

Hydro-economic modelling employs two main categories optimization- and simulation-based models. Simulation models answer to specific "what if" scenarios, whereby allocation policies are externally imputed. Optimization models, on the other side, help identifying the most appropriate management decisions based on the maximization/minimization of a stated mathematical objective function subject to physical, institutional and or economical constraints.

BUILDING FORWARD BETTER INITIATIVE >>>

THEMATIC AREA

HYDRO-ECONOMY MODELLING FOR RIVER BASIN MANAGEMENT

The Water Evaluation and Planning system (WEAP) is a water-planning tool that operates on the principle of water balance accounting, and represents different interconnected catchments, demand nodes, infrastructure, water flows and water transmission links to calculate the components of the hydrological cycle by simulating rainfall-runoff processes at the catchment level.

2. Module structure

- 1. Introduction to hydro-economic modelling
 - Schematization of the water resources system
 - Performance indicators
 - · Data pre-processing
- 2. Tools for cross-country and river basin water management
 - · Optimization method
 - Simulation method
- 3. Scenario analysis
 - Baseline assessment
 - Inter-sectoral allocation policies
 - Evaluation of development and management scenarios
- 4. The Water Evaluation and Planning tool (WEAP)
 - Introduction to the model
 - · Potential application to the case scenario
 - Employment of the tool for policy making and planning

3. Learning objectives

Taking into account national-, catchment- and basin-level scenarios, the module aims at increasing planning and management capacities to maximize the economic benefits of water resources allocation through sectors, according to the most relevant and updated hydro-economic principles. Through the presentation of simulation and optimization methods and the introduction of relevant tools, the training supports the assessment of the economic, hydrologic and institutional impacts and, accordingly, the formulation of efficient resource allocation policies.

SUPPORTED BY:

