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VII 

Summary  
This document provides guidance and technical specifications for the first phase of the 
GSNmap initiative which aims to generate national maps of soil nutrients and associated soil 
properties at 250 m resolution for agricultural lands based on a country–driven approach. On 
the one hand, soil nutrient maps will provide a baseline for identifying areas where their levels 
are critical for crop growth and will thus serve as an important decision–making tool. On the 
other hand, associated soil parameters such as organic carbon, pH, soil texture, bulk density, 
and cation exchange capacity will be mapped, which can highlight the key limits to nutrient 
availability.  In order to obtain consistent results and to allow comparisons between countries 
and regions, we propose a standard methodology based on digital soil mapping techniques. 
General modelling procedures, data requirements and data sources are described. The final 
product specifications and data submission formats are also provided. This approach will 
require collaboration at national level between experts of GLOSOLAN and INSII. GSP will 
organise training sessions to support countries that require technical assistance to produce 
their own maps, and will facilitate the production of datasets for countries lacking the required 
local input data. The final product will be relevant to identify the level of nutrients and 
associated soil properties per regions, environments and agricultural systems, and to establish 
priorities for the implementation of global and national public and private policies.  

Table 1: Product specifications overview of the GSNmap 

Mandatory 
products 

● Total Nitrogen 0-30 cm depth; 
● available Phosphorus 0-30 cm depth; 
● available Potassium 0-30 cm depth; 
● cation exchange capacity map 0-30cm depth; 
● soil pH map 0-30cm depth; 
● clay (<2 µm), silt (2-20/50 µm) and sand (50-2000 µm) fractions 

map, 0-30cm depth; 
● concentration of soil organic carbon map, 0-30cm depth ; and 
● bulk density map, 0-30cm depth. 

Optional 
products 

● Extractable micronutrients; 
● cation exchange capacity map 30-60 and 60-100 cm; 
● soil pH map 30-60 and 60-100 cm; 
● clay (<2 µm), silt (2-20/50 µm) and sand (50-2000 µm) fractions 

map, 30-60 and 60-100 cm; 
● concentration of soil organic carbon map, 30-60 and 60-100 cm; and 
● bulk density map 30-60 and 60-100 cm. 

Depth 0-30 cm 

Resolution National level raster maps (spatial resolution of 250 m or 7.5 arc-second) 

Extent Croplands / ESA. Land Cover CCI 

Projection WGS 84 (decimal degrees geographic)  

Uncertainty Standard deviation map (raster format at 250 m or 7.5 arc-second) 

Documentation Technical report 
Delivery Online (GSP data submission tool) 
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Table 2: Input data requirements for the GSNmap 

Input data 
requirements 

Phase I 

Covariates GSP google earth engine covariate repository (instructions will be provided in 
the GSNmap Technical Manual) 

Mandatory Soil 
data 

Total Nitrogen (ppm) 
Available Phosphorus (ppm) 
Available Potassium (ppm) 
Cation exchange capacity (cmolc/kg) 
pH  
Soil fractions (clay, silt and sand in g/100g) 
SOC (%) 
Bulk Density (g/cm3) 

0-30 cm 

Optional soil data 

Total Nitrogen (ppm) 
Available Phosphorus (ppm) 
Available Potassium (ppm) 
Cation exchange capacity (cmolc/kg) 
pH  
Soil fractions (clay, silt and sand in g/100g) 
SOC (%) 
Bulk Density (g/cm3) 

30-60 &  
60-100 cm 
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1 Introduction 

1.1 Background and objectives 
To date, a total number of around 2.3 billion people are affected by moderate and severe 
food insecurity (FAO et al., 2022). In 2020, within the first year of the COVID-19 pandemic, 
an additional 320 million people became affected by food insecurity (FAO et al., 2021). The 
current conflicts and aggravating climate change further jeopardise achieving sustainable 
development goal (SDG) 2 (Zero Hunger) by 2030. The situation is alarming and urgent 
action is needed to revert the trends and increase food security. 

The current global situation requires an increase of food production while preserving natural 
(soil) resources, lowering greenhouse gas emissions and optimising the use of goods such as 
fertilisers on agricultural sites (Eisenstein, 2020). Fertiliser prices more than doubled within 
one year and grain prices increased by around 25 percent (Jan. 2021 - Jan. 2022) (Hebebrand 
and Laborde, 2022). With the start of the armed conflict in Ukraine in February 2022, this 
trend became more pronounced. 

Growing food insecurity and rapidly increasing fertiliser prices underscore the urgent need for 
informed decision-making and optimised soil nutrient management. However, a large data 
gap exists in regards to soil nutrient stocks and soil properties that govern nutrient availability. 
Therefore, FAO’s Global Soil Partnership (GSP) has launched the Global Soil Nutrient and 
Nutrient Budget map (GSNmap) initiative in an endeavour to provide harmonised and finely 
resolved soil nutrient data and information to stakeholders following a country-driven 
approach. 

Up-to-date soil data on the status and spatial trends of soil nutrients and related soil 
attributes is key to guide policy-making to close yield gaps, and protect local natural 
resources. Therefore, locally-specific optimisation of soil nutrient and agricultural 
management are needed (Cunningham et al., 2013). The soil information collected in the 
GSNmap thereby serves as a cornerstone in delineating priority areas for action and thereby 
seizes the opportunity to reduce food insecurity, close yield gaps, and reduce environmental 
costs arising from mismanagement of soil nutrients and especially overfertilisation. 

1.2 Global Soil Partnership 
The Global Soil Partnership (GSP) was established in December 2012 as a mechanism to 
develop a strong interactive partnership and to enhance collaboration and generate synergies 
between all stakeholders to raise awareness and protect the world’s soil resources. From land 
users to policymakers, one of the main objectives of GSP is to improve governance and 
promote sustainable management of soils. Since its creation, GSP has become an important 
partnership platform where global soil issues are discussed and addressed by multiple 
stakeholders at different levels.  

The mandate of GSP is to improve governance of the planet’s limited soil resources in order 
to guarantee productive agricultural soils for a food-secure world. In addition, it supports other 
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essential soil ecosystem services in accordance with the sovereign right of each Member State 
over its natural resources. In order to achieve its mandate, GSP addresses six thematic action 
areas  to be implemented in collaboration with its regional soil partnerships (Figure 1). 

 

Figure 1: GSP action framework 

The area of work on Soil Information and Data (SID) of the GSP builds an enduring and 
authoritative global system (GloSIS) to monitor and forecast the condition of the Earth's soil 
resources and produce map products at the global level. The secretariat is working with the  
international network of soil data providers (INSII - International Network of Soil Information 
Institutions) to implement data related activities.  

1.3 Country-driven approach and tasks 
The GSNmap initiative will be jointly implemented by the International Network of Soil 
Information Institutions (INSII) and the GSP Secretariat. The process will be country-driven, 
involving and supporting all Member States in developing their national GSNmap data 
products. The GSNmap products will be developed following a two phase approach: 

● Phase I: development of soil nutrient and associated soil property maps. 
● Phase II: quantification, analysis, projections of nutrient budgets for agricultural land 

use systems at national, regional and global scale.  

These guidelines only concern GSNmap Phase I, while the guidelines for the GSNmap Phase 
II will be published in the fourth quarter of 2022. 
Depending on national data availability and technical capacities, ad-hoc solutions will be 
developed by the GSNmap WG to support countries during the national GSNmap production 
and/or harmonisation phase. Where possible, GSP Secretariat will use publicly available data 
to gap-fill the areas which are not covered by the national submissions unless the country 
requests to be left blank on the GSNmap products. 
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1.4 Cooperation with the Global Soil Laboratory Network 
(GLOSOLAN) 

GSNmap data products demand recent, accurate and dense ground data measurements of 
relevant soil nutrients and associated soil properties. Considering the importance of ground 
data also being held by non-INSII institutions, especially by the laboratories within countries, 
INSII members are encouraged to liaise with the national laboratories which are members of 
the GSP’s Global Soil Laboratory Network (GLOSOLAN) to access the required data inputs 
(refer to Section 3). GSP Secretariat will share the list of GLOSOLAN laboratories with INSII 
members and facilitate the process. 

2 Digital soil mapping of soil nutrients and 
associated soil attributes 

Digital soil mapping (DSM) is a methodological framework to create soil attribute maps on 
the basis of quantitative relationships between spatial soil databases and environmental 
covariates. The quantitative relations can be modelled by different statistical approaches, 
most of them considered machine learning techniques. Environmental covariates are 
spatially explicit proxies of soil-forming factors that are employed as predictors of the 
geographical distribution of soil properties. The methodology has evolved from the theories 
of soil genesis developed by Vasil Dokuchaev in his work “The Russian Chernozems” (1883), 
which later were formalised by Jenny (1941) with the equation of the soil-forming factors. The 
conceptual equation of soil-forming factors has been updated by McBratney et al. (2003) as 
follows: 

 

S = f(s,c,o,r,p,a,n)      (1) 

 

where S is the soil classes or attributes (to be modelled) as a function of “s” as other soil 
properties, “c” as climatic properties, “o” as organisms, including land cover and human 
activity, “r” as terrain attributes, “p” as parent material, “a” as soil age, and “n” as the geographic 
position.  

