, a warning should be given 

that T should not be reduced much during full crop 

development as various analyses suggested T to be at 

the low side when crops are matured (Senegal, Sakha-A, 

Zankalon, Jordan Valley). Again, more detailed analyses 

are needed where the sensitivity to α is included for 

assessing potential T fluxes, as well as the regulating 

role of soil moisture on actual E and T fluxes. For now, 

we conclude that T for most ecosystems is rather good 

and in harmony with the most recent insights on T 

fluxes, except for cropland where some improvements 

are needed.

C. Robustness 
C.1 Introduction
The WaPOR water layers (AETI, T, E and I) and RET are calculated independently and at different resolutions 

(250 m, 100 m or 30 m  vs 20 km), comparing them therefore provides interesting validation of the WaPOR water 

layers at continental scale. The coefficient between AETI and RET is also known as the crop coefficient (kc). The 

coefficient is known to be high over water bodies, because there water is not a limiting factor. Over vegetated 

areas, kc should reflect a curve depending on the crop stages during the growing season. The coefficient will be 

low for bare land areas and similar dryland surfaces. A similar comparison was done to evaluate the ratio of T 

over AETI, indicating the contribution of AETI towards biomass production (T) compared to non-productive 

evaporation in the form of E and I. Low values of T/AETI are expected for water and bare soil, whereas for natural 

vegetation and agriculture the values are expected in the range of 0.7 to 0.8.

For selected irrigation systems further analyses were done (see Figure 30 for locations of these irrigation 

schemes). The Wonji irrigation scheme is located in Ethiopia in the Awash Basin and it is a sugarcane estate 

in a semi-arid area. The Kpong irrigation schemes is located along the Lower Volta River in southern Ghana. 

The Kpong includes mainly smallholders with rice, besides commercial farmers growing bananas. The area 

has a humid climate. The Bekaa Valley is located in the Litani Basin in Lebanon, growing various crops, includ-

ing wheat, grapes and potatoes as well as other vegetables. The area is semi-arid. The forth area is the Fayoum 

irrigation scheme in Egypt. The farmers of Fayoum grow maize (summer) and wheat (winter) on a rotational 

basis. The irrigation schemes were selected based on the availability of auxiliary data and local knowledge of 

the authors. IHE Delft has sent students for fieldwork to these regions as part of the WaPOR project. The MSc 

thesis on the Wonji irrigation scheme was written by Yilma (2017). The MSc thesis dealing with the Bekaa Valley 

was prepared by Alvarez-Carrion (2018). A study by Salvadore (2019) provided data for the Fayoum irrigation 

scheme. The Kpong irrigation scheme in Ghana was added even though there was less data available, as it allowed 

for a comparison of an irrigation scheme in a more humid climate.

Table 23  
Light extinction factor for net radiation 

Plant functional type/ land use 
class

αmean

Grassland 0.50± 0.15

Cropland 0.62± 0.17

Shrubland 0.56± 0.13

Broadleaf forest 0.59± 0.12

Needleleaf forest 0.40± 0.11

Average 0.56± 0.16
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The analyses include the robustness checks between AETI and RET and T and RET. The dual crop coefficient 

approach of FAO56 describes the ratio of T/RET to be equal to kcb (basal coefficient) for crop transpiration (Allen 

et al., 1998). The coefficient kcb describes the potential transpiration rate without experiencing soil moisture 

stress (the factor ks represents the stress reduction coefficient). Together with ke for soil evaporation, it makes 

crop coefficient kc (Allen et al., 1998; 2005):

AETI = kcb * ks * RET + ke * RET + I

Note that I is not recognized in the dual crop coefficient framework. Numerous literature has proven that kcb 

is linearly related to green fractional cover (for example, Calera et al., 2001), which is in turn linearly related to 

NDVI (for example, Sellers et al., 1997). In other words, the T/RET findings should have a strong relationship with 

the NDVI value, and this could be another independent check in further studies. 

C.2 Data analysis
Continental analyses
The overall continental trend is according to expectations (Figure 30). High values are found around the coast of 

West Africa, large areas of the Democratic Republic of Congo, highlands of Ethiopia and east coast of Madagascar. 

In these areas, there is limited water shortage and vigorous vegetation. Under these circumstances, AETI equals 

RET. On the other hand, low values are found around the west coast of southern Africa, the Sahel region and 

Middle East. Here water and vegetation are constraining factors for AETI. It is worth noting that vegetated areas 

have higher AETI/RET values than open water bodies such as Lake Victoria (Table 24). The histogram (Figure 30, 

right) shows that there are pixels with AETI being higher than RET, which could be true for certain vegetation 

physical features (tall  or dark plants, high LAI), or may be due to the different resolutions of RET and AETI. 

Figure 31 shows ther T/AETI fraction. The fraction is unexpectedly high (>0.75) for the majority of the study 

area, leading to the average T/AETI value of 0.45. For the ETMonitor, GLDAS and Budyko the T/AETI fractions 

are 0.31, 0.22 and 0.46 respectively. Studies estimate the contribution of T to AETI globally to vary between 52 

and 57 percent (Choudhury et al., 1998; Wei et al., 2017), but this also includes the tundras at northern latitudes. 

Upon closer inspection, we found that Choudhury et al. (1998) predict T/AETI for our study area between +35οN 

and -35οS to be 0.52. Both Budyko and WaPOR provide similar estimates for the continent. For bare soil and water 

the fraction of T of AETI is very small, whereas for vegetation, T as a fraction of AETI varies between 0.71 to 0.79, 

with the highest continental value being for natural vegetation (Table 24). A high T/RET fraction holds true for 

tropical forests with very high LAI (LAI>5).
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Figure 30  
Average WaPOR AETI over RET (2009-2017), with locations of selected irrigation schemes (next section)

Table 24 
Overview of continental values of WaPOR robustness    

Land use class Area AETI T RET AETI/RET T/AETI T/RET

Natural vegetation  12 585 800  795  626 1 412 0.56 0.79 0.44

Rainfed agriculture  1 566 131  477  346  1 484 0.32 0.73 0.23

Irrigated agriculture  336 983  496  376  1 556 0.32 0.76 0.24

Urban  101 619  229  111  1 699 0.13 0.49 0.07

Bare soil and sparse 
vegetation

 16 012 249  48  7  2 036 0.02 0.14 0.00

Water  211 623  1 033  25  1 490 0.69 0.02 0.02

Total  30 814 405  503  368  1 742 0.22 0.73 0.16

Irrigation scheme comparison
Figure 32 overleaf shows the AETI/RET ratio (i.e. kc) and on the right the T/RET ratio (i.e. kcb) for the selected 

irrigation schemes for one calendar year (2015). Except for the area in Ghana, the maps clearly show the distinc-

tion between the irrigated and surrounding landscapes. In Wonji, Fayoum and Bekaa, the surrounding area is 

water constrained. The availability of water is clearly a distinguishing factor in the development of vegetation. 

For the area in southern Ghana, the irrigated area cannot be distinguished as easily as in the arid and semi-arid 

areas.
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Figure 31  
Fraction of T over AETI (2009-2017) 

The average AETI, T, E and I for 

the selected irrigation schemes are 

provided in Table 25. Since the anal-

yses include not only the cropping 

season, fallow periods will reduce 

kc and the period of fully developed 

crops will increase the average 

kc value. Because sugarcane is a 

perennial crop, it produces much 

higher kc value (0.67) than what 

is observed for Fayoum (0.22) and 

Bekaa (0.5) exhibiting crop rota-

tion systems (Table 25). In addi-

tion, for the Fayoum system, not 

all fields are cultivated with wheat 

during the winter season, as indi-

cated in the blue areas (Salvadore, 

2019). The bright red area in the 

Fayoum system is the Qarun Lake, 

where Kc is close to 1. The produc-

tive component of AETI (T) varies per irrigation scheme. Fayoum in Egypt has the lowest value of productive 

AETI of 0.69 and Wonji the highest of 0.85 (Table 25).

The basal crop coefficient (kcb) of the selected irrigation schemes ranges between 0.15 for the Fayoum system to 

0.57 for Wonji. The season variation of AETI/RET and T/RET are presented in Figure 33 and 34. The theoretical kc 

of sugar cane is 1.25 (Allen et al., 1998) however, based on the WaPOR data, the annual kc value for Wonji is much 

lower at 0.67. This value is lower than the theoretical one, as various areas within the defined shapefile are not 

cropped, either they are fallow or consist of paths, buildings etc.  

Table 25 
Overview of WaPOR AETI, T, E and I per selected irrigation scheme for 2015    

Name Country Main crop type AETI T E I kc (AETI/
RET)

T/AETI kcb (T/
RET)

Wonji Ethiopia Sugarcane 1,317 1,125 182 18 0.67 0.85 0.57

Fayoum Egypt Wheat, maize* 485 333 153 0 0.22 0.69 0.15

Bekaa Lebanon Wheat, 
potatoes, 
grapes

622 494 131 6 0.50 0.79 0.40

Kpong Ghana Rice 1,196 875 302 30 0.75 0.73 0.55

Bananas 1,022 793 201 40 0.63 0.78 0.49

* rotational cropping

WaPOR T/AETI (-)
0
0.25
0.5
0.75
1
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Figure 32  
The AETI/RET ratio (left) and T/RET ratio (right) for selected irrigation schemes for year 2015 (from top 
to bottom: Wonji - Level 3, Fayoum - Level 2, Bekaa - Level 3, Kpong - Level 2)
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Figure 33  
Monthly AETI/RET ratio for selected irrigation schemes

Figure 34  
Monthly T/RET ratio for selected irrigation schemes
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C.3 Conclusion
WaPOR AETI/RET ratio (kc) at continental scale is 0.22, which at first glance seems low, but includes large areas 

in the Sahara and the Sahel regions where little or no evaporation is taking place. WaPOR AETI/RET ratio for the 

different land use classes confirms the accuracy of the WaPOR AETI layer compared to WaPOR RET, where high 

values are obtained in densely vegetated areas and for water bodies. WaPOR T/RET ratio (kcb) at continental scale 

is 0.16, with higher values for vegetated areas (agriculture and natural vegetation) and low values for bare soil 

and water. Similarly, WaPOR T/AETI ratio at the continental scale exceeds 0.7. These high T/AETI fractions are 

supported by the Budyko analysis (Mianabadi et al., 2019), and they are certainly reasonable for permanently lush 

green ecosystems. The general trends are consistent with expected values. 

At irrigation system level, the comparative analyses show lower value for the AETI/RET and T/RET for the 

Fayoum and Bekaa irrigation schemes than expected for cropped areas. This could be due to parts of the area 

being fallow (e.g. Fayoum), or parts of the year being fallow, thereby lowering the ratios. The schemes in Ghana 

and Ethiopia are cropped for most of the year and return values that are more in the expected range for cropped 

areas. In these areas, productive evaporation (T) is significantly higher than unproductive evaporation (E and I). 

For systems with a significant fallow area (Fayoum), the T/AETI ratio is low. 

To confirm the accuracy of the values additional comparison with NDVI is necessary (NDVI at the moment is not 

available from WaPOR). One issue of concern is that T/AETI fractions vary strongly with LAI, PCP and the soil 

moisture regulation of E and T fluxes. The underlaying processes can be judged much better if in the next round 

of quality assesment decadal values are going to be investigated. Hence, it is not unlikely that WaPOR T provides 

some new evidence that T/AETI should be higher than previously assumed.
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4. Land

A. Above Ground Biomass Production 
A.1 Introduction
Producing more food per unit of land (kg/ha) and per unit of water (kg/m3) is a major objective for increasing 

sustainable production in agriculture. FAO has shown in various studies that more food needs to be produced 

for meeting growing global food demand, and that will increase pressure on water resources. Most global data on 

crop yield and water resources are based on FAOSTAT and AQUASTAT. This data is based on secondary statistical 

datasets from the member countries. FAO launched the WaPOR program to complement such statisticswith 

spatially distributed information a on the local variability and trends in time, using cost-effective technologies. 

The Above Ground Biomass Production (AGBP) is the ultimate indicator to express food production. The 

WaPOR database contains information on Above Ground Biomass Production (AGBP) based on the Net Primary 

Production (NPP). NPP reflect the daily net carbon exchange between land and atmosphere. During sunlight 

hours, crops intake carbon along with the release of water vapor into the atmosphere. During nighttime, part of 

the carbon is respired back into the atmosphere. The net result is the NPP. NPP is calculated in WaPOR using a 

remote sensing light use efficiency model (Ruimy et al., 1999). NPP is expressed in gC/m2/day. It is converted from 

gC to kg of dry mass (DM) per ha using a conversion factor of 22.22 (FAO, 2018).  An additional conversion factor 
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to account for the percentage of biomass produced above ground is introduced. This conversion factor expresses 

the total weight of stems, branches, leaves, flowers, grains and lints above ground, versus the total weights of 

stubbles, bulbs, roots and tubers. In WaPOR, an average factor of 0.65 is applied throughout all pixels across 

the continent (FAO, 2018). The calculated continental AGBP considers C3 crop types and currently doesn’t 

account for variations in land use and crop types to adjust the fraction of AGBP to total biomass and correct for 

different crop types. The database provides data on AGBP, which makes sense for cereals and most other crops. 

For potatoes, sugar beet and other tuber, root and bulb crops, it is better to revert back to the Total Biomass 

Production (TBP). This can be achieved as TBP = AGBP/0.65.

These constant factors are described in the methodology (FAO, 2018) but the implications associated with the 

simplifications should be well explained to users of the WaPOR database and instructions given on how to correct 

them when using the WaPOR database. For example, the ratio of the above and below ground biomass production 

varies across landscapes, and if users have (literature) information on this shoot – root ratio, a correction can be 

easily made. It should be made clearer to users that the default shoot – root ratio is 0.65.

C4 crops have a different biochemical system that converts the available solar radiation with a higher light use 

efficiency into dry matter or biomass production. On average, their extra efficiency is 80 percent higher as 

compared to C3 crops (being most crops). The most common C4 crops are sugarcane, maize and various oil 

seeds. To be able to estimate biomass and yield correctly for C4 crops, the WaPOR data thus needs to be corrected 

for areas where these crops grow. 

A.2 	 Data analysis
The average WaPOR AGBP and NPP values for 2009-2017 are presented in Table 26 and Figure 35.  As AGBP is 

linearly related to NPP, the two maps show the same variation across the continent. Variations between years at 

the continental scale are very small. The continental map is dominated by the close to zero values in the Sahel 

and large part of the Middle East. Larger inter-annual variations exist in the areas dominated by rainfall. In both 

maps, irrigated areas around the Nile river (Egypt) and the Office du Niger and Inner Niger Delta (Mali) appear 

clearly as bright spots in otherwise dry, low biomass producing areas. 

Spatial data products
To the authors knowledge, only one comparative remote sensing product of NPP exists with a similar grid size 

(MOD17) (Heinsch et al., 2003; Running and Zhao, 2015; Running et al., 2015), besides several other assessments 

from global ecological production models. For this assessment a comparison is made with the MOD17 Terra 

and Aqua NPP products. There are discrepancies between the MOD17 Aqua and Terra products resulting from 

differences in overpass time, therefore we compared WaPOR NPP with the averages of the MODIS Terra and 

Aqua NPP products for 2011 (Figure 36).

The spatial patterns are similar for both data products even though MODIS does not estimate values for the Sahel 

region. The absolute difference between the two products shows large discrepancies between the two products 

in the Central African Republic (underestimation of MODIS compared to WaPOR), whereas the eastern part of 

Southern Africa and eastern Madagascar is generally overestimated by MODIS (Figure 37). 
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Table 26 
Average continental values of WaPOR ABGP and NPP    

2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

NPP in kgC/m2/yr

Max 1.42 1.41 1.48 1.54 1.61 1.65 1.61 1.60 1.49 1.53

Mean 0.20 0.19 0.21 0.20 0.17 0.19 0.17 0.17 0.20 0.19

Min 0 0 0 0 0 0 0 0 0 0

Stdev 0.63 0.63 0.64 0.63 0.62 0.63 0.63 0.63 0.64 0.51

AGBP in tonnes/ha/yr

Max 27.3 26.7 26.6 28.4 24.2 27.4 27.8 27.0 26.9 26.9

Mean 4.6 4.6 4.7 4.7 4.7 4.6 4.5 4.4 4.5 4.6

Min 0 0 0 0 0 0 0 0 0 0

Stdev 5.6 5.6 5.6 5.7 5.7 5.7 5.7 5.6 5.6 5.6

Figure 35  
Annual Above Ground Biomass Production (AGBP) and Net Primary Production (NPP) values 
averaged for 2009-2017 period
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Figure 36  
WaPOR NPP and average of MODIS Terra and Aqua NPP for 2011 (kgC/m2)

Figure 37  
Difference NPP WaPOR and MODISAv as a fraction of MODISAv (left) and as absolute value (right) for 2011

Even though it is difficult to say which data layer provides better NPP quality, the AETI comparison showed that 

WaPOR comes out with much better quality product than the MOD16 AETI product. Both products are using 

light use efficiency based approaches, but the choice of parameters, especially light use efficiency can create large 

deviations in the products. 

Another independent check can be achieved from comparisons against global ecological production models. 

Figure 38 shows the result of NPP simulations done by the Center of Sustainability and the Global Environment 
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under the aegis of the University of Wisconsin. This IBIS model8 shows NPP to vary between 0 and 1.3 kg C/m2/

yr (Foley et al., 2005; Kucharik et al., 2000). The spatial trend for Africa is rather similar to WaPOR NPP, but with 

much lower resolution. Clearly, WaPOR NPP is able to differentiate water bodies and irrigated areas much better 

than the IBIS model (Figure 38). 

WaPOR NPP is derived using light use efficiency value for different land use classes, for cropped areas it applies 

one value of 2.49 MJ/gr across the continent (FAO, 2018). This value corresponds to above and below ground 

biomass production (total biomass production (TBP)) and C3 crops. The light use efficiency values applied for 

trees, savannah and pastures are not provided in FAO (2018) and should be lower than for C3 crops (Foley et al., 

2005; Madini et al., 2017). More information should be provided on the light use efficiency applied for the various 

agro-ecosystems and compared to other literature (e.g. Li et al., 2012; Madani et al., 2017). 

