

The state of the world's land and water resources for food and agriculture (SOLAW)

Systems at breaking point

Mr Lifeng Li

Director, FAO Land and Water Division

9 December 2021, Rome

SOLAW 2011 and 2021

The Context

more food, feed and biofuel than we did in 2012

The Status of agricultural land

Land-use class change, 2000–2019 (million ha)

Land-use class	2000	2019	Change
Land under permanent meadows and pastures (a)	3 387	3 196	-191
Cropland (arable land and permanent crops) (b = b1 + b2)	1 493	1 556	+63
- Arable land (land under temporary crops) (b1)	1 359	1 383	+24
- Land under permanent crops (b2)	134	170	+36
Agricultural land (total of cropland and permanent meadows and pasture) (C = a + b)	4 880	4 752	⁻¹²⁸ 22 %
- Land area equipped for irrigation	289	342	+53
Forest land (land area > 0.5 ha with trees > 5 m + 10% canopy cover)	4 158	4 064	-94
Other land	3 968	4 188	+220

Source: FAO. 2020a. FAOSTAT. http://www.fao.org/faostat/en/#data/QC

The State: The interconnected systems of land, soil and water are stretched to the limit

Level of water stress due to the agricultural sector by basin, 2018

The State: Current patterns of agricultural intensification are not proving sustainable

Land-degradation classes based on severity of human-induced pressures and deteriorating trends, 2015

The State: Farming systems are becoming polarized

Global distribution of farms and farmland by land size class, 2010

The Challenge: Future agricultural production will depend upon managing the risks to land and water

Regions at risk based on status and trends of land resources, 2015

The challenge: Land and water resources will need safeguarding

The responses: Land and water governance has to be more inclusive, adaptive and effective.

The responses: integrated solutions need to be planned and implemented at all levels

The responses: Technical and managerial innovation can be targeted to address priorities and accelerate transformation

The responses: agricultural support and investment can be redirected towards social and environmental gains derived from land and water management.

No "one size fits all" solution exists, but a "full package" of workable solutions is available

Integrated water resource management

Transboundary water management

water

Land and water resource planning

Soil organic carbon sequestration

Sustainable use and

Modular Soil desalinization

management of fertilizers

farming system

Multi-stakeholder knowledge exchange

Solar-powered irrigation Water accounting

Innovative technologies

River basin management

Soil biodiversity

Nature based solutions

Capacity building

Adaptive governance

Circular economy

Climate mitigation

Drought preparedness

Food security

Integrated landscape management

Irrigation modernization

Marian Integrated solutions €

ട്ട് Land and water ഗ്ഗ് resource planning

Ecosystem restoration

Green infrastructure

Sustainable soil management

Inclusive land and water governance

auditing Climate adaptation

Water

Water, food, energy

Wastewater treatment Investment

Sustainable land^sand water management

Environmental health

Watershed management

Water tenure

Data collection Coordinated policies

Biosaline agriculture

Salt-tolerant crops

Remote sensing

Innovative financing

Ecosystem restoration

Over 95% of food is produced on Land and begins with Soils and Water.

Let's work together to produce more with less and safeguard these resources for the future.

Thank you!

Mr. Lifeng Li
Director, FAO Land and Water Division
NSL-Director@fao.org

www.fao.org/land-water Twitter: @FAOLandWater