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Foreword 

The overarching principle of the 2030 Agenda for Sustainable Development – “leave no one behind” – 
calls for more granular and disaggregated data than are currently available in most countries, in order to 
inform the Sustainable Development Goal (SDG) monitoring process. 

Since its creation, the Inter-Agency and Expert Group on SDG Indicators (IAEG-SDG), which is tasked with 
developing and implementing the SDG Global Indicator Framework for the goals and targets of the Agenda 
2030, has included work on data disaggregation in its annual activities. Indeed, at the core of the 
Framework there lies an overarching principle of data disaggregation, stating that “SDG Indicators should 
be disaggregated, where relevant, by income, sex, age, race, ethnicity, migratory status, disability and 
geographic location, or other characteristics in accordance with the Fundamental Principle of Official 
Statistics”. 

Recognizing the fundamental role played by disaggregated data and information, the United Nations 
Statistical Commission (UNSC), at its Forty-seventh Session, requested the IAEG-SDG to form a working 
group on data disaggregation, with the objective of strengthening national capacities and developing the 
necessary statistical standards and tools to produce disaggregated data. The IAEG-SDG responded to this 
request by creating a dedicated work stream on data disaggregation that led, among other achievements, 
to the compilation of all categories and dimensions of data disaggregation currently in place or planned 
by custodian agencies, as well as policy priorities relating to the most vulnerable population groups. This 
data disaggregation matrix distinguishes between dimensions representing: 

 The minimum set of disaggregation, including, for each indicator, the disaggregation dimensions 
specifically mentioned in the target or indicator name and information on the dimensions’ 
categories. For these dimensions, reports are made as to whether data are currently available in 
the Global SDG Indicators Database and, if not, when data is expected to be produced.  

 Other current disaggregation, which encompasses any additional data disaggregation beyond 
that covered in the minimum set for which data are currently available in the database. 

 Future additional disaggregation, including data disaggregation dimensions and categories 
mentioned in the metadata for the indicator, but not currently available in the database. 

As a member of the working group on data disaggregation, the Food and Agriculture Organization of the 
United Nations (FAO) has taken numerous steps towards supporting Member Countries in the production 
of disaggregated estimates. Within this framework, these Guidelines offer methodological and practical 
guidance for the production of direct and indirect disaggregated estimates of SDG indicators having 
surveys as their main or preferred data source. Furthermore, the publication provides tools to assess the 
accuracy of these estimates and presents strategies for the improvement of output quality, including 
Small Area Estimation methods.  

 

Pietro Gennari 
Chief Statistician 
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Chapter 1. Introduction  

1.1. Background 

Disaggregated data are key to reveal differences and disparities that are not usually reflected in broad 
aggregate figures in a comprehensive way. They are the prerequisite to further analysis that may be 
required to identify specific concerns, address issues and difficulties faced by various population 
subgroups, and understand the overall nature of disparities. Recognizing specific localities, households 
and individuals for priority actions can also guide policy interventions for efficient decision-making. 

The 2030 Agenda objectives require more fragmented information to monitor the situation of the most 
vulnerable, especially in terms of poverty reduction and achieving food security. Accordingly, reliable 
disaggregated data are essential to monitor commitments under the 2030 Agenda for Sustainable 
Development and the overall goal of “Leaving no one behind.”  Tracking the Sustainable Development 
Goal (SDG) indicators is highly instrumental in assessing whether progress towards this core principle is 
being achieved. 

During the Forty-seventh Session of the United Nations Statistical Commission, improving data 
disaggregation by developing necessary statistical standards and tools was agreed to be fundamental for 
the full implementation of the indicator framework (UNSC, 2016). In this regard, a working group on data 
disaggregation within the Inter-Agency and Expert Group on the Sustainable Development Goal Indicators 
(IAEG-SDGs) was established.1  As part of its work, the Group compiled all data disaggregation dimensions 
and categories for the global SDG indicator framework, after consulting all custodian agencies on 
disaggregation dimensions (IAEG-SDG, 2019). The resulting disaggregation matrix classifies all of these 
dimensions into three categories (UNSD, 2019):  

1. minimum set of disaggregation: disaggregation dimensions specifically mentioned in the target 
or indicator name and information on the categories, whether data are already available in the 
database and if not, when these disaggregated data are expected to be produced;  

2. other current disaggregation: any additional data disaggregation dimensions beyond those 
included in the minimum set for which data are available in the database; and 

3. future additional disaggregation: data disaggregation dimensions and categories mentioned in 
the metadata for the indicator, but not currently included in the database. 

The Food and Agriculture Organization of the United Nations (FAO) is dedicated to collecting, analysing, 
interpreting, and disseminating sound and timely statistics, which are key to inform decisions, policies and 
investments that tackle issues related to food and agriculture. Such issues range from hunger and 
malnutrition to rural poverty, and from food systems productivity to the sustainable use of natural 
resources or to climate change. This is why developing and implementing methodologies and standards 
to assist countries in generating sound data and information is at the core of FAO’s statistical work. The 
development of disaggregation techniques for food and agriculture statistics is an important driver of the 
success of FAO’s statistical work as well as of FAO’s overall mission.  

In addition, FAO is the custodian United Nations (UN) agency for 21 SDG indicators and is a contributing 
agency for an additional five, which all lead to supporting countries’ efforts in monitoring the 2030 

                                                             
1 For more details, visit the IAEG-SDGs Data Disaggregation for the SDG Indicators.  
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Agenda. Disaggregation of FAO-relevant SDG indicators is fundamental to make sure that required policies 
and plans are formulated and resources are spent on the areas and people where they are most needed 
and can have the greatest impact.  

According to the results of the Statistical Capacity Assessment for the FAO-Relevant SDG Indicators survey 
conducted by FAO in 2018/2019 (FAO, 2019) (Figure 1), many countries do not publish the key SDG 
indicators for agriculture and food at the required level of disaggregation. Of the 111 countries that 
responded to the survey, less than 10 percent (mostly in Europe) are able to publish the majority of these 
indicators in a fully disaggregated manner.2  

The use of traditional survey tools and sampling methods impose limitations on the production of 
disaggregated data and of relevant reliable estimates for small population groups or geographical areas. 
As a result, the data cannot drive the transformative changes required to achieve sustainable 
development, nor shed light on the situation of the most vulnerable groups and thus “leave no one 
behind”. Innovative techniques that could address some of these issues are far from being mainstreamed. 

 

Figure 1.1 Availability of disaggregated data by SDG indicator 

 

Source: FAO, 2019. 

 

 

 

                                                             
2 Only 6 percent reported that SDG Indicator 2.1.2 is available at the required level of disaggregation, while less than 20 percent 
reported having fully or partially disaggregated data. 
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1.2. Scope of these Guidelines 

1.2.1. The main focus of these Guidelines 

Ensuring the sustainability of the initiatives is one of the crucial factors in producing disaggregated data 
of good quality and that is regularly updated. In other words, National Statistical Systems (NSSs) and 
international organizations – FAO, the World Bank, Eurostat, the Organization for Economic Co-operation 
and Development (OECD), etc. – engaged in the production and dissemination of statistical information 
for monitoring commitments under the 2030 Agenda for Sustainable Development – should be capable 
of maintaining the effort required to produce disaggregated information regularly and continuously over 
time. This requisite makes it clear that various actions to tackle the limitations and obstacles on the regular 
production of disaggregated data must be implemented.  

To prioritize these actions, which range from those engaging a higher strategic level to those having a 
more in-depth technical intensity, on the basis of their immediate efficacy, it is useful to focus on the large 
national surveys carried out by NSSs (for instance, agricultural surveys, multipurpose household surveys, 
and labour force surveys) as well as survey programs conducted by international organizations.  

These surveys are generally carried out each year and their information can be immediately available for 
statistical production.  

Although censuses are not the main focus of these Guidelines, they play a fundamental role as a source 
for data disaggregation. Indeed, censuses can directly provide a great deal of disaggregated information 
every ten years. Furthermore, they yield the auxiliary information essential for designing the surveys, 
computing the estimates and validating the results. Census data, properly processed, enables sample 
surveys to produce up-to-date and good-quality disaggregated information. Therefore, the integrated 
exploitation of survey and census data is a key aspect in ensuring the success of data disaggregation 
programmes. 

The so-called “new data sources” – those having administrative nature or that have been obtained 
through electronic devices and different information-gathering channels – fall outside the scope of these 
Guidelines. Although this kind of data may overwhelmingly dictate which methodological and operational 
aspects are to be addressed and resolved by the official statisticians of various countries today, this 
publication focuses on traditional surveys, which allow for the regular production of disaggregated data 
to be achieved. New data sources merit separate and specific examination in a different technical 
document. 

As the data sources for SDG indicators vary, in these Guidelines, priority is given to the SDGs having 
national surveys as their recommended data sources. Box 1 lists the FAO-relevant SDG indicators and their 
disaggregation dimensions reflected in the IAEG-SDGs disaggregation matrix. The other FAO-relevant SDG 
indicators have spatial relevance, and the indicators related to forestry and water especially can benefit, 
directly or indirectly, from geospatial information for disaggregation. Methods using only geospatial data 
and tools, including Geographical Information Systems (GIS), Remote Sensing (RS) and Global Positioning 
System (GPS), are not considered in these Guidelines. Nevertheless, geographical position, that can be 
collected by the above smart devices, can be considered a particular survey variable. Therefore, they have 
been included in this manual.
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Box 1.1 Disaggregation matrix for FAO-relevant SDG 2 and SDG 5 indicators 

IAEG-SDG data disaggregation matrix for FAO-relevant SDG Indicators 2.1.1, 2.1.2, 2.3.1 and 2.3.2 and 5.a.1: 

M Minimum set of disaggregation 
The disaggregation dimensions specifically mentioned in the target or indicator name 
and information on the categories 

O Other current disaggregation 
Any additional data disaggregation dimensions beyond those included in the minimum 
set for which data are available in the database. 

F Future additional disaggregation 
Data disaggregation dimensions and categories mentioned in the metadata for the 
indicator, but not currently included in the database 

 

Indicator Gender Age 
Geographical 
location 
(urban/rural) 

Other 
geographical 
location – 
Sub-national 
(e.g. 
province) 

Income 
/economic 
status/poor 
and 
vulnerable 

Ethnicity 
(indigenous) 

Education 
level 

Type of 
enterprise 
(farming 
/pastoral 
/forestry 
/fisheries) 

Size of 
enterprise 
(small/ 
medium/ 
large) 

Agroecological 
zone (climate 
variables / type 
of soil / 
geomorphology) 

Type of 
products 
(crop / 
livestock 
/ mixed) 

Agricultural 
holding type 
(household 
/ non 
household) 

Water 
management 

Type of 
tenure 
(customary 
/ freehold 
/ leasehold 
/ other) 

Type of 
legally 
recognized 
document 

2.1.1 M M F F M           

2.1.2 M M F F M  F         

2.3.1 M F  O  M  M M O      

2.3.2 M F  O  M  M M O      

2.4.1    F       F F F   

5.a.1 M F F  F F        M F 

 

SDG Indicator 2.1.1: Prevalence of undernourishment 

SDG Indicator 2.1.2: Prevalence of moderate or severe food insecurity in the population, based on the food insecurity experience scale (FIES) 

SDG Indicator 2.3.1: Volume of production per labour unit by classes of farming/pastoral/forestry enterprise size 

SDG Indicator 2.3.2: Average income of small-scale food producers, by sex and indigenous status 

SDG 2.4.1: Proportion of agricultural area under productive and sustainable agriculture  

SDG Indicator 5.a.1: (a) Proportion of total agricultural population with ownership or secure rights over agricultural land, by sex; and (b) share of women among owners or rights-
bearers of agricultural land, by type of tenure

https://unstats.un.org/sdgs/iaeg-sdgs/disaggregation/
https://unstats.un.org/sdgs/iaeg-sdgs/disaggregation/
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1.2.2. Some useful concepts 

This section introduces general definitions that are essential to clearly explain the structure of these 
Guidelines.  

In a sample-survey context, the estimator of the parameter of interest for a given subpopulation is said 
to be a direct estimator when it is based only on sample information from the subpopulation itself. 
Unfortunately, for most surveys, the sample size is not large enough to guarantee reliable direct estimates 
for all subpopulations. A “small area” or “small domain” is any subpopulation for which a direct estimator 
with the required precision is not available. In the relevant literature, small area is intended as a general 
concept, and is used to indicate a general partition of the population according to geographical criteria or 
other structural characteristics (e.g. sociodemographic variables for household surveys or economic 
variables for business surveys).  

When direct estimates cannot be disseminated because they are of unsatisfactory quality, an ad hoc class 
of methods, called small area estimation (SAE) methods, is available to overcome the problem (see Rao, 
2003; Pfeffermann, 2002, 2013). These methods are usually referred to as indirect estimators as they cope 
with poor information for each domain, borrowing strength from the sample information belonging either 
to other domains or to previous survey occasions, resulting in an increase in the effective sample size for 
each small area.  

Large-scale surveys are usually aimed at providing estimates of target parameters for the whole 
population, as well as for relevant subpopulations defined at the sampling stage. Design-consistent and 
design-unbiased direct estimates are produced for the parameters of interest. However, in most surveys, 
the sample size is not large enough to guarantee reliable estimates for all target subpopulations.  

1.2.3. Summary of the Guidelines 

Chapter 2 classifies the actions useful for data disaggregation into four main pillars, which range from 
those engaging a higher strategic level to those having a more in-depth technical intensity. Furthermore, 
the need to maintain a holistic view, implementing the actions within the context of a strategic framework 
taking together the different activities regarding which various institutional subjects (NSSs and 
international organizations) can fruitfully cooperate, is considered.  

Chapter 3 illustrates the actions intended to define sample strategies for direct domain sampling 
estimates. The chapter further explores possible approaches to estimation that leverage various uses of 
auxiliary information. Furthermore, it proposes sampling designs that guarantee an observed set of 
sampling units for every subpopulation or domain for which disaggregated data must be produced. Thus, 
it would be possible to calculate the direct estimates. However, traditional sampling techniques present 
some issues when dealing with populations that are hard to reach (such as nomadic populations) or 
elusive.  

The chapter first introduces the basic notation and describes the sampling approaches traditionally used 
to deal with disaggregated data. The construction of estimators is discussed. Then, the chapter briefly 
illustrates specific and innovative sampling methods that overcome the problems associated with 
traditional techniques and can be adopted to ensure the planned sample sizes, as well as to introduce a 
controlled measure of accuracy in disseminating disaggregated statistics for the relevant domains.  
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Chapter 4 details the methods of measuring sampling accuracy. This is a specific step that represents a 
prerequisite to implementing any action for data disaggregation. To derive, estimate and disseminate 
sampling errors of disaggregated data boosts confidence in and the transparency of NSSs. This allows data 
users to evaluate the fit and accuracy of the estimates for their use. Moreover, large sampling errors in 
direct estimates make evident the need to either initiate development of an estimation strategy based on 
small area techniques or to revisit the sampling design, in order to guarantee the desired level of error for 
the direct estimates.  

Chapter 5 illustrates a useful approach to the integrated use of two independent surveys. This approach 
allows leveraging both a small survey, to measure a specific phenomenon precisely with a small 
measurement error, and from a more extensive survey, to produce cross-tabulation at a disaggregated 
level.  

Chapter 6 provides information on the use of SAE techniques, strictly linked to forthcoming Guidelines 
currently being developed by a specific UN-level task force. The adoption of SAE methods is one of the 
possible approaches to deal with disaggregation when direct estimates cannot be computed at the 
required precision level. Since SAE methods are heavily based on models, and the validation of those 
models can be challenging, their implementation may not be straightforward. 

The last section of each chapter summarizes the main findings and recommendations of the chapter. The 
information on the software and functions used are presented in Annex 1 at the end of these Guidelines. 

1.2.4. Focusing on a specific application 

To be effective, the Guidelines focus on a single case study, but the methods and approaches discussed 
are of much more general applicability. Focusing on a real problem helps to highlight the various issues 
that can arise in practical situations.  

In particular, the focus is on SDG Indicator 2.1.2, on prevalence of moderate or severe food insecurity in 
the population, based on the Food Insecurity Experience Scale (FIES). 

Disaggregated data is especially important in monitoring food insecurity and malnutrition. To ensure 
regular access to nutritious and sufficient food, and thus reductions in food insecurity, detailed and 
disaggregated information by age, gender and location and for disadvantaged population groups is 
required to target priority efforts. For this purpose, these Guidelines prioritize the study of food insecurity 
indicators and their disaggregation. 

SDG Indicator 2.1.2 provides internationally comparable estimates of the proportion of the population 
facing moderate or severe difficulties in accessing food. The FIES produces a measure of the severity of 
food insecurity experienced by individuals or households, based on direct interviews. The FIES Survey 
Module (FIES-SM) is composed of eight questions with simple dichotomous responses (yes/no). 
Respondents are asked whether, at any time during a certain reference period, they have worried about 
their ability to obtain enough food, their household has run out of food, or if they have been forced to 
compromise on the quality or quantity of the food they ate due to limited availability of money or other 
resources to obtain food. 

Food insecurity at moderate levels is typically associated with the inability to regularly eat a healthy, 
balanced diet. Severe levels of food insecurity, on the other hand, imply a high probability of reduced food 
intake and can therefore lead to more severe forms of undernutrition, including hunger. FAO (2020a) 
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reported that in 2019, 2 billion people, or 25.9 percent of the global population, experienced hunger or 
did not have regular access to nutritious and sufficient food.  

The data source for most FAO Members is the Gallup World Poll (GWP). In addition, FIES-compatible data 
from official national surveys are already available for some countries (Brazil, Canada, Ecuador, 
Guatemala, Mexico, Seychelles and the United States of America). Moreover, since 2015, the FIES has 
been included in official surveys in Burkina Faso, Indonesia, Kenya, Pakistan and Saint Lucia. When food-
insecurity prevalence estimates are based on FIES data collected in the GWP, the national sample size is 
usually of approximately 1 000 individuals.  

As of 2018, data for SDG Indicator 2.1.2 are available for over 150 countries, from 2014 to 2018. In making 
the global assessment, preference is given to suitable and reliable FIES data available from large national 
surveys, whereas FAO data collected in the GWP are used to compile the estimates for countries for which 
there is no other data and/or to fill gaps in terms of time series (FAO, 2020a). 

Table 1 gives a snapshot of the disaggregation matrix for SDG Indicator 2.1.2, on the prevalence of 
moderate or severe food insecurity in the population, based on FIES. Overall, although dimensions for 
disaggregation by age, sex and belonging to poor and vulnerable groups are listed in the minimum set of 
disaggregation, the disaggregated data are not currently available in the UN Global SDG Indicators 
Database, while for data collected by FAO through the GWP, indicator 2.1.2 could already be 
disaggregated by sex and, partially, by age, disaggregation for poor/vulnerable group is considered 
unfeasible with available data sources. The dimensions of geographical location and education level are 
reported to be available in the future. The FIES indicator does not cover any other dimensions classified 
as other current disaggregation.  

To reduce the impact of year-to-year sampling variability, country-level estimates are presented as three-
year averages, computed as the averages of all available years in the considered triennia. The data have 
been subject to a validation process, and only results validated by national statistical offices are published 
at the country level. 
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Table 1.1. Data disaggregation dimensions and categories for SDG Indicator 2.1.2 

 

SDG Indicator 2.1.2 – Prevalence of moderate or severe food insecurity in the population, based on 
the food insecurity experience scale (FIES) 

Minimum set of 
disaggregation 

Minimum required  
disaggregation dimension 

1. Poor and vulnerable population 
2. Age 
3. Sex 

Minimum required  
disaggregation dimension 
available in Global SDG 
Database (Yes/No) 

1. No 
2. No 
3. No 

Disaggregation category of 
minimum required 
disaggregation dimension 

1. Income decile 
2. Age 
3. Female/Male 

If minimum required 
disaggregation dimension not 
currently produced, when will 
it be produced? 

1. Not currently feasible 
2+3. For data collected by FAO through GWP, 
the current indicator can already be 
disaggregated by sex and, partially, by age (only 
between classes of over and under 15 years of 
age), by computing the percentage of men and 
women, and of people in each of the two broad 
classes of living in households that are classified 
as moderately or severely food-insecure.  

Future 
additional 

disaggregation 

Future additional 
disaggregation dimensions 
planned for indicator 

1. Geographical 
2. Education 

Disaggregation categories of 
future additional 
disaggregation dimensions 

1.1 Urban/rural 
1.2. Subnational (e.g. province) 

When will these future 
additional disaggregation 
dimensions be produced? 

Can already be produced for countries where 
FIES or compatible data is available from 
population surveys that are representative of 
the population in subnational areas and contain 
the relevant information at 
household/individual level.  
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Chapter 2. A strategic plan for data disaggregation  

2.1. Why is a strategic plan for data disaggregation necessary? 

The FAO results framework clearly specifies the importance of FAO’s statistical work through its strategic 
objectives and cross-cutting technical objectives. In order to improve governance of the relationships 
between FAO and Member Countries in relation to the specific objective of data disaggregation, it is 
advisable to establish a dedicated strategic plan that is shared between FAO, the Member Countries and 
other international statistical organizations.  

The ultimate objective of all actions carried out for data disaggregation is to enable NSSs to regularly 
produce and disseminate data (including on the SDG indicators) at a more detailed level and, eventually, 
to improve their decision-making processes. The main subjects in charge of the development of this 
objective are the NSSs, as well as the international organizations (FAO, the World Bank, Eurostat, OECD, 
etc.) engaged in the production and dissemination of the statistical information required to monitor 
commitments under the 2030 Agenda for Sustainable Development.  

The sustainability of producing disaggregated data is crucial for the overall success of the initiative. In 
other words, the NSSs should be able to maintain the efforts required to produce new information 
regularly. This leads to the need to set up processes for various actions, ranging from those engaging a 
higher strategic level to those having a more in-depth technical intensity.  

To achieve this objective, it is necessary to maintain a holistic view, implementing the required actions 
within the context of a strategic framework bringing together the different activities regarding which the 
various institutional subjects involved (NSSs, international organizations, etc.) can fruitfully cooperate. To 
this end, the multiple actors involved in the actions should share and agree on the same vision and accept 
to be responsible, in cooperation with others, for specific tasks. Thus, it is necessary to formally establish 
a strategic plan for data disaggregation, on which the various actors can fruitfully cooperate. 

 

2.2. The four pillars of the strategic plan 

The strategic plan for data disaggregation should flexibly leverage actions based on the integrated use of 
various approaches, statistical methodologies and tools that are useful for different phases of the 
statistical production chain.  

These actions can be classified under the following four main pillars. 

1. Actions at the strategic level, that establish the strategic choices for the data disaggregation. These 
choices are the drivers of activities conducted at the technical level. An example of strategic choice 
is the selection of dimensions (or domains) relevant to a specific indicator. 

2. Actions on sampling design, aimed at defining the sample designs that guarantee the production 
of most of the disaggregated estimates with controlled quality, for relevant domains. 

3. Actions at direct estimation level, that (i) measure sampling accuracy, and (ii) improve the quality 
of direct estimates, even defining auxiliary variables that can be used for both benchmarking 
sampling estimates and correcting sampling non-response.  

4. Actions at indirect estimation level, to be implemented when direct estimates perform poorly. The 
SAE models fall under these actions. 
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2.3. Relationships among the pillars 

The actions of the pillars are closely interrelated and can positively influence one another, as illustrated 
in Box 2. 

 

 

Box 2.1 Examples of relationships among the pillars 

- Pillar 1. An example of strategic action is defining the disaggregation domains for which a 
planned sample size is necessary. At a higher institutional level, another example could be the 
decision to use standard classifications and comparable definitions for surveys implemented by 
the NSS.  

- Pillar 2. Based on the previous step, the sampling statisticians may define proper sampling 
designs, ensuring planned sample sizes for the disaggregation domains defined at the strategic 
level.  

- Pillar 3. Thus, it would be possible to calculate direct estimates and assess their precision. 
Moreover, the indirect estimates (Pillar 4) could also benefit from having sampling units in each 
domain of interest. Indeed, in this way, the statisticians may decide to set up models at the 
domain level, enabling a substantial reduction of the model bias.  

- Pillar 3. On the basis of the above actions, it is even possible to derive estimates and disseminate 
sampling errors of disaggregated data. This action boosts trust in and transparency of the NSSs. 
Moreover, the action allows data users to evaluate the fit and accuracy of the estimates for their 
specific use.  

- Pillar 4. Large sampling errors affecting the direct estimates highlight the need to either initiate 
development of an estimation strategy based on SAE techniques or to revisit the sampling design 
(Pillar 2), to guarantee the desired level of error for the direct estimates.   

- Pillars 1, 2, 3 and 4. The availability of a common set of definitions, metadata and classifications 
reinforces the overall coherence of the information system at country level, as all the 
disseminated statistics (computed with direct or indirect methods) must benchmark with the 
known totals.  

 

The sequence of the pillars, from Pillar 1 to Pillar 4, is an approach whereby which statistical activity is a 
coherent and ordered streamline in which, first, action on a strategic level is determined. Then, the 
sampling designs are defined. The direct estimates are derived and, if need be, SAE techniques are 
leveraged. This approach is rational and, in the long term, it allows for obtaining maximum efficiency while 
at the same time ensuring the feasibility of the different activities.  

However, a demand for detailed statistics for certain urgent and unforeseen need can often require the 
actions to be carried out in the reverse order to that given above. In these cases, disaggregated data can 
be produced using whatever information is available. Thus, it is possible to proceed either with a direct 
estimation (if all domains of the disaggregation have sample units) or with the SAE techniques (if some of 
the subpopulations have a null, or minimal, sample size). In these situations, too, after production of the 
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requested statistics, it is possible to proceed in the reverse order and consider intervening on the statistical 
plans and sampling designs because it is necessary to produce regular statistics. Briefly, 

 the suggested list of pillars (or phases) should not be taken as a fixed set of steps to be followed 
in a rigid and specific order: 

 certain practical situations, such as the implementation of the SDG monitoring agenda, may 
require omitting some of the abovementioned steps and producing estimates at a given 
disaggregation level using any data source available; and 

 The production of direct and indirect estimates with the data sources available may reveal a need 
to return to the design stage and revisit sampling designs or to develop new data collection 
approaches. 

This antinomy as to the sequence of the actions is reproduced in the picture below. 

As there can be several different scenarios for data disaggregation, the various actions of the strategic 
plan must be developed at the same time.  

 
 

Figure 2.1. Sequence of the actions, with different scenarios 

 

Source: FAO, 2020. 
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Figure 2.2 Factors that make the strategic plan effective 

 

Source: FAO, 2020. 

2.4. Making the strategic plan effective 

To implement this strategic plan, certain crucial factors must be in place. These factors are summarized 
in Figure 2.2 (above). 

The first factor is a shared vision. All actors involved should agree on the same vision. The vision is clearly 
stated in the 2030 Agenda for Sustainable Development and the overall objective of “Leaving no one 
behind”, according to which reliable disaggregated data are essential for monitoring commitments and 
tracking progress under the SDG indicators. 

The second aspect is related to the levels of the actions. We identify two main levels: the international 
levels and the specific country levels. Closely related to this aspect is that of the actors that can carry out 
the actions. The actors at the international level are international organizations (UN, FAO, etc.) that play 
a relevant role in the production of SDG indicators or monitor progress towards the SDGs (for instance, 
Eurostat in the European Union [EU] context), including by fostering international cooperation. The actors 
in each country are those of each country’s NSS: the National Institutes of Statistics (NSIs) as well the 
ministries involved in the production of SDG indicators. 

Each actor must carry out strategic actions that are the essential drivers of activities conducted at a more 
in-depth technical level. These are discussed in further detail in Section 2.5. below. Here, suffice it to 
mention that actions at the international level mainly concern regulations, classifications and standards. 
In contrast, at the country level, the actions focus on interventions on the country’s statistical plan and 
specific activities for data integration. 
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The strategic plans and strategic actions activate the technical activities of Pillars 2, 3 and 4. To guarantee 
the ordered and harmonious conduction of such activities, the actors for each level must set up operating 
plans that can guide specific developments. 

The final aspect that plays a crucial role is the governance and alignment of the strategic plan. This topic 
is beyond the scope of these Guidelines. It will only be mentioned that it is essential for governance to be 
clearly stated, and entail the involvement of the main actors. 

Finally, it is noted that proper communication of the plans (strategic and operating) is critical to ensure 
alignment on the relevant changes within the technical staff involved in the actions for data 
disaggregation. 

2.5. Focus on the strategic actions 

These actions are twofold. 

 The first-level actions aim to harmonize and standardize statistical processes at the international 
level and within the NSS, delivering new statistical services. 

 The second level is more specific, concerning the statistical plan of the country, and seeks to 
identify the relationships among the different sources of information (among surveys, among 
surveys and censuses, etc.) to provide the disaggregated information requested.  

The two levels are closely related to one another. Indeed, if the data are standardized and harmonized, 
many activities of the second level can be avoided, as they are the first level's implicit consequences. Even 
data manipulation can be simplified significantly. This topic will be discussed in further detail at the end 
of Section 2.5.2 below. 

2.5.1. Harmonizing and standardizing the statistical processes 

During the Forty-seventh Session of the United Nations Statistical Commission, it was agreed that 
improving data disaggregation by developing necessary statistical standards and tools is fundamental for 
the full implementation of the indicator framework (UNSC, 2016).  

The ultimate aim of these actions is to streamline the statistical production process, making it more 
efficient, transparent and widely applicable, which in turn entails a substantial facilitation and an enabling 
prerequisite for many data disaggregation actions.  

The impacts of these actions are twofold. On one hand, they make the statistical data production process 
similar to an industrial activity, defined by the sequencing of single standardized process steps (data 
collection, data editing, etc.) that are repeatable and of certified quality. This approach makes it much 
simpler to set up new processes that may be required to produce disaggregated data. Indeed, a new step 
can be introduced by simply assembling the elementary process steps. On the other hand, standardization 
enhances the use of shared definitions and metadata in different surveys, thus facilitating the integrated 
use of various sources of data (as shown in Chapter 5) to produce disaggregated statistics. 

The main actors involved in carrying out these kinds of actions are international organizations, which can 
play a crucial role, including by fostering cooperation among NSSs. 

The actions carried out by the United Nations Economic Commission for Europe (UNECE) and Eurostat on 
the modernization and standardization of statistical processes constitute best practices in this field.  



14 
 

A detailed and complete description of what is currently in place and what is in development in these 
fields is beyond the scope of these Guidelines. However, an overview of the various initiatives can be 
found in UNECE (2020) where, it can be seen that initiatives in this area include, among others, the topics 
mentioned below.  

 Human resources. This area focuses on the strategic issues of enhancing NSS capabilities by 
improving the competencies of their staff. 

 Statistical production, methods and information technology. The aim is to develop standards, 
guidelines, processes and tools to modernize and improve the efficiency of the statistical 
process. This topic covers, for instance, innovative services such as applications of machine 
learning and artificial intelligence to official statistics, and innovative statistical approaches such 
as the Enterprise Architecture. See, for example, the CSPA Service Catalogue, which provides 
information on shareable statistical services (CSPA, 2018); it is hosted by Eurostat and is publicly 
accessible. 

 Data collection and data sources. These actions foster the integration of big data into 
statistical processes. (For an inventory of some ongoing projects, see: UNECE Big Data 
Inventory Home).  

 Standards and metadata. The use of standards ensures that common definitions and processes 
are used within and between statistical organizations, helping to remove barriers to 
collaboration on technical projects, fostering the sharing of knowledge and experiences, and 
serving as the basis for streamlined statistical production. Projects in this area include, in 
particular, standards for metadata, such as statistical classifications. Efficient use and sharing of 
data rely on metadata to guarantee that everyone has the same understanding of the 
information and processes employed in producing official statistics. 

In Eurostat, several current and future investments aimed at innovating the production of official statistics 
are being made, at both national and European level. These include the following.   

 New data sources, which increase opportunities for the production of timely and/or more detailed 
statistics at the spatial or temporal level, as well as statistics on new topics. The Bucharest 
Memorandum on Official Statistics in a Datafied Society (Trusted Smart Statistics), adopted on 12 
October 2018 by the presidents of the European NSIs, indicates the strategic direction that NSIs 
must take with reference to the use of big data sources and the production of smart statistics. Such 
a direction has a great impact on NSIs, as remarked under Point 3 of the Memorandum: “the variety 
of new data sources, computational paradigms and tools will require amendments to the statistical 
business architecture, processes, production models, IT infrastructures, methodological and quality 
frameworks, and the corresponding governance structures, and therefore invite the ESS to formally 
outline and assess such amendments.” 

 Consumer demand. People increasingly expect data to be able to provide easy and accessible 
answers to their questions. They know they can access a variety of sources and official statistics 
must be able to convey quality and trustworthiness to them. Open data and citizen science demand 
specific innovation investments on the part of NSIs. 

 Technology advancement. Innovation can be introduced in several fields of interest for NSIs. 
Examples of such innovation include cloud computing to optimize investments on IT capabilities, 
smart devices as supports to smart surveys, and artificial intelligence. In particular, artificial 
intelligence, recently recognized as “one of the most important applications of the data economy” 
(European Commission, 2020), is of utmost importance for NSIs. Building artificial intelligence 
capabilities can enable several innovative applications, including the use of new data source types 
(such as images and textual data), new interaction paradigms with respondents and users of official 
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statistics (for example, statistical chatbots supporting data collection and data dissemination), and 
the ability to process big data (such as massive sensor data).  

FAO is particularly active in the field of statistical standards. In this regard, it is necessary to mention the 
work produced and disseminated for the Global Strategy to improve Agricultural and Rural Statistics 
(World Bank, FAO & UN, 2011), which is now in the phase of regional implementation. Particularly relevant 
to the topic of data disaggregation are the Technical Report and Guidelines on the Integrated Survey 
Framework (FAO, 2014 and 2015). 

FAO has also played an indispensable role in the Census on Agriculture (FAO, 2020b and 2020c), which in 
many countries, is the main statistical source for data disaggregation. 

2.5.2. Specific actions on the statistical plan at the country level 

The aim of these actions is to intervene on the statistical plan of a country to introducing specific 
modifications that can be useful for data disaggregation. 

The NSSs are the main actors carrying out these actions.  

However, international organizations implementing specific survey programs can also be involved in the 
actions.  Example of these programs are the GWP, the World Bank’s Living Standard Measurement Study 
(LSMS), and the 50x2030 Initiative. 

The two main strategic choices resulting from this activity are the following: 

1. establishing that some surveys should regularly tabulate data at a more detailed level, for some 
domains; and  

2. reviewing specific classifications to ensure that statistics can be computed considering standard 
categories of a disaggregation variable. For instance, if seeking produce urban/rural data 
disaggregation, the variable should be collected and recorded in the data sets with the survey 
data. 

Both decisions above are the drivers of other activities conducted at the technical level. Various 
methodological solutions, all of which are reasonable, can be leveraged. For instance, let us consider point 
1 of the above list. To ensure production of disaggregated data from a survey having a sample size that is 
too small for certain domains, it is possible, alternatively, to:  

 maintain all characteristics of the sampling design, but oversize the overall sample size to ensure 
sufficient sample sizes at the domain level; 

 ensure planned sample sizes (at the domain level) with a marginal stratification sampling design 
(see Chapter 4); 

 maintain all characteristics of the sampling designs and achieve the objective with special SAE 
techniques (see Chapter 6); or 

 adopt other solutions, based for instance, on the use of administrative records. 

In addition to the actions listed above, interventions on the statistical plan may occur at a more complex 
level, fostering the integrated use of different probabilistic surveys. For instance, the decision might be 
to:  
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 gather information on a complex phenomenon with a small study characterized by a small 
measurement error; 

 study, on the survey data, a regression model, linking the study variable with some auxiliary 
variables; 

 predict the study variable on the units of a more extensive scale survey, that has the same 
auxiliary variables considered in the regression model; or 

 produce the disaggregated tabulation, from the more extensive survey. 

This strategy (illustrated in detail in Chapter 5) leverages the advantages of both the small survey (with a 
small measurement error) and the larger one (with the variables useful for the data disaggregation). It 
requires a strategic choice concerning the “integrated use of the two surveys.” Moreover, the process 
outlined above requires the two surveys to share the same set of auxiliary variables. Specific technical 
work should follow the strategic decision (e.g. for fine-tuning the regression model).  

None of the above solutions is cost-free. Oversize the sample entails all the costs associated with a more 
extensive data collection effort. However, the choice to adopt SAE techniques also involves expenses 
relating to the statisticians’ need to set up proper small area models; moreover, additional data sources 
should be available, to fit effective models. All innovative solutions can affect the current organization of 
a survey, and this may encounter opposition by the persons in charge of specific statistical activities. 

Thus, the relevance of strategic decisions to launching innovative technical activities (that can be 
expensive) becomes clear.  

Furthermore, the strategic choices allow for overcoming some of the organizational barriers to the 
dissemination of disaggregated data. In this regard, the relevance of setting up proper communication 
activities (Barcaroli et al., 2015), to ensure alignment on change throughout the organization, is noted. 

Finally, both the strategic choice and the consequent technical activities can leverage the actions of 
harmonization and standardization illustrated in Section 2.5.1. Indeed, data manipulation can be 
simplified significantly if the surveys share the same metadata, classifications and definition and 
treatment of variables. 

2.6 Chapter wrap-up and main recommendations 

The main advice provided in this chapter is the following. 

1. The data disaggregation must be sustainable as a regular statistical activity.  
2. It is useful to establish a strategic plan for data disaggregation. This plan should consider the 

different activities regarding which various institutional subjects (at the international and national 
level) can fruitfully cooperate, sharing and agreeing on the same vision. 

3. The actions of the strategic plan for data disaggregation range from those engaging a higher 
strategic level to those having a more in-depth technical intensity. The strategic activities and those 
of deeper technical intensity are closely related and can positively influence one another. 

4. Together with the strategic plan, each country should intervene on its national statistical plan to 
define strategic choices that are essential for launching innovative technical activities and 
overcoming some of the organizational barriers that can hinder the production and dissemination 
of disaggregated data.  

5. Proper communication of plans is essential to ensure alignment on change among all technical 
staff involved in the actions for data disaggregation. 
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Chapter 3. Direct sampling strategies for data disaggregation 

3.1. Introduction 

This chapter is twofold. On one hand, it illustrates the basic theory for sampling and direct estimation, 
focusing on disaggregated data. It describes the most common domain estimators, discussing their 
inferential properties related to the use of available domain information and sampling size. The pros and 
cons of each estimation option are extensively discussed, along with their applicability according with the 
specific context.  

On the other hand, the chapter reviews the main actions that countries or international organizations can 
adopt regarding their surveys’ sampling designs. These actions are intended to define sample designs that 
guarantee an observed set of sampling units for each subpopulation or domain for which disaggregated 
data must be produced. 

Proper sampling designs for data disaggregation should ensure planned sample sizes for the domains of 
the disaggregation plan. This would allow for computing direct estimates. Furthermore, as illustrated in 
Chapter 6, having sampling units in each domain of interest would also benefit the computation of indirect 
estimators by enabling substantial reduction of model bias. 

As stated in Kalton (2009), when membership of a rare subpopulation (or domain) can be determined 
from the sampling frame, selecting the required domain sample size is relatively straightforward. In this 
case, the main issue is the extent of oversampling to employ when survey estimates are required for 
several domains and for the total population. Sampling and oversampling rare domains whose members 
cannot be identified in advance present a major challenge. A variety of methods have been used in these 
situations. In addition to large-scale screening, these methods include disproportionate stratified 
sampling, two-phase sampling, the use of multiple frames, multiplicity sampling, location sampling, panel 
surveys, and the use of multi-purpose surveys. Traditional sampling techniques address data 
disaggregation by oversampling or introducing a deeper stratification. More sophisticated techniques 
allow for improving sampling designs by geographically spreading the sample units (Gräfstorm, Lundström 
and Schelin, 2012) and diminishing the level of clustering. This would foster reaching segregated or rare 
subpopulations.  

Generally, traditional sampling techniques present certain issues when dealing with rare subpopulations 
(Kalton, 2009). The relative size of the subpopulation is a key factor. Kish (1987) proposed a classification 
of major domains comprising approximately 10 percent or more of the total population, for which a 
general sample will usually produce reliable estimates; minor domains of 1 to 10 percent, for which the 
special sampling methods illustrated below in Sections 3.4 and 3.5 are required; mini-domains of 0.1 to 1 
percent, estimates that mostly require the use of statistical models; and rare types comprising less than 
0.01 percent of the population, that generally cannot be handled by survey sampling methods. Many 
surveys aim to produce estimates for some major domains, some minor domains and occasionally even 
some mini-domains.   

Issues also arise with populations that are hard to reach (such as nomadic populations) or elusive. Verma 
(2013) gives a clear definition of the problem: “by elusive populations we mean populations for which – 
by virtue of their characteristics, or of the lack of suitable sampling frames, or difficulties in obtaining the 
required information – adequate samples cannot be defined, drawn or implemented using the normal 
procedures of general population sampling”. Another issue that exacerbates the usual problems of 
coverage errors to which almost all sample surveys are subject is “a fundamental vagueness in the 
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definition of the population, beyond the usual problems relating to its precise demarcation in content, 
space” (Verma, 2013).  The latter point would call for clearer regulations and better definitions. However, 
there is room for improvement, even leveraging on the sampling methodologies. The relevance of this 
problem as regards data disaggregation is highlighted by Indicators 2.3.1 (Volume of production per 
labour unit by classes of farming/pastoral/forestry enterprise size) and 2.3.2 (Average income of small-
scale food producers, by sex and indigenous status), which should be disaggregated by, among other 
things, type of enterprise (Farming/Pastoral/Forestry/Fishery). Now, for these two indicators, some of the 
main problem lies in the fact that very often, agricultural surveys do not collect data for forestry, fishery 
and pastoral activities. Thus, it may be necessary to harmonize different data sources. If it is sought to 
design a survey for (or including) pastoral activities, in many developing countries, this would imply 
collecting data on nomadic populations – that can be very hard to locate (FAO, 2016).   

New approaches recently developed in the sampling literature allow some of the abovementioned 
problems to be overcome. These methods are, for instance, indirect or multisource sampling (FAO, 2014 
and 2015; Lavallée, 2007; Singh and Mecatti, 2011) or marginal stratification sampling (Falorsi and Righi, 
2008 and Falorsi, Righi and Lavallée 2019).  

In this chapter, after a brief introduction of the basic sampling and theory in Section 3.2, the basic theory 
on sampling and estimation is expounded. Section 3.3 illustrates the direct estimation approaches to 
compute domain estimates. Section 3.4 sets out the traditional sampling approaches to ensure sizeable 
sample sizes for the subgroups of the population of interest, in the context of producing disaggregated 
indicators. Sections 3.5 and 3.6 illustrate new methods for sampling (marginal stratification sampling and 
indirect sampling) that allow some of the issues characterizing the traditional techniques to be partially 
overcome. Section 3.7 summarizes the chapter’s main recommendations. 

3.2. Basic theory on sampling and estimation 

The content of this section is somewhat technical; however, it is necessary to introduce the main 
concepts. For non-technical readers, this section’s main contribution is given in Equation 3.2, where it is 
stated that the direct sample estimate of a total for a particular domain is obtained by summing, over the 
domain units, the products of data (the 𝑦 values) and the weights (the 𝜔 values). Section 3.3.1 and 3.3.2 
will show how weights are derived under different assumptions. To simplify, the basic theory considering 
the estimation of a total is introduced here. However, Section 3.3.3 contains a brief illustration of how the 
basic theory can be easily extended to parameters different from the totals (e.g. mean values or ratios). 

Basic notation and parameter of interest 

Let us consider, as the parameter of interest, a domain total 𝑌𝑑, where 𝑑 indicates a generic domain for 
disaggregation (𝑑 = 1,… , 𝐷).  

Let U  be a target population of size N and let 𝑦𝑖 indicate the value of the target variable 𝓎 of the 𝑖 − 𝑡ℎ 
unit of U. In this text, 𝓎 can denote either a real scaled variable or a dichotomous variable. In the latter 
case, which is relevant for frequencies, 𝑦𝑖 assumes a value of 1 if the unit 𝑖 has a specific characteristic of 
interest and 0 otherwise. In the case of a qualitative variable that assumes several modalities (e.g. 
employment with the modalities of Occupied, Not occupied and Not-labour force), a specific modality is 
considered: 𝑦𝑖 assumes a value of 1 if the unit 𝑖 presents that specific category and 0 otherwise.  

Let 𝑈𝑑 be a particular subpopulation of U (being 𝑈𝑑 ∈ 𝑈) of size 𝑁𝑑, for which disaggregated data must 
be produced (e.g. 𝑈𝑑 denotes a specific gender). In the text below, 𝑈𝑑 can also be indicated as a 
disaggregation domain (or more simply a domain) or as a subpopulation. 
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Let 𝑌𝑑 be the total of the 𝑦𝑖 values for the domain 𝑈𝑑: 

𝑌𝑑 =∑𝑦𝑖

𝑁𝑑

𝑖=1

=∑𝑦𝑖

𝑁

𝑖=1

𝛾𝑑𝑖    (3.1) 

in which 𝛾𝑑𝑖  denotes the domain membership variable, being  𝛾𝑑𝑖 = 1 if  𝑖 ∈ 𝑈𝑑 and 𝛾𝑑𝑖 = 0, otherwise.  

 

Sampling  

Let 𝑆 be a specific sample that is a subset of units of 𝑈, and let 𝕊 be the set of all possible samples that 
can be randomly selected from 𝑈. A sampling design, 𝑃, is a function that assigns a given probability, 𝑃(𝑆), 
to the sample 𝑆 to be randomly selected, with 

∑ 𝑃(𝑆) = 1.
𝑆∈𝕊

 

Let 𝜋𝑖  (for 𝑖 = 1,… ,𝑁) be the inclusion probability of the unit 𝑖, which indicates the probability of the unit 
being included in a sample generated by sampling design P.  The probability 𝜋𝑖  is obtained as the expected 
value, defined over the sample space 𝕊, of the sample-membership indicators, 𝜆𝑖, with 𝜆𝑖 = 1 if 𝑖 ∈ 𝑆 and  
𝜆𝑖 = 0 otherwise. Thus, it is  

𝜋𝑖 = 𝐸𝑃(𝜆𝑖) =∑ 𝑃(𝑆)𝜆𝑖
𝑆∈𝕊

=∑ 𝑃(𝑆 ∋ 𝑖)
𝑆∈𝕊

, 

where 𝐸𝑃(∙) denotes the operator of the sampling expectation. 

Let  

𝑛 =∑ 𝜆𝑖
𝑖∈𝑈

 

be the realized size of sample 𝑆. Sample design P is of fixed size 𝑛, if in all sample selections, the sampling 
size is always equal to the same value 𝑛. Let  

𝑛𝑑 =∑ 𝜆𝑖
𝑖∈𝑈

𝛾𝑑𝑖 =∑ 𝜆𝑖
𝑖∈𝑆𝑑

 

be the realized sample size in the 𝑑 − th domain, where 𝑆𝑑 = 𝑆 ∩ 𝑈𝑑 indicates the sample in the 
subpopulation 𝑈𝑑. In most of the empirical situations that characterize the use of sampling surveys for 
producing disaggregated domains, 𝑛𝑑  is a random quantity that can vary from one sample selection to 
another. This is the case, for instance, when the disaggregation domains are demographic population 
subgroups (e.g. defined by gender and age class). The sampling expected value of 𝑛𝑑  is given by  

𝐸𝑃(𝑛𝑑) =∑ 𝐸𝑃(𝜆𝑖)
𝑖∈𝑈

𝛾𝑑𝑖 =∑ 𝜋𝑖
𝑖∈𝑈

𝛾𝑑𝑖 . 

The domain sample size 𝑛𝑑  may be fixed or not, depending on the sample design adopted. For instance, 
if a stratified simple random sampling without replacement (SSRWOR) design is adopted, in which the 
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domain 𝑈𝑑 is obtained as an aggregation of entire strata, and then the domain sampling size is fixed.  The 
domain 𝑈𝑑 is said to be planned at the design stage if the sample size 𝑛𝑑  is fixed in each sample selection. 

That said, in the following paragraphs, a sample 𝑆 of fixed size 𝑛 is selected from the population 𝑈 
according to the sample design 𝑃, with inclusion probability 𝜋𝑖  for 𝑖 = (1,… , 𝑁), where the domain 𝑈𝑑 
can be planned or not. 

Sampling design involves a great deal of technicalities, such as stratification or two or more stages (or 
phases) of selection (Cochrane, 1976), that are beyond the scope of these guidelines. The following box, 
however, will provide insights on the stratified sampling designs having two or more stages, which are 
largely used for sampling on households and agricultural holdings. More specifically, according to Grosh 
and Munoz (1996), the most commonly used method for collecting household data in sub-Saharan Africa 
is the stratified two-stage sample. This was also confirmed by a more recent review of sampling designs 
used for agricultural surveys in developing countries performed by the Global Strategy to improve 
Agriculture and Rural Statistics initiative, according to which 90 percent of countries in Africa and 64 
percent in Asia implement multi-stage sampling (Global Strategy, 2018).  

Given its importance in concrete sampling applications, this case will be examined several times 
throughout these Guidelines, generally in specific in-depth boxes. 

 

 
Box 3.1. Two-stage stratified sampling design 

This box briefly introduces the stratified two-stage sampling design, which is largely used for sampling 
on populations and households.  Let h (ℎ = 1,… ,𝐻) denote a generic stratum with 𝑀ℎ  primary 
sampling units (PSUs). The PSU can coincide with, for example, a municipality or a census 
enumeration area. Let us select 𝑚ℎ PSUs in the stratum (out of the 𝑀ℎ) with varying probabilities and 
without replacement, 𝜋1ℎℓ  being the first-stage inclusion of the  ℓ − 𝑡ℎ (ℓ = 1,… ,𝑀ℎ) PSU in the 
stratum, where 

∑𝜋1ℎℓ

𝑀ℎ

ℓ=1

= 𝑚ℎ. 

Let us consider the ℓ − 𝑡ℎ PSU selected in the stratum having 𝑁ℎℓ ultimate sampling units (for 
instance, households). From this PSU, the second-stage sample 𝑆(ℎℓ) of 𝑛ℎℓ Ultimate sampling units 

(USUs) is selected out of the 𝑁ℎℓ. These units are included in the sample without replacement and 
with second-stage equal inclusion probability 𝜋2ℎℓ = 𝑛ℎℓ 𝑁ℎℓ⁄ . The inclusion probability 𝜋𝑖  of the 𝑖 −
𝑡ℎ USU (𝑖 = 1,… ,𝑁ℎℓ) is determined by multiplying the first-stage inclusion probability of the PSU by 
the probability of selecting the 𝑖 − 𝑡ℎ USU in the second-stage sample of the PSU 

𝜋𝑖 = 𝜋1ℎℓ 𝜋2ℎℓ for 𝑖 ∈ ℎℓ. 

The extension to a three-stage (or more) sampling design is straightforward. 
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Estimation 

In the interests of simplicity, this topic will be illustrated assuming full response to the survey or that the 
nonresponse is negligible. However, the theory illustrated here can easily be extended to consider 
nonresponse. Särndal and Lundström (2005) give a detailed overview of the subject. 

That said, let �̂�𝑑 be the direct estimate of 𝑌𝑑. It is obtained by weighting the domain data observed in 
sample S 

�̂�𝑑 =∑ 𝑦𝑖𝜔𝑖
𝑖∈𝑆𝑑

, (3.2) 

where 𝜔𝑖  are the sampling weights, which allow for computing estimates that are unbiased due to the 
inferential approach adopted by the statistician. An alternative interesting expression of Equation 3.2 that 
will be used in some parts of this text, is 

�̂�𝑑 =∑𝑦𝑖𝜔𝑖

𝑛𝑑

𝑖=1

=∑𝑦𝑖

𝑛

𝑖=1

𝛾𝑑𝑖𝜔𝑖 =∑𝑦𝑖𝛾𝑑𝑖𝜆𝑖𝜔𝑖

𝑁

𝑖=1

. (3.2𝑎) 

The weights 𝜔𝑖  are computed differently if the inference is based on the properties of repeated sampling 
(see Section 3.2.1 below) or the model generating the data (Section 3.2.2). The difference is related to 
what is considered fixed and random in the inference. In repeated sampling, the 𝑦𝑖 values are considered 
fixed, whereas the only random elements in Equations 3.2 and 3.2a are the sample membership indicators 
𝜆𝑖. Conversely, in the model-based approach, the observed sample 𝑆  is considered fixed, and the 
randomness is concentrated only on the  𝑦𝑖 values. In other words, the model-based approach assumes 
that the observed values of 𝑦𝑖 are generated by a random mechanism formalized by a model. This 
mechanism is denoted as the model generating the data. 

We see from Equation 3.2 that the direct estimate �̂�𝑑 can be computed only if we have some units 
observed in the sample of the domain. Moreover, if too few units have been observed in the sample, it is 
not possible to compute quality direct estimates. In this case, the domain estimates can be computed 
with either the MDIFF, MGREG or MMPE estimators, illustrated in Section 3.2.1, or with special SAE 
techniques described in Chapter 6. However, these estimates are model-dependent, meaning that they 
are of good quality only if the model parameters estimated fit well those of the true model generating the 
data. The parameters can be estimated only by the observed sample data. Thus, if the true model is 
domain-dependent, the SAE techniques would induce substantial bias in the estimates. 

 

3.3. Direct estimation for the data disaggregation 

3.3.1. Repeated sampling 

The standard approach: the Horvitz-Thompson (HT) Estimator  

The basic estimator of the standard approach in the repeated sampling framework is the well-known 
Narain Horvitz-Thompson (HT) estimator (Narain, 1951; Horvitz and Thompson, 1952), in which the 
weights 𝜔𝑖  in (3.2) are given by: 
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𝜔𝑖 = 𝑎𝑖 =
1

𝜋𝑖
.    (3.3)  

The resulting HT estimator  

�̂�𝐻𝑇,𝑑 =∑𝑦𝑖𝛾𝑑𝑖𝜆𝑖𝑎𝑖

𝑁

𝑖=1

          (3.3𝑎) 

is P-unbiased, which that means the expected value of the estimator �̂�𝐻𝑇,𝑑  (averaging over the sampling 

space 𝕊) equals the target parameter 𝑌𝑑. Indeed,  

𝐸𝑃(�̂�𝐻𝑇,𝑑) =∑𝑦𝑖𝛾𝑑𝑖𝐸𝑃(𝜆𝑖)
1

𝜋𝑖

𝑁

𝑖=1

=∑𝑦𝑖𝛾𝑑𝑖𝜋𝑖
1

𝜋𝑖

𝑁

𝑖=1

= 𝑌𝑑 . 

 

Model-assisted survey sampling 

The model-assisted survey sampling (Särndal, Swensson and Wretman, 1992) is an evolution of the 
standard approach in repeated sampling, which allows for leveraging known values of auxiliary variables. 
Today, it is the predominant approach used in the production of official statistics in developed countries. 
Here, the inference is based on the sampling design, but leverages the estimator with a working model 
(WM)3 which helps make the estimates more efficient (see Comment 3.2 below) and improves the full 
consistency of the systems of estimates disseminated by the survey. Indeed, the main practical advantage 
of this approach is that the estimates of auxiliary variables benchmark the known totals, as, for instance, 
the number of male and females by age groups derived by demographic statistics or the census. This 
automatically ensures the full consistency of the various estimates with respect to the known totals. 

The generalized DIFFerence (DIFF) estimator  

To describe this estimator, consider the product variable 𝑦𝑑𝑖 

𝑦𝑑𝑖 = 𝑦𝑖𝛾𝑑𝑖 = {
𝑦𝑖    if  𝑖 ∈ 𝑈𝑑
0    if  𝑖 ∈ 𝑈𝑑

, 

and suppose that it can be modelled with a WM M, according to which  

𝑦𝑑𝑖 = 𝑚(𝑥𝑖; 𝛽𝑑) + 𝑢𝑖 ,     (3.4) 

where  𝑚(𝑥𝑖; 𝛽𝑑) = �̃�𝑖 is a known function applied on the column vector of auxiliary variables 𝑥𝑖  (of the 
𝑖 − th unit) and 𝑢𝑖  is a random residual, 𝛽𝑑 being the unknown column vector of the model parameters 
that is domain-dependent. It is not necessary to know the full distribution function of the residuals, but 
only their model expected value 𝐸𝑀(∙), variances 𝑉𝑀(∙), and covariances 𝐶𝑜𝑣𝑀(∙). For a general model 
𝑚(𝑥𝑖; 𝛽𝑑), we suppose that the model is unbiased and the variances depend on the specific units, that is 

𝐸𝑀(𝑢𝑖) = 0,  𝑉𝑀(𝑢𝑖) ∝ 𝑐𝑖  , 𝐶𝑜𝑣𝑀(𝑢𝑖𝑢𝑗) = 0.   (3.5) 

                                                             
3 See Comment 3.2 for a discussion of the role of the WM. 
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In this chapter, it is supposed that 𝐶𝑜𝑣𝑀(𝑢𝑖𝑢𝑗) = 0. The more complex SAE models introduced in Chapter 

6, relax this constraint, considering models with non-null covariance among different units.  

The generalized form of DIFFerence estimator, (DIFF) (Breidt and Opsomer, 2017; Lehtonen and Veijanen, 
1998) we propose below is computed in two steps.  

1. First, �̂�𝑑 values are estimated by fitting the model 𝑚(𝑥𝑖; 𝛽𝑑) over all couples (𝑥𝑖 , 𝑦𝑑𝑖) observed in 
the sample and using the weights 𝑎𝑖 given by Equation 3.3. To accomplish this step, it is necessary 
to have a non-null sample size in the domain. 

2. Knowing the 𝑥𝑖  values, we may compute the predicted values  

�̂�𝑑𝑖 = 𝑚(𝑥𝑖; �̂�𝑑). 

Then, we may obtain the DIFF estimator (Breidt and Opsomer, 2017), as 

�̂�𝐷𝐼𝐹𝐹,𝑑 =∑ �̂�𝑑𝑖 −∑ (𝑦𝑑𝑖−�̂�𝑑𝑖)
𝑖∈𝑆𝑖∈𝑈

𝑎𝑖 .   (3.6) 

The first addendum on the right side of Equation 3.6,  

∑ �̂�𝑑𝑖
𝑖∈𝑈

 

is the synthetic part of the estimator, and, for a general form of function m, the values of the auxiliary 
variables 𝑥𝑖  for each unit in the population 𝑈 must be known to calculate it. The second component on 
the right side of Equation 3.6,  

∑ (𝑦𝑑𝑖−�̂�𝑑𝑖)
𝑖∈𝑆

𝑎𝑖 , 

is a weighted sum of the residuals and is computed only on the sample data.  

The estimator at Equation 3.6 can be expressed in the weighted form, as given in Equation 3.2, by defining 
the weights 𝜔𝑖  as the solution of the calibration problem 3.7 below, which minimizes the chi-squared 
distance between the weights 𝜔𝑖  and 𝑎𝑖 subject to the constraints that sampling estimates of the 
predicted values coincides with the sum of the predictions over the population 𝑈: 

{
 

 ∑
𝑐𝑖(𝜔𝑖 − 𝑎𝑖)

2

𝑎𝑖𝑖∈𝑆
            function to be minimized

∑ �̂�𝑑𝑖𝜔𝑖
𝑖∈𝑆

=∑ �̂�𝑑𝑖  
𝑖∈𝑈

calibration constraint       

 . (3.7) 

We may extend Problem 3.7 to consider the multivariate case. Suppose there are 𝐾 different target 
variables  𝓎(𝑘) (𝑘 = 1,… , 𝐾). Let 𝑦(𝑘)𝑖 denote the value of the variable 𝓎(𝑘) of unit 𝑖 of 𝑈 and let �̂�(𝑘)𝑑𝑖 =

𝑚(𝑥𝑖; �̂�(𝑘)𝑑) indicate the prediction of the product variable 𝑦(𝑘)𝑑𝑖 = 𝑦(𝑘)𝑖𝛾𝑑𝑖, with �̂�(𝑘)𝑑  being the 

estimated vector of the parameter model  𝑚(𝑥𝑖; 𝛽(𝑘)𝑑) that links the auxiliary variables 𝑥𝑖  to the target 

variable 𝑦(𝑘)𝑑𝑖. The multivariate version of Problem 3.7 is  
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{
 
 
 
 

 
 
 
 ∑

𝑐𝑖(𝜔𝑖 − 𝑎𝑖)
2

𝑎𝑖𝑖∈𝑆
                      function to be minimized          

∑ �̂�(1)𝑑𝑖𝜔𝑖
𝑖∈𝑆

=∑ �̂�(1)𝑑𝑖  
𝑖∈𝑈

1 − 𝑡ℎ calibration constraint    

⋯

∑ �̂�(𝑘)𝑑𝑖𝜔𝑖
𝑖∈𝑆

=∑ �̂�(𝑘)𝑑𝑖  
𝑖∈𝑈

𝑘 − 𝑡ℎ calibration constraint   

⋯

∑ �̂�(𝑘)𝑑𝑖𝜔𝑖
𝑖∈𝑆

=∑ �̂�(𝑘)𝑑𝑖  
𝑖∈𝑈

𝐾 − 𝑡ℎ calibration constraint   

 . (3.7𝑎) 

 

The problems at Equations 3.7 and 3.7a can be solved with the software Regenesees (Istat, Regenessees). 

Montanari and Ranalli (2002) show how the estimator can be applied with a general class of regression 
models, including non-parametric regression and estimators with non-null model covariances among 
different units.  

 

Generalized REGression estimator 

Consider now the Estimator 3.6 and suppose that the simple heteroscedastic linear model   

𝑚(𝑥𝑖; 𝛽𝑑) = 𝑥𝑖
′𝛽𝑑 , (3.8) 

is adopted, where the model expectations are given by Equation 3.5 and ì𝑥𝑖
′  is the transpose of 𝑥𝑖.  

Plugging Equation 3.8 into Equation 3.6, we obtain the Generalized REGression (GREG) estimator  

�̂�𝐺𝑅𝐸𝐺,𝑑 = 𝑋
′�̂�𝑑 + (𝑋 − �̂�𝐻𝑇)

′
�̂�𝑑     (3.9) 

where  

𝑋 =∑ 𝑥𝑖     ,    
𝑖∈𝑈

�̂�𝐻𝑇 =∑ 𝑥𝑖𝑎𝑖 ,
𝑖∈𝑆

 

with 

�̂�𝑑 = (∑ 𝑥𝑖𝑥𝑗
′ 1

𝑐𝑗𝑗∈𝑆
𝑎𝑗)

−1

∑ 𝑥𝑗𝑦𝑑𝑗
1

𝑐𝑗𝑗∈𝑆
𝑎𝑗.  (3.10)   

The weights 𝜔𝑖  of Equation 3.2 can be defined explicitly as 

𝜔𝑖 = 𝑎𝑖𝑔𝑖𝑆       (3.11) 

where 
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𝑔𝑖𝑆 = [1 + (𝑋 − �̂�𝐻𝑇)
′
(∑ 𝑥𝑖𝑥𝑗

′ 1

𝑐𝑗𝑗∈𝑆
𝑎𝑗)

−1

𝑥𝑖
1

𝑐𝑖
]    (3.11𝑎) 

is the calibration-correction factor, with 𝑔𝑖𝑆 ≅ 1 for large samples. To use the GREG estimator, it is not 
necessary to know all auxiliary variables for each unit in the population U, but only the 𝑥𝑖  values for the 
sample data and the totals 𝑋. 

A standard result of the GREG ((Särndal, Swensson and Wretman, 1992, Expression 6.5.16) estimator is 
that the estimator is calibrated on the totals of the 𝓍 variables, ensuring that the sampling estimates of 
the totals of the auxiliary variables reproduce the known population totals 𝑋. 

If the 𝑥𝑖  vector includes the domain membership variable 𝛾𝑑𝑖 , then the estimates of the number of units 
in the domain is equal to the known total 𝑁𝑑.  

Särndal, Swensson and Wretman (1992, Remark 10.6.2) suggest that one way to avoid the difficulty 
caused by sample domain counts that are too small is to consider the domain membership variables only 
for the larger domains. One can aggregate the smaller domains into macro-domains and include a macro-
domain membership variable in the vector 𝑥𝑖, thus ensuring that the estimates of the number of units in 
the macro-domains are equal to the known totals. 

 

Comment 3.1. Consistency of the estimates. The full consistency of the various estimates that can be 
produced from a given survey is realized if a unique weight 𝜔𝑖  is used (for the 𝑖 −th unit) for the estimates 
in which it is applied, irrespective of the domain and the variable. 

Comment 3.2. The role of the model. The role of the model can be examined considering (i) the bias and 
(ii) the variance. Särndal, Swensson and Wretman (1992) demonstrate that the GREG estimator is 
approximately 𝑃 −unbiased irrespective of the shape of the finite population scatter. It follows that the 
estimator is 𝑃 −unbiased irrespective of whether the assumptions of the model are true or false. On the 
other hand, the appropriateness of the model is crucial to achieving a small variance. As demonstrated in 
Särndal, Swensson and Wretman (1992), the more the population scatter conforms to the pattern induced 
by the predictions of the model, the smaller the population fit residuals (𝑦𝑖 − �̂�𝑖), and the smaller the 
variance of the GREG estimator. 

 

The POSt-stratified (POS) estimator  

The POSt-stratified (POS) estimator is widely applied in social surveys. It ensures that the sampling 
estimates of the totals of demographic groups defined by age and sex reproduce population totals known 
from sources external to the survey (e.g. the census or demographic statistics). This characteristic is 
relevant in the context of these Guidelines because the disaggregation of SDG indicators is often 
requested for these demographic groups. 

Suppose that the population 𝑈 can be partitioned into 𝐵 separate non-overlapping groups, 𝑈𝑏  (𝑏 =
1,… , 𝐵). Let 𝑁𝑏  be the number of units of 𝑈𝑏  known from a source external to the survey.  
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The POSt-stratified (POS) estimator is given by: 

�̂�𝑃𝑂𝑆,𝑑 =∑∑𝑦𝑖𝛿𝑏𝑖

𝐵

𝑏=1

𝑎𝑖

𝑛

𝑖=1

𝑁𝑏

�̂�𝐻𝑇,𝑏
.   (3.12) 

where 𝛿𝑏𝑖is the group membership variable (𝛿𝑏𝑖 = 1, if  𝑖 ∈ 𝑈𝑏  and 𝛿𝑏𝑖 = 0, otherwise), and �̂�𝐻𝑇,𝑏  is the 

HT estimate of 𝑁𝑏, with 

�̂�𝐻𝑇,𝑏 =∑𝛿𝑏𝑖𝑎𝑖

𝑛

𝑖=1

. 

The POS estimator can be viewed as a particular case of the GREG estimator, by defining  

𝑥𝑖 = (𝛿1𝑖 , … , 𝛿𝑏𝑖 ,… , 𝛿𝐵𝑖)
′  and  𝑚(𝑥𝑖; 𝛽𝑑) = (𝛿1𝑖 ,… , 𝛿𝑏𝑖 ,… , 𝛿𝐵𝑖)

′𝛽𝑑 

with  

𝑐𝑖 =∑ 𝛿𝑏𝑖
𝐵

𝑏=1
𝜎𝑏
2, 

with 𝜎𝑏
2 being the homogenous model variance for the units of 𝑈𝑏. 

 

The domain-specific auxiliary information DIFF estimator and the Domain-specific auxiliary information 
GREG estimator 

In this case, the �̂�𝑑 values are estimated, using the weights 𝑎𝑖, by fitting the model 𝑚(𝑥𝑖; 𝛽𝑑) over all 
couples (𝑥𝑖𝛾𝑑𝑖 , 𝑦𝑑𝑖) observed in the sample 𝑆𝑑 . To accomplish this step, it is necessary to have a sufficient 
sample size in 𝑆𝑑 . Then, the domain-specific auxiliary information DIFF (DIFFD) estimator is given by: 

�̂�𝐷𝐷𝐼𝐹𝐹,𝑑 =∑ �̂�𝑑𝑖
𝑖∈𝑈𝑑

+∑ (𝑦𝑑𝑖−�̂�𝑑𝑖)𝑎𝑖
𝑖∈𝑆𝑑

.   (3.13) 

The estimator, expressed in the weighted form, is: 

�̂�𝐷𝐷𝐼𝐹𝐹,𝑑 =∑ 𝑦𝑖𝜔𝑑𝑖
𝑖∈𝑆𝑑

 

where the final weights, which are domain dependent, are obtained by solving the following calibration 
problem: 

{
 
 

 
 ∑

𝑐𝑖(𝜔𝑑𝑖 − 𝑎𝑖)
2

𝑎𝑖
             function to be minimized

𝑖∈𝑆𝑑

 

∑ �̂�𝑑𝑖𝜔𝑑𝑖
𝑖∈𝑆𝑑

=∑ �̂�𝑑𝑖
𝑖∈𝑈𝑑

  calibration constraint       

 .    (3.14) 

The weights 𝜔𝑑𝑖  now depend on the domain d. Therefore, if the domains 𝑈𝑑 (𝑑 = 1,… , 𝐷) represent a 

complete partition of the population 𝑈, the estimators �̂�𝐷𝐷𝐼𝐹𝐹,𝑑  do not add up to the DIFF estimator 

referred to the whole population, that is 



27 
 

∑ �̂�𝐷𝐷𝐼𝐹𝐹,𝑑 ≠∑ 𝑦𝑖𝜔𝑖
𝑖∈𝑆

,
𝐷

𝑑=1
 

where the weights 𝜔𝑖  are defined by Equation 3.7. This may hinder ensuring the consistency of the 

different estimates of the survey tabulation plan (see Comment 3.1 above). Also, �̂�𝐷𝐷𝐼𝐹𝐹,𝑑 is not 

approximately 𝑃 −unbiased unless the domain sample size is large. However, the DDIFF estimator will be 
more efficient than the DIFF estimator if the expected domain-specific sample size is large (Rao, 2003; p. 
19). 

With a general function 𝑚(𝑥𝑖; �̂�𝑑), for the DDIFF estimator, it is necessary to know the domain-

membership variables 𝛾𝑑𝑖  for all the units of 𝑈.  

However, if we consider Linear WM 3.8 with the model expectations given by Equation 3.5, we have the 
domain-specific GREG (DGREG) estimator where only the domain totals of the auxiliary variables need to 
be known:  

𝑋𝑑 =∑ 𝑥𝑖
𝑁

𝑖=1
𝛾𝑑𝑖 . 

For instance, the total 𝑋𝑑 may be the domain population counts by age and sex, determined by the census 
or by demographic statistics.  

The sample estimate of 𝛽𝑑 is given by: 

�̂�𝑑 = (∑ 𝑥𝑗𝑥𝑗
′

𝑗∈𝑆𝑑

1

𝑐𝑗
𝑎𝑗)

−1

∑ 𝑥𝑗𝑦𝑗
1

𝑐𝑗
𝑎𝑗

𝑗∈𝑆𝑑

. 

The DGREG estimator is given by: 

�̂�𝐷𝐺𝑅𝐸𝐺,𝑑 = 𝑋𝑑
′ �̂�𝑑 +∑ [𝑦𝑑𝑖 − 𝑥𝑖

′�̂�𝑑]
𝑖∈𝑆𝑑

 𝑎𝑖 =∑𝑦𝑖𝜔𝑑𝑖

𝑛

𝑖=1

,      (3.15) 

where the weights 𝜔𝑑𝑖  can be defined explicitly as 

𝜔𝑑𝑖 = 𝑎𝑖 [1 + (𝑋𝑑 − �̂�𝐻𝑇,𝑑)
′
(∑ 𝑥𝑗𝑥𝑗

′ 1

𝑐𝑗𝑗∈𝑆𝑑

𝑎𝑖)

−1

𝑥𝑖𝛾𝑑𝑖𝑦𝑑𝑖
1

𝑐𝑖
], 

with 

 �̂�𝐻𝑇,𝑑 =∑ 𝑥𝑖
𝑖∈𝑆𝑑

𝛾𝑑𝑖𝑎𝑖 . 

The Modified DIFF estimator and the Modified GREG   estimator 

The Modified DIFF (MDIFF) estimator uses 𝓎 values from outside the domain. In particular, this estimator 
considers a model  

𝑦𝑖 = 𝑚(𝑥𝑖; 𝛽) + 𝑢𝑖 
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that is not domain-dependent. Having obtained an estimate, �̂�, of 𝛽, with the data of the full sample 𝑆, 
the MDIFF estimator is given by 

�̂�𝑀𝐷𝐼𝐹𝐹,𝑑 =∑ 𝑚(𝑥𝑖; �̂�)𝛾𝑑𝑖 −∑ [𝑦𝑑𝑖 −𝑚(𝑥𝑖; �̂�)𝛾𝑑𝑖]
𝑖∈𝑆𝑖∈𝑈

𝑎𝑖 .     (3.16)  

The MDIFF estimator may be expressed in weighted form as 

�̂�𝑀𝐷𝐼𝐹𝐹,𝑑 =∑ 𝑦𝑖𝜔𝑑𝑖
𝑖∈𝑆

 

 where the weights 𝜔𝑑𝑖  are obtained as the solution of the following calibration problem (Rao, 2003; p. 
20):  

{
 

 ∑
𝑐𝑖(𝜔𝑑𝑖 − 𝑎𝑖𝛾𝑑𝑖)

2

𝑎𝑖𝑖∈𝑆
                    function to be minimized

∑ �̂�𝑖𝜔𝑑𝑖
𝑖∈𝑆

=∑ 𝑚(𝑥𝑖; �̂�)𝛾𝑑𝑖    calibration constraints     
𝑖∈𝑈

 .      (3.17) 

�̂�𝑀𝐷𝐼𝐹𝐹,𝑑 allows for computing the domain estimate even with a null domain-sample size, since the 

synthetic part of the estimator, ∑ 𝑚(𝑥𝑖; �̂�)𝛾𝑑𝑖𝑖∈𝑈 , is always greater than 0. Moreover, it is approximately 

𝑃 −unbiased as the overall sample size increases, even if the domain sample size is small or null. The main 
obstacle to its use in large-scale surveys is the fact that the weights are domain-dependent. Instead of a 
unique weight 𝜔𝑖  attached to the sample unit 𝑖 for the computation of all the estimates, in the MDIFF 
estimator, the unit 𝑖 has 𝐷 different weights (𝜔1𝑖 , … , 𝜔𝑑𝑖 , … , 𝜔𝐷𝑖), each of which is used for a specific 
domain. Having different weights for each unit complicates the computation of the tabulation of the 
survey estimates greatly when the estimates refer to more than one domain. However, De Vitiis, Righi 
and Tuoto (2008) demonstrate that if the 𝐷 domains represent a complete partition of the population 𝑈, 

then the �̂�𝑀𝐷𝐼𝐹𝐹,𝑑 estimators add to the total of the 𝓎 obtained with the standard DIFF estimator, where 

the weights are obtained as the solution of Equation 3.7, that is  

∑ �̂�𝑀𝐷𝐼𝐹𝐹,𝑑 =∑ 𝑦𝑖𝜔𝑖
𝑖∈𝑆

𝐷

𝑑=1
. 

With a general function 𝑚(𝑥𝑖; 𝛽), the MDIFF estimator requires knowledge of the domain membership 
variables 𝛾𝑑𝑖  for all the units of 𝑈.  

With the linear regression model 𝑚(𝑥𝑖; 𝛽) = 𝑥𝑖
′𝛽, with expectations given by Equation 3.5, we define the 

Modified GREG   (MGREG) estimator where only the domain total, 𝑋𝑑, of the auxiliary variables needs to 
be known. The sample estimate of 𝛽 is given by: 

�̂� = (∑𝑥𝑗𝑥𝑗
′ 1

𝑐𝑗

𝑛

𝑗=1

𝑎𝑖)

−1

∑𝑥𝑗
′𝑦𝑗

𝑛

𝑗=1

1

𝑐𝑗
𝑎𝑗. 

The MGREG estimator is given by: 

�̂�𝑀𝐺𝑅𝐸𝐺,𝑑 = 𝑋𝑑
′ �̂� +∑ [𝑦𝑑𝑖 − 𝑥𝑖

′�̂�𝛾𝑑𝑖]
𝑖∈𝑆

 𝑎𝑖 =∑𝑦𝑖𝜔𝑑𝑖 ,

𝑛

𝑖=1
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where the weights can be defined explicitly as  

𝜔𝑑𝑖 = 𝑎𝑖 [𝛾𝑑𝑖 + (𝑋𝑑 − �̂�𝐻𝑇,𝑑)
′
(∑ 𝑥𝑗𝑥𝑗

′ 1

𝑐𝑗𝑗∈𝑆
𝑎𝑖)

−1

𝑥𝑖𝛾𝑑𝑖𝑦𝑑𝑖
1

𝑐𝑖
]. 

 

3.3.2. The model-based approach 

In this approach, the inference is based on the statistical WM M, which links the target variable 𝓎 to the 
auxiliary 𝑥 variables. As an example of applying the model-based approach to the SDG indicators relevant 
for data disaggregation, it is noted that, as illustrated in Chapters 4 and 5, this approach is used to estimate 
the individual probability unit of being food-insecure at a given level of severity of food insecurity. 

In this approach, the model plays a much more crucial role than in the model-assisted approach. A wrong 
model here would determine unreliable estimates; thus, specifying a good model is crucial. In particular, 
a sufficiently reliable model and relevant good predictors 𝑥𝑖  are necessary. However, it is noted that in 
actual empirical situations, it may only be possible to obtain a good approximation of the true model, 
because the task of identifying the true model might be complicated or even impossible: for instance, not 
all relevant auxiliary variables may be accessible. To quote from Box and Draper (1987; p. 74) “all models 
are wrong; the practical question is how wrong do they have to be to not be useful”. This is why in this 
context, too, the statistical model used for the predictions is denoted as the WM.  

In this approach, the inference is conditional on the observed sample values. In contrast, in the repeated 
sampling approach, the estimators’ inferential properties (in terms of bias and variance) in the 
unconditional sample space 𝕊 are evaluated. Furthermore, to estimate the unknown 𝛽 values, the 
inclusion probabilities are not considered, since these would unnecessarily increase the variance, thereby 
making the estimators less efficient. 