Biomass estimates for selected irrigation schemes
Point measurements of AGBP are classically validated using crop yield data, which involve crop specific conver-

sion parameters (harvest index, moisture content in the harvested fresh crop). A comparison was made to evalu-

ate biomass production and yield to known values for the four selected irrigation schemes. For Wonji and Bekaa 

Valley, Yilma (2017) and Alvarez-Carrion (2018) used the pySEBAL script developed by IHE Delft and collected 

field data from the two areas. For Fayoum, Salvadore (2019) worked with the Ministry of Water and Irrigation in 

Egypt to develop a water account for the area, this included validation data on yield. For the area in Ghana, two 

reports from the Ghana Irrigation Development Authority were used to validate the results (GIDA, 2010). These 

datasets were used to compare the WaPOR AGBP layer. The total biomass production (TBP) was derived from 

NPP using the same conversion factors as the WaPOR database, without using the ratio of 0.65 of above ground 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8  https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=808

Figure 38  
Global and annual NPP values simulated with the  
IBIS model (Foley et al., 2005) and difference with WaPOR NPP

Figure 38  
Global and annual NPP values simulated with the  
IBIS model (Foley et al., 2005) and difference with WaPOR NPP
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biomass production over total biomass production (FAO, 2018). The crop yield (Y) was then multiplied by a 

harvest index (hi), for C4 crops multiplied by a factor of 1.8 (C4). The final conversion is dividing by one minus the 

moisture content of the crop yield (mc): 

TBP * hi * C 4

The harvest index and moisture content are crop (and location) specific parameters. For Bekaa and Wonji the 

WaPOR Level 3 (30 m resolution) is available, whereas for Fayoum and Kpong the 100 m resolution data was used.

Wonji irrigation scheme

The Wonji irrigation scheme is located in the Awash Basin, the area selected for comparison is an area cultivated 

with sugarcane. The cropping season of sugar cane in this area is 12-24 months on a rotational basis. We compared 

WaPOR yield to the yield observations, taking into account that the cropping season extends beyond one year. 

Even though, the AGBP layer for 30 m from the WaPOR portal is compiled based on the WaPOR determined 

cropping season (see section C), we decided to use our own predefined cropping season. We decided to estimate 

annual values for AGBP from January 2015 to June 2016 (18 months crop rotation), which is a similar period as 

Yilma (2017) used for the pySEBAL analyses. 

WaPOR AGBP was converted back to Total Biomass Production (TBP) by dividing it by 0.65 (the ratio used by 

WaPOR). This TBP was multiplied by a crop specific ratio of AGBP and TBP (in this case set at 1.0 as root devel-

opment for rotational sugar cane was assumed to be low). This was then multiplied by a harvest index (for sugar 

cane this was set at 1.0 as all harvested sugar cane ends up at the factory)9. An additional conversion was made to 

convert from C3 to C4 crops (factor 1.8). Finally the dry yield was converted to wet yield by dividing the value by 

the moisture content of the crop (set at 0.59, as estimated by Yilma (2017)). 

Figure 39 and 40 show the maps of AGBP and yield for the area (the whole map was converted using the 

conversion factors as describe before).  

Figure 41 show the yield distribution within the Wonji irrigation scheme. The average yield for 2015 a calculated 

is 100 tonnes/ha (Table 27). This value is similar to Yilma (2017) observed of 100 tonnes/ha. Steduto et al (2012) 

gives an average cane yield of 70 tonnes/ha and FAO gives ranges between 50-150 tonnes/ha being in perfect 

agreement with our check. Hence, WaPOR yield based on WaPOR AGBP seems rather realistic for sugarcane 

crops.

9  Note that this harvest index is higher than reported in literature (0.65-0.85) and 0.65 estimated by Yilma (2017)

1 - mc
Y=
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Figure 39  
WaPOR Above Ground Biomass Production for 2015 for the Wonji irrigation scheme 

Figure 40  
WaPOR derived yield for 2015 for the Wonji irrigation scheme  
using AGBP and specific conversion factors for sugarcane
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Figure 41  
Sugarcane yield distribution Wonji irrigation scheme 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

0

20

40

60

80

100

120

140

160

180

Yield (tonnes/ha)

Table 27 
WaPOR yield estimates for Kpong irrigation scheme for the year 2015   

Crop User defined cropping season Harvest 
index

Moisture 
content

Average yield 
(tonnes/ha)

Literature values 
(tonnes/ha)

Sugarcane 01/01/2015-30/06/2016  1.0 0.59 100 100

Bekaa Valley irrigation
The Bekaa Valley is located in the Litani Basin in Lebanon. The farmers are growing a variety of crops, we obtained 

a shapefile of some grape fields (Alvarez-Carrion, 2018) and used this for the analyses. Figure 42 presents the 

AGBP in the area for the year 2015. The small shapes (southeast of the Bekaa Valley) are the known areas where 

table grapes are grown (Alvarez-Carrion, 2018). 

The WaPOR yield estimation for this small area used the harvest index and moisture content as indicated in Table 

28. Using these parameters the estimated yield for the grapes in these areas is 7.6 tonnes/ha, which is very close to 

the reported yield of 7.5 tonnes/ha (Alvarez-Carrion, 2018). The yield varied between 3.5 and 11 tonnes/ha (Figure 

43). So also here, AGBP and TGBP values are accurate, but crop yield can be assessed only with proper Harvest 

Index and moisture content values of the fresh product.
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Table 28 
WaPOR yield for grapes in Bekaa Valley for the year 2015   

Crop User defined cropping season Harvest 
index

Moisture 
content

Average yield 
(tonnes/ha)

Literature values 
(tonnes/ha)

Grapes 01/01-31/12/2015 0.22 0.75 7.6 7.5

Figure 42  
WaPOR AGBP for Bekaa Valley for the year 2015

Kpong irrigation scheme
The Kpong irrigation scheme is located in Ghana. We investigated two different irrigation schemes, one with two 

seasons of rice (larger area in Figure 44) and one for continuous growing of bananas (smaller area in Figure 44). 

The accumulated AGBP for the year 2015 is presented in Figure 44. For each of the irrigation schemes the yield is 

calculated separately using different periods, harvest index and moisture content (Table 29). The information on 

cropping calendar was obtained from Gida (2010). Bananas are grown year round and the AGBP was estimated 

over a full year. Rice is grown twice during the year and for each season the yield is estimated. 
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Figure 43  
Yield distribution of grapes in Bekaa Valley for the year 2015 
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Figure 44  
WaPOR AGBP at Kpong irrigation scheme for the year 2015

Figure 45 shows the WaPOR estimated yield for bananas. In this humid climate it is difficult to distinguish 

between the natural vegetation and the irrigated and or agricultural areas. Table 29 shows the estimated yield 

which compares very well with the reported yield by Gida (2010). 
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Figure 45  
WaPOR yield estimation for banana plantation at Kpong irrigation scheme for the year 2015

Table 29 
WaPOR yield estimates for Kpong irrigation scheme for the year 2015   

Crop User defined cropping season Harvest 
index

Moisture 
content

Average yield 
(tonnes/ha)

Literature values 
(tonnes/ha)

Bananas 01/01-31/12/2015 0.6 0.76 37.6 40

Rice main 
season

01/03-31/07/2015 0.55 0.2 4.2 4-5

Rice minor 
season

01/08-31/12/2015 0.55 0.2 4.0 4-5
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Figure 46  
Distribution of WaPOR estimated yield for Kpong irrigation scheme for the year 2015 
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Fayoum irrigation scheme
The Fayoum irrigation scheme is divided in two areas, one with permanent tree crops in orchards and an area 

where wheat and maize are grown on a rotational basis. The area receives very little rainfall, and most AGBP 

occurs on irrigated fields (Figure 47). 

Yield is estimated using the cropping season as defined by Salvadore (2019). The harvest index and moisture 

content for each crop are presented in Table 30, and the estimated yield presented in Figure 48. The estimated 

yield for wheat and oranges are in the right ballpark, the estimated yield for maize is a bit on the low side (Table 

30). The yield distribution (Figure 49) shows a large variation, and could be attributed to non-uniform water 

distribution, soil salinity and variable depth to shallow water table (see the red areas on Figure 48), which lower 

the yields. While wheat is the dominant winter crop, maize is cultivated side by side with berseem (and rice) 

during the summer. This quick analysis show the importance of having crop maps available. The user community 

of WaPOR should get examples on how to prepare their own crop masks, and then superimpose on WaPOR AGBP.

 
A.3 	 Conclusions
The WaPOR NPP layer is computed using a light use efficiency methodology. The maximum light use efficiency 

differs for different biomes and crop types, meaning that an accurate land use map is required to assign the 

correct values for each land use type. Correction factors for ambient conditions and soil moisture are included 

Figure 47  
WaPOR AGBP at Fayoum for the year 2015
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Figure 48  
WaPOR derived yield for wheat (November 2015- May 2016) and maize (June-October 2016)

Table 30 
Crop productivity Fayoum system     

Crop Cropping period Harvest 
index

Moisture 
content

Average yield 
(tonnes/ha)

Literature values 
(tonnes/ha)*

Wheat (C3) 01/11/2015-31/05/2016 0.45 0.15 5.3 5

Maize (C4) 01/06/2016-31/10/2016 0.45 0.26 3.1 4.4

Oranges 01/01/2015-31/12/2015 0.22 0.85 17.7 20

* Salvadore, 2019
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Figure 49  
WaPOR yield distribution for wheat, maize and oranges in Fayoum irrigation scheme for the year 2015
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in WaPOR (FAO, 2018). NPP appears to lay in the same range for the NPP product based on MODIS images 

(MOD17), however there are also substantial differences between the two products. From this comparison, we 

cannot conclude that one of the products produces more realistic values that the other. However from the AETI 

comparison, WaPOR was much more accurate, and we therefore conclude that the differences observed do not 

necessarily mean WaPOR NPP and derived WaPOR AGBP layer is inaccurate. 

The analyses show that the WaPOR AGBP layers are excellent proxies for crop yield, if the WaPOR database 

users have the proper skills to interpret the data. As there is a large range for total to above ground biomass 

production between different crop types, the first step is to revert to Total Biomass Production (TBP). The 

second consideration is that time integrated values of AGBP are required following the cropping season. The 

third one is that every crop has specific ranges of harvest index and moisture of the fresh harvestable product 

that need to be applied. These values require actually some local tuning. The last point is that C4 crops require an 

incremental TBP due to the fact that they are more efficient with solar light. 

Yet, we demonstrate here examples from the Wonji sugarcane irrigation scheme in the Awash Basin that AGBP 

is a proxy for fresh yield. The conversion from AGBP to yield included conversion from AGBP back to TBP, crop 

specific ratio of ABGP over TBP, crop specific harvest index, C3 to C4 crop conversion, and moisture content of 

the crop. With these conversion factors, the estimation of yield for sugarcane in Wonji is within the expected 

range and in line with observed yield. Similar analyses for grapes in the Bekaa Valley, rice and bananas in Kpong 

irrigation scheme and wheat, maize and oranges in Fayoum give good results. It must be said that each conver-

sion factor adds additional uncertainty to the yield estimations, but that the availability of WaPOR AGBP data 

with ten days intervals provides a solid fundament for any crop yield estimation process. You cannot estimate 

crop yield without spatiotemporal information on AGBP or TBP. It is the first time that such data is now available 

for the African continent for a period of ten years.

 

For the irrigation schemes located in the arid to semi-arid zones, agricultural lands can be clearly distinguished 

from the surrounding natural vegetation. The case studies in Ghana and Lebanon give good yield estimations, 

however the surrounding natural landscape reflects in similar fashion. However, total biomass production can 

be significantly under or over-estimated when the agricultural lands are not clearly defined. 

B. Land cover classification
B.1 Introduction
The WaPOR Land Cover Classification (LCC) layer has different levels of detail for the different scales. At 250 

m resolution, the WaPOR LCC has six land cover classes (natural vegetation, rainfed agriculture, irrigated agri-

culture, urban, bare soils and water). On the 100 m resolution, there are ten land cover classes, namely natural 

vegetation is split into tree cover, shrubland, grassland and wetland, whereas water is split into permanent and 

seasonal. At 30 m resolution, more detail of crop types are added for both rainfed and irrigated agriculture. The 

WaPOR LCC layer is based on NDVI and phenology and is generated using machine learning (FAO, 2018). 
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B.2 Data analyses
Database comparisons
The main application of the WaPOR database is agricultural productivity. Therefore, the identification of 

rainfed and irrigated agricultural areas are most important. Two datasets were used for comparison, the FAO 

based Global Map of Irrigated Area (GMIA) is part of the FAO AQUASTAT database (FAO, 2016) and the Global 

Irrigated Area Map (GIAM) (Dheeravath et al., 2010). The GMIA includes sub-national irrigation statistics for 

most countries. The target year for the statistics is the year 2005. The spatial resolution of the map is 5 minutes. 

The information listed per country is a compilation of literature review and secondary data. The GIAM is an 

alternative spatial database developed by the International Water Management Institute (IWMI) using remote 

sensing data (http://waterdata.iwmi.org/applications/irri_area/), whereas GMIA database is a database compiled 

of national level data. GMIA is based on official statistics that are recognized by countries in spite of the lack 

of update through the statistical means10. The comparisons of WaPOR LCC (Level 2) for 18 countries against 

GMIA, and GIAM are summarized in Table 31. The three datasets do not have exactly same definitions in irrigated 

areas, but the direct comparison gives an indication of variations among the three sources.

10  http://www.fao.org/nr/water/aquastat/irrigationmap/index20.stm

Table 31 
Rainfed and irrigated areas from WaPOR (2014), FAO AQUASTAT (2013-7) and GIAM (2010) 

Rainfed areas (ha) Irrigated areas (ha)

WaPOR GMIA GIAM WaPOR GMIA*  GIAM 

Benin 2 546 895 3 176 960 2 181 150 259 350 23 040 49 929 

Ethiopia 18 398 918 15 400 700 21 381 713 872 852 858 300 2 247 969 

Egypt 893 590 135 000 687 281 3 370 265 3 610 000 3 206 476 

Ghana 2 100 164 7 400 000 4 371 500 203 445 30 900** 607 783 

Mozambique 4 519 522 5 831 900 2 648 650 715 930 118 100 374 938 

Jordan 691 069 218 600 360 256 47 872 103 400 92 006 

Kenya 4 786 339 6 179 400 4 202 725 1 235 227 150 600 1 970 415 

Lebanon 495 938 258 000 244 538 45 598 104 000** 250 831 

Morocco 10 731 604 8 072 000 4 323 838 655 903 1 520 000 2 124 749 

Mali 6 263 474 6 189 900 8 364 825 2 208 640 371 100 273 489 

Occupied Palestinian territory 402 615 148 000 13 474 24 000** 

Republic of South Sudan 1 102 896 2 721 900 3 757 100 141 527 38 100 31 637 

Syria 6 284 334 4 392 000 2 458 456 429 646 1 341 000 1 125 514 

Tunisia 5 128 812 4 745 400 488 638 159 046 486 600 1 701 626 

Uganda 5 176 311 9 088 860 8 304 775 472 430 11 140 1 352 538 

Yemen 164 884 1 546 000 2 546 863 627 716 454 300** 851 063 

Total 69 687 365 75 504 620 66 322 308 11 458 921 8 631 380 16 260 963

* definition in AQUASTAT: Area equipped for irrigation - total

** FAO AQUASTAT statistics available before 2013 
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Overall, it is difficult to draw conclusive observations from the comparisons, except that WaPOR lies in between 

GMIA and GIAM. GMIA data originates mostly from country reporting system and suffer from varying qualities 

in the process. GIAM on the other hand was produce

Correlation analysis in Figure 50 shows that overall WaPOR overestimated rainfed areas compared to both 

GMIA and GIAM. WaPOR estimated much larger rainfed areas for Morocco, occupied territories of Palestine, 

Syria and Tunisia. However in Ghana and Yemen, WaPOR underestimates rainfed areas compared to the other 

two sources. The irrigated areas of the three sources show larger variations among each other. Overall WaPOR 

values tend to be smaller or significantly smaller than the GIAM database. One key outlier is Mali, where WaPOR 

reported 2.2 million ha of irrigation while the other two sources reported 0.27 to 0.38 million ha only. For Mali, 

large parts of the Inner Niger Delta are classified as irrigated areas, in GMIA, these areas are likely reported under 

agricultural water management areas, which include wetlands and flood recession agriculture. The total area 

for this class in Mali in GMIA is 621 000ha, which is still well below the WaPOR estimates. Excluding Mali, for 

the remaining 11 countries where all three sources have data, the total irrigated areas reported by WaPOR is 101 

percent of GMIA data on “Total area equipped for irrigation” but 59 percent of GIAM. GMIA is based on official 

national statistics and not updated regularly, it therefore does not always capture recent development in irriga-

tion in Africa hence have a tendency to under report. Since the WaPOR LCC is reporting similar areas, it is there-

fore also under estimating the irrigated areas. WaPOR LCC for Ethiopia and Kenya suggest an area of 2.2 million 

ha, and this is a rather large discrepancy that can be associated to definitions and other factors. Nevertheless, it 

confirms that the WaPOR LCC seriously underestimates irrigated areas.

Comparison land use maps WA+ basins
As part of the FAO WaPOR project, IHE Delft is implementing Water Accounting studies for five river basins, 

Litani, Jordan, Awash, Nile and Niger. For the Water Accounting studies, a detailed land use map is required. A 

consultant was hired to develop detailed land use maps using a novel machine learning approach (Saah et al., in 

preparation). It uses similar algorithms to WaPOR, such as the random forest regression method. For the land 

use classifications, reference data were collected from high resolution satellite imagery. Points were collected in 

Figure 50 
Comparisons of rainfed and irrigated areas in 18 countries from WaPOR, GMIA, and GIAM
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the categories water, barren, urban, field crops, tree crops, grass, forest, shrub and snow. High resolution earth 

observation data allowed to select locations with extended coverage of one particular class without spectral 

mixing from other classes. All points were sampled in one dataset (Poortinga et al. in prep. a&b). The resulting 

land use classification follows the Water Accounting Plus classification, differentiating between natural and 

managed land use classes. The WA+ land use classification for Litani, Jordan and Awash was available for the 

period 2009-2015, in addition to the land use classification for the Litani Basin developed and validated locally 

and made available by National Council for Scientific Research (CNRS) of Lebanon. These land use maps were 

compared to the WaPOR LCC 250 m and 100 m resolution (Figure 51).

In particular the comparison for the Litani River Basin is interesting, showing that the WA+ LCC is better in 

estimating LCC, in particular WaPOR LCC overestimates rainfed croplands and underestimates natural vegeta-

tion and bare soil. A similar trend is seen in WaPOR LCC of the Jordan River Basin, although no locally validated 

products were available for comparison, it is realistic to assume a similar bias (overestimating rainfed cropland) 

appears in the Jordan LCC. For the Awash Basin the WA+ LCC overestimated natural vegetation compared to 

bare soil, however in absence of a locally validated land use map, it is difficult to establish which LCC dataset is 

more accurate. In the Awash Basin the major difference is not related to agricultural land uses, making the bias 

less important for the WaPOR application. The bias in the Litani and Jordan Basin however need to be further 

investigated. 

Figure 51 
Comparison of WaPOR LCC with WA+ LCC in Jordan and Awash and local database (Litani)
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Comparison national statistics
Rwanda

In Rwanda two separate landcover maps were used to compare with WaPOR data. These two maps were from 

the Regional Centre for Mapping of Resources for Development (RCMRD) for year 2015 and Rwanda Water and 

Forestry Authority (RWFA) for year 2018. Table 32 shows that the three maps compare overall well with each 

other. The results of WaPOR and RCMRD in particular have a close match in natural vegetation, overall cropland 

area, and waterbodies.  

