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Summary  

This Lesson is the third step of the capacity-building program, which is designed to build national 
capacities as well as harmonize procedures for developing information of salt-affected soils at the 
national and global levels. The overall goal of this Lesion is to support participants in developing spatial 
gridded maps of soil properties (indicators) related to salt-affected soils at the national level. At the 
end of the lesson, the participants are expected to have technical capacity in generating spatial 
information on soil indicators of salt-affected soils in their countries. 

 

Summary outputs of gridded soil properties for establishing national information of salt-affected soils 
 

Item Description Format 
Gridded soil 
property maps 

Topsoil (0-30 cm) EC, pH, and ESP geoTiff raster files 
Subsoil (30-100 cm) EC, pH and ESP geoTiff raster file 

Gridded uncertainty 
maps  

Topsoil (0-30 cm) EC, pH, and ESP geoTiff raster files 
Subsoil (30-100 cm) EC, pH and ESP geoTiff raster file 

Textfile 

Topsoil (0-30 cm) accuracy indices (ME, RMSE, r2, 
NSE) 

Spreadsheet 

Subsoil (0-30 cm) accuracy indices (ME, RMSE, r2, 
NSE) 

Spreadsheet 
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1 Introduction 
1.1 Overview 
Many methods exist in the literature for mapping salt-affected soils. They include methods based on 
soil-type maps, remote sensing images, expert opinion, and digital soil mapping (DSM) of soil 
properties related to salt problems. The approach using DSM of soil indicators has the potential to 
quantify uncertainty and mapping accuracy besides developing spatial information (maps) of soil 
properties related to salt problems. This Lesson focuses on spatial modelling of soil indicator of salt 
problems in the soil. The Lesson also outlines steps for assessing accuracy and uncertainties associated 
with spatial modelling of soil indicators of salt-affected soils. It targets national experts with 
knowledge of and access to data on the indicators of salt-affected soils in their countries. Its outputs 
are expected to contribute to the development of national and global spatial information of salt-
affected soils. 

 

1.2 Objective 
The overall objective of this Lesson is to spatially model soil indicators of salt problems using digital 
soil mapping approach. 

 

1.3 Expected outcomes 
By the end of this Lesson, the participants are expected to be able to: 

i. Spatially model soil properties related to salt-affected soils using digital soil mapping approach 
ii. Assess soil mapping accuracy and uncertainty 

iii. Produce gridded maps of soil indicators (properties) related to salt problems in the soil 

 

2 Requirements for assessing salt-affected soils 
2.1 Data requirements 
This Lesson uses test data, which was collected from the North State of Sudan (Figure 1). The data 
comprise  

• Soil data (electrical conductivity (EC), pH and Exchangeable Sodium Percent (ESP)) 
• Spatial covariates such as mean annual rainfall amounts, land cover, geology, hydrogeology, 

MODIS remote sensing images, altitude (DEM)  

The soil data is arranged as shown in Table 1.  

Table 1: Organization of test case data 
sample Pits Longitude Latitude Upper Lower Horizon EC pH ESP 

5 2 29.81 20.62 0 10 1.000 1.900 8.600 10.000 
6 2 29.81 20.62 10 30 2.000 0.700 7.800 5.000 
7 2 29.81 20.62 30 100 3.000 

   

8 3 31.57 17.15 0 35 1.000 0.900 7.600 5.000 
9 3 31.57 17.15 35 60 2.000 0.400 7.800 2.000 

10 3 31.57 17.15 60 100 3.000 0.400 7.900 2.000 
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Figure 1: Location of test case soil in North State of Sudan 
 

Other GIS files are raster files at a spatial resolution of 1 km and projected as WGS 84 (UTM 36N). 
Remote sensing images are corrected MODIS reflectance bands (Table 2). 

Table 2: MODIS remote sensing images 
Image Spectral bands 
MODIS MOD009GA V6 Band 3 Blue: 0.459-0.479 µm 

Band 4 Green: 0.545-0.565 µm 

Band 1 Red: 0.62-0.67 µm 

Band 2 NIR: 0.841-0.876 µm 

Band 6 SWIR1: 1.628-1.652 µm 

Band 7 SWIR2: 2.105-2.13 µm 

 
The test-case data (soil.RData, predictors.RData) have been stored (here) in R datafile format. 
Soil.RData is the calibration soil dataset while predictors.RData is a stack of GIS raster file. 

2.2 Software requirements  
The latest version of the software should have been installed (from Lesson 2) 

i. R (https://www.r-project.org/) 
ii. QGIS (https://qgis.org/en/site/forusers/download.html) 

iii. RStudio (https://rstudio.com/products/rstudio/download/#download) 
iv. ILWIS (https://www.itc.nl/ilwis/download/ilwis33/) 
v. Spreadsheet software (Excel, Access) and document software (Word, Notepad) 
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R packages are also needed for spatial modelling with R: soilassessment, sp, foreign, rgdal, car, 
carData, spacetime, gstat, automap, randomForest, e1071, caret, raster, soiltexture, GSIF, aqp, plyr, 
Hmisc, corrplot, factoextra, spup, purrr, lattice, ncf, ranger. They should be downloaded and installed 
alongside R software. 

 

3 Resources 
The following resources are useful for implementing the activities during data collection:  

• References  
o Technical guidelines and manual for mapping salt-affected soils (GSP-

Secretariat@fao.org) 
o Country guidelines and specifications for global mapping of salt-affected soils  

 

4 Activities 
4.1 Loading data and R packages 
#Step 1: Load the data and set working directory 
Create a folder in C and call it Salinity (C:/Salinity) by right-click on New Folder in C using windows 
explorer (Figure 2). Unzip the downloaded zipped file (DSM_saltaffected.zip) in C/Salinity 

 

Figure 2: Creating working folder  
 

In RStudio and at the top-right corner, click on project and scroll down to “Open Project”. Navigate to 
C:/Salinity/DSM_saltaffected to locate “DSM_salaffected.Rproj” file. Choose it to load the project. In 
the bottom-right corner, choose File button (the first button in a set of File, Plots, Packages, Help, 
Viewer). This will reveal a set of files in the DSM_saltaffected.Rproj (Figure 3). Double click the files 
(one at a time) and accept the dialogue that follows (Digital_mapping_of_saltaffected_soils.R, 
predictors.RData, soil.RData, soilvalid.RData)   
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Figure 3: Loading files from R Project 
 

At the top of the bottom-right panel, click the (gear) icon labelled “More”, and scroll to choose “Set 
as Working Directory” (Figure 4). This step sets the working directory of the test data. 

 

Figure 4: Setting working directory for test data 
 

#Load R packages 

R packages contain the functions for digitals soil mapping of soil properties. If the packages were not 
installed during Lesson 2, then they should be first installed before loading the libraries. 
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> install.packages(c("raster", "sp", "rgdal", "car", "carData", "dplyr", "spacetime
", "gstat", "automap", "randomForest", "fitdistrplus", "e1071", "caret", "soilasses
sment", "soiltexture", "GSIF", "aqp", "plyr", "Hmisc", "corrplot", "factoextra", "s
pup", "purrr", "lattice", "ncf", "npsurv", "lsei", "qrnn", "nnet", "mda", "RColorBr
ewer", "vcd", "readxls","maptools","neuralnet","psych","ggrepel", "plotly"))  

 

In case there is error in installation,  

1. Check if internet connectivity is adequate 
2. If internet connectivity is OK, then note the packages which are not installing and install them 

manually 
3. click packages in the lower bottom panel 

 

4. Click Install icon below the Packages button in (3) above. A window will pop-up for installing 
the package. At this point your internet connectivity should be active 

 

5. Type the name of the package in the space below Packages (separate multiple with space or 
comma): (NB: you can also copy and paste each bullet below into the same space) 
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a. raster, sp, rgdal, car, carData, dplyr, spacetime, gstat, automap, randomForest, 
fitdistrplus, e1071, 

b. caret, soilassessment, soiltexture, GSIF, aqp, plyr, Hmisc, corrplot, factoextra, spup, 
purrr, lattice 

c. ncf, npsurv, lsei, qrnn, nnet, mda, RColorBrewer, vcd, readxls, maptools, neuralnet, 
psych, ggrepel, plotly 

The libraries should be loaded after installing the packaged 

>library(sp);library(foreign);library(rgdal);library(car);library(carData);library(
maptools) 
>library(spacetime);library(gstat);library(automap);library(randomForest);library(f
itdistrplus); 
>library(e1071);library(caret);library(raster);library(soilassessment);library(soil
texture); 
>library(GSIF);library(aqp);library(plyr);library(Hmisc);library(corrplot);library(
factoextra) 
>library(spup);library(purrr);library(lattice);library(ncf);library(npsurv);library
(lsei); 
>library(nnet);library(class);library(mda);library(RColorBrewer);library(vcd);libra
ry(grid); 
>library(neuralnet);library(readxl);library(psych);library(qrnn);library(dplyr) 

 

4.2 Check and harmonize statistical distribution of GIS layers 
Before checking and harmonizing statistical distribution of GIS layers, it is important to check and 
remove pixels with data (NA pixels). 