The basic estimator in this context (Chambers, 2015) is the Model-based Prediction Estimator (MPE), 
which is obtained as the sum of the sample-observed values and the model-predicted values over the 
non-sampled population units.  

We consider three different cases. 

1. The MPE estimator with no domain-specific auxiliary information. The domain membership 
indicators 𝛾𝑑𝑖  are not known for all population units but only for those observed in the sample. 

2. The Domain-specific MPE (DMPE) estimator – the domain membership indicators 𝛾𝑑𝑖  are known 
for all the population units and there is a sizeable domain-specific sample size. 

3. The Modified MPE (MMPE) estimator – the specific-domain sample size is null (or very small).  

 

Case 1. The MPE estimator with no domain-specific auxiliary information 

The estimator may be expressed as  

�̂�𝑀𝑃𝐸,𝑑 =∑ 𝑦𝑑𝑖
𝑖∈𝑆

+∑ 𝑚(𝑥𝑖; �̂�𝑑)       
𝑖∈𝑈\𝑆

(3.18) 
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where 𝛽𝑑 is estimated by fitting the model 𝑚(𝑥𝑖; 𝛽𝑑) over all couples (𝑥𝑖 , 𝑦𝑑𝑖) observed in the sample, 
and 𝑈\𝑆 is the subset of units of U that are not included in the sample.  

The estimator is computed in two steps.  

First, the �̂�𝑑 values are estimated, allowing for the construction of the predicted values  

�̂�𝑑𝑖 = 𝑚(𝑥𝑖; �̂�𝑑). 

Then, the predicted values are projected over all the 𝑈\𝑆 non-observed population units. 

The estimator can be obtained in a weighted form (Equation 3.2) by defining the weights 𝜔𝑖  as the solution 
of the following minimum constrained problem: 

{

∑ 𝑐𝑖(𝜔𝑖 − 1)
2

𝑖∈𝑆
                                        function to be minimized  

∑ �̂�𝑑𝑖(𝜔𝑖 − 1)
𝑖∈𝑆

=∑ 𝑚(𝑥𝑖; �̂�𝑑)
𝑖∈𝑈\𝑆

  calibration constraints       
 . (3.19) 

If we consider Linear WM 3.8, the weights 𝜔𝑖  are defined explicitly as 

𝜔𝑖 = 1 + (𝑋 − 𝑋𝑆)
′ (∑ 𝑥𝑗𝑥𝑗

′

𝑗∈𝑆

1

𝑐𝑗
)

−1
1

𝑐𝑖
𝑥𝑖 ,    

with 

𝑋𝑆 =∑ 𝑥𝑗
𝑗∈𝑆

. 

With WM 3.8, we do not need to know the auxiliary variables for each unit of the population, but only the 
totals of the auxiliary variables, 𝑋. 

 

Case 2. The Domain-specific MPE estimator 

In this case, 𝛽𝑑 is estimated by fitting the model 𝑚(𝑥𝑖; 𝛽𝑑) over all couples (𝑥𝑖𝛾𝑑𝑖 , 𝑦𝑑𝑖) observed in the 
sample 𝑆𝑑 . Moreover, the sum of the model-predicted values can be limited over the non-sampled 
population units in the domain. The DMPE is given by 

�̂�𝐷𝑀𝑃𝐸,𝑑 =∑ 𝑦𝑑𝑖
𝑖∈𝑆

+∑ 𝑚(𝑥𝑖; �̂�𝑑).       
𝑖∈𝑈𝑑

(3.20) 

The weights 𝜔𝑑𝑖  are domain-specific and can be obtained as a solution of the following problem: 

{
 

 ∑ 𝑐𝑖(𝜔𝑑𝑖 − 1)
2

𝑖∈𝑆𝑑

                                            function to be minimized  

∑ �̂�𝑑𝑖(𝜔𝑑𝑖 − 1)
𝑖∈𝑆𝑑

=∑ 𝑚(𝑥𝑖; �̂�𝑑)
𝑖∈𝑈𝑑\𝑆𝑑

  calibration constraints       
 . (3.21) 
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If we consider Linear WM 3.8, with model expectations defined by Equation 3.5 the weights 𝜔𝑑𝑖  are given 
by 

𝜔𝑑𝑖 = 1 + (𝑋𝑑 − 𝑋𝑆𝑑)
′
(∑ 𝑥𝑗𝑥𝑗

′ 1

𝑐𝑗𝑗∈𝑆𝑑

)

−1

𝑥𝑖𝛾𝑑𝑖𝑦𝑑𝑖
1

𝑐𝑖
,   

being 

𝑋𝑆𝑑 =∑ 𝑥𝑗 .
𝑗∈𝑆𝑑

 

With WM 3.8, we do not need to know the auxiliary variable for each unit in the population, but only the 
specific domain totals of the auxiliary variables, 𝑋𝑑 . 

 

Case 3. Modified MPE estimator 

If we consider Linear WM 3.12, which is not-domain dependent, and we know the domain membership 
indicators 𝛾𝑑𝑖 , we can define the Modified MPE estimator (MMPE), which is similar to the MDIFF (or the 
MGREG). With the MMPE, we can compute the domain estimates even with a null (or very small) domain 
sample size.  The vector of unknown parameters 𝛽 is estimated by fitting the model 𝑚(𝑥𝑖; 𝛽) over all 
couples  (𝑥𝑖 , 𝑦𝑖) observed in the sample. The estimator MMPE is given by 

�̂�𝑀𝑀𝑃𝐸,𝑑 =∑ 𝑦𝑑𝑖
𝑖∈𝑆

+∑ 𝑚(𝑥𝑖; �̂�).       
𝑖∈𝑈𝑑\𝑆𝑑

(3.22) 

The MMPE estimator may be expressed in weighted form as: 

∑𝑦𝑖𝜔𝑑𝑖

𝑛

𝑖=1

 

 where the weights 𝜔𝑑𝑖  are obtained as the solution of the following calibration problem:  

{

∑ 𝑐𝑖(𝜔𝑑𝑖 − 𝛾𝑑𝑖)
2

𝑖∈𝑆
                         function to be minimized 

∑ �̂�𝑖𝜔𝑑𝑖
𝑖∈𝑆

=∑ 𝑚(𝑥𝑖; �̂�)𝛾𝑑𝑖    calibration constraints     
𝑖∈𝑈

 .      (3.23) 

If we consider Linear WM 3.8, the weights 𝜔𝑑𝑖  are given by 

𝛾𝑑𝑖 + (𝑋𝑑 − 𝑋𝑆𝑑)
′
(∑ 𝑥𝑗𝑥𝑗

′ 1

𝑐𝑗𝑗∈𝑆
)

−1

𝑥𝑖
1

𝑐𝑖
.  

With WM 3.8, we do not need to know the auxiliary variable for each unit in the population, but only the 
specific domain totals of the auxiliary variables, 𝑋𝑑 .  

This estimator is the basic form of SAE estimators, illustrated in Chapter 6. 
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Comment 3.3. Consistency of the estimates. The main obstacle to the full adoption of the model-based 
approach in large-scale surveys is the fact that the best model for one variable might not be the same as 
for another variable. Thus, the estimates for the different variables may not be congruous with one other. 
This may pose serious issues when producing contingency tables. However, the problem can be overcome 
by using more complex models for contingency tables. This is illustrated in Chapter 6. 

Comment 3.4. Appropriateness of model for domain data. The appropriateness of the model for domain 
data is crucial. If the population scatter of the residuals in the domain is far from 0, this is a strong sign 
that the model is domain-dependent. Thus, in this case, it is essential to have sample data observed in the 
domain to achieve a good model fit for the domain predictions. A detailed discussion of the definition of 
models for domain estimation in the model-based approach can be found in Chambers and Clark (2015; 
Chapter 14). 

3.3.3. Extensions to parameters different from the totals 

This section considers the estimation of parameters of interest different from the totals. For the SDG 
indicators, the relevant target parameters are the mean of a quantitative variable, the proportion, 
expressed as relative frequencies of a categorical variable and the ratio among two totals or means.  

 

Means and relative frequencies 

Irrespective of whether it is a mean value or a relative frequency, the functional form of these parameters 
is expressed as the ratio of the domain total of the 𝓎 variable and domain population size 𝑁𝑑: 

�̅�𝑑 =
1

𝑁𝑑
∑𝑦𝑖

𝑁𝑑

𝑖=1

=
𝑌𝑑
𝑁𝑑
. 

In the repeated sampling approach, the direct estimate of parameter �̅�𝑑 is obtained simply as the ratio of 
the estimates of the two terms of the ratio. Considering now the GREG estimator expressed by Equation 
3.9, the GREG estimator of  �̅�𝑑 is given by 

 �̂̅�𝐺𝑅𝐸𝐺,𝑑 =
�̂�𝐺𝑅𝐸𝐺,𝑑

�̂�𝐺𝑅𝐸𝐺,𝑑
 , 

where 

�̂�𝐺𝑅𝐸𝐺,𝑑 =∑𝑦𝑖

𝑛

𝑖=1

𝛾𝑑𝑖  𝜔𝑖    ,    �̂�𝐺𝑅𝐸𝐺,𝑑 =∑𝛾𝑑𝑖  𝜔𝑖

𝑛

𝑖=1

, 

where the weights  𝜔𝑖  are given by Equation 3.11. The form of the estimator given by estimator �̂̅�𝐺𝑅𝐸𝐺,𝑑 is 

straightforward to implement and does not require knowledge of the population size, which may be 
estimated by directly summing the sample weights over the sample domain.  

In the model-based approach, the same computational strategy defined for the estimator �̂̅�𝐺𝑅𝐸𝐺,𝑑 can be 

adopted, and the estimate obtained by dividing the model-based estimate of the domain total �̂�𝑑 by the 
sum over the domain sample data of the model-based weights 𝜔𝑖  defined for the 𝓎 variable.  
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Ratios 

The ratio of two specific-domain means (or totals) can be expressed as: 

𝑅𝑑,𝑌𝑍 =
�̅�𝑑

�̅�𝑑
=
𝑌𝑑
𝑍𝑑
 , 

where �̅�𝑑 and 𝑍𝑑 are the domain mean and total of the variable 𝓏, with  

�̅�𝑑 =
𝑍𝑑
𝑁𝑑
=
1

𝑁𝑑
∑𝑧𝑖

𝑁𝑑

𝑖=1

, 

𝑧𝑖  being the value of 𝓏 of the 𝑖 −th unit.    

In the repeated sampling approach, the direct estimate of the parameter 𝑅𝑑,𝑌𝑍  is obtained simply as the 

ratio of the estimates of the two totals. Considering now the GREG estimator expressed by Equation 3.9, 
the GREG estimator of  𝑅𝑑,𝑌𝑍 is given by 

 �̂�𝐺𝑅𝐸𝐺,𝑑,𝑌𝑍 =
�̂�𝐺𝑅𝐸𝐺,𝑑

�̂�𝐺𝑅𝐸𝐺,𝑑
 ,  

where 

�̂�𝐺𝑅𝐸𝐺,𝑑 =∑𝑧𝑖

𝑛

𝑖=1

𝛾𝑑𝑖  𝜔𝑖  , 

where the weights  𝜔𝑖  are given by Equation 3.11.  

In the model-based approach, the same computational strategy defined by the estimator �̂�𝐺𝑅𝐸𝐺,𝑑,𝑌𝑍 can 

be adopted, and the estimate obtained by dividing the model-based estimate of the domain total �̂�𝑑 (with 

weights 𝜔𝑖  defined for the 𝓎 variable), with the model-based estimate of the domain total �̂�𝑑 (with 
weights 𝜔𝑖  defined for the 𝓏 variable). To ensure consistency of the estimates at the numerator and 
denominator of the ratio, the auxiliary variables of the 𝑥𝑖  vectors used for modelling the target variables 
(𝓎 and 𝓏) should both include the domain membership variables 𝛾𝑑𝑖 , thus guaranteeing that the sum of 
the model weights (for the numerator and the denominator of the ratio) over the domain units reproduce 
the same estimate of the domain size. 

 

 

 



34 
 

3.4. Traditional sampling techniques 

The sampling size of the observed set for each subpopulation should be adequately large to produce 
sufficiently accurate directly disaggregated data.  

The three main approaches to ensure an appropriate sampling size for every subpopulation (or domain) 
for which disaggregated data should be produced are: 

 oversampling 

 deeper stratification 

 multiphase sampling with a screening of the respondents. 

These solutions are not mutually exclusive and can be adopted jointly.  

3.4.1. Oversampling 

With the oversampling strategy, a larger size of the overall sample is defined. This affects obtaining a 
larger sample size at the domain level. If we augment the current sample size by a ratio of ∆, this may 
have an expected impact on the increase of the domain sample size of 𝑛∆𝑃𝑑 , where 𝑃𝑑 = 𝑁𝑑/𝑁 is the 
domain relative size.  

To give an order of magnitude, Table 3.1 represents the increase in the domain sample size 𝑛𝑑  due to a 
percentage increase ∆ in the overall sample size of 10 000 households by different subpopulation 
proportions. 

We see that oversampling may be useful for major domains, that is, with 10 percent or more of the 
population (Kish, 1986). Still, it is ineffective for minor and mini-domains, with a proportion ranging from 
1 to 10 percent, and less than 1 percent, respectively.  

 
Table 3.1. Increase in the domain sample size n_d due to a percentage increase ∆ in the overall sample 
size of 10 000 households by subpopulation relative size P_d 

Percent relative increase (∆) in 
the domain sample size (%) 

%𝑷𝒅  

0.05% 1% 5% 10% 

10 5 10 50 100 

50 25 50 250 500 

100 50 100 500 1 000 
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Furthermore, if the domain is not planned, oversampling can give uncertain results, as the domain sample 
size achieved may be different from the one expected. Suppose that only overall sample size n can be 
controlled, while 𝑛𝑑  is a random outcome. Let 𝐸𝑃(∙) and 𝑉𝑃(∙) denote, respectively, the operators of 
expectation and variance under repeated sampling. Under as SRSWOR design, the expected sample 
size and the sampling variance of 𝑛𝑑  are, respectively (see Appendix A.3.1), 

𝐸𝑃(𝑛𝑑) = 𝑛𝑃𝑑 ,   𝑉𝑃(𝑛𝑑) ≅ 𝑛
𝑁𝑑
𝑁
(1 −

𝑛

𝑁
). 

The lower bound 𝐿𝑛𝑑  and the upper bound 𝑈𝑛𝑑  of the confidence interval (at the confidence level 1 − 𝛼) 
of 𝑛𝑑  are approximately 

𝐿𝑛𝑑 ≅ 𝑛𝑃𝑑 − 𝑡𝛼√𝑉𝑃(𝑛𝑑)   ,    𝑈𝑛𝑑 ≅ 𝑛𝑃𝑑 + 𝑡𝛼√𝑉𝑃(𝑛𝑑), 

where 𝑡𝛼  is the percentile of the t distribution, with 𝑡𝛼 ≅ 2 for a confidence level of 95 percent. 

To ensure that estimate �̂�𝑑 is adequately reliable, it would be useful for 𝑛𝑑  to exceed a given threshold 
𝑛𝑑
∗ , for instance 𝑛𝑑

∗ = 50 or 𝑛𝑑
∗ = 30. If only the overall sample size 𝑛 can be controlled, the simplest way 

to guarantee that the realized domain-sample size 𝑛𝑑  is larger than threshold 𝑛𝑑
∗  is to find the 𝑛 value 

such that 

𝐸𝑃(𝑛𝑑) − 𝑡𝛼√𝑉𝑃(𝑛𝑑) ≥  𝑛𝑑
∗ .   (3.24) 

Appendix A.3.1 shows that in the case of SRSWOR, the 𝑛 value that guarantees respect of Equation 3.9 at 
a level of probability equal to 95 percent is  

𝑛 =
𝑛𝑑
∗ + 1

𝑃𝑑
.    (3.25) 

Table 3.2 illustrates the sample sizes 𝑛 needed to guarantee the minimum threshold 𝑛𝑑
∗  by percentage 

values of the subpopulation proportion (𝑃𝑑), for different values of the thresholds (30, 50, 100). It can be 
seen that for rare subpopulations (with 𝑃𝑑 ≤ 1%), the overall sample size would be too large and 
substantially unfeasible for most surveys conducted at the country level. Thus, a better strategy would be 
to control the sampling sizes 𝑛𝑑  directly at the sampling design phase, as proposed in Sections 3.3.2 and 
3.3.3. 

 
Table 3.2. Sample sizes n needed to guarantee the minimum threshold n_d^* by percentage values of 
the subpopulation proportion (P_d) 

Threshold 
𝒏𝒅
∗  

%𝑷𝒅 

0.05% 1% 5% 10% 

30 62 000 31 000 6 200 3 100 

50 102 000 51 000 10 200 5 100 

100 202 000 101 000 20 200 10 100 
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3.4.2. Deeper stratification 

Stratifying by domain is the traditional strategy adopted to control sample size 𝑛𝑑  at the sampling design 
stage.  

This implies including the domain-membership variables 𝛾𝑑𝑖  (with 𝛾𝑑𝑖 = 1 if  𝑖 ∈ 𝑈𝑑 and 𝛾𝑑𝑖 = 0, 
otherwise) among those to be used for the stratification. To illustrate this case, consider the example of 
a survey stratified by region, illustrated in Box 3.2 above. 

 

Box 3.2. Example of a stratified two-stage probability-proportional-to-size sampling without 
replacement 

Consider a population of 200 000 people grouped into four regions, as illustrated in Table 3.2 below. 
Suppose a stratified two-stage probability-proportional-to-size (PPS) sampling without replacement of 
1 000 people. Each region is a stratum. The total sample size is allocated proportionally in each 
stratum: 𝑛ℎ = 𝑛 𝑁ℎ 𝑁⁄ , with 𝑛ℎ  being the sample size of the stratum h and 𝑁ℎ the total population in the 
stratum. Two municipalities are selected without replacement and with PPS in each stratum. In this 
sampling design, the municipality would represent the PSU.  Municipality 𝑗 in stratum ℎ is selected with a 
first-stage inclusion probability equal to 𝜋1ℎ𝑗 = 2𝑁ℎ𝑗 𝑁ℎ⁄ , where 𝑁ℎ𝑗 is the population in the municipality. 

From the selected municipality ℎ𝑗, 𝑛ℎ/2 final sample units are then extracted with an SRSWOR design. 
Every final unit 𝑖 is selected with the second-stage inclusion probability 𝜋2ℎ𝑗𝑖 = (𝑛ℎ/2) 𝑁ℎ𝑗⁄ . Then, the 

final inclusion probability of unit 𝑖 of municipality 𝑗 of stratum ℎ is  

𝜋𝑖 = 𝜋1ℎ𝑗 × 𝜋2ℎ𝑗𝑖 = (2𝑁ℎ𝑗 𝑁ℎ⁄ )[(𝑛ℎ/2) 𝑁ℎ𝑗⁄ ] =
𝑛

𝑁
. 

 The sampling design is summarized in Table 3.2 below. 

Table 3.2. Example of stratification by region  

Region 

(stratum) 

Population in 
the stratum 

(𝑵𝒉) 

Sample of 
people 

First-stage sampling 
number of 
municipalities 

Second-stage 
sampling 

number of sample 
units in each 
municipality 

Region 1 100 000 500 2 250 

Region 2 50 000 250 2 125 

Region 3 20 000 100 2 50 

Region 4 30 000 150 2 75 

Total 200 000 1 000 8  
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Continuing the above example, suppose that disaggregated data should also be disseminated for the three 
modalities of the living place, distinguishing among (1) rural areas; (2) urban non-metropolitan areas; and 
(3) metropolitan areas. Considering the sample design given in Box 3.1, it can be seen that the sample 
sizes of these disaggregation domains are unplanned and that the domain sample sizes 𝑛𝑑  (𝑑 = 1,… ,3) 
are, thus, random outcomes. To ensure a fixed sample size for every disaggregation domain, stratification 
can be performed by cross-classifying the region and the living place. Thus, a deeper stratification would 
be achieved, into 12 = 4 × 3 strata. Maintaining the same characteristics of the sampling design 
illustrated in Box 3.1, 24 PSUs would be selected. 

In many practical situations, however, cross-classification of the stratification variables is unsuitable 
because it requires selection of a number of sampling units that is at least approximately as large (since 
some cells can be empty, being structural zeroes) as the product of the number of categories of the 
stratification variables. Moreover, to obtain unbiased estimates of the sampling variance, at least two 
units per stratum should be selected. Cochran (1977) illustrates this problem well, giving a clear example 
of an unfeasible cross-classification design.  

 

Box 3.3. Example of a deeper stratified two-stage PPS sampling without replacement 

Table 3.3. Example of stratification by cross-classification of region and living place 

Region 

 
Living place 

Rural Urban, non-metropolitan Metropolitan 

Population 

in the 
stratum 

(𝑵𝒉) 

Sample 
PSU 

Sample 

of 
people 

Population 

in the 
stratum 

(𝑵𝒉) 

Sample 
PSU 

Sample  

of 
people 

People 
Sample 

PSU 

Sample 

people 

Region 
1 

60 000 2 300 8 000 2 40 32 000 2 160 

Region 
2 

20 000 2 100 10 000 2 50 20 000 2 100 

Region 
3 

12 000 2 60 6 000 2 40 2 000 0 0 

Region 
4 

9 000 2 45 15 000 2 75 6 000 2 30 

TOTAL 101 000 8 505 39 000 8 205 60 000 6 290 
 

 



38 
 

A combination of explicit and implicit stratification is often used in surveys to consider additional variables 
that cannot be considered in standard stratification. In the case of major non-planned domains, implicit 
stratification can facilitate estimation. 

Falorsi and Righi (2015) illustrate optimal sampling strategies with a priori (uncertain) information on the 
rare population rate in the strata. This strategy finds the least costly solution by oversampling only in the 
strata with an expected larger amount of the rare subpopulation. A researcher may implement these 
strategies with the Mauss-R (Istat, Mauss-R) software, which enables the multivariate allocation of units 
in sampling surveys. 

 

3.4.3. Multiphase sampling with a screening of respondents 

The strategy based on a deeper stratification requires that the domain membership variables 𝛾𝑑𝑖  be 
available on the sampling frame. This can be the case with geographical variables, but, generally, not with 
many variables of the disaggregation plan, such as the income quantile or household characteristics. 

A traditional sampling strategy to overcome this is to select a first-phase sample 𝑆(1) of size 𝑛(1). Then, 

the variables 𝛾𝑑𝑖  are collected from the units selected in 𝑆1. The units in 𝑆(1) are stratified considering the 

variable collected in the first phase of the sampling. Then, a stratified sample 𝑆(2) is selected to guarantee 

the planned final sample sizes 𝑛𝑑  (𝑑 = 1,… , 𝐷). 

Since a very large screening sample size is needed to generate an adequate domain sample size when one 
(or more) of the domains of interest is a rare population, the cost of screening becomes a major concern.  
An approximate indication of this size for SRSWOR designs is given in Table 3.1 above. 

Several strategies can be employed to keep costs low (Kalton, 2009): (i) use an inexpensive mode of data 
collection, such as telephone interviewing or a mail questionnaire, for the screening; (ii) allow the 
collection of screening data from persons other than those sampled; and (iii) when screening is carried 
out by face-to-face interviewing in a multistage design, it is efficient to select a large sample size in each 
cluster. Costs are reduced and the precision of domain estimates is not seriously compromised if the 
average domain sample sizes in the clusters are relatively small. 

A natural extension of the screening approach is to identify strata where the screening will be more 
productive. In the ideal scenario, a few strata covering all of the rare populations and no entities outside 
that population are identified. These circumstances allow for avoiding the screening process. Otherwise, 
samples must be selected from all the strata to complete coverage of the rare population. The use of 
disproportionate stratification, with higher sampling fractions in the strata where the prevalence of the 
rare population is higher, can reduce the amount of screening needed.  
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3.5. Marginal stratification designs 

3.5.1. Motivating example  

An excessively detailed stratification, which is useful to control the sampling sizes of the disaggregation 
domains, could be unsuitable, because it requires selection of at least as many sampling units as the 
product of the number of categories of the stratification variables.  

To overcome some problems with the deeper stratification designs, a straightforward strategy is to drop 
one or more stratifying variables or to group some of the categories. Nevertheless, some planned domains 
can become unplanned and some of them can have a small or null sample size. The marginal stratification 
designs allow for this problem to be overcome. This topic will be illustrated starting with an example. 

Consider the example developed in Boxes 3.2 and 3.3 and suppose that the country’s NSI cannot conduct 
a survey involving more than eight municipalities. Therefore, the sampling design, based on a deeper 
stratification, as illustrated in Table 3.3, cannot be implemented, because it includes 24 PSUs. Moreover, 
even a sample design selecting only one PSU per stratum is not feasible, as there are 12 cross-classification 
strata.  

Actually, if it is sought to produce the disaggregation estimate only for the marginal domains of the 
stratification variable, it is not necessary to select a sample from every cell of the cross-classified 
stratification. Instead, it is only necessary to have a sample for the marginals of the cross-classification 
defined by region and living place.  

This serves to compute direct estimates for every modality of those two characteristics. Suppose that the 
aim is to define these marginal sample sizes (for the number of PSUs and individuals), as illustrated in 
Table 3.5. This example is introduced only for illustrative purposes; in fact, it is well known that in some 
countries, a “metropolitan” living place can exist in only one region.  

Table 3.4. Example of marginal stratification design. Fixed sample of municipalities and individuals by 
region and living place 

 

Region 

Living place 
Sample of 

municipalities 

Sample of 
individuals 

Rural 
Urban, non-

metropolitan 
Metropolitan 

Region 1 

 

2 500 

Region 2 2 250 

Region 3 2 100 

Region 4 2 150 

Sample of 
municipalities 

3 2 3 8 
 

Sample of individuals 505 195 300  1 000 
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With the above schema, for each disaggregation domain, at least two municipalities and a minimum of 
100 sample individuals would be selected. In this way, direct estimates could be calculated separately by 
region and living place. 

The marginal stratification designs allow for selecting a random sample such as that illustrated in Table 
3.4, controlling only the marginals – and not each cell – of the cross-classified stratification. Table 3.5 
provides an example of a marginal stratification design that ensures respect of the marginal sample sizes. 
It can be seen that not all cells of the cross-classified schema have a sample, although this design enables 
adequate sample sizes for all marginal categories of the stratification variables.  Moreover, it can be seen 
that these techniques automatically solve the problems of structural zeroes in the cross-classified 
stratification. 

We conclude this section by underscoring that we can use marginal stratification only if it is not necessary 
to produce estimates for the combination region/living place, but only for the two marginal distributions 
(as is often the case). However, if producing disaggregated data for each cell of the cross-classification is 
desired, it is somewhat obligatory to guarantee a sizeable sample in each cell (which increases survey 
costs). 

 

Table 3.5. Example of marginal stratification design: selected municipalities and sample of individuals 
(in red brackets) in each cross-classification cell 

 

Region 
Living place 

Total sample  
Rural Urban, non-metropolitan Metropolitan 

Region 1 1 (305) 0 1 (150) 2 (500) 

Region 2 1 (75) 1 (175) 0 2 (250) 

Region 3 0 1 (20) 1 (80) 2 (100) 

Region 4 1 (80) 0 1 (70) 2 (150) 

Total sample 3 (505) 2 (195) 3 (300) 8 (1 000) 

 

 

 

 



41 
 

3.5.2. General overview 

Many methods have been proposed in the literature to keep under control the sample size in all categories 
of the stratifying variables without using a cross-classification design. These methods are generally 
referred to as multi-way stratification techniques and have been developed under two main approaches: 
(i) the Latin Squares or Latin Lattices schemes (Jessen 1978); and (ii) controlled rounding problems via 
linear programming (Lu and Sitter, 2002). Both approaches present drawbacks that have limited the use 
of multi-way stratification techniques as a standard solution when planning survey sampling designs in 
real survey contexts. Indeed, as described in Falorsi, Righi and Orsini (2006), it is not possible to implement 
the Latin Lattices schemes in many real survey contexts, for example if there are no population units in 
one or more of the cross-classification strata. The main weakness of the linear programming approach is 
its computational complexity. The sampling strategy proposed here, based on balanced sampling (see 
Section 3.5.3) does not suffer from the disadvantages of the abovementioned methods and grants control 
of the sample sizes for various domains of interest, defined by different partitions of the reference 
population. Furthermore, it guarantees that the sampling errors of domain estimates are lower than the 
given thresholds. 

 

3.5.3. Balanced sampling for marginal stratification 

Multi-way stratification designs can be treated in the context of balanced sampling. 

Definition of a balanced sample depends on the assumed inferential framework. In the model-based 
approach, a sample is defined as balanced on a set of auxiliary variables if there is equality between the 
sample and the known population means of the auxiliary 

variables (Valliant, Dorfmann and Royall, 2000). Following the design-based (or model-assisted approach) 
considered here, a sample is balanced when the HT estimates of the auxiliary variable totals are equal to 
their known population totals (Deville and Tillé, 2004).  

To define the balanced sampling in the design or model-assisted approach, let us introduce the general 
definition of sampling design as a probability distribution p (⋅) on set 𝒮 of all subsets S of population U. Let 
𝑥𝑖  be a vector of auxiliary variables 𝓍 available for each population unit. Sampling design p(S) with 
inclusion probabilities 𝜋 = {𝜋𝑖: 𝑖 = 1,… ,𝑁} is said to be balanced with respect to the auxiliary variables 
if and only if it satisfies the balancing equations  

∑
𝑥𝑖
𝜋𝑖𝑖∈𝑆
=∑ 𝑥𝑖

𝑖∈𝑈
  (3.26) 

for all 𝑆 ∈ S such that p(S) > 0. 

Let us suppose that a vector of inclusion probabilities 𝜋 consistent with the marginal sampling 
distributions 𝑛𝑑  (𝑑 = 1,… , 𝐷) is available, that is 

∑ 𝜋𝑖𝛾𝑑𝑖
𝑖∈𝑈

= 𝑛𝑑  (𝑑 = 1,… , 𝐷),     (3.27) 

where D represents the total number of domains for which disaggregated data must be produced.   
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Multi-way stratification designs are a special case of balanced designs, where for unit 𝑖, the auxiliary 
variable vector is given by 

𝑥𝑖 = 𝜋𝑖𝛾𝑖  (3.28) 

where 𝛾𝑖  is the D vector of domain membership variables, being 

𝛾𝑖 = (𝛾1𝑖 , … , 𝛾𝑑𝑖 , … , 𝛾𝐷𝑖)
′ . 

If the 𝑖 − 𝑡ℎ unit belongs to five different disaggregation domains, Equation 3.13 defines the 𝑥𝑖  vector 
with (D − 5) zeroes and with five entries equal to 𝜋𝑖  in the places indicating the domains to which the unit 
k belongs. 

When defining the 𝑥𝑖  vector as in Equation 3.28, if the condition expressed in Equation 3.27 holds, the 
selection of samples satisfying the system of balancing equations 3.26 guarantees that the 𝑛𝑑  values are 
non-random quantities. 

The left-hand side of the balancing equation 3.26 is 

∑
𝑥𝑖
𝜋𝑖𝑖∈𝑆
=∑

𝜋𝑖
𝜋𝑖𝑖∈𝑈
𝛾𝑑𝑖𝜆𝑖 =∑ 𝛾𝑑𝑖𝜆𝑖

𝑖∈𝑈
= 𝑛𝑑 .  (𝑑 = 1,… , 𝐷) 

The right-hand side is  

∑ 𝑥𝑖
𝑖∈𝑈

=∑ 𝜋𝑖𝛾𝑑𝑖
𝑖∈𝑈

= 𝑛𝑑   (𝑑 = 1,… , 𝐷). 

 

Box 3.4. Examples of auxiliary variables for the balanced sampling illustrated in Table 3.4 

Consider the marginal stratification design illustrated in Table 3.4. In this case, the vector of auxiliary 
variables chosen to select the municipalities has seven entries: the first four for the region, and the 
latter three for the living place. The vector 𝛾𝑖  has two entries equal to 1 and other five entries equal to 
0. In the case of a municipality in Region 2 and in the rural area, vector 𝛾𝑖  is  

𝛾𝑖  = (
Region

0, 1, 0,0⏞    ,

Place

0, 1, 0⏞  )

′

. 

Let 𝜋1𝑖  be the first-stage inclusion of the 𝑖 − th municipality and let 𝑈 be the population of M 
municipalities in the country. According to Equation 3.4, these probabilities must respect the 
following constraint: 

∑ 𝜋1𝑖𝛾𝑑𝑖
𝑖∈𝑈

= (2, 2, 2, 2, 3, 2,3)′ 
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Deville and Tillé (2004) proposed the cube method that allows for selection of balanced (or approximately 
balanced) samples for a large set of auxiliary variables and with respect to different vectors of inclusion 
probabilities. In particular, Deville and Tillé (2004) show that with the specification at Equation 3.28 of the 
𝑥𝑖  vectors, the balancing equations 3.26 can be satisfied precisely. The cube method is implemented via 
an enhanced algorithm for large data sets (Chauvet and Tillé, 2006) available in a free software code. 

Comment 3.5. Marginal stratification designs in the second phase of sampling. The marginal 
stratification design can be applied to select the second-phase sample  𝑆(2) (see Section 3.2), thus 

guaranteeing the planned final sample sizes 𝑛𝑑  (𝑑 = 1,… , 𝐷) and overcoming the problems associated 
with an excessively detailed stratification. To apply this design, the domain membership variables 𝛾𝑑𝑖  
should be collected, through a screening on a subset of the Ultimate Stage Units (USUs) of the PSUs 
selected in the first phase. See Section 3.5.4 below. 

Comment 3.6. Balanced sampling as a general design. It is emphasized that balanced sampling forms the 
basis for defining broad classes of sampling designs. For instance, stratified sampling designs require 
that 

∑𝛾𝑑𝑖

𝐷

𝑑=1

= 1, 

and each 𝑈𝑑 is referred to as a stratum. 

 

3.5.4. Marginal stratification design for two-stage or two-phase sampling designs 

This section illustrates how to carry out marginal stratification designs for the two-stage or two-phase 
sampling designs commonly adopted in real survey contexts. 

To introduce this topic, let U  be a population of M  PSUs (e.g. municipalities) and let 𝑈𝑖  be the population 
of 𝑁𝑖 USUs of the 𝑖 − th PSU (e.g. households). 

Let 𝑚 be the total number of PSUs to be selected in the first-stage sampling and let 𝑚𝑑 (𝑑 = 1,… , 𝐷) the 
number of PSUs to select in the 𝑑 − th disaggregation domain. Let 𝑛 be the total number of USUs in the 
second-stage sampling and let 𝑛𝑑 (𝑑 = 1,… , 𝐷) be the number of USUs to select in the 𝑑 − th 
disaggregation domain. Suppose that the quantities, 𝑚𝑑 (𝑑 = 1,… , 𝐷), 𝑛 and 𝑁𝑑 are fixed and defined 
by constraints based on accuracy and budget. Falorsi and Righi (2015, 2018) explain how to define the 
latter quantities, minimizing the expected costs while ensuring predefined levels of accuracy of the 
sampling estimates. 

 

Two-stage sampling 

The 𝑚 PSUs are selected without replacement and with first-stage inclusion probabilities 𝜋1𝑖  (𝑖 =
1,… ,𝑀). 

In the 𝑖 − th  selected PSU, 𝑛𝑖  USUs are sampled with a SRSWOR design out of the 𝑁𝑖 USUs of the PSUs, 
with 
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𝜋2𝑖 =
𝑛𝑖
𝑁𝑖
 (𝑖 = 1,… ,𝑀) 

being the second-stage inclusion probabilities. 

To implement the sampling design, an initial value of the first-stage 𝜋1𝑖
𝑖𝑛𝑖  and the second-stage 𝜋2𝑖

𝑖𝑛𝑖  
inclusion probabilities are defined, as 

𝜋1𝑖
𝑖𝑛𝑖 = 𝑚

𝑁𝑖
𝑁
  ,   𝜋2𝑖

𝑖𝑛𝑖 =
𝑛

𝑚
  (𝑖 = 1,… ,𝑀). 

Then, having defined the above elements, the operational steps for defining and implementing a balanced 
two-stage sampling that guarantees observing 𝑚𝑑 PSUs and 𝑛𝑑  USUs (as expected values over repeated 
sampling) are the following. 

1. Definition of the first-stage final inclusion probabilities 𝜋1𝑖  (i = 1,… ,𝑀). These are defined by the 
following calibration system, ensuring that the expected sample sizes are equal to the fixed ones:  

{
 
 

 
 ∑ 𝐷(𝜋1𝑖 , 𝜋1𝑖

𝑖𝑛𝑖) = min
𝑀

𝑖=1
                                                        

∑ 𝜋1𝑖𝛾𝑑𝑖
𝑖∈𝑈

= 𝑚𝑑 (𝑑 = 1,… , 𝐷)                                        

𝜋1𝑖
𝑖𝑛𝑖 ≤ 𝜋1𝑖 ≤ 𝑈𝜋1𝑖

𝑖𝑛𝑖   for 𝑖 = 1,… ,𝑀                                      

, (3.29) 

where 𝐷(𝜋1𝑖 , 𝜋1𝑖
𝑖𝑛𝑖) is the truncated logarithmic distance function (Singh and Mohl, 1996) 

between 𝜋1𝑖  and 𝜋1𝑖
𝑖𝑛𝑖; 0 ≤ 𝐿 ≤ 1; and 𝑈 ≥ 1. The truncated logarithmic distance function 

ensures that the final inclusion probabilities are bounded in the interval (𝐿𝜋1𝑖
𝑖𝑛𝑖 , 𝑈𝜋1𝑖

𝑖𝑛𝑖) . The 
problem at Equation 3.29 can be solved with the software Regenesees (Istat, Regenessees). 
 

2. Definition of the second-stage final inclusion probabilities 𝜋2𝑖  (i = 1,… ,𝑀). These are defined by 
the following calibration system, ensuring that the expected sample sizes are equal to those fixed 
in advance:  

{
 
 

 
 ∑ 𝐷(𝜋2𝑖 , 𝜋2𝑖

𝑖𝑛𝑖) = min
𝑀

𝑖=1
                                                                  

∑ 𝜋1𝑖𝜋2𝑖𝑁𝑖  𝛾𝑑𝑖
𝑖∈𝑈

= 𝑛𝑑  (𝑑 = 1,… , 𝐷).                               (3.30)

𝜋2𝑖
𝑖𝑛𝑖 ≤ 𝜋2𝑖 ≤ 𝑈𝜋2𝑖

𝑖𝑛𝑖   for 𝑖 = 1,… ,𝑀                                             

 

In the problem at Equation 3.20, the quantities 𝜋1𝑖  are known, as they were defined in the first 
step. 
 

3.  Selection of the first-stage balanced sampling of PSUs, respecting the constraints 

∑ 𝛾𝑑𝑖𝜆𝑖
𝑖∈𝑈

= 𝑚𝑑 (𝑑 = 1,… , 𝐷),      

where the inclusion probabilities 𝜋1𝑖  are those defined in the calibration system at Equation 3.29. 
The sample is selected with the Cube algorithm. 
 

4. Selection of the second stage sampling. In the 𝑖 − th  selected PSU, 𝑛𝑖  USUs are sampled with 
SRSWOR out of the 𝑁𝑖 USUs of the PSUs, with 

𝑛𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝜋2𝑖𝑁𝑖)      (𝑖 = 1,… ,𝑚), 



45 
 

where the inclusion probabilities 𝜋2𝑖  are those defined in the calibration system at Equation 3.30. 