Ground truth data comparison

We compared the 100 m resolution data of WaPOR LCC with ground truth data. We obtained some ground truth 

(GT) data for Ethiopia (142 fields) and Benin (115 fields) from the GIAM project. For these points specific data 

was therefore used to assess the classification accuracy. There were in total 142 GT points in Ethiopia collected 

in 2015. The 2015 GT data was used to assess the accuracy of the WaPOR 2014 LCC map. This was considered 

acceptable because in one year’s time the conversion among four classes (natural vegetation, irrigated, rainfed 

agriculture, and urban areas) should be negligible. In Benin a total of 105 GT points, mostly in the southern part 

of the country, are available. Standard confusion matrix (Congalton and Green, 2008) were produced using 

these ground truth points adjusted according to the layers of the WaPOR LCC maps. In addition, where available 

government datasets were used to validate the WaPOR LCC maps.

Ethiopia

The accuracy for Ethiopia land cover map of 2014 is shows in Table 33. The overall accuracy is 64 percent for all 

four classes (91 fields out of 142 fields were identified correctly). The mapping accuracy is however higher for 

rainfed cropland at 79 percent (68 fields out 86 fields), and much lower for irrigated cropland at 26 percent (8 out 

of 34 fields). This confirms that many irrigation fields are missed by WaPOR. 

Table 32 
The comparisons of WaPOR LCC map with that from RCMRD and RWFA for Rwanda  

WaPOR RCMRD RWFA

Class Area [ha]  [%] Area [ha]  [%] Area [ha]  [%]

Natural vegetation 941 537 37.0 999 739 39.5 1 119 866 44.0

Rainfed cropland 1 329 599 52.3 1 340 508 53.0 1 220 830 48.0

Irrigated cropland 76 378 3.0 * 0.0 0.0

Urban 44 660 1.8 36 219 1.4 14 326 0.6

Bare soil 238 0.0 587 0.0  22 300 0.9

Water 151 340 5.9 152 119 6.0 166 313 6.5

* The RCMRD and RWFA maps do not separate rainfed and irrigated areas. They are presented together in the rainfed category 
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Benin

The accuracy for Benin at 44 percent is much lower than for Ethiopia (Table 34). Most of the GT points are for 

natural vegetation and rainfed areas. The accuracy for rainfed areas are 46 percent and irrigated area at 0 percent. 

However, there were only two GT points for irrigated areas so this value does not represent a good indication of 

accuracy levels. 

B.3 Conclusions
The WaPOR LCC layers provide different level of detail at different scales. At continent scale, land use is clas-

sified over six classes. Comparing the WaPOR LCC with other independent sources, shows that the accuracy 

was higher for rainfed cropland and other classes, compared to irrigated areas. It seems that WaPOR LCC 

significantly underestimates irrigated areas across the continent, and this negatively affects the utilization 

potential of the WaPOR database for assessing land and water productivity of irrigated areas. For two basins in 

the Middle East, WaPOR LCC significantly overestimates rainfed croplands over natural vegetation and bare 

Table 33 
Confusion matrix of WaPOR land cover map of Ethiopia for year 2014  

Groundtruth

Natural 
vegetation

Rainfed Irrigated Urban Total Error of 
Omission

W
aPOR


 cl

as
si

fic
at

io
n Natural vegetation 13 18 8  39 0.67

Rainfed 5 68 18  91 0.25

Irrigated   8  8 0.00

Urban 2   2 4 0.50

Total 20 86 34 2 142  

Error of Commission 0.35 0.21 0.76    

Table 34 
Confusion matrix for WaPOR 2009 land cover map in Benin  

Groundtruth

Natural 
vegetation

Rainfed Irrigated Urban Total Error of 
Omission

W
aPOR


 cl

as
si

fic
at

io
n Natural vegetation 18 42 1  61 0.70

Rainfed 15 33 1  49 0.33

Irrigated 2 1   3 1.00

Urban 2    2 1.00

Total 37 76 2 0 115  

Error of Commission 0.51 0.57 1.00    
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soil. Comparing WaPOR LCC with GT points in Ethiopia and Benin does not show high level of accuracy (64% 

for Ethiopia and 44% for Benin). 

Comparing a continental product such as WaPOR LCC with sub-national land cover may be misleading, as 

the machine learning has to be able to deal with a large range of agro-ecological zones covered by WaPOR. 

Developing classifiers for specific agro-ecological zones is much easier than making them work for a whole 

continent. However, a reliable LCC is important for the conversion of biomass production into fresh crop yield. 

There is an urgent need to refine WaPOR LCC, and in particular to improve the methodology of identifying new 

digital surveying procedures based on high resolution satellite images (e.g. Chen et al., 2018) 

C. Phenology
C.1 	 Introduction
The WaPOR phenology layer determines the start, maximum and end dekad of a cropping season, based on 

changes in NDVI (van Hoolst et al., 2016). It is available for WaPOR Level 2 (100 m) and Level 3 (30 m). 

C.2 	 Data analyses
Two examples of the WaPOR phenology layers are presented in Figure 52. The cropping seasons in Africa are 

directly linked to the Inter Tropical Conversion Zone (ITCZ), which moves across the continent. The seasons 

in Southern Africa starts in October the previous year, East-Africa (northern Tanzania, Kenya and Ethiopia) 

experiences a bimodal season, with the first starting in March and the second season starting in October. West 

Africa experiences rainfall starting from the coast around April and further north towards the Sahel, the season 

starts around June, July. These seasonal variations are generally well captured across the continent (Figure 52). 

Figure 52 
WaPOR phenology for selected 100 m countries  
expressed in terms of the start of season 1 and 2 in 2015

WaPOR AGBP (kg/ha)



734. Land

Country level analyses
A more detailed analyses is done for the start of the cropping season in Ghana (Figure 53). The WaPOR phenology 

layer for the cropping season shows a slight gradient of the start of the cropping season from south to north. 

A comparison between 2009 and 2015, shows that the cropping season in the north of Ghana was delayed 

significantly (by almost two months). The staple crop grown in northern Ghana is maize and the starting season 

of the crop is in line with the actual start of the cropping season as shown by the WaPOR phenology layer. At 

country level, the WaPOR phenology layer generally presents the start of the cropping season well.  

Comparison for irrigation schemes
Kpong right bank irrigation is located in southern Ghana along the Lower Volta River, and supplied by the Kpong 

reservoir. The irrigation schemes is a combination of smallholder farmers growing rice and vegetables and 

commercial farmers growing bananas. The bananas grow in a rotational system, throughout the year, so there is 

not a predefined start of the cropping season. Rice is grown twice a year, with the first season starting in March/ 

April and there is an overlap between the harvesting of the first season and the sowing of the second season in 

August/ September (Table 35).  

The WaPOR phenology for the start of the first season is presented in Figure 54. In 2015, the start of the first 

season for the smallholder area is anywhere from starting in the previous year (areas in red) to starting in May 

(bright green) the surrounding area and patches within the smallholder system start in March-April. For the 

banana area, the start of the season is not expected to be uniform (as the farmer tries to harvest bananas across 

the year). The area shows specific patches starting in particular periods. In this case, the WaPOR phenology layer 

is not able to accurately capture the cropping season of the irrigated rice areas (Table 36), which has a distinct 

season (Table 35), which affects the computation of the accumulated biomass production (AGBP and TBP) 

across the growing season.

Figure 53 
Start of cropping season in Ghana (2009, 2015 and FAO stats)
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Table 35 
Cropping season in Kpong irrigation scheme     

Crop Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Rice (s1)

Rice (s2)

Banana 

Legend: Nursing Planting Growing season Harvesting

Source: Gida, 2010

The WaPOR phenology layer manages to predict the start of the first cropping season for rice (on average), 

however the standard deviation is very large (plus or minus 190 days). WaPOR completely misses to identify the 

second season of rice; the average duration of the season is similar to what is happening in the field, but again 

the standard deviation is very large. For bananas, the start of the season is more defined, however the start of the 

season for bananas is not uniform to allow for harvest throughout the year. WaPOR accurately predicts a longer 

growing season for bananas (Figure 54 and Table 36). When comparing the irrigation scheme with the surround-

ing landscape there is little to differentiate the two.   

Fayoum irrigation scheme
The largest area of the Fayoum irrigation scheme is a rotational cropping system of wheat and maize (Table 37). 

A section of the irrigation scheme is covered with orchards. The WaPOR phenology layer seems to be able to 

identify the start of the wheat season (Figure 55), however the standard deviation is seven months (Table 38), 

potentially identifying the two starts of the cropping season and classifying them under one season. The duration 

of the cropping season as identified by WaPOR is also on the short side (2-3 months).