Digital soil mapping has been used to produce maps of soil nutrients. For instance, Hengl et 
al. (2017) predicted 15 soil nutrients at a 250 m resolution in Africa, using a random forest 
model (Breiman, 2001), topsoil nutrient observations at point locations and a set of spatially-
explicit environmental covariates. In 2021, Hengl et al. applied the same modelling approach 
to estimate total phosphorus in semi-natural soils at the global scale. 

In this document, we present three DSM frameworks to map soil nutrients and associated soil 
properties. One approach for soil observations with latitude and longitude data (point-
support) (Figure 3), another approach for soil observations with administrative unit 
information as the only geographical reference (area-support) (Figure 4), and a blend of both 
methods when both area- and point-support are available (Figure 5). 
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2.1 Soil data 
In the first phase of this initiative, INSII members will produce maps of the following soil 
attributes (see Table 3). 

Table 3: Overview of the laboratory methods that are used to measure the soil properties mapped in 
the GSNmap 

Soil attribute Unit Laboratory method 

Total Nitrogen ppm Dumas dry combustion method (FAO, 2021a) or 
Kjeldahl method (FAO, 2021b) 

Available 
Phosphorus 

ppm Bray I and II, Mehlich I, Olsen (FAO, 2021c; FAO, 2021d; 
FAO, 2021e) 

Available Potassium ppm Mehlich III (Mehlich, 1984) 

Cation exchange 
capacity 

cmolc/kg Ammonium acetate (Schollenberger and Simon, 1945) 

pH - Soil pH in H2O, KCl, CaCO2 (FAO, 2021f) 

Soil fractions (clay, 
silt, sand) 

g/100g Hydrometer (e.g. Bouyoucos, 1962) 

SOC % Dumas dry combustion, Walkley-Black, Tyurin 
spectrophotometric (FAO,2019a; FAO,2019b; FAO, 
2021g) 

Bulk density g/cm3 Overview of methods provided by Blake (1965) 

Nutrients (Ca, S, Mg, 
Fe, B, Cl, Mn, Zn, Cu, 
Mo, Ni, Si) 

ppm DTPA extraction method (FAO, 2022), Mehlich III 
(Mehlich, 1984), aqua regia extraction (Berrow and 
Stein, 1983) 

 

Figure 2 shows the alternative methodologies to be followed, depending on whether the soil 
observations have corresponding coordinates or just a reference to an administrative unit. 
When data have XY coordinates, the DSM protocol for point support (Section 2.2) must be 
followed. Instead, if data do not have XY coordinates but information on the administrative 
unit, Section 2.3 is the alternative method (area–support). When data is mixed, the option 
DSM for point–support and area–support (Section 2.4) should be followed. In this case, the 
area–support data will be used for generating an environmental covariate, while the point–
support will be used to produce the final map. Finally, if no data is available, gap–filling with 
publicly available layers will be used. 

 

https://www.fao.org/3/cb3646en/cb3646en.pdf
https://www.fao.org/3/cb3642en/cb3642en.pdf
https://www.fao.org/global-soil-partnership/glosolan/soil-analysis/sops/volume-2.3/en/
https://www.fao.org/3/cb3637en/cb3637en.pdf
https://www.fao.org/3/cb3637en/cb3637en.pdf
https://www.fao.org/3/cb3637en/cb3637en.pdf
https://www.fao.org/3/cb3637en/cb3637en.pdf
https://www.fao.org/3/cb3637en/cb3637en.pdf
https://www.fao.org/global-soil-partnership/glosolan/soil-analysis/sops/volume-2-2/en/
https://www.fao.org/global-soil-partnership/glosolan/soil-analysis/sops/volume-2-2/en/
https://www.fao.org/3/cc0048en/cc0048en.pdf
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Figure 2: Flowchart for defining the methodology  
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2.2 DSM approach for point–support data 

We present here a DSM framework to map soil nutrients and associated soil properties based 
on point–support data (with XY coordinates) (Figure 3). The steps in Figure 3 will also be 
implemented if both point- and area-support data are available. 

 

 

Figure 3: DSM approach for soil observations with latitude and longitude data (point-support). Circles 
represent steps described in the main text 

 

2.2.1 Step 1: prepare point data 

Soil data consist of measurement at a specific geographical location, time and soil depth. 
Therefore, it is necessary to arrange the data following the format shown in Table 4. 
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Table 4: Format example of a soil dataset 

Profile 
ID 

Horizon 
ID 

Lat Long Year Top Bottom Soil  
property 

Value Lab 
method 

1 1_1 12.123456 1.123456 2018 0 20 SOC 3.4 W&B 

1 1_2 12.123456 1.123456 2018 20 40 SOC 2.1 W&B 

2 2_1 23.123456 2.123456 2019 0 30 SOC 2.9 W&B 

Profile ID = unique profile identifier; Horizon ID = unique layer identifier; Lat = latitude in decimal degrees; Long = 
longitude in decimal degrees; Year = sampling year; Top = upper limit of the layer in cm; Bottom = lower limit of 
the layer in cm; Soil property = name of the soil property; Value = numerical value of the measure; Lab method = 
name of the laboratory protocol used for measuring the soil property. 

Soil data usually require a pre-processing step to solve common issues such as, arranging the 
data format, fixing the consistency of the soil horizon depth, detecting unusual soil property 
measurements, among other issues.  

Once the original dataset is clean and consistent, data harmonisation is needed to produce 
synthetic horizons (such as 0–30 cm layer), as well as to make compatible measurements 
from different lab methods. Horizon harmonisation will be done with the mass preserving 
spline function (Bishop et al., 1999, Malone et al., 2009) fitted to each individual soil profile, 
which requires more than a layer per profile. In the cases of single–layer samples, which is 
common in sampling for nutrient determination, a pedotransfer function locally calibrated 
should be applied. Pedotransfer functions will be also required to harmonise the laboratory 
methods. Experts from GLOSOLAN will provide advice in this regard. 

2.2.2 Step 2: prepare environmental covariates 

The SCORPAN equation (Eq. 1) refers to the soil–forming factors that determine the spatial 
variation of soils. However, these factors cannot be measured directly. Instead, proxies of 
these soil forming factors are used. One essential characteristic of the environmental 
covariates is that they are spatially explicit, covering the whole study area. Table 5 shows a 
summary of the environmental covariates that can be implemented under the DSM 
framework.  

Apart from the environmental covariates mentioned in Table 5, other types of maps could 
also be included, such as Global Surface Water Mapping Layers and Water Soil Erosion from 
the Joint Research Centre (JRC).  

Since environmental covariates will be available at different resolutions and coordinate 
reference systems (CRS), they have to be harmonised at a common resolution and CRS. The 
target resolution in GSNmap is 250 m x 250 m, therefore, all covariates will be aggregated 
(from higher to lower resolution) or disaggregated (from lower to higher resolution) to this 
resolution. This process involves a raster resampling method, which is usually implemented 
by a bilinear approach for continuous covariates, and by the nearest–neighbour approach for 
categorical covariates.  
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Table 5: Summary of soil–forming factors and their potential proxies (environmental covariates) 

Factor Environmental covariate Freely available source 

Soils Legacy soil maps of different 
scales, soil property maps 
produced with an independent 
dataset 

Global layers 
https://gitlab.com/openlandmap/global-
layers  
SoilGrids https://soilgrids.org/  

Climate Climatic data such as 
monthly/yearly/seasonal temporal 
mean and standard deviation of 
precipitation, temperatures (min, 
max, mean, etc.), 
evapotranspiration, radiation, snow 
occurrence, aridity index, etc.  

Chelsa climate https://chelsa-
climate.org/  

Organism Vegetation temporal and spatial 
patterns are the main proxies of 
the effect of living organisms. They 
can be characterised by remote 
sensing data from optical sensors 
such as vegetation indices (NDVI, 
EVI, SAVI), visual bands, NIR, 
SWIR, TIR bands from, as well as 
other band ratios.  
Land cover and land cover change 
maps are also included in this 
category. 

Landsat mission; MODIS mission; 
Sentinel 2 mission; 
ESA global land cover; 
Dynamic World;  
https://code.earthengine.google.com/  

Relief Terrain attributes derived from 
digital elevation models including 
elevation, slope, terrain curvatures, 
channel network base level, 
vertical distance to channel 
network, terrain wetness index, 
etc.  

Multi–Error–Removed Improved–
Terrain DEM (MERIT DEM): 
http://hydro.iis.u-
tokyo.ac.jp/~yamadai/MERIT_DEM/  

Parent 
material 
and age 

Geological maps might be used to 
derive surface parent material 
data, including their age, but these 
are the least available type of data 

 

 

Note that the target resolution of GSNmap has been set at 250 m, which can be considered 
a moderate resolution for a global layer. However, those countries that require a higher 
resolution are free to develop higher resolution maps and aggregate the resulting maps to the 
target resolution of GSNmap for submission. 

https://gitlab.com/openlandmap/global-layers
https://gitlab.com/openlandmap/global-layers
https://soilgrids.org/
https://chelsa-climate.org/
https://chelsa-climate.org/
https://code.earthengine.google.com/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
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2.2.3 Step 3: reduce collinearity in environmental covariates 

Multicollinearity is usually present in remote sensing data and terrain attributes. While this 
was an issue for multiple linear regression models, current models such as random forest can 
deal with high dimensionality. However, the main reasons to reduce the number of 
environmental covariates are that a model with fewer predictors can be interpreted more 
easily, thus extracting new knowledge, redundant information increasing the computational 
demand, and improve prediction results (Behrens et al., 2014).  

Covariate selection can be done by supervised or unsupervised methods (Behrens el al., 
2010). Supervised methods work on the basis of prediction results, hence they are based on 
a given dataset. For instance, recursive feature elimination (RFE) in caret R package (Kuhn, 
2008) provides a tool for selecting covariates according to their predicting contribution. 
Instead, unsupervised methods are used to reduce the dimensionality of the dataset by 
removing redundant information without taking into account a particular target variable. 
Principal component analysis is one of the most widely used for this purpose, however, it 
does not ensure that specific discriminant features are kept within the main factors (Behrens 
et al., 2014). Another drawback of this technique is that model interpretation can be reduced 
when using factors instead of the original covariates.  

In this initiative, both methods will be tested for the specific country case. The final decision 
on what of them will be used will be made by the national experts. 

2.2.4 Step 4: merging soil data and environmental covariates 

A calibration dataset consists of soil observations and a matrix of predictors, where each row 
is a soil observation paired with the values of the corresponding covariates for the given 
spatial location. Some common issues and solution when merging soil observations and 
covariates are: 

● Mismatch of coordinate reference system (CRS): it requires to convert the CRS of 
point data to the raster or polygon covariate CRS. 

● Categorical covariates: some covariates may be categorical, such as land use/cover, 
legacy soil maps or geological maps. A common problem in this case is that some 
classes may not be sampled with any soil observation, causing an error when using 
the layer for prediction, since the model cannot predict over a class that was not part 
of the model calibration step. Also, because of the cross–validation procedure, it is 
advised to have, at least, three soil samples per class for the same reason. 

2.2.5 Step 5: setting up repeated k–fold cross validation 

Cross validation is one of the most used methods in DSM for assessing the overall accuracy 
of the resulting maps (Step 8, Figure 3). Since this is implemented along with the model 
calibration step, we explain the process at this stage.  

Cross validation consists of randomly splitting the input data into a training set and a testing 
set. However, a unique testing dataset can bias the overall accuracy. Therefore, k–fold cross 
validation randomly splits the data into k parts, using 1/k part of it for testing and k-1/k part for 
training the model. In order to make the final model more robust in terms of parameter 
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estimations, we include repetitions of this process. The final approach is called repeated k–
fold cross–validation, where k will be equal to ten in this process. A graphical representation 
of the 10-fold cross validation is shown in Figure 4. Note that green balls represent the 
samples belonging to the testing set and yellow balls are samples of the training set. Each 
row is a splitting step of the 10-folds, while each block (repetitions) represent the repetition 
step. 

 

Figure 4: Schematic representation of the repeated cross–validation process 

Step 5 in Figure 4 represents the repeated cross–validation, but note that after each single 
splitting step (the rows in Figure 4) the training data go to model calibration, which will be 
explained in Step 6 (next section), and the testing data will be used with the calibrated model 
to produce the residuals (Step 8, Section 2.2.8).  

Repeated cross validation has been nicely implemented in the caret R package (Kuhn, 2008), 
along with several calibration methods. 

2.2.6 Step 6: model calibration 

The model calibration step involves the use of a statistical model to find the relations between 
soil observations and environmental covariates. One of the most widely used models in DSM 
is random forest (Breiman, 2001). Random forest is considered a machine learning method 
which belongs to the decision–tree type of model. Random forest creates an ensemble of 
trees using a random selection of covariate. The prediction of a single tree is made based on 
the observed samples mean in the leaf. The random forest prediction is made by taking the 
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average of the predictions of the single trees. The size of the number of covariates at each 
tree (mtry) can be fine–tuned before calibrating the model.  

