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Summary  

This Lesson is the fourth step of the capacity–building program, which is designed to build national 
capacities as well as harmonize procedures for developing information of salt–affected soils at the 
national and global levels. The overall goal of this Lesion is to support participants in developing 
national maps of salt–affected soils. At the end of the lesson, the participants are expected to produce 
national maps of salt–affected soils in their countries. 

Summary outputs from spatial modelling of salt–affected soils 
Item Description Timeline 

Input maps 

Input maps (between 0–30 and 30–100 cm) 
 Electrical Conductivity dS/m 

pH – 
Exchangeable Sodium percent – 

Software R and its contributed packages  

Maps in 
geoTiff files 

Outputs  
Major types of salt–affected soils 0–30 and 30–100 cm 2 days 
Uncertainty maps of salt–affected soils 0–30 and 30–100 

cm 

Accuracy 
assessment 

Accuracy indices  
Kappa index  
Graph of confusion matrix  
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Introduction 
1.1 Overview 
Salt–affected soils are groups of soils with high content of soluble salts and/or high amounts of sodium 
ions. The type and concentration of these salts and their drivers are important characteristics and the 
basis for mapping salt–affected soils. The three main categories for mapping salt–affected soils are: 
methods based on interpretation of soil–type maps, remote sensing applications, and methods based 
on soil indicators of salt problems. This Lesson targets the method using soil indicators of salt 
problems. It focuses on the classification of major types and problem intensity of salt–affected soils 
using input maps of indicators of salt problems. The Lesson targets national experts with knowledge 
of and access to indicators of salt–affected soils in their countries. Its outputs are expected to form 
the database and information for building national soil information of salt–affected soils. 

 

1.2 Objective 
The overall objective of this Lesson is to establish national spatial maps of salt–affected soils in each 
member country. 

 

1.3 Expected outcomes 
By the end of this Lesson, the participants are expected to: 

i. Understand the classification of salt–affected soils 
ii. Produce spatial maps of salt–affected soils 

iii. Locate sample points for future monitoring or update of the map of salt–affected soils 

 

2 Activities 
2.1 Classifying salt–affected soils 
The three major types of salt–affected soils are: saline, sodic, and saline–sodic soils. Table 1 gives 
popularly used classification schemes for classifying these major types of salt–affected soils. 

 

Table1: Characteristics of salt–affected soils 

Soil property Unit/Symbol Type of salt–affected soil 
Saline Saline–sodic Sodic 

Electrical conductivity ECe (dS/m) > 4 > 4 < 4 
Exchangeable sodium Percent  ESP  < 15 > 15 > 15 
pH – < 8.5  < 8.5 > 8.5  
Sodium adsorption ratio SAR < 13 > 13 > 13 

 

The soilassessment package contains the functions saltClass for implementing the classification 
scheme in Table 1. The input data for this function are the three soil indicators, EC, pH, and ESP. The 
data be point–data in a spreadsheet dataframe or raster maps. 
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> library(soilassessment) 
> predictors$salty=saltClass(predictors$ECse,predictors$PH,predictors$ESP,"FAO") 
> summary(predictors$salty) 
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.000   1.000   1.000   1.151   1.000   5.000  
 
> predictors$saltiness=classCode(predictors$salty,"saltclass") 
> spplot(predictors["salty"]) 
> spplot(predictors["saltiness"]) # Figure 1 
 

 

Figure 1: Maps of topsoil (0–30 cm) salt–affected soils 
 

Classification of the intensity of salt problems in the soil is expressed using levels of electrical 
conductivity and exchangeable sodium ions (Table 2). 

 

Table 2: Identifying intensity of salt problems in soil 
Salinity (ECe dS/m) Sodicity (ESP) 

Intensity FAO  USDA Intensity  FAO Amrhein (1996)1 

None < 0.75 0–2 None < 15 < 6 

slight 0.75–2 2–4 Slight 15–30 6–10 

Moderate 2–4 4–8 Moderate 30–50 10–15 

Strong 4–8 8–16 High/Strong 50–70 15–25 

Very Strong 8–15 > 16 Extreme/V. Strong > 70 > 25 

Extreme > 15     
 

 
1 Amrhein C. 1996. Australian sodic soils: Distribution, properties, and management. Soil Science 161. 
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> predictors$Salt_affected=saltSeverity(predictors$ECse,predictors$PH,predictors$ES
P,"FAO") 
> predictors$saltaffectedness=classCode(predictors$Salt_affected,"saltseverity") 
> spplot(predictors["saltaffectedness"]) # Figure 2 
 

 

Figure 2: Topsoil (0–30 cm) map of intensity of salt problems  
 

The final map in Figure 2 is exported as a GIS file format for data sharing. Since the export function 
does not work with factors /character values, the salt classes in the maps are first converted into 
numeric map–values and then exported. A look–up table (LUT) is necessary to help identify the classes 
and the unique numeric codes generated for each map–value. The LUT is exported as a text–file. 