#Check and remove NA  

> summary(predictors) 
Object of class SpatialGridDataFrame 
Coordinates: 
        min       max 
x -356126.8  465873.2 
y 1825343.5 2478343.5 
Is projected: TRUE  
proj4string : 
[+proj=utm +zone=36 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0] 
Grid attributes: 
  cellcentre.offset cellsize cells.dim 
x         -355626.8     1000       822 
y         1825843.5     1000       653 
Data attributes: 

….. 

     lcover         geology         pgeology            rain             swir1         
 Min.   :  2.0   Min.   : 1.00   Min.   : 0.9977   Min.   : 0.1938   Min.   :0.01449   
 1st Qu.:178.0   1st Qu.:31.00   1st Qu.: 3.0000   1st Qu.: 2.0000   1st Qu.:0.58141   
 Median :178.0   Median :32.00   Median : 3.0000   Median : 4.0000   Median :0.65651   
 Mean   :177.4   Mean   :47.55   Mean   : 3.8039   Mean   : 7.2899   Mean   :0.63076   
 3rd Qu.:178.0   3rd Qu.:66.00   3rd Qu.: 3.0000   3rd Qu.: 7.8400   3rd Qu.:0.70472   
 Max.   :188.0   Max.   :88.00   Max.   :10.0000   Max.   :70.5665   Max.   :0.93891  

….. 

NAs will be shown in the layers where they occur. They should be first investigated where/why they 
occur. If they are predominantly outside the study area and occurred dude to GIS raster clipping, then 
they can be removed, for example, by replacing them with the mean of the data. 

 

> predictors$slope=ifelse(is.na(predictors$slope),mean(!is.na(predictors$slope)),pr
edictors$slope) 
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#Derive the remote sensing indices 

Derive the remote sensing indices of salt problems and attach them in the predicters stack of GIS 
layers. The indices are derived using the function imageIndices in the soilassessment library (Omuto, 
20201). 

> predictors$SI1=imageIndices(predictors$BBlue,predictors$BGreen,predictors$BRed,pr
edictors$BIRed,predictors$swir1,predictors$swir2,"SI1");summary(predictors$SI1) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
0.04471 0.31981 0.35173 0.34386 0.37887 0.54641  
 
> predictors$SI2=imageIndices(predictors$BBlue,predictors$BGreen,predictors$BRed,pr
edictors$BIRed,predictors$swir1,predictors$swir2,"SI2");summary(predictors$SI2) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.0389  0.2297  0.2540  0.2490  0.2749  0.4108  

……. 

> predictors$BI=imageIndices(predictors$BBlue,predictors$BGreen,predictors$BRed,pre
dictors$BIRed,predictors$swir1,predictors$swir2,"BI");summary(predictors$BI) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
0.07189 0.73497 0.83005 0.80074 0.89241 1.22795  

 

Any NAs arising from the calculation of the image indices should be remove where necessary. 

#Check for skewness using empirical histogram distribution 

> hist(predictors@data[,27:29]) # Figure 5.2 
> summary(predictors$SI6) 
#    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
# 0.003647 0.940943 1.129692 1.068303 1.232106 1.663694  
 
> predictors$BI=sqrt(predictors$BI)  
> hist(predictors$BI) 

 
 

Figure 5: Empirical statistical distribution of image indices  
 

For the moment, square-root or log transformation can be tested for data normalization. 

> hist(predictors@data[,"rain"]) 
> summary(predictors$rain) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.1938  2.0000  4.0000  7.2899  7.8400 70.5665  
> predictors$rain=log(predictors$rain) 

 

 
1Omuto, CT. 2020. soilassessment: Assessment Models for Agriculture Soil Conditions and Crop 
Suitability. https://cran.r-project.org/web/packages/soilassessment/index.html  
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#Perform PCA and select the first PCs accounting for over 95% of the image indices’ variation 

After normalizing the image indices, they are selected and converted into data-frame to enable 
determination of correlation and principal component analysis. Afterwards, the selected PCs are 
converted back to the raster stack. 