Quantile regression forests (QRF; Meinshausen, 2006) are a generalisation of the random 
forest models, capable of not only predicting the conditional mean, but also the conditional 
probability density function. This feature allows one to estimate the standard deviation of the 
prediction, as well as the likelihood of the target variable falling below a given threshold. In a 
context where a minimum level of a soil nutrient concentration may be decisive for improving 
the crop yield, this feature can play an important role for the GSNmap initiative.  

Model calibration will be implemented using the caret package (Kuhn, 2008). While we 
suggest to use QRF, caret provides a large set of models 
(https://topepo.github.io/caret/available- models.html#) that might perform better in 
specific cases. In this regard, it is up to the user to implement a different model, ensuring the 
product specifications (Section Product Specifications). 

2.2.7 Step 7: predicting soil attributes mean and standard deviation 

After calibrating the model, caret will select the best set of parameters and will fit the model 
using the whole dataset. Then, the final model can be used to predict the target soil 
properties. The process uses the model and the values of the covariates at target locations. 
This is generally done by using the same input covariates as a multilayer raster format, 
ensuring that the names of the layers are the same as the covariates in the calibration dataset. 
In this step we will predict the conditional mean and conditional standard deviation at each 
raster cell.  

2.2.8 Step 8: overall accuracy assessment 

Accuracy assessment is an essential step in digital soil mapping. One aspect of the accuracy 
assessment has been done in Step 7 by predicting the standard deviation of the prediction, 
which shows the spatial pattern of the uncertainty. Another aspect of the uncertainty is the 
estimation of the overall accuracy to measure the model performance. This will be measured 
using the model residuals generated by caret during the repeated cross validation step. 

The residuals produced by caret consist of tabular data with observed and predicted values 
of the target soil property. They can be used to estimate different accuracy statistics. Wadoux 
et al. (2022) have reviewed and evaluated many of them. While they concluded that there is 
not a single accuracy statistic that can explain all aspect of map quality, they recommended 
the following: 

● mean prediction error (ME), that estimates the prediction bias; 
● mean absolute prediction error (MAE) and root mean squared prediction error (RMSE) 

to estimate the magnitude of the errors; and 
● model efficiency coefficient (MEC) (Janssen and Heuberger, 1995) as an estimator of 

the proportion of variance explained by the model.  

https://topepo.github.io/caret/available-models.html
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While solar diagrams (Wadoux, et al. 2022) are desired, we propose to produce a scatterplot 
of the observed vs predicted values maintaining the same range and scale for the X and Y 
axes. 

Finally, note that accuracy assessment has been discussed in Wadoux et al. (2021), since the 
spatial distribution of soil samples might constrain the validity of the accuracy statistics. This 
is especially true in cases where the spatial distribution of observations is clustered. The 
authors recommended creating a kriging map of residuals before using them for assessing the 
map quality. 

2.3 DSM approach for area–support data 

The area–support methodology will be required in the case that soil observations (soil 
nutrients and/or soil properties) only have an administrative unit as geographical reference. 
This means that the locations of the samples are uncertain, although constrained to a specific 
area. The smaller the administrative unit, the smaller the location's uncertainty.  

When should this process be applied? 

The method is meant to be applied in cases where the density of samples in the 
administrative unit is around one sample per square kilometre. When this is the only source 
of data (no point data), it could also be applied with lower density, but note that the 
uncertainty will increase.  

The process in this section differs from the previous one in that we need to assign coordinates 
to each sample and consecutively follow a similar approach as done in Section 2.2. This 
process is repeated several times to generate a large number of predictions which is later 
aggregated by the mean of the predictions.  

Figure 5 shows the workflow for soil data with area–support instead of geographical 
coordinates. The workflow can be divided into the following steps, some of which have been 
explained in Section 2.2.   

2.3.1 Step 1: assign coordinates to soil samples 

Table 6 shows an example of the type of data needed for this process. It is required that the 
name or code of the administrative unit in the table is associated with a polygon map with 
the same name or code, so the samples can be associated with a specific area in the map. 