Table 36 
WaPOR phenology indicators for Kpong irrigation scheme in 2015 (mean and standard deviation)     

Start of season 1 Duration of season 1 Start of season 2 Duration of season 2

Rice 20 March ± 6 month 188 ± 69 20 March ± 9 months 130 ± 37

Banana 10 April ± 3 months 251 ± 52 10 April ± 10 months 161 ± 23
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Figure 54 
Start of season 1 and length of season at Kpong irrigation for 2015

Wonji irrigation scheme
The area under investigation is planting sugarcane throughout the year to ensure continuous harvesting, there 

is therefore no specific time of the year when the cropping season starts. The start of the cropping season as 

identified by WaPOR varies across the year, consistent with what we know from the system. However, for various 

areas, WaPOR is not able to identify a cropping season at all, which for sugarcane is acceptable (Figure 56). The 

biomass map (Figure 39) also shows various areas that are left fallow, so this could be correct. The cropping 

season for sugar cane is somewhere between 12 and 18 months (Yilma, 2017), whereas WaPOR estimates the 

duration of the cropping season between six to ten months (Table 39). 
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Table 37 
Cropping season in Fayoum irrigation scheme      

Crop Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Rice (s1)

Rice (s2)

Banana 

Legend: Planting Growing season  Harvesting

Source: Salvadore, 2019

Figure 55 
Start of season 1 and length of season at Fayoum irrigation scheme for 2015

Table 38 
WaPOR phenology indicators for Kpong irrigation scheme in 2015 (mean and standard deviation)     

Start of s1 Duration of s1 Start of s2 Duration of s2

Fayoum 10 October ± 7 months 73 ± 14 10 October ± 7 months 73 ± 14

Bekaa Valley irrigation
The irrigation in the Bekaa Valley, located in Lebanon follows the seasonality. An example of the cropping season 

of a typical crop in the Bekaa Valley, potatoes, is provided in Table 40 (Alvarez-Carrion, 2018). Another wide 

spread crop is wheat, which has for the winter varieties a cropping season of 100-170 days and for the summer 

varieties 180-300 days. Because of the heterogeneity of the crop production in the Bekaa Valley it is difficult to 

identify if the cropping season is well determined (Figure 57; Table 41). 

Start of season
1 Jan

1 July

Length of growing season
365

0
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Figure 56 
Start of season 1 and length of season at Kpong irrigation for 2015

Table 40 
Cropping season of potatoes in Bekaa Valley irrigation      

Crop Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Rice (s1)

Rice (s2)

Banana 

Legend: Planting Growing season  Harvesting

Source: Alvarez-Carrion, 2018

Table 39 
WaPOR phenology indicators for Kpong irrigation scheme in 2015 (mean and standard deviation)     

Start of s1 Duration of s1 Start of s2 Duration of s2

Wonji 10 November ± 1 year 186 ± 61 20 April ± 10 months 104 ± 44

Consistency season 1 and season 2
The WaPOR phenology produces separate layers for the start of season 1 and season 2. An analysis was done on 

the start and end of all seasons identified by WaPOR for an area in Rwanda (Braliwa farms) (Figure 58). The area 

is located in East Africa and experiences a bi-modal rainy season, with one season starting around October until 

January and a second season from March to June. The season 1 (each red line in Figure 58 represents one pixel), in 

2009 line up nicely. For 2010, some pixels span both the season November-January and March-June, other pixels 

have the season October-January identified as season 2 for 2009 (green lines) and others have identified the same 

season as season 1 for the year 2010. For the season October 2011-January 2012, the pixels are evenly identified as 

2011 season 2 and 2012 season 1. For some pixels the same season is both identified as season 2 of a previous year 

and season 1 of the following year (Annex E). 

Start of season
1 July

1 Jan

Length of growing season
365

0
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Figure 57 
Start of growing season 1 and length of growing season Bekaa Valley

Figure 58 
Season 1 and season 2 pixel identification

Table 41 
WaPOR phenology indicators for Bekaa Valley irrigation in 2015 (mean and standard deviation)    

Start of season 1 Duration of season 1 Start of season 2 Duration of season 2

Bekaa Valley 20 Feb ± 6 months 162 ± 41 20 Feb ± 8 months 85 ± 24

Bekaa_grapes 1 Feb ± 2 months 166 ± 47 20 March ± 8 months 101 ± 31

Start of season
1 July

1 Jan

Length of growing season
365

0
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C.3 	 Conclusions
The WaPOR phenology layer generally presents the cropping season as expected at basin and national level, 

following the general seasonality. However, when zooming into specific areas, the phenology layers has some 

serious issues in adequately representing the cropping seasons. This is crucial for the WaPOR portal, as water 

productivity is calculated on seasonal basis at Level 2, together with its inputs: seasonal AGBP and seasonally 

cumulated AETI. If the season is not well defined, all other parameters are affected by this error. Also, the shift 

between the two seasons, creates maps that are composed of pixels showing two different seasons. This makes 

it difficult to analyse the data, also it hampers identifying trends between one year to the next (as it is not clear if 

season 1 for year 1 is the same period as season 1 for year 2). 

The main observation is that both crop types and cropping seasons cannot be obtained from WaPOR. Users have 

to prepare their own crop masks and select the local cropping calendar. Only with this extra GIS processing, land 

productivity, water productivity and crop water consumption can be properly estimated. It is recommended that 

FAO and/or FRAME consortium will make this limitation and opportunity clear to website visitors.
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5. Water productivity

A. Gross Water Productivity 
A.1 Introduction
The WaPOR Water Productivity (WP) layers are based on a simple calculation of AGBP over AETI (gross biomass 

WP or GBWP) and AGBP over T (net biomass WP or NBWP). The uncertainty of water productivity is therefore 

directly related to the datasets of AGBP, AETI and T.  The WaPOR data portal provides WP for integrated time 

intervals. The 250 m resolution integrates WP on annual basis, whereas the 100 m and 30 m resolution data 

integrates based on the WaPOR defined seasons. 

A2. Data Analyses
The WaPOR values for gross and net WP are presented in Figure 59. The average continental value of GBWP is 0.66 

and for NBWP is 1.20. At first sight it is obvious that the arid zones exhibit lower WP values. This can be explained 

by the fact that relative humidity and T are inversely related (low humidity will induce high T flux) while the C flux 

is unaffected. The H20 and CO2 fluxes have to pass through the same stomatal aperture, and this climatological 

control of WP by air humidity (thus also indirectly induced by air temperature) was recognized since the 1960s 
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(Bierhuizen and Slayter, 1965). Indeed, the humid areas of Central Africa and the Atlas mountains in Morocco and 

Algeria show the highest WP values, and these agro-ecosystems behave according to the theoretical expectations.

Some more attention should be provided to NBWP because biomass production per unit of transpiration is often 

suggested to be conservative. It is also commonly referred to as the Transpiration Efficiency.  Transpiration 

Efficiency (TE) is a main feature in AquaCrop (Raes et al., 2011). The average value of 1.2 kg/m3 for NBWP for the 

continent is on the low side, as the conservative relationship between biomass and transpiration for C3 crops 

should be between 1.5 and 2.0 kg/m3 (Raes et al., 2011; Steduto et al., 2007).

 

Spatial data comparison
We compared WaPOR gross WP with a similar product of Servir Mekong produced by Poortinga and co-workers 

(Simons et al., 2017). The global WP map created by Servir uses the MODIS Terra NPP values and the SSEBop 

AETI calculations and is therefore expressed in 0.1*kg C/m3 (Figure 60). We used the WaPOR NPP data and 

WaPOR AETI to calculate WP in the same manner (converting to DM using the same conversion factors would 

result in the same biases). The comparison shows large deviations between the two products, this can be both a 

result of the differences in AETI or NPP. NPP differences between WaPOR and MOD17 (averaged for Terra and 

Aqua though) were discussed in the earlier section on NPP, so we think the major difference originates from 

AETI values estimated by SSEBop. Because WaPOR AETI was properly checked with water balances, it is believed 

that WaPOR WP values are more accurate than the WP version created by Servir.

Figure 59 
Average WaPOR gross biomass WP (GBWP) and net biomass WP (NBWP) for 2009-2017. Note 
that GBWP and NBWP are based on AGBP, thus ignore 35% of the total dry matter production

WaPOR net WP (kg/m3)

0
0.5
1
1.5
2

WaPOR gross WP (kg/m3)

0
0.5
1
1.5
2
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Figure 60 
Servir WP in 0.1*kg C/m3 and difference between Servir and WaPOR WP in 0.1*kg C/m3 (2009-2013)

Water productivity for selected irrigation scheme 
Gross and net Water Productivity (WP) was calculated for three of the four irrigation schemes. The Bekaa Valley 

with the diverse cropping system was not included for the analyses. WP is defined as the yield per unit of water 

(kg/m3), the gross WP uses the total water consumption (AETI), whereas the net WP uses T for unit of water 

beneficially consumed.

Wonji irrigation scheme
The gross WP for sugar cane in the Wonji irrigation scheme, was calculated using the 30 m resolution data (Figure 

61). Gross WP is 5.22 kg/m3 (Table 42), which is on the low side compared to the range of 5.9-6.6 kg/m3 found by 

Yilma (2017). The values found by Yilma were individual plot values, whereas the WaPOR data is an integrated 

value of the entire area, including fallow plots and buildings and areas with open water, thereby lowering the 

average value for gross WP. The WaPOR estimated value for gross WP is therefore in the correct range. 