# Extract the image layers  

> predicters=predictors@data[,c("SI1","SI2","SI3","SI4","SI5","SI6","SAVI","VSSI","
NDSI","NDVI","SR","CRSI", "BI")] 
> soil.cor=cor(predicters) 
> corrplot(soil.cor,method="number",number.cex = 0.8) # Figure 6a 
> pca<-prcomp(predicters[], scale=TRUE) 
> fviz_eig(pca) # Figure 6b 
 

The correlation plot (Figure 6a) shows the correlation between image indices. For example, SI1 and 
SI2 have Pearson correlation index equal to 86%. PCA examines these correlations and determines the 
principal axes where data are highly correlated. These axes are also known as principal component (or 
dimensions in Figure 6b). Figure 6 is important in guiding the choice of PCs to represent the entire (13) 
layers of image indices.  

 

 

Figure 6: Correlation of image indices and scree plot of their principal component 
 

In Figure 6b, cumulative sum of the first 5 PCs (Dimensions) add to up to more than 95% explained 
variation in the overall 13 layers of the image indices.  Hence, the first 4 PCs can adequately represent 
the 13 image indices. This approach can be used on any set of image indices to select the appropriate 
number of PCs to reduce the data bulk. 

# Return the selected PCs to the raster stack to complete the harmonization process 

> Pred.pcs<-predict(pca,predicters[]) 
> predictors@data$PCA1=Pred.pcs[,1] 
> predictors@data$PCA2=Pred.pcs[,2] 
> predictors@data$PCA3=Pred.pcs[,3] 
> predictors@data$PCA4=Pred.pcs[,4] 
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4.3 Harmonization of input soil data 
# Harmonize input indicator measurements to those for saturated soil paste extract 

Many methods can be used to determine EC. They include (1) the use of saturated soil paste extract, 
(2) using other extracts, (3) using pedotransfer models from other soil properties, or (4) 
electromagnetic induction. Harmonization seeks to standardize methods 2 to 4 to equivalent values 
in method 1, since popular classification schemes use values obtained by method 1. The test case data 
was determined using saturated soil paste extract. Hence, it will not require EC harmonization. Omuto 
et al. (2020)2 outlines steps for harmonizing EC for the cases 2 to 4. 

Soil depth harmonization aims at developing soil information for uniform depth throughout the soil 
data. This harmonization is achieved by using the depth-integrating spline approach (Bishop et al., 
19993). The tool for implementing the approach is contained in the GSIF package (Hengl, 2019)4. 

> lon=soil1$Longitude 
> lat=soil1$Latitude 
> id=soil1$Pits 
> top=soil1$Upper 
>  bottom=soil1$Lower 
> horizon=soil1$Horizon 
> ECdp=soil1$EC  
> prof1=join(data.frame(id,top,bottom, ECdp, horizon),data.frame(id,lon,lat),type="
inner") 
Joining by: id 
> depths(prof1)=id~top+bottom 
Warning message: 
converting IDs from factor to character  
> site(prof1)=~lon+lat 
> coordinates(prof1) = ~lon+lat 
> proj4string(prof1)=CRS("+proj=longlat +datum=WGS84 +no_defs") 
> depth.s = mpspline(prof1, var.name= "ECdp", lam=0.8,d = t(c(0,30,100,150))) 
Fitting mass preserving splines per profile... 
 
  |================================================================| 100% 
> plot(prof1, color= "ECdp", name="horizon",color.palette = rev(brewer.pal(8, 'Acce
nt')),par=c(cex.lab=2.0)) #Figure 7 

 

 
Figure 7: Example depth harmonization for ECse 

 

 
2Omuto CT, Vargas RR, El Mobarak, AM, Mohamed N, Viatkin K, Yigini Y. (Eds). 2020. Global mapping of salt-affected soils: A 

technical guideline and cookbook. Rome 
3Bishop, T.F.A, McBratney, A.B., Laslett, G.M., 1999. Modelling soil attribute depth functions with equal-area quadratic 

smoothing splines. Geoderma, 91(1-2), 27-45 
4 Hengl T. 2019. GSIF: Global Soil Information Facilities. https://cran.r-project.org/web/packages/GSIF/index.html  
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# Extract the depth-harmonized soil data and re-project 