Table 6: Format example of a soil dataset without latitude and longitude 

Profile ID Horizon 
ID 

District Year Top  Bottom  Soil  
property 

Value Lab 
method 

1 1_1 Gers 2018 0 20 SOC 3.4 W&B 

1 1_2 Gers 2018 20 40 SOC 2.1 W&B 

2 2_1 Hérault 2019 0 30 SOC 2.9 W&B 

Profile ID = unique profile identifier; Horizon ID = unique layer identifier; District = district name or code 
(administrative unit); Year = sampling year; Top = upper limit of the layer in cm; Bottom = lower limit of the layer 
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in cm; Soil property = name of the soil property; Value = numerical value of the measure; Lab method = name of 
the laboratory protocol used for measuring the soil property. 

In this step, the latitude will be assigned to each sample in a random manner within the 
administrative unit to which it belongs. If the samples only belong to a single land use, such 
as croplands, a cropland mask can be used to reduce the probable area within the 
administrative unit.  

 

Figure 5: DSM approach for soil data with administrative unit information as the only geographical 
reference (area–support). Circles represent steps described in the main text 

2.3.2 Steps 2 to 8: business as usual  

The steps two to eight are the same as Section 2.2.2 to Section 2.2.8, respectively. The only 
difference is that the repetitions of 10-fold cross–validation (Step 5) can be reduced to half 
or less to reduce the computational demand of the whole process.  
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2.3.3 Steps 9: process repetition and final predictions 

The steps of Sections 2.3.1 and 2.3.2 will be repeated a large number of times according to 
the computational capacity. Ideally, it should be repeated more than 50 times. This is because 
we target to estimate the mean of all predictions to get a stable mean for each pixel of the 
study area. The final maps will be estimated by the means of the conditional mean and 
conditional standard deviation.  

2.4 DSM approach for point- and area–support data 

This approach is a blend of the two previous methods. In essence, the soil data with area–
support is used to produce a layer following the methodology of Section 2.3 which is 
subsequently used as a covariate applying the methodology of Section 2.2 (Figure 6). It is 
expected that the contribution of the area–support data as a covariate have a great impact in 
the final map. Then, the method is worth applying in the case that the sample size of the 
area–support data is considerably larger than the point–support data. 

Figure 6: Flowchart for using both area– and point–support for mapping soil nutrients 



 

15 

3 Product specifications 

3.1 Mandatory products 
The GSNmap consists of two phases and requires the mandatory submission of certain 
gridded data products. The items must be submitted as raster files (GeoTiff) at a resolution of 
250 m for the soil depth of 0–30 cm. The acceptable age of the samples underlying each 
map is specified in parentheses. In Phase 1, the following products are mandatory: 

● total Nitrogen (sampling period: preferably 2017–2022); 
● available Phosphorus (sampling period: preferably 2017–2022); 
● available Potassium (sampling period: preferably 2017–2022); 
● cation exchange capacity (sampling period: 1980–2022); 
● soil pH (sampling period: 1980–2022); 
● soil texture (sampling period: no constraint); 

○ clay (< 2 µm) 
○ silt (2–20/50 µm) 
○ sand (50–2000 µm) 

● soil organic carbon map (sampling period: preferably 2000–2022); and 
● bulk density (sampling period: no constraint). 

3.2 Optional datasets 
Country members are encouraged to deliver the following products and supplementary data 
in Phase 1: 

● cation exchange capacity at 30–60 and 60–100 cm depth (sampling period: 1980–
2022); 

● soil pH at 30–60 and 60–100 cm depth (sampling period: 1980–2022); 
● soil texture (as specified in 4.1) at 30–60 and 60–100 cm depth (sampling period: no 

constraint); 
● bulk density at 30–60 and 60–100 cm depth (sampling period: no constraint); and 
● other nutrients at 0–30 cm depth (sampling period: no constraint) 

○ Calcium (Ca), Sulphur (S), Magnesium (Mg)  
○ Iron (Fe), Boron (B), Chlorine (Cl), Manganese (Mn), Zinc (Zn), Copper (Cu), 

Molybdenum (Mo), Nickel (Ni). 

3.3 Spatial entity  

3.3.1 Horizontal and vertical resolution 

The mandatory product of both phases of the GSNmap will cover a soil depth of 0–30 cm. 
Additionally, countries are highly encouraged to provide maps for 30–60 and 60–100 cm 
depth.  

The maps shall be produced at regular fixed horizontal dimensions of 7.5 arc–seconds grid 
(approximately only 250 x 250 m) at the equator. A generic, empty, global 7.5 arc–second 
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grid will be prepared and shared with all participating countries. Countries will be expected to 
deliver their datasets using these standard grids. 