Servir gross WP 
(0.1*kgC/m3)

0
0.5
1
1.5
2

Servir WaPOR gross WP 
(0.1*kgC/m3)

-2
-1
0
1
2
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Figure 61 
Gross WP for Wonji (30 m resolution)

Table 42 
Key indicators for Water Productivity in Wonji irrigation scheme     

Yield (tonnes/ha) AETI (mm/season) T (mm/season) Gross WP (kg/m3) Net WP (kg/m3)

Sugarcane 99.85 1,926 1,638 5.22 6.13

Fayoum irrigation scheme
The gross and net WP for the Fayoum irrigation scheme are presented in Figure 62 and Table 43. Salvadore (2019) 

found for wheat gross WP of 0.94, for maize 0.75 and for oranges 1.55 kg/m3. The values found using WaPOR 

data are slightly higher. The areas presumed to be fallow (low biomass production, see also Figure 48) around 

the edges of the irrigation scheme show the highest gross WP. This indicates that WP on its own is not a good 

indicator for agricultural productivity. Considering these differences, the WaPOR gross WP values provide a 

good reference for WP calculations. 
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Figure 62 
Gross Water Productivity wheat and maize 

Table 43 
Key indicators for Water Productivity in Wonji irrigation scheme     

Yield (tonnes/ha) AETI (mm/season) T (mm/season) Gross WP (kg/m3) Net WP (kg/m3)

Wheat 5.28 248 178 1.11 1.25

Maize 3.14 244 159 0.69 0.87

Oranges 24.69 485 333 1.83 2.02

Kpong irrigation scheme
The gross WP for Kpong irrigation scheme is presented in Figure 63 and 64 and Table 44. The gross WP for rice 

1.18 and for banana it is 4.85 kg/m3. We did not have locally verified values to compare the gross WP with. However, 

what is clear is that in humid climate, the differentiation between agricultural land and natural vegetation is not 

clear. For rice during both seasons, the surrounding landscape seems to have higher WP compared to the irrigated 

system. Without a detailed land use map it is not possible to correctly estimate agricultural water productivity, as 

natural vegetation would be erroneously included in the biomass production estimations.  

WP (kg/m3)

2

0

WP (kg/m3)

2

0
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Figure 63 
Kpong gross WP rice season 1 (top) and season 2 (bottom) 

Table 44 
Kpong gross WP rice season 1 (top) and season 2 (bottom)      

Yield (tonnes/ha) AETI (mm/season) T (mm/season) Gross WP (kg/m3) Net WP (kg/m3)

Banana 37.59 1,022 793 3.72 4.85

Rice s1 4.15 495 356 0.86 1.25

Rice s2 3.99 503 382 0.82 1.11

WP (kg/m3)

2

0

WP (kg/m3)

2

0
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Figure 64 
Kpong gross WP bananas 

C3. Conclusions
The WaPOR gross WP using user defined cropping season, harvest index and moisture content values, provides 

very good estimation of WP. The gross WP estimates for sugarcane (Ethiopia) and wheat (Egypt) highlight the 

challenges of deriving such indicators from remote sensing. In the Ethiopia case, the areal gross WP is lower than 

the field observation as the area incorporates non-agricultural or fallow land in the analyses. For Egypt, fallow 

land increases the areal gross WP, as fallow areas (with low AGBP and even lower AETI) reflect with a high WP. 

The inaccuracy of WP in those cases seems to originate from wrong identification of cultivated areas and not 

from erroneous WP assessment.

For the humid area in Ghana, the main challenges is the differentiation of natural vegetation versus agricultural 

lands. The surrounding landscape has equal or higher WP compared to the irrigated areas. It is expected that 

rainfed agricultural areas will face similar challenges in distinguishing between natural and agricultural lands, as 

both follow similar phenological patterns.   
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6. Synthesis
Rainfall in WaPOR is based on the spatial CHIRPS rainfall product. This is an existing product that is widely tested in 

the international literature. Research in Africa and Asia supports the selection of this product. Not only the quality 

is good, the spatial resolution of 5 km x 5 km is superior as well and the data goes back as far as 1983, which makes it 

suitable for climate change studies and impact on crop production. For a proper independent validation of CHIRPS, 

it is required to have access to a network with a high density of rainfall gauges. There is currently a spatial mismatch 

between the coverage of CHIRPS and that of rain gauges. Therefore areas with a higher density of rain gauges need 

to be searched for further validation of the CHIRPS product. Due to the fact that CHIRPS is an existing product, we 

have deliberately chosen to focus for now on the validation of the AETI and biomass production products. 

Obviously, WaPOR follows the FAO standard guidelines on reference evapotranspiration as laid out in FAO 

Irrigation and Drainage paper 56. Because the methodology is a global standard, the quality control should focus 

on the inputs for the FAO 56 equation. While WaPOR makes use of MERRA, it seems there are also advantages of 

using GLDAS. More routine weather stations should be involved in the next phase of the validation analysis to verify 

whether MERRA or GLDAS is more accurate. For now, it is convenient to conclude that no suspicious results of RET 

were found.
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While AETI cannot be measured in a straightforward manner, most of the in situ techniques available for an 

independent ground truth have been explored. These techniques range from eddy covariance flux towers, soil water 

balances at field scale to river basin water balances. Field measurements from many different countries in North 

Africa, Near East and Eastern Africa could be included in the analysis. While this would take more time, it helps in 

drawing consistent conclusions.

The overall finding is that the accumulated AETI for a year is rather good, and that spatially aggregated AETI 

values for river basins or sub-basins (e.g. 11 sub-basins of the Nile system) match even better. Some error in the 

accumulated and spatially aggregated AETI of WaPOR seems to be introduced at higher aridity. For instance, the 

Nile Delta, Fayoum Depression and Jordan River show higher deviation. Various mismatches with local fields and 

for shorter periods were detected. During the period of full crop development, AETI hardly exceeds 5 mm/d. The 

latter is essential for FAO, as a significant part of the applications will be related to crop water productivity analysis 

for a shorter period and for particular fields.

The breakdown of AETI into T, E and I has emphasized that T/AETI is higher than comparative remote sensing 

models and international literature. While we believe that T/AETI is at the higher side indeed, for instance the 

Transpiration Efficiencies (or NBWP in WaPOR terms) seem too low, T should increase during peak growing 

season and decrease in the emergence, senescence and fallow period. The interactions between LAI, PCP, soil 

moisture and light extinction coefficient α need to be investigated with more attention.

The biomass production and the related NPP fluxes are rather good for pristine growing conditions. The crop yield 

for various crops can now be computed in a physical manner, provided that the proper conversion factors are used. 

This is a leap forward as compared to solutions based on empirical relationships with NDVI. With WaPOR a decent 

bio-physical methodology is available with consistent data across a period of ten years. 

The WP is based on biomass production, and not on crop yield. GBWP is a surrogate for WP by absence of crop 

information. The default constants of root-shoot ratio and maximum light use efficiency are questionable, and 

require more time for validation. It is easier to compare WP for yield for which more international literature is 

available, however this requires local knowledge to convert AGBP or TBP to yield. 

Problematic are the layers on rainfed and irrigated crops, along with their cropping calendar. These two parameter 

are related because cropland has specific days of emergence and harvest and confusion between cropland and 

other land use will immediately impact the detection of the duration of the cropping and irrigation seasons. With 

user knowledge on the location of the field, crop type and cropping season, the WaPOR database is able to derive 

acceptable results.
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7. Next steps
A disturbing role of aridity on the accuracy of AETI values for different products has been found, with WaPOR 

performing better than other products, but still with some bias. The causing factors for this sensitivity need to be 

found out as a collaborative effort with the WaPOR team. Not unlikely, the combined soil moisture, temperature 

and vapor pressure deficit stress plays a regulating role on the stomatal behavior that requires correction.

The estimates of T in WaPOR is inspected and evaluated. While local sapflow measurements showed the opposite, 

we believe that T is genuinely high. The breakdown of T in smaller periods needs to be investigated. Additional 

analysis with basal crop coefficients using NDVI are required for assessing the potential transpiration rates. 

Furthermore, T data layers should be compared with AGBP and TBP values for specific land use and crop types. 

The WP parameter introduced in AquaCrop is normalized for atmospheric evaporative demand, defined by ET0, 

and for the CO2 concentration of the atmosphere. The normalized biomass water productivity (WP*) proved to 

be nearly constant for a given crop when mineral nutrients are not limiting, regardless of water stress except for 

extremely severe cases. Normalization NBWP for evaporative demands and atmospheric CO2 concentration has to 

be executed and the conservation behavior of the normalized AGBP should be verified.
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More sources of land cover and land use need to be consulted to improve the WaPOR LCC. High resolution data 

bases became available recently such as the CCI land cover at 20 m spatial resolution from the Joint Research 

Centre JRC (http://2016africalandcover20m.esrin.esa.int/), GeoWiki from IIASA (https://www.geo-wiki.org/), 

the Global Food Security-Support Analysis Data at 30 m from USGS (https://www.usgs.gov/centers/wgsc/science/

global-food-security-support-analysis-data-30-m?qt-science_center_objects=0#qt-science_center_objects)  and 

the global land cover map of Tsinghua University (http://data.ess.tsinghua.edu.cn/). Together with new solutions to 

detect irrigation processes, this could be considered to improve the current WaPOR maps on rainfed and irrigated 

cropland. 
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Annex A: SWAT Model set-up
The Soil and Water Assessment Tool (SWAT) is a widely applied catchment model, integrating hydrological, 

agricultural, soil and plant growth processes. SWAT has been used widely to support water resources and/

or agricultural management at river basin scale (Arnold et al., 1998). The newly develop SWAT+ version was 

released in September 2018. SWAT+ is using the same equations, but a different structure and formats of 

the programming codes and the in- and output files, allowing for a higher flexibility to connect different 

elements of the river basin (Bieger et al., 2017). In the new SWAT+ version, it is easier to implement routing 

over the landscape (flow moving from upland areas through lower areas) or wetland-flooding interactions. 

Another new feature of SWAT+ are the use of ‘decision tables’ as a standardized and flexible way to represent 

management activities, such as irrigation or dam operations (Arnold et al., 2018).  

The model functions such that a basin, along with a stream and channel network, is delineated from a Digital 

Elevation Map (DEM) and optionally a stream network. Once the basin is defined it is divided into sub-basins 

and Landscape Units (LSUs) according to the sections of the streams and channels. These are then further 

subdivided into Hydrological Response Units (HRUs) which consist of unique land use, slope and soil char-

acteristics.