 

> predictors$Saltclass=as.numeric(predictors$saltaffectedness) 
> salinity_LUT30=classLUT(predictors["saltaffectedness"],"saltseverity") 
 
  |=======================================================================| 100% 
 
> writeGDAL(predictors["Saltclass"],drivername = "GTiff","Top0_30saltaffected.tif") 
> write.table(salinity_LUT30,file = "saltaffected_LUT30.txt",row.names = FALSE) 

 

2.2 Accuracy assessment 
Accuracy of classified salt–affected map is assessed using confusion matrix. In this strategy holdout 
samples are independently classified in terms of types and severity of salt problems in the soil. 
Classification of the holdout samples should follow the same procedure of harmonization as other 
input data (that is, harmonization of input indicators and depths 0–30 and 30–100 cm). These classes 
are then compared to the pixel–extracted classes from the classified maps. The Kappa index is a 
suitable indicator for reporting the accuracy.   

#Import and classify validation dataset   

> soilv=readOGR(".","validation_harmonized") 
> soilv=subset(soilv,soilv$Horizon==1) 
> soilv$salt_affected1=saltSeverity(soilv$EC,soilv$pH,soilv$ESP,"FAO") 
> summary(soilv$salt_affected1) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
    3.0     6.0     8.0     8.5    11.5    15.0  
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> soilv$saltaffectedness1=classCode(soilv$salt_affected1,"saltseverity") 
> summary(soilv$saltaffectedness1) 
 
 ExtremeSalinity ModerateSalinity ModerateSodicity             None  
               3               10                1               18  
    saline_sodic   SlightSalinity   SlightSodicity   StrongSalinity  
              12               13               16                5  
 
After classifying the validation dataset, the dataset is used to extract pixel values of the classified map 
and compared with the classified validation.  

# Extract the salt classes from the map using the validation samples  

> soilv=subset(soilv,!is.na(soilv$saltaffectedness1)) 
> predictors.ovv=over(soilv, predictors) 
> soilv$salt_affected=predictors.ovv$Salt_affected 
> soilv$saltaffectedness=predictors.ovv$saltaffectedness 

 

# Check the summary of extracted classified pixels 

> summary(soilv$salt_affected) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  3.000   6.000   8.000   7.808  10.000  14.000  
> summary(soilv$saltaffectedness) 
   ExtremeSalinity   ModerateSalinity   ModerateSodicity               None  
                 1                  7                  0                 14  
      saline_sodic     SlightSalinity     SlightSodicity     StrongSalinity  
                18                 15                 11                 10  
    StrongSodicity VeryStrongSalinity  
                 0                  2  

A visual comparison shows that the validation datasets had points classified as extremely saline soil, 
but the map reported only one pixel. Similarly, three points in the validation datasets had strong 
salinity class while the map had 10 pixels with strong salinity classes. A graphical plot of the 
comparison (confusion matrix) gives a clear picture of the accuracy (Figure 3). 

> agreementplot(confusion(soilv$salt_affected, soilv$salt_affected1),main = "Accura
cy assessment",xlab ="Class codes in holdout samples", ylab = "Class codes in map") 
> Kappa(confusion(soilv$salt_affected, soilv$salt_affected1)) 
            value     ASE     z  Pr(>|z|) 
Unweighted 0.4211 0.06384 6.597 4.208e–11 
Weighted   0.4780 0.07792 6.135 8.525e–10 
 

 

Figure 3: Classification accuracy for salt–affected soils 
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2.3 Uncertainty assessment  
Uncertainty assessment in salt–affected modelling is conceived as estimating uncertainties 
contributed by input data modelling and uncertainties from the salt–classification model. The Monte 
Carlo uncertainty propagation approach is used to model both input data uncertainty and 
classification model uncertainty. This is a three–step approach involving input parameter 
specification, development of marginal and joint distributions, and simulations for uncertainty 
propagation. Input parameter specifications comprise definition of the salt–classification model and 
spatial distribution of mean and variance of the input variables. Spatial distribution of mean and 
variance are used to train the MC simulations at a set number of simulations/realizations. Usually, MC 
simulations are more accurate with a higher number of realizations. However, this may cost the 
analysis computing time for large datasets. A trade–off is necessary to safeguard suitable accuracy 
while at the same time incurring moderate computing time. A value of 100 is suggested for modelling 
salt–affected soils. Development of marginal density functions uses statistical distribution parameters 
and correlation models (crm). Examples of statistical distribution parameters, which depend on the 
type of distribution, are the mean("̅) and standard variation ($) for normal distribution or the scale 
(l) and rate (α) for gamma distribution.  

The following steps describes the process for preparing the input indicator maps into raster file format, 
since the modules for uncertainty assessment were developed for the raster file format. The input 
maps are further converted into spatialPixelsDataFrame to facilitate mathematical operations on 
dataframes.  It is important to check the probability distributions of the input data using the histogram 
function. Although MC simulations in Figure 4 are not strict on the type of the distribution, normal 
distribution is easy to sample. It’s therefore recommended that normalized distributions be 
established from the input maps. 

# Convert the input layers into raster files 

> EC=raster(predictors["ECse"]);names(EC)=c("EC"); EC1=as(EC,"SpatialPixelsDataFram
e") 
> PH=raster(predictors["PH"]); names(PH)=c("PH"); PH1=as(PH,"SpatialPixelsDataFrame
") 
> ESP=raster(predictors["ESP"]);names(EC)=c("ESP");ESP1=as(ESP,"SpatialPixelsDataFr
ame")  
>  
> ECte=raster(predictors["ECte"]);ECsd=pred_uncerta$pred_sd; names(ECsd)=c("ECsd") 
> PHde=raster(predictors["PHt"]);PHsd=pred_uncertb$pred_sd; names(PHsd)=c("PHsd") 
> ESPt=raster(predictors["ESPt"]);ESPsd=pred_uncertc$pred_sd; names(ESPsd)=c("ESPsd
") 
 
# Obtain sample spatial autocorrelation (Figure 4)  

> b=nrow(EC1) 
> c=trunc(0.01*b) 
> jj=EC1[sample(b,c),]  
> vrm=autofitVariogram(EC~1,jj) 
 
> plot(vrm)#Note the spatial correlation model and the value of Range parameter 
> acf((EC1$EC)) ##Also not the acf0 (at lag 0) 
> EC_crm <– makeCRM(acf0 = 0.85, range = 20000, model = "Sph") 
> plot(EC_crm, main = "EC correlogram") 
 
 

The above correlation functions are repeated for all input soil indicators for 0–30 cm and 30–100 cm. 
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Figure 4: Correlation functions for EC (0–30 cm) 
 

# Develop input marginal and joint multivariate uncertainty models for defining MC models 

> EC_UM=defineUM(distribution="norm",distr_param = c(ECte,ECsd),crm =EC_crm,id = "E
C") 
> PH_UM=defineUM(distribution ="norm",distr_param =c(PHde,PHsd),crm =PH_crm,id = "P
H") 
> ESP_UM=defineUM(distribution="norm",distr_param=c(ESPt,ESPsd),crm=ESP_crm,id= "ES
P") 
> class(EC_UM);class(PH_UM);class(ESP_UM) 
[1] "MarginalNumericSpatial" 
[1] "MarginalNumericSpatial" 
[1] "MarginalNumericSpatial" 
 
 

#Get the correlation values and use them in defining the Monte Carlo Uncertainty Mode (MUM) 

> cor(values(ECte),values(PHde)); cor(values(ECte),values(ESPt)); cor(values(PHde),
values(ESPt))  
[1] 0.5511048 
[1] 0.3204495 
[1] 0.2859129 

 
> salinityMUM = defineMUM(UMlist = list(EC_UM, PH_UM, ESP_UM), cormatrix = 
matrix(c(1, cor(values(ECte),values(PHde)), cor(values(ECte),values(ESPt)), 
cor(values(ECte), values(PHde)), 1, cor(values(PHde), values(ESPt)), 
cor(values(ECte), values(ESPt)), cor(values(PHde), values(ESPt)),1), nrow = 3, ncol 
= 3)) 

 
> class(salinityMUM) 
[1] "JointNumericSpatial" 
 
 

Possible realizations are now developed after setting the Monte Carlo Uncertainty models (MUM). 
100 level is set for simulating the MC simulations. 
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# Create MC realizations from the distributions 

> MC <– 100 
> input_sample = genSample(UMobject = salinityMUM, n = MC, samplemethod = "ugs",  n
max = 20, asList = FALSE) 
Linear Model of Coregionalization found. Good. 
[using unconditional Gaussian cosimulation] 

 
# Compute input sample statistics  

> EC_sample = input_sample[[1:MC]] 
> PH_sample = input_sample[[(MC+1):(2*MC)]] 
> ESP_sample = input_sample[[(2*MC+1):(3*MC)]] 
> EC_sample_mean <– mean(EC_sample) 
> PH_sample_mean <– mean(PH_sample) 
> ESP_sample_mean <– mean(ESP_sample) 
 
> EC_sample_sd <– calc(EC_sample, fun = sd) 
> PH_sample_sd <– calc(PH_sample, fun = sd) 
> ESP_sample_sd <– calc(ESP_sample, fun = sd) 

 
#Plot the realizations 

> par(mfrow=c(2,2),mar = c(1, 1, 2, 2), mgp = c(1.7, 0.5, 0), oma = c(0, 0, 0, 1), 
+     las = 1, cex.main = 1, tcl = –0.2, cex.axis = 0.8, cex.lab = 0.8) 
> plot(EC_sample_mean, main = "Mean of ECt realizations", xaxt = "n", yaxt = "n") 
> plot(PH_sample_mean, main = "Mean of PHt realizations", xaxt = "n", yaxt = "n") 
> plot(ESP_sample_mean, main = "Mean of ESPt realizations", xaxt = "n", yaxt = "n") 

 
Figure 5: Simulated realizations of normalized input soil indicators 

 
Note that the MC simulations were done on the normalized input soil indicators. It’s possible to sample 
from non–normalized data. However, a harmonized statistical distribution is preferred. 
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# Uncertainty propagation through the classification model 

The uncertainty propagation model is used to determine how uncertainties in input soil indicators 
propagate through the classification model into the final classified map. 

> Salinity_model_raster <– function (EC1,PH1,ESP1){ 
+   ww=EC1 
+   ww=raster(ww) 
+   ww$salt=saltSeverity(values(EC1),values(PH1),values(ESP1),"FAO") 
+   ww=ww$salt; names(ww)=c("salt") 
+   ww 
+ } 

 
> v <– list() 
> v[[1]] = map(1:100, function(x){input_sample[[x]]}) 
> v[[2]] = map(101:200, function(x){input_sample[[x]]}) 
> v[[3]] = map(201:300, function(x){input_sample[[x]]}) 
> input_sample=v 
> salinity_sample=propagate(realizations=input_sample,model=Salinity_model_raster,n
=MC) 

 
#Determine the uncertainty in final classified map 

> samplelist <– list() 
> samplelist [[1]] = map(1:100, function(x){input_sample[[x]]}) 
> samplelist [[2]] = map(101:200, function(x){input_sample[[x]]}) 
> samplelist [[3]] = map(201:300, function(x){input_sample[[x]]}) 
> input_sample= samplelist 
> salinity_sample = propagate(realizations = input_sample, model = 
Salinity_model_raster, n = MC) 

 
> salinity_sample <– raster::stack(salinity_sample) 
> names(salinity_sample) <– paste("salt.", c(1:nlayers(salinity_sample)), sep = "") 
> salinity_freq = modal(salinity_sample, freq=TRUE) 
> salinity_prop = salinity_fre/100 
> salinity_SErr = sqrt(salinity_prop*(1–salinity_prop)/100) 
> CL=0.95 
> z_star=round(qnorm((1–CL)/2,lower.tail=F),digits = 2) 
> salinity_MErr=z_star*salinity_SErr 
 

The final output is exported to a GIS file format for data sharing. 
 
> writeRaster(salinity_MErr,filename="Salinity_ME.tif",format="GTiff") 

 

3 Resources 
The following resources are useful for implementing the activities during data collection:  

• References  
o Technical guidelines and cookbook for mapping salt–affected soils (GSP–

Secretariat@fao.org) 
o Country guidelines and specifications for global mapping of salt–affected soils  

• Data sources: Input maps of soil indicators of salt problems 
• R Software and its contributed packages 

 

4 Outputs 
Each participant is expected to produce the following at the end of this lesson: 

1. Spatial maps (0–30 and 30–100 cm) of salt–affected soils 
2. Uncertainty maps (0–30 and 30–100 cm) of salt–affected soils 
3. Map accuracy for 0–30 and 30–100 cm maps of salt–affected soils 
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