3.3.2 Spatial reference 

World Geodetic System 1984 (WGS84) geographic (latitude/longitude) projection will be 
used for all submitted maps. The final GSNmap layers will also be delivered at this coordinate 
reference system.  

3.3.3 Extent 

The GSNmap layers will be developed only for croplands.  

3.3.4 Excluded areas 

Data providers are expected to deliver a continuous surface for their predictions for soils 
under croplands. Data providers should not attempt to mask out the excluded areas from the 
grid (e.g. water surfaces, urban areas). The GSP Secretariat will mask excluded areas using 
standard spatialized layers. Values in the excluded grid cells will be identified as no data (NA)  
in the final global product.  

3.3.5 Uncertainty assessment 

The uncertainties will be calculated and salong with the GSNmap layers. 

3.3.6 Data submission  

File naming conventions and directory structure: 

The GSP Secretariat will provide an online data submission facility. Deliverables can be 
uploaded as individual files or as compressed archives of files (.zip, .rar, 7z). Structure is as 
follows: 

Phase 1 

Mandatory maps: 

|_ Total Nitrogen map ([ISO3CountryCode]_GSNmap_Ntot_Map030.tiff) 

|_ Available Phosphorus map ([ISO3CountryCode]_GSNmap_Pav_Map030.tiff) 

|_ Available Potassium map ([ISO3CountryCode]_GSNmap_Ktot_Map030.tiff) 

|_Cation Exchange Capacity map ([ISO3CountryCode]_GSNmap_CEC_Map030.tiff) 

|_Soil pH map ([ISO3CountryCode]_GSNmap_pH_Map030.tiff) 

|_Soil Clay map ([ISO3CountryCode]_GSNmap_Clay_Map030.tiff) 

|_Soil Silt map ([ISO3CountryCode]_GSNmap_Silt_Map030.tiff) 

|_Soil Sand map ([ISO3CountryCode]_GSNmap_Sand_Map030.tiff) 

|_Soil Organic Carbon map ([ISO3CountryCode]_GSNmap_SOC_Map030.tiff) 

|_Bulk density map ([ISO3CountryCode]_GSNmap_BD_Map030.tiff) 

 

https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code


 

17 

Uncertainty maps: 

|_ All maps except for the soil texture class map come with upper and lower uncertainty maps 
that are denominated as follows:  

[ISO3CountryCode]_GSNmap_[Product name]_UncertaintyMap030.tiff 

Documents: 

|_ Report  ([ISO3CountryCode]_Report. pdf) 

|_ FactSheet_([ISO3CountryCode]_Report. pdf) 

 

Optional data products: 

In case maps for 30–60 or 60–100 cm depth are submitted, they should be named as 
following:  

[ISO3CountryCode]_GSNmap_[Product name]_Map3060.tiff 

[ISO3CountryCode]_GSNmap_[Product name]_Map60100.tiff 

File formats: 

GIS files shall be delivered in GeoTIFF format.  GeoTIFF is a standard .tif or image file format 
that includes additional spatial (georeferencing) information embedded in the .tif file as tags. 
These are called embedded tags, tif tags. These tags include raster metadata such as spatial 
extent, coordinate reference system, resolution, no data values. 

4 Quality assurance/quality control 
Each country will be responsible for carrying out basic Quality Assurance/Quality Control 
(QA/QC) of all data before providing it to the GSP Secretariat. Quality Assurance can be 
described as the process of preventing errors from entering the datasets; while Quality 
Control can be described as the process of identifying and correcting existing errors in the 
datasets. 

All datasets should be checked for:  

● spatial errors (extent, projection); 
● units; 
● completeness of data; 
● consistency with data shown in any accompanying documents (such as reports or 

drawings); 
● compliance with the Data Standards described in this document; and 
● consistency of reported validation results with the provided data. 

Final QA/QC for the global datasets will be facilitated by the GSP Secretariat through its 
technical networks (INSII, GSNmap WG, and the Intergovernmental Technical Panel on Soils 
(ITPS) will give final clearance to the global dataset prior to public release). 

https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
https://unstats.un.org/unsd/tradekb/knowledgebase/country-code
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5 Data policy 
The final global dataset will be distributed under the endorsed GSP Data Policy 
(http://www.fao.org/3/a-bs975e.pdf). As suggested in the GSP Data Policy, a Creative 
Commons licence will be assigned to the global dataset. Data providers will retain the 
ownership of national datasets.  

http://www.fao.org/3/a-bs975e.pdf
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