Note that with two-stage sampling design, while the sample sizes of the first-stage sampling 𝑚𝑑 are equal 
to those established in advance, the sample sizes of the USUs may be not equal to those fixed in advance, 
even if the system provided by Equation 3.30 ensures that the constraint is respected only over repeated 
sampling. However, the domain realized and the fixed sample sizes of the USUs should be close to one 
other. 

Two-phase sampling 

To ensure that the domain realized and the fixed sample sizes of the USUs are strictly equal, the second 
step must be reformulated, defining the balancing constraints only over the selected sample PSUs. Thus, 
the second phase-inclusion probabilities 𝜋2𝑖|𝑖∈𝑆 are defined as the solution of the following calibration 

system: 

{
 
 

 
 ∑ 𝐷(𝜋2𝑖|𝑖∈𝑆, 𝜋2𝑖

𝑖𝑛𝑖) = min
𝑚

𝑖=1
                                                                  

∑ 𝜋2𝑖|𝑖∈𝑆𝑁𝑖  𝛾𝑑𝑖
𝑖∈𝑆

= 𝑛𝑑  (𝑑 = 1,… , 𝐷).                                     (3.31)

𝜋2𝑖
𝑖𝑛𝑖 ≤ 𝜋2𝑖|𝑖∈𝑆 ≤ 𝑈𝜋2𝑖

𝑖𝑛𝑖   for 𝑖 = 1,… ,𝑀                                             

 

Then, in the 𝑖 − th  selected PSU, 𝑛𝑖  USUs are sampled with an SRSWOR design out of the 𝑁𝑖 USUs of the 
PSUs, with  

𝑛𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝜋2𝑖|𝑖∈𝑆𝑁𝑖)      (𝑖 = 1,… ,𝑚). 

The above schema can be referred to as a two-phase sampling design, as the probabilities 𝜋2𝑖|𝑖∈𝑆 depend 

on the sample selected in the first stage. 

 

3.6. Indirect sampling and multisource sampling designs 

3.6.1. General background 

In any conventional survey, random selection of the sample requires an updated list that records all 
individuals eligible for the survey (and only these), each identified by a label. This perfect list, i.e. the 
sampling frame, is used to identify the elements of the target population. When the sampling frame is 
available, a crucial statistical issue is the assessment of the coverage actually provided by this list of the 
target population. A sampling frame is perfect when there is a one-to-one mapping of frame elements to 
target population elements. However, in statistical practice, perfect frames seldom exist, and problems 
always arise to disrupt the ideal one-to-one mapping. For example, the sampling frame might suffer from 
either or both undercoverage and overcoverage. There is undercoverage when the available frame is 
incomplete, because it includes only part of the target population, and the missing elements cannot 
appear in any sample drawn for the survey. On the contrary, there is overcoverage when the sampling 
frame contains duplications of the same units or units that are not included in the target population. 
However, in statistical practice, there may also be frame imperfections of other types: for example, in 
certain circumstances, one may not possess the collection units desired, but rather another frame of units 
linked to the list of collection units. Also, although a frame may be available, in a dynamic environment it 
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quickly becomes outdated, thus representing a situation that might be rather different from reality. The 
following strategy will be adopted: starting with the observation of one population, the units of the other 
populations are surveyed by reference to their links with the units of the first population. Thus, as would 
occur with an indirect sampling approach, the other populations can be considered sampled from an 
imperfect frame, i.e. the frame referring to the first population. Frame imperfections will also be 
considered in the observation of the first population.  

Figure 3.1. below, taken from FAO (2015), illustrates the mechanism of the links in the case of farm surveys 
when only a list of households, derived from the last census, is available. 

In practice, the links do not have to be known in advance; however, the enumerator obtains information 
on the links during the data collection phase. For instance, consider that in Figure 3.1, the enumerator 
who interviews the individuals A and B of Household H1 detects working in Farm F1. Thus, the enumerator 
identifies two links between Household H1 and Farm F1.  Moreover, it may be seen that Farm F1 can be 
recognized by the enumerator who interviews Household H2. In total, Farm F1 may be identified by three 
links, each of which may be detected during the data collection. This is an example of the concept of 
multiplicity discussed below.  
 

Figure 3.1. Example of links between a frame of households and the target population of agricultural 
holdings in the household sector 

 

Source: FAO, 2015.  
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Figure 3.2. Example of multisource sampling: target population covered by the union of two sources 

 

Source: FAO, 2020. 

To identify the links, the survey questionnaires must be appropriately structured. FAO (2015; Chapter 3) 
illustrates the modules and operational rules for applying indirect sampling in agricultural surveys. 

Multiple-source sampling is another useful approach when dealing with imperfect frames, in particular, 
when the target population is covered by the union of two or more frames. The case is illustrated by Figure 
3.2. above, which displays two partially overlapping sources. A relevant example here is that of agricultural 
surveys with holdings in the household and non-household sector. In some circumstances, some of the 
holdings may fall under two different frames (of the families and the legal entities). 

As can be seen, if a sample 𝑆𝐴  is selected from Frame A and an independent sample 𝑆𝐵  is selected from 
Frame B, the units in the intersection A ∩ B of the two sources can be observed in both samples.  

FAO (2014) proposes a methodological approach that extends the use of indirect sampling (Lavallée, 2007) 
to the production of integrated estimates on more than one target population, in the context of multiple 
frame surveys (Hartley, 1974; Singh and Mecatti, 2011). The techniques proposed are relatively flexible. 
Furthermore, under rather general conditions, they enable the production of unbiased statistics, thus 
overcoming most of the problems caused by imperfect sampling frames. These two approaches can be 
combined through the concept of multiplicity, first introduced by Birnbaum and Sirken (1965) in their 
presentation of network sampling as a strategy for surveying rare or elusive populations. Also known as 
multiplicity sampling or snowball sampling, this is a link-tracing sampling procedure in which a sample is 
obtained by following existing links from one respondent to another. This sampling methodology applies, 
for example, in estimating the country-prevalence of a rare disease, when a frame that fully represents 
the target population is not available. Selection units and target units may either coincide, be related or 
be unrelated, according to a one-to-many linkage rule. Thus, for each target unit, multiplicity is defined as 
the number of selection units to which it is linked, and a multiplicity adjusted estimator is suggested.  

In indirect sampling, the notion of multiplicity is essentially the same, except that a many-to-many linkage 
pattern must be considered. To adjust for possible data duplication at the estimation stage, it is suggested 
to use the Generalized Weight Share Method (GWSM) to provide an estimation weight for each target 
unit in the selected sample; in fact, this is a multiplicity adjustment. On the other hand, in the context of 
multiple frames surveys, multiplicity is defined as the number of frames from which a unit can be selected. 
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Box 3.5. Examples of the concept of multiplicity  

Multiplicity in indirect sampling 

Consider Farm F1 in Figure 3.1 and suppose that a sample of households is selected. In this case, Farm 
F1 has a multiplicity equal to 3, since it can be reached from three links generated by Households H1 
and H2. 

Multiplicity in multisource sampling 

With reference to Figure 3.1, suppose that target population U can be identified as the union of three 
disjoint subsets: 

- 𝐴∗ the set of units only in Frame A. These units have a multiplicity equal to 1. 

- 𝐵∗ the set of units only in Frame B. These units have a multiplicity equal to 1. 

- the units in the intersection set  A ∩ B, which have a multiplicity equal to 2. 

 

3.6.2. Indirect sampling: basic methodology  

Indirect sampling is suitable when producing statistics of populations for which there is no sampling frame 
or for which the existing frame is imperfect. In such cases, the sampling procedure assumes that 
population 𝑈𝐴 is related to population of interest 𝑈𝐵, but only the sampling frame of 𝑈𝐴 is available. 
Then, a sample is selected from 𝑈𝐴, and using the links between the two populations, a sample of units 
of 𝑈𝐵 is observed. 

For instance, in the case of statistics on rural households, 𝑈𝐴 is the population of farms and 𝑈𝐵 the 

population of rural households. Let 𝑠𝐴  be a sample selected from 𝑈𝐴 without replacement and with fixed 

sample size  𝑚𝐴, where 𝑈𝐴 contains 𝑁𝐴  units. Let 𝜋𝑗
𝐴 represent the inclusion probability of the j-th unit 

in 𝑈𝐴 with 𝜋𝑗
𝐴 > 0 and ∑ 𝜋𝑗

𝐴 = 𝑚𝐴
𝑗∈𝑈𝐴  with π𝐴 = (𝜋1

𝐴, … , 𝜋𝑗
𝐴, … , 𝜋

𝑀𝐴
𝐴 )′.  

Let 𝑀𝐵, 𝑁𝐵 , 𝑈𝑖
𝐵 and 𝑀𝑖

𝐵  be the number of units in 𝑈𝐵, the number of clusters in 𝑈𝐵, the i-th cluster of 

𝑈𝐵 with ⋃ 𝑈𝑖
𝐵𝑁𝐵

𝑖=1 = 𝑈𝐵 and the number of units in the i-th cluster 𝑈𝑖
𝐵, respectively. Let us denote with 

𝑦𝑖𝑘 the value of the variable of interest for the k-th unit of the i-th cluster of 𝑈𝐵 and the population total 
of all 𝑦𝑖𝑘’s by  

𝑌𝑑 =∑ ∑ 𝑦𝑖𝑘
𝑀𝑖
𝐵

𝑘=1

𝑁𝐵

𝑖=1
𝛾𝑑𝑖𝑘 . 

Let 𝑙𝑗,𝑖𝑘  be an indicator variable of link existence: 𝑙𝑗,𝑖𝑘 = 1 indicates that there is a link between the j-th 

unit in 𝑈𝐴 and the k-th unit in 𝑈𝑖
𝐵, while 𝑙𝑗,𝑖𝑘 = 0 indicates otherwise. 

Suppose that an indirect sampling process is performed: if unit 𝑗 ∈ 𝑈𝐴 is included in 𝑠𝐴, then all clusters 

𝑈𝑖
𝐵 for which 𝐿𝑗,𝑖

𝐵 = ∑ 𝑙𝑗,𝑖𝑘 > 0
𝑀𝑖
𝐵

𝑘=1  are observed (i.e. 𝑦𝑖𝑘) in the indirect sample of population 𝑈𝐵. Let 𝑛𝐵 

be the size of the sample of clusters in population 𝑈𝐵 obtained after the indirect sampling process. The 
variable 𝑌 is estimated according to the estimator based on the GWSM theory (Lavallée, 2007): 
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�̂�𝑑 =∑ 𝑦𝑑𝑖  𝜔𝑗
𝐵

𝑛𝐵

𝑖=1
,               (3.32) 

where 𝑦𝑑𝑖 =∑ 𝑦𝑖𝑘𝛾𝑑𝑖𝑘  
𝑀𝑖
𝐵

𝑘=1
and 𝜔𝑗

𝐵 =∑ 𝜔𝑗
𝐴  �̃�𝑗,𝑖

𝐵

𝑗∈𝑠𝐴
 with �̃�𝑗,𝑖

𝐵 =
𝐿𝑗,𝑖
𝐵

𝐿𝑖
𝐵  and 𝐿𝑖

𝐵 =∑ 𝐿𝑗,𝑖
𝐵

𝑀𝐴

𝑗=1
 , 

in which 𝜔𝑗
𝐴 = 1/𝜋𝑗

𝐴. Note that in the estimator at Equation 3.17, the multiplicity factor is 𝐿𝑖
𝐵 . 

The theorem in Lavallée (2007; Section 3) states that Equation 3.32 provides an unbiased estimator for 

𝑌𝑟
𝐵 provided that all links 𝑙𝑗,𝑖𝑘 can be correctly identified and 𝐿𝑖

𝐵 > 0 for all 𝑖 ∈ 𝑈𝐵. This is a key 

assumption, that is discussed in depth in Lavallée (2007). In practice, the links 𝑙𝑗,𝑖𝑘 are identified by the 

enumerators during the data collection phase, when interviewing the unit 𝑗 of 𝑆𝐴, and 𝐿𝑖
𝐵  is collected by 

the enumerator interviewing unit 𝑖 of 𝑆𝐵 . For instance, consider the example of Figure 3.1; the quantity 

𝐿𝑖
𝐵  for Farm F1 is given by the number of its workers (three). This information is easily captured by 

interviewing the farm. 

By defining  

𝑧𝑑𝑗 =∑ �̃�𝑗,𝑖
𝐵  𝑦𝑑𝑖  ,                   

𝑁𝐵

𝑖=1
         (3.33) 

the estimator established under Equation 3.17 can be expressed as a usual HT estimator on the z values 
referring to the 𝑈𝐴 population, 

�̂�𝑑 =∑ 𝑧𝑑𝑗,𝜔𝑗
𝐴

𝑠𝐴
.                         (3.34) 

Therefore, the variance 𝑉𝐵(�̂�𝑑) of �̂�𝑟
𝐵 can be expressed as the variance of the HT estimator on the 𝑈𝐴 

population. 

 

Indirect sampling for rare or hard-to-reach populations 

In practice, rare populations are often difficult to target for surveying purposes. Often, no adequate 
sampling frames exist. Thus, these populations become unplanned domains. In these cases, it is often 
necessary to use a different but related sampling frame to reach the rare target population.  

Indirect sampling is thus performed. For example, to target people having an infectious disease in a large 
city, it is possible to use lists of dwellings as sampling frames, which subsequently entails surveying the 
families of the selected dwellings. Other approaches developed in the literature for rare populations, such 
as adaptive cluster sampling (Thompson and Seber, 1992), network sampling (Sanders and Kalsbeek, 
1990) and snowball sampling (Goodman, 1961) can be considered particular cases of indirect sampling, 
with a specific definition of the links. This is discussed in Lavallée (2007; Chapter 3). Fortunately for the 
statistician, it turns out that rare populations are often found in clusters. This is often the case, for 
example, with infectious diseases, including for Covid-19 (Alleva et al., 2020). By surveying the complete 
clusters, considerable reductions in costs are possible because a large proportion of these are related to 
the identification of rare populations. Therefore, data for the clusters of surveyed units can be obtained 
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through indirect sampling. The problem for the statistician is to weight the survey data so that unbiased 
estimates for the characteristics of the rare target population can be produced. The GWSM provides a 
simple way to obtain this weighting.  

 

Box 3.6. Examples of indirect sampling for hard-to-reach populations 

Example 1. Indirect sampling can be used to sample nomadic populations as population 𝑈𝐵. In this 
case, list 𝑈𝐴 can consist of the list of places where the nomadic population is known to stop, to obtain 
refreshment or stock up on water, such as oases. 

Example 2. In the Italian National Institute of Statistics (Istat), indirect sampling has been adopted to 
sample the homeless, as population 𝑈𝐵. In this case, list 𝑈𝐴 can consist of the list of places where the 
homeless went to receive some types of care, such as food or beds (De Vitiis, Falorsi and Inglese, 
2014; Ardilly and Le Blanc, 2001). 

 

3.6.3. Multisource sampling 

The basic methodology is illustrated for cases involving two sources. The extension to cases involving 
three and more sources is straightforward. It is formally developed in FAO (2014) and Singh and Mecatti 
(2011). 

To illustrate the value of this approach, consider a standard agriculture survey on farms. Two different 
sampling frames can be used: a frame of large farms and an area frame of the census enumeration areas 
to capture the small farms. In this context, a large farm can be captured from both frames, thereby 
identifying a multi-source situation. For another example, consider agricultural surveys where it is sought 
to cover holdings engaging in crop production, livestock rearing, fishery, forestry and aquaculture. In some 
cases, multiple frames may have to be used to reach all of these groups, and some holdings (engaging in 
more than one activity) may be included in more than one list.   

To describe this approach, suppose that the target population 𝑈 is expressed as the union of two subsets,  
𝑈𝐴 and 𝑈𝐵 (having respectively 𝑁𝐴   and 𝑁𝐵 units), that partially overlap: 

𝑈 = 𝑈𝐴 ∪ 𝑈𝐵.       (3.35) 

The total 𝑌𝑑  can be expressed as: 

𝑌𝑑 = 𝑌𝑑
𝐴 + 𝑌𝑑

𝐵 − 𝑌𝑑
𝐴𝐵,       (3.36) 

 where 

𝑌𝑑
𝐴 =∑ 𝑦𝑖𝛾𝑑𝑖

𝑖∈𝑈𝐴
     , 𝑌𝑑

𝐵 =∑ 𝑦𝑖𝛾𝑑𝑖
𝑖∈𝑈𝐵

     and    𝑌𝑑
𝐴𝐵 =∑ 𝑦𝑖𝛾𝑑𝑖

𝑖∈𝑈𝐴∩𝑈𝐵
.    (3.37)  

are the domain totals of variable 𝓎 in subpopulations 𝑈𝐴, 𝑈𝐵 and in the intersection set 𝑈𝐴 ∩ 𝑈𝐵. 
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Two independent samples 𝑆𝐴  and 𝑆𝐵 , with fixed sample sizes  𝑛𝐴  and  𝑛𝐵 , are selected from 𝑈𝐴 and 

𝑈𝐵, respectively, without replacement and with vectors of inclusion probabilities π𝐴 =

(𝜋1
𝐴, … , 𝜋𝑖

𝐴, … , 𝜋
𝑁𝐴
𝐴 )′ and π𝐵 = (𝜋1

𝐵, … , 𝜋𝑖
𝐵, … , 𝜋

𝑁𝐵
𝐵 )′.  

A direct estimation of the total 𝑌𝑑 can be computed as: 

�̂�𝑑 = �̂�𝑑
𝐴 + �̂�𝑑

𝐵 − �̂�𝑑
𝐴𝐵,    (3.38)  

with 

�̂�𝑑
𝐴𝐵 =  𝛼�̂�𝑑(𝐴)

𝐴𝐵 + (1 − 𝛼)�̂�𝑑(𝐴)
𝐴𝐵 ,    (3.39) 

 

where �̂�𝑑
𝐴 and �̂�𝑑(𝐴)

𝐴𝐵  are direct estimates of totals 𝑌𝑑
𝐴 and 𝑌𝑑

𝐴𝐵 derived from sample 𝑆𝐴;  �̂�𝑑
𝐵 and �̂�𝑑(𝐵)

𝐴𝐵  are 

direct estimates of totals 𝑌𝑑
𝐵 and 𝑌𝑑

𝐴𝐵 derived from sample 𝑆𝐵  and �̂�𝑑
𝐴𝐵 is a convex combination of direct 

estimates �̂�𝑑(𝐴)
𝐴𝐵  and �̂�𝑑(𝐴)

𝐴𝐵 , with 0 ≤ 𝛼 ≤ 1, 

where: 

�̂�𝑑
𝐴∗ =∑ 𝑦𝑖𝜔𝑖

𝐴𝛾𝑑𝑖
𝑖∈𝑆𝐴

 , �̂�𝑑(𝐴)
𝐴𝐵 =∑ 𝑦𝑖𝜔𝑖

𝐴𝛾𝑑𝑖
𝑖∈𝑆𝐴∩𝑈𝐵

  ,    (3.40𝑎) 

�̂�𝑑
𝐵∗ =∑ 𝑦𝑖𝜔𝑖

𝐵𝛾𝑑𝑖
𝑖∈𝑆𝐵∩𝐵∗

 , �̂�𝑑(𝐵)
𝐴𝐵 =∑ 𝑦𝑖𝜔𝑖

𝐵𝛾𝑑𝑖
𝑖∈𝑆𝐵∩𝑈𝐴

, (3.40𝑏) 

with 𝜔𝑖
𝐴  and 𝜔𝑖

𝐵  being the direct weights of samples 𝑆𝐴  and 𝑆𝐵 . 

Information on the intersection of the samples with the intersection set 𝑈𝐴 ∩ 𝑈𝐵  can be collected either 
during the interview or by linking the two sampling frames A and B.  

Singh and Mecatti (2011) give an in-depth illustration of the different approaches explored in literature 
to find the optimal value of 𝛼 in the context of multiple frames surveys. Hartley (1974) proposed choosing 

𝛼 in Equation 3.39 to minimize the variance of �̂�𝑑. Because the frames are sampled independently, the 

variance of �̂�𝑑 is: 

 𝑉(�̂�𝑑) = 𝑉(�̂�𝑑
𝐴) + 𝑉(�̂�𝑑

𝐵) + 𝛼2 𝑉(�̂�𝑑(𝐴)
𝐴𝐵 ) + (1 − 𝛼)2𝑉(�̂�𝑑(𝐵)

𝐴𝐵 ) + 

−2𝛼𝐶𝑜𝑣 (�̂�𝑑
𝐴, �̂�𝑑(𝐴)

𝐴𝐵 ) − 2(1 − 𝛼) 𝐶𝑜𝑣 (�̂�𝑑
𝐵, �̂�𝑑(𝐵)

𝐴𝐵 ). 

Thus, for general survey designs, the variance-minimizing value of 𝛼 is: 

𝛼𝑜𝑝𝑡 =
𝑉(�̂�𝑑

𝐵) + 𝐶𝑜𝑣 (�̂�𝑑
𝐵, �̂�𝑑(𝐵)

𝐴𝐵 ) − 𝐶𝑜𝑣 (�̂�𝑑
𝐴, �̂�𝑑(𝐴)

𝐴𝐵 )

𝑉(�̂�𝑑
𝐴) + 𝑉(�̂�𝑑

𝐵)
.    (3.41) 

Unfortunately, the above quantity depends on variable y and domain 𝑑. The coherence of the estimates 
across the variables and domains is not ensured. Note that if one of the covariances in Equation 3.41 is 
large, it is possible for 𝛼𝑜𝑝𝑡  to be smaller than 0 or greater than 1. Hartley (1974) suggests opting for the 
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alternative expression 𝛼∗ = 𝑉(�̂�𝑑
𝐵)/[𝑉(�̂�𝑑

𝐴) + 𝑉(�̂�𝑑
𝐵)]. However, in this case too, the coherence of the 

estimates across the variables and domains is not ensured.  

An alternative expression of estimator �̂�𝑑 that guarantees the coherence necessary in official statistics is 
to fix the 𝛼 value independently of the variable and domain, as 𝛼 = 𝑛𝐵 (𝑛𝐴 + 𝑛𝐵)⁄ . Another solution 
represented by the multiplicity estimator (Singh and Mecatti, 2011) is 

�̂�𝑑 =∑ 𝑦𝑖
𝜔𝑖
𝐴

𝑚𝑖
𝛾𝑑𝑖

𝑖∈𝑆𝐴
+∑ 𝑦𝑖

𝜔𝑖
𝐴

𝑚𝑖
𝛾𝑑𝑖

𝑖∈𝑆𝐵
,    (3.42) 

where 𝑚𝑖 is the multiplicity of the 𝑖 − th unit given in Box 3.5 for multisource sampling. 

 

3.7. Summary of the main recommendations 

The main advice provided in this chapter is the following. 

1. Weighting sample-domain data allows for computing the direct domain-sampling estimate. 
2. Various estimators can be adopted if the available domain information is leveraged differently; 

the estimators can be domain-specific or referred to the entire population. 

3. In choosing a particular estimator, it is necessary to consider: (i) its inferential properties; (ii) the 
level of detail at which the auxiliary information is made available (e.g. unit-level or aggregated); 
(iii) the consistency of the various estimates that can be produced from a given survey; and (iv) its 
computational feasibility. 

4. Proper sampling designs for data disaggregation should ensure planned sample sizes for the 
domains of the disaggregation plan. Thus, it would be possible to calculate direct estimates. 
Indirect estimates could also benefit from having sampling units in each domain of interest.  

5. Survey statisticians can improve sampling designs by geographically spreading the sample units 
and diminishing the level of clustering. This would improve the ability to reach segregated or rare 
subpopulations. 

6. Traditional sampling techniques address this topic by leveraging oversampling, screening or a 
deeper stratification. However, these solutions may be costly and difficult to implement in some 
practical circumstances.  

7. New sampling approaches (such as marginal stratification sampling, indirect sampling or 
multisource sampling) allow for some of the abovementioned problems to be overcome without 
excessively increasing survey costs. They also enable sampling of rare or hard-to-reach 
populations. 
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Appendix A3.1.  

With a Poisson sampling, the variance 𝑉𝑃(𝑛𝑑) can be approximated by: 

𝑉𝑃(𝑛𝑑) ≅∑𝛾𝑑𝑖

𝑁

𝑖=1

𝑉𝑃(𝜆𝑖) =∑𝛾𝑑𝑖

𝑁

𝑖=1

𝑛

𝑁
(1 −

𝑛

𝑁
) = 𝑛

𝑁𝑑
𝑁
(1 −

𝑛

𝑁
) 

It is necessary to find the target overall sample size  𝑛∗, that guarantees that the lower bound of the 
confidence interval of 𝑛𝑑  (at a probability of 95 percent) is bigger than the target 𝑛𝑑

∗  . The following 
inequality is defined: 

𝑛𝑑
∗ ≤ 𝑛∗𝑃𝑑 − 2√𝑛

∗𝑃𝑑 (1 −
𝑛∗

𝑁
) ≅ 𝑛∗𝑃𝑑 − 2√𝑛

∗𝑃𝑑 → (𝑛𝑑
∗ )2 = (𝑛∗)2𝑃𝑑

2 − 2𝑛∗𝑃𝑑 . 

The unknown value 𝑛∗ can then be obtained, as the solution of the following second-degree equation 

𝑃𝑑
2(𝑛∗)2 − 2𝑃𝑑𝑛

∗ − (𝑛𝑑
∗ )2 = 0. 

Then, the following is obtained 

𝑛∗ =
2𝑃𝑑 ± √4𝑃𝑑

2 + 4𝑃𝑑
2(𝑛𝑑

∗ )2

2𝑃𝑑
2 =

2𝑃𝑑 ± 2𝑃𝑑√1 + (𝑛𝑑
∗ )2

2𝑃𝑑
2 ≅

1± 𝑛𝑑
∗

𝑃𝑑
=
𝑛𝑑
∗ + 1

𝑃𝑑
. 
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Chapter 4. Computing the accuracy of disaggregated data  

4.1 Introduction 

This chapter discusses the importance of computing, and providing users with, the accuracy of 
disaggregated data and proposes a method with application. Its first section examines the need to 
compute accuracy and how to evaluate it. Section 4.2 introduces the basic theory, while Section 4.3 
presents a case study based on the methodology explained using the available country-level data for SDG 
Indicator 2.1.2 – Prevalence of moderate or severe food insecurity in the population, based on the FIES. 

4.1.1. Why must sampling errors be estimated? 

Errors can and do occur at all stages of a survey or even a census (UNSD, 2020). The magnitude of these 
errors and, therefore, the quality of resulting estimates are crucial, given the power of data in shaping 
vital decisions defining a country’s future. As presented in other parts of these Guidelines, the logical steps 
for releasing disaggregated data are the following: 

1. compute direct estimates (when data are available); 
2. compute the measure of accuracy; 
3. evaluate the accuracy and decide whether to publish the disaggregated indicator; and 
4. if needed and feasible, apply corrections and post-adjustments. 

Thus, the estimation of errors is a preliminary and required step for every action carried out in data 
disaggregation. Before disseminating estimates, it is necessary to check their accuracy. If the estimates 
present high levels of inaccuracy, a decision should be taken as to whether to publish the data or not, 
while informing users of their level of reliability and thus alleviate the risk of their incorrect use. 
Alternatively, improvement actions could be launched (at the sample design or estimator level) to enable 
producing more reliable disaggregated data. At any rate, the estimation and dissemination of errors are 
essential to build public trust in data and their use, an element that eventually generates confidence in 
the NSS overall.  

The dissemination of available data is generally tied to one leading strategic choice: whether to (a) limit 
the use of the data and allow only the dissemination of indicators of which the accuracy is certified; 

or 

(b) enable the dissemination of larger data sets with their accuracy profiles, to provide the data users with 
greater flexibility while ensuring that they are aware of the accuracy of the estimates.  

Option (b) enhances the relevance of the information disseminated; it also reduces the risk of 
inappropriate use of the data.  

4.1.2. The measure of accuracy 

Given the need to compute the statistical errors in disaggregated data, it is necessary to determine the 
measures of accuracy to be calculated and communicated to users. There are multiple sources of error 
(ranging from sampling errors to coverage errors, etc.), and only some of the error components can be 
measured, under the condition that specific experimental designs are applied. Thus, providing users with 
full information on the statistical errors affecting the disseminated data tends to be unfeasible. Moreover, 
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a complete treatment of statistical errors would cover the entire field of statistics and exceed the scope 
of these Guidelines.  

Here, it is supposed that the inferential processes for producing the disaggregated data rest on solid 
foundations. This necessary precondition assumes that the methodology embedded in the indicators is 
transparent and does not introduce bias in the estimates. Given this fundamental prerequisite, the main 
advice is to compute at least the leading components of the errors: sampling variance, model variance, or 
both.  

Sampling variance is an adequate measure of accuracy when the construction of statistical indicators is 
based on the inferential properties of repeated sampling. Sampling variance measures the uncertainty 
deriving from the randomness of the observed set of data. 

Model variance is a suitable measure of accuracy when the construction of statistical indicators is based 
on models using 𝓍 − auxiliary variables, generating the value of the target variable 𝓎 for the units in the 
population. 

Both sampling variance and model variance are well known in statistical literature (Cochran, 1977; 
Särndal, Swensson and Wretman, 1992; Chambers and Chandra, 2008; among others). However, some 
indicators of the data disaggregation plan can be obtained via statistical procedures that utilize model-
based approaches jointly with inference based on the sampling design. For these cases, it is suggested to 
consider global variance (GV) (Wolter, 1985) as the measure of accuracy.  

When disaggregated indicators are produced from the census or administrative records, it is also 
necessary to consider the bias in measuring accuracy. Bias generally derives from the measurement error 
(based on statistical models) and the coverage error, the latter deriving from erroneous inclusion, in the 
observation, elements extraneous to the population of interest (over-coverage) or from incorrectly 
excluding certain units from the target population. These types of error can be detected with special 
observational techniques (based on double and independent measurements), which may however be 
costly. In the case of official statistics, the techniques are implemented only in certain specific cases. Alleva 
et al. (2021) propose the Global Mean Squared Error (GMSE) as a more general measure of accuracy, that 
includes, as particular cases, the bias and the aspects discussed above (the GV, sampling and model 
variance). The GMSE may be useful when synthetizing the accuracy of disaggregate indicators deriving 
from census or administrative records.  

4.1.3. Evaluating accuracy 

It is challenging to identify concrete and comprehensive rules to assess the magnitude of errors. Indeed, 
as stated in Eurostat (2013), there are no general precision thresholds or sizes that apply to all surveys. 
The rules tend to be survey-specific and purpose-specific, depend on users’ needs in terms of reliability, 
and are related to the resources available. However, Eurostat (2013) provides useful suggestions and 
presents examples of precision thresholds or sizes used by different institutions in specific cases. Statistics 
Canada (2010; pp. 30–31) applies the following guidelines concerning the reliability of data from labour 
force surveys (Statistics Canada, 2010; pp. 30–31): if the coefficient of variation (CV) < 16.5 percent, then 
there are no release restrictions; if 16.5 percent < CV < 33.3 percent, then the data should be accompanied 
by warnings (release with caveats); if the CV > 33.3 percent, then the data are not recommended for 
release. The British Office for National Statistics (ONS) dissemination policy (2004) established that ideally, 
the CV should be < 20 percent for a small area estimate to be considered publishable.  
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As illustrated in Section 4.2, the accuracy can be expressed in square terms; as the square of the expected 
difference between the estimator and the true (unknown) population value. A practitioner may find it 
difficult to relate the measurement of the accuracy with the metric used to measure a given phenomenon. 
Therefore, the derived measures of accuracy comprehensible to most users are: 

- The Standard Error (SE), expressed as the square root of the square measure of accuracy. The SE 
is of the same order of magnitude as the disaggregated indicator, and is thus easily interpretable. 

- The Coefficient of Variation (CV), given as the ratio of the SE to the estimate. It is very easily 
obtained and allows comparisons of accuracies to be drawn among the various SDG indicators. 

- The Margin Of Error (MOE), which is the half of the confidence interval (based on the SE). It 
enables building well-founded inferential comparisons among different values of an indicator and 
hypothesis testing. 

As stated in Eurostat (2013), it is recommended to use precision measures geared to the type of indicators 
of reference. The precision measures recommended are the following: (i) the CV for totals and means of 
continuous variables; and (ii) the SE for ratios and changes close to zero. The second recommendation 
aims to avoid situations in which precision requirements lead to a large increase in the sample size when 
the indicator approaches zero. Moreover, absolute precision measures for the percentages or proportions 
of any characteristic are symmetrical. However, for specific surveys, experts should decide whether or not 
to use the precision measure that is the most demanding, in the case of the proportion value that makes 
the study variable the most relevant. In other words, use of the SE may be preferred if the study variable 
becomes more relevant as the estimated proportions approach 0.5. Use of the CV may be preferred if the 
study variable becomes more relevant as the estimated proportions tend towards zero. However, use of 
either the SE or the CV is equally preferable if the study variable becomes more relevant as the estimated 
proportions approach one. 

4.2. Basic theory: the measures of accuracy 

This section briefly illustrates the basic theory considering a linear parameter of interest, such as that 
introduced in Chapter 3. 

4.2.1. Sampling variance 

The sampling variance of estimator �̂�𝑑 is the expectation, under repeated sampling, 𝐸𝑃(∙), of the squared 
differences 

𝑉𝑃(�̂�𝑑) = 𝐸𝑃(�̂�𝑑 − 𝑌𝑑)
2
,     (4.1) 

where the expectations and variance in Equation 4.1 operate on the random sample-membership 
indicators 𝜆𝑖 (𝑖 = 1,…𝑁), in which  

𝐸𝑃(𝜆𝑖) = 𝜋𝑖 , 𝑉𝑃(𝜆𝑖) = 𝜋𝑖(1 − 𝜋𝑖)  and  ,   𝐶𝑜𝑣𝑃(𝜆𝑖𝜆𝑗) = 𝜋𝑖𝑗 − 𝜋𝑖𝜋𝑗, (4.2)  

with 𝜋𝑖𝑗 = 𝐸𝑃(𝜆𝑖𝜆𝑗).   

Considering the model-assisted approach illustrated in Section 3.3.1 of these Guidelines, Särndal (1992; 

see result 6.1) demonstrates that a linear approximation for the sampling variance of 𝑉𝑃(�̂�𝑑) can be 

defined as: 
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𝑉𝑃(�̂�𝑑) =∑∑𝐶𝑜𝑣𝑃(𝜆𝑖𝜆𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

𝑢𝑖
𝑜

𝜋𝑖

𝑢𝑗
𝑜

𝜋𝑗
 𝑦𝑑𝑖𝛾𝑑𝑗    (4.3)   

where 𝑢𝑖
𝑜  are the population fit residuals of the model in Equation 3.4:  

𝑢𝑖
𝑜 = 𝑦𝑖 −𝑚(𝑥𝑖; �̂�𝑑).  (4.4) 

An approximate sample-unbiased estimator of  𝑉𝑃(�̂�𝑑) is 

�̂�𝑃(�̂�𝑑) =∑∑
1

𝜋𝑖𝑗
𝐶𝑜𝑣𝑃(𝜆𝑖𝜆𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

𝑎𝑖𝑔𝑖𝑆�̂�𝑖𝑎𝑗𝑔𝑗𝑆�̂�𝑗𝛾𝑑𝑖𝛾𝑑𝑗 , (4.5) 

where �̂�𝑖  are the sample fit residuals of the regression set out at Equation 3.4, and  

𝑔𝑗𝑆 =
𝜔𝑖
𝑎𝑖
   (4.6) 

are the multiplicative factors for correcting the direct weights 𝑎𝑖. 

Comment 4.1. Conservative approximation of the variance. Simple conservative approximations of the 

estimate �̂�𝑃(�̂�𝑑) can be obtained by (i) substituting the 𝑦𝑖 values for the sample residuals in Equation 4.3; 

and (ii) approximating the actual sampling design with sampling without replacement. An example of this 
for multi-stage stratified sampling is provided in Box 4.1 below.  
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Box 4.1. Estimate of the variance for stratified two-stage sampling designs  

Consider the stratified two-stage sampling introduced in Box 3.1.  

Approximation 1 

An approximate (conservative) estimate of the variance can be obtained by using the equation for 
estimating sampling error in case of sampling with replacement in the first stage, and estimation 
through the regression estimator  

�̂�𝑃(�̂�𝑑) =∑
𝑚ℎ

𝑚ℎ − 1
∑ (�̂�ℎℓ(𝑑) − �̂�ℎ(𝑑))

2𝑚ℎ

ℓ=1
               

𝐻

ℎ=1
(4.7)    

�̂�ℎℓ(𝑑) =∑ �̂�𝑖𝜔𝑖𝛾𝑑𝑖
𝑖∈𝑆(ℎℓ)

   ,    �̂�ℎ(𝑑) =
1

𝑚ℎ
∑ �̂�ℎℓ(𝑑)

𝑚ℎ

ℓ=1
.  (4.8) 

Approximation 2 

A more conservative approximation can be obtained by applying the equation related to sampling 
with replacement in the first stage: 

�̂�𝑃(�̂�𝑑) =∑
𝑚ℎ

𝑚ℎ − 1
∑ (�̂�ℎℓ(𝑑) − �̂̅�ℎ(𝑑))

2𝑚ℎ

ℓ=1
               

𝐻

ℎ=1
(4.7𝑎)    

�̂�ℎℓ(𝑑) =∑ 𝑦𝑖𝜔𝑖𝛾𝑑𝑖
𝑖∈𝑆(ℎℓ)

   ,    �̂̅�ℎ(𝑑) =
1

𝑚ℎ
∑ �̂�ℎℓ(𝑑)

𝑚ℎ

ℓ=1
.  (4.8𝑎) 

The “survey package” in R calculates this estimator (Lumley, 2019). 

 

4.2.1.1. Sampling variance of the balanced sampling  

Consider a balanced sample design that respects the following balancing equations (see Section 3.5.3 of 
these Guidelines), on the 𝓍 variables: 

∑
𝑥𝑖
𝜋𝑖𝑖∈𝑆
=∑ 𝑥𝑖 .