The setup of the SWAT+ Africa model was conducted using QSWAT+, a graphical user interface (GUI) using 

Quantum Geographic Information System (QGIS). There are three phases involved using SWAT+ for water 

management: preprocessing, setting up the model and post-processing. Figure A1 shows the steps involved 

for setting up a SWAT+ model. Steps 1-3 are performed using SWAT+ and 4-5 are performed using a different 

program, SWAT+ Editor (Celray et al., 2018). Data inputs required for development of a SWAT+ model are a 

Digital Elevation Map (DEM), Land use and Soil Maps, Climate data (precipitation, minimum and maximum 

temperature, relative humidity, solar radiation and wind speed). Table A1 details the data sources used for the 

setup of the Africa SWAT+ model. 

Figure A1 
Steps for setting up a SWAT+ model in QSWAT+

Create
project

1
Deliniate

Watershed

QSWAT SWAT Editor

2
Create
HRUs

3
Edit SWAT

Input

4
Run SWAT

Model

5
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The following section details the model settings used for the development of the Africa model. During the 

watershed delineation step, a threshold of 3 500 km2 was used for both channels and streams resulting in 5 

664 landscape units (LSUs). LSUs are new to SWAT+ and are similar to sub-basins, however are based on the 

channel network rather than only on the stream network. SWAT+ allows the setting of sub-basins to equal the 

LSUs. Outlets are positioned based on inland GRDC stations (Figure A2) and on all points where rivers flow 

to the oceans. The next step is the creation of the HRUs using the land use and soil maps and slope classes. 

The slope classes used were 0 percent and 9999 percent. HRU delineation thresholds were set to 0 percent, 0 

percent, and 0 percent for land use, soil and slope respectively. Due to the land use map used as input, the final 

HRUs were created by splitting the initial HRUs based on the pixel composition information. This informa-

tion was derived from the input land use map resulting in a total of 930 870 HRUs.   

Table A1 
Input data and details used for setting up the SWAT+ Africa model     

Data Type Data Source Data Description

Digital Elevation Model (DEM) Shutter Radar Topography Mission 
(SRTM)

Resampled to 300 m x 300 m 
resolution

Soil Map Africa Soil Information Service 
(AFSIS)

Resampled to 0.25 degree x 0.25 
degree resolution

Land Use/Land Cover Map Land Harmonisation Project 
(LUH2)

0.25 degree x 0.25 degree resolution

netCDF file format

Year: 1979

Weather data	
Precipitation (kg m-2 s-1)	
Solar radiation (W m-2)	
Temperature (K)	
Wind Speed (m s-1)	
Relative Humidity (%)  

EartH2Observe, WFDEI and ERA-
Interim data Merged and Bias-
corrected for ISI-MIP (EWEMBI)

0.5 degree x 0.5 degree resolution

Weather generator Climate Forecast System 
Reanalysis (CFSR)

World dataset that ships with SWAT+ 
Editor
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Figure A2 
PBIAS for the GRDC station flow data compared with SWAT+ simulation

Figure A3 
PBIAS for the GRDC station flow data compared with SWAT+ simulation
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Annex C: Comparison  
Fluxnet vs WaPOR AETI
Figure C1 
Comparison Fluxnet towers and WaPOR AETI (areas indicated were removed from the analyses)
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Annex D: E, I and AETI comparison 
ETmonitor and WaPOR 
Actual 
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Evaporation 2010

Figure D4 
WaPOR E for 2010

Figure D3 
GLDAS AETI and comparison with WaPOR AETI for 2010

WaPOR E (mm/yr)

0
250
500
750
1e+03

GLDAS AETI (mm/yr)

0
375
750
1125
1500

WaPOR E (mm/yr)

0
250
500
750
1e+03

GLDAS - WaPOR AETI 

-1500
-750
0
750
1500



112 WaPOR quality assessment

Figure D5 
ETMonitor E and Comparison with WaPOR E for 2010

Figure D6 
GLDAS E and comparison with WaPOR E for 2010
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Figure D7 
WaPOR I for 2010

Figure D8 
ETMonitor I and comparison with WaPOR I
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Figure D10 
Budyko I and comparison with WaPOR I

Figure D9 
GLDAS I and comparison with WaPOR I 
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Annex E: WaPOR phenology  
start of cropping season  
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Figure E1 
Overlap in identification of cropping season 1 and 2
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Annex F:  Proposed methodological 
improvements arising from the QA 
report   
This Annex was contributed by eLEAF and VITO, who are responsible within the FRAME1  consortium for data 

production to the WaPOR database.  It was added to the WaPOR version 1 data Quality Assessment report to 

summarise, where relevant, the changes that will be made to the methodologies for production of the version 2 

(v2.0) WaPOR data components. Where no changes are applied to the methodology of the v 1.0 data components, 

information is provided to explain the possible sources of error that can influence the data components, explaining 

why at this moment in time no methodological changes are applied.

A. E, T, I individually
The following changes were made to the v2.0 input data sources: Soil moisture has increased in high vegetation 

areas, and the land cover input was changed from GlobCover to the v2.0 Land cover data. 

B NPP
The v2.0 NPP data product is affected by changes in the input data, specifically the land cover and soil moisture. 

Based on the validation results, the Light Use Efficiency value applied for cropland (2.49) in v1.0  was replaced by 

a LUE value of 2.7 for cropland in v2.0. This change was made to avoid double accounting of water stress because a 

soil moisture stress factor is included in the NPP calculation. A value of 2.7 represents the LUE under optimal water 

availability conditions (e.g. for irrigated cropland).

 In addition, the autotrophic respiration (AR) factor of 0.5 (ratio NPP/GPP) was also under discussion. However, the 

consensus between experts is that a fixed ratio is currently the best method available. Even though improvements 

can be achieved by making this AR factor land-cover and land-use dependent, there is insufficient calibration data 

available over Africa, making the 0.5 factor the best available option.

C. AGBP
In v1.0, the AGBP in level 2 was calculated based on the phenology data. The NPP was summed over the length of 

each detected growing season, while also taking into account the conversion to the above-ground biomass, as well 

as the conversion to Dry Matter Productivity. This meant that AGBP was only calculated for those pixels where 

a growing season was detected. This posed problems for vegetated areas where no clear growing season could be 

detected, such as evergreen forests (mainly in the tropical areas) and perennial crops with a growing season longer 

1	 The FRAME consortium consists of eLEAF, VITO, ITC, University of Twente and Waterwatch foundation commissioned by and in partnership with the 
Land and Water Division of FAO. For more information regarding FRAME, contact eLEAF (http://www.eleaf.com/ ). Contact persons. FRAME project 
manager: Steven Wonink (steven.wonink@eleaf.com). Managing Director: Maurits Voogt (maurits.voogt@eleaf.com)
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than one year (e.g. sugar cane). To circumvent this issue, an additional check is incorporated for v2.0: the mean 

annual NPP is computed for all pixels without a detected growing season. If this mean annual NPP falls above a 

certain threshold, the pixel is flagged as an evergreen and the AGBP is calculated as the annual sum of NPP. It is also 

proposed to distribute Total Biomass Production instead of AGBP.

D. Land cover
In v1.0, WaPOR-specific LC maps were used in combination with the official Copernicus 100m Africa land cover 

map. However, for v2.0, the LC maps will be entirely based on the Copernicus Global Land – Land Cover product, 

released in May 2019.  As by this time only the 2015 global map will be available, this map will be used as the base map 

for all years. The distinction of irrigated/rainfed areas will be added on an annual basis, resulting in annual LC maps. 

This irrigation labelling will be based on the original Water Deficit Index (WDI) from v1.0, where an additional 

temporal check is added. For each year, a 5-year window will be evaluated, labelling that target year as irrigated if the 

WDI was lower than 0.9 for more than 2 years in that window. 

E. Phenology
Phenology is derived from the NDVI-time series, where the evolution in time depicts when the area is greening up to 

when the senescence of the vegetation is occurring. A greening-up is represented by a sudden increase in the NDVI, 

while senescence is shown as a decrease in the NDVI. For an accurate delineation of the growing season from the 

NDVI time series, it is essential to have reliable data available. A common issue which may occur, especially for the 

start of the growing season (SOS), is high cloud cover, as the main growing season usually coincides with the rainy 

season. To this end, it is important to check the NDVI quality layer included in the WaPOR database. To make this 

quality-information easier to interpret, an overall quality layer will be added to the WaPOR database, showing the 

mean percentage of cloud-free observations per pixel. Areas with a low number of observations have a higher chance 

of poorly delineated growing seasons, or un-detected growing seasons in case of very sparse valid observations. It is 

thus important to keep the quality layers in mind when using phenology and/or any seasonal/annual product.

An additional issue to take into account when using the phenology data is the assignment of a growing season to a 

specific year in case the growing season extends over multiple years. The current assignment is based on the End 

of Season (EOS), where a growing season is assigned to the calendar year where the EOS is located. A buffer of one 

month is considered, where EOS values in January of year T are still assigned to the calendar year T-1. Regardless 

of this threshold for assigning a growing season to a calendar year, issues will arise for areas where the EOS lies 

around this threshold. Due to natural fluctuations in the timing and length of growing seasons, the assignment of 

the growing seasons may vary between years, resulting in variations in numbers of growing seasons in these areas 

(when only one growing season is present, some years will have two growing seasons assigned, while the next year 

will have no growing season), or a change in the order of the growing season between years (i.e. the rainy season 

may sometimes be the first season, and sometimes the second season). This issue is demonstrated in figure 58 of 

the WaPOR quality assessment report. 
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