> soilhrmdepths=data.frame(depth.s$idcol, depth.s$var.std, check.names = TRUE) 
> soil2=merge(soil1,soilhrmdepths,by=intersect(names(soil1),names(soilhrmdepths)),b
y.x="Pits",by.y="depth.s.idcol",all=TRUE) 
> coordinates(soil2)=~Longitude+Latitude 
> proj4string(soil2)=CRS("+proj=longlat +datum=WGS84")#Attach CRS to the data 
 

#Harmonize CRS and ensure use of the correct +proj and +zone for the study area 

> soil1=spTransform(soil2,CRS("+proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs"))  
> soil1=soil2 
> hist(soil1$EC) 
> soil1=subset(soil1,!is.na(soil1$EC)) 

 

#Harmonization of statistical distribution 

This harmonization is done to transform the frequency distribution to normal distribution. Frequency 
transformation to normal distribution is optional for spatial modelling algorithms. If it’s chosen, then 
the empirical distribution is first established through histogram analysis and transformation 
implemented if the distribution is found to be skewed. hist function is used to extract and plot the 
histogram. Box-Cox (1964) transformation is preferred. The following scripts illustrate the steps for 
transforming statistical distribution. Summary distribution is first obtained to establish if there are 
zeros, Nas, or negative values. It is desirable to remove them before implementing Box-Cox 
transformation. 

> summary(soil1$X0.30.cm) 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
  0.0007   0.6291   1.8709   6.6812   5.3121 154.2463  

 

> soil1$dummy=(soil1$EC)# (you may) add "+0.001" if minimum X0.30.cm is zero 
> hist(soil1$dummy, main="Frequency distribution (before transformation)", xlab="Ha
rmonized EC (dS/m)") 
> soil1$Tran=(soil1$dummy^(as.numeric(car::powerTransform(soil1$dummy, family ="bcP
ower")["lambda"]))-1)/(as.numeric(car::powerTransform(soil1$dummy, family ="bcPower
")["lambda"])) 

 

4.4  Spatial modelling of indicators 
Spatial modelling of indicators of salt-affected soils is based on the digital soil mapping (DSM) concept.  
In this concept, a relationship is built between the soil indicators of salt problems and spatial 
predictors (GIS layers of drivers and indicators of salt problems and soil forming factors). This approach 
enables quantification of: 

1. Spatial information of indicators of salt-affected soils (EC, pH, ESP) and different soil depths 
2. Mapping uncertainties and accuracy 
3. Spatial information of classes and intensity of salt problems 

Popular models often used to represent f are linear, random-forest, support-vector machine, mixed-
effects, regression kriging, etc. The soilassessment package provides regmodelSuit function for guiding 
the choice of the appropriate model for mapping soil variables. It tests different models and returns 
the top nine models using RMSE, ME, NSE and r2. Lowest root mean-square error (RMSE), highest r2, 
lowest mean error (ME), highest Nash-Sutcliff coefficient of efficiency (NSE) are then used as the 
guiding criteria for choosing the suitable model. An initial step for spatial modelling is to build the 
model in a calibration dataset and then testing the model using an independent dataset. This calls for 
the establishment of calibration and validation datasets. These datasets should have well aligned soil 
properties (indicators) and spatial predictors at each georeferenced sampling point. Pixel value 
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extraction of GIS layers (predictors) using point data (soil1) is a suitable method for developing either 
the calibration or validation datasets. 

# First check for similarity in coordinate reference system – crs and then extract the predictors 

> crs(predictors); crs(soil1) 
CRS arguments: 
 +proj=utm +zone=36 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0  
CRS arguments: 
 +proj=utm +zone=36 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0  

 

It’s important to ensure that the CRS for predictors and soil database are the same before starting 
pixel extraction 

#Then extract the pixel values for all predictors into the soildata dataframe 

> {predictors.ov=over(soil1, predictors) 
+   soil1$dem=predictors.ov$dem 
+   soil1$slope=predictors.ov$slope 
+   soil1$cnbl=predictors.ov$cnbl 
+   soil1$ls=predictors.ov$ls 
+   soil1$valley=predictors.ov$valley 
+   soil1$loncurve=predictors.ov$loncurve 
+   soil1$lcover=predictors.ov$lcover 
+   soil1$rain=predictors.ov$rain 
+   soil1$pgeology=predictors.ov$pgeology 
+   soil1$geology=predictors.ov$geology 
+   soil1$PCA1=predictors.ov$PCA1 
+   soil1$PCA2=predictors.ov$PCA2 
+   soil1$PCA3=predictors.ov$PCA3 
+   soil1$PCA4=predictors.ov$PCA4 
+ } 
 

#Step 2-2: Establish suitable DSM model 

> soil1=subset(soil1,!is.na(soil1$dem)) 
> soil11a=soil1@data[,c("Tran","dem","slope","ls","cnbl","loncurve","valley","rain"
,"lcover","pgeology","geology","PCA1","PCA2","PCA3","PCA4")] 
> regmodelSuit(soil11a,Tran,dem,geology,pgeology,slope,rain,loncurve,cnbl,valley,lc
over,ls,PCA1,PCA2,PCA3, PCA4) 
  |========================================================================| 100%  
                       ME      RMSE        R2         NSE 
Linear          1.37034834 1.8129133 0.1320264 -4.45424486 
RandomForest    0.24614749 0.4291176 0.9623631  0.99707891 
SVM             1.34745209 1.8212570 0.1357457 -4.44014767 
BayesianGLM     1.36669809 1.8051662 0.1399516 -4.55079779 
BaggedCART      0.88676091 1.1705841 0.7018074  0.44302759 
Cubist          0.07851255 0.2744213 0.9753726  1.00000000 
CART            1.40147986 1.8274332 0.1320797 -4.56273851 
Ranger          0.26852953 0.4205875 0.9655103  0.99702690 
QuantRandForest 0.04923343 0.2855093 0.9761419  1.00000000 
QuantNeuralNT   1.16162791 1.7075411 0.2582558  0.07778314 

 

The above results depict the quantum regression random forest and cubist models as suitable for 
modelling the 0-30cm ECse using the given spatial predictors in the case-study test data.  

Statistical model building and testing strategies recommend independent datasets for model building 
and for model testing. These datasets should ideally be sampled with focus for model building and 
testing. In the absence of independently sampled dataset for either model building (calibration) or 
testing (validation), data-splitting strategy is often used. Data-splitting strategy randomly (or stratified 
randomly) splits the data into two parts. One part is held as calibration and the other as validation. 
The validation dataset is used for accuracy assessment. The indices for reporting modelling accuracy 
include RMSE, ME, r2, NSE, and a graphical plot of the modelled versus harmonized values. Data-
splitting may be arbitrarily chosen according to or depending on the data-size. 
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#Step 2-3: Model building and testing 

> {soil4=as.data.frame(soil1) 
+   bound <- floor((nrow(soil4)/4)*3) 
+   soil3 <- soil4[sample(nrow(soil4)), ] 
+   df.traina <- soil3[1:bound, ] 
+   df.testa <- soil3[(bound+1):nrow(soil3), ]} 

 

> rf.ec=train(Tran~(slope+rain+loncurve+ls+cnbl+valley+lcover+dem+PCA1+PCA2+PCA3+PC
A4+PCA5),  data = df.traina,  method = "qrf", trControl=trainControl( method = "cv"
,number=5,returnResamp = "all",savePredictions = TRUE, search = "random",verboseIte
r = FALSE)) 

 

# Show the prediction interval 
> df.testa$Strain=predict(rf.ec,newdata=df.testa) 
> hist(df.testa$Strain,xlab="Box-Cox Transformed ECse (0-30cm)", main=NULL) 
> abline(v = quantile(df.testa$Strain, probs = c(0.05, 0.95)),lty = 5, col = "red") 
 
 

 

Figure 8: Graphical plot of frequency distribution with prediction limits at 95% confidence interval 
 

Prediction limits on the Box-Cox transformed values at 95% confidence interval are given in Figure 8, 
which shows the interval around the mean of 0.77 as [-2, 4.1]. 

#Accuracy assessment  

> cor(df.testa$Strain,df.testa$dummy)^2 
[1] 0.9950319 
 
> {plot(df.testa$Strain~df.testa$dummy, xlab="Measured ECse",ylab="Modelled ECse", 
main="Accuracy assessment on hold-out samples") 
+   abline(a=0,b=1,lty=20, col="blue")} # Figure 9 
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Figure 9: Graphical plot of predicted versus measured EC 
 

> Bias=mean(df.testa$Strain-df.testa$dummy,na.rm=TRUE) 
> RMSE=sqrt(sum(df.testa$Strain-df.testa$dummy,na.rm=TRUE)^2/length((df.testa$Strai
n-df.testa$dummy))) 
> Rsquared=cor(df.testa$Strain,df.testa$dummy)^2 
> NSE=1-sum(df.testa$Strain-df.testa$dummy,na.rm=TRUE)^2/sum((df.testa$Strain-mean(
df.testa$dummy,na.rm=TRUE))^2,na.rm=TRUE) 
> statia=data.frame(Bias,RMSE,Rsquared,NSE);View(statia) 
> write.csv(statia,file = "EC0_30_validmodel_stats.csv") 
> statia 
        Bias     RMSE  Rsquared      NSE 
1 -0.1019564 1.751158 0.9950319 0.982046 

 

#Use the developed model to predict the map of EC 

> lmbda1=(as.numeric(powerTransform(soil1$dummy, family ="bcPower")["lambda"])) 
> predictors$ECte=predicta(rf.ec,predictors) 
> coordinates(df.testa)=~Longitude+Latitude 
> proj4string(df.testa)=CRS("+proj=utm +zone=36 +datum=WGS84 +units=m +no_defs +ell
ps=WGS84 +towgs84=0,0,0") # Make sure to use correct CRS 
> predicters.ov1=over(df.testa, predictors) 
> df.testa$Predre=predicters.ov1$ECse 
> cor(df.testa$dummy,df.testa$Predre)^2 
[1] 0.9978655 
 

#Compare the spatial prediction and validation dataset 

> featureRep(predictors["ECse"],df.testa) #Figure 5.10 
 
 Two-sample Kolmogorov-Smirnov test 
 
data:  dist.histbb$left and dist.histbb$right 
D = 0.52174, p-value = 0.003819 
alternative hypothesis: two-sided 
 
> summary(predictors$ECse);summary(df.testa$dummy) 
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
  0.00007   0.48810   1.17487   1.51685   1.61781 112.74435  
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
  0.00048   0.59755   1.71126   6.60388   5.05220 113.50941  
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Figure 10: Representativeness of validation (sample points) EC ranges in prediction map (feature map) 
 

The feature representation shows how well the range of measured EC (validation EC) are contained in 
the prediction map. In the case-study sample, high EC (>40 dS/m) are poorly captured in the prediction 
map. The x-axis shows the frequency (probability density) of occurrence of data (EC) values in y-axis. 
Poor representation of the high (EC > 40) implies model uncertainty for high EC values. This will be 
further investigated when uncertainties are produced. 

#Export the output  
 
writeGDAL(predictors["ECse"], drivername = "GTiff", "Top0_30ECse.tif") 

 

#Uncertainty assessment 
> soil6a=soil1[,c("Tran")] 
> predictors6a=predictors[c("dem","slope","cnbl","lcover","loncurve","rain","pgeolo
gy","geology","ls","valley","PCA1","PCA2","PCA3","PCA4","PCA5")] 

 

> pred_uncerta=predUncertain(soil6a,predictors6a,3,95,"qrandomforest") 
  |======================================================================| 100% 
 

> spplot(pred_uncerta, "pred_width", scales = list(draw = TRUE),col.regions=heat.co
lors(20,rev = TRUE)) + spplot(df.testa,"dummy",pch=3,cex=0.4) #Figure 11 

 

#Step 2-7: Exporting the uncertainty maps 

> EC0_30_uncertain=(pred_uncerta$pred_width*lmbda1+1)^(1/lmbda1) 
> writeRaster(EC0_30_uncertain, filename="EC0_30_uncertain.tif",format="GTiff") 
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Figure 11: Spatial prediction width at 95% confidence interval and overlay of validation points 
 

The above steps for spatial modelling of EC should be repeated for pH, ESP for 30-100 cm soil depths.  

 

5 Outputs 
Each participant is expected to produce the following at the end of this lesson: 

1. GeoTiff raster maps of soil indicators of salt-affected soils (EC, pH, anf ESP) for 0-30 cm and 
30-100 cm (all together 6 raster maps) 

2. GeoTiff raster maps of uncertainty assessment for each soil property (EC, pH, and ESP) for 0-
30 cm and 30-100 cm (all together 6 raster maps) 

3. Text file of accuracy assessment for each soil property (EC, pH, and ESP) for 0-30 cm and 30-
100 cm (all together 6 raster maps) 
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