𝑖∈𝑈
    (4.9)  

Suppose that estimator �̂�𝑑 (as given in Equation 3.2) is the HT estimator �̂�𝐻𝑇,𝑑  given 

�̂�𝐻𝑇,𝑑 =∑𝑦𝑖𝛾𝑑𝑖𝜆𝑖𝑎𝑖

𝑁

𝑖=1

.     (4.10) 
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Deville and Tillé (2005) proposed an approximate expression of the variance for �̂�𝑑 (as expressed in 
Equation 4.10) for balanced sampling that respects Equation 4.9. This approximation, based on the 
Poisson sampling theory, is given as 

𝑉𝑃(�̂�𝑑) ≅∑ (
1

𝜋𝑖
− 1)𝜂𝑑𝑖

2

𝑖∈𝑈
,       (4.11) 

where  

𝜂𝑑𝑖 = 𝑦𝑑𝑖 − 𝜋𝑖𝑥𝑖
′𝛽𝑑        (4.12) 

and 

𝛽𝑑 = (∑𝑥𝑗𝑥𝑗
′𝜋𝑗(1 − 𝜋𝑗)

𝑁

𝑗=1

)

−1

 ∑ 𝜋𝑗
𝑗∈𝑈

(
1

𝜋𝑗
− 1) 𝑥𝑗𝑦𝑑𝑗  (4.13) 

Equation 4.11 uses a variance expression based on the Poisson sampling design that is not a fixed sample 
size design. Nevertheless, the use of the terms 𝜂𝑖  in Equation 4.11, instead of the original value𝑠 𝑦𝑑𝑗, 

introduces fixed sample sizes in variance computation. In practice, this is an application of the 
approximate variance of a Conditional Poisson design (Deville and Tillé, 2005). To clarify Expression 4.11, 
let us consider a stratified SRSWOR design. According to Equation 4.9 (Falorsi and Righi, 2015) 

�̂�𝑃(�̂�𝑑) = [𝑁/(𝑁 − 𝐻)]∑ 𝜎𝑑,ℎ
2

𝐻

ℎ=1
𝑁ℎ (

𝑁ℎ
𝑛ℎ
− 1)    (4.14) 

where 𝜎𝑑,ℎ
2  is the variance of the 𝑦𝑖𝛾𝑑𝑖  values in stratum ℎ. If [𝑁/(𝑁 −𝐻)](1/𝑁ℎ) ≈ 1/(𝑁ℎ − 1), the 

latter expression of the variance would approximate the variance of the HT estimate in the stratified 
SRSWOR design. The above approximation is proved true when the number of domains H remains small 
compared to overall population size 𝑁, and when domain sizes 𝑁ℎ are large. 

Equation 4.11 can be estimated by 

�̂�𝑃(�̂�𝑑) ≅ ∑
1

𝜋𝑖
(
1

𝜋𝑖
− 1) �̂�𝑑𝑖

2
𝑖∈𝑆      and 

�̂�𝑑 = (∑𝑥𝑗𝑥𝑗
′(1 − 𝜋𝑗)

𝑛

𝑗=1

)

−1

 ∑ (
1

𝜋𝑗
− 1)𝑥𝑗𝑦𝑗𝛾𝑑𝑗

𝑗∈S
.  

 

4.2.2. Model variance 

The model variance of estimator �̂�𝑑 is the model expectation of the squared differences (Chambers, 2015; 
p. 73)  

𝑉𝑀(�̂�𝑑) = 𝐸𝑀[�̂�𝑑 − 𝑌𝑑]
2
,     (4.17) 
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where the model expectation and variance in Equation 4.17 operate on the 𝑦𝑖 (𝑖 = 1,…𝑁), variables, 
keeping the 𝜆𝑖 indicators as fixed in which, considering the general model established at Equation 3.4, 

𝑦𝑖 = 𝑚(𝑥𝑖; 𝛽) + 𝑢𝑖 ,   

which thus yields 

𝐸𝑀(𝑦𝑖) = 𝑚(𝑥𝑖; 𝛽),  𝑉𝑀(𝑦𝑖) = 𝜎𝑖
2 , 𝐶𝑜𝑣𝑀(𝑦𝑖𝑦𝑗) = 𝜎𝑖𝑗. 

Using the linear WM in Equation 3.8, and the expectations given by Equation 3.5 results in (Chambers and 
Clark, 2015; p. 73): 

𝑉𝑀(�̂�𝑑) = 𝜎
2 {(𝑁𝑑 − 𝑛𝑑) + (𝑋 − 𝑋𝑆)

′ (∑ 𝑥𝑗𝑥𝑗
′

𝑗∈𝑆

1

𝑐𝑗
)

−1

(𝑋 − 𝑋𝑆)} , (4.17𝑎) 

where 𝑉𝑀(𝑢𝑖) = 𝑐𝑖𝜎
2. 

Since  

�̂�2 = (𝑛 − 𝑝)∑ [𝑦𝑖 − 𝑥𝑖
′ (∑ 𝑥𝑗𝑥𝑗

′

𝑗∈𝑆

1

𝑐𝑗
)

−1

∑𝑥𝑗𝑦𝑑𝑗

𝑛

𝑗=1

1

𝑐𝑗
]

2

𝑖∈𝑆
  (4.17𝑏) 

is an un unbiased estimator of 𝜎2 ,where 𝑝 denoting the number of elements in 𝑥𝑗 , the prediction variance 

𝑉𝑀(�̂�𝑑) can be estimated as 

�̂�𝑀(�̂�𝑑) = �̂�
2 {(𝑁𝑑 − 𝑛𝑑) + (𝑋 − 𝑋𝑆)

′ (∑ 𝑥𝑗𝑥𝑗
′

𝑗∈𝑆

1

𝑐𝑗
)

−1

(𝑋 − 𝑋𝑆)}.   (4.18) 

 

4.2.3. Global variance 

The GV proposed by Wolter (1985; see also Nedyalkova and Tillé, 2008) considers both elements of 
randomness: the model and the sampling design. The sampling design determines the observed set, and 
the model defines the random mechanism that generates the value of target variable 𝓎 for each unit in 
the population. 

GV is defined as the double expectation, for both the sampling design and the model, of the squared 
difference between the estimate and its overall expected value: 

𝐺𝑉(�̂�𝑑) = 𝐸𝑃𝐸𝑀[�̂�𝑑 − 𝐸𝑃𝐸𝑀(�̂�𝑑)]
2
 .    (4.19) 

Using Kendall and Stuart (1976; p. 196), GV can be expressed as the sum of two terms:  

𝐺𝑉(�̂�𝑑) = 𝑉𝑃[𝐸𝑀(�̂�𝑑)] + 𝐸𝑃[𝑉𝑀(�̂�𝑑)].   (4.20) 
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The first term,  

𝑉𝑃[𝐸𝑀(�̂�𝑑)] = 𝑉𝑃 (∑𝑚(𝑥𝑖; 𝛽) 𝜔𝑖

𝑛

𝑖=1

𝛾𝑑𝑖),   (4.21)  

represents the sampling variance of the theoretical values 𝑚(𝑥𝑖; 𝛽). In the following paragraphs, the 

square root of 𝑉𝑃[𝐸𝑀(�̂�𝑑)] is denoted as the sampling error. Adopting a plug-in technique and substituting 

the unknown values of 𝑚(𝑥𝑖; 𝛽) with the estimates �̂�𝑖 = 𝑚(𝑥𝑖; �̂�), the first term of the GV can be 

estimated with standard sampling variance estimation methods, as 

�̂�𝑃[�̂�𝑀(�̂�𝑑)] = �̂�𝑃 (∑𝑚(𝑥𝑖; �̂�)𝜔𝑖

𝑛

𝑖=1

𝛾𝑑𝑖).      (4.23) 

The second term of the right-hand side of Equation 4.20 is the sampling expected value of the model 

variance. In the following equation, the square root of 𝐸𝑃[𝑉𝑀(�̂�𝑑)] is denoted as the measurement error. 

As demonstrated in Appendix A.4.1 of these Guidelines, a plug-in roughly unbiased estimate of 

𝐸𝑃[𝑉𝑀(�̂�𝑑)] can be given by  

�̂�𝑃[�̂�𝑀(�̂�𝑑)] = �̂�𝑀(�̂�𝑑),   (4.24) 

where �̂�𝑀(�̂�𝑑) is the model-based estimate of the variance 𝑉𝑀(�̂�𝑑), which can be obtained bystandard 

statistical techniques. 

Finally, the estimate of GV can be obtained as the sum of estimates of its terms, given respectively in 
Equations 4.23 and 4.24 and results in: 

𝐺�̂�(�̂�) = �̂�𝑃[�̂�𝑀(�̂�𝑑)] + �̂�𝑃[�̂�𝑀(�̂�𝑑)].  (4.25) 

Comment 4.2.  If the estimator is expressed as in Equation 3.2 with weights given by Equations 3.6 and 
3.7, there is no model expectation, and the GV collapses to the well-known sampling variance. 

The GV can be particularly interesting when the countries produce the indicators of the data 
disaggregation plan with statistical procedures that utilize model-based approaches (to estimate the 
parameter of a specific statistical model, as a probability) jointly with the inference based on the sampling 
design, to define the total (or the mean) of the parameter over the whole population. A noteworthy 
example of this approach concerns the prevalence of moderate or severe food insecurity, as illustrated in 
Section 5.3 below. In this case the parameter of interest is expressed as 

𝑌𝑑 =∑𝑚(𝑥𝑖; 𝛽𝑑)

𝑁

𝑖=1

𝛾𝑑𝑖 .   (4.25) 

Equation 4.25 can be estimated as: 

�̂�𝑑 =∑𝑚(𝑥𝑖; �̂�𝑑)

𝑛

𝑖=1

𝜔𝑖𝛾𝑑𝑖 =∑�̂�𝑖

𝑛

𝑖=1

𝜔𝑖𝛾𝑑𝑖 ,   (4.26) 
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where �̂�𝑑 is the model-based sample estimate of the super-population parameter𝛽𝑑, 𝜔𝑖  are the sampling 

weights and �̂�𝑖 = 𝑚(𝑥𝑖; �̂�𝑑).  

It is noted that the GV constitutes a useful and straightforward tool to measure accuracy, as it enables a 
separate evaluation of the contribution of each component of randomness.  

 

4.3. Case study: SDG Indicator 2.1.2 – Prevalence of moderate or severe food insecurity in the 
population, based on the FIES   

This section illustrates how the GV approach can be adopted to estimate the accuracy of the prevalence 
of food insecurity by a disaggregation domain at a given level of severity (SDG Indicator 2.1.2). The 
methodology is based on the general theory presented in the previous section. In addition, specific 
methodological details on the inferential properties of the prevalence estimates are also presented.  

4.3.1. Brief description of the methodology for SDG Indicator 2.1.2  

This section summarizes the main equations used; all other methodological details are given in Appendix 
A.4.2.  

Let �̃�𝑖 = 𝑚(𝑥𝑖; 𝛽) be the unknown probability for the 𝑖 − 𝑡ℎ unit of being food-insecure at a given level 
of severity of food insecurity. The parameter of interest, �̅�, is the population mean of the individual �̃�𝑖 
values, which is actually the prevalence of food insecurity at a given level of severity: 

�̅� =
1

𝑁
∑ 𝑚(𝑥𝑖; 𝛽)

𝑖ϵ𝑈
=∑ �̃�𝑖

𝑖ϵ𝑈
=
𝑌

𝑁
                   (4.27) 

where 𝑌 =∑ �̃�𝑖
𝑘𝜖𝑈

 is the population total of probabilities �̃�𝑖. 

The prevalence of food insecurity for subpopulation 𝑈𝑑 is: 

�̅�𝑑 =
1

𝑁𝑑
∑ �̃�𝑖

𝑖ϵ𝑈𝑑

=
𝑌𝑑
𝑁𝑑
,                   (4.28) 

where 𝑌𝑑 =∑ �̃�𝑖
𝑖𝜖𝑈𝑑

 is the total of the �̃�𝑖  probabilities values in 𝑈𝑑 . 

Through a stratified two-stage random sampling without replacement, a sample S is selected, as 
illustrated in Box 3.1.The sample estimates of �̅� and  �̅�𝑑 are: 

 �̂̅� = (1 ∑ 𝑎𝑚𝑜𝑑,𝑖
𝑖𝜖𝑆

⁄ )∑ �̂�𝑖
𝑖𝜖𝑆

𝑎𝑚𝑜𝑑,𝑖  , �̂̅�𝑑 = (1 ∑ 𝑎𝑚𝑜𝑑,𝑖
𝑖𝜖𝑆𝑑

⁄ )∑ �̂�𝑖
𝑖𝜖𝑆𝑑

𝑎𝑚𝑜𝑑,𝑖 ,       (4.29) 

where �̂�𝑖 is the sample model-based estimate of �̃�𝑖, 𝑎𝑚𝑜𝑑,𝑖 is the modified sampling weight. The sampling 
weights 𝑎𝑚𝑜𝑑,𝑖 are computed in such a way that their sum reproduces the overall sample size n: 
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∑ 𝑎𝑚𝑜𝑑,𝑖
𝑖𝜖𝑆

=∑ 𝜔𝑖𝑛
𝑖𝜖𝑆

∑𝜔𝑖

𝑛

𝑗=1

⁄ ≅ 𝑛.        (4.30) 

It is useful to note that the estimates �̂̅� and �̂̅�𝑑 can be expressed in the form of ratio estimators: 

 

�̂̅� =
�̂�

�̂�
    ,    �̂̅�𝑑 =

�̂�𝑑

�̂�𝑑
,   (4.31) 

with 

�̂� =  ∑ 𝜔𝑖
𝑖𝜖𝑆

 �̂�𝑖  , �̂� = ∑ 𝜔𝑖
𝑖𝜖𝑆

,   �̂�𝑑 = ∑ 𝜔𝑖
𝑖𝜖𝑆𝑑

�̂�𝑖 , �̂�𝑑 = ∑ 𝜔𝑖
𝑖𝜖𝑆𝑑

�̂�𝑖 . (4.32) 

Therefore, it can be seen that the estimates �̂̅� and �̂̅�𝑑 are non-linear estimators of the corresponding 
population parameters. 

For the sake of brevity, this section only discusses the estimate 𝐺�̂�(�̂̅�𝑑) of 𝐺𝑉(�̂̅�𝑑). The expression of 

𝐺𝑉(�̂̅�𝑑) is provided, as well as the equations for 𝐺𝑉(�̂̅�) and 𝐺�̂�(�̂̅�) (see Appendix A4.1). The estimate of 

the GV for the subpopulation is obtained as the sum of the estimates of its simple components  

𝐺�̂�(�̂̅�𝑑) = �̂�𝑃 [�̂�𝑀(�̂̅�𝑑)] + �̂�𝑃 [�̂�𝑀(�̂̅�𝑑)],                  (4.33) 

where  

�̂�𝑃 [�̂�𝑀(�̂̅�𝑑)] = (
�̂�

𝑛 �̂�𝑑
)

2

∑
𝑚ℎ

𝑚ℎ − 1
∑ (�̂�ℎℓ(𝑑) − �̂̅�ℎ(𝑑))

2𝐻

ℓ=1
               

𝐻

ℎ=1
(4.34)    

and 

 �̂�𝑃 [�̂�𝑀(�̂̅�𝑑)] = �̂�𝑀(�̂̅�𝑑), (4.35) 

in which  

 �̂�ℎℓ(𝑑) =∑ �̂�𝑑𝑖𝑎𝑚𝑜𝑑,𝑖
𝑖∈𝑆ℎℓ(𝑑)

   ,    �̂̅�ℎ(𝑑) =
1

𝑚ℎ
∑ �̂�ℎℓ(𝑑)

𝑚ℎ

ℓ=1
, 

with �̂�𝑑𝑖 =
�̂�

𝑛�̂�𝑑
(�̂�𝑖 − �̂̅�𝑑)𝑎𝑚𝑜𝑑,𝑖   and  𝑆ℎℓ(𝑑) = 𝑆(ℎℓ) ∩ 𝑈𝑑 . 

The above results are obtained by using the plug-in estimates �̂�𝑖 and �̂̅�𝑑 of the unknown �̃�𝑖 and �̅�𝑑 terms. 
The resulting expression (Equation 4.35) derives from Equation A1.2. Furthermore, the linear 

approximations of the estimators are considered. Finally, the estimation of �̂�𝑃 [�̂�𝑀(�̂̅�𝑑)] can be 

implemented with the help of the Survey function in R, considering the variance of the subpopulation 
mean of variable �̂�𝑖. As illustrated in Section 4.3.2., this component constitutes the leading part of the GV. 
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In the following sections, the square root of �̂�𝑃 [�̂�𝑀(�̂̅�𝑑)] is denoted as the sampling error and the square 

root of �̂�𝑃 [�̂�𝑀(�̂̅�𝑑)] as the measurement error. 

4.3.2. Results by subpopulation: gender 

For moderate or severe prevalence of food insecurity in the adult population overall and in the population 
disaggregated by gender, MOE at a confidence level of 90 percent is produced. The methodology 
explained in the previous section is applied to the full list of countries (77 in total) surveyed in the GWP, 
which gave its consent to the publication of its data on SDGs. The data reflected as three-year averages 
between the years 2016 and 2018 are used to derive GV estimates by gender. 

Figure 4.1 shows how MOE by gender compares with those in the total adult population. It can be 
observed that, in most countries, MOE by gender is larger than that in the total adult population. Table 
4.1 shows that, on average (unweighted), the MOE in the male adult population is 1.27 times larger than 
in the total adult population, while the MOE in the female adult population is 1.25 times larger. This 
magnitude of difference is expected, as the populations of males and females are smaller, and a larger 
variability is therefore expected. Table 4.1 also presents average ratios between the errors (due to 
measurement or sampling) and prevalence rates at moderate or severe food insecurity, for the total adult 
population and by gender. MOE by gender is, on average, approximately 1.3 percent larger than MOE in 
the prevalence referred to the whole population. 

Figure 4.1. Margins of error for moderate or severe food insecurity prevalence, in male and female 
populations 

 

Source: FAO, 2020. 
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Table 4.1. Average margins of error for moderate or severe food insecurity prevalence, in male and 
female populations 

Prevalence at moderate or severe level 
Average Margin of Errors Gender 

2016–2018 2016–2018 

Gallup World Poll (GWP) – Total 0.017   

Gallup World Poll (GWP)  – Female 0.021 1.25 

Gallup World Poll (GWP)  – Male 0.021 1.27 

Table 4.2. Relative standard error for the prevalence of moderate or severe food insecurity (SDG 
Indicator 2.1.2), total and by gender, 2016–2018 

Prevalence at moderate or severe level 
2016–2018: 

Average Relative Standard Error (RSE) 

= Average of SE/Prevalence*100 

Sampling Measurement 

Gallup World Poll (GWP)  – Total 7.07 0.59 

Gallup World Poll (GWP)  – Female 8.62 0.83 

Gallup World Poll (GWP) – Male 9.00 0.89 

 

Figure 4.2 illustrates confidence interval estimates of total, male and female populations for countries 
with different population sizes and with similar prevalence levels (between 0.5 and 0.7). It can be seen 
that the results do not change based on the size of the population. 

Figure 4.3 shows confidence interval estimates of total, male and female populations for countries with 
different population sizes and with similar prevalence levels (between 0.2 and 0.3). 
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Figure 4.2. Confidence interval for the prevalence of moderate or severe food insecurity (SDG Indicator 
2.1.2) in Afghanistan, Gambia, Eswatini, Angola and Togo, total and by gender, 2016–2018 

 

Source: FAO, 2020. 

Figure 4.3. Confidence interval for the prevalence of moderate or severe food insecurity (SDG Indicator 
2.1.2) in Costa Rica, Kyrgyzstan, Uruguay, Moldova and Mongolia, total and by gender, 2016–2018 

 

Source: FAO, 2020. 

More results for various countries are presented in Annex A.4.4 of these Guidelines, to enable comparison 
of countries with different characteristics, i.e. region, size of the population. 
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4.4. Summary of main recommendations 

The main advice provided in this chapter are the following. 

1. Calculating errors is a preliminary and required step for all actions carried out for data integration. 

2. If the calculation of errors flags an excessively high inaccuracy, it must be decided whether to 
publish the data all the same, informing users of their level of reliability. Alternatively, 
improvement actions to ameliorate the accuracy of the data could be undertaken. 

3. It is essential to measure and communicate the accuracy of disaggregated estimates. Users should 
have a say in determining the fitness for use of an estimate. Moreover, this supplies greater 
flexibility for data users, while ensuring that they are aware of the accuracy of the results. 

4. The measure of accuracy can be based on the uncertainty resulting from the model and the 
sampling design. The sampling determines the observed set, and the model defines the random 
mechanism that generates the value of the target variable for each unit in the population. 

5. A useful measure of accuracy is the GV, which explicitly considers the two sources of randomness 
above.  

6. As particular cases, the GV includes the traditional standard indicators of accuracy: sampling 
variance and model variance. 

7. In the experiment illustrated in this chapter, it can be seen that sampling variance constitutes the 
leading part of the GV. It can be estimated with R functions (see the Survey function and Annex 
1). 
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Appendix A4.1. Estimate of the global variance component 𝐸𝑃[𝑉𝑀(�̂�𝑑)]  

Let 𝑉𝑀(�̂�𝑑) be the model variance of �̂�𝑑 and let �̂�𝑀(�̂�𝑑) be its model-based estimate. Let us suppose that 

𝑉𝑀(�̂�𝑑) can be either directly expressed, or linearly approximated, as the model variance of a linear 

combination: 

𝑉𝑀(�̂�𝑑) ≅ 𝑉𝑀 (∑𝑦𝑖𝜔𝑖

𝑛

𝑖=1

𝛾𝑑𝑖) =∑𝜎𝑖
2𝜔𝑖

2

𝑛

𝑖=1

𝛾𝑑𝑖 +∑∑𝜎𝑖𝑗𝜔𝑖𝜔𝑗

𝑛

𝑗≠𝑖

𝑛

𝑖=1

𝛾𝑑𝑖𝛾𝑑𝑗 .   (𝐴1.1)  

Thus, we can formulate �̂�𝑀(�̂�𝑑) as 

�̂�𝑀(�̂�𝑑) ≅∑�̂�𝑖
2𝜔𝑖

2

𝑛

𝑖=1

𝛾𝑑𝑖 +∑∑�̂�𝑖𝑗𝜔𝑖  𝜔𝑗

𝑛

𝑗≠𝑖

𝑛

𝑖=1

𝛾𝑑𝑖𝛾𝑑𝑗 , 

where �̂�𝑖
2 and �̂�𝑖𝑗 are the model-based estimate of the unknown terms 𝜎𝑖

2 and 𝜎𝑖𝑗. 

Starting from Equation 𝐴1.1, an approximate estimate of 𝐸𝑃[𝑉𝑀(�̂�𝑑)] can be obtained as  

𝐸𝑃[𝑉𝑀(�̂�𝑑)] ≅∑𝜎𝑖
2𝜔𝑖

2

𝑁

𝑖=1

𝐸𝑃(𝜆𝑖)𝛾𝑑𝑖 +∑∑𝜎𝑖𝑗𝜔𝑖  𝜔𝑗

𝑁

𝑗≠𝑖

𝐸𝑃(𝜆𝑖𝜆𝑗)

𝑁

𝑖=1

𝛾𝑑𝑖𝛾𝑑𝑗  

=∑𝜎𝑖
2𝜔𝑖

2

𝑁

𝑖=1

𝜋𝑖𝛾𝑑𝑖 +∑∑𝜎𝑖𝑗𝜔𝑖  𝜔𝑗

𝑁

𝑗≠𝑖

𝜋𝑖𝑗

𝑁

𝑖=1

𝛾𝑑𝑖𝛾𝑑𝑗 .         

Thus, a sampling-based unbiased estimate of 𝐸𝑃[𝑉𝑀(�̂�𝑑)] is  

�̂�𝑃[𝑉𝑀(�̂�𝑑)] =∑
1

𝜋𝑖
𝜎𝑖
2𝜔𝑖

2

𝑛

𝑖=1

𝜋𝑖𝛾𝑑𝑖 +∑∑
1

𝜋𝑖𝑗
𝜎𝑖𝑗𝜔𝑖𝜔𝑗

𝑛

𝑗≠𝑖

𝜋𝑖𝑗

𝑛

𝑖=1

𝛾𝑑𝑖𝛾𝑑𝑗 .         

=∑𝜎𝑖
2𝜔𝑖

2

𝑛

𝑖=1

𝛾𝑑𝑖 +∑∑𝜎𝑖𝑗

𝑛

𝑗≠𝑖

𝑛

𝑖=1

𝜔𝑖𝜔𝑗𝛾𝑑𝑖𝛾𝑑𝑗 = 𝑉𝑀(�̂�𝑑).    (𝐴1.2) 

Therefore, a plug-in roughly unbiased estimate of 𝐸𝑃[𝑉𝑀(�̂�𝑑)] can be obtained by substituting, in the 

above expression, the estimates �̂�𝑖
2 and �̂�𝑖𝑗 in place of the unknown terms 𝜎𝑖

2 and 𝜎𝑖𝑗 

�̂�𝑃[�̂�𝑀(�̂�𝑑)] =∑�̂�𝑖
2𝜔𝑖

2

𝑛

𝑖=1

𝛾𝑑𝑖 +∑∑�̂�𝑖𝑗𝜔𝑖𝜔𝑗

𝑛

𝑗≠𝑖

𝑛

𝑖=1

𝛾𝑑𝑖𝛾𝑑𝑗 = �̂�𝑀(�̂�𝑑).         

The above approximation holds if it can be assumed that for large sampling, the weights 𝜔𝑖  approximate 
the weights that would be obtained if the whole population were observed.  
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Appendix A4.2. Indicator of the prevalence of food insecurity 

The estimator and its properties  

The weights 𝜔𝑖  are computed, ensuring that the sample estimates of some known distributions 
reproduce the benchmark totals: 

𝜔𝑖 = (1/𝜋𝑖)𝑔𝑖𝑠 

with  𝑔𝑖𝑆 ≅ 1 for large samples. Therefore, the following relation approximately holds 

∑𝜔𝑖

𝑛

𝑗=1

= 𝑁. 

The estimate �̂̅� can be expressed as: 

�̂̅� =
�̂�
𝑛
𝑁

�̂�
𝑛
𝑁

=
�̂�∗

�̂�∗
=
�̂�

�̂�
 ,                                                                 

where �̂�∗ =∑ 𝑎𝑚𝑜𝑑,𝑖
𝑖𝜖𝑆

�̂�𝑖 = �̂�
𝑛

𝑁
 and  �̂�∗ =∑ 𝑎𝑚𝑜𝑑,𝑖

𝑖𝜖𝑆
= �̂�

𝑛

𝑁
. 

Similarly, the expression of �̂̅�𝑑  can be reformulated as  

�̂̅�𝑑 =
�̂�𝑑
𝑛
𝑁

�̂�𝑑
𝑛
𝑁

=
�̂�𝑑
∗

�̂�𝑑
∗
=
�̂�𝑑

�̂�𝑑
 ,   

where  �̂�𝑑
∗ =∑ 𝑎𝑚𝑜𝑑,𝑖

𝑖𝜖𝑆𝑑

�̂�𝑖 = �̂�𝑑
𝑛

𝑁
 and  �̂�𝑑

∗ =∑ 𝑎𝑚𝑜𝑑,𝑖
𝑖𝜖𝑆𝑑

= �̂�𝑑
𝑛

𝑁
. 

To derive the model and sampling expectations of the estimates �̂̅� and �̂̅�𝑑, their linear approximations 
are considered: 

�̂̅� ≅ �̂� +
1

𝑁
[(�̂� − 𝑌) − �̂�(�̂� − 𝑁)]                                                         

= �̂� +
1

𝑁
𝑛
𝑁

[(�̂� − 𝑌)
𝑛

𝑁
− �̂�(�̂� − 𝑁)

𝑛

𝑁
],     (A. 2.1) 

�̂̅�𝑑 ≅ �̅�𝑑 +
1

𝑁𝑑
[(�̂�𝑑 − 𝑌𝑑) − �̅�𝑑(�̂�𝑑 − 𝑁𝑑)],                                           

= �̅�𝑑 +
1

𝑁𝑑
𝑛
𝑁

[(�̂�𝑑 − 𝑌𝑑)
𝑛

𝑁
− 𝐹𝑑(�̂�𝑑 − 𝑌𝑑)

𝑛

𝑁
].  (A. 2.2) 
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Considering the above linear approximations, and because for large samples, the calibration factors 𝑔𝑖𝑠 
converge towards 1, the (approximate) unbiasedness of the estimates can be proved as below:  

𝐸𝑃𝐸𝑀(�̂�) = 𝐸𝑃 [∑ 𝜔𝑖
𝑖ϵ𝑈

𝜆𝑖  �̃�𝑖] ≅ 𝐸𝑃 [∑
1

𝜋𝑖𝑖ϵ𝑈
𝜆𝑖  �̃�𝑖] =∑

1

𝜋𝑖
𝐸𝑃

𝑖ϵ𝑈
(𝜆𝑖)�̃�𝑖 = 𝑌, 

𝐸𝑃𝐸𝑀(�̂�) = 𝐸𝑃 [∑ 𝜔𝑖
𝑖ϵ𝑈

𝜆𝑖   ] ≅ 𝐸𝑃 [∑
1

𝜋𝑖𝑖ϵ𝑈
𝜆𝑖   ] =∑

1

𝜋𝑖
𝐸𝑃

𝑖ϵ𝑈
(𝜆𝑖) = 𝑁, 

𝐸𝑃𝐸𝑀(�̂�𝑑) = 𝐸𝑃 [∑ 𝜔𝑖
𝑖ϵ𝑈𝑑

𝜆𝑖  �̃�𝑖] ≅ 𝐸𝑃 [∑
1

𝜋𝑖𝑖ϵ𝑈𝑑

𝜆𝑖  �̃�𝑖] = 𝐸𝑃∑
1

𝜋𝑖
𝐸𝑃

𝑖ϵ𝑈𝑑

(𝜆𝑖)�̃�𝑖 = 𝑌𝑑 , 

𝐸𝑃𝐸𝑀(�̂�𝑑) = 𝐸𝑃 [∑ 𝑤𝑖
𝑖ϵ𝑈𝑑

𝜆𝑖  ] ≅ 𝐸𝑃 [∑
1

𝜋𝑖𝑖ϵ𝑈𝑑

𝜆𝑘𝑖  ] = 𝐸𝑃∑
1

𝜋𝑘
𝐸𝑃

𝑖ϵ𝑈𝑑

(𝜆𝑖) = 𝑁𝑑 . 

Inserting the above results into the linear approximations at Equations A.2.2 and A.2.3, the 
unbiasedness of the estimator can be derived. 

 

The GV and its estimate 

The GV of the estimator �̂̅�, is 

                                    𝐺𝑉(�̂̅�) = 𝑉𝑃 [𝐸𝑀(�̂̅�)] + 𝐸𝑃 [𝑉𝑀(�̂̅�)].    

We have: 𝐸𝑀(�̂̅�) =
1

�̂�
∑ 𝐸𝑀(�̂�𝑖)

𝑖ϵ𝑆
𝜔𝑖 =

1

�̂�
∑ �̃�𝑖

𝑖ϵ𝑆
𝜔𝑖 =

�̂�

�̂�
=
𝑁

�̂�𝑛
∑ �̃�𝑖

𝑖ϵ𝑆
𝑎𝑚𝑜𝑑,𝑖 =

�̂̃�∗

�̂�∗
, 

with  �̂̃�∗ =∑ �̃�𝑖
𝑖ϵ𝑆

𝑎𝑚𝑜𝑑,𝑖 . 

Applying a linear approximation on the above ratio,    

𝑉𝑃 [𝐸𝑀(�̂̅�)] = 𝑉𝑃 (
 �̂̃�∗

�̂�∗
) ≅ 𝑉𝑃 [

1

𝑁∗
( �̂̃�∗ − �̅��̂�∗)] 

where 𝑁∗ = 𝐸𝑃(�̂�
∗) = 𝐸𝑃(�̂�)

𝑛

𝑁
= 𝑛. 
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Adopting the Woodruff (1971) method, 𝑉𝑃 [𝐸𝑀(�̂̅�)] can be expressed as the standard expression of the 

variance of the totals (with sampling weights  𝑎𝑚𝑜𝑑,𝑖) of the transformed variables 𝑧𝑖:  

𝑉𝑃 [𝐸𝑀(�̂̅�)] = 𝑉𝑃 [∑ 𝑧𝑖  𝑎𝑚𝑜𝑑,𝑖
𝑖∈𝑆

],      

where 

𝑧𝑖 =
1

𝑁∗
(𝑚(𝑥𝑖; 𝛽) − �̅�) =

1

𝑛
(𝑚(𝑥𝑖; 𝛽) − �̅�), 

with �̅� =
1

𝑁
∑𝑚(𝑥𝑖; 𝛽)

𝑁

𝑖=1

. 

Assuming that there is no model covariance among the �̂�𝑖 values, the model variance  𝑉𝑀(�̂̅�) can be 

expressed as 

𝑉𝑀(�̂̅�) = (∑ 𝑎𝑖
𝑖∈𝑈

𝜆𝑘𝑖)
−2

∑ 𝑉𝑀(�̂�𝑖)
𝑖∈𝑈

𝑎𝑚𝑜𝑑,𝑖
2  𝜆𝑘 .                  

To derive the sampling expected value of the above model variance, the linear approximation of the 
model variance is considered. Thus,  

𝐸𝑃 [𝑉𝑀(�̂̅�)] = 𝐸𝑝 [∑ 𝑉𝑀(�̂�𝑖)
𝑖∈𝑆

𝑎𝑚𝑜𝑑,𝑖
2  ] 𝐸𝑝 [(∑ 𝑎𝑚𝑜𝑑,𝑖

𝑖∈𝑆
)
2

]⁄  

Since ∑ 𝑎𝑚𝑜𝑑,𝑖
𝑖∈𝑆

= 𝑛, then 𝐸𝑝 [(∑ 𝑎𝑚𝑜𝑑,𝑖
𝑖∈𝑆

)
2

] = 𝑛2. Thus, 

𝐸𝑃 [𝑉𝑀(�̂̅�)] ≅∑ 𝑉𝑀(�̂�𝑖)
𝑖∈𝑈

1

𝜋𝑖
2

𝑛2

𝑁2
𝐸𝑝(𝜆𝑖) 𝑛

2⁄ =∑ 𝑉𝑀(�̂�𝑖)
𝑖∈𝑈

1

𝜋𝑖

𝑛2

𝑁2
𝑛2⁄  

=
1

𝑁2
∑ 𝑉𝑀(�̂�𝑖)

𝑖∈𝑈

1

𝜋𝑖
. (𝐴. 2.3) 

The estimate of GV is obtained as the sum of the estimates of its simple components: 

𝐺�̂�(�̂̅�) = �̂�𝑃 [�̂�𝑀(�̂̅�)] + �̂�𝑃 [�̂�𝑀(�̂̅�)] .                  

The above is obtained using the plug-in estimates of the unknown terms.  
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The estimate of 𝑉𝑃 [𝐸𝑀(�̂̅�)] can be approximated by considering the variance of stratified two-stage 

sampling with replacement (see Boxes 4.1 and 4.2): 

�̂�𝑃 [�̂�𝑀(�̂̅�)] =∑
𝑚ℎ

𝑚ℎ − 1
∑ (�̂�ℎℓ − �̂̅�ℎ)

2𝑚ℎ

ℓ=1

𝐻

ℎ=1
,                              

where  

 �̂�ℎℓ =∑ �̂�𝑖𝑎𝑚𝑜𝑑,𝑖
𝑖∈𝑆(ℓℎ)

   ,    �̂̅�ℎ =
1

𝑚ℎ
∑ �̂�ℎℓ

𝑚ℎ

ℓ=1
,                              

with �̂�𝑖 =
1

𝑛
(�̂�𝑖 − �̂̅�). 

Then, an approximated unbiased estimate of 𝐸𝑃 [𝑉𝑀(�̂̅�)] is  

�̂�𝑃 [�̂�𝑀(�̂̅�)] ≅
1

𝑛2
∑ �̂�𝑀(�̂�𝑖)

𝑖∈𝑆
. 
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Appendix A4.3. Estimates of confidence intervals for different countries 

Figure A.4.1. Confidence interval for the prevalence of moderate or severe food insecurity (SDG 
Indicator 2.1.2), total and by gender, 2016–2018 

 

Source: FAO, 2020. 

Figure A.4.2. Confidence interval for the prevalence of moderate or severe food insecurity (SDG 
Indicator 2.1.2) in the Russian Federation and Iceland, total versus by gender, 2016–2018 

 

Source: FAO, 2020. 
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Figure A.4.3. Confidence interval for the prevalence of moderate or severe food insecurity (SDG 
Indicator 2.1.2) in Afghanistan and Gambia, total and by gender, 2016–2018 

 

Source: FAO, 2020. 

Figure A.4.4. Confidence interval for the prevalence of moderate or severe food insecurity (SDG 
Indicator 2.1.2) in Kyrgyzstan and Uruguay, total and by gender, 2016–2018 

 

Source: FAO, 2020. 
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Figure A.4.5. Confidence interval for the prevalence of moderate or severe food insecurity (SDG 
Indicator 2.1.2) in Moldova, Mongolia, Mexico, Tajikistan and Argentina, total and by gender, 2016–
2018: Countries with different population sizes, with similar prevalence levels 

 

Source: FAO, 2020. 

Figure A.4.6. Confidence interval for the prevalence of moderate or severe food insecurity (SDG 
Indicator 2.1.2) in Eswatini, Egypt, Bangladesh, Uruguay, the Russian Federation and Iceland, total and 
by gender, 2016–2018: Countries with different population sizes, with similar prevalence levels 

 

Source: FAO, 2020. 
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Chapter 5. Integrated use of two surveys  

5.1. Introduction 

This chapter focuses on how to leverage the integrated use of different surveys to achieve data 
disaggregation. In particular, the combined use of a small survey that focuses on a target phenomenon– 
is considered, together with a more extensive survey or census that does not measure the target 
phenomenon, but rather gathers data on general-use variables (such as demographic variables or 
geographical variables) . 

The case study discussed covers a great deal of interesting empirical contexts that can occur when 
producing disaggregated data. In particular, most countries have at least one large-scale survey, which 
collects general-use variables; examples are the census, administrative data, and large-scale household 
surveys. Some of the target phenomena required for data disaggregation are difficult (or too costly) to 
measure with a large-scale survey, such as the gender gap, the risk of malnutrition or food waste. 
Therefore, a wise choice would be to measure the target phenomenon with a small-scale survey; the costs 
and measurement errors could thus be limited and controlled. On the other hand, small surveys often do 
not collect the variables required for data disaggregation. 

The strategy proposed here overcomes these problems. In particular, small surveys are used to estimate 
the parameters of a regression-type statistical model that links the target variable to some explanatory 
(or auxiliary) variables. Then, the target values for the units of the large-scale survey are predicted 
applying the regression parameters to the units’ auxiliary variables. The two surveys must share the same 
set of auxiliary variables selected as regressors in the statistical model. 

Thus, it is possible to take advantage of both the small survey, to measure a specific phenomenon 
precisely and with low costs, and of a more extensive study, to produce cross-tabulation at the 
disaggregated level.  

This chapter first illustrates the basic methodology (Section 5.2) and then provides details on a case study 
focused on food insecurity in Malawi (Section 5.3). This application aims to show the different steps of 
the approach and how to overcome the possible difficulties that can characterize the application of the 
method in real empirical contexts. Section 5.4 gives advice based on the findings of the practical exercise. 

5.2. Methodology 

5.2.1. The projection estimator 

The basic methodology is illustrated in the pioneering work of Kim and Rao (2012), that considered two 
independent surveys and a model-assisted approach for inference. The main points of Kim and Rao (2012) 
are summarized below. 

Let us consider the case of two surveys with two independent samples. The first survey is characterized 
by a large sample 𝐴1 that collects only auxiliary information or general-use variables (demographic 
characteristics, employment, household composition, etc.). The second survey, with a much smaller 
sample 𝐴2, provides information on both the variable of interest and the auxiliary variables.  

Kim and Rao (2012) propose a model-assisted projection method of estimation based on a WM that 
results in asymptotically unbiased projection estimators. With this approach, synthetic or proxy values of 
a variable of interest are generated by, first, fitting the WM, linking the variable of interest to the auxiliary 



77 
 

variables, to the data from survey 2, 𝐴2. Then, the variable of interest associated with the auxiliary 
variables observed in survey 1is predicted. The projection estimators are obtained from sample 𝐴1 (based 
on survey 1) and associated synthetic values. Furthermore, as can be seen in Kim and Rao (2012), the 
synthetic data obtained through the model-assisted projection method can provide a useful tool for 
efficient domain estimation when the size of the sample in survey 1 is much larger than the size of sample 
in survey 2 (Figure 5.1). 

Let  

𝑌 =∑𝑦𝑖

𝑁

𝑖=1

 

be the target population total, where 𝑦𝑖 is the value of the variable of interest of the unit 𝑖 , with N being 
the population size.  

Suppose that the WM M is introduced, according to which the 𝑦𝑖 values can be modelled as 

𝑦𝑖 = 𝑚(𝑥𝑖; 𝛽) + 𝑢𝑖 , 

where  𝑢𝑖  is a random residual and 𝑚(𝑥𝑖; 𝛽) is a known function applied on the column vector of auxiliary 
variables 𝑥𝑖  (of the 𝑖 − th unit), with 𝛽 as the column vector of the model parameters. In the case of a 
simple regression model, 𝑚(𝑥𝑖; 𝛽) = 𝑥𝑖

′𝛽, where 𝑥𝑖
′  is the transpose of  𝑥𝑖. The model expectation of 𝑢𝑖  

equals zero; this is denoted here as  𝐸𝑀(𝑢𝑖) = 0. The two vectors 𝑥𝑖  and 𝛽 are congruent in terms of 
dimensions and the 𝑥𝑖  values are available on both samples 𝐴1and 𝐴2.  

 

Figure 5.1. Projection estimator 

 

 

 

 

 

 

 

 

 

 

Source: FAO, 2020. 

  

 

 

Survey 1 – Sample A1 

Predicted 
target variable 

𝑦𝑖 = 𝑚(𝑥𝑖; �̂�) 

Auxilary 
variables 

𝑥 

 

 

 

Survey 2 - Sample A2 

 

Auxilary 
variables 

𝑥 

 

Observed target 
variable 
𝑦 

 Model fit 

�̂� 



78 
 

Let �̂� be the estimator of 𝛽 obtained from the second survey, using the data {(𝑦𝑖 , 𝑥𝑖): 𝑖 ∈ 𝐴2}, and let  

�̂�𝑖 = 𝑚(𝑥𝑖; �̂�) 

indicate the predicted value of 𝑦𝑖, with 𝐸𝑀(�̂�) = 𝛽. 

Let 𝐸𝑃 denote the expectation under repeated sampling and let 𝜔𝑖1 be the sampling weights of sample 
𝐴1 that allow for computing sample-unbiased estimates. If 𝑦𝑖 is available in sample 𝐴1, 

�̂�1 = ∑𝜔𝑖1
𝑖𝜖𝐴1

𝑦𝑖 

would be a sample-unbiased estimator 𝑌, where the sample-unbiasedness implies that, under repeated 

sampling, the expected value of �̂�1 is equal to the unknown Y: 

𝐸𝑃(�̂�1 − 𝑌) = 0. 

However, estimator �̂�1 cannot be implemented from sample 𝐴1, unlike the following estimator of Y, which 

is based on the synthetic values ŷ𝑖 = 𝑚(𝑥𝑖; �̂�) reported in the first survey data file: 

�̂�𝑃𝑅 = ∑𝜔𝑖1 �̂�𝑖
𝑖𝜖𝐴1

= ∑𝜔𝑖1 

𝑖𝜖𝐴1

𝑚(𝑥𝑖; �̂�).       (5.1) 

Estimator �̂�𝑝 is called a PRojection estimator (PR) or a synthetic estimator, because ŷ𝑖 = 𝑚(𝑥𝑖; �̂�) can be 

viewed as a projection of 𝑦𝑖 using the auxiliary variable 𝑥𝑖, or as a synthetic value of 𝑦𝑖. The PR estimator 
in Equation 5.1 is derived from the WM 𝐸𝑀(𝑦𝑖| 𝑥𝑖) = 𝑚(𝑥𝑖; 𝛽); however, the results do not depend on 
the validity of the WM, although this affects the efficiency of the estimators. 

 

5.2.1.a. Bias and variance 

The estimator �̂�𝑃𝑅  is unbiased with respect to both the model and the sampling design, as follows: 

𝐸𝑃𝐸𝑀[�̂�𝑃𝑅 − 𝐸𝑀(𝑌)] = 0. 

The asymptotic sample bias of �̂�𝑝 is 

𝐵𝑖𝑎𝑠(�̂�𝑃𝑅) = 𝐸𝑃(�̂�𝑃𝑅) − 𝑌 ≅∑[𝑦𝑖 −𝑚(𝑥𝑖; 𝛽0)]

𝑁

𝑖=1

, 

with 𝛽0 denoting the estimate of 𝛽 when observing the entire population. 

The asymptotic sample bias from the second survey can be estimated as 

�̂�𝑖𝑎𝑠(�̂�𝑃𝑅) = ∑ 𝜔𝑖2 [𝑦𝑖 −𝑚(𝑥𝑖; �̂�)]

𝑖𝜖𝐴2

, 
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where 𝜔𝑖2 are the sampling weights of 𝐴2, which allow for computing sample-unbiased estimates for the 
second survey. 

Thus, �̂�𝑃𝑅  is not sample-unbiased, except when 

∑𝜔𝑖2 [𝑦𝑖 −𝑚(𝑥𝑖; �̂�)] = 0          (5.2)

𝑖𝜖𝐴2

 

Therefore, to guarantee sample-unbiasedness, estimate �̂� should be obtained by respecting the condition 
established in Equation 5.2. For generalized linear models (such as heteroscedastic linear regression 
models or logistic models) to satisfy Equation 5.2, it is assumed that the first element of 𝑥𝑖  is equal to 
unity, which means that the model has an intercept.  

Kim and Rao (2012) demonstrate that the sample variance of �̂�𝑝 is given by 

𝑉𝑎𝑟 (�̂�𝑃𝑅) = 𝑉𝑝 (∑ 𝜔𝑖1 𝑚(𝑥𝑖; 𝛽0)

𝑖𝜖𝐴1

)+ 𝑉𝑝 (∑ 𝜔𝑖2 [𝑦𝑖 −𝑚(𝑥𝑖; 𝛽0)]

𝑖𝜖𝐴2

),    (5.3) 

where the first term on the right-hand side is the variance due to sampling, in survey 1, of the population 
predictions (with the 𝛽0 value), and the second term is the variance due to sampling, in survey 2, of the 
population residuals (for the predictions with the 𝛽0 value). The latter term tends to be small if the 
residuals are small, because model m is sufficiently predictive. Kim and Rao (2012) present a pseudo-
replication method for correct variance estimation without requiring access to the data {(𝑦𝑖 , 𝑥𝑖): 𝑖 ∈ 𝐴2} 
from survey 2. 

 

5.2.1.b. Domain estimation 

Let d denote a particular domain for which disaggregated data must be produced.  

Let  

𝑌𝑑 =∑𝑦𝑖

𝑁

𝑖=1

𝛾𝑑𝑖  

be the total of the target variable for the d-th domain, where 𝛾𝑑𝑖  is the domain membership variable. The 
projection estimator of the total 𝑌𝑑 is given simply by: 

�̂�𝑃𝑅,𝑑 = ∑𝜔𝑖1 𝑚(𝑥𝑖; �̂�)𝛾𝑑𝑖
𝑖𝜖𝐴1

       (5.4) 

The condition for sample-unbiasedness is  

∑𝜔𝑖2 [𝑦𝑖 −𝑚(𝑥𝑖; �̂�)]𝛾𝑑𝑖 = 0.          (5.5)

𝑖𝜖𝐴2
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To satisfy Equation 5.5, vector 𝑥𝑖  must include the 𝛾𝑑𝑖  values, which means that the model has a domain 
intercept. The condition in Equation 5.5 is fulfilled if, in sample 𝐴2, domain d has a sufficient sample size. 
The latter condition is satisfied for larger domains or by planning the sample size (for sample 𝐴2) of 
domain d when defining the sample design (as illustrated in Chapter 3).  

However, in general, the condition established under Equation 5.5 cannot be ensured in the sampling 
design phase for minimal geographical domains. Therefore, it is preferable to focus on the model 
conditions that provide negligible bias. In Kim and Rao (2012; Expression 13), it can be seen that the 

relative 𝐸𝑃(�̂�𝑃𝑅,𝑑 − 𝑌𝑑) 𝑌𝑑⁄  bias can be expressed as 

𝐸𝑃(�̂�𝑃𝑅,𝑑 − 𝑌𝑑)

𝑌𝑑
= −

𝐶𝑜𝑣[𝛾𝑑𝑖 , (𝑦𝑖 −𝑚(𝑥𝑖; 𝛽))]

�̅�𝑑 �̅�𝑑
 ,      (5.6) 

where 𝐶𝑜𝑣[𝛾𝑑𝑖 , (𝑦𝑖 −𝑚(𝑥𝑖; 𝛽))] is the population covariance between the domain membership 

indicators, 𝛾𝑑𝑖 , the model residuals 𝑦𝑖 −𝑚(𝑥𝑖; 𝛽), �̅�𝑑 is the population mean of the domain membership 
indicators, and �̅�𝑑 is the population mean of the product variable 𝛾𝑑𝑖  𝑦𝑖.  

Therefore, to make sure that the relative bias is close to zero, the model should be specified to ensure 
that the model residuals depend slightly on the domain membership variables: 

𝐶𝑜𝑣[𝛾𝑑𝑖 , (𝑦𝑖 −𝑚(𝑥𝑖; 𝛽))] ≅ 0.      (5.7) 

This constraint will be satisfied if the WM is correctly specified.  

From the relationship in Equation 5.6, it can also be seen that in large domains, for which �̅�𝑑 �̅�𝑑 is large, 
the relative bias becomes negligible.  

Finally, the variance can be obtained easily from Equation 5.3 as 

𝑉𝑎𝑟 (�̂�𝑃𝑅,𝑑) = 𝑉𝑎𝑟(∑ 𝜔𝑖1 𝑚(𝑥𝑖; 𝛽0)

𝑖𝜖𝐴1

𝛾𝑑𝑖)+ (∑ 𝜔𝑖2 [𝑦𝑖 −𝑚(𝑥𝑖; 𝛽0)]

𝑖𝜖𝐴2

).    (5.8) 

Here too, a pseudo-replication method can be used to compute correct variance estimation without 
requiring access to the data {(𝑦𝑖 , 𝑥𝑖): 𝑖 ∈ 𝐴2} from survey 2. 

 

5.2.1.c. Extensions 

The Kim and Rao (2012) approach can be modified to leverage some enhancements that can yield 
interesting results in some empirical applications. This section shows some of the possible extensions. 

 

Small area estimation 

Consider a well-known model with domain random effects 

𝑦𝑖 = 𝑚(𝑥𝑖; 𝛽) + 𝑢𝑖 + 𝑧𝑑 for 𝑖 ∈ 𝑈𝑑, 
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in which 𝑢𝑖  is random noise and 𝑧𝑑 a domain effect, such as 𝐸𝑀(𝑢𝑖) = 0, 𝐸𝑀(𝑢𝑖
2) = 𝑐𝑖𝜎𝑢

2, 𝐸𝑀(𝜀𝑖𝜀𝑗) = 0 

for 𝑖 ≠ 𝑗 and 𝐸𝑀(𝑧𝑑) = 0, 𝐸𝑀(𝑧𝑑
2) = 𝜎𝑑

2, 𝐸𝑀(𝑧𝑑𝑧𝑑′) = 0 for 𝑑 ≠ 𝑑′. 

In this case, the estimates �̂� and �̂�𝑑 and the parameters 𝛽 and 𝑧𝑑 are obtained from sample 𝐴2, with 
standard SAE techniques. The projection estimator at Equation 5.4 is reformulated as: 

�̂�𝑃𝑅(𝑆𝐴𝐸),𝑑 = ∑𝜔𝑖1[ 𝑚(𝑥𝑖; �̂�) + �̂�𝑑] 𝛾𝑑𝑖
𝑖𝜖𝐴1

. 

FAO (2014) gives a detailed description of this case, defining the theoretical conditions for unbiasedness 
and variance; it also reports simulations on real data that demonstrate the effectiveness of the estimator. 
Chapter 6 of these Guidelines explores the projection estimator with SAE techniques in further depth. 

 

Projecting on the census 

A useful extension is when the first survey is the census on the population U. In this case, we can obtain 
the projection estimator by summing the predictions computed over the census records: 

�̂�𝑃𝑅 =∑ 

𝑖𝜖𝑈

𝑚(𝑥𝑖; �̂�). 

Subsampling from the first survey 

Another useful extension that can be developed quickly is the case where 𝐴2 is a subsample of 𝐴1. In this 
case, illustrated in Figure 5.1a, the conditions at Equations 5.5 and 5.6 for sample-unbiasedness still hold. 

This should be defined when designing the overall sampling strategy. 

The practical application of the estimator is strongly enhanced, as the two surveys share the same 
metadata and definitions. 

On the other hand, the sampling variance is larger than in the case of two independent surveys, because 
there is covariance between the two surveys: 

𝑉𝑎𝑟 (�̂�𝑃𝑅) = 𝑉𝑝 (∑ 𝜔𝑖1 𝑚(𝑥𝑖; 𝛽0)

𝑖𝜖𝐴1

)+ 𝑉𝑝 (∑ 𝜔𝑖2 [𝑦𝑖 −𝑚(𝑥𝑖; 𝛽0)]

𝑖𝜖𝐴2

) + 

+ 𝐶𝑜𝑣𝑃 [(∑ 𝜔𝑖1 𝑚(𝑥𝑖; 𝛽0)

𝑖𝜖𝐴1

)(∑ 𝜔𝑖2 [𝑦𝑖 −𝑚(𝑥𝑖; 𝛽0)]

𝑖𝜖𝐴2

)]. 
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Figure 5.1.a. Projection estimator for subsampling 

 

 

 

 

 

 

 

 

 

 

 

Source: FAO, 2020. 

 

5.2.2. Selection of auxiliary variables 

Proper identification of the predictors 𝑥𝑖  is a crucial step to ensure the quality of the projection estimator. 
The use of variable selection methods can be helpful when there are many potential regressors, although 
it may be challenging to select regressors when there is multicollinearity.  

The literature on this topic is ample (Ryan, 2008), and a detailed description of the various possible 
approaches is beyond the scope of these Guidelines. Harrell (2015) provides a comprehensive summary 
on the common methods of variable selection in regression methods. The tools used could also facilitate 
the selection of these methods, as various available statistical packages/functions are available in 
different types of statistical software; examples are the statistical packages to run lasso regression and 
the Boruta or random forest regression packages that are available in R and Python. Boruta is the auxiliary 
variables selection method formulated in Kursa and Rudnicki (2010), and it was used to select the auxiliary 
variables in the empirical exercise illustrated below in Section 5.3. 

 

5.2.3. Model assumptions and performance 

Another relevant issue is that of verifying model assumptions and performance based on the selected 
model type – ordinary regression, generalized linear regression, etc. Since the model selection and the 
model assumptions can be highly volatile, these Guidelines cannot fully cover all possible options. 
Nevertheless, to provide some material for reflection on the methods available to assess model 
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performance and assumptions, as well as to inform users as to the steps to follow, the following section 
presents some methods for generalized linear models based on the empirical exercise illustrated.  

Those common methods include Pearson’s chi-square test, and Hosmer and Lemeshow’s goodness of fit 
(GOF).4 Pearson’s chi-square test basically checks whether the model with predictors fits significantly 
better than a model with only an intercept (i.e. a null model). An associated p-value of less than 0.001 
shows that the predicted model as a whole fits significantly better than an empty model. Hosmer and 
Lemeshow’s GOF test deals with binary data. The model fits well when there is no significant difference 
between the model and the observed data (i.e. when the p-value is above 0.05). Besides, the Akaike 
information criterion (AIC) can also be used when assessing the quality of a model through comparison of 
related models. For instance, the performance of the model after the selection of variables, and all 
variables in the model, can be compared through AIC. In all cases, it is observed that the model with the 
smallest AIC is the model with a variable selection based on Boruta. However, it is important to consider 
that most general methods to assess inference in case of independent and identically distributed (iid) 
variables (simple random sampling) can be misleading when applied to a sample obtained with stratified 
two-stage selection and unequal weighting of the units. Archer et al. (2007) demonstrate that standard 
goodness-of-fit tests are not always suitable for complex sample survey data, and propose alternative 
tests that account for complex design features. 

 

5.3. Case study: food insecurity in Malawi 

5.3.1 Background 

Malawi was chosen to test the method proposed in Kim and Rao (2012) for various reasons: 

1. Availability of microdata from the World Bank’s LSMS:  
The Integrated Household Survey (IHS) is implemented by the Government of Malawi through the 
country’s National Statistical Office (NSO) every five years to monitor and evaluate the changing 
conditions of Malawian households. The IHS is an important source of information on the 
country’s socio-economic indicators, which are fundamental to the evidence-based policy 
formulation process and monitoring progress towards achieving the SDGs. 
 
The Fourth Integrated Household Survey (IHS4) is the fourth full survey conducted under the 
umbrella of the World Bank’s Living Standards Measurement Study – Integrated Surveys on 
Agriculture (LSMS-ISA), and was fielded from April 2016 to April 2017. It was also the third round 
of the Integrated Household Panel Survey (IHPS) 2016, which ran concurrently with the IHS4 main 
cross-section fieldwork. The IHS4 cross-section collected information from a sample of 12 480 
households statistically designed to be representative at both national, district, urban and rural 
levels. The IHPS 2016 collected information from a sample of all families and a subsampling of 102 
individuals out of the 204 in the original baseline enumeration areas deemed representative at 
the national and urban/rural levels. 
 
The IHS4 consists of five core questionnaire instruments: the Household Questionnaire, the 
Agriculture Questionnaire, the Fishery Questionnaire, the Community Questionnaire, and the 

                                                             
4 Rather than goodness of fit, measuring explained variation could also be considered to assess the model’s performance. For 
logistic regression, pseudo R-squares – especially McFadden (1974) and Cox and Snell (1989) – could be considered as 
alternatives. The pR2() function in R produces pseudo R-square estimates and more. 
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Individual Questionnaire. Details on the structure and scope of the questionnaire instruments are 
provided in NSO (2017).5   
 
The IHS4 Individual Questionnaire includes a module on the food insecurity scale, Module L: 
Subjective Assessment of Well-being. Therefore, it enables full control over the quality check for 
the resulting estimators. That is, the results of the proposed method (or projected estimates) can 
be compared easily with the estimates already derived from the IHS4 data collected on the FIES.  

2. Availability of microdata from the Gallup World Poll  
Voices of the Hungry, a FAO initiative launched in 2013 in collaboration with Gallup, Inc., has been 
measuring food insecurity worldwide by using an experience-based tool. An eight-question Global 
FIES, that can be applied easily in many different contexts, has been developed and included in 
the annual GWP to generate estimates of the prevalence of moderate or severe food insecurity 
(SDG Indicator 2.1.2). The FIES survey module collects information on the experience of people 
(individuals over the age of 15) with food insecurity, through annual nationally representative 
samples (of a size of approximately 1 000 individuals) in more than 150 countries. This enables a 
global standard of reference to compare the measures obtained in different parts of the world 
and in different contexts. 
 
In making the global assessment, preference is given to suitable and reliable FIES data available 
from large national surveys, whereas FAO data collected in the GWP are used to compile the 
estimates for countries for which there are no other data and/or to fill gaps in terms of time series 
(FAO, 2020a).  

To identify the best wording and phrasing (in the local Chichewa and Chitumbuka languages) to 
express the intended meaning of each question, a FIES linguistic adaptation exercise took place in 
Malawi in July 2013 (Manyamba, 2013).  

In tandem with the release of The State of Food Security and Nutrition in the World 2020 (FAO, 
2020a), access to the FIES microdata for all countries where FAO has collected data through the 
GWP and for which national statistical authorities have consented to their use (in total, 77 
countries) is granted through the Food and Agriculture Microdata Catalogue (FAM).6 

3. The FIES estimates from both data sources, the IHS4 2016 and the GWP 2016, are similar: 

The IHS4 and GWP microdata for 2016 were used to estimate SDG Indicator 2.1.2 by the Voice of 
the Hungry team and the estimates were reported to be close to one other. 

5.3.2. Available auxiliary information  

Smith, Rabbitt and Coleman-Jensen (2017) studied determinants of food insecurity in the world and 
considered a list of variables collected in the GWP that include individual, household, and socio-economic 
characteristics:  

                                                             
5 All other relevant documents can be accessed in the World Bank Microdata Library (Integrated Household Panel Survey 2010-
2013-2016 (Long-Term Panel, 102 EAs).  
6 FAM microdata website. 
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1. demographic characteristics – gender, age, number of adults and children in the household, 
marital status, education level, residential information (e.g. rural/urban); 

2. social capital characteristics – social capital, social network;  

3. economic characteristics – household income, employment status; and 

4. country characteristics – unemployment rate, GDP per capita. 

Smith, Rabbitt and Coleman-Jensen (2017) concluded that low levels of education, less social capital, weak 
social networks, low household income, and being unemployed are strongly associated with the likelihood 
of experiencing food insecurity. The authors stated that causality cannot be inferred from their results, 
because they did not attempt to correct for the potential endogeneity of the determinants of food 
insecurity. However, strong correlations between those variables and food insecurity are observed and 
can be used to understand the global determinants of food insecurity.  

Smith, Rabbitt and Coleman-Jensen (2017) and other similar studies in the literature guided the selection 
of auxiliary variables in this section. However, the availability of data also posed constraints on the 
selection, as in any economic and statistical analysis. For Malawi, IHS4 provides access to a vast range of 
information thanks to its five different questionnaires (see Section 5.3.1, Point 1, above). The available 
information is mostly at household level; individual-level information is provided for a more restricted set 
of variables. In contrast, the GWP provides individual-level information on food insecurity in addition to a 
limited number of demographic and economic variables.  

Overall, information on age, sex, income, education level, employment status and size of households are 
available in both surveys. Since the model proposed by Kim and Rao (2012) requires common auxiliary 
variables, that auxiliary information is used for the projection model here. An important issue to consider 
when selecting those variables is that their definitions should ideally be the same in both surveys, in order 
to obtain a consistent estimation model. The selected variables also satisfy this condition in general. New 
categorical variables were created, or available information was used to calculate the new variables. See 
Annex 5 for details. 

5.3.3. Projection model 

As explained in Section 5.2.1, the synthetic values �̂�𝑖 = 𝑚(𝑥𝑖; �̂�) are constructed through a known 

function 𝑚(𝑥𝑖; �̂�) of �̂�, where the estimator �̂� is obtained from the survey with the smaller sample. 

The selection of the functional form for 𝑚 relies heavily on the type of variables considered. Our variables 
of interest are: 

1. the probability of being moderately or severely food-insecure (prob.ms), and  

2. the probability of being severely food insecurity (prob.s). 

These are required to estimate the prevalence of severe or moderate, and severe, food insecurity among 
adults,7 as well as the number of food-insecure adults in the national population, that can be obtained 
easily with the help of population estimates. Based on their responses, the individuals or households 

                                                             
7 Adults, defined as individuals older than 15 years of age, compose the reference population of the GWP. 
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interviewed in a nationally representative survey are assigned a probability of being in one of two classes: 
moderately food-insecure and severely food-insecure, as defined by two globally set thresholds8.  

The probability values are expressed as percentages/rates, thus ranging from 0 to 1. Figure 5.2 shows the 
distribution of the probability estimates for moderate or severe (prob.mod.hh) and severe (prob.sev.hh) 
food insecurity (see the IHS4 2016 data). Although the variable of interest is a continuous one, the values 
are accumulated around numbers that are very close to one another. In fact, the difference is very small 
and is observed only after the third or fourth decimal numbers.  

Having seen that the probability values are very close to each other, it was decided to create categorical 
dependent variables, which led to using logistic or ordinal logistic regression models for projection. 
Initially, the dependent variables were grouped into three categories and the ordinal regression model 
was applied. However, it was observed that using ordinal regression models brought more complexity 
into the overall estimation process, without a significant contribution towards improving the estimates. 
Besides, the results were not easy to interpret the numbers of categories varied based on the data sets 
available. As the objective is to develop a flexible method for disaggregation that is also easy to 
implement, it was decided to use logistic regression with binary response variables 𝓎ℓ : with 𝑦ℓ𝑖 = 1 if 
the probability of being ℓ – level food-insecure is higher than 0.5 for individual 𝑖 and, 𝑦ℓ𝑖 = 0 otherwise, 
where ℓ = {𝑠,𝑚} for severe food insecurity and moderate or severe food insecurity, respectively. In other 
words, Category 1 is associated with a high probability of being food-insecure.  

 

Figure 5.2. Histogram of the prevalence of moderate and severe food insecurity  

 

             

Source: FAO, 2020. 

 

 

 

 

 

                                                             
8 See FAO (2020a) for more details on the methodology. 
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Given a set of discrete and categorical auxiliary variables 𝑥𝑖
′ = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘), it is assumed that 𝓎ℓ 

follows a Bernoulli distribution with a parameter 𝓅ℓ𝑖: 

 

𝑦ℓ𝑖 = {
1
0

   with 𝑃(𝑦ℓ𝑖 = 1|𝑥𝑖) = 𝓅ℓ𝑖          

  with 𝑃(𝑦ℓ𝑖 = 0| 𝑥𝑖) = 1 − 𝓅ℓ𝑖
 

 

Therefore, 𝓅ℓ actually represents the odds of being food-insecure. The natural log (ln) of the odds, also 
known as the logit, is as follows: 

𝑙𝑛 (
𝓅ℓ𝑖

1 − 𝓅ℓ𝑖
) = 𝑙𝑜𝑔𝑖𝑡(𝓅ℓ𝑖) = 𝑙𝑜𝑔𝑖𝑡[𝑃𝑟𝑜𝑏(𝓎ℓ𝑖 = 1)] 

As a result, the variable of interest is modelled as a multinomial logistic regression: 

𝑙𝑜𝑔𝑖𝑡(𝓅ℓ𝑖) = 𝛽ℓ0 + 𝛽ℓ1𝑥1𝑖 + 𝛽ℓ2𝑥2𝑖 +⋯+ 𝛽ℓ𝑘𝑥𝑘𝑖 + 𝜀ℓ𝑖          (5.9)      

                   = 𝑥𝑖
′𝛽ℓ + 𝜀ℓ𝑖,   

where 𝑥𝑖
′ = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘) and  𝛽ℓ

′ = (𝛽ℓ0, 𝛽ℓ1, 𝛽ℓ2 , … , 𝛽ℓ𝑘) at ℓ – level food insecurity for individual 
𝑖. Recall that 𝜀ℓ𝑖  takes only two values, 𝜀ℓ𝑖 = −𝑥𝑖

′𝛽ℓ when 𝑦ℓ𝑖 = 0 and 𝜀ℓ𝑖 = 1 − 𝑥𝑖
′𝛽ℓ when 𝑦ℓ𝑖 = 1. 

Therefore, 𝜀ℓ𝑖  cannot be assumed to follow a normal distribution.  

The model’s coefficients may not be straightforward to interpret because they are scaled in terms of 
logs. Another way to interpret logistic regression models is to convert the coefficients into odds ratios. 
Since the estimated logistic regression model is 

𝑙𝑜𝑔𝑖𝑡(�̂�ℓ𝑖) = 𝑥𝑖
′�̂�ℓ = �̂�ℓ0 +∑�̂�ℓ𝑗𝑥𝑗𝑖

𝑘

𝑗=1

,                         (5.10) 

a backward logit transformation on the odds would result in: 

�̂�ℓ𝑖 =
exp(𝑥𝑖

′�̂�ℓ)

exp(1 − 𝑥𝑖
′�̂�ℓ)

.                                                  (5.11) 

 

5.3.4. Variable selection 

The case study only illustrates the Boruta feature selection method (Kursa and Rudnicki, 2010), that was 
found useful and was applied in selecting the auxiliary variables in the empirical exercise here illustrated. 
The method uses a wrapper approach built around a random forest (Breiman, 2001) classifier (in Slavic 
mythology, Boruta is a forest divinity). The wrapper approach allows for ranking and classification of 
features that cannot be produced via a random forest algorithm, because the statistical significance of the 
features in question cannot be fully estimated (Kursa and Rudnicki, 2010). The method is wholly relevant, 
and thus aims to classify all features connected through decision rather than a minimal optimal class that 
deals only with the non-redundant auxiliary variables.  
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The random forest algorithm proposed by Breiman (2001) was successfully applied to reduce high 
dimensional and multi-source data for both classification and regression problems. The random forest 
algorithm is a collection of Classification and Regression Trees (CART) trained on data sets that are the 
same size as the training set, while creating samples (or bootstraps) by bootstrapping (or random 
resampling) on the training set itself. Once a tree is constructed, a set of bootstraps that does not include 
any particular record from the original data set (out-of-bag samples) is used as the test set.  

Using a random forest as a classifier, the Boruta method proceeds according to the steps below. 

1. It duplicates the data set and shuffles the values in each column, resulting in shadow features.  

2. It trains the random forest classifier on the data set, which ensures that measures or scores of 
importance (Mean Decrease Accuracy or Mean Decrease Impurity) are produced for each feature 
in the data set. The higher the importance score produced, the more important the feature. 

3. The algorithm compares real versus shadow features by checking whether the original feature has 
a higher score than the maximum score of its shadow features. If yes, the algorithm marks the 
feature as important and records it as a hit in a vector. It then moves on to the next iteration.  

4. It repeats this process up to a predefined number of iterations, which will result in a table of hits.  

5. By comparing the scores of the random shuffled copies of the features iteratively, the algorithm 
manages to compare the number of times a feature did better than the shadow features (binomial 
distribution). This boosts the robustness of the selection, because the importance of the feature 
is validated. 

5.3.5. Results 

To develop the projection model, the steps below were taken. 

1. The relevant auxiliary variables were listed and their definitions checked in both samples. 

2. Boruta was used to list relevant auxiliary variables for each level of prevalence, in the small survey. 

3. Assumptions – linearity, multicollinearity – were checked for in the small survey. 

4. The resulting variables were used to estimate the projection model parameters in the small 
survey. 

5. The estimated projection model was used to estimate the variable of interest in the large survey.  

The estimates from the projection model were used in the comparison with the probability values 
already available for severe and moderate or severe levels of food insecurity. The comparison was 
performed for different disaggregation domains, such as age, sex and income level, which are all listed in 
the IAEG-SDG disaggregation matrix. It should be noted that dummy variables were created for the 
auxiliary variables that were deemed categorical. 
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5.3.4.1. Results of the prevalence of severe food insecurity 

As the first step, all available and relevant auxiliary variables9 were plugged into the Boruta algorithm to 
assess their relevance, with their order of importance as auxiliary variables to explain the prevalence of 
severe food insecurity. In Figures 5.3 and 5.4, the boxplots of different colours represent various Boruta 
outputs: the red, yellow and green boxplots represent the scores of the rejected, tentative and confirmed 
variables, respectively, while blue was assigned to shadow features. Tentative variables are included in 
the projection models here: Boruta could not indicate a clear decision concerning those variables with the 
desired confidence because their importance levels are very close to their best shadow features. The y-
axis in Figure 5.3 displays the importance of the variables. The most important variable is income (inccat), 
followed by location (rural), education (educat) and size of the household (sizeHH), which are all 
significantly important.  

Various models are estimated, and it has been observed that the selection of the reference levels of 
categorical variables to be set aside with respect to the model affects the estimation. Therefore, the 
Boruta algorithm is applied on various levels of the auxiliary information to assess their importance.  

Figure 5.4 presents the order and importance of the different levels of auxiliary variables. The results in 
Figures 5.3 and 5.4 are consistent, as Boruta chooses the same set of auxiliary variables at the end of two 
independent runs. 

The significantly important variables (including both “Confirmed” and “Tentative”) are as follows, in 
order of importance: 

1. inccat_5 – the first quintile, representing the 20 percent of the population with the highest income  

2. inccat_1 – the last quintile, representing the 20 percent of the population with the lowest income  

3. inccat_2 – the second income quintile, i.e. between 21 percent and 40 percent 

4. rural – being in rural area (1: rural) 

5. educat_1 – completed elementary education or less (up to eight years of basic education) 

6. inccat_3 – the middle-income quintile, i.e. between 41 percent and 60 percent 

7. educat_3 – completed four years of education beyond high school and/or received a four-year 
college degree.  

8. educat_2 – completed secondary education and some education beyond secondary education (9 
to 15 years of education) 

9. sizeHH – size of household 

 

 

                                                             
9 The list of variable names and details on the levels of categorical variables is available in Annex 5, Section A5.1. 
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Figure 5.3. Level of importance of the auxiliary variables for severe food insecurity 

 

Source: FAO, 2020. 

 

Figure 5.4. Level of importance of the various levels of auxiliary variables for severe food insecurity 

 

Source: FAO, 2020. 
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Generalized linear models for logistic regression (the glm function in R) is used to develop the projection 
model based on the significantly important variables listed after Boruta. The resulting model (see Annex 
5, A5.2.1 for the overall estimation results) with significant variables is used as the projection model for 
various disaggregation domains (see the above list): 

     𝑌�̂� = 1.285 ∗ inccat1 + 0.807 ∗ inccat2 − 0.669 ∗ inccat5 − 0.081 ∗ 𝑠𝑖𝑧𝑒𝐻𝐻              (5.12)      

To assess whether different variables have similar predictive relationships with the variable of interest, 
i.e. if there is multicollinearity, the Fox and Monette (1992) generalized variance-inflation factors (VIF) are 
computed.10 The variables with high VIF value above (as a rule of thumb) 5 or 10 will be removed from 
the mode, which will lead to a simpler model without compromising the model accuracy. The VIF scores 
for Model 5.12 showed that there is no multicollinearity problem for the variables in the projection model, 
i.e. that all variables have a VIF value well below five. 

 
Table 5.1. Variance-inflation factors for prevalence of severe food insecurity 

 

In this case study, some well-known GOF tests were considered – such as Pearson’s chi-square test and 
the Hosmer and Lemeshow GOF – to evaluate the performance of the prediction model, while warning 
users that those tests perform best under the assumption of independent observations rather than 
observations from stratified and/or cluster sampling (Archer, Lemeshow and Hosner, 2007). The results 
indicate that Pearson’s chi-square p-value is 9.880476e-21 and the GOF test p-value is 0.1757, both of 
which support the fitted model’s accuracy. 

Although it is not presented here, the AIC could also be considered when assessing the quality of a model 
through comparison of related models. For instance, the performance of the model after selection of 
variables with the help of Boruta and all variables in the model are compared through AIC. In all cases, the 
model that has the smallest AIC is observed to be the model with variable selection based on Boruta11. 

The reference category defined for the projection model is crucial for understanding and reading the 
results properly. In our case, the reference category is defined as “0” where the probability of being 
severely food-insecure is less than 0.5, and the non-reference category is “1” for a high probability/greater 
likelihood of being severely food-insecure.  

For individuals in the poorest quintile (inccat_1=1), the odds of being more likely to be severely food-
insecure (i.e. very likely as opposed to less likely) is 3.616 (=exp(1.285)) times that of individuals in higher-

                                                             
10 The “vif()” function in R can be used to calculate VIF scores (see Rdocumentation).  
11 See Annex 2 for further details on the estimation results. 

Variables: inccat_1 inccat_2 inccat_5 sizeHH 

VIF score: 1.315     1.390    1.457     1.153 
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income levels, holding all other variables constant. On the contrary, the individuals in the richest quintile 
(inccat_5=1) are less likely to be severely food-insecure, as shown by the negative sign. Moreover, for 
every unit increase in the number of household members, the odds of being more likely to be severely 
food-insecure are expected to decrease by approximately 7.8 percent (=100*(1- exp(-0.081))), holding all 
other variables constant. 

The projection model is used to estimate the likelihood (more likely, as opposed to less likely) of being 
severely food-insecure for various disaggregation domains, such as sex, location, age and income. The 
resulting estimates (Predicted) are presented in Table 5.2 and compared with the FIES estimates available 
for IHS4 (Actual). It is observed that overall, the predicted values are very close to the actual values for all 
domains. The reasons for the lower performance of the projection estimator for the lowest income level 
are being explored. This result could be observed because income is defined differently in the two surveys, 
with an impact on the first category of the variable.   

 

 
Table 5.2. Estimates for prevalence of severe food insecurity 
 

  ALL  
prob.s Actual Predicted   

0 15 602 15 397.23   
1 14 131 14 335.77   
     

 FEMALE MALE 

prob.s Actual Predicted Actual Predicted 

0 8 099 8 136.892 7 503 7 260.341 

1 7 675 7 637.108 6 456 6 698.659 
     

 RURAL URBAN 

prob.s Actual Predicted Actual Predicted 

0 11 139 12 068.71 4 463 3 328.517 

1 12 739 11 809.29 1 392 2 526.483 
     

 AGE<25 AGE>=65 

prob.s Actual Predicted Actual Predicted 

0 5 554 5 350.249 999 1 097.997 

1 5 070 5 273.751 1 289 1 190.003 
     

 INCOME – Poorest (1st Q) INCOME – Richest (5th Q) 

prob.s Actual Predicted Actual Predicted 

0 3 215 1 869.109 4 094 3 946.894 

1 3 103 4 448.891 1 261 1 408.106 
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5.3.4.2. Results for prevalence of moderate or severe food insecurity 

As in the previous section, the first step in the projection of the likelihood of moderate or severe food 
insecurity was feature selection. All available and relevant auxiliary variables listed in Annex 5, Section 
A5.1 are evaluated by the Boruta algorithm. Figure 5.5 shows the level of importance of those variables 
and whether they are redundant or non-redundant.  It is observed that income (inccat), location (rural) 
and education (educat) are all relevant (green), in order of importance. To check whether there are 
specific levels of those variables that are more relevant when modelling the likelihood of moderate or 
severe food insecurity, the Boruta algorithm is also applied on different levels of those relevant variables 
and the results are presented in Figure 5.6. It can be observed that Figures 5.5 and 5.6 are consistent 
because they highlight the same variables as relevant. Based on Figure 5.6, the variables that are 
significantly important (including both “Confirmed” and “Tentative”) are listed below, in order of 
importance: 

1. educat_2: completed secondary education and some education beyond secondary education (9–
15 years of education) 

2. educat_1: completed elementary education or less (up to eight years of basic education) 

3. rural: being in rural area (1: rural) 

4. inccat_5: the first quintile, representing the 20 percent of the population with the highest income  

 

Figure 5.5. Level of importance of auxiliary variables for moderate food insecurity 

 

Source: FAO, 2020. 
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Figure 5.6. Level of importance of various levels of auxiliary variables for moderate food insecurity 

 

 

Source: FAO, 2020. 

The generalized linear models for logistic regression in R (glm() function) produced the projection model 
below (see Annex 5, Section A5.2.2 for the overall estimation results): 

�̂�𝑚𝑠 = 1.818 − 1.414 ∗ 𝑖𝑛𝑐𝑐𝑎𝑡5 

The Pearson’s chi-square (p_value = 1.459197e-15) and GOF tests (p-value = 0.9079) do not yield any 
evidence such as to reject the null hypothesis, which assumes that the fitted model is correct. As noted 
in the previous section, other GOF tests considering complex sampling designs could be preferred for 
this specific exercise. 

The resulting projection model produces an intercept term, that can be interpreted as the log odds of 
predicting the non-reference category. Here, the reference category is “0”, where the probability of being 
moderately or severely food-insecure is less than 0.5, and the non-reference category for a high 
probability of being moderately or severely food-insecure is “1”. Overall, the intercept coefficient is the 
log odds of someone who is not in the richest quintile of the population (inccat_5 = 0) having a high level 
of moderate or severe food insecurity. We can translate log odds into just odds (of the high probability of 
being moderately or severely food-insecure): 

       exp(1.818)= 6.158 

6.158/(1+6.158) = 0.860 

It can be observed that being at the highest income level (inccat_5=1) has a negative impact on the 
probability of being moderately or severely food-insecure. In fact, being in the richest income quintile 
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entails a probability of 0.20 (exp(-1.414)=0.243 and 0.243/(1+0.243)=0.195) of displaying a value of “1” 
(high probability of severe or moderate food insecurity) and a probability of 0.80 of displaying a value of 
"0" on the outcome variable. 

 

The likelihood (more likely, as opposed to less likely) of being moderately or severely food-insecure is 
predicted by the resulting projection model above. The projections (predicted) for various disaggregation 
domains presented in Table 5.3 allow for comparisons with the FIES estimates available for IHS4 (Actual). 
Overall, it is observed that the projected values are very close to actual values for all domains in general, 
which supports the conclusion that the proposed method performs well for this data set. The reasons for 
the subpar performance of the projection estimator for the lowest income level are still being explored. 
This result could be observed because income is defined differently in the two surveys, with an impact on 
the first category of the variable. 

 
Table 5.3. Estimates for prevalence of moderate or severe food insecurity 
 

  ALL  

prob.ms Actual Predicted   

0 6 037 5 548.857   

1 23 696 24 184.143   

 
 

    

 FEMALE MALE 

prob.ms Actual Predicted Actual Predicted 

0 3 123 2 927.641 2 914 2 621.215 

1 12 651 12 846.359 11 045 11 337.785 

 
 

    

 RURAL URBAN 

prob.ms Actual Predicted Actual Predicted 

0 3 382 4 128.118 2 655 1 420.739 

1 20 496 19 749.882 3 200 4 434.261 

 
 

    

 AGE<25 AGE>=65 

prob.ms Actual Predicted Actual Predicted 

0 2 134 1 875.174 332 394.91 

1 8 490 8 748.826 1 956 1 893.09 
     

 INCOME – Poorest (1st Q) INCOME – Richest (5th Q) 

prob.ms Actual Predicted Actual Predicted 

0 1 224 882.4605 2 382 2 143.883 

1 5 094 5 435.5395 2 973 3 211.117 
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5.4. Lessons learned  

The method and the resulting projection models performed very well for both levels of food insecurity 
indicators. The most important lessons learnt are listed below: 

1. The definition/methodology of the auxiliary variables in both small and large surveys may not be 
fully consistent. For example, the definitions of potential auxiliary variables, such as income or 
economic activity, can be substantially different in national surveys and other smaller surveys 
such as the GWP. It might be necessary to reorganize the available data to create similar 
definitions, when possible. For instance, in one survey, more disaggregated data may be available 
by education level, while in another, the education level might be more aggregated. This could be 
improved by aggregating the more disaggregated variable. 

2. National surveys are based on households rather than individuals (as in the GWP); this is another 
source of variability in the available auxiliary information. Strong assumptions might be necessary 
to improve the situation. For instance, to estimate individual-level income in surveys for which 
only household-level income is available, it was decided to divide the household-level income by 
the number of adults in the household.  A similar problem may be that the reference respondent 
is the head of the household, while individual-level data is needed for all members of the 
household. The assumption is that the relationship between the auxiliary variables selected and 
the variable of interest is stable over time. 

3. Using model-assisted projection for another domain for which data collection is expensive could 
be a good investment. An example of such a domain is food consumption. 

The main steps to build a projection model based on two surveys are listed below. 

1. List relevant auxiliary variables and check their definitions in both samples. 

2. Use Boruta to list relevant auxiliary variables for each level of prevalence – small survey. 

3. Check for assumptions – linearity, multicollinearity; small survey. 

4. Use the resulting variables to estimate the projection model parameters – small survey. 

5. Check the model’s GOF. 

6. Use the estimated projection model to estimate the variable of interest – large survey. 
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Appendix A5.1.  List of auxiliary variables 

Age: Converted into categorical variables following UN12 definitions and classification of age groups: 

agecat_1: 15-24 (youth)13 
agecat_2: 25-49  
agecat_3: 50-64  
agecat_4: 65 and over (older persons)  
agecat_99999: NA 
 

Education: Converted into categorical variables: 

GWP 

educat_1: Completed elementary education or less (up to eight years of basic education) 

educat_2: Secondary – Three-year tertiary secondary education and some education beyond 
secondary education (9–15 years of education) 

educat_3: Completed four years of education beyond high school and/or received a four-year 
college degree 

educat_99999. This covers “DK: Don’t know” and “RF: Refused” in GWP and “NA” in LSMS 

IHS4 lists various answer options for education applicable for Malawi (Startfishers Malawi): 

A. NONE 

B. PSLC: Primary School Leaving Certificate – Primary School Leaving Exam assesses academic 
achievement at the Primary School level (ages 13–14) 

C. JCE: Junior Certificate of Education is a school-based junior schooling qualification awarded to 
eligible students at the end of Year 9 on completion of the junior phase of learning (ages 15–16) 

D. MSCE: The Malawi School Certificate of Education exam, taken during the last year of secondary 
school (ages 17–18) 

E. NON-UNIV.DIPLOMA 

F. UNIVER.DIPLOMA,DEGREE  

G. POST-GRAD.DEGREE  

 

 

                                                             
12 For statistical purposes, the UN – without prejudice to any other definitions applying in Member States – defines “youth” as 
persons between the ages of 15 and 24 years. 
13  The reference population of the GWP consists of adults, i.e. individuals older than 15 years of age. 
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These are merged to create a consistent categorical variable with the GWP: 

1. A+B  

2. C+D 

3. D+E+F 

Income: The income estimates for IHS4, as extracted from the FAO Rural Livelihoods Information System 
(FAO, RuLIS). Income at individual level is estimated by the income of the household divided by the 
number of adults in the household. GWP provides income data in quintiles at the individual level. As a 
result, RuLIS estimates for IHS4 are converted into categorical variables following the GWP definitions:  

        Income Category     
inccat_1: Poorest 20% 
inccat_2:  21% - 40%: Second 20% 
inccat_3: 41% - 60%: Middle 20% 
inccat_4: 61% - 80%: Fourth 20% 
inccat_5:  Richest 20% 

Employment:  New categorical variables created: 

Original GWP 
A. Employed full-time for an employer 
B. Employed full-time for self 
C. Employed part-time, wants full-time 
D. Employed part-time, does not want full-time 
E. Unemployed 
F. Out of workforce 

Original IHS4 – Extracted from RuLIS 
a. not employed (inactive or unemployed)…………………………………………..1 (0 in RuLIS) 
b. employed …………………………………………….…………………………………………..2  (1 in RuLIS) 
c. in the age group (>=5 years old) but no data on employment …………missing (99 in RuLIS) 
d. not in applicable age range, i.e. <5 years old…….………………….…………. NA 

Employment Category: 
empcat_1: Unemployed + Out of workforce 
empcat_2: Employed part-time, wants full-time + Employed part-time, does not want-full time 
empcat_3: Employed full-time for an employer+ Employed full-time for self 
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Appendix A5.2. Results – R output for glm () function 

A5.2.1. Severe food insecurity 
Deviance residuals:  
    Min       1Q   Median       3Q      Max   
-2.2562  -1.1139   0.6118   0.8137   1.7673   
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   1.1416     0.8627   1.323 0.185725     
df$educat_1  -0.1481     0.8436  -0.176 0.860634     
df$educat_2  -0.5653     0.8461  -0.668 0.504101     
df$educat_3  -1.7402     1.1694  -1.488 0.136740     
df$inccat_1   1.2852     0.2823   4.553 5.28e-06 *** 
df$inccat_2   0.8074     0.2438   3.311 0.000929 *** 
df$inccat_3   0.3988     0.2290   1.742 0.081586 .   
df$inccat_5  -0.6695     0.2029  -3.299 0.000970 *** 
df$rural1     0.2659     0.2196   1.211 0.226063     
df$sizeHH    -0.0810     0.0370  -2.189 0.028607 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 1219.8 on 994 degrees of freedom 
Residual deviance: 1104.1 on 985 degrees of freedom 
AIC: 1124.1 
 
Number of Fisher Scoring iterations: 4 

A5.2.2. Moderate or severe food insecurity 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.4636   0.3140   0.3140   0.4222   1.0114   
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  1.81781    0.62297   2.918  0.00352 **  
df$educat_1  0.65427    0.63208   1.035  0.30062     
df$educat_2  0.04162    0.62352   0.067  0.94678     
df$inccat_5 -1.41395    0.22213  -6.365 1.95e-10 *** 
df$rural1    0.51321    0.27067   1.896  0.05795    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 691.86 on 994 degrees of freedom 
Residual deviance: 616.22 on 990 degrees of freedom 
AIC: 626.22 
Number of Fisher Scoring iterations: 5 
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Chapter 6. Small area estimation techniques 

6.1. Introduction 

An estimator of the parameter of interest for a given subpopulation is said to be a direct estimator when 
it is based only on sample information from the subpopulation itself. Unfortunately, for most surveys, the 
sample size is not large enough to guarantee reliable direct estimates for all subpopulations. A “small 
area” or “small domain” is any subpopulation for which a direct estimator with the required precision is 
not available. In the literature, “small area” is intended as a general concept and is used to indicate a 
general partition of the population according to geographical criteria or other structural characteristics 
(sociodemographic variables for household surveys or economic variables for business surveys). This 
chapter will use the broad definition of small area. When direct estimates cannot be disseminated 
because they are of unsatisfactory quality, an ad hoc class of methods – the SAE methods – is available to 
overcome the problem (see Rao, 2003; Pfeffermann, 2002, 2013). These methods are usually referred to 
as indirect estimators because they cope with poor information for each domain, borrowing strength from 
the sample information belonging to other domains; this results in an increase in the effective sample size 
for each small area.  

Large-scale surveys are usually aimed at providing estimates of target parameters for the whole 
population, as well as for relevant subpopulations defined at the sampling stage. Design-consistent and 
design-unbiased direct estimates are produced for the parameters of interest. However, in most surveys, 
the sample size is not large enough to guarantee reliable estimates for all target subpopulations.  

Over the last few years, the paradigm underlying the statistical process has been gradually changing the 
production of official statistical data by the major information statistical centres, both nationally and 
internationally. In fact, alongside the data collected using traditional “statistical surveys”, the growing 
availability of data from so-called “new data sources” – both those of an administrative nature and those 
obtained through new electronic devices and information-gathering channels on the Internet – 
overwhelmingly dictates the agenda of the methodological and operational aspects to be addressed and 
resolved by official statisticians in each country. As far as the more strictly statistical-methodological 
aspects are concerned, the following aspects must be addressed: 

1. the need to estimate multiple contingency tables, which arises from the fact that the sampling 
surveys produce hypercubes obtained from the intersection of numerous variables; 

2. territorial and structural classification; 

3. the use of estimators of projection type allows for producing the predicted values at the level of 
the single unit; 

4. post-stratified ratio estimators – traditional estimators that use totals obtained as special cases 
of regression estimators – can be extended to linear models with fixed effects, as well as to those 
with mixed ones, by defining the estimators as a function of matrices of totals. This can produce 
significant computational efficiencies. 
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6.2. Process flow for computing small area estimates 

This section summarizes the main findings of the ESSnet research project (2012) on SAE techniques. The 
project proposes a standardized process for SAE, in which: (i) there is a sample survey from which statistics 
at the national level, or by major subnational domains, are available by means of design-based direct 
estimation; and (ii) the aim is to investigate whether it is acceptable to produce statistics at lower 
aggregation levels, possibly using SAE techniques. The standardized process flow is divided into the 
following phases. 

(1) Clarification for the identification and prioritization of the needs and uses of small area estimates; 
identification of the survey of the relevant data available and choice of criteria to evaluate the 
small area estimates obtained. 

(2) Calculation of direct estimates together with basic design smoothing techniques, i.e. synthetic and 
composite estimators calculated under a design-based approach. At this stage, no change of the 
inferential framework or additional data is needed, compared to the existing regular survey. 

(3) Enhancement of the basic design smoothing techniques. This step is needed if the results of direct 
estimates or basic design smoothing estimators are not acceptable. The quality assessment of the 
design-based small area estimates should identify the weaknesses to be improved. The general 
idea is to utilize additional information, though modelling, targeted at the perceived shortcomings 
in the basic smoothing results. 

6.2.1. Clarification for the identification and prioritization of needs 

Referring to the first phase of the process flow, the following types of user needs are often been 
mentioned in the literature: policy and programme formulation and evaluation; allocation of funds; local 
government and business planning. In any case, from a methodological point of view, the following 
distinctions regarding the nature of small area statistics are important:  

 cross-sectional totals, or means, and their changes over time;  

 area-specifìc best prediction and ensemble small area characteristics. Examples of ensemble 
characteristics include, but are not limited to, the difference between the maximum and minimum 
small area parameter values, the distribution of parameter values across the small areas and the rank 
of the small areas according to their respective parameter values. 

In this context, important factors to be considered are the following. 

 Practitioners who are only familiar with producing national-level estimates often find it difficult to 
prioritize the different objectives of small area estimates and, therefore, set preferences and a 
balance among their statistical properties. It is nevertheless important to be aware of potential bias 
in the indirect small area estimates.  

 The most important metadata to be clarified consists in the hierarchy of aggregation levels: from the 
national level to the small areas of interest, and possibly domains within the small areas. Moreover, 
there may be an interaction towards the clarification/prioritization of the needs or uses of the small 
area estimates. 

 It is good practice to make the repository of data as thorough as possible. 
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 It is important to consider the auxiliary variables used in the existing estimation method for national, 
or major subnational, statistics. In particular, it is important to clarify whether these auxiliary variables 
are available at the small area level, such that the existing estimation method can be applied within 
each small area to produce the corresponding direct estimates. Furthermore, additional covariates 
(from previous censuses and surveys, administrative sources, etc.) that may help to explain statistical 
variations in the target variables must be considered.  

 It is necessary to consider the available data, including proxies of target variables – either exact for 
the target population or in proximity – that can be used to set up realistic Monte Carlo simulation 
studies.  

 It is also helpful to obtain an idea of the accuracy that can be expected of the small area estimates, in 
relation to that of the existing statistics. It is generally unrealistic to expect small area estimates to 
have the level of accuracy that one may be accustomed to in the case of national-level estimates. For 
example, Statistics Canada applies the following guidelines on the reliability of data from labour force 
surveys (Statistics Canada, 2010; pp. 30–31): if the coefficient of variation (CV) < 16.5 percent, then 
there are no release restrictions; if 16.5 percent < CV < 33.3 percent, then the data should be 
accompanied by warnings (release with caveats); if the CV > 33.3 percent, then the data are not 
recommended for release. The British Office for National Statistics (ONS) dissemination policy (2004) 
established that ideally, the CV < 20 percent for a small area estimate to be considered publishable. 

 The bias of the indirect small area estimates implies that it is insufficient to consider the CV on its 
own. In practice, the area-specific mean squared error (MSE) of the small area estimator is the most 
common measure of uncertainty; less often, it is the use of confidence intervals, or prediction 
intervals from the model-based point of view. It is also rare to find uncertainty measures of the 
ensemble characteristics of the small area estimates. Apart from choosing the summary measure of 
uncertainty, it is important to consider and select a set of diagnostics and checks that may help to: 
better understand the data used; assess the estimation methods or the underlying model 
assumptions; and form a more complete picture of the quality (strengths as well as weaknesses) of 
the small area estimates obtained.  

o One should consider the feasibility of a realistic Monte Carlo simulation study based on an 
artificial “target population”, i.e. from the design-based point of view. The artificial population 
need not faithfully reflect every aspect of reality. However, it should be realistic with respect 
to the key uses and needs of the small area estimates, as well as their corresponding desirable 
statistical properties. Such Monte Carlo simulation studies, when feasible, often provide the 
most reliable evidence when choosing from among the alternative methods or models.  

o The various diagnostics and measures of uncertainty are helpful when comparing alternative 
estimators to identify the best available method. However, it is difficult to provide a set of 
explicit and absolute generic conditions that the estimation method and its results must meet 
in order to be considered acceptable for dissemination, just as in the case of official statistics 
at the national level. The decision is more likely to be made on a case-to-case basis with regard 
to a fit-for-purpose assessment, and the “acceptance” margin is unlikely to be uniform across 
all small areas of interest. 
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6.2.2. Calculation of direct estimates together with basic design smoothing techniques  

Direct estimates are derived separately within each small area, based only on the data from the given area 
or domain. In theory, the auxiliary information provided is used for regular national-level estimates and is 
available at the small-area level of interest, and it is possible to apply the existing estimation approach 
within each small area. In practice, however, a lack of data can cause problems. First, if there are no 
sample data at all from a particular small area, then no direct estimate can be produced, with or without 
auxiliary information. However, the estimation method could also fail because there are too few direct 
sample data. For instance, the post-stratified estimator may break down due to empty within-area sample 
post-strata; similarly, the calibration estimator may be unfeasible because of “empty” within-area sample 
margins. 

The next option is indirect synthetic estimation (Rao, 2003; Section 4.2). Essentially, this amounts to 
replacing the direct estimates with regression estimates, whereby the regression coefficients are 
estimated based on the data in the larger area (or domain) to which the small area of concern belongs. 
The simple examples below illustrate this notion. Indirect synthetic estimates can have much smaller 
variances compared to direct estimates. Nevertheless, they rarely provide satisfactory solutions to the 
problems affecting SAE, because they tend to reduce the between-area variation of interest – hat is, they 
might have unacceptably large biases. Moreover, from a smoothing perspective and at least in theory, it 
is always possible to further improve the bias-variance trade-off by means of composite estimation. A 
small area composite estimate is given as a weighted average of the corresponding direct estimate and a 
synthetic estimate of choice. The idea is to give more weight to the direct estimate if it is reliable, and less 
weight otherwise. Indeed, the composite weights can be derived to minimize the area-specific MSE. As a 
result, the composite estimator can be assumed to have a reduced variance but an increased bias 
compared to the direct estimator, whereas it has a reduced bias but increased variance compared to the 
synthetic estimator. In practice, however, one must allow for extra uncertainty associated with the 
estimation of the optimal “weights”.  

Composite estimates are sometimes known as shrinkage estimates, because by construction all direct 
estimates are pulled towards the corresponding synthetic estimate of a broader area. A consequence is 
that, together, the composite estimates derived by minimizing the area-specific MSE generally display less 
between-area variation than they should. This is referred to as the over-shrinkage problem.  

Composite estimation is generally easier to implement compared to explicit model-based estimation, 
especially as the model grows increasingly complicated. Moreover, when the composite weights depend 
only on subsample sizes, composite estimates can be derived for a large number of target variables at the 
same time. In contrast, a model applies only to one variable, or perhaps very few variables, at a time. It is 
usually impractical to build models for all statistical variables collected in the sample, both at the national 
level and at the small-area level. 

 

6.2.3. Enhancement of the basic design smoothing techniques 

Basic smoothing may not be satisfactory for one or several reasons. For example, there may be too many 
empty sample domains, where the synthetic estimator causes unacceptable over-smoothing. Even the 
best composite estimator may have an excessively large bias and/or MSE in general. The optimal 
composite weights are numerically too unstable, as explained above, while the alternative practical 
choices of composite estimator are inadequate. The small area parameters may have a skewed non-
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normal distribution across the areas, such that the composite estimates may fail for areas at either of the 
two ends of the distribution. An example is binary means close to 0 or 1.  

An explicit model-based approach may help address the perceived shortcomings; for example, additional 
covariates or correlations can be included in a model. For instance, the latest census population totals (or 
means) can be used as the explanatory variables for the current population parameters, while the 
information cannot be naturally utilized in design-based estimation unless the census values of the current 
sample units can be identified. The incorporation of spatial and temporal correlations is yet another 
example. Further reductions of both bias and variance may therefore be possible with model-based 
estimates. However, additional model assumptions are necessary. The main numerical instability of the 
composite estimator is associated with the direct (unbiased or consistent) estimation of the variance of 
the direct small area estimator. Models specified for area-level sample statistics face a similar issue, if the 
sampling design effect must be taken into account. Being completely model-based, in these cases, the 
unit-level models can provide an alternative. 

Large classes of generalized linear and non-linear models exist that can be useful in handling non-normally 
distributed small area parameters. 

The first, or most basic, choice is whether to specify the model at the unit level or at the area level. The 
choice depends on the nature and the availability of data at the two levels. However, sampling design can 
also play a part. There may be a strong design effect for reasons such as stratification, multistage sample 
selection or clustering. An area-level model must take this into account, in order to appropriately describe 
the variation in the area-level sample statistics. Meanwhile, a strong design effect may nevertheless be 
considered non-informative from a model-based perspective, given appropriate auxiliary information. For 
example, the design effects due to stratification by age and sex can be handled in a unit-level model by 
including age and sex as explanatory variables. Also, the household clustering effects for the labour force 
survey’s employment status may be ignored, provided that the model makes use of good administrative 
employment data at the individual level, even if the administrative data are not used in the sampling 
design at all. 

The next choice is the one between linear and generalized linear (or non-linear) models. In theory, 
generalized linear models are preferable for categorical data. In practice, however, linear models are 
computationally much easier and often yield similar results. For example, employment status can be 
modelled as binary data using a logistic regression model; however, it is often viable to apply a linear 
model at unit or perhaps area level, just like implicit models underlying design-based survey weighting are 
usually linear, regardless of the type of data. However, the linear probability model presents some 
drawbacks (prediction beyond the admissible range; heteroscedastic errors; non-meaningful R-square). 

The conceptual relationship between (fixed effects) regression models and (random effects) mixed 
models is analogous to that between synthetic and composite estimation. In SAE, mixed models are 
always more appropriate than the corresponding regression model, as the latter simply excludes all the 
random effects of the former because it allows for heterogeneity across the small areas. In terms of 
smoothing, however, the questions are empirical in nature: (i) is the regression model good enough? (ii) 
does the extra computational effort of the mixed model pay off? In particular, going from a generalized 
linear model to a generalized linear mixed model can be much more technically complicated than going 
from a linear regression model to a linear mixed model. 

Finally, questions of multivariate modelling can sometimes arise. Multivariate modelling is more efficient 
(or appropriate) when there are multiple target variables from each small area, and these are either 
correlated with (or mutually restrictive of) each other. For instance, the average household incomes of 
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different household types from the same small area may be positively correlated. Also, a set of counts 
may sum up to a known total in each small area, such as the number of persons in different household 
types or the number of persons with the three different labour market statuses. Again, in terms of 
smoothing, the question is practically of an empirical nature, as the choice between regression and mixed 
models. 

In summary, it is not necessary to start the SAE process with modelling. Rather, explicit modelling can be 
considered after the basic smoothing results have been obtained and examined. Modelling should be 
targeted to address the perceived shortcomings of the basic smoothing results in the given situation. This 
is because, in terms of smoothing in the context of SAE, the goal of modelling is not to build the most 
plausible theoretical construct to explain the data, but to find a more powerful and, hopefully, acceptable 
tool to predict the statistical variables of interest from the existing sample survey. 

 

6.3. Parameters of interest and the working model 

6.3.1. Notation 

This section refers to the vectorial rewriting of the multivariate regression model with multiple random 
effects proposed in Datta et al. (1999), which enables extending the usual formulae of the univariate 
model for small areas to the multivariate case.  

Let us consider the target population U and a set of subpopulations 𝑈𝑑 (𝑑 =  1, … , 𝐷), related to D 

domains of interest. Let us indicate with 𝑦𝑖 = {𝑦𝑐,𝑖;  𝑐 =  1, . . . , 𝐶 } the vector of the 𝐶 dummy elementary 

variables referred in the 𝑖 –th (𝑖 =  1, . . . , 𝑁𝑑;  𝑑 = 1, . . . , 𝐷) unit of the target population, with 𝑦𝑐,𝑖  = 1 if 

the 𝑖 −  th unit has the 𝑐 −  th characteristic of interest while 𝑦𝑐,𝑖 = 0 otherwise;  𝑦𝑑𝑐,𝑖 = 𝑦𝑐,𝑖𝛾𝑑𝑖  (𝑖 =
 1, . . . , 𝑁𝑑;  𝑑 = 1, . . . , 𝐷;  𝑐 =  1, . . . , 𝐶) the 𝑐 −  th element of the generic elementary vector 𝑦𝑑,𝑖 equal 

to 1 if the 𝑖 −  th unit belonging to the 𝑑 −  th domain (subpopulation 𝑈𝑑) has the 𝑐 –  th characteristic 

of interest while 𝑦𝑑𝑐,𝑖 = 0 otherwise; 𝑦𝑑 = {𝑦𝑑,𝑖  ; 𝑖 =  1, . . . , 𝑁𝑑} the vector for all units of subpopulation 

𝑈𝑑 (𝑑 =  1, … , 𝐷) and with 𝑦 = {𝑦𝑑 ; 𝑑 = 1, . . . , 𝐷} the vector for all units of target population 𝑈. 

To introduce the related regression model, we denote, for each target variable and for each unit of the 
target population, as follows: X the design covariate matrix and β the corresponding fixed effect (i.e. 
regression coefficients) vector; Z  the design matrix of the random effects that denotes the belonging of 
each unit to the different domains and 𝑢 = {𝑢𝑑 ;  𝑑 =  1, . . . , 𝐷 }, is the vector of the random effects 𝑢𝑑 =

{𝑢𝑑,𝑐  ;  𝑐 =  1, . . . , 𝐶 }, which are part of vector 𝑢 ;  𝛴𝑒  , is the diagonal matrix of the C  variances, 𝜎𝑒𝑐
2   (𝑐 =

 1, . . . , 𝐶), of the vector of random errors 𝑒𝑑,𝑖 = {𝑒𝑐,𝑖𝛾𝑑𝑖  ; 𝑖 =  1, . . . , 𝑁;  𝑐 =  1, . . . , 𝐶 }; 𝛴𝑢 is the matrix of 

the C variances, 𝜎𝑢𝑐
2  for c = 1,. . . , C  and of the 𝐶 × (𝐶 −  1)  covariances, 𝜎𝑢𝑐𝑐 ,  (𝑐 ≠  𝑐 =  1, . . . , 𝐶) of 

the vector of random effects  𝑢𝑑 = {𝑢𝑑,𝑐  ;  𝑐 =  1, . . . , 𝐶 }. Note that in the simplest case of the models in 

which an absence of correlation between the C characteristics of interest is assumed, 𝛴𝑢 =

𝑑𝑖𝑎𝑔𝑐=1
𝐶 {𝜎𝑢𝑐

2 }.. Finally, 𝜔 = 𝑐𝑜𝑙𝑐=1
𝐶 {𝜔𝑐} , with 𝜔𝑐  =  [𝜎𝑒𝑐

2 , 𝜎𝑢𝑐𝑐 ,]
𝑇  indicates the vector of the so-called 

variance components whose elements coincide with the unknown parameters of the model’s variance 
and covariance matrices, 𝛴𝑒 and 𝛴𝑢. 

On the other hand, it is also useful to add the corresponding notation that serves to define the direct 
estimators referred to each domain of interest. Sample 𝑆, of size 𝑛, is selected from the population 𝑈 
according to sample design 𝑃, from which to extract the 𝑖 − 𝑡ℎ unit in the sampling with inclusion 
probability 𝜋 = {𝜋𝑖  . 1𝐶  ;  𝑖 = 1,… , 𝑁}. Let n be the overall sample size and 𝑛𝑑  the realized sample size for 
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the domain 𝑈𝑑, with 𝑁𝑟 = 𝑁 − 𝑛 and 𝑁𝑟𝑑 = 𝑁𝑑 − 𝑛𝑑 . Let 𝑅 = 𝑈\𝑆,  and 𝑅𝑑 = 𝑈𝑑\𝑆𝑑 , indicating the set 
of the residual units that are not included in the sample in population U and subpopulation 𝑈𝑑, 
respectively.  

Accordingly, for our purposes, it is useful to divide the formal structures involved in the estimation process 
into those referring to the units of the sample, denoted with the subscript S, and those referring to the 
remaining units of the population, denoted with the subscript R. Thus, for, example, the vectors 𝑦, 𝑍 and 
e, referring to all units of the population, are divided into the submatrices 𝑦𝑆, 𝑍𝑆 and es, and 𝑦𝑅 , 𝑍𝑅  
referring to the units belonging to the sets S and R, respectively. 

 

6.3.2. The General Working model  

To construct the various estimators that will be discussed in the following sections, in addition to the 
quantities presented above, it is useful to introduce, concerning the 𝑖 −  th unit of the domain 𝑈𝑑 (𝑖 =

 1, . . . , 𝑁𝑑;  𝑑 = 1, . . . , 𝐷), both the vector of C synthetic values �̂�𝑑,𝑖 = 𝑐𝑜𝑙𝑐=1
𝐶 {�̂�𝑑𝑐,𝑖} and the relative vector 

of the estimated residuals �̂�𝑑,𝑖 = 𝑐𝑜𝑙𝑐=1
𝐶 {�̂�𝑑𝑐,𝑖}. In particular, for the aforementioned quantities, general 

expressions valid under the different formulations of the WMs adopted for the direct and indirect 
estimators examined are considered below. To this end, we introduce, for 𝑦𝑑,𝑖 (𝑖 =  1, . . . , 𝑁𝑑;  𝑑 =

1, . . . , 𝐷), the following general WM, given by  

𝑦𝑑,𝑖 = 𝜇𝑑,𝑖 + 𝑒𝑑,𝑖 ,    (6.1) 

where 𝑒𝑑,𝑖 = [𝑟𝑜𝑤𝑐=1
𝐶 {𝑒𝑑𝑐,𝑖}]

𝑇
 is the vector of residuals and 𝜇𝑑,𝑖 = [𝑟𝑜𝑤𝑐=1

𝐶 {𝜇𝑑𝑐,𝑖}]
𝑇

 is the vector 

containing the conditional expected values of 𝑦𝑑, with respect to the matrix of the auxiliary variables 
𝑋𝑑,𝑖  and to the set of effects of the model formally expressed as  

𝜇𝑑,𝑖 = (𝑦𝑑,𝑖|𝑋𝑑,𝑖 , 𝛽, 𝑢𝑑).    (6.2) 

In fixed effects models, 𝜇𝑑,𝑖 depends only on the vector of the regression coefficients  𝛽, while in the case 

of linear mixed effects models, it also depends on the vector of random effects, 𝑢𝑑 . In the latter case, the 
random components of the WM consist of the vectors of random variables i.i.d. 𝑒𝑑,𝑖 and 𝑢𝑑 , whose 

probability distributions depend on a set of unknown parameters called variance components, included 
in vector ω ; moreover, 𝑋𝑑,𝑖 is a matrix of known constants of dimensions [𝐶 × (𝐺 ×  𝐶)], while 𝛽 

denotes, a vector of unknown constants of order (𝐺 ×  𝐶). In the case of generalized linear models with 
multivariate mixed effects, which represent the more general models that will be dealt with here, the 
following relation is valid:  

𝜂𝑑,𝑖 = 𝑔(𝜇𝑑,𝑖) = 𝑋𝑑,𝑖  𝛽 + 𝑢𝑑 , (6.3) 

in which 𝑔 (·) is a known invertible and differentiable function called the link function, which is chosen, 
generally, to assume values in the whole set of real numbers. In the case of linear regression models, 𝑔 (·
)  coincides with the identity function. Other forms of an exponential nature of the function are 
introduced, instead, to consider specific generalized linear models. By replacing (6.3) in (6.1), the general 
expression of the WM becomes 

𝑦𝑑,𝑖 = 𝑔
−1(𝑋𝑑,𝑖  𝛽 + 𝑢𝑑) + 𝑒𝑑,𝑖 .  (6.4) 
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The vector of the predicted values �̂�𝑑,𝑖(𝜔ෝ) of 𝑦𝑑,𝑖  based on the assumed WM is given by the following 

expression: 

�̂�𝑑,𝑖 = 𝑔
−1(𝑋𝑑,𝑖  �̂� + �̂�𝑑) + �̂�𝑑,𝑖   (6.5) 

with �̂� = �̂�(𝜔ෝ),  and �̂�𝑑(𝜔ෝ) the estimators of 𝛽 and 𝑢𝑑  which, in turn, are a function of the estimator 𝜔ෝ 
of the vector of the variance component 𝜔. Moreover, let �̂�𝑑,𝑖  be the vector of the estimated residuals, 

obtained as  

�̂�𝑑,𝑖 = 𝑦𝑑,𝑖 − �̂�𝑑,𝑖 .    (6.6) 

Knowledge of the vector of the estimated residuals is important to evaluate the quality of the considered 
estimators. More generally, the statistical properties of the considered estimators, both in terms of 
variability and bias, depend both on the actual capacity of the hypothesized WM to interpret the 
investigated phenomena and on the inferential reference approach – design-based or model-based – with 
respect to which these models are derived. 

Example 6.3.1. Suppose that we adopt for 𝑦𝑑,𝑖 a linear multivariate WM mixed with variance components. 

We therefore specify (6.3) by setting 𝜂𝑑,𝑖 = 𝑔(𝜇𝑑,𝑖) = 𝜇𝑑,𝑖  . Then,  

�̂�𝑑,𝑖 = 𝑋𝑑,𝑖  �̂� + �̂�𝑑   (6.7) 

with �̂�𝑑,𝑖 = �̂�𝑑,𝑖(𝜔ෝ) the Empirical Best Linear Unbiased Predictor (EBLUP) of 𝜂𝑑,𝑖, which depends on the 

generalized least squares estimator, �̂� =�̂� (𝜔ෝ), of 𝛽 and on the EBLUP estimator, �̂�𝑑 = �̂�𝑑 (𝜔ෝ), of the 
random effects vector 𝑢𝑑 . The estimators introduced above are called “two-stage” or plug-in, as they 
depend on the estimator of Maximum Likelihood (ML) or of Restricted Maximum Likelihood (REML), 𝜔ෝ, 
of the vector of variance components 𝜔.  

Example 6.3.2. Let us return to the case discussed in the previous example, but consider the simplest 
linear multivariate model with fixed effects, for which  

�̂�𝑑,𝑖 = 𝑋𝑑,𝑖  �̂�.     (6.8) 

This is obtained as a particular case of the random effects model by setting 𝛺(𝜎𝑢) = 0 for the variance 
and covariance matrix of the random effects. We then have 𝑢𝑑 = 0  by definition and 𝜔𝑐  =
 [𝜎𝑒𝑐

2  ,  𝜎𝑢𝑐 = 0]
𝑇  T. The variance and covariance matrix, 𝛴 =  𝛴 (𝜔), of y  therefore becomes 

  𝛴 =  𝑅 (𝜎𝑒), ( 6.9) 

since 𝑍𝑇  𝛺 (𝜎𝑢) 𝑍 =  0, where 𝑅 (𝜎𝑒) is expressed as  

𝑅 =  𝑊𝑁
−1⊗𝛴𝑒  (𝜎𝑒)  =  𝑑𝑖𝑎𝑔𝑑 = 1

𝐷 {𝑑𝑖𝑎𝑔𝑖 = 1
𝑁𝑑 {𝑤𝑑,𝑖

−1  ⊗ 𝛴𝑒}} (6.10)  

The generalized least squares estimator of β obtained on the basis of the data of the probabilistic sample, 
S, selected is given by  

𝛽 =  (𝑋𝑆
𝑇𝑅𝑆

−1 𝑋𝑆)
−1 𝑋𝑆

𝑇 𝑅𝑆
−1 𝑌𝑆

𝑇   (6.11) 

where 𝑅𝑆  =  𝑊𝑆
−1⊗𝛴𝑒  (𝜎𝑒) = 𝑑𝑖𝑎𝑔𝑑 = 1

𝐷 {𝑑𝑖𝑎𝑔𝑖 = 1
𝑛𝑑 {𝑤𝑑,𝑖

−1  ⊗ 𝛴𝑒}}. 
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From a general point of view, the matrix 𝑊𝑆 represents a matrix of individual weights linked to a pattern 
of heteroscedasticity residuals of the model. In the case of design-based estimators, however, this matrix 

can be defined based on the probabilities of inclusion in the sample of units, as follows: 𝑊𝑆
−1  =

𝑑𝑖𝑎𝑔𝑑 = 1
𝐷 {𝑑𝑖𝑎𝑔𝑖 = 1

𝑛𝑑 {𝜋𝑖  ∙ 1𝐶}} to obtain valid inferences under the sampling design. 

Example 6.3.3. In the specific case, 𝑦𝑑,𝑖  is a vector of C binary variables for which the relation 1𝐶
𝑇 ∙ 𝑦𝑑,𝑖 = 1 

holds. Likewise, the corresponding vector, �̂�𝑑,𝑖 of the synthetic values must also satisfy the condition 1𝐶
𝑇 ∙

�̂�𝑑,𝑖 = 1. In this context, �̂�𝑑,𝑖 represents an estimate of the unknown probability vector 𝜂𝑑,𝑖 =

 [𝑟𝑜𝑤𝑐=1
𝐶  {𝜂𝑑𝑐,𝑖}] T with 𝜂𝑑𝑐,𝑖  (𝑖 =  1, . . . , 𝑁𝑑;  𝑑 = 1, . . . , 𝐷;  𝑐 =  1, . . . , 𝐶) being the probability that the 

𝑖 − th unit of the domain 𝑈𝑑 possesses the 𝑐 − th (𝑐 =  1, . . . , 𝐶) characteristic of interest, hereinafter 
called the probability of success. In this case, for example, if it is desired to adopt a logistic regression 
model with mixed effects, we must define in (6.3) g = logit, obtaining  

𝜂𝑑,𝑖 = 𝑙𝑜𝑔𝑖𝑡 (𝜇𝑑,𝑖) = 𝑋𝑑,𝑖  𝛽 + 𝑢𝑑 , (6.12) 

from which  

𝜇𝑑,𝑖 = 𝑙𝑜𝑔𝑖𝑡
−1(𝑋𝑑,𝑖  𝛽 + 𝑢𝑑).     (6.13) 

A logit model of this type has been proposed in Scealy (2010). The work is based on a model relating to 
the first C - 1 categories conditioned by the last category, c = C, the object of estimation the absolute 
frequency of which can be calculated by difference. The estimation model for the first C - 1 categories is 
expressed as 

𝑙𝑜𝑔 (𝜇𝑑𝑐,𝑖)

𝑙𝑜𝑔 (𝜇𝑑𝐶,𝑖)
= 𝑋𝑑,𝑖  𝛽 + 𝑢𝑑 .     (6.14)  

It is also worth remembering that the paper aims to estimate the C = 3 categories “employed”, 
“unemployed” and “inactive”. It also divides the estimation domains into two types: territorial domains 
and age groups. Furthermore, it is assumed that the territorial domains are all observed in the sample, 
while for each of them, not all sex groups by age are observed in the sample. 

Let us now consider vector 𝑦+ = 𝑐𝑜𝑙𝑐=1
𝐶 {𝑦𝑐}, the vector of the C unknown population totals being  

𝑦𝑐 =∑ 𝑦𝑑𝑐,𝑖
𝑁

𝑖=1
      

 The vector 𝑦+ is given by the matrix product  

𝑦+ = 𝐴+
𝑇 ∙ 𝑦,    (6.15) 

where 𝐴+
𝑇  is a suitable aggregation matrix of the elementary data vector 𝑦 . 

Similarly, 𝑋+ denotes the matrix of order [𝐶 × (𝐺 ×  𝐶)] of the known population totals of the auxiliary 
variables, expressed as 

𝑋+ = 𝐴+
𝑇 ∙ 𝑋.    (6.16) 
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Let us now consider vector 𝑦+
′ = 𝑐𝑜𝑙𝑑=1

𝐷  {𝑦𝑑} of order (𝐷 ×  𝐶), containing the total C of unknown 
interest for each of the D subpopulations 𝑈𝑑 (𝑑 =  1, . . . , 𝐷), with 

𝑦𝑑 = (∑ 𝑦𝑑,𝑖
𝑁𝑑

𝑖=1
= 𝑐𝑜𝑙 𝑐 = 1

𝐶  {𝑦𝑑𝑐}) 

being the vector of the C totals of interest relative to the 𝑑 − th subpopulation 𝑈𝑑 (𝑑 =  1, . . . , 𝐷). The 
vector 𝑦+

′  is given by the matrix product  

𝑦+
′ = 𝐴+

′𝑇 ∙ 𝑦,     (17)  

where 𝐴+
′  =  𝑟𝑜𝑤𝑑 = 1

𝐷  {𝑟𝑜𝑤𝑐 = 1
𝐶  {𝑎𝑑𝑐}} is a suitable aggregation matrix of the elementary data vector y, 

where 𝑎𝑑𝑐  denotes the generic aggregation vector, of order (𝑁 ×  𝐶 ), corresponding to the total 𝑐 − th 
(𝑐 =  1, . . . , 𝐶) of the subpopulation 𝑈𝑑 (𝑑 =  1, . . . , 𝐷). Each of the vectors 𝑦𝑑 (𝑑 =  1, . . . , 𝐷), 

components of 𝑦+
′ , is thus obtained as 𝑦𝑑 = 𝑎𝑑𝑐 ∙ y and must respect the condition 𝑦𝑑

𝑇 ·  1𝐶  =  𝑁𝑑 . 

Finally, it is useful to consider the matrix 𝑋+
′  of order [(𝐷 ×  𝐶)  ×  (𝐺 ×  𝐶)], relating to the total G of 

the auxiliary variables referred to the D  domains, obtained as  

𝑋+
′ = 𝐴+

′𝑇 ∙ 𝑋.    (18)  

 

6.4. Construction of the vector of target variables and domains 

An initial fundamental classification of the variables involved in the tabulation plan (TP) is based on their 
subdivision into replaceable and non-replaceable variables. 

 

6.4.1. Replaceable and non-replaceable variables 

The first class includes variables for which data for each unit of the population of interest are known. For 
the second class, however, only the data observed on a representative sample of units of the population 
of interest and/or from administrative sources on particular subsets of units may be available. Therefore, 
the estimates of the aggregates relating to the first type of variables can be obtained directly by 
aggregating the microdata relating to the elementary units belonging to the subpopulations of interest. 
As for the aggregates relating to non-replaceable variables, these can be obtained through univariate or 
multivariate estimation processes based on the imputation of missing data, or on design-based or model-
based sample estimation methods. 

 

6.4.2. Partially replaceable variables 

In addition to dividing the target variables into replaceable and non-replaceable variables, there is the 
further category of partially replaceable variables, for which, for example, only some of the modalities of 
the variable of interest are known. The latter subset, however, can be traced back to the partition 
between replaceable and non-replaceable variables. Take, for example, the case of the variable 
employment condition (hereafter referred to as the Partially Replaceable Economic Condition [PREC]), 
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classified according to the following modes: Occupied, Person seeking employment and Inactive. The 
latter mode is further classified into four subcategories: Housewife, Student, Retired and Disabled. 
Moreover, suppose that for the data from administrative sources, relating to employees, students and 
retirees, it is possible to produce complete and good-quality data, for each unit of the population of 
interest, concerning the abovementioned methods, by applying specific control, correction and 
imputation processes. Then, it is possible to consider the PREC variable, which is partially replaceable with 
respect to two new variables. The first of the two variables is replaceable and includes the modalities, 
known for all individuals of the population, of Occupied and Not employed. This new variable, the 
Replaceable Economic Condition (REC), clearly refers to a partition of the population that is hierarchically 
more aggregated than that of the corresponding original variable, which is partially replaceable and 
considers five modalities instead of four. With respect to the existing variable, this new variable 
corresponds to the introduction of a new PREC classification that is more hierarchically aggregated than 
that of the original variable. On the other hand, the second new variable, which is not replaceable, 
concerns the further partition of the unemployed-other mode into the three subcategories of Person 
seeking employment, Housewife and Disabled. 

 

6.4.3. Unit-level auxiliary variables  

In addition to the distinction between replaceable and non-replaceable target variables, another 
fundamental subdivision is that between variables of interest and auxiliary unit-level variables. The latter, 
like the substitutable target variables, are variables for which the data for each unit of the target 
population are known, even if, in this case, the modalities of these variables do not coincide with any of 
the categories of the target variables of the TP. Therefore, the use of these variables in the estimation 
process has the purpose of improving the quality of the estimation process. It is clear that the quality of 
the estimates produced improves as the correlation between the set of non-replaceable target variables 
and the unit-level auxiliary variables used in the estimation procedure is greater. 

The auxiliary variables also include all variables derived from the set of replaceable variables for which a 
different classification definition (than that established for those already defined for the TP) is required. 
For example, the age class variable could be requested at a more detailed classification level – for example 
at an annual level – than the five-year one required for the TP. Another example is the territorial level 
replaceable variable, for which the TP could require the three traditional hierarchical levels of municipal, 
provincial and regional administrative type. Exclusively for the purpose of defining the best work model, 
a territorial classification at the level of the local labour system could be required, a classification that 
entails an aggregation of the municipalities that cannot be inserted hierarchically into the three 
administrative classifications to be considered for the TP. 

 

6.4.4. Unit-level auxiliary variables with error and proxy measurement 

A different scenario occurs when the micro values of the auxiliary variable are available for the units 
existing on a date, 𝑡 − ∆, prior to the reference time t of the TP. Therefore, at time t, the individual values 
of the unit-level auxiliary variables may only be available for the units belonging to the longitudinal 
population intersection 𝑈𝑡−∆,𝑡 . Therefore, the co-present units belonging both to the transversal 

population, 𝑈𝑡, existing at time t and to that of 𝑈𝑡−∆existing at time 𝑡 −  ∆ are available. With respect to 
time t, this type of auxiliary information is certainly affected by a coverage error, as it is not available for 
all units existing at time t, being unavailable for the units that entered the population in the period 
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between 𝑡 − ∆ and 𝑡. Furthermore, there is an additional component of a measurement error due to 
failure to update, as the values of the auxiliary variable are not updated on the relevant date. Hereafter, 
this type of variable, affected by coverage or measurement errors, will be referred to as auxiliary unit-
level variables with error. When an auxiliary unit-level variable with error coincides with one of the 
variables of interest, it is called a unit-level proxy variable. This is the case, for example, with the 
Employment condition variable available from administrative sources, which is updated to approximately 
16 months prior to the current time t. From these sources, it is possible to obtain proxy information on 
the employment condition (Occupied or Not employed modes), for each unit co-present in the population 
in the period between month 𝑡 −  16 and month t.  

 

6.4.5. Area-level auxiliary variables  

Finally, it is useful to introduce a last class of auxiliary variables for which the average population values 
at the aggregate level (but not the corresponding micro values) refer to the various estimation domains 
(whose definition in the context under examination is given in the next paragraph). Here too, these 
variables may be affected by coverage errors, as observed on a previous population of the same type. This 
is the case, for example, when for each estimation domain, the average value of the variable of interest 
is known based on the previous census or an administrative archive. In certain situations, the average 
value in question, even if referred to time t, can also refer to a completely different population from the 
one of interest. Consider, for example, the case where for the Person seeking employment mode, the 
Employment condition variable has aggregated data from the Internet; in the case of variables linked to 
commuting, it might be possible to infer data on movements between different municipalities from the 
GPS tracks left on the Internet. On this basis, this type of information can be denoted as auxiliary area-
level variables. Furthermore, using the terminology of error variables and proxies is also reasonable. 

 

6.5. A classification of estimators 

Starting from the general estimation methodology described in this chapter, we consider the options for 
the specific estimation procedure for the vector of the parameters of interest 𝑦+

′ . Ultimately, this depends 
on the consideration of different factors. In particular, the main factors involved in the choice are the 
following: 

1. how the estimator “gains strength” from the other domains, and thus the definition of a Direct 
(DI) or an Indirect (IN) estimator; 

2. how the estimator uses the data observed in the domain, thus the definition of a Projection or 
a Composite estimator; 

3. the reference inferential approach, from which would derive the definition of a Design-
based/model-assisted (MA) or a Model-based (MB) estimator; 

4. fixed effects or mixed/random effects WM (F) – the Fixed effects model (FE) or the Mixed 
effects model (ME); 

5. linear or generalized linear WM – the Linear Model (LM) or the Generalized Linear Model 
(GLM) in the case of the FE, and the Linear Mixed Model (LMM) or the Generalized Linear 
Mixed Model (GMM) in the case of the ME; 

6. the definition of random effects – Additive random effects (A) or Joint random effects (J); 
7. WMs at the domain level or at the unit level – the Unit Level Model or the Domain Level Model. 
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Let us now briefly examine the factors of choice listed above. In this regard, it should be noted that most 
of these factors concern indirect estimators. In particular, Factors 2 and 6 concern only indirect 
estimators. Furthermore, indirect estimators that refer to fixed-effects models are called synthetic 
estimators, while those that refer to mixed effects models are called empirical predictors (EP). These two 
classes of estimators then differ further on the basis of Factors 2 to 6 included. 

As for direct estimators, only some of the factors considered can be applied in choosing them. In 
particular, Factors 3, 4 and 5 affect direct estimators only with regard to the approach based on sampling 
design (that is, Design-based/model-assisted for Factor 3), the generalized linear and linear models with 
fixed effects (the fixed effects models, Factor 4), and the linear models and the generalized linear models, 
for Factor 5. As regards Factor 3, it is also specified that, in these Guidelines, only the direct estimators 
defined within the design-based approach are addressed, which are correct and consistent under the 
sampling design. In this context, the WM can play a role in reducing the sampling variability of the 
estimator; however, the inferential properties of the estimator – in terms of correctness and consistency 
– do not depend on the assumptions underlying the WM. Therefore, we speak of a design-based or model-
assisted approach. These Guidelines, however, do not consider direct model-based estimators; see, for 
example, Chambers and Chandra (2008) on the model-based direct estimator.  

The following section further examines Factors 1 and 2. 

 

6.5.1. How the estimator gains strength from other domains 

In general, direct estimators use only the sample information relating to the domain d of interest. Instead, 
indirect estimators use the sample information relating to a macro-domain 𝑑+ that includes other 
domains in addition to domain d. It is therefore said that indirect estimators take strength from a macro-
domain that includes other domains besides the one of interest. More particularly, in the context under 
examination, the choice of a direct or indirect estimator derives from the relationship between the set of 
simple indices,  𝑔𝛿  (𝛿 =  1, . . . , ∆1), which are part of the vector index g (on the basis of which the profiles 
of the matrix X are defined) and the indexes that define domains or macro-domains. To this end, it is 
useful to briefly summarize the concepts mentioned above. In particular, it should be remembered that 
the 𝑝𝑥 index (𝑝𝑥  =  1, . . . , 𝑃𝑥) progressively numbers the different profiles, g = (𝑔1 , … , 𝐺∆1)

𝑇, obtainable 
as the simple indices  𝑔1, … , 𝐺∆1, which compose it. 

Let us now return to the problem of choosing between direct or indirect estimators. Given the above, it 
is necessary to define the relationships existing between the elementary indices that make up vector g 
and index d. In particular, as regards the structure of the matrix of design X, it is assumed – without any 
loss of generality – that the first index 𝑔1 is used to define any partition of the population linked to the 
domains. Therefore, the following fundamental situations are possible: 

1. 𝑔1 ≡ 𝑑                                                             ∀(𝑔1, 𝑑), 

2. 𝑔1 ≡ �̃�    for  �̃� ≡ 𝑑�̃�1(≡ 𝑑 × �̃�1)             ∀(�̃�1 , 𝑑), 

3. 𝑔1 ≡ 𝑑
+                                                            ∀(𝑔1 , 𝑑

+), 

4. 𝑔1 ≡ �̃�
+    for  �̃�+ ≡ 𝑑+�̃�1(≡ 𝑑

+ × �̃�1)    ∀(�̃�1, �̃�
+) 
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in which the �̃�1 index represents a further partition within each domain, corresponding to a complete 
post-stratification within the domain. As regards the situations referred to in Factors 2 and 3 above, it 
should be noted that these are simplifications with respect to the level of complexity that can be possible 
in real cases. In fact, it is possible to use, at the same time in the estimation process, several aggregations 
of domains into macro-domains (that correspond to as many partitions of the population). For example, 
there may be a first macro-domain, associated with index 𝑑+ (𝑑+  =  1, . . . , 𝐷+), obtained from the 
aggregation of the first simple index that helps define the domains.  

The first two situations lead to the definition of direct-type estimators. The last two cases, on the other 
hand, lead to the construction of indirect-type estimators. 

In any case, the situations considered correspond to a specific definition of the matrix of the design X, 

which is defined on the basis of the general structure 𝑋 =  𝑟𝑜𝑤𝛿 = 1
∆   {𝑋𝛿} 11, where 𝑋𝛿 =

 𝑑𝑖𝑎𝑔𝑔𝛿=1
𝐺𝛿  {1𝑁𝑔𝑑

}. The same holds for the corresponding sample matrix, 𝑋𝑆, which has the same block 

structure; however, each refers to the 𝑛𝑔𝑑  (𝛿 =  1, … , ∆1) sample units. Then, each of the situations 

referred to in the list above defines a specific diagonal structure of the matrix 𝑋𝑆1 = 𝑑𝑖𝑎𝑔𝑔1=1
𝐺1  {1𝑛𝑔𝑑1

}. In 

particular, from Conditions 1 and 2, it is derived that, respectively, 𝑋𝑆1 = 𝑑𝑖𝑎𝑔𝑑=1
𝐷  {1𝑛𝑑} and 𝑋𝑆1 =

𝑑𝑖𝑎𝑔�̃�=1
�̃�  {1𝑛�̃�} = 𝑑𝑖𝑎𝑔𝑑=1

𝐷  {𝑑𝑖𝑎𝑔�̃�1=1
�̃�1 {1𝑛𝑑�̃�1}}. For Factor 3, instead, 𝑋𝑆1 = 𝑑𝑖𝑎𝑔𝑑+=1

𝐷+  {1𝑛𝑑+}. Taking 

into account Kim and Rao (2012), Conditions 1 and 2 lead to the definition of estimators �̂�+
′(𝑃𝑅)

=

 𝑐𝑜𝑙𝑑 = 1
𝐷  {�̂�𝑑

′(𝑃𝑅)
}, direct projections that are correct and consistent under the design at the level of each 

domain 𝑑 (𝑑 =  1, . . . , 𝐷). Conditions 3 and 4, instead, lead to the definition of estimators �̂�+
′(𝑃𝑅)

=

 𝑑𝑖𝑎𝑔𝑑+=1
𝐷+  {�̂�

𝑑+
′(𝑃𝑅)

}, Projection direct estimators that are correct and consistent under the design at the 

level of each macro-domain 𝑑+ (𝑑+  =  1, . . . , 𝐷+); however, in this case, the estimates referring to 
domains d, included in the macro-domains, are indirect estimates that may be biased under the sample 
design. 

 

6.5.2. How the estimator uses the data observed in the domain 

The general formulation of the projection estimator of the vector of totals 𝑦𝑑 is given by the sum of 
vectors �̂�𝑑,𝑖 , (𝑖 =  1, . . . ,  𝑁𝑑;  𝑑 =  1, . . . , 𝐷) of predicted values, on the basis of the WM, for all units of 

the target population belonging to domain d: 

𝒚ෝ𝑑
(𝑃𝑅)

 = ∑𝒚ෝ𝑑,𝑖

 𝑁𝑑

𝑖=1

.     (6.19)  

The composite estimator is a particular form of projection estimator in which the predicted values are 
used only for the subset R of units not included in the sample; for the sample units S, the values 𝑦𝑑,𝑖 

directly observed with the survey are used. Therefore, the composite estimator of the total 𝑦𝑑 is  

�̂�𝑑
(𝐶𝑂)

 =∑𝑦𝑑,𝑖

 𝑛𝑑

𝑖=1

+ �̂�𝑅,𝑑
(𝑃𝑅)

,    (6.20)  
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where �̂�𝑅,𝑑
(𝑃𝑅)

 denotes the projection estimator referred to the set of population units not observed in the 

sample. The estimate is obtained, therefore, by applying the sum (20) to the  𝑁𝑅,𝑑 of which the set R is 

composed. It is also useful to give the following alternative expression of the composite estimator  

�̂�𝑑
(𝐶𝑂)

 =  𝑓𝑑 �̅�𝑆,𝑑  +  (1 −  𝑓𝑑)�̂̅�𝑅,𝑑
(𝑃𝑅)

    (6.21)  

obtained, for each domain d (d = 1,..., D), as a convex linear combination between the vector �̅�𝑆,𝑑 of the 

sample mean values and the vector �̂̅�𝑅,𝑑
(𝑃𝑅) of the predicted mean values, relative to the units of set R, 

where 𝑓𝑑 = 𝑛𝑑/𝑁𝑑. It is worth noting that where 𝑓𝑑 ≅ 0, the projection and composite estimators 
produce very similar results. On the other hand, where 𝑓𝑑 ≫ 0, the results obtained with the synthetic 
and the composite estimator can also differ greatly. 

 

6.5.3. The classification adopted 

This chapter adopts a basic classification of estimators that refers to the functional form of WM 
considered in Factors 4 and 5 above. The following four basic estimators are therefore defined: LM, GLM, 
LMM, GMM. Estimators referring to the generalized linear models, GLM and GMM, have the advantage 
of ensuring the production of contingency table estimates in which the estimated values of cell 
frequencies are always greater than 0. These estimators require, for their construction, knowledge of the 
elementary value vectors 𝑥𝑑,𝑖  and 𝑧𝑑,𝑖. This knowledge, however, is not required for the corresponding 

estimators based on the LM and LMM models. Furthermore, it should be remembered that the chapter 
only deals with estimators based on unit-level versions of the models. In this context, of course, some of 
the auxiliary variables adopted by the model may only be available at the aggregate domain level. The 
first set of estimation methods, referred to hereafter as Group 1, contains direct and indirect design-based 
estimators. In particular, for direct estimation methods, the following two projection estimators are 
defined: Direct-LM and Direct-GLM. Similarly, as regards indirect estimation methods, we have the 
projection estimators Synthetic-LM and Synthetic-GLM. For these last two estimation methods, the 
corresponding composite estimators are also defined: Composite-LM and Composite-GLM. A detailed 
discussion, relating to the case of univariate estimation, of the estimators belonging to Group 1, can be 
found in Rao (2003; Chapters 2, 3 and 4). 

A particular case of the estimators belonging to this group occurs when ∆ =  ∆1 =  1. 

This situation leads to the definition of direct and post-stratified ratio estimators 

synthetics. These are well-known design-based estimation methods that are used in 

the practice of sample surveys. In particular, estimators of this type are among those 

in which a specific type of linear WM, LM, is adopted, namely the WM Ratio (R) or the 

Post-stratified ratio (P). We then extend the notation introduced so far to include the 

estimators in question as special cases of the LM estimator, indicating as LMR and LMP 

the estimator based on the R model and on the P model, respectively. Each of the two estimators 
considered differs, then, depending on Factors 1 and 2. Thus, for example, for the LMR estimator, there 
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are three possible versions: Direct-LMR, Synthetic LMR and Compound-LMR. Concerning the case of 
univariate direct estimation, these estimators are treated as specific cases in Rao (2003; Section 2.4.3), 
relating to the situation in which, for the generalized regression estimator, there are known totals of 
auxiliary domain variables. 

The second set of estimation methods, referred to below as Group 2, contains the indirect model-based 
estimators. The projection estimators are the following: Synthetic LM, Synthetic GLM, Synthetic LMM, 
Synthetic GMM, Predictor LMM and Predictor GMM. 

The LMM and GMM estimators of the synthetic and empirical predictor type are based on the same 
estimator of the vector of the regression coefficients. In particular, this estimate is obtained applying the 
generalized least squares method with weights given by the components of estimated variance. For each 
of the previous estimation methods, the corresponding composite estimators are also defined. 

As for the Group 2 estimators, defined on the basis of mixed-effects models, that is the LMM and GMM 
predictors, this chapter considers two versions that differ based on the assumptions underlying the 
random components of the model. In particular, we denote the following predictors: additive random 
effects (ARE), that are estimators based on a mixed-effects model, in which several vectors of additive 
and independent random effects are considered; and joint random effects (JRE), when a single vector of 
random effects is defined, the possible values of which vary as the index d (𝑑 =  1, . . . , 𝐷).  

Table 6.1 summarizes the projection estimators introduced above, which arise from the different 
definition of Factors 1, 3, 4, 5 and 6 described at the beginning of this paragraph. For all estimators of this 
type, Factor 2, relating to how it uses the data observed in the domain, assumes the projection mode. 
Furthermore, as projection estimators are all unit-level estimators, Factor 7, which differentiates between 
the estimators based on the level of data aggregation with which the WM is defined, is not considered in 
the table. 

It is emphasized that if a composite estimator is adopted, this is to be reported explicitly in the 
denomination of the estimator itself. For example, when referring to the Design-based synthetic 
projection LM estimator, listed in the second row of the table, the corresponding composite estimator 
will be denoted as a design-based synthetic LM composite. 

 

Table 6.1. Summary table of the projection estimators considered 
 

 
Estimator 

 
(1) (3) (4) (5) (6) 

LM Direct Design- based DI DE FE LM - 

LM Synthetic Design- based IN DE FE LM - 

GLM Synthetic Design- based IN DE FE GLM - 

LMM Synthetic IN MO FE LMM J 

GLMM Synthetic IN MO FE GLMM J 

LMM IN MO ME LMM J 

GLMM IN MO ME GLMM J 

LMM with additive random effects IN MO ME LMM A 

GLMM with additive random effects IN MO ME GLMM A 



116 
 

 

6.6. Multivariate projection estimators 

6.6.1. Preamble 

Let us consider a set of interest totals referred to target population 𝑈ℎ of size 𝑁ℎ. Let us also suppose that 
two or more probabilistic samples 𝑆1, 𝑆2 , have been selected from 𝑈ℎ , of dimensions 𝑛1 and 𝑛2 < 𝑛1, 
respectively. Therefore 𝑆1 can be called the large sample and 𝑆2 the small sample. A first class of projection 
estimators of the totals of interest can be obtained from the weighted sum, using the sample weights 𝜔𝑖1, 
(𝑖 =  1, … , 𝑛1), of the vectors of the predicted values ŷ𝑖  (𝑖 =  1, … , 𝑛1), referred to the variables of 
interest 𝑦𝑖 on all 𝑛1 units of 𝑆1. The estimate 𝜔ෝ of the unknown parameters 𝜔, on which the calculation 
of the predicted values, ŷ𝑖(𝜔ෝ) depends, is obtained starting from the information available on the 
variables of interest and the auxiliary variables, considered by the WM, observed on the 𝑛2 units of the 
small sample 𝑆2. This type of projection estimator has been explored in Kim and Rao (2012). 

The second class of projection estimators is obtained through the sum of the predicted values of the 
variables of interest for all 𝑁ℎ units of the population itself. In this case, the unknown parameters are 
estimated starting from the information available on the variables of interest and on the auxiliary 
variables, considered by the WM, observed on the units of 𝑆1, 𝑆2 or both samples. In the first two cases, 
the choice of the sample to be used for the estimation of the parameters will fall on the one containing 
the information required to compute the estimate, that is, sample 𝑆1 in the first case and sample 𝑆2 in the 
second. On the other hand, in the third case, where both samples considered have detected the variables 
of interest and the auxiliary variables, two choices are possible. The first is to use only the data from the 
large sample. The second option, however, involves using the pooled sample of the two, 𝑆 =  𝑆1 ∪ 𝑆2. A 
general formulation of the projection estimator, that includes the two classes described above, is given 
by 

�̂�+
(𝑃𝑅)

 = ∑ �̂�𝑖(𝜔ෝ𝐵)
𝑖∈𝐴

𝑤𝐴,𝑖 ,     (6.22) 

where 𝑤𝐴,𝑖  is a known constant assigned to the 𝑖 −  th unit of the collective 𝐴 (𝑖 ∈  𝐴); moreover, 𝜔ෝ𝐵  is 

an estimator of the unknown parameters ω of the WM obtained on the basis of the sample data B. The 
projection estimator is therefore expressed as the weighted sum of the elementary vectors of synthetic 
values, also called imputed values, for all units of A. The projection estimators – which use the vectors of 
imputed values �̂�𝑖 for all units of the collective of interest instead of the corresponding vectors of true 
values 𝑦𝑖 – are widely used, implicitly or explicitly, in the practice of sample surveys. 

The first class of projection estimators is obtained by setting 𝐴 = 𝑆1, 𝐵 = 𝑆2 and 𝑤𝐴,𝑖 = 𝜔𝑖1 

(𝑖 ∈ 𝑆1). Regarding this class of estimators, already discussed in Kim and Rao (2012) and in Chapter 3 of 
these Guidelines, it is noted that one of the main advantages of this approach is the possibility to use a 
single sample weight for all variables of interest also when different WMs are adopted for each. Thus, the 
imputed values of the variables of interest may depend on different choices of the vectors of the auxiliary 
variables associated with the variables of interest themselves.  

The second class of Projection estimators is obtained, instead, by setting 𝐴 = 𝑈ℎ, 𝐵 = 𝑆2 and 

𝑤𝐴,𝑖  (𝑖 ∈ 𝐴1).  
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6.6.2. Alternative strategies for defining the auxiliary variables for direct and indirect estimators  

In the next two sections, reference will be made to the projection estimators belonging to the second 
class where 𝑈 =  𝐴, in the case of the estimate of 𝑦+, or 𝑈𝑑 = 𝐴 for 𝑑 =  1. . . 𝐷, in the case of the 
estimate of 𝑦+

′ . Furthermore, 𝑆 =  𝑆1 and the sampling weights are equal to 𝜔𝑖1. 

To illustrate some important characteristics of the estimator under consideration, let us take the case of 
the estimate of vectors 𝑦𝑑,  (𝑑 =  1, . . . , 𝐷) included in 𝑦+

′ , the generic form of which contains the total 
C of interest relative to the 𝑑 − th domain (𝑑 =  1, . . . , 𝐷)). The expression of the estimator is, then,  

�̂�𝑑
(𝑃𝑅)

 = ∑ �̂�𝑑𝑖(𝜔ෝ𝑆1).
𝑖∈ 𝑈𝑑

     (6.23) 

The generic vector of predicted values �̂�𝑑𝑖 depends on the strategy to define the model and the auxiliary 
variables adopted. A particular strategy at the single-mode level allows for the definition of different 
models – each potentially based on a different set of auxiliary variables – for each of the C modes of vector 
�̂�𝑑𝑖(𝜔ෝ𝑆1). At the opposite extreme, a general strategy at the TP level provides for the definition of the 

same model-based approach, therefore, on the same set of auxiliary variables – for all aforementioned 
modalities. Obviously, each strategy carries with it the ability to obtain estimates that are consistent with 
one other and different levels of quality of the estimates themselves. 

Another important aspect to consider – one that certainly affects the consistency and quality of the 
estimates produced – is the choice between model-assisted and model-based estimators. The model-

assisted �̂�𝑑
(𝑃𝑅)

 (𝑑 =  1. . . , 𝐷) estimator is based on a fixed-effects linear regression model. Moreover, to 

guarantee correctness under the sample design, the generic matrix 𝑋𝑆,𝑑 – relating to the 𝑛𝑑  sample units 

of the dth domain (𝑑 =  1. . , 𝐷) – must contain a vector of intercepts 1𝑛𝑑 . This corresponds to the case 

where the macro-domains coincide with the domains, with different types of post-stratification 
(complete, incomplete or mixed). The sample matrix 𝑋𝑆 is formed by the sequencing of D matrices 𝑋𝑆,𝑑 

(𝑑 =  1. . . , 𝐷), upon the inclusion of the submatrix 𝑋1𝑆=𝑑𝑖𝑎𝑔𝑑=1
𝐷 {1𝑛𝑑}, with 𝑋𝑆 =  𝑟𝑜𝑤𝑔

𝐺{𝑋𝑔,𝑆} see Kim 

and Rao (2012). 

 

6.6.3. Projection estimator of  𝒚+ 

The compact expression of the estimator of vector �̂�+
(𝑃 𝑅)(= ∑ ∑ �̂�𝑑,𝑖 = 𝑐𝑜𝑙𝑐=1

𝐶
𝑖∈ 𝑈𝑑

𝐷
𝑑=1 {�̂�𝑐}) is given by 

�̂�+
(𝑃 𝑅)

= 𝐴+
𝑇 ∙ �̂�,    (6.24) 

with �̂� = 𝑐𝑜𝑙𝑑=1
𝐷 {𝑐𝑜𝑙𝑖=1

𝑁𝑑 {�̂�𝑑𝑖}} being the vector of order (𝑁 ×  𝐶) containing the N elementary vectors of 

predicted values. The explicit expression of the vector of the predicted values depends on the WM 
adopted. If a linear mixed-effects model is chosen,  

�̂�  =  𝑋�̂�  +  𝑍�̂�      (6.25)  

and the corresponding vector of the estimated residuals are given by  
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�̂�  =  𝑦 −  (𝑋�̂�  +  𝑍�̂�).    (6.26)  

If, instead, a linear model with fixed effects is adopted, the above equations are modified by eliminating 
the term 𝑍�̂� which is equal to 0𝑁 × 𝐶.  

6.6.4. Projection estimator of  𝒚+
′  

The equations introduced in the previous paragraph are easily adapted to the case in question, relating 
to the estimate of the vector of domain totals 𝑦+

′ .  Indeed, the general expression of the projection 

estimator �̂�+
′(𝑃 𝑅)

= 𝑐𝑜𝑙𝑑=1
𝐷 {𝑐𝑜𝑙𝑐=1

𝐶 {�̂�𝑑𝑐}} of vector 𝑦+
′  is given by  

�̂�+
′(𝑃 𝑅)

= 𝐴+
′𝑇 ∙ �̂�.    (6.27) 

Let us consider now the multivariate linear WM with mixed effects, for which  

�̂�𝑑,𝑖  =  𝑋𝑑,𝑖�̂�  +  𝑍𝑢.ෝ          (6.28) 

In this case the expressions for the projection estimators of the totals y + and y 0 + are given by, 
respectively,  

�̂�+
(𝑃 𝑅)

= 𝑋+�̂�  +  𝑍+�̂�      (6.29) 

and  

�̂�+
′(𝑃 𝑅)

= 𝑋+
′ �̂�  +  𝑍+

′ �̂�      (6.30) 

where 𝑍+ = 𝐴+
𝑇𝑍 and 𝑍+

′ = 𝐴+
′𝑇𝑍.  

 

6.7. Summary of the main recommendations 

The main advice provided in this chapter is the following. 
1. In many surveys, the sample size is not sufficiently large to guarantee reliable estimates for all 

target subpopulations. 
2. When direct estimates cannot be disseminated because they are of unsatisfactory quality, the 

SAE methods allow for the problem to be overcome, borrowing strength from the sample 
information belonging to other domains and resulting in an increase in the effective sample size 
for each small area. 

3. The SAE techniques are strongly model-dependent, and the model parameters can be estimated 
only by the observed sample data. Thus, if the true model is domain-dependent, the SAE 
techniques would induce substantial bias in the estimates. Therefore, one should always proceed 
with caution when applying these techniques for the production of regular official statistics.  

4. A standardized approach should always be adopted. The process flow should follow these three 
main steps: (1) clarification, for the identification and prioritization of the needs and uses of small-
area estimates; (2) calculation of direct estimates together with basic design smoothing 
techniques, i.e. synthetic and composite estimators calculated under a design-based approach; 
and (3) enhancement of basic design smoothing techniques, via SAE techniques. 
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Annex 1: R packages for data disaggregation 

This Annex provides a list of R packages that can be used to implement the statistical methods for data disaggregation presented in Chapters 3, 4 
and 5 of these Guidelines. 

R package Use and functions Documentation 

R2BEAT Determine optimal sample allocation in the 
multivariate and multidomains case of estimates 
for two-stage stratified samples (for two-stage 
stratified samples, the design effects values are 
required as further input). 

https://cran.r-project.org/web/packages/R2BEAT/index.html  

Stratification Produces univariate stratification of survey 
populations with a generalization of the Lavallée-
Hidiroglou method of stratum construction. This 
package might be useful in a second-stage 
screening sample design. The package defines the 
take-all stratum for large units, a take-none 
stratum for small units, and a certainty stratum to 
ensure that some specific units are in the sample. 
The take-all stratum (inclusion probability =1) 
defines the threshold for defining the screening 
variable. 

https://cran.r-
project.org/web/packages/stratification/index.html  

https://cran.r-project.org/web/packages/R2BEAT/index.html
https://cran.r-project.org/web/packages/stratification/index.html
https://cran.r-project.org/web/packages/stratification/index.html
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R package Use and functions Documentation 

PracTools Extensive package implementing several phases of 
the sampling design. It contains functions for 
sample size calculation for survey samples, using 
stratified or clustered one-, two- and three-stage 
sample designs. Other functions compute variance 
components for multistage designs and sample 
sizes in two-phase designs. 

 
Among the specific functions of the package are 
the computation of: 
- the optimum number of sample elements per 
PSU for a fixed set of PSUs; 
- various types of design effects; 
- sample sizes at each phase of a two-phase design 
in which strata are created using the first phase; 
- separate nonresponse adjustments in a set of 
classes; 
- optimal values of the first-phase sample size and 
the second-phase sampling fraction in a two-
phase sample; and 
- the proportional, Neyman, cost-constrained and 
variance-constrained allocations in a stratified 
simple random sample (univariate and single-
domain). 

https://cran.r-
project.org/web/packages/PracTools/index.html  

https://cran.r-project.org/web/packages/PracTools/index.html
https://cran.r-project.org/web/packages/PracTools/index.html


128 
 

R package Use and functions Documentation 

sampling Produces the sample selection using several 
sampling designs (one-stage and two-stage) with 
uniform and variable inclusion probabilities. It 
includes balanced sampling, which is a 
generalization of the most common designs 
(simple random sample, stratified design, PPS 
design).  

https://cran.r-
project.org/web/packages/sampling/index.html  

BalancedSampling Select balanced and spatially balanced probability 
samples in multidimensional spaces with any 
prescribed inclusion probabilities. This package is 
an extension of the sampling package.  

https://cran.r-
project.org/web/packages/BalancedSampling/index.html  

survey Summary statistics, two-sample tests, rank tests, 
generalized linear models, cumulative link models, 
Cox models, loglinear models, and general 
maximum pseudolikelihood estimation for 
multistage stratified, cluster-sampled, unequally 
weighted survey samples. Variances by Taylor 
series linearization or replicate weights. Post-
stratification, calibration and raking. Two-phase 
subsampling designs. Graphics. PPS sampling 
without replacement. Principal components, 
factor analysis. 

https://cran.r-project.org/web/packages/survey/index.html  

https://cran.r-project.org/web/packages/sampling/index.html
https://cran.r-project.org/web/packages/sampling/index.html
https://cran.r-project.org/web/packages/BalancedSampling/index.html
https://cran.r-project.org/web/packages/BalancedSampling/index.html
https://cran.r-project.org/web/packages/survey/index.html


129 
 

R package Use and functions Documentation 

Regenesees Regenesees (R Evolved Generalized Software for 
Sampling Estimates and Errors in Surveys) is a fully 
fledged R software for design-based and model-
assisted analysis of complex sample surveys. This 
package replicates almost all functions included in 
the survey package, while being more flexible and 
user-friendly. 

https://www.istat.it/en/methods-and-tools/methods-and-it-
tools/process/processing-tools/regenesees  

convey Enables variance estimation on indicators of 
income concentration and poverty using complex 
sample survey designs. 

https://cran.r-project.org/web/packages/convey/index.html  

Stats This package includes various statistical functions, 
including the function glm() to estimate 
generalized linear models, including logistic 
regression. It also includes the function AIC() to 
implement the Akaike information criterion. 

https://www.rdocumentation.org/packages/stats/versions/3.
6.2  

 
https://www.rdocumentation.org/packages/stats/versions/3.
6.2/topics/glm 

randomForest Breiman and Cutler’s Random Forests for 
Classification and Regression. 

https://cran.r-
project.org/web/packages/randomForest/index.html   

 

Boruta Boruta feature selection method of Kursa and 
Rudnicki (2010). 

https://cran.r-project.org/web/packages/Boruta/index.html  

 

glmnet Fits a generalized linear model via penalized 
maximum likelihood and therefore fits lasso 
regression to select variable. 

https://cran.r-project.org/web/packages/glmnet/   

https://www.istat.it/en/methods-and-tools/methods-and-it-tools/process/processing-tools/regenesees
https://www.istat.it/en/methods-and-tools/methods-and-it-tools/process/processing-tools/regenesees
https://cran.r-project.org/web/packages/convey/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/Boruta/index.html
https://cran.r-project.org/web/packages/glmnet/
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R package Use and functions Documentation 

ResourceSelection 
This package includes the function hoslem.test() to 
estimate Hosmer-Lemeshow GOF. 

https://cran.r-project.org/web/packages/ResourceSelection/ 
 

generalhoslem 
This package contains a series of functions to 
assess the GOF of binary, multinomial and ordinal 
logistic models. 

https://cran.r-project.org/web/packages/generalhoslem/ 

 

 

pscl (political science 
computation laboratory) 

This package includes the function pR2() to 
estimate pseudo R-squares of McFadden (1974) 
and Cox and Snell (1989) measuring explained 
variation to assess the model performance for 
logistic regression. 

https://cran.r-project.org/web/packages/pscl/ 
 

car 
This package includes the function vif() to estimate 
the generalized VIF of Fox and Monette (1992) for 
testing multicollinearity. 

https://cran.r-project.org/web/packages/car/index.html 

 

 

 

 

 

 

https://cran.r-project.org/web/packages/generalhoslem/
https://cran.r-project.org/web/packages/car/index.html
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